
Oracle® WebLogic Server
Securing WebLogic Server

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server Securing WebLogic Server, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Securing WebLogic Server ii

Contents

1. Introduction and Roadmap
Document Scope . 1-1

Document Audience. 1-1

Guide to This Document . 1-2

Related Information . 1-4

Security Samples and Tutorials . 1-5

Security Examples in the WebLogic Server Distribution . 1-5

New and Changed Security Features . 1-5

2. Overview of Security Management
Security Realms in WebLogic Server . 2-1

Security Providers . 2-2

Security Policies and WebLogic Resources. 2-4

WebLogic Resources . 2-5

Deployment Descriptors and the WebLogic Server Administration Console 2-6

The Default Security Configuration in WebLogic Server . 2-7

Configuring WebLogic Security: Main Steps . 2-7

Methods of Configuring Security . 2-9

What Is Compatibility Security? . 2-10

Management Tasks Available in Compatibility Security . 2-10

3. Customizing the Default Security Configuration
Why Customize the Default Security Configuration? . 3-1

iii Securing WebLogic Server

Before You Create a New Security Realm . 3-2

Creating and Configuring a New Security Realm: Main Steps . 3-3

4. Configuring WebLogic Security Providers
When Do You Need to Configure a Security Provider? . 4-2

Reordering Security Providers . 4-3

Configuring an Authorization Provider. 4-3

Configuring the WebLogic Adjudication Provider . 4-4

Configuring a Role Mapping Provider . 4-4

Configuring the WebLogic Auditing Provider . 4-5

Auditing ContextHandler Elements . 4-8

Configuration Auditing . 4-10

Enabling Configuration Auditing. 4-11

Configuration Auditing Messages . 4-11

Audit Events and Auditing Providers . 4-15

Configuring a WebLogic Credential Mapping Provider. 4-16

Configuring a PKI Credential Mapping Provider . 4-17

PKI Credential Mapper Attributes . 4-18

Credential Actions . 4-18

Configuring a SAML Credential Mapping Provider for SAML 1.1. 4-19

Configuring Assertion Lifetime . 4-19

Relying Party Registry . 4-20

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0. 4-20

SAML 2.0 Credential Mapping Provider Attributes . 4-21

Service Provider Partners. 4-22

Partner Lookup Strings Required for Web Service Partners. 4-23

Management of Partner Certificates . 4-26

Java Interface for Configuring Service Provider Partner Attributes. 4-26

Securing WebLogic Server iv

Configuring the Certificate Lookup and Validation Framework 4-26

CertPath Provider . 4-27

Certificate Registry. 4-27

Configuring a WebLogic Keystore Provider. 4-28

5. Configuring Authentication Providers
Choosing an Authentication Provider . 5-2

Using More Than One Authentication Provider . 5-3

Setting the JAAS Control Flag Option. 5-3

Changing the Order of Authentication Providers. 5-4

Configuring the WebLogic Authentication Provider . 5-4

Configuring LDAP Authentication Providers . 5-5

Requirements for Using an LDAP Authentication Provider 5-6

Configuring an LDAP Authentication Provider: Main Steps. 5-6

Accessing Other LDAP Servers . 5-7

Dynamic Groups and WebLogic Server. 5-7

Configuring Failover for LDAP Authentication Providers . 5-8

LDAP Failover Example 1 . 5-8

LDAP Failover Example 2 . 5-9

Improving the Performance of WebLogic and LDAP Authentication Providers. . . . 5-9

Optimizing the Group Membership Caches . 5-10

Configuring Dynamic Groups in the iPlanet Authentication Provider to Improve
Performance . 5-11

Optimizing the Principal Validator Cache. 5-12

Configuring the Active Directory Authentication Provider to Improve Performance
5-12

Configuring RDBMS Authentication Providers . 5-13

Common RDBMS Authentication Provider Attributes . 5-13

v Securing WebLogic Server

Data Source Attribute . 5-14

Group Searching Attributes . 5-14

Group Caching Attributes . 5-14

Configuring the SQL Authentication Provider . 5-14

Password Attributes . 5-14

SQL Statement Attributes . 5-15

Configuring the Read-Only SQL Authenticator . 5-15

Configuring the Custom DBMS Authenticator . 5-15

Plug-In Class Attributes . 5-16

Configuring a Windows NT Authentication Provider . 5-16

Domain Controller Settings . 5-16

LogonType Setting . 5-17

UPN Names Settings . 5-18

Configuring the SAML Authentication Provider . 5-18

Configuring the Password Validation Provider . 5-19

Password Composition Rules for the Password Validation Provider 5-20

Using the Password Validation Provider with the WebLogic Authentication Provider. .
5-23

Using WLST to Create and Configure the Password Validation Provider 5-24

Creating an Instance of the Password Validation Provider. 5-24

Specifying the Password Composition Rules . 5-25

Configuring Identity Assertion Providers . 5-25

How an LDAP X509 Identity Assertion Provider Works . 5-27

Configuring an LDAP X509 Identity Assertion Provider: Main Steps 5-28

Configuring a Negotiate Identity Assertion Provider . 5-29

Configuring a SAML Identity Assertion Provider for SAML 1.1 5-30

Asserting Party Registry . 5-31

Certificate Registry . 5-31

Securing WebLogic Server vi

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0 5-31

Identity Provider Partners . 5-32

Ordering of Identity Assertion for Servlets . 5-37

Configuring Identity Assertion Performance in the Server Cache. 5-38

Configuring a User Name Mapper . 5-39

Configuring a Custom User Name Mapper . 5-40

6. Configuring Single Sign-On with Microsoft Clients
Overview of Single Sign-On with Microsoft Clients . 6-1

System Requirements for SSO with Microsoft Clients . 6-2

Single Sign-On with Microsoft Clients: Main Steps . 6-3

Configuring Your Network Domain to Use Kerberos. 6-4

Creating a Kerberos Identification for WebLogic Server . 6-5

Configuring Microsoft Clients to Use Windows Integrated Authentication 6-7

Configuring a .NET Web Service. 6-7

Configuring an Internet Explorer Browser. 6-8

Configure Local Intranet Domains . 6-8

Configure Intranet Authentication . 6-8

Verify the Proxy Settings. 6-9

Set Integrated Authentication for Internet Explorer 6.0 6-9

Creating a JAAS Login File . 6-9

Configuring the Identity Assertion Provider . 6-11

Using Startup Arguments for Kerberos Authentication with WebLogic Server. 6-11

Verifying Configuration of SSO with Microsoft Clients . 6-11

7. Configuring Single Sign-On with Web Browsers and HTTP
Clients

Configuring SAML 1.1 Services . 7-2

vii Securing WebLogic Server

Enabling Single Sign-on with SAML 1.1: Main Steps . 7-2

Configuring a Source Site: Main Steps. 7-2

Configuring a Destination Site: Main Steps . 7-2

Configuring a SAML 1.1 Source Site for Single Sign-On . 7-3

Configure the SAML 1.1 Credential Mapping Provider 7-3

Configure the Source Site Federation Services . 7-3

Configure Relying Parties. 7-4

Replacing the Default Assertion Store . 7-5

Configuring a SAML 1.1 Destination Site for Single Sign-On 7-5

Configure SAML Identity Assertion Provider . 7-5

Configure Destination Site Federation Services . 7-5

Configuring Asserting Parties. 7-7

Configuring Relying and Asserting Parties with WLST . 7-7

Configuring SAML 2.0 Services. 7-9

Configuring SAML 2.0 Services: Main Steps . 7-9

Configuring SAML 2.0 General Services . 7-11

About SAML 2.0 General Services . 7-11

Publishing and Distributing the Metadata File . 7-13

Configuring an Identity Provider Site for SAML 2.0 Single Sign-On 7-14

Configure the SAML 2.0 Credential Mapping Provider 7-14

Configure SAML 2.0 Identity Provider Services . 7-14

Create and Configure Web Single Sign-On Service Provider Partners 7-15

Configuring a Service Provider Site for SAML 2.0 Single Sign-On. 7-18

Configure the SAML 2.0 Identity Assertion Provider 7-18

Configure the SAML Authentication Provider. 7-19

Configure SAML 2.0 General Services . 7-19

Configure SAML 2.0 Service Provider Services . 7-19

Create and Configure Web Single Sign-On Identity Provider Partners 7-20

Securing WebLogic Server viii

Viewing Partner Site, Certificate, and Service Endpoint Information 7-23

Web Application Deployment Considerations for SAML 2.0 7-24

Deployment Descriptor Recommendations . 7-24

Login Application Considerations for Clustered Environments 7-25

8. Migrating Security Data
Overview of Security Data Migration . 8-1

Migration Concepts . 8-2

Formats and Constraints Supported by WebLogic Security Providers 8-3

Migrating Data with WLST. 8-6

Migrating Data Using weblogic.admin . 8-6

9. Managing the Embedded LDAP Server
Configuring the Embedded LDAP Server. 9-1

Embedded LDAP Server Replication . 9-2

Viewing the Contents of the Embedded LDAP Server from an LDAP Browser 9-3

Exporting and Importing Information in the Embedded LDAP Server 9-4

LDAP Access Control Syntax . 9-6

The Access Control File . 9-6

Access Control Location . 9-7

Access Control Scope. 9-7

Access Rights . 9-7

Attribute Permissions . 9-8

Entry Permissions . 9-9

Attributes Types . 9-11

Subject Types . 9-11

Grant/Deny Evaluation Rules. 9-12

ix Securing WebLogic Server

10.Managing the RDBMS Security Store
Security Providers that Use the RDBMS Security Store . 10-2

Configuring the RDBMS Security Store. 10-3

Create a Domain with the RDBMS Security Store . 10-3

Specifying Database Connection Properties. 10-4

Testing the Database Connection . 10-6

Create RDBMS Tables in the Security Datastore . 10-7

Configure a JMS Topic for the RDBMS Security Store . 10-8

Configuring JMS Connection Recovery in the Event of Failure 10-10

Upgrading a Domain to Use the RDBMS Security Store . 10-11

11.Configuring Identity and Trust
Private Keys, Digital Certificates, and Trusted Certificate Authorities 11-1

Configuring Identity and Trust: Main Steps . 11-2

Supported Formats for Identity and Trust . 11-3

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities 11-4

Common Keytool Commands . 11-5

Using the CertGen Utility . 11-6

Using Your Own Certificate Authority . 11-7

Converting a Microsoft p7b Format to PEM Format. 11-8

Obtaining a Digital Certificate for a Web Browser . 11-9

Using Certificate Chains (Deprecated) . 11-9

Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities 11-11

Guidelines for Using Keystores .11-11

Creating a Keystore and Loading Private Keys and Trusted Certificate Authorities into
the Keystore . 11-12

Configuring Demo Certificates for Clients . 11-13

How WebLogic Server Locates Trust . 11-13

Securing WebLogic Server x

Configuring Keystores for Production. 11-13

12.Configuring SSL
SSL: An Introduction. 12-2

One-Way and Two-Way SSL . 12-2

Setting Up SSL: Main Steps . 12-2

Using Host Name Verification . 12-3

Enabling SSL Debugging . 12-4

SSL Session Behavior . 12-5

Configuring RMI over IIOP with SSL . 12-6

SSL Certificate Validation. 12-7

Controlling the Level of Certificate Validation . 12-7

Accepting Certificate Policies in Certificates. 12-8

Checking Certificate Chains. 12-9

Using Certificate Lookup and Validation Providers. 12-10

How SSL Certificate Validation Works in WebLogic Server. 12-10

Troubleshooting Problems with Certificate Validation . 12-11

Using the nCipher JCE Provider with WebLogic Server . 12-12

Specifying the Version of the SSL Protocol . 12-14

13.Configuring Security for a WebLogic Domain
Important Information Regarding Cross-Domain Security Support 13-1

Enabling Trust Between WebLogic Server Domains . 13-2

Enabling Cross Domain Security Between WebLogic Server Domains 13-2

Configuring Cross-Domain Security. 13-3

Configuring a Cross-Domain User . 13-3

Configure a Credential Mapping for Cross-Domain Security 13-4

Enabling Global Trust . 13-5

xi Securing WebLogic Server

Using Connection Filters. 13-6

Using the Java Authorization Contract for Containers . 13-8

Viewing MBean Attributes . 13-8

How Passwords Are Protected in WebLogic Server. 13-8

Protecting User Accounts . 13-9

14.Using Compatibility Security
Running Compatibility Security: Main Steps . 14-2

Limited Visibility of Compatibility Security MBeans . 14-2

The Default Security Configuration in the CompatibilityRealm 14-3

Configuring a Realm Adapter Authentication Provider . 14-4

Configuring the Identity Assertion Provider in the Realm Adapter Authentication Provider
14-5

Configuring a Realm Adapter Auditing Provider . 14-5

Protecting User Accounts in Compatibility Security . 14-5

Accessing 6.x Security from Compatibility Security . 14-6

15.Security Configuration MBeans
SSLMBean . 15-1

ServerMBean. 15-2

EmbeddedLDAPMBean . 15-2

SecurityMBean . 15-2

SecurityConfigurationMBean . 15-3

RealmMBean. 15-3

WindowsNTAuthenticatorMBean . 15-3

CustomDBMSAuthenticatorMBean . 15-3

ReadonlySQLAuthenticatorMBean . 15-4

SQLAuthenticatorMBean . 15-4

DefaultAuditorMBean. 15-4

Securing WebLogic Server xii

Compatibility Security MBeans . 15-4

UserLockoutManagerMBean . 15-5

Other Security Provider MBeans. 15-5

xiii Securing WebLogic Server

Securing WebLogic Server 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide, Securing WebLogic
Server, as well as new and changed security features in this release.

“Document Scope” on page 1-1

“Document Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Information” on page 1-4

“Security Samples and Tutorials” on page 1-5

“New and Changed Security Features” on page 1-5

Document Scope
This document explains how to configure WebLogic Server® security, including settings for
security realms, providers, identity and trust, SSL, and Compatibility security. See Related
Information for a description of other WebLogic security documentation.

Document Audience
This document is intended for the following audiences:

Application Architects—Architects who, in addition to setting security goals and designing
the overall security architecture for their organizations, evaluate WebLogic Server security

I n t roduct i on and Roadmap

1-2 Securing WebLogic Server

features and determine how to best implement them. Application Architects have in-depth
knowledge of Java programming, Java security, and network security, as well as knowledge
of security systems and leading-edge, security technologies and tools.

Security Developers—Developers who define the system architecture and infrastructure for
security products that integrate with WebLogic Server and who develop custom security
providers for use with WebLogic Server. They work with Application Architects to ensure
that the security architecture is implemented according to design and that no security holes
are introduced, and work with Server Administrators to ensure that security is properly
configured. Security Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java (including Java
Management eXtensions (JMX)), and working knowledge of WebLogic Server and
security provider functionality.

Application Developers—Java programmers who focus on developing client applications,
adding security to Web applications and Enterprise JavaBeans (EJBs), and working with
other engineering, quality assurance (QA), and database teams to implement security
features. Application Developers have in-depth/working knowledge of Java (including
J2EE components such as servlets/JSPs and JSEE) and Java security.

Server Administrators—Administrators work closely with Application Architects to design
a security scheme for the server and the applications running on the server; to identify
potential security risks; and to propose configurations that prevent security problems.
Related responsibilities may include maintaining critical production systems; configuring
and managing security realms, implementing authentication and authorization schemes for
server and application resources; upgrading security features; and maintaining security
provider databases. Server Administrators have in-depth knowledge of the Java security
architecture, including Web services, Web application and EJB security, Public Key
security, SSL, and Security Assertion Markup Language (SAML).

Application Administrators—Administrators who work with Server Administrators to
implement and maintain security configurations and authentication and authorization
schemes, and to set up and maintain access to deployed application resources in defined
security realms. Application Administrators have general knowledge of security concepts
and the Java Security architecture. They understand Java, XML, deployment descriptors,
and can identify security events in server and audit logs.

Guide to This Document
This document is organized as follows:

This chapter describes the audience, organization, and related information for this guide.

Guide to Th is Document

Securing WebLogic Server 1-3

Chapter 2, “Overview of Security Management,” describes the default security
configuration in WebLogic Server; lists the configuration steps for security, and describes
Compatibility security.

Chapter 3, “Customizing the Default Security Configuration,” explains when to customize
the default security configuration, the configuration requirements for a new security realm,
and how to set a security realm as the default security realm.

Chapter 4, “Configuring WebLogic Security Providers,” describes the available
configuration options for the security providers supplied by WebLogic Server and how to
configure a custom security provider.

Chapter 5, “Configuring Authentication Providers,” describes the Authentication providers
supplied by WebLogic Server, including information about how to configure them.

Chapter 6, “Configuring Single Sign-On with Microsoft Clients,” describes how to
configure authentication between a WebLogic Server domain and .NET Web Service
clients or browser clients (for example, Internet Explorer) in a Microsoft domain, using
Windows authentication based on the Simple and Protected Negotiate (SPNEGO)
mechanism.

Chapter 7, “Configuring Single Sign-On with Web Browsers and HTTP Clients,” describes
how to configure authentication between a WebLogic Server domain and Web browsers or
other HTTP clients, using authentication based on the Security Assertion Markup
Language (SAML).

Chapter 8, “Migrating Security Data,” provides information about exporting and importing
security data between security realms and security providers.

Chapter 9, “Managing the Embedded LDAP Server,” describes the management tasks
associated with the embedded LDAP server used by the WebLogic security providers.

Chapter 10, “Managing the RDBMS Security Store,” describes the steps required to
configure the RDBMS security store, which enables you to store the security data managed
by several security providers in an external RDBMS system rather than in the embedded
LDAP server. The use of the RDBMS security store is required for SAML 2.0 services
when configured on multiple servers in a domain, such as in a cluster.

Chapter 11, “Configuring Identity and Trust,” describes how to configure identity and trust
for WebLogic Server.

Chapter 12, “Configuring SSL,” describes how to configure SSL for WebLogic Server.

I n t roduct i on and Roadmap

1-4 Securing WebLogic Server

Chapter 13, “Configuring Security for a WebLogic Domain,” describes how to set security
configuration options for a WebLogic Server domain.

Chapter 14, “Using Compatibility Security,”describes how to use Compatibility security, a
security configuration mode designed for backwards compatibility with security realms
developed under WebLogic Server 6.x.

Chapter 15, “Security Configuration MBeans,” describes which WebLogic Security
MBeans and MBean attributes are dynamic (can be changed without restarting the server)
and which are non-dynamic (changes require a server restart).

Related Information
The following Oracle WebLogic Server documents contain information that is relevant to the
WebLogic Security Service:

Understanding WebLogic Security—Summarizes the features of the WebLogic Security
Service, including an overview of its architecture and capabilities. It is the starting point
for understanding WebLogic security.

Developing Security Providers for WebLogic Server—Provides security vendors and
application developers with the information needed to develop custom security providers
that can be used with WebLogic Server.

Securing a Production Environment—Highlights essential security measures for you to
consider before you deploy WebLogic Server in a production environment.

Securing WebLogic Resources Using Roles and Policies—Introduces the various types of
WebLogic resources, and provides information about how to secure these resources using
WebLogic Server. This document focuses primarily on securing URL (Web) and Enterprise
JavaBean (EJB) resources.

Programming WebLogic Security—Describes how to develop secure Web applications.

WebLogic Web Services: Security—Describes how to develop and configure secure Web
Services.

Administration Console Online Help—Many security configuration tasks can be performed
using the WebLogic Administration Console. The console’s online help describes
configuration procedures and provides a reference for configurable attributes.

Upgrading WebLogic Application Environments—Provides procedures and other
information you need to upgrade from earlier versions of WebLogic Server to this release.
It also provides information about moving applications from an earlier version of

http://e-docs.bea.com/wls/docs103/secintro/index.html
http://e-docs.bea.com/wls/docs103/dvspisec/index.html
http://e-docs.bea.com/wls/docs103/lockdown/index.html
http://e-docs.bea.com/wls/docs103/secwlres/index.html
http://e-docs.bea.com/wls/docs103/security/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs103/../../common/docs91/upgrade/intro.html
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html

Secur i t y Samples and Tuto r ia ls

Securing WebLogic Server 1-5

WebLogic Server to this release. For specific information on upgrading WebLogic Server
security, see Upgrading a Security Provider in Upgrading WebLogic Application
Environments.

Javadocs for WebLogic Classes—Provides reference documentation for the WebLogic
security packages that are provided with and supported by this release of WebLogic Server.

Security Samples and Tutorials
In addition to the documents listed in Related Information, Oracle provides a variety of code
samples for developers, some packaged with WebLogic Server and others available at the Oracle
Technology Network (OTN) at
http://www.oracle.com/technology/community/welcome-bea/index.html.

Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples\security, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples server, and
obtain information about the samples and how to run them from the WebLogic Server Start menu.

The following examples illustrate WebLogic security features:

Java Authentication and Authorization Service

Outbound and Two-way SSL

New and Changed Security Features
For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What’s New in WebLogic Server” in Release Notes.

http://www.oracle.com/technology/community/welcome-bea/index.html
http://e-docs.bea.com/wls/docs103/../../common/docs91/upgrade/upgrade_sp.html
http://e-docs.bea.com/wls/docs103/../../common/docs91/upgrade/intro.html
http://e-docs.bea.com/wls/docs103/../../common/docs91/upgrade/intro.html
http://e-docs.bea.com/wls/docs103/javadocs/index.html
http://e-docs.bea.com/wls/docs103/notes/new.html

I n t roduct i on and Roadmap

1-6 Securing WebLogic Server

Securing WebLogic Server 2-1

C H A P T E R 2

Overview of Security Management

The following sections provide an overview of the security system for WebLogic Server. For a
broader overview, see Understanding WebLogic Security.

“Security Realms in WebLogic Server” on page 2-1

“Security Providers” on page 2-2

“Security Policies and WebLogic Resources” on page 2-4

“The Default Security Configuration in WebLogic Server” on page 2-7

“Configuring WebLogic Security: Main Steps” on page 2-7

“Methods of Configuring Security” on page 2-9

“What Is Compatibility Security?” on page 2-10

“Management Tasks Available in Compatibility Security” on page 2-10

Note: Throughout this document, the term 6.x refers to WebLogic Server 6.0 and 6.1 and their
associated service packs.

Security Realms in WebLogic Server
The security service in WebLogic Server simplifies the configuration and management of
security while offering robust capabilities for securing your WebLogic Server deployment.
Security realms act as a scoping mechanism. Each security realm consists of a set of configured
security providers, users, groups, security roles, and security policies. You can configure multiple

http://e-docs.bea.com/wls/docs103/secintro/index.html

Overv iew o f Secu r i t y Management

2-2 Securing WebLogic Server

security realms in a domain; however, only one can be the active security realm. WebLogic
Server provides two default security realms:

myrealm—Has the WebLogic Adjudication, Authentication, Identity Assertion,
Authorization, Role Mapping, and Credential Mapping providers configured by default.

