
Oracle® WebLogic Server
Programming WebLogic JNDI

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server Programming WebLogic JNDI, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Programming WebLogic JNDI iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-2

Related Documentation . 1-2

Examples for the Web Application Developer . 1-2

Avitek Medical Records Application (MedRec). 1-2

JNDI Examples in the WebLogic Server Distribution . 1-3

New and Changed Features in This Release . 1-3

2. Understanding WebLogic JNDI
What is JNDI? . 2-1

WebLogic Server JNDI . 2-2

3. WebLogic JNDI
Using WebLogic JNDI to Connect a Java Client to a Single Server 3-1

Setting Up JNDI Environment Properties for the InitialContext . 3-2

Creating a Context Using a Hashtable . 3-4

Creating a Context Using a WebLogic Environment Object 3-4

Creating a Context from a Server-Side Object . 3-6

Associating a WebLogic User with a Security Context . 3-6

JNDI Contexts and Threads . 3-6

How to Avoid Potential JNDI Context Problems . 3-7

Using the Context to Look Up a Named Object . 3-7

iv Programming WebLogic JNDI

Using a Named Object to Get an Object Reference . 3-8

Closing the Context . 3-8

Using WebLogic JNDI in a Clustered Environment. 3-9

Using the Relationship of RMI and JNDI to Enable WebLogic Clusters 3-9

Making Custom Objects Available to a WebLogic Server Cluster 3-10

Data Caching Design Pattern . 3-11

Exactly-Once-Per-Cluster Design Pattern . 3-12

Using WebLogic JNDI from a Client in a Clustered Environment 3-12

Using JNDI from Within Java EE Components . 3-15

Setting Up Foreign JNDI. 3-16

Developing Web Applications, Servlets, and JSPs for WebLogic Server 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Programming
WebLogic JNDI

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2

“Examples for the Web Application Developer” on page 1-2

“New and Changed Features in This Release” on page 1-3

Document Scope and Audience
This document explains how to set up WebLogic JNDI. It is intended for programmers who are
developing WebLogic Server® applications and want to use the JNDI feature.

This document is written for application developers who want to design, develop, configure, and
manage applications using the Java Platform, Enterprise Edition (Java EE) from Sun
Microsystems and want to use the JNDI API to provide a unified interface to multiple naming
and directory services in their enterprise. It is assumed that readers know JNDI and the Java
programming language.

I n t roduct i on and Roadmap

1-2 Programming WebLogic JNDI

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” describes the scope and organization
of this guide.

Chapter 2, “Understanding WebLogic JNDI,” provides an overview of the Java Naming
and Directory Interface (JNDI) implementation in WebLogic Server.

Chapter 3, “WebLogic JNDI,” describes programming with WebLogic JNDI.

Related Documentation
For additional information on JNDI, see the following documents:

JNDI Subsytem Messages provides a list of JNDI subsystem messages.

Using WebLogic Server Clusters provides information on the cluster-wide JNDI tree.

Administration Console Online Help contains sections that describe how to add or modify
security roles and policies on a JNDI Binding node, Root Content node, or Context node.

Examples for the Web Application Developer
In addition to this document, Oracle provides examples for software developers within the
context of the Avitek Medical Records Application (MedRec) sample application, as well as
JNDI code examples.

Avitek Medical Records Application (MedRec)
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient data
using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is included in the WebLogic Server distribution,
and can be accessed from the Start menu on Windows machines. For Linux and other platforms,
you can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME
is the top-level installation directory for WebLogic Platform.

http://e-docs.bea.com/wls/docs103/messages/JNDI.html
http://e-docs.bea.com/wls/docs103/cluster/features.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/core/

New and Changed Features in Th is Re l ease

Programming WebLogic JNDI 1-3

JNDI Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server Start menu.

New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What’s New in WebLogic Server” in Release Notes.

http://e-docs.bea.com/wls/docs103/notes/new.html

I n t roduct i on and Roadmap

1-4 Programming WebLogic JNDI

Programming WebLogic JNDI 2-1

C H A P T E R 2

Understanding WebLogic JNDI

The following sections present an overview of the Java Naming and Directory Interface (JNDI)
implementation in WebLogic Server including:

“What is JNDI?” on page 2-1

“WebLogic Server JNDI” on page 2-2

What is JNDI?
Applications use naming services to locate objects in data sources, EJBs, JMS, MailSessions, and
so on in the network. A naming service associates names with objects and finds objects based on
their given names. (The RMI registry is a good example of a naming service.)

