
Oracle® WebLogic Server
Programming WebLogic jCOM

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server Programming WebLogic jCOM, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

 Programming WebLogic jCOM iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-2

Related Documentation . 1-2

New and Changed Features . 1-2

2. Understanding WebLogic jCOM
What Is WebLogic jCOM? . 2-1

An Important Note on Terminology . 2-2

jCOM Architecture . 2-2

Why Use WebLogic jCOM? . 2-3

WebLogic jCOM Features . 2-3

Planning Your WebLogic jCOM Application . 2-4

Zero-Client Deployment . 2-4

Advantages and Disadvantages of Zero-Client Deployment. 2-4

Early Versus Late Binding . 2-5

Advantages and Disadvantages of Each Binding Model. 2-6

DCOM Versus Native Mode. 2-7

Advantages and Disadvantages of Native Mode. 2-8

jCOM Features and Changes in this Release . 2-8

3. Calling into WebLogic Server from a COM Client Application
Special Requirement for Native Mode. 3-1

iv Programming WebLogic jCOM

Calling WebLogic Server from a COM Client: Main Steps . 3-1

Preparing WebLogic Server . 3-2

Generate Java Wrappers and the IDL File—Early Binding Only 3-3

Configuring Access Control. 3-4

Granting Access to java.util.Collection and java.util.Iterator. 3-5

Granting Access to ejb20.basic.beanManaged . 3-5

Preparing the COM Client. 3-5

Install Necessary Files . 3-5

jCOM Tools Files . 3-6

WebLogic Server Class Files—Native Mode Only . 3-6

Obtain an Object Reference Moniker from the WebLogic Server Servlet—Zero Client
Only . 3-6

Generate Java Wrappers and the IDL File—Early Binding Only 3-7

Some Notes about Wrapper Files . 3-8

Register the WebLogic Server JVM in the Client Machine Registry 3-8

Unregistering JVMs . 3-9

Select Native Mode, If Applicable . 3-10

Code the COM Client Application. 3-10

Late Bound Applications . 3-10

Early Bound Applications. 3-11

Start the COM Client . 3-11

Running COM-to-WLS Applications in Native Mode . 3-11

Native Mode with the JVM Running Out-of-Process . 3-12

Native Mode with the JVM Running In-Process . 3-13

4. Calling into a COM Application from WebLogic Server
Special Requirements for Native Mode . 4-1

Calling a COM Application from WebLogic Server: Main Steps 4-1

 Programming WebLogic jCOM v

Preparing the COM Application . 4-2

Code the COM Application . 4-2

Generate Java Classes with the com2java GUI Tool . 4-2

Package the Java Classes for WebLogic Server . 4-3

Start the COM Application. 4-3

Using Java Classes Generated by com2java . 4-4

Using Java Interfaces Generated from COM interfaces by com2java 4-5

5. A Closer Look at the jCOM Tools
com2java . 5-1

Using com2java . 5-1

Selecting the Type Library . 5-2

Specifying the Java Package Name. 5-2

Options . 5-3

Generate the Proxies . 5-5

Files Generated by com2java . 5-5

Enumerations. 5-6

COM Interfaces . 5-6

COM Classes. 5-6

java2com . 5-7

regjvm . 5-11

JVM Modes . 5-12

DCOM mode . 5-12

Native Mode Out of Process . 5-12

Native Mode in Process. 5-13

The User Interface of the regjvm GUI Tool . 5-14

DCOM Mode Options for the regjvm GUI Tool. 5-14

Native Mode Options for the regjvm GUI Tool . 5-16

vi Programming WebLogic jCOM

Native Mode in Process Options for the regjvm GUI Tool 5-17

regjvmcmd. 5-19

regtlb . 5-19

6. Upgrading Considerations
Advantages of jCOM 8.1 over jCOM 6.1 . 6-1

Changes to Your COM Code . 6-2

Security Changes. 6-2

Configuration Changes . 6-2

Upgrading from jCOM 7.0 to jCOM 8.1 . 6-4

Programming WebLogic jCOM 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Programming
WebLogic jCOM:

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-2

“New and Changed Features” on page 1-2

Document Scope and Audience
This document is a resource for software developers who want to develop and configure
applications that include WebLogic Server Java Component Object (jCOM). It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server or considering the use of WebLogic Server jCOM for a particular application

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning jCOM topics. For links to WebLogic Server documentation and resources for these topics,
see “Related Documentation” on page 1-2.

It is assumed that the reader is familiar with Java EE and jCOM concepts. This document
emphasizes the value-added features provided by WebLogic Server jCOM and key information

I n t roduct i on and Roadmap

1-2 Programming WebLogic jCOM

about how to use WebLogic Server features and facilities to get a jCOM application up and
running.

Guide to This Document
This chapter, “Introduction and Roadmap,” describes the scope and organization of this
guide.

Chapter 2, “Understanding WebLogic jCOM,” provides an overview of the Java to COM
Service. It also describes WebLogic jCOM components and features.

Chapter 3, “Calling into WebLogic Server from a COM Client Application,” describes how
to access WebLogic Server from a COM client application using WebLogic Server jCOM.

Chapter 4, “Calling into a COM Application from WebLogic Server,” describes how to
access a COM client application from WebLogic Server using WebLogic Server jCOM.

Chapter 5, “A Closer Look at the jCOM Tools,” describes how to programatically manage
your jCOM applications using value-added WebLogic jCOM tools.

Chapter 6, “Upgrading Considerations,” describes how to use Multicasting to enable the
delivery of messages to a select group of hosts that subsequently forward the messages to
subscribers.

Related Documentation
This document contains information about configuring and managing jCOM resources.

For jCOM information as it relates to WebLogic Server, see the following document:

Securing WebLogic Resources for information about COM resources.

New and Changed Features
For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What’s New in WebLogic Server” in Release Notes.

http://e-docs.bea.com/wls/docs103/secwlres/types.html
http://e-docs.bea.com/wls/docs103/notes/new.html

 Programming WebLogic jCOM 2-1

C H A P T E R 2

Understanding WebLogic jCOM

The following sections provide an overview of WebLogic jCOM:

“What Is WebLogic jCOM?” on page 2-1

“Why Use WebLogic jCOM?” on page 2-3

“WebLogic jCOM Features” on page 2-3

“Planning Your WebLogic jCOM Application” on page 2-4

“jCOM Features and Changes in this Release” on page 2-8

What Is WebLogic jCOM?
WebLogic jCOM is a software bridge that allows bidirectional access between Java/Java EE
objects deployed in WebLogic Server, and Microsoft ActiveX components available within
Microsoft Office family of products, Visual Basic and C++ objects, and other Component Object
Model/Distributed Component Object Model (COM/DCOM) environments.

In general, Oracle believes that Web Services are the preferred way to communicate with
Microsoft applications. We suggest that customers plan to migrate legacy COM applications to
.NET in order to leverage this type of communication. jCOM is provided as a migration path for
interim solutions that require Java-to-COM integration. It is suitable for small projects or bridge
solutions.

Unlike other Java-to-COM bridges available on the market, jCOM is specifically designed to
work with WebLogic Server on the Java side. You cannot use jCOM to make COM objects

Unders tanding WebLog ic jCOM

2-2 Programming WebLogic jCOM

communicate with any arbitrary Java Virtual Machine (JVM). In addition, jCOM makes direct
use of WebLogic Server threads, providing a very robust way to expose services to COM objects.

WebLogic jCOM makes the differences between the object types transparent: to a COM client,
WebLogic Server objects appear to be COM objects and to a WebLogic Server application, COM
components appear to be Java objects.

WebLogic jCOM is bidirectional because it allows:

Microsoft COM clients to access objects in WebLogic Server as though they were COM
components.

and

Applications within WebLogic Server to access COM components as though they were
Java objects.

An Important Note on Terminology
Throughout the remainder of this programming guide, we refer to the two types of applications
by their directions of access. Thus:

An application in which a COM client accesses WebLogic Server objects is a
“COM-to-WLS” application.

An application in which WebLogic Server accesses COM objects is a “WLS-to-COM”
application.

jCOM Architecture
WebLogic jCOM provides a runtime component that implements both COM/DCOM over
Distributed Computing Environment Remote Procedure Call, and Remote Method Invocation
(RMI) over Java Remote Method protocol/Internet Inter-ORB Protocol distributed components
infrastructures. This makes the objects on the other side look like native objects for each
environment.

WebLogic jCOM also provides automated tools to convert between both types of interfaces: it
automatically builds COM/DCOM proxies and RMI stubs necessary for each side to be able to
communicate via the above mentioned protocols.

WebLogic jCOM does all the necessary translation between DCOM and RMI technologies, and
connects to WebLogic Server as an RMI client. It then communicates requests to Enterprise Java
Beans (EJBs) deployed in the WebLogic Server as if the request comes from a regular EJB client.

Why Use WebLog ic jCOM?

 Programming WebLogic jCOM 2-3

In a similar manner, when a component deployed in WebLogic Server requests services provided
by a DCOM object, the request is translated by the jCOM component from a regular RMI client
request issued by the WebLogic Server into DCOM compliant request, and communicated to the
DCOM environment to the appropriate object.

