
BEAWebLogic
Server®

Configuring and
Managing WebLogic JMS

Version 10.0
Revised: March 30, 2007

Configuring and Managing WebLogic JMS iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-2

Related Documentation . 1-2

JMS Samples and Tutorials for the JMS Administrator . 1-3

Avitek Medical Records Application (MedRec) and Tutorials 1-3

JMS Examples in the WebLogic Server Distribution . 1-4

Additional JMS Examples Available for Download. 1-4

New and Changed JMS Features In This Release . 1-5

WebLogic Server Value-Added JMS Features . 1-5

Enterprise-grade Reliability . 1-5

Enterprise-level Features . 1-6

Performance . 1-8

Tight Integration with WebLogic Server . 1-9

Interoperability With Other Messaging Services . 1-10

2. Understanding JMS Resource Configuration
Overview of JMS and WebLogic Server . 2-1

What Is the Java Message Service? . 2-1

WebLogic JMS Architecture and Environment . 2-2

Domain Configuration: Environment-Related Resources versus Application-Related
Resources . 2-4

What Are JMS Configuration Resources? . 2-5

iv Programming WebLogic JMS

Overview of JMS Servers . 2-5

JMS Server Behavior in WebLogic Server 9.0 and Later . 2-6

Overview of JMS Modules . 2-7

JMS System Modules. 2-8

JMS Application Modules . 2-9

Comparing JMS System Modules and Application Modules 2-9

Configurable JMS Resources in Modules . 2-10

JMS Schema. 2-11

JMS Interop Modules. 2-11

Other Environment-Related System Resources for WebLogic JMS 2-12

Persistent Stores . 2-12

JMS Store-and-Forward (SAF) . 2-12

Path Service . 2-13

Messaging Bridges . 2-13

3. Configuring Basic JMS System Resources
Methods for Configuring JMS System Resources . 3-2

Main Steps for Configuring Basic JMS System Resources . 3-2

Advanced Resources in JMS System Modules . 3-4

JMS Configuration Naming Requirements . 3-4

JMS Server Configuration. 3-5

JMS Server Configuration Parameters. 3-5

JMS Server Targeting. 3-6

JMS Server Monitoring Parameters . 3-6

Session Pools and Connection Consumers . 3-7

JMS System Module Configuration . 3-7

JMS System Module and Resource Subdeployment Targeting 3-8

Default Targeting . 3-8

Programming WebLogic JMS v

Subdeployment Targeting . 3-9

Connection Factory Configuration . 3-11

Using a Default Connection Factory . 3-12

Connection Factory Configuration Parameters . 3-12

Connection Factory Targeting . 3-13

Queue and Topic Destination Configuration. 3-13

Queue and Topic Configuration Parameters. 3-14

Creating Error Destinations. 3-15

Creating Distributed Destinations . 3-15

Queue and Topic Targeting. 3-15

Destination Monitoring and Management Parameters . 3-16

JMS Template Configuration . 3-16

JMS Template Configuration Parameters. 3-17

Destination Key Configuration . 3-17

Quota Configuration . 3-18

Foreign Server Configuration . 3-18

Distributed Destination Configuration . 3-18

JMS Store-and-Forward (SAF) Configuration . 3-18

4. Configuring Advanced JMS System Resources
Configuring WebLogic JMS Clustering . 4-1

Advantages of JMS Clustering. 4-1

How JMS Clustering Works . 4-3

JMS Clustering Naming Requirements. 4-4

Distributed Destination Within a Cluster . 4-4

JMS Services As a Migratable Service Within a Cluster 4-4

Configuration Guidelines for JMS Clustering . 4-5

What About Failover? . 4-5

vi Programming WebLogic JMS

Migration of JMS-related Services . 4-6

Manual Migration JMS Services . 4-7

Persistent Store High Availability . 4-7

Using the WebLogic Path Service . 4-8

Path Service High Availability. 4-8

Implementing Message UOO With a Path Service . 4-8

Configuring Foreign Server Resources to Access Third-Party JMS Providers 4-9

How WebLogic JMS Accesses Foreign JMS Providers . 4-10

Creating Foreign Server Resources . 4-10

Creating Foreign Connection Factory Resources . 4-11

Creating a Foreign Destination Resources . 4-11

Sample Configuration for MQSeries JNDI . 4-11

Configuring Distributed Destination Resources . 4-12

Uniform Distributed Destinations vs. Weighted Distributed Destinations 4-13

Creating Uniform Distributed Destinations . 4-14

Targeting Uniform Distributed Queues and Topics . 4-14

Pausing and Resuming Message Operations on UDD Members 4-15

Monitoring UDD Members . 4-16

Creating Weighted Distributed Destinations . 4-16

Load Balancing Messages Across a Distributed Destination 4-16

Load Balancing Options . 4-17

Consumer Load Balancing . 4-17

Producer Load Balancing . 4-18

Load Balancing Heuristics . 4-18

Defeating Load Balancing . 4-20

How Distributed Destination Load Balancing Is Affected When Server Affinity Is
Enabled . 4-21

Distributed Destination Migration . 4-23

Programming WebLogic JMS vii

Distributed Destination Failover . 4-24

5. Configuring JMS Application Modules for Deployment
Methods for Configuring JMS Application Modules . 5-2

JMS Schema . 5-2

Packaging JMS Application Modules In an Enterprise Application 5-3

Creating Packaged JMS Application Modules. 5-3

Packaged JMS Application Module Requirements. 5-3

Main Steps for Creating Packaged JMS Application Modules. 5-3

Referencing a Packaged JMS Application Module In Deployment Descriptor Files 5-4

Referencing JMS Application Modules In a weblogic-application.xml Descriptor .
5-5

Referencing JMS Resources In a WebLogic Application 5-5

Referencing JMS Resources In a Java EE Application. 5-5

Sample of a Packaged JMS Application Module In an EJB Application 5-6

Packaged JMS Application Module References In weblogic-application.xml. . 5-7

Packaged JMS Application Module References In ejb-jar.xml 5-8

Packaged JMS Application Module References In weblogic-ejb-jar.xml 5-8

Packaging an Enterprise Application With a JMS Application Module 5-9

Deploying a Packaged JMS Application Module . 5-9

Deploying Standalone JMS Application Modules . 5-10

Standalone JMS Modules . 5-10

Creating Standalone JMS Application Modules . 5-10

Standalone JMS Application Module Requirements . 5-10

Main Steps for Creating Standalone JMS Application Modules 5-11

Sample of a Simple Standalone JMS Application Module 5-11

Deploying Standalone JMS Application Modules . 5-12

Tuning Standalone JMS Application Modules. 5-12

viii Programming WebLogic JMS

Generating Unique Runtime JNDI Names for JMS Resources 5-13

Unique Runtime JNDI Name for Local Applications . 5-14

Unique Runtime JNDI Name for Application Libraries . 5-14

Unique Runtime JNDI Name for Standalone JMS Modules 5-14

Where to Use the ${APPNAME} String . 5-15

Example Use-Case . 5-15

6. Using WLST to Manage JMS Servers and JMS System Module
Resources

Understanding JMS System Modules and Subdeployments. 6-1

How to Create JMS Servers and JMS System Module Resources 6-3

How to Modify and Monitor JMS Servers and JMS System Module Resources 6-6

Best Practices when Using WLST to Configure JMS Resources 6-7

7. Monitoring JMS Statistics and Managing Messages
Monitoring JMS Statistics. 7-2

Monitoring JMS Servers . 7-2

Monitoring Active JMS Destinations . 7-2

Monitoring Active JMS Transactions . 7-2

Monitoring Active JMS Connections, Sessions, Consumers, and Producers. . . 7-3

Monitoring Active JMS Session Pools . 7-3

Monitoring Queues . 7-3

Monitoring Topics . 7-4

Monitoring Durable Subscribers for Topics. 7-4

Monitoring Uniform Distributed Queues. 7-4

Monitoring Uniform Distributed Topics . 7-5

Monitoring Pooled JMS Connections . 7-5

Managing JMS Messages . 7-5

Programming WebLogic JMS ix

JMS Message Management Using Java APIs . 7-5

JMS Message Management Using the Administration Console 7-6

Monitoring Message Runtime Information. 7-6

Querying Messages . 7-7

Moving Messages . 7-7

Deleting Messages. 7-8

Creating New Messages . 7-8

Importing Messages . 7-9

Exporting Messages . 7-10

Managing Transactions. 7-10

Managing Durable Topic Subscribers . 7-11

8. Troubleshooting WebLogic JMS
Configuring Notifications for JMS . 8-2

Debugging JMS . 8-2

Enabling Debugging. 8-2

Enable Debugging Using the Command Line. 8-2

Enable Debugging Using the WebLogic Server Administration Console 8-2

Enable Debugging Using the WebLogic Scripting Tool 8-3

Changes to the config.xml File . 8-5

JMS Debugging Scopes . 8-5

Messaging Kernel and Path Service Debugging Scopes . 8-6

Request Dyeing . 8-7

Message Life Cycle Logging. 8-7

Events in the JMS Message Life Cycle . 8-8

Message Log Location . 8-8

Enabling JMS Message Logging . 8-9

JMS Message Log Content . 8-9

x Programming WebLogic JMS

JMS Message Log Record Format. 8-9

Sample Log File Records . 8-11

Consumer Created Event . 8-11

Consumer Destroyed Event . 8-11

Message Produced Event . 8-12

Message Consumed Event . 8-12

Message Expired Event . 8-13

Retry Exceeded Event. 8-13

Message Removed Event . 8-14

Managing JMS Server Log Files . 8-14

Rotating Message Log Files . 8-14

Renaming Message Log Files. 8-15

Limiting the Number of Retained Message Log Files 8-15

Controlling Message Operations on Destinations . 8-15

Definition of Message Production, Insertion, and Consumption. 8-16

Pause and Resume Logging . 8-16

Production Pause and Production Resume. 8-17

Pausing and Resuming Production at Boot-time . 8-17

Pausing and Resuming Production at Runtime. 8-18

Production Pause and Resume and Distributed Destinations 8-18

Production Pause and Resume and JMS Connection Stop/Start. 8-18

Insertion Pause and Insertion Resume . 8-19

Pausing and Resuming Insertion at Boot Time. 8-19

Pausing and Resuming Insertion at Runtime . 8-20

Insertion Pause and Resume and Distributed Destination 8-20

Insertion Pause and Resume and JMS Connection Stop/Start 8-20

Consumption Pause and Consumption Resume. 8-21

Pausing and Resuming Consumption at Boot-time . 8-21

Programming WebLogic JMS xi

Pausing and Resuming Consumption at Runtime . 8-22

Consumption Pause and Resume and Queue Browsers 8-22

Consumption Pause and Resume and Distributed Destination 8-22

Consumption Pause and Resume and Message-Driven Beans 8-22

Consumption Pause and Resume and JMS Connection Stop/Start 8-23

Definition of In-Flight Work . 8-23

In-flight Work Associated with Producers . 8-23

In-flight Work Associated with Consumers . 8-24

Order of Precedence for Boot-time Pause and Resume of Message Operations . . . 8-24

Security. 8-25

xii Programming WebLogic JMS

Configuring and Managing WebLogic JMS 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Configuring and
Managing WebLogic JMS.

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-2

“JMS Samples and Tutorials for the JMS Administrator” on page 1-3

“New and Changed JMS Features In This Release” on page 1-5

“WebLogic Server Value-Added JMS Features” on page 1-5

Document Scope and Audience
This document is a resource for system administrators who configure, manage, and monitor
WebLogic JMS resources, including JMS servers, stand-alone destinations (queues and topics),
distributed destinations, and connection factories.

The document is relevant to production phase administration, monitoring, and performance
tuning. It does not address the pre-production development or testing phases of a software project.
For links to WebLogic Server documentation and resources for these topics, see “Related
Documentation” on page 1-2.

It is assumed that the reader is familiar with WebLogic Server system administration. This
document emphasizes the value-added features provided by WebLogic Server JMS and key

I n t roduct i on and Roadmap

1-2 Configuring and Managing WebLogic JMS

information about how to use WebLogic Server features and facilities to maintain WebLogic
JMS in a production environment.

Guide to This Document
This chapter, Chapter 1, “Introduction and Roadmap,” describes the organization and scope
of this guide.

Chapter 2, “Understanding JMS Resource Configuration,” is an overview of WebLogic
JMS architecture and features.

Chapter 3, “Configuring Basic JMS System Resources,” describes how to configure basic
WebLogic JMS resources, such as a JMS server, destinations (queues and topics), and
connection factories.

Chapter 4, “Configuring Advanced JMS System Resources,” explains how to configure
clustering JMS features, such as JMS servers, migratable targets, and distributed
destinations.

Chapter 5, “Configuring JMS Application Modules for Deployment,” describes how to
prepare JMS resources for an application module that can be deployed as a stand-alone
resource that is globally available, or as part of an Enterprise Application that is available
only to the enclosing application.

Chapter 7, “Monitoring JMS Statistics and Managing Messages,” describes how to monitor
and manage the run-time statistics for your JMS objects from the Administration Console.

Chapter 6, “Using WLST to Manage JMS Servers and JMS System Module Resources,”
explains how to use the WebLogic Scripting Tool to create and manage JMS resources
programmatically.

Chapter 8, “Troubleshooting WebLogic JMS,” explains how to configure and manage
message logs, and how to temporarily pause message operations on destinations.

Related Documentation
This document contains JMS-specific configuration and maintenance information.

For comprehensive information on developing, deploying, and monitoring WebLogic Server
applications:

Programming WebLogic JMS is a guide to JMS API programming with WebLogic Server.

JMS Samples and Tuto r ia l s f o r the JMS Admin is t ra to r

Configuring and Managing WebLogic JMS 1-3

Understanding WebLogic Server Clustering explains how WebLogic Server clustering
works.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications, which includes standalone or application-scoped
JMS resource modules.

Using the WebLogic Persistent Store in Configuring WebLogic Server Environments
describes the benefits and use of the system-wide WebLogic Persistent Store.

Configuring and Managing WebLogic Store-and-Forward describes the benefits and use of
the Store-and-Forward service with JMS messages.

Configuring and Managing the WebLogic Messaging Bridge explains how to configure a
messaging bridge between any two messaging products—thereby providing
interoperability between separate implementations of WebLogic JMS, including different
releases, or between WebLogic JMS and another messaging product.

WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications, including information on
how to get the most out of your JMS applications by using the administrative performance
tuning features available with WebLogic JMS.

JMS Samples and Tutorials for the JMS Administrator
In addition to this document, BEA Systems provides JMS code samples and tutorials that
document JMS configuration, API use, and key JMS development tasks. BEA recommends that
you run some or all of the JMS examples before configuring your own system.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application enables patients, doctors, and administrators to manage patient data using a variety of
different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
BEA-recommended best practices. MedRec is included in the WebLogic Server distribution, and
can be accessed from the Start menu on Windows machines. For Linux and other platforms, you
can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is
the top-level installation directory for WebLogic Platform.

I n t roduct i on and Roadmap

1-4 Configuring and Managing WebLogic JMS

JMS Examples in the WebLogic Server Distribution
This release of WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server Start menu.

Additional JMS Examples Available for Download
Additional API examples for download at
http://codesamples.projects.dev2dev.bea.com. These examples are distributed as ZIP
files that you can unzip into an existing WebLogic Server samples directory structure.

You build and run the downloadable examples in the same manner as you would an installed
WebLogic Server example. See the download pages of individual examples for more information
at https://codesample.projects.dev2dev.bea.com.

New and Changed JMS Features In Th is Re lease

Configuring and Managing WebLogic JMS 1-5

New and Changed JMS Features In This Release
WebLogic JMS include new and changed features for version 10.0, as described in What’s New
in WebLogic Server 10.0.

WebLogic Server Value-Added JMS Features
WebLogic JMS provides numerous WebLogic JMS Extension APIs that go above and beyond
the standard JMS APIs specified by the JMS 1.1 Specification. Moreover, it is tightly integrated
into the WebLogic Server platform, allowing you to build secure Java EE applications that can
be easily monitored and administered through the WebLogic Server console. In addition to fully
supporting XA transactions, WebLogic JMS also features high availability through its clustering
and service migration features, while also providing interoperability with other versions of
WebLogic Server and third-party messaging providers.

The following sections provide an overview of the unique features and powerful capabilities of
WebLogic JMS.

Enterprise-grade Reliability
Out-of-the-box transaction support:

– Fully supports transactions, including distributed transactions, between JMS
applications and other transaction-capable resources using the Java Transaction API
(JTA), as described in Using Transactions with WebLogic JMS in Programming
WebLogic JMS.

– Fully-integrated Transaction Manager, as described in Introducing Transactions in
Using WebLogic JTA.

File or database persistent message storage (both fully XA transaction capable). See Using
the WebLogic Persistent Store in Configuring WebLogic Server Environments.

Message Store-and-Forward (SAF) is clusterable and improves reliability by locally storing
messages sent to unavailable remote destinations. See Understanding the
Store-and-Forward Service in Configuring and Managing WebLogic Store-and-Forward.

If a server or network failure occurs, JMS producer and consumer objects will attempt to
transparently failover to another server instance, if one is available. See Automatic Failover
for JMS Clients in Programming WebLogic JMS.

I n t roduct i on and Roadmap

1-6 Configuring and Managing WebLogic JMS

Supports connection clustering using connection factories targeted on multiple WebLogic
Servers, as described in “Configuring WebLogic JMS Clustering” on page 4-1.

System-assisted configuration of Uniform Distributed Destinations that provide high
availability, load balancing, and failover support in a cluster, as described in Using
Distributed Destinations in Programming WebLogic JMS.

Automatic whole server migration provides improved cluster reliability and server
migration WebLogic Server now supports automatic and manual migration of a clustered
server instance and all the services it hosts from one machine to another, as described in
“Configuring WebLogic JMS Clustering” on page 4-1.

Redirects failed or expired messages to error destinations, as described in Managing Rolled
Back, Recovered, Redelivered, or Expired Messages in Programming WebLogic JMS.

Supports the JMS Delivery Count message property (JMSXDeliveryCount), which
specifies the number of message delivery attempts, where the first attempt is 1, the second
is 2, and so on. WebLogic Server makes a best effort to persist the delivery count, so that
the delivery count does not reset back to one after a server reboot. See Message Property
Fields in Programming WebLogic JMS.

Provides three levels of load balancing: network-level, JMS connections, and distributed
destinations.

Enterprise-level Features
WebLogic Server fully supports the JMS 1.1 Specification, is fully compliant with the Java
EE 5.0 specification, and provides numerous WebLogic JMS Extensions that go beyond
the standard JMS APIs.

Provides robust message and destination management capabilities:

– Administrators can manipulate most messages in a running JMS Server, using either the
Administration Console or runtime APIs. See “Managing JMS Messages” on page 7-5.

– Administrators can pause and resume message production, message insertion (in-flight
messages), and message consumption operations on a given JMS destination, or on all
the destinations hosted by a single JMS Server, using either the Administration Console
or runtime APIs. See “Controlling Message Operations on Destinations” on page 8-15.

– Message-Driven EJBs (MDBs) also supply message pause and resume functionality,
and can even automatically temporarily pause during error conditions. See
Message-Driven EJBs in Programming WebLogic Enterprise JavaBeans.

WebLog ic Se rve r Va lue-Added JMS Features

Configuring and Managing WebLogic JMS 1-7

Modular deployment of JMS resources, which are defined by an XML so that you can
migrate your application and the required JMS configuration from environment to
environment without opening an enterprise application file, and without extensive manual
JMS reconfiguration. See “Overview of JMS Modules” on page 2-7.

JMS message producers can group ordered messages into a single unit-of-order, which
guarantees that all such messages are processed serially in the order in which they were
created. See Using Message Unit-of-Order in Programming WebLogic JMS.

To provide an even more restricted notion of a group than the Message Unit-of-Order
feature, the Message Unit-of-Work (UOW) feature allows JMS producers to identify
certain messages as components of a UOW message group, and allows a JMS consumer to
process them as such. For example, a JMS producer can designate a set of messages that
need to be delivered to a single client without interruption, so that the messages can be
processed as a unit. See Using Message Unit-of-Work in Programming WebLogic JMS.

Message Life Cycle Logging provides an administrator with better transparency about the
existence of JMS messages from the JMS server viewpoint, in particular basic life cycle
events, such as message production, consumption, and removal. See “Message Life Cycle
Logging” on page 8-7.

Timer services available for scheduled message delivery, as described in Setting Message
Delivery Times in Programming WebLogic JMS.

Flexible expired message policies to handle expired messages, as described in Handling
Expired Messages in WebLogic Server Performance and Tuning.

Supports messages containing XML (Extensible Markup Language). See Defining XML
Message Selectors Using the XML Selector Method in Programming WebLogic JMS.

Thin application client .JAR that provides full WebLogic Server Java EE functionality,
including JMS, yet greatly reduces the client-side WebLogic footprint. See WebLogic JMS
Thin Client in Programming Stand Alone Clients.

The JMS SAF Client enables standalone JMS clients to reliably send messages to
server-side JMS destinations, even when the JMS client cannot temporarily reach a
destination (for example, due to a network connection failure). While disconnected from
the server, messages sent by the JMS SAF client are stored locally on the client and are
forwarded to server-side JMS destinations when the client reconnects. See Reliably
Sending Messages Using the JMS SAF Client in Programming Stand Alone Clients.

Automatic pooling of JMS client resources in server-side applications via JMS
resource-reference pooling. Server-side applications use standard JMS APIs, but get

I n t roduct i on and Roadmap

1-8 Configuring and Managing WebLogic JMS

automatic resource pooling. See Enhanced Java EE Support for Using WebLogic JMS
With EJBs and Servlets in Programming WebLogic JMS.

Performance
WebLogic JMS features enterprise-class performance features, such as automatic message
paging, message compression, and DOM support for XML messages:

WebLogic Server uses highly optimized disk access algorithms and other internal
enhancements to provide a unified messaging kernel that improves both JMS-based and
Web Services messaging performance. See Using the WebLogic Persistent Store in
Configuring WebLogic Server Environments.

You may greatly improve the performance of typical non-persistent messaging with
One-Way Message Sends. When configured on a connection factory, associated producers
can send messages without internally waiting for a response from the target destination’s
host JMS server. You can choose to allow queue senders and topic publishers to do
one-way sends, or to limit this capability to topic publishers only. You can also specify a
“One-Way Window Size” to determine when a two-way message is required to regulate
the producer before it can continue making additional one-way sends. See Configure
connection factory flow control in the Administration Console Online Help.

Message paging automatically kicks in during peak load periods to free up virtual memory.
See Paging Out Messages To Free Up Memory in WebLogic Server Performance and
Tuning.

Administrators can enable the compression of messages that exceed a specified threshold
size to improve the performance of sending messages travelling across JVM boundaries
using either the Administration Console or runtime APIs. See Compressing Messages in
WebLogic Server Performance and Tuning.

Synchronous consumers can also use the same efficient behavior as asynchronous
consumers by enabling the Prefetch Mode for Synchronous Consumers option on the
consumer’s JMS connection factory, using either the Administration Console or runtime
APIs. See Receiving Messages Synchronously in Programming WebLogic JMS

Supplies a wide variety of performance tuning options for JMS messages. See Tuning
WebLogic JMS in WebLogic Server Performance and Tuning.

Supports MDB transaction batching by processing multiple messages in a single
transaction. See Message-Driven EJBs in Programming WebLogic Enterprise JavaBeans.

WebLog ic Se rve r Va lue-Added JMS Features

Configuring and Managing WebLogic JMS 1-9

JMS SAF provides better performance than the WebLogic Messaging Bridge across
clusters. See Tuning WebLogic JMS Store-and-Forward in WebLogic Server Performance
and Tuning.

DOM (Document Object Model) support for sending XML messages greatly improves
performance for implementations that already use a DOM, since those applications do not
have to flatten the DOM before sending XML messages. See Sending XML Messages in
Programming WebLogic JMS.

Message flow control during peak load periods, including blocking overactive senders, as
described in Controlling the Flow of Messages on JMS Servers and Destinations and
Defining Quotas for Destinations in WebLogic Server Performance and Tuning.

The automatic pooling of connections and other objects by the JMS wrappers via JMS
resource-reference pooling. See Enhanced Java EE Support for Using WebLogic JMS With
EJBs and Servlets in Programming WebLogic JMS.

Multicasting of messages for simultaneous delivery to many clients using IP multicast, as
described in Using Multicasting with WebLogic Server in Programming WebLogic JMS.

Tight Integration with WebLogic Server
JMS can be accessed locally by server-side applications without a network call because the
destinations can exist on the same server as the application.

Uses same ports, protocols, and user identities as WebLogic Server (T3, IIOP, and HTTP
tunnelling protocols, optionally with SSL).

Web Services, Enterprise Java Beans (including MDBs), and servlets supplied by
WebLogic Server can work in close concert with JMS.

Can be configured and monitored by using the same Administration Console, or by using
the JMS API.

Supports the WebLogic Scripting Tool (WLST) to initiate, manage, and persist
configuration changes interactively or by using an executable script. See Chapter 6, “Using
WLST to Manage JMS Servers and JMS System Module Resources.”

Complete JMX administrative and monitoring APIs, as described in Developing Custom
Management Utilities with JMX.

Fully-integrated Transaction Manager, as described in Introducing Transactions in Using
WebLogic JTA.

I n t roduct i on and Roadmap

1-10 Configuring and Managing WebLogic JMS

Leverages sophisticated security model built into WebLogic Server (policy engine), as
described in the Understanding WebLogic Security and JMS (Java Message Service)
Resources in Securing WebLogic Resources.