CompatibilityRealm—Provides backward compatibility for 6.x security configurations.
You can access an existing 6.x security configuration through the CompatibilityRealm.

You can customize authentication and authorization functions by configuring a new security
realm to provide the security services you want and then set the new security realm as the default
security realm.

For information about the default security configuration in WebLogic Server, see “The Default
Security Configuration in WebLogic Server” on page 2-7

For information about configuring a security realm and setting it as the default security realm, see
Chapter 3, “Customizing the Default Security Configuration.”

For information about Compatibility security, see Chapter 14, “Using Compatibility Security.”

Security Providers
Security providers are modular components that handle specific aspects of security, such as
authentication and authorization. Although applications can leverage the services offered by the
default WebLogic security providers, the WebLogic Security Service’s flexible infrastructure
also allows security vendors to write their own custom security providers for use with WebLogic
Server. WebLogic security providers and custom security providers can be mixed and matched
to create unique security solutions, allowing organizations to take advantage of new technology
advances in some areas while retaining proven methods in others. The WebLogic Administration
Console allows you to administer and manage all your security providers through one unified
management interface.

The WebLogic Security Service supports the following types of security providers:

Authentication—Authentication is the process whereby the identity of users or system
processes are proved or verified. Authentication also involves remembering, transporting,
and making identity information available to various components of a system when that
information is needed. Authentication providers supported by the WebLogic Security
Service supply the following types of authentication:

– Username and password authentication

– Certificate-based authentication directly with WebLogic Server

Secur i t y P rov ide rs

Securing WebLogic Server 2-3

– HTTP certificate-based authentication proxied through an external Web server

Identity Assertion—An Authentication provider that performs perimeter authentication—
a special type of authentication using tokens—is called an Identity Assertion provider.
Identity assertion involves establishing a client's identity through the use of client-supplied
tokens that may exist outside of the request. Thus, the function of an Identity Assertion
provider is to validate and map a token to a username. Once this mapping is complete, an
Authentication provider’s LoginModule can be used to convert the username to a principal
(an authenticated user, group, or system process).

Authorization—Authorization is the process whereby the interactions between users and
WebLogic resources are limited to ensure integrity, confidentiality, and availability. In
other words, once a user’s identity has been established by an authentication provider,
authorization is responsible for determining whether access to WebLogic resources should
be permitted for that user. An Authorization provider supplies these services.

Role Mapping—You can assign one or more roles to multiple users and then specify
access rights for users who hold particular roles. A Role Mapping provider obtains a
computed set of roles granted to a requestor for a given resource. Role Mapping providers
supply Authorization providers with this information so that the Authorization provider can
answer the “is access allowed?” question for WebLogic resources that use role-based
security (for example, Web applications and Enterprise JavaBeans (EJBs)).

Adjudication—When multiple Authorization providers are configured in a security realm,
each may return a different answer to the “is access allowed” question for a given resource.
Determining what to do if multiple Authorization providers do not agree is the primary
function of an Adjudication provider. Adjudication providers resolve authorization
conflicts by weighing each Authorization provider’s answer and returning a final access
decision.

Credential Mapping—A credential map is a mapping of credentials used by WebLogic
Server to credentials used in a legacy or remote system, which tell WebLogic Server how
to connect to a given resource in that system. In other words, credential maps allow
WebLogic Server to log into a remote system on behalf of a subject that has already been
authenticated. Credential Mapping providers map credentials in this way.

Keystore—A keystore is a mechanism for creating and managing password-protected
stores of private keys and certificates for trusted certificate authorities. The keystore is
available to applications that may need it for authentication or signing purposes. In the
WebLogic Server security architecture, the WebLogic Keystore provider is used to access
keystores.

Overv iew o f Secu r i t y Management

2-4 Securing WebLogic Server

Note: The WebLogic Server Keystore provider is deprecated and is only supported for
backward compatibility. Use keystores instead. For more information about
configuring keystores, see “Configuring Keystores for Production” on page 11-13.

Certificate Lookup and Validation (CLV)—X.509 certificates need to be located and
validated for purposes of identity and trust. CLV providers receive certificates, certificate
chains, or certificate references, complete the certificate path (if necessary), and validate all
the certificates in the path. There are two types of CLV providers:

– A CertPath Builder looks up and optionally completes the certificate path and validates
the certificates.

– A CertPath Validator looks up and optionally completes the certificate path, validates
the certificates, and performs extra validation (for example, revocation checking).

Certificate Registry—A certificate registry is a mechanism for adding certificate
revocation checking to a security realm. The registry stores a list of valid certificates. Only
registered certificates are valid. A certificate is revoked by removing it from the certificate
registry. The registry is stored in the embedded LDAP server. The Certificate Registry is
both a CertPath Builder and a CertPath Validator.

Auditing—Auditing is the process whereby information about security requests and the
outcome of those security requests is collected, stored, and distributed for the purpose of
non-repudiation. In other words, auditing provides an electronic trail of computer activity.
An Auditing provider supplies these services.

For information about the functionality provided by the WebLogic security providers, see
Chapter 4, “Configuring WebLogic Security Providers” and Chapter 5, “Configuring
Authentication Providers.”

For information about the default security configuration, see “The Default Security
Configuration in WebLogic Server” on page 2-7.

For information about writing custom security providers, see Developing Security Providers for
WebLogic Server.

Security Policies and WebLogic Resources
WebLogic Server uses security policies (which replace the ACLs and permissions used in
WebLogic Server 6.x) to protect WebLogic resources. Security policies answer the question
“who has access” to a WebLogic resource. A security policy is created when you define an
association between a WebLogic resource and a user, group, or security role. You can also

http://e-docs.bea.com/wls/docs103/dvspisec/index.html
http://e-docs.bea.com/wls/docs103/dvspisec/index.html

Secur i t y Po l i c i es and WebLog ic Resources

Securing WebLogic Server 2-5

optionally associate a time constraint with a security policy. A WebLogic resource has no
protection until you assign it a security policy.

Creating security policies is a multi-step process with many options. To fully understand this
process, read Securing WebLogic Resources Using Roles and Policies. That document should be
used in conjunction with Securing WebLogic Security to ensure security is completely configured
for a WebLogic Server deployment.

WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic Server
entity, which can be protected from unauthorized access. WebLogic Server defines the following
resources:

Administrative resources such as the WebLogic Server Administration Console and
WebLogic Scripting Tool.

Application resources that represent Enterprise applications. This type of resource includes
individual EAR (Enterprise Application aRchive) files and individual components, such as
EJB JAR files contained within the EAR.

Component Object Model (COM) resources that are designed as program component
objects according to Microsoft’s framework. This type of resource includes COM
components accessed through the Oracle bidirectional COM-Java (jCOM) bridging tool.

Enterprise Information System (EIS) resources that are designed as resource adapters,
which allow the integration of Java applications with existing enterprise information
systems. These resource adapters are also known as connectors.

Enterprise JavaBean (EJB) resources including EJB JAR files, individual EJBs within an
EJB JAR, and individual methods on an EJB.

Java DataBase Connectivity (JDBC) resources including groups of connection pools,
individual connection pools, and multipools.

Java Naming and Directory Interface (JNDI) resources.

Java Messaging Service (JMS) resources.

Server resources related to WebLogic Server instances, or servers. This type of resource
includes operations that start, shut down, lock, or unlock servers.

http://e-docs.bea.com/wls/docs103/secwlres/index.html

Overv iew o f Secu r i t y Management

2-6 Securing WebLogic Server

URL resources related to Web applications. This type of resource can be a Web
Application aRchive (WAR) file or individual components of a Web application (such as
servlets and JSPs).

Note: Web resources are deprecated. Use the URL resource instead.

Web Services resources related to services that can be shared by and used as components
of distributed, Web-based applications. This type of resource can be an entire Web service
or individual components of a Web service (such as a stateless session EJB, particular
methods in that EJB, the Web application that contains the web-services.xml file, and so
on).

Remote resources.

Deployment Descriptors and the WebLogic Server
Administration Console
WebLogic Server offers a choice of models for configuring security roles and policies. Under the
standard Java Enterprise Edition model, you define role mappings and policies in the Web
application or EJB deployment descriptors. The WebLogic Security Service can use information
defined in deployment descriptors to grant security roles and define security policies for Web
applications and EJBs. When WebLogic Server is booted for the first time, security role and
security policy information stored in web.xml, weblogic.xml, ejb-jar.xml, or
weblogic-ejb-jar.xml deployment descriptors is loaded into the Authorization and Role
Mapping providers configured in the default security realm. You can then make changes to the
information through the Administration Console.

To use information in deployment descriptors, at least one Authorization and Role Mapping
provider in the security realm must implement the DeployableAuthorizationProvider and
DeployableRoleProvider Security Service Provider Interface (SSPI). This SSPI allows the
providers to store (rather than retrieve) information from deployment descriptors. By default, the
WebLogic Authorization and Role Mapping providers implement this SSPI.

If you change security role and security policy in deployment descriptors through the
Administration Console and want to continue to modify this information through the
Administration Console, you can set configuration options on the security realm to ensure
changes made through the Console are not overwritten by old information in the deployment
descriptors when WebLogic Server is rebooted.

For more information, see Options for Securing Web Application and EJB Resources in Securing
WebLogic Resources Using Roles and Policies.

http://e-docs.bea.com/wls/docs103/secwlres/secejbwar.html

The De fau l t Secur i t y Conf igurat ion in WebLog ic Server

Securing WebLogic Server 2-7

The Default Security Configuration in WebLogic Server
To simplify the configuration and management of security, WebLogic Server provides a default
security configuration. In the default security configuration, myrealm is set as the default security
realm and the WebLogic Adjudication, Authentication, Identity Assertion, XACML
Authorization, Credential Mapping, XACML Role Mapping, and CertPath providers are defined
as the security providers. WebLogic Server’s embedded LDAP server is used as the data store for
these default security providers. To use the default security configuration, you need to define
users, groups, and security roles for the security realm, and create security policies to protect the
WebLogic resources in the domain.

Note: WebLogic Server includes the WebLogic Authorization provider, which is referred to in
the Administration Console and elsewhere as the Default Authorizer, and the WebLogic
Role Mapping provider, which is referred to in the Administration Console and
elsewhere as the Default RoleMapper. Beginning with WebLogic Server 9.1, these
providers are no longer the default providers in newly-created security realms. Instead,
the XACML Authorization provider and the XACML Role Mapping provider are the
default providers.

For a description of the functionality provided by the WebLogic Security providers, see
Understanding WebLogic Security. If the WebLogic security providers do not fully meet your
security requirements, you can supplement or replace them. See Developing Security Providers
for WebLogic Server.

If the default security configuration does not meet your requirements, you can create a new
security realm with any combination of WebLogic and custom security providers and then set the
new security realm as the default security realm. See Chapter 3, “Customizing the Default
Security Configuration.”

Configuring WebLogic Security: Main Steps
Because WebLogic Server’s security features are closely related, it is difficult to determine where
to start when configuring security. In fact, configuring security for your WebLogic Server
deployment may be an iterative process. Although more than one sequence of steps may work,
Oracle recommends the following procedure:

1. Determine whether or not to use the default security configuration by reading “Why
Customize the Default Security Configuration?” on page 3-1.

– If you are using the default security configuration, begin at step 3.

– If you are not using the default security configuration, begin at step 2.

http://e-docs.bea.com/wls/docs103/secintro/index.html
http://e-docs.bea.com/wls/docs103/dvspisec/index.html
http://e-docs.bea.com/wls/docs103/dvspisec/index.html

Overv iew o f Secu r i t y Management

2-8 Securing WebLogic Server

2. Configure additional security providers (for example, configure an LDAP Authentication
provider instead of using the WebLogic Authentication provider) or configure custom
security providers in the default security realm. This step is optional. By default, WebLogic
Server configures the WebLogic security providers in the default security realm (myrealm).
For information about the circumstances that require you to customize the default security
configuration, see “Why Customize the Default Security Configuration?” on page 3-1. For
information about creating custom security providers, see Developing Security Providers for
WebLogic Server.

Note: You can also create a new security realm, configure security providers (either
WebLogic or custom) in the security realm and set the new security realm as the
default security realm. See Chapter 3, “Customizing the Default Security
Configuration.”

3. Optionally, configure the embedded LDAP server. WebLogic Server’s embedded LDAP
server is configured with default options. However, you may want to change those options to
optimize the use of the embedded LDAP server in your environment. See Chapter 9,
“Managing the Embedded LDAP Server.”

4. Ensure that user accounts are properly secured. WebLogic Server provides a set of
configuration options for protecting user accounts. By default, they are set for maximum
security. However, during the development and deployment of WebLogic Server, you may
need to weaken the restrictions on user accounts. Before moving to production, check that the
options on user accounts are set for maximum protection. If you are creating a new security
realm, you need to set the user lockout options. See “How Passwords Are Protected in
WebLogic Server” on page 13-8 and “Protecting User Accounts” on page 13-9.

5. Protect WebLogic resources with security policies. Creating security policies is a multi-step
process with many options. To fully understand this process, read Securing WebLogic
Resources Using Roles and Policies. This document should be used in conjunction with
Securing WebLogic Resources Using Roles and Policies to ensure security is completely
configured for a WebLogic Server deployment.

6. Configure identity and trust for WebLogic Server. (This step is optional but recommended.)
See Chapter 11, “Configuring Identity and Trust.”

7. Enable SSL for WebLogic Server. (This step is optional but recommended.) See Chapter 12,
“Configuring SSL.”

8. When you have moved to production, review and implement the additional security options
described in Securing a Production Environment.

In addition, you can:

http://e-docs.bea.com/wls/docs103/dvspisec/index.html
http://e-docs.bea.com/wls/docs103/dvspisec/index.html
http://e-docs.bea.com/wls/docs103/secwlres/index.html
http://e-docs.bea.com/wls/docs103/secwlres/index.html
http://e-docs.bea.com/wls/docs103/lockdown/index.html

Methods o f Conf igur ing Secur i t y

Securing WebLogic Server 2-9

Configure a connection filter. See “Using Connection Filters” on page 13-6.

Enable interoperability between WebLogic domains. See “Enabling Cross Domain Security
Between WebLogic Server Domains” on page 13-2.

Methods of Configuring Security
In many cases, this document describes how to configure WebLogic security by using the
WebLogic Server Administration Console. Generally, any configuration task you can accomplish
through the Console you can also accomplish by using the WebLogic Scripting Tool or the Java
Management Extensions (JMX) APIs. For information about using WLST to manage WebLogic
security, see Managing Security Data in WebLogic Scripting Tool. For information about using
JMX APIs, see Choosing an MBean Server to Manage Security Realms in Developing Custom
Management Utilities with JMX.

When you manage security realms, you must use two different MBean servers depending on your
task:

To set the value of a security MBean attribute, you must use the Edit MBean Server.

To add users, groups, roles, and policies, or to invoke other operations in a security
provider MBean, you must use a Runtime MBean Server or the Domain Runtime MBean
Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke operations in
security provider MBeans if your client or another JMX client has an edit session currently active.
The Administration Console automatically enforces this limitation and automatically accesses
the proper MBean server. When you use the Console, you can override this limitation by enabling
Allow Security Management Operations if Non-dynamic Changes have been Made on the
Domain → Security → General page. Setting this attribute to true permits users to perform
security management operations without restarting the server. Note that this attribute is reset to
false when a new MBean edit session begins.

For example, the value of the MinimumPasswordLength attribute in
DefaultAuthenticatorMBean is stored in the domain’s configuration document. Because all
modifications to this document are controlled by WebLogic Server, to change the value of this
attribute you must use the Edit MBean Server and acquire a lock on the domain’s configuration.
The createUser operation in DefaultAuthenticatorMBean adds data to an LDAP server,
which is not controlled by WebLogic Server. To prevent incompatible changes between the
DefaultAuthenticatorMBean’s configuration and the data that it uses in the LDAP server, you
cannot invoke the createUser operation if you or other users are in the process of modifying the

http://e-docs.bea.com/wls/docs103/config_scripting/config_WLS.html#security
http://e-docs.bea.com/wls/docs103/config_scripting/index.html
http://e-docs.bea.com/wls/docs103/jmx/editsecurity.html#manage_security

Overv iew o f Secu r i t y Management

2-10 Securing WebLogic Server

MinimumPasswordLength attribute. In addition, because changing this attribute requires you to
restart WebLogic Server, you cannot invoke the createUser operation until you have restarted
the server.

What Is Compatibility Security?
Compatibility security refers to the capability to run security configurations developed under
WebLogic Server 6.x in this release of WebLogic Server. In Compatibility security, you manage
6.x security realms, users, groups, and ACLs, protect user accounts, and configure the Realm
Adapter Auditing provider and optionally the Identity Assertion provider in the Realm Adapter
Authentication provider.

The only security realm available in Compatibility security is the CompatibilityRealm. The
Realm Adapter providers (Auditing, Adjudication, Authorization, and Authentication) in the
Compatibility realm allow backward compatibility with the authentication, authorization, and
auditing services in 6.x security realms. For more information, see Chapter 14, “Using
Compatibility Security.”

Note: Compatibility security is deprecated and will not be supported in future major releases.
Oracle strongly recommends upgrading your WebLogic Server deployment to the
security features in this release of WebLogic Server. You should only use Compatibility
security pending such an upgrade.

Management Tasks Available in Compatibility Security
Because Compatibility security allows you to access only authentication, authorization, and
custom auditing implementations supported in WebLogic Server 6.x, not all 6.x security tasks are
allowed in Compatibility security. Use Compatibility security to:

Configure the Realm Adapter Auditing provider. For more information, see “Configuring a
Realm Adapter Auditing Provider” on page 14-5.

Configure the Identity Assertion provider in the Realm Adapter Authentication provider so
that implementations of the weblogic.security.acl.CertAuthenticator class can be
used. For more information, see “Configuring the Identity Assertion Provider in the Realm
Adapter Authentication Provider” on page 14-5.

Note: The Realm Adapter Adjudication and Authorization providers are configured by default
in the CompatibilityRealm using information in an 6.x existing config.xml file.
These providers can only be used in the CompatibilityRealm. The Realm Adapter
Authentication provider is also automatically configured in the CompatibilityRealm.
However, this provider can also be configured in other realms to provide access to users

What I s Compat ib i l i t y Secur i t y?

Securing WebLogic Server 2-11

and groups stored in 6.x security realms. For more information, see “Configuring
RDBMS Authentication Providers” on page 5-13.

Change the password of the system user to protect your WebLogic Server deployment.

Manage the security realm in the CompatibilityRealm.

Define additional users for the security realm in the CompatibilityRealm. Organize users
further by implementing groups in the security realm.

Manage ACLs and permissions for the resources in your WebLogic Server deployment.

Create security roles and security policies for WebLogic resources you add to the
CompatibilityRealm. For more information, see Securing WebLogic Resources Using
Roles and Policies.

You can still configure identity and trust, use SSL, configure connection filters, and enable
interoperability between domains; however, you use the security features available in this release
of WebLogic Server to perform these tasks. See:

Chapter 11, “Configuring Identity and Trust”

Chapter 12, “Configuring SSL”

Chapter 13, “Configuring Security for a WebLogic Domain”

http://e-docs.bea.com/wls/docs103/secwlres/index.html
http://e-docs.bea.com/wls/docs103/secwlres/index.html

Overv iew o f Secu r i t y Management

2-12 Securing WebLogic Server

Securing WebLogic Server 3-1

C H A P T E R 3

Customizing the Default Security
Configuration

The following sections provide information about customizing the default security configuration
by creating a new security realm:

“Why Customize the Default Security Configuration?” on page 3-1

“Before You Create a New Security Realm” on page 3-2

“Creating and Configuring a New Security Realm: Main Steps” on page 3-3

For information about configuring security providers, see Chapter 4, “Configuring WebLogic
Security Providers” and Chapter 5, “Configuring Authentication Providers.”

For information about migrating security data to a new security realm, see Chapter 8, “Migrating
Security Data.”

Why Customize the Default Security Configuration?
To simplify the configuration and management of security, WebLogic Server provides a default
security configuration. In the default security configuration, myrealm is set as the default (active)
security realm, and the WebLogic Adjudication, Authentication, Identity Assertion, Credential
Mapping, CertPath, XACML Authorization and XACML Role Mapping providers are defined as
the security providers in the security realm.

Customize the default security configuration if you want to do any of the following:

Replace one of the security providers in the default realm with a different security provider.

Customiz ing the Defau l t Secur i t y Conf igurat ion

3-2 Securing WebLogic Server

Configure additional security providers in the default security realm. (For example, if you
want to use two Authentication providers, one that uses the embedded LDAP server and
one that uses a Windows NT store of users and groups.)

Use an Authentication provider that accesses an LDAP server other than WebLogic
Server’s embedded LDAP server.

Use an existing store of users and groups (for example, a DBMS database) instead of
defining users and groups in the WebLogic Authentication provider.

Add an Auditing provider to the default security realm.

Use an Identity Assertion provider that handles SAML assertions or Kerberos tokens.

Use the Certificate Registry to add certificate revocation to the security realm.

Change the default configuration settings of the security providers.

For information about configuring different types of security providers in a security realm, see
Chapter 4, “Configuring WebLogic Security Providers” and Chapter 5, “Configuring
Authentication Providers.”

The easiest way to customize the default security configuration is to add the security providers
you want to the default security realm (myrealm). However, Oracle recommends instead that you
customize the default security configuration by creating an entirely new security realm. This
preserves your ability to revert more easily to the default security configuration. You configure
security providers for the new realm; migrate any security data, such as users as groups, from the
existing default realm; and then set the new security realm as the default realm. See “Creating and
Configuring a New Security Realm: Main Steps” on page 3-3.

Before You Create a New Security Realm
Before creating a new security realm, you need to decide:

Which security providers you want to use. WebLogic Server includes a wide variety of
security providers and, in addition, allows you to create or obtain custom security
providers. A valid security realm requires an Authentication provider, an Authorization
provider, an Adjudication provider, a Credential Mapping provider, a Role Mapping
provider, and a CertPathBuilder. In addition, a security realm can optionally include
Identity Assertion, Auditing, and Certificate Registry providers. If your new security realm
includes two or more providers of the same type (for example, more than one
Authentication provider or more than one Authorization provider), you need to determine

Creat ing and Conf igur ing a New Secur i t y Rea lm: Ma in Steps

Securing WebLogic Server 3-3

how these providers should interact with each other. See “Using More Than One
Authentication Provider” on page 5-3.

What model to use to set security roles and security policies for Web application and EJB
resources. These security roles and policies can be set through deployment descriptors or
through the WebLogic Administration Console. See see Options for Securing Web
Application and EJB Resources in Securing WebLogic Resources Using Roles and
Policies.

Whether or not to use the Web resource.

