0?7,

r
S’ 7
L/

BEAWebLogic
Servere

Extending the
Administration Console

Version 10.0
Revised: March 30, 2007

Contents

1. Introduction and Roadmap

Document Scope and AUdIENCEottt 1-1
Guide to thiS DOCUMENT e 1-2
Related DOCUMENTALIONo 1-2
New and Changed Console-Extension Features in ThisRelease 1-3

2. Understanding Administration Console Extensions

What Is an Administration Console Extension?o i, 2-1
How Do the WebLogic Portal Framework and WebLogic Portal Differ? 2-2
Extension Points in the Administration Console 2-2
Hierarchy of UL Controls e 2-3

The Administration Console Desktop. 2-5
Extending the Desktop. 2-6

The Administration Console Lookand Feel. oot 2-6
Extending the Lookand Feel. i 2-6

The Home Book and Paget e 2-6
Extending the Home Book.o 2-8

The ContentBOoOKt 2-8
Extending the ContentBook. 2-10
Summary of the Administration Console Ul Controls. 2-10

JSP Templates and Tag Libraries. 2-12
JSP Tag Libraries 2-12

Extending the Administration Console iii

Example: How Struts Portlets Display Contento, 2-14

3. Setting Up a Development Environment

Set Up the Classpath (Optional) e 3-1
Import Tag Libraries Into IDEs (Optional). 3-2
Create a Directory Tree for the Extension 3-2
Deploy a Development Look and Feel to See Ul Control Labels. 3-4

4. Creating a Message Bundle

CreateaMessage Bundle i 4-1

5. Rebranding the Administration Console

Copy and Modify the Sample Look and Feel: Main Steps. 5-2
Modify the Administration Console Banner 5-3
Modify Colors, Fonts, Buttons,and Images, 5-4
Modify Themes for the Change Center and Other Portlets 5-5
Modify the Loginand Error Page 5-6

Use a Message Bundle for Your Lookand Feel i, 5-6

Modify the Sample NetUl Extension File. i i i, 5-8

6. Adding Portlets and Navigation Controls

Definea Portlet 6-3
DefineaJSP Portlet. 6-3
Definea Struts Portlet 6-5
Define a Page Flow Portlet 6-6
Displaying a Title Bar fora Portlet i, 6-7

Localizinga Portlet Title. 6-9

Define Ul Controls (Optional) e 6-11

Create a Tab That Does Not Containa Subtab 6-12

iv Extending the Administration Console

Create a Tab That Contains Subtabs. 6-13

CreateaSubtab. 6-16
Create a Control Without Tabsor Subtabs. 6-16
Specify a Location for Displaying Portlets or Ul Controls. 6-17
Add aPortlettothe Desktop 6-17
Add a Tab or Subtab to ContentBook. i 6-18
Example: Specifying Locations for Portlets and Ul Controls 6-19
Add Nodes to the NavTreePortlet (Optional) oo, 6-20
Append a Single Node to the Root of the Existing Tree 6-21
Append or Insert Nodes or Node Treest 6-22
Create a NavTreeBacking Classt 6-22
Invoke the NavTreeBacking Class s, 6-25
Example: How a NavTreeExtensionBacking Class Adds a Node Tree to the
NavTreePortlet. 6-25
Navigating to a Custom Security ProviderPage. oo, 6-27
/. Using BEA Templates and JSP Tags
Create and Use a Message Bundle in Your JSPs.cov s, 7-3
Overview of Formsand Tables 7-4
Data Models for Formsand Tables. 7-4
Handles for ActionFormsand RowBeans 7-6
Create Struts Artifacts for Tablesand Forms 7-7
Create Struts Artifacts for a Form JSP: Main Steps. 7-8
Create Struts Action Classes for Handling FormData 7-8
Configure Struts ActionForms and Action Mappings. 7-12
Create Struts Artifacts fora Table JSP. it 7-13
Create JSPs that Use BEA Templatesand JSPTags., 7-17
WebLogic Server JSP Templatest e 7-17

Extending the Administration Console

Create a FOrm ISP . ..o 7-19

Create a Table JSP for Monitoring.t 7-23
Create a Table Column for Navigating to Other Pages 7-25
Add a Handle to Your Row Bean and ActionClass. 7-25
Usethecolumn-link Tag. 7-26

Use the column-dispatch Tag 7-27
Add Buttons and Checkboxes to Tables.o it 7-28
Add ButtonstoaTable 7-29
Add Checkboxes and ButtonstoaTable 7-30
Example: How Checkboxes and Buttons ProcessData 7-32
Configure Table Preferences 7-33
Create Other Portal Framework Files and Deploy the Extension. 7-34

8. Archiving and Deploying Console Extensions
Archive and Deploy a Console EXtension., 8-1

Error Output During Deployment 8-2

vi Extending the Administration Console

Introduction and Roadmap

Administration Console extensions enable you to add content to the WebLogic Server
Administration Console, replace content, and change the logos, styles and colors without
modifying the files that are installed with WebLogic Server. For example, you can add content
that provides custom monitoring and management facilities for your applications.

The Administration Console is a Java EE Web application that uses the WebLogic Portal
framework, Apache Beehive, Apache Struts, Java Server Pages (JSP), and other standard
technologies to render its user interface (Ul) and content. It also uses the WebLogic Portal
framework to enable extensions.

The following sections describe the contents and organization of this guide—Extending the
Administration Console.

e “Document Scope and Audience” on page 1-1
e “Guide to this Document” on page 1-2
e “Related Documentation” on page 1-2

e “New and Changed Console-Extension Features in This Release” on page 1-3

Document Scope and Audience

This document is a resource for software vendors who embed or rebrand WebLogic Server in
their products, software vendors who develop security providers or other resources that extend
the functionality of WebLogic Server, and Java EE application developers who want to provide
custom monitoring and configuration features for their applications.

Extending the Administration Console 1-1

Introduction and Roadmap

It is assumed that the reader is already familiar with using Java, JavaServer Pages, and Apache
Struts or Apache Beehive to develop Java EE Web applications. This document emphasizes a
hands-on approach to developing a limited but useful Administration Console extension. For
information on applying Administration Console extensions to a broader set of management
problems, refer to documents listed in “Related Documentation” on page 1-2.

Guide to this Document

This chapter, Introduction and Roadmap, introduces the organization of this guide.

Chapter 2, “Understanding Administration Console Extensions,” introduces the building
blocks for creating Administration Console extensions.

Chapter 3, “Setting Up a Development Environment,” describes how to set up your
environment for developing Administration Console extensions.

Chapter 4, “Creating a Message Bundle,” describes how to encapsulate the text that your
extension displays into properties files that can be localized.

Chapter 5, “Rebranding the Administration Console,” describes how to create a WebLogic
Portal Look and Feel and deploy it as an Administration Console extension.

Chapter 6, “Adding Portlets and Navigation Controls,” describes how to add portlets that
contain simple, static content to the Administration Console.

Chapter 7, “Using BEA Templates and JSP Tags,” describes how to create an extension
that uses the Administration Console’s JSP templates, styles, and JSP tag library.

Chapter 8, “Archiving and Deploying Console Extensions,” describes how deploy your
extension.

Related Documentation

1-2

This section provides links to documentation that describes the technologies used by the
Administration Console. The more you understand these technologies, the more complex
extensions you can create.

Because the Administration Console uses the WebLogic Portal® framework to render its user
interface, the process of extending the Administration Console is similar to creating or editing an

existing WebLogic Portal application. For information on the WebLogic Portal framework, see:

“How Do the WebLogic Portal Framework and WebL ogic Portal Differ?” on page 2-2

Extending the Administration Console

New and Changed Console-Extension Features in This Release

e User Interface Development with Look & Feel Features in Portal Development Guide.

For information on JavaServer Pages, see JavaServer Pages Technology at
http://java.sun.com/products/jsp/index.jsp.

For information on Apache Struts, see The Apache Struts Web Application Framework at
http://struts.apache.org/.

For information on Apache Beehive, see http://beehive.apache.org/.

New and Changed Gonsole-Extension Features in This
Release

This release does not add new features or change existing features for extending the
Administration Console.

Extending the Administration Console 1-3

Introduction and Roadmap

1-4 Extending the Administration Console

CHAPTERa

Understanding Administration Console
Extensions

The following sections describe Administration Console extensions:
e “What Is an Administration Console Extension?” on page 2-1
e “Extension Points in the Administration Console” on page 2-2
e “JSP Templates and Tag Libraries” on page 2-12

e “Example: How Struts Portlets Display Content” on page 2-14

What Is an Administration Console Extension?

An Administration Console extension is a WAR file that contains the resources for a section of a
WebLogic Portal Web application. When you deploy the extension, the Administration Console
creates an in-memory union of the files and directories in its WAR file with the files and
directories in the extension WAR file. Once the extension has been deployed, it is a full member
of the Administration Console: it is secured by the WebLogic Server security realm, it can
navigate to other sections of the Administration Console, and if the extension modifies WebLogic
Server resources, it participates in the change control process.

The simplest extension adds content to the Administration Console’s home page (desktop). The
WAR file for such an extension contains:

e A NetUI Extension XML file that describes the location in the Ul in which you want your
extension to display.

Extending the Administration Console 2-1

Understanding Administration Console Extensions

o An XML file that defines a WebLogic Portal portlet, which is a container for JSPs and
other types of content.
e A JSP file that contains the content you want to display.

The WAR file for more complex extensions can contain any of the following additional
resources:

o [f the extension displays content in tabs within the Administration Console Ul, the WAR
contains XML files that describe other types of WebLogic Portal Ul controls, such as tabs
and subtabs (see “Extension Points in the Administration Console” on page 2-2).

o |f the extension uses Apache Struts to encapsulate business logic and navigation logic, the
WAR file contains configuration files and Java classes for Apache Struts applications.

o |f the extension uses Apache Beehive to encapsulate business logic and navigation logic,
the WAR file contains configuration files and Java classes for Apache Beehive
applications.

e Java classes, image files, or other types of resources that can be used in Java EE Web

applications.
Note: The Administration Console does not support WSRP portlets or portlets based on JSR
168.

How Do the WebLogic Portal Framework and WebLogic
Portal Differ?

The WebL ogic Portal framework provides basic support for rendering the Ul. The full WebLogic
Portal product provides the framework and additional features such as personalization,
interaction management, content management, and the ability for end users to customize their
portal desktops.

If you have purchased only WebL ogic Server, then you can use the WebL ogic Portal framework
when creating Administration Console extensions. If you want your own Web applications to
provide a portal interface, you can purchase the WebLogic Portal product.

Extension Points in the Administration Console

An extension point is a location in the Administration Console Ul at which you can add or replace
content. The Ul for the Administration Console is rendered by groups of specialized WebL ogic
Portal components called Ul controls. Each group of controls is responsible for rendering a

2-2 Extending the Administration Console

Extension Points in the Administration Console

specific part of the Ul. For example, one group renders the two-column layout that you see after
you log in to the Administration Console. Other groups render individual tabs in the tabbed
interface.

The Administration Console attaches unique labels to many of its Ul controls, and each labeled
control is an extension point. You can also use these labels with WebLogic Server JSP tags to
forward requests to specific Ul controls. If a Ul control is not identified by a label, you cannot
extend it or forward to it. You must either interact with its labeled ancestor control or a labeled
child control.

Hierarchy of Ul Controls

Ul controls for an application are defined in an XML file called a portal book file (. book file).
The schema for this XML file specifies a hierarchy of Ul controls, but some Ul controls can be
used at multiple levels in the hierarchy. The following list describes the types of Ul controls that
you will encounter most frequently while developing extensions (see Figure 2-1):

e Desktop

The top level of the Ul control hierarchy. It contains the Look and Feel for the
Administration Console and the top-level book control.

e Look and Feel

A collection of images, cascading style sheets, XML files, and other file types that control
the appearance of a portal application.

o Book

Aggregates a set of pages or other books. It can contain an optional menu control that
provides navigation among its pages and books. Many books in the Administration
Console use this menu control to render tabs, such as the domain’s Configuration: General
tab.

e Page

Contains a layout, portlets, or books.

e Layout

Defines a grid in the Ul. Each column in the grid is called a placeholder, and each
placeholder can host zero or more portlets or books.

Most pages in the Administration Console use a single column layout, but one of the top
pages uses a two-column layout to create the left column that contains the Change Center,

Extending the Administration Console 2-3

Understanding Administration Console Extensions

Domain Structure, and other portlets, and the right column that contains the tabbed
interface.

e Portlet

Defines static and dynamic content to display. You can add portlets to the Administration
Console that contain JSP files or that forward to Struts Actions or Beehive Page Flows.

For information about the schema for Ul controls, see Portal Support Schema Reference.

Note: Figure 2-1 omits some intermediate controls in the hierarchy for the sake of brevity. For
example, a book control does not directly contain a page control. Instead, a book contains
a control named content, and the content control contains the page control.

Figure 2-1 Subset of the Ul Control Hierarchy

Desktop

'R

Look and Feel Book)

Page D

Layout

v

Placeholder

v

Portlet

The following sections describe the extension points in the Administration Console:

e “The Administration Console Desktop” on page 2-5

2-4 Extending the Administration Console

Extension Points in the Administration Console

e “The Home Book and Page” on page 2-6

e “The ContentBook” on page 2-8

e “Summary of the Administration Console Ul Controls” on page 2-10

The Administration Console Desktop

Every WebL ogic Portal Web application must have at least one desktop control, and the
Administration Console supports only one. Its label is defaul tDesktopLabel (see Figure 2-2)

Figure 2-2 The Desktop

Desktop: "defaultDesktopl abel”

Book "Home"

WEBLOGIC SERVER
| [

Click tha Leck B Edx bumen
n this domain.

Licwcle e B

Domain $1rctare

muyrkamain

= Enwirommanit
Daployresants

= Services
Sorurity Raealms

® Intsrcparability

= Diagnostics

Howda L.

& Changs Coemsla prafiramcn:

e
nfiguration files
& rabls the Conzcls

Symtem Status

Sarwer Haalth
| Failedla)
| Criical{a)

Ovardcaded(o]
Warn(o]

I v

2 modify, add or deleie items

Welooie, weblogic I ¢

i o maydoeakn & Hoen

Sattings for mydamaln

Configuration| Manitorirg Contrsl Becurity WabService Secumity Nctas
Geoersl | JTA EJBs Wb Applications SNMF | Logging | Log Fiters
Chek the Lowk & Edfe batton in tha Change Contar 10 sndfy the setrings on this page.

A domain is a
pages o confgurs

el Logic Sarver instancss that is mansged by a single Adrrdndstration Server, Use this
trative cptaois that apply ve all sewer = the camen deena,

48 "Mama: mnpdermain

nain, Mo infe..

& Enable Admiaistrarion Per

& nadminkstration
Part:

doenain. [Fag 1] Morw
info,

Production Mode

infen..

& Enable Clustes Canst sains

. Morinbon
¥ Advarced

Extending the Administration Console 2-5

Understanding Administration Console Extensions

2-6

Extending the Desktop

The only type of extension that is supported at this level of the Administration Console is a Look
and Feel extension, which replaces BEA’s logos, colors, and fonts with yours. See “Rebranding
the Administration Console” on page 5-1.

You cannot replace the Home book or add other controls to the desktop.

The Administration Console Look and Feel

The Look and Feel for the Administration Console defines the fonts and colors, BEA logos, the
layout of portal components, and the navigation menus.

Note: Because the Administration Console uses only the WebLogic Portal Framework, it
supports only a single Look and Feel. Portal applications that use the entire set of features
available with a license for the BEA WebLogic Portal product can support multiple can
support multiple Look and Feels that are personalized based on user or group ID.

Extending the Look and Feel

Creating a simple Look and Feel extension that contains your company’s logos, fonts, and color
scheme requires you to copy a sample Look and Feel that WebLogic Server provides and then
replace the logos and some cascading style sheet (CSS) definitions. Making complex changes to
the WebL ogic Server Look and Feel, such as changing the layout of portal components and
navigation menus, requires an advanced knowledge of WebLogic Portal Look and Feels. If you
have installed BEA Workshop for WebLogic Platform 9.2, you can use its Look and Feel editor
to make these complex changes. For more information about Look and Feels, see User Interface
Development with Look & Feel Features in Portal Development Guide.

The Home Book and Page

The top-level book in the Administration Console is identified by the label Home. It contains a
single page (labeled page) within which resides all of the Administration Console content (see
Figure 2-3).

Extending the Administration Console

Extension Points in the Administration Console

Figure 2-3 The Home Book and Page

Book: "Home" Book: "ContentBoalk"
in Placeholder position "0"

Change Uenter . """""_"' I"'“’” - "'w;j"’ Fortlets

Virs chazgar and rastacta
Partlet e BT 3
. n the .
in placeholder o Confmunian Mororing Comsrel Secunty WabSamcs See
pElSItIEIﬂ "D” Gewaral JTA EFEr Wb Agplications | SHMF | Legeng

Click the Lok & Ve buimon in the Change Conter v modify o
A Zomain colbaction of Wablogic Server instancer that i
e Vs confegurs admisisrative options than apply to all sew
Portlet
in placeholder
i Lnqn

position: "1) SRR

Filow e Lows & Enable sdminiciration Pori
PDrtlEt & Admisdstrarion Pos
in placeholder
position: "2" Produsticn bads

& Enable Cluster Comstradnts

Fortlet ! et
In plla_CEh:ljlcjer Waen(Click the Look & Edi¢ butbon in e Changs Center b o
position: "3 M

Layout location: "0" Layout location: "1"

The page page uses a two-column layout. The left column (layout location 0) contains portlets
that provide essential services when using the Administration Console. The right column (layout
location 1) contains:

e Portlets:

— The topmost portlet displays a welcome message and contains buttons that launch
online help and other services.

— The second portlet displays breadcrumbs, which are a series of hypertext links that
keep a history of your navigation in the Administration Console.

— A third portlet is hidden by default and displays error messages and other status
messages.

Extending the Administration Console 2-1

Understanding Administration Console Extensions

2-8

e A book named ContentBook. See “The ContentBook” on page 2-8.

