
BEAWebLogic
Server®

Developing Manageable
Applications with JMX

Version 10.0
Revised: March 30, 2007

Developing Manageable Applications with JMX iii

Contents

Introduction and Roadmap
Document Scope and Audience . 1-2

Guide to this Document . 1-2

Related Documentation . 1-3

Samples for the JMX Developer . 1-3

New and Changed JMX Features in This Release . 1-4

Understanding JMX
What Management Services Can You Develop with JMX? . 2-2

Creating Management-Aware Applications. 2-2

When Is It Appropriate to Use JMX? . 2-3

What Management Services Have BEA Partners Developed? . 2-3

JMX Layers . 2-4

Indirection and Introspection . 2-4

Notifications and Monitor MBeans . 2-5

How JMX Notifications Are Broadcast and Received . 2-6

Active Polling with Monitor MBeans. 2-7

Designing Manageable Applications
Benefits of BEA Best Practices . 3-2

Use Standard MBeans . 3-2

Registering Custom MBeans in the WebLogic Server Runtime MBean Server 3-3

Alternative: Register Custom MBeans in the JVM’s Platform MBean Server 3-3

iv Developing Manageable Applications with JMX

Use ApplicationLifecycleListener to Register Application MBeans 3-3

Unregister Application MBeans When Applications Are Undeployed 3-4

Place Management Logic for EJBs and Servlets in a Delegate Class. 3-4

Use Open MBean Data Types. 3-6

Emit Notifications Only When Necessary . 3-6

Additional Design Considerations . 3-6

Registering MBeans in the JVM Platform MBean Server. 3-6

Registering Application MBeans by Using Only JDK Classes 3-7

Organizing Managed Objects and Business Objects . 3-8

Packaging and Accessing Management Classes . 3-8

Securing Custom MBeans with Roles and Policies . 3-8

Instrumenting and Registering Custom MBeans
Overview of the MBean Development Process . 4-1

Create and Implement a Management Interface . 4-3

Modify Business Methods to Push Data . 4-6

Register the MBean. 4-7

Package Application and MBean Classes . 4-9

Using the WebLogic Server JMX Timer Service
Overview of the WebLogic Server JMX Timer Service. 5-1

Creating the Timer Service: Main Steps . 5-2

Configuring a Timer MBean to Emit Notifications . 5-3

Creating Date Objects . 5-4

Example: Generating a Notification Every Five Minutes After 9 AM 5-5

Removing Notifications . 5-8

Accessing Custom MBeans
Accessing Custom MBeans from JConsole . 6-1

Developing Manageable Applications with JMX v

Accessing Custom MBeans from WebLogic Scripting Tool . 6-2

Accessing Custom MBeans from an Administration Console Extension 6-3

vi Developing Manageable Applications with JMX

Developing Custom Management Utilities with JMX 1-1

C H A P T E R 1

Introduction and Roadmap

As an application developer, you can greatly reduce the cost of operating and maintaining your
applications by building management facilities into your applications. The simplest facility is
message logging, which reports events within your applications as they occur and writes
messages to a file or other repository. Depending on the criticality of your application, the
complexity of the production environment, and the types of monitoring systems your
organization uses in its operations center, your needs might be better served by building richer
management facilities based on Java Management Extensions (JMX). JMX enables a generic
management system to monitor your application; raise notifications when the application needs
attention; and change the configuration or runtime state of your application to remedy problems.

This document describes how to use JMX to make your applications manageable.

The following sections describe the contents and organization of this guide—Developing Custom
Management Utilities with JMX.

“Document Scope and Audience” on page 1-2

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-3

“Samples for the JMX Developer” on page 1-3

“New and Changed JMX Features in This Release” on page 1-4

I n t roduct i on and Roadmap

1-2 Developing Custom Management Utilities with JMX

Document Scope and Audience
This document is a resource for software developers who develop management services for Java
EE applications. It also contains information that is useful for business analysts and system
architects who are evaluating WebLogic Server® or considering the use of JMX for a particular
application.

It is assumed that the reader is familiar with Java EE and general application management
concepts.

The information in this document is relevant during the design and development phases of a
software project. This document does not address production phase administration, monitoring,
or performance tuning topics. For links to WebLogic Server documentation and resources related
to these topics, see “Related Documentation” on page 1-3.

This document emphasizes a hands-on approach to developing a limited but useful set of JMX
management services. For information on applying JMX to a broader set of management
problems, refer to the JMX specification or other documents listed in “Related Documentation”
on page 1-3.

Guide to this Document
This chapter, Introduction and Roadmap, describes the scope and organization of this
guide.

Chapter 2, “Understanding JMX,” gives an overview of JMX and describes how Java EE
application developers can use JMX.

Chapter 3, “Designing Manageable Applications,” recommends design patterns for making
Java EE applications manageable through JMX.

Chapter 4, “Instrumenting and Registering Custom MBeans,” describes how to create your
own MBeans (custom MBeans), which enable you to promote your application to the
status of a managed object within a larger management system.

Chapter 5, “Using the WebLogic Server JMX Timer Service,” describes how to configure
your JMX client to carry out a task at a specified time or a regular time interval by using
WebLogic Server’s implementation of the JMX timer service.

Chapter 6, “Accessing Custom MBeans,” describes options for accessing your MBeans
(other than through JMX).

Rela ted Documentat ion

Developing Custom Management Utilities with JMX 1-3

Related Documentation
The Sun Developer Network includes a Web site that provides links to books, white papers, and
additional information on JMX: http://java.sun.com/products/JavaManagement/.

To view the JMX 1.2 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html.

To view the JMX Remote API 1.0 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html.

You can view the API reference for the javax.management* packages from:
http://java.sun.com/j2se/1.5.0/docs/api/overview-summary.html.

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

Using WebLogic Logging Services for Application Logging describes WebLogic support for
internationalization and localization of log messages and shows you how to use the
templates and tools provided with WebLogic Server to create or edit message catalogs that
are locale-specific.

Configuring and Using the WebLogic Diagnostic Framework describes how system
administrators can collect application monitoring data that has not been exposed through
JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see Developing
Applications with WebLogic Server.

Samples for the JMX Developer
In addition to this document, BEA Systems provides two JMX code samples in the Avitek
Medical Records Application (MedRec). MedRec is an end-to-end sample Java EE application
shipped with WebLogic Server that simulates an independent, centralized medical record
management system. The MedRec application provides a framework for patients, doctors, and
administrators to manage patient data using a variety of different clients.

The JMX code in MedRec exemplifies the following management tasks:

Monitoring an application with JMX.

One of the session EJBs in MedRec is instrumented for management through JMX. The
EJB keeps track of how many times it writes to the database and exposes this counter as an
MBean attribute.

I n t roduct i on and Roadmap

1-4 Developing Custom Management Utilities with JMX

Using JMX to extend a security realm.

A JSP and supporting Java classes in the MedRec application invoke JMX APIs to add a
new Administrator user to the MedRec security realm. The JSP provides the interface for
collecting the new user information and the supporting classes validate the information and
insert the new user into the realm.

For information about the JMX code examples in MedRec, do the following:

1. Start MedRec server.

See Sample Application Examples and Tutorials for BEA WebLogic Server
(http://edocs.bea.com/wls/docs100/samples.html).