The Web resource is deprecated. If you are configuring a custom Authorization provider
that uses the Web resource (instead of the URL resource) in the new security realm, enable
Use Deprecated Web Resource on the new security realm. This option changes the runtime
behavior of the Servlet container to use a Web resource rather than a URL resource when
performing authorization.

Note: When you create a new security realm, you must configure at least one of the
Authentication providers to return asserted LoginModules. Otherwise, run-as tags
defined in deployment descriptors will not work.

For more information, see Configure new security realms in the Administration Console Online
Help.

Creating and Configuring a New Security Realm: Main
Steps

To create a new security realm:

1. Define a name and set the configuration options for the security realm. See “Before You
Create a New Security Realm” on page 3-2 and Configure new security realms in the
Administration Console Online Help.

2. Configure the required security providers for the security realm. A valid security realm
requires an Authentication provider, an Authorization provider, an Adjudication provider, a
Credential Mapping provider, a Role Mapping provider, and a CertPathBuilder. See
Chapter 4, “Configuring WebLogic Security Providers” and Chapter 5, “Configuring
Authentication Providers.”

3. Optionally, define Identity Assertion, Auditing, and Certificate Registry providers. See
Chapter 4, “Configuring WebLogic Security Providers” and Chapter 5, “Configuring
Authentication Providers.”

http://e-docs.bea.com/wls/docs103/secwlres/secejbwar.html
http://e-docs.bea.com/wls/docs103/secwlres/secejbwar.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureNewSecurityRealms.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureNewSecurityRealms.html

Customiz ing the Defau l t Secur i t y Conf igurat ion

3-4 Securing WebLogic Server

4. If you configured the WebLogic Authentication, Authorization, Credential Mapping or Role
Mapping provider or the Certificate Registry in the new security realm, verify that the settings
of the embedded LDAP server are appropriate. See Chapter 9, “Managing the Embedded
LDAP Server.”.

5. Optionally, configure caches to improve the performance of the WebLogic or LDAP
Authentication providers in the security realm. See “Improving the Performance of WebLogic
and LDAP Authentication Providers” on page 5-9.

6. Protect WebLogic resources in the new security realm with security policies. Creating
security policies is a multi-step process with many options. To fully understand this process,
read Securing WebLogic Resources Using Roles and Policies. This document should be used
in conjunction with Securing WebLogic Server to ensure security is completely configured for
a WebLogic Server deployment.

7. If the security data (users and groups, roles and policies, and credential maps) defined in the
existing security realm will also be valid in the new security realm, you can export the security
data from the existing realm and import it into the new security realm. See Chapter 8,
“Migrating Security Data.”

8. Protect user accounts in the new security realm from dictionary attacks by setting lockout
attributes. See “Protecting User Accounts” on page 13-9.

9. Set the new realm as the default security realm for the WebLogic domain. See Change the
default security realm in the Administration Console Online Help.

Note: You can also use the WebLogic Scripting Tool or Java Management Extensions (JMX)
APIs to create a new security configuration. See WebLogic Scripting Tool.

http://e-docs.bea.com/wls/docs103/secwlres/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ChangeTheDefaultSecurityRealm.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ChangeTheDefaultSecurityRealm.html
http://e-docs.bea.com/wls/docs103/config_scripting/index.html

Securing WebLogic Server 4-1

C H A P T E R 4

Configuring WebLogic Security
Providers

The following sections describe how to configure the security providers supplied by WebLogic
Server.

Note: WebLogic Server includes so many Authentication providers and Identity Assertion
providers that they are better handled in a separate section. See Chapter 5, “Configuring
Authentication Providers.”

“When Do You Need to Configure a Security Provider?” on page 4-2

“Reordering Security Providers” on page 4-3

“Configuring an Authorization Provider” on page 4-3

“Configuring the WebLogic Adjudication Provider” on page 4-4

“Configuring a Role Mapping Provider” on page 4-4

“Configuring the WebLogic Auditing Provider” on page 4-5

“Configuring a WebLogic Credential Mapping Provider” on page 4-16

“Configuring a PKI Credential Mapping Provider” on page 4-17

“Configuring a SAML Credential Mapping Provider for SAML 1.1” on page 4-19

“Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0” on page 4-20

“Configuring the Certificate Lookup and Validation Framework” on page 4-26

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-2 Securing WebLogic Server

When Do You Need to Configure a Security Provider?
By default, most WebLogic security providers are generally configured to run after you install
WebLogic Server. However, the following circumstances require you to supply configuration
information:

Before using the WebLogic Identity Assertion provider, define the active token type. See
“Configuring Identity Assertion Providers” on page 5-25.

To map tokens to a user in a security realm, configure the user name mapper in the
WebLogic Identity Assertion provider. See “Configuring a WebLogic Credential Mapping
Provider” on page 4-16.

To use auditing in the default (active) security realm, configure either the WebLogic
Auditing provider or a custom Auditing provider. See “Configuring the WebLogic
Auditing Provider” on page 4-5.

To use HTTP and Kerberos-based authentication in conjunction with WebLogic Server. See
Chapter 6, “Configuring Single Sign-On with Microsoft Clients.”

To use identity assertion based on SAML assertions. See Chapter 7, “Configuring Single
Sign-On with Web Browsers and HTTP Clients.”

To use certificate revocation. See “Certificate Registry” on page 4-27.

To use an LDAP server other than the embedded LDAP server, configure one of the LDAP
Authentication providers. An LDAP authentication provider can be used instead of or in
addition to the WebLogic Authentication provider. See “Configuring LDAP Authentication
Providers” on page 5-5.

To access user, password, group, and group membership information stored in databases
for authentication purposes. See “Configuring RDBMS Authentication Providers” on
page 5-13 The RDBMS Authentication providers can be used to upgrade from the RDBMS
security realm.

To use Windows NT users and groups for authentication purposes. See “Configuring a
Windows NT Authentication Provider” on page 5-16. The Windows NT Authentication
provider is the upgrade path for the Window NT security realm.

When you create a new security realm, configure security providers for that realm. See
“Creating and Configuring a New Security Realm: Main Steps” on page 3-3.

When you add a custom security provider to a security realm or replace a WebLogic
security provider with a custom security provider, configure options for the custom security

Reorder ing Secur i t y P rov ide rs

Securing WebLogic Server 4-3

provider. When you create a custom security provider, you can implement options that are
configurable through the Administration Console. However, those options are
implementation-specific and are not addressed in this manual. See Extending the
Administration Console.

You can use either the WebLogic-supplied security providers or a custom security provider in a
security realm. To configure a custom security provider, see Configure a custom security
provider in the Administration Console Online Help.

Reordering Security Providers
You can configure more than one security provider of a given type in a security realm. For
example, you might use two or more different Role Mapping providers or Authorization
providers. If you have more than one security provider of the same type in a security realm, the
order in which these providers are called can affect the overall outcome of the security processes.
By default, security providers are called in the order that they were added to the realm. You can
use the Administration Console to change the order of the providers. See Re-order security
providers in the Administration Console Online Help.

Configuring an Authorization Provider
Authorization is the process whereby the interactions between users and resources are limited to
ensure integrity, confidentiality, and availability. In other words, authorization is responsible for
controlling access to resources based on user identity or other information. You should only need
to configure an Authorization provider when you create a new security realm.

By default, security realms in newly created domains include the XACML Authorization
provider. The XACML Authorization provider uses XACML, the eXtensible Access Control
Markup Language. For information about using the XACML Authorization provider, see Using
XACML Documents to Secure WebLogic Resources in Securing WebLogic Resources Using
Roles and Policies. WebLogic Server also includes the WebLogic Authorization provider, which
uses a proprietary policy language. This provider is named DefaultAuthorizer, but is no longer
the default authorization provider.

See Configure Authorization providers in the Administration Console Online Help.

Note: The WebLogic Authorization provider improves performance by caching the roles,
predicates, and resource data that it looks up. For information on configuring these
caches, see Best Practices: Configure Entitlements Caching When Using WebLogic
Providers in Securing WebLogic Resources Using Roles and Policies. The XACML
Authorization uses its own cache, but this cache is not configurable.

http://e-docs.bea.com/wls/docs103/console_ext/index.html
http://e-docs.bea.com/wls/docs103/console_ext/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCustomSecurityProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCustomSecurityProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ReorderSecurityProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ReorderSecurityProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthorizationProviders.html
http://e-docs.bea.com/wls/docs103/secwlres/understdg.html#ConfigureEntitlementsCaching
http://e-docs.bea.com/wls/docs103/secwlres/understdg.html#ConfigureEntitlementsCaching
http://e-docs.bea.com/wls/docs103/secwlres/xacmlusing.html
http://e-docs.bea.com/wls/docs103/secwlres/xacmlusing.html

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-4 Securing WebLogic Server

Configuring the WebLogic Adjudication Provider
When multiple Authorization providers are configured in a security realm, each may return a
different answer to the “is access allowed” question for a given resource. This answer may be
PERMIT, DENY, or ABSTAIN. Determining what to do if multiple Authorization providers do not
agree on the answer is the primary function of the Adjudication provider. Adjudication providers
resolve authorization conflicts by weighting each Authorization provider’s answer and returning
a final decision.

Each security realm requires an Adjudication provider, and can have no more than one active
Adjudication provider. By default, a WebLogic security realm is configured with the WebLogic
Adjudication provider. You can use either the WebLogic Adjudication provider or a custom
Adjudication provider in a security realm.

Note: In the Administration Console, the WebLogic Adjudication provider is referred to as the
Default Adjudicator.

By default, most configuration options for the WebLogic Adjudication provider are defined.
However, you can set the Require Unanimous Permit option to determine how the WebLogic
Adjudication provider handles a combination of PERMIT and ABSTAIN votes from the configured
Authorization providers.

If the option is enabled (the default), all Authorization providers must vote PERMIT in
order for the Adjudication provider to vote true.

If the option is disabled, ABSTAIN votes are counted as PERMIT votes.

Configuring a Role Mapping Provider
Role Mapping providers compute the set of roles granted to a subject for a given resource. Role
Mapping providers supply Authorization providers with this role information so that the
Authorization provider can answer the “is access allowed?” question for WebLogic resources. By
default, a WebLogic security realm is configured with the XACML Role Mapping provider. The
XACML Role Mapping provider uses XACML, the eXtensible Access Control Markup
Language. For information about using the XACML Role Mapping provider, see Using XACML
Documents to Secure WebLogic Resources in Securing WebLogic Resources Using Roles and
Policies.

WebLogic Server also includes the WebLogic Role Mapping provider, which uses a proprietary
policy language. This provider is named DefaultRoleMapper, but is no longer the default role

http://e-docs.bea.com/wls/docs103/secwlres/xacmlusing.html
http://e-docs.bea.com/wls/docs103/secwlres/xacmlusing.html

Conf igur ing the WebLog ic Audi t ing Prov ider

Securing WebLogic Server 4-5

mapping provider in newly-created security realms. You can also use a custom Role Mapping
provider in your security realm.

By default, most configuration options for the XACML Role Mapping provider are already
defined. However, you can set Role Mapping Deployment Enabled, which specifies whether or
not this Role Mapping provider imports information from deployment descriptors for Web
applications and EJBs into the security realm. This setting is enabled by default.

In order to support Role Mapping Deployment Enabled, a Role Mapping provider must
implement the DeployableRoleProvider SSPI. Roles are stored by the XACML Role
Mapping provider in the embedded LDAP server.

For information about using, developing, and configuring Role Mapping providers, see:

Users, Groups, And Security Roles in Securing WebLogic Resources Using Roles and
Policies

Role Mapping Providers in Developing Security Providers for WebLogic Server

Configure Role Mapping providers in the Administration Console Online Help

Note: The WebLogic Role Mapping provider improves performance by caching the roles,
predicates, and resource data that it looks up. For information on configuring these
caches, see Best Practices: Configure Entitlements Caching When Using WebLogic
Providers in Securing WebLogic Resources Using Roles and Policies. The XACML Role
Mapping provider uses its own cache, but this cache is not configurable.

Configuring the WebLogic Auditing Provider
Auditing is the process whereby information about operating requests and the outcome of those
requests are collected, stored, and distributed for the purposes of non-repudiation. In other words,
Auditing providers produce an electronic trail of computer activity.

Configuring an Auditing provider is optional. The default security realm (myrealm) does not
have an Auditing provider configured. WebLogic Server includes a provider named the
WebLogic Auditing provider (referred to as DefaultAuditor in the Administration Console).
You can also develop custom Auditing providers, as described in Auditing Providers in
Developing Security Providers for WebLogic Server.

The WebLogic Auditing provider can log the events described in Table 4-1. In addition, if you
enable configuration auditing (as described in “Configuration Auditing” on page 4-10), the
WebLogic Auditing provider can log the events described in Table 4-5.

http://e-docs.bea.com/wls/docs103/secwlres/secroles.html
http://e-docs.bea.com/wls/docs103/dvspisec/rm.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureRoleMappingProviders.html
http://e-docs.bea.com/wls/docs103/secwlres/understdg.html#ConfigureEntitlementsCaching
http://e-docs.bea.com/wls/docs103/secwlres/understdg.html#ConfigureEntitlementsCaching
http://e-docs.bea.com/wls/docs103/dvspisec/aud.html

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-6 Securing WebLogic Server

By default, most configuration options for the WebLogic Auditing provider are already defined
and, once it is added to the active security realm, the WebLogic Auditing provider will begin to
record audit events. However, you need to define the following settings, which you can do in the
Administration Console on the Configuration → Provider Specific page for the provider. You can
also use WebLogic Scripting tool or the Java Management Extensions (JMX) APIs to configure
the Auditing provider:

Rotation Minutes—Specifies how many minutes to wait before creating a new
DefaultAuditRecorder.log file. At the specified time, the audit file is closed and a new
one is created. A backup file named DefaultAuditRecorder.YYYYMMDDHHMM.log (for
example, DefaultAuditRecorder.200405130110.log) is created in the same directory.

Table 4-1 WebLogic Auditing Provider Events

Audit Event Indicates...

AUTHENTICATE Simple authentication (username and password)
occurred.

ASSERTIDENTITY Perimeter authentication (based on tokens)
occurred.

USERLOCKED A user account is locked because of invalid login
attempts.

USERUNLOCKED The lock on a user account is cleared.

USERLOCKOUTEXPIRED The lock on a user account expired.

ISAUTHORIZED An authorization attempt occurred.

ROLEEVENT A getRoles event occurred.

ROLEDEPLOY A deployRole event occurred.

ROLEUNDEPLOY An undeployRole event occurred.

POLICYDEPLOY A deployPolicy event occurred.

POLICYUNDEPLOY An undeployPolicy event occurred.

START_AUDIT An Auditing provider has been started.

STOP_AUDIT An Auditing provider has been stopped.

Conf igur ing the WebLog ic Audi t ing Prov ider

Securing WebLogic Server 4-7

Severity—Severity level appropriate for your WebLogic Server deployment. The
WebLogic Auditing provider audits security events of the specified severity, as well as all
events with a higher numeric severity rank. For example, if you set the severity level to
ERROR, the WebLogic Auditing provider audits security events of severity level ERROR,
SUCCESS, and FAILURE. You can also set the severity level to CUSTOM, and then
enable the specific severity levels you want to audit, such as ERROR and FAILURE events
only. Audit events include both the severity name and numeric rank; therefore, a custom
Auditing provider can filter events by either the name or the numeric rank. Auditing can be
initiated when the following levels of security events occur.

Table 4-2 Audit Severity Levels

All auditing information recorded by the WebLogic Auditing provider is saved in
WL_HOME\yourdomain\yourserver\logs\DefaultAuditRecorder.log by default.
Although an Auditing provider is configured per security realm, each server writes auditing data
to its own log file in the server directory. You can specify a new directory location for the
DefaultAuditRecorder.log file on the command line with the following Java startup option:
-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\logs\DefaultAuditRecorder.log.

For more information, see Security in the WebLogic Server Command Reference.

WARNING: Using an Auditing provider affects the performance of WebLogic Server even if
only a few events are logged.

For more information, see Configure Auditing providers in the Administration Console Online
Help.

Event Severity Rank

INFORMATION 1

WARNING 2

ERROR 3

SUCCESS 4

FAILURE 5

http://e-docs.bea.com/wls/docs103/admin_ref/weblogicServer.html#security
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuditingProviders.html

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-8 Securing WebLogic Server

Auditing ContextHandler Elements
An Audit Event includes a ContextHandler that can hold a variety of information or objects.
Set the WebLogic Auditing provider’s Active ContextHandler Entries attribute to specify which
ContextElement entries in the ContextHandler are recorded by the Auditing provider. By
default, none of the ContextElements are audited. Objects in the ContextHandler are in most
cases logged using the toString method. Table 4-3 lists the available ContextHandler entries.

Table 4-3 Context Handler Entries for Auditing.

Context Element Name Description and Type

com.bea.contextelement.
servlet.HttpServletRequest

A servlet access request or SOAP message via HTTP
javax.http.servlet.HttpServletRequest

com.bea.contextelement.
servlet.HttpServletResponse

A servlet access response or SOAP message via HTTP
javax.http.servlet.HttpServletResponse

com.bea.contextelement.
wli.Message

A WebLogic Integration message. The message is
streamed to the audit log.
java.io.InputStream

com.bea.contextelement.
channel.Port

Internal listen port of the network channel accepting or
processing the request
java.lang.Integer

com.bea.contextelement.
channel.PublicPort

External listen port of the network channel accepting or
processing the request
java.lang.Integer

com.bea.contextelement.
channel.RemotePort

Port of the remote end of the TCP/IP connection of the
network channel accepting or processing the request
java.lang.Integer

com.bea.contextelement.
channel.Protocol

Protocol used to make the request of the network channel
accepting or processing the request
java.lang.String

com.bea.contextelement.
channel.Address

The internal listen address of the network channel
accepting or processing the request
java.lang.String

Conf igur ing the WebLog ic Audi t ing Prov ider

Securing WebLogic Server 4-9

com.bea.contextelement.
channel.PublicAddress

The external listen address of the network channel
accepting or processing the request
java.lang.String

com.bea.contextelement.
channel.RemoteAddress

Remote address of the TCP/IP connection of the network
channel accepting or processing the request
java.lang.String

com.bea.contextelement.
channel.ChannelName

Name of the network channel accepting or processing the
request
java.lang.String

com.bea.contextelement.
channel.Secure

Whether the network channel is accepting or processing
the request using SSL
java.lang.Boolean

com.bea.contextelement.
ejb20.Parameter[1-N]

Object based on parameter

com.bea.contextelement.
wsee.SOAPMessage

javax.xml.rpc.handler.MessageContext

com.bea.contextelement.
entitlement.EAuxiliaryID

Used by a WebLogic Server internal process.
weblogic.entitlement.expression.EAuxili
ary

com.bea.contextelement.
security.ChainPrevalidatedBySSL

SSL framework has validated the certificate chain,
meaning that the certificates in the chain have signed each
other properly; the chain terminates in a certificate that is
one of the server's trusted CAs; the chain honors the basic
constraints rules; and the certificates in the chain have not
expired.
java.lang.Boolean

com.bea.contextelement.
xml.SecurityToken

Not used in this release of WebLogic Server.
weblogic.xml.crypto.wss.provider.Securi
tyToken

com.bea.contextelement.
xml.SecurityTokenAssertion

Not used in this release of WebLogic Server.
java.util.Map

Context Element Name Description and Type

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-10 Securing WebLogic Server

Configuration Auditing
You can configure the Administration Server to emit log messages and generate audit events
when a user changes the configuration of any resource within a domain or invokes management
operations on any resource within a domain. For example, if a user disables SSL on a Managed
Server in a domain, the Administration Server emits log messages. If you have enabled the
WebLogic Auditing provider, it writes the audit events to an additional security log. These
messages and audit events provide an audit trail of changes within a domain’s configuration
(configuration auditing).

The Administration Server writes configuration auditing messages to its local log file. They are
not written to the domain-wide message log by default.

Note that configuration audit information is contained in Authorization Events. As a result,
another approach to configuration auditing is to consume Authorization Events. Note, however,
that the information in an Authorization Event tells you whether access was allowed to perform
a configuration change; it does not tell you whether the configuration change actually succeeded
(for instance, it might have failed because it was invalid).

com.bea.contextelement.
webservice.Integrity{id:XXXXX}

javax.security.auth.Subject

com.bea.contextelement.
saml.SSLClientCertificateChain

SSL client certificate chain obtained from the SSL
connection over which a sender-vouches SAML assertion
was received.
java.security.cert.X509Certificate[]

com.bea.contextelement.
saml.MessageSignerCertificate

Certificate used to sign a Web Services message.
java.security.cert.X509Certificate

com.bea.contextelement.
saml.subject.ConfirmationMethod

Type of SAML assertion: bearer, artifact, sender-vouches,
or holder-of-key.
java.lang.String

com.bea.contextelement.
saml.subject.dom.KeyInfo

 <ds:KeyInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.
org.w3c.dom.Element

Context Element Name Description and Type

Conf igur ing the WebLog ic Audi t ing Prov ider

Securing WebLogic Server 4-11

Enabling Configuration Auditing
Enable configuration auditing by one of these methods:

Use the Administration Console. On the Configuration → General page for your domain,
set the Configuration Audit Type. See Enabling Configuration Auditing in the
Administration Console Online Help.

When you start the Administration Server, include one of the following Java options in the
weblogic.Server command:

– -Dweblogic.domain.ConfigurationAuditType="audit"

Causes the domain to emit Audit Events only.
– -Dweblogic.domain.ConfigurationAuditType="log"

Causes the domain to write configuration auditing messages to the Administration
Server log file only.

– -Dweblogic.domain.ConfigurationAuditType="logaudit"

Causes the domain to emit Audit Events and write configuration auditing messages to
the Administration Server log file.

See weblogic.Server Command-Line Reference.

Use the WebLogic Scripting Tool to change the value of the ConfigurationAuditType
attribute of the DomainMBean. See WebLogic Scripting Tool.

Configuration Auditing Messages
Configuration auditing messages are of the following severities:

Table 4-4 Configuration Auditing Message Severities

Severity Description

SUCCESS A successful configuration change occurred.

FAILURE An attempt to modify the configuration failed due to insufficient user
credentials.

ERROR An attempt to modify the configuration failed due to an internal error.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/logging/EnableConfigurationAuditing.html
http://e-docs.bea.com/wls/docs103/admin_ref/weblogicServer.html
http://e-docs.bea.com/wls/docs103/config_scripting/index.html

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-12 Securing WebLogic Server

Configuration auditing messages are identified by message IDs that fall within the range of
159900-159910.

The messages use MBean object names to identify resources. Object names for WebLogic Server
MBeans reflect the location of the MBean within the hierarchical data model. To reflect the
location, object names contain name/value pairs from the parent MBean. For example, the object
name for a server's LogMBean is:
mydomain:Name=myserverlog,Type=Log,Server=myserver. See WebLogic Server MBean
Data Model in Developing Custom Management Utilities with JMX.