JNDI provides a common-denominator interface to many existing naming services, such as
LDAP (Lightweight Directory Access Protocol) and DNS (Domain Name System). These
naming services maintain a set of bindings, which relate names to objects and provide the ability
to look up objects by name. JNDI allows the components in distributed applications to locate each
other.

JNDI is defined to be independent of any specific naming or directory service implementation. It
supports the use of a number of methods for accessing various new and existing services. This
support allows any service-provider implementation to be plugged into the JNDI framework
using the standard service provider interface (SPI) conventions.

http://java.sun.com/products/jndi/index.html
http://java.sun.com/products/jndi/index.html

Unders tanding WebLog ic JND I

2-2 Programming WebLogic JNDI

WebLogic Server JNDI
The WebLogic Server implementation of JNDI supplies methods that:

Give clients access to the WebLogic Server naming services

Make objects available in the WebLogic namespace

Retrieve objects from the WebLogic namespace

Each WebLogic Server cluster is supported by a replicated cluster-wide JNDI tree that provides
access to both replicated and pinned RMI and EJB objects. While the JNDI tree representing the
cluster appears to the client as a single global tree, the tree containing the cluster-wide services is
actually replicated across each WebLogic Server in the cluster. For more information, see “Using
WebLogic JNDI in a Clustered Environment” on page 3-9.

Other WebLogic services can use the integrated naming service provided by WebLogic Server
JNDI. For example, WebLogic RMI can bind and access remote objects by both standard RMI
methods and JNDI methods.

In addition to the standard Java interfaces for JNDI, WebLogic Server provides its own
implementation, weblogic.jndi.WLInitialContextFactory, that uses the standard JNDI
interfaces.

You need not instantiate this class directly. Instead, you can use the standard
javax.naming.InitialContext class and set the appropriate hash table properties, as
documented in the section “Setting Up JNDI Environment Properties for the InitialContext” on
page 3-2. All interaction is done through the javax.naming.Context interface, as described in
the JNDI Javadoc.

For instructions on using the WebLogic JNDI API for client connections, see “WebLogic JNDI”
on page 3-1.

Programming WebLogic JNDI 3-1

C H A P T E R 3

WebLogic JNDI

The following sections describe programming with WebLogic JNDI:

“Using WebLogic JNDI to Connect a Java Client to a Single Server” on page 3-1

“Setting Up JNDI Environment Properties for the InitialContext” on page 3-2

“Using the Context to Look Up a Named Object” on page 3-7

“Using a Named Object to Get an Object Reference” on page 3-8

“Closing the Context” on page 3-8

“Using WebLogic JNDI in a Clustered Environment” on page 3-9

“Using JNDI from Within Java EE Components” on page 3-15

“Setting Up Foreign JNDI” on page 3-16

Using WebLogic JNDI to Connect a Java Client to a Single
Server

The WebLogic Server JNDI Service Provider Interface (SPI) provides an InitialContext
implementation that allows remote Java clients to connect to WebLogic Server. The client can
specify standard JNDI environment properties that identify a particular WebLogic Server
deployment and related connection properties for logging in to WebLogic Server.

WebLogic JNDI

3-2 Programming WebLogic JNDI

To interact with WebLogic Server, a Java client must be able to get an object reference for a
remote object and invoke operations on the object. To accomplish this, the client application code
must perform the following procedure:

1. Set up JNDI environment properties for the InitialContext.

2. Establish an InitialContext with WebLogic Server.

3. Use the Context to look up a named object in the WebLogic Server namespace.

4. Use the named object to get a reference for the remote object and invoke operations on the
remote object.

5. Close the context.

The following sections discuss JNDI client operations for connecting to a specific WebLogic
Server. For information about using JNDI in a cluster of WebLogic Servers, see Using WebLogic
JNDI from a Client in a Clustered Environment.

Before you can use JNDI to access an object in a WebLogic Server environment, you must load
the object into the WebLogic Server JNDI tree.