Extending the Home Book

The simplest extensions within the Home book add portlets to either column of its page page. For
example, below the System Status portlet, you can add a portlet that monitors your applications.

More complex extensions can append a book to the Home book. Such an extension causes the
Home book and the extension book to display as two separate tabs.

The ContentBook

The ContentBook is a book that contains over 40 pages (see Figure 2-4), but it displays only one
page at a time. Navigational controls throughout the Administration Console determine which
page is displayed.

Extending the Administration Console

Extension Points in the Administration Console

Figure 2-4 The ContentBook

Book: "ContentBook"
Page "CoreDomainBook"
Book "CoreDomainConfigGeneralBook"
Bocok "DomainconfigT abPage"
Page "DomainConfigGeneralPage"

Sattings for mydanain

Configuration

Manitariog, Congrol Security \'\-'-_\’-n'r-.‘.-‘ Pichar

Genernl JTA EJBs Wab Applications SNMF | Logging | Log Fiters .
Chek the Lowk & Edfe batton in tha Change Centar 10 sndfy the setrings on this page.

A domain is & collection of WebLogic Sarver instances that is mansged by a singls Adrrdnistration Server, Use this
page o confgurs administrative sptons that apply to all sewer i the carrent doenain.

4] "Mama: enydumain t ng of L nain. bere info..

4 Enable Administraticn Port

Wors inéa.

&1 nalminEstration
Part:

Production Mode

infen..

4 Enable Clustes Const rains

¥ Advarced

In Figure 2-4, a page named CoreDomainBook contains a book named
CoreDomainConfigGeneralBook. The CoreDomainConfigGeneralBook contains six child
books and a special Ul control named singleLevelMenu that renders a tab for each child book
(Configuration, Monitoring, Control, Security, WebService Security, and Notes). In turn, each
child book (such as DomainconfigTabPage) contains several child page controls and the
singleLevelMenu control. The Look and Feel causes the singleLeve IMenu control to generate
subtabs for the page controls at this level (General, JTA, EJBs, Web Applications, SNMP,
Logging, and Log Filters).

Some content-specific books do not display a tabbed interface for their child books. Figure 2-5
shows the ServerBook, which does not display a tabbed interface.

Extending the Administration Console 2-9

Understanding Administration Console Extensions

2-10

Figure 2-5 ServerTahleBook

Book: "ContentBoalk"

Fage "ServerT ableBook"

kS

Suramary of Servers

A perver i an instancs of WibLogio Server that runs in its own Java Wirtual Machine (JVM] and has it own
sonfiguratian,
This page surnmiarizes sach server that has bean configured in tha current Wablogie Server dornain.

¥ Cupscenize this table
Servers
| Haw | Chons | | Dalsts Shawing 1-1af 1 Prewious | Maxt
Cl| Name & Cluster State Listen Port
O | mysarver{admin] . lR'J HHING l'_-\t. a1
[baw. | | Clona,| | Delate Showing 1-10f 1 Frewious | Haxt

Extending the ContentBook

The simplest extensions within the ContentBook add a child book to create a tab in a
content-specific book or add a child page to create a subtab. See “Define Ul Controls (Optional)”
on page 6-11.

Summary of the Administration Console Ul Controls

Figure 2-6 shows the top levels of the Administration Console’s labeled Ul controls. For a
complete list of labeled Ul controls, including all of the content-specific books, download and
install a Look and Feel extension that causes the Administration Console to display labels for its
controls. See “Deploy a Development Look and Feel to See Ul Control Labels” on page 3-4.

Extending the Administration Console

Figure 2-6 Summary of the Ul Control Hierarchy

Desktop: "defaultDesktopLabel®

Extension Points in the Administration Console

---Look and Feel: "default_ookAndFeel”

5----:Book: "Hame"
E----F:‘ag,]e: "page"
i""|:_ay0ut
é---—F:’Iacehnlder (left calumn)

i--Partlet instance (Change Center)
---Portlet instance (Domain Structure)
i--Partlet instance (Howdo...)

- Portlet instance (System Status)

i----F:’Iau:eht:llder (right column)

---Partlet instance (Toolbar)
i--Partlet instance (Breadcrumbs)
i-Portlet instance (Messages)

5----Buuk: "ContentBook"
--Page

*-Book: "DomainBaak"

;----Ejuuk: "CoreDomainBook”"

i_..-Eage: "CoreDomainPages"
i----:Book: "CoreDomainCaonfigGeneralBaok"

;....Book: "DomainconfigTabPage"

Page:"DomainConfigGeneralPage"
Page:"DomainConfigJtaPage"

i--Fage:"DomainConfigEJBFage"
i--Page:"DomainConfigWebAppPage"

: -Page:"DomainConfigSnmpFage"

E----F’age:”DumainCanigLuggingPage"
- Page:"DomainConfigLogFilterTablePage"

i...-gggk; "DomainMaonitarTabPage"

é—----l?.tmk: "CoreDomainCreatelLogFilterBook" (assistant)

--Page

i'"-BUUkZ "ServerBook"

Extending the Administration Console 2-11

Understanding Administration Console Extensions

JSP Templates and Tag Libraries

2-12

BEA provides JSP templates and tab libraries that you can use to render such Ul features as
tables, data-entry boxes, and buttons. For information about the JSP templates, see “WebL ogic
Server JSP Templates” on page 7-17.

JSP Tag Libraries

The Administration Console provides its own tag library (console-html . tld) that you can use
in your Administration Console Extensions. It also provides runtime support for a group of
standard, third-party tag libraries that the Administration Console itself uses.

To import these third-party JSP tag libraries into your JSPs, you must use pre-defined, absolute
URIs. The Administration Console’s web.xml file maps these URIs to tag libraries within the
WebLogic Server installation. This mapping facility enables BEA to reorganize its installation
directory without requiring you to change your JSPs.

Table 2-1 lists the tag libraries for which the Administration Console provides runtime support
and the URI for importing them into your JSPs.

If you want development support for these libraries (for example, if you use an integrated
development environment that provides code completion for JSP tags), you must configure your
development environment to include these tags.

Note: You can create custom tag libraries or use additional tag libraries, but you must include
all of the necessary support files for custom tag libraries in your extension WAR file. See
Programming WebLogic JSP Tag Extensions.

Extending the Administration Console

Table 2-1 Included JSP Tag Library Support

JSP Templates and Tag Libraries

Tag Library

URI

Description

console-html . tld

/WEB-INF/console-html_tld

WebL ogic Server JSP tags for creating
HTML forms and tables that match the
functionality of the forms and tables in
the Administration Console.

Use these tags only to extend the
WebLogic Server Administration
Console.

The documentation for this tag library
is in the WebLogic Server JSP Tags
Reference.

render.tld

render.tld

Convenience tag for generating a
portal framework URL. See
<render:pageUrl> Tagin BEA
Workshop for WebLogic Platform 9.2
Help.

beehive-netui-tags-
template.tld

http://beehive.apache.org
/netui/tags-template-1.0

beehive-netui-tags-
databinding.tld

http://beehive.apache.org
/netui/tags-databinding-1
.0

beehive-netui-tags-
html . tld

http://beehive.apache.org
/netui/tags-html-1.0

Apache Beehive JSP tags for
associating JSPs with a JSP template,
binding data, and generating basic
HTML tags.

You can download the Beehive
distribution, which includes the tag
libraries and documentation from
http://beehive.apache.org/downloads.
html.

c.tld

http://java.sun.com/jsp/j
stl/core

fmt._tid

http://java.sun.com/jsp/j
stl/fmt

JavaServer Pages Standard Tag
Library (JSTL) tags which provide
core functionality common to many
JSP applications.

You can download the JSTL
distribution from
http://java.sun.com/products/jsp/jstl/d
ownloads/index.html.

The documentation for these tag
libraries is in the JSTL Tag Library
Reference.

Extending the Administration Console 2-13

Understanding Administration Console Extensions

Table 2-1 Included JSP Tag Library Support

Tag Library URI Description

struts-bean.tld http://struts.apache.org/ Apache Struts tags for interacting with
tags-bean the Struts framework.

struts-html _tld http://struts.apache.org/ Youpaqdmmnmadthesnum
tags-html distribution from

http://struts.apache.org/download.cgi.

struts-logic.tld http://struts.apache.org/ The documentation for these tag

tags-logic libraries is available from

http://struts.apache.org/.

struts-tiles.tld http://struts.apache.org/

tags-tiles

Example: How Struts Portlets Display Content

2-14

The following steps describe how the portal framework uses an extension’s source files to find
and display a Struts portlet as a tab in ContentBook:

1. The portal framework starts by parsing the extension’s netuix-extension.xml file.

The netuix-extension.xml file in this example specifies that the portal framework
should load a -book file named medrecMonitor .book and display its contents as a child
of the CoreDomainConfigGeneralBook book:

<book-extension>
<book-location>
<parent-label-location label="CoreDomainConfigGeneralBook'/>
<book-insertion-point action="append'/>
</book-location>
<book-content content-uri="/controls/medrecMonitor.book'/>
</book-extension>

. The portal framework loads the medrecMoni tor . book file, which defines a page Ul control

and specifies that the page contains a portlet:

<netuix:page markupName="page' markupType="Page'>
<netuix:portletlnstance markupType="Portlet"
instancelLabel="medrecMonitor.Tab.Portlet"
contentUri="/portlets/medrec_monitor_tab.portlet'/>
</netuix:page>

3. The portal framework loads the portlet file, which names a Struts Action to run:

Extending the Administration Console

Example: How Struts Portlets Display Content

<portal:root>
<netuix:portlet
definitionLabel="MyPortlet"
title="my._portlet._title">
<netuix:strutsContent module='"/medrecMBean"
action=""MedRecMBeanFormAction"
refreshAction=""MedRecMBeanFormAction"/>
</netuix:portlet>
</portal :root>

In the netuix:strutsContent element, the module=""/medrecMBean" attribute indicates
that the definition for the MedRecMBeanFormAction Struts Action is located in the Struts
configuration file for the Struts module named medrecMBean. The Struts naming
convention requires that this configuration file be named
struts-auto-config-medrecMBean.xml.

The portal framework hands control to the Struts controller servlet, which parses the
struts-auto-config-medrecMBean.xml file and finds the following definition for the
MedRecMBeanFormAction:

<action path="/MedRecMBeanFormAction"
type=""com.bea.medrec.extension.MedRecMBeanFormAction"
name=""medrecMBeanEJBForm"
scope=""request"’
validate="false">
<forward name='"'success'" contextRelative=""true"

path="/ext_jsp/form_view. jsp"/>

</action>

. When the Struts controller encounters the name=""medrecMBeanEJBForm' attribute of the

action element, it looks in the same Struts configuration file for the definition of a form bean
that is named medrecMBeanEJBForm.

When it finds the following element in configuration file:
<form-bean name="'medrecMBeanEJBForm"
type="org.apache.struts.action.DynaActionForm">
<form-property name="name"
type="java.lang.String'/>
<form-property name="handle"
type=""com.bea.console.handles.Handle"/>
<form-property name="totalRx""
type="java.lang. Integer"/>
</form-bean>

it initializes a Java bean of type org.apache.struts.action.DynaActionForm with
properties named name, handle, and totalRx.

Extending the Administration Console 2-15

Understanding Administration Console Extensions

6. The Struts controller invokes the com.bea.medrec.extension.MedRecMBeanFormAction
class and passes to this class the DynaActionForm bean that it instantiated.

7. The MedRecMBeanFormAction class gathers data from an MBean in the MedRec application
and populates the properties in the DynaActionForm bean with data from the MedRec
MBean.

The MedRecMBeanFormAction class returns the populated DynaActionForm bean.

8. The Struts controller serializes the DynaActionForm bean, sets it in an HTTP request, and
then forwards to a JSP.

9. The JSP uses JSP tags to display data in the DynaActionForm bean.

Figure 2-7 Overview of Loading a Struts Portlet

—— — —
netuix- .book .portlet struts-
extension.xml auto-config- Passes
module.xml empty
DynaActionBean
Java bean
Returns
loaded
DynaActionBean »@ > >
Action Java bean struts- .jsp
class auto-config-
MBean module.xml

2-16 Extending the Administration Console

CHAPTERa

Setting Up a Development Environment

BEA provides all of the JSP tag libraries, schemas, and base Java classes that you need to develop
a console extension. Because an Administration Console extension is a collection of XML files,
Java classes, JSPs, and other standard Web-related resources, you can use any text editor or
Integrated Development Environment to develop your extension.

The following sections describe setting up an environment for developing Administration
Console extensions:

e “Set Up the Classpath (Optional)” on page 3-1

e “Import Tag Libraries Into IDEs (Optional)” on page 3-2

e “Create a Directory Tree for the Extension” on page 3-2

e “Deploy a Development Look and Feel to See Ul Control Labels” on page 3-4

Set Up the Classpath (Optional)

If you are creating Apache Struts classes or Beehive Page Flow classes for your extension, you
need a set of Apache classes in your classpath. If you are adding nodes to the NavTreePortlet, you
need a set of BEA classes.

To add these classes to your classpath, run the following script:
WL_HOME\server\bin\setWLSEnv.cmd (or setWLSEnv.sh)

where WL_HOME is the directory in which you installed WebL ogic Server.

Instead of using BEA’s script, you can add to your environment’s classpath all of the JAR files
in the WL_HOME/server/l1ib/consoleapp/webapp/WEB-INF/Iib directory.

Extending the Administration Console 3-1

Setting Up a Development Environment

Import Tag Libraries Into IDEs (Optional)

If you are using BEA’s JSP templates to create JSPs in your extension, you must use JSP tags

from the JSP Standard Tag Library (JSTL), the BEA Administration Console Extension Tag
Library, and the Apache Beehive Page Flows Tag Library.

WebLogic Server installs a version of these tag libraries, which you can make available to your
IDE. Alternatively, you can download your own copy of these standard tag libraries. For more

information, see “JSP Templates and Tag Libraries” on page 2-12.

Create a Directory Tree for the Extension

An Administration Console extension is a portion of a Web application and its resources must be

organized into a directory structure that satisfies the requirements for standard Java EE Web

applications. In addition, the WebLogic Portal framework, Apache Struts, and Apache Beehive

require configuration files to be in specific locations.

To start working on your Administration Console extension, create a directory tree that matches

the skeletal structure in Table 3-1.

Table 3-1 Directory Tree for an Administration Console Extension

Directory

Description

root-dir

The root directory of your extension. BEA
recommends that you do not create files in this
directory.

The name of the directory has no programmatic
significance. Choose a name that is meaningful to
you.

When specifying URIs in your extension, the “/”
(forward slash) character by itself represents this
root directory.

root-dir/WEB-INF

This directory must contain a file named
netuix-extension.xml. This XML file
functions as your extension’s deployment descriptor.

If you use Apache Struts, you must locate your Struts
configuration file in this directory.

3-2

Extending the Administration Console

Create a Directory Tree for the Extension

Table 3-1 Directory Tree for an Administration Console Extension

Directory

Description

root-dir/WEB-INF/classes

If your extension uses a message bundle, your
properties files must be in this directory.

If your extension uses custom classes, your package
structure must start in this directory. For example, if
you packaged your class files in a package named
com.mycompany -extension, then create the
following directory structure in the classes
directory: com/mycompany/extension. Then
save your compiled class files in this extension
directory.

(optional) root-dir/WEB-INF/src

If your extension uses custom classes, BEA
recommends that you save your pre-compiled Java
source files in a package structure that starts in this
directory.

When you archive your extension, you do not
include this src directory.

(recommended) root-dir/ext_jsp

BEA recommends that you save all of your
extension’s JSP files below a directory named
ext_jsp.

Creating a separate directory for your JSPs shields
content developers from needing to learn about other
support files such as the Portal framework XML
files.

If your extension contains many JSPs, consider
creating subdirectories below ext_jsp.

If you follow this recommendation, URIs for your
JSPs will start with Zext_jsp. For example,
/ext_jsp/myContent.jsp

The directory named root-dir/jsp is reserved.
The root directory of your extension must not
contain a directory named jsp.

Extending the Administration Console 3-3

Setting Up a Development Environment

Table 3-1 Directory Tree for an Administration Console Extension

Directory Description

(recommended) root-dir/controls BEA recommends that you save all of your
extension’s portal book files (. book) below a
directory named controls.

If your extension contains many books or pages,
consider creating subdirectories below controls.

If you follow this recommendation, URIs for your
books or pages will start with Zcontrols. For
example, Zcontrols/myBook.book

(recommended) root-dir/portlets BEA recommends that you save all of your
extension’s portlet files (. portlet) below a
directory named portlets.

If your extension contains many portlets, consider
creating subdirectories below portlets.

If you follow this recommendation, URIs for your
portlets will start with /portlets. For example,
/portlets/myContent.portlet

If you are extending the Administration Console’s Look and Feel, your root directory will contain
additional subdirectories. See “Copy and Modify the Sample Look and Feel: Main Steps” on
page 5-2.

Deploy a Development Look and Feel to See Ul Control
Labels

WebLogic Server provides a Look and Feel that reveals the labels of the Administration
Console’s extension points. You use these labels to specify where you want your extension to
display.

Note: If you plan only to create a Look and Feel extension or add a portlet to the desktop, you
do not need to deploy the development Look and Feel.

To use this Look and Feel:

1. Download the Look and Feel archive from the Code Samples section of the dev2dev Web site.

3-4 Extending the Administration Console

Deploy a Development Look and Feel to See Ul Control Labels

The archive is distributed in a Code Samples project named Console Extension Developer
Look and Feel (code-sample ID S118) and is available at the following URL.:

https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S268

2. From the archive that you download, extract the devlaf-1.1_jar file and save it in
domain-root/console-ext
where domain-root is the root directory of any WebLogic Server domain in your
development environment.

3. Restart the domain’s Administration Server.

4. Log in to the Administration Console.

Each labeled control displays the value of its definitionLabel in brackets ([]) next to its
user-visible title. In a separate pair of brackets, the control displays whether it is a book or a page.
See Figure 3-1.