Table 4-5 summarizes the messages.

Table 4-5 Summary of Configuration Auditing Messages

When This Event Occurs... WebLogic Server
Generates a Message
With This ID...

And This Message Text...

Authorized user creates a
resource.

159900 USER username CREATED MBean-name
where username identifies the WebLogic Server user
who logged in and created a resource.

Unauthorized user attempts
to create a resource.

159901 USER username CREATED MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace
where username identifies the unauthorized
WebLogic Server user.

Authorized user deletes a
resource.

159902 USER username REMOVED MBean-name

where username identifies the WebLogic Server user
who logged in and deleted a resource.

Unauthorized user attempts
to delete a resource.

159903 USER username REMOVE MBean-name
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized
WebLogic Server user.

http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html#MBean_trees
http://e-docs.bea.com/wls/docs103/jmx/understandWLS.html#MBean_trees

Conf igur ing the WebLog ic Audi t ing Prov ider

Securing WebLogic Server 4-13

Authorized user changes a
resource’s configuration.

159904 USER username MODIFIED MBean-name
ATTRIBUTE attribute-name

FROM old-value TO new-value
where username identifies the WebLogic Server user
who logged in and changed the resource’s configuration.

Unauthorized user attempts
to change a resource’s
configuration.

159905 USER username MODIFY MBean-name
ATTRIBUTE attribute-name

FROM old-value TO new-value
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized
WebLogic Server user.

Authorized user invokes an
operation on a resource.

For example, a user
deploys an application or
starts a server instance.

159907 USER username INVOKED ON
MBean-name
METHOD operation-name
PARAMS specified-parameters

where username identifies the WebLogic Server user
who logged in and invoked a resource operation.

Unauthorized user attempts
to invoke an operation on a
resource.

159908 USER username INVOKED ON
MBean-name
METHOD operation-name

PARAMS specified-parameters
FAILED weblogic.management.
NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized
WebLogic Server user.

Table 4-5 Summary of Configuration Auditing Messages (Continued)

When This Event Occurs... WebLogic Server
Generates a Message
With This ID...

And This Message Text...

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-14 Securing WebLogic Server

Note: Each time an authorized user adds, modifies, or deletes a resource, the Management
subsystem also generates an Info message with the ID 140009 regardless of whether
configuration auditing is enabled. For example:

<Sep 15, 2005 11:54:47 AM EDT> <Info> <Management> <140009>
<Configuration changes for domain saved to the repository.>

While the message informs you that the domain’s configuration has changed, it does not
provide the detailed information that configuration auditing messages provide. Nor does
the Management subsystem generate this message when you invoke operations on
resources.

Table 4-6 lists additional message attributes for configuration auditing messages. All
configuration auditing messages specify the same values for these attributes.

Authorized user enables
configuration auditing.

159909 USER username, Configuration Auditing
is enabled

where username identifies the WebLogic Server user
who enabled configuration auditing.

Authorized user disables
configuration auditing.

159910 USER username, Configuration Auditing
is disabled

where username identifies the WebLogic Server user
who disabled configuration auditing.

Table 4-5 Summary of Configuration Auditing Messages (Continued)

When This Event Occurs... WebLogic Server
Generates a Message
With This ID...

And This Message Text...

Table 4-6 Common Message Attributes and Values

Message Attribute Attribute Value

Severity Info

Subsystem Configuration Audit

User ID kernel identity

This value is always kernel identity, regardless of which user modified the
resource or invoked the resource operation.

Conf igur ing the WebLog ic Audi t ing Prov ider

Securing WebLogic Server 4-15

Audit Events and Auditing Providers
An audit event is an object that Auditing providers can read and process in specific ways. An
Auditing provider is a pluggable component that the security realm uses to collect, store, and
distribute information about operating requests and the outcome of those requests for the
purposes of non-repudiation.

If you enable a domain to emit Audit Events, the domain emits the events described in Table 4-7.
All Auditing providers that are configured for the domain can handle these events.

All of the events are of severity level SUCCESS and describe the security principal who initiated
the action, whether permission was granted, and the object (MBean or MBean attribute) of the
requested action.

Server Name AdminServerName

Because the Administration Server maintains the configuration data for all
resources in a domain, this value is always the name of the Administration Server.

Machine Name AdminServerHostName

Because the Administration Server maintains the configuration data for all
resources in a domain, this value is always the name of the Administration
Server’s host machine.

Thread ID execute-thread

The value depends on the number of execute threads that are currently running on
the Administration Server.

Timestamp timeStamp at which the message is generated.

Table 4-6 Common Message Attributes and Values

Message Attribute Attribute Value

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-16 Securing WebLogic Server

If you enable the default WebLogic Server Auditing provider, it writes all Audit Events as log
messages in its own log file.

Other Auditing providers that you create or purchase can filter these events and write them to
output repositories such as an LDAP server, database, or a simple file. In addition, other types of
security providers can request audit services from an Auditing provider. See Auditing Providers
in Developing Security Providers for WebLogic Server.

Configuring a WebLogic Credential Mapping Provider
Credential mapping is the process whereby the authentication and authorization mechanisms of
a remote system (for example, a legacy system or application) obtain an appropriate set of
credentials to authenticate remote users to a target WebLogic resource. The WebLogic Credential
Mapping provider maps WebLogic Server subjects to the username/password pairs to be used
when accessing such resources.

By default, most configuration options for the WebLogic Credential Mapping provider are
defined. However, you have the option of setting Credential Mapping Deployment Enabled,
which specifies whether or not this Credential Mapping provider imports credential maps from a

Table 4-7 Summary of Audit Events for Configuration Auditing

When This Event Occurs... WebLogic Server Generates This Audit Event Object...

A request to create a new configuration
artifact has been allowed or prevented.

weblogic.security.spi.
AuditCreateConfigurationEvent

See Javadoc.

A request to delete an existing
configuration artifact has been allowed or
prevented.

weblogic.security.spi.
AuditDeleteConfigurationEvent

See Javadoc.

A request to modify an existing
configuration artifact has been allowed or
prevented.

weblogic.security.spi.
AuditInvokeConfigurationEvent

See Javadoc.

A invoke an operation on an existing
configuration artifact has been allowed or
prevented.

weblogic.security.spi.
AuditSetAttributeConfigurationEvent

See Javadoc.

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/spi/AuditCreateConfigurationEvent.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/spi/AuditDeleteConfigurationEvent.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/spi/AuditInvokeConfigurationEvent.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/spi/AuditSetAttributeConfigurationEvent.html
http://e-docs.bea.com/wls/docs103/dvspisec/aud.html

Conf igur ing a PK I C redent ia l Mapping Prov ider

Securing WebLogic Server 4-17

resource adapter’s deployment descriptor (weblogic-ra.xml file) into the security realm. This
setting is enabled by default.

In order to support Credential Mapping Deployment Enabled, a Credential Mapping provider
must implement the DeployableCredentialProvider SSPI. The credential mapping
information is stored in the embedded LDAP server.

For more information:

See Credential Mapping Providers in Developing Security Providers for WebLogic Server

See Configure Credential Mapping providers and Create Credential Mappings in the
Administration Console Online Help.

For information about using credential maps, see Programming WebLogic Resource
Adapters.

You can also use the WebLogic Scripting Tool or Java Management Extensions (JMX)
APIs to create a new security configuration.

For information about other credential mapping providers, see “Configuring a PKI
Credential Mapping Provider” on page 4-17 and “Configuring a SAML Credential
Mapping Provider for SAML 1.1” on page 4-19.

Configuring a PKI Credential Mapping Provider
The PKI (Public Key Infrastructure) Credential Mapping provider included in WebLogic Server
maps (a) a WebLogic Server subject (the initiator) and target resource (and an optional credential
action) to (b) a key pair or public certificate that can be used by applications when accessing the
targeted resource. The PKI Credential Mapping provider uses the subject and resource name to
retrieve the corresponding credential from the keystore.

To use the PKI Credential Mapping provider, you need to:

1. Configure keystores with appropriate keys and distribute the keystores on all machines in a
WebLogic Server cluster. Setting up keystores is not a WebLogic Server function. For
information about setting up keystores, see the help for the Java keytool utility at
http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/keytool.html. See also Chapter 11,
“Configuring Identity and Trust,” for information about keystores and keys in WebLogic
Server.

2. Configure a PKI Credential Mapping provider. A PKI Credential Mapping provider is not
already configured in the default security realm (myrealm). See “PKI Credential Mapper

http://e-docs.bea.com/wls/docs103/dvspisec/credmap.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCredentialMappingProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateCredentialMappings.html
http://e-docs.bea.com/wls/docs103/resadapter/index.html
http://e-docs.bea.com/wls/docs103/resadapter/index.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-18 Securing WebLogic Server

Attributes” on page 4-18 and Configure Credential Mapping providers in the Administration
Console Online Help.

3. Create credential mappings. See Create PKI Credential Mappings in the Administration
Console Online Help.

PKI Credential Mapper Attributes
To configure the PKI Credential Mapping provider, set values for these attributes. See Configure
Credential Mapping providers in the Administration Console Online Help.

Keystore Provider—A keystore provider for the Java Security API. If no value is specified,
the default provider class is used.

Keystore Type— JKS (the default) or PKCS12.

Keystore Pass Phrase—Password used to access the keystore

Keystore File Name—Location of the keystore relative to the directory where the server
was started.

In addition, two optional attributes determine how the PKI Credential Mapping provider locates
credential mappings in cases where the exact resource or subject may not be available:

Use Resource Hierarchy—A credential is located by traversing up the resource hierarchy
for each type of resource. The search for all possible PKI credentials will start from the
specific resource and will walk up the resource hierarchy to find all possible matches. This
attribute is enabled by default.

Use Initiator Group Names—When a subject is passed to the PKI Credential Mapper
provider, a credential is located by examining the groups of which the initiator is a
member. This is enabled by default.

Credential Actions
Optionally, you can label a credential mapping with a credential action. You can do this in the
Administration Console when you create the credential mapping. The credential action is an
arbitrary string that distinguishes credential mappings used in different circumstances. For
example, one credential mapping could decrypt a message from a remote resource and another
credential mapping could sign messages to be sent to the same resource. The subject initiator and
the target resource are not sufficient to distinguish these two credential mappings. You can use
the credential action to label one of these credential mappings something like decrypt and the

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCredentialMappingProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreatePKICredentialMappings.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCredentialMappingProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCredentialMappingProviders.html

Conf igu r ing a SAML Credent ia l Mapp ing P rov ider f o r SAML 1 .1

Securing WebLogic Server 4-19

other one sign. Then, the application calling the PKI Credential Mapping provider can provide
the desired credential action value in the ContextHandler that is passed to the provider.

For information about adding credential actions to PKI credential mappings, see Create PKI
Credential Mappings in the Administration Console Online Help.

Configuring a SAML Credential Mapping Provider for
SAML 1.1

This release of WebLogic Server includes two SAML Credential Mapping providers. SAML
Credential Mapping Provider Version 2 provides greatly enhanced configuration options and is
recommended for new deployments. SAML Credential Mapping Provider Version 1 is
deprecated in WebLogic Server 9.1. A security realm can have not more than one SAML
Credential Mapping provider, and if the security realm has both a SAML Credential Mapping
provider and a SAML Identity Assertion provider, both must be of the same version. Do not use
a Version 1 SAML provider in the same security realm as a Version 2 SAML provider. For
information about configuring the SAML Credential Mapping Provider Version 1, see
Configuring a SAML Credential Mapping Provider in the WebLogic Server 9.0 documentation.

For general information about WebLogic Server’s support for SAML, see Security Assertion
Markup Language (SAML) and Single Sign-On with the WebLogic Security Framework in
Understanding WebLogic Security. For information about how to use the SAML Credential
Mapping provider in a SAML single sign-on configuration, see Chapter 7, “Configuring Single
Sign-On with Web Browsers and HTTP Clients.”

Configuring Assertion Lifetime
A SAML Assertion’s validity is typically time-limited. The default time-to-live for assertions
generated by the SAML Credential Mapping provider is specified by the DefaultTimeToLive
attribute. You can override the default time-to-live for assertions generated for different SAML
Relying Parties.

Normally, an assertion is valid from the NotBefore time, which defaults to (roughly) the time
the assertion was generated, until the NotOnOrAfter time, which is calculated as (NotBefore +
TimeToLive). To allow the Credential Mapper to compensate for clock differences between the
source and destination sites, you can configure the SAML Credential Mapping provider’s
DefaultTimeToLiveDelta attribute. This time-to-live offset value is a positive or negative
integer indicating how many seconds before or after “now” the assertion's NotBefore value
should be set to. If you set a value for DefaultTimeToLiveDelta, then the assertion lifetime is

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreatePKICredentialMappings.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreatePKICredentialMappings.html
http://edocs.bea.com/wls/docs90/secmanage/providers.html#SAML_cred
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/archtect.html#saml_source

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-20 Securing WebLogic Server

still calculated as (NotBefore + TimeToLive), but the NotBefore value is set to (now +
TimeToLiveDelta). For example, given the following settings:

DefaultTimeToLive = 120

DefaultTimeToLiveDelta = -30

an assertion when generated would have a lifetime of two minutes (120 seconds), starting 30
seconds before it is generated.

Relying Party Registry
When you configure WebLogic Server to act as a source of SAML security assertions, you need
to register the parties that may request SAML assertions to be generated. For each SAML Relying
Party, you can specify the SAML profile used, details about the Relying Party, and the attributes
expected in assertions for the Relying Party. For information, see:

“Configure Relying Parties” on page 7-4.

Configure a SAML Relying Party in the Administration Console Online Help.

Configuring a SAML 2.0 Credential Mapping Provider for
SAML 2.0

The SAML 2.0 Credential Mapping provider included with WebLogic Server generates SAML
2.0 assertions that can be used to assert identity in the following use cases:

SAML 2.0 Web SSO Profile

WS-Security SAML Token Profile version 1.1

The SAML 2.0 Credential Mapping provider generates the assertion types listed and described in
Table 4-8.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureRelyingParty.html

Conf igur ing a SAML 2 .0 Credent ia l Mapp ing P rov ider f o r SAML 2 .0

Securing WebLogic Server 4-21

For general information about WebLogic Server’s support for SAML 2.0, see Security Assertion
Markup Language (SAML) and Single Sign-On with the WebLogic Security Framework in
Understanding WebLogic Security. For information about how to use the SAML 2.0 Credential
Mapping provider in a SAML 2.0 single sign-on configuration, see Chapter 7, “Configuring
Single Sign-On with Web Browsers and HTTP Clients.” For information about specifying the
confirmation method for assertions generated for web service Service provider partners, see
“Using Security Assertion Markup Language (SAML) Tokens For Identity” in Securing
WebLogic Web Services.

SAML 2.0 Credential Mapping Provider Attributes
Configuration of the SAML 2.0 Credential Mapping provider is controlled by setting attributes
on the SAML2CredentialMapperMBean. You can access the SAML2CredentialMapperMBean
using the WebLogic Scripting Tool (WLST), or through the Administration Console by using the
Security Realms → RealmName → Providers → Credential Mapping page and creating or
selecting SAML2CredentialMapper. The SAML2CredentialMapperMBean is described at the
following location:
http://e-docs.bea.com/wls/docs103/saml2_javadocs/com/bea/security/saml2/pr
oviders/SAML2CredentialMapperMBean.html

Table 4-8 Assertion Types Supported by the SAML 2.0 Credential Mapping Provider

Assertion Type Description

bearer The subject of the assertion is the bearer of the assertion, subject to optional
constraints on confirmation using attributes that may be included in the
<SubjectConfirmationData> element of the assertion.

Used for all assertions generated for the SAML 2.0 Web Browser SSO Profile and
with the Web Service Security SAML Token Profile 1.1.

sender-vouches The Identity Provider (different from the subject) vouches for the verification of
the subject. The receiver must have a trust relationship with the Identity Provider.

Used with the Web Service Security SAML Token Profile 1.1 only.

holder-of-key The subject represented in the assertion uses an X.509 certificate that may not be
trusted by the receiver to protect the integrity of the request messages.

Used with the Web Service Security SAML Token Profile 1.1 only.

http://e-docs.bea.com/wls/docs103/saml2_javadocs/com/bea/security/saml2/providers/SAML2CredentialMapperMBean.html
http://e-docs.bea.com/wls/docs103/saml2_javadocs/com/bea/security/saml2/providers/SAML2CredentialMapperMBean.html
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/archtect.html#saml_source
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#webserv_sec_saml_token

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-22 Securing WebLogic Server

To configure the SAML 2.0 Credential Mapping provider, set the following attributes:

Issuer URI

Name of this security provider. The value that you specify should match the Entity ID
specified in the SAML 2.0 General page that configures the per-server SAML 2.0
properties.

Name Qualifier

Used by the Name Mapper class as the security or administrative domain that qualifies the
name of the subject. This provides a means to federate names from disparate user stores
while avoiding the possibility of subject name collision.

Assertion life time

Values that limit the life time of generated assertions during which they may be used.
Expired assertions cannot be made available for use.

Web service assertion signing key alias and passphrase

Used for signing generated assertions.

Custom name mapper class

The custom Java class that overrides the default SAML 2.0 Credential Mapping provider
name mapper class, which maps Subjects to identity information contained in the assertion.

Generate attributes

Specifies whether group membership information associated with the authenticated Subject
is included in generated assertions.

Service Provider Partners
When you configure WebLogic Server to act as an Identity Provider, you need to create and
configure the Service Provider partners for whom SAML 2.0 assertions are generated. When an
Identity Provider site needs to generate an assertion, the SAML 2.0 Credential Mapping provider
determines the Service Provider partner for whom the assertion must be generated, and generates
it according to the configuration of that Service Provider partner.

The way in which you configure a Service Provider partner, and the specific information you
configure for that partner, depends upon whether the partner is used for web single sign-on or web
services. Configuring a web single sign-on Service Provider partner consists of importing that
partner’s metadata file and establishing additional basic information about that partner, such as
the following:

Conf igur ing a SAML 2 .0 Credent ia l Mapp ing P rov ider f o r SAML 2 .0

Securing WebLogic Server 4-23

Determining whether SAML documents, such as authentication responses, SAML artifacts,
and artifact requests, must be signed

Certificates used for validating signed documents received from this partner

The binding to be used for sending SAML artifacts to this partner

The client user name and password used by this partner when connecting to the local site’s
binding

For details about configuring a Service Provider partner for web single sign-on, see:

“Create and Configure Web Single Sign-On Service Provider Partners” on page 7-15

Create a SAML 2.0 Web Single Sign-on Service Provider partner in the Administration
Console Online Help

Configuring a web service Service Provider partner does not use a metadata file, but does consist
of establishing the following information about that partner:

Audience URIs, which specify an audience restriction to be included in assertions
generated for this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the partner
lookup string, which is required by the web service run time to discover the partner. See
“Partner Lookup Strings Required for Web Service Partners” on page 4-23.

Custom name mapper class that overrides the default name mapper and that is to be used
specifically with this partner

Values that specify the life span attributes of assertions generated for this partner

Confirmation method for assertions received from this partner

For more information about configuring web service Service Provider partners, see Create a
SAML 2.0 Web Service Service Provider partner in the Administration Console Online Help.

Partner Lookup Strings Required for Web Service Partners
For web service Service Provider partners, you also configure Audience URIs. In WebLogic
Server, the Audience URI attribute is overloaded to perform two distinct functions:

Specify an audience restriction that consists of the target service URL, per the OASIS
SAML 2.0 specification.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WebSSOSPPartner.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WSSPPartner.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WSSPPartner.html

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-24 Securing WebLogic Server

Contain a partner lookup string, which is required at run time by WebLogic Server to
discover the Service Provider partner for which a SAML 2.0 assertion needs to be
generated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup and can
optionally also serve as an Audience URI restriction that is included in the generated assertion.
The ability to specify a partner lookup string that is also an Audience URI eliminates the need to
specify a given target URL twice: once for lookup, and again for audience restriction.

Note: You must configure a partner lookup string for a Service Provider partner so that partner
can be discovered at run time by the web service run time.

Lookup String Syntax
The partner lookup string has the following syntax:

[target:char:]<endpoint-url>

In this syntax, target:char: is a prefix that designates the partner lookup string, where char
represents one of three special characters: a hyphen, plus sign, or asterisk (-, +, or *). This prefix
determines how partner lookup is performed, as described in Table 4-9.

Table 4-9 Service Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>. For example,
target:-:http://www.avitek.com:7001/myserver/myserv
icecontext/myservice-endpoint specifies the endpoint that can
be matched to this Service Provider, for which an assertion should be
generated.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI in the generated assertion.

Conf igur ing a SAML 2 .0 Credent ia l Mapp ing P rov ider f o r SAML 2 .0

Securing WebLogic Server 4-25

Notes: Configuring one or more partner lookup strings for a Service Provider partner is required
in order for that partner to be discovered at run time. If this partner cannot be discovered,
no assertions for this partner can be generated.

If you configure an endpoint URL without using the target lookup prefix, it will be
handled as a conventional Audience URI that must be contained in assertions generated
for this Service Provider partner. (This also enables backwards-compatibility with
existing Audience URIs that may be configured for this partner.)

Specifying Default Partners
To support the need for a default Service Provider partner entry, one or more of the default
partner’s Audience URI entries may contain a wildcard match that works for all targets. The
actual wildcard URI may depend on the specific format used by the web service run time. For
example:

target:*:http://

target:+:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>.

Using the plus sign (+) in the lookup string results in the endpoint URL
being added as an Audience URI in the assertion generated for this Service
Provider partner.

target:*:<endpoint-url> Specifies that partner lookup is conducted for an initial-string
pattern match of the URL, <endpoint-url>. For example,
target:*:http://www.avitek.com:7001/myserver specifies
that any endpoint URL beginning with
http://www.avitek.com:7001/myserver can be matched to this
Service Provider, such as:
http://www.avitek.com:7001/myserver/contextA/endpointA
and
http://www.avitek.com:7001/myserver/contextB/endpointB.

If more than one Service Provider partner is discovered that is a match for
the initial string, the partner with the longest initial string match is selected.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI in the generated assertion.

Table 4-9 Service Provider Partner Lookup String Syntax (Continued)

Lookup String Description

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-26 Securing WebLogic Server

target:*:https://

Management of Partner Certificates
The SAML 2.0 Credential Mapping provider manages a set of trusted certificates for each partner
configured for web single sign-on. Whenever a signed authentication or artifact request is
received during a message exchange with a partner, the trusted certificate is used to verify the
partner’s signature. Partner certificates are used for the following purposes:

To validate trust when the SAML 2.0 Credential Mapping provider receives a signed
authentication request or artifact request.