In addition to the runtime file, WebLogic jCOM also provides a number of tools and components
which are used for configuring the client and server environments.

Why Use WebLogic jCOM?
The major reasons for using WebLogic jCOM are:

To gain interoperability among distributed applications that span diverse hardware and
software platforms

To aid those with a significant investment in Microsoft development tools and trained
development staff who don’t want to write Java client software in order for their client
applications to access business logic on WebLogic Server.

To address the needs of e-business application builders seeking to leverage the skills
available for both COM/DCOM, and Java environments to build fully integrated
applications and reuse existing components. The specifics of each environment can be
completely hidden for developers used to another environment.

WebLogic jCOM follows a software industry trend of making heterogeneous environments and
applications interoperate transparently.

WebLogic jCOM Features
The key features of the WebLogic jCOM subsystem are:

WebLogic jCOM hides the existence of the data types accessed by the client, dynamically
mapping between the most appropriate Java objects and COM components.

WebLogic jCOM supports both late and early binding of object types.

No native code is required on the machine hosting the COM component. Internally,
WebLogic jCOM uses the Windows DCOM network protocol to provide communication
between both local and remote COM components and a pure Java environment.

WebLogic jCOM supports an optional “native mode” which maximizes performance when
running on a Windows platform. See “DCOM Versus Native Mode” on page 2-7.

Unders tanding WebLog ic jCOM

2-4 Programming WebLogic jCOM

WebLogic jCOM supports event handling. For example, Java events are accessible from
Visual Basic using the standard COM event mechanism and Java objects can subscribe to
COM component events.

Planning Your WebLogic jCOM Application
Before designing and building your jCOM application, you must make a few key decisions.
Specifically, you must decide:

Whether to employ a zero-client architecture for your application (COM-to-WLS only)

Whether to employ an early or late binding model (COM-to-WLS only)

Whether to run your jCOM application in native or DCOM mode (both COM-to-WLS and
WLS-to-COM)

This section provides information to help you make these decisions.

Zero-Client Deployment
A jCOM zero client deployment is easy to implement. No WebLogic-jCOM-specific software is
required on the client machine.

The WebLogic Server location is coded into the COM client using an object reference moniker
(objref) moniker string. The objref moniker is generated by the user and it encodes the IP
address and port of the WebLogic Server. You can obtain the moniker string for the COM client
code programmatically—or by copying and pasting—from a WebLogic Server servlet. Once the
server connection is established, the COM client can link a COM object to an interface in the Java
component.

Advantages and Disadvantages of Zero-Client Deployment
The following table summarizes the advantages and disadvantages of a zero-client
implementation.

Plann ing Your WebLog ic jCOM Appl i cat i on

 Programming WebLogic jCOM 2-5

The zero-client model programming model is probably a good choice if your WebLogic jCOM
deployment requires a large number of COM client machines.

Early Versus Late Binding
Binding substitutes the symbolic addresses of routines or modules with physical addresses. Early
binding and late binding both provide access to another application's objects.

Early bound access gives you information about the object you are accessing while you are
compiling your program; all objects accessed are evaluated at compile time. This requires that the
server application provide a type library and that the client application identify the library for
loading onto the client system.

In late bound access, no information about the object being accessed is available at compile time;
the objects being accessed are dynamically evaluated at runtime. This means that it is not until
you run the program that you find out if the methods and properties you are accessing actually
exist.

Advantages Disadvantages

 No WebLogic-specific software need be
loaded into the client machine registry.

A few jCOM-specific tools must be copied
from the WL_HOME\bin directory on the
WebLogic Server machine

Offers the benefits of the late binding model
(see “Early Versus Late Binding” on
page 2-5) and therefore provides the same
flexibility in terms of changes made to the
Java component.

Requires that the WebLogic Server location
and port number be coded into the COM
client, which means that if the server location
is changed, this reference has to be
regenerated and changed in the source code.

Deprives your application of the advantages
of early binding. (See “Early Versus Late
Binding” on page 2-5)

Unders tanding WebLog ic jCOM

2-6 Programming WebLogic jCOM

Advantages and Disadvantages of Each Binding Model
The following tables summarize the pros and cons of the early binding model:

The following tables summarize the pros and cons of the late binding model:

Early Binding Pros Early Binding Cons

• More reliable than late bound
implementation.

• Compile-time type checking
makes debugging easy

• The application’s end user can
browse the type library.

• Improved runtime transaction
performance relative to a late
bound implementation.

• Complex to implement, as it
requires the generation of a type
library and wrappers.
The type library is required on the
client side; the wrappers are
required on the server side. If the
client and server are running on
separate machines the type library
and wrappers have to be generated
on the same machine and then
copied to the systems where they
are required.

• Lacks the flexibility of late bound
access, in that any changes made to
the Java component require
regeneration of the wrappers and
the library.

• Slower initialization at runtime
than a late bound implementation.

Late Binding Advantages Late Binding Disadvantages

• Easy to implement
• Flexible implementation, since

objects referenced are only
evaluated at runtime

• Faster runtime initialization than
for an early bound implementation

• Error prone, as no type checking
can be done at compile time
It is not until you run the program
that you find out if the methods and
properties you are accessing
actually exist.

• Runtime transaction performance
inferior to early bound
implementation

Plann ing Your WebLog ic jCOM Appl i cat i on

 Programming WebLogic jCOM 2-7

DCOM Versus Native Mode
The DCOM (Distributed Component Object Model) mode uses the Component Object Model
(COM) to support communication among objects on different computers. In a WebLogic jCOM
application running in DCOM mode, the COM client communicates with WebLogic Server in
DCOM protocol.

In native mode, COM clients make native calls to WebLogic Servers (COM-to-WLS) and
WebLogic Servers make native calls to COM applications.

For both COM-to-WLS and WLS-to-COM applications, because native mode uses native code
dynamically loaded libraries (DLLs)—which are compiled and optimized specifically for the
local operating system and CPU—using native mode results in better performance.

Moreover, COM-to-WLS applications operating in native mode use WebLogic’s T3/Internet
InterORB (IIOP) protocols for communication between the COM client and WebLogic Server.
This brings the advantages of:

Superior performance as compared to using DCOM calls because it results in fewer
network calls

For example, suppose your COM application creates a vector containing 100 data elements
whose values are returned by a call to WebLogic Server. In DCOM mode, this would
require 100 roundtrip network calls to the server. In native mode, this would require one
roundtrip call.

Access to WebLogic Server’s failover and load balancing features

However, for both types of applications, because native libraries have only been created for
Windows, implementing native late bound access requires that the WebLogic Server be installed
all COM client machines.

Moreover, for WLS-to-COM applications, WebLogic Server must be running on a Windows
machine to run in native mode.

Unders tanding WebLog ic jCOM

2-8 Programming WebLogic jCOM

Advantages and Disadvantages of Native Mode
The following table summarizes the pros and cons of a native mode implementation.

jCOM Features and Changes in this Release
WebLogic jCOM now supports passing—from COM to Java—two dimensional arrays of the
following COM types:

Advantages Disadvantages

For COM-to-WLS applications, superior
performance to that of DCOM mode,
because calls aren’t made over the network.

For both COM-to-WLS and WLS-to-COM
applications, since native libraries have only
been created for Windows, implementing
native mode requires that the WebLogic
Server be installed on all COM machines.

For COM-to-WLS applications, access to
WebLogic Server’s load balancing and
failover features.

In the case of WLS-to-COM applications,
WebLogic Server must be running on a
Windows machine to run in native mode.

For WLS-to-COM applications,
performance benefits because, if the COM
object is installed on the same machine as
WebLogic Server, WebLogic Server will not
make network calls to it.

Table 2-1 Two Dimensional Array Support in jCOM

COM Type Visual Basic Type Java Type

I1, UI1 Byte Byte

BOOL Boolean Boolean

I2, UI2 Integer Short

CY, I8, UI8 Currency Long

R8 Double Double

DATE Date Date

I4, UI3, INT, UINT Long Int

jCOM Features and Changes in th is Re l ease

 Programming WebLogic jCOM 2-9

Unders tanding WebLog ic jCOM

2-10 Programming WebLogic jCOM

 Programming WebLogic jCOM 3-1

C H A P T E R 3

Calling into WebLogic Server from a
COM Client Application

This chapter describes how to use WebLogic jCOM to call methods on a WebLogic Server object
from a COM client.

Special Requirement for Native Mode

Calling WebLogic Server from a COM Client: Main Steps

Preparing WebLogic Server

Preparing the COM Client

Running COM-to-WLS Applications in Native Mode

Special Requirement for Native Mode
Note that WebLogic Server must be installed on COM client machines in order for your
COM-to-WLS application to run in native mode.

For more information on native mode, see “Running COM-to-WLS Applications in Native
Mode” on page 3-11

Calling WebLogic Server from a COM Client: Main Steps
This section summarizes the main steps to call into WebLogic Server from a COM client. Most
are described in detail in later sections.

On the WebLogic Server side:

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-2 Programming WebLogic jCOM

1. If you are using early binding, run the java2com tool to generate Java wrapper classes and an
Interface Definition Language (IDL) file and compile the files. See “Generate Java Wrappers
and the IDL File—Early Binding Only” on page 3-3.

