
Oracle® WebLogic Server
WebLogic Scripting Tool

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server WebLogic Scripting Tool, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

WebLogic Scripting Tool iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-1

Related Documentation . 1-2

WLST Sample Scripts . 1-3

WLST Online Sample Scripts. 1-3

WLST Offline Sample Scripts . 1-4

New and Changed WLST Features in This Release . 1-5

2. Using the WebLogic Scripting Tool
Using WLST Online or Offline . 2-1

Using WLST Online . 2-2

Using WLST Offline. 2-2

Interactive Mode, Script Mode, and Embedded Mode . 2-3

Interactive Mode . 2-3

Script Mode. 2-4

Embedded Mode . 2-4

Security for WLST. 2-6

Securing the WLST Connection . 2-6

Securing Access to Configuration Data . 2-6

Securing Access to Security Data . 2-10

Main Steps for Using WLST in Interactive or Script Mode . 2-10

iv WebLogic Scripting Tool

Setting Up Your Environment . 2-11

Invoking WLST . 2-11

Exiting WLST . 2-13

Syntax for WLST Commands . 2-13

Redirecting Error and Debug Output to a File . 2-14

Getting Help. 2-14

Running WLST from Ant . 2-15

Parameters . 2-15

Parameters Specified as Nested Elements . 2-16

Examples . 2-16

Importing WLST as a Jython Module. 2-19

Customizing WLST. 2-20

3. Creating Domains Using WLST Offline
Creating and Using a Domain Template (Offline) . 3-2

Browsing Information About the Configuration Hierarchy (Offline) 3-3

Editing a Domain (Offline) . 3-5

Alternative: Using the configToScript Command . 3-5

Considerations for Clusters, JDBC, and JMS Resources . 3-6

4. Managing the Server Life Cycle
Using WLST and Node Manager to Manage Servers. 4-1

Using Node Manager to Start Servers on a Machine. 4-3

Using Node Manager to Start Managed Servers in a Domain or Cluster 4-5

Starting and Managing Servers Without Node Manager . 4-6

Starting an Administration Server Without Node Manager. 4-6

Managing Server State Without Node Manager . 4-7

WebLogic Scripting Tool v

5. Navigating MBeans (WLST Online)
Navigating and Interrogating MBeans. 5-1

Changing the Current Management Object . 5-2

Navigating and Displaying Configuration MBeans Example 5-3

Browsing Runtime MBeans. 5-6

Navigating and Displaying Runtime MBeans Example. 5-6

Navigating Among MBean Hierarchies . 5-9

Finding MBeans and Attributes. 5-10

Accessing Other WebLogic MBeans and Custom MBeans . 5-10

6. Configuring Existing Domains
Using WLST Online to Update an Existing Domain . 6-1

Tracking Configuration Changes . 6-3

Undoing or Canceling Changes . 6-5

Additional Operations and Attributes for Change Management 6-6

Using WLST Offline to Update an Existing Domain . 6-7

Managing Security Data (WLST Online) . 6-8

Determining If You Need to Access the Edit Hierarchy . 6-9

Creating a User . 6-9

Adding a User to a Group. 6-10

Verifying Whether a User Is a Member of a Group . 6-10

Listing Groups to Which a User Belongs. 6-11

Listing Users and Groups in a Security Realm . 6-12

Changing a Password . 6-13

Protecting User Accounts in a Security Realm . 6-14

Deploying Applications . 6-15

Using WLST Online to Deploy Applications . 6-15

Using WLST Offline to Deploy Applications . 6-16

vi WebLogic Scripting Tool

7. Updating the Deployment Plan

8. Getting Runtime Information
Accessing Runtime Information: Main Steps . 8-1

Script for Monitoring Server State. 8-2

Script for Monitoring the JVM . 8-3

Configuring Logging. 8-4

Working with the WebLogic Diagnostics Framework . 8-5

A. WLST Online and Offline Command Summary
WLST Command Summary, Alphabetically By Command. A-1

WLST Online Command Summary . A-9

WLST Offline Command Summary . A-14

B. WLST Command and Variable Reference
Overview of WSLT Command Categories . B-1

Browse Commands . B-2

cd . B-3

currentTree . B-4

prompt . B-5

pwd. B-6

Control Commands . B-7

addTemplate . B-8

closeDomain. B-9

closeTemplate. B-10

connect . B-10

createDomain . B-14

disconnect. B-15

exit . B-16

WebLogic Scripting Tool vii

readDomain . B-17

readTemplate . B-18

updateDomain. B-19

writeDomain . B-20

writeTemplate . B-21

Deployment Commands . B-22

deploy . B-23

distributeApplication . B-28

getWLDM. B-29

listApplications. B-30

loadApplication . B-30

redeploy . B-32

startApplication . B-33

stopApplication. B-34

undeploy . B-35

updateApplication. B-36

Diagnostics Commands . B-38

exportDiagnosticData . B-38

exportDiagnosticDataFromServer . B-40

Editing Commands . B-41

activate . B-43

assign . B-44

assignAll . B-47

cancelEdit . B-48

create. B-49

delete. B-51

encrypt . B-52

get . B-53

viii WebLogic Scripting Tool

getActivationTask . B-54

invoke. B-54

isRestartRequired . B-55

loadDB . B-56

loadProperties. B-57

save. B-58

set . B-59

setOption . B-60

showChanges . B-62

startEdit . B-63

stopEdit . B-65

unassign . B-65

unassignAll. B-68

undo . B-69

validate . B-70

Information Commands. B-70

addListener. B-72

configToScript . B-73

dumpStack . B-75

dumpVariables . B-76

find . B-77

getConfigManager . B-78

getMBean . B-79

getMBI . B-79

getPath . B-80

listChildTypes . B-81

lookup. B-82

ls . B-82

WebLogic Scripting Tool ix

man . B-87

redirect . B-88

removeListener . B-88

showListeners . B-89

startRecording. B-89

state. B-90

stopRecording. B-91

stopRedirect . B-92

storeUserConfig . B-92

threadDump . B-94

viewMBean. B-95

writeIniFile . B-96

Life Cycle Commands . B-97

migrate . B-98

resume. B-100

shutdown. B-100

start . B-103

startServer. B-104

suspend . B-106

Node Manager Commands . B-107

nm. B-108

nmConnect . B-109

nmDisconnect . B-112

nmEnroll . B-112

nmGenBootStartupProps . B-114

nmKill. B-114

nmLog. B-115

nmServerLog . B-116

x WebLogic Scripting Tool

nmServerStatus . B-117

nmStart . B-118

nmVersion . B-119

startNodeManager . B-119

Tree Commands . B-120

config . B-122

custom . B-123

domainConfig. B-124

domainRuntime . B-125

edit . B-127

jndi . B-128

runtime . B-128

serverConfig. B-129

serverRuntime . B-130

WLST Variable Reference . B-131

C. WLST Deployment Objects
WLSTPlan Object . C-1

WLSTProgress Object. C-4

D. FAQs: WLST

WebLogic Scripting Tool 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Scripting Tool.

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-1

“Related Documentation” on page 1-2

“WLST Sample Scripts” on page 1-3

“New and Changed WLST Features in This Release” on page 1-5

Document Scope and Audience
This document describes the WebLogic Scripting Tool (WLST). It explains how you use the
WLST command-line scripting interface to configure, manage, and persist changes to WebLogic
Server instances and domains, and monitor and manage server runtime events.

This document is written for WebLogic Server administrators and operators who deploy Java EE
applications using the Java Platform, Enterprise Edition (Java EE) from Sun Microsystems. It is
assumed that readers are familiar with Web technologies and the operating system and platform
where WebLogic Server is installed.

Guide to This Document
This document is organized as follows:

I n t roduct i on and Roadmap

1-2 WebLogic Scripting Tool

This chapter, “Introduction and Roadmap,” introduces the organization of this guide and
lists related documentation.

Chapter 2, “Using the WebLogic Scripting Tool,” describes how the scripting tool works,
its modes of operation, and the basic steps for invoking it.

Chapter 3, “Creating Domains Using WLST Offline,” describes how to create a new
domain or update an existing domain without connecting to a running WebLogic Server
(that is, using WLST offline)—supporting the same functionality as the Configuration
Wizard.

Chapter 4, “Managing the Server Life Cycle,” describes using WLST to start and stop
WebLogic Server instances and to monitor and manage the server life cycle.

Chapter 5, “Navigating MBeans (WLST Online),” describes how to retrieve domain
configuration and runtime information, and edit configuration or custom MBeans.

Chapter 6, “Configuring Existing Domains,” describes using scripts to automate the
creation and management of domains, servers, and resources.

Chapter 7, “Updating the Deployment Plan,” describes using WLST to update an
application’s deployment plan.

Chapter 8, “Getting Runtime Information,” describes using WLST to retrieve information
about the runtime state of WebLogic Server instances.

Appendix A, “WLST Online and Offline Command Summary,” summarizes WLST
commands alphabetically and by online/offline usage.

Appendix B, “WLST Command and Variable Reference,” provides detailed descriptions
for each of the WLST commands and variables.

Appendix C, “WLST Deployment Objects,” describes WLST deployment objects that you
can use to update a deployment plan or access information about the current deployment
activity.

Appendix D, “FAQs: WLST,” provides a list of common questions and answers.

Related Documentation
WLST is one of several interfaces for managing and monitoring WebLogic Server. For
information about the other management interfaces, see:

WLST Sample Sc r ip ts

WebLogic Scripting Tool 1-3

Using Ant Tasks to Configure and Use a WebLogic Server Domain in Developing
Applications with WebLogic Server, describes using WebLogic Ant tasks for starting and
stopping WebLogic Server instances and configuring WebLogic Server domains.

Deployment Tools in Deploying Applications to WebLogic Server describes several tools
that WebLogic Server provides for deploying applications and stand-alone modules.

Administration Console Online Help describes a Web-based graphical user interface for
managing and monitoring WebLogic Server domains.

Creating WebLogic Domains Using the Configuration Wizard describes using a graphical
user interface to create a WebLogic Server domain or extend an existing one.

Creating Templates and Domains Using the Pack and Unpack Commands describes
commands that recreate existing domains quickly and easily.

Developing Custom Management Utilities with JMX describes using Java Management
Extensions (JMX) APIs to monitor and modify WebLogic Server resources.

WebLogic SNMP Management Guide describes using Simple Network Management
Protocol (SNMP) to monitor WebLogic Server domains.

WLST Sample Scripts
The following sections describe the WLST online and offline sample scripts that you can run or
use as templates for creating additional scripts. For information about running scripts, see
“Invoking WLST” on page 2-11.

WLST Online Sample Scripts
The WLST online sample scripts demonstrate how to perform administrative tasks and initiate
WebLogic Server configuration changes while connected to a running server. WLST online
scripts are located in the following directory:
SAMPLES_HOME\server\examples\src\examples\wlst\online, where SAMPLES_HOME
refers to the main examples directory of your WebLogic Server installation, such as
c:\beahome\wlserver_10.3\samples.

../../../common/docs103/install/../pack/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/core/index.html
../../../common/docs103/install/../confgwiz/index.html
http://e-docs.bea.com/wls/docs103/jmx/index.html
http://e-docs.bea.com/wls/docs103/snmpman/index.html
http://e-docs.bea.com/wls/docs103/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs103/deployment/understanding.html#DeploymentTools

I n t roduct i on and Roadmap

1-4 WebLogic Scripting Tool

Table 1-1 summarizes WLST online sample scripts.

WLST Offline Sample Scripts
The WLST offline sample scripts demonstrate how to create domains using the domain templates
that are installed with the software. The WLST offline scripts are located in the following
directory: WL_HOME\common\templates\scripts\wlst, where WL_HOME refers to the
top-level installation directory for WebLogic Server.

Table 1-2 summarizes WLST offline sample scripts.

Table 1-1 WLST Online Sample Scripts

WLST Sample Script Description

cluster_creation.py Connects WLST to an Administration Server, starts an edit
session, and creates 10 Managed Servers. It then creates two
clusters, assigns servers to each cluster, and disconnects WLST
from the server.

cluster_deletion.py Removes the clusters and servers created in
cluster_creation.py.

configJMSSystemResource.py Connects WLST to an Administration Server, starts an edit
session, creates two JMS Servers, and targets them to the
Administration Server. Then creates JMS topics, JMS queues,
and JMS templates in a JMS System module. The JMS queues
and topics are targeted using sub-deployments.

deleteJMSSystemResource.py Removes the JMS System module created by
configJMSSystemResource.py.

jdbc_data_source_creation.
py

Connects WLST to an Administration Server, starts an edit
session, and creates a JDBC data source called
myJDBCDataSource.

jdbc_data_source_deletion.
py

Removes the JDBC data source created by
jdbc_data_source_creation.py.

New and Changed WLST Features in Th is Re l ease

WebLogic Scripting Tool 1-5

New and Changed WLST Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What’s New in WebLogic Server” in the Release Notes.

Table 1-2 WLST Offline Sample Script

WLST Sample Script Description

basicWLSDomain.py Creates a simple WebLogic domain demonstrating how to open a domain
template, create and edit configuration objects, and write the domain
configuration information to the specified directory.

The sample consists of a single server, representing a typical development
environment. This type of configuration is not recommended for production
environments.

The script uses the Basic WebLogic Server Domain template.

clusterMedRecDomain.py Creates a single-cluster domain, creating three Managed Servers and assigning
them to a cluster.

The script uses the Basic WebLogic Server Domain template and extends it
using the Avitek Medical Records Sample extension template.

distributedQueues.py Demonstrates two methods for creating distributed queues.

The script uses the Basic WebLogic Server Domain template and extends it
using the Avitek Medical Records Sample.

sampleMedRecDomain.py Creates a domain that defines resources similar to those used in the Avitek
MedRec sample. This example does not recreate the MedRec example in its
entirety, nor does it deploy any sample applications.

The script uses the Basic WebLogic Server Domain template.

http://e-docs.bea.com/wls/docs103/notes/new.html

I n t roduct i on and Roadmap

1-6 WebLogic Scripting Tool

WebLogic Scripting Tool 2-1

C H A P T E R 2

Using the WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a command-line scripting environment that you can use
to create, manage, and monitor WebLogic Server domains. It is based on the Java scripting
interpreter, Jython. In addition to supporting standard Jython features such as local variables,
conditional variables, and flow control statements, WLST provides a set of scripting functions
(commands) that are specific to WebLogic Server. You can extend the WebLogic scripting
language to suit your needs by following the Jython language syntax. See
http://www.jython.org.

The following sections describe the WebLogic Scripting Tool:

“Using WLST Online or Offline” on page 2-1

“Interactive Mode, Script Mode, and Embedded Mode” on page 2-3

“Security for WLST” on page 2-6

“Main Steps for Using WLST in Interactive or Script Mode” on page 2-10

“Running WLST from Ant” on page 2-15

“Importing WLST as a Jython Module” on page 2-19

“Customizing WLST” on page 2-20

Using WLST Online or Offline
You can use WLST as the command-line equivalent to the WebLogic Server Administration
Console (WLST online) or as the command-line equivalent to the Configuration Wizard (WLST

http://www.jython.org

Using the WebLog ic Sc r ip t ing Too l

2-2 WebLogic Scripting Tool

offline). For information about the WebLogic Server Administration Console, see Administration
Console Online Help. For information about the Configuration Wizard, see Creating WebLogic
Domains Using the Configuration Wizard.

Using WLST Online
You can use WLST to connect to a running Administration Server and manage the configuration
of an active domain, view performance data about resources in the domain, or manage security
data (such as adding or removing users). You can also use WLST to connect to Managed Servers,
but you cannot modify configuration data from Managed Servers.

WLST online is a Java Management Extensions (JMX) client. It interacts with a server’s
in-memory collection of Managed Beans (MBeans), which are Java objects that provide a
management interface for an underlying resource. For information on WebLogic Server MBeans,
see Understanding WebLogic Server MBeans in Developing Custom Management Utilities with
JMX.

Using WLST Offline
Without connecting to a running WebLogic Server instance, you can use WLST to create domain
templates, create a new domain based on existing templates, or extend an existing, inactive
domain. You cannot use WLST offline to view performance data about resources in a domain or
modify security data (such as adding or removing users).

WLST offline provides read and write access to the configuration data that is persisted in the
domain’s config directory or in a domain template JAR created using Template Builder. The
schemas that define a domain’s configuration document are in the following locations:

http://www.bea.com/ns/weblogic/920/domain.xsd

http://www.bea.com/ns/weblogic/90/security.xsd

http://www.bea.com/ns/weblogic/weblogic-diagnostics/1.1/weblogic-diagnos
tics.xsd

In JAR files under WL_HOME/server/lib/schema, where WL_HOME is the directory in
which you install WebLogic Server. Within this directory:

– The domain.xsd document is represented in the weblogic-domain-binding.jar
under the pathname META-INF/schemas/schema-1.xsd.

– The security.xsd document is represented in the weblogic-domain-binding.jar
under the pathname META-INF/schemas/schema-0.xsd.

http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/core/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/core/index.html
../../../common/docs103/install/../confgwiz/index.html
../../../common/docs103/install/../confgwiz/index.html
http://www.bea.com/ns/weblogic/920/domain.xsd
http://www.bea.com/ns/weblogic/90/security.xsd
http://www.bea.com/ns/weblogic/weblogic-diagnostics/1.1/weblogic-diagnostics.xsd
http://www.bea.com/ns/weblogic/weblogic-diagnostics/1.1/weblogic-diagnostics.xsd

I n te rac t i ve Mode , Sc r ip t Mode , and Embedded Mode

WebLogic Scripting Tool 2-3

– The weblogic-diagnostics.xsd document is represented in the
diagnostics-binding.jar under the pathname
META-INF/schemas/schema-0.xsd.

Note the following restrictions for modifying configuration data with WLST offline:

Oracle recommends that you do not use WLST offline to manage the configuration of an
active domain. Offline edits are ignored by running servers and can be overwritten by JMX
clients such as WLST online or the WebLogic Server Administration Console.

As a performance optimization, WebLogic Server does not store most of its default values
in the domain’s configuration files. In some cases, this optimization prevents management
objects from being displayed by WLST offline (because WebLogic Server has never
written the corresponding XML elements to the domain’s configuration files). For example,
if you never modify the default logging severity level for a domain while the domain is
active, WLST offline will not display the domain’s Log management object.

If you want to change the default value of attributes whose management object is not
displayed by WLST offline, you must first use the create command to create the
management object. Then you can cd to the management object and change the attribute
value. See “create” on page B-49.

Interactive Mode, Script Mode, and Embedded Mode
You can use any of the following techniques to invoke WLST commands:

Interactively, on the command line—“Interactive Mode”

In batches, supplied in a file—“Script Mode”

Embedded in Java code—“Embedded Mode”

Interactive Mode
Interactive mode, in which you enter a command and view the response at a command-line
prompt, is useful for learning the tool, prototyping command syntax, and verifying configuration
options before building a script. Using WLST interactively is particularly useful for getting
immediate feedback after making a critical configuration change. The WLST scripting shell
maintains a persistent connection with an instance of WebLogic Server.

WLST can write all of the commands that you enter during a WLST session to a file. You can
edit this file and run it as a WLST script. For more information, see “startRecording” on
page B-89 and “stopRecording” on page B-91.

Using the WebLog ic Sc r ip t ing Too l

2-4 WebLogic Scripting Tool

Script Mode
Scripts invoke a sequence of WLST commands without requiring your input, much like a shell
script. Scripts contain WLST commands in a text file with a .py file extension, for example,
filename.py. You use script files with the Jython commands for running scripts.

Using WLST scripts, you can:

Automate WebLogic Server configuration and application deployment

Apply the same configuration settings, iteratively, across multiple nodes of a topology

Take advantage of scripting language features, such as loops, flow control constructs,
conditional statements, and variable evaluations that are limited in interactive mode

Schedule scripts to run at various times

Automate repetitive tasks and complex procedures

Configure an application in a hands-free data center

For information about sample scripts that WebLogic Server installs, see “WLST Sample Scripts”
on page 1-3.

Embedded Mode
In embedded mode, you instantiate the WLST interpreter in your Java code and use it to run
WLST commands and scripts. All WLST commands and variables that you use in interactive and
script mode can be run in embedded mode.

Listing 2-1 illustrates how to instantiate the WLST interpreter and use it to connect to a running
server, create two servers, and assign them to clusters.

Listing 2-1 Running WLST From a Java Class

package wlst;
import java.util.*;
import weblogic.management.scripting.utils.WLSTInterpreter;
import org.python.util.InteractiveInterpreter;

/**
* Simple embedded WLST example that will connect WLST to a running server,
* create two servers, and assign them to a newly created cluster and exit.
* <p>Title: EmbeddedWLST.java</p>

I n te rac t i ve Mode , Sc r ip t Mode , and Embedded Mode

WebLogic Scripting Tool 2-5

* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: BEA Systems</p>
*/

public class EmbeddedWLST
{

static InteractiveInterpreter interpreter = null;

EmbeddedWLST() {
interpreter = new WLSTInterpreter();

}

private static void connect() {
StringBuffer buffer = new StringBuffer();
buffer.append("connect('weblogic','weblogic')");
interpreter.exec(buffer.toString());

}

private static void createServers() {
StringBuffer buf = new StringBuffer();
buf.append(startTransaction());
buf.append("man1=create('msEmbedded1','Server')\n");
buf.append("man2=create('msEmbedded2','Server')\n");
buf.append("clus=create('clusterEmbedded','Cluster')\n");
buf.append("man1.setListenPort(8001)\n");
buf.append("man2.setListenPort(9001)\n");
buf.append("man1.setCluster(clus)\n");
buf.append("man2.setCluster(clus)\n");
buf.append(endTransaction());
buf.append("print ‘Script ran successfully ...’ \n");
interpreter.exec(buf.toString());

}

private static String startTransaction() {
StringBuffer buf = new StringBuffer();
buf.append("edit()\n");
buf.append("startEdit()\n");
return buf.toString();

}

private static String endTransaction() {
StringBuffer buf = new StringBuffer();
buf.append("save()\n");
buf.append("activate(block='true')\n");
return buf.toString();

}

public static void main(String[] args) {
new EmbeddedWLST();
connect();

Using the WebLog ic Sc r ip t ing Too l

2-6 WebLogic Scripting Tool

createServers();
}

}

Security for WLST
WLST uses the WebLogic Security Framework to prevent unauthorized users from modifying a
domain or from viewing encrypted data. The following sections describe the actions you must
take to satisfy WLST security requirements:

“Securing the WLST Connection” on page 2-6

“Securing Access to Configuration Data” on page 2-6

“Securing Access to Security Data” on page 2-10

Securing the WLST Connection
If you use WLST to connect to a WebLogic Server instance, Oracle recommends that you connect
to the server instance through the administration port. The administration port is a special,
secure port that all WebLogic Server instances in a domain can use for administration traffic.

By default, this port is not enabled, but Oracle recommends that you enable the administration
port in a production environment. Separating administration traffic from application traffic
ensures that critical administration operations (starting and stopping servers, changing a server's
configuration, and deploying applications) do not compete with high-volume application traffic
on the same network connection.

The administration port requires all communication to be secured using SSL. By default, all
servers in a domain use demonstration certificate files for SSL, but these certificates are not
appropriate for a production environment.

For information about configuring the administration port, see “Administration Port and
Administrative Channel” in Configuring Server Environments.

Securing Access to Configuration Data
A WebLogic Server domain stores its configuration data in a collection of XML documents that
are saved in the domain directory. For example, these configuration documents describe the
names, listen addresses, and deployed resources in the domain. When one or more servers in a

http://e-docs.bea.com/wls/docs103/config_wls/network.html#AdministrationChannel
http://e-docs.bea.com/wls/docs103/config_wls/network.html#AdministrationChannel

Secur i t y fo r WLST

WebLogic Scripting Tool 2-7

domain are running, each server instance maintains an in-memory representation of the
configuration data as a collection of Managed Beans (MBeans).

You must use your own security measures to make sure that only authorized users can access your
domain’s configuration files through the file system. Anyone who is authorized to access the
domain’s configuration files through the file system can use a text editor, WLST offline, or other
tools to edit the configuration files.

Securing Access from WLST Online
If you use WLST to connect to a running instance of WebLogic Server, you must provide the
credentials (user name and password) of a user who has been defined in the active WebLogic
security realm. Once you are connected, a collection of security policies determine which
configuration attributes you are permitted to view or modify. (See Default Security Policies for
MBeans in the WebLogic Server MBean Reference.)

When you invoke the WLST connect command, you can supply user credentials by doing any
of the following:

Enter the credentials on the command line. This option is recommended only if you are
using WLST in interactive mode.

For example:
connect(‘weblogic’, ‘weblogic’, ‘localhost:7001’)

For more information, see “connect” on page B-10.

Enter the credentials on the command line, then use the storeUserConfig command to
create a user configuration file that contains your credentials in an encrypted form and a
key file that WebLogic Server uses to unencrypt the credentials. On subsequent WLST
sessions (or in WLST scripts), supply the name of the file instead of entering the
credentials on the command line. This option is recommended if you use WLST in script
mode because it prevents you from storing unencrypted user credentials in your scripts.

For example, to create the user configuration file and key file:
connect(‘weblogic’, ‘weblogic’, ‘localhost:7001’)
storeUserConfig('c:/myFiles/myuserconfigfile.secure',
 'c:/myFiles/myuserkeyfile.secure')

To use the user configuration file and key file:
connect(userConfigFile='c:/myfiles/myuserconfigfile.secure',
userKeyFile='c:/myfiles/myuserkeyfile.secure')

For more information, see “connect” on page B-10 and “storeUserConfig” on page B-92.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html

Using the WebLog ic Sc r ip t ing Too l

2-8 WebLogic Scripting Tool

Invoke the connect command from a directory that contains the domain’s
boot.properties file. By default, when you create an Administration Server, WebLogic
Server encrypts the credentials and stores them in a boot.properties file. WLST can use
this file only if you start WLST from the domain directory.

For example, if you have not deleted the domain’s boot.properties file, you can start
WLST and invoke the connect command as follows:
c:\mydomain\> java weblogic.WLST
wls:/offline> connect()

For more information, see “connect” on page B-10.

Writing and Reading Encrypted Configuration Values
Some attributes of a WebLogic Server domain’s configuration are encrypted to prevent
unauthorized access to sensitive data. For example, the password that a JDBC data source uses to
connect to an RDBMS is encrypted.

The attribute values are saved in the domain’s configuration document as an encrypted string. In
a running server instance, the values are available as an MBean attribute in the form of an
encrypted byte array. The names of encrypted attributes end with Encrypted. For example, the
ServerMBean exposes the password that is used to secure access through the IIOP protocol in an
attribute named DefaultIIOPPasswordEncrypted.

Oracle recommends the following pattern for writing and reading encrypted attributes:

With WLST offline:

To write an encrypted value, pass the name of the encrypted attribute and an unencrypted
string to the set command. For example:
set(‘DefaultIIOPPasswordEncrypted', ‘mypassword’)

WLST encrypts the string and writes the encrypted value to the domain’s configuration
file.

For more information, see “set” on page B-59.

WLST offline does not display the unencrypted value of an encrypted attribute. If you use
the ls command to display management attributes, WLST offline returns asterisks as the
value of encrypted attributes. If you use the get command, WLST offline returns a byte
array that represents asterisks.

For example:
wls:/offline/wl_server/Server/examplesServer>ls()
returns
...

Secur i t y fo r WLST

WebLogic Scripting Tool 2-9

-rw- DefaultIIOPPasswordEncrypted ********
...

While
wls:/offline/wl_server/Server/examplesServer>get('DefaultIIOPPasswordEn
crypted')
returns
array([42, 42, 42, 42, 42, 42, 42, 42], byte)

For more information, see “ls” on page B-82 and “get” on page B-53.

With WLST online, for each encrypted attribute, an MBean also contains an unencrypted version.
For example, ServerMBean contains an attribute named DefaultIIOPPasswordEncrypted
which contains the encrypted value and an attribute named DefaultIIOPPassword, which
contains the unencrypted version of the value.

To write and read encrypted values with WLST online:

To write an encrypted value, start an edit session. Then do either of the following:

– Pass the name of the unencrypted attribute and an unencrypted string to the set
command. For example:
set(‘DefaultIIOPPassword', ‘mypassword’)

– Pass the name of the encrypted attribute and an encrypted byte array to the set
command. You can use the encrypt command to create the encrypted byte array (see
“encrypt” on page B-52). For example:
set(‘DefaultIIOPPasswordEncrypted', encrypt(‘mypassword’))

Caution: Do not pass an unencrypted string to the encrypted attribute. The encrypted
attribute assumes that the value you pass to it is already encrypted.

When you activate the edit, WebLogic Server writes the encrypted value to the domain’s
configuration file.

To read the encrypted value of the attribute, pass the name of the encrypted attribute to the
get command. For example:

get('DefaultIIOPPasswordEncrypted')
returns
array([105, 114, 111, 110, 115, 116, 101, 101, 108], byte)

To read the unencrypted value of the attribute, pass the name of the unencrypted attribute
to the get command. For example:
get('DefaultIIOPPassword')

Using the WebLog ic Sc r ip t ing Too l

2-10 WebLogic Scripting Tool

returns
mypassword

Securing Access to Security Data
The user names and passwords of WebLogic Server users, security groups, and security roles are
not stored in a domain’s XML configuration documents. Instead, a domain uses a separate
software component called an Authentication provider to store, transport, and provide access
to security data. Authentication providers can use different types of systems to store security data.
The Authentication provider that WebLogic Server installs uses an embedded LDAP server.

When you use WLST offline to create a domain template, WLST packages the Authentication
provider’s data store along with the rest of the domain documents. If you create a domain from
the domain template, the new domain has an exact copy of the Authentication provider’s data
store from the domain template.

You cannot use WLST offline to modify the data in an Authentication provider’s data store.

You can, however, use WLST online to interact with an Authentication provider and add,
remove, or modify users, groups, and roles. For more information, see “Managing Security Data
(WLST Online)” on page 6-8.

Main Steps for Using WLST in Interactive or Script Mode
The following sections summarize the steps for setting up and using WLST:

“Setting Up Your Environment” on page 2-11

“Invoking WLST” on page 2-11

“Exiting WLST” on page 2-13

“Syntax for WLST Commands” on page 2-13

“Redirecting Error and Debug Output to a File” on page 2-14

“Getting Help” on page 2-14

Main S teps fo r Us ing WLST in In te rac t i ve o r Sc r ip t Mode

WebLogic Scripting Tool 2-11

Setting Up Your Environment
To set up your environment for WLST:

1. Install and configure the WebLogic Server software, as described in the Installation Guide.

2. Add WebLogic Server classes to the CLASSPATH environment variable and
WL_HOME\server\bin to the PATH environment variable, where WL_HOME refers to the
top-level installation directory for WebLogic Server.

You can use a WL_HOME\server\bin\setWLSEnv script to set both variables.

On Windows, a shortcut on the Start menu sets the environment variables and invokes
WLST (Tools→WebLogic Scripting Tool).

Invoking WLST
Use the following syntax to invoke WLST (see Table 2-1 for a description of the command
options):

java
[-Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust]
weblogic.WLST
[-loadProperties propertyFilename]
[-skipWLSModuleScanning]

[[-i] filePath.py]

../../../common/docs103/install

Using the WebLog ic Sc r ip t ing Too l

2-12 WebLogic Scripting Tool

Table 2-1 Command Options for WLST

Option Description

-Dweblogic.security.SSL.
ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=
DemoTrust

Use these system properties if you plan to connect WLST
to a WebLogic Server instance through an SSL listen port,
and if the server instance is using the demonstration SSL
keys and certificates.

-loadProperties propertyFilename Use this option to load properties into the WLST session,
where propertyFilename is the name of a file that
contains name=value pairs.

You cannot use this option when you are importing WLST
as a Jython module (see “Importing WLST as a Jython
Module” on page 2-19).

Instead of using this command-line option, you can use the
loadproperties WLST command. See
“loadProperties” on page B-57.

-skipWLSModuleScanning Use this option to reduce startup time by skipping package
scanning and caching for WLS modules.

[-i] filePath.py Use this option to run a WLST script, where
filePath.py is an absolute or relative pathname for the
script.

By default, WLST exits (stops the Java process) after it
executes the script. Include -i to prevent WLST from
exiting.

Note: If a WLST script named wlstProfile.py
exists in the directory from which you invoke
WLST or in user.home (the home directory of
the operating system user account as determined
by the JVM), WLST automatically runs the
wlstProfile.py script; you do not need to
specify the name of this WLST script file on the
command-line.

Instead of using this command-line option, you can use the
following command after you start WLST:
execfile(‘filePath.py’).

Main S teps fo r Us ing WLST in In te rac t i ve o r Sc r ip t Mode

WebLogic Scripting Tool 2-13

Examples
To use WLST in script mode:
java weblogic.WLST c:\myscripts\myscript.py

To run a WLST script on a WebLogic Server instance that uses the SSL listen port and the
demonstration certificates:
java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

c:\myscripts\myscript.py

To use WLST in interactive mode:
java weblogic.WLST

To connect to a WebLogic Server instance after you start WLST in interactive mode:
wls:/offline> connect('weblogic','weblogic','localhost:7001')

Exiting WLST
To exit WLST, enter the exit() command:

wls:/mydomain/serverConfig> exit()

Exiting WebLogic Scripting Tool ...

c:\>

Syntax for WLST Commands
Follow this syntax when entering WLST commands or writing them in a script:

Command names and arguments are case sensitive.

Enclose arguments in single or double quotes. For example, 'newServer' or
"newServer".

If you specify a backslash character (\) in a string, either precede the backslash with
another backslash or precede the entire string with a lower-case r character. The \ or r
prevents Jython from interpreting the backslash as a special character.

For example when specifying a file pathname that contains a backslash:

readTemplate('c:\\userdomains\\mytemplates\\mytemplate.jar') or
readTemplate(r'c:\userdomains\mytemplates\mytemplate.jar')

When using WLST offline, the following characters are not valid in names of management
objects: period (.), forward slash (/), or backward slash (\).

Using the WebLog ic Sc r ip t ing Too l

2-14 WebLogic Scripting Tool

If you need to cd to a management object whose name includes a forward slash (/),
surround the object name in parentheses. For example:
cd('JMSQueue/(jms/REGISTRATION_MDB_QUEUE)')

Redirecting Error and Debug Output to a File
To redirect WLST information, error, and debug messages from standard out to a file, enter:
redirect(outputFile,[toStdOut])
stopRedirect()

This command also redirects the output of the dumpStack() and dumpVariables() commands.

For example, to redirect WLST output to the logs/wlst.log file under the directory from which
you started WLST, enter the following command:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log')

For more information, see “redirect” on page B-88 and “stopRedirect” on page B-92.

Getting Help
To display information about WLST commands and variables, enter the help command.

If you specify the help command without arguments, WLST summarizes the command
categories. To display information about a particular command, variable, or command category,
specify its name as an argument to the help command. To list a summary of all online or offline
commands from the command line using the following commands, respectively:

help('online')

help('offline')

The help command will support a query; for example, help('get*') displays the syntax and
usage information for all commands that begin with get.

For example, to display information about the disconnect command, enter the following
command:
wls:/mydomain/serverConfig> help('disconnect')

The command returns the following:
Description:
Disconnect from a weblogic server instance.

Syntax:
disconnect()

Running WLST f r om Ant

WebLogic Scripting Tool 2-15

Example:
wls:/mydomain/serverConfig> disconnect()

Running WLST from Ant
WebLogic Server provides a custom Ant task, wlst, that invokes a WLST script from an Ant
build file. You can create a WLST script (.py) file and then use this task to invoke the script file,
or you can create a WLST script in a nested element within this task.

For more information about Ant, see Apache Ant 1.7.1 Manual.

The wlst task is predefined in the version of Ant that is installed with WebLogic Server. To add
this version of Ant to your build environment, run the following script:
WL_HOME\server\bin\setWLSEnv.cmd (or setWLSEnv.sh on UNIX)
where WL_HOME is the directory in which you installed WebLogic Server.

If you want to use the wlst task with your own Ant installation, include the following task
definition in your build file:

<taskdef name="wlst"

classname="weblogic.ant.taskdefs.management.WLSTTask" />

Parameters
Table 2-2 lists the wlst task parameters that you specify as attributes of the <wlst> element.

Table 2-2 wlst Parameters

Attribute Description Required

properties="prop
sFile"

Name and location of a properties file that contains
name-value pairs that you can reference in your WLST script.

No

fileName="fileNa
me"

Name and location of the WLST script file that you would like
to execute. If the specified WLST script file does not exist, this
task fails.

Yes, if no nested
<script> is used.

arguments="argli
st"

List of arguments to pass to the script. These arguments are
accessible using the sys.argv variable.

No

failOnError="val
ue"

Boolean value specifying whether the Ant build will fail if this
task fails.

No; default is
true.

http://ant.apache.org/manual/

Using the WebLog ic Sc r ip t ing Too l

2-16 WebLogic Scripting Tool

Parameters Specified as Nested Elements
The following sections describe the wlst task parameters that you specify as nested elements of
the <wlst> element.

script
Contains a WLST script. This element is required if you do not use the fileName attribute to
name a script file.

classpath
Specifies classes to add to the classpath. Use this element if your script requires classes that are
not already on the classpath.

This element is the standard Ant classpath element. You can specify a reference to a path
element that you have defined elsewhere in the build file or nest elements that specify the files
and directories to add to the class path. See Path-like Structures in Apache Ant 1.7.1 Manual.

Examples
Example 1
In the following example, the createServer target does the following:

Adds classes to the task’s classpath.

Executes the script in the nested script element. This script connects to a domain’s
Administration Server at t3://localhost:7001. (Note that executeScriptBeforeFile
is set to true, so this is invoked before the specified WLST script file.)

executeScriptBef
oreFile="value"

Boolean value specifying whether this task invokes the script
in the nested <script> element before the script file
specified by the fileName attribute. This attribute defaults to
true, specifying that the embedded script is invoked first.

No; default is
true.

debug="value" Boolean value specifying whether debug statements should be
output when this task is executed.

No; default is
false.

Table 2-2 wlst Parameters

Attribute Description Required

http://ant.apache.org/manual/using.html#path

Running WLST f r om Ant

WebLogic Scripting Tool 2-17

Executes the script file myscript.py that is specified by the fileName attribute. The
script file is located in the directory from which you started Ant. You could use such a file
to start an edit session, create a new server, save, and activate the configuration changes.

Defines three arguments that are passed to the script. These arguments are accessible using
the sys.argv variable.

Continues execution, as per the failOnError="false" setting, even if the wlst Ant task
fails to execute.

Disables debugging.
<target name="configServer">

 <wlst debug="false" failOnError="false" executeScriptBeforeFile="true"

 fileName="./myscript.py">

<classpath>

<pathelement location="${my.classpath.dir}"/>

</classpath>

<script>

 connect('weblogic','weblogic','t3://localhost:7001')

 </script>

 </wlst>

</target>

Example 2
In the following example, the loop target does the following:

Adds classes to the task’s classpath using a path reference.

Executes the WLST script file myscript.py in the directory from which you started Ant.
(Note that executeScriptBeforeFile is set to false, so the WLST script file is
executed first, before the embedded script.)

Executes the embedded script to connect to the server at t3://localhost:7001 and
access and print the list of servers in the domain.

Results in a build failure if the wlst task fails to execute, as per the failOnError="true"
setting.

Enables debugging.