To validate trust in a Service Provider partner that is retrieving a SAML artifact from the
Artifact Resolution Service (ARS) via an SSL connection.

From the Administration Console, you can view a web single sign-on Service Provider partner’s
signing certificate and transport layer client certificate in the partner management pages of the
configured SAML 2.0 Credential Mapping provider.

Java Interface for Configuring Service Provider Partner Attributes
Operations on web service partners are available in the
com.bea.security.saml2.providers.registry.Partner Java interface.

Configuring the Certificate Lookup and Validation
Framework

WebLogic Server may receive digital certificates as part of Web Services requests, two-way SSL,
or other secure interactions. To validate these certificates, WebLogic Server includes a Certificate
Lookup and Validation (CLV) framework, whose function is to look up and validate X.509
certificate chains. The key elements of the CLV framework are the CertPathBuilder and the
CertPathValidators. The CLV framework requires one and only active CertPathBuilder which,
given a reference to a certificate chain, finds the chain and validates it, and zero or more
CertPathValidators which, given a certificate chain, validates it.

When WebLogic Server receives a certificate, the CLV framework uses the security provider
configured as the CertPathBuilder to look up and validate the certificate chain. If the certificate
chain is found and valid, the framework then calls each configured CertPathValidator, in the
order the administrator configured them, to perform extra validation on the chain. The chain is
only valid if the builder and all the validators successfully validate it.

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/Partner.html

Conf igur ing the Cer t i f i ca te Lookup and Va l idat ion F ramework

Securing WebLogic Server 4-27

A chain is valid only if all of the following are true:

The certificates in the chain have signed each other properly.

The chain terminates in a certificate that is one of the server's trusted CAs.

The chain honors the basic constraints rules (for example, no certificate in the chain has
been issued by a certificate that is not allowed to issue certificates).

The certificates in the chain have not expired.

WebLogic Server includes two CLV security providers: the WebLogic CertPath provider (which
acts as both a CertPathBuilder and a CertPathValidator), described in “CertPath Provider” on
page 4-27, and the Certificate Registry, described in “Certificate Registry” on page 4-27. Use just
the WebLogic CertPath provider if you want to use trusted CA-based validation of the full
certificate chain. Use just the Certificate Registry if you want only to validate that certificates are
registered. Use both, designating the Certificate Registry as the current builder, if you want to use
both types of validation.

For more information about certificate lookup and validation, seeChapter 11, “Configuring
Identity and Trust.”

CertPath Provider
The default security realm in WebLogic Server is configured with the WebLogic CertPath
provider. The CertPath provider serves two functions: CertPathBuilder and CertPathValidator.
The CertPath provider receives an end certificate or a certificate chain. It uses the server’s list of
trusted CAs to complete the certificate chain, if necessary. After building the chain, the CertPath
provider validates the chain, checking the signatures in the chain, ensuring that the chain has not
expired, checking the chain’s basic constraints, and verifying that the chain terminates in a
certificate issued by one of the server’s trusted CAs.

The WebLogic CertPath provider requires no configuration, other than its Current Builder
attribute, which indicates whether the CertPath provider should be used as the active certificate
chain builder.

Certificate Registry
The Certificate Registry is a security provider that allows you to explicitly register the list of
trusted certificates that are allowed to access WebLogic Server. If you configure a Certificate
Registry as part of your security realm, then only certificates that are registered in the Certificate
Registry will be considered valid. The Certificate Registry provides an inexpensive mechanism

Conf igur ing WebLog ic Secur i t y P rov ide rs

4-28 Securing WebLogic Server

for performing revocation checking. By removing a certificate from the Certificate Registry, you
can invalidate a certificate immediately. The registry is stored in the embedded LDAP server.

The Certificate Registry is both a CertPath Builder and a CertPath Validator. In either case, the
Certificate Registry ensures that the chain's end certificate is stored in the registry, but does no
other validation. If you use the Certificate Registry as your security realm’s CertPath Builder and
you also want to use the WebLogic CertPath provider or another security provider to perform full
chain validation, make sure that you register the intermediate and root CAs in each server’s trust
keystore, and the end certificates in the Certificate Registry.

The default security realm in WebLogic Server does not include a Certificate Registry. Once you
configure a Certificate Registry, you can use the WebLogic Administration Console to add,
remove, and view certificates in the registry. You can export a certificate from a keystore to a file,
using the Java keytool utility. You can import a certificate that is a PEM or DER file in the file
system into the Certificate Registry using the console. You can also use the Console to view the
contents of a certificate, including its subject DN, issuer DN, serial number, valid dates,
fingerprints, etc.

See Configure Certification Path providers in the Administration Console Online Help.

Configuring a WebLogic Keystore Provider
Note: The WebLogic Keystore provider is deprecated. It is only supported for backward

compatibility. Use Java KeyStores (JKS) instead. All of the functionality that was
supported by the WebLogic Keystore provider is available through use of Java
KeyStores.

For information about configuring the WebLogic Keystore provider, see Configure keystores in
the Administration Console Online Help.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCertPathProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureKeystoresAndSSL.html

Securing WebLogic Server 5-1

C H A P T E R 5

Configuring Authentication Providers

WebLogic Server includes numerous Authentication security providers. Most of them work in
similar fashion: given a username and password credential pair, the provider attempts to find a
corresponding user in the provider’s data store. These Authentication providers differ primarily
in what they use as a data store: one of many available LDAP servers, a SQL database, or other
data store. In addition to these username/password based security providers, WebLogic Server
includes identity assertion Authentication providers, which use certificates or security tokens,
rather than username/password pairs, as credentials.

The following sections describe how to configure the Authentication security providers supplied
by WebLogic Server.

“Choosing an Authentication Provider” on page 5-2

“Using More Than One Authentication Provider” on page 5-3

“Configuring the WebLogic Authentication Provider” on page 5-4

“Configuring LDAP Authentication Providers” on page 5-5

“Configuring RDBMS Authentication Providers” on page 5-13

“Configuring a Windows NT Authentication Provider” on page 5-16

“Configuring the SAML Authentication Provider” on page 5-18

“Configuring the Password Validation Provider” on page 5-19

“Configuring Identity Assertion Providers” on page 5-25

Conf igur ing Authent icat ion P rov iders

5-2 Securing WebLogic Server

“How an LDAP X509 Identity Assertion Provider Works” on page 5-27

“Ordering of Identity Assertion for Servlets” on page 5-37

Choosing an Authentication Provider
Authentication is the process whereby the identity of users and system processes are proved or
verified. Authentication also involves remembering, transporting, and making identity
information available to various components of a system when that information is needed.

The WebLogic Server security architecture supports: certificate-based authentication directly
with WebLogic Server; HTTP certificate-based authentication proxied through an external Web
server; perimeter-based authentication (Web server, firewall, VPN); and authentication based on
multiple security token types and protocols.

WebLogic Server offers the following types of Authentication providers:

The WebLogic Authentication provider accesses user and group information in WebLogic
Server’s embedded LDAP server.

LDAP Authentication providers access external LDAP stores. You can use an LDAP
Authentication provider to access any LDAP server. WebLogic Server provides LDAP
Authentication providers already configured for Open LDAP, Sun iPlanet, Microsoft
Active Directory and Novell NDS LDAP servers.

RDBMS Authentication providers access external relational databases. WebLogic Server
provides three RDBMS Authentication providers: SQL Authenticator, Read-only SQL
Authenticator, and Custom RDBMS Authenticator.

The WebLogic Identity Assertion provider validates X.509 and IIOP-CSIv2 tokens and
optionally can use a user name mapper to map that token to a user in a WebLogic Server
security realm.

The SAML Authentication provider, which authenticates users based on Security Assertion
Markup Language 1.1 (SAML) assertions.

The Negotiate Identity Assertion provider, which uses Simple and Protected Negotiate
(SPNEGO) tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users.

The SAML Identity Assertion provider, which acts as a consumer of SAML security
assertions. This enables WebLogic Server to act as a SAML destination site and supports
using SAML for single sign-on.

Us ing More Than One Authent icat i on P rov ider

Securing WebLogic Server 5-3

In addition, you can use:

Custom (non-WebLogic) Authentication providers, which offer different types of
authentication technologies.

Custom (non-WebLogic) Identity Assertion providers, which support different types of
tokens.

Using More Than One Authentication Provider
Each security realm must have one at least one Authentication provider configured. The
WebLogic Security Framework is supports multiple Authentication providers (and thus multiple
LoginModules) for multipart authentication. Therefore, you can use multiple Authentication
providers as well as multiple types of Authentication providers in a security realm. For example,
if you want to use both a retina-scan and a username/password-based form of authentication to
access a system, you configure two Authentication providers.

How you configure multiple Authentication providers can affect the overall outcome of the
authentication process. Configure the JAAS Control Flag for each Authentication provider to set
up login dependencies between Authentication providers and allow single-sign on between
providers. See “Setting the JAAS Control Flag Option” on page 5-3.

Authentication providers are called in the order in which they were configured in the security
realm. Therefore, use caution when configuring Authentication providers. You can use the
WebLogic Administration Console to re-order the configured Authentication providers, thus
changing the order in which they are called. See “Changing the Order of Authentication
Providers” on page 5-4.

Setting the JAAS Control Flag Option
When you configure multiple Authentication providers, use the JAAS Control Flag for each
provider to control how the Authentication providers are used in the login sequence. You can set
the JAAS Control Flag in the WebLogic Administration Console. See Set the JAAS control flag
in the Administration Console Online Help. You can also use the WebLogic Scripting Tool or
Java Management Extensions (JMX) APIs to set the JAAS Control Flag for an Authentication
provider.

JAAS Control Flag values are:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/SetTheJAASControlFlag.html

Conf igur ing Authent icat ion P rov iders

5-4 Securing WebLogic Server

REQUIRED—The Authentication provider is always called, and the user must always pass
its authentication test. If authentication succeeds or fails, authentication still continues
down the list of providers.

REQUISITE—The user is required to pass the authentication test of the Authentication
provider. If the user passes the authentication test of this Authentication provider,
subsequent providers are executed but can fail (except for Authentication providers with
the JAAS Control Flag set to REQUIRED).

SUFFICIENT—The user is not required to pass the authentication test of the
Authentication provider. If authentication succeeds, no subsequent Authentication
providers are executed. If authentication fails, authentication continues down the list of
providers.

OPTIONAL—The user is allowed to pass or fail the authentication test of this
Authentication provider. However, if all Authentication providers configured in a security
realm have the JAAS Control Flag set to OPTIONAL, the user must pass the
authentication test of one of the configured providers.

When additional Authentication providers are added to an existing security realm, by default the
Control Flag is set to OPTIONAL. If necessary, change the setting of the Control Flag and the
order of Authentication providers so that each Authentication provider works properly in the
authentication sequence.

Changing the Order of Authentication Providers
The order in which WebLogic Server calls multiple Authentication providers can affect the
overall outcome of the authentication process. The Authentication Providers table lists the
authentication providers in the order in which they will be called. By default, Authentication
providers are called in the order in which they were configured. You can use the Administration
Console to change the order of Authentication providers. Use the Reorder button on the Security
Realms → Providers → Authentication page in the Administration Console to change the order
in which Authentication providers are called by WebLogic Server and listed in the console.

See Re-order Authentication Providers in the Administration Console Online Help.

Configuring the WebLogic Authentication Provider
The WebLogic Authentication provider uses WebLogic Server’s embedded LDAP server to store
user and group membership information. This provider allows you to edit, list, and manage users
and group membership. By default, most configuration options for the WebLogic Authentication

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ReorderAuthenticationProviders.html

Conf igur ing LDAP Authent i cat ion P rov iders

Securing WebLogic Server 5-5

provider are already defined. You should need to configure a WebLogic Authentication provider
only when creating a new security realm. However, note the following:

The WebLogic Authentication provider is configured in the default security realm with the
name DefaultAuthenticator.

User and group names in the WebLogic Authentication provider are case insensitive.

Ensure that all user names are unique.

Use the Minimum Password Length option on the Configuration → Provider Specific page
to specify the length of passwords defined for users that are stored in the embedded LDAP
server.

If you are using multiple Authentication providers, set the JAAS Control Flag to determine
how the WebLogic Authentication provider is used in the authentication process. See
“Using More Than One Authentication Provider” on page 5-3.

Configuring LDAP Authentication Providers
WebLogic Server includes the following LDAP Authentication providers:

iPlanet Authentication provider

Active Directory Authentication provider

Open LDAP Authentication provider

Novell Authentication provider

generic LDAP Authentication provider

Each LDAP Authentication provider stores user and group information in an external LDAP
server. They differ primarily in how they are configured by default to match typical directory
schemas for their corresponding LDAP server.

WebLogic Server does not support or certify any particular LDAP servers. Any LDAP v2 or v3
compliant LDAP server should work with WebLogic Server. The following LDAP directory
servers have been tested:

Sun iPlanet version 4.1.3

Active Directory shipped as part of Windows 2000

Open LDAP version 2.0.7

Conf igur ing Authent icat ion P rov iders

5-6 Securing WebLogic Server

Novell NDS version 8.5.1

An LDAP Authentication provider can also be used to access other LDAP servers. However, you
must either use the LDAP Authentication provider (LDAPAuthenticator) or choose a
pre-defined LDAP provider and customize it. See “Accessing Other LDAP Servers” on page 5-7.

Requirements for Using an LDAP Authentication Provider
If an LDAP Authentication provider is the only configured Authentication provider for a security
realm, you must have the Admin role to boot WebLogic Server and use a user or group in the
LDAP directory. Do one of the following in the LDAP directory:

By default in WebLogic Server, the Admin role includes the Administrators group.
Create an Administrators group in the LDAP directory, if one does not already exist.
Make sure the LDAP user who will boot WebLogic Server is included in the group.

The Active Directory LDAP directory has a default group called Administrators. Add
the user who will be booting WebLogic Server to the Administrators group and define
Group Base Distinguished Name (DN) so that the Administrators group is found.

If you do not want to create an Administrators group in the LDAP directory (for
example, because the LDAP directory uses the Administrators group for a different
purpose), create a new group (or use an existing group) in the LDAP directory and include
the user from which you want to boot WebLogic Server in that group. In the WebLogic
Administration Console, assign that group the Admin role.

Configuring an LDAP Authentication Provider: Main Steps
To configure an LDAP Authentication provider:

1. Choose an LDAP Authentication provider that matches your LDAP server and create an
instance of the provider in your security realm. See Configure Authentication and Identity
Assertion providers in the Administration Console Online Help.

2. Configure the provider-specific attributes of the LDAP Authentication provider, which you
can do through the Administration Console. For each LDAP Authentication provider, there
are attributes that:

a. Enable communication between the LDAP server and the LDAP Authentication provider.
For a more secure deployment, Oracle recommends using the SSL protocol to protect
communications between the LDAP server and WebLogic Server. Enable SSL with the
SSLEnabled attribute.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html

Conf igur ing LDAP Authent i cat ion P rov iders

Securing WebLogic Server 5-7

b. Configure options that control how the LDAP Authentication provider searches the LDAP
directory.

c. Specify where in the LDAP directory structure users are located.

d. Specify where in the LDAP directory structure groups are located.

e. Define how members of a group are located.

3. Configure performance options that control the cache for the LDAP server. Use the
Configuration → Provider Specific and Performance pages for the provider in the
Administration Console to configure the cache. See “Improving the Performance of
WebLogic and LDAP Authentication Providers” on page 5-9.

For more information, see:

“Accessing Other LDAP Servers” on page 5-7

“Accessing Other LDAP Servers” on page 5-7

“Configuring Failover for LDAP Authentication Providers” on page 5-8

“Improving the Performance of WebLogic and LDAP Authentication Providers” on
page 5-9

Accessing Other LDAP Servers
The LDAP Authentication providers in this release of WebLogic Server are configured to work
readily with the SunONE (iPlanet), Active Directory, Open LDAP, and Novell NDS LDAP
servers. You can use an LDAP Authentication provider to access other types of LDAP servers.
Choose either the LDAP Authentication provider (LDAPAuthenticator) or the existing LDAP
provider that most closely matches the new LDAP server and customize the existing
configuration to match the directory schema and other attributes for your LDAP server.

Dynamic Groups and WebLogic Server
Many LDAP servers have a concept of dynamic groups or virtual groups. These are groups that,
rather than consisting of a list of users and groups, contain some policy statements, queries, or
code that define the set of users that belong to the group. Even if a group is marked dynamic, users
must log out and log back in before any changes in their group memberships take effect. The term
dynamic describes the means of defining the group and not any runtime semantics of the group
within WebLogic Server.

Conf igur ing Authent icat ion P rov iders

5-8 Securing WebLogic Server

Configuring Failover for LDAP Authentication Providers
You can configure an LDAP provider to work with multiple LDAP servers and enable failover if
one LDAP server is not available. Use the Host attribute (found in the Administration Console
on the Configuration → Provider Specific page for the LDAP Authentication provider) to specify
the names of the additional LDAP servers. Each host name may include a trailing comma and a
port number. In addition, set the Parallel Connect Delay and Connection Timeout attributes for
the LDAP Authentication provider:

Parallel Connect Delay—Specifies the number of seconds to delay when making
concurrent attempts to connect to multiple servers. An attempt is made to connect to the
first server in the list. The next entry in the list is tried only if the attempt to connect to the
current host fails. This setting might cause your application to block for an unacceptably
long time if a host is down. If the value is greater than 0, another connection setup thread
is started after the specified number of delay seconds has passed. If the value is 0,
connection attempts are serialized.

Connection Timeout—Specifies the maximum number of seconds to wait for the
connection to the LDAP server to be established. If the set to 0, there is no maximum time
limit and WebLogic Server waits until the TCP/IP layer times out to return a connection
failure. Set to a value over 60 seconds depending upon the configuration of TCP/IP.

The following examples present scenarios that occur when an LDAP Authentication provider is
configured for LDAP failover.

LDAP Failover Example 1
In the following scenario, an LDAP Authentication provider is configured with three servers in
its Host attribute: directory.knowledge.com:1050, people.catalog.com, and
199.254.1.2. The status of the LDAP servers is as follows:

directory.knowledge.com:1050 is down

people.catalog.com is up

199.254.1.2 is up

WebLogic Server attempts to connect to directory.knowledge.com. After 10 seconds, the
connect attempt times out and WebLogic Server attempts to connect to the next specified host
(people.catalog.com). WebLogic Server then uses people.catalog.com as the LDAP
Server for this connection.

Conf igur ing LDAP Authent i cat ion P rov iders

Securing WebLogic Server 5-9

LDAP Failover Example 2
In the following scenario, WebLogic Server attempts to connect to
directory.knowledge.com. After 1 second (specified by the Parallel Connect Delay attribute),
the connect attempt times out and WebLogic Server tries to connect to the next specified host
(people.catalog.com) and directory.knowledge.com at the same time. If the connection
to people.catalog.com succeeds, WebLogic Server uses people.catalog.com as the LDAP
Server for this connection.WebLogic Server cancels the connection to
directory.knowledge.com after the connection to people.catalog.com succeeds.

Improving the Performance of WebLogic and LDAP
Authentication Providers
To improve the performance of WebLogic and LDAP Authentication providers:

Optimize the group membership caches used by the WebLogic and LDAP Authentication
providers. See “Optimizing the Group Membership Caches” on page 5-10.

Table 5-1 LDAP Configuration Example 1

LDAP Option Value

Host directory.knowledge.com:1050
people.catalog.com
199.254.1.2

Parallel Connect Delay 0

Connect Timeout 10

Table 5-2 LDAP Configuration Example 2

LDAP Option Value

Host directory.knowledge.com:1050
people.catalog.com
199.254.1.2

Parallel Connect Delay 1

Connect Timeout 10

Conf igur ing Authent icat ion P rov iders

5-10 Securing WebLogic Server

Expose the Principal Validator cache for the security realm and increase its thresholds. See
“Optimizing the Principal Validator Cache” on page 5-12.

If you are using the Active Directory Authentication provider, configure it to perform
group membership lookups using the tokenGroups option. The tokenGroups option
holds the entire flattened group membership for a user as an array of system ID (SID)
values. The SID values are specially indexed in the Active Directory and yield extremely
fast lookup response. See “Configuring the Active Directory Authentication Provider to
Improve Performance” on page 5-12.

Optimizing the Group Membership Caches
To optimize the group membership caches for WebLogic and LDAP Authentication providers,
set the following attributes (found in the Administration Console on the LDAP Authentication
provider’s Configuration → Provider Specific and Performance pages):

Group Membership Searching—Controls whether group searches are limited or unlimited
in depth. This option controls how deeply to search into nested groups. For configurations
that use only the first level of nested group hierarchy, this option allows improved
performance during user searches by limiting the search to the first level of the group.

– If a limited search is defined, Max Group Membership Search Level must be defined.

– If an unlimited search is defined, Max Group Membership Search Level is ignored.

Max Group Membership Search Level—Controls the depth of a group membership search
if Group Membership Searching is defined. Possible values are:

– 0—Indicates only direct groups will be found. That is, when searching for membership
in Group A, only direct members of Group A will be found. If Group B is a member of
Group A, the members will not be found by this search.

– Any positive number—Indicates the number of levels to search. For example, if this
option is set to 1, a search for membership in Group A will return direct members of
Group A. If Group B is a member of Group A, the members of Group B will also be
found by this search. However, if Group C is a member of Group B, the members of
Group C will not be found by this search.

Enable Group Membership Lookup Hierarchy Caching—Indicates whether group
membership hierarchies found during recursive membership lookup are cached. Each
subtree found will be cached. The cache holds the groups to which a group is a member.
This setting only applies if Group Membership is enabled. By default, it is disabled.

Conf igur ing LDAP Authent i cat ion P rov iders

Securing WebLogic Server 5-11

Max Group Hierarchies in Cache—The maximum size of the Least Recently Used (LRU)
cache that holds group membership hierarchies. This setting only applies if Enable Group
Membership Lookup Hierarchy Caching is enabled.

Group Hierarchy Cache TTL—The number of seconds cached entries stay in the cache.
The default is 60 seconds.

In planning your cache settings, bear in mind the following considerations:

Enabling a cache involves a trade-off of performance and accuracy. Using a cache means
that data is retrieved faster, but runs the risk that the data may not be the latest available.

The time-to-live (TTL) setting how long you are willing to accept potentially stale data.
This depends a lot on your particular business needs. If you frequently changes group
memberships for users, then a long TTL could mean that group related changes won't show
up for a while, and you may want a short TTL. If group memberships almost never change
after a user is added, a longer TTL may be fine.

The cache size is related to the amount of memory you have available, as well as the cache
TTL. Consider the number of entries that might be loaded in the span of the TTL, and size
the cache in relation to that number. A longer TTL will tend to require a larger cache size.