2. When MedRec server starts, it displays its home page in a Web browser. On the MedRec
home page, click the More Samples link.

MedRec displays the WebLogic Server Code Examples viewer.

3. In the Code Examples viewer, in the left pane, do either of the following:

– Expand Avitek Medical Records Sample Application > Features > JMX. Then
select the Monitoring an Application with JMX topic.

– Expand Avitek Medical Records Sample Application > Features > Security. Then
select the Extending a Realm Using JMX topic.

New and Changed JMX Features in This Release
As of release 10.0, WebLogic Server supports the jmx.remote.x.request.waiting.timeout
environment parameter. (The JMX Remote API 1.0 specification states that support for this
parameter is optional.) Use this parameter to specify the number of milliseconds that your JMX
client waits for the invocation of an MBean server method to return. If a method does not return
by the end of the timeout period, the client moves to its next set of instructions. By default, a client
waits indefinitely for a method to return; if the MBean server is unable to complete an invocation,
the JMX client will hang indefinitely.

For more information, see Make Remote Connections to an MBean Server in Developing Custom
Management Utilities with JMX.

Developing Manageable Applications with JMX 2-1

C H A P T E R 2

Understanding JMX

Java Management Extensions (JMX) is a specification for monitoring and managing Java
applications. It enables a generic management system to monitor your application; raise
notifications when the application needs attention; and change the state of your application to
remedy problems. Like SNMP and other management standards, JMX is a public specification
and many vendors of commonly used monitoring products support it.

WebLogic Server uses the Java Management Extensions (JMX) 1.2 implementation that is
included in JDK 1.5. The following sections describe how Java applications can use JMX to
expose runtime metrics and control points to management systems:

“What Management Services Can You Develop with JMX?” on page 2-2

“Creating Management-Aware Applications” on page 2-2

“When Is It Appropriate to Use JMX?” on page 2-3

“What Management Services Have BEA Partners Developed?” on page 2-3

“JMX Layers” on page 2-4

“Indirection and Introspection” on page 2-4

“Notifications and Monitor MBeans” on page 2-5

For information about other APIs and utilities that you can use to manage Java EE applications
on WebLogic Server, refer to “Overview of WebLogic Server System Administration” in
Introduction to WebLogic Server.

Unders tanding JMX

2-2 Developing Manageable Applications with JMX

What Management Services Can You Develop with JMX?
When used to monitor and manage applications, JMX typically provides management
applications access to properties in your Java classes that collect management data (see
Figure 2-1). Often, these class properties are simple counters that keep track of the resources your
application is consuming. JMX can also provide access to methods in your Java classes that start
or stop processes in the application or reset the value of the class properties. Any class that
exposes management data through JMX is called a managed bean (MBean). Class properties that
are exposed through MBeans are called attributes and methods that are exposed through MBeans
are called operations.

Figure 2-1 JMX Provides Access to Management Properties

Once you provide this type of access to JMX-enabled management utilities, system
administrators or the operations staff can integrate the data into their overall view of the system.
They can use a JMX management utility to view the current value of an MBean attribute, or they
can set up JMX monitors to periodically poll the value of your MBean attributes and emit
notifications to the management utility only when the values exceed specific thresholds.

Creating Management-Aware Applications
Instead of placing all management responsibility on system administrators or the operations staff,
you can create management-aware applications that monitor MBeans and then perform some
automated task. For example:

An application that monitors connection pools and grows or shrinks the pools to meet
demand.

A portal application that monitors the set of deployed applications. If a new application is
deployed, the portal application automatically displays it as a new portlet.

An application that listens for deployments of connector modules and then configures itself
to use newly deployed modules.

MyBean

simpleCounter

JMXManagement
System

resetCounter()

When Is I t Approp r ia te to Use JMX?

Developing Manageable Applications with JMX 2-3

When Is It Appropriate to Use JMX?
Any critical Java EE application that is a heavy consumer of resources, such as database or JMS
connections or caches, should provide some facility for monitoring the application’s resource
consumption. For these kinds of applications, which might be writing or reading from a database
many times each minute, it is not feasible to use logging facilities to output messages with each
write and read operation. Using JMX for this type of monitoring enables you to write
management (instrumentation) code that is easy to maintain and that optimizes your use of
network resources.

If you want to monitor basic runtime metrics for your application, WebLogic Server already
provides a significant number of its own MBeans that you can use (see Best Practices: Listening
for WebLogic Server Events in Developing Custom Management Utilities with JMX). For
example, you can use existing WebLogic Server MBeans to track the hit rate on your
application’s servlets and the amount of time it takes to process servlet requests.

Although WebLogic Server MBeans can indicate to an operations center the general state of
resources, it cannot provide detailed information about how a specific application is using the
resources. For example, WebLogic Server MBeans can indicate how many connections are being
used in a connection pool, but they do not indicate which applications are using the connection
pools. If your domain contains several active applications and you notice that some connections
are always in use, consider creating MBeans that monitor when each application session gets and
releases a connection. You could also include a management operation that ends sessions that
appear to be stuck.

In addition, if your application creates and maintains its own cache or writes to a data repository
that is outside the control of the application container, consider creating MBeans to monitor the
size of the cache or the amount of data written to the repository.

What Management Services Have BEA Partners
Developed?

BEA Partners have developed an extensive set of management consoles that can monitor and
analyze data from WebLogic Server MBeans and potentially from MBeans that you develop for
your own applications. These consoles can integrate WebLogic Server into an overall
management strategy for your network or data center operations. To see the list of management
software available, visit the Partners page on www.bea.com.

Unders tanding JMX

2-4 Developing Manageable Applications with JMX

JMX Layers
Like most of Java EE, JMX is a component-based technology in which different types of software
vendors provide different types of components. This division of labor enables each type of vendor
to focus on providing only the software that falls within its area of expertise. JMX organizes its
components into the following layers:

Instrumentation

Consists of applications that you write, resources, and other manageable objects. In this
layer, application developers create managed beans (MBeans), which contain the properties
(attributes) and methods (operations) that they want to expose to external management
systems.

Agent

Consists of the JVM and application servers such as WebLogic Server. This layer includes
a registry of MBeans and standard interfaces for creating, destroying, and accessing
MBeans.

The agent layer also provides services for remote clients as well as a monitoring and a
timer service. See “Using the WebLogic Server JMX Timer Service” on page 5-1 and
Using Notifications and Monitor MBeans in Developing Custom Management Utilities
with JMX.

Distributed Services

Consists of Management consoles or other Java EE applications. A management
application sends or receives requests from the agent layer. Often this layer is available as
a plug-in or as an adapter that enables a management console to support a variety of
management protocols, such as JMX and SNMP.

Indirection and Introspection
Two key concepts for understanding JMX are indirection and introspection, which enable a JMX
application to manage proprietary resources without requiring access to proprietary class
definitions.