Interoperability With Other Messaging Services
Fully supports direct interoperability from WebLogic Server 8.1 through WebLogic Server
10.0. For example, a release 8.1 client can interoperate with a release 10.0 server and
vice-versa.

Messages forwarded transactionally by the WebLogic Messaging Bridge to other JMS
providers — as well as to other instances and versions of WebLogic JMS, as described see
Configuring and Managing WebLogic Messaging Bridge.

Supports mapping of other JMS providers so their objects appear in the WebLogic JNDI
tree as local JMS objects. Also references remote instances of WebLogic Server in another
cluster or domain in the local JNDI tree. See “Foreign Server Configuration” on page 3-18.

Uses MDBs to transactionally receive messages from multiple JMS providers. See
Message-Driven EJBs in Programming WebLogic Enterprise JavaBeans.

Reliable Web Services integration with JMS as a transport, as described in Using Reliable
Web Services Messaging in WebLogic Web Services: Advanced Programming.

Automatic transaction enlistment of non-WebLogic JMS client resources in server-side
applications via JMS resource-reference pooling. See Enhanced Java EE Support for Using
WebLogic JMS With EJBs and Servlets in Programming WebLogic JMS.

Integration with BEA Tuxedo messaging provided by WebLogic Tuxedo Connector. See
How to Configure the Tuxedo Queuing Bridge in the WebLogic Tuxedo Connector
Administration Guide.

The Weblogic JMS C API enables programs written in ‘C’ to participate in JMS
applications. This implementation of the JMS C API uses JNI in order to access a Java
Virtual Machine (JVM). See WebLogic C API in Programming WebLogic JMS.

Configuring and Managing WebLogic JMS 2-1

C H A P T E R 2

Understanding JMS Resource
Configuration

These sections briefly review the different WebLogic JMS concepts and features, and describe
how they work with other application components and WebLogic Server.

It is assumed the reader is familiar with Java programming and JMS 1.1 concepts and features.

“Overview of JMS and WebLogic Server” on page 2-1

“Domain Configuration: Environment-Related Resources versus Application-Related
Resources” on page 2-4

“What Are JMS Configuration Resources?” on page 2-5

“Overview of JMS Servers” on page 2-5

“Overview of JMS Modules” on page 2-7

“Other Environment-Related System Resources for WebLogic JMS” on page 2-12

Overview of JMS and WebLogic Server
The WebLogic Server implementation of JMS is an enterprise-class messaging system that is
tightly integrated into the WebLogic Server platform. It fully supports the JMS 1.1 Specification
and also provides numerous WebLogic JMS Extensions that go beyond the standard JMS APIs.

What Is the Java Message Service?
An enterprise messaging system enables applications to asynchronously communicate with one
another through the exchange of messages. A message is a request, report, and/or event that

Unders tanding JMS Resource Conf igura t i on

2-2 Configuring and Managing WebLogic JMS

contains information needed to coordinate communication between different applications. A
message provides a level of abstraction, allowing you to separate the details about the destination
system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging systems
that is implemented by industry messaging providers. Specifically, JMS:

Enables Java applications that share a messaging system to exchange messages

Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

WebLogic JMS accepts messages from producer applications and delivers them to consumer
applications. For more information on JMS API programming with WebLogic Server, see
Programming WebLogic JMS.

WebLogic JMS Architecture and Environment
The following figure illustrates the WebLogic JMS architecture.

Overv i ew o f JMS and WebLog ic Se rve r

Configuring and Managing WebLogic JMS 2-3

Figure 2-1 WebLogic JMS Architecture

The major components of the WebLogic JMS architecture include:

A JMS server is an environment-related configuration entity that acts as management
container for JMS queue and topic resources defined within JMS modules that are targeted
to specific that JMS server. A JMS server’s primary responsibility for its targeted
destinations is to maintain information on what persistent store is used for any persistent
messages that arrive on the destinations, and to maintain the states of durable subscribers
created on the destinations. You can configure one or more JMS servers per domain, and a
JMS server can manage one or more JMS modules. For more information, see “Overview
of JMS Servers” on page 2-5.

 where: A1 and B1 are connection factories and B2 is a queue.

Unders tanding JMS Resource Conf igura t i on

2-4 Configuring and Managing WebLogic JMS

JMS modules contain configuration resources, such as standalone queue and topic
destinations, distributed destinations, and connection factories, and are defined by XML
documents that conform to the weblogic-jmsmd.xsd schema. For more information, see
“What Are JMS Configuration Resources?” on page 2-5.

Client JMS applications that either produce messages to destinations or consume messages
from destinations.

JNDI (Java Naming and Directory Interface), which provides a server lookup facility.

WebLogic persistent storage (a server instance’s default store, a user-defined file store, or a
user-defined JDBC-accessible store) for storing persistent message data.

Domain Configuration: Environment-Related Resources
versus Application-Related Resources

In general, the WebLogic Server domain configuration file (config.xml) contains the
configuration information required for a domain. This configuration information can be further
classified into environment-related information and application-related information. Examples
of environment-related information are the identification and definition of JMS servers, JDBC
data sources, WebLogic persistent stores, and server network addresses. These system resources
are usually unique from domain to domain.

The configuration and management of these system resources are the responsibility of a
WebLogic administrator, who usually receives this information from an organization’s system
administrator or MIS department. To accomplish these tasks, an administrator can use the
WebLogic Administration Console, various command-line tools, such as WebLogic Scripting
Tool (WLST), or JMX APIs for programmatic administration.

Examples of application-related definitions that are independent of the domain environment are
the various Java EE application components configurations, such as EAR, WAR, JAR, RAR
files, and JMS and JDBC modules. The application components are originally developed and
packaged by an application development team, and may contain optional programs (compiled
Java code) and respective configuration information (also called descriptors, which are mostly
stored as XML files). In the case of JMS and JDBC modules, however, there are no compiled
Java programs involved. These pre-packaged applications are given to WebLogic Server
administrators for deployment in a WebLogic domain.

The process of deploying an application links the application components to the
environment-specific resource definitions, such as which server instances should host a given

What Are JMS Conf igurat ion Resources?

Configuring and Managing WebLogic JMS 2-5

application component (targeting), and the WebLogic persistent store to use for persisting JMS
messages.

Once the initial deployment is completed, an administrator has only limited control over deployed
applications. For example, administrators are only allowed to ensure the proper life cycle of these
applications (deploy, undeploy, redeploy, remove, etc.) and to tune the parameters, such as
increasing or decreasing the number of instances of any given application to satisfy the client
needs. Other than life cycle and tuning, any modification to these applications must be completed
by the application development team.

What Are JMS Configuration Resources?
In releases prior to WebLogic Server 9.0, all JMS configuration information was stored in a
WebLogic domain’s configuration file. In this release, JMS configuration resources, such as
queue and topic destinations and connections factories, are stored outside of the WebLogic
domain as module descriptor files, which are defined by XML documents that conform to the
weblogic-jmsmd.xsd schema. JMS modules do not include JMS server definitions, which are
still stored in the WebLogic domain configuration file, as described in “Overview of JMS
Servers” on page 2-5.

You create and manage JMS resources either as system modules, similar to the way they were
managed prior to this release, or as application modules. JMS application modules are a
WebLogic-specific extension of Java EE modules and can be deployed either with a Java EE
application (as a packaged resource) or as stand-alone modules that can be made globally
available. See “Overview of JMS Modules” on page 2-7.

Overview of JMS Servers
JMS servers are environment-related configuration entities that act as management containers for
destination resources within JMS modules that are targeted to specific JMS servers. A JMS
server’s primary responsibility for its targeted destinations is to maintain information on what
persistent store is used for any persistent messages that arrive on the destinations, and to maintain
the states of durable subscribers created on the destinations. As a container for targeted
destinations, any configuration or run-time changes to a JMS server can affect all of its
destinations.

JMS servers are persisted in the domain’s config.xml file and multiple JMS servers can be
configured on the various WebLogic Server instances in a cluster, as long as they are uniquely
named. Client applications use either the JNDI tree or the java:/comp/env naming context to
look up a connection factory and create a connection to establish communication with a JMS

Unders tanding JMS Resource Conf igura t i on

2-6 Configuring and Managing WebLogic JMS

server. Each JMS server handles requests for all targeted modules’ destinations. Requests for
destinations not handled by a JMS server are forwarded to the appropriate server instance.

JMS Server Behavior in WebLogic Server 9.0 and Later
Beginning in WebLogic Server 9.0, JMS server behavior differs in certain respects from behavior
in pre-9.0 releases:

Because destinations are encapsulated in JMS modules, they are no longer nested under
JMS servers in the configuration file. However, the prior sub-targeting relationship
between JMS servers and destinations is still maintained because each standalone
destination resource within a JMS module is always targeted to a single JMS server. This
way, JMS servers still manage persistent messages, durable subscribers, message paging,
and, optionally, quotas for their targeted destinations. Multiple JMS modules can be
targeted to each JMS server in a domain.

JMS servers support the new Persistent Store that is available to multiple subsystems and
services within a server instance, as described in “Persistent Stores” on page 2-12.

– JMS servers can store persistent messages in a host server’s default file store by
enabling the “Use the Default Store” option. In prior releases, persistent messages were
silently downgraded to non-persistent if no store was configured. Disabling the Use the
Default Store option, however, forces persistent messages to be non-persistent.

– In place of the deprecated JMS stores (JMS file store and JMS JDBC store), JMS
servers now support user-defined WebLogic File Stores or JDBC stores, which provide
better performance and more capabilities than the legacy JMS stores. (The legacy JMS
stores are supported for backward compatibility.)

JMS servers support an improved message paging mechanism. For more information on
message paging, see WebLogic Server Performance and Tuning.

– The configuration of a dedicated paging store is no longer necessary because paged
messages are stored in a directory on your file system -- either to a user-defined
directory or to a default paging directory if one is not specified.

– Temporary paging of messages is always enabled and is controlled by the value set on
the Message Buffer Size option. When the total size of non-pending, unpaged messages
reaches this setting, a JMS server will attempt to reduce its memory usage by paging
out messages to the paging directory.

You can pause message production or message consumption operations on all the
destinations hosted by a single JMS server, either programmatically with JMX or by using

Overv i ew o f JMS Modules

Configuring and Managing WebLogic JMS 2-7

the Administration Console. For more information see, “Controlling Message Operations
on Destinations” on page 8-15.

JMS servers can be undeployed and redeployed without having to reboot WebLogic Server.

For more information on configuring JMS servers, see “JMS Server Configuration” on page 3-5.

Overview of JMS Modules
JMS modules are application-related definitions that are independent of the domain environment.
You create and manage JMS resources either as system modules or as application modules. JMS
system modules are typically configured using the Administration Console or the WebLogic
Scripting Tool (WLST), which adds a reference to the module in the domain’s config.xml file.
JMS application modules are a WebLogic-specific extension of Java EE modules and can be
deployed either with a Java EE application (as a packaged resource) or as stand-alone modules
that can be made globally available.

The main difference between system modules and application modules comes down to
ownership. System modules are owned and modified by the WebLogic administrator and are
available to all applications. Application modules are owned and modified by the WebLogic
developers, who package the JMS resource modules with the application's EAR file.

With modular deployment of JMS resources, you can migrate your application and the required
JMS configuration from environment to environment, such as from a testing environment to a
production environment, without opening an enterprise application file (such as an EAR file) or
a stand-alone JMS module, and without extensive manual JMS reconfiguration.

These sections describe the different types of JMS module and the resources that they can
contain:

“JMS System Modules” on page 2-8

“JMS Application Modules” on page 2-9

“Comparing JMS System Modules and Application Modules” on page 2-9

“Configurable JMS Resources in Modules” on page 2-10

“JMS Schema” on page 2-11

“JMS Interop Modules” on page 2-11

Unders tanding JMS Resource Conf igura t i on

2-8 Configuring and Managing WebLogic JMS

JMS System Modules
WebLogic Administrators typically use the Administration Console or the WebLogic Scripting
Tool (WLST) to create and deploy (target) JMS modules, and to configure the module’s
configuration resources, such as queues, and topics connection factories.

JMS modules that you configure this way are considered system modules. JMS system modules
are owned by the Administrator, who can at any time add, modify, or delete resources. System
modules are globally available for targeting to servers and clusters configured in the domain, and
therefore are available to all applications deployed on the same targets and to client applications.

When you create a JMS system module WebLogic Server creates a JMS module file in the
config\jms subdirectory of the domain directory, and adds a reference to the module in the
domain’s config.xml file as a JMSSystemResource element. This reference includes the path
to the JMS system module file and a list of target servers and clusters on which the module is
deployed.

The JMS module conforms to the weblogic-jmsmd.xsd schema, as described in “JMS Schema”
on page 5-2. System modules are also accessible through WebLogic Management Extension
(JMX) utilities, as a JMSSystemResourceMBean. The naming convention for JMS system
modules is MyJMSModule-jms.xml.

Figure 2-2 shows an example of a JMS system module listing in the domain’s config.xml file
and the module that it maps to in the config\jms directory.

Figure 2-2 Reference from config.xml to a JMS System Module

Overv i ew o f JMS Modules

Configuring and Managing WebLogic JMS 2-9

For more information about configuring JMS system modules, see “Configuring Basic JMS
System Resources” on page 3-1.

JMS Application Modules
JMS configuration resources can also be managed as deployable application modules, similar to
standard Java EE descriptor-based modules. JMS Application modules can be deployed either
with a Java EE application as a packaged module, where the resources in the module are
optionally made available to only the enclosing application (i.e., application-scoped), or as a
standalone module that provides global access to the resources defined in that module.

Application developers typically create application modules in an enterprise-level IDE or another
development tool that supports editing XML descriptor files, then package the JMS modules with
an application and pass the application to a WebLogic Administrator to deploy, manage, and tune.

As discussed in “Domain Configuration: Environment-Related Resources versus
Application-Related Resources” on page 2-4, JMS application modules do not contain compiled
Java programs as part of the package, enabling administrators or application developers to create
and manage JMS resources on demand.

For more information about configuring JMS application modules, see Chapter 5, “Configuring
JMS Application Modules for Deployment.”

Comparing JMS System Modules and Application Modules
A key to understanding WebLogic JMS configuration and management is that who creates a JMS
resource and how a JMS resource is created determines how a resource is deployed and modified.
Both WebLogic administrators and programmers can configure JMS modules:

In contrast to system modules, deployed application modules are owned by the developer who
created and packaged the module, rather than the administrator who deploys the module, which
means the administrator has more limited control over deployed resources. When deploying an
application module, an administrator can change resource properties that were specified in the
module, but the administrator cannot add or delete resources. As with other Java EE modules,
deployment configuration changes for a application module are stored in a deployment plan for
the module, leaving the original module untouched.

Unders tanding JMS Resource Conf igura t i on

2-10 Configuring and Managing WebLogic JMS

Table 2-1 lists the JMS module types and how they can be configured and modified.

For more information about preparing JMS application modules for deployment, see
“Configuring JMS Application Modules for Deployment” on page 5-1and Deploying
Applications and Modules in Deploying Applications to WebLogic Server.

Configurable JMS Resources in Modules
The following configuration resources are defined as part of a system module or an application
module:

Queue and topic destinations, as described in “Queue and Topic Destination
Configuration” on page 3-13.

Connection factories, as described in “Connection Factory Configuration” on page 3-11.

Templates, as described in “JMS Template Configuration” on page 3-16.

Destination keys, as described in “Destination Key Configuration” on page 3-17.

Quota, as described in “Quota Configuration” on page 3-18.

Distributed destinations, as described in “Configuring Distributed Destination Resources”
on page 4-12.

Foreign servers, as described in “Configuring Foreign Server Resources to Access
Third-Party JMS Providers” on page 4-9.

Table 2-1 JMS Module Types and Configuration and Management Options

Module
Type

Created
with

Dynamically
Add/Remove
Modules

Modify
with JMX
Remotely

Modify with
Deployment
Tuning Plan
(non-remote)

Modify with
Admin
 Console

Scoping Default
Sub-module
Targeting

System Admin
Console or
WLST

Yes Yes No Yes – via
JMX

Global and
local

No

Application IDE or
XML
editor

No – must be
redeployed

No Yes – via
deployment
plan

Yes – via
deployment
plan

Global,
local, and
application

Yes

Overv i ew o f JMS Modules

Configuring and Managing WebLogic JMS 2-11

JMS store-and-forward (SAF) configuration items, as described in “JMS
Store-and-Forward (SAF)” on page 2-12.

All other JMS environment-related resources must be configured by the administrator as domain
configuration resources. This includes:

JMS servers (required), as described in “Overview of JMS Servers” on page 2-5

Store-and-Forward agents (optional), as described in “JMS Store-and-Forward (SAF)” on
page 2-12.

Path service (optional), as described in “Path Service” on page 2-13.

Messaging bridges (optional), as described in “Messaging Bridges” on page 2-13.

Persistent stores (optional), as described in “Persistent Stores” on page 2-12

For more information about configuring JMS system modules, see “Configuring Basic JMS
System Resources” on page 3-1.

JMS Schema
In support of the modular configuration model for JMS resources, BEA provides a schema for
WebLogic JMS objects: weblogic-jmsmd.xsd, where jmsmd stands for JMS module descriptor.
When you create JMS resource modules (descriptors), the modules must conform to the schema.
IDEs and other tools can validate JMS resource modules based on this schema.

The weblogic-jmsmd.xsd schema is available online at
http://www.bea.com/ns/weblogic/920/weblogic-jmsmd.xsd.

JMS Interop Modules
A JMS interop module is a special type of JMS system resource module. It is created and
managed as a result of a JMS configuration upgrade for this release, and/or through the use of
WebLogic JMX MBean APIs from prior releases.

JMS interop modules differ in many ways from JMS system resource modules, as follows.

 The JMS module descriptor is always named as interop-jms.xml and the file exists in
the domain’s config\jms directory.

Interop modules are owned by the system, as opposed to other JMS system resource
modules, which are owned mainly by an administrator.

Interop modules are targeted everywhere in the domain.

Unders tanding JMS Resource Conf igura t i on

2-12 Configuring and Managing WebLogic JMS

The JMS resources that exist in a JMS interop module can be accessed and managed using
deprecated JMX (MBean) APIs.

The MBean of a JMS interop module is JMSInteropModuleMBean, which is a child
MBean of DomainMBean, and can be looked up from DomainMBean like any other child
MBean in a domain.

A JMS interop module can also implement many of the WebLogic Server 9.0 or later features,
such as message unit-of-order and destination quota. However, it cannot implement the following
WebLogic Server 9.0 or later features:

Uniform distributed destination resources

JMS store-and forward resources

Caution: Use of any new features in the current release in a JMS interop module may possibly
break compatibility with JMX clients prior to WebLogic Server 9.0.

Other Environment-Related System Resources for
WebLogic JMS

These environment-related resources must be configured by the administrator as domain
configuration resources in order to be accessible to JMS Servers and JMS modules.

Persistent Stores
The WebLogic Persistent Store provides a built-in, high-performance storage solution for all
subsystems and services that require persistence. For example, it can store persistent JMS
messages or temporarily store messages sent using the Store-and-Forward feature. Each
WebLogic Server instance in a domain has a default persistent store that requires no configuration
and which can be simultaneously used by subsystems that prefer to use the system’s default
storage. However, you can also configure a dedicated file-based store or JDBC
database-accessible store to suit your JMS implementation. For more information on configuring
a persistent store for JMS, see Using the WebLogic Persistent Store in Configuring WebLogic
Server Environments.

JMS Store-and-Forward (SAF)
The SAF service enables WebLogic Server to deliver messages reliably between applications that
are distributed across WebLogic Server instances. For example, with the SAF service, an

Other Env i ronment-Re lated Sys tem Resources fo r WebLog ic JMS

Configuring and Managing WebLogic JMS 2-13

application that runs on or connects to a local WebLogic Server instance can reliably send
messages to a destination that resides on a remote server. If the destination is not available at the
moment the messages are sent, either because of network problems or system failures, then the
messages are saved on a local server instance, and are forwarded to the remote destination once
it becomes available.

JMS modules utilize the SAF service to enable local JMS message producers to reliably send
messages to remote JMS queues or topics. For more information, see Configurng SAF for JMS
Messages in Configuring and Managing WebLogic Store-and-Forward.

Path Service
The WebLogic Server Path Service is a persistent map that can be used to store the mapping of a
group of messages to a messaging resource by pinning messages to a distributed queue member
or store-and-forward path. For more information on configuring a path service, see “Using the
WebLogic Path Service” on page 4-8.

Messaging Bridges
The Messaging Bridge allows you to configure a forwarding mechanism between any two
messaging products, providing interoperability between separate implementations of WebLogic
JMS, or between WebLogic JMS and another messaging product. The messaging bridge
instances and bridge source and target destination instances are persisted in the domain’s
config.xml file. For more information, see Understanding the Messaging Bridge in Configuring
and Managing WebLogic Messaging Bridge.

Unders tanding JMS Resource Conf igura t i on

2-14 Configuring and Managing WebLogic JMS

Configuring and Managing WebLogic JMS 3-1

C H A P T E R 3

Configuring Basic JMS System
Resources

The procedures in the following sections describe how to configure and manage basic JMS
system resources, such as JMS servers and JMS system modules.

“Methods for Configuring JMS System Resources” on page 3-2

“Main Steps for Configuring Basic JMS System Resources” on page 3-2

“JMS Configuration Naming Requirements” on page 3-4

“JMS Server Configuration” on page 3-5

“JMS System Module Configuration” on page 3-7

“Connection Factory Configuration” on page 3-11

“Queue and Topic Destination Configuration” on page 3-13

“JMS Template Configuration” on page 3-16

“Destination Key Configuration” on page 3-17

“Quota Configuration” on page 3-18

“Foreign Server Configuration” on page 3-18

“Distributed Destination Configuration” on page 3-18

“JMS Store-and-Forward (SAF) Configuration” on page 3-18

Conf igur ing Bas ic JMS Sys tem Resources

3-2 Configuring and Managing WebLogic JMS

Methods for Configuring JMS System Resources
WebLogic Administrators can use these tools to create and deploy (target) system resources, such
as JMS servers and JMS system modules.

The WebLogic Server Administration Console enables you to configure, modify, and target
JMS-related resources:

– JMS servers, as described in “JMS Server Configuration” on page 3-5.

– JMS system modules, as described in “JMS System Module Configuration” on
page 3-7.

– Store-and-Forward services for JMS, as described in “Configuring Store-and-Forward
for JMS Messages” in Configuring and Managing WebLogic Store-and-Forward.

– Persistent stores, as described in Using the WebLogic Persistent Store in Configuring
WebLogic Server Environments.

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that allows
system administrators and operators to initiate, manage, and persist WebLogic Server
configuration changes interactively or by using an executable script. See Chapter 6, “Using
WLST to Manage JMS Servers and JMS System Module Resources.”

WebLogic Java Management Extensions (JMX) is the Java EE solution for monitoring and
managing resources on a network. See “Overview of WebLogic Server Subsystem
MBeans” in Developing Custom Management Utilities with JMX.

The JMSModuleHelper extension class contains methods to create and manage JMS
module configuration resources in a given module. For more information, see “Using the
JMS Module Helper” in Programming WebLogic JMS or the JMSModuleHelper Class
Javadoc.

Note: For information on configuring and deploying JMS application modules in an enterprise
application, see Chapter 5, “Configuring JMS Application Modules for Deployment.”

Main Steps for Configuring Basic JMS System Resources
This section describes how to use the Administration Console to configure a persistent store, a
JMS server, and a basic JMS system module. For instructions about using the Administration
Console to manage a WebLogic Server domain, see “The WebLogic Server Administration
Console” in the Administration Console Online Help.

Main S teps fo r Conf igur ing Bas ic JMS Sys tem Resources

Configuring and Managing WebLogic JMS 3-3

WebLogic JMS provides default values for some configuration options; you must provide values
for all others. Once WebLogic JMS is configured, applications can send and receive messages
using the JMS API. For information on tuning the default configuration parameters, see
WebLogic Server Performance and Tuning or the “System Module MBeans” folder of the
WebLogic Server MBean Reference.

1. If you require persistent messaging, use one of the following storage options:

– To store persistent messages in a file-based store, you can simply use the server’s
default persistent store, which requires no configuration on your part. However, you
can also create a dedicated file store for JMS. See “Creating a Custom (User-Defined)
File Store” in the Configuring WebLogic Server Environments.

– To store persistent messages in a JDBC-accessible database, you must create a JDBC
store. See “Creating a JDBC Store” in Configuring WebLogic Server Environments.

2. Configure a JMS server to manage the messages that arrive on the queue and topic
destinations in a JMS system module. See “Overview of JMS Servers” on page 2-5.

3. Configure a JMS system module to contain your destinations, as well as other resources, such
as quotas, templates, destination keys, distributed destinations, and connection factories. See
“JMS System Modules” on page 2-8.

4. Before creating any queues or topics in your system module, you can optionally create other
JMS resources in the module that can be referenced from within a queue or topic, such as JMS
templates, quota settings, and destination sort keys:

– Define quota resources for your destinations. Destinations can be assigned their own
quotas; multiple destinations can share a quota; or destinations can share the JMS
server’s quota. See “Quota Configuration” on page 3-18.

– Create JMS templates, which allow you to define multiple destinations with similar
option settings. See “JMS Template Configuration” on page 3-16.

– Configure destination keys to create custom sort orders of messages as they arrive on a
destination. See “Destination Key Configuration” on page 3-17.

Once these resources are configured, you can select them when you configure your queue
or topic resources.