Using the WebLog ic Sc r ip t ing Too l

2-18 WebLogic Scripting Tool

<path id="my.classpath">

<pathelement location="${my.classpath.dir}"/>

</path>

<target name="loop">

<wlst debug="true" executeScriptBeforeFile="false"

fileName="./myscript.py" failOnError="true">

<classpath>

<pathelement location="${my.classpath.dir}"/>

</classpath>

<script>

print 'In the target loop'

connect('weblogic','weblogic','t3://localhost:7001')

svrs = cmo.getServers()

print 'Servers in the domain are'

for x in svrs: print x.getName()

</script>

</wlst>

</target>

Example 3
In the following example, the error target:

Executes the embedded script to print the variable, thisWillCauseNameError.

Continues execution, as per the failOnError="false" setting, even if the
thisWillCauseNameError variable does not exist and the wlst Ant task fails to execute.

Enables debugging.
<target name="error">

 <wlst debug="true" failOnError="false">

 <script>print thisWillCauseNameError</script>

 </wlst>

</target>

Impo r t ing WLST as a J y thon Module

WebLogic Scripting Tool 2-19

Importing WLST as a Jython Module
Advanced users can import WLST from WebLogic Server as a Jython module. After importing
WLST, you can use it with your other Jython modules and invoke Jython commands directly
using Jython syntax.

The main steps include converting WLST definitions and method declarations to a .py file,
importing the WLST file into your Jython modules, and referencing WLST from the imported
file.

To import WLST as a Jython module:

1. Invoke WLST.
c:\>java weblogic.WLST
wls:/(offline)>

2. Use the writeIniFile command to convert WLST definitions and method declarations to a
.py file.
wls:/(offline)> writeIniFile("wl.py")
The Ini file is successfully written to wl.py
wls:/(offline)>

3. Open a new command shell and invoke Jython directly by entering the following command:
c:\>java org.python.util.jython

The Jython package manager processes the JAR files in your classpath. The Jython prompt
appears:
>>>

4. Import the WLST module into your Jython module using the Jython import command.
>>>import wl

5. Now you can use WLST methods in the module. For example, to connect WLST to a server
instance:
wl.connect('username','password')
....

Note: When using WLST as a Jython module, in all WLST commands that have a block
argument, block is always set to true, specifying that WLST will block user
interaction until the command completes. See “WLST Command and Variable
Reference” on page B-1.

Using the WebLog ic Sc r ip t ing Too l

2-20 WebLogic Scripting Tool

Customizing WLST
You can customize WLST using the WLST home directory, which is located at
WL_HOME/common/wlst, by default, where WL_HOME refers to the top-level installation directory
for WebLogic Server. All Python scripts that are defined within the WLST home directory are
imported at WLST startup.

Note: You can customize the default WLST home directory by passing the following argument
on the command line:
-Dweblogic.wlstHome=<another-directory>

The following table describes ways to customize WLST.

Table 2-3 Customizing WLST

To define custom... Do the following... For a sample script, see...

WLST commands Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst.

WL_HOME/common/wlst/sample.py

Within this script, the wlstHomeSample()
command is defined, which prints a String, as
follows:
wls:/(offline)> wlstHomeSample()
Sample wlst home command

WLST commands
within a library

Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst/lib.

The scripts located within this
directory are imported as Jython
libraries.

WL_HOME/common/wlst/lib/wlstLibSamp
le.py

Within this script, the wlstExampleCmd()
command is defined, which prints a String, as
follows:
wls:/(offline)>
wlstLibSample.wlstExampleCmd()
Example command

WLST commands
as a Jython module

Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst/modul
es.

This script can be imported into
other Jython modules, as described
in “Importing WLST as a Jython
Module” on page 2-19.

WL_HOME/common/wlst/modules/wlstMod
ule.py

A JAR file, jython-modules.jar, containing
all of the Jython modules that are available in
Jython 2.1 is also available within this directory.

WebLogic Scripting Tool 3-1

C H A P T E R 3

Creating Domains Using WLST Offline

WLST enables you to create a new domain or update an existing domain without connecting to
a running WebLogic Server (that is, using WLST offline)—supporting the same functionality as
the Configuration Wizard.

The following sections describe how to create and configure WebLogic domains using WLST
offline:

“Creating and Using a Domain Template (Offline)” on page 3-2

“Alternative: Using the configToScript Command” on page 3-5

“Considerations for Clusters, JDBC, and JMS Resources” on page 3-6

For information about sample scripts that you can use to create domains, see “WLST Offline
Sample Scripts” on page 1-4.

For more information about the Configuration Wizard, see Creating WebLogic Domains Using
the Configuration Wizard.

../../../common/docs103/install/../confgwiz/index.html
../../../common/docs103/install/../confgwiz/index.html

Creat ing Domains Us ing WLST Of f l ine

3-2 WebLogic Scripting Tool

Creating and Using a Domain Template (Offline)
A domain template is a JAR file that contains domain configuration documents, applications,
security data, startup scripts, and other information needed to create a domain. To create and use
a domain template, perform the steps described in Table 3-1.

Table 3-1 Steps for Creating a Domain Template (Offline)

To... Use this command... For more
information, see...

1. Open an existing domain
or template

readDomain(domainDirName)

readTemplate(templateFileName)

“readDomain” on
page B-17

“readTemplate” on
page B-18

2. (Optional) Modify the
domain

Browsing and editing commands “Browsing
Information About
the Configuration
Hierarchy (Offline)”
on page 3-3

“Editing a Domain
(Offline)” on
page 3-5.

3. Set the password for the
default user, if it is not
already set
The default username and
password must be set
before you can write the
domain template.

cd('/Security/domainname/User/u
sername')
cmo.setPassword('password')

“WLST Offline
Sample Scripts” on
page 1-4.

4. Write the domain
configuration information
to a domain template

writeTemplate(templateName) “writeTemplate” on
page B-21

5. Use the template to create
a domain

createDomain(domainTemplate,
domainDir, user, password)

Note: The Configuration Wizard can also
use the domain template. See
Creating WebLogic Domains Using
the Configuration Wizard.

“createDomain” on
page B-14

../../../common/docs103/install/../confgwiz/index.html
../../../common/docs103/install/../confgwiz/index.html

Creat ing and Us ing a Domain Template (O f f l ine)

WebLogic Scripting Tool 3-3

Browsing Information About the Configuration Hierarchy
(Offline)
WLST offline provides read and write access to the configuration data that is persisted in the
domain’s config directory or in a domain template JAR created using Template Builder. This
data is a collection of XML documents and expresses a hierarchy of management objects. The
schemas that define a domain’s configuration document are in the following locations:

http://www.bea.com/ns/weblogic/920/domain.xsd

http://www.bea.com/ns/weblogic/90/security.xsd

http://www.bea.com/ns/weblogic/weblogic-diagnostics/1.1/weblogic-diagnos
tics.xsd

In JAR files under WL_HOME/server/lib/schema, where WL_HOME is the directory in
which you install WebLogic Server. Within this directory:

– The domain.xsd document is represented in the weblogic-domain-binding.jar
under the pathname META-INF/schemas/schema-1.xsd.

– The security.xsd document is represented in the weblogic-domain-binding.jar
under the pathname META-INF/schemas/schema-0.xsd.

– The weblogic-diagnostics.xsd document is represented in the
diagnostics-binding.jar under the pathname
META-INF/schemas/schema-0.xsd.

WLST represents this hierarchy as a file system. The root of the file system is the management
object that represents the WebLogic Server domain. Below the domain directory is a collection
of directories for managed-object types; each instance of the type is a subdirectory under the type
directory; and each management attribute and operation is a file within a directory. The name of
an instance directory matches the value of the management object’s Name attribute. If the
management object does not have a Name attribute, WLST generates a directory name using the
following pattern: NO_NAME_number, where number starts at 0 (zero) and increments by 1 for
each additional instance.

To navigate the hierarchy, you use such WLST commands as cd, ls, and pwd in a similar way
that you would navigate a file system in a UNIX or Windows command shell (see Table 3-2).

Note: As a performance optimization, WebLogic Server does not store most of its default
values in the domain’s configuration files. In some cases, this optimization prevents
entire management objects from being displayed by WLST offline (because WebLogic
Server has never written the corresponding XML elements to the domain’s configuration

http://www.bea.com/ns/weblogic/920/domain.xsd
http://www.bea.com/ns/weblogic/90/security.xsd
http://www.bea.com/ns/weblogic/weblogic-diagnostics/1.1/weblogic-diagnostics.xsd
http://www.bea.com/ns/weblogic/weblogic-diagnostics/1.1/weblogic-diagnostics.xsd

Creat ing Domains Us ing WLST Of f l ine

3-4 WebLogic Scripting Tool

files). For example, if you never modify the default logging severity level for a domain
while the domain is active, WLST offline will not display the domain’s Log management
object.

If you want to change the default value of attributes whose management object is not
displayed by WLST offline, you must first use the create command to create the
management object. Then you can cd to the management object and change the attribute
value. See “create” on page B-49.

Table 3-2 Displaying Domain Configuration Information (Offline)

To... Use this command... For more information, see...

Navigate the hierarchy of management objects cd(path) “cd” on page B-3

List child attributes or management objects for
the current management object

ls(['a' | 'c']) “ls” on page B-82

Toggle the display of the management object
navigation path information at the prompt

prompt(['off'|'on']) “prompt” on page B-5

Display the current location in the
configuration hierarchy

pwd() “pwd” on page B-6

Display all variables used by WLST dumpVariables() “dumpVariables” on
page B-76

Display the stack trace from the last exception
that occurred while performing a WLST action

dumpStack() “dumpStack” on page B-75

Al te rnat ive : Us ing the conf igToScr ip t Command

WebLogic Scripting Tool 3-5

Editing a Domain (Offline)
To edit a domain using WLST offline, you can perform any of the tasks defined in the following
table.

Alternative: Using the configToScript Command
WLST includes a command, configToScript, that reads an existing domain and outputs a
WLST script that can recreate the domain. See “configToScript” on page B-73.

Table 3-3 Editing a Domain

To... Use this command... For more
information, see...

Add an application to
a domain

addTemplate(templateFileName) “addTemplate” on
page B-8

Assign resources to
one or more
destinations (such as
assigning servers to
clusters)

assign(sourceType, sourceName,
destinationType, destinationName)

“assign” on
page B-44

Unassign resources unassign(sourceType, sourceName,
destinationType, destinationName)

“unassign” on
page B-65

Create and delete
management objects

create(name, childMBeanType)

delete(name, childMBeanType)

“create” on
page B-49

“delete” on
page B-51

Get and set attribute
values

get(attrName)

set(attrName, value)

“get” on page B-53

“set” on page B-59

Set configuration
options

setOption(optionName, value) “setOption” on
page B-60

Load SQL files into a
database

loadDB(dbVersion, connectionPoolName) “loadDB” on
page B-56

Creat ing Domains Us ing WLST Of f l ine

3-6 WebLogic Scripting Tool

Unlike creating and using a domain template, the configToScript command creates multiple
files that must be used together. (A domain template is a single JAR file.) In addition, the script
that the configToScript command creates:

Can only be run by WLST.

A domain template can be used by WLST or the Configuration Wizard.

Requires a WebLogic Server instance to be running. If a server isn’t running, the script
starts one.

WLST offline or the Configuration Wizard can use domain templates to create domains
without starting a server instance.

Contains only references to applications and other resources. When you run the generated
script, the applications and resources must be accessible to the domain through the file
system.

A domain template is a JAR file that contains all applications and resources needed to
create a domain. Because the domain template is self-contained, you can use it to create
domains on separate systems that do not share file systems.

Considerations for Clusters, JDBC, and JMS Resources
When using WLST offline to create or extend a clustered domain with a template that has
applications containing application-scoped JDBC and/or JMS resources, you may need to
perform additional steps (after the domain is created or extended) to make sure that the
application and its application-scoped resources are targeted and deployed properly in a clustered
environment. For more information on the targeting and deployment of application-scoped
modules, see “Deploying Applications and Modules with weblogic.deployer” in Deploying
Applications to WebLogic Server.

If you want to use JDBC resources to connect to a database, modify the environment as the
database vendor requires. Usually this entails adding driver classes to the CLASSPATH variable
and vendor-specific directories to the PATH variable. To set the environment that the sample
PointBase database requires as well as add an SDK to PATH variable and the WebLogic Server
classes to the CLASSPATH variable, invoke the following script:

WL_HOME\samples\domains\wl_server\setExamplesEnv.cmd (on Windows)
WL_HOME/samples/domains/wl_server/setExamplesEnv.sh (on UNIX)

http://e-docs.bea.com/wls/docs103/deployment/deploy.html

WebLogic Scripting Tool 4-1

C H A P T E R 4

Managing the Server Life Cycle

During its lifetime, a server can transition through a number of operational states, such as
shutdown, starting, standby, admin, resuming, and running. For more information about the
server life cycle, see Understanding Server Life Cycle in Managing Server Startup and
Shutdown.

The following sections describe how to use WebLogic Scripting Tool (WLST) to manage and
monitor the server life cycle:

“Using WLST and Node Manager to Manage Servers” on page 4-1

“Starting and Managing Servers Without Node Manager” on page 4-6

For information on other techniques for starting and stopping server instances, see Starting and
Stopping Servers in Managing Server Startup and Shutdown.

Using WLST and Node Manager to Manage Servers
Node Manager is a utility that enables you to control the life cycles of multiple servers through a
single WLST session and a single network connection. (It can also automatically restart servers
after a failure.) For more information about Node Manager, see the Node Manager
Administrator’s Guide.

You can use WLST to do the following with Node Manager:

Start a Node Manager.

Connect to a Node Manager, then use the Node Manager to start and stop servers on the
Node Manager machine. See Figure 4-1.

http://e-docs.bea.com/wls/docs103/server_start/overview.html
http://e-docs.bea.com/wls/docs103/server_start/overview.html
http://e-docs.bea.com/wls/docs103/nodemgr/index.html
http://e-docs.bea.com/wls/docs103/nodemgr/index.html
http://e-docs.bea.com/wls/docs103/server_start/server_life.html

Managing the Serve r L i f e Cyc le

4-2 WebLogic Scripting Tool

Figure 4-1 Starting Servers on a Machine

A Node Manager process is not associated with a specific WebLogic domain but with a
machine. You can use the same Node Manager process to control server instances in any
WebLogic Server domain, as long as the server instances reside on the same machine as
the Node Manager process.

For information about the commands that WLST can use while acting as a Node Manager
client, see “Node Manager Commands” on page B-107.

Connect to an Administration Server, then use the Administration Server to start and stop
servers in the domain. See Figure 4-2.

Machine A

Node
Manager

Administration
Server

Managed
Server1

Managed
Server2

WLST

Us ing WLST and Node Manager t o Manage Se rve rs

WebLogic Scripting Tool 4-3

Figure 4-2 Starting Servers in a Domain

In this case, WLST is a client of the Administration Server, and the Administration Server
uses one or more Node Managers to start Managed Servers.

For information about the life cycle commands that WLST can use while acting as an
Administration Server client, see “Life Cycle Commands” on page B-97.

Using Node Manager to Start Servers on a Machine
WLST can connect to a Node Manager that is running on any machine and start one or more
WebLogic Server instances on the machine. A domain’s Administration Server does not need to
be running for WLST and Node Manager to start a server instance using this technique.

To connect WLST to a Node Manager and start servers:

1. Configure Node Manager to start servers.

See General Node Manager Configuration in the Node Manager Administrator’s Guide.

2. Start Node Manager.

Machine A

Administration
Server

WLST

Machine B

Node
Manager

Managed
Server1

Machine C

Node
Manager

Managed
Server2

http://e-docs.bea.com/wls/docs103/nodemgr/nodemgr_config.html

Managing the Serve r L i f e Cyc le

4-4 WebLogic Scripting Tool

Usually, as part of configuring Node Manager, you create a Windows service or a daemon
that automatically starts Node Manager when the host computer starts. See Running Node
Manager as a Service in the Node Manager Administrator’s Guide.

If Node Manager is not already running, you can log on to the host computer and use
WLST to start it:
c:\>java weblogic.WLST
wls:/offline> startNodeManager()

For more information about startNodeManager, see “startNodeManager” on page B-119.

3. Start WLST.
java weblogic.WLST

4. Connect WLST to a Node Manager by entering the nmConnect command.
wls:/offline>nmConnect('username','password','nmHost','nmPort','domainN
ame','domainDir','nmType')

For example,
nmConnect('weblogic', 'weblogic', 'localhost', '5556',
'mydomain','c:/bea/user_projects/domains/mydomain','ssl')

Connecting to Node Manager ...
Successfully connected.
wls:/nm/mydomain>

For detailed information about nmConnect command arguments, see “nmConnect” on
page B-109.

5. Use the nmStart command to start a server.
wls:/nm/mydomain>nmStart('AdminServer')
starting server AdminServer
...
Server AdminServer started successfully
wls:/nm/mydomain>

6. Monitor the status of the Administration Server by entering the nmServerStatus command.
wls:/nm/mydomain>nmServerStatus('serverName')
RUNNING
wls:/nm/mydomain>

7. Stop the server by entering the nmKill command.

a. wls:/nm/mydomain>nmKill('serverName')
Killing server AdminServer

http://e-docs.bea.com/wls/docs103/nodemgr/java_nodemgr.html#ConfiguringJavaNM
http://e-docs.bea.com/wls/docs103/nodemgr/java_nodemgr.html#ConfiguringJavaNM

Us ing WLST and Node Manager t o Manage Se rve rs

WebLogic Scripting Tool 4-5

Server AdminServer killed successfully
wls:/nm/mydomain>

For more information about WLST Node Manager commands, see “Node Manager Commands”
on page B-107.

Using Node Manager to Start Managed Servers in a Domain
or Cluster
To start Managed Servers and clusters using Node Manager:

1. Configure Node Manager to start servers.

See General Node Manager Configuration in the Node Manager Administrator’s Guide.

2. Start Node Manager.

Usually, as part of configuring Node Manager, you create a Windows service or a daemon
that automatically starts Node Manager when the host computer starts. See Running Node
Manager as a Service in the Node Manager Administrator’s Guide.

If Node Manager is not already running, you can log on to the host computer and use
WLST to start it:
c:\>java weblogic.WLST
wls:/offline> startNodeManager()

For more information about startNodeManager, see “startNodeManager” on page B-119.

3. Start an Administration Server.

4. If WLST is not already running, invoke it. Then connect WLST to a running WebLogic
Administration Server instance using the connect command.
c:\>java weblogic.WLST
wls:/(offline)> connect('username','password')
Connecting to weblogic server instance running at t3://localhost:7001
as username weblogic ...
Successfully connected to Admin Server 'myserver' that belongs to
domain 'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be
used instead.

wls:/mydomain/serverConfig>

For detailed information about connect command arguments, see “connect” on page B-10.

http://e-docs.bea.com/wls/docs103/nodemgr/java_nodemgr.html#ConfiguringJavaNM
http://e-docs.bea.com/wls/docs103/nodemgr/java_nodemgr.html#ConfiguringJavaNM
http://e-docs.bea.com/wls/docs103/nodemgr/nodemgr_config.html

Managing the Serve r L i f e Cyc le

4-6 WebLogic Scripting Tool

5. Do any of the following:

– To start a Managed Server, enter the following command:
start('managedServerName','Server')

where managedServerName is the name of the server. For example,
start('managed1','Server')

– To start a cluster, enter the following command:
start('clusterName', 'Cluster')

where clusterName is the name of the cluster. For example:
start('mycluster', 'Cluster')

For more information, see “start” on page B-103.

Starting and Managing Servers Without Node Manager
The following sections describe starting and managing server state without using the Node
Manager:

“Starting an Administration Server Without Node Manager” on page 4-6

“Managing Server State Without Node Manager” on page 4-7

If you do not use Node Manager, WLST cannot start Managed Servers. For information on other
techniques for starting and stopping server instances, see Starting and Stopping Servers in
Managing Server Startup and Shutdown.

Starting an Administration Server Without Node Manager
To start an Administration Server without using Node Manager:

1. If you have not already done so, use WLST to create a domain.

For more information, see “Creating Domains Using WLST Offline” on page 3-1.

2. Open a shell (command prompt) on the computer on which you created the domain.

3. Change to the directory in which you located the domain.

By default, this directory is BEA_HOME\user_projects\domains\domain_name, where
BEA_HOME is the top-level installation directory of Oracle WebLogic products.

4. Set up your environment by running one of the following scripts:

– bin\setDomainEnv.cmd (Windows)

http://e-docs.bea.com/wls/docs103/server_start/overview.html

Sta r t ing and Managing Serve rs Wi thout Node Manager

WebLogic Scripting Tool 4-7

– bin/setDomainEnv.sh (UNIX)

On Windows, you can use a shortcut on the Start menu to set your environment variables
and invoke WLST (Tools→WebLogic Scripting Tool).

5. Invoke WLST by entering: java weblogic.WLST

The WLST prompt appears.
wls:/(offline)>

6. Use the WLST startServer command to start the Administration Server.
startServer([adminServerName], [domainName], [url], [username],
[password],[domainDir], [block], [timeout], [serverLog],
[systemProperties], [jvmArgs] [spaceAsJvmArgsDelimiter])

For detailed information about startServer command arguments, see “startServer” on
page B-104.

For example,
wls:offline/>startServer('AdminServer','mydomain','t3://localhost:7001'
,'weblogic','weblogic','c:/bea/user_projects/domains/mydomain','true','
60000','false')

After WLST starts a server instance, the server runs in a separate process from WLST; exiting
WLST does not shut down the server.

Managing Server State Without Node Manager
WLST life cycle commands enable you to control the states through which a server instance
transitions. See “Life Cycle Commands” on page B-97. Oracle recommends that you enable and
use the domain’s administration port when you connect to servers and issue administrative
commands. See “Securing the WLST Connection” on page 2-6.

The commands in Listing 4-1 explicitly move WebLogic Server through the following server
states: RUNNING->ADMIN->RUNNING->SHUTDOWN.

Start WebLogic Server before running this script. See “Invoking WLST” on page 2-11.

Listing 4-1 WLST Life Cycle Commands

connect("username","password","t3://localhost:8001")

First enable the Administration Port. This is not a requirement.
After you enable the Administration Port in a domain, WebLogic Server

Managing the Serve r L i f e Cyc le

4-8 WebLogic Scripting Tool

persists the setting in its configuration files. You do not need to repeat
the process in future WLST sessions.
edit()
startEdit()
cmo.setAdministrationPortEnabled(1)
activate(block="true")

check the state of the server
state("myserver")

now move the server from RUNNING state to ADMIN
suspend("myserver", block="true")

check the state
state("myserver")

now resume the server to RUNNING state
resume("myserver",block="true")

check the state
state("myserver")

now take a thread dump of the server
threadDump("./dumps/threadDumpAdminServer.txt")

finally shutdown the server
shutdown(block="true")

WebLogic Scripting Tool 5-1

C H A P T E R 5

Navigating MBeans (WLST Online)

The following sections describe how to navigate, interrogate, and edit MBeans using WLST:

“Navigating and Interrogating MBeans” on page 5-1

“Browsing Runtime MBeans” on page 5-6

“Navigating Among MBean Hierarchies” on page 5-9

“Finding MBeans and Attributes” on page 5-10

“Accessing Other WebLogic MBeans and Custom MBeans” on page 5-10

Navigating and Interrogating MBeans
WLST online provides simplified access to MBeans. While JMX APIs require you to use JMX
object names to interrogate MBeans, WLST enables you to navigate a hierarchy of MBeans in a
similar fashion to navigating a hierarchy of files in a file system.

WebLogic Server organizes its MBeans in a hierarchical data model. In the WLST file system,
MBean hierarchies correspond to drives; MBean types and instances are directories; MBean
attributes and operations are files. WLST traverses the hierarchical structure of MBeans using
commands such as cd, ls, and pwd in a similar way that you would navigate a file system in a
UNIX or Windows command shell. After navigating to an MBean instance, you interact with the
MBean using WLST commands.

In the configuration hierarchy, the root directory is DomainMBean (see DomainMBean in the
WebLogic Server MBean Reference); the MBean type is a subdirectory under the root directory;

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/DomainMBean.html

Navigat ing MBeans (WLST On l ine)

5-2 WebLogic Scripting Tool

each instance of the MBean type is a subdirectory under the MBean type directory; and MBean
attributes and operations are nodes (like files) under the MBean instance directory. The name of
the MBean instance directory matches the value of the MBean’s Name attribute. If the MBean
does not have a Name attribute, WLST generates a directory name using the following pattern:
NO_NAME_number, where number starts at 0 (zero) and increments by 1 for each additional
MBean instance.

Figure 5-1 Configuration MBean Hierarchy

WLST first connects to a WebLogic Server instance at the root of the server’s configuration
MBeans, a single hierarchy whose root is DomainMBean. WLST commands provide access to all
the WebLogic Server MBean hierarchies within a domain, such as a server’s runtime MBeans,
runtime MBeans for domain-wide services, and an editable copy of all the configuration MBeans
in the domain. For more information, see “Tree Commands” on page B-120.

For more information about MBean hierarchies, see WebLogic Server MBean Data Model in
Developing Custom Management Utilities with JMX.

Changing the Current Management Object
WLST online provides a variable, cmo, that represents the current management object. You can
use this variable to perform any get, set, or invoke method on the management object. For
example, the cmo variable enables the following command:
wls:/mydomain/edit> cmo.setAdministrationPort(9092)

The variable is available in all WLST hierarchies except custom and jndi.

Domain MBean (root)
|- - - MBean type (LogMBean)

|- - - MBean instance (medrec)
|- - - MBean attributes & operations (FileName)

|- - - MBean type (SecurityConfigurationMBean)

|- - - MBean type (ServerMBean)

|- - - MBean instance (ManagedServer1)
|- - - MBean attributes & operations (AutoRestart)

|- - - MBean instance (MedRecServer)
|- - - MBean attributes & operations (StartupMode)

http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html#MBean_trees

Navigat ing and In te r rogat ing MBeans

WebLogic Scripting Tool 5-3

WLST sets the value of cmo to the current WLST path. Each time you change directories, WLST
resets the value of cmo to the current WLST path. For example, when you change to the
serverRuntime hierarchy, cmo is set to ServerRuntime. When you change to the serverConfig
hierarchy, cmo is set to DomainMBean. If you change to the Servers directory under
DomainMBean, cmo is set to an instance of ServerMBean (see Listing 5-1).

Listing 5-1 Changing the Current Management Object

C:\> java weblogic.WLST
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to Weblogic Server Administration Scripting Shell
...
wls:/(offline)> connect('username','password')
Connecting to weblogic server instance running at t3://localhost:7001 as
username weblogic ...
Successfully connected to Admin Server 'myserver' that belongs to domain
'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.
wls:/mydomain/serverConfig> cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> cmo
[MBeanServerInvocationHandler]com.bea:Name=myserver,Type=Server

For more information on WLST variables, see “WLST Variable Reference” on page B-131.

Navigating and Displaying Configuration MBeans Example
The commands in Listing 5-2 instruct WLST to connect to an Administration Server instance and
display attributes, operations, and child MBeans in DomainMBean.

Listing 5-2 Navigating and Displaying Configuration MBeans

C:\> java weblogic.WLST
wls:/offline> connect('username','password')

Navigat ing MBeans (WLST On l ine)

5-4 WebLogic Scripting Tool

wls:/mydomain/serverConfig> ls()
dr-- AppDeployments
dr-- BridgeDestinations
dr-- Clusters
dr-- DeploymentConfiguration
dr-- Deployments
dr-- EmbeddedLDAP
...
-r-- AdminServerName myserver
-r-- AdministrationMBeanAuditingEnabled false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
-r-- AdministrationProtocol t3s
-r-- ArchiveConfigurationCount 5
...
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> ls()
dr-- managed1
dr-- myserver
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> ls()
dr-- COM
dr-- CandidateMachines
dr-- Cluster
dr-- DefaultFileStore
dr-- ExecutiveQueues
dr-- IIOP
dr-- JTAMigrateableTarget
dr-- Log
dr-- Machine
dr-- NetworkAccessPoints
dr-- OverloadProtection
dr-- SSL
...
-r-- AcceptBacklog 50
-r-- AdminReconnectIntervalSeconds 10
-r-- AdministrationPort 0
-r-- AdministrationPortAfterOverride 9002
-r-- AdministrationPortEnabled false
-r-- AdministrationProtocol t3s
-r-- AutoKillIfFailed false
-r-- AutoRestart true
....
wls:/mydomain/serverConfig/Servers/myserver> cd('Log/myserver')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> ls()
dr-- DomainLogBroadcastFilter
dr-- LogFileFilter
dr-- MemoryBufferFilter
dr-- StdoutFilter

Navigat ing and In te r rogat ing MBeans

WebLogic Scripting Tool 5-5

-r-- DomainLogBroadcastFilter null
-r-- DomainLogBroadcastSeverity Warning
-r-- DomainLogBroadcasterBufferSize 0
-r-- FileCount 7
-r-- FileMinSize 500
-r-- FileName myserver.log
-r-- FileTimeSpan 24
-r-- Log4jLoggingEnabled false
-r-- LogFileFilter null
-r-- LogFileRotationDir null
-r-- LogFileSeverity Debug
-r-- MemoryBufferFilter null
-r-- MemoryBufferSeverity Debug
-r-- MemoryBufferSize 500
-r-- Name myserver
-r-- Notes null
-r-- NumberOfFilesLimited false
-r-- RedirectStderrToServerLogEnabled false
-r-- RedirectStdoutToServerLogEnabled false
-r-- RotateLogOnStartup true
-r-- RotationTime 00:00
-r-- RotationType bySize
-r-- StdoutFilter null
-r-- StdoutSeverity Warning
-r-- Type Log

-r-x isSet Boolean : String(propertyName)
-r-x unSet Void : String(propertyName)

In the ls command output information, d designates an MBean with which you can use the cd
command (analogous to a directory in a file system), r indicates a readable property, w indicates
a writeable property, and x an executable operation.

Note: The read, write, and execute indicators assume that there are no restrictions to the current
user’s access privileges. A specific user might not be able to read values that WLST
indicates as readable because the user might not have been given appropriate permission
by the policies in the WebLogic Security realm. See Default Security Policies for
MBeans in the WebLogic Server MBean Reference.

To navigate back to a parent MBean, enter the cd(’..’) command:

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cmo

[MBeanServerInvocationHandler]mydomain:Name=myserver,Server=myserver,Type=

Log

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cd('..')

http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html

Navigat ing MBeans (WLST On l ine)

5-6 WebLogic Scripting Tool

wls:/mydomain/serverConfig/Servers/myserver/Log>

wls:/mydomain/serverConfig/Servers/myserver/Log> cmo

[MBeanServerInvocationHandler]mydomain:Name=myserver,Type=Server

After navigating back to the parent MBean type, WLST changes the cmo from LogMBean to
ServerMBean.

To get back to the root MBean after navigating to an MBean that is deep in the hierarchy, enter
the cd('/') command.

Browsing Runtime MBeans
Similar to the configuration information, WebLogic Server runtime MBeans are arranged in a
hierarchical data structure. When connected to an Administration Server, you access the runtime
MBean hierarchy by entering the serverRuntime or the domainRuntime command. The
serverRuntime command places WLST at the root of the server runtime management objects,
ServerRuntimeMBean; the domainRuntime command, at the root of the domain-wide runtime
management objects, DomainRuntimeMBean. When connected to a Managed Server, the root of
the runtime MBeans is ServerRuntimeMBean. The domain runtime MBean hierarchy exists on
the Administration Server only; you cannot use the domainRuntime command when connected
to a Managed Server.

For more information, see ServerRuntimeMBean and DomainRuntimeMBean in the WebLogic
Server MBean Reference.

Using the cd command, WLST can navigate to any of the runtime child MBeans. The navigation
model for runtime MBeans is the same as the navigation model for configuration MBeans.
However, runtime MBeans exist only on the same server instance as their underlying managed
resources (except for the domain-wide runtime MBeans on the Administration Server) and they
are all un-editable.

Navigating and Displaying Runtime MBeans Example
The commands in Listing 5-3 instruct WLST to connect to an Administration Server instance,
navigate, and display server and domain runtime MBeans.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/ServerRuntimeMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/DomainRuntimeMBean.html

Brows ing Runt ime MBeans

WebLogic Scripting Tool 5-7

Listing 5-3 Navigating and Displaying Runtime MBeans

wls:/(offline) > connect('username','password')
wls:/mydomain/serverConfig> serverRuntime()
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help('serverRuntime')
wls:/mydomain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- ClusterRuntime
dr-- ConnectorServiceRuntime
...
dr-- JDBCServiceRuntime
dr-- JMSRuntime
dr-- JTARuntime
dr-- JVMRuntime
dr-- LibraryRuntimes
dr-- MailSessionRuntimes
dr-- RequestClassRuntimes
dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime
dr-- ServerServices
dr-- ThreadPoolRuntime
dr-- WLDFAccessRuntime
dr-- WLDFRuntime
dr-- WTCRuntime
dr-- WorkManagerRuntimes

-r-- ActivationTime 1093958848908
-r-- AdminServer true
-r-- AdminServerHost
-r-- AdminServerListenPort 7001
-r-- AdminServerListenPortSecure false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
...
wls:/mydomain/serverRuntime> domainRuntime()
Location changed to domainRuntime tree. This is a read-only tree with
DomainRuntimeMBean as the root.
For more help, use help('domainRuntime')
wls:/mydomain/domainRuntime> ls()
dr-- DeployerRuntime
...
dr-- ServerLifecycleRuntimes
dr-- ServerRuntimes

-r-- ActivationTime Tue Aug 31 09:27:22 EDT 2004

Navigat ing MBeans (WLST On l ine)

5-8 WebLogic Scripting Tool

-r-- Clusters null
-rw- CurrentClusterDeploymentTarget null
-rw- CurrentClusterDeploymentTimeout 0
-rw- Name mydomain
-rw- Parent null
-r-- Type DomainRuntime

-r-x lookupServerLifecycleRuntime javax.management.ObjectName

: java.lang.String
wls:/mydomain/domainRuntime>

The commands in Listing 5-4 instruct WLST to navigate and display runtime MBeans on a
Managed Server instance.

Listing 5-4 Navigating and Displaying Runtime MBeans on a Managed Server

wls:/offline> connect('username','password',‘t3://localhost:7701’)
Connecting to weblogic server instance running at t3://localhost:7701 as
username weblogic ...
Successfully connected to managed Server 'managed1' that belongs to domain
'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- ClusterRuntime
...
dr-- JMSRuntime
dr-- JTARuntime
dr-- JVMRuntime
dr-- LibraryRuntimes
dr-- MailSessionRuntimes
dr-- RequestClassRuntimes
dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime
dr-- ThreadPoolRuntime
dr-- WLDFAccessRuntime
dr-- WLDFRuntime
dr-- WTCRuntime
dr-- WorkManagerRuntimes

Nav igat ing Among MBean H ie ra rch ies

WebLogic Scripting Tool 5-9

-r-- ActivationTime 1093980388931
-r-- AdminServer false
-r-- AdminServerHost localhost
-r-- AdminServerListenPort 7001
-r-- AdminServerListenPortSecure false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
...
wls:/mydomain/serverRuntime>

Navigating Among MBean Hierarchies
To navigate to a configuration MBean from the runtime hierarchy, enter the serverConfig or
domainConfig (if connected to an Administration Server only) command. This places WLST at
the configuration MBean to which you last navigated before entering the serverRuntime or
domainRuntime command.

The commands in the following example instruct WLST to navigate from the runtime MBean
hierarchy to the configuration MBean hierarchy and back:

wls:/mydomain/serverRuntime/JVMRuntime/managed1> serverConfig()

Location changed to serverConfig tree. This is a read-only tree with

DomainMBean as the root.

For more help, use help('serverConfig')

wls:/mydomain/serverConfig> cd ('Servers/managed1')

wls:/mydomain/serverConfig/Servers/managed1> cd('Log/managed1')

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> serverRuntime()

wls:/mydomain/serverRuntime/JVMRuntime/managed1>

Entering the serverConfig command from the runtime MBean hierarchy again places WLST
at the configuration MBean to which you last navigated.

wls:/mydomain/serverRuntime/JVMRuntime/managed1> serverConfig()

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1>

For more information, see “Tree Commands” on page B-120.

Alternatively, you can use the currentTree command to store your current MBean hierarchy
location and to return to that location after navigating away from it. See “currentTree” on
page B-4.

For example:

Navigat ing MBeans (WLST On l ine)

5-10 WebLogic Scripting Tool

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> myLocation =

currentTree()

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> serverRuntime()

wls:/mydomain/serverRuntime> cd(‘JVMRuntime/managed1’)

wls:/mydomain/serverRuntime/JVMRuntime/managed1>myLocation()

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1>

Finding MBeans and Attributes
To locate a particular MBean and attribute, you use the find command. WLST returns the
pathname to the MBean that stores the attribute and its value. You can use the getMBean
command to return the MBean specified by the path. For more information, see “find” on
page B-77 and “getMBean” on page B-79.

For example:
wls:/mydomain/edit !> find('logfilename')

searching ...

/ApplicationRuntimes/myserver_wlnav.war/WebAppComponentRuntime/myserver_my
server_wlnav.war_wlnav_/wlnavLogFilename null

/Servers/myserver JDBCLogFileName jdbc.log

/Servers/myserver/WebServer/myserver LogFileName access.log

wls:/mydomain/edit !> bean=getMBean('Servers/myserver/WebServer/myserver')
wls:/mydomain/edit !> print bean
[MBeanServerInvocationHandler]mydomain:Name=myserver,Type=WebServer,Server
=myserver
wls:/mydomain/edit !>

Note: getMBean does not throw an exception when an instance is not found.

Alternatively, the getPath command returns the MBean path for a specified MBean instance or
ObjectName for the MBean in the current MBean hierarchy. See “getPath” on page B-80.
wls:/mydomain/serverConfig>path=getPath('com.bea:Name=myserver,Type=Server
')
wls:/mydomain/serverConfig> print path
Servers/myserver

Accessing Other WebLogic MBeans and Custom MBeans
In addition to accessing WebLogic Server MBeans, WLST can access MBeans that WebLogic
Integration and WebLogic Portal provide. It can also access MBeans that you create and register

Access ing Other WebLog ic MBeans and Custom MBeans

WebLogic Scripting Tool 5-11

(custom MBeans) to configure or monitor your own resources. (For information on creating and
registering your own MBeans, see Instrumenting and Registering Custom MBeans in Developing
Manageable Applications with JMX.)

To navigate other WebLogic MBeans or custom MBeans, enter the custom command when
WLST is connected to an Administration Server or a Managed Server instance.

WLST treats all non-WebLogic Server MBeans as custom MBeans:

Instead of arranging custom MBeans in a hierarchy, WLST organizes and lists custom
MBeans by JMX object name. All MBeans with the same JMX domain name are listed in
the same WLST directory. For example, if you register all of your custom MBeans with
JMX object names that start with mycompany:, then WLST arranges all of your MBeans in
a directory named mycompany.

Custom MBeans cannot use the cmo variable because a stub is not available.

Custom MBeans are editable, but not subject to the WebLogic Server change management
process. You can use MBean get, set, invoke, and create and delete commands on
them without first entering the startEdit command. See “Using WLST Online to Update
an Existing Domain” on page 6-1.