Extending the Administration Console 3-5

Setting Up a Development Environment

Figure 3-1 A Control Label in the Administration Console User Interface

Zbea

[Heme][Book]

WEBLOGIC SERVER

INIS IONC

|Change Center [Ch M

Portlet]) Welcome, weblogic

View changes and restarts Home > Summary o 7 Realms = myrealm > Providers
Click the Lock & Edit button to medify, [ContentBook][Back]
add or delate items in this dormain.
[SecurityRealmBock][Fage]
Lock & Edit |
Settings for myrealm [SecurityRealmBook]
in Structure [NavTreePortlet] [Security RealmGeneral Book [Book]
Domain racture avireeto
d Configuration[SecurityRealmConfigPages] Users and Groups[RealmUsarManagermentTabPage] Foles and F
raydemain
B-Environment [RealmprovidersTabPage][Fage]
Deployments
3] Serlzr'.cses Authentication[Real henti
Security Realms

TabPage] Authorization[RealmauthorizerTabPage]

Adjudicat:
& Interoperability L . . . : -
- Diagnostics An Authentication provider allows WebLogie Server to establish trust by validating a user. You must have on
can also configure a Realm Adapter Authentication provider that allows you to weork with users and groups i
How do I... [QuickHelpPortlet] [

¥ Manage sequrity providers b Custernize this table
& Configure Authentication and Identity

Assertion providers
B Set the JAAS control flag

8 Re-order Authentication providers

Authentication Providers

Click the Loek & Edit button in the Change Center to activate all the buttons on this page.

Status [S S Portlet] [F

Health of Running Servers

DefaultAuthenticator

| Failed (0) DefaultIdentity Assarter
] Critical ()

Overloaded (o)

| Warn (o)
I ok (1)

3-6

Extending the Administration Console

Creating a Message Bundle

BEA recommends that you define all of the text strings that your Administration Console
extension displays in a message bundle. A message bundle is a collection of text files (properties
files) that contain key-value pairs (properties). You create one properties file for each language
or locale that you want to support. If you name the properties file per a set of file-naming
conventions, the Administration Console displays strings from the properties file whose locale
matches the Web browser’s locale setting.

Create a Message Bundle

To create a message bundle:

1. Create a text file that contains name-value pairs for each string you want to display. Use the
equal sign (=) as the delimiter between the name and value, and place each property on its
own line.

For example:

myextension.myTab. introduction=This page provides monitoring data for
my application.

myextension.myTab.TotalServletHits. label=Total hits for my servlet.

2. Save the file as root-dir/WEB-INF/classes/bundle.properties where
— root-dir is the root directory of your extension

— bundle is a unique value (do not use global, which is the name of a WebLogic Server
bundle). Consider using your company name as the value for bundle.

Extending the Administration Console 4-1

Creating a Message Bundle

The bundle.properties file is the default file that the Administration Console uses if the
Web browser or the JVM have not specified a locale. It is a required file.

3. Save each localized version of the properties file as
root-dir/WEB-INF/classes/bundle_locale.properties

where locale is a locale code supported by java.util.Locale. See Locale in the J2SE
API Specification.

For example, mycompany_ja.properties.

For information about using message bundles, see “Use a Message Bundle for Your Look and
Feel” on page 5-6 and “Create and Use a Message Bundle in Your JSPs” on page 7-3.

4-2 Extending the Administration Console

CHAPTERa

Rebranding the Administration Console

This section describes how to create a WebLogic Portal Look and Feel and deploy it as an
Administration Console extension. The extension enables you to replace some or all of BEA’s
logos, colors, and styles in the Administration Console.

Figure 5-1 illustrates the process. The steps in the process, and the results of each are described
in Table 5-1. Subsequent sections detail each step in the process.

Figure 5-1 Administration Console Extension Development Overview

Copy and
modify the
sample Look
and Feel

Deploy

- WAR file

extension

(Optional)
Use your
own message
bundle

Create a
NetUI Extension
XML file to define
your Look and
Feel as an
extension

Extending the Administration Console 5-1

Rebranding the Administration Console

Table 5-1 Model MBean Development Tasks and Results

Step Description Result
1. “Copy and BEA installs a sample Look and Feel that you use as A Look and Feel that contains
Modify the Sample astarting point. Replace the images and styles in this your logos and styles.

Look and Feel:
Main Steps” on
page 5-2.

sample with your own.

2. (Optional) “Use a
Message Bundle for
Your Look and
Feel” on page 5-6.

If you want to change the text messages displayed in
the banner, login, and login error pages, create your
own message bundle and modify the pages to use
messages from your bundle.

Localized properties files that
contain your messages.

3.“Modify the
Sample NetUl
Extension File” on
page 5-8.

The NetUI Extension file is the deployment
descriptor for your extension. It describes the
locations of files and directories in your Look and
Feel.

A deployment descriptor for
your extension.

4, Archive and
deploy the
extension.

Archive the Look and Feel extension in a WAR file
and copy it to your domain’s console-ext
directory.

See “Archiving and Deploying Console Extensions”
on page 8-1.

When the Administration
Console starts in your domain, it
uses the Look and Feel
extension that is in the domain's
console-ext directory
instead of the Look and Feel that
BEA packages and installs.

Copy and Modify the Sample Look and Feel: Main Steps

To create a simple extension that replaces the BEA logos and colors with your own:

1. Copy all files from the following directory into your own development directory:

WL_HOME/samples/server/medrec/console-extension

where WL_HOME is the directory in which you installed WebL ogic Server.

2. Change the name of the xray directory under root-dir/framework/skins and
root-dir/framework/skeletons to a name that you choose.

where root-dir is the name of your development directory.

5-2 Extending the Administration Console

Copy and Modify the Sample Look and Feel: Main Steps

For example, root-dir/framework/skins/mycompany and
root-dir/framework/skeletons/mycompany

“Modify the Administration Console Banner” on page 5-3.
“Modify Colors, Fonts, Buttons, and Images” on page 5-4.

“Modify Themes for the Change Center and Other Portlets” on page 5-5.

o o ~ w

“Modify the Login and Error Page” on page 5-6.

Making more complex changes to the WebLogic Server Look and Feel, such as changing the
layout of portal components and navigation menus, requires an advanced knowledge of
WebLogic Portal Look and Feels. If you have installed BEA Workshop for WebLogic Platform
9.2, you can use its Look and Feel editor to make these complex changes. For more information,
see User Interface Development with Look & Feel Features in Portal Development Guide.

Modify the Administration Console Banner

To overwrite the MedRec Look and Feel’s image files with your company’s image files:

1. To replace the logo in the Administration Console banner, save your own logo file as
root-dir/framework/skins/mycompany/images/banner_logo.gif.

To prevent the need to resize the banner frame, do not make your image any taller than 42
pixels.

2. To change the background color of the banner, replace the following image file with one of
the same size but that contains a different color:
root-dir/framework/skins/mycompany/images/banner_bg.gif

3. To replace the ALT text for the logo, open
root-dir/framework/skeletons/mycompany/header . jsp and replace
<bean:message key="login.wlsident”> with your text.

If you want to provide localized strings, use the JSTL <fmt:message> tag. See “Use a
Message Bundle for Your Look and Feel” on page 5-6.

To make more complex modifications, you can change the JSP and styles that render the banner.
The root-dir/framework/skeletons/mycompany/header . jsp file determines the contents
of the Administration Console banner. Within header _ j sp, the style

bea-portal-body-header specifies the name and location of an image file that is used as the
banner background. The style bea-portal -body-header-1ogo specifies the name and location

Extending the Administration Console 5-3

Rebranding the Administration Console

of the logo file. Both of these styles are defined in
root-dir/framework/skins/mycompany/css/body.css.

Modify Colors, Fonts, Buttons, and Images

The Administration Console uses several cascading style sheets (CSS) to specify its fonts and
colors. To change these styles, open the style sheet and change the style’s definition. Table 5-2
summarizes the CSS files that the Administration Console uses. All of these files are located in
the root-dir/framework/skins/mycompany/css directory.

Table 5-2 CSS Files That Define General Golors and Fonts

CSS File

Description

wls.css

Contains WebLogic Server styles for the following areas:

General definitions for elements such as body, a, h1, and h2
Data tables

Form fields

WebLogic Server form buttons

Error messages

Toolbar content

Breadcrumbs content

General styles for How Do I..., System Status, and Change Center
portlets

body.css Contain WebLogic Portal framework styles for the following areas (some
book . css of which are not used by the Administration Console):

button.css

form.css
layout.css ¢
portlet.css

window.css

Portal header and footer

Book, page, and menu styles
Button styles

Form, input, and text area styles
Layout and placeholder styles
Portlet styles

5-4

The buttons in the Administration Console use a repeating background image to render the blue
fade (and grey for inactive buttons). The image files for these buttons are located in the following

directory:

root-dir/framework/skins/mycompany/images

Extending the Administration Console

Copy and Modify the Sample Look and Feel: Main Steps

Modify Themes for the Change Center and Other Portlets

Several portlets in the Administration Console use a theme, and you can change the definitions
of these themes. Themes are similar to Look and Feels but the scope of a theme is limited to a
section of a portal, such as a book, page, or portlet. A theme can be used to change the look and
feel of the components of a portal without affecting the portal itself.

For example, the Change Center portlet uses its own theme to distinguish its buttons from the
other form buttons in the Administration Console.

To change the color of a theme’s buttons or title bars, change the images and styles in the theme’s
skins directory. Table 5-3 summarizes the directories that contain CSS files and images for
theme skins. All of these directories are under the root-dir/framework/skins/mycompany
directory. For information about modifying skin themes, see Creating Skins and Skin Themes in

BEA Workshop for WebLogic Platform 9.2 Online Help.

Table 5-3 Skins for Administration Console Themes

Skin Directory Description

wlsbreadcrumbs Defines fonts and spacing for the breadcrumbs portlet, which displays
above the tabbed interface and provides a navigation history.

wlschangemgmt Defines buttons, fonts, title bar background, and spacing for the Change
Center portlet.

wlsmessages Defines buttons, fonts, title bar background, and spacing for the messages
portlet, which displays only when the Administration Console has
validation or confirmation messages.

wlsnavtree Defines buttons, fonts, title bar background, and spacing for the

NavTreePortlet.

wlsquicklinks

Defines buttons, fonts, title bar background, and spacing for the How Do
I... portlet.

wlsstatus Defines buttons, fonts, title bar background, and spacing for the System
Status portlet.

wlstoolbar Defines fonts and spacing for the breadcrumbs portlet, which displays in
the banner and contains the Home, Help, and AskBEA buttons.

wlsworkspace Defines borders, spacing, and background colors of the books and pages in

the ContentBook area of the Administration Console.

Extending the Administration Console 5-5

Rebranding the Administration Console

Each theme is made up of a skin and a skeleton. The skeleton defines the overall structure of the
portlet contents. The definition for each theme’s skeleton is under the
root-dir/framework/skeletons/mycompany directory. For information about modifying
skeleton themes, see Creating Skeletons and Skeleton Themes in BEA Workshop for WebLogic
Platform 9.2 Online Help.

Modify the Login and Error Page

The login page asks users to enter a user 1D and password. The login error page displays if users
enter invalid data. Both of these pages are displayed before the Administration Console loads its
portal desktop. Therefore, these pages do not use the portal’s Look and Feel and their image and
stylesheet files are not under the root-dir/framework directory. Table 5-4 summarizes the
files and directories that determine the appearance of the login and login error pages.

Table 5-4 Files for the Login and Login Error Page Appearance

File

Description

root-dir/common/ Defines fonts and spacing for the login page.
login.css

root-dir/images/ Images for the login page.
login_banner_bg.gif

login_banner_right_gif

login_banner.gif

login_bottom.gif

root-dir/login/ Render the login and login error pages.

LoginError.jsp
LoginForm. jsp

If you want to change the text that these pages display, modify the
<fmt:message/> JSP tags to point to messages in your own message
bundle. See “Use a Message Bundle for Your Look and Feel” on page 5-6.

Use a Message Bundle for Your Look and Feel

5-6

In the banner, login, and login error pages, the Administration Console uses JSTL tags to load
text messages from localized properties files. For example, to display the window title in
LoginForm. jsp:

1. The <fmt:setBundle basename=""global' var="current_bundle'" scope='"page'/>
tag in LoginForm. jsp sets the current message bundle to global.

Extending the Administration Console

Use a Message Bundle for Your Look and Feel

This JSP tag looks in WEB-INF/classes for files with the following name pattern:
bundle[_locale].properties.

The default properties file for this bundle is WEB-INF/classes/global .properties. If
the Web browser or operating system specifies a different locale, then the JSP tag would
load WEB-INF/classes/global_locale.properties.

2. The<fmt:message key="window.title" bundle="${current_bundle}" /> tagopens
the global -properties file and renders the text that is identified by the window._title
key:
window.title=BEA WebLogic Server Administration Console

If you want to change these messages, you can create your own properties files and modify the

JSP tags to use your bundle. See “Creating a Message Bundle” on page 4-1.

Table 5-5 describes the text messages that the banner, login, and login error pages display.

Extending the Administration Console 5-7

Rebranding the Administration Console

Table 5-5 Messages in Banner, Login, and Login Error Pages

File

Message Key and Value

root-dir/login/
LoginForm.jsp

window.title=BEA WebLogic Server Administration
Console

login.wlsident=BEA WebLogic Server Administration
Console

login.welcome2=Log in to work with the WebLogic
Server domain

login.username=Username:
login._password=Password:
login.submit=Log In

root-dir/login/
LoginError.jsp

window.title=BEA WebLogic Server Administration
Console

login.wlsident=BEA WebLogic Server Administration
Console

loginerror.authdenied=Authentication Denied

loginerror.passwordrefused=The username or password
has been refused by WebLogic Server. Please try
again.

login.username=Username:
login.password=Password:

login._submit=Log In

root-dir/framework/
skeleton/mycompany/
header.jsp

window.title=BEA WebLogic Server Administration
Console

Modify the Sample NetUI Extension File

A NetUI Extension file is the deployment descriptor for your Look and Feel. It contains the
names and locations of the files in your Look and Feel, and it causes the Administration Console
to replace its Look and Feel with yours. For more information, see the NetUI Extensions Schema

5-8

Reference.

Extending the Administration Console

Modify the Sample NetUl Extension File

The sample file is in the following location:
root-dir/WEB-INF/netuix-extension.xml

To modify this file:
1. Open the file in a validating XML editor (recommended) or a text editor.

2. Inthe <provider-info> element, change the information to describe your Look and Feel,
developer contact and support URL.

The information in this element has no programmatic significance. It is intended to help
your technical support team keep track of your software modifications.

3. Inthe <look-and-feel-content> element:

a. Inthe title, skin, and skeleton attributes, replace the xray value with the name of the
directory you chose in step 2 in “Copy and Modify the Sample Look and Feel: Main
Steps” on page 5-2.

b. Inthe definitionLabel and markupName attributes, replace the xray value with the
name of the directory you chose in step 2 or use some other string. These attributes are
required by the portal framework, but are not used in a Look and Feel extension.

Extending the Administration Console 5-9

Rebranding the Administration Console

5-10 Extending the Administration Console

CHAPTERa

Adding Portlets and Navigation
Controls

In the Administration Console, all content is contained within portlets, so even the most minimal
extension must define a portlet (and content for the portlet). You can add your portlet directly to
the desktop, but if you want the portlet to display as a tab or subtab in the ContentBook, you
must define books or pages to contain it. Your extension can also add a node to the
NavTreePortlet, which enables users to navigate to your portlet directly from the desktop.

This section describes how to add portlets, Ul controls, and NavTreePortlet nodes to the
Administration Console.

Figure 6-1 illustrates the process. The steps in the process, and the results of each are described
in Table 6-1. Subsequent sections detail each step in the process.

Extending the Administration Console 6-1

Adding Portlets and Navigation Controls

Figure 6-1 Adding Portlets and Navigation Controls Development Overview

portlet

Define a

WAR file

(Optional)
Define Ul
controls to

contain your

portlets

Create a

NetUI Extension
XML file to define

a location for
your Ul controls
or portlets

Table 6-1 Model MBean Development Tasks and Results

(Optional)
Add Ul controls
to the
NavTreePortlet

Deploy
extension

Step

Description

Result

1. “Define a Portlet”
on page 6-3.

Create an XML file to define a portlet that the portal
framework can instantiate. A portlet definition
includes instructions on which type of data to load:
JSPs, Struts Actions, or Beehive Page Flows.

The portal’s Look and Feel determines whether the
portlet provides borders and minimize/maximize
controls.

A .portlet XML file.

2.“Define Ul
Controls
(Optional)” on
page 6-11.

If you want your portlet to display in a tab, subtab, or
in some other location within ContentBook, create
an XML file that defines a page or book.

A .book XML file.

3. “Specify a
Location for
Displaying Portlets
or Ul Controls” on
page 6-17.

Create an XML file that describes whether you want
your portal to display next to a labeled Ul control or
to replace the control.

A netuix-extension.xml
file.

6-2 Extending the Administration Console

Define a Portlet

Table 6-1 Model MBean Development Tasks and Results

Step Description Result
4. “Add Nodes to You can create a link from the NavTreePortlettoany ~ Additional entries in the . book
the NavTreePortlet book or page in your extension. XML file.
(Optional)” on WebLogic Server provides default support for Optionally, Java classes that
page 6-20. appending control names to the end of the existing give you more control over the
navigation tree. If you want to insert nodes in node that you are adding.
specific locations, or if you want to create a node
tree, you create your own Java classes that describe
the node and node location.
5. Archive and See “Archiving and Deploying Console Extensions” A WAR file that contains your
deploy the on page 8-1. extension.
extension.

Define a Portlet

You define a portlet in an XML file. The portlet definition includes instructions on which type of
data to load: JSPs, Struts Actions, or Beehive Page Flows. The following sections describe how
to define a portlet:

e “Define a JSP Portlet” on page 6-3
e “Define a Struts Portlet” on page 6-5
e “Define a Page Flow Portlet” on page 6-6

e “Displaying a Title Bar for a Portlet” on page 6-7

For more information about portlet XML files, see the portlet entry in Portal Support Schema
Reference.