5. Configure a queue and/or topic destination in your system module:

– Configure a standalone topic for the delivery of messages to multiple recipients
(publish/subscribe). See “Queue and Topic Destination Configuration” on page 3-13.

Conf igur ing Bas ic JMS Sys tem Resources

3-4 Configuring and Managing WebLogic JMS

– Configure a standalone queue for the delivery of messages to exactly one recipient
(point-to-point). See “Queue and Topic Destination Configuration” on page 3-13.

6. If the default connection factories provided by WebLogic Server are not suitable for your
application, create a connection factory to enable your JMS clients to create JMS connections.

For more information about using the default connection factories, see “Using a Default
Connection Factory” on page 3-12. For more information on configuring a Connection
Factory, see “Connection Factory Configuration Parameters” on page 3-12.

WebLogic JMS provides default values for some configuration options; you must provide values
for all others. Once WebLogic JMS is configured, applications can send and receive messages
using the JMS API.

Advanced Resources in JMS System Modules
Beyond basic JMS resource configuration, you can add these advanced resources to a JMS
system module:

Create a Uniform Distributed Destination resource to configure a set of queues or topics
that distributed across the cluster, with each member belonging to a separate JMS server in
the cluster. See “Configuring Distributed Destination Resources” on page 4-12.

Create a JMS Store-and-Forward resource to reliably forward messages to remote
destinations, even when a destination is unavailable at the time a message is sent, as
described in Configuring and Managing WebLogic Store-and-Forward.

Create a Foreign Server resource to reference third-party JMS providers within a local
WebLogic Server JNDI tree. See “Configuring Foreign Server Resources to Access
Third-Party JMS Providers” on page 4-9.

JMS Configuration Naming Requirements
Within a domain, each server, machine, cluster, virtual host, and any other resource type must be
named uniquely and must not use the same name as the domain. This unique naming rule also
applies to all configuration objects, including configurable JMS objects such as JMS servers,
JMS system modules, and JMS application modules.

The resource names inside JMS modules must be unique per resource type (for example, queues,
topics, and connection factories). However, two different JMS modules can have a resource of
the same type that can share the same name.

JMS Se rve r Conf igurat ion

Configuring and Managing WebLogic JMS 3-5

Also, the JNDI name of any bindable JMS resource (excluding quotas, destination keys, and JMS
templates) across JMS modules has to be unique.

JMS Server Configuration
JMS servers are environment-related configuration entities that act as management containers for
JMS queue and topic resources within JMS modules that are specifically targeted to JMS servers.
A JMS server’s primary responsibility for its targeted destinations is to maintain information on
what persistent store is used for any persistent messages that arrive on the destinations, and to
maintain the states of durable subscribers created on the destinations. As a container for targeted
destinations, any configuration or run-time changes to a JMS server can affect all of its
destinations.

Note: A sample examplesJMSServer configuration is provided with the product in the
Examples Server. For more information about developing basic WebLogic JMS
applications, refer to “Developing a Basic JMS Application” in Programming WebLogic
JMS.

JMS Server Configuration Parameters
The WebLogic Server Administration Console enables you to configure, modify, target, and
delete JMS server resources in a system module. For a road map of the JMS server tasks, see
“Configure JMS servers” in the Administration Console Online Help.

You can configure the following parameters for JMS servers:

General configuration parameters, including persistent storage, message paging defaults, a
template to use when your applications create temporary destinations, and expired message
scanning.

Threshold and quota parameters for destinations in JMS system modules targeted to a
particular JMS server.

For more information about configuring messages and bytes quota for JMS servers and
destinations, see WebLogic Server Performance and Tuning.

 Message logging parameters for a JMS server’s log file, which contains the basic events
that a JMS message traverses, such as message production, consumption, and removal.

For more information about configuring message life cycle logging on JMS servers, see
“Message Life Cycle Logging” on page 8-7.

Conf igur ing Bas ic JMS Sys tem Resources

3-6 Configuring and Managing WebLogic JMS

Destination pause and resume controls that enable you to pause message production,
message insertion (in-flight messages), and message consumption operations on all the
destinations hosted by a single JMS Server.

For more information about pausing message operations on destinations, see “Controlling
Message Operations on Destinations” on page 8-15.

Some JMS server options are dynamically configurable. When options are modified at runtime,
only incoming messages are affected; stored messages are not affected. For more information
about the default values for all JMS server options, see JMSServerBean and
JMSServerRuntimeMBean in the WebLogic Server MBean Reference.

JMS Server Targeting
You can target a JMS server to either an independent WebLogic Server instance or to a
migratable target server where it will be deployed.

Weblogic Server instance — Server target where you want to deploy the JMS server. When
a target WebLogic Server boots, the JMS server boots as well. If no target WebLogic
Server is specified, the JMS server will not boot.

Migratable Target — Migratable targets define a set of WebLogic Server instances in a
cluster that can potentially host an exactly-once service, such as a JMS server. When a
migratable target server boots, the JMS server boots as well on the specified user-preferred
server in the cluster. However, a JMS server and all of its destinations can be migrated to
another server within the cluster in response to a server failure or due to a scheduled
migration for system maintenance. For more information on configuring a migratable
target for JMS services, see “Migration of JMS-related Services” on page 4-6.

For instructions on specifying JMS server targets using the Administration Console, see Change
JMS server targets in the Administration Console Online Help.

JMS Server Monitoring Parameters
You can monitor run-time statistics for active JMS servers, destinations, and server session pools.

Monitor all Active JMS Servers — A table displays showing all instances of the JMS
server deployed across the WebLogic Server domain.

Monitor all Active JMS Destinations — A table displays showing all active JMS
destinations for the current domain.

JMS System Modu le Conf igurat ion

Configuring and Managing WebLogic JMS 3-7

Monitor all Active JMS Session Pool Runtimes — A table displays showing all active JMS
session pools for the current domain.

For more information about monitoring JMS objects, see “Monitoring JMS Statistics and
Managing Messages” on page 7-1.

Session Pools and Connection Consumers
Note: Session pool and connection consumer configuration objects were deprecated in

WebLogic Server 9.0. They are not a required part of the J2EE specification, do not
support JTA user transactions, and are largely superseded by Message-Driven Beans
(MDBs), which are a required part of J2EE. For more information on designing MDBs,
see “Message-Driven EJBs” in Programming WebLogic Enterprise JavaBeans.

Server session pools enable an application to process messages concurrently. After you define a
JMS server, you can configure one or more session pools for each JMS server. Some session pool
options are dynamically configurable, but the new values do not take effect until the JMS server
is restarted. See Defining Server Session Pools in Programming WebLogic JMS.

Connection consumers are queues (Point-to-Point) or topics (Pub/Sub) that will retrieve server
sessions and process messages. After you define a session pool, configure one or more connection
consumers for each session pool. See “Defining Server Session Pools in Programming WebLogic
JMS.

JMS System Module Configuration
JMS system modules are owned by the Administrator, who can delete, modify, or add JMS
system resources at any time. With the exception of standalone queue and topic resources that
must be targeted to a single JMS server, the connection factory, distributed destination, foreign
server, and JMS SAF destination resources in system modules can be made globally available by
targeting them to server instances and clusters configured in the WebLogic domain. These
resources are therefore available to all applications deployed on the same targets and to client
applications. The naming convention for JMS system modules is MyJMSModule-jms.xml.

The WebLogic Server Administration Console enables you to configure, modify, target, monitor,
and delete JMS system modules in your environment. For a road map of the JMS system module
configuration tasks, see “Configure JMS system modules and add JMS resources” in the
Administration Console Online Help.

You define the following “basic” configuration resources as part of a JMS system module:

Conf igur ing Bas ic JMS Sys tem Resources

3-8 Configuring and Managing WebLogic JMS

Queue and topic destinations, as described in “Queue and Topic Destination
Configuration” on page 3-13.

Connection factories, as described in “Connection Factory Configuration” on page 3-11.

Templates, as described in “JMS Template Configuration” on page 3-16.

Destination keys, as described in “Destination Key Configuration” on page 3-17.

Quota, as described in “Quota Configuration” on page 3-18.

You can also define the following “advanced” clustering configuration resources as part of a JMS
system module:

Foreign servers, as described in “Configuring Foreign Server Resources to Access
Third-Party JMS Providers” on page 4-9.

Distributed destinations, as described in “Configuring Distributed Destination Resources”
on page 4-12.

JMS store-and-forward configurations, as described in “Configuring SAF for JMS
Messages” in Configuring and Managing WebLogic Store-and-Forward.

A sample examples-jms module is provided with the product in the Examples Server. For more
information about starting the Examples Server, see “Starting and Stopping Servers” in
Managing Server Startup and Shutdown.

For information on alternative methods for configuring JMS system modules, such as using the
WebLogic Scripting Tool (WLRT), see “Methods for Configuring JMS System Resources” on
page 3-2.

JMS System Module and Resource Subdeployment Targeting
JMS system modules must be targeted to one or more WebLogic Server instances or to a cluster.
Targetable JMS resources defined in a system module must also be targeted to JMS server or
WebLogic Server instances within the scope of a parent module’s targets. Additionally,
targetable JMS resources inside a system module can be further grouped into subdeployments
during the configuration or targeting process to provide further loose coupling of JMS resources
in a WebLogic domain.

Default Targeting
When using the Administration Console to configure resources in a JMS system module, you can
choose whether to simply accept the parent module’s default targets or to proceed to an advanced

JMS System Modu le Conf igurat ion

Configuring and Managing WebLogic JMS 3-9

targeting page where you can use the subdeployment mechanism for targeting the resource.
However, standalone queue and topic resource types, cannot use default targets and must be
targeted to a subdeployment that is targeted to a single JMS server.

When you select the default targeting mechanism, it’s target status will be reflected by the Default
Targeting Enabled check box on the resource type’s Configuration: General page on the
Administration Console.

For more information on configuring JMS system resources, see “Configure resources for JMS
system modules” in the Administration Console Online Help.

Subdeployment Targeting
When targeting standalone queue and topic resources, or when bypassing the default targeting
mechanism for other resource types, you must use subdeployment targets. A subdeployment is a
mechanism by which targetable system module resources (such as standalone destinations,
distributed destinations, and connection factories) are grouped and targeted to specific server
resources within a system module’s targeting scope.

Although a JMS system module can be targeted to a wide array of WebLogic Server instances in
a domain, a module’s standalone queues or topics can only be targeted to a single JMS server.
Whereas, connection factories, uniform distributed destinations (UDDs), and foreign servers can
be targeted to one or more JMS servers, one or more WebLogic Server instances, or to a cluster.

Therefore, standalone queues or topics cannot be associated with a subdeployment if other
members of the subdeployment are targeted to multiple JMS servers, which would be the case,
for example, if a connection factory is targeted to a cluster that is hosting JMS servers in a
domain. UDDs, however, can be associated with such subdeployments since the purpose of
UDDs is to distribute its members to multiple JMS servers in a domain.

Table 3-1 shows the valid targeting options for JMS system resource subdeployments:

Table 3-1 JMS System Resource Subdeployment Targeting

JMS Resource Valid Targets

Queue JMS server

Topic JMS server

Connection factory JMS server(s) | server instance(s) | cluster

Uniform distributed queue JMS server(s) | server instance(s) | cluster

Conf igur ing Bas ic JMS Sys tem Resources

3-10 Configuring and Managing WebLogic JMS

Note: Connection factory, uniform distributed destination, foreign server, and SAF imported
destination resources can also be configured to default to their parent module’s targets,
as explained in “Default Targeting” on page 3-8.

An example of a simple subdeployment for standalone queues or topics would be to group them
with a connection factory so that these resources are co-located on a specific JMS server, which
can help reduce network traffic. Also, if the targeted JMS server should be migrated to another
WebLogic Server instance, the connection factory and all its connections will also migrate along
with the JMS server’s destinations.

For example, if a system module named jmssysmod-jms.xml, is targeted to a WebLogic Server
instance that has two configured JMS servers: jmsserver1 and jmsserver2, and you want to
co-locate two queues and a connection factory on only jmsserver1, you can group the queues and
connection factory in the same subdeployment, named jmsserver1group, to ensure that these
resources are always linked to jmsserver1, provided the connection factory is not already targeted
to multiple JMS servers.

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91">

 <connection-factory name="connfactory1">

 <sub-deployment-name>jmsserver1group</sub-deployment-name>

 <jndi-name>cf1</jndi-name>

 </connection-factory>

 <queue name="queue1">

 <sub-deployment-name>jmsserver1group</sub-deployment-name>

 <jndi-name>q1</jndi-name>

 </queue>

 <queue name="queue2">

 <sub-deployment-name>jmsserver1group</sub-deployment-name>

 <jndi-name>q2</jndi-name>

 </queue>

</weblogic-jms>

Uniform distributed topic JMS server(s) | server instance(s) | cluster

Foreign server JMS server(s) | server instance(s) | cluster

SAF imported destinations SAF Agent(s) | server instance(s) | cluster

Table 3-1 JMS System Resource Subdeployment Targeting

JMS Resource Valid Targets

Connect ion Facto r y Conf igurat ion

Configuring and Managing WebLogic JMS 3-11

And here’s how the jmsserver1group subdeployment targeting would look in the domain’s
configuration file:

 <jms-system-resource>

 <name>jmssysmod-jms</name>

 <target>wlsserver1</target>

 <sub-deployment>

 <name>jmsserver1group</name>

 <target>jmsserver1</target>

 </sub-deployment>

 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>

 </jms-system-resource>

To help manage your subdeployments for a JMS system module, the Administration Console
provides subdeployment management pages. For more information, see “Configure
subdeployments in JMS system modules” in the Administration Console Online Help.

For information about deploying stand-alone JMS modules, see “Deploying JDBC and JMS
Application Modules.”

Connection Factory Configuration
Connection factories are resources that enable JMS clients to create JMS connections. A
connection factory supports concurrent use, enabling multiple threads to access the object
simultaneously. WebLogic JMS provides pre-configured default connection factories that can be
enabled or disabled on a per-server basis, as described in “Using a Default Connection Factory”
on page 3-12.

Otherwise, you can configure one or more connection factories to create connections with
predefined options that better suit your application. Within each JMS module, connection factory
resource names must be unique. And, all connection factory JNDI names in any JMS module
must be unique across an entire WebLogic domain, as defined in “JMS Configuration Naming
Requirements” on page 3-4. WebLogic Server adds them to the JNDI space during startup, and
the application then retrieves a connection factory using the WebLogic JNDI APIs.

You can establish cluster-wide, transparent access to JMS destinations from any server in the
cluster, either by using the default connection factories for each server instance, or by configuring
one or more connection factories and targeting them to one or more server instances in the cluster.
This way, each connection factory can be deployed on multiple WebLogic Server instances. For
more information on configuring JMS clustering, see “Configuring WebLogic JMS Clustering”
on page 4-1.

Conf igur ing Bas ic JMS Sys tem Resources

3-12 Configuring and Managing WebLogic JMS

Using a Default Connection Factory
WebLogic Server defines two default connection factories, which can be looked up using the
following JNDI names:

weblogic.jms.ConnectionFactory

weblogic.jms.XAConnectionFactory

You only need to configure a new connection factory if the pre-configured settings of the default
factories are not suitable for your application. For more information on using the default
connection factories, see “Understanding WebLogic JMS” in Programming WebLogic JMS

The main difference between the pre-configured settings for the default connection factories and
a user-defined connection factory is the default value for the “XA Connection Factory Enabled”
option to enable JTA transactions. For more information about the XA Connection Factory
Enabled option, and to see the default values for the other connection factory options, see
JMSConnectionFactoryBean in the WebLogic Server MBean Reference.

Also, using default connection factories means that you have no control over targeting the
WebLogic Server instances where the connection factory may be deployed. However, you can
enable and or disable the default connection factories on a per-WebLogic Server basis, as defined
in “Server: Services: Configuration” in the Administration Console Online Help.

Connection Factory Configuration Parameters
The WebLogic Server Administration Console enables you to configure, modify, target, and
delete connection factory resources in a system module. For a road map of the JMS connection
configuration tasks, see “Configure connection factories” in the Administration Console Online
Help.

You can modify the following parameters for connection factories:

General configuration parameters, including modifying the default client parameters,
default message delivery parameters, load balancing parameters, unit-of-order parameters,
and security parameters.

Transaction parameters, which enable you to define a value for the transaction time-out
option and to indicate whether an XA queue or XA topic connection factory is returned,
and whether the connection factory creates sessions that are JTA aware.

Note: When selecting the “XA Connection Factory Enabled” option to enable JTA
transactions with JDBC stores, you must verify that the configured JDBC data source
uses a non-XA JDBC driver. This limitation does not remove the XA capabilities of

Queue and Top ic Dest ina t i on Conf igurat ion

Configuring and Managing WebLogic JMS 3-13

layered subsystems that use JDBC stores. For example, WebLogic JMS is fully
XA-capable regardless of whether it uses a file store or any JDBC store.

Flow control parameters, which enable you to tell a JMS server or destination to slow
down message producers when it determines that it is becoming overloaded.

Some connection factory options are dynamically configurable. When options are modified at
runtime, only incoming messages are affected; stored messages are not affected. For more
information about the default values for all connection factory options, see
JMSConnectionFactoryBean in the WebLogic Server MBean Reference.

Connection Factory Targeting
You can target connection factories to one or more JMS server, to one or more WebLogic Server
instances, or to a cluster.

JMS server(s) — You can target connection factories to one or more JMS servers along
with destinations. You can also group a connection factory with standalone queues or
topics in a subdeployment targeted to a specific JMS server, which guarantees that all these
resources are co-located to avoid extra network traffic. Another advantage of such a
configuration would be if the targeted JMS server needs to be migrated to another
WebLogic server instance, then the connection factory and all its connections will also
migrate along with the JMS server’s destinations. However, when standalone queues or
topics are members of a subdeployment, a connection factory can only be targeted to the
same JMS server.

Weblogic server instance(s) — To establish transparent access to JMS destinations from
any server in a domain, you can target a connection factory to multiple WebLogic Server
instances simultaneously.

Cluster — To establish cluster-wide, transparent access to JMS destinations from any
server in a cluster, you can target a connection factory to all server instances in the cluster,
or even to specific servers within the cluster.

For more information on JMS system module subdeployment targeting, see “JMS System
Module and Resource Subdeployment Targeting” on page 3-8.

Queue and Topic Destination Configuration
A JMS destination identifies a queue (point-to-point) or topic (publish/subscribe) resource within
a JMS module. Each queue and topic resource is targeted to a specific JMS server. A JMS server’s
primary responsibility for its targeted destinations is to maintain information on what persistent

Conf igur ing Bas ic JMS Sys tem Resources

3-14 Configuring and Managing WebLogic JMS

store is used for any persistent messages that arrive on the destinations, and to maintain the states
of durable subscribers created on the destinations.

You can optionally create other JMS resources in a module that can be referenced from within a
queue or topic, such as JMS templates, quota settings, and destination sort keys:

– Quota — Assign quotas to destinations; multiple destinations can share a quota; or
destinations can share the JMS server’s quota. See WebLogic Server Performance and
Tuning.

– JMS Template — Define multiple destinations with similar option settings. You also
need a JMS template to create temporary queues. See “JMS Template Configuration”
on page 3-16.

– Destination Key — Create custom sort orders of messages as they arrive on a
destination. See “Destination Key Configuration” on page 3-17.

Queue and Topic Configuration Parameters
A JMS queue defines a point-to-point destination type for a JMS server. A message delivered to
a queue is distributed to a single consumer. A JMS topic identifies a publish/subscribe destination
type for a JMS server. Topics are used for asynchronous peer communications. A message
delivered to a topic is distributed to all consumers that are subscribed to that topic.

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete queue and topic resources in a system module. For a road map of queue and topic tasks,
see “Configure queues” and “Configure topics” in the Administration Console Online Help.
Within each JMS module, queue and topic resource names must be unique. And, all queue and
topic JNDI names in any JMS module must be unique across an entire WebLogic domain, as
defined in “JMS Configuration Naming Requirements” on page 3-4.

You can configure the following parameters for a queue and/or a topic:

General configuration parameters, including a JNDI name, a destination key for sorting
messages as they arrive at the destination, or selecting a JMS template if you are using one
to configure properties for multiple destinations.

Note: Although queue and topic JNDI names can be dynamically changed, there may be
long-lived producers or consumers, such as MDBs, that will continue trying to
produce or consume messages to and from the original queue or topic JNDI name.

Threshold and quota parameters, which define the upper and lower message and byte
threshold and maximum quota options for the destination. See “Quota Configuration” on
page 3-18.

Queue and Top ic Dest ina t i on Conf igurat ion

Configuring and Managing WebLogic JMS 3-15

 Message logging parameters, such as message type and user properties, and logging
message life cycle information into a JMS log file.

See “Message Life Cycle Logging” on page 8-7. Pause and resume controls for message
production, message insertion (in-flight messages), and message consumption operations
on a destination. See “Controlling Message Operations on Destinations” on page 8-15.

Message delivery override parameters, such as message priority and time-to-deliver values,
which can override those specified by a message producer or connection factory.

Message Delivery failure parameters, such as defining a message redelivery limit, selecting
a message expiration policy, and specifying an error destination for expired messages.

For topics only, multicast parameters, including a multicast address, time-to-live (TTL),
and port.

Some options are dynamically configurable. When options are modified at run time, only
incoming messages are affected; stored messages are not affected. For more information about
the default values for all options, see QueueBean and TopicBean in the WebLogic Server MBean
Reference.

Creating Error Destinations
To help manage recovered or rolled back messages, you can also configure a target error
destination for messages that have reached their redelivery limit. The error destination can be
either a topic or a queue, but it must be a destination that is targeted to same JMS server as the
destination(s) it is associated with. For more information, see “Configuring an Error Destination
for Undelivered Messages” in Programming WebLogic JMS.

Creating Distributed Destinations
A distributed destination resource is a group of destinations (queues or topics) that are accessible
as a single, logical unit to a client (for example, a distributed topic has its own JNDI name). The
members of the set are typically distributed across multiple servers within a cluster, with each
member belonging to a separate JMS server. See “Distributed Destination Configuration” on
page 3-18.

Queue and Topic Targeting
Stand-alone queues and topics can only be deployed to a specific JMS server in a domain because
they depend on the JMS servers they are targeted to for the management of persistent messages,
durable subscribers, and message paging.

Conf igur ing Bas ic JMS Sys tem Resources

3-16 Configuring and Managing WebLogic JMS

If you want to associate a group of queues and/or topics with a connection factory on a specific
JMS server, you can target the destinations and connection factory to the same subdeployment,
which links these resources to the JMS server targeted by the subdeployment. However, when
standalone destinations are members of a subdeployment, a connection factory can only be
targeted to the same JMS server.

For more information on JMS system module subdeployment targeting, see “JMS System
Module and Resource Subdeployment Targeting” on page 3-8.

Destination Monitoring and Management Parameters
You can monitor run-time statistics for queues and topics in system modules, as well as manage
the messages on queues and durable subscribers on topics.

For information on using the Administration Console to monitor queues, see “Monitoring
Queues in JMS System Modules” in the Administration Console Online Help.

For information on managing messages on queues, as described in “Managing JMS
Messages” on page 7-5.

For more information on using the Administration Console to monitor topics, see “Monitor
Topics in JMS System Modules” in the Administration Console Online Help.

For information on managing durable subscriber on topics, as described in “Managing JMS
Messages” on page 7-5.

JMS Template Configuration
A JMS template is an efficient means of defining multiple destinations with similar option
settings:

You do not need to re-enter every option setting each time you define a new destination;
you can use the JMS template and override any setting to which you want to assign a new
value.

You can modify shared option settings dynamically simply by modifying the template.

You can specify subdeployments for error destinations so that any number of destination
subdeployments (groups of queue or topics) will use only the error destinations specified in
the corresponding template subdeployments.

Dest ina t i on Key Conf igurat ion

Configuring and Managing WebLogic JMS 3-17

JMS Template Configuration Parameters
The WebLogic Server Administration Console enables you to configure, modify, target, and
delete JMS template resources in a system module. For a road map of the JMS template tasks, see
“Configure JMS templates” in the Administration Console Online Help.

The configurable options for a JMS template are the same as those configured for a destination.
See “Queue and Topic Configuration Parameters” on page 3-14.

These configuration options are inherited by the destinations that use them, with the following
exceptions:

If the destination that is using a JMS template specifies an override value for an option, the
override value is used.

If the destination that is using a JMS template specifies a message redelivery value for an
option, that redelivery value is used.

The Name option is not inherited by the destination. This name is valid for the JMS
template only. You must explicitly define a unique name for all destinations. See “JMS
Configuration Naming Requirements” on page 3-4.

The JNDI Name, Enable Store, and Template options are not defined for JMS templates.

You can configure subdeployments for error destinations, so that any number of destination
subdeployments (groups of queue or topics) will use only the error destinations specified in
the corresponding template subdeployments.

Any options that are not explicitly defined for a destination are assigned default values. If no
default value exists, be sure to specify a value within the JMS template or as a destination option
override.

Some template options are dynamically configurable. When options are modified at run time,
only incoming messages are affected; stored messages are not affected. For more information
about the default values for all topic options, see TemplateBean in the WebLogic Server MBean
Reference.

Destination Key Configuration
As messages arrive on a specific destination, by default they are sorted in FIFO (first-in, first-out)
order, which sorts ascending based on each message's unique JMSMessageID. However, you can
use a destination key to configure a different sorting scheme for a destination, such as LIFO
(last-in, first-out).