The general model for JMX is that applications in the distributed services layer never interact
directly with classes in the instrumentation layer. Instead, under this model of indirection, the
JMX agent layer provides standard interfaces, such as
javax.management.MBeanServerConnection, that:

Not i f i ca t i ons and Moni to r MBeans

Developing Manageable Applications with JMX 2-5

Expose a class management interface to management clients in the distributed services
layer

Receive requests from management clients, such as a request to get the value of a property
that a class is exposing through JMX

Interact with the class to carry out the request and return the result to the management
client

Each class describes to the MBean server the set of properties and methods that it wants to expose
through JMX. A property that a class exposes through JMX is called an MBean attribute, and a
method that it exposes is called an operation. JMX specifies multiple techniques (design
patterns) that a class can use to describe its attributes and operations, and these design patterns
are formalized as the following MBean types: standard, dynamic, model, and open.

A class that instruments the standard MBean type describes its management interface in way that
is most like Java programming: a developer creates a JMX interface file that contains getter and
setter methods for each class property that is to be exposed through JMX. The interface file also
contains a wrapper method for each class method that is to be exposed. Then the class declares
the name of its JMX interface. When you register a standard MBean with the MBean server, the
MBean server introspects the class and its JMX interface to determine which attributes and
operations it will expose to the distributed services layer. The MBean server also creates an
object, MBeanInfo, that describes the interface. Management clients inspect this MBeanInfo
object to learn about a class’s management interface.

A class that instruments the model MBean type describes its management interface by
constructing its own MBeanInfo object, which is a collection of metadata objects that describe
the properties and methods to expose through JMX. When you register a model MBean with the
MBean server, the MBean server uses the existing MBeanInfo object instead of introspecting the
class.

Notifications and Monitor MBeans
JMX provides two ways to monitor changes in MBeans: MBeans can emit notifications when
specific events occur (such as a change in an attribute value), or monitor MBeans can poll an
MBean periodically to retrieve the value of an attribute.

The following sections describe JMX notifications and monitor MBeans:

“How JMX Notifications Are Broadcast and Received” on page 2-6

“Active Polling with Monitor MBeans” on page 2-7

Unders tanding JMX

2-6 Developing Manageable Applications with JMX

How JMX Notifications Are Broadcast and Received
As part of MBean creation, you can implement the
javax.management.NotificationEmitter interface, which enables the MBean to emit
notifications when different types of events occur. For example, you create an MBean that
manages your application’s use of a connection pool. You can configure the MBean to emit a
notification when the application creates a connection and another notification when the
application drops a connection.

To listen for notifications, you create a listener class that implements the
javax.management.NotificationListener.handleNotification() method. Your
implementation of this method includes the logic that causes the listener to carry out an action
when it receives a notification. After you create the listener class, you create another class that
registers the listener with an MBean.

By default, an MBean broadcasts all its notifications to all its registered listeners. However, you
can create and register a filter for a listener. A filter is a class that implements the
javax.management.NotificationFilter.isNotificationEnabled() method. The
implementation of this method specifies one or more notification types. (In this case, type refers
to a unique string within a notification object that identifies an event, such as
vendorA.appB.eventC.) When an event causes an MBean to generate a notification, the MBean
invokes a filter’s isNotificationEnabled() method before it sends the notification to the
listener. If the notification type matches one of the types specified in
isNotificationEnabled(), then the filter returns true and the MBean broadcasts the
message to the associated listener.

For information on creating and registering listeners and filters, see Listening for Notifications
from WebLogic Server MBeans: Main Steps in Developing Custom Management Utilities with
JMX. For a complete description of JMX notifications, refer to the JMX 1.2 specification. See
“Related Documentation” on page 1-3.

Figure 2-2 shows a basic system in which a notification listener receives only a subset of the
notifications that an MBean broadcasts.

Not i f i ca t i ons and Moni to r MBeans

Developing Manageable Applications with JMX 2-7

Figure 2-2 Receiving Notifications from an MBean

Active Polling with Monitor MBeans
JMX includes specifications for a type of MBeans called monitor MBeans, which can be
instantiated and configured to periodically observe other MBeans. Monitor MBeans emit JMX
notifications only if a specific MBean attribute has changed beyond a specific threshold. A
monitor MBean can observe the exact value of an attribute in an MBean, or optionally, the
difference between two consecutive values of a numeric attribute. The value that a monitor
MBean observes is called the derived gauge.

When the value of the derived gauge satisfies a set of conditions, the monitor MBean emits a
specific notification type. Monitors can also send notifications when certain error cases are
encountered while monitoring an attribute value.

To use monitor MBeans, you configure a monitor MBean and register it with the MBean you
want to observe. Then you create a listener class and register the class with the monitor MBean.
Because monitor MBeans emit only very specific types of notification, you usually do not use
filters when listening for notifications from monitor MBeans.

MyNotificationListener

handleNotification()

MyFilter

isNotificationEnabled()

Notification

type=vendorA.appB.eventC

MBean

implements NotificationEmitter

If a notification satisfies
filter criteria, MBean
passes the notification
to the listener

Filter and listener
registered with MBean

Unders tanding JMX

2-8 Developing Manageable Applications with JMX

Figure 2-3 shows a basic system in which a monitor MBean is registered with an MBean. A
NotificationListener is registered with the monitor MBean, and it receives notifications
when the conditions within the monitor MBean are satisfied.

Figure 2-3 Monitor MBeans

MyNotificationListener

MyMonitor MBean Notification

Observed MBean

Monitor MBean registered
with an observed MBean.
Monitor MBean periodically
polls the observed MBean.

MyFilter

Filter and listener
registered with the
monitor MBean.

If a notification satisfies
filter criteria, MBean
passes the notification
to the listener

Developing Manageable Applications with JMX 3-1

C H A P T E R 3

Designing Manageable Applications

Several viable JMX design patterns and deployment options can make your application more
manageable. The following sections describe BEA best practices for designing manageable
applications. The last section, “Additional Design Considerations” on page 3-6, provides
alternatives to some BEA recommendations and discusses additional design considerations.

“Benefits of BEA Best Practices” on page 3-2

“Use Standard MBeans” on page 3-2

“Registering Custom MBeans in the WebLogic Server Runtime MBean Server” on
page 3-3

“Use ApplicationLifecycleListener to Register Application MBeans” on page 3-3

“Unregister Application MBeans When Applications Are Undeployed” on page 3-4

“Place Management Logic for EJBs and Servlets in a Delegate Class” on page 3-4

“Use Open MBean Data Types” on page 3-6

“Emit Notifications Only When Necessary” on page 3-6

“Additional Design Considerations” on page 3-6

Des ign ing Manageab le App l i cat ions

3-2 Developing Manageable Applications with JMX

Benefits of BEA Best Practices
The design patterns that BEA recommends are based on the assumption that the instrumentation
of your Java classes should:

Use as few system resources as possible; management functions must not interfere with
business functions.

Be separate from your business code whenever possible.

Deploy along with the business code and share its life cycle; you should not require the
operations staff to take additional steps to enable the management of your application.

Use Standard MBeans
Of the many design patterns that JMX defines, BEA recommends that you use standard MBeans,
which are the easiest to code. To use the simplest design pattern for standard MBeans:

1. Create an interface for the management properties and operations that you want to expose.

2. Implement the interface in your Java class.

3. Create and register the MBean in the WebLogic Server Runtime MBean Server by invoking
the Runtime MBean Server’s
javax.management.MBeanServerConnection.createMBean() method and passing
your management interface in the method’s parameter.

When you invoke the createMBean() method, the Runtime MBean Server introspects
your interface, finds the implementation, and registers the interface and implementation as
an MBean.