The following is an example of navigating custom MBeans:

wls:/mydomain/serverConfig> custom()

Location changed to custom tree. This is a writable tree with No root. For

more help, use help('custom')

wls:/mydomain/custom> ls()

drw- mycompany

drw- anothercompany

wls:/mydomain/custom> cd("mycompany")

wls:/mydomain/custom/mycompany> ls()

drw- mycompany:y1=x

drw- mycompany:y2=x

wls:/mydomain/custom/mycompany> cd("mycompany:y1=x")

wls:/mydomain/custom/mycompany/mycompany:y1=x> ls()

-rw- MyAttribute 10

wls:/mydomain/custom/mycompany/mycompany:y1=x>

http://e-docs.bea.com/wls/docs103/jmxinst/instmbeans.html

Navigat ing MBeans (WLST On l ine)

5-12 WebLogic Scripting Tool

WebLogic Scripting Tool 6-1

C H A P T E R 6

Configuring Existing Domains

The following sections describe using WLST to update an existing domain:

“Using WLST Online to Update an Existing Domain” on page 6-1

“Using WLST Offline to Update an Existing Domain” on page 6-7

“Managing Security Data (WLST Online)” on page 6-8

“Deploying Applications” on page 6-15

Using WLST Online to Update an Existing Domain
Because WLST online interacts with an active domain, all online changes to a domain are
controlled by the change management process, which loosely resembles a database transaction.
For more information on making and managing configuration changes, see Configuration
Change Management Process in Understanding Domain Configuration.

http://e-docs.bea.com/wls/docs103/domain_config/changes.html#config_management_process
http://e-docs.bea.com/wls/docs103/domain_config/changes.html#config_management_process

Conf igur ing Ex is t ing Domains

6-2 WebLogic Scripting Tool

Table 6-1 describes the steps for using WLST online to update an existing domain.

Table 6-1 Steps for Updating an Existing Domain (Offline)

To... Use this command... For more
information, see...

1. Access the edit MBean
hierarchy

edit()

This command places WLST at the root of
the edit MBean hierarchy, which is the
editable DomainMBean.

“edit” on page B-127

2. Obtain a lock on the
current configuration
To indicate that
configuration changes are
in process, an exclamation
point (!) appears at the end
of the WLST command
prompt.

startEdit([waitTimeInMillis],
[timeoutInMillis], [exclusive])

“startEdit” on
page B-63

3. Modify the domain Browsing and online editing commands “Browse
Commands” on
page B-2

“Editing Commands”
on page B-41

4. (Optional) Validate your
edits

validate() “validate” on
page B-70

5. Save your changes save() “save” on page B-58

6. Distribute your changes to
the working configuration
MBeans on all servers in
the domain

activate([timeout], [block]) “activate” on
page B-43

7. Release your lock on the
configuration

stopEdit([defaultAnswer]) “stopEdit” on
page B-65

8. (Optional) Determine if a
change you made to an
MBean attribute requires
you to re-start servers

isRestartRequired([attributeNam
e])

“isRestartRequired”
on page B-55

Us ing WLST Onl ine to Update an Ex is t ing Domain

WebLogic Scripting Tool 6-3

The WLST online script in Listing 6-1 connects WLST to an Administration Server, initiates an
edit session that creates a Managed Server, saves and activates the change, initiates another edit
session, creates a startup class, and targets it to the newly created server.

Start WebLogic Server before running this script. See “Invoking WLST” on page 2-11.

Listing 6-1 Creating a Managed Server

connect("username","password")
edit()
startEdit()
svr = cmo.createServer("managedServer")
svr.setListenPort(8001)
svr.setListenAddress("my-address")
save()
activate(block="true")

startEdit()
sc = cmo.createStartupClass("my-startupClass")
sc.setClassName("com.bea.foo.bar")
sc.setArguments("foo bar")

get the server mbean to target it

tBean = getMBean("Servers/managedServer")
if tBean != None:

print "Found our target"
sc.addTarget(tBean)

save()
activate(block="true")
disconnect()
exit()

Tracking Configuration Changes
For all changes that are initiated by WLST, you can use the showChanges command which
displays all the changes that you made to the current configuration from the start of the edit
session, including any MBean operations that were implicitly performed by the server. See
Listing 6-2.

Start WebLogic Server before running this script. See “Invoking WLST” on page 2-11.

Conf igur ing Ex is t ing Domains

6-4 WebLogic Scripting Tool

Listing 6-2 Displaying Changes

wls:/offline> connect('username','password')

wls:/mydomain/serverConfig> edit()

wls:/mydomain/edit> startEdit()

Starting an edit session ...

wls:/mydomain/edit !> cmo.createServer('managed2')

[MBeanServerInvocationHandler]mydomain:Name=managed2,Type=Server

wls:/mydomain/edit !> cd('Servers/managed2')

wls:/mydomain/edit/Servers/managed2 !> cmo.setListenPort(7702)

wls:/mydomain/edit/Servers/managed2 !> showChanges()

Changes that are in memory and saved to disc but not yet activated are:

MBean Changed : mydomain:Name=mydomain,Type=Domain

Operation Invoked : add

Attribute Modified : Servers

Attributes Old Value : null

Attributes New Value : managed2

Server Restart Required : false

MBean Changed : mydomain:Name=managed2,Type=Server

Operation Invoked : modify

Attribute Modified : StagingDirectoryName

Attributes Old Value : null

Attributes New Value : .\managed2\stage

Server Restart Required : true

MBean Changed : mydomain:Name=managed2,Type=Server

Operation Invoked : modify

Attribute Modified : Name

Attributes Old Value : null

Attributes New Value : managed2

Server Restart Required : true

MBean Changed : mydomain:Name=managed2,Type=Server

Operation Invoked : modify

Attribute Modified : ListenPort

Attributes Old Value : null

Attributes New Value : 7702

Server Restart Required : false

Us ing WLST Onl ine to Update an Ex is t ing Domain

WebLogic Scripting Tool 6-5

wls:/mydomain/edit/Servers/managed2 !> save()
wls:/mydomain/edit !> activate()
Started the activation of all your changes.
The edit lock associated with this edit session is released once the activation
is successful.

The Activation task for your changes is assigned to the variable 'activationTask'

You can call the getUser() or getStatusByServer() methods on this variable to
determine the status of your activation

[MBeanServerInvocationHandler]mydomain:Type=ActivationTask
wls:/mydomain/edit/Servers/managed2>

The getActivationTask function provides information about the activation request and returns
the latest ActivationTaskMBean which reflects the state of changes that a user is currently
making or made recently. You invoke the methods that this interface provides to get information
about the latest activation task in progress or just completed. For detailed information, see
ActivationTaskMBean in the WebLogic Server MBean Reference.

The WLST online script in Listing 6-3 connects WLST to a server instance as an administrator,
gets the activation task, and prints the user and the status of the task. It also prints all the changes
that took place.

Start WebLogic Server before running this script. See “Invoking WLST” on page 2-11.

Listing 6-3 Checking the Activation Task

connect("theAdministrator","weblogic")
at = getActivationTask()
print "The user for this Task "+at.getUser()+" and the state is "+at.getState()
changes = at.getChanges()
for i in changes:

i.toString()

Undoing or Canceling Changes
WLST offers two commands to undo or cancel changes:

The undo command reverts all unsaved or unactivated edits.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/ActivationTaskMBean.html

Conf igur ing Ex is t ing Domains

6-6 WebLogic Scripting Tool

You specify whether to revert all unactivated edits (including those that have been saved to
disk), or all edits made since the last save operation. See “undo” on page B-69.

The cancelEdit command releases the edit lock and discards all unsaved changes. See
“cancelEdit” on page B-48.

Additional Operations and Attributes for Change
Management
The standard change-management commands described in the previous section are convenience
commands for invoking operations in the ConfigurationManagerMBean. In addition to these
operations, the ConfigurationManagerMBean contains attributes and operations that describe
edit sessions. For detailed information, see ConfigurationManagerMBean in the WebLogic Server
MBean Reference.

To access this MBean, use the WLST getConfigManager command. See “getConfigManager”
on page B-78.

The WLST online script in Listing 6-4 connects WLST to a server instance as an administrator,
checks if the current editor making changes is a particular operator, then cancels the configuration
edits. The script also purges all the completed activation tasks.

Start WebLogic Server before running this script. See “Invoking WLST” on page 2-11.

Listing 6-4 Using the Configuration Manager

connect("theAdministrator","weblogic")
cmgr = getConfigManager()
user = cmgr.getCurrentEditor()
if user == "operatorSam":

cmgr.undo()
cmgr.cancelEdit()

cmgr.purgeCompletedActivationTasks()

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/ConfigurationManagerMBean.html

Us ing WLST Of f l ine to Update an Ex is t ing Domain

WebLogic Scripting Tool 6-7

Using WLST Offline to Update an Existing Domain
To update an existing domain using WLST offline, perform the steps described in Table 6-2.

Caution: Oracle recommends that you do not use WLST offline to manage the configuration
of an active domain. Offline edits are ignored by running servers and can be
overwritten by JMX clients such as WLST online or the WebLogic Server
Administration Console.

Table 6-2 Steps for Updating an Existing Domain (Offline)

To... Use this command... For more
information, see...

1. Open an existing domain
for update

readDomain(domainDirName) “readDomain” on
page B-17

2. Extend the current domain
(optional)

addTemplate(templateFileName) “addTemplate” on
page B-8

3. Modify the domain
(optional)

Browsing and editing commands “Browsing
Information About
the Configuration
Hierarchy (Offline)”
on page 3-3

“Editing a Domain
(Offline)” on
page 3-5.

4. Save the domain updateDomain() “updateDomain” on
page B-19

5. Close the domain closeDomain() “closeDomain” on
page B-9

Conf igur ing Ex is t ing Domains

6-8 WebLogic Scripting Tool

Managing Security Data (WLST Online)
In the WebLogic Security Service, an Authentication provider is the software component that
proves the identity of users or system processes. An Authentication provider also remembers,
transports, and makes that identity information available to various components of a system when
needed.

A security realm can use different types of Authentication providers to manage different sets of
users and groups. (See Authentication Providers in Developing Security Providers for WebLogic
Server.) You can use WLST to invoke operations on the following types of Authentication
providers:

The default WebLogic Server Authentication provider, AuthenticatorMBean. By default,
all security realms use this Authentication provider to manage users and groups.

Custom Authentication providers that extend
weblogic.security.spi.AuthenticationProvider and extend the optional
Authentication SSPI MBeans. See SSPI MBean Quick Reference in Developing Security
Providers for WebLogic Server.

The following sections describe basic tasks for managing users and groups using WLST:

“Determining If You Need to Access the Edit Hierarchy” on page 6-9

“Creating a User” on page 6-9

“Adding a User to a Group” on page 6-10

“Verifying Whether a User Is a Member of a Group” on page 6-10

“Listing Groups to Which a User Belongs” on page 6-11

“Listing Users and Groups in a Security Realm” on page 6-12

“Changing a Password” on page 6-13

“Protecting User Accounts in a Security Realm” on page 6-14

For information about additional tasks that the AuthenticationProvider MBeans support, see
AuthenticationProviderMBean in the WebLogic Server MBean Reference.

http://e-docs.bea.com/wls/docs103/dvspisec/atn.html
http://e-docs.bea.com/wls/docs103/dvspisec/design.html#design360
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/AuthenticationProviderMBean.html

Manag ing Secur i t y Data (WLST On l ine)

WebLogic Scripting Tool 6-9

Determining If You Need to Access the Edit Hierarchy
If you are using WLST to change the configuration of a security MBean, you must access the edit
hierarchy and start an edit session. For example, if you change the value of the
LockoutThreshold attribute in UserLockoutManagerMBean, you must be in the edit hierarchy.

If you invoke security provider operations to add, modify, or remove data in a security provider
data store, WLST does not allow you to be in the edit hierarchy. Instead, invoke these commands
from the serverConfig or domainConfig hierarchy. For example, you cannot invoke the
createUser operation in an AuthenticatorMBean MBean from the edit hierarchy. WLST
enforces this restriction to prevent the possibility of incompatible changes. For example, an edit
session could contain an unactivated change that removes a security feature and will invalidate
modifications to the provider’s data.

Creating a User
To create a user, invoke the UserEditorMBean.createUser method, which is extended by the
security realm’s AuthenticationProvider MBean. For more information, see the
createUser method in the WebLogic Server MBean Reference.

The method requires three input parameters:

username password user-description

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command from
the serverConfig or domainConfig hierarchy.

The following WLST online script invokes createUser on the default authentication provider.
For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 6-5 Creating a User

from weblogic.management.security.authentication import UserEditorMBean

print "Creating a user ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProv
ider("DefaultAuthenticator")
atnr.createUser('my_user','my_password','new_admin')
print "Created user successfully"

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/UserEditorMBean.html

Conf igur ing Ex is t ing Domains

6-10 WebLogic Scripting Tool

Adding a User to a Group
To add a user to a group, invoke the GroupEditorMBean.addMemberToGroup method, which
is extended by the security realm’s AuthenticationProvider MBean. For more information,
see the addMemberToGroup method in the WebLogic Server MBean Reference.

The method requires two input parameters:

groupname username

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command from
the serverConfig or domainConfig hierarchy.

The following WLST online script invokes addMemberToGroup on the default Authentication
Provider. For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 6-6 Adding a User to a Group

from weblogic.management.security.authentication import GroupEditorMBean

print "Adding a user ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProv
ider("DefaultAuthenticator")
atnr.addMemberToGroup('Administrators','my_user')
print "Done adding a user"

Verifying Whether a User Is a Member of a Group
To verify whether a user is a member of a group, invoke the GroupEditorMBean.isMember
method, which is extended by the security realm’s AuthenticationProvider MBean. For
more information, see the isMember method in the WebLogic Server MBean Reference.

The method requires three input parameters:

groupname username boolean

where boolean specifies whether the command searches within child groups. If you specify
true, the command returns true if the member belongs to the group that you specify or to any
of the groups contained within that group.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command from
the serverConfig or domainConfig hierarchy.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/GroupEditorMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/GroupEditorMBean.html

Manag ing Secur i t y Data (WLST On l ine)

WebLogic Scripting Tool 6-11

The following WLST online script invokes isMember on the default Authentication Provider.
For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 6-7 Verifying Whether a User is a Member of a Group

from weblogic.management.security.authentication import GroupEditorMBean

print "Checking if isMember of a group ... "
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProv
ider("DefaultAuthenticator")
if atnr.isMember('Administrators','my_user',true) == 0:

print "my_user is not member of Administrators"
else:

print "my_user is a member of Administrators"

Listing Groups to Which a User Belongs
To see a list of groups that contain a user or a group, invoke the
MemberGroupListerMBean.listMemberGroups method, which is extended by the security
realm’s AuthenticationProvider MBean. For more information, see the listMemberGroups
method in the WebLogic Server MBean Reference.

The method requires one input parameter:
memberUserOrGroupName

where memberUserOrGroupName specifies the name of an existing user or a group.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command from
the serverConfig or domainConfig hierarchy.

The following WLST online script invokes listMemberGroups on the default Authentication
provider. For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 6-8 Listing Groups to Which a User Belongs

from weblogic.management.security.authentication import MemberGroupListerMBean

print "Listing the member groups ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProv
ider("DefaultAuthenticator")

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/MemberGroupListerMBean.html

Conf igur ing Ex is t ing Domains

6-12 WebLogic Scripting Tool

x = atnr.listMemberGroups('my_user')
print x

The method returns a cursor, which refers to a list of names. The NameLister.haveCurrent,
getCurrentName, and advance operations iterate through the returned list and retrieve the name
to which the current cursor position refers. See NameListerMBean in the WebLogic Server
MBean Reference.

Listing Users and Groups in a Security Realm
To see a list of user or group names, you invoke a series of methods, all of which are available
through the AuthenticationProvider interface:

The GroupReaderMBean.listGroups and UserReaderMBean.listUsers methods take
two input parameters: a pattern of user or group names to search for, and the maximum
number of names that you want to retrieve.

Because a security realm can contain thousands (or more) of user and group names that
match the pattern, the methods return a cursor, which refers to a list of names.

For more information, see the listGroups and listUsers operations in the WebLogic
Server MBean Reference.

The NameLister.haveCurrent, getCurrentName, and advance operations iterate
through the returned list and retrieve the name to which the current cursor position refers.
For more information, see NameListerMBean in the WebLogic Server MBean Reference.

The NameLister.close operation releases any server-side resources that are held on
behalf of the list.

WLST cannot invoke these commands from the edit hierarchy, but it can invoke them from the
serverConfig or domainConfig hierarchy.

The WLST online script in Listing 6-9 lists all the users in a realm and the groups to which they
belong. For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 6-9 Listing Users and Groups

from weblogic.management.security.authentication import UserReaderMBean
from weblogic.management.security.authentication import GroupReaderMBean

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/NameListerMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/GroupReaderMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/UserReaderMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/NameListerMBean.html

Manag ing Secur i t y Data (WLST On l ine)

WebLogic Scripting Tool 6-13

realm=cmo.getSecurityConfiguration().getDefaultRealm()
atns = realm.getAuthenticationProviders()
for i in atns:

if isinstance(i,UserReaderMBean):
userReader = i
cursor = i.listUsers("*",0)
print 'Users in realm '+realm.getName()+' are: '
while userReader.haveCurrent(cursor):

print userReader.getCurrentName(cursor)
userReader.advance(cursor)

userReader.close(cursor)

for i in atns:
if isinstance(i,GroupReaderMBean):
groupReader = i
cursor = i.listGroups("*",0)
print 'Groups in realm are: '
while groupReader.haveCurrent(cursor):

print groupReader.getCurrentName(cursor)
groupReader.advance(cursor)

groupReader.close(cursor)

Changing a Password
To change a user’s password, invoke the UserPasswordEditorMBean.changeUserPassword
method, which is extended by the security realm’s AuthenticationProvider MBean. For
more information, see the changeUserPassword method in the WebLogic Server MBean
Reference.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the command from
the serverConfig or domainConfig hierarchy.

The following WLST online script invokes changeUserPassword on the default Authentication
Provider: For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 6-10 Changing a Password

from weblogic.management.security.authentication import UserPasswordEditorMBean

print "Changing password ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProv
ider("DefaultAuthenticator")

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/UserPasswordEditorMBean.html

Conf igur ing Ex is t ing Domains

6-14 WebLogic Scripting Tool

atnr.changeUserPassword('my_user','my_password','new_password')
print "Changed password successfully"

Protecting User Accounts in a Security Realm
The UserLockoutManagerMBean provides a set of attributes to protect user accounts from
intruders. By default, these attributes are set for maximum protection. You can decrease the level
of protection for user accounts. For example, you can increase the number of login attempts
before a user account is locked, increase the time period in which invalid login attempts are made
before locking the user account, or change the amount of time a user account is locked. For more
information, see the UserLockoutManagerMBean interface in the WebLogic Server MBean
Reference.

The following tasks provide examples for invoking UserLockoutManagerMBean methods:

“Set Consecutive Invalid Login Attempts” on page 6-14

“Unlock a User Account” on page 6-15

Note that because these tasks edit MBean attributes, WLST must connect to the Administration
Server, navigate to the edit hierarchy, and start an edit session.

Set Consecutive Invalid Login Attempts
The following WLST online script sets the number of consecutive invalid login attempts before
a user account is locked out. For information on how to run this script, see “Invoking WLST” on
page 2-11.

Listing 6-11 Setting Consecutive Invalid Login Attempts

from weblogic.management.security.authentication import UserLockoutManagerMBean

edit()
startEdit()

#You have two choices for getting a user lockout manager to configure
1 - to configure the default realm's UserLockoutManager:

ulm=cmo.getSecurityConfiguration().getDefaultRealm().getUserLockoutManager()

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/UserLockoutManagerMBean.html

Deploy ing App l icat ions

WebLogic Scripting Tool 6-15

2 - to configure another realm's UserLockoutManager:
#ulm=cmo.getSecurityConfiguration().lookupRealm("anotherRealm").getUserLockout
Manager()

ulm.setLockoutThreshold(3)
save()
activate()

Unlock a User Account
The following WLST online script unlocks a user account. For information on how to run this
script, see “Invoking WLST” on page 2-11.

Listing 6-12 Unlocking a User Account

from weblogic.management.security.authentication import UserLockoutManagerMBean

serverRuntime()
ulm=cmo.getServerSecurityRuntime().getDefaultRealmRuntime().getUserLockoutMana
gerRuntime()
#note1 : You can only manage user lockouts for the default realm starting from
when the server was booted (versus other non-active realms).
#note2 : If the default realm's user lockout manager's LockoutEnabled attribute
is false, then the user lockout manager’s runtime MBean will be null.
#That is, you can only manage user lockouts in the default realm if its user
lockout manager is enabled.

if ulm != None:
ulm.clearLockout("myuser")

Deploying Applications
The process for deploying applications varies depending on whether you use WLST offline or
WLST online.

Using WLST Online to Deploy Applications
When WLST is connected to a domain’s Administration Server, use the deploy command to
deploy applications. (See “deploy” on page B-23.)

Conf igur ing Ex is t ing Domains

6-16 WebLogic Scripting Tool

The command in Listing 6-13 deploys a sample application from the WebLogic Server
ExamplesServer domain.

Listing 6-13 Deploying Applications

Deploying Applications

deploy("mainWebApp","C:/bea/wlserver_10.3/samples/server/examples/build/mainWe
bApp")

Notes:

You must invoke the deploy command on the computer that hosts the Administration
Server.

You do not need to be in an edit session to deploy applications.

For more information using WLST for deploying applications, see Deployment Tools in
Deploying Applications to WebLogic Server.

Using WLST Offline to Deploy Applications
Table 6-3 describes the steps for using WLST offline to deploy applications in an existing
domain.

Table 6-3 Steps for Deploying Applications (Offline)

To... Use this command... For more
information, see...

1. Use the Template Builder
to create an application
template.

Creating Templates
Using the Domain
Template Builder

2. Open an existing domain
or template

readDomain(domainDirName) “readDomain” on
page B-17

“readTemplate” on
page B-18

3. Add the application
template to the domain.

 addTemplate(templateFileName) “addTemplate” on
page B-8

http://e-docs.bea.com/wls/docs103/deployment/understanding.html#DeploymentTools
../../../common/docs103/install/../tempbuild/index.html

Deploy ing App l icat ions

WebLogic Scripting Tool 6-17

For an example of using the addTemplate command, see the following sample WLST script:

WL_HOME\common\templates\scripts\wlst\clusterMedRecDomain.py, where WL_HOME
refers to the top-level installation directory for WebLogic Server

4. Save the domain updateDomain() “updateDomain” on
page B-19

5. Close the domain closeDomain() “closeDomain” on
page B-9

Table 6-3 Steps for Deploying Applications (Offline) (Continued)

To... Use this command... For more
information, see...

Conf igur ing Ex is t ing Domains

6-18 WebLogic Scripting Tool

WebLogic Scripting Tool 7-1

C H A P T E R 7

Updating the Deployment Plan

You can use WLST to retrieve and update an application’s deployment plan. When using WLST
to update an application’s deployment plan, you define variable definitions and variable
assignments. A variable definition identifies what descriptor entity is to be changed; a variable
assignment associates a new value with the variable.

The following procedure describes how to use WLST in interactive mode. For information about
using WLST in script or embedded mode, see Chapter 2, “Using the WebLogic Scripting Tool.”

To update a deployment plan using WLST in interactive mode, perform the following steps:

Note: The example code provided in the following procedure demonstrates how to update a
configure Web Services Reliable Messaging. For more information, see “Using Web
Services Reliable Messaging” in Programming Advanced Features of WebLogic Web
Services Using JAX-RPC.

1. Create a deployment plan for the application.

For more information, see “Create a deployment plan” in the Administration Console
Online Help.

2. Start WLST in interactive mode. For example:

prompt> java weblogic.WLST

For more information, see Chapter 2, “Using the WebLogic Scripting Tool.”

3. Start the WebLogic Server instance to which the application is deployed. For more
information, see “Starting and Stopping Servers” in Managing Server Startup and Shutdown.

4. Connect to the WebLogic Server instance. For example:

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/applications/CreateDeploymentPlan.html
http://e-docs.bea.com/wls/docs103/server_start/overview.html

Updat ing the Dep loyment P lan

7-2 WebLogic Scripting Tool

connect("weblogic", "weblogic", "localhost:7001")

5. Load the application and deployment plan. For example:

plan=loadApplication("c:/myApps/ReliableServiceEar/examples/webservices
/reliable/ReliableHelloWorldImpl.war",
"c:/myApps/ReliableServiceEar/Plan.xml")

The loadApplication command returns a WLSTPlan object that you can access to make
changes to the deployment plan. For more information about the WLSTPlan object, see
“WLSTPlan Object” on page C-1.

6. Identify the configuration options that you want to update and their corresponding XPath
values.

7. Determine if variable definitions and variable assignments are currently defined in your
deployment plan for the configuration options identified in the previous step. To do so, enter
one of the following commands:

a. To display variables:
plan.showVariables()

Name Value

----- -----

ReliabilityConfig_AcknowledgementInterval P0DT0.5S

Wsdl_Exposed true

b. To display variable assignments:
plan.showVariableAssignments()

examples/webservices/reliable/ReliableHelloWorldImpl.war

 |

 WEB-INF/weblogic-webservices.xml

 |

 Wsdl_Exposed

examples/webservices/reliable/ReliableHelloWorldImpl.war

 |

 WEB-INF/weblogic-webservices.xml

 |

 ReliabilityConfig_AcknowledgementInterval |

8. If the variable definition and assignment are not defined, create them and set the XPath value
for the variable assignment, as follows:

WebLogic Scripting Tool 7-3

a. Create the variable definition. Use the createVariable() method to specify the variable
name and value. For example:

v=plan.createVariable("ReliabilityConfig_BufferRetryCount", "3")

b. Create the variable assignment. Use the createVariableAssignment() method to
specify the name of the variable, the application to which is applies, and the corresponding
deployment descriptor. For example:

va=plan.createVariableAssignment("ReliabilityConfig_BufferRetryCount
", "ReliableServiceEar", "META-INF/weblogic-application.xml")

c. Set the XPath value for the variable assignment. For example:

va.setXpath("/weblogic-webservices/webservice-description/[webservic
e-description-name="examples.webservices.reliable.ReliableHelloWorld
Impl"]/port-component/[port-component-name="ReliableHelloWorldServic
ePort"]/reliability-config/buffer-retry-count")

9. Save the deployment plan. For example:

plan.save()

Updat ing the Dep loyment P lan

7-4 WebLogic Scripting Tool

WebLogic Scripting Tool 8-1

C H A P T E R 8

Getting Runtime Information

You can use WLST to retrieve information that WebLogic Server instances produce to describe
their runtime state. The following sections using WLST to get runtime information:

“Accessing Runtime Information: Main Steps” on page 8-1

“Configuring Logging” on page 8-4

“Working with the WebLogic Diagnostics Framework” on page 8-5

Accessing Runtime Information: Main Steps
The Administration Server hosts the domain runtime hierarchy which provides access to any
MBean on any server in the domain. If the Administration Server is not running for a domain,
WLST can connect to individual Managed Servers to retrieve runtime data.

Accessing the runtime information for a domain includes the following main steps:

1. Invoke WLST and connect to a running Administration Server instance. See “Invoking
WLST” on page 2-11.

2. Navigate to the domain runtime MBean hierarchy by entering the domainRuntime command.
wls:/mydomain/serverConfig>domainRuntime()

The domainRuntime command places WLST at the root of the domain-wide runtime
management objects, DomainRuntimeMBean.

3. Navigate to ServerRuntimes and then to the server instance which you are interested in
monitoring.

Get t ing Runt ime In fo rmat ion

8-2 WebLogic Scripting Tool

wls:/mydomain/domainRuntime>cd('ServerRuntimes/myserver')

4. At the server instance, navigate to and interrogate runtime MBeans.
wls:/mydomain/domainRuntime/ServerRuntimes/myserver>cd('JVMRuntime/myse
rver')>
wls:/mydomain/domainRuntime/ServerRuntimes/myserver/JVMRuntime/myserver
>ls()

-r-- AllProcessorsAverageLoad 0.0

-r-- Concurrent true

-r-- FreeHeap 15050064

-r-- FreePhysicalMemory 900702208

-r-- GCHandlesCompaction true

-r-- GcAlgorithm Dynamic GC currently running

strategy: Nursery, parallel mark, parallel sweep

-r-- Generational true

-r-- HeapFreeCurrent 14742864

-r-- HeapFreePercent 5

-r-- HeapSizeCurrent 268435456

-r-- HeapSizeMax 268435456

-r-- Incremental false

-r-- JVMDescription Oracle JRockit Java

Virtual Machine

-r-- JavaVMVendor BEA Systems, Inc.

-r-- JavaVendor BEA Systems, Inc.

-r-- JavaVersion 1.5.0

...

The following sections provide example scripts for retrieving runtime information about
WebLogic Server server instances and domain resources.

Script for Monitoring Server State
The WLST online script in Listing 8-1 navigates the domain runtime hierarchy and checks the
status of a Managed Server every 5 seconds. It restarts the server if the server state changes from
RUNNING to any other status. It assumes that WLST is connected to the domain’s Administration
Server.

For information on how to run this script, see “Invoking WLST” on page 2-11.

Access ing Runt ime In fo rmat i on : Main S teps

WebLogic Scripting Tool 8-3

Listing 8-1 Monitoring Server State

Node Manager needs to be running to run this script.

import thread
import time

def checkHealth(serverName):
while 1:
slBean = getSLCRT(serverName)
status = slBean.getState()
print 'Status of Managed Server is '+status
if status != "RUNNING":

print 'Starting server '+serverName
start(serverName, block="true")

time.sleep(5)

def getSLCRT(svrName):
domainRuntime()
slrBean = cmo.lookupServerLifecycleRuntime(svrName)
return slcBean

Script for Monitoring the JVM
The WLST online script in Listing 8-2 monitors the HJVMHeapSize for all running servers in a
domain; it checks the heap size every 3 minutes and prints a warning if the heap size is greater
than a specified threshold. It assumes that the URL for the domain’s Administration Server is
t3://localhost:7001.

For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 8-2 Monitoring the JVM Heap Size

waitTime=300000
THRESHOLD=100000000
uname = "weblogic"
pwd = "weblogic"
url = "t3://localhost:7001"
def monitorJVMHeapSize():

connect(uname, pwd, url)
while 1:

serverNames = getRunningServerNames()
domainRuntime()

Get t ing Runt ime In fo rmat ion

8-4 WebLogic Scripting Tool

for name in serverNames:
print 'Now checking '+name.getName()
try:
cd("/ServerRuntimes/"+name.getName()+"/JVMRuntime/"+name.getName())
except WLSTException,e:

this typically means the server is not active, just ignore
pass

heapSize = cmo.getHeapSizeCurrent()
if heapSize > THRESHOLD:
do whatever is neccessary, send alerts, send email etc

print 'WARNING: The HEAPSIZE is Greater than the Threshold'
else:

print heapSize
java.lang.Thread.sleep(1800000)

def getRunningServerNames():
domainConfig()
return cmo.getServers()

if __name__== "main":
monitorJVMHeapSize()

Configuring Logging
Using WLST, you can configure a server instance’s logging and message output.

To determine which log attributes can be configured, see LogMBean and LogFileMBean in the
WebLogic Server MBean Reference. The reference also indicates valid values for each attribute.

The WLST online script in Listing 8-3 sets attributes of LogMBean (which extends
LogFileMBean). For information on how to run this script, see “Invoking WLST” on page 2-11.

Listing 8-3 Configuring Logging

Connect to the server
connect("weblogic","weblogic","t3://localhost:7001")
edit()
startEdit()

set CMO to the server log config
cd("Servers/myserver/Log/myserver")
ls ()

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/LogMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/LogFileMBean.html

Work ing w i th the WebLog ic D iagnost ics F ramework

WebLogic Scripting Tool 8-5

change LogMBean attributes
set("FileCount", 5)
set("FileMinSize", 400)

list the current directory to confirm the new attribute values
ls ()

save and activate the changes
save()
activate()

all done...
exit()

Working with the WebLogic Diagnostics Framework
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic framework that
can collect diagnostic data that servers and applications generate. You configure WLDF to collect
the data and store it in various sources, including log records, data events, and harvested metrics.
For more information, see Configuring and Using the WebLogic Diagnostics Framework.

For example scripts that demonstrate using WLST to configure the WebLogic Diagnostic
Framework, see WebLogic Scripting Tool Examples in Configuring and Using the WebLogic
Diagnostics Framework.

To view the collected diagnostics information using WLST, use one of the following commands
to export the data from the WLDF repositories:

From WLST offline, use the exportDiagnosticData command (see
“exportDiagnosticData” on page B-38).

From WLST online, use the exportDiagnosticDataFromServer command (see
“exportDiagnosticDataFromServer” on page B-40).

http://e-docs.bea.com/wls/docs103/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs103/wldf_configuring/appendix_wlst_ex.html

Get t ing Runt ime In fo rmat ion

8-6 WebLogic Scripting Tool

WebLogic Scripting Tool A-1

A P P E N D I X A

WLST Online and Offline Command
Summary

The following sections summarize the WLST commands, as follows:

“WLST Command Summary, Alphabetically By Command” on page A-1

“WLST Online Command Summary” on page A-9

“WLST Offline Command Summary” on page A-14

Note: You can list a summary of all online and offline commands from the command-line using
the following commands, respectively:
help("online")
help("offline")

WLST Command Summary, Alphabetically By Command
The following tables summarizes each of the WLST commands, alphabetically by command.

Table A-1 WLST Command Summary

This command... Enables you to... Use with
WLST...

“activate” on page B-43 Activate changes saved during the current editing session
but not yet deployed.

Online

“addListener” on page B-72 Add a JMX listener to the specified MBean. Online

WLST Onl ine and Of f l ine Command Summary

A-2 WebLogic Scripting Tool

“addTemplate” on page B-8 Extend the current domain using an application or service
extension template.

Offline

“assign” on page B-44 Assign resources to one or more destinations. Offline

“assignAll” on page B-47 Assign all applications or services to one or more
destinations.

Note: This command is deprecated as of WebLogic
Server 9.0. You should update your scripts to use
the assign command, as described in “assign”
on page B-44.

Offline

“cancelEdit” on page B-48 Cancel an edit session, release the edit lock, and discard all
unsaved changes. This operation can be called by any user
with administrator privileges, even if the user did not start
the edit session.

Online

“cd” on page B-3 Navigate the hierarchy of configuration or runtime beans. Online or
Offline

“closeDomain” on page B-9 Close the current domain. Offline

“closeTemplate” on page B-10 Close the current domain template. Offline

“config” on page B-122 Navigate to the last MBean to which you navigated in the
Administration or local configuration MBean hierarchy or
to the root of the hierarchy, DomainMBean.

Note: This command is deprecated as of WebLogic
Server 9.0. You should update your script to use
the serverConfig command as described in
“serverConfig” on page B-129.

Online

“configToScript” on page B-73 Convert an existing server configuration (config
directory) to an executable WLST script.

Online or
Offline

“connect” on page B-10 Connect WLST to a WebLogic Server instance. Online or
Offline

“create” on page B-49 Create a configuration bean of the specified type for the
current bean.

Online or
Offline

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST Command Summary , A lphabet ica l l y By Command

WebLogic Scripting Tool A-3

“currentTree” on page B-4 Return the current location in the hierarchy. Online

“custom” on page B-123 Navigate to the root of custom MBeans that are registered
in the server.

Online

“delete” on page B-51 Delete an instance of a configuration bean of the specified
type for the current configuration bean.

Online or
Offline

“deploy” on page B-23 Deploy an application to a WebLogic Server instance. Online

“disconnect” on page B-15 Disconnect WLST from a WebLogic Server instance. Online

“distributeApplication” on
page B-28

Copy the deployment bundle to the specified targets. Online

“domainConfig” on page B-124 Navigate to the last MBean to which you navigated in the
domain configuration hierarchy or to the root of the
hierarchy, DomainMBean.

Online

“domainRuntime” on page B-125 Navigate to the last MBean to which you navigated in the
domain runtime hierarchy or to the root of the hierarchy,
DomainRuntimeMBean.

Online

“dumpStack” on page B-75 Display stack trace from the last exception that occurred
while performing a WLST action, and reset the stack trace.

Online or
Offline

“dumpVariables” on page B-76 Display all variables used by WLST, including their name
and value.

Online or
Offline

“edit” on page B-127 Navigate to the last MBean to which you navigated in the
configuration edit MBean hierarchy or to the root of the
hierarchy, DomainMBean.

Online

“encrypt” on page B-52 Encrypt the specified string. Online

“exit” on page B-16 Exit WLST from the user session and close the scripting
shell.

Online or
Offline

“exportDiagnosticData” on
page B-38

Execute a query against the specified log file. Offline

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST Onl ine and Of f l ine Command Summary

A-4 WebLogic Scripting Tool

“exportDiagnosticDataFromServer
” on page B-40

Executes a query on the server side and retrieves the
exported WebLogic Diagnostic Framework (WLDF) data.

Online

“find” on page B-77 Find MBeans and attributes in the current hierarchy. Online

“get” on page B-53 Return the value of the specified attribute. Online or
Offline

“getActivationTask” on page B-54 Return the latest ActivationTask MBean on which a
user can get status.

Online

“getConfigManager” on page B-78 Return the latest ConfigurationManagerBean
MBean which manages the change process.

Online

“getMBean” on page B-79 Return the MBean by browsing to the specified path. Online

“getMBI” on page B-79 Return the MBeanInfo for the specified MBeanType or
the cmo variable.

Online

“getPath” on page B-80 Return the MBean path for the specified MBean instance. Online

“getWLDM” on page B-29 Return the WebLogic DeploymentManager object. Online

“invoke” on page B-54 Invoke a management operation on the current
configuration bean.

Online

“isRestartRequired” on page B-55 Determine whether a server restart is required. Online

“jndi” on page B-128 Navigates to the JNDI tree for the server to which WLST
is currently connected.

Online

“listApplications” on page B-30 List all applications that are currently deployed in the
domain.

Online

“listChildTypes” on page B-81 List all the children MBeans that can be created or deleted
for the cmo.

Online

“loadApplication” on page B-30 Load an application and deployment plan into memory. Online or
Offline

“loadDB” on page B-56 Load SQL files into a database. Offline

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST Command Summary , A lphabet ica l l y By Command

WebLogic Scripting Tool A-5

“loadProperties” on page B-57 Load property values from a file. Online and
Offline

“lookup” on page B-82 Look up the specified MBean. Online

“ls” on page B-82 List all child beans and/or attributes for the current
configuration or runtime bean.

Online or
Offline

“man” on page B-87 Display help from MBeanInfo for the current MBean or
its specified attribute.

Online

“migrate” on page B-98 Migrate services to a target server within a cluster. Online

“nm” on page B-108 Determine whether WLST is connected to Node Manager. Online

“nmConnect” on page B-109 Connect WLST to Node Manager to establish a session. Online or
Offline

“nmDisconnect” on page B-112 Disconnect WLST from a Node Manager session. Online or
Offline

“nmEnroll” on page B-112 Enroll the machine on which WLST is currently running. Online

“nmGenBootStartupProps” on
page B-114

Generates the Node Manager property files,
boot.properties and startup.properties, for
the specified server.

Online

“nmKill” on page B-114 Kill the specified server instance that was started with
Node Manager.

Online or
Offline

“nmLog” on page B-115 Return the Node Manager log. Online or
Offline

“nmServerLog” on page B-116 Return the server output log of the server that was started
with Node Manager.

Online or
Offline

“nmServerStatus” on page B-117 Return the status of the server that was started with Node
Manager.

Online or
Offline

“nmStart” on page B-118 Start a server in the current domain using Node Manager. Online or
Offline

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST Onl ine and Of f l ine Command Summary

A-6 WebLogic Scripting Tool

“nmVersion” on page B-119 Return the Node Manager server version. Online or
Offline

“prompt” on page B-5 Toggle the display of path information at the prompt. Online or
Offline

“pwd” on page B-6 Display the current location in the configuration or runtime
bean hierarchy.