Conf igur ing Bas ic JMS Sys tem Resources

3-18 Configuring and Managing WebLogic JMS

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete destination key resources in a system module. For a road map of the destination key tasks,
see “Configure destination keys” in the Administration Console Online Help.

For more information about the default values for all destination key options, see
DestinationKeyBean in the WebLogic Server MBean Reference.

Quota Configuration
A quota resource defines a maximum number of messages and bytes, and is then associated with
one or more destinations and is responsible for enforcing the defined maximums.

See WebLogic Server Performance and Tuning.

Foreign Server Configuration
A foreign server resource enables you to reference third-party JMS providers within a local
WebLogic Server JNDI tree. With a foreign server resource, you can quickly map a foreign JMS
provider so that its associated connection factories and destinations appear in the WebLogic JNDI
tree as local JMS objects. A foreign server resource can also be used to reference remote instances
of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

See “Configuring Foreign Server Resources to Access Third-Party JMS Providers” on page 4-9.

Distributed Destination Configuration
A distributed destination resource is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client (for example, a distributed topic has its own
JNDI name). The members of the set are typically distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server. Applications that use a distributed
destination are more highly available than applications that use standalone destinations because
WebLogic JMS provides load balancing and failover for the members of a distributed destination
in a cluster.

See “Configuring Distributed Destination Resources” on page 4-12.

JMS Store-and-Forward (SAF) Configuration
JMS SAF resources build on the WebLogic Store-and-Forward (SAF) service to provide
highly-available JMS message production. For example, a JMS message producer connected to

JMS Sto re-and-Forward (SAF) Conf igurat ion

Configuring and Managing WebLogic JMS 3-19

a local server instance can reliably forward messages to a remote JMS destination, even though
that remote destination may be temporarily unavailable when the message was sent. JMS
Store-and-forward is transparent to JMS applications; therefore, JMS client code still uses the
existing JMS APIs to access remote destinations.

See “Configuring SAF for JMS Messages” in Configuring and Managing WebLogic
Store-and-Forward.

Conf igur ing Bas ic JMS Sys tem Resources

3-20 Configuring and Managing WebLogic JMS

Configuring and Managing WebLogic JMS 4-1

C H A P T E R 4

Configuring Advanced JMS System
Resources

These sections provide information on configuring advanced WebLogic JMS resources, such as
a distributed destination in a clustered environment:

“Configuring WebLogic JMS Clustering” on page 4-1

“Migration of JMS-related Services” on page 4-6

“Using the WebLogic Path Service” on page 4-8

“Configuring Foreign Server Resources to Access Third-Party JMS Providers” on page 4-9

“Configuring Distributed Destination Resources” on page 4-12

Configuring WebLogic JMS Clustering
A WebLogic Server cluster is a group of servers in a domain that work together to provide a more
scalable, more reliable application platform than a single server. A cluster appears to its clients
as a single server but is in fact a group of servers acting as one.

Note: JMS clients depend on unique WebLogic Server names to successfully access a cluster—
even when WebLogic Servers reside in different domains. Therefore, make sure that all
WebLogic Servers that JMS clients contact have unique server names.

Advantages of JMS Clustering
The advantages of clustering for JMS include the following:

Load balancing of destinations across multiple servers in a cluster

Conf igur ing Advanced JMS Sys tem Resources

4-2 Configuring and Managing WebLogic JMS

An administrator can establish load balancing of destinations across multiple servers in the
cluster by configuring multiple JMS servers and targeting them to the defined WebLogic
Servers. Each JMS server is deployed on exactly one WebLogic Server instance and
handles requests for a set of destinations.

Note: Load balancing is not dynamic. During the configuration phase, the system
administrator defines load balancing by specifying targets for JMS servers.

High availability of destinations

– Distributed destinations — The queue and topic members of a distributed destination
are usually distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. Applications that use distributed destinations are
more highly available than applications that use simple destinations because WebLogic
JMS provides load balancing and failover for member destinations of a distributed
destination within a cluster. For more information on distributed destinations, see
“Configuring Distributed Destination Resources” on page 4-12.

– Store-and-Forward — JMS modules utilize the SAF service to enable local JMS
message producers to reliably send messages to remote queues or topics. If the
destination is not available at the moment the messages are sent, either because of
network problems or system failures, then the messages are saved on a local server
instance, and are forwarded to the remote destination once it becomes available. For
more information, see Understanding the Store-and-Forward Service in Configuring
and Managing WebLogic Store-and-Forward.

– For automatic failover, WebLogic Server supports migration at the server level—a
complete server instance, and all of the services it hosts can be migrated to another
machine, either automatically, or manually. For more information, see Whole Server
Migration in Using WebLogic Server Clusters.

Cluster-wide, transparent access to destinations from any server in a cluster

An administrator can establish cluster-wide, transparent access to destinations from any
server in the cluster by either using the default connection factories for each server instance
in the cluster, or by configuring one or more connection factories and targeting them to one
or more server instances in the cluster, or to the entire cluster. This way, each connection
factory can be deployed on multiple WebLogic Server instances. Connection factories are
described in more detail in “Connection Factory Configuration” on page 3-11.

Scalability

– Load balancing of destinations across multiple servers in the cluster, as described
previously.

Conf igur ing WebLog ic JMS C lus te r ing

Configuring and Managing WebLogic JMS 4-3

– Distribution of application load across multiple JMS servers through connection
factories, thus reducing the load on any single JMS server and enabling session
concentration by routing connections to specific servers.

– Optional multicast support, reducing the number of messages required to be delivered
by a JMS server. The JMS server forwards only a single copy of a message to each host
group associated with a multicast IP address, regardless of the number of applications
that have subscribed.

Migratability

WebLogic Server supports migration at the server level—a complete server instance, and
all of the services it hosts can be migrated to another machine, either automatically, or
manually. For more information, see Server Migration in Using WebLogic Server Clusters.

Also, as an “exactly-once” service, WebLogic JMS takes advantage of the service
migration framework implemented in WebLogic Server for clustered environments. This
allows WebLogic JMS to respond properly to migration requests and to bring a JMS server
online and offline in an orderly fashion. For more information, see “Migration of
JMS-related Services” on page 4-6.

Server affinity for JMS Clients

When configured for the cluster, load balancing algorithms (round-robin-affinity,
weight-based-affinity, or random-affinity), provide server affinity for JMS client
connections. If a JMS application has a connection to a given server instance, JMS
attempts to establish new JMS connections to the same server instance. For more
information on server affinity, see Load Balancing in a Cluster in Using WebLogic Server
Clusters.

For more information about the features and benefits of using WebLogic clusters, see
Understanding WebLogic Server Clustering in Using WebLogic Server Clusters.

How JMS Clustering Works
An administrator can establish cluster-wide, transparent access to JMS destinations from any
server in a cluster, either by using the default connection factories for each server instance in a
cluster, or by configuring one or more connection factories and targeting them to one or more
server instances in a cluster, or to an entire cluster. This way, each connection factory can be
deployed on multiple WebLogic Servers. For information on configuring and deploying
connection factories, see “Connection Factory Configuration Parameters” on page 3-12.

The application uses the Java Naming and Directory Interface (JNDI) to look up a connection
factory and create a connection to establish communication with a JMS server. Each JMS server

Conf igur ing Advanced JMS Sys tem Resources

4-4 Configuring and Managing WebLogic JMS

handles requests for a set of destinations. If requests for destinations are sent to a WebLogic
Server instance that is hosting a connection factory, but which is not hosting a JMS server or
destinations, the requests are forwarded by the connection factory to the appropriate WebLogic
Server instance that is hosting the JMS server and destinations.

The administrator can also configure multiple JMS servers on the various servers in the cluster—
as long as the JMS servers are uniquely named—and can then target JMS queue or topic resources
to the various JMS servers. The application uses the Java Naming and Directory Interface (JNDI)
to look up a connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for a set of destinations. Requests for destinations not
handled by a JMS server are forwarded to the appropriate WebLogic Server instance. For
information on configuring and deploying JMS servers, see “JMS Server Configuration” on
page 3-5.

JMS Clustering Naming Requirements
There are naming requirements when configuring JMS objects and resources, such as JMS
servers, JMS modules, and JMS resources, to work in a clustered environment in a single
WebLogic domain or in a multi-domain environment. For more information, see “JMS
Configuration Naming Requirements” on page 3-4.

Distributed Destination Within a Cluster
A distributed destination resource is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client (for example, a distributed topic has its own
JNDI name). The members of the unit are usually distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server. Applications that use distributed
destinations are more highly available than applications that use simple destinations because
WebLogic Server provides load balancing and failover for member destinations of a distributed
destination within a cluster. For more information, see “Configuring Distributed Destination
Resources” on page 4-12.

JMS Services As a Migratable Service Within a Cluster
In addition to being part of a whole server migration, where all services hosted by a server can be
migrated to another machine, JMS services are also part of the singleton service migration
framework. This allows an administrator, for example, to migrate a JMS server and all of its
destinations to migrate to another WebLogic Server within a cluster in response to a server failure
or for scheduled maintenance. For more information on JMS service migration, see “Migration
of JMS-related Services” on page 4-6.

Conf igur ing WebLog ic JMS C lus te r ing

Configuring and Managing WebLogic JMS 4-5

Configuration Guidelines for JMS Clustering
In order to use WebLogic JMS in a clustered environment, follow these guidelines:

1. Configure your clustered environment as described in Setting Up WebLogic Clusters in Using
WebLogic Server Clusters.

2. Identify server targets for any user-defined JMS connection factories using the Administration
Console. For connection factories, you can identify either a single-server target or a cluster
target, which are server instances that are associated with a connection factory to support
clustering.

For more information about these connection factory configuration attributes, see
“Connection Factory Configuration” on page 3-11.

3. Optionally, identify migratable server targets for JMS services using the Administration
Console. For example, for JMS servers, you can identify either a single-server target or a
migratable target, which is a set of server instances in a cluster that can host an “exactly-once”
service like JMS in case of a server failure in the cluster.

For more information on migratable JMS server targets, see “Migration of JMS-related
Services” on page 4-6. For more information about JMS server configuration attributes, see
“JMS Server Configuration” on page 3-5.

Note: You cannot deploy the same destination on more than one JMS server. In addition,
you cannot deploy a JMS server on more than one WebLogic Server.

4. Optionally, you can configure the physical JMS destinations in a cluster as part of a virtual
distributed destination set, as discussed in “Distributed Destination Within a Cluster” on
page 4-4.

What About Failover?
If a server or network failure occurs, JMS message producer and consumer objects will attempt
to transparently failover to another server instance, if one is available. In WebLogic Server
release 9.1 or later, WebLogic JMS message producers automatically attempt to reconnect to an
available server instance without any manual configuration or changes to existing client code. In
WebLogic Server release 9.2 or later, you can use the Administration Console or WebLogic JMS
APIs to configure WebLogic JMS message consumers to attempt to automatically reconnect to
an available server instance. See Automatic Failover for JMS Clients in Programming WebLogic
JMS.

Conf igur ing Advanced JMS Sys tem Resources

4-6 Configuring and Managing WebLogic JMS

Note: For WebLogic Server 9.0 or earlier JMS client applications, refer to Recovering From a
WebLogic Server Failure in Programming WebLogic JMS.

In addition, implementing the service migration feature ensures that exactly-once services, like
JMS, do not introduce a single point of failure for dependent applications in the cluster. See
“Migration of JMS-related Services” on page 4-6. WebLogic Server also supports data migration
at the server level—a complete server instance, and all of the services it hosts can be migrated to
another machine, either automatically, or manually. See Server Migration in Using WebLogic
Server Clusters.

In a clustered environment, WebLogic Server also offers service continuity in the event of a
single server failure by allowing you to configure distributed destinations, where the members of
the unit are usually distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. See “Distributed Destination Within a Cluster” on page 4-4.

BEA also recommends implementing high-availability clustering software, such as VERITAS™
Cluster Server, which provides an integrated, out-of-the-box solution for WebLogic Server-based
applications. Another recommended high-availability software solution is IBM HACMP or the
equivalent.

Migration of JMS-related Services
JMS-related services are singleton services, and, therefore, are not active on all server instances
in a cluster. Instead, they are pinned to a single server in the cluster to preserve data consistency.
To ensure that singleton JMS services do not introduce a single point of failure for dependent
applications in the cluster, migratable JMS services can be manually migrated if the host server
fails. JMS services can also be manually migrated before performing scheduled server
maintenance.

Migratable JMS-related services include:

JMS Server – a management container for the queues and topics in JMS modules that are
targeted to them. See “JMS Server Configuration” on page 3-5.

Store-and-Forward (SAF) Service – store-and-forward messages between local sending and
remote receiving endpoints, even when the remote endpoint is not available at the moment
the messages are sent. Only sending SAF agents configured for JMS SAF (sending
capability only) are migratable. See Configuring and Managing WebLogic
Store-and-Forward.

Migrat ion o f JMS-re la ted Serv ices

Configuring and Managing WebLogic JMS 4-7

Path Service – a persistent map that can be used to store the mapping of a group of
messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. One path
service is configured per cluster. See “Using the WebLogic Path Service” on page 4-8.

Custom Persistent Store – a user-defined, disk-based file store or JDBC-accessible
database for storing subsystem data, such as persistent JMS messages or store-and-forward
messages. See Using the WebLogic Persistent Store in Configuring WebLogic Server
Environments.

You can configure JMS-related services for high availability by using migratable targets. A
migratable target is a special target that can migrate from one server in a cluster to another. As
such, a migratable target provides a way to group migratable services that should move together.
When the migratable target is migrated, all services hosted by that target are migrated.

See Understanding the Service-level Migration Framework in Using WebLogic Server Clusters.

Manual Migration JMS Services
An administrator can manually migrate JMS-related services to a healthy server if the host server
fails or before performing server maintenance. For more information about configuring manual
migration of JMS-related services, see Roadmap for Configuring Manual Migration of
JMS-Related Services in Using WebLogic Server Clusters.

Persistent Store High Availability
As discussed in “What About Failover?” on page 4-5, a JMS service, including a custom
persistent store, can be migrated as part of the “whole server” migration feature, or as part of a
“service-level” migration for migratable JMS-related services. Migratable JMS-related services
cannot use the default persistent file store, so you must configure a custom file store or JDBC
store and target it to the same migratable target as the JMS server or SAF agent associated with
the store. (As a best practice, a path service should use its own custom store and migratable
target).

Migratable custom file stores can be configured on a shared disk that is available to the migratable
target servers in the cluster or can be migrated to a backup server target by using
pre/post-migration scripts. For more information on migrating persistent stores, see Custom Store
Availability for JMS Services in Configuring WebLogic Server Environments.

Conf igur ing Advanced JMS Sys tem Resources

4-8 Configuring and Managing WebLogic JMS

Using the WebLogic Path Service
The WebLogic Server Path Service is a persistent map that can be used to store the mapping of a
group of messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. It
provides a way to enforce ordering by pinning messages to a member of a cluster that is hosting
servlets, distributed queue members, or Store-and-Forward agents. One path service is configured
per cluster. For more information on the Message Unit-of-Order feature, see Using Message
Unit-of-Order in Programming WebLogic JMS.

To configure a path service in a cluster, see Configure path services in the Administration
Console Online Help.

Path Service High Availability
For high availability, a cluster’s path service can be targeted to a migratable target for manual
service migration. However, a migratable path service cannot use the default store, so a custom
store must be configured and targeted to the same migratable target. As an additional best
practice, the path service and its custom store should be the only users of that migratable target.
See Understanding the Service-level Migration Framework in Using WebLogic Server Clusters.

Implementing Message UOO With a Path Service
Consider the following when implementing Message Unit-of-Order in conjunction with Path
Service-based routing:

Each path service mapping is stored in a persistent store. When configuring a path service,
select a persistent store that takes advantage of a high-availability solution. See “Persistent
Store High Availability” on page 4-7.

If one or more producers send messages using the same Unit-of-Order name, all messages
they produce will share the same path entry and have the same member queue destination.

If the required route for a Unit-of-Order name is unreachable, the producer sending the
message will throw a JMSOrderException. The exception is thrown because the JMS
messaging system can not meet the quality-of-service required — only one distributed
destination member consumes messages for a particular Unit-of-Order.

A path entry is automatically deleted when the last producer and last message reference are
deleted.

Depending on your system, using the Path Service may slow system throughput due to a
remote disk operations to create, read, and delete path entries.

Conf igur ing Fo re ign Se rve r Resources to Access Th i rd-Par t y JMS Prov ide rs

Configuring and Managing WebLogic JMS 4-9

A distributed queue and its individual members each represent a unique destination. For
example:

DXQ1 is a distributed queue with queue members Q1 and Q2. DXQ1 also has a
Unit-of-Order name value of Fred mapped by the Path Service to the Q2 member.

– If message M1 is sent to DXQ1, it uses the Path Service to define a route to Q2.

– If message M1 is sent directly to Q2, no routing by the Path Service is performed. This
is because the application selected Q2 directly and the system was not asked to pick a
member from a distributed destination.

– If you want the system to use the Path Service, send messages to the distributed
destination. If not, send directly to the member.

– You can have more than one destination that has the same Unit-of-Order names in a
distributed queue. For example:

Queue Q3 also has a Unit-of-Order name value of Fred. If Q3 is added to DXQ1, there
are now two destinations that have the same Unit-of-Order name in a distributed queue.
Even though, Q3 and DXQ1 share the same Unit-of-Order name value Fred, each has a
unique route and destination that allows the server to continue to provide the correct
message ordering for each destination.

Empty queues before removing them from a distributed queue or adding them to a
distributed queue. Although the Path Service will remove the path entry for the removed
member, there is a short transition period where a message produced may throw a
JMSOrderException when the queue has been removed but the path entry still exists.

Configuring Foreign Server Resources to Access
Third-Party JMS Providers

WebLogic JMS enables you to reference third-party JMS providers within a local WebLogic
Server JNDI tree. With Foreign Server resources in JMS modules, you can quickly map a foreign
JMS provider so that its associated connection factories and destinations appear in the WebLogic
JNDI tree as local JMS objects. Foreign Server resources can also be used to reference remote
instances of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

For more information on integrating remote and foreign JMS providers, see Enhanced 2EE
Support for Using WebLogic JMS With EJBs and Servlets in Programming WebLogic JMS.

These sections provide more information on how a Foreign Server works and a sample
configuration for accessing a remote MQSeries JNDI provider.

Conf igur ing Advanced JMS Sys tem Resources

4-10 Configuring and Managing WebLogic JMS

“How WebLogic JMS Accesses Foreign JMS Providers” on page 4-10

“Creating Foreign Server Resources” on page 4-10

“Creating Foreign Connection Factory Resources” on page 4-11

“Creating a Foreign Destination Resources” on page 4-11

“Sample Configuration for MQSeries JNDI” on page 4-11

How WebLogic JMS Accesses Foreign JMS Providers
When a foreign JMS server is deployed, it creates local connection factory and destination objects
in WebLogic Server JNDI. Then when a foreign connection factory or destination object is
looked up on the local server, that object performs the actual lookup on the remote JNDI
directory, and the foreign object is returned from that directory.

This method makes it easier to configure multiple WebLogic Messaging Bridge destinations,
since the foreign server moves the JNDI Initial Context Factory and Connection URL
configuration details outside of your Messaging Bridge destination configurations. You need
only provide the foreign Connection Factory and Destination JNDI name for each object.

For more information on configuring a Messaging Bridge, see Configuring and Managing the
WebLogic Messaging Bridge.

The ease-of-configuration concept also applies to configuring WebLogic Servlets, EJBs, and
Message-Driven Beans (MDBs) with WebLogic JMS. For example, the
weblogic-ejb-jar.xml file in the MDB can have a local JNDI name, and you can use the
foreign JMS server to control where the MDB receives messages from. For example, you can
deploy the MDB in one environment to talk to one JMS destination and server, and you can
deploy the same weblogic-ejb-jar.xml file to a different server and have it talk to a different
JMS destination without having to unpack and edit the weblogic-ejb-jar.xml file.

Creating Foreign Server Resources
A Foreign Server resource in a JMS module represents a JNDI provider that is outside the
WebLogic JMS server. It contains information that allows a local WebLogic Server instance to
reach a remote JNDI provider, thereby allowing for a number of foreign connection factory and
destination objects to be defined on one JNDI directory.

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete foreign server resources in a system module. For a road map of the foreign server tasks,
see Configure foreign servers in the Administration Console Online Help.

Conf igur ing Fo re ign Se rve r Resources to Access Th i rd-Par t y JMS Prov ide rs

Configuring and Managing WebLogic JMS 4-11

Note: For information on configuring and deploying JMS application modules in an enterprise
application, see Chapter 5, “Configuring JMS Application Modules for Deployment.”

Some foreign server options are dynamically configurable. When options are modified at run
time, only incoming messages are affected; stored messages are not affected. For more
information about the default values for all foreign server options, see ForeignServerBean in
the WebLogic Server MBean Reference.

After defining a foreign server, you can configure connection factory and destination objects.
You can configure one or more connection factories and destinations (queues or topics) for each
foreign server.

Creating Foreign Connection Factory Resources
A Foreign Connection Factory resource in a JMS module contains the JNDI name of the
connection factory in the remote JNDI provider, the JNDI name that the connection factory is
mapped to in the local WebLogic Server JNDI tree, and an optional user name and password.

The foreign connection factory creates non-replicated JNDI objects on each WebLogic Server
instance that the parent foreign server is targeted to. (To create the JNDI object on every node in
a cluster, target the foreign server to the cluster.)

Creating a Foreign Destination Resources
A Foreign Destination resource in a JMS module represents either a queue or a topic. It contains
the destination JNDI name that is looked up on the foreign JNDI provider and the JNDI name that
the destination is mapped to on the local WebLogic Server. When the foreign destination is
looked up on the local server, a lookup is performed on the remote JNDI directory, and the
destination object is returned from that directory.

Sample Configuration for MQSeries JNDI
The following table provides a possible a sample configuration when accessing a remote
MQSeries JNDI provider.

Conf igur ing Advanced JMS Sys tem Resources

4-12 Configuring and Managing WebLogic JMS

Configuring Distributed Destination Resources
A distributed destination resource in a JMS module represents a single set of destinations (queues
or topics) that are accessible as a single, logical destination to a client (for example, a distributed
topic has its own JNDI name). The members of the set are typically distributed across multiple
servers within a cluster, with each member belonging to a separate JMS server. Applications that
use a distributed destination are more highly available than applications that use standalone
destinations because WebLogic JMS provides load balancing and failover for the members of a
distributed destination in a cluster.

Table 4-1 Sample MQSeries Configuration

Foreign JMS Object Option Names Sample Configuration Data

Foreign Server Name
JNDI Initial Context Factory
JNDI Connection URL
JNDI Properties

MQJNDI
com.sun.jndi.fscontext.RefFSContextFactory
file:/MQJNDI/
(If necessary, enter a comma-separated
name=value list of properties.)

Foreign
Connection Factory

Name
Local JNDI Name
Remote JNDI Name
Username
Password

MQ_QCF
mqseries.QCF
QCF
weblogic_jms
weblogic_jms

Foreign
Destination 1

Foreign
Destination 2

Name
Local JNDI Name
Remote JNDI Name

Name
Local JNDI Name
Remote JNDI Name

MQ_QUEUE1
mqseries.QUEUE1
QUEUE_1

MQ_QUEUE2
mqseries.QUEUE2
QUEUE_2

Conf igur ing D is t r ibuted Des t inat ion Resources

Configuring and Managing WebLogic JMS 4-13

These sections provide information on how to create, monitor, and load balance distributed
destinations:

“Uniform Distributed Destinations vs. Weighted Distributed Destinations” on page 4-13

“Creating Uniform Distributed Destinations” on page 4-14

“Creating Weighted Distributed Destinations” on page 4-16

“Monitoring UDD Members” on page 4-16

“Load Balancing Messages Across a Distributed Destination” on page 4-16

“Distributed Destination Migration” on page 4-23

“Distributed Destination Failover” on page 4-24

Uniform Distributed Destinations vs. Weighted Distributed
Destinations
WebLogic Server 9.0 and later offers two types of distributed destination: uniform and weighted.
In releases prior to WebLogic Server 9.0, WebLogic Administrators often needed to manually
configure physical destinations to function as members of a distributed destination. This method
provided the flexibility to create members that were intended to carry extra message load or have
extra capacity; however, such differences often led to administrative and application problems
because such a weighted distributed destination was not deployed consistently across a cluster.
This type of distributed destination is officially referred to as a weighted distributed destination
(or WDD).

A uniform distributed destination (UDD) greatly simplifies the management and development of
distributed destination applications.Using uniform distributed destinations, you no longer need to
create or designate destination members, but instead rely on WebLogic Server to uniformly create
the necessary members on the JMS servers to which a JMS module is targeted. This feature
ensures the consistent configuration of all distributed destination parameters, particularly in
regards to weighting, security, persistence, paging, and quotas.

The weighted distributed destination feature is still available for users who prefer to manually
fine-tune distributed destination members. However, BEA strongly recommends configuring
uniform distributed destinations to avoid possible administrative and application problems due to
a weighted distributed destinations not being deployed consistently across a cluster.

For more information about using a distributed destination with your applications, see Using
Distributed Destinations in Programming WebLogic JMS.

Conf igur ing Advanced JMS Sys tem Resources

4-14 Configuring and Managing WebLogic JMS

Creating Uniform Distributed Destinations
The WebLogic Server Administration Console enables you to configure, modify, target, and
delete UDD resources in JMS system module. By leaving the “Allocate Members Uniformly”
check box selected, the WebLogic Server automatically creates uniformly-configured destination
members on selected JMS servers, or on all JMS servers on a target server or cluster.