Setting Up JNDI Environment Properties for the
InitialContext

The first task that must be performed by any Java client application is to create environment
properties. The InitialContext factory uses various properties to customize the
InitialContext for a specific environment. You set these properties either by using a hashtable
or the set() method of a WebLogic Environment object. These properties, which are specified
name-to-value pairs, determine how the WLInitialContextFactory creates the Context.

The following properties are used to customize the InitialContext:

Context.PROVIDER_URL— specifies the URL of the WebLogic Server that provides the
name service. The default is t3://localhost:7001.

Context.SECURITY_PRINCIPAL—specifies the identity of the User (that is, a User
defined in a WebLogic Server security realm) for authentication purposes. The property
defaults to the guest User unless the thread has already been associated with a WebLogic
Server User. For more information, see Associating a WebLogic User with a Security
Context.

Set t ing Up JNDI Env i ronment P roper t ies fo r the In i t ia lContex t

Programming WebLogic JNDI 3-3

Context.SECURITY_CREDENTIALS—specifies either the password for the User defined in
the Context.SECURITY_PRINCIPAL property or an object that implements the
weblogic.security.acl.UserInfo interface with the
Context.SECURITY_CREDENTIALS property defined. If you pass a UserInfo object in this
property, the Context.PROVIDER_URL property is ignored. The property defaults to the
guest User unless the thread has already been associated with a User. For more
information, see Associating a WebLogic User with a Security Context.

You can use the same properties on either a client or a server. If you define the properties on a
server-side object, a local Context is used. If you define the properties on a client or another
WebLogic Server, the Context delegates to a remote Context running on the WebLogic Server
specified by the Context.PROVIDER_URL property. A remote object bound to the server will not
be serviced by peerGone, and will not be reachable if the client should fail.

There are some properties that cannot be changed after the creation of the context. These
properties include provider url, user credentials, and factories. AddToEnvironment can be used
to change other properties after the creation of the context.

Listing 3-1 shows how to obtain a Context using the properties
Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL.

Listing 3-1 Obtaining a Context

 Context ctx = null;

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL,

 "t3://localhost:7001");

 try {

 ctx = new InitialContext(ht);

 // Use the context in your program

 }

 catch (NamingException e) {

 // a failure occurred

 }

 finally {

 try {ctx.close();}

WebLogic JNDI

3-4 Programming WebLogic JNDI

 catch (Exception e) {

 // a failure occurred

 }

 }

Additional WebLogic-specific properties are also available for controlling how objects are bound
into the cluster-wide JNDI tree. Bindings may or may not be replicated across the JNDI tree of
each server within the cluster due to the way these properties are set. Properties such as these are
identified by constants in the weblogic.jndi.WLContext class. For more information about
JNDI-related clustering issues, see Using WebLogic JNDI from a Client in a Clustered
Environment.

Creating a Context Using a Hashtable
You can create a Context with a hashtable in which you have specified the properties described
in “Setting Up JNDI Environment Properties for the InitialContext” on page 3-2.

To do so, pass the hashtable to the constructor for InitialContext. The property
java.naming.factory.initial is used to specify how the InitialContext is created. To
use WebLogic JNDI, you must always set the java.naming.factory.initial property to
weblogic.jndi.WLInitialContextFactory. This setting identifies the factory that actually
creates the Context.

Creating a Context Using a WebLogic Environment Object
You can also create a Context by using a WebLogic environment object implemented by
weblogic.jndi.environment. Although the environment object is WebLogic-specific, it
offers the following advantages:

A set of defaults which reduces the amount of code you need to write.

Convenience set() methods that provide compile-time type-safety. The type-safety set()
methods can save you time both writing and debugging code.

The WebLogic Environment object provides the following defaults:

If you do not specify an InitialContext factory, WLInitialContextFactory is used.

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jndi/WLInitialContextFactory.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jndi/Environment.html

Set t ing Up JNDI Env i ronment P roper t ies fo r the In i t ia lContex t

Programming WebLogic JNDI 3-5

If you do not specify a user and password in the Context.SECURITY_PRINCIPAL and
Context.CREDENTIALS properties, the guest User and password are used unless the
thread has already been associated with a user.

If you do not specify a Context.PROVIDER_URL property, t3://localhost:7001 is
used.