Define a JSP Portlet

To define a portlet that loads a JSP:

1. Copy the code from Listing 6-1 and paste it into a new text file in root-dir/portlets (see
“Create a Directory Tree for the Extension” on page 3-2).

Consider using the following naming convention:
content-name.po rtlet

Extending the Administration Console 6-3

Adding Portlets and Navigation Controls

6-4

where content-name is the name of a JSP file that the portlet contains. For example, if
the portlet contains a JSP file named monitorEJB. jsp, then name the portlet XML file
monitorEJB.portlet.

2. Replace the values in Listing 6-1 as follows:

— Label. Provide a unique identifier that the portal framework uses to identify this
portlet.

— (optional) Title. Provide a default title that this portlet displays if its title bar is
visible. See “Displaying a Title Bar for a Portlet” on page 6-7.

— URL. Specifies the absolute path and file name of the JSP that the portlet contains
starting from the root of the extension.

For example:
/ext_jsp/monitorEJB.JSP

Listing 6-1 Template for a Portlet XML File that Loads a JSP File

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
xmins:html="http://www.w3.0rg/1999/xhtml-netuix-modified/1.0.0"
xmIns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.
o
xmIns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0
.o"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/
support/1.0.0 portal-support-1_0_0.xsd">

<netuix:portlet definitionLabel="Label" title="Title" >
<netuix:content>
<netuix:jspContent contentUri="URI"/>
</netuix:content>
</netuix:portlet>

</portal :root>

Extending the Administration Console

Define a Portlet

Define a Struts Portlet

Instead of encapsulating your extension’s business logic and navigation logic in JSP files, you
can use the Apache Struts framework. See “Create Struts Artifacts for Tables and Forms” on
page 7-7.

To create a portlet that loads (forwards to) a Struts Action:

1. Copy the code from Listing 6-2 and paste it into a new text file in root-dir/portlets (see
“Create a Directory Tree for the Extension” on page 3-2).

Consider using the following naming convention:
action-name.portlet

where action-name is the name of the Struts Action to which the portlet forwards.
2. Replace the values in Listing 6-2 as follows:

— Label. Provide a unique identifier that the portal framework uses to identify this
portlet.

— (optional) Title. Provide a default title that this portlet displays if its title bar is
visible. See “Displaying a Title Bar for a Portlet” on page 6-7.

— Struts-module. Specifies the Struts module that defines a Struts Action.

You must create your own Struts module to define the Actions and ActionForms that
your Administration Console extension uses; the default Struts module is reserved for
BEA Actions and ActionForms. Each module includes its own, uniquely named
configuration file. For information about Struts modules, see the Apache Struts User
Guide at http://struts.apache.org/struts-doc-1.2.x/userGuide/index.html.

For example, if you specify “myModule” for Struts-module, the Struts controller
servlet looks in the following location for the action:
root-dir/WEB-INF/struts-auto-config-myModule . xml

— action-path. Specifies the path to a Struts Action that is defined in your Struts
module.

— refresh-action-path. Specifies the Action to invoke on subsequent requests for
this portlet (for example, the user agent refreshes the document).

Note that this . portlet does not specify the name of a JSP. Instead, typically the Struts Action
mapping forwards to a specific JSP upon successful operation.

Extending the Administration Console 6-5

Adding Portlets and Navigation Controls

Listing 6-2 Template for a Portlet XML File that Forwards to a Struts Action

<?xml version="1.0" encoding=""UTF-8"?>
<portal:root xmIns:html="http://www.w3.0rg/1999/xhtml-netuix-modified/1.0.0"
xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/
support/1.0.0 portal-support-1_0_0.xsd">

<netuix:portlet definitionLabel="Label” title="Title" >
<netuix:strutsContent module="Struts-module"
action="action-path"
refreshAction="refresh-action-path*/>
</netuix:portlet>
</portal :root>

Define a Page Flow Portlet

To define a portlet that loads a Beehive Page Flow:

1. Copy the code from Listing 6-3 and paste it into a new text file in root-dir/portlets (see
“Create a Directory Tree for the Extension” on page 3-2).

Consider using the following naming convention:
pageFlow-name.portlet

where pageFlow-name is the name of the Page Flow that the portlet loads (forwards to).
For example, if the portlet forwards to a Page Flow named myPageFlow. jpf, then name
the portlet XML file myPageFlow.portlet.

2. Replace the values in Listing 6-3 as follows:

— Label. Provide a unique identifier that the portal framework uses to identify this
portlet.

— (optional) Title. Provide a default title that this portlet displays if its title bar is
visible. See “Displaying a Title Bar for a Portlet” on page 6-7.

— URL. Specifies the absolute path and file name of the JPF file that defines the Page
Flow. The URI must be absolute starting from the root-dir/WEB-INF/classes
directory.

For example, if your JPF file is
root-dir/WEB-INF/classes/com/mycompany/extension/pageflows/myPageFlo

6-6 Extending the Administration Console

Define a Portlet

w. jpT, specify the following value
/com/mycompany/extension/pageflows/myPageFlow. jpf

— Action. Specifies the absolute path and file name of the JPF file that defines the Page
Flow.

Listing 6-3 Template for a Portlet XML File that Forwards to a Page Flow

<?xml version="1.0" encoding=""UTF-8"?>
<portal:root
xmins:html="http://www.w3.0rg/1999/xhtml-netuix-modified/1.0.0"
xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.
o
xmIns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0
.o"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/
support/1.0.0 portal-support-1_0_0.xsd">

<netuix:portlet definitionLabel="Label" title="Title" >
<netuix:content>
<netuix:pageflowContent
contentUri="URI"
action="Action"/>
refreshAction="refresh-Action"/>
</netuix:content>
</netuix:portlet>

</portal :root>

Displaying a Title Bar for a Portlet

If you plan to locate a portlet on the Administration Console desktop (within a placeholder on the
“page” page), configure the portlet to display a title bar. If you locate a portlet in the
ContentBook, do not display a title bar.

To display a title bar:

Extending the Administration Console 6-7

Adding Portlets and Navigation Controls

1. Inthe portlet’s .portlet XML file, provide a value for the title attribute of the
netuix:portlet element. To display a localized value, see “Localizing a Portlet Title” on
page 6-9.

2. Include the following element as a child of the netuix:portlet element:

<netuix:titlebar/>

To enable the portlet to be minimized and maximized, include the following stanza instead
of the empty <netuix:titlebar/> element:

<netuix:titlebar>
<netuix:minimize/>
<netuix:maximize/>
</netuix:titlebar>
Listing 6-4 defines a portlet that displays a title bar. The portlet can be minimized or maximized
and the title value comes from a message bundle.

Listing 6-4 Example: Portlet that Displays a Localized Title

<?xml version="1.0" encoding="UTF-8"?>
<portal:root xmlns:html="http://www._.w3.0rg/1999/xhtml-netuix-modified/1.0.0"
xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
xmIns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/
support/1.0.0 portal-support-1_0_0.xsd">

<netuix:portlet definitionLabel="medrecEAR.Monitor._Portlet"
title=""medrecMBean.myPortlet._title"
backingFile="com.bea.medrec.extension.utils.DesktopViewBacking">
<netuix:titlebar>
<netuix:minimize/>
<netuix:maximize/>
</netuix:titlebar>
<netuix:content>
<netuix:strutsContent module="/medrecMBean"
action="RetrieveCustomMBeansAction"
refreshAction=""RetrieveCustomMBeansAction"/>
</netuix:content>
</netuix:portlet>
</portal :root>

6-8 Extending the Administration Console

Define a Portlet

Localizing a Portlet Title

By default, the portlet displays the literal value that you enter in the <netuix:portlet>
element’s title attribute. To enable this title to be localized:

1.

Create a Java class that retrieves the value of the title attribute, scans a property file for a
key that matches the title attribute value, and returns the value of the property key.

For example, if you specify title="myPortlet.title”, the Java class looks through
your message bundle for myPortlet. title=MyCompany’s Portlet and returns
MyCompany’s Portlet as the text to be displayed.

See “Create a Backing Class for Localizing Portlet Titles” on page 6-9.

In the .portlet file, include the following attributes in the <netuix:portlet> element:
— title. Specify the key for a property that you have defined in your message bundle.

— backingFile. Specify the fully-qualified name of a Java class that you created in the
previous step.

For example:
<netuix:portlet definitionLabel="myPortlet" title="myPortlet.title"
backingFile="com.mycompany.extension.utils._MyPortletBacking'>

Create a Backing Class for Localizing Portlet Titles

A backing class is a Java class that interacts directly with the portal framework APIs. To create
a backing class that retrieves localized portlet titles:

1.

Extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Implement the AbstractJspBacking.preRender(HttpServletRequest request,
HttpServletResponse response) method.

See AbstractJspBacking.preRender() in the WebLogic Portal API Reference.
In your implementation of this method:
a. Get the locale from the HttpServletRequest object.

Use the following API:
Javax.servilet.http.HttpServletRequest.getSession().getAttribute(
"'org.apache._struts._action.LOCALE")

b. Get the message bundle.

Extending the Administration Console 6-9

Adding Portlets and Navigation Controls

Use the following API:

org.apache.struts._util _MessageResources.getMessageResources(
"myBundle™);

where myBundle is the name of your message bundle. (See “Creating a Message

Bundle” on page 4-1.)

c. Get the value of the portlet’s title property.

Use the following APIs:
PortletBackingContext bctx =
PortletBackingContext.getPortletBackingContext(
HttpServletRequest req);
MessageResources.getMessage(locale, bctx.getTitle());

where locale is the locale that you retrieved from the HttpServletRequest object.

d. Reset the value of the portlet’s title property to the localized value that you retrieved in
the previous step.

Use the following API:
PortletBackingContext.getTitle(String title)
where title is the value that you retrieved from the message bundle.

Listing 6-5 Example: Backing Class for Localizing a Portlet Title

package com._bea.medrec.extension.utils;
import java.util_Locale;

import javax.servlet.http_HttpServletRequest;
import javax.servlet.http_HttpServletResponse;

import org.apache.struts.util _MessageResources;

import
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import
com.bea.netuix.servlets.controls.portlet._backing.PortletBackingContext;

public class DesktopViewBacking extends AbstractJspBacking {
public boolean preRender(HttpServletRequest req, HttpServletResponse

res) {
// Get the PortletBackingContext for current portlet. The

// PortletBackingContext contains properties and methods

6-10 Extending the Administration Console

Define Ul Controls (Optional)

// for the current portlet.
PortletBackingContext bctx =
PortletBackingContext.getPortletBackingContext(req);

if (bctx '= null) {
// 1T title does not contain a period, assume it"s prelLocalized
// or follow the format for a key
if (bectx.getTitle().indexOfF(".")1=-1){
// Get the locale from the HTTPServletRequest
Locale locale = (Locale) req.getSession().getAttribute(
"org.apache.struts.action.LOCALE™);
// Find the message bundle named ‘“medrecMBean”
MessageResources messages =
MessageResources.getMessageResources('medrecMBean™) ;
// Get the value of the portlet’s “title” property
String msg = messages.getMessage(locale, bctx.getTitle());
// Reset the value of the “title” property with the
// localized value.
bctx.setTitle(msg);
¥
}

return true;

Define Ul Controls (Optional)

If you want to add tabs or subtabs to the Administration Console, you must define a book or page
Ul control that conforms to the existing hierarchy:

e To create a top-level tab (such as a sibling of Domains: Configuration), you create a book
that contains one or more pages. Each page contains a portlet.

e To create a subtab of an existing tab (such as a sibling of Domains: Configuration:
General), you create a page that contains a portlet.

Save the definitions of your books and pages in one or more portal book (- book) files. Create one
-book file for each hierarchical grouping of controls. For example, create one .book file for a

Extending the Administration Console 6-11

Adding Portlets and Navigation Controls

6-12

book that creates a top-level tab and its subtabs. Create another .book file for a page that adds a
subtab to an existing WebLogic Server tab. The root element of a_book file (portal : root) can
have only one direct child element; the child element can have multiple children.

The following sections describe creating books and pages:
e “Create a Tab That Does Not Contain a Subtab” on page 6-12
e “Create a Tab That Contains Subtabs” on page 6-13
e “Create a Subtab” on page 6-16

e “Create a Control Without Tabs or Subtabs” on page 6-16

Create a Tab That Does Not Contain a Subtab

To create a portal book (.book) XML file that defines a tab and no subtabs (such as Domains:
Notes):

1. Copy the code from Listing 6-6 and paste it into a new text file.

For example, root-dir/controls/MyApp.book
where root-dir is your development directory. For more information, see “Setting Up a
Development Environment” on page 3-1.

2. Replace the values in Listing 6-6 as follows:

— Page-Label. Provide a unique identifier that the portal framework and WebLogic
Server JSP tags use to forward requests to the page.

— Page-Title. Provide either the text that users see as the name of the tab or a key ina
message bundle that you have created.

If the value that you specify contains a “.” (period), the Administration Console
assumes that this value is a key and attempts to look up the value from your message
bundle. For example, if you specify My . Tab, the Administration Console looks up the
value of a property whose key is My . Tab. If it cannot find such a value, it displays
nul 1 as the tab name. If you specify My Tab as the value, then the Administration
Console displays My Tab.

— Bundle. Specify the name of a message bundle that you have created. This bundle is
used only if the value of the title attribute in the netuix:page element contains a

.. See “Create and Use a Message Bundle in Your JSPs” on page 7-3.

— Portlet-Instance-Label. Provide a unique identifier that the portal framework and
WebLogic Server JSP tags use to forward requests to the portlet instance.

Extending the Administration Console

Define Ul Controls (Optional)

— Portlet-URI. Specify the path and file name of a portlet file that you created (see
“Define a Portlet” on page 6-3). The path must be relative to the root of the portal Web
application.

For example:
/portlets/monitorEJB.portlet

Note that Listing 6-6 defines a page, not a book, so the Administration Console Look and Feel
will render the page as a tab with no subtabs.

Listing 6-6 Template .hook File that Creates a Tab with No Subtahs

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
xmIns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
xmins:html="http://www.w3.0rg/1999/xhtml-netuix-modified/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/support
/1.0.0 portal-support-1_0_0.xsd">
<netuix:page markupName="page' markupType='"Page"
definitionLabel=""Page-Label™ title="Page-Title"
skeletonUri="/framework/skeletons/default/wlsworkspace/
page_content. jsp'>
<netuix:meta name="'skeleton-resource-bundle"™ content="Bundle"/>
<netuix:content>
<netuix:gridLayout columns="1" markupType="Layout"
markupName="singleColumnLayout'>
<netuix:placeholder flow="vertical" markupType="Placeholder"
markupName="singleColumn_columnOne"'>
<netuix:portletinstance markupType="Portlet"
instancelLabel="Portlet-Instance-Label"
contentUri="Portlet-URI"/>
</netuix:placeholder>
</netuix:gridLayout>
</netuix:content>
</netuix:page>
</portal :root>

Create a Tah That Contains Subtabs

To create a portal book (-book) XML file that defines a tab and one or more subtabs:

Extending the Administration Console 6-13

Adding Portlets and Navigation Controls

6-14

1. Copy the code from Listing 6-7 and paste it into a new text file. Save the file in a directory
below root-dir.

For example, root-dir/controls//MyApp.book
where root-dir is your development directory. For more information, see “Setting Up a
Development Environment” on page 3-1.

2. To define the tab, replace the values in Listing 6-7 as follows:

3.

Book-Label. Provide a unique identifier that the portal framework and WebLogic
Server JSP tags use to forward requests to the book. This is the same type of label that
WebLogic Server provides for many of its Ul controls. See “Extension Points in the
Administration Console” on page 2-2.

Book-Title. Provide either the text that users see as the name of the tab or a key in a
message bundle that you have created.

“wn

If the value that you specify contains a “.” (period), the Administration Console
assumes that this value is a key and attempts to look up the value from your message
bundle. For example, if you specify My . Tab, the Administration Console looks up the
value of a property whose key is My .Tab. If it cannot find such a value, it displays
nul 1 as the tab name. If you specify My Tab as the value, then the Administration
Console displays My Tab.

Bundle. Specify the name of a message bundle that you have created. This bundle is
used only if the value of the title attribute in the netuix:book element contains a
“.”. See “Create and Use a Message Bundle in Your JSPs” on page 7-3.

To define the first subtab, replace the values in Listing 6-7 as follows:

Page-Label. Provide a unique identifier that the portal framework and WebLogic
Server JSP tags use to forward requests to the page.

Page-Title. Provide either the text that users see as the name of the subtab or a key in
a message bundle that you have created.

If the value that you specify contains a “.” (period), the Administration Console
assumes that this value is a key and attempts to look up the value from your message
bundle.

(optional) Metadata-Type and Metadata-1D. If you want to use the Administration
Console’s <wl :column-dispatch> JSP tag to create a hypertext link that forwards to
this page, include a <netuix:meta> element and supply values for Metadata-Type
and Metadata-1D. See “Create a Table Column for Navigating to Other Pages” on
page 7-25.

Extending the Administration Console

Define Ul Controls (Optional)

— Portlet-Instance-Label. Provide a unique identifier that the portal framework and
WebLogic Server JSP tags use to forward requests to the portlet instance.

— Portlet-URI. Specify the path and file name of a portlet file that you created (see
“Define a Portlet” on page 6-3). The path must be relative to the root of the portal Web
application.

For example:
/portlets/monitorEJB.portlet

4. To create additional subtabs, add netuix:page elements as siblings to the netuix:page
element in Listing 6-7.

For more information about portal book XML files, see the Portal Support Schema Reference.

Note the use of the following elements in the .book file:

e netuix:singleLevelMenu renders one subtab for each page in the book. The book’s
parent Ul control (which Listing 6-7 assumes is provided by WebLogic Server) is
responsible for generating a top-level tab for the book.

e netuix:meta name="breadcrumb-context” content="handle" adds the page’s title
to the history of visited pages (breadcrumbs) after a user has visited the page. The
breadcrumbs display on the desktop above ContentBook.