Note: For information on configuring and deploying JMS application modules in an enterprise
application, see Chapter 5, “Configuring JMS Application Modules for Deployment.”

For a road map of the uniform distributed destination tasks, see the following topics in the
Administration Console Online Help:

Configure uniform distributed queues

Configure uniform distributed topics

Some uniform distributed destination options are dynamically configurable. When options are
modified at run time, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all uniform distributed destination options, see the
following entries in the WebLogic Server MBean Reference:

UniformDistributedQueueBean

UniformDistributedTopicBean

Targeting Uniform Distributed Queues and Topics
Unlike standalone queue and topics resources in a module, which can only be targeted to a
specific JMS server in a domain, UDDs can be targeted to one or more JMS servers, one or more
WebLogic Server instances, or to a cluster, since the purpose of UDDs is to distribute its members
on every JMS server in a domain. For example, targeting a UDD to a cluster ensures that a
member is uniformly configured on every JMS server in the cluster.

Caution: Changing the targets of a UDD can lead to the removal of a member destination and
the unintentional loss of messages.

You can also use subdeployment groups when configuring UDDs to link specific resources with
the distributed members. For example, if a system module named jmssysmod-jms.xml, is targeted
to three WebLogic Server instances: wlserver1, wlserver2, and wlserver3, each with a configured
JMS server, and you want to target a uniform distributed queue and a connection factory to each
server instance, you can group the UDQ and connection factory in a subdeployment named
servergroup, to ensure that these resources are always linked to the same server instances.

Conf igur ing D is t r ibuted Des t inat ion Resources

Configuring and Managing WebLogic JMS 4-15

Here’s how the servergroup subdeployment resources would look in jmssysmod-jms.xml:

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91">

 <connection-factory name="connfactory">

 <sub-deployment-name>servergroup</sub-deployment-name>

 <jndi-name>jms.connectionfactory.CF</jndi-name>

 </connection-factory>

 <uniform-distributed-queue name="UniformDistributedQueue">

 <sub-deployment-name>servergroup</sub-deployment-name>

 <jndi-name>jms.queue.UDQ</jndi-name>

 <forward-delay>10</forward-delay>

 </uniform-distributed-queue>

</weblogic-jms>

And here’s how the servergroup subdeployment targeting would look in the domain’s
configuration file:

 <jms-system-resource>

 <name>jmssysmod-jms</name>

 <target>cluster1,</target>

 <sub-deployment>

 <name>servergroup</name>

 <target>wlserver1,wlserver2,wlserver3</target>

 </sub-deployment>

 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>

 </jms-system-resource>

Pausing and Resuming Message Operations on UDD Members
You can pause and resume message production, insertion, and/or consumption operations on a
uniform distributed destinations, either programmatically (using JMX and the runtime MBean
API) or administratively (using the Administration Console). In this way, you can control the
JMS subsystem behavior in the event of an external resource failure that would otherwise cause
the JMS subsystem to overload the system by continuously accepting and delivering (and
redelivering) messages.

For more information on the “pause and resume” feature, see “Controlling Message Operations
on Destinations” on page 8-15.

Conf igur ing Advanced JMS Sys tem Resources

4-16 Configuring and Managing WebLogic JMS

Monitoring UDD Members
Runtime statistics for uniform distributed destination members can be monitored via the
Administration console, as described in “Monitoring JMS Statistics” on page 7-2.

Creating Weighted Distributed Destinations
The WebLogic Server Administration Console enables you to configure, modify, target, and
delete WDD resources in JMS system modules. When configuring a distributed topic or
distributed queue, clearing the “Allocate Members Uniformly” check box allows you to manually
select existing queues and topics to add to the distributed destination, and to fine-tune the
weighting of resulting distributed destination members.

For a road map of the weighted distributed destination tasks, see the following topics in the
Administration Console Online Help:

Create weighted distributed queues

Create weighted distributed topics

Some weighted distributed destination options are dynamically configurable. When options are
modified at run time, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all weighted distributed destination options, see the
following entries in the WebLogic Server MBean Reference:

DistributedQueueBean

DistributedTopicBean

Unlike UDDs, WDD members cannot be monitored with the Administration Console or though
runtime MBeans. Also, WDDs members cannot be uniformly targeted to JMS server or
WebLogic Server instances in a domain. Instead, new WDD members must be manually
configured on such instances, and then manually added to the WDD.

Load Balancing Messages Across a Distributed Destination
By using distributed destinations, JMS can spread or balance the messaging load across multiple
destinations, which can result in better use of resources and improved response times. The JMS
load-balancing algorithm determines the physical destinations that messages are sent to, as well
as the physical destinations that consumers are assigned to.

Conf igur ing D is t r ibuted Des t inat ion Resources

Configuring and Managing WebLogic JMS 4-17

Load Balancing Options
WebLogic JMS supports two different algorithms for balancing the message load across multiple
physical destinations within a given distributed destination set. You select one of these load
balancing options when configuring a distributed topic or queue on the Administration Console.

Round-Robin Distribution
In the round-robin algorithm, WebLogic JMS maintains an ordering of physical destinations
within the distributed destination. The messaging load is distributed across the physical
destinations one at a time in the order that they are defined in the WebLogic Server configuration
(config.xml) file. Each WebLogic Server maintains an identical ordering, but may be at a
different point within the ordering. Multiple threads of execution within a single server using a
given distributed destination affect each other with respect to which physical destination a
member is assigned to each time they produce a message. Round-robin is the default algorithm
and doesn’t need to be configured.

For weighted distributed destinations only, if weights are assigned to any of the physical
destinations in the set for a given distributed destination, then those physical destinations appear
multiple times in the ordering.

Random Distribution
The random distribution algorithm uses the weight assigned to the physical destinations to
compute a weighted distribution for the set of physical destinations. The messaging load is
distributed across the physical destinations by pseudo-randomly accessing the distribution. In the
short run, the load will not be directly proportional to the weight. In the long run, the distribution
will approach the limit of the distribution. A pure random distribution can be achieved by setting
all the weights to the same value, which is typically 1.

Adding or removing a member (either administratively or as a result of a WebLogic Server
shutdown/restart event) requires a recomputation of the distribution. Such events should be
infrequent however, and the computation is generally simple, running in O(n) time.

Consumer Load Balancing
When an application creates a consumer, it must provide a destination. If that destination
represents a distributed destination, then WebLogic JMS must find a physical destination that
consumer will receive messages from. The choice of which destination member to use is made
by using one of the load-balancing algorithms described in “Load Balancing Options” on
page 4-17. The choice is made only once: when the consumer is created. From that point on, the
consumer gets messages from that member only.

Conf igur ing Advanced JMS Sys tem Resources

4-18 Configuring and Managing WebLogic JMS

Producer Load Balancing
When a producer sends a message, WebLogic JMS looks at the destination where the message is
being sent. If the destination is a distributed destination, WebLogic JMS makes a decision as to
where the message will be sent. That is, the producer will send to one of the destination members
according to one of the load-balancing algorithms described in “Load Balancing Options” on
page 4-17.

The producer makes such a decision each time it sends a message. However, there is no
compromise of ordering guarantees between a consumer and producer, because consumers are
load balanced once, and are then pinned to a single destination member.

Note: If a producer attempts to send a persistent message to a distributed destination, every
effort is made to first forward the message to distributed members that utilize a persistent
store. However, if none of the distributed members utilize a persistent store, then the
message will still be sent to one of the members according to the selected load-balancing
algorithm.

Load Balancing Heuristics
In addition to the algorithms described in “Load Balancing Options” on page 4-17, WebLogic
JMS uses the following heuristics when choosing an instance of a destination.

Transaction Affinity
When producing multiple messages within a transacted session, an effort is made to send all
messages produced to the same WebLogic Server. Specifically, if a session sends multiple
messages to a single distributed destination, then all of the messages are routed to the same
physical destination. If a session sends multiple messages to multiple different distributed
destinations, an effort is made to choose a set of physical destinations served by the same
WebLogic Server.

Server Affinity

The Server Affinity Enabled parameter on connection factories defines whether a WebLogic
Server that is load balancing consumers or producers across multiple member destinations in a
distributed destination set, will first attempt to load balance across any other local destination
members that are also running on the same WebLogic Server.

Note: The Server Affinity Enabled attribute does not affect queue browsers. Therefore, a queue
browser created on a distributed queue can be pinned to a remote distributed queue
member even when Server Affinity is enabled.

Conf igur ing D is t r ibuted Des t inat ion Resources

Configuring and Managing WebLogic JMS 4-19

To disable server affinity on a connection factory:

1. Follow the directions for navigating to the JMS Connection Factory → Configuration →
General page in Configure load balancing parameters in the Administration Console Online
Help.

2. Define the Server Affinity Enabled field as follows:

If the Server Affinity Enabled check box is selected (True), then a WebLogic Server
that is load balancing consumers or producers across multiple physical destinations in a
distributed destination set, will first attempt to load balance across any other physical
destinations that are also running on the same WebLogic Server.

If the Server Affinity Enabled check box is not selected (False), then a WebLogic
Server will load balance consumers or producers across physical destinations in a
distributed destination set and disregard any other physical destinations also running on
the same WebLogic Server.

3. Click Save.

For more information about how the Server Affinity Enabled setting affects the load balancing
among the members of a distributed destination, see “How Distributed Destination Load
Balancing Is Affected When Server Affinity Is Enabled” on page 4-21.

Queues with Zero Consumers
When load balancing consumers across multiple remote physical queues, if one or more of the
queues have zero consumers, then those queues alone are considered for balancing the load. Once
all the physical queues in the set have at least one consumer, the standard algorithms apply.

In addition, when producers are sending messages, queues with zero consumers are not
considered for message production, unless all instances of the given queue have zero consumers.

Paused Distributed Destination Members
When distributed destinations are paused for message production or insertion, they are not
considered for message production. Similarly, when destinations are paused for consumption,
they are not considered for message production.

For more information on pausing message operations on destinations, see “Controlling Message
Operations on Destinations” on page 8-15.

Conf igur ing Advanced JMS Sys tem Resources

4-20 Configuring and Managing WebLogic JMS

Defeating Load Balancing
Applications can defeat load balancing by directly accessing the individual physical destinations.
That is, if the physical destination has no JNDI name, it can still be referenced using the
createQueue() or createTopic() methods.

For instructions on how to directly access uniform and weighted distributed destination members,
see Accessing Distributed Destination Members in Programming WebLogic JMS.

Connection Factories
Applications that use distributed destinations to distribute or balance their producers and
consumers across multiple physical destinations, but do not want to make a load balancing
decision each time a message is produced, can use a connection factory with the Load Balancing
Enabled parameter disabled. To ensure a fair distribution of the messaging load among a
distributed destination, the initial physical destination (queue or topic) used by producers is
always chosen at random from among the distributed destination members.

To disable load balancing on a connection factory:

1. Follow the directions for navigating to the JMS Connection Factory → Configuration →
General page in Configure load balancing parameters in the Administration Console Online
Help.

2. Define the setting of the Load Balancing Enabled field using the following guidelines:

Load Balancing Enabled = True
For Queue.sender.send() methods, non-anonymous producers are load balanced on
every invocation across the distributed queue members.

For TopicPublish.publish() methods, non-anonymous producers are always pinned
to the same physical topic for every invocation, irrespective of the Load Balancing
Enabled setting.

Load Balancing Enabled = False
Producers always produce to the same physical destination until they fail. At that point,
a new physical destination is chosen.

3. Click Save.

Note: Depending on your implementation, the setting of the Server Affinity Enabled attribute
can affect load balancing preferences for distributed destinations. For more information,
see “How Distributed Destination Load Balancing Is Affected When Server Affinity Is
Enabled” on page 4-21.

Conf igur ing D is t r ibuted Des t inat ion Resources

Configuring and Managing WebLogic JMS 4-21

Anonymous producers (producers that do not designate a destination when created), are
load-balanced each time they switch destinations. If they continue to use the same destination,
then the rules for non-anonymous producers apply (as stated previously).

How Distributed Destination Load Balancing Is Affected When Server Affinity
Is Enabled
Table 4-2 explains how the setting of a connection factory’s Server Affinity Enabled parameter
affects the load balancing preferences for distributed destination members. The order of
preference depends on the type of operation and whether or not durable subscriptions or persistent
messages are involved.

The Server Affinity Enabled parameter for distributed destinations is different from the server
affinity provided by the Default Load Algorithm attribute in the ClusterMBean, which is also
used by the JMS connection factory to create initial context affinity for client connections.

For more information, refer to the Load Balancing for EJBs and RMI Objects and Initial Context
Affinity and Server Affinity for Client Connections sections in Using WebLogic Server Clusters.

Table 4-2 Server Affinity Load Balancing Preferences

When the operation is...
And Server Affinity
Enabled is... Then load balancing preference is given to a...

• createReceiver() for
queues

• createSubscriber()
for topics

True 1. local member without a consumer
2. local member
3. remote member without a consumer
4. remote member

createReceiver() for queues False 1. member without a consumer
2. member

createSubscriber() for topics
(Note: non-durable subscribers)

True or False 1. local member without a consumer
2. local member

Conf igur ing Advanced JMS Sys tem Resources

4-22 Configuring and Managing WebLogic JMS

• createSender() for queues
• createPublisher() for

topics

True or False There is no separate machinery for load
balancing a JMS producer creation. JMS
producers are created on the server on which
your JMS connection is load balanced or pinned.
For more information about load balancing JMS
connections created via a connection factory,
refer to the Load Balancing for EJBs and RMI
Objects and Initial Context Affinity and Server
Affinity for Client Connections sections in
Using WebLogic Server Clusters.

For persistent messages using
QueueSender.send()

True 1. local member with a consumer and a store
2. remote member with a consumer and a store
3. local member with a store
4. remote member with a store
5. local member with a consumer
6. remote member with a consumer
7. local member
8. remote member

For persistent messages using
QueueSender.send()

False 1. member with a consumer and a store
2. member with a store
3. member with a consumer
4. member

For non-persistent messages using
QueueSender.send()

True 1. local member with a consumer
2. remote member with a consumer
3. local member
4. remote member

Table 4-2 Server Affinity Load Balancing Preferences

When the operation is...
And Server Affinity
Enabled is... Then load balancing preference is given to a...

Conf igur ing D is t r ibuted Des t inat ion Resources

Configuring and Managing WebLogic JMS 4-23

Distributed Destination Migration
For clustered JMS implementations that take advantage of the Service Migration feature, a JMS
server and its distributed destination members can be manually migrated to another WebLogic
Server instance within the cluster. Service migrations can take place due to scheduled system
maintenance, as well as in response to a server failure within the cluster.

However, the target WebLogic Server may already be hosting a JMS server with all of its physical
destinations. This can lead to situations where the same WebLogic Server instance hosts two
physical destinations for a single distributed destination. This is permissible in the short term,
since a WebLogic Server instance can host multiple physical destinations for that distributed
destination. However, load balancing in this situation is less effective.

In such a situation, each JMS server on a target WebLogic Server instance operates
independently. This is necessary to avoid merging of the two destination instances, and/or
disabling of one instance, which can make some messages unavailable for a prolonged period of
time. The long-term intent, however, is to eventually re-migrate the migrated JMS server to yet
another WebLogic Server instance in the cluster.

For more information about the configuring JMS migratable targets, see “Migration of
JMS-related Services” on page 4-6.

For non-persistent messages:
• QueueSender.send()
• TopicPublish.publish()

False 1. member with a consumer
2. member

createConnectionConsumer(
) for session pool queues and topics

True or False 1. local member only

Note: Session pools are now used rarely, as they
are not a required part of the J2EE specification,
do not support JTA user transactions, and are
largely superseded by message-driven beans
(MDBs), which are simpler, easier to manage,
and more capable.

Table 4-2 Server Affinity Load Balancing Preferences

When the operation is...
And Server Affinity
Enabled is... Then load balancing preference is given to a...

Conf igur ing Advanced JMS Sys tem Resources

4-24 Configuring and Managing WebLogic JMS

Distributed Destination Failover
If the server instance that is hosting the JMS connections for the JMS producers and JMS
consumers should fail, then all the producers and consumers using these connections are closed
and are not re-created on another server instance in the cluster. Furthermore, if a server instance
that is hosting a JMS destination should fail, then all the JMS consumers for that destination are
closed and not re-created on another server instance in the cluster.

If the distributed queue member on which a queue producer is created should fail, yet the
WebLogic Server instance where the producer’s JMS connection resides is still running, the
producer remains alive and WebLogic JMS will fail it over to another distributed queue member,
irrespective of whether the Load Balancing option is enabled.

For more information about procedures for recovering from a WebLogic Server failure, see
Recovering From a WebLogic Server Failure in Programming WebLogic JMS.

Configuring and Managing WebLogic JMS 5-1

C H A P T E R 5

Configuring JMS Application Modules
for Deployment

These sections explain how to configure JMS application modules for deployment, including
JMS application modules packaged with a Java EE enterprise application and globally-available,
standalone application modules.

“Methods for Configuring JMS Application Modules” on page 5-2

“JMS Schema” on page 5-2

“Packaging JMS Application Modules In an Enterprise Application” on page 5-3

– “Main Steps for Creating Packaged JMS Application Modules” on page 5-3

– “Creating Packaged JMS Application Modules” on page 5-3

– “Referencing a Packaged JMS Application Module In Deployment Descriptor Files” on
page 5-4

– “Packaging an Enterprise Application With a JMS Application Module” on page 5-9

– “Deploying a Packaged JMS Application Module” on page 5-9

“Deploying Standalone JMS Application Modules” on page 5-10

“Generating Unique Runtime JNDI Names for JMS Resources” on page 5-13

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-2 Configuring and Managing WebLogic JMS

Methods for Configuring JMS Application Modules
All JMS resources that can be configured in a JMS system module can also be configured and
managed as deployable application modules, similar to standard Java EE modules. Deployed
JMS application modules are owned by the developer who created and packaged the module,
rather than the administrator who deploys the module; therefore, the administrator has more
limited control over deployed resources.

For example, administrators can only modify (override) certain properties of the resources
specified in the module using the deployment plan (JSR-88) at the time of deployment, but they
cannot dynamically add or delete resources. As with other Java EE modules, configuration
changes for an application module are stored in a deployment plan for the module, leaving the
original module untouched.

Application developers can use these tools to create and deploy (target) system resources

Create a JMS system module, as described in “JMS System Module Configuration” on
page 3-7 and then copy the resulting XML file to another directory and rename it, using
“-jms.xml” as the file suffix.

Create application modules in an enterprise-level IDE or another development tool that
supports editing of XML files, then package the JMS modules with an application and pass
the application to a WebLogic Administrator to deploy.

JMS Schema
In support of the modular deployment model for JMS resources in WebLogic Server 9.x or later,
BEA provides a schema for defining WebLogic JMS resources: weblogic-jmsmd.xsd. When
you create JMS modules (descriptors), the modules must conform to this schema. IDEs and other
tools can validate JMS modules based on the schema.

The weblogic-jmsmd.xsd schema is available online at
http://www.bea.com/ns/weblogic/920/weblogic-jmsmd.xsd.

For an explanation of the JMS resource definitions in the schema, see the corresponding system
module beans in the “System Module MBeans” folder of the WebLogic Server MBean Reference.
The root bean in the JMS module that represents an entire JMS module is named JMSBean.

Packaging JMS Appl ica t i on Modules In an Ente rp r ise Appl i cat ion

Configuring and Managing WebLogic JMS 5-3

Packaging JMS Application Modules In an Enterprise
Application

JMS application modules can be packaged as part of an Enterprise Application Archive (EAR),
as a packaged module. Packaged modules are bundled with an EAR or exploded EAR directory,
and are referenced in the weblogic-application.xml descriptor.

The packaged JMS module is deployed along with the Enterprise Application, and the resources
defined in this module can optionally be made available only to the enclosing application (i.e., as
an application-scoped resource). Such modules are particularly useful when packaged with EJBs
(especially MDBs) or Web Applications that use JMS resources. Using packaged modules
ensures that an application always has required resources and simplifies the process of moving
the application into new environments.

Creating Packaged JMS Application Modules
You create packaged JMS modules using an enterprise-level IDE or another development tool
that supports editing of XML descriptor files. You then deploy and manage standalone modules
using JSR 88-based tools, such as the weblogic.Deployer utility or the WebLogic
Administration Console.

Note: You can create a packaged JMS module using the Administration Console, then copy the
resulting XML file to another directory and rename it, using “-jms.xml” as the file suffix.

Packaged JMS Application Module Requirements
Inside the EAR file, a JMS module must meet the following criteria:

Conforms to the weblogic-jmsmd.xsd schema

Uses “-jms.xml” as the file suffix (for example, MyJMSDescriptor-jms.xml)

Uses a name that is unique within the WebLogic domain and a path that is relative to the
root of the Java EE application

Main Steps for Creating Packaged JMS Application Modules
Follow these steps to configure a packaged JMS module:

1. If necessary, create a JMS server to target the JMS module to, as explained in “Configure JMS
Servers” in the Administration Console Online Help.

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-4 Configuring and Managing WebLogic JMS

2. Create a JMS system module and configure the necessary resources, such as queues or topics,
as described in “Configure JMS system modules and add JMS resources” in the
Administration Console Online Help.

3. The system module is saved in config\jms subdirectory of the domain directory, with a
“-jms.xml” suffix.

4. Copy the system module to a new location, and then:

a. Give the module a unique name within the domain namespace.

b. Delete the JNDI-Name attribute to make the module application-scoped to only the
application.

5. Add references to the JMS resources in the module to all applicable Java EE application
component’s descriptor files, as described in “Referencing a Packaged JMS Application
Module In Deployment Descriptor Files” on page 5-4.

6. Package all application modules in an EAR, as described in “Packaging an Enterprise
Application With a JMS Application Module” on page 5-9.

7. Deploy the EAR, as described in “Deploying a Packaged JMS Application Module” on
page 5-9.

Referencing a Packaged JMS Application Module In
Deployment Descriptor Files
When you package a JMS module with an enterprise application, you must reference the JMS
resources within the module in all applicable descriptor files of the Java EE application
components, including:

The WebLogic enterprise descriptor file, weblogic-application.xml

Any WebLogic deployment descriptor file, such as weblogic-ejb-jar.xml or
weblogic.xml

Any Java EE descriptor file, such as EJB (ejb-jar.xml) or WebApp (web.xml) files

Packaging JMS Appl ica t i on Modules In an Ente rp r ise Appl i cat ion

Configuring and Managing WebLogic JMS 5-5

Referencing JMS Application Modules In a weblogic-application.xml
Descriptor
When including JMS modules in an enterprise application, you must list each JMS module as a
module element of type JMS in the weblogic-application.xml descriptor file packaged with
the application, and a path that is relative to the root of the Java EE application. Here’s an example
of a reference to a JMS module name Workflows:

<module>

 <name>Workflows</name>

 <type>JMS</type>

 <path>jms/Workflows-jms.xml</path>

</module>

Referencing JMS Resources In a WebLogic Application
Within any weblogic-foo descriptor file, such as EJB (weblogic-ejb-jar.xml) or WebApp
(weblogic.xml), the name of the JMS module is followed by a pound (#) separator character,
which is followed by the name of the resource inside the module. For example, a JMS module
named Workflows containing a queue named OrderQueue, would have a name of
Workflows#OrderQueue.

<resource-env-description>

 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>

 <resource-link>Workflows#OrderQueue</resource-link>

</resource-env-description>

Note that the <resource-link> element is unique to WebLogic Server, and is how the resources
that are defined in a JMS Module are referenced (linked) from the various other Java EE
Application components.

Referencing JMS Resources In a Java EE Application
The name element of a JMS Connection Factory resource specified in the JMS module must
match the res-ref-name element defined in the referring EJB or WebApp application descriptor
file. The res-ref-name element maps the resource name (used by java:comp/env) to a module
referenced by an EJB.

For Queue or Topic destination resources specified in the JMS module, the name element must
match the res-env-ref field defined in the referring module descriptor file.

That name is how the link is made between the resource referenced in the EJB or Web Application
module and the resource defined in the JMS module. For example:

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-6 Configuring and Managing WebLogic JMS

<resource-ref>

 <res-ref-name>jms/OrderQueueFactory</res-ref-name>

 <res-type>javax.jms.ConnectionFactory</res-type>

</resource-ref>

<resource-env-ref>

 <res-env-ref-name>jms/OrderQueue</res-env-ref-name>

 <res-env-ref-type>javax.jms.Queue</res-env-ref-type>

 </resource-env-ref>

Sample of a Packaged JMS Application Module In an EJB
Application
The following code snippet is an example of the packaged JMS module,
appscopedejbs-jms.xml, referenced by the descriptor files in Figure 5-1 below.

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91">

 <connection-factory name="ACF">

 </connection-factory>

 <queue name="AppscopeQueue">

 </queue>

</weblogic-jms>

Figure 5-1 illustrates how a JMS connection factory and queue resources in a packaged JMS
module are referenced in an EJB EAR file.