If you want to create InitialContext with these defaults, write the following code:

 Environment env = new Environment();

 Context ctx = env.getInitialContext();

If you want to set only a WebLogic Server to a Distributed Name Service (DNS) name for client
cluster access, write the following code:

 Environment env = new Environment();

 env.setProviderURL("t3://myweblogiccluster.com:7001");

 Context ctx = env.getInitialContext();

Note: Every time you create a new JNDI environment object, you are creating a new security
scope. This security scope ends with a context.close() method.

The environment.getInitialContext() method does not work correctly with the
IIOP protocol.

Listing 3-2 illustrates using a JNDI Environment object to create a security context.

Listing 3-2 Creating a Security Context with a JNDI Environment Object

weblogic.jndi.Environment environment = new weblogic.jndi.Environment();

environment.setInitialContextFactory(

 weblogic.jndi.Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);

environment.setProviderURL(“t3://bross:4441”);

environment.setSecurityPrincipal(“guest”);

environment.setSecurityCrendentials(“guest”);

InitialContext ctx = environment.getInitialContext();

WebLogic JNDI

3-6 Programming WebLogic JNDI

Creating a Context from a Server-Side Object
You may also need to create a Context from an object (an Enterprise JavaBean (EJB) or Remote
Method Invocation (RMI) object) that is instantiated in the Java Virtual Machine (JVM) of
WebLogic Server. When using a server-side object, you do not need to specify the
Context.PROVIDER_URL property. Usernames and passwords are required only if you want to
sign in as a specific User.

To create a Context from within a server-side object, you first must create a new
InitialContext, as follows:

 Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context is created as a
Context and is connected to the local naming service.

Associating a WebLogic User with a Security Context
See “JNDI Contexts and Threads” on page 3-6.

JNDI Contexts and Threads
When you create a JNDI Context with a username and password, you associate a user with a
thread. When the Context is created, the user is pushed onto the context stack associated with the
thread. Before starting a new Context on the thread, you must close the first Context so that the
first user is no longer associated with the thread. Otherwise, users are pushed down in the stack
each time a new context created. This is not an efficient use of resources and may result in the
incorrect user being returned by ctx.lookup() calls. This scenario is illustrated by the
following steps:

1. Create a Context (with username and credential) called ctx1 for user1. In the process of
creating the context, user1 is associated with the thread and pushed onto the stack associated
with the thread. The current user is now user1.

2. Create a second Context (with username and credential) called ctx2 for user2. At this point,
the thread has a stack of users associated with it. User2 is at the top of the stack and user1
is below it in the stack, so user2 is used is the current user.

3. If you do a ctx1.lookup("abc") call, user2 is used as the identity rather than user1,
because user2 is at the top of the stack. To get the expected result, which is to have
ctx1.lookup("abc") call performed as user1, you need to do a ctx2.close() call. The
ctx2.close() call removes user2 from the stack associated with the thread and so that a
ctx1.lookup("abc") call now uses user1 as expected.

Using the Contex t to Look Up a Named Ob jec t

Programming WebLogic JNDI 3-7

Note: When the weblogic.jndi.enableDefaultUser flag is enabled, there are two
situations where a close() call does not remove the current user from the stack and
this can cause JNDI context problems. For information on how to avoid JNDI context
problems, see “How to Avoid Potential JNDI Context Problems” on page 3-7.

How to Avoid Potential JNDI Context Problems
Issuing a close() call is usually as described in “JNDI Contexts and Threads” on page 3-6.
However, the following is an exception to the expected behavior that occur when the
weblogic.jndi.enableDefaultUser flag is enabled:

Last Used
When using IIOP, an exception to expected behavior arises when there is one Context on the stack
and that Context is removed by a close(). The identity of the last context removed from the
stack determines the current identity of the user. This scenario is described in the following steps:

1. Create a Context (with username and credential) called ctx1 for user1. In the process of
creating the context, user1 is associated with the thread and stored in the stack, that is, the
current identity is set to user1.

2. Do a ctx1.close() call.

3. Do a ctx1.lookup()call. The current identity is user1.

4. Create a Context (with username and credential) called ctx2 for user2. In the process of
creating the context, user2 is associated with the thread and stored in the stack, that is, the
current identity is set to user2.

5. Do a ctx2.close() call.

6. Do a ctx2.lookup()call. The current identity is user2.

Using the Context to Look Up a Named Object
The lookup() method on the Context is used to obtain named objects. The argument passed to
the lookup() method is a string that contains the name of the desired object. Listing 3-3 shows
how to retrieve an EJB named ServiceBean.