Listing 6-7 Template for a .book File That Defines a Top-Level Tab with Subtabs

<?xml version="1.0" encoding="UTF-8"?>

<portal:root
xmIns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
xmlns:html="http://www.w3.0rg/1999/xhtml-netuix-modified/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/support

/1.0.0 portal-support-1_0_0.xsd">

<netuix:book markupName="book" markupType="Book"
definitionLabel="Book-Label™ title="Book-Title">
<netuix:singleLevelMenu markupType="Menu" markupName="singleLevelMenu"
skeletonUri="singlelevelmenu_children.jsp"/>
<netuix:meta name='skeleton-resource-bundle”™ content="Bundle'/>
<netuix:content>
<netuix:page markupName="page' markupType='"Page"
definitionLabel="Page-Label" title="Page-Title"
skeletonUri="/framework/skeletons/defaul t/wlsworkspace/
page_content. jsp'>

Extending the Administration Console 6-15

Adding Portlets and Navigation Controls

<netuix:meta name="Metadata-Type" content="Metadata-I1D"/>
<netuix:meta name="breadcrumb-context” content="handle'/>
<netuix:meta name="'skeleton-resource-bundle”™ content="Bundle"/>
<netuix:content>
<netuix:gridLayout columns="1" markupType="'Layout"
markupName="'singleColumnLayout'>
<netuix:placeholder flow="vertical" markupType="Placeholder"
markupName=""singleColumn_columnOne'>
<netuix:portletinstance markupType="Portlet"
instancelLabel="Portlet-Instance-Label""
contentUri="Portlet-URI"/>
</netuix:placeholder>
</netuix:gridLayout>
</netuix:content>
</netuix:page>
<l-- Add additional netuix:page elements here -->
</netuix:content>

</netuix:book>
</portal :root>

6-16

Create a Subtah

To create a subtab that you can add to an existing WebLogic Server tab:

1. Create a -book file that defines a page Ul control. See Listing 6-6.

2. Inyour netuix-extension.xml file, specify the WebLogic Server book Ul control that you
want to contain your subtab. See “Add a Tab or Subtab to ContentBook” on page 6-18.

Create a Control Without Tahs or Subtabs

There is no requirement for books and pages in ContentBook to be accessible by tab or subtab.
Many WebLogic Server pages that display summary tables are accessible from the
NavTreePortlet but not from the tabbed interface (see Figure 2-5).

Any of the code listings in the previous sections can be located in a parent control that does not
render tabs or subtabs for its children. See “Specify a Location for Displaying Portlets or Ul
Controls” on page 6-17.

Extending the Administration Console

Specify a Location for Displaying Portlets or Ul Controls

Specify a Location for Displaying Portlets or Ul Controls

All locations for displaying your portlets or Ul controls must be specified as relative to existing
controls in the Administration Console. For example, you can specify that your portlet displays
on the desktop below the System Status portlet.

To specify a location for displaying a portlet or Ul control:

1.

Create an XML file named netuix-extension.xml and save it in

root-dir/WEB-INF

where root-dir is your development directory. For more information, see “Setting Up a
Development Environment” on page 3-1.

A NetUI Extension XML file (netuix-extension.xml) is the deployment descriptor for
your extension. It declares each parent Ul control in your extension and the location in
which you want it to display (see Listing 6-8). For more information, see the NetUl
Extensions Schema Reference.

Create a <weblogic-portal-extension> root element.

(Optional) Create a <provider-info> element to describe your extension.

This element is for your information only. The portal framework does not use the data in
this element.

Add the following element:
<portal-file>/console._portal</portal-file>

This required element specifies the name and relative location of the Administration
Console’s .portal file, which is the portal that you are extending.

Do one of the following:
— “Add a Portlet to the Desktop” on page 6-17
— “Add a Tab or Subtab to ContentBook” on page 6-18

Add a Portlet to the Desktop

To add a portlet to the Administration Console desktop, create the following stanza in your
netuix-extension.xml file (see Listing 6-8):

<page-extension>

<page-location>
<parent-label-location label="page"/>
<page-insertion-point layout-location="layout"

Extending the Administration Console 6-17

Adding Portlets and Navigation Controls

placeholder-position="0"/>
</page-location>
<portlet-content
content-uri="portlet-URI" title=""title"
orientation="top" default-minimized="false"
instance-label=""portlet-instance-label"/>
</page-extension>

where:

e layout is one of the following values:

— 0 (zero) if you want the portlet to display in the left side of the Administration Console.
Extension portlets always display at the top of the left column.
— 1 (one) if you want the portlet to display in the right side.

Extension portlets always display at the bottom of the right column.

e portlet-URI is the path and file name of your .portlet file. The path must be relative
to the root of the portal Web application.

e titleis the title that displays in the portlet’s title bar. If you specify a null value, the
portal framework uses the title that you defined in the _portlet file.

e portlet-instance-label isa unique identifier that the portal framework and WebLogic
Server JSP tags use to forward requests to the portlet instance.

Add a Tah or Subtah to ContentBook

To add a control that renders a tab, create the following stanza in your netuix-extension.xml
file (see Listing 6-8):
<book-extension>
<book-location>
<parent-label-location label="Admin-Console-Book-Label/>

<book-insertion-point action="append"/>
</book-location>

<book-content content-uri="book-URI'/>
</book-extension>

where:

e Admin-Console-Book-Label iS the definitionLabel of an Administration Console
book control that renders tabs for its child books.

6-18 Extending the Administration Console

Specify a Location for Displaying Portlets or Ul Controls

e book-URI is the path and file name of your .book file that defines the book control for
your tab (and optional subtabs). The path must be relative to the root of the portal Web
application.

To add a control that renders a subtab in an existing tab, create the same stanza as the previous
step, where:

® Admin-Console-Book-Label is the definitionLabel of an Administration Console
book control that renders subtabs for its child pages.

e book-URI is the path and file name of your .book file that defines the page control for
your subtab. The path must be relative to the root of the portal Web application.

Example: Specifying Locations for Portlets and Ul Controls

Listing 6-8 is a netuix-extension.xml file that adds a portlet to the console desktop, a tab to
the WebLogic Sever Domain tabs, and subtab to the Domain: Configuration tab.

Listing 6-8 Example netuix-extension.xml File

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-portal-extension
xmIns="http://www.bea.com/servers/portal/weblogic-portal/8.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.bea.com/servers/portal/weblogic-portal/
8.0 netuix-extension-1_0 0.xsd">
<provider-info>
<title>My Extension</title>
<version>1.0</version>
<description>Inserts a portlet on the desktop, a tab next to
Domains:Configuration, and a subtab under Domains: Configuration.
</description>
<author>Me</author>
<last-modified>02/03/2005</last-modified>
<support-url>http://www.mycompany/support/index. jsp</support-url>
</provider-info>

<portal-file>/console.portal</portal-file>

<I--Adds a portlet to the console desktop -->
<page-extension>
<page-location>
<parent-label-location label="page"/>
<page-insertion-point layout-location="0" placeholder-position="0"/>
</page-location>

Extending the Administration Console 6-19

Adding Portlets and Navigation Controls

<portlet-content content-uri="/portlets/desktop/desktop_view.portlet”
title=""My App Status' orientation="top" default-minimized="false"
instance-label="PortletExtensionlnstancelLabel"
/>
</page-extension>

<I--Adds a tab to the Domain tabs -->
<book-extension>
<book-location>
<parent-label-location label="CoreDomainConfigGeneralBook' />
<book-insertion-point action="append"/>
</book-location>
<book-content content-uri="/controls/page.book"/>
</book-extension>

<I-- Adds a subtab to the Domain: Configuration tab-->
<book-extension>
<book-location>
<parent-label-location label="DomainconfigTabPage'/>
<book-insertion-point action="append"/>
</book-location>
<page-content content-uri="/controls/notespage.book'/>
</book-extension>

</weblogic-portal-extension>

Add Nodes to the NavTreePortlet (Optional)

The Domain Structure portlet (NavTreePortlet) contains a tree control that you can use to
navigate to content in the Administration Console. Each node in the tree is a link to a Ul page
control. Nodes can also contain subnodes.

Your extension can add a single node at any location in the tree. It can also add a node that
contains other nodes (node tree) at any location. For example, your extension can add a node or
a node tree to the root of the existing navigation tree. In addition (or instead), it can add a node
or node tree to the Environments node. (See Figure 6-2.)

6-20 Extending the Administration Console

Add Nodes to the NavTreePortlet (Optional)

Figure 6-2 Example: Adding Nodes or Node Trees

Domain Structure [NavTreePortlet]

mydomain

g-Environment

-Servers

-Clusters

-Virtual Hosts
-Migratable Targets
-Machines

“Work Managers
-Startup & Shutdown Classes
Your Node or Node Tree
..Deployments

&-Services

& Interoperability
#-Diagnostics

The following sections describe adding nodes to the NavTreePortlet:
e “Append a Single Node to the Root of the Existing Tree” on page 6-21

e “Append or Insert Nodes or Node Trees” on page 6-22

Append a Single Node to the Root of the Existing Tree

To append a node that links to one of your page controls, add the following attribute and attribute
value to the netuix:page element in the control’s .book file:
backingFile="com.bea.console.utils.NavTreeExtensionBacking"

For example, if you want to add a link to a page that you have created, in the .book file that

defines your page, add the backingFi le attribute:

<netuix:page definitionLabel="MyAppTableBook" title="My Page"
markupName=""page"*
markupType=""Page"
backingFile="com.bea.console.utils_NavTreeExtensionBacking"

>

The NavTreePortlet displays the value of the page element’s title attribute as the link text. See
Figure 6-3.

If the title attribute value is a key in your message bundle, the NavTreePortlet displays the
localized value mapped to the key.

Extending the Administration Console 6-21

Adding Portlets and Navigation Controls

Figure 6-3 Append a Node to the Root of the Existing Tree

Domain Structure [NavTreePortlet]

mydomain
#-Environment

& Interoperability
#-Diagnostics

Append or Insert Nodes or Node Trees

If you want to control the location in which your node is added to the NavTreePortlet, or if you
want to add a node tree, implement your own NavTreeExtensionBacking backing class.

The following sections describe appending or inserting nodes or node trees:
e “Create a NavTreeBacking Class” on page 6-22
e “Invoke the NavTreeBacking Class” on page 6-25

e “Example: How a NavTreeExtensionBacking Class Adds a Node Tree to the
NavTreePortlet” on page 6-25

Create a NavTreeBacking Class
To create a NavTreeBacking class (see Listing 6-9):

1. Extend com.bea.console.utils.NavTreeExtensionBacking.

This class is already available in the WebLogic Server runtime environment. However, for
support in your development and compiling environment, you must add the following
JARs to your environment’s classpath:
WL_HOME/server/lib/consoleapp/webapp/WEB-INF/1ib/console. jar
WL_HOME/server/lib/consoleapp/webapp/WEB-INF/lib/netuix_servlet.jar

where WL_HOME is the location in which you installed WebLogic Server.

2. Override the NavTreeExtensionBacking.getTreeExtension(
PageBackingContext ppCtx, String extensionUrl) method.

In your implementation of this method:

a. Construct a com.bea. jsptools.tree.TreeNode object for the parent node.

6-22 Extending the Administration Console

Add Nodes to the NavTreePortlet (Optional)

Use the following constructor:
TreeNode(String nodeld, String nodeName, String nodeUrl)
where:

nodeld is the value of the control’s definitionLabel. You can use
PageBackingContext.getDefinitionLabel () to get this value. Alternatively, you
can enter the definitionLabel value that is in the control’s .book file.

nodeName is the text that you want to display in the NavTreePortlet. You can create a
String object that contains the text or use PageBackingContext.getTitle() to get
this value from the page’s .book file.

Note: The PageBackingContext.getTitle() method returns the literal value of the
title attribute in the _book file; it never assumes that this value is a key and
therefore never attempts to look up the value from a message bundle. If your
NavTreeExtensionBacking class needs to support localization, include logic in
your class to look up the locale, use the PageBackingContext.getTitle()
method to get the title value, and then look up the corresponding value from the
message bundle. For an example of such logic, see Listing 6-5, which localizes a
portlet title (instead of a page title).

nodeURL is a URL to the control. Supply extensionUrl as the value of this parameter.

If you want to add a tree of nodes, construct additional TreeNode objects as children of
the parent TreeNode.

For each child node, use the following constructor:
TreeNode(String nodeld, String nodeName,
String nodeUrl, TreeNode parent)

where:

nodeld is the value of the control’s definitionLabel. You can not use
PageBackingContext.getDefinitionLabel () to get this value because the
PageBackingContext available to this method is for the parent node. Instead, you
must enter the definitionLabel value that is in the control’s . book file.

nodeName is the text that you want to display in the NavTreePortlet.

nodeURL is a URL to the control. Supply the following value:
/console/console.portal?_nfpb=true&_pagelLabel=definitionLabel

where definitionLabel is the definitionLabel of the page to which you want to
link.

parent is any TreeNode that you have constructed. You can create multiple levels in
your node tree by specifying a parent that is a child of node higher up in the hierarchy.

Extending the Administration Console 6-23

Adding Portlets and Navigation Controls

C.

d.

Pass the parent TreeNode object to the constructor for
com.bea.console.utils._NavTreeExtensionEvent.

Use the following constructor:
NavTreeExtensionEvent(String pagelLabel, String url,
String parentPath, TreeNode node, int ACTION)

where:

pageLabel is the same nodelD value that you used when constructing the TreeNode
object for the parent node.

url is the same nodeURL value that you used when constructing the TreeNode object
for the parent node.

parentPath is the name of the node under which you want your node to display. Use /
(slash) to represent the root of the navigation tree in the NavTreePortlet.

For example, if you want your node or node tree to display at the top level, specify /. If
you want your node to display as a child of Environments, specify /Environments.

node is the parent TreeNode that you created in step a.

ACTION is NavTreeExtensionEvent.APPEND_ACTION. For information about other
possible actions, see NavTreeExtensionEvent in the WebLogic Server Administration
Console API Reference.

Return the NavTreeExtensionEvent object that you constructed.

3. Save the compiled class in a package structure under your extension’s WEB- INF/classes
directory.

Listing 6-9 Example NavTreeExtensionBacking Class

package com.mycompany.consoleext;

import com
import com
import com
import com

-bea.netuix.servlets.controls.page.PageBackingContext;
-bea.jsptools.tree.TreeNode;
-bea.console.utils.NavTreeExtensionBacking;
-bea.console.utils_NavTreeExtensionEvent;

public class CustomNavTreeExtension extends NavTreeExtensionBacking {

public NavTreeExtensionEvent getTreeExtension(PageBackingContext ppCtx,
String extensionUri){

/*

* Construct a TreeNode for the control that has invoked this method.

*/

6-24 Extending the Administration Console

Add Nodes to the NavTreePortlet (Optional)

TreeNode node = new TreeNode(ppCtx.getDefinitionLabel(),
ppCtx.getTitle(),extensionUrl);

/*
* Construct a child TreeNode.
*/
TreeNode nodel = new TreeNode(''"MyAppGeneralTabPage',
"MyApp General',
**/console/console._portal?_nfpb=trueé&_pagelLabel=MyAppGeneralTabPage",
node) ;

/*
* Add the parent node (which includes its child) below the
* Environment node in the NavTreePortlet.
*/
NavTreeExtensionEvent evt =
new NavTreeExtensionEvent(ppCtx.getDefinitionLabel(),extensionUrl,
"/Environment' ,node);

return evt;

Invoke the NavTreeBacking Class

To invoke the NavTreeBacking class and start the process described in “Example: How a
NavTreeExtensionBacking Class Adds a Node Tree to the NavTreePortlet” on page 6-25:

1. Determine which Ul page control you want to add as the parent node.

Only page controls can be added as nodes to the NavTreePortlet.

2. Add the following attribute and attribute value to the control’s netuix:page element in the
control’s .book file:
backingFile="your-NavTreeBacking-class"

where your-NavTreeBacking-class is the fully-qualified name of the class you created
in step 1.

Example: How a NavTreeExtensionBacking Class Adds a Node Tree to the
NavTreePortlet

The following example describes how a NavTreeExtensionBacking class adds the node tree
illustrated in Figure 6-4:

Extending the Administration Console 6-25

Adding Portlets and Navigation Controls

1. Asthe portal framework loads your extension, it parses your extension’s . book files and finds
anetuix:page element.

For example:

<netuix:page definitionLabel="MyAppTablePage'" title="My App"
markupName=""page"*
markupType="Page"’
backingFile="com.mycompany.utils.MyNavTreeExtension"

>

2. The portal framework instantiates a
com.bea.netuix.servlets.controls.page.PageBackingContext object, which is an
in-memory representation of the page Ul control. The object contains properties that describe
the page control’s title and definitionLabel among other data.

3. When the portal framework encounters the backingFi le attribute in the netuix:page
element, it initializes the specified class (MyNavTreeExtension) and passes your page’s
PageBackingContext object to the class constructor. It also passes a String object that
contains the page control’s URI.

4. The MyNavTreeExtension class does the following:

a. lItretrieves the title and definitionLabel values from the PageBackingContext
object.

b. It constructs a com.bea. jsptools.tree.TreeNode object and passes the title and
definitionLabel values along with the page control’s URI to the constructor.

c. It constructs two additional TreeNode objects for two pages whose titles are “Monitor
EJBs” and “Log Messages.”

Because there is no way to retrieve the PageBackingContext objects or the URIs for
these two pages, the values must be hard-coded in the MyNavTreeExtension class.

To make the pages into child nodes of the “My App” page node, the
MyNavTreeExtension class uses a form of the TreeNode constructor that accepts the
name of a parent node. For example:

TreeNode childnodel = new TreeNode ("MyAppMonitorEJB",
"Monitor EJBs",
"/console/console.portal?_nfpb=true&_ pageLabel=MyAppMonitorEJB",
node) ;

d. Itconstructs and returns a com.bea.console.utils._NavTreeExtensionEvent object.