Packaging JMS Appl ica t i on Modules In an Ente rp r ise Appl i cat ion

Configuring and Managing WebLogic JMS 5-7

Figure 5-1 Relationship Between a JMS Application Module and Descriptors In an EJB Application

Packaged JMS Application Module References In weblogic-application.xml
When including JMS modules in an enterprise application, you must list each JMS module as a
module element of type JMS in the weblogic-application.xml descriptor file packaged with
the application, and a path that is relative to the root of the application. For example:

<module>

 <name>AppScopedEJBs</name>

 <type>JMS</type>

 <path>jms/appscopedejbs-jms.xml</path>

</module>

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-8 Configuring and Managing WebLogic JMS

Packaged JMS Application Module References In ejb-jar.xml
If EJBs in your application use connection factories through a JMS module packaged with the
application, you must list the JMS module as a res-ref element and include the res-ref-name
and res-type parameters in the ejb-jar.xml descriptor file packaged with the EJB. This way,
the EJB can lookup the JMS Connection Factory in the application’s local context. For example:

<resource-ref>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <res-type>javax.jms.QueueConnectionFactory</res-type>

</resource-ref>

The res-ref-name element maps the resource name (used by java:comp/env) to a module
referenced by an EJB. The res-type element specifies the module type, which in this case, is
javax.jms.QueueConnectionFactory.

If EJBs in your application use Queues or Topics through a JMS module packaged with the
application, you must list the JMS module as a resource-env-ref element and include the
resource-env-ref-name and resource-env-ref-type parameters in the ejb-jar.xml
descriptor file packaged with the EJB. This way, the EJB can lookup the JMS Queue or Topic in
the application’s the local context. For example:

<resource-env-ref>

 <resource-env-ref-name>jms/Queue</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

The resource-env-ref-name element maps the destination name to a module referenced by an
EJB. The res-type element specifies the name of the Queue, which in this case, is
javax.jms.Queue.

Packaged JMS Application Module References In weblogic-ejb-jar.xml
You must list the referenced JMS module as a res-ref-name element and include the
resource-link parameter in the weblogic-ejb-jar.xml descriptor file packaged with the
EJB.

<resource-description>

 <res-ref-name>jms/QueueFactory</res-ref-name>

 <resource-link>AppScopedEJBs#ACF</resource-link>

</resource-description>

Packaging JMS Appl ica t i on Modules In an Ente rp r ise Appl i cat ion

Configuring and Managing WebLogic JMS 5-9

The res-ref-name element maps the connection factory name to a module referenced by an
EJB. In the resource-link element, the JMS module name is followed by a pound (#) separator
character, which is followed by the name of the resource inside the module. So for this example,
the JMS module AppScopedEJBs containing the connection factory ACF, would have a name
AppScopedEJBs#ACF.

Continuing the example above, the res-ref-name element also maps the Queue name to a
module referenced by an EJB. And in the resource-link element, the queue AppScopedQueue,
would have a name AppScopedEJBs#AppScopedQueue, as follows:

<resource-env-description>

 <resource-env-ref-name>jms/Queue</resource-env-ref-name>

 <resource-link>AppScopedEJBs#AppScopedQueue</resource-link>

</resource-env-description>

Packaging an Enterprise Application With a JMS Application
Module
You package an application with a JDBC module as you would any other enterprise application.
See “Packaging Applications Using wlpackage” in Developing Applications with WebLogic
Server.

Deploying a Packaged JMS Application Module
The deployment of packaged JMS modules follows the same model as all other components of
an application: individual modules can be deployed to a single server, a cluster, or individual
members of a cluster.

A recommended best practice for other application components is to use the java:comp/env
JNDI environment in order to retrieve references to JMS entities, as described in “Referencing
JMS Resources In a Java EE Application” on page 5-5. (However, this practice is not required.)

By definition, packaged JMS modules are included in an enterprise application, and therefore are
deployed when you deploy the enterprise application. For more information about deploying
applications with packaged JMS modules, see “Deploying Applications Using wldeploy” in
Developing Applications with WebLogic Server.

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-10 Configuring and Managing WebLogic JMS

Deploying Standalone JMS Application Modules
Standalone JMS Modules
A JMS application module can be deployed by itself as a standalone module, in which case the
module is available to the server or cluster targeted during the deployment process. JMS modules
deployed in this manner can be reconfigured using the weblogic.Deployer utility or the
Administration Console, but are not available through JMX or WLST.

However, standalone JMS modules are available using the basic JSR-88 deployment tool
provided with WebLogic Server plug-ins (without using WebLogic Server extensions to the API)
to configure, deploy, and redeploy Java EE applications and modules to WebLogic Server. For
information about WebLogic Server deployment, see “Understanding WebLogic Server
Deployment.”

JMS modules deployed in this manner are called standalone modules. Depending on how they
are targeted, the resources inside standalone JMS modules are globally available in a cluster or
locally on a server instance. Standalone JMS modules promote sharing and portability of JMS
resources. You can create a JMS module and distribute it to other developers. Standalone JMS
modules can also be used to move JMS information between domains, such as between the
development domain and the production domain, without extensive manual JMS reconfiguration.

Creating Standalone JMS Application Modules
You can create JMS standalone modules using an enterprise-level IDE or another development
tool that supports editing XML descriptor files. You then deploy and manage standalone modules
using WebLogic Server tools, such as the weblogic.Deployer utility or the WebLogic
Administration Console.

Note: You can create a JMS application module using the Administration Console, then copy
the module as a template for use in your applications, using “-jms.xml” as the file suffix.
You must also change the Name and JNDI-Name elements of the module before deploying
it with your application to avoid a naming conflict in the namespace.

Standalone JMS Application Module Requirements
A standalone JMS module must meet the following criteria:

Conforms to the weblogic-jmsmd.xsd schema

Uses “-jms.xml” as the file suffix (for example, MyJMSDescriptor-jms.xml)

Deplo y ing S tandalone JMS Appl i ca t ion Modules

Configuring and Managing WebLogic JMS 5-11

Uses a name that is unique within the WebLogic domain (cannot conflict with JMS system
modules)

Main Steps for Creating Standalone JMS Application Modules
Follow these steps to configure a standalone JMS module:

1. If necessary, create a JMS server to target the JMS module to, as explained in “Configure JMS
Servers” in the Administration Console Online Help.

2. Create a JMS system module and configure the necessary resources, such as queues or topics,
as described in “Configure JMS system modules and add JMS resources” in the
Administration Console Online Help.

3. The system module is saved in config\jms subdirectory of the domain directory, with a
“-jms.xml” suffix.

4. Copy the system module to a new location and then:

a. Give the module a unique name within the domain namespace.

b. To make the module globally available, uniquely rename the JNDI-Name attributes of the
resources in the module.

c. If necessary, modify any other tunable values, such as destination thresholds or connection
factory flow control parameters.

5. Deploy the module, as described in “Deploying Standalone JMS Application Modules” on
page 5-12.

Sample of a Simple Standalone JMS Application Module
The following code snippet is an example of simple standalone JMS module.

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91">

 <connection-factory name="exampleStandAloneCF">

 <jndi-name>exampleStandAloneCF</jndi-name>

 </connection-factory>

 <queue name="ExampleStandAloneQueue">

 <jndi-name>exampleStandAloneQueue</jndi-name>

 </queue>

</weblogic-jms>

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-12 Configuring and Managing WebLogic JMS

Deploying Standalone JMS Application Modules
The command-line for using the weblogic.Deployer utility to deploy a standalone JMS module
(using the example above) would be:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic \
-name ExampleStandAloneJMS \
-targets examplesServer \
-submoduletargets
ExampleStandaloneQueue@examplesJMSServer,ExampleStandaloneCF@examplesServer \
-deploy ExampleStandAloneJMSModule-jms.xml

For information about deploying standalone JMS modules, see “Deploying JDBC and JMS
Application Modules.”

When you deploy a standalone JMS module, an app-deployment entry is added to the
config.xml file for the domain. For example:

<app-deployment>

 <name>standalone-examples-jms</name>

 <target>MedRecServer</target>

 <module-type>jms</module-type>

 <source-path>C:\modules\standalone-examples-jms.xml</source-path>

 <sub-deployment>

 ...

 </sub-deployment>

 <sub-deployment>

 ...

 </sub-deployment>

</app-deployment>

Note that the source-path for the module can be an absolute path or it can be a relative path
from the domain directory. This differs from the descriptor-file-name path for a system
resource module, which is relative to the domain\config directory.

Tuning Standalone JMS Application Modules
JMS resources deployed within standalone modules can be reconfigured using the using the
weblogic.Deployer utility or the Administration Console, as long as the resources are
considered bindable (such as JNDI names), or tunable (such as destination thresholds). However,
standalone resources are not available through WebLogic JMX APIs or the WebLogic Scripting
Tool (WLST).

Generat ing Un ique Runt ime JNDI Names fo r JMS Resources

Configuring and Managing WebLogic JMS 5-13

However, standalone JMS modules are available using the basic JSR-88 deployment tool
provided with WebLogic Server plug-ins (without using WebLogic Server extensions to the API)
to configure, deploy, and redeploy Java EE applications and modules to WebLogic Server. For
information about WebLogic Server deployment, see “Understanding WebLogic Server
Deployment.”

Additionally, standalone resources cannot be dynamically added or deleted with any WebLogic
Server utility and must be redeployed.

Generating Unique Runtime JNDI Names for JMS
Resources

JMS resources, such as connection factories and destinations, are configured with a JNDI name.
The runtime implementations of these resources are then bound into JNDI using the given names.
In some cases, it is impossible or inconvenient to provide a static JNDI name for these resources.

An example of such a situation is when JMS resources are defined in a JMS module within an
application library. In this case, the library can be referenced from multiple applications, each of
which receive a copy of the application library (and the JMS module it contains) when they are
deployed. If you were to use static JNDI names for the JMS resources in this case, all applications
that refer to the library would attempt to bind the same set of JNDI resources at the same static
JNDI name.

Therefore, the first application to deploy would successfully bind the JMS resources into JNDI,
but subsequent application deployments would fail with exceptions indicating that the JNDI
names are already bound.

To avoid this problem, WebLogic Server provides a facility to dynamically generate a JNDI
name for the following types of JMS resources:

Connection factory

Destination (queue and topic)

Weighted distributed destination

Weighted distributed destination members

Uniform distributed destination

The facility to generate unique names is based on placing a special character sequence called
${APPNAME} in the JNDI name of the above mentioned JMS resources. If you include
${APPNAME} in the JNDI name element of a JMS resource (either in the JMS module

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-14 Configuring and Managing WebLogic JMS

descriptor, or the weblogic-ejb-jar.xml descriptor), the actual JNDI name used at runtime
will have the ${APPNAME} string replaced with the effective application ID (name and possibly
version) of the application hosting the JMS resource.

Note: The ${APPNAME} facility does not imply that you can define your own variables and
substitute their values into the JNDI name at runtime. The string ${APPNAME} is treated
specially by the JMS implementation, and no other strings of the form ${<some name>}
have any special meaning.

Unique Runtime JNDI Name for Local Applications
In the case of JMS modules in a local application, at runtime ${APPNAME} becomes the
name/ID of the application. For example:

 <jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within an application called MyApp, it would result in a runtime JNDI name of:

 MyApp/jms/MyConnectionFactory

Unique Runtime JNDI Name for Application Libraries
In the case of JMS modules in an application library, at runtime ${APPNAME} becomes the
name/ID of the application which refers to the library (not the name of the library). For example:

 <jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within an application library called MyAppLib, and referenced from an
application called MyApp, it would result in a runtime JNDI name of:

 MyApp/jms/MyConnectionFactory

Unique Runtime JNDI Name for Standalone JMS Modules
In the case of JMS modules deployed as stand-alone modules, at runtime ${APPNAME}
becomes the name/ID of the stand-alone module. For example:

 <jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within a stand-alone JMS module MyJMSModule, it would result in a runtime
JNDI name of:

 MyJMSModule/jms/MyConnectionFactory

Generat ing Un ique Runt ime JNDI Names fo r JMS Resources

Configuring and Managing WebLogic JMS 5-15

Where to Use the ${APPNAME} String
The ${APPNAME} string can be used anywhere you refer to the JNDI name of a JMS resource.
For example, in the:

jndi-name or local-jndi-name element of connection-factory elements in the JMS
module descriptor.

jndi-name or local-jndi-name element of queue or topic elements in the JMS
module descriptor.

jndi-name element of distributed-queue or distributed-topic elements in the
JMS module descriptor.

jndi-name element of uniform-distributed-queue or uniform-distributed-topic
elements in the JMS module descriptor.

destination-jndi-name element of message-destination-descriptor elements in
the weblogic-ejb-jar.xml descriptor.

Note: WebLogic EJB also supports the use of the ${APPNAME} string.

jndi-name element of weblogic-enterprise-bean elements in the
weblogic-ejb-jar.xml descriptor.

Example Use-Case
In a single-server environment, Weblogic Integration Worklist uses application-scoped JMS
resources (e.g., queues and connection factories) to support its modular deployment goals.
Application-scoped JMS allows Weblogic Integration to have an application library define the
EJBs, JMS resources, etc., needed by Worklist, and then have users simply include Worklist into
their application by adding a library-ref to their application. However, this prevents Worklist
user from scaling those destinations to the cluster from an application library.

In a clustered environment, users can now substitute the ${APPNAME} string for the queue’s
JNDI name at runtime to make the global JNDI names for the queues unique. This way, the JMS
${APPNAME} parameter is replaced at runtime with the application name of the host application
being merged to the application library.

Conf igur ing JMS App l i cat ion Modules fo r Dep loyment

5-16 Configuring and Managing WebLogic JMS

Configuring and Managing WebLogic JMS 6-1

C H A P T E R 6

Using WLST to Manage JMS Servers and
JMS System Module Resources

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
create and manage JMS servers and JMS system module resources. See “Using the WebLogic
Scripting Tool” and WLST Sample Scripts in the WebLogic Scripting Tool.

“Understanding JMS System Modules and Subdeployments” on page 6-1

“How to Create JMS Servers and JMS System Module Resources” on page 6-3

“How to Modify and Monitor JMS Servers and JMS System Module Resources” on
page 6-6

“Best Practices when Using WLST to Configure JMS Resources” on page 6-7

Understanding JMS System Modules and Subdeployments
A JMS system module is described by the jms-system-resource MBean in the config.xml
file. Basic components of a jms-system-resource MBean are:

name—Name of the module.

target—Server, cluster, or migratable target the module is targeted to.

sub-deployment—A mechanism by which JMS system module resources (such as
queues, topics, and connection factories) are grouped and targeted to a server resource
(such as a JMS server instance, WebLogic server instance, or cluster).

descriptor-file-name—Path and filename of the system module file.

Using WLST to Manage JMS Serve r s and JMS Sys tem Module Resources

6-2 Programming WebLogic JMS

The JMS resources of a system module are located in a module descriptor file that conforms to
the weblogic-jmsmd.xml schema. In Figure 6-1, the module is named myModule-jms.xml and it
contains JMS system resource definitions for a connection factory and a queue. The
sub-deployment-name element is used to group and target JMS resources in the
myModule-jms.xml file to targets in the config.xml. You have to provide a value for the
sub-deployment-name element when using WLST. For more information on subdeployments,
see “JMS System Module and Resource Subdeployment Targeting”. In Figure 6-1, the
sub-deployment-name DeployToJMSServer1is used to group and target the connection factory
CConfac and the queue CQueue in the myModule-jms module.

For more information on how to use JMS resources, see “Understanding JMS Resource
Configuration” in Configuring and Managing WebLogic JMS.

Figure 6-1 Subdeployment Architecture

config.xml jms/myModule-jms.xml

.

.

.
<jms-system-resource>
<name>myModule-jms</name>
<target>examplesServer</target>

<sub-deployment>
<name>DeployToJMSServer1</name>
<target>myJMSServer</target>

</sub-deployment>
<descriptor-file-name>
jms/myModule-jms.xml

</descriptor-file-name>
.
.
.
<jms-server>
<name>myJMSServer</name>
<target>examplesServer</target>

.

.

.

<weblogic-jms
 xmlns=”http://www.bea.com/ns/weblogic/90
.

<connection-factory name=”CConFac”>
.

<sub-deployment-name>
DeployToJMSServer1

</sub-deployment-name>
<jndi-name>CConFac</jndi-name>

</connection-factory name>
<queue name=”CQueue”>

<sub-deployment-name>
DeployToJMSServer1

</sub-deployment-name>
<jndi-name>CQueue</jndi-name>

</queue>
</weblogic-jms>

How to Create JMS Se rve rs and JMS Sys tem Modu le Resources

Programming WebLogic JMS 6-3

How to Create JMS Servers and JMS System Module
Resources

Basic tasks you need to perform when creating JMS system resources with WLST are:

Start an edit session.

Create a JMS system module that includes JMS resources, such as queues, topics, and
connection factories.

Create JMS server resources.

After you have established an edit session, use the following steps configure JMS servers and
system module resources:

1. Get the WebLogic Server MBean object for the server you want to configure resources. For
example:

servermb=getMBean("Servers/examplesServer")
if servermb is None:

print '@@@ No server MBean found'

2. Create your system resource. For example:

jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")

3. Target your system resource to a WebLogic Server instance. For example:

jmsMySystemResource.addTarget(servermb)

4. Get your system resource object. For example:

theJMSResource = jmsMySystemResource.getJMSResource()

5. Create resources for the module, such as queues, topics, and connection factories. For
example:

connfact1 = theJMSResource.createConnectionFactory(factoryName)

jmsqueue1 = theJMSResource.createQueue(queueName)

6. Configure resource attributes. For example:

connfact1.setJNDIName(factoryName)
jmsqueue1.setJNDIName(queueName)

7. Create a subdeployment name for system resources . See “Understanding JMS System
Modules and Subdeployments” on page 6-1.For example:

Using WLST to Manage JMS Serve r s and JMS Sys tem Module Resources

6-4 Programming WebLogic JMS

connfact1.setSubDeploymentName('DeployToJMSServer1')
jmsqueue1.setSubDeploymentName('DeployToJMSServer1')

8. Create a JMS server. For example:

jmsserver1mb = create(jmsServerName,'JMSServer')

9. Target your JMS server to a WebLogic Server instance. For example:

jmsserver1mb.addTarget(servermb)

10. Create a subdeployment object using the value you provided for the sub-deployment-name
element. This step groups the system resources in module to a sub-deployment element in
the config.xml. For example:

subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer1
')

11. Target the subdeployment to a server resource such as a JMS server instance, WebLogic
Server instance, or cluster. For example:

subDep1mb.addTarget(jmsserver1mb)

Listing 6-1 WLST Script to Create JMS System Resources

"""

This script starts an edit session, creates a JMS Server,

targets the jms server to the server WLST is connected to and creates

a JMS System module with a jms queue and connection factory. The

jms queues and topics are targeted using sub-deployments.

"""

import sys

from java.lang import System

print "@@@ Starting the script ..."

myJmsSystemResource = "CapiQueue-jms"

factoryName = "CConFac"

jmsServerName = "myJMSServer"

queueName = "CQueue"

url = sys.argv[1]

How to Create JMS Se rve rs and JMS Sys tem Modu le Resources

Programming WebLogic JMS 6-5

usr = sys.argv[2]

password = sys.argv[3]

connect(usr,password, url)

edit()

startEdit()

//Step 1

servermb=getMBean("Servers/examplesServer")

if servermb is None:

print '@@@ No server MBean found'

else:

//Step 2

jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")

//Step 3

jmsMySystemResource.addTarget(servermb)

//Step 4

theJMSResource = jmsMySystemResource.getJMSResource()

//Step 5

connfact1 = theJMSResource.createConnectionFactory(factoryName)

jmsqueue1 = theJMSResource.createQueue(queueName)

//Step 6

connfact1.setJNDIName(factoryName)

jmsqueue1.setJNDIName(queueName)

//Step 7

jmsqueue1.setSubDeploymentName('DeployToJMSServer1')

connfact1.setSubDeploymentName('DeployToJMSServer1')

//Step 8

jmsserver1mb = create(jmsServerName,'JMSServer')

//Step 9

jmsserver1mb.addTarget(servermb)

Using WLST to Manage JMS Serve r s and JMS Sys tem Module Resources

6-6 Programming WebLogic JMS

//Step 10

subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer

1')

//Step 11

subDep1mb.addTarget(jmsserver1mb)

.

.

.

How to Modify and Monitor JMS Servers and JMS System
Module Resources

You can modify or monitor JMS objects and attributes by using the appropriate method available
from the MBean.

You can modify JMS objects and attributes using the set, target, untarget, and delete
methods.

You can monitor JMS runtime objects using get methods.

For more information, see Navigating and Editing MBeans in the WebLogic Scripting Tool.

Listing 6-2 WLST Script to Modify JMS Objects

.

.

print '@@@ delete system resource'

jmsMySystemResource = delete("CapiQueue-jms","JMSSystemResource")

print '@@@ delete server'

jmsserver1mb = delete(jmsServerName,'JMSServer')

.

.

.

Best P ract ices when Us ing WL ST to Conf igure JMS Resources

Programming WebLogic JMS 6-7

Best Practices when Using WLST to Configure JMS
Resources

This section provides best practices information when using WLST to configure JMS servers and
JMS system module resources:

Trap for Null MBean objects (such as servers, JMS servers, modules) before trying to
manipulate the MBean object.

Use a meaningful name when providing a subdeployment name. For example, the
subdeployment name DeployToJMSServer1 tells you that all subdeployments with this
name are deployed to JMSServer1.

BEA provides sample scripts and utilities to configure WebLogic domain resources using
WLST Offline and/or WLST Online. For more information, see the wlst Project Home.

Using WLST to Manage JMS Serve r s and JMS Sys tem Module Resources

6-8 Programming WebLogic JMS

Configuring and Managing WebLogic JMS 7-1

C H A P T E R 7

Monitoring JMS Statistics and
Managing Messages

This release of WebLogic Server includes the WebLogic Diagnostic Service, which is a
monitoring and diagnostic service that runs within the WebLogic Server process and participates
in the standard server life cycle. This service enables you to create, collect, analyze, archive, and
access diagnostic data generated by a running server and the applications deployed within its
containers.

For Weblogic JMS, you can use the enhanced runtime statistics to monitor the JMS servers and
destination resources in your WebLogic domain to see if there is a problem. If there is a problem,
you can use profiling to determine which application is the source of the problem. Once you’ve
narrowed it down to the application, you can then use JMS debugging features to find the problem
within the application.

For more information on configuring JMS diagnostic notifications, debugging options, message
life cycle logging, and controlling message operations on JMS destinations, see “Troubleshooting
WebLogic JMS” on page 8-1.

Message administration tools in this release enhance your ability to view and browse all
messages, and to manipulate most messages in a running JMS Server, using either the
Administration Console or through new public runtime APIs. These message management
enhancements include message browsing (for sorting), message manipulation (such as create,
move, and delete), message import and export, as well as transaction management, durable
subscriber management, and JMS client connection management.

The following sections explain how to monitor JMS resource statistics and how to manage your
JMS messages from the Administration Console:

“Monitoring JMS Statistics” on page 7-2

Moni to r ing JMS S tat is t i cs and Managing Messages

7-2 Configuring and Managing WebLogic JMS

“Managing JMS Messages” on page 7-5

For more information about the WebLogic Diagnostic Service, see Understanding the WebLogic
Diagnostic Service.

Monitoring JMS Statistics
Once WebLogic JMS has been configured, applications can begin sending and receiving
messages through the JMS API, as described in “Developing a Basic JMS Application” in
Programming WebLogic JMS.

You can monitor statistics for the following JMS resources: JMS servers, connections, queue and
topic destinations, JMS server session pools, pooled connections, active sessions, message
producers, message consumers, and durable subscriptions on JMS topics.

JMS statistics continue to increment as long as the server is running. Statistics are reset only when
the server is rebooted.

Monitoring JMS Servers
You can monitor statistics on active JMS servers defined in your domain via the Administration
Console or through the JMSServerRuntimeMBean. JMS servers act as management containers
for JMS queue and topic resources within JMS modules that are specifically targeted to JMS
servers.

For more information on using the Administration Console to monitor JMS servers, see
“Monitoring JMS Servers” in the Administration Console Online Help.

When monitoring JMS servers with the Administration Console, you can also monitor statistics
for active destinations, transactions, connections, and session pools.

Monitoring Active JMS Destinations
You can monitor statistics on all the active destinations currently targeted to a JMS server. JMS
destinations identify queue or topic destination types within JMS modules that are specifically
targeted to JMS servers.

For more information, see “JMS Servers: Monitoring: Active Destinations” in the Administration
Console Online Help.

Monitoring Active JMS Transactions
You can monitor view active transactions running on a JMS server.

Moni to r ing JMS Stat is t i cs

Configuring and Managing WebLogic JMS 7-3

For more information on the runtime statistics provided for active JMS transactions, see “JMS
Servers: Monitoring: Active Transactions” in the Administration Console Online Help.

Monitoring Active JMS Connections, Sessions, Consumers, and Producers
You can monitor statistics on all the active JMS connections to a JMS server. A JMS connection
is an open communication channel to the messaging system.

For more information on the runtime statistics provided for active JMS server connections, see
“JMS Servers: Monitoring: Active Connections” in the Administration Console Online Help.

Using the JMS server’s Active Connections monitoring page, you can also monitor statistics on
all the active JMS sessions, consumers, and producers on your server. A session defines a serial
order for both the messages produced and the messages consumed, and can create multiple
message producers and message consumers. The same thread can be used for producing and
consuming messages.

For more information on using the Administration Console to monitor session, consumers, and
producers, see the following topics in the Administration Console Online Help:

JMS Servers: Monitoring: Active Connections: Sessions

JMS Servers: Monitoring: Active Connections: Sessions: Consumers

JMS Servers: Monitoring: Active Connections: Sessions: Producers

Monitoring Active JMS Session Pools
You can monitor statistics on all the active JMS session pools defined for a JMS server. Session
pools enable an application to process messages concurrently.