WebLogic JNDI

3-8 Programming WebLogic JNDI

Listing 3-3 Looking Up a Named Object

 try {

 ServiceBean bean = (ServiceBean)ctx.lookup("ejb.serviceBean");

 }catch (NameNotFoundException e) {

 // binding does not exist

 }catch (NamingException e) {

 // a failure occurred

 }

Using a Named Object to Get an Object Reference
EJB client applications get object references to EJB remote objects from EJB Homes. RMI client
applications get object references to other RMI objects from an initial named object. Both initial
named remote objects are known to WebLogic Server as factories. A factory is any object that
can return a reference to another object that is in the WebLogic namespace.

The client application invokes a method on a factory to obtain a reference to a remote object of a
specific class. The client application then invokes methods on the remote object, passing any
required arguments.

Listing 3-4 contains a code fragment that obtains a remote object and then invokes a method on it.

Listing 3-4 Using a Named Object to Get an Object Reference

ServiceBean bean = ServiceBean.Home.create("ejb.ServiceBean")

Servicebean.additem(66);

Closing the Context
After clients finish working with a Context, Oracle recommends that the client close the Context
in order to release resources and avoid memory leaks. Oracle recommends that you use a
finally{} block and wrap the close() method in a try{} block. If you attempt to close a
context that was never instantiated because of an error, the Java client application throws an
exception.

Using WebLog ic JNDI i n a C lus te red Env i ronment

Programming WebLogic JNDI 3-9

In Listing 3-5, the client closes the context, releasing the resource being used.

Listing 3-5 Closing the Context

try {

ctx.close();

} catch () {

//a failure occurred

}

Using WebLogic JNDI in a Clustered Environment
The intent of WebLogic JNDI is to provide a naming service for Java EE services, specifically
EJB, RMI, and Java Messaging Service (JMS). Therefore, it is important to understand the
implications of binding an object to the JNDI tree in a clustered environment.

The following sections discuss how WebLogic JNDI is implemented in a clustered environment
and offer some approaches you can take to make your own objects available to JNDI clients.

Using the Relationship of RMI and JNDI to Enable WebLogic
Clusters
WebLogic RMI is the enabling technology that allows clients in one JVM to access EJBs and
JMS services from a client in another JVM. RMI stubs marshal incoming calls from the client to
the RMI object. To make Java EE services available to a client, WebLogic binds an RMI stub for
a particular service into its JNDI tree under a particular name. The RMI stub is updated with the
location of other instances of the RMI object as the instances are deployed to other servers in the
cluster. If a server within the cluster fails, the RMI stubs in the other server’s JNDI tree are
updated to reflect the server failure.

When a client connects to a cluster, it is actually connecting to one of the WebLogic Servers in
the cluster. Because the JNDI tree for this WebLogic Server contains the RMI stubs for all
services offered by the other WebLogic Servers in the cluster in addition to its own services, the
cluster appears to the client as one WebLogic Server hosting all of the cluster-wide services.
When a new WebLogic Server joins a cluster, each WebLogic Server already in the cluster is
responsible for sharing information about its own services to the new WebLogic Server. With the

WebLogic JNDI

3-10 Programming WebLogic JNDI

information collected from all the other servers in the cluster, the new server will create its own
copy of the cluster-wide JNDI tree.

RMI stubs significantly affect how WebLogic JNDI is implemented in a clustered environment:

RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs across all
WebLogic Servers in a cluster with little overhead in terms of server-to-server cross-talk.

RMI stubs serve as the mechanism for replication across a cluster. An instance of a RMI
object is deployed to a single WebLogic Server, however, the stub is replicated across the
cluster.

Making Custom Objects Available to a WebLogic Server
Cluster
When you bind a custom object (a non-RMI object) into a JNDI tree in a WebLogic Server
cluster, the object is replicated across all the servers in the cluster. However, if the host server
goes down, the custom object is removed from the cluster’s JNDI tree. Custom objects are not
replicated unless the custom object is bound again. You need to unbind and rebind a custom
object every time you want to propagate changes made to the custom object. Therefore,
WebLogic JNDI should not be used as a distributed object cache. You can use a third-party
solution with WebLogic Server to provide distributed caches.