Online or
Offline

“readDomain” on page B-17 Open an existing domain for updating. Offline

“readTemplate” on page B-18 Open an existing domain template for domain creation. Offline

“redeploy” on page B-32 Reload classes and redeploy a previously deployed
application.

Online

“redirect” on page B-88 Redirect WLST output to the specified filename. Online or
Offline

“removeListener” on page B-88 Remove a listener that was previously defined. Online

“resume” on page B-100 Resume a server instance that is suspended or in ADMIN
state.

Online

“runtime” on page B-128 Navigate to the last MBean to which you navigated in the
Runtime hierarchy or the root of all runtime objects,
DomainRuntimeMBean.

Note: This command is deprecated as of WebLogic
Server 9.0. You should update your scripts to use
the serverRuntime command, as described in
“serverRuntime” on page B-130.

Online

“save” on page B-58 Save the edits that have been made but have not yet been
saved.

Online

“serverConfig” on page B-129 Navigate to the last MBean to which you navigated in the
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

Online

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST Command Summary , A lphabet ica l l y By Command

WebLogic Scripting Tool A-7

“serverRuntime” on page B-130 Navigate to the last MBean to which you navigated in the
runtime MBean hierarchy or to the root of the hierarchy,
ServerRuntimeMBean.

Online

“set” on page B-59 Set the specified attribute value for the current
configuration bean.

Online or
Offline

“setOption” on page B-60 Set options related to a domain creation or update Offline

“showChanges” on page B-62 Show the changes made by the current user during the
current edit session.

Online

“showListeners” on page B-89 Show all listeners that are currently defined. Online

“shutdown” on page B-100 Gracefully shut down a running server instance or cluster. Online

“start” on page B-103 Start a Managed Server instance or a cluster using Node
Manager.

Online

“startApplication” on page B-33 Start an application, making it available to users. Online

“startEdit” on page B-63 Start a configuration edit session on behalf of the currently
connected user.

Online

“startNodeManager” on
page B-119

Start Node Manager at default port (5556). Online or
Offline

“startRecording” on page B-89 Record all user interactions with WLST; useful for
capturing commands to replay.

Online or
Offline

“startServer” on page B-104 Start the Administration Server. Online or
Offline

“state” on page B-90 Returns a map of servers or clusters and their state using
Node Manager.

Online

“stopApplication” on page B-34 Stop an application, making it un available to users. Online

“stopEdit” on page B-65 Stop the current edit session, release the edit lock, and
discard unsaved changes.

Online

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST Onl ine and Of f l ine Command Summary

A-8 WebLogic Scripting Tool

“stopRecording” on page B-91 Stop recording WLST commands. Online or
Offline

“stopRedirect” on page B-92 Stop the redirection of WLST output to a file. Online or
Offline

“storeUserConfig” on page B-92 Create a user configuration file and an associated key file. Online

“suspend” on page B-106 Suspend a running server. Online

“threadDump” on page B-94 Display a thread dump for the specified server. Online or
Offline

“undeploy” on page B-35 Undeploy an application from the specified servers. Online

“updateApplication” on page B-36 Update an application configuration using a new
deployment plan.

Online

“updateDomain” on page B-19 Update and save the current domain. Offline

“unassign” on page B-65 Unassign applications or services from one or more
destinations.

Offline

“unassignAll” on page B-68 Unassign all applications or services from one or more
destinations.

Note: This command is deprecated as of WebLogic
Server 9.0. You should update your scripts to use
the unassign command, as described in
“unassign” on page B-65.

Offline

“undo” on page B-69 Revert all unsaved or unactivated edits. Online

“validate” on page B-70 Validate the changes that have been made but have not yet
been saved.

Online

“viewMBean” on page B-95 Display information about an MBean, such as the attribute
names and values, and operations.

Online

“writeDomain” on page B-20 Write the domain configuration information to the
specified directory.

Offline

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

WLST On l ine Command Summary

WebLogic Scripting Tool A-9

WLST Online Command Summary
The following table summarizes the WLST online commands, alphabetically by command.

“writeIniFile” on page B-96 Convert WLST definitions and method declarations to a
Python (.py) file.

Online or
Offline

“writeTemplate” on page B-21 Writes the domain configuration information to the
specified domain template.

Offline

Table A-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...

Table A-2 WLST Online Command Summary

This command... Enables you to...

“activate” on page B-43 Activate changes saved during the current editing session but not yet
deployed.

“addListener” on page B-72 Add a JMX listener to the specified MBean.

“cancelEdit” on page B-48 Cancel an edit session, release the edit lock, and discard all unsaved
changes. This operation can be called by any user with administrator
privileges, even if the user did not start the edit session.

“cd” on page B-3 Navigate the hierarchy of configuration or runtime beans.

“config” on page B-122 Navigate to the last MBean to which you navigated in the configuration
MBean hierarchy or to the root of all configuration beans,
DomainMBean.

Note: This command is deprecated as of WebLogic Server 9.0. You
should update your script to use the serverConfig command
as described in “serverConfig” on page B-129.

“configToScript” on page B-73 Convert an existing server configuration (config directory) to an
executable WLST script.

“connect” on page B-10 Connect WLST to a WebLogic Server instance.

“create” on page B-49 Create a configuration bean of the specified type for the current bean.

WLST Onl ine and Of f l ine Command Summary

A-10 WebLogic Scripting Tool

“currentTree” on page B-4 Return the current tree location.

“custom” on page B-123 Navigate to the root of custom MBeans that are registered in the server.

“delete” on page B-51 Delete an instance of a configuration bean of the specified type for the
current configuration bean.

“deploy” on page B-23 Deploy an application to a WebLogic Server instance.

“disconnect” on page B-15 Disconnect WLST from a WebLogic Server instance.

“distributeApplication” on
page B-28

Copy the deployment bundle to the specified targets.

“domainConfig” on page B-124 Navigate to the last MBean to which you navigated in the domain
configuration hierarchy or to the root of the hierarchy, DomainMBean.

“domainRuntime” on page B-125 Navigate to the last MBean to which you navigated in the domain runtime
hierarchy or to the root of the hierarchy, DomainRuntimeMBean.

“dumpStack” on page B-75 Display stack trace from the last exception that occurred, and reset the
trace.

“dumpVariables” on page B-76 Display all variables used by WLST, including their name and value.

“edit” on page B-127 Navigate to the last MBean to which you navigated in the configuration
edit MBean hierarchy or to the root of the hierarchy, DomainMBean.

“encrypt” on page B-52 Encrypt the specified string.

“exit” on page B-16 Exit WLST from the interactive session and close the scripting shell.

“exportDiagnosticDataFromServer
” on page B-40

Execute a query on the server side and retrieves the exported WebLogic
Diagnostic Framework (WLDF) data.

“find” on page B-77 Find MBeans and attributes in the current hierarchy.

“get” on page B-53 Return the value of the specified attribute.

“getActivationTask” on page B-54 Return the latest ActivationTask MBean on which a user can get
status.

“getConfigManager” on page B-78 Return the latest ConfigurationManagerBean MBean which
manages the change process.

Table A-2 WLST Online Command Summary (Continued)

This command... Enables you to...

WLST On l ine Command Summary

WebLogic Scripting Tool A-11

“getMBean” on page B-79 Return the MBean by browsing to the specified path.

“getMBI” on page B-79 Return the MBeanInfo for the specified MBeanType or the cmo
variable.

“getPath” on page B-80 Return the MBean path for the specified MBean instance.

“getWLDM” on page B-29 Return the WebLogic DeploymentManager object.

“invoke” on page B-54 Invoke a management operation on the current configuration bean.

“isRestartRequired” on page B-55 Determine whether a server restart is required.

“jndi” on page B-128 Navigates to the JNDI tree for the server to which WLST is currently
connected.

“listApplications” on page B-30 List all applications that are currently deployed in the domain.

“listChildTypes” on page B-81 List all the children MBeans that can be created or deleted for the cmo.

“loadApplication” on page B-30 Load an application and deployment plan into memory.

“loadProperties” on page B-57 Load property values from a file.

“lookup” on page B-82 Look up the specified MBean.

“ls” on page B-82 List all child beans and/or attributes for the current configuration or
runtime bean.

“man” on page B-87 Display help from MBeanInfo for the current MBean or its specified
attribute.

“migrate” on page B-98 Migrate services to a target server within a cluster.

“nm” on page B-108 Determine whether WLST is connected to Node Manager.

“nmConnect” on page B-109 Connect WLST to Node Manager to establish a session.

“nmDisconnect” on page B-112 Disconnect WLST from a Node Manager session.

“nmEnroll” on page B-112 Enroll the machine on which WLST is currently running.

“nmGenBootStartupProps” on
page B-114

Generates the Node Manager property files, boot.properties and
startup.properties, for the specified server.

Table A-2 WLST Online Command Summary (Continued)

This command... Enables you to...

WLST Onl ine and Of f l ine Command Summary

A-12 WebLogic Scripting Tool

“nmKill” on page B-114 Kill the specified server instance that was started with Node Manager.

“nmLog” on page B-115 Return the Node Manager log.

“nmServerLog” on page B-116 Return the server output log of the server that was started with Node
Manager.

“nmServerStatus” on page B-117 Return the status of the server that was started with Node Manager.

“nmStart” on page B-118 Start a server in the current domain using Node Manager.

“nmVersion” on page B-119 Return the Node Manager server version.

“prompt” on page B-5 Toggle the display of path information at the prompt.

“pwd” on page B-6 Display the current location in the configuration or runtime bean
hierarchy.

“redeploy” on page B-32 Reload classes and redeploy a previously deployed application.

“redirect” on page B-88 Redirect WLST output to the specified filename.

“removeListener” on page B-88 Remove a listener that was previously defined.

“resume” on page B-100 Resume a server instance that is suspended or in ADMIN state.

“runtime” on page B-128 Navigate to the last MBean to which you navigated in the Runtime
hierarchy or the root of all runtime objects, DomainRuntimeMBean.

Note: This command is deprecated as of WebLogic Server 9.0. You
should update your scripts to use the serverRuntime
command, as described in “serverRuntime” on page B-130.

“save” on page B-58 Save the edits that have been made but have not yet been saved.

“serverConfig” on page B-129 Navigate to the last MBean to which you navigated in the configuration
MBean hierarchy or to the root of the hierarchy, DomainMBean.

“serverRuntime” on page B-130 Navigate to the last MBean to which you navigated in the runtime MBean
hierarchy or to the root of the hierarchy, ServerRuntimeMBean.

“set” on page B-59 Set the specified attribute value for the current configuration bean.

Table A-2 WLST Online Command Summary (Continued)

This command... Enables you to...

WLST On l ine Command Summary

WebLogic Scripting Tool A-13

“showChanges” on page B-62 Show the changes made by the current user during the current edit
session.

“showListeners” on page B-89 Show all listeners that are currently defined.

“shutdown” on page B-100 Gracefully shut down a running server instance or cluster.

“start” on page B-103 Start a Managed Server instance or a cluster using Node Manager.

“startApplication” on page B-33 Start an application, making it available to users.

“startEdit” on page B-63 Start a configuration edit session on behalf of the currently connected
user.

“startNodeManager” on
page B-119

Start Node Manager at default port (5556).

“startRecording” on page B-89 Record all user interactions with WLST; useful for capturing commands
to replay.

“startServer” on page B-104 Start the Administration Server.

“state” on page B-90 Returns a map of servers or clusters and their state using Node Manager

“stopApplication” on page B-34 Stop an application, making it un available to users.

“stopEdit” on page B-65 Stop the current edit session, release the edit lock, and discard unsaved
changes.

“stopRecording” on page B-91 Stop recording WLST commands.

“stopRedirect” on page B-92 Stop the redirection of WLST output to a file.

“storeUserConfig” on page B-92 Create a user configuration file and an associated key file.

“suspend” on page B-106 Suspend a running server.

“threadDump” on page B-94 Display a thread dump for the specified server.

“undeploy” on page B-35 Undeploy an application from the specified servers.

“undo” on page B-69 Revert all unsaved or unactivated edits.

“updateApplication” on page B-36 Update an application configuration using a new deployment plan.

Table A-2 WLST Online Command Summary (Continued)

This command... Enables you to...

WLST Onl ine and Of f l ine Command Summary

A-14 WebLogic Scripting Tool

WLST Offline Command Summary
The following table summarizes the WLST offline commands, alphabetically by command.

“validate” on page B-70 Validate the changes that have been made but have not yet been saved.

“viewMBean” on page B-95 Display information about an MBean, such as the attribute names and
values, and operations.

“writeIniFile” on page B-96 Convert WLST definitions and method declarations to a Python (.py)
file.

Table A-2 WLST Online Command Summary (Continued)

This command... Enables you to...

Table A-3 WLST Offline Command Summary

This command... Enables you to...

“addTemplate” on page B-8 Extend the current domain using an application or service extension
template.

“assign” on page B-44 Assign resources to one or more destinations.

“assignAll” on page B-47 Assign all applications or services to one or more destinations.

Note: This command is deprecated as of WebLogic Server 9.0. You
should update your scripts to use the assign command, as
described in “assign” on page B-44.

“cd” on page B-3 Navigate the hierarchy of configuration or runtime beans.

“closeDomain” on page B-9 Close the current domain.

“closeTemplate” on page B-10 Close the current domain template.

“configToScript” on page B-73 Convert an existing server configuration (config directory) to an
executable WLST script.

“connect” on page B-10 Connect WLST to a WebLogic Server instance.

“create” on page B-49 Create a configuration bean of the specified type for the current bean.

“delete” on page B-51 Delete an instance of a configuration bean of the specified type for the
current configuration bean.

WLST Of f l ine Command Summary

WebLogic Scripting Tool A-15

“dumpStack” on page B-75 Display stack trace from the last exception that occurred while
performing a WLST action, and reset the stack trace.

“dumpVariables” on page B-76 Display all variables used by WLST, including their name and value.

“exit” on page B-16 Exit WLST from the interactive session and close the scripting shell.

“exportDiagnosticData” on
page B-38

Execute a query against the specified log file.

“get” on page B-53 Return the value of the specified attribute.

“loadDB” on page B-56 Load SQL files into a database.

“loadProperties” on page B-57 Load property values from a file.

“ls” on page B-82 List all child beans and/or attributes for the current configuration or
runtime bean.

“nmConnect” on page B-109 Connect WLST to Node Manager to establish a session.

“prompt” on page B-5 Toggle the display of path information at the prompt.

“pwd” on page B-6 Display the current location in the configuration or runtime bean
hierarchy.

“readDomain” on page B-17 Open an existing domain for updating.

“readTemplate” on page B-18 Open an existing domain template for domain creation.

“redirect” on page B-88 Redirect WLST output to the specified filename.

“set” on page B-59 Set the specified attribute value for the current configuration bean.

“setOption” on page B-60 Set options related to a domain creation or update.

“startNodeManager” on
page B-119

Start Node Manager at default port (5556).

“startRecording” on page B-89 Record all user interactions with WLST; useful for capturing commands
to replay.

“startServer” on page B-104 Start the Administration Server.

Table A-3 WLST Offline Command Summary (Continued)

This command... Enables you to...

WLST Onl ine and Of f l ine Command Summary

A-16 WebLogic Scripting Tool

“stopRecording” on page B-91 Stop recording WLST commands.

“stopRedirect” on page B-92 Stop the redirection of WLST output to a file.

“threadDump” on page B-94 Display a thread dump for the specified server.

“unassign” on page B-65 Unassign applications or services from one or more destinations.

“unassignAll” on page B-68 Unassign all applications or services from one or more destinations.

Note: This command is deprecated as of WebLogic Server 9.0. You
should update your scripts to use the unassign command, as
described in “unassign” on page B-65.

“updateDomain” on page B-19 Update and save the current domain.

“writeDomain” on page B-20 Write the domain configuration information to the specified directory.

“writeIniFile” on page B-96 Convert WLST definitions and method declarations to a Python (.py)
file.

“writeTemplate” on page B-21 Writes the domain configuration information to the specified domain
template.

Table A-3 WLST Offline Command Summary (Continued)

This command... Enables you to...

WebLogic Scripting Tool B-1

A P P E N D I X B

WLST Command and Variable
Reference

The following sections describe the WLST commands and variables in detail. Topics include:

“Overview of WSLT Command Categories” on page B-1

“Browse Commands” on page B-2

“Control Commands” on page B-7

“Deployment Commands” on page B-22

“Diagnostics Commands” on page B-38

“Editing Commands” on page B-41

“Information Commands” on page B-70

“Life Cycle Commands” on page B-97

“Node Manager Commands” on page B-107

“Tree Commands” on page B-120

“WLST Variable Reference” on page B-131

Overview of WSLT Command Categories
Note: It is recommended that you review “Syntax for WLST Commands” on page 2-13 for

command syntax requirements.

WLST commands are divided into the following categories.

WLST Command and Var iab le Re fe rence

B-2 WebLogic Scripting Tool

Browse Commands
Use the WLST browse commands, listed in Table B-2, to navigate the hierarchy of configuration
or runtime beans and control the prompt display.

Table B-1 WLST Command Categories

Command Category Description

Browse Commands Navigate the hierarchy of configuration or runtime beans and control the
prompt display.

Control Commands • Connect to or disconnect from a server.
• Create and configure a WebLogic domain or domain template.
• Exit WLST.

Deployment Commands • Deploy, undeploy, and redeploy applications and standalone modules to a
WebLogic Server instance.

• Update an existing deployment plan.
• Interrogate the WebLogic Deployment Manager object.
• Start and stop a deployed application.

Diagnostics Commands Export diagnostic data.

Editing Commands Interrogate and edit configuration beans.

Information Commands Interrogate domains, servers, and variables, and provide configuration bean,
runtime bean, and WLST-related information.

Life Cycle Commands Manage the life cycle of a server instance.

Node Manager Commands Start, shut down, restart, and monitor WebLogic Server instances using Node
Manager.

Tree Commands Navigate among MBean hierarchies.

Browse Commands

WebLogic Scripting Tool B-3

cd
Command Category: Browse Commands
Use with WLST: Online or Offline

Description
Navigates the hierarchy of configuration or runtime beans. This command uses a model that is
similar to navigating a file system in a Windows or UNIX command shell. For example, to
navigate back to a parent configuration or runtime bean, enter cd('..'). The character string..
(dot-dot), refers to the directory immediately above the current directory. To get back to the root
bean after navigating to a bean that is deep in the hierarchy, enter cd('/').

You can navigate to beans in the current hierarchy and to any child or instance.

The cd command returns a stub of the configuration or runtime bean instance, if one exists. If you
navigate to a type, this command returns a stub of the configuration or runtime bean instance from
which you navigated. In the event of an error, the command returns a WLSTException.

Note: The cmo variable is initialized to the root of all domain configuration beans when you
first connect WLST to a server instance. It reflects the parent configuration bean type
until you navigate to an instance. For more information about the cmo variable, see
“Changing the Current Management Object” on page 5-2.

Table B-2 Browse Commands for WLST Configuration

Use this command... To... Use with
WLST...

“cd” on page B-3 Navigate the hierarchy of configuration or runtime beans. Online or
Offline

“currentTree” on
page B-4

Return the current location in the hierarchy. Online

“prompt” on page B-5 Toggle the display of path information at the prompt. Online or
Offline

“pwd” on page B-6 Display the current location in the hierarchy. Online or
Offline

WLST Command and Var iab le Re fe rence

B-4 WebLogic Scripting Tool

Syntax
cd(mbeanName)

Examples
The following example navigates the hierarchy of configuration beans. The first command
navigates to the Servers configuration bean type, the second, to the myserver configuration
bean instance, and the last back up two levels to the original directory location.

wls:/mydomain/serverConfig> cd('Servers')

wls:/mydomain/serverConfig/Servers> cd('myserver')

wls:/mydomain/serverConfig/Servers/myserver> cd('../..')

wls:/mydomain/serverConfig>

currentTree
Command Category: Browse Commands
Use with WLST: Online

Description
Returns the current location in the hierarchy. This command enables you to store the current
location in the hierarchy and easily return to it after browsing. In the event of an error, the
command returns a WLSTException.

Syntax
currentTree()

Example
The following example stores the current location in the hierarchy in myTree and uses it to
navigate back to the Edit MBean hierarchy from the runtime MBean hierarchy on an
Administration Server instance.

wls:/mydomain/edit> myTree=currentTree()

wls:/mydomain/edit> serverRuntime()

Argument Definition

mbeanName Path to the bean in the namespace.

Browse Commands

WebLogic Scripting Tool B-5

Location changed to serverRuntime tree. This is a read-only tree with

ServerRuntimeMBean as the root.

For more help, use help('serverRuntime')

wls:/mydomain/serverRuntime> myTree()

wls:/mydomain/edit>

prompt
Command Category: Browse Commands
Use with WLST: Online or Offline

Description
Toggles the display of path information at the prompt, when entered without an argument. This
command is useful when the prompt becomes too long due to the length of the path.

You can also explicitly specify on or off as an argument to the command. When you specify off,
WLST hides the WLST prompt and defaults to the Jython prompt. By default, the WLST prompt
displays the configuration or runtime navigation path information.

When you disable the prompt details, to determine your current location in the hierarchy, you can
use the pwd command, as described in “pwd” on page B-6.

In the event of an error, the command returns a WLSTException.

Syntax
prompt(myPrompt)

Argument Definition

myPrompt Optional. Hides or displays WLST prompt. Valid values include off or on.
• The off argument hides the WLST prompt.

If you run prompt('off'), when using WLST online, the prompt defaults to the
Jython prompt. You can create a new prompt using Jython syntax. For more
information about programming using Jython, see http://www.jython.org.
In this case, if you subsequently enter the prompt command without arguments,
WLST displays the WLST command prompt without the path information. To
redisplay the path information, enter prompt() again, or enter prompt('on').

• The on argument displays the default WLST prompt, including the path
information.

http://www.jython.org

WLST Command and Var iab le Re fe rence

B-6 WebLogic Scripting Tool

Examples
The following example hides and then redisplays the path information at the prompt.

wls:/mydomain/serverConfig/Servers/myserver> prompt()

wls:/> prompt()

wls:/mydomain/serverConfig/Servers/myserver>

The following example hides the prompt and defaults to the Jython prompt (since the command
is run using WLST online), changes the Jython prompt, and then redisplays the WLST prompt.
This example also demonstrates the use of the pwd command.

Note: For more information about programming using Jython, see http://www.jython.org.
wls:/mydomain/serverConfig/Servers/myserver> prompt('off')

>>>sys.ps1="myprompt>"

myprompt> prompt()

wls:> pwd()

‘serverConfig:Servers/myserver’

wls:> prompt()

wls:/mydomain/serverConfig/Servers/myserver>

pwd
Command Category: Browse Commands
Use with WLST: Online or Offline

Description
Displays the current location in the configuration or runtime bean hierarchy.

This command is useful when you have turned off the prompt display of the path information
using the prompt command, as described in “prompt” on page B-5.

In the event of an error, the command returns a WLSTException.

Syntax
pwd()

http://www.jython.org

Cont ro l Commands

WebLogic Scripting Tool B-7

Example
The following example displays the current location in the configuration bean hierarchy.

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> pwd()

'serverConfig:/Servers/myserver/Log/myserver'

Control Commands
Use the WLST control commands, listed in Table B-3, to perform the following tasks:

Connect to or disconnect from a server

Create and configure a WebLogic domain or domain template, similar to the Configuration
Wizard

Exit WLST

Table B-3 lists the control commands for WLST configuration.

Table B-3 Control Commands for WLST Configuration

In order to... Use this command... To... Use with
WLST...

Connect to and
disconnect from a
WebLogic Server
instance

“connect” on page B-10 Connect WLST to a WebLogic
Server instance.

Online or
Offline

“disconnect” on page B-15 Disconnect WLST from a
WebLogic Server instance.

Online

Create a new domain
from a domain template

“createDomain” on page B-14 Create a new domain using the
specified template.

Offline

“readTemplate” on page B-18 Open an existing domain
template for domain creation.

Offline

“writeDomain” on page B-20 Write the domain configuration
information to the specified
directory.

Offline

“closeTemplate” on page B-10 Close the current domain
template.

Offline

WLST Command and Var iab le Re fe rence

B-8 WebLogic Scripting Tool

addTemplate
Command Category: Control Commands
Use with WLST: Offline

Description
Extends the current domain using an application or service extension template. Use the Template
Builder to create an application or service extension template. See Creating Templates Using the
Domain Template Builder.

In the event of an error, the command returns a WLSTException.

Update an existing
domain (offline)

“readDomain” on page B-17 Open an existing domain for
updating.

Offline

“addTemplate” on page B-8 Extend the current domain
using an application or service
extension template.

Offline

“updateDomain” on page B-19 Update and save the current
domain.

Offline

“closeDomain” on page B-9 Close the current domain. Offline

Write a domain template “writeTemplate” on page B-21 Writes the configuration
information to the specified
domain template file.

Offline

Exit WLST “exit” on page B-16 Exit WLST from the interactive
session and close the scripting
shell.

Online or
Offline

Table B-3 Control Commands for WLST Configuration (Continued)

In order to... Use this command... To... Use with
WLST...

../../../common/docs103/install/../tempbuild/index.html
../../../common/docs103/install/../tempbuild/index.html

Cont ro l Commands

WebLogic Scripting Tool B-9

Syntax
addTemplate(templateFileName)

Example
The following example opens a domain and extends it using the specified extension template,
DefaultWebApp.jar.

wls:/offline> readDomain('c:/bea/user_projects/domains/wlw')

wls:/offline/wlw> addTemplate('c:/bea/wlserver_10.3/common/templates/

applications/DefaultWebApp.jar')

wls:/offline/wlw>

closeDomain
Command Category: Control Commands
Use with WLST: Offline

Description
Closes the current domain. The domain is no longer available for editing once it is closed. In the
event of an error, the command returns a WLSTException.

Syntax
closeDomain()

Example
The following example closes the current domain:

wls:/offline> readDomain('c:/bea/user_projects/domains/medrec')

...

wls:/offline/medrec> updateDomain()

wls:/offline/medrec> closeDomain()

wls:/offline>

Argument Definition

templateFileName Name of the application or service extension template.

WLST Command and Var iab le Re fe rence

B-10 WebLogic Scripting Tool

closeTemplate
Command Category: Control Commands
Use with WLST: Offline

Description
Closes the current domain template. The domain template is no longer available once it is closed.
In the event of an error, the command returns a WLSTException.

Syntax
closeTemplate()

Example
The following example opens an existing domain template, performs some operations, and then
closes the current domain template.

wls:/offline> readTemplate('c:/bea/wlserver_10.3/common/templates/domains/

wls.jar')

...

wls:/offline/wls> closeTemplate()

wls:/offline>

connect
Command Category: Control Commands
Use with WLST: Online or Offline

Description
Connects WLST to a WebLogic Server instance.

Requires you to provide the credentials (user name and password) of a user who has been defined
in the active WebLogic security realm. Once you are connected, a collection of security policies
determine which configuration attributes you are permitted to view or modify. (See Default
Security Policies for MBeans in the WebLogic Server MBean Reference.)

You can supply user credentials by doing any of the following:

Enter the credentials on the command line. This option is recommended only if you are
using WLST in interactive mode.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html

Cont ro l Commands

WebLogic Scripting Tool B-11

Enter the credentials on the command line, then use the storeUserConfig command to
create a user configuration file that contains your credentials in an encrypted form and a
key file that WebLogic Server uses to unencrypt the credentials. On subsequent WLST
sessions (or in WLST scripts), supply the name of the user configuration file and key file
instead of entering the credentials on the command line. This option is recommended if
you use WLST in script mode because it prevents you from storing unencrypted user
credentials in your scripts.

Use the credentials that are stored in the Administration Server’s boot.properties file.
By default, when you create an Administration Server, WebLogic Server encrypts the
credentials used the create the server and stores them in a boot.properties file.

If you run the connect command without specifying the username and password or user
configuration file and key file, WLST attempts to process the command using one of the methods
listed below (in order of precedence):

1. If a user configuration and default key file exists in your home directory, then use those files.
The location of the home directory depends on the type of operating system on which WLST
is running. For information about the default location, see “storeUserConfig” on page B-92.

2. If the adminServerName argument is not specified, then look for the boot.properties file
in ./boot.properties or ./servers/myserver/security/boot.properties.

3. If the adminServerName argument is specified, then look for the boot.properties file in
./servers/adminServerName/security/boot.properties, where adminServerName
is the value of the adminServerName argument.

Please note:

Oracle strongly recommends that you connect WLST to the server through the SSL port or
administration port. If you do not, the following warning message is displayed:

Warning: An insecure protocol was used to connect to the server. To ensure
on-the-wire security, the SSL port or Admin port should be used instead.

If you are connecting to a WebLogic Server instance through an SSL listen port on a server
that is using the demonstration SSL keys and certificates, invoke WLST using the
following command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

For more information about invoking WLST, see “Main Steps for Using WLST in
Interactive or Script Mode” on page 2-10.

WLST Command and Var iab le Re fe rence

B-12 WebLogic Scripting Tool

If you are connecting to a WebLogic Server instance via HTTP, ensure that the
TunnelingEnabled attribute is set to true for the WebLogic Server instance. For more
information, see TunnelingEnabled in WebLogic Server MBean Reference.

After successfully connecting to a WebLogic Server instance, all the local variables are
initialized.

In the event of an error, the command returns a WLSTException.

Syntax
connect([username, password], [url], [timeout])

connect([userConfigFile, userKeyFile], [url], [timeout])

connect([url], [adminServerName], [timeout])

Argument Definition

username Optional. Username of the operator who is connecting WLST to the server. If
not specified, WLST processes the command as described above.

password Optional. Password of the operator who is connecting WLST to the server. If not
specified, WLST processes the command as described above.

url Optional. Listen address and listen port of the server instance, specified using
the following format: [protocol://]listen-address:listen-port.
If not specified, this argument defaults to t3://localhost:7001.

timeout Optional. The number of milliseconds that WLST waits for online commands
to complete (return).

When you invoke a WLST online command, WLST connects to an MBean
server, invokes an MBean server method, and returns the results of the
invocation. If the MBean server method does not return within the timeout
period, WLST abandons its invocation attempt. Use the following syntax for
this argument:
timeout=’milliseconds’

A value of 0 indicates that the operation will not time out. This argument
defaults to 300,000 ms (or 5 minutes).

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/ServerMBean.html#TunnelingEnabled

Cont ro l Commands

WebLogic Scripting Tool B-13

Examples
The following example connects WLST to a WebLogic Server instance. In this example, the
Administration Server name defaults to AdminServer. Note that a warning is displayed if the
SSL or administration port is not used to connect to the server.

wls:/offline> connect('weblogic','weblogic','t3://localhost:8001')

Connecting to weblogic server instance running at t3://localhost:8001 as

username weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain

'mydomain'.

userConfigFile Optional. Name and location of a user configuration file which contains an
encrypted username and password. Use the following syntax for this argument:
userConfigFile=’file-system-path’

If not specified, WLST processes the command as described above.

When you create a user configuration file, the storeUserConfig command
uses a key file to encrypt the username and password. Only the key file that
encrypts a user configuration file can decrypt the username and password. (See
“storeUserConfig” on page B-92.)

userKeyFile Optional. Name and location of the key file that is associated with the specified
user configuration file and is used to decrypt it. Use the following syntax for this
argument:
userKeyFile=’file-system-path’

If not specified, WLST processes the command as described above.

See “storeUserConfig” on page B-92.

adminServerName Optional. Name of the domain’s Administration Server. Causes the connect
command to use the credentials that are stored in the Administration Server’s
boot.properties file. Use the following syntax for this argument:
adminServerName=’server-name’

This argument is valid only when you start WLST from a domain directory. If
the Administration Server’s boot.properties file is located in the domain
directory, then you do not need to specify this argument.

If not specified, WLST processes the command as described above.

Argument Definition (Continued)

WLST Command and Var iab le Re fe rence

B-14 WebLogic Scripting Tool

Warning: An insecure protocol was used to connect to the server. To ensure

on-the-wire security, the SSL port or Admin port should be used instead.

wls:/mydomain/serverConfig>

The following example connects WLST to a WebLogic Server instance at the specified URL. In
this example, the username and password are passed as variables. This example uses a secure
protocol.

wls:/offline> username = 'weblogic'

wls:/offline> password = 'weblogic'

wls:/offline> connect(username,password,'t3s://myhost:8001')

Connecting to weblogic server instance running at t3://myhost:8001 as

username weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain

'mydomain'.

wls:/mydomain/serverConfig>

The following example connects WLST to a WebLogic Server instance using a user
configuration and key file to provide user credentials.

wls:/offline> connect(userConfigFile='c:/myfiles/myuserconfigfile.secure',

userKeyFile='c:/myfiles/myuserkeyfile.secure')

Connecting to weblogic server instance running at t3://localhost:7001 as

username ...

Successfully connected to Admin Server 'AdminServer' that belongs to domain

'mydomain'.

wls:/mydomain/serverConfig>

createDomain
Command Category: Control Commands
Use with WLST: Offline

Description
Creates a domain using the specified template.

Note: If you wish to modify the domain configuration settings when creating a domain, see
Option 2 in “Editing a Domain (Offline)” on page 3-5.

Cont ro l Commands

WebLogic Scripting Tool B-15

The createDomain command is similar in functionality to the unpack command, as
described in Creating Templates and Domains Using the pack and unpack Commands.

In the event of an error, the command returns a WLSTException.

Syntax
createDomain(domainTemplate, domainDir, user, password)

Example
The following example creates a new domain using the Avitek MedRec template and sets the
default username and password to weblogic. The domain is saved to the following directory:
c:/bea/user_projects/domains/medrec.

wls:/offline> createDomain('c:/bea/wlserver_10.3/common/templates/domains

/wls_medrec.jar','c:/bea/user_projects/domains/medrec', 'weblogic',

'weblogic')

disconnect
Command Category: Control Commands
Use with WLST: Online

Description
Disconnects WLST from a WebLogic Server instance. The disconnect command does not
cause WLST to exit the interactive scripting shell; it closes the current WebLogic Server instance
connection and resets all the variables while keeping the interactive shell alive.

In the event of an error, the command returns a WLSTException.

Argument Definition

domainTemplate Name and location of the domain template from which you want to create a
domain.

domainDir Name of the directory to which you want to write the domain configuration
information.

user Name of the default user.

password Password of the default user.

../../../common/docs103/install/../pack/index.html

WLST Command and Var iab le Re fe rence

B-16 WebLogic Scripting Tool

You can connect to another WebLogic Server instance using the connect command, as
described in “connect” on page B-10.

Syntax
disconnect(force)

Example
The following example disconnects from a running server:

wls:/mydomain/serverConfig> disconnect()

Disconnected from weblogic server: myserver

wls:/offline>

exit
Command Category: Control Commands
Use with WLST: Online or Offline

Description
Exits WLST from the user session and closes the scripting shell.

If there is an edit session in progress, WLST prompts you for confirmation. To skip the prompt,
set the defaultAnswer argument to y.

By default, WLST calls System.exit(0) for the current WLST JVM when exiting WLST. If
you would like the JVM to exit with a different exit code, you can specify a value using the
exitCode argument.

Note: When the WLST exit command is issued within an Ant script, it may also exit the
execution of the Ant script. It is recommended that when invoking WLST within an Ant
script, you fork a new JVM by specifying fork="true".

In the event of an error, the command returns a WLSTException.

Argument Definition

force Optional. Boolean value specifying whether WLST should disconnect without
waiting for the active sessions to complete. This argument defaults to false,
indicating that all active sessions must complete before disconnect.

Cont ro l Commands

WebLogic Scripting Tool B-17

Syntax
exit([defaultAnswer], [exitcode])

Example
The following example disconnects from the user session and closes the scripting shell.

wls:/mydomain/serverConfig> exit()

Exiting WebLogic Scripting Tool ...

c:\>

The following example disconnects from the user session, closes the scripting shell, and sets the
error code to 101.

wls:/mydomain/serverConfig> exit(exitcode=101)

Exiting WebLogic Scripting Tool ...

c:\>

readDomain
Command Category: Control Commands
Use with WLST: Offline

Description
Opens an existing domain for updating.

WLST offline provides read and write access to the configuration data that is persisted in the
domain’s config directory or in a domain template JAR created using Template Builder. This
data is a collection of XML documents and expresses a hierarchy of management objects.

When you open a template or domain, WLST is placed at the root of the configuration hierarchy
for that domain, and the prompt is updated to reflect the current location in the configuration
hierarchy. For example:

Argument Definition

defaultAnswer Optional. Default response, if you would prefer not to be prompted at the
command line. Valid values are y and n. This argument defaults to null, and
WLST prompts you for a response.

exitcode Optional. Exit code to set when exiting WLST.

WLST Command and Var iab le Re fe rence

B-18 WebLogic Scripting Tool

wls:/offline/base_domain>

For more information, see “Navigating and Interrogating MBeans” on page 5-1.

In the event of an error, the command returns a WLSTException.

Syntax
readDomain(domainDirName)

Example
The following example opens the medrec domain for editing.

wls:/offline> readDomain('c:/bea/user_projects/domains/medrec')

wls:/offline/medrec>

readTemplate
Command Category: Control Commands
Use with WLST: Offline

Description
Opens an existing domain template for domain creation.

When you open a domain template, WLST is placed into the configuration bean hierarchy for that
domain template, and the prompt is updated to reflect the current location in the configuration
hierarchy. For example:
wls:/offline/base_domain>

WebLogic Server configuration beans exist within a hierarchical structure. In the WLST file
system, the hierarchies correspond to drives; types and instances are directories; attributes and
operations are files. WLST traverses the hierarchical structure of configuration beans using
commands such as cd, ls, and pwd in a similar way that you would navigate a file system in a
UNIX or Windows command shell. After navigating to a configuration bean instance, you
interact with the bean using WLST commands. For more information, see “Navigating and
Interrogating MBeans” on page 5-1.

Argument Definition

domainDirName Name of the domain directory that you wish to open.

Cont ro l Commands

WebLogic Scripting Tool B-19

Note: Using WLST and a domain template, you can only create and access security information
when you are creating a new domain. When you are updating a domain, you cannot
access security information through WLST.

In the event of an error, the command returns a WLSTException.

Syntax
readTemplate(templateFileName)

Example
The following example opens the medrec.jar domain template for domain creation.

wls:/offline> readTemplate('c:/bea/wlserver_10.3/common/templates/domains

/wls_medrec.jar')

wls:/offline/wls_medrec>

updateDomain
Command Category: Control Commands
Use with WLST: Offline

Description
Updates and saves the current domain. The domain continues to be editable after you update and
save it.

In the event of an error, the command returns a WLSTException.

Syntax
updateDomain()

Argument Definition

templateFileName Name of the JAR file corresponding to the domain template.

WLST Command and Var iab le Re fe rence

B-20 WebLogic Scripting Tool

Example
The following examples opens the medrec domain, performs some operations, and updates and
saves the current domain:

wls:/offline> readDomain('c:/bea/user_projects/domains/medrec')

...

wls:/offline/medrec> updateDomain()

writeDomain
Command Category: Control Commands
Use with WLST: Offline

Description
Writes the domain configuration information to the specified directory.

Once you write the domain to file system, you can continue to update the domain template object
that exists in memory, and reissue the writeDomain command to store the domain configuration
to a new or existing file.