2. Enable COM calls on the server listen port. See Enable jCOM in the Administration Console
Online Help.

3. Grant access to server classes to COM clients. See “Configuring Access Control” on
page 3-4.

4. Configure any other relevant console properties. See Servers: Protocols: jCOM in the
Administration Console Online Help.

On the COM client side:

1. Install the jCOM tools files and, for native mode only, WebLogic Server class files. See
“Install Necessary Files” on page 3-5.

2. If this is a zero-client installation:

– Obtain an object reference moniker (ORM) from the WebLogic Server ORM servlet,
either progammatically or by pasting into your application. See “Obtain an Object
Reference Moniker from the WebLogic Server Servlet—Zero Client Only” on page 3-6.

3. If you are using early binding:

– Obtain the IDL file generated on the WebLogic Server machine and compile it into a
type library.

– Register the type library and the WebLogic Server it will service.

For both of these steps, see “Generate Java Wrappers and the IDL File—Early Binding
Only” on page 3-7.

4. Register the WebLogic Server JVM in the registry. If want to communicate with the
WebLogic Server in native mode, set that in this step. See “Register the WebLogic Server
JVM in the Client Machine Registry” on page 3-8.

5. Code the COM client application. See “Code the COM Client Application” on page 3-10.

6. Start the COM client. See “Start the COM Client” on page 3-11.

Preparing WebLogic Server
The following sections discuss how to prepare WebLogic Server so that COM clients can call
methods on WebLogic Server objects:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/channels/EnableAndConfigureJCOM.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Corecoreserverserverprotocolsjcomtitle.html

Prepar ing WebLog ic Se rve r

 Programming WebLogic jCOM 3-3

Generate Java Wrappers and the IDL File—Early Binding
Only
1. Add the path to JDK libraries and weblogic.jar to your CLASSPATH. For example:

set CLASSPATH=%JAVA_HOME%\lib\tools.jar;
%WL_HOME%\server\lib\weblogic.jar;%CLASSPATH%

Where JAVA_HOME is the root folder where the JDK is installed (typically
c:\bea\jdk131) and WL_HOME is the root directory where WebLogic Platform software is
installed (typically c:\bea\wlserver_10.00).

2. Generate java wrappers and an IDL file with the java2com tool:

java com.bea.java2com.Main

The java2com GUI is displayed:

3. Input the following:

Java Classes & Interfaces: list of the wrapper classes to be converted
Name of generated IDL File: name of the IDL file
Output Directory: drive letter and root directory\TLB

where TLB signifies OLE Type Library.

The java2com tool looks at the class specified, and at all other classes that it uses in the
method parameters. It does this recursively. You can specify more than one class or
interface here, separated by spaces.

All Java classes that are public, not abstract, and have a no-parameter constructor are
rendered accessible as COM Classes. Other public classes, and all public interfaces are
rendered accessible as COM interfaces.

If you click the “Generate” button and produce wrappers and the IDL at this point, you
will encounter errors when you attempted to compile the generated wrappers and IDL. This
is because certain classes are omitted by default in the java2com tool. By looking at the
errors generated during compilation, you would be able to determine which classes were
causing problems.

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-4 Programming WebLogic jCOM

To fix the problem, click on the “Names” button in the java2com tool and remove any
references to the class files you require. In this example we must remove the following
references:

*.toString->''''
class java.lang.Class->''''

4. Once these references have been removed, you can generate your wrappers and IDL. Click
Generate in the java2com GUI.

The java2com tool generates Java classes containing DCOM marshalling code used to access
Java objects. These generated classes are used behind the scenes by the WebLogic jCOM
runtime. You simply need to compile them, and make sure that they are in your CLASSPATH.

Configuring Access Control
Grant the COM client user access to the classes that the COM client application needs to access.
Your particular application will dictate which classes to expose.

For example, assume that the COM client needs access to the following three classes:

java.util.Collection

java.util.Iterator

ejb20.basic.beanManaged

Prepar ing the COM C l i ent

 Programming WebLogic jCOM 3-5

Granting Access to java.util.Collection and java.util.Iterator
1. In the left-hand pane of the WebLogic Server Administration Console, click the Services node

and then click the JCOM node underneath it.

2. In the right-hand pane, enter:

java.util.*

3. Click Define Security Policy.

4. In the Policy Condition box, double-click “Caller is a member of the group”.

5. In the “Enter group name:” field, enter the name of the group of users to whom you’re
granting access.

6. Click Add.

7. Click OK.

8. In the bottom right-hand corner of the window, click Apply.

Granting Access to ejb20.basic.beanManaged
To grant access to ejb20.basic.beanManaged, repeat the steps in “Granting Access to
java.util.Collection and java.util.Iterator,”replacing “java.util.*” with
“ejb20.basic.beanManaged.*” in step 3.

Note that because of the final asterisk, you’re actually granting access to the entire
ejb20.basic.beanManaged package.

Preparing the COM Client
The following sections describe how to prepare a COM client to call methods on WebLogic
Server objects:

Install Necessary Files
There are a number of files that must be installed on your client machine in order to call methods
on WebLogic Server objects. As noted below, some of these are only necessary if you are making
method calls in native mode.

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-6 Programming WebLogic jCOM

jCOM Tools Files
There are five files and three folders (including all subfolders and files) necessary for running the
jCOM tools. You will find them in the WL_HOME\server\bin directory on the machine where
you installed WebLogic Server. They are:

JintMk.dll

ntvinv.dll

regjvm.exe

regjvmcmd.exe

regtlb.exe

regjvm (including all subfolders and files)

regjvmcmd (including all subfolders and files)

regtlb (including all subfolders and files)

For more information on the jCOM tools, see Chapter 5, “A Closer Look at the jCOM Tools.”

WebLogic Server Class Files—Native Mode Only
In order to run a COM-to-WLS application in native mode, a COM client machine must have
access to certain WebLogic Server class files. To obtain these files, install WebLogic Server on
each COM client machine.

Obtain an Object Reference Moniker from the WebLogic
Server Servlet—Zero Client Only
You can obtain an object reference moniker (ORM) from WebLogic Server. The moniker can be
used from the COM client application, obviating the need to run regjvmcmd. The moniker will
remain valid for new incarnations of the server as long as the host and port of the server remain
the same.

There are two ways to obtain an ORM for your COM client code:

Obtain it via a servlet running on WebLogic Server. Open a Web browser on WebLogic
Server to http://[wlshost]:[wlsport]/bea_wls_internal/com

where wlshost is the WebLogic Server machine and wlsport is the server’s port number.

Prepar ing the COM C l i ent

 Programming WebLogic jCOM 3-7

Run the com.bea.jcom.GetJvmMoniker Java class, specifying as parameters the full
name or TCP/IP address of the WebLogic Server machine and port number:

java com.bea.jcom.GetJvmMoniker [wlshost] [wlsport]

A long message is displayed which shows the objref moniker and explains how to use it.
The text displayed is also automatically copied to the clipboard, so it can be pasted directly
into your source. The objref moniker returned can be used to access WebLogic Server on
the machine and port you have specified.

Generate Java Wrappers and the IDL File—Early Binding
Only
Perform the client-side portion of the wrapper and Interface Definition Language (IDL) file
generation:

1. Copy the IDL to the client machine:

If the java2com tool successfully executes on the WebLogic Server machine (see
“Preparing WebLogic Server” on page 3-2), an IDL file is produced on the server machine.
Copy this IDL file to the client machine, and place it in this COM application’s \TLB
subdirectory.

Note: If you are running the client and the server on the same machine this step is not
necessary, since the java2com tool should already output to the sample's \TLB
subdirectory.

2. Compile the IDL file into a type library:
midl containerManagedTLB.idl

This command calls the Microsoft IDL compiler MIDL.EXE to carry out the compilation.
The result of the compilation is a type library called containerManagedTLB.tlb.

3. Register the type library and set the JVM it will service:

regtlb /unregisterall

regtlb containerManagedTLB.tlb registered_jvm

The first line above calls the regtlb.exe in order to un-register any previously
registered type library versions. The second line then registers the newly compiled type
library.

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-8 Programming WebLogic jCOM

The second parameter registered_jvm passed to regtlb is important. It specifies the
name of the JVM that will be linked with the type library. The WebLogic jCOM runtime
requires this information for linking type library defined object calls to the appropriate
wrapper classes.

The WebLogic Server JVM is registered in the client machine registry via the regjvm tool. For
details, see “Register the WebLogic Server JVM in the Client Machine Registry” on page 3-8.

Some Notes about Wrapper Files
In general, wrapper files must be placed on the server and compiled. The IDL file must be
placed on the client and compiled. If you are running the server and client on separate
machines, and you created the wrappers and IDL on the client side, you will have to
distribute the wrapper files you have just compiled to the server. If you created the
wrappers and IDL on the server side, then you must move the IDL file to the client, where
it can be compiled to a type library.

The wrapper files and IDL file must be created by a single execution of the java2com
tool. If you attempt to run the java2com tool separately on both the server and the client,
the wrappers and IDL file you create will not be able to communicate. The IDL and
wrappers have unique stamps on them for identification; wrappers can only communicate
with IDL files created by a common invocation of the java2com tool, and vice versa. As
a result, the java2com tool must be run once, and the files it creates distributed
afterward. If you make a mistake or a change in your Java source code and you need to run
the java2com tool again, you must delete all of your wrapper files, your IDL file, and
your TLB file, and redo all the steps.