6-26 Extending the Administration Console

Navigating to a Custom Security Provider Page

The NavTreeExtensionEvent object describes the TreeNode objects that you
constructed and indicates the location in the existing navigation tree at which you want
to append your node tree.

5. The NavTreePortlet listens for NavTreeExtensionEvent objects. As the portlet initializes
its tree, it appends nodes as specified by any NavTreeExtensionEvent objects that are
broadcast.

Figure 6-4 Example: Adding a Node Tree to the NavTreePortlet

Domain Structure [NavTreePortlet]

mydomain
m-Environment

& Interoperability

#-Diagnostics

=My App
~Meonitor EJBs

------ Log Messages

Navigating to a Custom Security Provider Page

If you created a custom security provider and used WebLogic MBeanMaker to create MBeans to
manage your provider, the Administration Console automatically generates pages to display the
provider’s configuration data. It also generates a link to your provider pages from the Security:
Providers table.

However, you can create your own pages to customize this display. If you create your own pages,
you need to redirect the link in the Security: Providers table from the pages that the
Administration Console generates to your custom pages.

To redirect the link, include the following element as a child of your page’s <netuix:page>
element:

<netuix:meta type="configuration” content="MBean-class-name”/>
where MBean-class-name is the fully qualified name of your provider’s MBean class.

For example:

<netuix:page markupName="page' markupType="'Page"
definitionLabel="SimpleSampleAuthorizerAuthorizerConfigCommonTabPage"
title="tab.common. label"

Extending the Administration Console 6-27

Adding Portlets and Navigation Controls

6-28

skeletonUri="/framework/skeletons/defaul t/wlsworkspace
/page_content. jsp''>

<netuix:meta name="configuration"

content="examples.security.providers.authorization.simple.
SimpleSampleAuthorizerMBean"/>

<netuix:content>

Extending the Administration Console

CHAPTERa

Using BEA Templates and JSP Tags

This section describes how to add a portlet that uses the Administration Console’s JSP templates,
styles, and user input controls. For example, you can add portlets that render your content as one
of the following:

e A table in the ContentBook that summarizes the resources you have provided and that
enables users to navigate to a specific resource or to invoke actions on the resource from
the table. (See Figure 2-5 for an example of a WebLogic Server table.)

e A form in the ContentBook that enables users to monitor or configure resources that you
have provided.

Figure 7-1 illustrates the process. The steps in the process, and the results of each are described
in Table 7-1. Subsequent sections detail each step in the process.

Extending the Administration Console 1-1

Using BEA Templates and JSP Tags

Figure 7-1 Administration Console Extension Development Overview

Create

a message

bundla - WAR file

Deploy

extension

Create

Java beans,
Struts Actions
and ActionForms

Create

Create JSPs
that use BEA
templates and
JSP tags, and
Beehive JSP tags

a location for
your extension

Table 7-1 Model MBean Development Tasks and Results

portal framework
XML files to define

Step Description

Result

1. “Createand Use a
Message Bundle in
Your JSPs” on

page 7-3.

Create a text file that contains a name/value pair for
each text string that you want to display in your
extension.

One or more.properties
files.

2. “Create Struts
Acrtifacts for Tables
and Forms” on
page 7-7.

The WebLogic Server JSP tags that render forms and
tables assume that Apache Struts is the controller
agent. The JSP tags use Java beans that are populated
by Struts ActionForms (form beans) and submit
user input to a Struts Action.

A Struts configuration file, Java
beans, and Java classes that
implement
org.apache.struts.acti
on.ActionFormand
org.apache.struts.acti
on.Action.

3. “Create JSPs that
Use BEA Templates
and JSP Tags” on
page 7-17.

WebLogic Server provides JSP templates that you
can import into your JSPs. It also provides a JSP tag
library to render the same Ul controls that the
Administration Console uses.

JSPs that match the
Administration Console styles
and structure.

1-2 Extending the Administration Console

Create and Use a Message Bundle in Your JSPs

Table 7-1 Model MBean Development Tasks and Results

Step Description

Result

5.“Create Other Create XML files that define a location for your
Portal Framework extension.

Filesand Deploy the

Extension” on

A .portlet XML file that
defines a portlet and configures
it to launch a Struts Action.

A _book XML file that defines

page 7-34. a page or book control
(optional), a
netuix-extension.xml
file that describes where to
locate your extension.

6. Archive and See “Archiving and Deploying Console Extensions” A WAR file that contains your

deploy the on page 8-1. extension.

extension.

Create and Use a Message Bundle in Your JSPs

BEA recommends that you define all of the text strings that your JSPs display in a message
bundle. For information about creating a message bundle, see “Creating a Message Bundle” on

page 4-1.
To use the bundle in your JSPs:

1. Import the JSTL fmt.tld tag library:

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

2. Declare the name of your bundle:

<fmt:setBundle basename="bundle' var="current_bundle" scope='page'/>

where bundle is the name of your bundle.

3. When you want the JSP to output a string, use the following JSP tag:

<fmt:message key="property-name" bundle="${current_bundle}"/>

For example:

<fmt:message key="myextension.myTab.introduction"

bundle="${current_bundle}"/>

Extending the Administration Console 1-3

Using BEA Templates and JSP Tags

Overview of Forms and Tables

1-4

WebLogic Server provides a <wl : form> JSP tag that can render a variety of HTML input
controls, such as text controls, check boxes, and radio controls. You can configure a form to be
read-only or to allow user input. Forms that allow user input must include buttons that enable
users to post the form data for processing in the business layer.

WebLogic Server provides a <wl : table> JSP tag that renders data in a tabular format. Each row
in the table represents a single entity such as a WebLogic Server instance, an application, or a log
message (see Figure 7-2). You can configure table columns to render hypertext links, which

enable users to navigate to pages that provide more information about an item in the table. You
can also create a table column that contains an HTML check box control. If a user selects a check
box for a table row and clicks a submit button, your extension can invoke business logic on behalf
of the entire row. For example, you can use a check box to delete an item that a row represents.

Both of these tags use Apache Struts Actions and ActionForms to pass data between the
business layer and the presentation layer.

Data Models for Forms and Tables

Apache Struts supports multiple techniques for instantiating and populating ActionForm beans
(form beans). For example, you can code your own concrete Java bean that contains getter and

setter methods for each property in the form. Or you can use the Struts DynaActionForm bean,
which dynamically configures a Java bean to contain the properties that are declared in the Struts
configuration file.

Data Model for Forms

If you are using BEA JSP tags to render a form in the Administration Console, you can use any
technique for creating and populating form beans that Struts supports. (The example in
“Example: How Struts Portlets Display Content” on page 2-14 uses a DynaActionForm bean
instead of coding a custom Java bean.)

Regardless of the technique that you choose, your Java bean must contain the following property:

e handle, which can be of type com.bea.console.handles.Handle or a custom Handle
class that you create.

The portal framework uses this property to correlate an ActionForm bean with the data
source that populates the bean, such as an MBean. See “Handles for ActionForms and Row
Beans” on page 7-6.

Extending the Administration Console

Overview of Forms and Tables

Data Model for Tables

If you are using BEA JSP tags to render a table in the Administration Console, you must create
two form beans: one bean that represents the rows in the table (called a row bean) and another
bean (called a table bean) that contains the collection of row beans. Each property in the row bean
is rendered as a table column. For example, in Figure 7-2, each row bean instance contains a
name, state, health, and listenPort property.

Figure 7-2 Row Beans and Table Bean

Servers
New Showing 1-2of 2 Previous | Next
Row bean __|O0|Name & State Health Listen Port
instance 1 —*|7 [] | myserver(admin) RUNNING OK 7001 |
Row bean, 1| Server-o Unknown Unknown 7001 |
instance 2
New Showing 1-2of 2 Previous | Next

Table bean

To create a row bean, you must create a concrete Java bean that defines each property. You cannot
use the Struts DynaActionForm bean to dynamically contain the properties that are declared in
the Struts configuration file.

To create a table bean, you can use any technique for creating and populating form beans that
Struts supports. Regardless of the technique that you choose, your table bean must contain the
following properties:

e content, which must be of type java.util.Collection

This is the property that you must use to contain the row beans.

e handle, which can be of type com_bea.console_handles.Handle or a custom Handle
class that you create.

While the portal framework requires you to declare this property for form beans and table
beans, its usefulness is limited with table beans. Typically, a table bean is simply a
collection of row beans; the row beans expose an underlying data source but the table bean
does not. Unless you need to keep track of which Action class has populated your table
bean, you do not need to set the value of this property of the table bean (but you must
declare it). See “Handles for ActionForms and Row Beans” on page 7-6.

Extending the Administration Console 1-5

Using BEA Templates and JSP Tags

1-6

If you configure your table to include a column of check boxes, which enables you to invoke a
Struts Action on the selected table row beans, your table bean must also contain the following

property:

e chosenContents, which can be an array of any primitive type or an array of
com_bea.console.handles_Handle. For information on how to work with check boxes
in a table, see “Add Buttons and Checkboxes to Tables” on page 7-28.

Handles for ActionForms and Row Beans

To uniquely identify an instance of an ActionForm bean or a row bean and to establish a
correlation between the bean and its underlying data source, you can create and use a Handle
object. A Handle object is a Java object that implements the
com.bea.console.handles.Handle interface.

The Apache Struts controller servlet places Handle objects in HttpServletRequest objects,
thus making them available to any Struts Action, Beehive Page Flow, or JSP.

The Administration Console uses Handle objects when linking from a row in a table JSP (see
Figure 7-2) to the corresponding configuration JSP. For example, for a ServerMBean instance
named Server-0, the Administration Console populates row bean with data from the Server-0
MBean. The Administration Console passes the JIMX object name for Server-0 to a new aHandle
object (of type com_bea.console.handles.JMXHandle) and sets the Handle object as the
value of the row bean’s handle property (see Figure 7-3). When a user clicks a link in the table
JSP, the Struts controller looks in the row bean’s handle property, uses the handle value to
determine which server instance has been selected, and displays the configuration page for the
selected server.

Extending the Administration Console

Create Struts Artifacts for Tables and Forms

Figure 7-3 JMXHandle in a Row Bean

Server-0 MBean

ObjectName for
Server-0 JMXHandle

\ObjectName for

Server-0

\Row Bean

handle=JMXHandle

If the underlying data source for your ActionForm beans or row beans is an MBean, you can use
the com.bea.console.handles.JMXHandle object. See JMXHandle in the Administration
Console API Reference.

If the underlying data source for your beans is not an MBean, you can create your own Java class
that implements the com_bea.console.handles.Handle interface. See Handle in the
Administration Console API Reference.

Create Struts Artifacts for Tables and Forms

To render HTML forms and tables and populate them with data, the Administration Console uses
JSP tags that load data from Java beans. Most of these beans contain data that a Struts Action
has loaded from a WebLogic Server MBean. To submit user input, the JSP tags forward to Struts
Actions, and most of these Actions update data in a WebLogic Server MBean.

If you use Administration Console JSP tags, you must create your own Struts ActionForms and
Actions.

The following sections describe creating Java beans, Struts Actions, and ActionForms to use
with forms and tables:

e “Create Struts Artifacts for a Form JSP: Main Steps” on page 7-8

e “Create Struts Artifacts for a Table JSP” on page 7-13

Extending the Administration Console 1-1

Using BEA Templates and JSP Tags

1-8

For information on Apache Struts, see The Apache Struts Web Application Framework at
http://struts.apache.org/.

Create Struts Artifacts for a Form JSP: Main Steps

To create Struts artifacts that pass data between the business layer and a JSP in the presentation
layer:

1. Create an org.apache.struts.action.Action class that populates a Java bean (form
bean) with data from your business layer.

If your form allows user input, create another Action class to process the data that users
post from the form.

See “Create Struts Action Classes for Handling Form Data” on page 7-8.
2. Inyour Struts configuration file:

a. Declare the name and the properties of the form bean that your Action classes will
populate and use.

If your form allows user input, you can use the same form bean to populate the form
and to return user input to your Action class that processes data.

b. Create an Action mapping that the Struts controller uses to instantiate your form bean and
invoke your Action class that populates the form.

If your form allows user input, create another Action mapping that the Struts controller
uses when users submit the form.

See “Configure Struts ActionForms and Action Mappings” on page 7-12.

Create Struts Action Classes for Handling Form Data
To create Struts Action classes that handle form data:

1. Create an org.apache.struts.action.Action class that populates the form bean. (See
Listing 7-1.)

The Struts controller passes an empty ActionForm bean to your Action class. To populate
the bean, implement the following method:
Action.execute(ActionMapping actionMapping,

ActionForm actionForm,

HttpServletRequest httpServletRequest,

HttpServletResponse httpServletResponse)

Extending the Administration Console

Create Struts Artifacts for Tables and Forms

Your implementation should:

a.
b.

C.

Gather data from an underlying source, such as an MBean.
Cast the empty ActionForm bean as a DynaActionForm bean.

Invoke the DynaActionForm.set() method for each property that you defined in the
<form-bean> element, except for the handle property.

For example, if you defined two properties named name and totalRx:

DynaActionForm form = (DynaActionForm) actionForm;
form.set("'name", namefromMBean) ;
form.set(""totalRx", totalRxfromMBean) ;

To establish a correlation between the form bean and its underlying data source, set the
value of the handle property. (See “Handles for ActionForms and Row Beans” on
page 7-6.)

For example, if your underlying data source is an MBean, use JMxHandle and set the
the handle property to the MBean’s ObjectName:

ObjectName anMBean = new
ObjectName("'com.bea.medrec: Type=com.bea.medrec.controller.
RecordSessionEJBMBean, Name=MedRecEAR") ;
form.setHandle(new JMXHandle(anMBean));

Put the DynaActionForm bean into the request object that was also passed to the class:
httpServletRequest.setAttribute(' form-bean-name', form);

where form-bean-name matches the name that you configure for the form bean in the
Struts configuration file (see “Configure Struts ActionForms and Action Mappings” on
page 7-12).

Return “success” in the ActionMapping. findForward() method for the
ActionMapping object that was passed to the Action class:
return actionMapping.findForward(*'success");

If your form posts data for processing in the business layer, create another Action class that
processes the form data.

When a user posts data from the form (by clicking an HTML button), the Struts controller
passes a populated ActionForm bean to your Action class. To process the data, implement
the following method:

Action.execute(ActionMapping actionMapping,

ActionForm actionForm,

Extending the Administration Console 1-9

Using BEA Templates and JSP Tags

HttpServletRequest httpServletRequest,
HttpServletResponse httpServletResponse)

Your implementation should:
a. Cast the ActionForm bean that was passed in the request as a DynaActionForm bean.

b. Invoke the DynaActionForm.get() method for each property that you want to process.
For example, if you want to process the properties named name, totalRx, and handle:

DynaActionForm form = (DynaActionForm) actionForm;

String nameValue = (String) form.get(namefromMBean);
Integer totalValue = (Integer) form.get(totalRxfromMBean);
JMXHandle handle = (JMXHandle) form.get(handle);

c. Process the data.

For example, if the name and totalRx properties represent attributes in a MBean and
you want to change the values of the MBean attributes, use the handle property to get
the JMX object name of the MBean instance, and then use JMX APIs to set the MBean
attributes to the values that were posted from the form:

ObjectName oName = handle.getObjectName();

MBeanServer ._setAttribute(oName, new Attribute(("Name', nameValue));
MBeanServer .setAttribute(oName, new Attribute(("TotalRx",
totalvalue));

d. Return “success” in the ActionMapping.findForward() method for the
ActionMapping object that was passed to the Action class:
return actionMapping.findForward(*'success");

3. Compile the Action classes and save them in a package structure that begins in the
root-dir/WEB-INF/classes directory.

Listing 7-1 is an example org.apache.struts.action.Action class that accesses a custom
MBean and uses it to populate a form bean.

Listing 7-1 Example: Action Class that Populates a Form Bean

import javax.management.MBeanServer;

import javax.management.ObjectName;

import javax.management.MalformedObjectNameException;
import javax.naming.lnitialContext;

import javax.servlet.http_HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

1-10 Extending the Administration Console

Create Struts Artifacts for Tables and Forms

import org.apache.struts.action.DynaActionForm;
import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class MedRecMBeanFormAction extends Action {
public ActionForward execute(ActionMapping actionMapping,
ActionForm actionForm,
HttpServletRequest httpServletRequest,
HttpServletResponse httpServletResponse)
throws Exception {
try {
// Establish a local connection to the Runtime MBean Server
InitialContext ctx = new InitialContext();
MBeanServer server =
(MBeanServer) ctx.lookup(*java:comp/env/jmx/runtime™);
// Create an ObjectName that corresponds to a custom MBean that
// has been registered in the Runtime MBean Server
ObjectName anMBean = new ObjectName(
*'com.bea.medrec:Type=com.bea.medrec.controller.
RecordSessionEJBMBean ,Name=MedRecEAR™) ;
//Get the value of the custom MBean’s “Name” attribute
String namefromMBean = (String)server.getAttribute
(anMBean, "'Name');
// Get the value of the custom MBean’s “TotalRx” attribute
Integer totalRxfromMBean = (Integer) server.getAttribute
(anMBean, "TotalRx');

// Populate the form bean

DynaActionForm form = (DynaActionForm) actionForm;
form.set(*'name’,namefromMBean) ;
form.set("totalRx", totalRxfromMBean) ;
form.set("handle", (new JMXHandle(anMBean)));

// Set the form bean in request. The name of the
// form bean must match the “form-bean” name in your
// Struts configuration file
httpServletRequest.setAttribute(''medrecMBeanEJBForm™, form);
} catch (Exception ex) {
ex.printStackTrace();
}

return actionMapping.findForward(*'success');
}
}

Extending the Administration Console 1-11

Using BEA Templates and JSP Tags

1-12

Configure Struts ActionForms and Action Mappings
To create a Struts configuration file that declares your ActionForms and Action mappings:

1.

Copy the code from Listing 7-2 and paste it into the configuration file for your Struts module.