For more information on the runtime statistics provided for active JMS session pools, see “JMS
Servers: Monitoring: Active Session Pools” in the Administration Console Online Help.

Monitoring Queues
You can monitor statistics on queue resources in JMS modules via the Administration Console
or through the JMSDestinationRuntimeMBean. A JMS queue defines a point-to-point destination
type for a JMS server. Queues are used for synchronous peer communications. A message
delivered to a queue will be distributed to one consumer.

For more information on using the Administration Console to monitor queue resources, see
“Monitoring Queues in JMS System Modules” in the Administration Console Online Help.

Moni to r ing JMS S tat is t i cs and Managing Messages

7-4 Configuring and Managing WebLogic JMS

You can also use the Administration Console to manage messages on queues, as described in
“Managing JMS Messages” on page 7-5.

Monitoring Topics
You can monitor statistics on topic resources in JMS modules via the Administration Console or
through the JMSDestinationRuntimeMBean. A JMS topic identifies a publish/subscribe
destination type for a JMS server. Topics are used for asynchronous peer communications. A
message delivered to a topic will be distributed to all topic consumers.

For more information on using the Administration Console to monitor topic resources, see
“Monitor Topics in JMS System Modules” in the Administration Console Online Help.

Monitoring Durable Subscribers for Topics
You can monitor statistics on all the durable subscribers that are running on your JMS topics via
the Administration Console or through the JMSDurableSubscriberRuntimeMBean. Durable
subscribers allow you to assign a name to a topic subscriber and associate it with a user or
application. WebLogic stores durable subscribers in a persistent file-base store or
JDBC-accessible database until the message has been delivered to the subscribers or has expired,
even if those subscribers are not active at the time that the message is delivered.

You can use the Administration Console to manage durable subscribers running on topics, as
described in “Managing JMS Messages” on page 7-5.

Monitoring Uniform Distributed Queues
You can monitor statistics on uniform distributed queue resources in JMS modules via the
Administration Console or through the JMSDestinationRuntimeMBean. A distributed queue
resource is a single set of queues that are accessible as a single, logical destination to a client (for
example, a distributed topic has its own JNDI name). The members of the unit are usually
distributed across multiple servers within a cluster, with each member belonging to a separate
JMS server.

For more information on using the Administration Console to monitor uniform distributed queue
resources, see “Monitoring Uniform Distributed Queues in JMS System Modules” in the
Administration Console Online Help.

You can also use the Administration Console to manage messages on distributed queues, as
described in “Managing JMS Messages” on page 7-5.

Managing JMS Messages

Configuring and Managing WebLogic JMS 7-5

Monitoring Uniform Distributed Topics
You can monitor statistics on uniform distributed topic resources in JMS modules via the
Administration Console or through the JMSDestinationRuntimeMBean. A distributed topic
resource is a single set of topics that are accessible as a single, logical destination to a client (for
example, a distributed topic has its own JNDI name). The members of the unit are usually
distributed across multiple servers within a cluster, with each member belonging to a separate
JMS server.

For more information on using the Administration Console to monitor uniform distributed topic
resources, see “Monitoring Uniform Distributed Topics in JMS System Modules” in the
Administration Console Online Help.

Monitoring Pooled JMS Connections
You can monitor statistics on all the active pooled JMS connections on your server. A pooled
JMS connection is a session pool used by EJBs and servlets that use a resource-reference element
in their EJB or servlet deployment descriptor to define their JMS connection factories.

For more information, see “JMS Servers: Monitoring: Active Pooled Connections” in the
Administration Console Online Help.

Managing JMS Messages
The Weblogic JMS message monitoring and management features allow you to create new
messages, delete selected messages, move messages to another queue, export message contents
to another file, import message contents from another file, or drain all the messages from the
queue.

JMS Message Management Using Java APIs
WebLogic Java Management Extensions (JMX) enables you to access the
JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean to manage
messages on JMS queues and topic durable subscribers. For more information, see “Accessing
WebLogic Server MBeans with JMX” in Developing Custom Management Utilities with JMX.

Moni to r ing JMS S tat is t i cs and Managing Messages

7-6 Configuring and Managing WebLogic JMS

JMS Message Management Using the Administration
Console
The JMS Message Management page of the Administration Console summarizes the messages
that are available on the standalone queue, distributed queue, or durable topic subscriber you that
you are monitoring. You can page through messages and/or retrieve a set of messages that meet
filtering criteria you specify. You can also customize the message display to show only the
information you need. From this page, you can select a message to display its contents, create new
messages, delete one or more messages, move messages, import and export messages, and drain
(delete) all of the messages from the queue or durable subscription.

For more information on using the Administration Console to manage messages on standalone
queues, distributed queues, and durable subscribers, see the following instructions in the
Administration Console Online Help:

 Manage queue messages

Manage distributed queue messages

Manage durable subscribers

Each message management function is described in detail in the following sections.

Monitoring Message Runtime Information
By default, the JMS Message Management page displays the information about each message on
a queue or durable subscriber in a table with the following columns.

ID - A unique identifier for the message.

Type - The JMS message type, such as BytesMessage, TextMessage, StreamMessage,
ObjectMessage, MapMessage, or XMLMessage.

CorrId - A correlation ID is a user-defined identifier for the message, often used to
correlate messages about the same subject

Priority - An indicator of the level of importance or urgency of the message, with 0 as the
lowest priority and 9 as the highest. Usually, 0-4 are gradients of normal priority and 5-9
are gradients of expedited priority. Priority is set to 4 by default.

Timestamp - The time the message arrived on the queue.

Managing JMS Messages

Configuring and Managing WebLogic JMS 7-7

You can change the order in which the columns are listed and choose which of the columns will
be included in and which excluded from the display. You can also increase the number of
messages displayed on the page from 10 (default) to 20 or 30.

By default, messages are displayed in the order in which they arrived at the destination. You can
choose to display the messages in either ascending or descending order by message ID instead by
clicking on the ID column header. However, you cannot restore the initial sort order once you
have altered it; you must return to the JMS System Module Resources page and reselect the queue
to see the messages in order of arrival again.

Querying Messages
The Message Selector field at the top of the JMS Message Management page enables you to filter
the messages on the queue based on any valid JMS message header or property with the exception
of JMSXDeliveryCount. A message selector is a boolean expression. It consists of a String with
a syntax similar to the where clause of an SQL select statement.

The following are examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')

and version > 3.0

hireyear between 1990 and 1992

or fireyear is not null

fireyear - hireyear > 4

For more information about the message selector syntax, see the javax.jms.Message Javadoc.

Moving Messages
You can forward a message from a source destination to a target destination under the following
conditions:

The source destination is either a queue or a topic durable subscriber in the
consumption-paused state.

Note: For more information about consumption-paused states, see “Consumption Pause and
Consumption Resume” on page 8-21.

The message state is either visible, delayed, or ordered.

The target destination is:

Moni to r ing JMS S tat is t i cs and Managing Messages

7-8 Configuring and Managing WebLogic JMS

– in the same cluster as the source destination

– either a queue, a topic, or a topic durable subscriber

– not in the production-paused state

Note: For more information about production-paused states, see “Production Pause and
Production Resume” on page 8-17.

The message identifier does not change when you move a message. If the message being moved
already exists on the target destination, a duplicate message with the same identifier is added to
the destination.

Deleting Messages
You can delete a specific message or drain all messages from a queue or topic durable subscriber
under the following conditions:

The destination is in the consumption-paused state.

Note: For more information about consumption-paused states, see “Consumption Pause and
Consumption Resume” on page 8-21.

The message state is either visible, delayed, or ordered.

The destination is locked while the delete operation occurs. If there is a failure during the delete
operation, it is possible that only a portion of the messages selected will be deleted.

Creating New Messages
You can create new messages to be sent to a destination. To produce a new message, provide the
following information:

Message type – such as BytesMessage, TextMessage, StreamMessage, ObjectMessage,
MapMessage, or XMLMessage.

Correlation ID – a user-defined identifier for the message, often used to correlate messages
about the same subject.

Expiration – specifies the expiration, or time-to-live value, for a message.

Priority – an indicator of the level of importance or urgency of the message, with 0 as the
lowest priority and 9 as the highest. Usually, 0-4 are gradients of normal priority and 5-9
are gradients of expedited priority. Priority is set to 4 by default.

Delivery Mode – specifies PERSISTENT or NON_PERSISTENT messaging.

Managing JMS Messages

Configuring and Managing WebLogic JMS 7-9

Delivery Time – defines the earliest absolute time at which a message can be delivered to a
consumer.

Redelivery Limit – the number of redelivery tries a message can have before it is moved to
an error destination.

Header – every JMS message contains a standard set of header fields that is included by
default and available to message consumers. Some fields can be set by the message
producers.

Body – the message content.

For more information on JMS message properties, see “Understanding WebLogic JMS” in
Programming WebLogic JMS.

Importing Messages
Importing a message in XML format results in the creation or replacement of a message on the
specified destination. The target destination for an imported message can be either a queue or a
topic durable subscriber. The destination must be in a production-paused state.

Note: For more information about production-paused states, see “Production Pause and
Production Resume” on page 8-17.

If a message being replaced with an imported file is associated with a JMS transaction, the
imported replacement will still be associated with the transaction.

When a new message is created or an existing message is replaced with an imported file, the
following rules apply:

Quota limits are enforced for both new messages and replacement messages.

The delivery count of the imported message is set to zero.

A new message ID is generated for each imported message.

If the imported message specifies a delivery mode of PERSISTENT and the target
destination has no store, the delivery mode is changed to NON-PERSISTENT.

Note: While importing a JMS message is similar in result to creating or publishing a new JMS
message, messages with a defined (non-zero) ExpirationTime behave differently when
imported, but since the message management API’s ExpirationTime is absolute for
imported messages. Whereas, the message send API’s ExpirationTime is relative to the
time the message is sent.

Moni to r ing JMS S tat is t i cs and Managing Messages

7-10 Configuring and Managing WebLogic JMS

Exporting Messages
Exporting a message results in a JMS message that is converted to either XML or serialized
format. The source destination must be in a production-paused state.

Note: For more information about production-paused states, see “Production Pause and
Production Resume” on page 8-17.

Temporary destinations enable an application to create a destination, as required, without the
system administration overhead associated with configuring and creating a server-defined
destination.

Caution: Generally, JMS applications can use the JMSReplyTo header field to return a
response to a request. However, the information in the JMSReplyTo field is not a
usable destination object and will not be valid following export or import.

Managing Transactions
When a message is produced or consumed as part of a global transaction, the message is
essentially locked by the transaction and will remain locked until the transaction coordinator
either commits or aborts the JMS branch. If the coordinator is not able to communicate the
outcome of the transaction to the JMS server due to a failure, the message(s) associated with the
transaction may remain pending for a long time.

The JMS server transaction management features available through the Administration Console
allow you to:

Identify in-progress transactions for which a JMS server is a participant.

Identify messages associated with a JMS transaction branch.

Force the outcome of pending JMS transaction branches, either by committing them or
rolling them back.

Manage JMS client connections.

You can view all the JMS connections on a particular WebLogic Server instance and get address
and port information for each process that is holding a connection. You can also terminate a
connection. For more information on using the Administration Console to manage transactions
for a JMS server, see “JMS Servers: Monitoring: Active Transactions” in the Administration
Console Online Help.

For more information on JMS transactions, see “Using Transactions with WebLogic JMS” in
Programming WebLogic JMS.

Managing JMS Messages

Configuring and Managing WebLogic JMS 7-11

Managing Durable Topic Subscribers
You can view a list of durable subscribers for a given topic, browse messages associated with a
subscriber, create and delete subscribers, and delete selected messages or purge all messages for
a subscription.

For more information, see Manage durable subscribers in the Administration Console Online
Help.

Moni to r ing JMS S tat is t i cs and Managing Messages

7-12 Configuring and Managing WebLogic JMS

Configuring and Managing WebLogic JMS 8-1

C H A P T E R 8

Troubleshooting WebLogic JMS

This release of WebLogic Server includes the WebLogic Diagnostic Service, which is a
monitoring and diagnostic service that runs within the WebLogic Server process and participates
in the standard server life cycle. This service enables you to create, collect, analyze, archive, and
access diagnostic data generated by a running server and the applications deployed within its
containers. This data provides insight into the runtime performance of servers and applications
and enables you to isolate and diagnose faults when they occur. WebLogic JMS takes advantage
of this service to provide enhanced runtime statistics, notifications sent to queues and topics,
message life cycle logging, and debugging to help you keep your WebLogic domain running
smoothly.

For more information on monitoring JMS statistics and managing JMS messages, see
“Monitoring JMS Statistics and Managing Messages” on page 7-1.

The following sections explain how to troubleshoot WebLogic JMS messages and
configurations:

“Configuring Notifications for JMS” on page 8-2

“Debugging JMS” on page 8-2

“Message Life Cycle Logging” on page 8-7

“JMS Message Log Content” on page 8-9

“Controlling Message Operations on Destinations” on page 8-15

Troub leshoot ing WebLog ic JMS

8-2 Configuring and Managing WebLogic JMS

Configuring Notifications for JMS
A notification is an action that is triggered when a watch rule evaluates to true. JMS notifications
are used to post messages to JMS topics and/or queues in response to the triggering of an
associated watch. In the system resource configuration file, the elements
<destination-jndi-name> and <connection-factory-jndi-name> define how the
message is to be delivered.

For more information, see Configuring Notifications in Configuring and Using WebLogic
Diagnostic Framework.

Debugging JMS
Once you have narrowed the problem down to a specific application, you can activate WebLogic
Server’s debugging features to track down the specific problem within the application.

Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration attribute to
true. Optionally, you can also set the server StdoutSeverity to Debug.

You can modify the configuration attribute in any of the following ways.

Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJMSBackEnd=true

-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

Enable Debugging Using the WebLogic Server Administration Console
Use the WebLogic Server Administration Console to set the debugging values:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit (see Use the Change Center).

2. In the left pane of the console, expand Environment and select Servers.

3. On the Summary of Servers page, click the server on which you want to enable or disable
debugging to open the settings page for that server.

Debugg ing JMS

Configuring and Managing WebLogic JMS 8-3

4. Click Debug.

5. Expand default.

6. Select the check box for the debug scopes or attributes you want to modify.

7. Select Enable to enable (or Disable to disable) the debug scopes or attributes you have
checked.

8. To activate these changes, in the Change Center of the Administration Console, click Activate
Changes.
Not all changes take effect immediately—some require a restart (see Use the Change Center).

This method is dynamic and can be used to enable debugging while the server is running.

Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

The main scope, weblogic, does not appear in the graphic; jms is a sub-scope within weblogic.
Note that the fully-qualified DebugScope for DebugJMSBackEnd is weblogic.jms.backend.

The debug.py program contains the following code:

user='user1'

password='password'

url='t3://localhost:7001'

connect(user, password, url)

edit()

cd('Servers/myserver/ServerDebug/myserver')

startEdit()

set('DebugJMSBackEnd','true')

save()

activate()

Note that you can also use WLST from Java. The following example shows a Java file used to set
debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;

import java.io.*;

import weblogic.jndi.Environment;

import javax.naming.Context;

Troub leshoot ing WebLog ic JMS

8-4 Configuring and Managing WebLogic JMS

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class test {

 public static void main(String args[]) {

try {

WLSTInterpreter interpreter = null;

String user="user1";

String pass="pw12ab";

String url ="t3://localhost:7001";

Environment env = new Environment();

env.setProviderUrl(url);

env.setSecurityPrincipal(user);

env.setSecurityCredentials(pass);

Context ctx = env.getInitialContext();

interpreter = new WLSTInterpreter();

interpreter.exec

("connect('"+user+"','"+pass+"','"+url+"')");

interpreter.exec("edit()");

interpreter.exec("startEdit()");

interpreter.exec

("cd('Servers/myserver/ServerDebug/myserver')");

interpreter.exec("set('DebugJMSBackEnd','true')");

interpreter.exec("save()");

interpreter.exec("activate()");

} catch (Exception e) {

System.out.println("Exception "+e);

}

}

}

Using the WLST is a dynamic method and can be used to enable debugging while the server is
running.

Debugg ing JMS

Configuring and Managing WebLogic JMS 8-5

Changes to the config.xml File
Changes in debugging characteristics, through console, or WLST, or command line are persisted
in the config.xml file.

This sample config.xml fragment shows a transaction debug scope (set of debug attributes) and
a single JMS attribute.

Listing 8-1 Example Debugging Stanza for JMS

<server>

<name>myserver</name>

<server-debug>

<debug-scope>

<name>weblogic.transaction</name>

<enabled>true</enabled>

</debug-scope>

<debug-jms-back-end>true</debug-jms-back-end>

</server-debug>

</server>

JMS Debugging Scopes
It is possible to see the tree view of the DebugScope definitions using java
weblogic.diagnostics.debug.DebugScopeViewer.

You can enable the following registered debugging scopes for JMS:

 DebugJMSBackEnd (scope weblogic.jms.backend) – prints information for debugging
the JMS Back End (including some information used for distributed destinations and JMS
SAF).

DebugJMSFrontEnd (scope weblogic.jms.frontend) – prints information for debugging
the JMS Front End (including some information used for multicast).

DebugJMSCommon (scope weblogic.jms.common) – prints information for debugging
JMS common methods (including some information from the client JMS producer).

DebugJMSConfig (scope weblogic.jms.config) – prints information related to JMS
configuration (backend, distributed destinations, and foreign servers).

Troub leshoot ing WebLog ic JMS

8-6 Configuring and Managing WebLogic JMS

DebugJMSBoot (scope weblogic.jms.boot) – prints some messages at boot time
regarding what store the JMS server is using and its configured destinations.

DebugJMSDispatcher (scope weblogic.jms.dispatcher) – prints information related
to PeerGone() occurrences.

DebugJMSDistTopic (scope weblogic.jms.config) – prints information about
distributed topics, and primary bind and unbind information.

DebugJMSPauseResume (scope weblogic.jms.pauseresume) – prints information about
(backend) pause/resume destination operations.

DebugJMSModule (scope weblogic.jms.module) – prints a lot of information about JMS
module operations and message life cycle.

DebugJMSMessagePath (scope weblogic.jms.messagePath) – prints information
following a message through the message path (client, frontend, backend), including the
message identifier.

DebugJMSSAF (scope weblogic.jms.saf) – prints information about JMS SAF
(store-and-forward) destinations.

DebugJMSCDS (scope weblogic.jms.CDS) – prints detailed information about JMS
“Configuration Directory Service” (used by various sub-systems to get the notification of
configuration changes to the JMS resources configured in the server from within a cluster
as well as across the clusters and domains).

DebugJMSWrappers (scope weblogic.jms.wrappers) – prints information pooling and
wrapping of JMS connections, sessions, and other objects, used inside an EJB or servlet
using the resource-reference element in the deployment descriptor.

Messaging Kernel and Path Service Debugging Scopes
You can enable the following registered debugging scopes can be enabled for the messaging
kernel and the Path service.

– DebugMessagingKernel (scope weblogic.messaging.kernel) – prints information
about the messaging kernal.

– DebugMessagingKernelBoot (scope weblogic.messaging.kernelboot) – prints
information about booting the messaging kernal (processing messages).

– DebugPathSvc (scope weblogic.messaging.pathsvc) – prints limited information
about some unusual conditions in the path service.

Message L i fe Cyc l e Logg ing

Configuring and Managing WebLogic JMS 8-7

– DebugPathSvcVerbose (scope weblogic.messaging.pathsvcverbose) – prints
limited information about unusual conditions in the path service.

Request Dyeing
Another option for debugging is to trace the flow of an individual (typically “dyed”) application
request through the JMS subsystem. For more information, see “Configuring the Dye Vector via
the DyeInjection Monitor” in Configuring and Using the WebLogic Diagnostic Framework.

Message Life Cycle Logging
JMS logging is enabled by default when you create a JMS server, however, you must specifically
enable it on message destinations in the JMS modules targeted to this JMS server (or on the JMS
template used by destinations). For more information on WebLogic logging services, see
“Understanding WebLogic Logging Services” in Configuring Log Files and Filtering Log
Messages.

The message life cycle is an external view of the events that a JMS message traverses through
once it has been accepted by the JMS server, either through the JMS APIs or the JMS Message
Management APIs. Message life cycle logging provides an administrator with easy access to
information about the existence and status of JMS messages from the JMS server viewpoint. In
particular, each message log contains information about basic life cycle events such as message
production, consumption, and removal.

Logging can occur on a continuous basis and over a long period of time. It can be also be used in
real-time mode while the JMS server is running, or in an off-line fashion when the JMS server is
down. For information about configuring message logging, see the following sources.

“View and configure logs” in the Administration Console Online Help

“Configure JMS server message log rotation” in the Administration Console Online Help

“Configure topic message logging” in the Administration Console Online Help

“Configure queue message logging” in the Administration Console Online Help

“Configure JMS template message logging” in the Administration Console Online Help

“Configure uniform distributed topic message logging” in the Administration Console
Online Help

Troub leshoot ing WebLog ic JMS

8-8 Configuring and Managing WebLogic JMS

“Configure uniform distributed queue message logging” in the Administration Console
Online Help

Events in the JMS Message Life Cycle
When message life cycle logging is enabled for a JMS destination, a record is added to the JMS
server’s message log file each time a message meets the conditions that correspond to a basic
message life cycle event. The life cycle events that trigger a JMS message log entry are as
follows:

Produced – This event is logged when a message enters a JMS server via the WebLogic
Server JMS API or the JMS Management API.

Consumed – This event is logged when a message leaves a JMS server via the WebLogic
Server JMS API or the JMS Management API.

Removed – This event is logged when a message is manually deleted from a JMS server
via the WebLogic Server JMS API or the JMS Management API.

Expired – This event is logged when a message reaches the expiration time stored on the
JMS server. This event is logged only once per message even though a separate expiration
event occurs for each topic subscriber who received the message.

Retry exceeded – This event is logged when a message has exceeded its redelivery retry
limit. This event may be logged more than one time per message, as each topic subscriber
has its own redelivery count.

Consumer created – This event is logged when a JMS consumer is created for a queue or a
JMS durable subscriber is created for a topic.

Consumer destroyed – This event is logged when a JMS consumer is closed or a JMS
durable subscriber is unsubscribed.

Message Log Location
The message log is stored under your domain directory, as follows:

USER_DOMAIN\servers\servername\logs\jmsServers\jms_server_name\jms.message

s.log

where USER_DOMAIN is the root directory of your domain, typically
c:\bea\user_projects\domains\USER_DOMAIN, which is parallel to the directory in which
WebLogic Server program files are stored, typically c:\bea\wlserver_10.0.

JMS Message Log Content

Configuring and Managing WebLogic JMS 8-9

Enabling JMS Message Logging
You can enable or disable JMS message logging for a queue, topic, JMS template, uniform
distributed queue, and uniform distributed topic using the WebLogic Server Administration
Console. For more information see the following sources.

“Configure topic message logging” in the Administration Console Online Help

“Configure queue message logging” in the Administration Console Online Help

“Configure JMS template message logging” in the Administration Console Online Help

“Configure uniform distributed topic message logging” in the Administration Console
Online Help

“Configure uniform distributed queue message logging” in the Administration Console
Online Help

WebLogic Java Management Extensions (JMX) enables you to access the
JMSSystemResourceMBean and JMSRuntimeMBean MBeans to manage JMS message logs.
For more information see “Overview of WebLogic Server Subsystem MBeans” in Programming
WebLogic Management Services with JMX

You can also use the WebLogic Scripting Tool to configure JMS message logging for a JMS
servers and JMS system resources. For more information, see Chapter 6, “Using WLST to
Manage JMS Servers and JMS System Module Resources.”.

When you enable message logging, you can specify whether the log entry will include all the
message header fields or a subset of them; all system-defined message properties or a subset of
them; all user-defined properties or a subset of them. You may also choose to include or to
exclude the body of the message. For more information about message headers and properties see
“Message Object” in Programming WebLogic JMS.

JMS Message Log Content
Each record added to the log includes basic information such as the message ID and correlation
ID for the subject message. You can also configure the JMS server to include additional
information such as the message type and user properties.

JMS Message Log Record Format
Except where noted, all records added to the JMS Message Life Cycle Log contain the following
pieces of information in the order in which they are listed:

Troub leshoot ing WebLog ic JMS

8-10 Configuring and Managing WebLogic JMS

Date – The date and time the message log record is generated.

Transaction identifier – The transaction identifier for the transaction with which the
message is associated

WLS diagnostic context – A unique identifier for a request or unit of work flowing through
the system. It is included in the JMS message log to provide a correlation between events
belonging to the same request.

Raw millisecond value for “Date” – To aid in troubleshooting high-traffic applications, the
date and time the message log record is generated is displayed in milliseconds.

Raw nanosecond value for “Date” – To aid in troubleshooting high-traffic applications, the
date and time the message log record is generated is displayed in nanoseconds.

JMS message ID – The unique identifier assigned to the message.

JMS correlation ID – A user-defined identifier for the message, often used to correlate
messages about the same subject.

JMS destination name – The fully-qualified name of the destination server for the message.

JMS message life cycle event name – The name of the message life cycle event that
triggered the log entry.

JMS user name – The name of the user who (produced? consumed? received?) the
message.

JMS message consumer identifier – This information is included in the log only when the
message life cycle event being logged is the “Consumed” event, the “Consumer Created”
event, or the “Consumer Destroyed” event. If the message consumed was on a queue, the
log will include information about the origin of the consumer and the OAM identifier for
the consumer known to the JMS server. If the consumer is a durable subscriber, the log will
also include the client ID for the connection and the subscription name.