In this design pattern, the management interface and its implementation must follow strict naming
conventions so that the MBean server can introspect your interface. You can circumvent the
naming requirements by having your Java class extend javax.management.StandardMBean.
See StandardMBean in the J2SE 5.0 API Specification.

Regis te r ing Custom MBeans in the WebLog ic Serve r Runt ime MBean Serve r

Developing Manageable Applications with JMX 3-3

Registering Custom MBeans in the WebLogic Server
Runtime MBean Server

A JVM can contain multiple MBean servers, and another significant design decision is which
MBean server you use to register your custom MBeans.

BEA recommends that you register custom MBeans in the WebLogic Server Runtime MBean
Server. (Each WebLogic Server instance contains its own instance of the Runtime MBean Server.
See MBean Servers in Developing Custom Management Utilities with JMX.) With this option:

Your MBeans exist in the same MBean server as WebLogic Server MBeans. Remote JMX
clients need to maintain only a single connection to monitor your application’s MBeans
and WebLogic Server MBeans.

JMX clients must authenticate and be authorized through the WebLogic Server security
framework to access your custom MBeans and WebLogic Server MBeans.

The WebLogic Server Runtime MBean Server registers its javax.management.MBeanServer
interface in the JNDI tree. See Make Local Connections to the Runtime MBean Server in
Developing Custom Management Utilities with JMX.

Alternative: Register Custom MBeans in the JVM’s Platform
MBean Server
As of JDK 1.5, processes within a JVM (local processes) can instantiate a platform MBean server,
which is provided by the JDK and contains MBeans for monitoring the JVM itself.

Your local processes can register custom MBeans in this MBean server, but the custom MBeans
will not be protected by the WebLogic Server security framework and JMX clients must connect
to multiple MBean servers to monitor your application’s MBeans and WebLogic Server MBeans.
If it is essential that JMX clients be able to monitor your custom MBeans, WebLogic Server
MBeans, and the JVM’s platform MBeans through a single MBean server, you can configure the
runtime MBean server to be the JVM platform MBean server. See “Registering MBeans in the
JVM Platform MBean Server” on page 3-6.

Use ApplicationLifecycleListener to Register Application
MBeans

If you are creating MBeans for EJBs, servlets within Web Applications, or other modules that are
deployed, and if you want your MBeans to be available as soon as you deploy your application,

Des ign ing Manageab le App l i cat ions

3-4 Developing Manageable Applications with JMX

listen for notifications from the deployment service. When you deploy an application (and when
you start a server on which you have already deployed an application), the WebLogic Server
deployment service emits notifications at specific stages of the deployment process. When you
receive a notification that the application has been deployed, you can create and register your
MBeans.

There are two steps for listening to deployment notifications with
ApplicationLifecycleListener:

1. Create a class that extends weblogic.application.ApplicationLifecycleListener.
Then implement the ApplicationLifecycleListener.postStart method to create and
register your MBean in the MBean server. The class invokes your postStart() method only
after it receives a postStart notification from the deployment service. See Programming
Application Lifecycle Events in Developing Applications with WebLogic Server.

2. In the weblogic-application.xml deployment descriptor, register your class as an
application listener class.

For an example of this technique, see the MedRec example server.

If you do not want to use proprietary WebLogic Server classes and deployment descriptors to
register application MBeans, see “Registering Application MBeans by Using Only JDK Classes”
on page 3-7.

Unregister Application MBeans When Applications Are
Undeployed

Regardless of how you create your MBeans, BEA recommends that you unregister your MBeans
whenever you receive a deployment notification that your application has been undeployed.
Failure to do so introduces a potential memory leak.

If you create a class that extends ApplicationLifecycleListener, you can implement the
ApplicationLifecycleListener.preStop method to unregister your MBeans. For
information on implementing the preStop method, see “Register the MBean” on page 4-7.

Place Management Logic for EJBs and Servlets in a
Delegate Class

If you want to expose management attributes or operations for any type of EJB (session, entity,
message-driven) or servlet, BEA recommends that you implement the management attributes and

P lace Management Log ic fo r E JBs and Se rv le ts in a De legate C lass

Developing Manageable Applications with JMX 3-5

operations in a separate, delegate class so that your EJB or servlet implementation classes contain
only business logic, and so that their business interfaces present only business logic. See
Figure 3-1.

Figure 3-1 Place Management Properties and Operations in a Delegate Class

In Figure 3-1, business methods in the EJB push their data to the delegate class. For example,
each time a specific business method is invoked, the method increments a counter in the delegate
class, and the MBean interface exposes the counter value as an attribute. For an example of this
technique, see the MedRec example server.

This separation of business logic from management logic might be less efficient than combining
the logic into the same class, especially if the counter in the delegate class is incremented
frequently. However, in practice, most JVMs can optimize the method calls so that the potential
inefficiency is negligible.

MBean server

My standard MBean
interface

My standard MBean
implementation
(delegate class)

Session EJB

Push management
data to MBean

Gets management
data through the
MBean server

JMX client

Des ign ing Manageab le App l i cat ions

3-6 Developing Manageable Applications with JMX

If this negligible difference is not acceptable for your application, your business class in the EJB
can contain the management value and the delegate class can retrieve the value whenever a JMX
client requests it.

Use Open MBean Data Types
If a remote JMX client will access your custom MBeans, BEA recommends that you limit the
data types of your MBean attributes and the data types that your operations return to those defined
in javax.management.openmbean.OpenType. All JVMs have access to these basic types. See
OpenType in the J2SE 5.0 API Specification.

If your MBeans expose other data types, the types must be serializable and the remote JMX
clients must include your types on their class paths.

Emit Notifications Only When Necessary
Each time an MBean emits a notification, it uses memory and network resources. For MBean
attributes whose values change frequently, such memory and resource uses might be
unacceptable.

Instead of configuring your MBeans to emit notifications each time its attributes change, BEA
recommends that you use monitor MBeans to poll your custom MBeans periodically to determine
whether attributes have changed. You can configure the monitor MBean to emit a notification
only after an attribute changes in a specific way or reaches a specific threshold.

For more information, see Best Practices: Listening Directly Compared to Monitoring in
Developing Custom Management Utilities with JMX.

Additional Design Considerations
In addition to BEA best practices, bear in mind the following considerations when designing
manageable applications.

Registering MBeans in the JVM Platform MBean Server
If it is essential that JMX clients be able to monitor your custom MBeans, WebLogic Server
MBeans, and the JVM’s platform MBeans through a single MBean server, you can configure the
runtime MBean server to be the JVM platform MBean server. With this option:

Addi t i ona l Des ign Cons iderat ions

Developing Manageable Applications with JMX 3-7

Local applications can access all of the MBeans through the MBeanServer interface that
java.lang.management.ManagementFactory.getPlatformMBeanServer() returns.

WARNING: With this local access, there are no WebLogic Server security checks to make
sure that only authorized users can access WebLogic Server MBeans. Any
application that is running in the JVM can access any of the WebLogic Server
MBeans in the Runtime MBean Server or JDK platform MBean Server. Do
not use this configuration if you cannot control or cannot trust the
applications that are running within a JVM.

If you want to enable remote JMX clients to access custom MBeans, JMX MBeans, and
WebLogic Server MBeans, consider the following configuration:

– The WebLogic Server Runtime MBean Server is configured to be the platform MBean
server.