Configuring Dynamic Groups in the iPlanet Authentication Provider to
Improve Performance
Dynamic groups do not list the names of their members. Instead, the membership of the dynamic
group is constructed by matching user attributes. Because group membership needs to be
computed dynamically for dynamic groups, there is a risk of performance problems for large
groups. Configuring the iPlanet Authentication provider appropriately can improve performance
where dynamic groups are involved.

In the iPlanet Authentication provider, the User Dynamic Group DN Attribute attribute specifies
the attribute of an LDAP user object that specifies the distinguished names (DNs) of dynamic
groups to which this user belongs. If such an attribute does not exist, WebLogic Server
determines if a user is a member of a group by evaluating the URLs on the dynamic group. By
default, User Dynamic Group DN Attribute is null. If you set User Dynamic Group DN Attribute
to some other value, to improve performance set the following attributes for the iPlanet
Authentication provider:

UserDynamicGroupDNAttribute="wlsMemberOf"

DynamicGroupNameAttribute="cn"

DynamicGroupObjectClass=""

Conf igur ing Authent icat ion P rov iders

5-12 Securing WebLogic Server

DynamicMemberURLAttribute=""

To set these attributes in the Administration Console:

1. Expand Security Realms-->realm name-->Providers-->Authentication.

2. On the Provider Specific tab for your iPlanet Authentication provider, set User Dynamic
Group DN Attribute. Set Dynamic Group Object Class and Dynamic Member URL Attribute
to null (delete anything in the fields) and leave Dynamic Group Name Attribute set to cn.

Optimizing the Principal Validator Cache
To improve the performance of a WebLogic or LDAP Authentication provider, the settings of the
cache used by the WebLogic Principal Validation provider can be increased as appropriate. The
Principal Validator cache used by the WebLogic Principal Validation provider caches signed
WLSAbstractPrincipals. To optimize the performance of the Principal Validator cache, set these
attributes for your security realm (found in the Administration Console on the
Configuration → Performance page for the security realm):

Enable WebLogic Principal Validator Cache—Indicates whether the WebLogic Principal
Validation provider uses a cache. This setting only applies if Authentication providers in
the security realm use the WebLogic Principal Validation provider and
WLSAbstractPrincipals. By default, it is enabled.

Max WebLogic Principals In Cache—The maximum size of the Last Recently Used (LRU)
cache used for validated WLSAbstractPrincipals. The default setting is 500. This setting
only applies if Enable WebLogic Principal Validator Cache is enabled.

Configuring the Active Directory Authentication Provider to Improve
Performance
To configure an Active Directory Authentication provider to use the tokenGroups option, set the
following attributes (found in the Administration Console on the Active Directory Authentication
provider’s Configuration → Provider Specific page):

Use Token Groups for Group Membership Lookup—Indicates whether to use the Active
Directory tokenGroups lookup algorithm instead of the standard recursive group
membership lookup algorithm. By default, this option is not enabled.

Note: Access to the tokenGroups option is required (meaning, the user accessing the
LDAP directory must have privileges to read the tokenGroups option and the
tokenGroups option must be in the schema for user objects).

Conf igur ing RDBMS Authent icat ion P rov ide rs

Securing WebLogic Server 5-13

Enable SID to Group Lookup Caching—Indicates whether or not SID-to-group name
lookup results are cached. This setting only applies if the Use Token Groups for Group
Membership Lookup option is enabled.

Max SID To Group Lookups In Cache—The maximum size of the Least Recently Used
(LRU) cache for holding SID to group lookups. This setting applies only if both the Use
Token Groups for Group Membership Lookup and Enable SID to Group Lookup Caching
options are enabled.

Configuring RDBMS Authentication Providers
In WebLogic Server, an RDBMS Authentication provider is a username/password based
Authentication provider that uses a relational database (rather than an LDAP directory) as its data
store for user, password, and group information. WebLogic Server includes these RDBMS
Authentication providers:

SQL Authenticator—Uses a SQL database and allows both read and write access to the
database. This Authentication provider is configured by default with a typical SQL
database schema, which you can configure to match your database’s schema. See
“Configuring the SQL Authentication Provider” on page 5-14.

Read-only SQL Authenticator—Uses a SQL database and allows only read access to the
database. For write access, you use the SQL database’s own interface, not the WebLogic
security provider. See “Configuring the Read-Only SQL Authenticator” on page 5-15.

Custom RDBMS Authenticator—Requires you to write a plug-in class. This may be a
better choice if you want to use a relational database for your authentication data store, but
the SQL Authenticator’s schema configuration is not a good match for your existing
database schema. See “Configuring the Custom DBMS Authenticator” on page 5-15.

For information about adding an RDBMS Authentication provider to your security realm, see
Configure Authentication and Identity Assertion providers in the Administration Console Online
Help. Once you have created an instance of the RDBMS Authentication provider, configure it on
the RDBMS Authentication provider’s Configuration → Provider Specific page in the
Administration Console.

Common RDBMS Authentication Provider Attributes
All three RDBMS Authentication providers include these configuration options.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html

Conf igur ing Authent icat ion P rov iders

5-14 Securing WebLogic Server

Data Source Attribute
The Data Source Name specifies the WebLogic Server data source to use to connect to the
database.

Group Searching Attributes
The Group Membership Searching and Max Group Membership Search Level attributes specify
whether recursive group membership searching is unlimited or limited, and if limited, how many
levels of group membership can be searched. For example, if you specify that Group Membership
Searching is LIMITED, and the Max Group Membership Search Level is 0, then the RDBMS
Authentication providers will find only groups that the user is a direct member of. Specifying a
maximum group membership search level can greatly increase authentication performance in
certain scenarios, since it may reduce the number of DBMS queries executed during
authentication. However, you should only limit group membership search if you can be certain
that the group memberships you require are within the search level limits you specify.

Group Caching Attributes
You can improve the performance of RDBMS Authentication providers by caching the results of
group hierarchy lookups. Use of this cache can reduce the frequency with which the RDBMS
Authentication provider needs to access the database. In the Administration Console, you can use
the Performance page for your Authentication provider to configure the use, size, and duration of
this cache. See Security Realms: Security Providers: SQL Authenticator: Performance in the
Administration Console Online Help.

Configuring the SQL Authentication Provider
For detailed information about configuring a SQL Authentication provider, see Security Realms:
Security Providers: SQL Authenticator: Provider Specific in the Administration Console Online
Help. In addition to the attributes described in “Common RDBMS Authentication Provider
Attributes” on page 5-13, the SQL Authentication provider has the following configurable
attributes.

Password Attributes
The following attributes govern how the RDBMS Authentication provider and its underlying
database handle user passwords:

Plaintext Passwords Enabled

http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Securitysecurityauthenticatorsqlauthenticatorcachingtitle.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Securitysecurityauthenticatorsqlauthenticatorconfigproviderspecifictitle.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Securitysecurityauthenticatorsqlauthenticatorconfigproviderspecifictitle.html

Conf igur ing RDBMS Authent icat ion P rov ide rs

Securing WebLogic Server 5-15

Password Style Retained

Password Style

Password Algorithm

SQL Statement Attributes
SQL statement attributes specify the SQL statements used by the provider to access and edit the
username, password, and group information in the database. With the default values in the SQL
statement attributes, it is assumed that the database schema includes the following tables:

users (username, password, [description])

groupmembers (group name, group member)

groups (group name, group description)

Note: The tables referenced by the SQL statements must exist in the database; the provider will
not create them. You can modify these attributes as needed to match the schema of your
database. However, if your database schema is radically different from this default
schema, you may need to use a Custom DBMS Authentication provider instead.

Configuring the Read-Only SQL Authenticator
For detailed information about configuring a Read-Only SQL Authentication provider, see
Security Realms: Security Providers: Read-Only SQL Authenticator: Provider Specific in the
Administration Console Online Help. In addition to the attributes described in “Common
RDBMS Authentication Provider Attributes” on page 5-13, the Read-Only SQL Authentication
provider’s configurable attributes include attributes that specify the SQL statements used by the
provider to list the username, password, and group information in the database. You can modify
these attributes as needed to match the schema of your database.

Configuring the Custom DBMS Authenticator
The Custom DBMS Authentication provider, like the other RDBMS Authentication providers,
uses a relational database as its data store for user, password, and group information. Use this
provider if your database schema does not map well to the SQL schema expected by the SQL
Authenticator. In addition to the attributes described in “Common RDBMS Authentication
Provider Attributes” on page 5-13, the Custom DBMS Authentication provider’s configurable
attributes include the following.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Securitysecurityauthenticatorreadonlysqlauthenticatorconfigproviderspecifictitle.html

Conf igur ing Authent icat ion P rov iders

5-16 Securing WebLogic Server

Plug-In Class Attributes
A Custom DBMS Authentication provider requires that you write a plug-in class that implements
the
weblogic.security.providers.authentication.CustomDBMSAuthenticatorPlugin
interface. The class must exist in the CLASSPATH and must be specified in the Plug-in Class
Name attribute for the Custom DBMS Authentication provider. Optionally, you can use the
Plugin Properties attribute to specify values for properties defined by your plug-in class.

Configuring a Windows NT Authentication Provider
The Windows NT Authentication provider uses account information defined for a Windows NT
domain to authenticate users and groups and to permit Windows NT users and groups to be listed
in the WebLogic Server Administration Console.

To use the Windows NT Authentication provider, create the provider in the Administration
Console. In most cases, you should not need to do anything more to configure this Authentication
provider. Depending on how your Windows NT domains are configured, you may want to set the
Domain Controllers and Domain Controller List attributes, which control how the Windows NT
Authentication provider interacts with the Windows NT domain.

Note: The Windows NT Authentication provider is deprecated as of WebLogic Server 10.0.
Use one or more other supported authentication providers instead.

Domain Controller Settings
Usernames in a Windows NT domain can take several different forms. You may need to
configure the Windows NT Authentication provider to match the form of usernames you expect
your users to sign on with. A simple username is one that gives no indication of the domain, such
as smith. Compound usernames combine a username with a domain name and may take a form
like domain\smith or smith@domain.

If the local machine is not part of a Microsoft domain, then no changes to the Domain Controllers
and Domain Controller List attributes are needed. On a stand-alone machine, the users and groups
to be authenticated are defined only on that machine.

If the local machine is part of a Microsoft domain and is the domain controller for the local
domain, then no changes are needed to the Domain Controller List attribute. Users defined on the
local machine and the domain are the same in this case, so you can use the default Domain
Controllers setting.

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/providers/authentication/CustomDBMSAuthenticatorPlugin.html

Conf igur ing a Windows NT Authent icat i on P rov ide r

Securing WebLogic Server 5-17

If the local machine is part of a Microsoft domain, but is not the domain controller for the local
domain, then a simple username might be found on either the local machine or in the domain. In
this case, consider the following:

Do you want to prevent the users and groups from the local machine from being displayed
in the Console when the local machine is part of a Microsoft domain?

Do you want users from the local machine to be found and authenticated when a simple
username is entered?

If the answer to either question is yes, then set the Domain Controller attribute to DOMAIN.

If you have multiple trusted domains, you may need to set the Domain Controller attribute to
LIST and specify a Domain Controller List. Do this if:

You require the users and groups for other trusted domains to be visible in the Console, or

You expect that your users will be entering simple usernames and expect them to be
located in the trusted domains (that is, users will sign on with a simple username like enter
smith, not smith@domain or domain\Smith).

If either of these situations is the case, then set the Domain Controllers attribute to LIST and
specify the names of the domain controllers in the Domain Controller List attribute for the trusted
domains that you want to be used. Consider also whether to use explicit names for the local
machine and local domain controller or if you want to use placeholders in the list for those. You
can use the following placeholders in the Domain Controller List attribute:

[Local]

[LocalAndDomain]

[Domain]

LogonType Setting
The proper value of the LogonType attribute in the Windows NT Authentication provider
depends on the Windows NT logon rights of the users that you want to be able to authenticate:

If users have the “logon locally” right assigned to them on the machines that will run
WebLogic Server, then use the default value, interactive.

If users have the “Access this computer from the Network” right assigned to them, then
change the LogonType attribute to network.

Conf igur ing Authent icat ion P rov iders

5-18 Securing WebLogic Server

You must assign one of these rights to users in the Windows NT domain or else the Windows NT
Authentication provider will not be able to authenticate any users.

UPN Names Settings
UPN style usernames can take the form user@domain. You can configure how the Windows NT
Authentication provider handles usernames that include the @ character, but which may not be
UPN names, by setting the mapUPNNames attribute in the Windows NT Authentication provider.

If none of your Windows NT domains or local machines have usernames that contain the @
character other than UPN usernames, then you can use the default value of the mapUPNNames
attribute, FIRST. However, you may want to consider changing the setting to ALWAYS in order
to reduce the amount of time it takes to detect authentication failures. This is especially true if
you have specified a long domain controller list.

If your Windows NT domains do permit non-UPN usernames with the @ character in them, then:

if a username with the @ character is more likely to be a UPN username than a simple
username, set the mapUPNNames attribute to FIRST.

if a username with the @ character is more likely to be a simple username than a UPN
username, set the mapUPNNames attribute to LAST.

if a username is never in UPN format, set the mapUPNNames attribute to NEVER.

Configuring the SAML Authentication Provider
The SAML Authentication provider may be used in conjunction with the SAML 1.1 or SAML
2.0 Identity Assertion provider to do the following:

Allow virtual users to log in via SAML

If true, the SAML Identity Asserter will create user/group principals, with the possible
result that the user is logged in as a virtual user — a user that does not correspond to any
locally-known user.

If the SAML Authentication provider is configured to run before other authentication
providers, and has a JAAS Control Flag set to SUFFICIENT, this provider creates an
authenticated subject using the user name and groups retrieved from a SAML assertion by
the SAML Identity Assertion provider V2 or the SAML 2.0 Identity Assertion provider.

If the SAML Authentication provider is not configured, or if another authentication provider
(e.g., the default LDAP Authentication provider) is configured before it and its JAAS Control

Conf igur ing the Password Va l idat i on P rov ide r

Securing WebLogic Server 5-19

Flag set is set to SUFFICIENT, then the user name returned by the SAML Identity Assertion
provider is validated by the other authentication provider. In the case of the default LDAP
Authentication provider, authentication fails if the user does not exist in the identity directory.

If you want groups from a SAML assertion, you must configure the SAML Authentication
provider even if you want the LDAP Authentication provider to verify the user’s existence.
Otherwise, the groups with which the user is associated is derived from the LDAP directory and
not with the groups in the assertion.

The SAML Authentication provider creates a subject only for users whose identities are asserted
by either the SAML Identity Assertion provider V2 or SAML 2.0 Identity Assertion provider.
The SAML Authentication provider ignores all other authentication or identity assertion requests

Configuring the Password Validation Provider
WebLogic Server includes a Password Validation provider, which manages and enforces a set of
configurable password composition rules. When configured in a security realm, the Password
Validation provider is automatically invoked by a supported authentication provider whenever a
password is created or updated for a user in that realm. The Password Validation provider then
performs a check to determine whether the password meets the criteria established by the
composition rules, and the password is accepted or rejected as appropriate.

The following authentication providers can be used with the Password Validation provider:

WebLogic Authentication provider

SQL Authenticator provider

LDAP Authentication provider

Active Directory Authentication provider

iPlanet Authentication provider

Novell Authentication provider

Open LDAP Authentication provider

The Password Validation provider may be configured only via the WebLogic Scripting Tool
(WLST). This provider cannot be configured via the WebLogic Administration Console. The
following sections describe the composition rules that may be configured and explain how to
create and configure an instance of the Password Validation provider in a security realm:

Conf igur ing Authent icat ion P rov iders

5-20 Securing WebLogic Server

“Password Composition Rules for the Password Validation Provider” on page 5-20

“Using the Password Validation Provider with the WebLogic Authentication Provider” on
page 5-23

“Using WLST to Create and Configure the Password Validation Provider” on page 5-24

Password Composition Rules for the Password Validation
Provider
The password composition rules you can configure for the Password Validation provider include
the following:

Whether the password may contain the user’s name, or the reverse of that name

A minimum or maximum password length (composition rules may specify both a
minimum and maximum length)

Whether and how many of the following characters must be in the password:

– Numeric characters

– Lowercase alphabetic characters

– Uppercase alphabetic characters

– Non-alphanumeric characters (e.g., parentheses or asterisks)

Table 5-3 describes each of the password composition rules you can configure, identifies the
default values of those rules, and recommends settings you can use to create strong passwords
that cannot be easily determined.

Note: Setting password composition rules is only one component of hardening the WebLogic
Server environment against brute-force password attacks. To protect user accounts, you
should also configure user lockout. User lockout specifies the number of incorrect
passwords that may be entered within a given interval of time before the user is locked
out of his or her account. For more information, see “Protecting User Accounts” on
page 13-9.

Conf igur ing the Password Va l idat i on P rov ide r

Securing WebLogic Server 5-21

Table 5-3 Password Composition Rules and Default Values

The following rule name . . . Specifies the following composition rule . . . Default Value

RejectEqualOrContainUsername Whether the password may contain the username.
Validation is not case sensitive. If the value is set to
true, the password may not consist of, nor
contain, the username.

Recommendation: true

false

RejectEqualOrContainReverseU
sername

Whether the password may contain a reverse of the
username (e.g., Ramgad instead of Dagmar). If the
value is set to true, the password may not consist
of, nor contain, a reverse of the username.

Recommendation: true

false

MaxPasswordLength The maximum number of characters that the
password may contain. In order to be accepted, the
password may not contain a greater number of
characters than the value specified. Specifying 0
results in no restriction on password length.

Recommendation: 12

0 (zero)

MinPasswordLength The minimum number of characters that the
password must contain. In order to be accepted, the
password must contain at least as many characters
as the value specified.

Recommendation: 6

Note: If the WebLogic Authentication provider
is configured in the realm, make sure that
this number is consistent with the one
configured for that provider. See “Using
the Password Validation Provider with the
WebLogic Authentication Provider” on
page 5-23.

0 (zero)

MaxInstancesOfAnyCharacter The maximum instances that any one character
may appear in the password. For example, if this
value is set to 2, the password alabaster is
rejected. Specifying 0 results in no restriction.

Recommendation: 4

0 (zero)

Conf igur ing Authent icat ion P rov iders

5-22 Securing WebLogic Server

For information about setting these composition rules, see “Using WLST to Create and Configure
the Password Validation Provider” on page 5-24.

MaxConsecutiveCharacters The maximum number of characters that may
appear consecutively in the password. Specifying 0
results in no restriction.

Recommendation: 3

0 (zero)

MinAlphabeticCharacters The minimum number of alphabetic characters that
must appear in the password. A valid value for this
rule must be greater than or equal to 0 (zero).

Recommendation: 1

0 (zero)

MinNumericCharacters The minimum number of numeric characters that
must appear in the password. A valid value for this
rule must be greater than or equal to 0 (zero).

Recommendation: 1

0 (zero)

MinLowercaseCharacters The minimum number of lowercase alphabetic
characters that must appear in the password. A
valid value for this rule must be greater than or
equal to 0 (zero).

Recommendation: 1

0 (zero)

MinUppercaseCharacters The minimum number of uppercase alphabetic
characters that must appear in the password. A
valid value for this rule must be greater than or
equal to 0 (zero).

Recommendation: 1

0 (zero)

MinNonAlphanumericCharacters The minimum number of non-alphanumeric
characters (also known as special characters, such
as %, *, #, or }) that must appear in the password.
A valid value for this rule must be greater than or
equal to 0 (zero).

Recommendation: 1

0 (zero)

Table 5-3 Password Composition Rules and Default Values (Continued)

The following rule name . . . Specifies the following composition rule . . . Default Value

Conf igur ing the Password Va l idat i on P rov ide r

Securing WebLogic Server 5-23

Using the Password Validation Provider with the WebLogic
Authentication Provider
By default, the WebLogic Authentication provider requires a minimum password length of 8
characters. However, the minimum password length enforced by this provider can be customized.
If the WebLogic Authentication provider and Password Validation provider are both configured
in the security realm, and you attempt to create a password that does not meet the minimum length
enforced by the WebLogic Authentication provider, an error is generated. For example, the
following message is displayed in the Administration Console:

Error [Security:090285]password must be at least 8 characters long

Error Errors must be corrected before proceeding.

If the WebLogic Authentication provider rejects a password because it does not meet the
minimum length requirement, the Password Validation provider is not called. To ensure that the
Password Validator is always used in conjunction with the WebLogic Authentication provider,
make sure that the minimum password length is the same for both providers.

Using the Administration Console, you can set the minimum password length for WebLogic
Authentication provider by completing the following steps:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane, select Security Realms and click the name of the realm you are configuring
(for example, myrealm).

3. Select Providers → Authentication and click DefaultAuthenticator.

4. Selected Configuration → Provider Specific and enter the minimum password length in the
field labeled Minimum Password Length.

5. Click Save to save your changes.

6. To activate these changes, in the Change Center, click Activate Changes.

For information about how to set the minimum password length in the Password Validation
provider, see “Using WLST to Create and Configure the Password Validation Provider” on
page 5-24.

Conf igur ing Authent icat ion P rov iders

5-24 Securing WebLogic Server

Using WLST to Create and Configure the Password
Validation Provider
The Password Validation provider can be administered in the security realm only via WLST. You
may create and configure the Password Validation provider from a single WLST script, or you
may have separate scripts that perform these functions separately. The following topics explain
how to do this, providing sample WLST code snippets:

“Creating an Instance of the Password Validation Provider” on page 5-24

“Specifying the Password Composition Rules” on page 5-25

Creating an Instance of the Password Validation Provider
Listing 5-1 shows an example of WLST code that creates an instance of the Password Validation
provider in the security realm. This code does the following:

1. Gets the current realm and Password Validation provider.

2. Determines whether an instance of the Password Validator provider has been created:

– If the provider has been created, the script displays a message confirming its presence.

– If the provider has not been created, the script creates it in the security realm and
displays a message indicating that it has been created.

Listing 5-1 Creating the System Password Validator

edit()
startEdit()

realm = cmo.getSecurityConfiguration().getDefaultRealm()
pwdvalidator = realm.lookupPasswordValidator('systemPasswordValidator')

if pwdvalidator:
 print 'Password Validator provider is already created'

else:
Create SystemPasswordValidator
 syspwdValidator = realm.createPasswordValidator('systemPasswordValidator',
 'com.bea.security.providers.authentication.passwordvalidator.SystemPasswordValidator')
 print "--- Creation of system Password Validator succeeded!"

save()
activate()

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-25

Specifying the Password Composition Rules
Listing 5-2 shows an example of WLST code that sets the composition rules for the Password
Validation provider. For information about the rules attributes set in this script, see Table 5-3.