By default, when you write a domain, the associated applications are written to
BEAHOME/user_projects/applications/domainname, where BEAHOME specifies the BEA
home directory and domainname specifies the name of the domain. This directory must be empty;
otherwise, WLST displays an error.

When you have finished using the domain template object in memory, close it using the
closeTemplate command. If you want to edit the domain that has been saved to disk, you can
open it using the readDomain command.

Note: The name of the domain is derived from the name of the domain directory. For example,
for a domain saved to c:/bea/user_projects/domains/myMedrec, the domain name
is myMedrec.

Before writing the domain, you must define a password for the default user, if it is not already
defined. For example:

cd('/Security/base_domain/User/weblogic')

cmo.setPassword('weblogic')

In the event of an error, the command returns a WLSTException.

Cont ro l Commands

WebLogic Scripting Tool B-21

Syntax
writeDomain(domainDir)

Example
The following example reads the medrec.jar domain templates, performs some operations, and
writes the domain configuration information to the c:/bea/user_projects/domains/medrec
directory.

wls:/offline> readTemplate('c:/bea/wlserver_10.3/common/templates/domains

/wls.jar')

...

wls:/offline/base_domain>

writeDomain('c:/bea/user_projects/domains/base_domain')

writeTemplate
Command Category: Control Commands
Use with WLST: Offline

Description
Writes the domain configuration information to the specified domain template. You can use the
domain configuration template to recreate the domain.

Once your write the configuration information to the domain configuration template, you can
continue to update the domain or domain template object that exists in memory, and reissue the
writeDomain or writeTemplate command to store the domain configuration to a new or
existing domain or domain template file. For more information, see “writeDomain” on page B-20
or “writeTemplate” on page B-21, respectively.

In the event of an error, the command returns a WLSTException.

Note: The writeTemplate command is similar in functionality to the pack command, as
described in Creating Templates and Domains Using the pack and unpack Commands.
However, writeTemplate does not support creating a Managed Server template.

Argument Definition

domainDir Name of the directory to which you want to write the domain configuration
information.

../../../common/docs103/install/../pack/index.html

WLST Command and Var iab le Re fe rence

B-22 WebLogic Scripting Tool

Syntax
writeTemplate(templateName)

Example
The following example writes the current domain configuration to the domain template named
c:/bea/user_projects/templates/myTemplate.jar.

wls:/offline> readDomain('c:/bea/user_projects/domains/mydomain')

...

wls:/offline/base_domain>

writeTemplate('c:/bea/user_projects/templates/myTemplate.jar')

Deployment Commands
Use the WLST deployment commands, listed in Table B-4, to:

Deploy, undeploy, and redeploy applications and standalone modules to a WebLogic Server
instance.

Update an existing deployment plan.

Interrogate the WebLogic Deployment Manager object.

Start and stop a deployed application.

For more information about deploying applications, see Deploying Applications to WebLogic
Server.

Argument Definition

templateName Name of the domain template to store the domain configuration information.

http://e-docs.bea.com/wls/docs103/deployment/index.html
http://e-docs.bea.com/wls/docs103/deployment/index.html

Deployment Commands

WebLogic Scripting Tool B-23

deploy
Command Category: Deployment Commands
Use with WLST: Online

Description
Deploys an application to a WebLogic Server instance.

Table B-4 Deployment Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“deploy” on page B-23 Deploy an application to a WebLogic Server
instance.

Online

“distributeApplication” on
page B-28

Copy the deployment bundle to the specified
targets.

Online

“getWLDM” on page B-29 Return the WebLogic DeploymentManager
object.

Online

“listApplications” on page B-30 List all applications that are currently deployed in
the domain.

Online

“loadApplication” on page B-30 Load an application and deployment plan into
memory.

Online

“redeploy” on page B-32 Redeploy a previously deployed application. Online

“startApplication” on page B-33 Start an application, making it available to users. Online

“stopApplication” on page B-34 Stop an application, making it unavailable to
users.

Online

“undeploy” on page B-35 Undeploy an application from the specified
servers.

Online

“updateApplication” on page B-36 Update an application configuration using a
new deployment plan.

Online

WLST Command and Var iab le Re fe rence

B-24 WebLogic Scripting Tool

The deploy command returns a WLSTProgress object that you can access to check the status of
the command. For more information about the WLSTProgress object, see “WLSTProgress
Object” on page C-4. In the event of an error, the command returns a WLSTException.

Note: If there is an edit session in progress, the deploy command does not block user
interaction.

Syntax
deploy(appName, path, [targets], [stageMode], [planPath], [options])

Argument Definition

appName Name of the application or standalone Java EE module to be deployed.

path Name of the application directory, archive file, or root of the exploded archive directory
to be deployed.

targets Optional. Comma-separated list of the targets. Each target may be qualified with a Java
EE module name (for example, module1@server1) enabling you to deploy different
modules of the application archive on different servers. This argument defaults to the
server to which WLST is currently connected.

stageMode Optional. Staging mode for the application you are deploying. Valid values are stage,
nostage, and external_stage. For information about the staging modes, see
“Controlling Deployment File Copying with Staging Modes” in Deploying Applications
to WebLogic Server. This argument defaults to null.

planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to
the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

http://e-docs.bea.com/wls/docs103/deployment/deploy.html#stage

Deployment Commands

WebLogic Scripting Tool B-25

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
Valid options include:
• altDD—Location of the alternate application deployment descriptor on the

Administration Server.
• altWlsDD—Location of the alternate WebLogic application deployment descriptor

on the Administration Server.
• archiveVersion—Archive version number.
• block—Boolean value specifying whether WLST should block user interaction until

the command completes. This option defaults to true. If set to false, WLST
returns control to the user after issuing the command; you can query the
WLSTProgress object to determine the status of the command. If you are
importing WLST as a Jython module, as described in “Importing WLST as a Jython
Module” on page 2-19, block is always set to true.

• clusterDeploymentTimeout—Time, in milliseconds, granted for a cluster
deployment task on this application.

• createPlan—Boolean value indicating that user would like to create a default plan.
This option defaults to false.

• defaultSubmoduleTargets—Boolean value indicating that targeting for qualifying
JMS submodules should be derived by the system, see Using Sub-Module Targeting
with JMS Application Modules in Deploying Applications to WebLogic Server.
Default value is true.

• deploymentPrincipalName—String value specifying the principal for deploying
the file or archive during server starts (static deployment; it does not effect the
current deployment task). Make sure the user exists. This option adds
<deployment-principal-name> to the <app-deployment> element in the
config.xml file.

• forceUndeployTimeout—Force undeployment timeout value.
• gracefulIgnoreSessions—Boolean value specifying whether the graceful

production to admin mode operation should ignore pending HTTP sessions. This
option defaults to false and only applies if gracefulProductionToAdmin is
set to true.

• gracefulProductionToAdmin—Boolean value specifying whether the production
to Admin mode operation should be graceful. This option defaults to false.

• libImplVersion—Implementation version of the library, if it is not present in the
manifest.

• libraryModule—Boolean value specifying whether the module is a library module.
This option defaults to false.

Argument Definition (Continued)

http://e-docs.bea.com/wls/docs103/deployment/deploy.html#submodule_jms
http://e-docs.bea.com/wls/docs103/deployment/deploy.html#submodule_jms

WLST Command and Var iab le Re fe rence

B-26 WebLogic Scripting Tool

Example
The following example deploys the businessApp application located at c:/myapps/business,
A default deployment plan is created.

options
(Continued)

• libSpecVersion—Specification version of the library, if it is not present in the
manifest.

• planVersion—Plan version number.
• remote—Boolean value specifying whether the operation will be remote from the

file system that contains the source. Use this option when you are on a different
machine from the Administration Server and the deployment files are already at the
specified location where the Administration Server is located. This option defaults
to false.

• retireGracefully—Retirement policy to gracefully retire an application only after it
has completed all in-flight work. This policy is only meaningful for stop and
redeploy operations and is mutually exclusive to the retire timeout policy.

• retireTimeout—Time (in seconds) WLST waits before retiring an application that
has been replaced with a newer version. This option default to -1, which specifies
graceful timeout.

• securityModel—Security model. Valid values include: DDOnly, CustomRoles,
CustomRolesAndPolicies, and Advanced.

• securityValidationEnabled—Boolean value specifying whether security
validation is enabled.

• subModuleTargets—Submodule level targets for JMS modules. For example,
submod@mod-jms.xml@target | submoduleName@target.

• testMode—Boolean value specifying whether to start the Web application with
restricted access. This option defaults to false.

• timeout—Time (in milliseconds) that WLST waits for the deployment process to
complete before canceling the operation. A value of 0 indicates that the operation
will not time out. This argument defaults to 300,000 ms (or 5 minutes).

• upload—Boolean value specifying whether the application files are uploaded to the
WebLogic Server Administration Server’s upload directory prior to deployment.
Use this option when the Administration Server cannot access the application files
through the file system. This option defaults to false.

• versionIdentifier—Version identifier.

Argument Definition (Continued)

Deployment Commands

WebLogic Scripting Tool B-27

The deploy command returns a WLSTProgress object that you can access to check the status of
the command. The WLSTProgress object is captured in a user-defined variable, in this case,
progress.

wls:/mydomain/serverConfig/Servers> progress=

deploy(appName='businessApp',path='c:/myapps/business',createplan='true')

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to print the status of the deploy
command. For example:

wls:/mydomain/serverConfig/Servers> progress.printStatus()

Current Status of your Deployment:

Deployment command type: deploy

Deployment State : completed

Deployment Message : null

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

The following example deploys the demoApp application in the archive file located at
c:/myapps/demos/app/demoApp.ear, targeting the application modules to myserver, and
using the deployment plan file located in c:/myapps/demos/app/plan/plan.xml. WLST
waits 120,000 ms for the process to complete.

wls:/mydomain/serverConfig/Servers> deploy('demoApp',

'c:/myapps/demos/app/demoApp.ear', targets='myserver',

planPath='c:/myapps/demos/app/plan/plan.xml', timeout=120000)

The following example deploys the jmsApp application located at
c:/myapps/demos/jmsApp/demo-jms.xml, targeting the application module to a specific
target.

wls:/mydomain/serverConfig/Servers>deploy('jmsApp',path='c:/myapps/demos/j

msApps/demo-jms.xml', subModuleTargets='jmsApp@managed1')

The following example shows how to set the application version (appVersion) to a unique
identifier to support production (side-by-side) redeployment. This example deploys the demoApp
application in the archive file located at c:/myapps/demos/app/demoApp.ear, and sets the
application and archive version numbers to the specified values.

WLST Command and Var iab le Re fe rence

B-28 WebLogic Scripting Tool

wls:/mydomain/serverConfig> deploy('demoApp',

'c:/myapps/demos/app/demoApp.ear', archiveVersion='901-101',

appVersion='901-102')

For more information about production redeployment strategies, see “Redeploying Applications
in a Production Environment” in Deploying Applications to WebLogic Server.

distributeApplication
Command Category: Deployment Commands
Use with WLST: Online

Description
Copies the deployment bundle to the specified targets. The deployment bundle includes module,
configuration data, and any additional generated code. The distributeApplication command
does not start deployment.

The distributeApplication command returns a WLSTProgress object that you can access to
check the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4. In the event of an error, the command returns a
WLSTException.

Syntax
distributeApplication(appPath, [planPath], [targets], [options])

Argument Definition

appPath Name of the archive file or root of the exploded archive directory to be deployed.

planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to
the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

targets Optional. Comma-separated list of targets. Each target may be qualified with a Java EE
module name (for example, module1@server1) enabling you to deploy different
modules of the application archive on different servers. This argument defaults to the
server to which WLST is currently connected.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see the options argument description in
“deploy” on page B-23.

http://e-docs.bea.com/wls/docs103/deployment/redeploy.html
http://e-docs.bea.com/wls/docs103/deployment/redeploy.html

Deployment Commands

WebLogic Scripting Tool B-29

Example
The following example loads the BigApp application located in the c:/myapps directory, and
stores the WLSTProgress object in a user-defined variable, in this case, progress.

The following example distributes the c:/myapps/BigApp application to the myserver,
oamserver1, and oamcluster servers, using the deployment plan defined at
c:/deployment/BigApp/plan.xml.
wls:/offline> progress=distributeApplication('c:/myapps/BigApp',
'c:/deployment/BigApp/plan.xml', 'myserver,oamserver1,oamcluster')
Distributing Application and Plan ...
Successfully distributed the application.

The previous example stores the WLSTProgress object in a user-defined variable, in this case,
progress. You can then use the progress variable to determine if the
distributeApplication command has completed. For example:

wls:/mydomain/serverConfig/Servers> progress.isCompleted()

1

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

getWLDM
Command Category: Deployment Commands
Use with WLST: Online

Description
Returns the WebLogic DeploymentManager object. You can use the object methods to
configure and deploy applications. WLST must be connected to an Administration Server to run
this command. In the event of an error, the command returns a WLSTException.

Syntax
getWLDM()

Example
The following example gets the WebLogicDeploymentManager object and stores it in the wldm
variable.

WLST Command and Var iab le Re fe rence

B-30 WebLogic Scripting Tool

wls:/mydomain/serverConfig> wldm=getWLDM()
wls:/mydomain/serverConfig> wldm.isConnected()
1
wls:/mydomain/serverConfig>

listApplications
Command Category: Deployment Commands
Use with WLST: Online

Description
Lists all applications that are currently deployed in the domain.

In the event of an error, the command returns a WLSTException.

Syntax
listApplications()

Example
The following example lists all the applications currently deployed in mydomain.
wls:/mydomain/serverConfig> listApplications()

SamplesSearchWebApp
asyncServletEar
jspSimpleTagEar
ejb30
webservicesJwsSimpleEar
ejb20BeanMgedEar
xmlBeanEar
extServletAnnotationsEar
examplesWebApp
apache_xbean.jar
mainWebApp
jdbcRowSetsEar

loadApplication
Command Category: Deployment Commands
Use with WLST: Online

Deployment Commands

WebLogic Scripting Tool B-31

Description
Loads an application and deployment plan into memory.

The loadApplication command returns a WLSTPlan object that you can access to make
changes to the deployment plan. For more information about the WLSTPlan object, see
“WLSTPlan Object” on page C-1. In the event of an error, the command returns a
WLSTException.

Syntax
loadApplication(appPath, [planPath], [createPlan])

Example
The following example loads the c:/myapps/myejb.jar application using the plan file at
c:/myplans/myejb/plan.xml.
wls:/myserver/serverConfig> myPlan=loadApplication('c:/myapps/myejb.jar',
'c:/myplans/myejb/plan.xml')
Loading application from c:/myapps/myejb.jar and deployment plan from
c:/myplans/myejb/plan.xml ...
Successfully loaded the application.
wls:/myserver/serverConfig>

The previous example stores the WLSTPlan object returned in the myPlan variable. You can then
use myPlan variable to display information about the plan, such as the variables. For example:

wls:/myserver/serverConfig> myPlan.showVariables()

MyEJB jndi.ejb

MyWAR app.foo

wls:/myserver/serverConfig>

Argument Definition

appPath Name of the top-level parent application directory, archive file, or root of the exploded
archive directory containing the application to be loaded.

planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to
the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

createPlan Optional. Boolean value specifying whether WLST should create a plan in the
application directory if the specified plan does not exist. This argument defaults to true.

WLST Command and Var iab le Re fe rence

B-32 WebLogic Scripting Tool

For more information about the WLSTPlan object, see “WLSTPlan Object” on page C-1.

redeploy
Command Category: Deployment Commands
Use with WLST: Online

Description
Reloads classes and redeploys a previously deployed application.

The redeploy command returns a WLSTProgress object that you can access to check the status
of the command. For more information about the WLSTProgress object, see “WLSTProgress
Object” on page C-4.

In the event of an error, the command returns a WLSTException.

For more information about redeploying applications, see “Overview of Common Deployment
Scenarios” in Deploying Application to WebLogic Server.

Syntax
redeploy(appName, [planPath], [options])

Argument Definition

appName Name of the application to be redeployed.

planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to
the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see options argument description in “deploy”
on page B-23.

In addition, the following deployment option can be specified for the redeploy
command:
• appPath—Name of the archive file or root of the exploded archive directory to be

redeployed.
• deploymentPrincipalName—String value specifying the principal for redeploying

the file or archive during server starts. You can use this option to overwrite the
current <deployment-principal-name> in the config.xml file.

http://e-docs.bea.com/wls/docs103/deployment/deploy.html#overview
http://e-docs.bea.com/wls/docs103/deployment/deploy.html#overview

Deployment Commands

WebLogic Scripting Tool B-33

Example
The following example redeploys myApp application using the plan.xml file located in the
c:/myapps directory.
wls:/mydomain/serverConfig> progress=redeploy('myApp'
'c:/myapps/plan.xml')
Redeploying application 'myApp' ...
Redeployment of 'myApp' is successful
wls:/mydomain/serverConfig>

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to access the state of the redeploy
command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()

‘completed’

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

startApplication
Command Category: Deployment Commands
Use with WLST: Online

Description
Starts an application, making it available to users. The application must be fully configured and
available in the domain.

The startApplication command returns a WLSTProgress object that you can access to check
the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4. In the event of an error, the command returns a
WLSTException.

Syntax
startApplication(appName, [options])

Argument Definition

appName Name of the application to start, as specified in the plan.xml file.

WLST Command and Var iab le Re fe rence

B-34 WebLogic Scripting Tool

Example
The following example starts the BigApp application with the specified deployment options.
wls:/offline> progress=startApplication('BigApp', stageMode='NOSTAGE',
testMode='false')
Starting the application...
Successfully started the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to access the state of the
startApplication command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()

‘completed’

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

stopApplication
Command Category: Deployment Commands
Use with WLST: Online

Description
Stops an application, making it unavailable to users. The application must be fully configured and
available in the domain.

The stopApplication command returns a WLSTProgress object that you can access to check
the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4.

In the event of an error, the command returns a WLSTException.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see options argument description in “deploy”
on page B-23.

Argument Definition (Continued)

Deployment Commands

WebLogic Scripting Tool B-35

Syntax
stopApplication(appName, [options])

Example
The following example stops the BigApp application.
wls:/offline> progress=stopApplication('BigApp')
Stopping the application...
Successfully stopped the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to check whether stopApplication
command is running. For example:

wls:/mydomain/serverConfig/Servers> progress.isRunning()

0

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

undeploy
Command Category: Deployment Commands
Use with WLST: Online

Description
Undeploys an application from the specified servers.

The undeploy command returns a WLSTProgress object that you can access to check the status
of the command. For more information about the WLSTProgress object, see “WLSTProgress
Object” on page C-4. In the event of an error, the command returns a WLSTException.

Argument Definition

appName Name of the application to stop, as specified in the plan.xml file.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see options argument description in “deploy”
on page B-23.

WLST Command and Var iab le Re fe rence

B-36 WebLogic Scripting Tool

For more information about deploying and undeploying applications, see “Overview of Common
Deployment Scenarios” in Deploying Applications to WebLogic Server.

Syntax
undeploy(appName,[targets],[options])

Example
The following example removes the businessApp application from all target servers. WLST
waits 60,000 ms for the process to complete.

wls:/mydomain/serverConfig> undeploy('businessApp', timeout=60000)

Undeploying application businessApp ...

<Jul 20, 2005 9:34:15 AM EDT> <Info> <J2EE Deployment SPI> <BEA-260121>

<Initiating undeploy operation for application, businessApp [archive:

null],

to AdminServer .>

Completed the undeployment of Application with status

Current Status of your Deployment:

Deployment command type: undeploy

Deployment State : completed

Deployment Message : no message

wls:/mydomain/serverConfig>

updateApplication
Command Category: Deployment Commands
Use with WLST: Online

Argument Definition

appName Deployment name for the deployed application.

targets Optional. List of the target servers from which the application will be removed. If
not specified, defaults to all current targets.

options Optional. Comma-separated list of deployment options, specified as name-value
pairs. For a list of valid deployment options, see options argument description
in “deploy” on page B-23.

http://e-docs.bea.com/wls/docs103/deployment/deploy.html#overview
http://e-docs.bea.com/wls/docs103/deployment/deploy.html#overview

Deployment Commands

WebLogic Scripting Tool B-37

Description
Updates an application configuration using a new deployment plan. The application must be fully
configured and available in the domain.

The updateApplication command returns a WLSTProgress object that you can access to
check the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4. In the event of an error, the command returns a
WLSTException.

Syntax
updateApplication(appName, [planPath], [options])

Example
The following example updates the application configuration for BigApp using the plan.xml file
located in c:/myapps/BigApp/newPlan.
wls:/offline> progress=updateApplication('BigApp',
'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE', testMode='false')
Updating the application...
Successfully updated the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to access the state of the
updateApplication command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()

‘completed’

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

Argument Definition

appName Name of the application, as specified in the current plan.xml file.

planPath Optional. Name of the new deployment plan file. The filename can be absolute or relative
to the application directory.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see options argument description in “deploy”
on page B-23.

WLST Command and Var iab le Re fe rence

B-38 WebLogic Scripting Tool

Diagnostics Commands
Use the WLST diagnostics commands, listed in Table B-5, to retrieve diagnostics data by
executing queries against the WebLogic Diagnostics Framework (WLDF) data stores. For more
information about WLDF, see Configuring and Using the WebLogic Diagnostics Framework.

exportDiagnosticData
Command Category: Diagnostics Commands
Use with WLST: Offline

Description
Executes a query against the specified log file. The results are saved to an XML file.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using
the WebLogic Diagnostic Framework.

In the event of an error, the command returns a WLSTException.

Table B-5 Diagnostic Command for WLST Configuration

This command... Enables you to... Use with
WLST...

“exportDiagnosticData” on
page B-38

Execute a query against the specified log file. Offline

“exportDiagnosticDataFromSe
rver” on page B-40

Executes a query on the server side and retrieves the
exported WebLogic Diagnostic Framework (WLDF)
data.

Online

http://e-docs.bea.com/wls/docs103/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs103/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs103/wldf_configuring/index.html

Diagnos t ics Commands

WebLogic Scripting Tool B-39

Syntax
exportDiagnosticData([options])

Example
The following example executes a query against the ServerLog named myserver.log and
stores the results in the file named myExport.xml.

wls:/offline/mydomain>exportDiagnosticData(logicalName='ServerLog',

logName='myserver.log', exportFileName='myExport.xml')

{'elfFields': '', 'logName': 'myserver.log', 'logRotationDir': '.',

'endTimestamp': 9223372036854775807L, 'exportFileName': 'export.xml',

'storeDir': '../data/store/diagnostics', 'logicalName': 'ServerLog',

'query': '', 'beginTimestamp': 0}

Argument Definition

options Optional. Comma-separated list of export diagnostic options, specified as name-value
pairs. Valid options include:
• beginTimestamp—Timestamp (inclusive) of the earliest record to be added to the

result set. This option defaults to 0.
• endTimestamp—Timestamp (exclusive) of the latest record to be added to the result

set. This option defaults to Long.MAX_VALUE.
• exportFileName—Name of the file to which the data is exported. This option

defaults to export.xml.
• logicalName—Logical name of the log file being read. Valid values include:

HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog,
HTTPAccessLog, WebAppLog, ConnectorLog, and JMSMessageLog. This
option defaults to ServerLog.

• logName—Base log filename containing the log data to be exported. This option
defaults to myserver.log.

• logRotationDir—Directory containing the rotated log files. This option defaults to
“.” (the same directory in which the log file is stored).

• query—Expression specifying the filter condition for the data records to be included
in the result set. This option defaults to “” (empty string), which returns all data. For
more information, see “WLDF Query Language” in Configuring and Using the
Weblogic Diagnostic Framework.

• storeDir—Location of the diagnostic store for the server. This option defaults to
../data/store/diagnostics.

http://e-docs.bea.com/wls/docs103/wldf_configuring/appendix_query.html

WLST Command and Var iab le Re fe rence

B-40 WebLogic Scripting Tool

Exporting diagnostic data to export.xml

<Aug 2, 2005 6:58:21 PM EDT> <Info> <Store> <BEA-280050> <Persistent store

 "WLS_DIAGNOSTICS" opened:

directory="c:\bea\wlserver_10.3\server\data\store\diagnostics"

 writePolicy="Disabled" blockSize=512 directIO=false driver="wlfileio2">

wls:/mydomain/serverRuntime>

exportDiagnosticDataFromServer
Command Category: Diagnostics Commands
Use with WLST: Online

Description
Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework
(WLDF) data. The results are saved to an XML file.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using
the WebLogic Diagnostic Framework.

In the event of an error, the command returns a WLSTException.

Syntax
exportDiagnosticDataFromServer([options])

http://e-docs.bea.com/wls/docs103/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs103/wldf_configuring/index.html

Ed i t ing Commands

WebLogic Scripting Tool B-41

Example
The following example executes a query against the HTTPAccessLog and stores the results in the
file named myExport.xml.

wls:/mydomain/serverRuntime>

exportDiagnosticDataFromServer(logicalName="HTTPAccessLog",

exportFileName="myExport.xml")

Editing Commands
Use the WLST editing commands, listed in Table B-6, to interrogate and edit configuration
beans.

Note: To edit configuration beans, you must be connected to an Administration Server, and you
must navigate to the edit tree and start an edit session, as described in “edit” on
page B-127 and “startEdit” on page B-63, respectively.

If you connect to a Managed Server, WLST functionality is limited to browsing the
configuration bean hierarchy. While you cannot use WLST to change the values of
MBeans on Managed Servers, it is possible to use the Management APIs to do so. Oracle
recommends that you change only the values of configuration MBeans on the

Argument Definition

options Optional. Comma-separated list of export diagnostic options, specified as name-value
pairs. Valid options include:
• beginTimestamp—Timestamp (inclusive) of the earliest record to be added to the

result set. This option defaults to 0.
• endTimestamp—Timestamp (exclusive) of the latest record to be added to the result

set. This option defaults to Long.MAX_VALUE.
• exportFileName—Name of the file to which the data is exported. This option

defaults to export.xml.
• logicalName—Logical name of the log file being read. Valid values include:

HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog,
HTTPAccessLog, WebAppLog, ConnectorLog, and JMSMessageLog. This
option defaults to ServerLog.

• query—Expression specifying the filter condition for the data records to be included
in the result set. This option defaults to “” (empty string), which returns all data.

WLST Command and Var iab le Re fe rence

B-42 WebLogic Scripting Tool

Administration Server. Changing the values of MBeans on Managed Servers can lead to
an inconsistent domain configuration.

For more information about editing configuration beans, see “Using WLST Online to
Update an Existing Domain” on page 6-1.

Table B-6 Editing Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“activate” on page B-43 Activate changes saved during the current editing session
but not yet deployed.

Online or
Offline

“assign” on page B-44 Assign resources to one or more destinations. Offline

“assignAll” on page B-47 Assign all applications or services to one or more
destinations.

Offline

“cancelEdit” on page B-48 Cancel an edit session, release the edit lock, and discard all
unsaved changes. This operation can be called by any user
with administrator privileges, even if the user did not start
the edit session.

Online

“create” on page B-49 Create a configuration bean of the specified type for the
current bean.

Online or
Offline

“delete” on page B-51 Delete an instance of a configuration for the current
configuration bean.

Online or
Offline

“encrypt” on page B-52 Encrypt the specified string. Online

“get” on page B-53 Return the value of the specified attribute. Online or
Offline

“getActivationTask” on
page B-54

Return the latest ActivationTask MBean on which a
user can get status.

Online

“invoke” on page B-54 Invokes a management operation on the current
configuration bean.

Online

“isRestartRequired” on page B-55 Determine whether a server restart is required. Online

“loadDB” on page B-56 Load SQL files into a database. Offline

Ed i t ing Commands

WebLogic Scripting Tool B-43

activate
Command Category: Editing Commands
Use with WLST: Online

Description
Activates changes saved during the current editing session but not yet deployed. This command
prints a message if a server restart is required for the changes that are being activated.

“loadProperties” on page B-57 Load property values from a file. Online or
Offline

“save” on page B-58 Save the edits that have been made but have not yet been
saved.

Online

“set” on page B-59 Set the specified attribute value for the current
configuration bean.

Online or
Offline

“setOption” on page B-60 Set options related to a domain creation or update. Offline

“showChanges” on page B-62 Show the changes made to the configuration by the current
user during the current edit session.

Online

“startEdit” on page B-63 Starts a configuration edit session on behalf of the currently
connected user.

Online

“stopEdit” on page B-65 Stop the current edit session, release the edit lock, and
discard unsaved changes.

Online

“unassign” on page B-65 Unassign applications or resources from one or more
destinations.

Offline

“unassignAll” on page B-68 Unassign applications or resources from one or more
destinations.

Offline

“undo” on page B-69 Revert all unsaved or unactivated edits. Online

“validate” on page B-70 Validate the changes that have been made but have not yet
been saved.

Online

Table B-6 Editing Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...

WLST Command and Var iab le Re fe rence

B-44 WebLogic Scripting Tool

The activate command returns the latest ActivationTask MBean which reflects the state of
changes that a user is currently making or has made recently. You can then invoke methods to get
information about the latest Configuration Manager activate task in progress or just completed.
In the event of an error, the command returns a WLSTException.

Syntax
activate([timeout], [block])

Example
The following example activates the changes made during the current edit session that have been
saved to disk, but that have not yet been activated. WLST waits for 100,000 ms for the activation
to complete, and 200,000 ms before the activation is stopped.

wls:/mydomain/edit !> activate(200000, block='true')

Activating all your changes, this may take a while ...

The edit lock associated with this edit session is released once the

activation is completed.

Action completed.

wls:/mydomain/edit>

assign
Command Category: Editing Commands
Use with WLST: Offline

Argument Definition

timeout Optional. Time (in milliseconds) that WLST waits for the activation of configuration
changes to complete before canceling the operation. A value of -1 indicates that the
operation will not time out. This argument defaults to 300,000 ms (or 5 minutes).

block Optional. Boolean value specifying whether WLST should block user interaction until
the command completes. This argument defaults to false, indicating that user
interaction is not blocked. In this case, WLST returns control to the user after issuing
the command and assigns the task MBean associated with the current task to a variable
that you can use to check its status.If you are importing WLST as a Jython module, as
described in “Importing WLST as a Jython Module” on page 2-19, block is always
set to true.

Ed i t ing Commands

WebLogic Scripting Tool B-45

Description
Assigns resources to one or more destinations.

In the event of an error, the command returns a WLSTException.

Syntax
assign(sourceType, sourceName, destinationType, destinationName)

Use the following guidelines for setting the sourceType and destinationType:

When assigning application deployments, set the values as follows:

Argument Definition

sourceType Type of configuration bean to be assigned. This value can be set to one of the
following values:
• AppDeployment

• Library

• securityType (such as User)
• Server

• service (such as JDBCSystemResource)
• service.SubDeployment, where service specifies the service type of

the SubDeployment (such as JMSSystemResource.SubDeployment);
you can also specify nested subdeployments (such as
AppDeployment.SubDeployment.SubDeployment)

Guidelines for setting this value are provided below.

sourceName Name of the resource to be assigned. Multiple names can be specified, separated by
commas, or you can use the wildcard (*) character to specify all resources of the
specified type.

Specify subdeployments using the following format: service.subDeployment,
where service specifies the parent service and subDeployment specifies the
name of the subdeployment. For example,
myJMSResource.myQueueSubDeployment. You can also specify
nested subdeployments, such as
MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer.

destinationType Type of destination. Guidelines for setting this value are provided below.

destinationName Name of the destination. Multiple names can be specified, separated by commas.

WLST Command and Var iab le Re fe rence

B-46 WebLogic Scripting Tool

– sourceType: AppDeployment

– destinationType: Target

When assigning libraries, set the values as follows:

– sourceType: Library

– destinationType: Target

When assigning services, set the values as follows:

– sourceType: Name of the specific server, such as JDBCSystemResource

– destinationType: Target

When assigning servers to clusters, set the values as follows:

– sourceType: Server

– destinationType: Cluster

When assigning subdeployments, set the values as follows:

– sourceType: service.SubDeployment, where service specifies the parent of the
SubDeployment, such as JMSSystemResource.SubDeployment; you can also specify
nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment)

– destinationType: Target

When assigning security types, set the values as follows:

– sourceType: Name of the security type, such as User

– destinationType: Name of the destination security type, such as Group

Example
The following examples:

Assign the servers myServer and myServer2 to the cluster myCluster.

wls:/offline/mydomain> assign("Server", "myServer,myServer2", "Cluster",
"myCluster")

Assign all servers to the cluster myCluster.

wls:/offline/mydomain> assign("Server", "*", "Cluster", "myCluster")

Assign the application deployment myAppDeployment to the target server newServer.

Ed i t ing Commands

WebLogic Scripting Tool B-47

wls:/offline/mydomain> assign("AppDeployment", "myAppDeployment",
"Target", "newServer")

Assign the user newUser to the group Monitors.

wls:/offline/mydomain> assign("User", "newUser", "Group", "Monitors")

Assign the SubDeployment myQueueSubDeployment, which is a child of the JMS
resource myJMSResource, to the target server newServer.

wls:/offline/mydomain> assign('JMSSystemResource.SubDeployment',
'myJMSResource.myQueueSubDeployment', 'Target', 'newServer')

Assign the nested SubDeployment MedRecAppScopedJMS.MedRecJMSServer, which is a
child of the AppDeployment AppDeployment, to the target server AdminServer.

wls:/offline/mydomain>assign('AppDeployment.SubDeployment.SubDeployment
','MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer','Target','AdminServer'
)

assignAll
Command Category: Editing Commands
Use with WLST: Offline

Description
Note: This command is deprecated as of WebLogic Server 9.0. You should update your script to use

the assign command as described in “assign” on page B-44. This command will still
operate on any resources that exist for the specified sourceType.

Assigns all applications or services to one or more destinations.

Note: Note that you must assign JMS server and JMS distributed destinations using the assign
command, as described in “assign” on page B-44.

In the event of an error, the command returns a WLSTException.

Syntax
assignAll(sourceType, destinationType, destinationName)

Argument Definition

sourceType Type of applications or services to be assigned. This value can be set to
Applications or Services.

WLST Command and Var iab le Re fe rence

B-48 WebLogic Scripting Tool

Example
The following example assigns all services to the servers adminServer and cluster1.

wls:/offline/mydomain> assignAll("Services", "Target",

"adminServer,cluster1")

The following services, if present, are assigned to the specified targets:
MigratableRMIService, Shutdownclass, Startupclass, FileT3, RMCFactory,
MailSession, MessagingBridge, JMSConnectionFactory, JDBCConnectionPool,
JDBCMultipool, JDBCTxDatasource, JDBCDataSource, JDBCPoolComp,
JoltConnectionPool, WLECConnectionPool, and WTCServer.

cancelEdit
Command Category: Editing Commands
Use with WLST: Online

Description
Cancels an edit session, releases the edit lock, and discards all unsaved changes.

The user issuing this command does not have to be the current editor; this allows an administrator
to cancel an edit session, if necessary, to enable other users to start an edit session.

In the event of an error, the command returns a WLSTException.

Syntax
cancelEdit([defaultAnswer])

destinationType Type of destination. This value must be set to Target.

destinationName Name(s) of the destination. Multiple names can be specified, separated by commas.

Argument Definition (Continued)

Argument Definition

defaultAnswer Optional. Default response, if you would prefer not to be prompted at the command
line. Valid values are y and n. This argument defaults to null, and WLST prompts you
for a response.

Ed i t ing Commands

WebLogic Scripting Tool B-49

Example
The following example cancels the current editing session. WLST prompts for verification before
canceling.

wls:/mydomain/edit !> cancelEdit()

Sure you would like to cancel the edit session? (y/n)y

Edit session is cancelled successfully

wls:/mydomain/edit>

create
Command Category: Editing Commands
Use with WLST: Online or Offline

Description
Creates a configuration bean of the specified type for the current bean.

The create command returns a stub for the newly created configuration bean. In the event of an
error, the command returns a WLSTException.

Notes: Child types must be created under an instance of their parent type. You can only create
configuration beans that are children of the current Configuration Management Object
(cmo) type. For more information about the cmo variable, see “Changing the Current
Management Object” on page 5-2.

Please note the following when using the create command with WLST online:

You must be connected to an Administration Server. You cannot use the create command
for runtime MBeans or when WLST is connected to a Managed Server instance.

You must navigate to the edit configuration MBean hierarchy using the edit command
before issuing this command. See “edit” on page B-127.

You can use the create command to create a WebLogic Server configuration MBean that is
a child of the current MBean type.

Please note the following when using the create command with WLST offline:

When using WLST offline, the following characters are not valid in object names: period
(.), forward slash (/), or backward slash (\).

For more information about:

WLST Command and Var iab le Re fe rence

B-50 WebLogic Scripting Tool

Creating MBeans, see “Understanding WebLogic Server MBeans” in Developing Custom
Management Utilities with JMX.

Examples of creating specific types of MBean resources, for example, a JMS or JDBC
system resource, refer to the WLST sample scripts installed with your product, as
described in “WLST Sample Scripts” on page 1-3.

MBeans, their child types, attributes, and operations, see WebLogic Server MBean
Reference.

Syntax
create(name, childMBeanType, [baseProviderType])

Example
The following example creates a child configuration bean of type Server named newServer for
the current configuration bean, storing the stub as server1:

wls:/mydomain/edit !> server1=create('newServer','Server')

Server with name ‘newServer’ has been created successfully.

wls:/mydomain/edit !> server1.getName()

‘newServer’

wls:/mydomain/edit !>

The following example creates an authentication provider security provider called myProvider:

wls:/mydomain/edit !> cd('SecurityConfiguration/mydomain/Realms/myrealm')

wls:/mydomain/edit !>

create('myProvider','weblogic.security.providers.authentication.SQLAuthent

icator','AuthenticationProvider')

Argument Definition

name Name of the configuration bean that you are creating.

childMBeanType Type of configuration bean that you are creating. You can create instances of any type
defined in the config.xml file except custom security types. For more information
about valid configuration beans, see WebLogic Server MBean Reference.

baseProviderType When creating a security provider, specifies the base security provider type, for
example, AuthenticationProvider. This argument defaults to None.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/index.html
http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/index.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/index.html

Ed i t ing Commands

WebLogic Scripting Tool B-51

The following example creates a machine named highsec_nm and sets attributes for the
associated Node Manager.

wls:/mydomain/edit !> create('highsec_nm', 'Machine')

wls:/mydomain/edit !> cd('Machine/highsec_nm/NodeManager/highsec_nm')

wls:/mydomain/edit !> set('DebugEnabled', 'true')

wls:/mydomain/edit !> set('ListenAddress', 'innes')

wls:/mydomain/edit !> set('NMType', 'SSL')

wls:/mydomain/edit !> set('ShellCommand', '')

delete
Command Category: Editing Commands
Use with WLST: Online or Offline

Description
Deletes an instance of a configuration bean of the specified type for the current configuration
bean.

In the event of an error, the command returns a WLSTException.

Note: You can only delete configuration beans that are children of current Configuration
Management Object (cmo) type. For more information about the cmo variable, see
“Changing the Current Management Object” on page 5-2.

Syntax
delete(name, childMBeanType)

Example
The following example deletes the configuration bean of type Server named newServer:

Argument Definition

name Name of the child configuration bean to delete.

childMBeanType Type of the configuration bean to be deleted. You can delete instances of any type
defined in the config.xml file. For more information about valid configuration
beans, see WebLogic Server MBean Reference.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/index.html

WLST Command and Var iab le Re fe rence

B-52 WebLogic Scripting Tool

wls:/mydomain/edit !> delete('newServer','Server')
Server with name 'newServer' has been deleted successfully.
wls:/mydomain/edit !>

encrypt
Command Category: Editing Commands
Use with WLST: Online

Description
Encrypts the specified string. You can then use the encrypted string in your configuration file or
as an argument to a command.