If you have not already created a configuration file, create a text file in
root-dir/WEB-INF (see “Create a Directory Tree for the Extension” on page 3-2). Name
the file struts-auto-config-module.xml

where module is a name that you have chosen for your Struts module. Consider using the
name of your company to avoid possible naming conflicts. You must create your own
Struts module; the default Struts module is reserved for BEA Actions and ActionForms.
For information about Struts modules, see the Apache Struts User Guide at
http://struts.apache.org/struts-doc-1.2.x/userGuide/index.html.

To configure a form bean that Struts will use to transfer data from the business layer to the
JSP in the presentation layer, replace the following value in Listing 7-2:

— form-bean-name, a UNique name that you assign to this instance of a
DynaActionForm bean. Your Action class will refer to this bean name when it
populates the bean and returns it to the Struts controller.

Use a name that reflects the name of the Struts Action that you will use to populate the
bean instance.

To configure an Action mapping that Struts will use to populate the form bean, serialize the
bean, put it into an HTTP request, and forward the request to a JSP, replace the following
values in Listing 7-2:

— action-name, a Unique name that you assign to this Action mapping. Your .portlet
file will refer to this Action name.

— custom-Action-class, the fully qualified name of a Java class that you create to
populate the form bean. Step 5 describes how to create this class.

— form-jsp.3jsp, the name of a JSP that you create to render the form. See “Create a
Form JSP” on page 7-19.

If your form posts data for processing in the business layer, create another <action> element
that specifies a custom class that you will create to process the form data.

For form-bean-name Of this second <action> element, you can use the same form bean
that initially populated the form. If you want to post only a subset of the data for
processing, instead of using the same form bean you can configure another one that defines
only the properties that you want to process.

Extending the Administration Console

Create Struts Artifacts for Tables and Forms

Upon success, this additional <action> element can forward to the Action mapping that
you configured in the previous step. This reloads the JSP with the updated data.

Listing 7-2 Template for Struts Configuration File

<?xml version="1.0" encoding="1S0-8859-1" ?>

<IDOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"struts-config_1_1.dtd">

<struts-config>
<form-beans>
<form-bean name="form-bean-name"
type="org.apache.struts.action.DynaActionForm">
<form-property name="handle" type="com.bea.console.handles_Handle"/>
<I-- insert additional “form-property” elements here -->
</form-bean>
</form-beans>

<action-mappings>
<action path="/action-name"
type="custom-Action-class"
name=""form-bean-name"
scope=""request"
validate="false">
<forward name="'success' contextRelative="true"
path="/ext_jsp/form-jsp.jsp"/>
</action>
<I-- insert additional “action” elements here -->
</action-mappings>
<message-resources parameter=""global"/>
<message-resources parameter="validationmessages' key="VALIDATIONMESSAGES"/>
<message-resources parameter=""genresources' key="GENRESOURCES'/>
<message-resources parameter="global"™ key="GLOBAL"/>
</struts-config>

Create Struts Artifacts for a Table JSP

To create a Java row bean, Struts Action, and ActionForm for a JSP that uses the WebLogic
Server <wl :table> JSP tag:

1. To configure a bean that will function as the row bean, create a standard Java bean that
contains one property for each data item that you want to display in the table.

Extending the Administration Console 1-13

Using BEA Templates and JSP Tags

1-14

Compile your Java bean and save it in a package structure that begins in the
root-dir/WEB-INF/classes directory.

a.

. To configure a bean that will function as the table bean:

Copy the code from Listing 7-2 and paste it into the configuration file for your Struts
module.

If you have not already created a configuration file, create a text file in
root-dir/WEB-INF (see “Create a Directory Tree for the Extension” on page 3-2).
Name the file struts-auto-config-module.xml

where module is a name that you have chosen for your Struts module. Consider using
the name of your company to avoid possible naming conflicts. You must create your
own Struts module; the default Struts module is reserved for BEA Actions and
ActionForms. For information about Struts modules, see the Apache Struts User Guide
at http://struts.apache.org/userGuide/index.html.

Replace the following value in Listing 7-2:

form-bean-name, a UNique name that you assign to this instance of a
DynaActionForm bean. Your Action class will refer to this bean name when it
populates the bean and returns it to the Struts controller.

Use a name that reflects the name of the Struts Action that you will use to populate the
bean instance.

Add the following property:
<form-property name='"‘contents' type="java.util._Collection"/>

This property will contain the collection of row beans that your Action class
instantiates and populates.

. To configure an Action mapping that Struts will use to populate the row beans and the table

bean, serialize the beans, put them into an HTTP request, and forward the request to a JSP,
replace the following values in Listing 7-2:

— action-name, a Unique name that you assign to this Action mapping. Your .portlet

file will refer to this Action name.

— custom-Action-class, the fully qualified name of a Java class that you create to

populate the row beans and table bean. Step 5 describes how to create this class.

— form-jsp.3jsp, the name of a JSP that you create to render the table. See “Create a

Form JSP” on page 7-19.

Extending the Administration Console

Create Struts Artifacts for Tables and Forms

4. Create an org.apache.struts.action.Action class that populates the row beans and
table bean. (See Listing 7-3.)

To populate the beans, implement the following method:

Action._execute(ActionMapping actionMapping,
ActionForm actionForm,
HttpServletRequest httpServiletRequest,
HttpServletResponse httpServletResponse)

Your implementation should:

a. Gather application from underlying data sources, such as instances of an MBean.

b. Create instances of your row bean and populate them by invoking their setters for each
property in the bean.

c. Assign all of your row bean instances to an ArrayList.

d. Cast the empty ActionForm bean (table bean) as a DynaActionForm bean.

e. Set the table bean’s content property to contain the ArrayList of row beans:

DynaActionForm table = (DynaActionForm) actionForm;
table.set("contents", rowBeanArray);

f. Put the table bean into the request object that was also passed to the class:

httpServletRequest.setAttribute(''table-bean-name', table);

where table-bean-name is the name that you configured for the table bean in the
Struts configuration file (see Listing 7-2).

g. Return “success” in the ActionMapping. findForward() method for the
ActionMapping object that was passed to the Action class:
return actionMapping.findForward(*'success™);

5. Compile the Action class and save it in a package structure that begins in the
root-dir/WEB-INF/classes directory.

Listing 7-3 Example: Action Class that Populates a Row Bean and a Table Bean

import java.
import java.
import java.
import java.

util _ArrayList;
util.Collection;
util.lterator;
util.Set;

Extending the Administration Console 1-15

Using BEA Templates and JSP Tags

import javax.management.MBeanServer;

import javax.management.ObjectName;

import javax.management.MalformedObjectNameException;
import javax.naming.InitialContext;

import javax.servlet.http._HttpServletRequest;

import javax.servlet.http_HttpServletResponse;

import
import
import
import
import

public

1-16

org.apache.struts.action.DynaActionForm;
org.apache.struts._action.Action;
org.apache.struts.action.ActionForm;
org.apache.struts.action.ActionForward;
org.apache.struts.action.ActionMapping;

class RetrieveCustomMBeansAction extends Action {
public ActionForward execute(ActionMapping actionMapping,

ActionForm actionForm,
HttpServletRequest httpServletRequest,
HttpServletResponse httpServletResponse)

throws Exception {
try {

// Establish a local connection to the Runtime MBean Server
InitialContext ctx = new InitialContext();
MBeanServer server =
(MBeanServer) ctx.lookup(''java:comp/env/jmx/runtime);
// Create a name pattern for all MedRec EJB MBeans
ObjectName namepattern = new
ObjectName(*'com.bea.medrec:Type=com.bea.medrec.controller.
RecordSessionEJBMBean,*');
// Get all MedRec EJB MBeans for all applications
Set objects = server.queryNames(nhamepattern, null);
// Walk through each of these MBeans and get the object name
// and the value of its TotalRX attribute
Iterator i = objects.iterator();
while (i.hasNext()) {

ObjectName anMBean = (ObjectName) i.next();

String identifier = anMBean.toString(Q);

Integer totalRxfromMBean =
(Integer) server.getAttribute(anMBean, "TotalRx'");

// Instantiate a row bean.

MedRecMBeanTableBean row = new MedRecMBeanTableBean(anMBean);
// Set the properties of the row bean
row.setCanonicalName(anMBean.getCanonicalName());
row.setTotalRxinTableBean(totalRxfromMBean) ;

// Add each row bean to an ArrayList
result.add(row);

} catch (Exception ex) {

}

ex.printStackTrace();

Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

// Instantiate the table bean

DynaActionForm form = (DynaActionForm) actionForm;

// Set the array of row beans as the value of the table bean’s “contents”
// property

form.set("contents",result);

// Set the table bean in request. The name of the

// table bean must match the “form-bean” name in your

// Struts configuration file
httpServletRequest.setAttribute(''genericTableForm™, form);
return actionMapping.findForward(*'success');

Create JSPs that Use BEA Templates and JSP Tags

Most portlets in the Administration Console JSPs that are based on the
tableBaselLayout_netui and configBaselLayout_netui templates.

The following sections describe how to create JSPs that use these templates:
e “WebLogic Server JSP Templates” on page 7-17
e “Create a Form JSP” on page 7-19
e “Create a Table JSP for Monitoring” on page 7-23
e “Create a Table Column for Navigating to Other Pages” on page 7-25
e “Add Buttons and Checkboxes to Tables” on page 7-28

e “Configure Table Preferences” on page 7-33

WebLogic Server JSP Templates

Table 7-2 describes the JSP templates that you can use for your Administration Console
extensions. All of the templates are located in the /layouts directory, which is relative to the
WEB- INF directory of the Administration Console. WebLogic Server does not publish the
templates themselves, but “Using BEA Templates and JSP Tags” on page 7-1 describes how to
use them.

If these templates do not meet your needs, you can create your own templates and structure the
content directly in your JSP.

Extending the Administration Console 1-11

Using BEA Templates and JSP Tags

Table 7-2 Administration Console JSP Templates

Template

Description

tableBaselLayout _netui.jsp

The Administration Console uses this template for all of its JSPs
that render a single table (see Figure 2-5).

To create the overall structure of the document, the template
outputs an HTML table with two rows. The first row contains
everything in the including document’s
<beehive-template:section
name=""configArealntroduction’> tag, which is usually
the document’s introductory text.

The second row contains everything in the including document’s
<beehive-template:section name="table"> tag,
which is usually a table that displays a list of WebLogic Server
resources and a button bar for working with the resources.

1-18

Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

Table 7-2 Administration Console JSP Templates

Template

Description

configBaselLayoutNoTransact. jsp

You can use this template to render an introductory description, an
HTML form, and Save button that posts the form data for
processing by your custom Java classes.

This template does not check for user permissions or require users
to click the Lock & Edit button in the Change Center portlet.

The template outputs an HTML table with four rows. The first and
last rows display a Save button.

The second row contains everything in the including document’s
<beehive-template:section
name=""configArealntroduction'> tag, which is usually
the document’s introductory text.

The third row contains everything in the including document’s
<beehive-template:section name="form"> tag, which
is a form that provides user-input controls and descriptions.

configBaselLayout_netui.jsp

The Administration Console uses this template for all of its JSPs
that render an introductory description, an HTML form, and Save
and Cancel buttons (see Figure 2-4).

The template output depends on whether the user has privileges to
modify the domain’s configuration.

If a user has permission, the template outputs an HTML table with
four rows. The first and last rows display Save and Cancel buttons
along with a message indicating whether the user has a lock on the
configuration and can make changes. If a user does not have
permission, the table does not contain these rows.

The second row contains everything in the including document’s
<beehive-template:section
name=""configArealntroduction'> tag, which is usually
the document’s introductory text.

The third row contains everything in the including document’s
<beehive-template:section name="form"> tag, which
is a form that provides user-input controls and descriptions.

Create a Form JSP

Before you create a form JSP, create Struts artifacts that pass data between the business layer and
the JSP. See “Create Struts Artifacts for a Form JSP: Main Steps” on page 7-8.

Extending the Administration Console 1-19

Using BEA Templates and JSP Tags

To create a form JSP (see Listing 7-4):

1. Create a JSP and save it in your development directory. Consider creating a subdirectory to
contain all of the JSPs in your extension. For example, root-dir/jsp
where root-dir is your development directory. For more information, see “Setting Up a
Development Environment” on page 3-1.

2. Import JSP tag libraries by including the following tags:
<%@ taglib uri="/WEB-INF/console-html._tld" prefix="wl-extension" %>
<%@ taglib uri="http://struts.apache.org/tags-html" prefix="html" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://beehive._apache.org/netui/tags-template-1.0"
prefix="beehive-template" %>

For information about these tag libraries, see “JSP Tag Libraries” on page 2-12.

3. (Optional) If you plan to use <fmt:message> tags to display localized text, use
<fmt:setBundle/> to specify the name of the message bundle.

This <fmt:setBundle/> tag enables you to specify the bundle name once, and then refer
to this value from <fmt:message> tags by variable.

4. Declare the JSP template for configuration pages by creating the following opening tag:

<beehive-template:template
templatePage=""/layouts/configBaselLayoutNoTransact. jsp''>

Do not close the tag yet. All other JSP tags in a form JSP are nested in this template tag.

Note: If your form modifies attributes of WebLogic Server MBeans, use the
configBaselLayout_netui - jsp template instead. See “JSP Tag Libraries” on
page 2-12.

5. Create a <beehive-template:section name="configArealntroduction'> tag. Inside
this tag, provide an introductory sentence or paragraph that describes the form. This
description is rendered above the form.

6. Create the following opening tag:
<beehive-template:section name="form">

Do not close the tag yet.

7. Indicate that the next set of JSP tags output XHTML by creating the following tag:
<html :xhtml/>

1-20 Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

8. Create an opening <wl-extension:template
name=""/WEB- INF/templates/form.xml"> tag.

This template creates

a form that matches Administration Console configuration pages

(such as Domains: Configuration: General).

The template also generates a button that submits the form.

9. Create an opening <wl-extension:form> and specify values for the following attributes:

— action, (optional) if your form accepts user input, specify the path of a Struts Action
that is invoked when a user submits this form. The Struts module that defines the
Action path is specified in the request.

— bundle, (optional) specify the name of a message bundle that contains localized names
of your column headings.

— readOnly, (optional) specify “true” to make this form read-only (for example, if you
are displaying read-only monitoring data).

10. For each property in the form bean that you want to display in the form, create a
<wl-extension> tag corresponding to the type of control that you want to render (see
WebLogic Server JSP Tags Reference):

— <wl-extension:
— <wl-extension:
— <wl-extension:
— <wl-extension:
— <wl-extension:
— <wl-extension:
— <wl-extension

— <wl-extension:

checkbox>
chooser-tag>
hidden>
password>
radio>

select>

Ttext>

text-area>

Alternatively, you can use <wl-extension:reflecting-fields>, which generates an
HTML input tag for each property in a form bean. For example, for a bean property that
contains a java. lang.String, the tag generates a text control; for a boolean, it generates
a checkbox. This tag uses the default form bean, which is passed to the JSP in the request.

11. If your form accepts user input and does not modify the attributes of WebLogic Server
MBeans, be sure to include the singlechange=""false" attribute in the <wl-extension>
tags described in the previous step.

Extending the Administration Console 1-21

Using BEA Templates and JSP Tags

This attribute enables users to post form data without starting a WebLogic Server edit
session.

12. To generate text on the page that describes to users the purpose of each control, include the
inlineHelpld attribute in each <wl-extension> tag in the previous step.

13. Close the <wl-extension:form>, <beehive-template:section>, and
<beehive-template:template> tags.

Listing 7-4 Example: Simple Form JSP

<%@ page language="java' %>

<%@ taglib uri="/WEB-INF/console-html._tld" prefix="wl-extension" %>
<%@ taglib uri="http://struts.apache.org/tags-html" prefix="html" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix="beehive-template" %>

<fmt:setBundle basename="mycompany" var="current_bundle" scope='"'page'/>
<beehive-template:template
templatePage=""/layouts/configBaselLayoutNoTransact. jsp''>
<beehive-template:section name="configArealntroduction'>
<fmt:message key="mycompany.myresource.introduction"
bundle="${current_bundle}"/>
</beehive-template:section>

<beehive-template:section name="form">
<html :xhtml/>
<wl-extension:template name="/WEB-INF/templates/form.xml">
<wl-extension:form action="/MyCompanyMyResourceUpdated" bundle="core">
<wl-extension:text property="MyResourceName"
label Id=""mycompany .myresource.name. label"
inlineHelpld="mycompany.myresource.name. label.inlinehelp"
singlechange="false"/>
<wl-extension:select
property="MyResourceWidgets"
label Id="mycompany.myresource .widgets. label"
inlineHelpld="mycompany.myresource.widgets. label .inlinehelp”
singlechange="false">
<wl-extension:optionsCollection
property="MyResourceAvai lableWidgets"
label=""1abel" value="value'/>
</wl-extension:select>
</wl-extension:form>
</wl-extension:template>

1-22 Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

</beehive-template:section>
</beehive-template:template>

Create a Table JSP for Monitoring

Before you create a table JSP, create Struts artifacts that pass data between the business layer and
the JSP. See “Create Struts Artifacts for a Table JSP” on page 7-13.

To create a table JSP for monitoring resources (see Listing 7-5):

1.

Create a JSP and save it in your development directory. Consider creating a subdirectory to
contain all of the JSPs in your extension. For example, root-dir/jsp

where root-dir is your development directory. For more information, see “Setting Up a
Development Environment” on page 3-1.

Import JSP tag libraries by including the following tags:

<%@ taglib uri="/WEB-INF/console-html._tld" prefix="wl-extension" %>
<%@ taglib uri="http://struts.apache.org/tags-html" prefix="html" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
prefix="beehive-template" %>

For information about these tag libraries, see “JSP Tag Libraries” on page 2-12.

(Optional) If you plan to use <fmt:message> tags to display localized text, use
<fmt:setBundle/> to specify the name of the message bundle.

This <fmt:setBundle/> tag enables you to specify the bundle name once, and then refer
to this value from <fmt:message> tags by variable.

Declare the JSP template for tables by creating the following opening tag:

<beehive-template:template
templatePage=""/layouts/tableBaselLayout_netui.jsp'>

Do not close the tag yet. All other JSP tags in a table JSP are nested in this template tag.