– Remote access to the platform MBean server is not enabled.

Remote access to the platform MBean server can be secured only by standard JDK 1.5
security features (see
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote). If you have
configured the WebLogic Server Runtime MBean Server to be the platform MBean
server, enabling remote access to the platform MBean server creates an access path to
WebLogic Server MBeans that is not secured through the WebLogic Server security
framework.

– Remote JMX clients access JVM MBeans by connecting to the Runtime MBean Server.

To configure the WebLogic Runtime MBean Server to be the JDK platform MBean server, set
the WebLogic JMXMBean PlatformMBeanServerEnabled attribute to true and restart the
servers in the domain. See JMXMBean in the WebLogic Server MBean Reference.

Registering Application MBeans by Using Only JDK Classes
Using BEA’s ApplicationLifecycleListener is the easiest technique for making an MBean
share the life cycle of its parent application. If you do not want to use proprietary WebLogic
Server classes and deployment descriptor elements for managing a servlet or an EJB, you can do
the following:

For a servlet, configure a javax.servlet.Filter that creates and registers your MBean
when a servlet calls a specific method or when the servlet itself is instantiated. See Filter
in the J2SE 5.0 API Specification.

Des ign ing Manageab le App l i cat ions

3-8 Developing Manageable Applications with JMX

For an EJB, implement its javax.ejb.EntityBean.ejbActivate() method to create and
register your MBean. For a session EJB whose instances share a single MBean instance, include
logic that creates and registers your MBean only if it does not already exist. See EntityBean in
the J2SE 5.0 API Specification.

Organizing Managed Objects and Business Objects
While you might design one managed object for each business object, there is no requirement for
how your management objects should relate to your business objects. One management object
could aggregate information from multiple business objects or conversely, you could split
information from one business object into multiple managed objects.

For example, if a servlet uses multiple helper classes and you want one MBean to represent the
servlet, each helper class should push its management data into a single MBean implementation
class.

The organization that you choose depends on the number of MBeans you want to provide to the
system administrator or operations staff contrasted with the difficulty of maintaining a complex
management architecture.

Packaging and Accessing Management Classes
If you package your management classes in an application’s APP-INF directory, all other classes
in the application can access them. If you package the classes in a module’s archive file, then only
the module can access the management classes.

For example, consider an application that contains multiple Web applications, each of which
contains its own copy of a session EJB named EJB1. If you want one MBean to collect
information for all instances of the session EJB across all applications, you must package the
MBean’s classes in the APP-INF directory. If you want each Web application’s copy of the EJB
to maintain its own copy of the MBean, then package the MBean’s classes in the EJB’s JAR file.
(If you package the classes in the EJB’s JAR, then you distribute the MBean classes to each Web
application when you copy the JAR to the Web application.)

Securing Custom MBeans with Roles and Policies
If you register your MBeans in the WebLogic Server Runtime MBean Server, in addition to
limiting access only to users who have authenticated and been authorized through the WebLogic
Server security framework, you can further restrict access by creating roles and polices. A
security role, like a security group, grants an identity to a user. Unlike a group, however,

Addi t i ona l Des ign Cons iderat ions

Developing Manageable Applications with JMX 3-9

membership in a role can be based on a set of conditions that are evaluated at runtime. A security
policy is another set of runtime conditions that specify which users, groups, or roles can access a
resource.

Note the following restrictions to securing custom MBeans with roles and policies:

Your MBean’s object name must include a “Type=value” key property.

You must describe your roles and policy in a XACML 2.0 document and then use the
WebLogic Scripting Tool to add the data to your realm.

If your XACML document describes authorization policies, your security realm must use
either the WebLogic Server XACML Authorization Provider or some other provider that
implements the
weblogic.management.security.authorization.PolicyStoreMBean interface.

If your XACML document describes role assignments, your security realm must use either
the WebLogic Server XACML Role Mapping Provider or some other provider that
implements the
weblogic.management.security.authorization.PolicyStoreMBean interface.

For information about creating XACML roles policies and adding them to your realm, see Using
XACML Documents to Secure WebLogic Resources in Securing WebLogic Server Resource
with Roles and Policies.

Des ign ing Manageab le App l i cat ions

3-10 Developing Manageable Applications with JMX

Developing Manageable Applications with JMX 4-1

C H A P T E R 4

Instrumenting and Registering Custom
MBeans

The following sections describe how to instrument and register standard MBeans for application
modules:

“Overview of the MBean Development Process” on page 4-1

“Create and Implement a Management Interface” on page 4-3

“Modify Business Methods to Push Data” on page 4-6

“Register the MBean” on page 4-7

“Package Application and MBean Classes” on page 4-9

Overview of the MBean Development Process
Figure 4-1 illustrates the MBean development process. The steps in the process, and the results
of each are described in Table 4-1. Subsequent sections detail each step in the process.

I ns t rument ing and Reg is te r ing Custom MBeans

4-2 Developing Manageable Applications with JMX

Figure 4-1 Standard MBean Development Overview

Modify

.java files Compile
 source

files

.class filesbusiness methods

Application Archive (EAR)

Deploy
application

to push management

Package
classes

data to the
management

Register
listener in
 weblogic-

class

application.xml

Create and
implement a

Create an
Application
Lifecycle

management

Listener that

interface

registers your
MBean

Create and Imp lement a Management In te r face

Developing Manageable Applications with JMX 4-3

Create and Implement a Management Interface
One of the main advantages to the standard MBeans design pattern is that you define and
implement management properties (attributes) as you would any Java property (using getxxx,

Table 4-1 Model MBean Development Tasks and Results

Step Description Result

1. “Create and
Implement a
Management
Interface” on
page 4-3

Create a standard Java interface that describes the
properties (management attributes) and operations
you want to expose to JMX clients.

Create a Java class that implements the interface.
Because management logic should be separate from
business logic, the implementation should not be in
the same class that contains your business methods.

Source files that describe and
implement your management
interface.

2. “Modify Business
Methods to Push
Data” on page 4-6

If your management attributes contain data about the
number of times a business method has been
invoked, or if you want management attributes to
contain the same value as a business property,
modify your business methods to push (update) data
into the management implementation class.

For example, if you want to keep track of how
frequently your business class writes to the database,
modify the business method that is responsible for
writing to the database to also increment a counter
property in your management implementation class.
This design pattern enables you to insert a minimal
amount of management code in your business code.

A clean separation between
business logic and management
logic.

3.“Register the
MBean” on
page 4-7

If you want to instantiate your MBeans as part of
application deployment, create a WebLogic Server
ApplicationLifecycleListener class to
register your MBean.

A Java class and added entries in
weblogic-application.x
ml.

4. “Package
Application and
MBean Classes” on
page 4-9

Package your compiled classes into a single archive. A JAR, WAR, EAR file or other
deployable archive file.

I ns t rument ing and Reg is te r ing Custom MBeans

4-4 Developing Manageable Applications with JMX

setxxx, and isxxx methods); similarly, you define and implement management methods
(operations) as you would any Java method.