You must invoke this command once for each domain in which you want to use the encrypted
string. The string can be used only in the domain for which it was originally encrypted.

In the event of an error, the command returns a WLSTException.

Syntax
encrypt(obj, [domainDir])

Example
The following example encrypts the specified string using the
security/SerializedSystemIni.dat file in the specified domain directory.
wls:/mydomain/serverConfig>
es=encrypt('myPassword','c:/bea/domains/mydomain')

Argument Definition

obj String that you want to encrypt.

domainDir Optional. Absolute path name of a domain directory. The encrypted string can be
used only by the domain that is contained within the specified directory.

If you do not specify this argument, the command encrypts the string for use in the
domain to which WLST is currently connected.

Ed i t ing Commands

WebLogic Scripting Tool B-53

get
Command Category: Editing Commands
Use with WLST: Online or Offline

Description
Returns the value of the specified attribute. For more information about the MBean attributes that
can be viewed, see WebLogic Server MBean Reference. In the event of an error, the command
returns a WLSTException.

Note: You can list all attributes and their current values by entering ls('a'). For more
information, see “ls” on page B-82.

Alternatively, you can use the cmo variable to perform any get method on the current
configuration bean. For example:
cmo.getListenPort()

For more information about the cmo variable, see “Changing the Current Management Object”
on page 5-2.

Syntax
get(attrName)

Example
The following example returns the value of the AdministrationPort for the current
configuration bean.

wls:/mydomain/serverConfig> get('AdministrationPort')

9002

Alternatively, you can use the cmo variable:

cmo.getAdministrationPort()

Argument Definition

attrName Name of the attribute to be displayed. You can specify the full pathname of the
attribute. If no pathname is specified, the attribute is displayed for the current
configuration object.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/index.html

WLST Command and Var iab le Re fe rence

B-54 WebLogic Scripting Tool

getActivationTask
Command Category: Editing Commands
Use with WLST: Online

Description
Return the latest ActivationTask MBean on which a user can get status. The ActivationTask
MBean reflects the state of changes that a user is currently making or has made recently. You can
then invoke methods to get information about the latest Configuration Manager activate task in
progress or just completed. In the event of an error, the command returns a WLSTException.

Syntax
getActivationTask()

Example
The following example returns the latest ActivationTask MBean on which a user can get status
and stores it within the task variable.

wls:/mydomain/serverConfig> task=getActivationTask()

wls:/mydomain/serverConfig> task.getState()

STATE_COMMITTED

invoke
Command Category: Editing Commands
Use with WLST: Online

Description
Invokes a management operation on the current configuration bean. Typically, you use this
command to invoke operations other than the get and set operations that most WebLogic Server
configuration beans provide. The class objects are loaded through the same class loader that is
used for loading the configuration bean on which the action is invoked.

You cannot use the invoke command when WLST is connected to a Managed Server instance.

If successful, the invoke command returns the object that is returned by the operation invoked.
In the event of an error, the command returns a WLSTException.

Ed i t ing Commands

WebLogic Scripting Tool B-55

Syntax
invoke(methodName, parameters, signatures)

Example
The following example invokes the lookupServer method on the current configuration bean.

wls:/mydomain/config> objs =
jarray.array([java.lang.String("oamserver")],java.lang.Object)
wls:/mydomain/edit> strs = jarray.array(["java.lang.String"],java.lang.String)
wls:/mydomain/edit> invoke('lookupServer',objs,strs)
true
wls:/mydomain/edit>

isRestartRequired
Command Category: Editing Commands
Use with WLST: Online

Description
Determines whether a server restart is required.

If you invoke this command while an edit session is in progress, the response is based on the edits
that are currently in progress. If you specify the name of an attribute, WLST indicates whether a
server restart is required for that attribute only.

In the event of an error, the command returns a WLSTException.

Argument Definition

methodName Name of the method to be invoked.

parameters An array of parameters to be passed to the method call.

signatures An array containing the signature of the action.

WLST Command and Var iab le Re fe rence

B-56 WebLogic Scripting Tool

Syntax
isRestartRequired([attributeName])

Example
The following example specifies whether a server restart is required for all changes made during
the current WLST session.

wls:/mydomain/edit !> isRestartRequired()
Server re-start is REQUIRED for the set of changes in progress.

The following attribute(s) have been changed on MBeans that require server
re-start.
MBean Changed : mydomain:Name=mydomain,Type=Domain
Attributes changed : AutoConfigurationSaveEnabled

The following example specifies whether a server restart is required if you edit the
ConsoleEnabled attribute.

wls:/mydomain/edit !> isRestartRequired("ConsoleEnabled")
Server re-start is REQUIRED if you change the attribute ConsoleEnabled
wls:/mydomain/edit !>

loadDB
Command Category: Editing Commands
Use with WLST: Offline

Description
Loads SQL files into a database.

The loadDB command loads the SQL files from a template file. This command can only be issued
after a domain template or extension template has been loaded into memory (see “readDomain”
on page B-17 and “readTemplate” on page B-18).

Before executing this command, ensure that the following conditions are true:

The appropriate database is running.

Argument Definition

attributeName Optional. Name of a specific attribute for which you want to check if a server
restart is required.

Ed i t ing Commands

WebLogic Scripting Tool B-57

SQL files exist for the specified database and version.

To verify that the appropriate SQL files exist, open the domain template and locate the
relevant SQL file list, jdbc.index, in the _jdbc_ directory. For example, for PointBase
version 4.4, the SQL file list is located at _jdbc_\Pointbase\44\jdbc.index.

The command fails if the above conditions are not met.

In the event of an error, the command returns a WLSTException.

Syntax
loadDB(dbVersion, datasourceName, dbCategory)

Example
The following example loads SQL files related to Drop/Create P13N Database Objects
intended for version 5.1 of the database, using the p13nDataSource JDBC data source.

wls:/offline/mydomain> loadDB('5.1', 'p13nDataSource', 'Drop/Create P13N

Database Objects')

loadProperties
Command Category: Editing Commands
Use with WLST: Online and Offline

Description
Loads property values from a file and makes them available in the WLST session.

This command cannot be used when you are importing WLST as a Jython module, as described
in “Importing WLST as a Jython Module” on page 2-19.

In the event of an error, the command returns a WLSTException.

Argument Definition

dbVersion Version of the database for which the SQL files are intended to be used.

datasourceName Name of the JDBC data source to be used to load SQL files.

dbCategory Optional. Database category associated with the specified data source.

For more information about the jdbc.index file and database categories, see
“Files Typically Included in a Template” in the Domain Template Reference.

../../../common/docs103/install/../tempref/tempref.html

WLST Command and Var iab le Re fe rence

B-58 WebLogic Scripting Tool

Syntax
loadProperties(fileName)

Example
This example gets and sets the properties file values.

wls:/mydomain/serverConfig> loadProperties('c:/temp/myLoad.properties')

save
Command Category: Editing Commands
Use with WLST: Online

Description
Saves the edits that have been made but have not yet been saved. This command is only valid
when an edit session is in progress. For information about starting an edit session, see “startEdit”
on page B-63.

In the event of an error, the command returns a WLSTException.

Syntax
save()

Example
The following example saves the edits that have not yet been saved to disk.

wls:/mydomain/edit !> save()

Saving all your changes ...

Saved all your changes successfully.

wls:/mydomain/edit !>

Argument Definition

fileName Properties file pathname.

Ed i t ing Commands

WebLogic Scripting Tool B-59

set
Command Category: Editing Commands
Use with WLST: Online or Offline

Description
Sets the value of a specified attribute in the current management object. When using WLST
offline, this command writes the attribute value to the domain’s configuration files. When using
WLST online, this command sets the value of an MBean attribute. Online changes are written to
the domain’s configuration file when you activate your edits.

In the event of an error, the command returns a WLSTException.

For information about setting encrypted attributes (all encrypted attributes have names that end
with Encrypted), see “Writing and Reading Encrypted Configuration Values” on page 2-8.

Note the following when using WLST online:

You must be in an edit session to use this command. See “startEdit” on page B-63.

You cannot use this command when WLST is connected to a Managed Server.

As an alternative to this command, you can use the cmo variable with the following syntax:
cmo.setattrName(value)

For example, instead of using set(‘ListenPort’, 7011), you can use:
cmo.setListenPort(7011)

For more information about the cmo variable, see “Changing the Current Management
Object” on page 5-2.

Syntax
set(attrName, value)

Argument Definition

attrName Name of the attribute to be set.

value Value of the attribute to be set.

Note: This value should not be enclosed in single or double quotes.

WLST Command and Var iab le Re fe rence

B-60 WebLogic Scripting Tool

Example
The following example sets the ArchiveConfigurationCount attribute of DomainMBean to 10:

wls:/mydomain/serverConfig> set('ArchiveConfigurationCount',10)

The following example sets the long value of the T1TimerInterval attribute of a custom Mbean
to 123:

wls:/mydomain/serverConfig> set(‘T1TimerInterval’, Long(123))

The following example sets the boolean value of the MyBooleanAttribute attribute of a custom
Mbean to true:

wls:/mydomain/serverConfig> set(‘MyBooleanAttribute’, Boolean(true))

setOption
Command Category: Editing Commands
Use with WLST: Offline

Description
Sets options related to a domain creation or update. In the event of an error, the command returns
a WLSTException.

Ed i t ing Commands

WebLogic Scripting Tool B-61

Syntax
setOption(optionName, optionValue)

Argument Definition

optionName Name of the option to set.
Available options for domain creation include:
• CreateStartMenu—Boolean value specifying whether to create a Start Menu shortcut on a

Windows platform. This option defaults to true.

Note: If a user with Administrator privileges installed the software and chose to create the Start
menu entries in the All Users folder, only users with Administrator privileges can create
Start menu entries in the same folder when creating a domain using the Configuration
Wizard or WLST. That is, if a user without Administrator privileges uses the Configuration
Wizard or WLST from this installation to create domains, Start menu shortcuts to the
domains are not created. In this case, the users can manually create shortcuts in their local
Start menu folder, if desired.

• DomainName—Name of the domain. By default, the name of the domain is derived from the
name of the domain directory. For example, for a domain saved to
c:/bea/user_projects/domains/myMedrec, the domain name is myMedrec. By
setting DomainName, the name of the created domain will be independent of the domain
directory name.

• JavaHome—Home directory for the JVM to be used when starting the server. The default for
this option depends on the platform on which you install WebLogic Server.

• OverwriteDomain—Boolean value specifying whether to allow an existing domain to be
overwritten. This option defaults to false.

• ServerStartMode—Mode to use when starting the server for the newly created domain. This
value can be dev (development) or prod (production). This option defaults to dev.

Available options for domain updates include:
• AllowCasualUpdate—Boolean value specifying whether to allow a domain to be updated

without adding an extension template. This option defaults to true.
• ReplaceDuplicates—Boolean value specifying whether to keep original configuration

elements in the domain or replace the elements with corresponding ones from an extension
template when there is a conflict. This option defaults to true.

WLST Command and Var iab le Re fe rence

B-62 WebLogic Scripting Tool

Example
The following example sets the CreateStartMenu option to false:

wls:/offline> setOption('CreateStartMenu', 'false')

showChanges
Command Category: Editing Commands
Use with WLST: Online

Description
Shows the changes made to the configuration by the current user during the current edit session.
In the event of an error, the command returns a WLSTException.

optionName
(Continued)

Available options for both domain creation and domain updates include:
• AppDir—Application directory to be used when a separate directory is desired for applications,

as specified by the template. This option defaults to
BEAHOME/user_projects/applications/domainname, where BEAHOME specifies
the BEA home directory and domainname specifies the name of the domain.

• AutoAdjustSubDeploymentTarget—Boolean value specifying whether WLST
automatically adjusts targets for the subdeployments of AppDeployments. This option defaults
to true. To deactivate this feature, set the option to false and explicitly set the targeting for
AppDeployment subdeployments before writing or updating the domain or domain template.

AutoDeploy—Boolean value specifying whether to activate auto deployment when a cluster or
multiple Managed Servers are created. This option defaults to true. To deactivate this feature, set
the option to false on the first line of your script.

optionValue Value for the option.

Note: Boolean values can be specified as a String (true, false) or integer (0, 1).

Argument Definition (Continued)

Ed i t ing Commands

WebLogic Scripting Tool B-63

Syntax
showChanges([onlyInMemory])

Example
The following example shows all of the changes made by the current user to the configuration
since the start of the current edit session.

wls:/mydomain/edit !> showChanges()

Changes that are in memory and saved to disc but not yet activated are:

MBean Changed : com.bea:Name=basicWLSDomain,Type=Domain

Operation Invoked : add

Attribute Modified : Machines

Attributes Old Value : null

Attributes New Value : Mach1

Server Restart Required : false

MBean Changed : com.bea:Name=basicWLSDomain,Type=Domain

Operation Invoked : add

Attribute Modified : Servers

Attributes Old Value : null

Attributes New Value : myserver

Server Restart Required : false

startEdit
Command Category: Editing Commands
Use with WLST: Online

Argument Definition

onlyInMemory Optional. Boolean value specifying whether to display only the changes that have not
yet been saved. This argument defaults to false, indicating that all changes that have
been made from the start of the session are displayed.

WLST Command and Var iab le Re fe rence

B-64 WebLogic Scripting Tool

Description
Starts a configuration edit session on behalf of the currently connected user. You must navigate
to the edit configuration MBean hierarchy using the edit command before issuing this
command. For more information, see “edit” on page B-127.

This command must be called prior to invoking any command to modify the domain
configuration.

In the event of an error, the command returns a WLSTException.

Note: WLST automatically starts an edit session if it detects that there is an edit session that is
already in progress by the same user, which may have been started via the Administration
Console or another WLST session.

Syntax
startEdit([waitTimeInMillis], [timeoutInMillis], [exclusive])

Example
The following example saves the edits that have not yet been saved to disk.

wls:/mydomain/edit> startEdit(60000, 120000)

Starting an edit session ...

Started edit session, please be sure to save and activate your changes once

you are done.

wls:/mydomain/edit !>

Argument Definition

waitTimeInMillis Optional. Time (in milliseconds) that WLST waits until it gets a lock, in the event that
another user has a lock. This argument defaults to 0 ms.

timeOutInMillis Optional. Timeout (in milliseconds) that WLST waits to release the edit lock. This
argument defaults to -1 ms, indicating that this edit session never expires.

exclusive Optional. Specifies whether the edit session should be an exclusive session. If set to
true, if the same owner enters the startEdit command, WLST waits until the
current edit session lock is released before starting the new edit session. The exclusive
lock times out according to the time specified in timeoutInMillis. This argument
defaults to false.

Ed i t ing Commands

WebLogic Scripting Tool B-65

stopEdit
Command Category: Editing Commands
Use with WLST: Online

Description
Stops the current edit session, releases the edit lock, and discards unsaved changes.

In the event of an error, the command returns a WLSTException.

Syntax
stopEdit([defaultAnswer])

Example
The following example stops the current editing session. WLST prompts for verification before
canceling.

wls:/mydomain/edit !> stopEdit()

Sure you would like to stop your edit session? (y/n)

y

Edit session has been stopped successfully.

wls:/mydomain/edit>

unassign
Command Category: Editing Commands
Use with WLST: Offline

Description
Unassign applications or resources from one or more destinations.

In the event of an error, the command returns a WLSTException.

Argument Definition

defaultAnswer Optional. Default response, if you would prefer not to be prompted at the command
line. Valid values are y and n. This argument defaults to null, and WLST prompts you
for a response.

WLST Command and Var iab le Re fe rence

B-66 WebLogic Scripting Tool

Syntax
unassign(sourceType, sourceName, destinationType, destinationName)

Use the following guidelines for setting the sourceType and destinationType:

When unassigning application deployments, set the values as follows:

– sourceType: AppDeployment

– destinationType: Target

When unassigning libraries, set the values as follows:

– sourceType: Library

Argument Definition

sourceType Type of configuration bean to be unassigned. This value can be set to one of the
following values:
• AppDeployment

• Library

• securityType (such as User)
• Server

• service (such as JDBCSystemResource)
• service.SubDeployment, where service specifies the service type of

the SubDeployment (such as JMSSystemResource.SubDeployment);
you can also specify nested subdeployments (such as
AppDeployment.SubDeployment.SubDeployment)

sourceName Name of the application or resource to be unassigned. Multiple names can be
specified, separated by commas, or you can use the wildcard (*) character to specify
all resources of the specified type.
Specify subdeployments using the following format: service.subDeployment,
where service specifies the parent service and subDeployment specifies the
name of the subdeployment. For example,
myJMSResource.myQueueSubDeployment. You can also specify
nested subdeployments, such as
MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer.

destinationType Type of destination. Guidelines for setting this value are provided below.

destinationName Name of the destination. Multiple names can be specified, separated by commas.

Ed i t ing Commands

WebLogic Scripting Tool B-67

– destinationType: Target

When unassigning security types, set the values as follows:

– sourceType: Name of the security type, such as User

– destinationType: Name of the destination security type, such as Group

When unassigning servers from clusters, set the values as follows:

– sourceType: Server

– destinationType: Cluster

When unassigning services, set the values as follows:

– sourceType: Name of the specific server, such as JDBCSystemResource

– destinationType: Target

When unassigning subdeployments, set the values as follows:

– sourceType: service.SubDeployment, where service specifies the parent of the
SubDeployment, such as JMSSystemResource.SubDeployment; you can also specify
nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment)

– destinationType: Target

Example
The following examples:

Unassign the servers myServer and myServer2 from the cluster myCluster.

wls:/offline/medrec> unassign("Server", "myServer,myServer2", "Cluster",
"myCluster")

Unassign all servers from the cluster myCluster.

wls:/offline/mydomain> unassign("Server", "*", "Cluster", "myCluster")

Unassign the user newUser from the group Monitors.

wls:/offline/medrec> unassign("User", "newUser", "Group", "Monitors")

Unassign the application deployment myAppDeployment from the target server
newServer.

wls:/offline/mydomain> unassign("AppDeployment", "myAppDeployment",
"Target", "newServer")

WLST Command and Var iab le Re fe rence

B-68 WebLogic Scripting Tool

Unassign the nested SubDeployment MedRecAppScopedJMS.MedRecJMSServer, which is
a child of the AppDeployment AppDeployment, from the target server AdminServer.

wls:/offline/mydomain>
assign('AppDeployment.SubDeployment.SubDeployment',
'MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer', 'Target','AdminServer')

unassignAll
Command Category: Editing Commands
Use with WLST: Offline

Description
Note: This command is deprecated as of WebLogic Server 9.0. You should update your script to use

the unassign command as described in “unassign” on page B-65. This command will
still operate on any resources that exist for the specified sourceType.

Unassigns all applications or services from one or more destinations.

In the event of an error, the command returns a WLSTException.

Syntax
unassignAll(sourceType, destinationType, destinationName)

Example
The following example unassigns all services from the servers adminServer and cluster1.

wls:/offline/medrec> unassignAll("Services", "Target",

"adminServer,cluster1")

The following services, if present, are unassigned from the specified targets:
MigratableRMIService, Shutdownclass, Startupclass, FileT3, RMCFactory,
MailSession, MessagingBridge, JMSConnectionFactory, JDBCConnectionPool,

Argument Definition

sourceType Type of applications or services to be unassigned. This value can be set to
Applications or Services.

destinationType Type of destination. This value must be set to Target.

destinationName Name(s) of the destination. Multiple names can be specified, separated by commas.

Ed i t ing Commands

WebLogic Scripting Tool B-69

JDBCMultipool, JDBCTxDatasource, JDBCDataSource, JDBCPoolComp,
JoltConnectionPool, WLECConnectionPool, and WTCServer.

undo
Command Category: Editing Commands
Use with WLST: Online

Description
Reverts all unsaved or unactivated edits.

You specify whether to revert all unactivated edits (including those that have been saved to disk),
or all edits made since the last save operation. This command does not release the edit session.

In the event of an error, the command returns a WLSTException.

Syntax
undo([unactivateChanges], [defaultAnswer])

Example
The following example reverts all changes since the last save operation. WLST prompts for
verification before reverting.

wls:/mydomain/edit !> undo()

Sure you would like to undo your changes? (y/n)

y

Discarded your in-memory changes successfully.

wls:/mydomain/edit>

Argument Definition

unactivateChanges Optional. Boolean value specifying whether to undo all unactivated changes,
including edits that have been saved to disk. This argument defaults to false,
indicating that all edits since the last save operation are reverted.

defaultAnswer Optional. Default response, if you would prefer not to be prompted at the command
line. Valid values are y and n. This argument defaults to null, and WLST prompts
you for a response.

WLST Command and Var iab le Re fe rence

B-70 WebLogic Scripting Tool

The following example reverts all unactivated changes. WLST prompts for verification before
reverting.

wls:/mydomain/edit !> undo('true')

Sure you would like to undo your changes? (y/n)

y

Discarded all your changes successfully.

wls:/mydomain/edit>

validate
Command Category: Editing Commands
Use with WLST: Online

Description
Validates the changes that have been made but have not yet been saved. This command enables
you to verify that all changes are valid before saving them.

In the event of an error, the command returns a WLSTException.

Syntax
validate()

Example
The following example validates all changes that have been made but have not yet been saved.

wls:/mydomain/edit !> validate()

Validating changes ...

Validated the changes successfully

Information Commands
Use the WLST information commands, listed in Table B-7, to interrogate domains, servers, and
variables, and provide configuration bean, runtime bean, and WLST-related information.

In fo rmat ion Commands

WebLogic Scripting Tool B-71

Table B-7 Information Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“addListener” on page B-72 Add a JMX listener to the specified MBean. Online

“configToScript” on page B-73 Convert an existing server configuration (config
directory) to an executable WLST script

Online or
Offline

“dumpStack” on page B-75 Display stack trace from the last exception that
occurred while performing a WLST action, and
reset the stack trace.

Online or
Offline

“dumpVariables” on page B-76 Display all variables used by WLST, including
their name and value.

Online or
Offline

“find” on page B-77 Find MBeans and attributes in the current
hierarchy.

Online

“getConfigManager” on page B-78 Return the latest
ConfigurationManagerBean MBean which
manages the change process.

Online

“getMBean” on page B-79 Return the MBean by browsing to the specified
path.

Online

“getMBI” on page B-79 Return the MBeanInfo for the specified
MBeanType or the cmo variable.

Online

“getPath” on page B-80 Return the MBean path for the specified MBean
instance.

Online

“listChildTypes” on page B-81 List all the children MBeans that can be created or
deleted for the cmo type.

Online

“lookup” on page B-82 Look up the specified MBean. Online

“ls” on page B-82 List all child beans and/or attributes for the current
configuration or runtime bean.

Online or
Offline

“man” on page B-87 Display help from MBeanInfo for the current
MBean or its specified attribute.

Online

WLST Command and Var iab le Re fe rence

B-72 WebLogic Scripting Tool

addListener
Command Category: Information Commands
Use with WLST: Online

Description
Adds a JMX listener to the specified MBean. Any changes made to the MBean are reported to
standard out and/or are saved to the specified configuration file.

“redirect” on page B-88 Redirect WLST output to the specified filename. Online or
Offline

“removeListener” on page B-88 Remove a listener that was previously defined. Online

“showListeners” on page B-89 Show all listeners that are currently defined. Online

“startRecording” on page B-89 Record all user interactions with WLST; useful for
capturing commands to replay.

Online or
Offline

“state” on page B-90 Returns a map of servers or clusters and their state
using Node Manager.

Online

“stopRecording” on page B-91 Stop recording WLST commands. Online or
Offline

“stopRedirect” on page B-92 Stop redirection of WLST output to a file. Online or
Offline

“storeUserConfig” on page B-92 Create a user configuration file and an associated
key file.

Online

“threadDump” on page B-94 Display a thread dump for the specified server. Online or
Offline

“viewMBean” on page B-95 Display information about an MBean, such as the
attribute names and values, and operations.

Online

“writeIniFile” on page B-96 Convert WLST definitions and method
declarations to a Python (.py) file.

Online or
Offline

Table B-7 Information Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...

In fo rmat ion Commands

WebLogic Scripting Tool B-73

In the event of an error, the command returns a WLSTException.

Syntax
addListener(mbean, [attributeNames], [logFile], [listenerName])

Example
The following example defines a JMX listener on the cmo MBean for the Notes and
ArchiveConfigurationCount attributes. The listener is named domain-listener and is
stored in ./listeners/domain.log.

wls:/mydomain/serverConfig> addListener(cmo,

"Notes,ArchiveConfigurationCount","./listeners/domain.log","domain-listene

r")

configToScript
Command Category: Information Commands
Use with WLST: Online or Offline

Converts an existing server configuration (config directory) to an executable WLST script. You
can use the resulting script to re-create the resources on other servers.

The configToScript command creates the following files:

A WLST script that contains the commands needed to recreate the configuration.

A properties file that contains domain-specific values. You can update the values in this
file to create new domains that are similar to the original configuration.

Argument Definition

mbean Name of the MBean or MBean object to listen on.

attributeNames Optional. Comma-separated list of all attribute names on which you would like to add
a JMX listener. This argument defaults to null, and adds a JMX listener for all attributes.

logFile Optional. Name and location of the log file to which you want to write listener
information.This argument defaults to standard out.

listenerName Optional. Name of the JMX listener. This argument defaults to a WLST-generated
name.

WLST Command and Var iab le Re fe rence

B-74 WebLogic Scripting Tool

A user configuration file and an associated key file to store encrypted attributes. The user
configuration file contains the encrypted information. The key file contains a secret key
that is used to encrypt and decrypt the encrypted information.

When you run the generated script:

If a server is currently running, WLST will try to connect using the values in the properties
file and then run the script commands to create the server resources.

If no server is currently running, WLST will start a server with the values in the properties
file, run the script commands to create the server resources, and shutdown the server. This
may cause WLST to exit from the command shell.

In the event of an error, the command returns a WLSTException.

Syntax
configToScript([configPath], [pyPath], [overwrite], [propertiesFile],
[createDeploymentScript])

Argument Definition

configPath Optional. Path to the domain directory that contains the configuration that you
want to convert. This argument defaults to the directory from which you start
WLST(./).

pyPath Optional. Path and filename to which you want to write the converted WLST
script. This argument defaults to ./config/config.py.

overwrite Optional. Boolean value specifying whether the script file should be overwritten
if it already exists. This argument defaults to true, indicating that the script file
is overwritten.

propertiesFile Optional. Path to the directory in which you want WLST to write the properties
files. This argument defaults to the pathname specified for the scriptPath
argument.

createDeploymentSc
ript

Optional. Boolean value specifying whether WLST creates a script that performs
deployments only. This argument defaults to false, indicating that a deployment
script is not created.

In fo rmat ion Commands

WebLogic Scripting Tool B-75

Example
The following example converts the configuration to a WLST script config.py. By default, the
configuration file is loaded from ./config, the script file is saved to .config/config.py, and
the properties files is saved to .config/config.py.properties.

wls:/offline> configToScript()

configToScript is loading configuration from

c:\bea\user_projects\domains\wls\config\config.xml ...

Completed configuration load, now converting resources to wlst script...

configToScript completed successfully

The WLST script is written to

c:\bea\user_projects\domains\wls\config\config.py

and the properties file associated with this script is written to

c:\bea\user_projects\domains\wls\config\config.py.properties

wls:/offline>

The following example converts server resources configured in the file
c:\bea\user_projects\domains\mydomain\config directory to a WLST script
c:\bea\myscripts\config.py.

wls:/offline> configToScript('c:/bea/user_projects/domains/mydomain',

'c:/bea/myscripts')

configToScript is loading configuration from

c:\bea\user_projects\domains\mydomain\config\config.xml ...

Completed configuration load, now converting resources to wlst script...

configToScript completed successfully

The WLST script is written to c:\bea\myscripts\config.py

and the properties file associated with this script is written to

c:\bea\mydomain\config.py.properties

wls:/offline>

dumpStack
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Displays the stack trace from the last exception that occurred while performing a WLST action,
and resets the stack trace.

WLST Command and Var iab le Re fe rence

B-76 WebLogic Scripting Tool

If successful, the dumpstack command returns the Throwable object. In the event of an error, the
command returns a WLSTException.

Syntax
dumpStack()

Example
This example displays the stack trace.

wls:/myserver/serverConfig> dumpStack()

com.bea.plateng.domain.script.jython.WLSTException:

java.lang.reflect.Invocation TargetException

...

dumpVariables
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Displays all the variables used by WLST, including their name and value. In the event of an error,
the command returns a WLSTException.

Syntax
dumpVariables()

Example
This example displays all the current variables and their values.

wls:/mydomain/serverConfig> dumpVariables()

adminHome weblogic.rmi.internal.BasicRemoteRef - hostID:

 '-1 108080150904263937S:localhost:[7001,8001,-1,-1,-1,-1,-1]:

 mydomain:AdminServer', oid: '259', channel: 'null'

cmgr [MBeanServerInvocationHandler]com.bea:Name=ConfigurationManager,

 Type=weblogic.management.mbeanservers.edit.ConfigurationManagerMBean

cmo [MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain

connected true

In fo rmat ion Commands

WebLogic Scripting Tool B-77

domainName mydomain

...

wls:/mydomain/serverConfig>

find
Command Category: Information Commands
Use with WLST: Online

Description
Finds MBeans and attributes in the current hierarchy.

WLST returns the pathname to the MBean that stores the attribute and/or attribute type, and its
value. If searchInstancesOnly is set to false, this command also searches the MBeanType
paths that are not instantiated in the server, but that can be created. In the event of an error, the
command returns a WLSTException.

Syntax
find([name], [type], [searchInstancesOnly])

Example
The following example searches for an attribute named javaCompiler in the current
configuration hierarchy.

wls:/mydomain/serverConfig> find(name = 'JavaCompiler')

Finding 'JavaCompiler' in all registered MBean instances ...

/Servers/AdminServer JavaCompilerPreClassPath null

/Servers/AdminServer JavaCompiler java

Argument Definition

name Optional. Name of the attribute to find.

type Optional. Type of the attribute to find.

searchInstancesOnly Optional. Boolean value specifying whether to search registered instances only
or to also search MBeanTypes paths that are not instantiated in the server, but
that can be created. This argument defaults to true, indicating only the
registered instances will be searched.

WLST Command and Var iab le Re fe rence

B-78 WebLogic Scripting Tool

/Servers/AdminServer JavaCompilerPostClassPath null

wls:/mydomain/serverConfig>

The following example searches for an attribute of type JMSRuntime in the current configuration
hierarchy.

wls:/mydomain/serverRuntime> find(type='JMSRuntime')

Finding MBean of type 'JMSRuntime' in all the instances ...

/JMSRuntime/AdminServer.jms

wls:/mydomain/serverRuntime>

The following example searches for an attribute named execute in the current configuration
hierarchy. The searchInstancesOnly argument is set to false, indicating to also search
MBeanTypes that are not instantiated in the server.

wls:/mydomain/serverConfig> find(name='execute',

searchInstancesOnly='false')

Finding 'execute' in all registered MBean instances ...

/Servers/AdminServer ExecuteQueues

[Ljavax.management.ObjectName;@1aa7dbc

/Servers/AdminSever Use81StyleExecuteQueues

false

Now finding 'execute' in all MBean Types that can be instantiated ...

/Servers ExecuteQueues

/Servers Use81StyleExecuteQueues

wls:/mydomain/serverConfig>

getConfigManager
Command Category: Editing Commands
Use with WLST: Online

Description
Returns the latest ConfigurationManager MBean which manages the change process. You can
then invoke methods to manage configuration changes across a domain. In the event of an error,
the command returns a WLSTException.

Syntax
getConfigManager()

In fo rmat ion Commands

WebLogic Scripting Tool B-79

Example
The following example returns the latest ConfigurationManagerBean MBean and stores it
within the task variable.

wls:/mydomain/serverConfig> cm=getConfigManager()

wls:/mydomain/serverConfig> cm=getType()

'weblogic.management.mbeanservers.edit.ConfigurationManagerMBean'

getMBean
Command Category: Information Commands
Use with WLST: Online

Description
Returns the MBean by browsing to the specified path. In the event of an error, the command
returns a WLSTException.

Note: No exception is thrown if the MBean is not found.

Syntax
getMBean(mbeanPath)

Example
The following example returns the MBean specified by the path.

wls:/mydomain/edit !> com=getMBean('Servers/myserver/COM/myserver')
wls:/mydomain/edit !> com.getType()
‘Server’

getMBI
Command Category: Information Commands
Use with WLST: Online

Argument Definition

mbeanPath Path name to the MBean in the current hierarchy.

WLST Command and Var iab le Re fe rence

B-80 WebLogic Scripting Tool

Description
Returns the MBeanInfo for the specified MBeanType or the cmo variable. In the event of an error,
the command returns a WLSTException.

Syntax
getMBI([mbeanType])

Example
The following example gets the MBeanInfo for the specified MBeanType and stores it in the
variable svrMbi.

wls:/mydomain/serverConfig>

svrMbi=getMBI('weblogic.management.configuration.ServerMBean')

getPath
Command Category: Information Commands
Use with WLST: Online

Description
Returns the MBean path for the specified MBean instance or ObjectName for the MBean in the
current tree. In the event of an error, the command returns a WLSTException.

Syntax
getPath(mbean)

Argument Definition

mbeanType Optional. MBeanType for which the MBeanInfo is displayed.

Argument Definition

mbean MBean instance or ObjectName for the MBean in the current tree for which you want
to return the MBean path.

In fo rmat ion Commands

WebLogic Scripting Tool B-81

Example
The following example returns the MBean specified by the path.

wls:/mydomain/edit !> path=getPath('com.bea:Name=myserver,Type=Server')

wls:/mydomain/edit !> print path

'Servers/myserver'

listChildTypes
Command Category: Information Commands
Use with WLST: Online

Description
Lists all the child MBeans that can be created or deleted for the cmo. The cmo variable specifies
the configuration bean instance to which you last navigated using WLST. For more information about
the cmo variable, see “Changing the Current Management Object” on page 5-2.

In the event of an error, the command returns a WLSTException.

Syntax
listChildTypes([parent])

Example
The following example lists the children MBeans that can be created or deleted for the cmo type.

wls:/mydomain/serverConfig> listChildTypes()

AppDeployments

BridgeDestinations

CachingRealms

Clusters

...

wls:/mydomain/serverConfig>

Argument Definition

parent Optional. Parent type for which you want the children types listed.

WLST Command and Var iab le Re fe rence

B-82 WebLogic Scripting Tool

lookup
Command Category: Information Commands
Use with WLST: Online

Description
Looks up the specified MBean. The MBean must be a child of the current MBean. In the event
of an error, the command returns a WLSTException.

Syntax
lookup(name, [childMBeanType])

Example
The following example looks up the specified server, myserver, and stores the returned stub in
the sbean variable.

wls:/mydomain/serverConfig> sbean=lookup('myserver','Server')

wls:/mydomain/serverConfig> sbean.getType()

‘Server’

wls:/mydomain/serverConfig>

ls
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Lists the attributes, operations, and child management objects of the specified management
object.

In the event of an error, the command returns a WLSTException.

By default, the output is returned as a string and is arranged in three columns:

Argument Definition

name Name of the MBean that you want to lookup.

childMBeanType Optional. The type of the MBean that you want to lookup.

In fo rmat ion Commands

WebLogic Scripting Tool B-83

The first column displays a set of codes that describe the listed item. See Table B-8.

The second column displays the item name.

When the item is an attribute, the third column displays the attribute value. If an attribute is
encrypted, the third column displays asterisks instead of the value. (See “Writing and
Reading Encrypted Configuration Values” on page 2-8.)

When the item is an operation, the third column uses the following pattern to display the
operation’s return type and input parameters: returnType:
parameterType(parameterName)

By default, the output lists all attributes, operations, and child management objects of the current
management object. To filter the output or to see a list for a different management object, you can
specify a command argument.

Note the following when using WLST offline:

As a performance optimization, WebLogic Server does not store most of its default values
in the domain’s configuration files. In some cases, this optimization prevents entire
management objects from being displayed by WLST offline (because WebLogic Server has
never written the corresponding XML elements to the domain’s configuration files). For

Table B-8 ls Command Output Information

Code Description

d Indicates that the item is a child management object.

Like a directory in a UNIX or Windows file system, you can use the cd command to
make the child object the current management object.

r Indicates that the item is a child management object or an attribute that is readable,
assuming that current user has been given read permission by the security realm’s
policies. (See Default Security Policies for MBeans in the WebLogic Server MBean
Reference.)

w Indicates that the item is an attribute that is writable, assuming that current user has
been given write permission by the security realm’s policies. (See Default Security
Policies for MBeans in the WebLogic Server MBean Reference.)

x Indicates that the item is an operation that can be executed, assuming that current user
has been given execute permission by the security realm’s policies. (See Default
Security Policies for MBeans in the WebLogic Server MBean Reference.)

http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/mbeansecroles.html

WLST Command and Var iab le Re fe rence

B-84 WebLogic Scripting Tool

example, if you never modify the default logging severity level for a domain while the
domain is active, WLST offline will not display the domain’s Log management object.

If you want to change the default value of attributes whose management object is not
displayed by WLST offline, you must first use the create command to create the
management object. Then you can cd to the management object and change the attribute
value. See “create” on page B-49.

Syntax
ls([a | c | o] [moPath])

ls([moPath] returnMap [returnType])

Argument Definition

a Optional. Displays only the attributes of the specified management object (suppresses
the display of other items).

c Optional. Displays only the child management objects of the specified management
object (suppresses the display of other items).

o Optional. Displays only the operations that can be invoked on the specified
management object (suppresses the display of other items).

This argument is only applicable for WLST online.

moPath Optional. Path name to the management object for which you want to list attributes,
operations, and child management objects.
You can specify a pathname that is relative to your current location in the hierarchy or
an absolute pathname.
With WLST offline, use the forward-slash character (/) to specify the root of the
configuration document.
With WLST online, you can list the contents of MBeans in any management hierarchy
(see “Tree Commands” on page B-120). Use the following syntax to specify the root of
a hierarchy:
root-name:/
For example, to list the root of the server runtime hierarchy:
ls('serverRuntime:/')
If you do not specify this argument, the command lists items for the current
management object.

returnMap Optional. Boolean value that determines whether the command returns values as a map.
This argument defaults to false, which causes this command to return a String.

In fo rmat ion Commands

WebLogic Scripting Tool B-85

Example
The following example displays all the child configuration beans, and attribute names and values
for the examples domain, which has been loaded into memory, in WLST offline mode:

wls:/offline/mydomain > ls()

dr-- AppDeployments

dr-- BridgeDestinations

dr-- Clusters

dr-- CustomResources

dr-- DeploymentConfiguration

dr-- Deployments

dr-- EmbeddedLDAP

dr-- ErrorHandlings

dr-- FileStores

dr-- InternalAppDeployments

dr-- InternalLibraries

dr-- JDBCDataSourceFactories

dr-- JDBCStores

dr-- JDBCSystemResources

dr-- JMSBridgeDestinations

dr-- JMSInteropModules

dr-- JMSServers

dr-- JMSSystemResources

dr-- JMX

...

wls:/offline/examples>

The following example displays all the attribute names and values in DomainMBean:

wls:/mydomain/serverConfig> ls('a')

-r-- AdminServerName AdminServer

-r-- AdministrationMBeanAuditingEnabled false

returnType Optional. Controls the output returned in the map. Specify a, c, or o, which filter the
output as described at the top of this table.

This argument is valid only if returnMap is set to true. This argument defaults to c.