When you use the java2com tool to create wrappers for classes that contain (or reference)
deprecated methods, you see deprecation warnings at compile time. disregard these
warnings; WebLogic jCOM renders the methods accessible from COM.

The generated wrapper classes must be in your CLASSPATH. They cannot be just located
in your EJB jar.

Register the WebLogic Server JVM in the Client Machine
Registry
Register with the local Java Virtual Machine by adding the server name to the Windows registry
and associating it with the TCP/IP address and client-to-server communications port where
WebLogic will listen for incoming COM requests. By default, this is localhost:7001.

1. Invoke the regjvm GUI tool, which displays this screen.

Prepar ing the COM C l i ent

 Programming WebLogic jCOM 3-9

2. If WebLogic Server is running on something other than localhost and listening on a port other
than 7001, then fill in the hostname (or IP address) and port number

If you prefer, use the command-line version of regjvm:

regjvmcmd servername localhost[7001]

Unregistering JVMs
The regjvm (or regjvmcmd) tool does not overwrite old entries when new entries with identical
names are entered. This means that if you ever need to change the hostname or port of the
machine with which you wish to communicate, you have to unregister the old entry, and then
create a new one.

To unregister a JVM in the regjvm tool window, select the JVM you wish to unregister and click
Delete.

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-10 Programming WebLogic jCOM

Alternatively, unregister the JVM with the command line tool regjvmcmd:

regjvmcmd /unregister servername

Select Native Mode, If Applicable
If your COM client is running in native mode, check the “Native Mode” or “Native Mode
Out-of-Process” radio button in the regjvm window or invoke regjvmcmd with the /native
parameter. For details on this step, see “Running COM-to-WLS Applications in Native Mode”
on page 3-11.

Code the COM Client Application
You can now invoke methods on the WebLogic Server objects. How you code this naturally
depends on whether you chose late binding or early binding.

Late Bound Applications
In the following sample Visual Basic Application, notice the declaration of the COM version of
the Account EJB's home interface mobjHome. This COM object is linked to an instance of the
AccountHome interface on the server side.

Dim mobjHome As Object

Private Sub Form_Load()

'Handle errors

On Error GoTo ErrOut '

Bind the EJB AccountHome object via JNDI

Set mobjHome =

CreateObject("examplesServer:jndi:ejb20-containerManaged-AccountHome")

Known Problem and Workaround for Late Bound Clients
WebLogic jCOM has problems handling methods that are overloaded but have the same number
of parameters. There is no such problem if the number of parameters in the overloaded methods
are different.

When they're the same, calls fail.

Unfortunately, the method InitialContext.lookup is overloaded:

public Object lookup(String)

Running COM-to-WLS App l i cat i ons in Nat i ve Mode

 Programming WebLogic jCOM 3-11

public Object lookup(javax.naming.Name)

To perform a lookup, you must use the special JNDI moniker to create an object:

Set o = CreateObject("servername:jndi:objectname")

Early Bound Applications
The most obvious distinguishing feature of early bound code is that fewer variables are declared
As Object. Objects can now be declared by using the type library you generated previously:

Declare objects using the type library generated in Generate Java Wrappers and the IDL File—
Early Binding Only. In this Visual Basic code fragment, the IDL file is called
containerManagedTLB and the EJB is called
ExamplesEjb20BasicContainerManagedAccountHome:

Dim objNarrow As New containerManagedTLB.JCOMHelper

Now, you can call a method on the object:

Set mobjHome = objNarrow.narrow(objTemp,

"examples.ejb20.basic.containerManaged.AccountHome")

Start the COM Client
Start up the COM client application.

Running COM-to-WLS Applications in Native Mode
For COM-to-WLS applications, there’s a distinction in native mode between “in-process” and
“out-of-process”:

Out-of-process: The JVM is created in its own process; interprocess communication occurs
between the COM process and the WebLogic Server JVM process.

In-process: The entire WebLogic Server JVM is brought into the COM process; in effect,
it’s loaded into the address space of the COM client. The WebLogic Server client-side
classes reside inside this JVM.

You determine which process your application uses by selecting the native-mode-in-process or
native mode radio button in the regjvm GUI tool interface.

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-12 Programming WebLogic jCOM

Native Mode with the JVM Running Out-of-Process
If you want your JVM to run out of process (but allow COM client access to the Java objects
contained therein using native code), follow these steps:

1. Invoke the regjvm GUI tools to register your JVM as being native. The regjvm sets up
various registry entries to facilitate WebLogic jCOM's COM-to-WLS mechanism.

Note: When you register the JVM you must provide the name of the server in the JVM id
field. For example, if you enabled JCOM native mode on exampleServer then when
you register with regjvm enter exampleServer in the JVM id box.

2. If your JVM is not already running, click the Advanced radio button and type its path in the
“Launch Command” field.

Running COM-to-WLS App l i cat i ons in Nat i ve Mode

 Programming WebLogic jCOM 3-13

For detailed information on the regjvm tool, see Chapter 5, “A Closer Look at the jCOM
Tools.”

3. Insert the following code into the main section of your application code, to tell the WebLogic
jCOM runtime that the JVM is ready to receive calls:

com.bea.jcom.Jvm.register("MyJvm"):

public class MyJvm {

public static void main(String[] args) throws Exception {

// Register the JVM with the name "firstjvm"

com.bea.jcom.Jvm.register("firstjvm");

Thread.sleep(6000000); // Sleep for an hour

}

4. From Visual Basic you can now use late binding to instantiate instances of any Java class that
can be loaded in that JVM:

Set acctEJB =
CreateObject("firstjvm.jndi.ejb20.beanManaged.AccountHome")

5. Having registered the JVM, use the standard WebLogic jCOM regtlb command to allow
early bound access to Java objects (regtlb takes as parameters the name of a type library,
and a JVM name, and registers all the COM objects defined in that type library as being
located in that JVM).

You can also control the instantiation of Java objects on behalf of COM clients by
associating your own instantiator with a JVM (additional parameter to
com.bea.jcom.Jvm.register(...))—a kind of object factory.

Native Mode with the JVM Running In-Process
Use this technique to actually load the JVM into the COM client's address space.

Again, use the regjvm command, but this time specify additional parameters.

Note: When you register the JVM you must provide the name of the server in the JVM id field.
For example, if you enabled JCOM native mode on exampleServer then when you
register with regjvm enter exampleServer in the JV id box.

The simplest example would be to use Visual Basic to perform late bound access to Java objects.
First register the JVM. If you are using Sun's JDK 1.3.1, which is installed under c:\bea\jdk131
and WebLogic Server is installed in c:\bea\wlserver_10.00\server\lib\weblogic.jar
and your Java classes are in c:\pure, you would complete the regjvm tools screen as follows:

Cal l ing in to WebLog ic Se rve r f rom a COM Cl i ent App l icat ion

3-14 Programming WebLogic jCOM

As you can see, you specify the JVM name, the CLASSPATH, and the JVM bin directory path.

From Visual Basic, you should now be able to call the GetObject method:

MessageBox GetObject("MyJVM.jndi.ejb20.beanManaged.AccountHome")

For detailed information on the regjvm tool, see Chapter 5, “A Closer Look at the jCOM Tools.”

 Programming WebLogic jCOM 4-1

C H A P T E R 4

Calling into a COM Application from
WebLogic Server

The following sections describe how to prepare and deploy a WLS-to-COM application: an
application that uses WebLogic jCOM to call methods on a COM object from WebLogic Server.

“Special Requirements for Native Mode” on page 4-1

“Calling a COM Application from WebLogic Server: Main Steps” on page 4-1

“Preparing the COM Application” on page 4-2

“Using Java Classes Generated by com2java” on page 4-4

“Using Java Interfaces Generated from COM interfaces by com2java” on page 4-5

Special Requirements for Native Mode
Note these two special requirements for WLS-to-COM applications that use native mode:

In order for a COM application to run in native mode, WebLogic Server must be installed
on the COM application machine.

In order to run in native mode, WebLogic Server must be running on a Windows machine.

Calling a COM Application from WebLogic Server: Main Steps
This section summarizes the main steps to call into a COM application from a WebLogic Server.
Most are described in detail in later sections.

On the COM side:

Cal l ing in to a COM App l i cat ion f rom WebLog ic Se rve r

4-2 Programming WebLogic jCOM

1. Code the COM application. See “Code the COM Application” on page 4-2.

2. Generate Java classes from the COM objects with the com2java tool. See “Generate Java
Classes with the com2java GUI Tool” on page 4-2.

3. Package the classes for use by WebLogic Server. See “Package the Java Classes for
WebLogic Server” on page 4-3.

4. Start the COM application. See “Start the COM Application” on page 4-3.

On the WebLogic Server side:

1. Enable COM calls on the server listen port. See Enable jCOM in the Administration Console
Online Help.

2. Configure any other relevant console properties. See Servers: Protocols: jCOM in the
Administration Console Online Help.