When you register the MBean, the MBean server examines the MBean interface and determines
how to represent the data to JMX clients. Then, JMX clients use the
MBeanServerConnection.getAttribute() and setAttribute() methods to get and set the
values of attributes in your MBean and they use MBeanServerConnection.invoke() to invoke
its operations. See MBeanServerConnection in the J2SE 5.0 API Specification.

To create an interface for your standard MBean:

1. Declare the interface as public.

2. BEA recommends that you name the interface as follows:
Business-objectMBean.java

where Business-object is the object that is being managed.

BEA’s recommended design pattern for standard MBeans enables you to follow whatever
naming convention you prefer. In other standard MBean design patterns (patterns in which
the MBean’s implementation file does not extend javax.management.StandardMBean),
the file name must follow this pattern: Impl-fileMBean.java where Impl-file is the
name of the MBean’s implementation file.

3. For each read-write attribute that you want to make available in your MBean, define a getter
and setter method that follows this naming pattern:

getAttribute-name
setAttribute-name

where Attribute-name is a case-sensitive name that you want to expose to JMX clients.

If your coding conventions prefer that you use an isAttribute-name as the getter method
for attributes of type Boolean, you may do so. However, JMX clients use the
MBeanServerConnection.getAttribute() method to retrieve an attribute’s value
regardless of the attribute’s data type; there is no
MBeanServerConnection.isAttribute() method.

4. For each read-only attribute that you want to make available, define only an is or a getter
method.

For each write-only attribute, define only a setter method.

5. Define each management operation that you want to expose to JMX clients.

Create and Imp lement a Management In te r face

Developing Manageable Applications with JMX 4-5

Listing 4-1 is an MBean interface that defines a read-only attribute of type int and an operation
that JMX clients can use to set the value of the attribute to 0.

Listing 4-1 Management Interface

package com.bea.medrec.controller;

public interface RecordSessionEJBMBean {

public int getTotalRx();

public void resetTotalRx();

}

To implement the interface:

1. Create a public class.

BEA recommends the following pattern as a naming convention for implementation files:
MBean-InterfaceImpl.java.

2. Extend javax.management.StandardMBean to enable this flexibility in the naming
requirements.

See StandardMBean in the J2SE 5.0 API Specification.

3. Implement the StandardMBean(Object implementation, Class mbeanInterface)
constructor.

With BEA’s recommended design pattern in which you separate the management logic into
a delegate class, you must provide a public constructor that implements the
StandardMBean(Object implementation, Class mbeanInterface) constructor.

4. Implement the methods that you defined in the management interface.

Follow these guidelines:

– If you are using BEA’s recommended design pattern, in which business objects push
management data into the management object, provide a method in this implementation
class that the business methods use to set the value of the management attribute. In
Listing 4-2, the incrementTotalRx() method is available to business methods but it
is not part of the management interface.

I ns t rument ing and Reg is te r ing Custom MBeans

4-6 Developing Manageable Applications with JMX

– If multiple instances of an EJB, servlet, or other class can set the value of a
management attribute, make sure to increment the property atomically and do not make
its getter and setter (or increment method) synchronized. While synchronizing
guarantees the accuracy of management data, it blocks business threads until the
management operation has completed.

Listing 4-2 MBean Implementation

package com.bea.medrec.controller;

import javax.management.StandardMBean;

import com.bea.medrec.controller.RecordSessionEJBMBean;

public class RecordSessionEJBMBeanImpl extends StandardMBean

implements RecordSessionEJBMBean {

public RecordSessionEJBMBeanImpl() throws

javax.management.NotCompliantMBeanException {

super(RecordSessionEJBMBean.class);

}

public int TotalRx = 0;

public int getTotalRx() {

return TotalRx;

}

public void incrementTotalRx() {

TotalRx++;

}

public void resetTotalRx() {

TotalRx = 0;

}

}

Modify Business Methods to Push Data
If your management attributes contain data about the number of times a business method has been
invoked, or if you want management attributes to contain the same value as a business property,
modify your business methods to push (update) data into the management implementation class.

Regis te r the MBean

Developing Manageable Applications with JMX 4-7

Listing 4-3 shows a method in an EJB that increments the integer in the TotalRx property each
time the method is invoked.

Listing 4-3 EJB Method That Increments the Management Attribute

private Collection addRxs(Collection rXs, RecordLocal recordLocal)

throws CreateException, Exception {

...

com.bea.medrec.controller.RecordSessionEJBMBeanImpl.incrementTotalRx();

...

}

Register the MBean
If you want to instantiate your MBeans as part of application deployment, create an
ApplicationLifecycleListener that registers your MBean when the application deploys
(see “Use ApplicationLifecycleListener to Register Application MBeans” on page 3-3):

1. Create a class that extends weblogic.application.ApplicationLifecycleListener.

2. In this ApplicationLifecycleListener class, implement the
ApplicationLifecycleListener.postStart(ApplicationLifecycleEvent evt)
method.

In your implementation of this method:

a. Construct an object name for your MBean.

BEA recommends this naming convention:
your.company:Name=Parent-module,Type=MBean-interface-classname

To get the name of the parent module, use ApplicationLifecycleEvent to get an
ApplicationContext object. Then use ApplicationContext to get the module’s
identification.

b. Access the WebLogic Server Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a Java EE module, such as an EJB or Web
application, then the JNDI name for the Runtime MBeanServer is:
java:comp/env/jmx/runtime

I ns t rument ing and Reg is te r ing Custom MBeans

4-8 Developing Manageable Applications with JMX

If the classes for the JMX client are not part of a Java EE module, then the JNDI name
for the Runtime MBean Server is:
java:comp/jmx/runtime

For example:

InitialContext ctx = new InitialContext();
MBeanServer server = (MBeanServer)

ctx.lookup("java:comp/env/jmx/runtime");

See Make Local Connections to the Runtime MBean Server in Developing Custom
Management Utilities with JMX.

c. Register your MBean using MBeanServer.registerMBean(Object object,
ObjectName name) where:

object is an instance of your MBean implementation class.

name is the JMX object name for your MBean.

When your application deploys, the WebLogic deployment service emits
ApplicationLifecycleEvent notifications to all of its registered listeners. When the
listener receives a postStart notification, it invokes its postStart method. See
Programming Application Lifecycle Events in Developing Applications with WebLogic
Server.

3. In the same class, implement the
ApplicationLifecycleListener.preStop(ApplicationLifecycleEvent evt)
method.

In your implementation of this method, invoke the
javax.management.MBeanServer.unregister(ObjectName MBean-name) method to
unregister your MBean.

4. Register your class as an ApplicationLifecycleListener by adding the following
element to your application’s weblogic-application.xml file:

<listener>
<listener-class>

fully-qualified-class-name
</listener-class>

</listener>

For an example of this technique, see the Medrec example server.

Package Appl ica t i on and MBean C lasses

Developing Manageable Applications with JMX 4-9

Package Application and MBean Classes
Package your MBean classes in the application’s APP-INF directory or in a module’s JAR, WAR
or other type of archive file depending on the access that you want to enable for the MBean. See
“Additional Design Considerations” on page 3-6.