Argument Definition (Continued)

WLST Command and Var iab le Re fe rence

B-86 WebLogic Scripting Tool

-r-- AdministrationPort 9002

-r-- AdministrationPortEnabled false

-r-- AdministrationProtocol t3s

-r-- ArchiveConfigurationCount 0

-r-- ClusterConstraintsEnabled false

-r-- ConfigBackupEnabled false

-r-- ConfigurationAuditType none

-r-- ConfigurationVersion 9.0.0.0

-r-- ConsoleContextPath console

-r-- ConsoleEnabled true

-r-- ConsoleExtensionDirectory console-ext

-r-- DomainVersion 9.0.0.0

-r-- LastModificationTime 0

-r-- Name basicWLSDomain

-r-- Notes null

-r-- Parent null

-r-- ProductionModeEnabled false

-r-- RootDirectory .

-r-- Type Domain

wls:/mydomain/serverConfig>

The following example displays all the child beans and attribute names and values in Servers
MBean:

wls:/mydomain/serverConfig> ls('Servers')

dr-- AdminServer

The following example displays the attribute names and values for the specified MBean path and
returns the information in a map:

wls:/mydomain/serverConfig> svrAttrList = ls('edit:/Servers/myserver',

'true', 'a')

-rw- AcceptBacklog 50

-rw- AdminReconnectIntervalSeconds 10

-rw- AdministrationPort 9002

-rw- AdministrationProtocol t3s

-rw- AutoKillIfFailed false

-rw- AutoMigrationEnabled false

-rw- AutoRestart true

-rw- COMEnabled false

In fo rmat ion Commands

WebLogic Scripting Tool B-87

-rw- ClasspathServletDisabled false

-rw- ClientCertProxyEnabled false

-rw- Cluster null

-rw- ClusterRuntime null

-rw- ClusterWeight 100

wls:/mydomain/serverConfig>

man
Command Category: Information Commands
Use with WLST: Online

Description
Displays help from MBeanInfo for the current MBean or its specified attribute. In the event of an
error, the command returns a WLSTException.

Syntax
man([attrName])

Example
The following example displays help from MBeanInfo for the ServerMBean bean.

wls:/mydomain/serverConfig> man('Servers')

dynamic : true

creator : createServer

destroyer : destroyServer

description : <p>Returns the ServerMBeans representing the servers that have

been configured to be part of this domain.</p>

descriptorType : Attribute

Name : Servers

interfaceClassName : [Lweblogic.management.configuration.ServerMBean;

displayName : Servers

relationship : containment

Argument Definition

attrName Optional. MBean attribute name for which you would like to display help. If not
specified, WLST displays helps for the current MBean.

WLST Command and Var iab le Re fe rence

B-88 WebLogic Scripting Tool

redirect
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Redirects WLST information, error, and debug messages to the specified filename. Also redirects
the output of the dumpStack() and dumpVariables() commands to the specified filename.

In the event of an error, the command returns a WLSTException.

Syntax
redirect(outputFile, [toStdOut])

Example
The following example begins redirecting WLST output to the logs/wlst.log file:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log')

removeListener
Command Category: Information Commands
Use with WLST: Online

Description
Removes a listener that was previously defined. If you do not specify an argument, WLST
removes all listeners defined for all MBeans. For information about setting a listener, see
“addListener” on page B-72.

In the event of an error, the command returns a WLSTException.

Argument Definition

outputFile Name of the file to which you want to record the WLST commands. The filename can
be absolute or relative to the directory from which you started WLST.

toStdOut Optional. Boolean value specifying whether the output should be sent to stdout. This
argument defaults to true, indicating that the output will be sent to stdout.

In fo rmat ion Commands

WebLogic Scripting Tool B-89

Syntax
removeListener([mbean], [listenerName])

Example
The following example removes the listener named mylistener.

wls:/mydomain/serverConfig> removeListener(listenerName="mylistener")

showListeners
Command Category: Information Commands
Use with WLST: Online

Description
Shows all listeners that are currently defined. For information about setting a listener, see
“addListener” on page B-72.

In the event of an error, the command returns a WLSTException.

Syntax
showListeners()

Example
The following example shows all listeners that are currently defined.

wls:/mydomain/serverConfig> showListeners()

startRecording
Command Category: Information Commands
Use with WLST: Online or Offline

Argument Definition

mbean Optional. Name of the MBean or MBean object for which you want to remove the
previously defined listeners.

listenerName Optional. Name of the listener to be removed.

WLST Command and Var iab le Re fe rence

B-90 WebLogic Scripting Tool

Description
Records all user interactions with WLST. This command is useful for capturing commands for
replay.

In the event of an error, the command returns a WLSTException.

This command cannot be used when you are importing WLST as a Jython module, as described
in “Importing WLST as a Jython Module” on page 2-19.

Syntax
startRecording(recordFile, [recordAll])

Example
The following example begins recording WLST commands in the record.py file:

wls:/mydomain/serverConfig> startRecording('c:/myScripts/record.py')

Starting recording to c:/myScripts/record.py

wls:/mydomain/serverConfig>

state
Command Category: Information Commands
Use with WLST: Online

Description
Using Node Manager, returns a map of servers or clusters and their state. Node Manager must be
running.

For more information about server states, see “Understanding Server Life Cycle” in Managing
Server Startup and Shutdown.

Argument Definition

recordFile Name of the file to which you want to record the WLST commands. The filename can
be absolute or relative to the directory from which you invoked WLST.

recordAll Optional. Boolean value specifying whether to capture all user interactions in the file.
This argument defaults to false, indicating that only WLST commands are captured,
and not WLST command output.

http://e-docs.bea.com/wls/docs103/server_start/server_life.html

In fo rmat ion Commands

WebLogic Scripting Tool B-91

In the event of an error, the command returns a WLSTException.

Syntax
state(name, [type])

Example
The following example returns the state of the Managed Server, managed1.

wls:/mydomain/serverConfig> state('managed1','Server')

Current state of "managed1": SUSPENDED

wls:/mydomain/serverConfig>

The following example returns the state of the cluster, mycluster.

wls:/mydomain/serverConfig> state('mycluster','Cluster')

There are 3 server(s) in cluster: mycluster

States of the servers are

MServer1---SHUTDOWN

MServer2---SHUTDOWN

MServer3---SHUTDOWN

wls:/mydomain/serverConfig>

stopRecording
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Stops recording WLST commands. For information about starting a recording, see
“startRecording” on page B-89.

Argument Definition

name Name of the server or cluster for which you want to retrieve the current state.

type Optional. Type, Server or Cluster. This argument defaults to Server. When
returning the state of a cluster, you must set this argument explicitly to Cluster, or
the command will fail.

WLST Command and Var iab le Re fe rence

B-92 WebLogic Scripting Tool

In the event of an error, the command returns a WLSTException.

Syntax
stopRecording()

Example
The following example stops recording WLST commands.

wls:/mydomain/serverConfig> stopRecording()

Stopping recording to c:\myScripts\record.py

wls:/mydomain/serverConfig>

stopRedirect
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Stops the redirection of WLST output to a file, if redirection is in progress.

In the event of an error, the command returns a WLSTException.

Syntax
stopRedirect()

Example
The following example stops the redirection of WLST output to a file:

wls:/mydomain/serverConfig> stopRedirect()

WLST output will not be redirected to myfile.txt any more

storeUserConfig
Command Category: Information Commands
Use with WLST: Online

In fo rmat ion Commands

WebLogic Scripting Tool B-93

Description
Creates a user configuration file and an associated key file. The user configuration file contains
an encrypted username and password. The key file contains a secret key that is used to encrypt
and decrypt the username and password.

Only the key file that originally encrypted the username and password can be used to decrypt the
values. If you lose the key file, you must create a new user configuration and key file pair.

In the event of an error, the command returns a WLSTException.

Syntax
storeUserConfig([userConfigFile], [userKeyFile], [nm])

Argument Definition

userConfigFile Optional. Name of the file to store the user configuration. The pathname can be
absolute or relative to the file-system directory from which you started WLST.

If you do not specify this argument, the command stores the file in your home
directory as determined by your JVM. The location of the home directory depends
on the SDK and type of operating system on which WLST is running.The default
filename is based on the following pattern:
username-WebLogicConfig.properties
where username is the user name that you used to log in to the operating system.

The command also prints to standard out the location in which it created the file.

userKeyFile Optional. Name of the file to store the key information that is associated with the
user configuration file that you specify. The pathname can be absolute or relative to
the file-system directory from which you started WLST.

If you do not specify this argument, the command stores the file in your home
directory as determined by your JVM. The location of the home directory depends
on the SDK and type of operating system on which WLST is running. The default
filename is based on the following pattern:
username-WebLogicKey.properties
where username is the user name that you used to log in to the operating system.

 The command also prints to standard out the location in which it created the file.

nm Optional. Boolean value specifying whether to store the username and password for
Node Manager or WebLogic Server. If set to true, the Node Manager username and
password is stored. This argument default to false.

WLST Command and Var iab le Re fe rence

B-94 WebLogic Scripting Tool

Example
The following example creates and stores a user configuration file and key file in the default
location.

wls:/mydomain/serverConfig> storeUserConfig()

Creating the key file can reduce the security of your system if it is not

kept in a secured location after it is created. Do you want to create the

key file? y or n

y

The username and password that were used for this current WLS connection are

stored in stored in C:\Documents and

Settings\pat\pat-WebLogicConfig.properties and

C:\Documents and Settings\pat\pat-WebLogicKey.properties.

The following example creates and stores a user configuration file and key file in the specified
locations.

wls:/mydomain/serverConfig>

storeUserConfig('c:/myFiles/myuserconfigfile.secure',

'c:/myFiles/myuserkeyfile.secure')

Creating the key file can reduce the security of your system if it is not

kept in a secured location after it is created. Do you want to create the

key file? y or n

y

The username and password that were used for this current WLS connection are

stored in c:/myFiles/mysuserconfigfile.secure and

c:/myFiles/myuserkeyfile.secure

wls:/mydomain/serverConfig>

threadDump
Command Category: Information Commands
Use with WLST: Online or Offline

Description
Displays a thread dump for the specified server. In the event of an error, the command returns a
WLSTException.

In fo rmat ion Commands

WebLogic Scripting Tool B-95

Syntax
threadDump([writeToFile], [fileName], [serverName])

Example
The following example displays the thread dump for the current server and saves the output to
the Thread_Dump_serverName file.

wls:/mydomain/serverConfig> threadDump()

The following example displays the thread dump for the server managedServer. The
information is not saved to a file.

wls:/mydomain/serverConfig> threadDump(writeToFile='false',

serverName='managedServer')

viewMBean
Command Category: Information Commands
Use with WLST: Online

Description
Displays information about an MBean, such as the attribute names and values, and operations. In
the event of an error, the command returns a WLSTException.

Argument Definition

writeToFile Optional. Boolean value specifying whether to save the output to a file. This argument
defaults to true, indicating that output is saved to a file.

fileName Optional. Name of the file to which the output is written. The filename can be absolute
or relative to the directory where WLST is running. This argument defaults to
Thread_Dump_serverName file, where serverName indicates the name of the
server. This argument is valid only if writeToFile is set to true.

serverName Optional. Server name for which the thread dump is requested. This argument defaults
to the server to which WLST is connected.
If you are connected to an Administration Server, you can display a thread dump for the
Administration Server and any Managed Server that is running in the domain. If you are
connected to a Managed Server, you can only display a thread dump for that Managed
Server.

WLST Command and Var iab le Re fe rence

B-96 WebLogic Scripting Tool

Syntax
viewMBean(mbean)

Example
The following example displays information about the current MBean, cmo.

wls:/mydomain/serverConfig> cmo.getType()
‘Domain’
wls:/mydomain/serverConfig> viewMBean(cmo)
Attribute Names and Values

XMLEntityCaches null
Targets javax.management.ObjectName[com.bea
:Name=MedRecJMSServer,Type=JMSServer,
 com.bea:Name=WSStoreForwardInternalJMSServerMedRecServer,Type=JMSServer,
 com.bea:Name=MedRecWseeJMSServer,Type=JMSServer,
 com.bea:Name=PhysWSEEJMSServer,Type=JMSServer,
 com.bea:Name=MedRecSAFAgent,Type=SAFAgent,
 com.bea:Name=AdminServer,Type=Server]
RootDirectory .
EmbeddedLDAP
com.bea:Name=OOTB_medrec,Type=EmbeddedLDAP
RemoteSAFContexts null
Libraries javax.management.ObjectName[com.bea
...
wls:/mydomain/serverConfig>

writeIniFile
Command Category: Editing Commands
Use with WLST: Online

Description
Converts WLST definitions and method declarations to a Python (.py) file to enable advanced
users to import them as a Jython module. After importing, the definitions and method declarations
are available to other Jython modules and can be accessed directly using Jython syntax. For more
information, see “Importing WLST as a Jython Module” on page 2-19.

Argument Definition

mbean MBean for which you want to display information.

L i fe Cyc l e Commands

WebLogic Scripting Tool B-97

In the event of an error, the command returns a WLSTException.

Syntax
writeIniFile(filePath)

Example
The following example converts WLST to a Python file named wl.py.

wls:/offline> writeIniFile("wl.py")

The Ini file is successfully written to wl.py

wls:/offline>

Life Cycle Commands
Use the WLST life cycle commands, listed in Table B-9, to manage the life cycle of a server
instance.

For more information about the life cycle of a server instance, see “Understanding Server Life
Cycle” in Managing Server Startup and Shutdown.

Argument Definition

filePath Full pathname to the file that you want to save the converted information.

Table B-9 Life Cycle Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“migrate” on page B-98 Migrate services to a target server within a cluster. Online

“resume” on page B-100 Resume a server instance that is suspended or in ADMIN state. Online

“shutdown” on page B-100 Gracefully shut down a running server instance or cluster. Online

“start” on page B-103 Start a Managed Server instance or a cluster using Node
Manager.

Online

http://e-docs.bea.com/wls/docs103/server_start/server_life.html
http://e-docs.bea.com/wls/docs103/server_start/server_life.html

WLST Command and Var iab le Re fe rence

B-98 WebLogic Scripting Tool

migrate
Command Category: Life Cycle Commands
Use with WLST: Online

Description
Migrates the specified services (JTA, JMS, or Server) to a targeted server within a cluster. In the
event of an error, the command returns a WLSTException.

For information about migrating services, see Service Migration in Using Clusters.

Syntax
migrate(sname, destinationName, [sourceDown], [destinationDown],

[migrationType])

“startServer” on page B-104 Start the Administration Server. Online or
Offline

“suspend” on page B-106 Suspend a running server. Online

Table B-9 Life Cycle Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...

Argument Definition

sname Name of the server from which the services should be migrated.

destinationName Name of the machine or server to which you want to migrate the services.

sourceDown Optional. Boolean value specifying whether the source server is down. This argument
defaults to true, indicating that the source server is not running.

When migrating JTA services, the sourceDown argument is ignored, if specified,
and defaults to true. The source server must be down in order for the migration of
JTA services to succeed.

http://e-docs.bea.com/wls/docs103/cluster/service_migration.html

L i fe Cyc l e Commands

WebLogic Scripting Tool B-99

Example
The following example migrates all JMS and JTA services on server1 to the server server2.
The boolean arguments specify that the source server is down and the destination server is
running.

wls:/mydomain/edit !> migrate('server1','server2', 'true', 'false', 'all')

Migrating all JMS and JTA services from 'server1' to destination ‘server2’

...

wls:/mydomain/edit !>

The following example migrates all Server services on server1 to the server server2. The
boolean arguments specify that the source server is down and the destination server is running.

wls:/mydomain/edit !> migrate('server1','server2', 'true', 'false',

'Server')

Migrating singleton server services from 'server1' to machine 'server2'...

wls:/mydomain/edit !>

destinationDown Optional. Boolean value specifying whether the destination server is down. This
argument defaults to false, indicating that the destination server is running.

If the destination is not running, and you do not set this argument to true, WLST
returns a MigrationException.

When migrating JMS-related services to a non-running server instance, the server
instance will activate the JMS services upon the next startup. When migrating the JTA
Transaction Recovery Service to a non-running server instance, the target server
instance will assume recovery services when it is started.

migrationType Optional. Type of service(s) that you want to migrate. Valid values include:
• jms—Migrate JMS-related services (JMS server, SAF agent, path service, and the

WebLogic persistent store) only.
• jta—Migrate JTA services only.
• server—Migrate Server services only.
• all—Migrate all JTA and JMS services.

This argument defaults to all.

Argument Definition (Continued)

WLST Command and Var iab le Re fe rence

B-100 WebLogic Scripting Tool

resume
Command Category: Life Cycle Commands
Use with WLST: Online

Description
Resumes a server instance that is suspended or in ADMIN state. This command moves a server to
the RUNNING state. For more information about server states, see “Understanding Server Life
Cycle” in Managing Server Startup and Shutdown.

In the event of an error, the command returns a WLSTException.

Syntax
resume([sname], [block])

Example
The following example resumes a Managed Server instance.

wls:/mydomain/serverConfig> resume('managed1', block='true')

Server 'managed1' resumed successfully.

wls:/mydomain/serverConfig>

shutdown
Command Category: Life Cycle Commands
Use with WLST: Online

Argument Definition

sname Name of the server to resume. This argument defaults to the server to which WLST is
currently connected.

block Optional. Boolean value specifying whether WLST should block user interaction until
the server is resumed. This argument defaults to false, indicating that user interaction
is not blocked. In this case, WLST returns control to the user after issuing the command
and assigns the task MBean associated with the current task to a variable that you can
use to check its status. If you are importing WLST as a Jython module, as described in
“Importing WLST as a Jython Module” on page 2-19, block is always set to true.

http://e-docs.bea.com/wls/docs103/server_start/server_life.html
http://e-docs.bea.com/wls/docs103/server_start/server_life.html

L i fe Cyc l e Commands

WebLogic Scripting Tool B-101

Description
Gracefully shuts down a running server instance or a cluster. The shutdown command waits for
all the in-process work to be completed before shutting down the server or cluster.

You shut down a server to which WLST is connected by entering the shutdown command
without any arguments.

When connected to a Managed Server instance, you only use the shutdown command to shut
down the Managed Server instance to which WLST is connected; you cannot shut down another
server while connected to a Managed Server instance.

WLST uses Node Manager to shut down a Managed Server. When shutting down a Managed
Server, Node Manager must be running.

In the event of an error, the command returns a WLSTException.

Syntax
shutdown([name], [entityType], [ignoreSessions], [timeOut], [force],
[block])

Argument Definition

name Optional. Name of the server or cluster to shutdown. This argument defaults to the
server to which WLST is currently connected.

entityType Optional. Type, Server or Cluster. This argument defaults to Server. When
shutting down a cluster, you must set this argument explicitly to Cluster, or the
command will fail.

ignoreSessions Optional. Boolean value specifying whether WLST should drop all HTTP sessions
immediately or wait for HTTP sessions to complete or timeout while shutting down.
This argument defaults to false, indicating that all HTTP sessions must complete
or timeout.

timeOut Optional. Time (in seconds) that WLST waits for subsystems to complete in-process
work and suspend themselves before shutting down the server. This argument
defaults to 0 seconds, indicating that there is no timeout.

force Optional. Boolean value specifying whether WLST should terminate a server
instance or a cluster without waiting for the active sessions to complete. This
argument defaults to false, indicating that all active sessions must complete before
shutdown.

WLST Command and Var iab le Re fe rence

B-102 WebLogic Scripting Tool

Example
The following example instructs WLST to shutdown the server to which you are connected:

wls:/mydomain/serverConfig> shutdown()

Shutting down the admin server that you are currently connected to

Disconnected from weblogic server: AdminServer

The following example instructs WLST to wait 1000 seconds for HTTP sessions to complete or
timeout (at 1000 ms) before shutting down myserver:

wls:/mydomain/serverConfig> shutdown('myserver','Server','false',1000,

block='false')

The following example instructs WLST to drop all HTTP sessions immediately while connected
to a Managed Server instance:

wls:/mydomain/serverConfig> shutdown('MServer1','Server','true',1200)

Shutting down a managed server that you are connected to ...

Disconnected from weblogic server: MServer1

The following example instructs WLST to shutdown the cluster mycluster:

wls:/mydomain/serverConfig> shutdown('mycluster','Cluster')

Shutting down the cluster with name mycluster

Shutdown of cluster mycluster has been issued, please

refer to the logs to check if the cluster shutdown is successful.

Use the state(<server-name>) or state(<cluster-name>,"Cluster")

to check the status of the server or cluster

wls:/mydomain/serverConfig> state('mycluster','Cluster')

There are 3 server(s) in cluster: mycluster

States of the servers are

block Optional. Boolean value specifying whether WLST should block user interaction
until the server is shutdown. This argument defaults to false, indicating that user
interaction is not blocked. In this case, WLST returns control to the user after issuing
the command and assigns the task MBean associated with the current task to a
variable that you can use to check its status. If you are importing WLST as a Jython
module, as described in “Importing WLST as a Jython Module” on page 2-19,
block is always set to true.

Argument Definition (Continued)

L i fe Cyc l e Commands

WebLogic Scripting Tool B-103

MServer1---SHUTDOWN

MServer2---SHUTDOWN

MServer3---SHUTDOWN

wls:/mydomain/serverConfig>

start
Command Category: Life Cycle Commands
Use with WLST: Online

Description
Starts a Managed Server instance or a cluster using Node Manager. WLST must be connected to
the Administration Server and Node Manager must be running.

For more information about WLST commands used to connect to and use Node Manager, see
“Node Manager Commands” on page B-107.

In the event of an error, the command returns a WLSTException.

Syntax
start(name, [type], [url], [block])

Argument Definition

name Name of the Managed Server or cluster to start.

type Optional. Type, Server or Cluster. This argument defaults to Server. When
starting a cluster, you must set this argument explicitly to Cluster, or the
command will fail.

url Optional. Listen address and listen port of the server instance, specified using the
following format: [protocol://]listen-address:listen-port. If not
specified, this argument defaults to t3://localhost:7001.

block Optional. Boolean value specifying whether WLST should block user interaction
until the server or cluster is started. This argument defaults to false, indicating
that user interaction is not blocked. In this case, WLST returns control to the user
after issuing the command and assigns the task MBean associated with the current
task to a variable that you can use to check its status. If you are importing WLST
as a Jython module, as described in “Importing WLST as a Jython Module” on
page 2-19, block is always set to true.

WLST Command and Var iab le Re fe rence

B-104 WebLogic Scripting Tool

Example
The following example instructs Node Manager to start a Managed Server instance; the listen
address is localhost and listen port is 8801. WLST returns control to the user after issuing this
command, as block is set to false.

wls:/mydomain/serverConfig> start('myserver', 'Server', block='false')

Starting server myserver ...

Server with name myserver started successfully.

wls:/mydomain/serverConfig>

The following example instructs Node Manager to start a cluster. WLST block user interaction
until the cluster is started, as block defaults to true.

wls:/mydomain/serverConfig> start('mycluster', 'Cluster')

Starting the following servers in Cluster, mycluster: MS1, MS2, MS3...

..

All servers in the cluster mycluster are started successfully.

wls:/mydomain/serverConfig>

startServer
Command Category: Life Cycle Commands
Use with WLST: Online or Offline

Description
Starts the Administration Server. In the event of an error, the command returns a
WLSTException.

Syntax
startServer([adminServerName], [domainName], [url], [username], [password],
[domainDir], [block], [timeout], [serverLog], [systemProperties], [jvmArgs]
[spaceAsJvmArgsDelimiter])

Argument Definition

adminServerName Optional. Name of the Administration Server to start. This argument defaults to
myserver.

domainName Optional. Name of the domain to which the Administration Server belongs. This
argument defaults to mydomain.

L i fe Cyc l e Commands

WebLogic Scripting Tool B-105

Example
The following example starts the Administration Server named demoServer in the demoDomain.

url Optional. URL of the Administration Server. The URL supplied with the startServer
command will override the listen address and port specified in the config.xml file.
If not specified on the command line or in the config.xml file, this argument
defaults to t3://localhost:7001.

username Optional. Username use to connect WLST to the server. This argument defaults to
weblogic.

password Optional. Password used to connect WLST to the server. This argument defaults to
weblogic.

domainDir Optional. Domain directory in which the Administration Server is being started. This
argument defaults to the directory from which you started WLST.

block Optional. Boolean value specifying whether WLST blocks user interaction until the
server is started. When block is set to false, WLST returns control to the user after
issuing the command and assigns the task MBean associated with the current task to
a variable that you can use to check its status. This argument defaults to true,
indicating that user interaction is blocked. If you are importing WLST as a Jython
module, as described in “Importing WLST as a Jython Module” on page 2-19, block
is always set to true.

timeout Optional. Time (in milliseconds) that WLST waits for the server to start before
canceling the operation. The default value is 60000 milliseconds. This argument is
only applicable when block is set to true.

serverLog Optional. Location of the server log file. This argument defaults to stdout.

systemProperties Optional. System properties to pass to the server process. System properties should be
specified as comma-seperated name-value pairs, and the name-value pairs should be
separated by equals sign (=).

jvmArgs Optional. JVM arguments to pass to the server process. Multiple arguments can be
specified, separated by commas.

spaceAsJvmArgsDe
limiter

Optional. Boolean value specifying whether JVM arguments are space delimited. The
default value is false.

Argument Definition (Continued)

WLST Command and Var iab le Re fe rence

B-106 WebLogic Scripting Tool

wls:/offline> startServer('demoServer','demoDomain','t3://localhost:8001',

'myweblogic','wlstdomain','c:/mydomains/wlst','false', 60000,

jvmArgs='-XX:MaxPermSize=75m, -Xmx512m, -XX:+UseParallelGC')

wls:/offline>

suspend
Command Category: Life Cycle Commands
Use with WLST: Online

Description
Suspends a running server. This command moves a server from the RUNNING state to the ADMIN
state. For more information about server states, see “Understanding Server Life Cycle” in
Managing Server Startup and Shutdown.

In the event of an error, the command returns a WLSTException.

Syntax
suspend([sname], [ignoreSessions], [timeOut], [force], [block])

Argument Definition

sname Optional. Name of the server to suspend. The argument defaults to the server to which
WLST is currently connected.

ignoreSessions Optional. Boolean value specifying whether WLST should drop all HTTP sessions
immediately or wait for HTTP sessions to complete or time out while suspending. This
argument defaults to false, indicating that HTTP sessions must complete or time out.

timeOut Optional. Time (in seconds) the WLST waits for the server to complete in-process work
before suspending the server. This argument defaults to 0 seconds, indicating that there
is no timeout.

force Optional. Boolean value specifying whether WLST should suspend the server without
waiting for active sessions to complete. This argument defaults to false, indicating
that all active sessions must complete before suspending the server.

http://e-docs.bea.com/wls/docs103/server_start/server_life.html

Node Manager Commands

WebLogic Scripting Tool B-107

Example
The following example suspends a Managed Server instance:
wls:/mydomain/serverConfig> suspend('managed1')
Server 'managed1' suspended successfully.
wls:/mydomain/serverConfig>

Node Manager Commands
Use the WLST Node Managers commands, listed in Table B-10, to start, shut down, restart, and
monitor WebLogic Server instances.

Node Manager must be running before you can execute the commands within this category.

For more information about Node Manager, see Using Node Manager in the Node Manager
Administrator’s Guide.

block Optional. Boolean value specifying whether WLST blocks user interaction until the
server is started. This argument defaults to false, indicating that user interaction is not
blocked. In this case, WLST returns control to the user after issuing the command and
assigns the task MBean associated with the current task to a variable that you can use to
check its status. If you are importing WLST as a Jython module, as described in
“Importing WLST as a Jython Module” on page 2-19, block is always set to true.

Argument Definition (Continued)

Table B-10 Node Manager Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“nm” on page B-108 Determine whether WLST is connected to Node Manager. Online

“nmConnect” on page B-109 Connect WLST to Node Manager to establish a session. Online or
Offline

“nmDisconnect” on page B-112 Disconnect WLST from a Node Manager session. Online or
Offline

“nmEnroll” on page B-112 Enables the Node Manager on the current computer to
manage servers in a specified domain.

Online

http://e-docs.bea.com/wls/docs103/nodemgr/starting_nodemgr.html

WLST Command and Var iab le Re fe rence

B-108 WebLogic Scripting Tool

nm
Command Category: Node Manager Commands
Use with WLST: Online or Offline

Description
Determines whether WLST is connected to Node Manager. Returns true or false and prints a
descriptive message. Node Manager must be running before you can execute this command.

In the event of an error, the command returns a WLSTException.

Syntax
nm()

“nmGenBootStartupProps” on
page B-114

Generates the Node Manager property files,
boot.properties and startup.properties, for
the specified server.

Online

“nmKill” on page B-114 Kill the specified server instance that was started with
Node Manager.

Online or
Offline

“nmLog” on page B-115 Return the Node Manager log. Online or
Offline

“nmServerLog” on page B-116 Return the server output log of the server that was started
with Node Manager.

Online or
Offline

“nmServerStatus” on page B-117 Return the status of the server that was started with Node
Manager.

Online or
Offline

“nmStart” on page B-118 Start a server in the current domain using Node Manager. Online or
Offline

“nmVersion” on page B-119 Return the Node Manager version. Online or
Offline

“startNodeManager” on
page B-119

Starts Node Manager on the same computer that is running
WLST.

Online or
Offline

Table B-10 Node Manager Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...

Node Manager Commands

WebLogic Scripting Tool B-109

Example
The following example indicates that WLST is currently connected to Node Manager that is
monitoring mydomain.

wls:/mydomain/serverConfig> nm()

Currently connected to Node Manager that is monitoring the domain "mydomain"

wls:/mydomain/serverConfig>

The following example indicates that WLST is not currently connected to Node Manager.

wls:/mydomain/serverConfig> nm()

Not connected to any Node Manager

wls:/mydomain/serverConfig>

nmConnect
Command Category: Node Manager Commands
Use with WLST: Online or Offline

Description
Connects WLST to Node Manager to establish a session. After connecting to Node Manager, you
can invoke any Node Manager commands via WLST. Node Manager must be running before you
can execute this command.

Once connected, the WLST prompt displays as follows, where domainName indicates the name
of the domain that is being managed: wls:/nm/domainName>. If you then connect WLST to a
WebLogic Server instance, the prompt is changed to reflect the WebLogic Server instance. You
can use the nm command to determine whether WLST is connected to Node Manager, as
described in “nm” on page B-108.

In the event of an error, the command returns a WLSTException.

Syntax
nmConnect([username, password], [host], [port], [domainName], [domainDir]
[nmType], [verbose])

WLST Command and Var iab le Re fe rence

B-110 WebLogic Scripting Tool

nmConnect([userConfigFile, userKeyFile], [host], [port], [domainName],
[domainDir] [nmType], [verbose])

Argument Definition

username Username of the operator who is connecting WLST to Node Manager. The username
defaults to weblogic.

Note: When running a server in production mode, you must specify the username and
password explicitly on the command line to ensure that the appropriate
username and password are used when connecting to Node Manager.

password Password of the operator who is connecting WLST to Node Manager. The password
defaults to weblogic.

Note: When running a server in production mode, you must specify the username and
password explicitly on the command line to ensure that the appropriate
username and password are used when connecting to Node Manager.

host Optional. Host name of Node Manager. This argument defaults to localhost.

port Optional. Port number of Node Manager. This argument defaults to a value that is
based on the Node Manager server type, as follows:
• For plain type, defaults to 5556
• For rsh type, defaults to 514
• For ssh type, defaults to 22
• For ssl type, defaults to 5556

domainName Optional. Name of the domain that you want to manage. This argument defaults to
mydomain.

domainDir Optional. Path of the domain directory to which you want to save the Node Manager
secret file (nm_password.properties) and SerializedSystemIni.dat file.
This argument defaults to the directory in which WLST was started.

nmType Type of the Node Manager server. Valid values include:
• plain for plain socket Java-based implementation
• rsh for RSH implementation
• ssh for script-based SSH implementation
• ssl for Java-based SSL implementation

This argument defaults to ssl.

Node Manager Commands

WebLogic Scripting Tool B-111

Example
The following example connects WLST to Node Manager to monitor the oamdomain domain
using the default host and port numbers and plain Node Manager type.

wls:/myserver/serverConfig> nmConnect('weblogic', 'weblogic', 'localhost',

'5555', 'oamdomain', 'c:/bea/user_projects/domains/oamdomain','plain')

Connecting to Node Manager Server ...

Successfully connected to Node Manager.

wls:/nm/oamdomain>

The following example connects WLST to a Node Manager Server instance using a user
configuration and key file to provide user credentials.

wls:/myserver/serverConfig>nmConnect(userConfigFile='c:/myfiles/myuserconf

igfile.secure', userKeyFile='c:/myfiles/myuserkeyfile.secure',

 host='172.18.137.82', port=26106, domainName='mydomain',

domainDir='c:/myfiles/mydomain', mType='plain')

Connecting to Node Manager Server ...

Successfully connected to Node Manager.

wls:/nm/mydomain>

verbose Optional. Boolean value specifying whether WLST connects to Node Manager in
verbose mode. This argument defaults to false, disabling verbose mode.

userConfigFile Optional. Name and location of a user configuration file which contains an encrypted
username and password.

When you create a user configuration file, the storeUserConfig command uses a
key file to encrypt the username and password. Only the key file that encrypts a user
configuration file can decrypt the username and password. (See “storeUserConfig” on
page B-92.)

userKeyFile Optional. Name and location of the key file that is associated with the specified user
configuration file and is used to decrypt it. (See “storeUserConfig” on page B-92.)

Argument Definition (Continued)

WLST Command and Var iab le Re fe rence

B-112 WebLogic Scripting Tool

nmDisconnect
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Description
Disconnects WLST from a Node Manager session.

In the event of an error, the command returns a WLSTException.

Syntax
nmDisconnect()

Example
The following example disconnects WLST from a Node Manager session.

wls:/nm/oamdomain> nmDisconnect()

Successfully disconnected from Node Manager

wls:/myserver/serverConfig>

nmEnroll
Command Category: Node Manager Commands
Use with WLST: Online

Description
Enrolls the machine on which WLST is currently running. WLST must be connected to an
Administration Server to run this command; WLST does not need to be connected to Node
Manager.

This command downloads the following files from the Administration Server:

Node Manager secret file (nm_password.properties), which contains the encrypted
username and password that is used for server authentication

SerializedSystemIni.dat file

Node Manager Commands

WebLogic Scripting Tool B-113

This command also updates the nodemanager.domains file under the
WL_HOME/common/nodemanager directory with the domain information, where WL_HOME refers
to the top-level installation directory for WebLogic Server.

You must run this command once per domain per machine unless that domain shares the root
directory of the Administration Server.

If the machine is already enrolled when you run this command, the Node Manager secret file
(nm_password.properties) is refreshed with the latest information from the Administration
Server.

In the event of an error, the command returns a WLSTException.

Syntax
nmEnroll([domainDir], [nmHome])

Example
The following example enrolls the current machine with Node Manager and saves the Node
Manager secret file (nm_password properties) and SerializedSystemIni.dat file to
c:/bea/mydomain/common/nodemanager/nm_password.properties. The
nodemanager.domains file is written to WL_HOME/common/nodemanager by default.

wls:/mydomain/serverConfig> nmEnroll('c:/bea/mydomain/common/nodemanager')

Enrolling this machine with the domain directory at

c:\bea\mydomain\common\nodemanager....

Successfully enrolled this machine with the domain directory at

C:\bea\mydomain\common\nodemanager

wls:/mydomain/serverConfig>

Argument Definition

domainDir Optional. Path of the domain directory to which you want to save the Node Manager
secret file (nm_password.properties) and SerializedSystemIni.dat file.
This argument defaults to the directory in which WLST was started.

nmHome Optional. Path to the Node Manager home. The nodemanager.domains file,
containing the domain information, is written to this directory. This argument defaults
to WL_HOME/common/nodemanager, where WL_HOME refers to the top-level
installation directory for WebLogic Server.

WLST Command and Var iab le Re fe rence

B-114 WebLogic Scripting Tool

nmGenBootStartupProps
Command Category: Node Manager Commands
Use with WLST: Online

Description
Generates the Node Manager property files, boot.properties and startup.properties, for
the specified server. The Node Manager property files are stored relative to the root directory of
the specified server. The target root directory must be on the same machine on which you are
running the command.

You must specify the name of a server; otherwise, the command will fail.

In the event of an error, the command returns a WLSTException.

Syntax
nmGenBootStartupProps(serverName)

Example
The following example generates boot.properties and startup.properties in the root
directory of the specified server, ms1.

wls:/mydomain/serverConfig> nmGenBootStartupProps('ms1')

Successfully generated boot.properties at

c:\bea\mydomain\servers\ms1\data\nodemanager\boot.properties

Successfully generated startup.properties at

c:\bea\mydomain\servers\ms1\data\nodemanager\startup.properties

wls:/mydomain/serverConfig>

nmKill
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Argument Definition

serverName Name of the server for which Node Manager property files are generated.

Node Manager Commands

WebLogic Scripting Tool B-115

Description
Kills the specified server instance that was started with Node Manager.

If you do not specify a server name using the serverName argument, the argument defaults to
myServer, which must match your server name or the command will fail.

If you attempt to kill a server instance that was not started using Node Manager, the command
displays an error.

In the event of an error, the command returns a WLSTException.

Syntax
nmKill([serverName])

Example
The following example kills the server named oamserver.

wls:/nm/oamdomain> nmKill('oamserver')

Killing server ‘oamserver’ ...

Server oamServer killed successfully.

wls:/nm/oamdomain>

nmLog
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Description
Returns the Node Manager log.

In the event of an error, the command returns a WLSTException.

Argument Definition

serverName Optional. Name of the server to be killed. This argument defaults to myserver.

WLST Command and Var iab le Re fe rence

B-116 WebLogic Scripting Tool

Syntax
nmLog([writer])

Example
The following example displays the Node Manager log.

wls:/nm/oamdomain> nmLog()

Successfully retrieved the Node Manager log and written.

wls:/nm/oamdomain>

nmServerLog
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Description
Returns the server output log of the server that was started with Node Manager.

In the event of an error, the command returns a WLSTException.

Syntax
nmServerLog([serverName], [writer])

Argument Definition

writer Optional. java.io.Writer object to which you want to stream the log output.
This argument defaults to the WLST writer stream.

Argument Definition

serverName Optional. Name of the server for which you want to display the server output log. This
argument defaults to myserver.

writer Optional. java.io.Writer object to which you want to stream the log output.
This argument defaults to the WLSTInterpreter standard out, if not specified.

Node Manager Commands

WebLogic Scripting Tool B-117

Example
The following example displays the server output log for the oamserver server and writes the
log output to myWriter.

wls:/nm/oamdomain> nmServerLog('oamserver',myWriter)

Successfully retrieved the server log and written.

wls:/nm/oamdomain>

nmServerStatus
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Description
Returns the status of the server that was started with Node Manager.

In the event of an error, the command returns a WLSTException.

Syntax
nmServerStatus([serverName])

Example
The following example displays the status of the server named oamserver, which was started
with Node Manager.

wls:/nm/oamdomain> nmServerStatus('oamserver')

RUNNING

wls:/nm/oamdomain>

Argument Definition

serverName Optional. Name of the server for which you want to display the status. This argument
defaults to myserver.

WLST Command and Var iab le Re fe rence

B-118 WebLogic Scripting Tool

nmStart
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Description
Starts a server in the current domain using Node Manager.

In the event of an error, the command returns a WLSTException.