If you have chosen to have WebLogic Server and the COM application communicate in
native mode, enable it in the Administration Console. See the “DCOM Versus Native
Mode” in Chapter 2, “Understanding WebLogic jCOM,”for help deciding whether to use
native mode.

3. Use the COM objects as you would any other Java object.

Preparing the COM Application
The following sections describe how to prepare a COM client so that WebLogic Server can call
methods on its objects:

Code the COM Application
Code your COM application as desired.

Generate Java Classes with the com2java GUI Tool
Running the com2java GUI tool against a COM type library generates a collection of Java class
files corresponding to the classes and interfaces in the COM type library.

Here we demonstrate Java class generation with the GUI tool. To read more about the WebLogic
jCOM tools in general, see Chapter 5, “A Closer Look at the jCOM Tools.”.

1. To run the com2java GUI tool, perform the following steps:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/channels/EnableAndConfigureJCOM.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Corecoreserverserverprotocolsjcomtitle.html

Prepar ing the COM Appl i cat ion

 Programming WebLogic jCOM 4-3

a. Change to the WEBLOGIC_HOME/server/bin directory (or add this directory to your
CLASSPATH)

b. Open a command shell on the COM machine and invoke the com2java.exe file:

> com2java

2. Select the appropriate type library in the top field, and fill in the Java package text box with
the name of the package to contain the generated files. The com2java tool will remember
the last package name you specified for a particular type library.

3. Click Generate Proxies to generate Java class files.

Package the Java Classes for WebLogic Server
If you call a COM object from an EJB, you must package the class files generated by com2java
into your EJB .jar in order for WebLogic Server to find them. You will probably want to have
the generated files in a specific package. For example you may want to put all the files for the
Excel type library in a Java package called excel.

For more information on packaging EJB .jar files, see the chapter “Implementing EJBs ” in
Programming WebLogic Enterprise JavaBeans.

Start the COM Application
Once you have generated the Java class files and packaged them appropriately, simply start your
COM application, so that the COM objects you want to expose to WebLogic Server are
instantiated and running.

http://e-docs.bea.com/wls/docs103/ejb/implementing.html

Cal l ing in to a COM App l i cat ion f rom WebLog ic Se rve r

4-4 Programming WebLogic jCOM

Using Java Classes Generated by com2java
For each COM class that the com2java tool finds in a type library, it generates a Java class which
you use to access the COM class. These generated Java classes have several constructors:

The default constructor, which creates an instance of the COM class on the local host, with
no authentication

A second constructor, which creates an instance of the COM class on a specific host, with
no authentication

A third constructor, which creates an instance of the COM class on the local host, with
specific authentication

A fourth constructor, which creates an instance of the COM class on a specified host, with
specific authentication

A final constructor, which can be used to wrap a returned object reference which is known
to reference an instance of the COM class

Here are sample constructors generated from the DataLabelProxy class:

public DataLabelProxy() {}

public DataLabelProxy(Object obj) throws java.io.IOException {

super(obj, DataLabel.IID);

}

protected DataLabelProxy(Object obj, String iid) throws

java.io.IOException

{

super(obj, iid);

}

public DataLabelProxy(String CLSID, String host, boolean

deferred) throws java.net.UnknownHostException,

java.io.IOException{ super(CLSID, DataLabel.IID, host, null);

}

Us ing Java In te r faces Generated f rom COM inte r faces by com2java

 Programming WebLogic jCOM 4-5

protected DataLabelProxy(String CLSID, String iid, String host,

AuthInfo authInfo) throws java.io.IOException { super(CLSID,

iid, host, authInfo);

}

Using Java Interfaces Generated from COM interfaces by
com2java

A method in a COM interface may return a reference to an object through a specific interface.

For example the Excel type library (Excel8.olb) defines the _Application COM Interface,
with the method Add which is defined like this in COM IDL:

[id(0x0000023c), propget, helpcontext(0x0001023c)]

HRESULT Workbooks([out, retval] Workbooks** RHS);

The method returns a reference to an object that implements the Workbooks COM interface.
Because the Workbooks interface is defined in the same type library as the _Application
interface, the com2java tool generates the following method in the _Application Java interface
it creates:

/** * getWorkbooks.

*

* @return return value. An reference to a Workbooks

* @exception java.io.IOException If there are communications problems.

* @exception com.bea.jcom.AutomationException If the remote server throws

an exception. */

public Workbooks getWorkbooks () throws java.io.IOException,

com.bea.jcom.AutomationException;

It is revealing to look at the implementation of the method in the generated _ApplicationProxy
Java class:

/**

* getWorkbooks.

*

* @return return value. An reference to a Workbooks

Cal l ing in to a COM App l i cat ion f rom WebLog ic Se rve r

4-6 Programming WebLogic jCOM

* @exception java.io.IOException If there are communications

problems.

* @exception com.bea.jcom.AutomationException If the remote

server throws an exception.

*/

public Workbooks getWorkbooks () throws java.io.IOException,

com.bea.jcom.AutomationException{ com.bea.jcom.MarshalStream

marshalStream = newMarshalStream("getWorkbooks");

marshalStream = invoke("getWorkbooks", 52, marshalStream);

Object res = marshalStream.readDISPATCH("return value");

Workbooks returnValue = res == null ? null : new

WorkbooksProxy(res);

checkException(marshalStream,

marshalStream.readERROR("HRESULT"));

return returnValue;

}

As you can see, the getWorkbooks method internally makes use of the generated
WorkbooksProxy Java class. As mentioned above, the com2java tool generates the method with
the Workbooks return type because the Workbooks interface is defined in the same type library
as _Application.

If the Workbooks interface were defined in a different type library, WebLogic jCOM would have
generated the following code:

/**

* getWorkbooks.

*

* @return return value. An reference to a Workbooks

* @exception java.io.IOException If there are communications

problems.

Us ing Java In te r faces Generated f rom COM inte r faces by com2java

 Programming WebLogic jCOM 4-7

* @exception com.bea.jcom.AutomationException If the remote server

throws an exception.

*/

public Object getWorkbooks () throws java.io.IOException,

com.bea.jcom.AutomationException;

In this case, you would have to explicitly use the generated proxy class to access the returned
Workbooks:

Object wbksObj = app.getWorkbooks();

Workbooks workbooks = new WorkbooksProxy(wbObj);

Cal l ing in to a COM App l i cat ion f rom WebLog ic Se rve r

4-8 Programming WebLogic jCOM

 Programming WebLogic jCOM 5-1

C H A P T E R 5

A Closer Look at the jCOM Tools

The following sections examines in detail the tools used by jCOM applications:

“com2java” on page 5-1

“java2com” on page 5-7

“regjvm” on page 5-11

“regjvmcmd” on page 5-19

“regtlb” on page 5-19

com2java
WebLogic jCOM's com2java tool reads information from a type library, and generates Java files
that you use to access the COM classes and interfaces defined in that type library.

Type libraries contain information on COM classes, interfaces, and other constructs. They are
typically generated by development tools such as Visual C++ and Visual BASIC.

Some type libraries are readily identifiable as such. Files that end with the extension olb or tlb
are definitely type libraries. What can be a little confusing is that type libraries can also be stored
inside other files, such as executables. Visual BASIC puts a type library in the executable that it
generates.

Using com2java
Start com2java by typing it in a command shell or double clicking its icon.

A C lose r Look at the jCOM Too l s

5-2 Programming WebLogic jCOM

When you start com2java, this is the dialog that is displayed:

Selecting the Type Library
Click the Select button to select the type library that the tool should process.

Remember that type libraries can sometimes be hidden inside executable files, such as the
executable or dynamic link library (DLL) containing your COM component.

The com2java tool will remember a list of the last type libraries you successfully opened and
generated proxies for.

Specifying the Java Package Name
The com2java tool generates a set of Java source files corresponding to the COM classes and
interfaces in the type library. You will probably want to have the generated files in a specific
package. For example you may want to put all the files for the Excel type library in a Java package
called excel.

In the Java package text box, specify the name of the package to which the generated files to
belong.

The com2java tool remembers the last package name you specified for a particular type library.

com2java

 Programming WebLogic jCOM 5-3

Options
Click the Options button to display a dialog box with com2java options described below. Note
that these options are saved automatically between sessions of com2java. If you only require an
option for one particular generation of proxies, then reset the option after generating the proxies.

Option Description

Clash Prefix If methods in the COM interfaces defined in the type library
clash with methods that are already used by Java (for example
the getClass() method), com2java prefixes the generated
method name with a string, which is zz_ by default.

Lower case method
names

The convention for Java method names is that they start with a
lower-case letter. By default the com2java tool enforces this
convention, changing method names accordingly. To have
com2java ignore the convention, uncheck the Lowercase
method names checkbox in the Options dialog box.

Only generate IDispatch WebLogic jCOM supports calling COM objects using IDispatch
and vtable access. Selecting this option ensures that all calls are
made using the IDispatch interface.

Generate retry code on
'0x80010001 - Call was
rejected by callee'

If a COM server is busy, you may receive an error code.
Selecting this option ensures that the generated code retries each
time this error code is received.

A C lose r Look at the jCOM Too l s

5-4 Programming WebLogic jCOM

Generate Arrays as
Objects

Parameters that are SAFEARRAYS have a corresponding Java
parameter of type java.lang.Object generated. This is required if
you are passing two dimensional arrays outside of Variants
to/from COM objects from Java.