I ns t rument ing and Reg is te r ing Custom MBeans

4-10 Developing Manageable Applications with JMX

Developing Manageable Applications with JMX 5-1

C H A P T E R 5

Using the WebLogic Server JMX Timer
Service

The following sections describe how to use the WebLogic Server JMX timer service:

“Overview of the WebLogic Server JMX Timer Service” on page 5-1

“Creating the Timer Service: Main Steps” on page 5-2

“Creating Date Objects” on page 5-4

“Example: Generating a Notification Every Five Minutes After 9 AM” on page 5-5

“Removing Notifications” on page 5-8

Overview of the WebLogic Server JMX Timer Service
If you need your JMX client to carry out a task at a specified time or a regular time interval, you
can configure a JMX timer service to emit notifications, and a listener that responds to the
notifications with a specified action.

For example, you want a JMX monitor to run between 9am and 9pm each day. You configure the
JMX timer service to emit a notification daily at 9am, which triggers a JMX listener to start your
monitor. The timer service emits another notification at 9pm, which triggers the listener to stop
the monitor MBean.

The JDK includes an implementation of the JMX timer service (see
javax.management.timer.Timer in the J2SE 5.0 API Specification); however, listeners for
this timer service run in their own thread in a server’s JVM.

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-2 Developing Manageable Applications with JMX

WebLogic Server includes an extension of the standard timer service that causes timer listeners
to run in a thread that WebLogic Server manages and within the security context of a WebLogic
Server user account.

Creating the Timer Service: Main Steps
You construct and manage instances of the timer service for each JMX client. WebLogic Server
does not provide a centralized timer service that all JMX clients use. Each time you restart a
server instance, each JMX client must re-instantiate any timer service configurations it needs.

To create the WebLogic Server timer service:

1. Create a JMX listener class in your application.

For general instructions on creating a JMX listener, see Creating a Notification Listener in
Developing Custom Management Utilities in JMX.

2. Create a class that does the following:

a. Configures an instance of weblogic.management.timer.TimerMBean to emit
javax.management.timer.TimerNotification notifications at a specific time or at a
recurring interval. See TimerNotification in the J2SE 5.0 API Specification.

For each notification that you configure, include a String in the notification’s Type
attribute that identifies the event that caused the timer to emit the notification.

See “Configuring a Timer MBean to Emit Notifications” on page 5-3.

b. Registers your listener and an optional filter with the timer MBean that you configured.

c. Starts the timer in the timer MBean that you configured.

For general instructions, see Configuring a Notification Filter and Registering a
Notification Listener and Filter in Developing Custom Management Utilities in JMX.

d. Unregisters the timer MBean and closes its connection to the MBean server when it
finishes using the timer service.

3. Package and deploy the listener and other JMX classes to WebLogic Server. See Packaging
and Deploying Listeners on WebLogic Server in Developing Custom Management Utilities
in JMX.

Conf igur ing a T imer MBean to Emi t No t i f i cat ions

Developing Manageable Applications with JMX 5-3

Configuring a Timer MBean to Emit Notifications
To configure a Timer MBean instance to emit a notification:

1. Initialize a connection to the Domain Runtime MBean Server.

See Connect to an MBean Server in Developing Custom Management Utilities in JMX.

2. Create an ObjectName for your timer MBean instance.

See javax.management.ObjectName in the J2SE 5.0 API Specification.

BEA recommends that your object name start with the name of your organization and
include key properties that clearly identify the purpose of the timer MBean instance.

For example, "mycompany:Name=myDailyTimer,Type=weblogicTimer"

3. Create and register the timer MBean.

Use javax.management.MBeanServerConnection.createMBean(String classname
ObjectName name) method where:

– classname is weblogic.management.timer.Timer

– name is the object name that you created for the timer MBean instance.

Note: The timer MBean that you create runs in the JMX agent on WebLogic Server (it does
not run in a client JVM even if you create the timer MBean from a remote JMX
client).

4. Configure the timer MBean to emit a notification.

Invoke the MBean’s addNotification operation. Table 5-1 describes each parameter of
the addNotification operation. For more information, see
weblogic.management.timer.Timer in the WebLogic Server API Reference.

The addNotification operation creates a TimerNotification object and returns a
handback object of type Integer, which contains an integer that uniquely identifies the
TimerNotification object.

5. Repeat step 4 for each timer notification that your JMX client needs to receive.

6. Start the timers in your timer MBean by invoking the timer MBean’s start() operation.

When the time that you specify arrives, the timer service emits the TimerNotification object
along with a reference to the handback object.

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-4 Developing Manageable Applications with JMX

Creating Date Objects
The constructor for the java.util.Date object initializes the object to represent the time at
which you created the Date object measured to the nearest millisecond. To specify a different
time or date:

1. Create an instance of java.util.Calendar.

Table 5-1 Parameters of the addNotification Operation

Parameter Description

java.lang.String type A string that you use to identify the event that triggers this notification
to be broadcast. For example, you can specify midnight for a
notification that you configure to be broadcast each day at midnight.

java.lang.String message Specifies the value of the TimerNotification object’s message
attribute.

java.lang.Object userData Specifies the name of an object that contains whatever data you want
to send to your listeners. Usually, you specify a reference to the class
that registered the notification, which functions as a callback.

java.util.Date startTime Specifies a Date object that contains the time and day at which the
timer emits your notification.

See “Creating Date Objects” on page 5-4.

long period (Optional) Specifies the interval in milliseconds between notification
occurrences. Repeating notifications are not enabled if this parameter
is zero or is not defined (null).

long nbOccurences (Optional) Specifies the total number of times that the notification will
occur. If the value of this parameter is zero or is not defined (null)
and if the period is not zero or null, then the notification will repeat
indefinitely.

If you specify this parameter, each time the Timer MBean emits the
associated notification, it decrements the number of occurrences by
one. You can use the timer MBean’s getNbOccurrences operation
to determine the number of occurrences that remain. When the number
of occurrences reaches zero, the timer MBean removes the notification
from its list of configured notifications.

Example : Generat ing a Not i f i ca t ion Every F ive Minutes A f te r 9 AM

Developing Manageable Applications with JMX 5-5

2. Configure the fields in the Calendar object to represent the time or date.

3. Invoke the Calendar object’s getTime() method, which returns a Date object that
represents the time in the Calendar object.

For example, the following code configures a Date object that represents midnight:

java.util.Calendar cal = java.util.Calendar.getInstance();
cal.set(java.util.Calendar.HOUR_OF_DAY, 24);

java.util.Date morning = cal.getTime();

See java.util.Calendar in the J2SE 5.0 API Specification.

Example: Generating a Notification Every Five Minutes
After 9 AM

The code in Listing 5-1 creates an instance of weblogic.management.timer.Timer that emits
a notification every 5 minutes after 9am.

Note the following about the code:

It creates and registers the timer MBean in the WebLogic Server Runtime MBean Server,
under the assumption that the JMX client runs alongside applications that are deployed on
multiple server instances. In this case, your JMX client would register a timer MBean in
each Runtime MBean Server in the domain.

Even though it creates an instance of the WebLogic Server timer MBean, the class does not
import WebLogic Server classes. Only the MBean server needs access to the WebLogic
Server Timer class, not the JMX client.

Any generic JMX listener can be used to listen for timer notifications, because all timer
notifications extend javax.management.Notification.