The syntax for the message consumer identifier is as follows:

MC:CA(…):OAMI(wls_server_name.jms.connection#.session#.consumer#)

where

– MC stands for message consumer,

– CA stands for client address,

– OAMI stands for OA&M identifier,

– and, when applicable, CC stands for connection consumer.

JMS Message Log Content

Configuring and Managing WebLogic JMS 8-11

If the consumer is a durable subscriber the additional information will be shown using the
following syntax:

DS:client_id.subscription_name[message consumer identifier]

where DS stands for durable subscriber.

JMS message content – This field can be customized on a per destination basis. However,
the message body will not be available.

JMS message selector – This information is included in the log only when the message life
cycle event being logged is the “Consumer Created” event. The log will show the
“Selector” argument from the JMS API.

Sample Log File Records
The sample log file records that follow show the type of information that is provided in the log
file for each of the message life cycle events. Each record is a fixed length, but the information
included will vary depending upon relevance to the event and on whether a valid value exists for
each field in the record. The log file records use the following syntax:

####<date_and_time_stamp> <transaction_id> <WLS_diagnostic_context>

<date_in_milliseconds> <date_in_nanoseconds> <JMS_message_id>

<JMS_correlation_id> <JMS_destination_name> <life_cycle_event_name>

<JMS_user_name> <consumer_identifier> <JMS_message_content>

<JMS_message_selector>

Note: If you choose to include the JMS message content in the log file, note that any
occurrences of the left-pointing angle bracket (<) and the right-pointing angle bracket (>)
within the contents of the message will be escaped. In place of a left-pointing angle
bracket you will see the string “<” and in place of the right-pointing angle bracket you
will see “>” in the log file.

Consumer Created Event
####<May 13, 2005 4:06:33 PM EDT> <> <> <1116014793818> <345063> <> <>

<jmsfunc!TestQueueLogging> <ConsumerCreate> <system>

<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session460.consumer462

)> <> <>

Consumer Destroyed Event

####<May 13, 2005 4:06:33 PM EDT> <> <> <1116014793844> <40852> <> <>

<jmsfunc!TestQueueLogging> <ConsumerDestroy> <system>

Troub leshoot ing WebLog ic JMS

8-12 Configuring and Managing WebLogic JMS

<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session460.consumer462

)> <> <>

Message Produced Event
####<May 13, 2005 4:06:43 PM EDT> <> <> <1116014803018> <693671>

<ID:<327315.1116014803000.0>> <testSendRecord>

<jmsfunc!TestQueueLoggingMarker> <Produced> <system> <> <<?xml

version="1.0" encoding="UTF-8"?>

<mes:WLJMSMessage

xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><me

s:JMSCorrelationID>testSendRecord</mes:JMSCorrelationID><mes:J

MSDeliveryMode>NON_PERSISTENT</mes:JMSDeliveryMode><mes:JMSExp

iration>0</mes:JMSExpiration><mes:JMSPriority>4</mes:JMS

Priority><mes:JMSRedelivered>false</mes:JMSRedelivered><

mes:JMSTimestamp>1116014803000</mes:JMSTimestamp><mes:Properti

es><mes:property

name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:prope

rty></mes:Properties></mes:Header><mes:Body><mes:T

ext/></mes:Body></mes:WLJMSMessage>> <>

Message Consumed Event
####<May 13, 2005 4:06:45 PM EDT> <> <> <1116014805137> <268791>

<ID:<327315.1116014804578.0>> <hello> <jmsfunc!TestQueueLogging>

<Consumed> <system>

<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session475.consumer477

)> <<?xml version="1.0" encoding="UTF-8"?>

<mes:WLJMSMessage

xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><me

s:JMSCorrelationID>hello</mes:JMSCorrelationID><mes:JMSDeliver

yMode>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0&

lt;/mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority>&

lt;mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimest

amp>1116014804578</mes:JMSTimestamp><mes:JMSType>SendRecord

</mes:JMSType><mes:Properties><mes:property

name="JMS_BEA_RedeliveryLimit"><mes:Int>1</mes:Int></mes

:property><mes:property

JMS Message Log Content

Configuring and Managing WebLogic JMS 8-13

name="JMSXDeliveryCount"><mes:Int>1</mes:Int></mes:prope

rty></mes:Properties></mes:Header><mes:Body><mes:T

ext/></mes:Body></mes:WLJMSMessage>> <>

Message Expired Event
####<May 13, 2005 4:06:47 PM EDT> <> <> <1116014807258> <445317>

<ID:<327315.1116014807234.0>> <bar> <jmsfunc!TestQueueLogging> <Expired>

<<WLS Kernel>> <> <<?xml version="1.0" encoding="UTF-8"?>

<mes:WLJMSMessage

xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><me

s:JMSCorrelationID>bar</mes:JMSCorrelationID><mes:JMSDeliveryM

ode>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>1116

014806234</mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPri

ority><mes:JMSRedelivered>false</mes:JMSRedelivered><mes

:JMSTimestamp>1116014807234</mes:JMSTimestamp><mes:JMSType>

ExpireRecord</mes:JMSType><mes:Properties><mes:property

name="JMS_BEA_RedeliveryLimit"><mes:Int>1</mes:Int></mes

:property><mes:property

name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:prope

rty></mes:Properties></mes:Header><mes:Body><mes:T

ext/></mes:Body></mes:WLJMSMessage>> <>

Retry Exceeded Event
####<May 13, 2005 4:06:53 PM EDT> <> <> <1116014813491> <394206>

<ID:<327315.1116014813453.0>> <bar> <jmsfunc!TestQueueLogging> <Retry

exceeded> <<WLS Kernel>> <> <<?xml version="1.0" encoding="UTF-8"?>

<mes:WLJMSMessage

xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><me

s:JMSCorrelationID>bar</mes:JMSCorrelationID><mes:JMSDeliveryM

ode>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0<

;/mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><

;mes:JMSRedelivered>true</mes:JMSRedelivered><mes:JMSTimestamp

>1116014813453</mes:JMSTimestamp><mes:JMSType>RetryRecord&l

t;/mes:JMSType><mes:Properties><mes:property

name="JMS_BEA_RedeliveryLimit"><mes:Int>1</mes:Int></mes

:property><mes:property

Troub leshoot ing WebLog ic JMS

8-14 Configuring and Managing WebLogic JMS

name="JMSXDeliveryCount"><mes:Int>2</mes:Int></mes:prope

rty></mes:Properties></mes:Header><mes:Body><mes:T

ext/></mes:Body></mes:WLJMSMessage>> <>

Message Removed Event
####<May 13, 2005 4:06:45 PM EDT> <> <> <1116014805071> <169809>

<ID:<327315.1116014804859.0>> <hello> <jmsfunc!TestTopicLogging> <Removed>

<system> <DS:messagelogging_client.foo.SendRecordSubscriber> <<?xml

version="1.0" encoding="UTF-8"?>

<mes:WLJMSMessage

xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><me

s:JMSCorrelationID>hello</mes:JMSCorrelationID><mes:JMSDeliver

yMode>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0&

lt;/mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority>&

lt;mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimest

amp>1116014804859</mes:JMSTimestamp><mes:JMSType>SendRecord

Subscriber</mes:JMSType><mes:Properties><mes:property

name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:prope

rty></mes:Properties></mes:Header><mes:Body><mes:T

ext/></mes:Body></mes:WLJMSMessage>> <>

Managing JMS Server Log Files
After you create a JMS server, you can configure criteria for moving (rotating) old log messages
to a separate file. You can also change the default name of the log file.

Rotating Message Log Files
You can choose to rotate old log messages to a new file based on a specific file size or at specified
intervals of time. Alternately, you can choose not to rotate old log messages; in this case, all
messages will accumulate in a single file and you will have to erase the contents of the file when
it becomes too large.

If you choose to rotate old messages whenever the log file reaches a particular size you must
specify a minimum file size. After the log file reaches the specified minimum size, the next time
the server checks the file size it will rename the current log file and create a new one for storing
subsequent messages.

Cont ro l l i ng Message Operat ions on Dest inat ions

Configuring and Managing WebLogic JMS 8-15

If you choose to rotate old messages at a regular interval, you must specify the time at which the
first new message log file is to be created, and then specify the time interval that should pass
before that file is renamed and replaced.

For more information about setting up log file rotation for JMS servers, see “Configure JMS
server message log rotation” in the Administration Console Online Help.

Renaming Message Log Files
Rotated log files are numbered in order of creation. For example, the seventh rotated file would
be named myserver.log00007. For troubleshooting purposes, it may be useful to change the
name of the log file or to include the time and date when the log file is rotated. To do this, you
add java.text.SimpleDateFormat variables to the file name. Surround each variable
with percentage (%) characters. If you specify a relative pathname when you change the name of
the log file, it is interpreted as relative to the server’s root directory.

For more information about renaming message log files for JMS servers, see “Configure JMS
server message log rotation” in the Administration Console Online Help.

Limiting the Number of Retained Message Log Files
If you choose to rotate old message log files based on either file size or time interval, you may
also wish to limit the number of log files this JMS server creates for storing old messages. After
the server reaches this limit, it deletes the oldest log file and creates a new log file with the latest
suffix. If you do not enable this option, the server will create new files indefinitely and you will
have to manually clean up these files.

For more information about limiting the number of message log files for JMS servers, see
“Configure JMS server message log rotation” in the Administration Console Online Help.

Controlling Message Operations on Destinations
WebLogic JMS configuration and runtime APIs enable you to pause and resume message
production, insertion, and/or consumption operations on a JMS destination or temporary
destination, on a group of destinations configured using the same template, or on all the
destinations hosted by a single JMS Server, either programmatically (using JMX and the runtime
MBean API) or administratively (using the Administration Console). In this way, you can control
the JMS subsystem behavior in the event of an external resource failure that would otherwise
cause the JMS subsystem to overload the system by continuously accepting and delivering (and
redelivering) messages.

Troub leshoot ing WebLog ic JMS

8-16 Configuring and Managing WebLogic JMS

You can boot a JMS server and its destinations in a “paused” state which prevents any message
production, insertion, or consumption on those destinations immediately after boot. To resume
message operation activity, the administrator can later change the state of the paused destination
to “resume” normal message production, insertion, or consumption operations. In addition, new
runtime options allow an administrator to change the current state of a running destination to
either allow or disallow new message production, insertion, or consumption.

“Definition of Message Production, Insertion, and Consumption” on page 8-16

“Production Pause and Production Resume” on page 8-17

“Insertion Pause and Insertion Resume” on page 8-19

“Consumption Pause and Consumption Resume” on page 8-21

“Definition of In-Flight Work” on page 8-23

“Order of Precedence for Boot-time Pause and Resume of Message Operations” on
page 8-24

“Security” on page 8-25

Definition of Message Production, Insertion, and
Consumption
There are several operations performed on messages on a destination:

Messages are produced when a producer creates and sends a new message to that
destination.

Messages are inserted as a result of in-flight work completion, as when a message is made
available upon commitment of a transaction or when a message scheduled to be made
available after a delay is made available on a destination.

Messages are consumed when they are removed from the destination.

You can pause and resume any or all of these operations either at boot time or during runtime, as
described in the sections below.

Pause and Resume Logging
When message production, insertion, or consumption on a destination is successfully “paused”
or “resumed” either at boot time or at runtime, a message is added to the server log to indicate the

Cont ro l l i ng Message Operat ions on Dest inat ions

Configuring and Managing WebLogic JMS 8-17

same. In the event of failure to pause or resume message production, insertion, or consumption
on a destination, the appropriate error/exceptions are logged.

Production Pause and Production Resume
When a JMS destination is “paused for production,” new and existing producers attached to that
destination are unable to produce new messages for that destination. A producer that attempts to
send a message to a paused destination receives an exception that indicates that the destination is
paused. When a destination is “resumed from production pause,” production of new messages is
allowed again. Pausing message production does not prevent the insertion of messages that are
the result in-flight work.

Notes: For an explanation of what constitutes in-flight work, see “Definition of In-Flight Work”
on page 8-23.

Pausing and Resuming Production at Boot-time
You can pause or resume production effective at boot-time for all the destinations on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. If you configure production-paused-at-startup, the next time you boot the
server, message production activities will be disallowed for the specified destination(s) until you
explicitly change the state to “production enabled” for that destination. If you configure
production to resume, the next time you boot the server, message production activities will be
allowed on the specified destination(s) until the state is explicitly changed to “production paused”
for that destination.

For more information about pausing and resuming message production at boot-time using the
Administration console, see the following sources.

“Pause JMS server message operations on server restart” in the Administration Console
Online Help

“Pause topic message operations on server restart” in the Administration Console Online
Help

“Pause queue message operations on server restart” in the Administration Console Online
Help

“Pause JMS template message operations on server restart” in the Administration Console
Online Help

Troub leshoot ing WebLog ic JMS

8-18 Configuring and Managing WebLogic JMS

“Pause uniform distributed topic message operations on server restart” in the
Administration Console Online Help

“Pause uniform distributed queue message operations on server restart” in the
Administration Console Online Help

Note: Because it is possible that this operation may be configured differently at each level (i.e.,
the JMS Server level, the JMS template level, and the standalone destination or uniform
distributed destination level), there is an established order of precedence. For more
information, see “Order of Precedence for Boot-time Pause and Resume of Message
Operations” on page 8-24.

Pausing and Resuming Production at Runtime
You can pause or resume production during runtime for all the destinations targeted on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. The most recent configuration change always take precedence, regardless of the
level at which it is made (JMS server level, JMS template level, or destination level).

For more information about pausing and resuming production at runtime, see the following
sources.

“Pause JMS server message operations at runtime” in the Administration Console Online
Help

“Pause topic message operations at runtime” in the Administration Console Online Help

“Pause queue message operations at runtime” in the Administration Console Online Help

Production Pause and Resume and Distributed Destinations
If a member destination is paused for production, that member destination will not be considered
for production by the producer. Messages will be steered away to other member destinations that
are available for production.

Production Pause and Resume and JMS Connection Stop/Start
Stopping or starting a JMS connection has no effect on the production pause or production
resume state of a destination.

Cont ro l l i ng Message Operat ions on Dest inat ions

Configuring and Managing WebLogic JMS 8-19

Insertion Pause and Insertion Resume
When a JMS destination is paused for “insertion,” both messages inserted as a result of in-flight
work and new messages sent by producers are prevented from appearing on the destination. Use
insertion pause to stop all messages from appearing on a destination.

You can determine whether there is any in-flight work pending by looking at the statistics on the
Administration Console. When you pause the destination for message “insertion”, messages
related to in-flight work completion are made “not deliverable” and new message production
operations fail. All of those messages become “invisible” to the consumers and the statistics are
adjusted to reflect that the messages are no longer pending.

The “insertion” pause operation supersedes the “production” pause operation. In other words, if
the destination is currently in the “production paused” state, you can change it to the “insertion
paused” state.

You must explicitly “resume” a destination for message insertion to allow in-flight messages to
appear on that destination. Successful completion of the insertion “resume” operation will change
the state of the destination to “insertion enabled” and all the “invisible” in-flight messages will
be made available.

Pausing and Resuming Insertion at Boot Time
You can pause or resume insertion effective at boot-time for all the destinations on a JMS server,
for a group of destinations that point to the same JMS template, or for individual destinations. If
you configure insertion-paused-at-startup, the next time you boot the server, message
insertion and production activities will be disallowed on the specified destination(s) until you
explicitly change the state to “insertion enabled” for that destination. If you configure insertion
to resume, the next time you boot the server, message insertion activities will be allowed on the
specified destination(s) until the state is explicitly changed to “insertion paused” for that
destination.

For more information about pausing and resuming message insertion at boot-time, see the
following sources.

“Pause JMS server message operations on server restart” in the Administration Console
Online Help

“Pause topic message operations on server restart” in the Administration Console Online
Help

Troub leshoot ing WebLog ic JMS

8-20 Configuring and Managing WebLogic JMS

“Pause queue message operations on server restart” in the Administration Console Online
Help

“Pause JMS template message operations on server restart” in the Administration Console
Online Help

“Pause uniform distributed topic message operations on server restart” in the
Administration Console Online Help

“Pause uniform distributed queue message operations on server restart” in the
Administration Console Online Help

Note: Because it is possible that this operation may be configured differently at each level (i.e.,
the JMS Server level, the JMS template level, and the destination level), there is an
established order of precedence. For more information, see “Order of Precedence for
Boot-time Pause and Resume of Message Operations” on page 8-24.

Pausing and Resuming Insertion at Runtime
You can pause or resume insertion during runtime for all the destinations on a JMS server, for a
group of destinations that point to the same JMS template, or for individual destinations. The
most recent configuration change always take precedence, regardless of the level at which it is
made (JMS Server level, JMS Template level, or destination level).

For more information about pausing and resuming insertion at runtime, see the following sources.

“Pause JMS server message operations at runtime” in the Administration Console Online
Help

“Pause topic message operations at runtime” in the Administration Console Online Help

“Pause queue message operations at runtime” in the Administration Console Online Help

Insertion Pause and Resume and Distributed Destination
If a member destination is paused for insertion, that member destination will not be considered
for message forwarding. Messages will be steered away to other member destinations that are
available for insertion.

Insertion Pause and Resume and JMS Connection Stop/Start
Stopping or starting a JMS Connection has no effect on the insertion pause or insertion resume
state of a destination.

Cont ro l l i ng Message Operat ions on Dest inat ions

Configuring and Managing WebLogic JMS 8-21

Consumption Pause and Consumption Resume
When a JMS destination is “paused for consumption,” messages on that destination are not
available for consumption. When the destination is “resumed from consumption pause”, both
new and existing consumers attached to that destination are allowed to consume messages on the
destination again.

When the destination is paused for consumption, the destination's state is marked as
“consumption paused” and all new, synchronous receive operations will block until consumption
is resumed and there are messages available for consumption. All synchronous receive with
blocking time-out operations will block for the specified length of time. Messages will not be
delivered to synchronous consumers attached to that destination while the destination is paused
for consumption.

After a successful consumption “pause” operation, the user has to explicitly “resume” the
destination to allow consume operations on that destination.

Pausing and Resuming Consumption at Boot-time
You can pause or resume consumption effective at boot-time for all the destinations on a JMS
server, for a group of destinations that point to the same JMS template, or for individual
destinations. If you configure consumption-paused-at-startup, the next time you boot the
server, message consumption activities will be disallowed on the specified destination(s) until
you explicitly change the state to “consumption enabled” for that destination. If you configure
consumption to resume, the next time you boot the server, message consumption activities will
be allowed on the specified destination(s) until the state is explicitly changed to “consumption
paused” for that destination.

For more information about pausing and resuming consumption at boot-time, see the following
sources.

“Pause JMS server message operations on server restart” in the Administration Console
Online Help

“Pause topic message operations on server restart” in the Administration Console Online
Help

“Pause queue message operations on server restart” in the Administration Console Online
Help

“Pause JMS template message operations on server restart” in the Administration Console
Online Help

Troub leshoot ing WebLog ic JMS

8-22 Configuring and Managing WebLogic JMS

“Pause uniform distributed topic message operations on server restart” in the
Administration Console Online Help

“Pause uniform distributed queue message operations on server restart” in the
Administration Console Online Help

Pausing and Resuming Consumption at Runtime
You can pause or resume consumption during runtime for all the destinations on a JMS server,
for a group of destinations that point to the same JMS template, or for individual destinations.
The most recent configuration change always take precedence, regardless of the level at which it
is made (JMS Server level, JMS Template level, or destination level).

For more information about pausing and resuming consumption at runtime, see the following
sources.

“Pause JMS server message operations at runtime” in the Administration Console Online
Help

“Pause topic message operations at runtime” in the Administration Console Online Help

“Pause queue message operations at runtime” in the Administration Console Online Help

Consumption Pause and Resume and Queue Browsers
Queue Browsers are special type of consumers that are only allowed to “peek” into queue
destinations. A browse operation on a destination paused for consumption is perfectly legitimate
and is allowed.

Consumption Pause and Resume and Distributed Destination
Member destinations that are currently paused for consumption are not considered by the
consumer load balancing algorithm.

Consumption Pause and Resume and Message-Driven Beans
Pausing a destination for consumption will prevent a message-driven bean (MDB) from getting
any messages from its associated destination. This feature gives you more flexible control over
the delivery of messages delivery to MDBs from the individual destination level as opposed to
using connection start/stop. In other words, if you use the consumption pause/resume feature, you
can share the JMS connection among the multiple MDBs and still be able to prevent message
delivery to selected MDBs by pausing the associated destination for consumption.

Cont ro l l i ng Message Operat ions on Dest inat ions

Configuring and Managing WebLogic JMS 8-23

For more information on using MDBs, see “Message-Driven EJBs” in Programming WebLogic
Enterprise JavaBeans.

Consumption Pause and Resume and JMS Connection Stop/Start
The JMS connection stop/start feature determines whether a consumer can successfully invoke
the receive APIs or not. The consumption pause/resume feature on a destination determines
whether the receive call will get any messages from the destination or not. Stopping or starting a
consumer's connection does not have any impact on the destination's consumption pause state.

If the consumer’s connection is “started” from the “stopped” state, synchronous receive
operations might block or time-out if the destination is currently paused for consumption.
Asynchronous consumers will not receive any messages if the associated destination is in
“consumption paused” state.

Definition of In-Flight Work
“In-flight Work Associated with Producers” on page 8-23

“In-flight Work Associated with Consumers” on page 8-24

In-flight Work Associated with Producers
The following types of messages are inserted on a destination as a result of in-flight work
associated with message producers.

Unborn Messages – Messages that are created by the producer with “birth time”
(TimeToDeliver) set in the future. Until delivered, unborn messages are counted as
“pending” messages in the destination statistics and are not available for consumption.

Uncommitted Messages – Messages that are produced as part of a transaction (using either
user transaction or transacted session) and have not yet been either committed or rolled
back. Until the transaction has been completed, uncommitted messages are counted as
“pending” messages in the destination statistics and are not available for consumption.

Quota Blocking Send – Messages that, if initially prevented from reaching a destination
due to a quota limit, will block for a specific period of time while waiting for the
destination to become available. The message may exceed the message quota limit, the
byte quota limit, or both quota limits on the destination. While blocking, these messages
are invisible to the system and are not counted against any of the destination statistics.

Troub leshoot ing WebLog ic JMS

8-24 Configuring and Managing WebLogic JMS

In-flight Work Associated with Consumers
The following types of messages are inserted on a destination as a result of in-flight work
associated with message consumers.

Unacknowledged (CLIENT ACK PENDING) Messages – Messages that have been
received by a client and are awaiting acknowledgement from the client. These are “pending
messages” which are removed from the destination/system when the acknowledgement is
received.

Uncommitted Messages – Messages that have been received by a client within a
transaction which has not yet been committed or rolled back. When the client successfully
commits the transaction the messages are removed from the system.

Rolled-back Messages – Messages that are put back on a destination because of the
successful rollback of a transaction.

These messages might or might not be ready for redelivery to the clients immediately,
depending on the redelivery parameters (i.e., RedeliveryDelay and/or
RedeliveryDelayOverride and RedeliveryLimit) configured on the associated connection
factory and destination.

If there is a redelivery delay configured, then, for the duration of that delay, the messages
are not available for redelivery and the messages are counted as “pending” in the
destination statistics. After the delay period, if the redelivery limit has not been exceeded,
then they are delivered and are counted as “current” messages in the destination statistics.
If the redelivery limit has been exceeded, then the messages are moved to the error
destination, if one has been configured, or are dropped, if no error destination has been
configured.

Recovered Messages – Messages that appear on the queue because of an explicit call to
session “recover” by the client. These messages are similar to the Rolled-back Messages
discussed above.

Redelivered Messages – Messages that reappear on the destination because of an
unsuccessful delivery attempt to the client. These messages are similar to the Rolled-back
Messages discussed above.

Order of Precedence for Boot-time Pause and Resume of
Message Operations
You can pause and resume destinations at boot-time by setting attributes at several different
levels:

Cont ro l l i ng Message Operat ions on Dest inat ions

Configuring and Managing WebLogic JMS 8-25

If you are using a JMS server to host a group of destinations, you can pause or resume
message operations on the entire group of destinations.

If you are using a JMS template to define the attribute values of groups of destinations,
you can pause or resume message operations on all of the destinations in a group.

You can pause and resume message operations on a single destination.

If the values at each of these levels are not in agreement at boot-time, the following order of
precedence is used to determine the behavior of the message operations on the specified
destination(s). For each of the attributes used to configure pausing and resumption of message
operations:

1. If the hosting JMS server for the destination has the attribute set with a valid value, then that
value determines the state of the destination at boot time. Server-level settings have first
precedence.

2. If the hosting JMS server does not have the attribute set with a valid value, then the value of
the attribute on the destination level has second highest precedence and determines the state
of the destination at boot time.

3. If neither the hosting JMS server nor the destination has the attribute set with a valid value,
then the value of the attribute on the JMS template determines the state of the destination at
boot time.

4. If the attribute has not been set at any of the three levels, then the value is assumed to be
“false”.

Security
The administrative user/group can override the current state of a destination irrespective of
whether the destination's state is currently being controlled by other users.

If two non-administrative users are trying to control the state of the destination, then the following
rules apply.

1. Only a user who belongs to the same group as the user who changed the state of the
destination to “paused” is allowed to “resume” the destination to the normal operation.

2. If the state change is attempted by two different users who belong to two different groups, the
change is not allowed.

Troub leshoot ing WebLog ic JMS

8-26 Configuring and Managing WebLogic JMS