This option doesn't change what is actually passed over the wire
—it is still arrays—it is just that in the generated Java interface,
rather than having the generated method prototype specify the
type of the array, it specifies “Object”. This is useful in
situations where you want to pass a 2D array —in the COM IDL
the number of dimensions is not specified for SAFEARRAYS,
and if you don't check the “generate arrays as objects” option,
WebLogic jCOM assumes you are passing a single element
array and generate a corresponding prototype.

By setting the option, and having com2java generate “Object”
instead of “String[]”, for example, you are free to actually pass
a 2D string array.

Prompt for names for
imported tlbs

Sometimes a type library will import another type library. If you
are also generating proxies for imported type libraries, using this
option will prompt you for the package name of the those
proxies.

Don't generate
dispinterfaces

Selecting this option disables the generation of proxies for
interfaces defined as dispinterfaces.

Generate deprecated
constructors

Generated proxies contain some constructors which are now
deprecated. If you do wish to generate these deprecated
constructors select this option.

Don't rename methods
with same names

If a name conflict is detected in a COM class, com2java
automatically renames one of the methods. Selecting this option
overrides this automatic renaming.

Option Description

com2java

 Programming WebLogic jCOM 5-5

Generate the Proxies
Click the Generate Proxies button to select the directory in which the com2java tool should
generate the Java files.

Once you select the directory, com2java analyzes.the type library and output the corresponding
files in the directory you specify. If the directory already contains Java source files, WebLogic
jCOM issues a warning and allows you to cancel the operation.

Files Generated by com2java
The com2java tool processes three kinds of constructs in a type library:

Enumerations

COM Interfaces

COM Classes

These are explored in this section.

Refer to documentation about the COM objects that you are accessing to understand how to use
generated Java files to manipulate the COM objects.

For example when you run com2java on the Excel type library the generated Java files you are
seeing correspond to the Microsoft Excel COM API, and you should refer to the Microsoft Excel
programming documentation for more information, such as the Excel 2000 COM API:

Ignore conflicting
interfaces

If a COM class implements multiple interfaces which define
methods with the same names, selecting this option prevents the
corresponding generated Java classes from implementing the
additional interfaces. You can still access the interfaces using
the getAsXXX method that is generated. See the generated
comments.

Generate Java Abstract
Window Toolkit (AWT)
classes

Generates Java Classes as GUI classes. To be used for
embedding ActiveX controls in Java Frames.

Option Description

A C lose r Look at the jCOM Too l s

5-6 Programming WebLogic jCOM

http://msdn.microsoft.com/library/default.asp?URL=/library/officedev/off2000/xltocobjectmod
elapplication.htm

Enumerations
An enumeration is a list; in Java it is represented by java.util.Enumeration. If a type library
contains an enumeration, WebLogic jCOM generates a Java interface containing constant
definitions for each element in the enumeration.

COM Interfaces
WebLogic jCOM handles two types of interfaces. It handles Dispatch interfaces, whose methods
can only be accessed using the COM IDispatch mechanism, and dual interfaces, whose methods
can be invoked directly (vtbl access).

For each COM interface defined in a type library, the com2java tool generates two Java files: a
Java interface, and a Java class.

The name of the generated Java interface is the same as the name of the COM interface. For
example if the COM interface is called IMyInterface, the com2java tool generates a Java
interface called IMyInterface in the file IMyInterface.java.

The second file that com2java generates is a Java class, which contains code used to access COM
objects that implement the interface, and also code to allow COM objects to invoke methods in
Java classes that implement the interface. The name of the generated Java class is the name of the
interface with 'Proxy' appended to it. Using the example from the previous paragraph, WebLogic
jCOM would generate a Java class called IMyInterfaceProxy in the file IMyInterfaceProxy.java.

For each method in the COM interface, WebLogic jCOM generates a corresponding method in
the Java interface. In addition it generates some constants in the interface which, as the generated
comments indicate, you can safely ignore—you will never need to know anything about them, or
use them.

Once again, WebLogic jCOM picks up comments from the type library describing the interface
and its methods, and uses them in the generated javadoc comments.

COM Classes
A COM class implements one or more COM interfaces, in the same way that a Java class can
implement one or more Java interfaces.

http://msdn.microsoft.com/library/default.asp?URL=/library/officedev/off2000/xltocobjectmodelapplication.htm

java2com

 Programming WebLogic jCOM 5-7

For each COM class in a type library, the com2java tool generates a corresponding Java class,
with the same name as the COM class. WebLogic jCOM also supports a class implementing
multiple interfaces.

The Java class which WebLogic jCOM generates can be used to access the corresponding COM
class.

Special Case—Source Interfaces (Events)
A COM class can specify that an interface is a source interface. This means that it allows
instances of COM classes that implement the interface to subscribe to the events defined in the
interface. It invokes the methods defined in the interface on the objects that have subscribed.

Note: In order for the com2java tool to treat an interface in a type library as an Event interface,
there must be at least one COM class in the type library that uses the interface as a source
interface.

Although COM events work using connection points, and source interfaces, Java has a different
event mechanism. The com2java tool hides the COM mechanism from the Java programmer,
and presents the events using the standard Java techniques.

What this means in real terms is that com2java adds two methods to the Java class that it
generates for accessing the COM Class.

When the com2java tool detects that a class uses an interface as a source interface, it generates
special code for that interface. It derives the interface from the java.util.EventListener
Java interface, as is the convention for Java events.

Another Java event convention is that each of the methods in the interface should have a single
parameter, which is an instance of a class derived from java.util.EventObject Java class.

One final Java event related convention is the use of an Adapter class, which implements the
event interface, and provides empty default implementations for the methods in the interface.
That way, developers that wish to create a class which will be subscribed to the event need not
implement all of the methods in the interface, which can be especially painful with large
interfaces.

For each event interface, WebLogic jCOM generates an adapter class.

java2com
You can run java2com on any platform. Make sure that the WebLogic jCOM runtime
weblogic.jar is in your CLASSPATH environment variable.

A C lose r Look at the jCOM Too l s

5-8 Programming WebLogic jCOM

The java2com tool analyzes Java classes (using the Java reflection mechanism), and outputs:

A COM Interface Definition Language (IDL) file

Pure Java DCOM marshalling code (wrappers) used by the WebLogic jCOM runtime to
facilitate access to the Java objects from COM using vtable (late binding) access.

After you generate these files, you will compile the IDL file using Microsoft's MIDL tool.

To generate the IDL file and the wrappers, first start the java2com tool using the command:

java com.bea.java2com.Main

The java2com tool displays the following dialog box:

The dialog box has the following fields (any changes to the configuration are automatically saved
when you exit the dialog box).

java2com

 Programming WebLogic jCOM 5-9

Field Description

Java Classes and
Interfaces

These are the 'root' Java classes and interfaces that you want
java2com to analyze. They must be accessible in your
CLASSPATH. WebLogic jCOM analyzes these classes, and
generates COM IDL definitions and Java DCOM marshalling
code which can be used to access the Java class from COM. It
then performs the same analysis on any classes or interfaces
used in parameters or fields in that class, recursively, until all
Java classes and interfaces accessible in this manner have been
analyzed.

Separate the names with spaces. Click on the ... button to display
a dialog that lists the classes and lets you add/remove from the
list.

Name of Generated IDL
File

This is the name of the COM Interface Definition Language
(IDL) file which will be generated. If you specify myjvm, then
myjvm.idl will be generated. This name is also used for the
name of the type library generated when you compile
myjvm.idl using Microsoft's MIDL compiler.

Output Directory The directory to which java2com should output the files it
generates. The default is the current directory (“.”).

Dump Analysis Displays the classes that the java2com discovers, as it
discovers them.

Save Settings/Load
Settings

Click on the Save Settings button to save the current java2com
settings. Do this before you click Generate.

When java2com starts, it checks to see if there is a
java2com.ser setting file in the current directory. If present,
it loads the settings from that file automatically.

A C lose r Look at the jCOM Too l s

5-10 Programming WebLogic jCOM

Names Clicking the Names button displays the following dialog box:

When '*' is selected from the class/interfaces names drop-down
list, a text box is displayed into which you can type the name of
a member (field or class) name. You may specify a
corresponding COM name to be used whenever that member
name is encountered in any class or interface being generated. If
you leave the name blank then that Java member will not have a
corresponding member generated in any COM interface.

When a specific COM class name or interface is selected from
the class/interfaces names drop-down list, the set of members in
that class or interface is listed below it. You may specify a COM
name to be used, and by clicking on Add this Class Name map
you map the selected class/interface to the specified COM name.
By clicking on Add this Member Name map you may map the
selected member to the specified COM name.

Field Description

reg jvm

 Programming WebLogic jCOM 5-11

regjvm
In order for WebLogic jCOM to allow languages supporting COM to access Java objects as
though they were COM objects, you must register (on the COM client machine) a reference to
the JVM in which the Java objects run. The regjvm tool enables you to create and manage all the
JVM references on a machine.

Note: The regjvm tool does not overwrite old entries when new entries with identical names
are entered. This means that if you ever need to change the hostname or port of the
machine with which you wish to communicate, you have to unregister the old entry and
then reregister the entry. You can do this using the command line tool

Generate button Click this button to generate the wrappers and IDL file.