Listing 5-2 Configuring the Password Composition Rules

edit()

startEdit()

Configure SystemPasswordValidator

try:

 pwdvalidator.setMinPasswordLength(8)

 pwdvalidator.setMaxPasswordLength(12)

 pwdvalidator.setMaxConsecutiveCharacters(3)

 pwdvalidator.setMaxInstancesOfAnyCharacter(4)

 pwdvalidator.setMinAlphabeticCharacters(1)

 pwdvalidator.setMinNumericCharacters(1)

 pwdvalidator.setMinLowercaseCharacters(1)

 pwdvalidator.setMinUppercaseCharacters(1)

 pwdvalidator.setMinNonAlphanumericCharacters(1)

 pwdvalidator.setRejectEqualOrContainUsername(true)

 pwdvalidator.setRejectEqualOrContainReverseUsername(true)

 print " --- Configuration of SystemPasswordValidator complete ---"

except Exception,e:

 print e

save()

activate()

Configuring Identity Assertion Providers
If you are using perimeter authentication, you need to use an Identity Assertion provider. In
perimeter authentication, a system outside of WebLogic Server establishes trust through tokens
(as opposed to simple authentication, where WebLogic Server establishes trust through
usernames and passwords). An Identity Assertion provider verifies the tokens and performs
whatever actions are necessary to establish validity and trust in the token. Each Identity Assertion
provider is designed to support one or more token formats.

Conf igur ing Authent icat ion P rov iders

5-26 Securing WebLogic Server

WebLogic Server includes the following Identity Assertion providers:

WebLogic Identity Asserter

LDAP X.509 Identity Asserter

Negotiate Identity Asserter

SAML Identity Asserter (for SAML 1.1)

SAML 2.0 Identity Asserter

Multiple Identity Assertion providers can be configured in a security realm, but none are required.
Identity Assertion providers can support more than one token type, but only one token type per
Identity Assertion provider can be active at a given time. In the Active Type field on the Provider
Specific configuration page in the Administration Console, define the active token type. The
WebLogic Identity Assertion provider supports identity assertion with X.509 certificates and
CORBA Common Secure Interoperability version 2 (CSI v2). If you are using CSI v2 identity
assertion, define the list of client principals in the Trusted Principals field.

If multiple Identity Assertion providers are configured in a security realm, they can all support
the same token type. However, the token can be active for only one only provider at a time.

With the WebLogic Identity Assertion provider, you can use a user name mapper to map the
tokens authenticated by the Identity Assertion provider to a user in the security realm. For more
information about configuring a user name mapper, see “Configuring a WebLogic Credential
Mapping Provider” on page 4-16.

If the authentication type in a Web application is set to CLIENT-CERT, the Web Application
container in WebLogic Server performs identity assertion on values from request headers and
cookies. If the header name or cookie name matches the active token type for the configured
Identity Assertion provider, the value is passed to the provider.

The Base64 Decoding Required value on the Provider Specific page determines whether the
request header value or cookie value must be Base64 Decoded before sending it to the Identity
Assertion provider. The setting is enabled by default for purposes of backward compatibility;
however, most Identity Assertion providers will disable this option.

For more information see Configure Authentication and Identity Assertion providers in the
Administration Console Online Help. In addition, see the following sections:

“How an LDAP X509 Identity Assertion Provider Works” on page 5-27

“Configuring an LDAP X509 Identity Assertion Provider: Main Steps” on page 5-28

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-27

“Configuring a Negotiate Identity Assertion Provider” on page 5-29

“Configuring a SAML Identity Assertion Provider for SAML 1.1” on page 5-30

“Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0” on page 5-31

“Ordering of Identity Assertion for Servlets” on page 5-37

“Configuring Identity Assertion Performance in the Server Cache” on page 5-38

“Configuring a User Name Mapper” on page 5-39

“Configuring a Custom User Name Mapper” on page 5-40

How an LDAP X509 Identity Assertion Provider Works
The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the LDAP
object for the user associated with that certificate, ensures that the certificate in the LDAP object
matches the presented certificate, and then retrieves the name of the user from the LDAP object.

The LDAP X509 Identity Assertion provider works in the following manner:

1. An application is set up to use perimeter authentication (in other words, users or system
process use tokens to assert their identity).

2. As part of the SSL handshake, the application presents it certificate. The Subject DN in the
certificate can be used to locate the object that represents the user in the LDAP server. The
object contains the user’s certificate and name.

3. The LDAP X509 Identity Assertion provider uses the certificate in the Subject DN to
construct an LDAP search to find the LDAP object for the user in the LDAP server. It gets the
certificate from that object, ensures it matches the certificate it holds, and retrieves the name
of the user.

4. The username is passed to the authentication providers configured in the security realm. The
authentication providers ensure the user exists and locates the groups to which the user
belongs.

Conf igur ing Authent icat ion P rov iders

5-28 Securing WebLogic Server

Configuring an LDAP X509 Identity Assertion Provider: Main
Steps
Typically, if you use the LDAP X509 Identity Assertion provider, you also need to configure an
LDAP Authentication provider that uses an LDAP server. The authentication provider ensures
the user exists and locates the groups to which the user belongs. You should ensure both providers
are properly configured to communicate with the same LDAP server.

To use an LDAP X509 Identity Assertion provider:

1. Obtain certificates for users and put them in an LDAP Server. See Chapter 11, “Configuring
Identity and Trust.”

A correlation must exist between the Subject DN in the certificate and the location of the
object for that user in the LDAP server. The LDAP object for the user must also include
configuration information for the certificate and the username that will be used in the
Subject.

2. In your security realm, configure an LDAP X509 Identity Assertion provider. See Configure
Authentication and Identity Assertion providers in the Administration Console Online Help.

3. In the WebLogic Server Administration Console, configure the LDAP X509 Identity
Assertion provider to find the LDAP object for the user in the LDAP directory given the
certificate’s Subject DN.

4. Configure the LDAP X509 Identity Assertion provider to search the LDAP server to locate
the LDAP object for the user. This requires the following pieces of data.

A base LDAP DN from which to start searching. The Certificate Mapping option for
the LDAP X509 Identity Assertion provider tells the identity assertion provider how to
construct the base LDAP DN from the certificate’s Subject DN. The LDAP object must
contain an attribute that holds the certificate.

A search filter that only returns LDAP objects that match a defined set of options. The
filter narrows the LDAP search. Configure User Filter Search to construct a search
filter from the certificate’s Subject DN.

Where in the LDAP directory to search for the base LDAP DN. The LDAP X509
Identity Assertion provider searches recursively (one level down). This value must
match the values in the certificate’s Subject DN.

5. Configure the Certificate Attribute attribute of the LDAP X509 Identity Assertion provider to
specify how the LDAP object for the user holds the certificate. The LDAP object must contain
an attribute the holds the certificate.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-29

6. Configure the User Name Attribute attribute of the LDAP X509 Identity Assertion provider
to specify which of the LDAP object’s attributes holds the username that should appear in the
Subject DN.

7. Configure the LDAP server connection for the LDAP X509 Identity Assertion provider. The
LDAP server information should be the same as the information defined for the LDAP
Authentication provider configured in this security realm.

8. Configure an LDAP Authentication provider for use with the LDAP X509 Identity Assertion
provider. The LDAP server information should be the same the information defined for the
LDAP X509 Identity Assertion provider configured in Step 7. See “Configuring LDAP
Authentication Providers” on page 5-5.

Configuring a Negotiate Identity Assertion Provider
The Negotiate Identity Assertion provider enables single sign-on (SSO) with Microsoft clients.
The identity assertion provider decodes Simple and Protected Negotiate (SPNEGO) tokens to
obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to WebLogic
users. The Negotiate Identity Assertion provider utilizes the Java Generic Security Service (GSS)
Application Programming Interface (API) to accept the GSS security context via Kerberos.

The Negotiate Identity Assertion provider is an implementation of the Security Service Provider
Interface (SSPI) as defined by the WebLogic Security Framework and provides the necessary
logic to authenticate a client based on the client’s SPNEGO token.

For information about adding a Negotiate Identity Assertion provider to a security realm, see
Configure Authentication and Identity Assertion providers in the Administration Console Online
Help. For information about using the Negotiate Identity Assertion provider with Microsoft client
SSO, see Chapter 6, “Configuring Single Sign-On with Microsoft Clients.”

Table 5-4 Negotiate Identity Asserter Attributes

Attribute Description

Form Based Negotiation Enabled Indicates whether the Negotiate Identity Assertion
provider and servlet filter should negotiate when a
Web application is configured for FORM
authentication.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html

Conf igur ing Authent icat ion P rov iders

5-30 Securing WebLogic Server

Configuring a SAML Identity Assertion Provider for SAML 1.1
The SAML Identity Assertion provider acts as a consumer of SAML 1.1 security assertions,
allowing WebLogic Server to act as a destination site for using SAML 1.1 for single sign-on. The
SAML Identity Assertion provider validates SAML 1.1 assertions by checking the signature and
validating the certificate for trust in the certificate registry maintained by the provider. If so,
identity is asserted based on the AuthenticationStatement contained in the assertion. The
SAML Identity Assertion provider can also ensure that the assertion has not been previously
used. The SAML Identity Assertion provider must be configured if you want to deploy a SAML
Assertion Consumer Service on a server instance.

This release of WebLogic Server includes two SAML Identity Assertion providers for SAML
1.1. SAML Identity Asserter Version 2 provides greatly enhanced configuration options and is
recommended for new deployments. SAML Identity Asserter Version 1 has been deprecated in
WebLogic Server 9.1. A security realm can have not more than one SAML Identity Assertion
provider, and if the security realm has both a SAML Identity Assertion provider and a SAML
Credential Mapping provider, both must be of the same version. Do not use a Version 1 SAML
provider in the same security realm as a Version 2 SAML provider. For information about
configuring the SAML Identity Assertion provider Version 1, see Configuring a SAML Identity
Assertion Provider in the WebLogic Server 9.0 documentation.

For information about how to use the SAML Identity Assertion provider in a SAML single
sign-on configuration, see Chapter 7, “Configuring Single Sign-On with Web Browsers and
HTTP Clients.” For general information about SAML support in WebLogic Server, see Security
Assertion Markup Language (SAML) in Understanding WebLogic Security.

Active Types The token type this Negotiate Identity Assertion
provider uses for authentication. Available token
types are Authorization.Negotiate and
WWW-Authenticate.Negotiate.
Ensure no other identity assertion provider
configured in the same security realm has this
attribute set to X509.

Table 5-4 Negotiate Identity Asserter Attributes

Attribute Description

http://edocs.bea.com/wls/docs90/secmanage/providers.html#SAML_ID
http://edocs.bea.com/wls/docs90/secmanage/providers.html#SAML_ID
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-31

Asserting Party Registry
When you configure WebLogic Server to act as a consumer of SAML security assertions, you
need to register the parties whose SAML assertions will be accepted. For each SAML Asserting
Party, you can specify the SAML profile used, details about the Asserting Party, and the attributes
expected in assertions received from the Asserting Party. For information, see:

“Configuring Asserting Parties” on page 7-7 in Chapter 7, “Configuring Single Sign-On
with Web Browsers and HTTP Clients” in this guide.

Configure a SAML Asserting Party in the Administration Console Online Help.

Certificate Registry
The SAML Identity Assertion provider maintains a registry of trusted certificates. Whenever a
certificate is received, it is checked against the certificates in the registry for validity. For each
Asserting Party, the following certificates from that partner are contained in this registry:

The certificate used for validating the signature of assertions received from this Asserting
Party.

The certificate used for verifying signatures on SAML protocol elements from this
Asserting Party. This certificate must be set for the Browser/POST profile.

The TLS/SSL certificate used for verifying trust in the Asserting Party when that partner is
retrieving an artifact from the Assertion Retrieval Service (ARS) via an SSL connection.

You can add trusted certificates to the certificate registry through the Administration Console:

1. In the Console, navigate to the Security Realms → your realm → Providers → Authentication
page.

2. Click the name of the SAML Identity Assertion provider and open the Management →
Certificates page

On the Management → Certificates page, you can add, view, or delete certificates from the
registry.

Configuring a SAML 2.0 Identity Assertion Provider for SAML
2.0
The SAML 2.0 Identity Assertion provider acts as a consumer of SAML 2.0 security assertions,
allowing WebLogic Server to act as a Service Provider for the following:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAssertingParty.html

Conf igur ing Authent icat ion P rov iders

5-32 Securing WebLogic Server

Web single sign-on

WebLogic Web Services Security: accepting SAML tokens for identity through the use of
the appropriate WS-SecurityPolicy assertions

The SAML 2.0 Identity Assertion provider does the following:

Validates SAML 2.0 assertions by checking the signature and validating the certificate for
trust based on data configured for the partner. The SAML 2.0 Identity Assertion provider
then extracts the identity information contained in the assertion, and maps it to a local
subject in the security realm.

Optionally, extracts attribute information contained in an assertion that the SAML
Authentication provider, if configured in the security realm, can use to determine the local
groups in which the mapped subject belongs. (For more information, see “Configuring the
SAML Authentication Provider” on page 5-18.)

Optionally, verifies that an assertion’s specified lifespan and re-use settings are properly
valid, rejecting the assertion if it is expired or is not available for reuse.

Configuration of the SAML 2.0 Identity Assertion provider is controlled by setting attributes on
the SAML2IdentityAsserterMBean. You can access the SAML2IdentityAsserterMBean
using the WebLogic Scripting Tool (WLST), or through the Administration Console by using the
Security Realms → RealmName → Providers → Authentication page and creating or selecting
SAML2IdentityAsserter. The SAML2IdentityAsserterMBean is described at the following
location:

http://e-docs.bea.com/wls/docs103/saml2_javadocs/com/bea/security/saml2/pr

oviders/SAML2IdentityAsserterMBean.html

For information about how to use the SAML 2.0 Identity Assertion provider in a SAML single
sign-on configuration, see Chapter 7, “Configuring Single Sign-On with Web Browsers and
HTTP Clients.” For general information about SAML support in WebLogic Server, see Security
Assertion Markup Language (SAML) in Understanding WebLogic Security. For information
about using the SAML 2.0 Identity Assertion provider in Web Service Security, see “Using
Security Assertion Markup Language (SAML) Tokens For Identity” in Securing WebLogic Web
Services.

Identity Provider Partners
When you configure WebLogic Server to act as a Service Provider, you create and configure the
Identity Provider partners from whom SAML 2.0 assertions are received and validated.

http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#webserv_sec_saml_token
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#webserv_sec_saml_token
http://e-docs.bea.com/wls/docs103/saml2_javadocs/com/bea/security/saml2/providers/SAML2IdentityAsserterMBean.html
http://e-docs.bea.com/wls/docs103/saml2_javadocs/com/bea/security/saml2/providers/SAML2IdentityAsserterMBean.html

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-33

Configuring an Identity Provider partner consists of establishing basic information about that
partner, such as the following:

Partner name and general description

Name mapper class to be used with this partner

Whether to consume attribute statements included in assertions received from this partner

Whether the identities contained in assertions received from this partner should be mapped
to virtual users

Certificates used for validating signed assertions received from this partner

The specific information you establish depends upon whether you are configuring the partner for
web single sign-on or web services. Configuring a web single sign-on Identity Provider partner
also involves importing that partner’s metadata file and establishing additional basic information
about that partner, such as the following:

Redirect URIs, which are URLs that, when invoked by an unauthenticated user, cause the
user request to be redirected to that Identity Provider partner for authentication

Whether SAML artifact requests received from this partner must be signed

How SAML artifacts should be delivered to this partner

For details about configuring web single sign-on Identity Provider partners, see:

“Create and Configure Web Single Sign-On Identity Provider Partners” on page 7-20

Create a SAML 2.0 Web Single Sign-on Identity Provider partner in the Administration
Console Online Help

Configuring a web service Identity Provider partner does not use a metadata file, but does consist
of establishing the following information about that partner:

Issuer URI, which is a string that uniquely identifies this Identity Provider partner,
distinguishing it from other partners in your SAML federation

Audience URIs, which specify an audience restriction to be included in assertions received
from this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the partner
lookup string, which is required by the web service run time to discover the partner. See
“Partner Lookup Strings Required for Web Service Partners” on page 5-34.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WebSSOIdPPartner.html

Conf igur ing Authent icat ion P rov iders

5-34 Securing WebLogic Server

Custom name mapper class that overrides the default name mapper and that is to be used
specifically with this partner

For more information about configuring web service Service Provider partners, see Create a
SAML 2.0 Web Service Identity Provider partner in the Administration Console Online Help.

Partner Lookup Strings Required for Web Service Partners
For web service Identity Provider partners, you also configure Audience URIs. In WebLogic
Server, the Audience URI attribute is overloaded to perform two distinct functions:

Specify an audience restriction consisting of a target URL, per the OASIS SAML 2.0
specification.

Contain a partner lookup string, which is required at run time by WebLogic Server to
discover the Identity Provider partner for which a SAML 2.0 assertion needs to be
validated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup and can
optionally also serve as an Audience URI restriction that must be included in the assertion
received from this Identity Provider partner.

Note: You must configure a partner lookup string for an Identity Provider partner so that
partner can be discovered at run time by the web service run time.

Lookup String Syntax

The partner lookup string has the following syntax:

[target:char:]<endpoint-url>

In this syntax, target:char: is a prefix that designates the partner lookup string, where char
represents one of three special characters: a hyphen, plus sign, or asterisk (-, +, or *). This prefix
determines how partner lookup is performed, as described in Table 5-5.

Note: A WebLogic Server instance that is configured in the role of Service Provider always
strips off the transport, host, and port portions of an endpoint URL that is passed in to the
SAML 2.0 Identity Assertion provider. Therefore, the endpoint URLs you configure in
any lookup string for an Identity Provider partner should contain only the portion of the
URL that follows the host and port. For example, target:*:/myserver/xxx.

When you configure a Service Provider site, this behavior enables you to configure a
single Identity Provider partner that can be used to validate all assertions for the same
web service, regardless of the variations in the transport protocol (i.e., HTTP vs.
HTTPS), host name, IP address, and port information across all the machines in a domain
that host that web service.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WSIdPPartner.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WSIdPPartner.html

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-35

Notes: Configuring one or more partner lookup strings for an Identity Provider partner is
required in order for that partner to be discovered at run time. If this partner cannot be
discovered, no assertions for this partner can be validated.

If you configure an endpoint URL without using the target lookup prefix, it will be
handled as a conventional Audience URI that must be contained in assertions received
from this Identity Provider partner. (This also enables backwards-compatibility with
existing Audience URIs that may be configured for this partner.)

Table 5-5 Service Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>. For example,
target:-:/myserver/myservicecontext/my-endpoint
specifies the endpoint that can be matched to this Identity Provider partner,
for which an assertion should be validated.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI for this Identity Provider partner.

target:+:<endpoint-url> Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>.

Note: Using the plus sign (+) in the lookup string results in the endpoint
URL being added as an Audience URI in the assertion received
from this Identity Provider partner. Because this form of lookup
string is unlikely to produce a match for an Identity Provider
partner, it should be avoided.

target:*:<endpoint-url> Specifies that partner lookup is conducted for an initial-string
pattern match of the URL, <endpoint-url>. For example,
target:*:/myserver specifies that any endpoint URL beginning with
/myserver can be matched to this Identity Provider, such as:
/myserver/contextA/endpointA and
/myserver/contextB/endpointB.

If more than one Identity Provider partner is discovered that is a match for
the initial string, the partner with the longest initial string match is selected.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI for this Identity Provider partner.

Conf igur ing Authent icat ion P rov iders

5-36 Securing WebLogic Server

Specifying Default Partners

To support the need for a default Identity Provider partner entry, one or more of the default
partner’s Audience URI entries may contain a wildcard match that works for all targets. For
example, target:*:/.

Management of Partner Certificates
The SAML 2.0 Identity Assertion provider manages the trusted certificates for configured
partners. Whenever a certificate is received during an exchange of partner messages, the
certificate is checked against the certificates maintained for the partner. Partner certificates are
used for the following purposes:

To validate trust when the Service Provider site receives a signed assertion or a signed
SAML artifact request.

To validate trust in an Identity Provider partner that is retrieving a SAML artifact from the
Artifact Resolution Service (ARS) via an SSL connection.

The following certificates, which are obtained from each configured Identity Provider partner, are
required:

The certificate used to verify signed SAML documents received from the partner, such as
assertions and artifact requests

The certificate used to verify signed SAML documents in web single sign-on is included in
the metadata file received from the Identity Provider partner. When configuring web
service Identity Provider partners, you obtain this certificate from your partner and import
it into this partner’s configuration via the Assertion Signing Certificate tab of the partner
management page in the Administration Console.

The Transport Layer Security (TLS) client certificate that is used to verify the connection
made by the partner to the local site’s SSL binding for retrieving SAML artifacts (used in
web single sign-on only)

When configuring a web single sign-on Identity Provider partner, you must obtain the TLS
client certificate directly from the partner. It is not automatically included in the metadata
file. You can import this certificate into the configuration data for this partner via the
Transport Layer Client Certificate tab of the partner management page in the
Administration Console.

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-37

Java Interface for Configuring Identity Provider Partner Attributes
Operations on web service partners are available in the
com.bea.security.saml2.providers.registry.Partner Java interface.

Ordering of Identity Assertion for Servlets
When an HTTP request is sent, there may be multiple matches that can be used for identity
assertion. However, identity assertion providers can only consume one active token type at a
time. As a result there is no way to provide a set of tokens that can be consumed with one call.
Therefore, the servlet contained in WebLogic Server is forced to choose between multiple tokens
to perform identity assertion. The following ordering is used:

1. An X.509 digital certificate (signifies two-way SSL to client or proxy plug-in with two-way
SSL between the client and the Web server) if X.509 is one of the active token types
configured for the Identity Assertion provider in the default security realm.

2. Headers with a name in the form WL-Proxy-Client-<TOKEN> where <TOKEN> is one of the
active token types configured for the Identity Assertion provider in the default security realm.

Note: This method is deprecated and should only be used for the purpose of backward
compatibility.

3. Headers with a name in the form <TOKEN> where <TOKEN> is one of the active tokens types
configured for the Identity Assertion provider in the default security realm.

4. Cookies with a name in the form <TOKEN> where <TOKEN> is one of the active tokens types
configured for the Identity Assertion provider in the default security realm.

For example, if an Identity Assertion provider in the default security realm is configured to have
the FOO and BAR tokens as active token types (for the following example, assume the HTTP
request contains nothing relevant to identity assertion except active token types), identity
assertion is performed as follows:

If a request comes in with a FOO header over a two-way SSL connection, X.509 is used for
identity assertion.

If a request comes in with a FOO header and a WL-Proxy-Client-BAR header, the BAR
token is used for identity assertion.

If a request comes in with a FOO header and a BAR cookie, the FOO token will be used for
identity assertion.

The ordering between multiple tokens at the same level is undefined, therefore:

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/Partner.html

Conf igur ing Authent icat ion P rov iders

5-38 Securing WebLogic Server

If a request comes in with a FOO header and a BAR header, then either the FOO or BAR token
is used for identity assertion, however, which one is used is unspecified.