Create a <beehive-template:section name="configArealntroduction’> tag. Inside
this tag, provide an introductory sentence or paragraph that describes the table. This
description is rendered above the table.

Create the following opening tag:
<beehive-template:section name="table'>

Do not close the tag yet.

Extending the Administration Console 1-23

Using BEA Templates and JSP Tags

7. Create an opening <wl-extensions:table> tag and specify values for the following
minimal attributes:

name, specify the name of the form bean that you configured for this table.

property, specify the name of the form-bean property that contains row beans.

bundle, (optional) specify the name of a message bundle that contains localized names
of your column headings.

— captionEnabled, (optional) specify “true” to generate a title above the table.

8. If you specified “true” for the captionEnabled attribute, create a
<wl-extension:caption> tag. Inside this tag, provide a caption for the table.

9. For each property in the row bean that you want to display in the table, create a
<wl-extension:column> tag and specify values for the following attributes:

— property, specify the name of the row bean property

— label, specify a key in your message bundle to display as the column heading

10. Close the <wl-extension:table>, <beehive-template:section>, and
<beehive-template:template> tags.

Listing 7-5 Example: Table JSP for Monitoring

<%@ page language="java' %>

<%@ taglib uri="/WEB-INF/console-html.tld" prefix="wl-extension" %>
<%@ taglib uri="http://struts.apache.org/tags-html" prefix="html" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://beehive._apache.org/netui/tags-template-1.0"
prefix="beehive-template"™ %>

<fmt:setBundle basename="core'" var="current_bundle" scope="page'/>
<beehive-template:template templatePage=""/layouts/tableBaselLayout_netui.jsp'>

<beehive-template:section name="configArealntroduction'>
<fmt:message key="core.server.servertable.introduction”
bundle="${current_bundle}"/>
</beehive-template:section>

<beehive-template:section name=""table">
<wl-extension:table name="extensionForm"
property="contents"
captionEnabled=""true"
bundle="core">

1-24 Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

<wl-extension:caption>
<fmt:message key="'server.table.caption"
bundle="${current_bundle}"/>
</wl-extension:caption>
<wl-extension:column property="name"
label="server.table.label .name'/>
<wl-extension:column property="clusterName"
label="server._table.label .cluster"/>
<wl-extension:column property="machineName"
label="server._table.label _machine"/>
</wl-extension:table>

</beehive-template:section>

</beehive-template:template>

Create a Table Column for Navigating to Other Pages

Your table JSP can provide a link from each row to a configuration page or some other related
page. The linking mechanism uses a Handl e object to determine which pages are related to a
specific table row (see “Handles for ActionForms and Row Beans” on page 7-6).

You can use any of the following JSP tags to link from a table:

e <wl:column-1ink>, which requires you to specify the label of the page and portlet
instance to which you want to link. The handle causes the portlet to display data related to
the specific row that you selected.

e <wl:column-dispatch>, which uses metadata to determine the page and portlet to
display. Instead of specifying the page and portlet label, you add a metadata tag to the page
declaration and then specify the metadata value in the <wl : column-dispatch> tag. Using
metadata enables you to change page labels without breaking links. The handle is still used
to cause the portlet in the page to display data related to the specific row that you selected.

The following sections describe how to create a table column for navigating:
e “Add a Handle to Your Row Bean and Action Class” on page 7-25
e “Use the column-link Tag” on page 7-26
e “Use the column-dispatch Tag” on page 7-27

Add a Handle to Your Row Bean and Action Class
To create and populate a handle property:

Extending the Administration Console 1-25

Using BEA Templates and JSP Tags

1-26

1.

3.

In your row bean, add a property named handle whose data type is
com.bea.console.handles_Handle:

public com.bea.console.handles_Handle getHandle() {
return handle;

}
public void setHandle(Handle handle) {
this.handle = handle;

}
In the Struts Action class that populates the row bean, set the value of the handle property.

If you populate your row bean from data in an MBean, create a
com.bea.console.handles.JMXHandle object that contains the JMX ObjectName of
the MBean. Then set the JMXHand I e object as the value of the handle property:

Jjavax.management.ObjectName anMBean = new
ObjectName("'com.bea.medrec: Type=com.bea.medrec.controller.
RecordSessionEJBMBean, Name=MedRecEAR");
row.setHandle(new JMXHandle(anMBean));

If your populate your row bean from some other type of data source, you can create a
JMXHandl e object by passing a String to the constructor instead of an ObjectName. The
String must contain the following character sequence: Type=identifier, where
identifier is something that is meaningful to you:

row.setHandle(new JMXHandle(*“Type=myDataSource’));

You can also create and set a custom Handle object. See Handle in the Administration
Console API Reference.

Recompile your row bean and Action class.

Use the column-link Tag
To use the <wl column-link> tag:

1.

At the top of the table JSP, add the following statement to import the render tag library into
your table JSP:

<%@ taglib uri="render.tld" prefix="render" %>

BEA provides this tag library in its runtime environment.

In the <wl - table> tag, add the following attribute:
CheckBoxValue="handle"

Extending the Administration Console

3.

Create JSPs that Use BEA Templates and JSP Tags

In the <wl - column> tag that renders the column from which you want to link, nest the
<wl :column-link> JSP tag:
<wl:column-link portlet="portlet-instanceLabel'>

<render:pageUrl pagelLabel="page-definitionLabel"'/>
</wl:column-link>

where:
— portlet-instanceLabel is the label of the portlet instance to which you want to link.

The label is defined in the instanceLabel attribute of the
<netuix:portletinstance> element, which is in the .book file for the page that

contains the portlet.

— page-definitionLabel is the unique label of the page that contains the instance of
the portlet to which you want to link.

The label is defined in the definitionLabel attribute of the <netuix:page> element,
which is in the page’s .book file.

For example:
<wl:column property="Name"
label="medrecMBean.name.label">
<wl:column-link portlet="medrecMonitorTabPortlet">
<render:pageUrl pagelLabel="medrecMonitor"/>
</wl:column-1ink>
</wl:column>

Note: The <render:pageUrl/>tag isaconvenience tag for generating a portal framework
URL. See <render:pageUrl> Tag in BEA Workshop for WebLogic Platform 9.2

Help.

Use the column-dispatch Tag
To use the <wl :column-dispatch> tag:

1.

In the .book file that defines the page to which you want to link, find the page’s
<netuix:page> element and nest the following element:

<netuix:meta name="'perspective-name' content="'ObjectType-value'/>

where:

— perspective-name is a name that is meaningful to you. This value must match the
value that you specify in the perspective attribute of the <wl : column-dispatch>
tag. For example, specify myCompany-configuration-page.

Extending the Administration Console 1-27

Using BEA Templates and JSP Tags

1-28

— ObjectType-value is the value of the ObjectType property in the row bean’s Handle
object. See Handle.getObjectType() in the Administration Console APl Reference.

For example, assume that you populate your row bean from data in an MBean. You use
the MBean’s ObjectName to construct a JMXHandle object and then set the object as
the value of the row bean’s handle property. If the MBean’s ObjectName is
"com.mycompany :Name=myApp1, Type=myAppMBean", then the value of
JMXHandle.ObjectType is myAppMBean

For example:
<netuix:meta name="myCompany-configuration-page" content="myAppMBean'/>

In the table JSP, in the <wl : table> tag, add the following attribute:
checkBoxValue="handle"

In the <wl -column> tag that renders the column from which you want to link, nest the
<wl :column-dispatch> JSP tag

<wl:column-dispatch perspective="perspective-name'/>
where:

— perspective-name matches the perspective-name value that you specified in the
-book file.

For example:

<wl:column property="Name"
label="medrecMBean.name.label">
<wl:column-dispatch perspective="myCompany-configuration-page'/>
</wl:column-1ink>

</wl-column>

Add Buttons and Checkboxes to Tables

In a table that you create using the <wl : table> tag, you can use buttons by themselves or in
conjunction with a column of checkboxes or radio buttons.

When used by themselves, buttons can forward to page Ul control. For example, in the WebLogic
Server Servers table (see Figure 7-2), users click on a New button to launch the Create a Server
assistant.

When used in conjunction with a checkbox, buttons can process data on behalf of one or more
table rows. For example, if each row in your table represents an instance of a custom MBean that
provides monitoring data for your application, you can enable users to select a checkbox for one
or more rows and click a button that resets the values in the corresponding MBean instances.

Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

The following sections describe adding checkboxes and buttons to tables:

“Add Buttons to a Table” on page 7-29
“Add Checkboxes and Buttons to a Table” on page 7-30

“Example: How Checkboxes and Buttons Process Data” on page 7-32

Add Buttons to a Tahle

To add buttons to a table:

1.

In the table JSP, add the following attributes to the <wl-extension:table> tag:

singlechange="false”
controlsenabled="true”

The controlsenabled attribute enables the table to display buttons. The singlechange
attribute enables users to click the button without having to lock the domain’s
configuration. (See WebLogic Server JSP Tags Reference.)

Immediately after the <wl-extension:table> opening tag, add the following tags:

<wl :button-bar>
<wl :button-bar-button labelid="button-label""
pageLabel="page-definitionLabel"/>
</wl:button-bar>

where:

— button-label is the text that you want to display on the button or the name of a
property that you have defined in the bundle that has been declared in the JSP’s
<fmt:setBundle> element.

— page-definitionLabel is the unique label of the page that contains the instance of
the portlet to which you want to forward.

The label is defined in the definitionLabel attribute of the <netuix:page> element,
which is in the page’s .book file.

For example, to link to the Servers table page:

<wl :button-bar>
<wl :button-bar-button
labelid="Servers"
pageLabel="ServerTableBook" />
</wl :button-bar>

Extending the Administration Console 1-29

Using BEA Templates and JSP Tags

Add Checkboxes and Buttons to a Table

To process data on behalf of one or more table rows, use checkboxes and a button to post the data
to an HTTP request. You must also create a Struts Action or Page Flow that can retrieve and
process the posted data:

1. To post data to an HTTP request on behalf of one or more table rows:

a. Inyour Struts configuration file, add a property named chosenContents to the definition
of the table’s ActionForm bean.

The data type for this property must be either an array of primitive types or of
com._bea.console_handles_Handle

The <wls:table> tag adds one element to this array for each checkbox that is selected
when the user submits the table.

For example:
<form-property name="chosenContents"
type=""[Lcom.bea.console.handles.Handle;"/>

b. Inthe table JSP, add the following attributes to the <wl-extension:table> tag:

singlechange="false”
controlsenabled="true”
showcheckboxes=""true"
checkBoxValue=""property-name"

where property-name is the name of a property in the row bean. The data type of this
property must match the data type that you have declared for the chosenContents

property.
The <wl - table> tag adds the value of this row bean to the array in the table bean’s
chosenContents property.

If you want the table to render radio buttons, which allow users to select only a single
row, add the following attribute:

singlechoice="true"

c. Immediately after the <wl-extension:table> opening tag, add the following tags:

<wl :button-bar>
<wl :button-bar-button labelid="button-label""
portlet="portlet-instanceLabel"
pagelLabel="page-definitionLabel'/>

</wl :button-bar>

1-30 Extending the Administration Console

2.

Create JSPs that Use BEA Templates and JSP Tags

where:

button-label is the text that you want to display on the button or the name of a
property that you have defined in the bundle that has been declared in the JSP’s
<fmt:setBundle> element.

portlet-instanceLabel is the label of a portlet instance that contains the Struts
Action or Beehive Page Flow that you want to launch when a user clicks the button.
The label is defined in the instanceLabel attribute of the
<netuix:portletinstance> element, which is in the .book file for the page that
contains the portlet.

Instead of immediately launching an Action or Page Flow, you can specify a portlet
that contains a JSP. The JSP can ask users for confirmation before launching an Action
or Page Flow.

page-definitionLabel is the unique label of the page that contains the instance of
the portlet to which you want to forward.

The label is defined in the definitionLabel attribute of the <netuix:page> element,
which is in the page’s .book file.

To create a Struts Action that can process the posted data:

a.

Create a portlet that forwards to a Struts Action. Make sure that the portlet’s
instancelLabel matches the value that you specified in step 1c.

For example:

<netuix:portletlnstance markupType="Portlet"
instancelLabel="medrecMonitor.Tab.Portlet"
contentUri="/portlets/medrec_monitor_tab._portlet"/>

For information about creating a portlet, see “Define a Portlet” on page 6-3.

In your Struts configuration file, define an ActionForm bean that contains a property
named chosenContents. The data type for this property must be the same data type that
you specified in step la.

For example:
<form-bean name="processButtonForm"
type="org.apache.struts.action.DynaActionForm">
<form-property name='"‘chosenContents"
type=""[Lcom.bea.console_handles.Handle;"/>
</form-bean>

Extending the Administration Console 1-31

Using BEA Templates and JSP Tags

1-32

c. Inyour Struts configuration file, define a Struts Action mapping that sends the data in the
ActionForm bean to a Java class for processing.

For example:

<action path="/ProcessButtonAction"
type=""com.bea.medrec.extension.MedrecMBeanButtonAction"
name=""processButtonForm"
scope=""request"’
validate="false">
<forward name='"'success'" contextRelative=""true"

path=""/ext_jsp/button_view. jsp"/>
</action>

Example: How Checkboxes and Buttons Process Data

The following steps describe a table that correlates a table row with an underlying MBean data
source and clears the values of attributes in the MBean:

1.

In a table JSP, you configure the <wl-extension:table> tag to render checkboxes. You
specify that if a user selects the checkbox for a row, the value of the row bean’s handle
property will ultimately be posted to the request object:

<wl-extension:table
showcheckboxes=""true""
checkBoxValue=""handle"

>
The row bean’s handle property contains a JMXHandle object, which contains the

ObjectName of the MBean instance that populated the row.

When a user selects a row and clicks a button, the button adds the row bean’s JMXHandle
object to an array in the table bean’s chosenContents property. Then it posts the table bean.
(See Figure 7-4.)

The Struts controller serializes the table bean (which is a Struts ActionForm bean) and writes
the serialized bean in the HTTP request object. Then it forwards the request to a specified
portlet.

The portlet launches a Struts Action mapping, which does the following:
a. Creates an ActionForm bean and populates it with data from the HTTP request.

b. Invokes an Action class and makes the ActionForm bean available to the class.

Extending the Administration Console

Create JSPs that Use BEA Templates and JSP Tags

c. The Action class iterates over the form bean’s chosenContents array (which contains
instances of JMxHandle). For each element in the array, the class does the following:
Gets the MBean ObjectName that is encoded in the JMXHand e object,

Uses an MBeanServer to look up the MBean.
Uses an MBeanServer to invoke an MBean operation that clears an attribute value.

d. Upon success, the Action mapping forwards to a JSP.

Figure 7-4 Example: Data Flow from Table to Struts Action

M | ROW Bean L p»| Table Bean

a

a handle=JMXHandle chosenContents[0]
=JMXHandle

HTTP Request

chosenContents[0] [
=JMXHandle
ActionForm Bean Action Class
—» chosenContents[0] —®| chosenContents[0]
=JMXHandle =JMXHandle
Look up
MBean and
invoke its
MBeanServer operations.
-

Configure Table Preferences

By adding a single attribute to the <wl : table> tag, you can enable your users to configure which
table columns the table displays. The Administration Console persists the preference for each

Extending the Administration Console 1-33

Using BEA Templates and JSP Tags

user and for each instance of the portlet that displays the table. If you reuse a table in multiple
portlet instances, each user can set a different preference for the table in each portlet instance.

To enable users to configure the set of table columns that your table displays, add the following
attribute to your <wl : table> tag: customize="true”.

For example:
<wl-extension:table
customize=""true"
>
When the Administration Console displays the JSP that contains the table, it renders a

“Customize this table” link above the table title. The link causes the table JSP to display a section
that contains a chooser control and an Apply or Reset button.

Create Other Portal Framework Files and Deploy the
Extension

1-34

You can add your portlet directly to the desktop, but if you want your portlet to display as a tab
or subtab in the ContentBook, you must define books or pages to contain it. In addition, you must
create a netuix-extension.xml file which specifies where to locate your portlet, books, and
pages and which functions as the deployment descriptor for your extension.

See “Adding Portlets and Navigation Controls” on page 6-1.

Extending the Administration Console

CHAPTERa

Archiving and Deploying Console
Extensions

After you create a directory tree of source files and Java class files for your console extension,
archive the directory tree in a WAR file and copy the WAR file into your WebLogic Server
domain. For information about the files and directories to create in your extension’s directory
tree, see “Create a Directory Tree for the Extension” on page 3-2.

If you want to divide your console extensions into independently deployable components, you
can create and deploy multiple archives that contain subsets of your extension. Each archive must
contain all of the classes and portal framework files needed to render its own content. For
example, if your extension modifies the Administration Console Look and Feel as well as adds
portlets to the desktop, you can create one archive for the Look and Feel extension and another
archive that contains the files needed to add your portlet to the desktop.

Archive and Deploy a Console Extension

To archive and deploy your console extension:

1. Archive your extension directory into a WAR file. The name of the WAR file has no
programmatic significance, so choose a hame that is descriptive for your purposes.

The contents of your root-dir directory must be the root of the archive; the root-dir
directory name itself must not be in the archive. If you use the Java jar command to
create the archive, enter the command from the root-dir directory. For example:
c:\root-dir\> jar -cf my-extension.war *

2. Copy the WAR file into each domain’s domain-dir/console-ext directory, where
domain-dir is the domain’s root directory.

Extending the Administration Console 8-1

Archiving and Deploying Console Extensions

8-2

3. Restart the Administration Server for each domain.

Error Output During Deployment

If the Administration Console encounters deployment errors, it outputs error and warning
messages to standard out and to the Administration Server’s server log file.

If you do not see error or warning messages and you do not see your extension in the
Administration Console, you might have named the wrong parent Ul control in your
netuix-extension.xml file. For example, if you name a parent Ul control that does not render
tabs for its children, then your extension is deployed but there is no menu control for accessing it.

Extending the Administration Console