Note: boot.properties must exist in order to start a server with nmStart.If this is the first
time you are starting a server, you must manually create it in order to use nmStart.

Syntax
nmStart([serverName], [domainDir], [props], [writer])

Example
The following example starts the managed1 server in the current domain using Node Manager.

wls:/nm/mydomain> nmStart("managed1")

Starting server managed1 ...

Server managed1 started successfully

wls:/nm/mydomain>

The following example starts the Administration Server in the specified domain using Node
Manager. In this example, the prps variable stores the system property settings and is passed to
the command using the props argument.

Argument Definition

serverName Optional. Name of the server to be started.

domainDir Optional. Domain directory of the server to be started. This argument defaults to the
directory from which you started WLST.

props Optional. System properties to apply to the new server.

writer Optional. java.io.Writer object to which the server output is written. This
argument defaults to the WLST writer.

Node Manager Commands

WebLogic Scripting Tool B-119

wls:/nm/mydomain> prps = makePropertiesObject("weblogic.ListenPort=8001")

wls:/nm/mydomain> nmStart("AdminServer",props=prps)

Starting server AdminServer...

Server AdminServer started successfully

wls:/nm/mydomain>

nmVersion
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.

Description
Returns the Node Manager version.

In the event of an error, the command returns a WLSTException.

Syntax
nmVersion()

Example
The following example displays the Node Manager version.

wls:/nm/oamdomain> nmVersion()

The Node Manager version that you are currently connected to is 9.0.0.0

wls:/nm/oamdomain>

startNodeManager
Command Category: Node Manager Commands
Use with WLST: Online or Offline

Description
Starts Node Manager on the same computer that is running WLST.

Note: The WebLogic Server custom installation process optionally installs and starts Node
Manager as a Windows service on Windows systems. For more information, see Running
the Installation Program in Graphical Mode in the Installation Guide. In this case, you do
not need to start the Node Manager manually.

../../../common/docs103/install/guimode.html
../../../common/docs103/install/guimode.html

WLST Command and Var iab le Re fe rence

B-120 WebLogic Scripting Tool

If Node Manager is already running when you invoke the startNodeManager command, the
following message is displayed:

A Node Manager has already been started.

Cannot start another Node Manager process via WLST

In the event of an error, the command returns a WLSTException.

Syntax
startNodeManager([verbose], [nmProperties])

Example
The following example displays the Node Manager server version.

wls:/mydomain/serverConfig> startNodeManager(verbose='true',

NodeManagerHome='c:/bea/wlserver_10.3/common/nodemanager',

ListenPort='6666', ListenAddress='myhost'))

Launching Node Manager ...

Successfully launched the Node Manager.

The Node Manager process is running independent of the WLST process

Exiting WLST will not stop the Node Manager process. Please refer

to the Node Manager logs for more information.

The Node Manager logs will be under

c:\bea\wlserver_10.3\common\nodemanager.

wls:/mydomain/serverConfig>

Tree Commands
Use the WLST tree commands, listed in Table B-11, to navigate among MBean hierarchies.

Argument Definition

verbose Optional. Boolean value specifying whether WLST starts Node Manager in verbose
mode. This argument defaults to false, disabling verbose mode.

nmProperties Optional. Comma-separated list of Node Manager properties, specified as name-value
pairs. Node Manager properties include, but are not limited to, the following:
NodeManagerHome, ListenAddress, ListenPort, and PropertiesFile.

Tree Commands

WebLogic Scripting Tool B-121

Table B-11 Tree Commands for WLST Configuration

Use this command... To... Use with
WLST...

“config” on page B-122 Navigate to the last MBean to which you navigated in the
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

Note: This command is deprecated as of WebLogic Server
9.0. You should update your script to use the
serverConfig command as described in
“serverConfig” on page B-129.

Online

“custom” on page B-123 Navigate to the root of custom MBeans that are registered in
the server.

Online

“domainConfig” on page B-124 Navigate to the last MBean to which you navigated in the
domain configuration hierarchy or to the root of the
hierarchy, DomainMBean.

Online

“domainRuntime” on
page B-125

Navigate to the last MBean to which you navigated in the
domain runtime hierarchy or to the root of the hierarchy,
DomainRuntimeMBean.

Online

“edit” on page B-127 Navigate to the last MBean to which you navigated in the edit
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

Online

“jndi” on page B-128 Navigates to the JNDI tree for the server to which WLST is
currently connected.

Online

“runtime” on page B-128 Navigate to the last MBean to which you navigated in the
runtime hierarchy or the root of all runtime objects,
DomainRuntimeMBean.

Note: This command is deprecated as of WebLogic Server
9.0. You should update your scripts to use the
serverRuntime command, as described in
“serverRuntime” on page B-130.

Online

WLST Command and Var iab le Re fe rence

B-122 WebLogic Scripting Tool

config
Command Category: Tree Commands
Use with WLST: Online

Description
Note: This command is deprecated as of WebLogic Server 9.0. You should update your scripts

to use the serverConfig command, as described in “serverConfig” on page B-129.

Navigates to the last MBean to which you navigated in the configuration MBean hierarchy or to
the root of the hierarchy, DomainMBean. For more information, see “Navigating Among MBean
Hierarchies” on page 5-9.

In the event of an error, the command returns a WLSTException.

Syntax
config()

Example
The following example illustrates how to navigate from the runtime MBean hierarchy to the
configuration MBean hierarchy on an Administration Server instance:

wls:/mydomain/runtime> config()

Location changed to config tree (deprecated). This is a writeable tree with

DomainMBean as the root.

For more help, use help('config')

wls:/mydomain/config> ls()

“serverConfig” on page B-129 Navigate to the last MBean to which you navigated in the
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

Online

“serverRuntime” on page B-130 Navigate to the last MBean to which you navigated in the
runtime MBean hierarchy or to the root of the hierarchy,
ServerRuntimeMBean.

Online

Table B-11 Tree Commands for WLST Configuration (Continued)

Use this command... To... Use with
WLST...

Tree Commands

WebLogic Scripting Tool B-123

dr-- Applications

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration

dr-- Deployments

dr-- DomainLogFilters

dr-- EmbeddedLDAP

dr-- JDBCConnectionPools

dr-- JDBCDataSourceFactories

dr-- JDBCDataSources

dr-- JDBCMultiPools

dr-- JDBCTxDataSources

dr-- JMSBridgeDestinations

dr-- JMSConnectionFactories

dr-- JMSDestinationKeys

dr-- JMSDestinations

dr-- JMSDistributedQueueMembers

dr-- JMSDistributedQueues

dr-- JMSDistributedTopicMembers

dr-- JMSDistributedTopics

dr-- JMSFileStores

dr-- JMSJDBCStores

...

wls:/mydomain/config>

custom
Command Category: Tree Commands
Use with WLST: Online

Description
Navigates to the root of custom MBeans that are registered in the server. WLST navigates,
interrogates, and edits custom MBeans as it does domain MBeans; however, custom MBeans
cannot use the cmo variable because a stub is not available.

Note: When navigating to the custom tree, WLST queries all MBeans in the compatibility
MBean server, the runtime MBean server, and potentially the JVM platform MBean
server to locate the custom MBeans. Depending on the number of MBeans in the current

WLST Command and Var iab le Re fe rence

B-124 WebLogic Scripting Tool

domain, this process make take a few minutes, and WLST may not return a prompt right
away.

The custom command is available when WLST is connected to an Administration Server
instance or a Managed Server instance. When connected to a WebLogic Integration or WebLogic
Portal server, WLST can interact with all the WebLogic Integration or WebLogic Portal server
MBeans.

For more information about custom MBeans, see Developing Custom Management Utilities with
JMX.

In the event of an error, the command returns a WLSTException.

Syntax
custom()

Example
The following example navigates from the configuration MBean hierarchy to the custom MBean
hierarchy on a Administration Server instance.

wls:/mydomain/serverConfig> custom()

Location changed to custom tree. This is a writeable tree with No root. For

more help, use help('custom')

wls:/mydomain/custom>

domainConfig
Command Category: Tree Commands
Use with WLST: Online

Description
Navigates to the last MBean to which you navigated in the domain Configuration hierarchy or to
the root of the hierarchy, DomainMBean. This read-only hierarchy stores the configuration
MBeans that represent your current domain.

In the event of an error, the command returns a WLSTException.

Syntax
domainConfig()

http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html
http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html

Tree Commands

WebLogic Scripting Tool B-125

Example
The following example navigates from the configuration MBean hierarchy to the domain
Configuration hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> domainConfig()

Location changed to domainConfig tree. This is a read-only tree with

DomainMBean as the root.

For more help, use help('domainConfig')

wls:/mydomain/domainConfig> ls()

dr-- AppDeployments

dr-- BridgeDestinations

dr-- Clusters

dr-- CustomResources

dr-- DeploymentConfiguration

dr-- Deployments

dr-- EmbeddedLDAP

dr-- ErrorHandlings

dr-- FileStores

dr-- InternalAppDeployments

dr-- InternalLibraries

dr-- JDBCDataSourceFactories

dr-- JDBCStores

dr-- JDBCSystemResources

dr-- JMSBridgeDestinations

dr-- JMSInteropModules

dr-- JMSServers

dr-- JMSSystemResources

...

wls:/mydomain/domainConfig>

domainRuntime
Command Category: Tree Commands
Use with WLST: Online

WLST Command and Var iab le Re fe rence

B-126 WebLogic Scripting Tool

Description
Navigates to the last MBean to which you navigated in the domain Runtime hierarchy or to the
root of the hierarchy, DomainRuntimeMBean. This read-only hierarchy stores the runtime
MBeans that represent your current domain.

In the event of an error, the command returns a WLSTException.

Syntax
domainRuntime()

Example
The following example navigates from the configuration MBean hierarchy to the domain
Runtime hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> domainRuntime()

wls:/mydomain/domainRuntime> ls()

dr-- AppRuntimeStateRuntime

dr-- DeployerRuntime

dr-- DomainServices

dr-- LogRuntime

dr-- MessageDrivenControlEJBRuntime

dr-- MigratableServiceCoordinatorRuntime

dr-- MigrationDataRuntimes

dr-- SNMPAgentRuntime

dr-- ServerLifeCycleRuntimes

dr-- ServerRuntimes

dr-- ServerServices

-r-- ActivationTime Mon Aug 01 11:41:25 EDT 2005

-r-- Clusters null

-r-- MigrationDataRuntimes null

-r-- Name sampleMedRecDomain

-rw- Parent null

-r-- SNMPAgentRuntime null

-r-- Type DomainRuntime

-r-x restartSystemResource Void :

WebLogicMBean(weblogic.management.configuration.SystemResourceMBean)

wls:/mydomain/domainRuntime>

Tree Commands

WebLogic Scripting Tool B-127

edit
Command Category: Tree Commands
Use with WLST: Online

Description
Navigates to the last MBean to which you navigated in the edit configuration MBean hierarchy
or to the root of the hierarchy, DomainMBean. This writeable hierarchy stores all of the
configuration MBeans that represent your current domain.

Note: To edit configuration beans, you must be connected to an Administration Server. If you
connect to a Managed Server, WLST functionality is limited to browsing the
configuration bean hierarchy. While you cannot use WLST to change the values of
MBeans on Managed Servers, it is possible to use the Management APIs to do so. Oracle
recommends that you change only the values of configuration MBeans on the
Administration Server. Changing the values of MBeans on Managed Servers can lead to
an inconsistent domain configuration.

For more information about editing configuration beans, see “Using WLST Online to
Update an Existing Domain” on page 6-1.

In the event of an error, the command returns a WLSTException.

Syntax
edit()

Example
The following example illustrates how to navigate from the server configuration MBean
hierarchy to the editable copy of the domain configuration MBean hierarchy, in an
Administration Server instance.

wls:/myserver/serverConfig> edit()

Location changed to edit tree. This is a writeable tree with DomainMBean as

the root.

For more help, use help('edit')

wls:/myserver/edit !> ls()

dr-- AppDeployments

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration

WLST Command and Var iab le Re fe rence

B-128 WebLogic Scripting Tool

dr-- Deployments

dr-- EmbeddedLDAP

...

wls:/myserver/edit !>

jndi
Command Category: Tree Commands
Use with WLST: Online

Description
Navigates to the JNDI tree for the server to which WLST is currently connected. This read-only
tree holds all the elements that are currently bound in JNDI.

In the event of an error, the command returns a WLSTException.

Syntax
jndi()

Example
The following example navigates from the runtime MBean hierarchy to the Domain JNDI tree on
an Administration Server instance.

wls:/myserver/runtime> jndi()

Location changed to jndi tree. This is a read-only tree with No root. For

more help, use help('jndi')

wls:/myserver/jndi> ls()

dr-- ejb

dr-- javax

dr-- jms

dr-- weblogic

...

runtime
Command Category: Tree Commands
Use with WLST: Online

Tree Commands

WebLogic Scripting Tool B-129

Description
Note: This command is deprecated as of WebLogic Server 9.0. You should update your scripts

to use the serverRuntime command, as described in “serverRuntime” on page B-130.

Navigates to the last MBean to which you navigated in the runtime hierarchy or the root of all
runtime objects, DomainRuntimeMBean. When connected to a Managed Server instance, the root
of runtime MBeans is ServerRuntimeMBean.

In the event of an error, the command returns a WLSTException.

For more information, see “Browsing Runtime MBeans” on page 5-6.

Syntax
runtime()

Example
The following example navigates from the configuration MBean hierarchy to the runtime MBean
hierarchy on a Managed Server instance.
wls:/mydomain/serverConfig> runtime()
Location changed to runtime tree (deprecated). This is a read-only tree with
DomainRuntimeMBean as the root.
For more help, use help('runtime')
wls:/mydomain/runtime>

serverConfig
Command Category: Tree Commands
Use with WLST: Online

Description
Navigates to the last MBean to which you navigated in the configuration MBean hierarchy or to
the root of the hierarchy, DomainMBean.

This read-only hierarchy stores the configuration MBeans that represent the server to which
WLST is currently connected. The MBean attribute values include any command-line overrides
that a user specified while starting the server.

In the event of an error, the command returns a WLSTException.

For more information, see “Navigating Among MBean Hierarchies” on page 5-9.

WLST Command and Var iab le Re fe rence

B-130 WebLogic Scripting Tool

Syntax
serverConfig()

Example
The following example navigates from the domain runtime MBean hierarchy to the configuration
MBean hierarchy on an Administration Server instance.

wls:/mydomain/domainRuntime> serverConfig()

wls:/mydomain/serverConfig>

serverRuntime
Command Category: Tree Commands
Use with WLST: Online

Description
Navigates to the last MBean to which you navigated in the runtime MBean hierarchy or to the
root of the hierarchy, ServerRuntimeMBean. This read-only hierarchy stores the runtime
MBeans that represent the server to which WLST is currently connected.

In the event of an error, the command returns a WLSTException.

Syntax
serverRuntime()

Example
The following example navigates from the configuration MBean hierarchy to the runtime MBean
hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> serverRuntime()

Location changed to serverRuntime tree. This is a read-only tree with

ServerRuntimeMBean as the root.

For more help, use help('serverRuntime')

wls:/mydomain/serverRuntime>

WLST Var iab le Refe rence

WebLogic Scripting Tool B-131

WLST Variable Reference
Table B-12 describes WLST variables and their common usage. All variables are initialized to
default values at the start of a user session and are changed according to the user interaction with
WLST.

Table B-12 WLST Variables

Variable Description Example

adminHome Administration MBean. This
variable is available only when WLST is
connected to the Administration Server.

Note: This variable is deprecated as of
WebLogic Server 9.0.

wls:/mydomain/edit> bean =
adminHome.getMBean(ObjectName(
'mydomain:Name=mydomain,Type=D
omain'))

cmo Current Management Object. The cmo
variable is set to the bean instance to
which you navigate using WLST. You
can use this variable to perform any get,
set, or invoke method on the current
bean instance.

WLST sets the variable to the current
WLST path. For example, when you
change to the serverConfig hierarchy,
cmo is set to DomainMBean. When you
change to the serverRuntime hierarchy,
cmo is set to ServerRuntimeMBean.

The variable is available in all WLST
hierarchies except custom and jndi.

wls:/mydomain/edit>
cmo.setAdministrationPort(9092
)

connected Boolean value specifying whether WLST
is connected to a running server. WLST
sets this variable to true when
connected to a running server; otherwise,
WLST sets it to false.

wls:/mydomain/serverConfig>
print connected
false

domainName Name of the domain to which WLST is
connected.

wls:/mydomain/serverConfig>
print domainName
mydomain

WLST Command and Var iab le Re fe rence

B-132 WebLogic Scripting Tool

domainRuntimeS
ervice

DomainRuntimeServiceMBean
MBean. This variable is available only
when WLST is connected to the
Administration Server.

wls:/mydomain/serverConfig>
domainService.getServerName()
‘myserver’

editService EditServiceMBean MBean. This
variable is available only when WLST is
connected to the Administration Server.

wls:/mydomain/edit> dc =
editService.getDomainConfigura
tion()

exitonerror Boolean value specifying whether WLST
terminates script execution when it
encounters an exception. This variable
defaults to true, indicating that script
execution is terminated when WLST
encounters an error. This variable is not
applicable when running WLST in
interactive mode.

wls:/mydomain/serverConfig>
print exitonerror
true

home Local MBean.

Note: This variable is deprecated as of
WebLogic Server 9.0.

wls:/mydomain/serverConfig>
bean =
home.getMBean(ObjectName('mydo
main:Name=mydomain,Type=Domain
'))

isAdminServer Boolean value specifying whether WLST
is connected to a WebLogic
Administration Server instance. WLST
sets this variable to true if WLST is
connected to a WebLogic Administration
Server; otherwise, WLST sets it to
false.

wls:/mydomain/serverConfig>
print isAdminServer
true

mbs MBeanServerConnection object that
corresponds to the current location in the
hierarchy.

wls:/mydomain/serverConfig>
mbs.isRegistered(ObjectName('m
ydomain:Name=mydomain,Type=Dom
ain'))

Table B-12 WLST Variables (Continued)

Variable Description Example

WLST Var iab le Refe rence

WebLogic Scripting Tool B-133

recording Boolean value specifying whether WLST
is recording commands. WLST sets this
variable to true when the
startRecording command is entered;
otherwise, WLST sets this variable to
false.

wls:/mydomain/serverConfig>
print recording
true

runtimeService RuntimeServiceMBean MBean. wls:/mydomain/serverConfig>
sr=runtimeService.getServerRun
time()

serverName Name of the server to which WLST is
connected.

wls:/mydomain/serverConfig>
print serverName
myserver

typeService TypeServiceMBean MBean. wls:/mydomain/serverConfig>
mi=typeService.getMBeanInfo('w
eblogic.management.configurati
on.ServerMBean')

username Name of user currently connected to
WLST.

wls:/mydomain/serverConfig>
print username
weblogic

version Current version of the running server to
which WLST is connected.

wls:/mydomain/serverConfig>
print version
WebLogic Server 9.0 Thu Aug 31
12:15:50 PST 2005 778899

Table B-12 WLST Variables (Continued)

Variable Description Example

WLST Command and Var iab le Re fe rence

B-134 WebLogic Scripting Tool

WebLogic Scripting Tool C-1

A P P E N D I X C

WLST Deployment Objects

The following sections describe the WLST deployment objects:

“WLSTPlan Object” on page C-1

“WLSTProgress Object” on page C-4

WLSTPlan Object
The WLSTPlan object enables you to make changes to an application deployment plan after
loading an application using the loadApplication command, as described in “loadApplication”
on page B-30.

The following table describes the WLSTPlan object methods that you can use to operate on the
deployment plan.

Table C-1 WLSTPlan Object Methods

To operate
on the...

Use this method... To...

Deployment
Plan

DeploymentPlanBean getDeploymentPlan() Return the
DeploymentPlanBean for the
current application.

void save() throws
FileNotFoundException,
ConfigurationException

Saves the deployment plan to a file
from which it was read.

WLST Dep loyment Ob jec ts

C-2 WebLogic Scripting Tool

Module
Overrides

ModuleOverrideBean
createModuleDescriptor(String name,
String uri, String moduleOverrideName)

Create a
ModuleDescriptorBean with
the specified name and uri for the
ModuleOverrideBean
moduleOverrideName

ModuleOverrideBean
createModuleOverride(String name,
String type)

Create a ModuleOverrideBean
with the specified name and type
for the current deployment plan.

void destroyModuleOverride(String name) Destroy the
ModuleOverrideBean name in
the deployment plan.

ModuleOverrideBean[]
getModuleOverride(String name)

Return the
ModuleOverrideBean name.

ModuleOverrideBean[]
getModuleOverrides()

Return all ModuleOverrideBean
objects that are available in the
deployment plan.

VariableBean[]
setModuleOverride(ModuleOverrideBean
moduleOverride)

Set the ModuleOverrideBean
moduleOverride for the current
deployment plan.

void showModuleOverrides() Prints all of the
ModuleOverrideBean objects
that are available in the deployment
plan as name/type pairs.

Table C-1 WLSTPlan Object Methods (Continued)

To operate
on the...

Use this method... To...

WLSTP lan Ob jec t

WebLogic Scripting Tool C-3

Variables VariableBean createVariable(String
name)

Create a VariableBean name that
can override values in the
deployment plan.

void destroyVariable(String name) Destroy the VariableBean name.

VariableBean getVariable(String name) Return the VariableBean name.

VariableBean[] getVariables() Return all VariableBean objects
that are available in the deployment
plan.

void setVariable(String name, String
value)

Set the variable name to the
specified value.

void setVariableBean(VariableBean bean) Set the VariableBean bean.

void showVariables() Print all of the VariableBean
objects in the deployment plan as
name/value pairs.

Table C-1 WLSTPlan Object Methods (Continued)

To operate
on the...

Use this method... To...

WLST Dep loyment Ob jec ts

C-4 WebLogic Scripting Tool

WLSTProgress Object
The WLSTProgress object enables you to check the status of an executed deployment command.
The WLSTProgress object is returned by the following commands:

“deploy” on page B-23

“distributeApplication” on page B-28

“redeploy” on page B-32

“startApplication” on page B-33

“stopApplication” on page B-34

“updateApplication” on page B-36

Variable
Assignment

VariableAssignmentBean
createVariableAssignment(String name,
String moduleOverrideName, String
moduleDescriptorName)

Create a
VariableAssignmentBean for
the ModuleDescriptorBean
moduleDescriptorName for the
ModuleOverrideBean
moduelOverrideName.

void destroyVariableAssignment(String
name, String moduleDescriptorName)

Destroy the
VariableAssignmentBean
name for the
ModuleDescriptorBean
moduleDescriptorName.

VariableAssignmentBean
getVariableAssignment(String name,
String moduleDescriptorName)

Return the
VariableAssignmentBean
name for the
ModuleDescriptorBean
moduleDescriptorName.

void showVariables() Prints all of the VariableBean
objects in the deployment plan as
name/value pairs.

Table C-1 WLSTPlan Object Methods (Continued)

To operate
on the...

Use this method... To...

WLSTProgress Ob jec t

WebLogic Scripting Tool C-5

The following table describes the WLSTProgress object methods that you can use to check the
status of the current deployment action.

Table C-2 WLSTProgress Object Methods

Use this method... To...

String getCommandType() Return the deployment CommandType of this
event.This command returns one of the following
values: distribute, redeploy, start, stop,
or undeploy.

String getMessage() Return information about the status of this event.

ProgressObject getProgressObject() Return the ProgressObject that is associated
with the current deployment action.

String getState() Retrieve the state of the current deployment action.
CommandType of this event.This command returns
one of the following values: running,
completed, failed, or released (indicating
that the object has been released into production).

boolean isCompleted() Determine if the current deployment action has been
completed.

boolean isFailed() Determine if the current deployment action has
failed.

boolean isRunning() Determine if the current deployment action is
running.

void printStatus() Print the current status of the deployment action,
including the command type, the state, additional
messages, and so on.

WLST Dep loyment Ob jec ts

C-6 WebLogic Scripting Tool

WebLogic Scripting Tool D-1

A P P E N D I X D

FAQs: WLST

General WLST

On which versions of WebLogic Server is WLST supported?

What is the relationship between WLST and the existing WebLogic Server command-line
utilities, such as wlconfig and weblogic.Deployer?

When would I choose to use WLST over the other command-line utilities or the
Administration Console?

What is the distinction between WLST online and offline?

Jython Support

What version of Jython is used by WLST?

Can I run regular Jython scripts from within WLST?

Using WLST

If I have SSL or the administration port enabled for my server, how do I connect using
WLST?

In the event of an error, can I control whether WLST continues or exits?

Why do I have to specify (and) after each command, and enclose arguments in single- or
double-quotes?

Can I start a server, deploy applications, and then shut down the server using WLST?

FAQs : WLST

D-2 WebLogic Scripting Tool

Can WLST connect to a Managed Server?

Can WLST use variables that I define in a properties file?

Does the configToScript command convert security MBeans in config.xml?

Why am I not seeing all MBeans that are registered in the MBeanServer?

Why does WLST offline not display the same MBeans as WLST online?

When browsing custom MBeans, why do I get the following error message: No stub
Available?

Can I connect to a WebLogic Server instance via HTTP?

Can I invoke WLST via Ant?

Can WLST scripts execute on the server side?

Can I customize WLST?

On which versions of WebLogic Server is WLST supported?

WLST online is supported on WebLogic Server 10g Release 3 (10.1.3), 10.0, 9.x, 8.1, and 7.0.
WLST offline is supported on WebLogic Server 10g Release 3 (10.1.3), 10.0, 9.x and 8.1 SP5.

What is the relationship between WLST and the existing WebLogic Server command-line
utilities, such as wlconfig and weblogic.Deployer?

WLST functionality includes the capabilities of the following WebLogic Server command-line
utilities:

weblogic.Admin utility that you use to interrogate MBeans and configure a WebLogic
Server instance (deprecated in this release of WebLogic Server)

wlconfig Ant task tool for making WebLogic Server configuration changes (see Using
Ant Tasks to Configure and Use a WebLogic Server Domain in Developing Applications
with WebLogic Server)

weblogic.Deployer utility for deploying applications. (see Deployment Tools in
Deploying Applications to WebLogic Server)

When would I choose to use WLST over the other command-line utilities or the
Administration Console?

http://e-docs.bea.com/wls/docs103/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs103/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs103/deployment/understanding.html#DeploymentTools

WebLogic Scripting Tool D-3

You can create, configure, and manage domains using WLST, command-line utilities, and the
Administration Console interchangeably. The method that you choose depends on whether you
prefer using a graphical or command-line interface, and whether you can automate your tasks by
using a script.

What is the distinction between WLST online and offline?

You can use WLST online (connected to a running Administration Server or Managed Server
instance) and offline (not connected to a running server).

WLST online is used when you are connected to a running server and provides simplified access
to Managed Beans (MBeans), WebLogic Server Java objects that you manage through JMX.
Online, WLST provides access to information that is persisted as part of the internal
representation of the configuration.

WLST offline enables you to create a new domain or update an existing domain without
connecting to a running WebLogic Server—supporting the same functionality as the
Configuration Wizard. Offline, WLST only provides access to information that is persisted in the
config directory.

What version of Jython is used by WLST?

The WLST scripting environment is based on the Java scripting interpreter, Jython 2.1.

Can I run regular Jython scripts from within WLST?

Yes. WebLogic Server developers and administrators can extend the WebLogic scripting
language to suit their environmental needs by following the Jython language syntax. For more
information, see http://www.jython.org.

If I have SSL or the administration port enabled for my server, how do I connect using
WLST?

If you will be connecting to a WebLogic Server instance through an SSL listen port on a server
that is using the demonstration SSL keys and certificates, invoke WLST using the following
command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true -Dweblogic

.security.TrustKeyStore=DemoTrust weblogic.WLST

http://www.jython.org

FAQs : WLST

D-4 WebLogic Scripting Tool

Otherwise, at a command prompt, enter the following command:

java weblogic.WLST

In the event of an error, can I control whether WLST continues or exits?

Yes, using the exitonerror variable. Set this variable to true to specify that execution should
exit when WLST encounters an error, or false to continue execution. This variable defaults to
true. For more information, see “WLST Variable Reference” on page B-131.

Why do I have to specify (and) after each command, and enclose arguments in single- or
double-quotes?

This is the proper Jython syntax. For more information, see http://www.jython.org.

Can I start a server, deploy applications, and then shut down the server using WLST?

Yes, see documentation for the following groups of WLST commands:

“Life Cycle Commands” on page B-97

“Deployment Commands” on page B-22

Can WLST connect to a Managed Server?

Yes. You can connect to a Managed Server using the connect command. While connected to a
Managed Server, you can view runtime data for the server and manage the security data that is in
your Authentication provider’s data store (for example, you can add and remove users). You
cannot modify the domain’s configuration. For more information, see “connect” on page B-10.

http://www.jython.org

WebLogic Scripting Tool D-5

Can WLST use variables that I define in a properties file?

Yes. You can use the loadProperties command to load your variables and values from a
properties file. When you use the variables in your script, during execution, the variables are
replaced with the actual values from the properties file. See “loadProperties” on page B-57.

Does the configToScript command convert security MBeans in config.xml?

Yes, the security MBeans are converted. However, the information within the Embedded LDAP
is not converted.

How can I access custom MBeans that are registered in the WebLogic MBeanServer?

Navigate to the custom tree using the custom command. For more information, see “Tree
Commands” on page B-120.

Why am I not seeing all MBeans that are registered in the MBeanServer?

There are internal and undocumented MBeans that are not shown by WLST.

Why does WLST offline not display the same MBeans as WLST online?

As a performance optimization, WebLogic Server does not store most of its default values in the
domain’s configuration files. In some cases, this optimization prevents entire management
objects from being displayed by WLST offline (because WebLogic Server has never written the
corresponding XML elements to the domain’s configuration files). For example, if you never
modify the default logging severity level for a domain while the domain is active, WLST offline
will not display the domain’s Log management object.

If you want to change the default value of attributes whose management object is not displayed
by WLST offline, you must first use the create command to create the management object. Then
you can cd to the management object and change the attribute value. See “create” on page B-49.

When browsing custom MBeans, why do I get the following error message: No stub
Available?

When browsing the custom MBeans, the cmo variable is not available.

FAQs : WLST

D-6 WebLogic Scripting Tool

Can I connect to a WebLogic Server instance via HTTP?

If you are connecting to a WebLogic Server instance via HTTP, ensure that the
TunnelingEnabled attribute is set to true for the WebLogic Server instance. For more
information, see TunnelingEnabled in WebLogic Server MBean Reference.

Can I invoke WLST via Ant?

Yes, one could fork a new weblogic.WLST process inside an Ant script and pass your script file
as an argument.

Can WLST scripts execute on the server side?

Yes. You can create an instance of the WLST interpreter in your Java code and use it to run
WLST commands and scripts. You can then call the WLST scripts as a startup class or as part of
ejbCreate so that they execute on the server side. For more information, see “Embedded Mode”
on page 2-4.

Can I customize WLST?

Yes. You can update the WLST home directory to define custom WLST commands, WLST
commands within a library, and WLST commands as a Jython module. For more information, see
“Customizing WLST” on page 2-20.

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/ServerMBean.html?skipReload=true#TunnelingEnabled

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server WebLogic Scripting Tool, 10g Release 3 (10.3)
	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	WLST Sample Scripts
	WLST Online Sample Scripts
	WLST Offline Sample Scripts

	New and Changed WLST Features in This Release

	Using the WebLogic Scripting Tool
	Using WLST Online or Offline
	Using WLST Online
	Using WLST Offline

	Interactive Mode, Script Mode, and Embedded Mode
	Interactive Mode
	Script Mode
	Embedded Mode

	Security for WLST
	Securing the WLST Connection
	Securing Access to Configuration Data
	Securing Access from WLST Online
	Writing and Reading Encrypted Configuration Values

	Securing Access to Security Data

	Main Steps for Using WLST in Interactive or Script Mode
	Setting Up Your Environment
	Invoking WLST
	Examples

	Exiting WLST
	Syntax for WLST Commands
	Redirecting Error and Debug Output to a File
	Getting Help

	Running WLST from Ant
	Parameters
	Parameters Specified as Nested Elements
	script
	classpath

	Examples
	Example 1
	Example 2
	Example 3

	Importing WLST as a Jython Module
	Customizing WLST

	Creating Domains Using WLST Offline
	Creating and Using a Domain Template (Offline)
	Browsing Information About the Configuration Hierarchy (Offline)
	Editing a Domain (Offline)

	Alternative: Using the configToScript Command
	Considerations for Clusters, JDBC, and JMS Resources

	Managing the Server Life Cycle
	Using WLST and Node Manager to Manage Servers
	Using Node Manager to Start Servers on a Machine
	Using Node Manager to Start Managed Servers in a Domain or Cluster

	Starting and Managing Servers Without Node Manager
	Starting an Administration Server Without Node Manager
	Managing Server State Without Node Manager

	Navigating MBeans (WLST Online)
	Navigating and Interrogating MBeans
	Changing the Current Management Object
	Navigating and Displaying Configuration MBeans Example

	Browsing Runtime MBeans
	Navigating and Displaying Runtime MBeans Example

	Navigating Among MBean Hierarchies
	Finding MBeans and Attributes
	Accessing Other WebLogic MBeans and Custom MBeans

	Configuring Existing Domains
	Using WLST Online to Update an Existing Domain
	Tracking Configuration Changes
	Undoing or Canceling Changes
	Additional Operations and Attributes for Change Management

	Using WLST Offline to Update an Existing Domain
	Managing Security Data (WLST Online)
	Determining If You Need to Access the Edit Hierarchy
	Creating a User
	Adding a User to a Group
	Verifying Whether a User Is a Member of a Group
	Listing Groups to Which a User Belongs
	Listing Users and Groups in a Security Realm
	Changing a Password
	Protecting User Accounts in a Security Realm
	Set Consecutive Invalid Login Attempts
	Unlock a User Account

	Deploying Applications
	Using WLST Online to Deploy Applications
	Using WLST Offline to Deploy Applications

	Updating the Deployment Plan
	Getting Runtime Information
	Accessing Runtime Information: Main Steps
	Script for Monitoring Server State
	Script for Monitoring the JVM

	Configuring Logging
	Working with the WebLogic Diagnostics Framework

	WLST Online and Offline Command Summary
	WLST Command Summary, Alphabetically By Command
	WLST Online Command Summary
	WLST Offline Command Summary

	WLST Command and Variable Reference
	Overview of WSLT Command Categories
	Browse Commands
	cd
	Description
	Syntax
	Examples

	currentTree
	Description
	Syntax
	Example

	prompt
	Description
	Examples

	pwd
	Description
	Syntax
	Example

	Control Commands
	addTemplate
	Description
	Syntax
	Example

	closeDomain
	Description
	Syntax
	Example

	closeTemplate
	Description
	Syntax
	Example

	connect
	Description
	Syntax
	Examples

	createDomain
	Description
	Syntax
	Example

	disconnect
	Description
	Syntax
	Example

	exit
	Description
	Syntax
	Example

	readDomain
	Description
	Syntax
	Example

	readTemplate
	Description
	Syntax
	Example

	updateDomain
	Description
	Syntax
	Example

	writeDomain
	Description
	Syntax
	Example

	writeTemplate
	Description
	Syntax
	Example

	Deployment Commands
	deploy
	Description
	Syntax
	Example

	distributeApplication
	Description
	Syntax
	Example

	getWLDM
	Description
	Syntax
	Example

	listApplications
	Description
	Syntax
	Example

	loadApplication
	Description
	Syntax
	Example

	redeploy
	Description
	Syntax
	Example

	startApplication
	Description
	Syntax
	Example

	stopApplication
	Description
	Syntax
	Example

	undeploy
	Description
	Syntax
	Example

	updateApplication
	Description
	Syntax
	Example

	Diagnostics Commands
	exportDiagnosticData
	Description
	Syntax
	Example

	exportDiagnosticDataFromServer
	Description
	Syntax
	Example

	Editing Commands
	activate
	Description
	Syntax
	Example

	assign
	Description
	Syntax
	Example

	assignAll
	Description
	Syntax
	Example

	cancelEdit
	Description
	Syntax
	Example

	create
	Description
	Syntax
	Example

	delete
	Description
	Syntax
	Example

	encrypt
	Description
	Syntax
	Example

	get
	Description
	Syntax
	Example

	getActivationTask
	Description
	Syntax
	Example

	invoke
	Description
	Syntax
	Example

	isRestartRequired
	Description
	Syntax
	Example

	loadDB
	Description
	Syntax
	Example

	loadProperties
	Description
	Syntax
	Example

	save
	Description
	Syntax
	Example

	set
	Description
	Syntax
	Example

	setOption
	Description
	Syntax
	Example

	showChanges
	Description
	Syntax
	Example

	startEdit
	Description
	Syntax
	Example

	stopEdit
	Description
	Syntax
	Example

	unassign
	Description
	Syntax
	Example

	unassignAll
	Description
	Syntax
	Example

	undo
	Description
	Syntax
	Example

	validate
	Description
	Syntax
	Example

	Information Commands
	addListener
	Description
	Syntax
	Example

	configToScript
	Syntax
	Example

	dumpStack
	Description
	Syntax
	Example

	dumpVariables
	Description
	Syntax
	Example

	find
	Description
	Syntax
	Example

	getConfigManager
	Description
	Syntax
	Example

	getMBean
	Description
	Syntax
	Example

	getMBI
	Description
	Syntax
	Example

	getPath
	Description
	Syntax
	Example

	listChildTypes
	Description
	Syntax
	Example

	lookup
	Description
	Syntax
	Example

	ls
	Description
	Syntax
	Example

	man
	Description
	Syntax
	Example

	redirect
	Description
	Syntax
	Example

	removeListener
	Description
	Syntax
	Example

	showListeners
	Description
	Syntax
	Example

	startRecording
	Description
	Syntax
	Example

	state
	Description
	Syntax
	Example

	stopRecording
	Description
	Syntax
	Example

	stopRedirect
	Description
	Syntax
	Example

	storeUserConfig
	Description
	Syntax
	Example

	threadDump
	Description
	Syntax
	Example

	viewMBean
	Description
	Syntax
	Example

	writeIniFile
	Description
	Syntax
	Example

	Life Cycle Commands
	migrate
	Description
	Syntax
	Example

	resume
	Description
	Syntax
	Example

	shutdown
	Description
	Syntax
	Example

	start
	Description
	Syntax
	Example

	startServer
	Description
	Syntax
	Example

	suspend
	Description
	Syntax
	Example

	Node Manager Commands
	nm
	Description
	Syntax
	Example

	nmConnect
	Description
	Syntax
	Example

	nmDisconnect
	Description
	Syntax
	Example

	nmEnroll
	Description
	Syntax
	Example

	nmGenBootStartupProps
	Description
	Syntax
	Example

	nmKill
	Description
	Syntax
	Example

	nmLog
	Description
	Syntax
	Example

	nmServerLog
	Description
	Syntax
	Example

	nmServerStatus
	Description
	Syntax
	Example

	nmStart
	Description
	Syntax
	Example

	nmVersion
	Description
	Syntax
	Example

	startNodeManager
	Description
	Syntax
	Example

	Tree Commands
	config
	Description
	Example

	custom
	Description
	Example

	domainConfig
	Description
	Example

	domainRuntime
	Description
	Example

	edit
	Description
	Example

	jndi
	Description
	Example

	runtime
	Description
	Example

	serverConfig
	Description
	Example

	serverRuntime
	Description
	Example

	WLST Variable Reference

	WLST Deployment Objects
	WLSTPlan Object
	WLSTProgress Object

	FAQs: WLST