For each public Java interface that java2com discovers, it
creates a corresponding COM interface definition. If the Java
interface name were: com.bea.finance.Bankable, then
the generated COM interface would be named
ComBeaFinanceBankable, unless you specify a different
name using the “Names” dialog.

For each public Java class that java2com discovers, it creates
a corresponding COM interface definition. If the Java class
name were: com.bea.finance.Account, then the
generated COM interface would be named
IComBeaFinanceAccount, unless you specify a different
name using the “Names” dialog. In addition if the Java class has
a public default constructor, then java2com generates a COM
class ComBeaFinanceAccount, unless you specify a
different name using the “Names” dialog.

If a Java class can generate Java events, then the generated COM
class will have source interfaces (COM events) corresponding to
the events supported by the Java class.

Compile the generated IDL file using Microsoft's MIDL tool.
This ships with Visual C++, and can be downloaded from the
Microsoft web site. The command

midl procdServ.idl

produces a type library called prodServ.tlb, which you
must register, as described in “regtlb” on page 5-19.

Field Description

A C lose r Look at the jCOM Too l s

5-12 Programming WebLogic jCOM

regjvmcmd.exe, or by using the GUI tool regjvm.exe (both can be found in the
WL_HOME\server\bin directory).

JVM Modes
You can access a JVM from COM clients in one of three different modes:

DCOM mode

Native mode (out of process)

Native mode in process

DCOM mode
DCOM mode does not require any native code on the Java server side, which means your Java
code may be located on a Unix machine or any machine with a Java Virtual Machine installed.
When you register the JVM on the Windows client machine you define the name of the server
host machine (it may be localhost for local components) and a port number.

The Java code in the JVM must call com.bea.jcom.Jvm.register(<jvm id>), where <jvm
id> is the id of the JVM as defined in regjvm.

Native Mode Out of Process
Native mode currently only works on the local machine. Other than the JVM name no additional
parameters are necessary.

reg jvm

 Programming WebLogic jCOM 5-13

The JVM must call com.bea.jcom.Jvm.register(<jvm id>), where <jvm id> is the id of the
JVM as defined in regjvm.

Native Mode in Process
Using native mode in process allows the user to actually load the Java object into the same
process as the COM client. Both objects must of course be located on the same machine.

The JVM need not call com.bea.jcom.Jvm.register() or be started as an extra process to the client.

A C lose r Look at the jCOM Too l s

5-14 Programming WebLogic jCOM

The User Interface of the regjvm GUI Tool
Run the regjvm tool to display the following dialog box.

The top part is for selection and management of all JVMs on the current machine. You can
change, add or delete JVMs. Before switching to a different JVM, you must save changes
made to the currently selected JVM. The JVM mode you select dictates the information
required in the lower half of the screen.

The lower half of the windows contains the details required for each JVM, according to the
mode of the JVM. In addition to the JVM details there is an advanced checkbox which
when selected displays advanced options for each JVM mode.

These options are discussed in the following sections.

DCOM Mode Options for the regjvm GUI Tool

Standard Options

reg jvm

 Programming WebLogic jCOM 5-15

JVM id (required)—The JVM must be specified. Clicking the browse button allows you to
select your own JVM, clicking the Scan button scans your local machine for JVMs (this
may take a few minutes) and inserts them in the listbox for your selection.

Hostname—The hostname or IP address where the JVM is located.

Port—The port number used to initiate contact with the JVM.

Advanced Options

Launch command (required)—The command to be used if the JVM is to be automatically
launched. Typically this would be something like:
c:\bea\jdk131\bin\java -classpath
c:\bea\wlserver_10.00\server\lib\weblogic.jar;c:\pure MyMainClass

The important thing is that weblogic.jar and the appropriate jdk files be in your
CLASSPATH.

Generate Script (optional) —Allows the user to generate a registry script selecting the
settings of the JVM.

A C lose r Look at the jCOM Too l s

5-16 Programming WebLogic jCOM

Native Mode Options for the regjvm GUI Tool

Standard Options

JVM id (required)—The JVM must be specified. Clicking the browse button allows you to
select your own JVM, clicking the Scan button scans your local machine for JVMs (this
may take a few minutes) and inserts them in the listbox for your selection.

Advanced Options

The advanced options are identical to those of DCOM mode. See “DCOM Mode Options for the
regjvm GUI Tool” on page 5-14.

reg jvm

 Programming WebLogic jCOM 5-17

Native Mode in Process Options for the regjvm GUI Tool

Standard Options

JVM id (required)—The JVM must be specified. Clicking the browse button allows you to
select your own JVM, clicking the Scan button scans your local machine for JVMs (this
may take a few minutes) and inserts them in the listbox for your selection.

A C lose r Look at the jCOM Too l s

5-18 Programming WebLogic jCOM

Advanced Options

Classpath (optional) - The CLASSPATH for the JVM. If this is left blank the CLASSPATH
environment variable at runtime is used. Otherwise the contents are added to the
CLASSPATH environment variable.

Main class (optional)—The name of the class containing a Main method which you wish to
be called.

Properties (optional)—Any properties which you require to be set. Must have the following
syntax: prop1=value1 prop2=value2...

Java 2 (optional)—When setting properties this must be set when using Java 2 (JDK 1.2.x,
1.3.x) and cleared when using 1.1.x.

Generate Script (optional)—Identical to that of DCOM mode. See “DCOM Mode Options
for the regjvm GUI Tool” on page 5-14.

reg jvmcmd

 Programming WebLogic jCOM 5-19

regjvmcmd
regjvmcmd is the command line version of the GUI tool, regjvm, discussed in “regjvm” on
page 5-11. To get a summary of its parameters, run it without parameters:

regjvmcmd

In regjvmcmd’s simplest form, you specify the following:

A jvm ID (corresponding to the name used in com.bea.jcom.Jvm.register(“JvmId”)),

The binding that can be used to access the JVM, in the form hostname[port], where
hostname is the name of the machine running the JVM, and port is the TCP/IP port
specified when starting WebLogic Server.

If you no longer need to have the JVM registered, or if you wish to change its registration, you
must first un-register it with this command:

regjvmcmd /unregister JvmId

regtlb
WebLogic jCOM's regtlb tool registers a type library on a COM Windows client that needs to
access Java objects using COM's early binding mechanism. regtlb takes two parameters. The
first is the name of the type library file to be registered. The second is the ID of the JVM in which
the COM classes described in the type library are to be found.

If the type library was generated from an IDL file that was in turn generated by the WebLogic
jCOM java2com tool, then the regtlb command can automatically determine the Java class
name corresponding to each COM class in the type library (the COM class descriptions in the
type library are of the form:

Java class java.util.Observable (via jCOM))

If the type library was not generated from a java2com generated IDL file, you will be prompted
to give the name of the Java class which is to be instantiated for each COM class:

A C lose r Look at the jCOM Too l s

5-20 Programming WebLogic jCOM

This means that when someone attempts to create an instance of Atldll.Apple, WebLogic
jCOM will instantiate com.bea.MyAppleClass in the JVM MyJvm. The MyAppleClass
class should implement the Java interfaces generated by WebLogic jCOM's java2com tool from
atldll.tlb that are implemented by the COM class Atldll.Apple.

 Programming WebLogic jCOM 6-1

C H A P T E R 6

Upgrading Considerations

The following sections describe upgrading from WebLogic jCOM 6.1 to WebLogic jCOM 8.1:

“Advantages of jCOM 8.1 over jCOM 6.1” on page 6-1

“Changes to Your COM Code” on page 6-2

“Security Changes” on page 6-2

“Configuration Changes” on page 6-2

Upgrading from WebLogic jCOM 7.0 to WebLogic jCOM 8.1 requires only minor changes,
which are discussed in Upgrading from jCOM 7.0 to jCOM 8.1.

Advantages of jCOM 8.1 over jCOM 6.1
WebLogic jCOM 8.1 is dramatically simpler to implement than WebLogic jCOM 6.1, for the
following reasons:

You no longer need to write and install a bridge. The jCOM runtime is now included in
WebLogic Server. In fact, when you install WebLogic Server, the jCOM functionality is
installed automatically.

You obtain the software you need on the COM machine by copying .dll and .exe files
from your WebLogic Server installation directory.

jCOM is automatically enabled. This means that the WebLogic Server is automatically
configured to listen for COM calls on its listen port.

Upgrading Cons ide rat i ons

6-2 Programming WebLogic jCOM

jCOM properties are now configurable through WebLogic Server’s Administration Console
only.

Changes to Your COM Code
The upgrade to WebLogic Server 8.1 from jCOM 6.1 may affect your COM application code in
the following ways:

If you are running a zero client application you can now obtain an object reference
moniker (ORM) programmatically from a servlet running on WebLogic Server. You also
have the option of obtaining it the old way—by running com.bea.jcom.GetJvmMoniker.

To obtain the ORM from the servlet, open a Web browser on WebLogic Server to
http://[wlshost]:[wlsport]/bea_wls_internal/com.

Purge from your COM code any references to a separate jCOM bridge.