Listing 5-1 Create, Register, and Configure a Timer MBean

import java.util.Hashtable;
import java.io.IOException;
import java.net.MalformedURLException;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-6 Developing Manageable Applications with JMX

import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import javax.management.NotificationFilterSupport;

public class RegisterTimer {
private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectName service;

// Initialize the object name for RuntimeServiceMBean
// so it can be used throughout the class.
static {

try {
service = new ObjectName(
"com.bea:Name=RuntimeService,Type=weblogic.management.mbeanservers.ru
ntime.RuntimeServiceMBean");

}catch (MalformedObjectNameException e) {
throw new AssertionError(e.getMessage());

}
}

/*
* Initialize connection to the Runtime MBean Server.
* This MBean is the root of the runtime MBean hierarchy, and
* each server in the domain hosts its own instance.
*/
public static void initConnection(String hostname, String portString,

String username, String password) throws IOException,
MalformedURLException {
String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.runtime";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
jndiroot + mserver);

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceURL, h);
connection = connector.getMBeanServerConnection();

}

public static void main(String[] args) throws Exception {
String hostname = args[0];

Example : Generat ing a Not i f i ca t ion Every F ive Minutes A f te r 9 AM

Developing Manageable Applications with JMX 5-7

String portString = args[1];
String username = args[2];
String password = args[3];

try {
/* Invokes a custom method that establishes a connection to the
* Runtime MBean Server and uses an instance of
* MBeanServerConnection to represents the connection. The custom
* method assigns the MBeanServerConnection to a class-wide, static
* variable named "connection".

*/
initConnection(hostname, portString, username, password);

//Creates and registers the timer MBean.
ObjectName timerON = new

ObjectName("mycompany:Name=myDailyTimer,Type=weblogicTimer");
String classname = "weblogic.management.timer.Timer";
connection.createMBean(classname, timerON);
System.out.println("===> created timer mbean "+timerON);

// Configures the timer MBean to emit a morning notification.
// Assigns the return value of addNotification to a variable so that
// it will be possible to invoke other operations for this specific
// notification.
java.util.Calendar cal = java.util.Calendar.getInstance();
cal.set(java.util.Calendar.HOUR_OF_DAY, 9);
java.util.Date morning = cal.getTime();
String myData = "Timer notification";
Integer morningTimerID = (Integer) connection.invoke(timerON,

"addNotification",
new Object[] { "mycompany.timer.notification.after9am" ,
"After 9am!", myData, morning, new Long(60000) },
new String[] {"java.lang.String", "java.lang.String",
"java.lang.Object", "java.util.Date", "long" });

//Instantiates your listener class and configures a filter to
// forward only timer messages.
MyListener listener = new MyListener();
NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enableType("mycompany.timer");

//Uses the MBean server's addNotificationListener method to
//register the listener and filter with the timer MBean.
System.out.println("===> ADD NOTIFICATION LISTENER TO "+ timerON);
connection.addNotificationListener(timerON, listener, filter, null);
System.out.println("\n[myListener]: Listener registered ...");

//Starts the timer.
connection.invoke(timerON, "start", new Object[] { }, new String[] {});

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-8 Developing Manageable Applications with JMX

//Keeps the remote client active.
System.out.println("Pausing. Press Return to end...........");
System.in.read();

} catch(Exception e) {
System.out.println("Exception: " + e);
e.printStackTrace();

}
}

}

Removing Notifications
The timer MBean removes notifications from its list when either of the following occurs:

A non-repeating notification is emitted.

A repeating notification exhausts its number of occurrences.

The timer MBean also provides the following operations to remove notifications:

removeAllNotifications(), which removes all notifications that are registered with the
timer MBean instance.

removeNotification(java.lang.Integer id), which removes the notification whose
handback object contains the integer value that you specify. The addNotification
method returns this handback object when you invoke it (see step 4 in “Configuring a
Timer MBean to Emit Notifications” on page 5-3.

removeNotifications(java.lang.String type), which removes all notifications
whose type corresponds to the type that you specify. You define a notification’s type value
when you create the notification object. See Table 5-1.

For more information, see weblogic.management.timer.Timer in the WebLogic Server API
Reference.

Developing Manageable Applications with JMX 6-1

C H A P T E R 6

Accessing Custom MBeans

Besides programmatic JMX access to your custom MBeans, you can use any JMX-compliant
management system to access your MBeans. For information, see “What Management Services
Have BEA Partners Developed?” on page 2-3 and the Sun Developer Network Web site, which
provides links to books, white papers, and other information on JMX:
http://java.sun.com/products/JavaManagement/.

The following sections describe additional ways to access your custom MBeans:

“Accessing Custom MBeans from JConsole” on page 6-1

“Accessing Custom MBeans from WebLogic Scripting Tool” on page 6-2

“Accessing Custom MBeans from an Administration Console Extension” on page 6-3

Accessing Custom MBeans from JConsole
The JDK includes JConsole, a Swing-based JMX client that you can use to browse MBeans. You
can browse the MBeans in any WebLogic Server MBean server and in the JVM platform MBean
server. Sun recommends that you use JConsole only in a development environment; it consumes
significant amounts of resources. See Using JConsole to Monitor Applications at
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html.

To access custom MBeans from JConsole:

1. Enable the IIOP protocol for the WebLogic Server instance that hosts your MBeans.
Configure the default IIOP user to be a WebLogic Server user with Administrator privileges.

See Enable and Configure IIOP in Administration Console Online Help.

Access ing Custom MBeans

6-2 Developing Manageable Applications with JMX

2. From a command prompt, make sure that JDK 1.5 or its equivalent is on the path.

3. In the command prompt, enter the following command: jconsole

4. If your custom MBeans are registered in the JVM platform MBean server (or if you have
configured the WebLogic Server Runtime MBean Server to be the JVM platform MBean
server):

a. In the JConsole window, select Connection > New Connection.

b. In the Connect to Agent window, select the Local tab and click Connect.

5. If your custom MBeans are registered in the WebLogic Server Runtime MBean Server, and
if you have not configured the Runtime MBean Server to be the platform MBean server:

a. In the JConsole window, select Connection > New Connection.

b. In the Connect to Agent window, select the Advanced tab.

c. On the Advanced tab, in the JMX URL box, enter:

service:jmx:rmi:///jndi/iiop://host:port/weblogic.management.mbeanse
rvers.runtime

where host:port is the host name and port of the WebLogic Server instance that hosts
your MBeans.

For example:
service:jmx:rmi:///jndi/iiop://localhost:7001/weblogic.management.mb
eanservers.runtime

d. In the User Name and Password boxes, enter the default IIOP user name and password.

e. Click Connect.

Accessing Custom MBeans from WebLogic Scripting Tool
If you register your MBeans in the Runtime MBean Sever, you can use WebLogic Scripting Tool
to access your custom MBeans. See Accessing Custom MBeans in WebLogic Scripting Tool.

Access ing Cus tom MBeans f rom an Admin is t ra t ion Conso le Ex tens ion

Developing Manageable Applications with JMX 6-3

Accessing Custom MBeans from an Administration
Console Extension

You can extend the WebLogic Server Administration Console by creating Java Server Pages
(JSPs) that conform to a specific template. Your JSP can include JMX code that connects to the
JVM platform MBean server or the WebLogic Server Runtime MBean Server and looks up your
MBeans.

For more information, see Extending the Administration Console.

Access ing Custom MBeans

6-4 Developing Manageable Applications with JMX