Suppose the custom object needs to be accessed only by EJBs that are deployed on only one
WebLogic Server. Obviously it is unnecessary to replicate this custom object throughout all the
WebLogic Servers in the cluster. In fact, you should avoid replicating the custom object in order
to avoid any performance degradation due to unnecessary server-to-server communication. To
create a binding that is not replicated across WebLogic Servers in a cluster, you must specify the
REPLICATE_BINDINGS property when creating the context that binds the custom object to the
namespace. Listing 3-6 illustrates the use of the REPLICATE_BINDINGS property.

Listing 3-6 Using the REPLICATE_BINDINGS Property

 Hashtable ht = new Hashtable();

 //turn off binding replication

 ht.put(WLContext.REPLICATE_BINDINGS, "false");

 try {

 Context ctx = new InitialContext(ht);

 //bind the object

Using WebLog ic JNDI i n a C lus te red Env i ronment

Programming WebLogic JNDI 3-11

 ctx.bind("my_object", MyObect);

 } catch (NamingException ne) {

 //failure occured

 }

When you are using this technique and you need to use the custom object, you must explicitly
obtain an InitialContext for the WebLogic Server. If you connect to any other WebLogic
Server in the cluster, the binding does not appear in the JNDI tree.

If you need a custom object accessible from any WebLogic Server in the cluster, deploy the
custom object on each WebLogic Server in the cluster without replicating the JNDI bindings.

When using WebLogic JNDI to replicate bindings, the bound object will be handled as if it is
owned by the host WebLogic Server. If the host WebLogic Server fails, the custom object is
removed from all the JNDI trees of all WebLogic Servers in the cluster. This behavior can have
an adverse effect on the availability of the custom object.

Data Caching Design Pattern
A common task in Web applications is to cache data used by multiple objects for a period of time
to avoid the overhead associated with data computation or connecting to another service.

Suppose you have designed a custom data caching object that performs well on a single
WebLogic Server and you would like to use this same object within a WebLogic cluster. If you
bind the data caching object in the JNDI tree of one of the WebLogic Servers, WebLogic JNDI
will, by default, copy the object to each of the other WebLogic Servers in the cluster. It is
important to note that since this is not an RMI object, what you are binding into the JNDI tree
(and copying to the other WebLogic Servers) is the object itself, not a stub that refers to a single
instance of the object hosted on one of the WebLogic Servers. Do not assume from the fact that
WebLogic Server copies a custom object between servers that custom objects can be used as a
distributed cache. Remember the custom object is removed from the cluster if the WebLogic
Server to which it was bound fails and changes to the customer object are not propagated through
the cluster unless the object is unbound and rebound to the JNDI tree.

For the sake of performance and availability, it is often desirable to avoid using WebLogic
JNDI’s binding replication to copy large custom objects with high availability requirements to all
of the WebLogic Servers in a cluster. As an alternative, you can deploy a separate instance of the
custom object on each of the WebLogic Servers in the cluster. When binding the object to each

WebLogic JNDI

3-12 Programming WebLogic JNDI

WebLogic Server’s JNDI tree, you should make sure to turn off binding replication as described
in the “Making Custom Objects Available to a WebLogic Server Cluster” on page 3-10 section.
In this design pattern, each WebLogic Server has a copy of the custom object but you will avoid
copying large amounts of data from server to server.

Regardless of which approach you use, each instance of the object should maintain its own logic
for when it needs to refresh its cache independently of the other data cache objects in the cluster.
For example, suppose a client accesses the data cache on one WebLogic Server. It is the first time
the caching object has been accessed, so it computes or obtains the information and saves a copy
of the information for future requests. Now suppose another client connects to the cluster to
perform the same task as the first client only this time the connection is made to a different
WebLogic Server in the cluster. If this the first time this particular data caching object has been
accessed, it will need to compute the information regardless of whether other data caching objects
in the cluster already have the information cached. Of course, for any future requests, this
instance of the data cache object will be able to refer to the information it has saved.