Security Changes
Previously handled through jCOM-specific software, security is now implemented through
WebLogic Server’s security mechanism of roles and policies. Specifically, to allow COM clients
access to WebLogic Server objects, you must export those objects for use by the COM client. You
do this through the WebLogic Server Administration Console.

For details, see “Configuring Access Control,” in Chapter 3, “Calling into WebLogic Server from
a COM Client Application.”

Configuration Changes
You now configure properties through console rather than at command-line and many of the
properties have gone away. The following table maps 6.1 properties to 8.1 properties:

This 6.1 property: Is handled this way in 8.1:

ENABLE_TCP_NODELAY No longer needed.

JCOM_DCOM_PORT No longer needed. The new port defaults to
the port WebLogic Server is listening on,
typically 7001.

JCOM_COINIT_VALUE Configure via the Apartment Threaded
property in the WebLogic Server Console

Conf igura t i on Changes

 Programming WebLogic jCOM 6-3

JCOM_INCOMING_CONNECTION_TIME
OUT

Configure via the Complete Message
Timeout property under Server -> Protocols
-> General -> Advanced Options in the
Administration Console.

JCOM_OUTGOING_CONNECTION_TIME
OUT

Causes outgoing connections (connections
initiated by the WebLogic jCOM runtime)
which have not been used for specified
number of milliseconds to disconnect.
Configure by adding the
'JCOM_OUTGOING_CONNECTION_TIM
EOUT = [number of milliseconds]' parameter
on the command-line (for example, to the
Java option of your WebLogic Server start
script).

COM.BEA.JCOM.SERVER WebLogic Server’s listen port is used.

JCOM_MAX_REQUEST_HANDLERS jCOM threading has been integrated with the
WebLogic Server thread pool so this setting
now corresponds to the number of threads
configured for the WebLogic Server.

JCOM_NATIVE_MODE Configure via the Native Mode Enabled
property in the WebLogic Server
Administration Console.

JCOM_NOGIT No longer needed.

JCOM_NTAUTH_HOST Configure via the NTAuth Host property in
the WebLogic Server Administration
Console.

JCOM_LOCAL_PORT_START No longer needed. WebLogic Server listen
port is used for this range.

JCOM_LOCAL_PORT_END No longer needed. WebLogic Server listen
port is used for this range.

JCOM_PROXY_PACKAGE No longer needed.

This 6.1 property: Is handled this way in 8.1:

Upgrading Cons ide rat i ons

6-4 Programming WebLogic jCOM

Upgrading from jCOM 7.0 to jCOM 8.1
There are no code changes required for upgrading from jCOM 7.0 to jCOM 8.1. However, you
now configure COM packet timeout values and the maximum length of COM message packets
via a different location in the Administration Console.

These changes are summarized in the following table:

JCOM_SKIP_CLOSE No longer needed. WebLogic Server closes
connections based on the value of the
Complete Message Timeout property.

JCOM_WS_NAME No longer needed. WebLogic jCOM uses the
name of the server instance you invoke in a
CreateObject statement.

This 6.1 property: Is handled this way in 8.1:

Value Configure this way in 7.0 Configure this way in 8.1

COM packet timeout
value

Set the COM Message
Timeout property under
Server -> Connections ->
jCOM in the
Administration Console

Set the Complete Message
Timeout property under Server ->
Protocols -> General -> Advanced
Options in the Administration Console.

The maximum length of
COM message packets

Set the COM Max
Message Size property
under Server ->
Connections -> jCOM in
the Administration
Console

Set the Complete Maximum
Message Size property under Server
-> Protocols -> General -> Advanced
Options in the Administration Console.

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Programming WebLogic jCOM, 10g Release 3 (10.3)
	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	New and Changed Features

	Understanding WebLogic jCOM
	What Is WebLogic jCOM?
	An Important Note on Terminology
	jCOM Architecture

	Why Use WebLogic jCOM?
	WebLogic jCOM Features
	Planning Your WebLogic jCOM Application
	Zero-Client Deployment
	Advantages and Disadvantages of Zero-Client Deployment

	Early Versus Late Binding
	Advantages and Disadvantages of Each Binding Model

	DCOM Versus Native Mode
	Advantages and Disadvantages of Native Mode

	jCOM Features and Changes in this Release

	Calling into WebLogic Server from a COM Client Application
	Special Requirement for Native Mode
	Calling WebLogic Server from a COM Client: Main Steps
	1. If you are using early binding, run the java2com tool to generate Java wrapper classes and an Interface Definition Language (IDL) file and compile the files. See “Generate Java Wrappers and the IDL File-Early Binding Only” on page 3-3.
	2. Enable COM calls on the server listen port. See Enable jCOM in the Administration Console Online Help.
	3. Grant access to server classes to COM clients. See “Configuring Access Control” on page 3-4.
	4. Configure any other relevant console properties. See Servers: Protocols: jCOM in the Administration Console Online Help.
	1. Install the jCOM tools files and, for native mode only, WebLogic Server class files. See “Install Necessary Files” on page 3-5.
	2. If this is a zero-client installation:
	3. If you are using early binding:
	4. Register the WebLogic Server JVM in the registry. If want to communicate with the WebLogic Server in native mode, set that in this step. See “Register the WebLogic Server JVM in the Client Machine Registry” on page 3-8.
	5. Code the COM client application. See “Code the COM Client Application” on page 3-10.
	6. Start the COM client. See “Start the COM Client” on page 3-11.
	Preparing WebLogic Server
	Generate Java Wrappers and the IDL File-Early Binding Only

	1. Add the path to JDK libraries and weblogic.jar to your CLASSPATH. For example:
	2. Generate java wrappers and an IDL file with the java2com tool:
	3. Input the following:
	4. Once these references have been removed, you can generate your wrappers and IDL. Click Generate in the java2com GUI.
	Configuring Access Control
	Granting Access to java.util.Collection and java.util.Iterator

	1. In the left-hand pane of the WebLogic Server Administration Console, click the Services node and then click the JCOM node underneath it.
	2. In the right-hand pane, enter:
	3. Click Define Security Policy.
	4. In the Policy Condition box, double-click “Caller is a member of the group”.
	5. In the “Enter group name:” field, enter the name of the group of users to whom you’re granting access.
	6. Click Add.
	7. Click OK.
	8. In the bottom right-hand corner of the window, click Apply.
	Granting Access to ejb20.basic.beanManaged

	Preparing the COM Client
	Install Necessary Files
	jCOM Tools Files
	WebLogic Server Class Files-Native Mode Only

	Obtain an Object Reference Moniker from the WebLogic Server Servlet-Zero Client Only
	Generate Java Wrappers and the IDL File-Early Binding Only

	1. Copy the IDL to the client machine:
	2. Compile the IDL file into a type library:
	3. Register the type library and set the JVM it will service:
	Some Notes about Wrapper Files
	Register the WebLogic Server JVM in the Client Machine Registry

	1. Invoke the regjvm GUI tool, which displays this screen.
	2. If WebLogic Server is running on something other than localhost and listening on a port other than 7001, then fill in the hostname (or IP address) and port number
	Unregistering JVMs
	Select Native Mode, If Applicable
	Code the COM Client Application
	Late Bound Applications
	Early Bound Applications

	Start the COM Client

	Running COM-to-WLS Applications in Native Mode
	Native Mode with the JVM Running Out-of-Process

	1. Invoke the regjvm GUI tools to register your JVM as being native. The regjvm sets up various registry entries to facilitate WebLogic jCOM's COM-to-WLS mechanism.
	2. If your JVM is not already running, click the Advanced radio button and type its path in the “Launch Command” field.
	3. Insert the following code into the main section of your application code, to tell the WebLogic jCOM runtime that the JVM is ready to receive calls:
	4. From Visual Basic you can now use late binding to instantiate instances of any Java class that can be loaded in that JVM:
	5. Having registered the JVM, use the standard WebLogic jCOM regtlb command to allow early bound access to Java objects (regtlb ...
	Native Mode with the JVM Running In-Process

	Calling into a COM Application from WebLogic Server
	Special Requirements for Native Mode
	Calling a COM Application from WebLogic Server: Main Steps
	Preparing the COM Application
	Code the COM Application
	Generate Java Classes with the com2java GUI Tool
	Package the Java Classes for WebLogic Server
	Start the COM Application

	Using Java Classes Generated by com2java
	Using Java Interfaces Generated from COM interfaces by com2java

	A Closer Look at the jCOM Tools
	com2java
	Using com2java
	Selecting the Type Library
	Specifying the Java Package Name
	Options
	Generate the Proxies

	Files Generated by com2java
	Enumerations
	COM Interfaces
	COM Classes

	java2com
	regjvm
	JVM Modes
	DCOM mode
	Native Mode Out of Process
	Native Mode in Process

	The User Interface of the regjvm GUI Tool
	DCOM Mode Options for the regjvm GUI Tool
	Native Mode Options for the regjvm GUI Tool
	Native Mode in Process Options for the regjvm GUI Tool

	regjvmcmd
	regtlb

	Upgrading Considerations
	Advantages of jCOM 8.1 over jCOM 6.1
	Changes to Your COM Code
	Security Changes
	Configuration Changes
	Upgrading from jCOM 7.0 to jCOM 8.1