Exactly-Once-Per-Cluster Design Pattern
In some cases, it is desirable to have a service that appears only once in the cluster. This is
accomplished by deploying the service on one machine only. For RMI objects, you can use the
default behavior of WebLogic JNDI to replicate the binding (the RMI stub) and the single
instance of your object will be accessible from all WebLogic Servers in the cluster. This is
referred to as a pinned service. For non-RMI objects, make sure that you use the
REPLICATE_BINDINGS property when binding the object to the namespace. In this case, you will
need to explicitly connect to the host WebLogic Server to access the object. Alternatively, you
can create an RMI object that is deployed on the same host WebLogic Server that can act as a
proxy for your non-RMI object. The stub for the proxy can be replicated (using the default
WebLogic JNDI behavior) allowing clients connected to any WebLogic Server in the cluster to
access the non-RMI object via the RMI proxy.

For services with high-availability requirements, you can configure automatic migration of an
RMI object to another server. For more information about automatic migration, see Whole Server
Migration in Using Clusters.

Using WebLogic JNDI from a Client in a Clustered
Environment
The JNDI binding for an object can appear in the JNDI tree for one WebLogic Server in the
cluster, or it can be replicated to all the WebLogic Servers in the cluster. If the object of interest

http://e-docs.bea.com/wls/docs103/cluster/migration.html
http://e-docs.bea.com/wls/docs103/cluster/migration.html

Using WebLog ic JNDI i n a C lus te red Env i ronment

Programming WebLogic JNDI 3-13

is bound in only one WebLogic Server, you must explicitly connect to the host WebLogic Server
by setting the Context.PROVIDER_URL property to the host WebLogic Server’s URL when
creating the Initial Context, as described in “Using WebLogic JNDI to Connect a Java Client to
a Single Server” on page 3-1.

In most cases, however, the object of interest is either a clustered service or a pinned service. As
a result, a stub for the service is displayed in the JNDI tree for each WebLogic Server in the
cluster. In this case, the client does not need to name a specific WebLogic Server to provide its
naming service. In fact, it is best for the client to simply request that a WebLogic Cluster provide
a naming service, in which case the context factory in WebLogic Server can choose whichever
WebLogic Server in the cluster seems most appropriate for the client.

Currently, a naming service provider is chosen within WebLogic using a DNS name for the
cluster that can be defined by the ClusterAddress attribute. This attribute defines the address to
be used by clients to connect to a cluster. This address may be either a DNS host name that maps
to multiple IP addresses or a comma separated list of single address host names or IP addresses.
If network channels are configured, it is possible to set the cluster address on a per channel basis.
See Using Clusters.

The context that is returned to a client of clustered services is, in general, implemented as a
failover stub that can transparently change the naming service provider if a failure (such as a
communication failure) with the selected WebLogic Server occurs.

Listing 3-7 shows how a client uses the cluster’s naming service.

Listing 3-7 Using the Naming Service in a WebLogic Cluster

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL, "t3://acmeCluster:7001");

 try {

 Context ctx = new InitialContext(ht);

 // Do the client's work

 }

 catch (NamingException ne) {

 // A failure occurred

 }

 finally {

 try {ctx.close();}

http://e-docs.bea.com/wls/docs103/cluster/features.html

WebLogic JNDI

3-14 Programming WebLogic JNDI

 catch (Exception e) {

 // a failure occurred

 }

 }

The hostname specified as part of the provider URL is the DNS name for the cluster that can be
defined by the ClusterAddress setting in a Cluster stanza of the config.xml
file. ClusterAddress maps to the list of hosts providing naming service in this cluster. For
more information, see “Understanding Cluster Configuration” in Using Clusters.

In Listing 3-7, the cluster name acmeCluster is used to connect to any of the WebLogic Servers
in the cluster. The resulting Context is replicated so that it can fail over transparently to any
WebLogic Server in the cluster.

An alternative method of specifying the initial point of contact with the WebLogic Cluster is to
supply a comma-delimited list of DNS Server names or IP addresses.

The following example specifies a list of WebLogic Servers using the same port:

ht.put(Context.PROVIDER_URL,"t3://acme1,acme2,acme3:7001");

All the WebLogic Servers listen on the port specified at the end of the URL.

The following example specifies a list of WebLogic Servers using the different ports:

ht.put(Context.PROVIDER_URL,"t3://node1:7001,node2:7002,node3:7003");

When you use a DNS name which maps to multiple servers, WebLogic Server relies on DNS for
load balancing.

When you use a comma delimited list of DNS names for WebLogic Server nodes, failover is
accomplished using the round-robin method, with the request going to a randomly chosen server
until that server fails to respond, after which the request will go to the next server on the list. This
will continue for each server that fails.

Once the client has gotten a context, no additional load balancing occurs unless there is a failure,
in which case WebLogic Server will fail over to another node in the cluster.

A remote client will get the context from the first available server. A client that is local to a server
in the cluster will never go to a remote server for JNDI operations.

http://e-docs.bea.com/wls/docs103/cluster/config.html

Us ing JND I f rom Wi th in Java EE Components

Programming WebLogic JNDI 3-15

When you look up a stub, the first invocation of the stub will ordinarily go to the server from
which you got the context. If the stub is clusterable, subsequent invocations will be load balanced
based on the user defined load balancing policy.

For additional information about JNDI and Clusters see Understanding WebLogic Server
Clustering.

Using JNDI from Within Java EE Components
Although it is possible for Java EE components to use the global environment directly, it is
preferable to use the component environment. Each Java EE component within a Java EE
application had its own component environment which is set up based on information contained
in the component’s deployment descriptors.

Java EE components are able to look up their component environments using the following code:

 Context ctx = new InitailContext();

 Context comp_env = (Context)ctx.lookup(“java:comp/env”);

Because you are working within a Java EE component, you do not need to set up the Hashtable
or Environment objects to define the connection information.

This context is used in the same way as the global environment, however, the names you use are
the ones defined in the deployment descriptor for your component. For example, if you have an
ejb-ref in your deployment descriptor that looks like:

 <ejb-ref>

 ...

 <ejb-ref-name>ejb1</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>ejb1.EJB1Home</home>

 <remote>ejb1.EJB1</remote>

 ...

 </ejb-ref>

 you would look up the name defined with the <ejb-ref-name> setting, which in this case is
“ejb1.”

http://e-docs.bea.com/wls/docs103/cluster/overview.html
http://e-docs.bea.com/wls/docs103/cluster/overview.html

WebLogic JNDI

3-16 Programming WebLogic JNDI

Using the component environment rather than the global environment to set your JNDI name is
advantageous because the name it refers to is resolved during deployment. This means that
naming conflicts can be resolved without rewriting the code.

Setting Up Foreign JNDI
Foreign JNDI is an API that allows you to access objects on a remote JNDI tree without having
to connect directly to the remote tree.

It enables you to make links to a JNDI tree on another server or provider including, but not limited
to, WebLogic Server, or a JNDI tree in a java program. Once you have configured Foreign JNDI,
you can use an object that is somewhere else with the same ease that you would use an object
bound in your WebLogic server instance.

To configure Foreign JNDI, create a ForeignJNDIProvider with an address of the remote JNDI
provider whose objects you want to use, and create a username and password to access those
objects. Then you can create ForeignJNDILinks and ForeignJNDIObjects that set up a
relationship between a name in the local JNDI tree to the object in the remote tree.

For more information on how to configure Foreign JNDI, see “Create a foreign JNDI provider“
in the Administration Console Online Help.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jndi/ConfigureForeignJNDIProvider.html

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Programming WebLogic JNDI, 10g Release 3 (10.3)
	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Examples for the Web Application Developer
	Avitek Medical Records Application (MedRec)
	JNDI Examples in the WebLogic Server Distribution

	New and Changed Features in This Release

	Understanding WebLogic JNDI
	What is JNDI?
	WebLogic Server JNDI

	WebLogic JNDI
	Using WebLogic JNDI to Connect a Java Client to a Single Server
	Setting Up JNDI Environment Properties for the InitialContext
	Creating a Context Using a Hashtable
	Creating a Context Using a WebLogic Environment Object
	Creating a Context from a Server-Side Object
	Associating a WebLogic User with a Security Context
	JNDI Contexts and Threads
	How to Avoid Potential JNDI Context Problems

	Using the Context to Look Up a Named Object
	Using a Named Object to Get an Object Reference
	Closing the Context
	Using WebLogic JNDI in a Clustered Environment
	Using the Relationship of RMI and JNDI to Enable WebLogic Clusters
	Making Custom Objects Available to a WebLogic Server Cluster
	Data Caching Design Pattern
	Exactly-Once-Per-Cluster Design Pattern
	Using WebLogic JNDI from a Client in a Clustered Environment

	Using JNDI from Within Java EE Components
	Setting Up Foreign JNDI