If a request comes in with a FOO cookie and a BAR cookie, then either the FOO or BAR
token is used for identity assertion, however, which one is used is unspecified.

Configuring Identity Assertion Performance in the Server
Cache
When you use an Identity Assertion provider, either for an X.509 certificate or some other type
of token, subjects are cached within the server. (A subject is a grouping of related information for
a single entity (such as a person), including an identity and its security-related configuration
options.) Caching subjects within the server greatly enhances performance for servlets and EJB
methods with <run-as> tags as well as in other situations where identity assertion is used but not
cached in the HTTPSession, for example, in signing and encrypting XML documents).

Note: Caching can violate the desired semantics.

You can change the lifetime of items in this cache by setting the maximum number of seconds a
subject can live in the cache via the -Dweblogic.security.identityAssertionTTL
command-line argument. The default for this command-line argument is 300 seconds (that is, 5
minutes). Possible values for the command-line argument are:

Less than 0—Disables the cache.

0—Caching is enabled and the identities in the cache never time out so long as the server
is running. Any changes in the user database of cached entities requires a server reboot in
order for the server to pick them up.

Greater than 0—Caching is enabled and the cache is reset at the specified number of
seconds.

To improve the performance of identity assertion, specify a higher value for this command-line
argument.

Note: As identity assertion performance improves, the Identity Assertion provider is less
responsive to changes in the configured Authentication provider. For example, a change
in the user's group will not be reflected until the subject is flushed from the cache and
recreated. Setting a lower value for the command-line argument makes authentication
changes more responsive at a cost for performance.

Conf igur ing Ident i t y Asser t ion P rov iders

Securing WebLogic Server 5-39

Configuring a User Name Mapper
WebLogic Server verifies the digital certificate of the Web browser or Java client when
establishing a two-way SSL connection. However, the digital certificate does not identify the
Web browser or Java client as a user in the WebLogic Server security realm. If the Web browser
or Java client requests a WebLogic Server resource protected by a security policy, WebLogic
Server requires the Web browser or Java client to have an identity. The WebLogic Identity
Assertion provider allows you to enable a user name mapper that maps the digital certificate of a
Web browser or Java client to a user in a WebLogic Server security realm.

The user name mapper must be an implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. This
interface maps a token to a WebLogic Server user name according to whatever scheme is
appropriate for your needs. By default, WebLogic Server provides a default implementation of
the weblogic.security.providers.authentication.UserNameMapper interface. You can
also write your own implementation.

The WebLogic Identity Assertion provider calls the user name mapper for the following types of
identity assertion token types:

X.509 digital certificates passed via the SSL handshake

X.509 digital certificates passed via CSIv2

X.501 distinguished names passed via CSIv2

The default user name mapper uses the subject DN of the digital certificate or the distinguished
name to map to the appropriate user in the WebLogic Server security realm. For example, the user
name mapper can be configured to map a user from the Email attribute of the subject DN
(smith@example.com) to a user in the WebLogic Server security realm (smith). Use Default
User Name Mapper Attribute Type and Default Username Mapper Attribute Delimiter attributes
of the WebLogic Identity Assertion provider to define this information:

Default User Name Mapper Attribute Type—The subject distinguished name (DN) in a
digital certificate used to calculate a username. Valid values are: C, CN, E, L, O, OU, S and
STREET.

Default User Name Mapper Attribute Delimiter—Ends the username. The user name
mapper uses everything to the left of the value to calculate a username. The default
delimiter is @.

For more information, see Configure a user name mapper in the Administration Console Online
Help.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAUserNameMapper.html

Conf igur ing Authent icat ion P rov iders

5-40 Securing WebLogic Server

Configuring a Custom User Name Mapper
You can also write a custom user name mapper to map a token to a WebLogic Server user name
according to whatever scheme is appropriate for your needs. The custom user name mapper must
be an implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. You then
configure the custom user name mapper in the active security realm, using the User Name
Mapper Class Name attribute of the WebLogic Identity Assertion provider.

For more information, see Configure custom user name mappers in the Administration Console
Online Help.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureCustomUserNameMappers.html

Securing WebLogic Server 6-1

C H A P T E R 6

Configuring Single Sign-On with
Microsoft Clients

The following sections explain how to set up single sign-on (SSO) with Microsoft clients, using
Windows authentication based on the Simple and Protected Negotiate (SPNEGO) mechanism
and the Kerberos protocol, together with the WebLogic Negotiate Identity Assertion provider.

“Overview of Single Sign-On with Microsoft Clients” on page 6-1

“System Requirements for SSO with Microsoft Clients” on page 6-2

“Single Sign-On with Microsoft Clients: Main Steps” on page 6-3

“Creating a Kerberos Identification for WebLogic Server” on page 6-5

“Configuring Microsoft Clients to Use Windows Integrated Authentication” on page 6-7

“Creating a JAAS Login File” on page 6-9

“Configuring the Identity Assertion Provider” on page 6-11

“Using Startup Arguments for Kerberos Authentication with WebLogic Server” on
page 6-11

“Verifying Configuration of SSO with Microsoft Clients” on page 6-11

Overview of Single Sign-On with Microsoft Clients
Single sign-on (SSO) with Microsoft clients allows cross-platform authentication between Web
applications or Web Services running in a WebLogic Server domain and .NET Web Service
clients or browser clients (for example, Internet Explorer) in a Microsoft domain. The Microsoft

Conf igur ing S ing le S ign-On w i th M ic rosof t C l ien ts

6-2 Securing WebLogic Server

clients must use Windows authentication based on the Simple and Protected Negotiate
(SPNEGO) mechanism.

Cross-platform authentication is achieved by emulating the negotiate behavior of native
Windows-to-Windows authentication services that use the Kerberos protocol. In order for
cross-platform authentication to work, non-Windows servers (in this case, WebLogic Server)
need to parse SPNEGO tokens in order to extract Kerberos tokens which are then used for
authentication.

For more information about Windows and Kerberos, see
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/kerberos.msp
x.

System Requirements for SSO with Microsoft Clients
To use SSO with Microsoft clients you need:

A host computer with:

Windows 2000 or later installed

Fully-configured Active Directory authentication service. Specific Active Directory
requirements include:

– User accounts for mapping Kerberos services

– Service Principal Names (SPNs) for those accounts

– Key tab files created and copied to the start-up directory in the WebLogic Server
domain

WebLogic Server installed and configured properly to authenticate through Kerberos, as
described in this chapter

Client systems with:

Windows 2000 Professional SP2 or later installed

One of the following types of clients:

– A properly configured Internet Explorer browser. Internet Explorer 6.01 or later is
supported.

– .NET Framework 1.1 and a properly configured Web Service client.

http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/kerberos.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/kerberos.mspx

S ing le S ign-On w i th Mic roso f t C l i ents : Ma in S teps

Securing WebLogic Server 6-3

Clients must be logged on to a Windows 2000 domain and have Kerberos credentials
acquired from the Active Directory server in the domain. Local logons will not work.

Single Sign-On with Microsoft Clients: Main Steps
Configuring SSO with Microsoft clients requires set-up procedures in the Microsoft Active
Directory, the client, and the WebLogic Server domain. (These procedures are detailed in the
sections that follow.)

Define a principal in Active Directory to represent the WebLogic Server. The Kerberos
protocol uses the Active Directory server in the Microsoft domain to store the necessary
security information.

Any Microsoft client you want to access in the Microsoft domain must be set up to use
Windows Integrated authentication, sending a Kerberos ticket when available.

In the security realm of the WebLogic Server domain, configure a Negotiate Identity
Assertion provider. The Web application or Web Service used in SSO needs to have
authentication set in a specific manner. A JAAS login file that defines the location of the
Kerberos identification for WebLogic Server must be created.

To configure SSO with Microsoft clients:

1. Configure your network domain to use Kerberos. See “Configuring Your Network Domain to
Use Kerberos” on page 6-4.

2. Create a Kerberos identification for WebLogic Server.

a. Create a user account in the Active Directory for the host on which WebLogic Server is
running.

b. Create a Service Principal Name for this account.

c. Create a user mapping and keytab file for this account.

See “Creating a Kerberos Identification for WebLogic Server” on page 6-5.

3. Choose a Microsoft client (either a Web Service or a browser) and configure it to use
Windows Integrated authentication. See “Configuring Microsoft Clients to Use Windows
Integrated Authentication” on page 6-7.

4. Set up the WebLogic Server domain to use Kerberos authentication.

a. Create a JAAS login file that points to the Active Directory server in the Microsoft domain
and the keytab file created in Step 1. See “Creating a JAAS Login File” on page 6-9.

Conf igur ing S ing le S ign-On w i th M ic rosof t C l ien ts

6-4 Securing WebLogic Server

b. Configure a Negotiate Identity Assertion provider in the WebLogic Server security realm.
See “Configuring a Negotiate Identity Assertion Provider” on page 5-29.

5. Start WebLogic Server using specific start-up arguments. See “Using Startup Arguments for
Kerberos Authentication with WebLogic Server” on page 6-11.

The following sections describe these steps in detail.

Configuring Your Network Domain to Use Kerberos
A Windows domain controller can serve as the Kerberos Key Distribution Center (KDC), using
the Active Directory and the Kerberos services. On any domain controller, the Active Directory
and the Kerberos services are running automatically.

Java GSS requires a Kerberos configuration file. The default name and location of the Kerberos
configuration file depends on the operating system being used. Java GSS uses the following order
to search for the default configuration file:

1. The file referenced by the Java property java.security.krb5.conf.

2. ${java.home}/lib/security/krb5.conf.

3. %windir%\krb5.ini on Microsoft Windows platforms.

4. /etc/krb5/krb5.conf on Solaris platforms.

5. /etc/krb5.conf on other Unix platforms.

To configure Kerberos in your Windows domain controller, you need to configure each machine
that will access the KDC to locate the Kerberos realm and available KDC servers. For example:

Listing 6-1 Sample krb5.ini File

[libdefaults]

default_realm = MYDOM.COM (Identifies the default realm. Set its value to

your Kerberos realm)

default_tkt_enctypes = des-cbc-crc

default_tgs_enctypes = des-cbc-crc

ticket_lifetime = 600

[realms]

Creat ing a Ke rberos Ident i f i ca t ion fo r WebLog ic Se rve r

Securing WebLogic Server 6-5

MYDOM.COM = {

kdc = <IP address for MachineA> (host running the KDC)

(For Unix systems, you need to specify port 88, as in <IP-address>:88)

admin_server = MachineA

default_domain = MYDOM.COM

}

[domain_realm]

.mydom.com = MYDOM.COM

[appdefaults]

autologin = true

forward = true

forwardable = true

encrypt = true

Creating a Kerberos Identification for WebLogic Server
Active Directory provides support for service principal names (SPN), which are a key component
in Kerberos authentication. SPNs are unique identifiers for services running on servers. Every
service that uses Kerberos authentication needs to have an SPN set for it so that clients can
identify the service on the network. An SPN usually looks something like
name@YOUR.REALM. You need to define an SPN to represent your WebLogic Server in the
Kerberos realm. If an SPN is not set for a service, clients have no way of locating that service.
Without correctly set SPNs, Kerberos authentication is not possible. Keytab files are the
mechanism for storing the SPNs. Keytab files are copied to the WebLogic Server domain and are
used in the login process. This configuration step describes how to create an SPN, user mapping,
and keytab file for WebLogic Server.

This configuration step requires the use of the following Active Directory utilities:

setspn—Windows 2000 Resource Kit

ktpass—Windows 2000 distribution CD in Program Files\Support Tools

Note: The setspn and ktpass Active Directory utilities are products of Microsoft. Therefore,
Oracle does not provide complete documentation for this utilities. For more information,
see the appropriate Microsoft documentation.

To create a Kerberos identification for WebLogic Server:

Conf igur ing S ing le S ign-On w i th M ic rosof t C l ien ts

6-6 Securing WebLogic Server

1. In the Active Directory server, create a user account for the host computer on which
WebLogic Server runs. (Select New → User, not New → Machine.)

When creating the user account, use the simple name of the computer. For example, if the
host is named myhost.example.com, create a user in Active Directory called myhost.

Note the password you defined when creating the user account. You will need it in step 3.
Do not select the User must change password at next logon option, or any other
password options.

2. Configure the new user account to comply with the Kerberos protocol. The user account’s
encryption type must be DES and the account must require Kerberos pre-authentication.

a. Right-click the name of the user account in the Users tree in the left pane and select
Properties.

b. Select the Account tab and check the box “Use DES encryption types for this account.”
Make sure no other boxes are checked, particularly the box “Do not require Kerberos
pre-authentication.”

c. Setting the encryption type may corrupt the password. Therefore, reset the user password
by right-clicking the name of the user account, selecting Reset Password, and re-entering
the same password specified earlier.

3. Use the setspn utility to create the Service Principal Names (SPNs) for the user account
created in step 1. Enter the following commands:

setspn -a host/myhost.example.com myhost

setspn -a HTTP/myhost.example.com myhost

4. Check which SPNs are associated with your user account, using the following command:

setspn -L account name

This is an important step. If the same service is linked to a different account in the Active
Directory server, the client will not send a Kerberos ticket to the server.

5. Create a user mapping using the ktpass utility:

Windows
ktpass -princ host/myhost@Example.CORP -pass password -mapuser myhost
-out c:\temp\myhost.host.keytab

6. Create a keytab file. On Windows, the ktab utility manages principal name and key pairs in
the key table and allows you to list, add, update, or delete principal names and key pairs. On
UNIX, it is preferable to use the ktpass utility.

Conf igur ing Mic rosof t C l i ents to Use Windows In tegrated Authent i cat ion

Securing WebLogic Server 6-7

Windows

a. Run the ktab utility on the host on which WebLogic Server is running to create the keytab
file:

ktab -k keytab-filename -a myhost@Example.CORP

b. Copy the keytab file to the startup directory in the WebLogic Server domain.

UNIX

a. Create a user mapping using the ktpass utility, using a command like this, where
password is the password for the user account created in step 1:

ktpass -princ HTTP/myhost@Example.CORP -pass password -mapuser myhost
-out c:\temp\myhost.HTTP.keytab

b. Copy the keytab file created in Step a to the startup directory in the WebLogic Server
domain.

c. Login as root and then merge them into a single keytab using the ktutil utility as
follows:

ktutil: "rkt myhost.host.keytab"
ktutil: "rkt myhost.HTTP.keytab"
ktutil: "wkt mykeytab"
ktutil: "q"

7. Run the kinit utility to verify Kerberos authentication is working properly.

kinit -k -t keytab-file account-name

The output should be something similar to:

New ticket is stored in cache file C:\Documents and
Settings\Username\krb5cc_MachineB

Configuring Microsoft Clients to Use Windows Integrated
Authentication

Ensure the Microsoft client you want to use for single sign-on is configured to use Windows
Integrated authentication. The following sections describe how to configure a .NET Web server
and an Internet Explorer browser client to use Windows Integrated authentication.

Configuring a .NET Web Service
To configure a .NET Web Service to use Windows authentication:

Conf igur ing S ing le S ign-On w i th M ic rosof t C l ien ts

6-8 Securing WebLogic Server

1. In the web.config file for the Web Service, set the authentication mode to Windows for IIS
and ASP.NET as follows:

<authentication mode="Windows" />

 This setting is usually the default.

2. Add the statement needed for the Web Services client to pass to the proxy Web Service object
so that the credentials are sent through SOAP.

For example, if you have a Web Service client for a Web Service that is represented by the
proxy object conv, the syntax is as follows:

/*
* Explicitly pass credentials to the Web Service
*/
conv.Credentials =
System.Net.CredentialCache.DefaultCredentials;

Configuring an Internet Explorer Browser
To configure an Internet Explorer browser to use Windows authentication, follow these
procedures in Internet Explorer.

Configure Local Intranet Domains
1. In Internet Explorer, select Tools → Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Sites.

4. In the Local intranet popup, ensure that the “Include all sites that bypass the proxy server” and
“Include all local (intranet) sites not listed in other zones” options are checked.

5. Click Advanced.

6. In the Local intranet (Advanced) dialog box, add all relative domain names that will be used
for WebLogic Server instances participating in the SSO configuration (for example,
myhost.example.com) and click OK.

Configure Intranet Authentication
1. Select Tools → Internet Options.

2. Select the Security tab.

Creat ing a JAAS Log in F i l e

Securing WebLogic Server 6-9

3. Select Local intranet and click Custom Level....

4. In the Security Settings dialog box, scroll to the User Authentication section.

5. Select Automatic logon only in Intranet zone. This option prevents users from having to
re-enter logon credentials, which is a key piece to this solution.

6. Click OK.

Verify the Proxy Settings
If you have a proxy server enabled:

1. Select Tools → Internet Options.

2. Select the Connections tab and click LAN Settings.

3. Verify that the proxy server address and port number are correct.

4. Click Advanced.

5. In the Proxy Settings dialog box, ensure that all desired domain names are entered in the
Exceptions field.

6. Click OK to close the Proxy Settings dialog box.

Set Integrated Authentication for Internet Explorer 6.0
In addition to the settings already described, one additional setting is required if you are running
Internet Explorer 6.0.

1. In Internet Explorer, select Tools → Internet Options.

2. Select the Advanced tab.

3. Scroll to the Security section.

4. Make sure that Enable Integrated Windows Authentication option is checked and click OK.

5. If this option was not checked, restart the computer.

Creating a JAAS Login File
If you are running WebLogic Server on either the Windows or UNIX platforms, you need a JAAS
login file. The JAAS login file tells the WebLogic Security Framework to use Kerberos
authentication and defines the location of the keytab file which contains Kerberos identification

Conf igur ing S ing le S ign-On w i th M ic rosof t C l ien ts

6-10 Securing WebLogic Server

information for WebLogic Server. You specify the location of this file in the
java.security.auth.login.config startup argument for WebLogic Server, as described in
“Using Startup Arguments for Kerberos Authentication with WebLogic Server” on page 6-11.

Note: For JDK 1.5 and JDK 1.4, the JAAS Login Entry name is
com.sun.security.jgss.accept.

For JDK 1.6, the JAAS Login Entry name was changed to
com.sun.security.jgss.krb5.accept.

Listing 6-2 contains a sample JAAS login file for Kerberos authentication. Significant sections
are shown in bold.

Listing 6-2 Sample JAAS Login File for Kerberos Authentication

com.sun.security.jgss.initiate {

com.sun.security.auth.module.Krb5LoginModule required

 principal="myhost@Example.CORP" useKeyTab=true

keyTab=mykeytab storeKey=true;

};

com.sun.security.jgss.accept {

com.sun.security.auth.module.Krb5LoginModule required

principal="myhost@Example.CORP" useKeyTab=true

keyTab=mykeytab storeKey=true;

};

For the principal option, specify the value of the userPrincipalName attribute of the account
under which the service is running. (Incorrectly specifying the user principal name results in an
error such as “Unable to obtain password from user.”)

The keytab file specified in the keytab option must be accessible by the WebLogic Server
process. Ensure that the appropriate permissions are set. If you are unsure of the search path
WebLogic Server is using, provide the absolute path to the file.

Conf igur ing the Ident i t y Asser t i on P rov ider

Securing WebLogic Server 6-11

Configuring the Identity Assertion Provider
WebLogic Server includes a security provider, the Negotiate Identity Assertion provider, to
support single sign-on (SSO) with Microsoft clients. This identity assertion provider decodes
Simple and Protected Negotiate (SPNEGO) tokens to obtain Kerberos tokens, validates the
Kerberos tokens, and maps Kerberos tokens to WebLogic users. You need to configure a
Negotiate Identity Assertion provider in your WebLogic security realm in order to enable SSO
with Microsoft clients. See “Configuring a Negotiate Identity Assertion Provider” on page 5-29
and Configure Authentication and Identity Assertion providers in the Administration Console
Online Help.

Using Startup Arguments for Kerberos Authentication
with WebLogic Server

To use Kerberos authentication with WebLogic Server, use the following start-up arguments
when you start WebLogic Server:

-Djava.security.krb5.realm=Example.CORP

-Djava.security.krb5.kdc=ADhostname

-Djavax.security.auth.useSubjectCredsOnly=false

where

java.security.krb5.realm defines the Microsoft domain in which the Active Directory
server runs.

java.security.krb5.kdc defines the host name on which the Active Directory server
runs.

javax.security.auth.useSubjectCredsOnly specifies that it is permissible to use an
authentication mechanism other than Subject credentials.

Java GSS messages are often very useful during troubleshooting, so you might want to add
- Dsun.security.krb5.debug=true as part of the initial setup.

Verifying Configuration of SSO with Microsoft Clients
To verify that SSO with Microsoft clients is configured properly, point a browser (that you have
configured as described in “Configuring an Internet Explorer Browser” on page 6-8) to the
Microsoft Web application or Web Service you want to use. If you are logged on to a Windows
domain and have Kerberos credentials acquired from the Active Directory server in the domain,

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAuthenticationProviders.html

Conf igur ing S ing le S ign-On w i th M ic rosof t C l ien ts

6-12 Securing WebLogic Server

you should be able to access the Web application or Web Service without providing a username
or password.

Securing WebLogic Server 7-1

C H A P T E R 7

Configuring Single Sign-On with Web
Browsers and HTTP Clients

The Security Assertion Markup Language (SAML) enables cross-platform authentication
between Web applications or Web Services running in a WebLogic Server domain and Web
browsers or other HTTP clients. WebLogic Server supports single sign-on (SSO) based on
SAML. When users are authenticated at one site that participates in a single sign-on (SSO)
configuration, they are automatically authenticated at other sites in the SSO configuration and do
not need to log in separately.

The following sections describe how to set up single sign-on (SSO) with Web browsers or other
HTTP clients by using authentication based on the Security Assertion Markup Language
(SAML) versions 1.1 and 2.0.

“Configuring SAML 1.1 Services” on page 7-2

“Configuring SAML 2.0 Services” on page 7-9

Note: A WebLogic Server instance that is configured for SAML 2.0 SSO is not interoperable
with one that is configured for SAML 1.1

For an overview of SAML-based single sign on, see the following topics in Understanding
WebLogic Security:

Security Assertion Markup Language (SAML)

Web Browsers and HTTP Clients via SAML

Single Sign-On with the WebLogic Security Framework

http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#sso_web
http://e-docs.bea.com/wls/docs103/secintro/archtect.html#sso_wss

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-2 Securing WebLogic Server

Configuring SAML 1.1 Services
This topic includes the following sections:

“Enabling Single Sign-on with SAML 1.1: Main Steps” on page 7-2

“Configuring a SAML 1.1 Source Site for Single Sign-On” on page 7-3

“Configuring a SAML 1.1 Destination Site for Single Sign-On” on page 7-5

“Configuring Relying and Asserting Parties with WLST” on page 7-7

Enabling Single Sign-on with SAML 1.1: Main Steps
To enable single sign-on with SAML, configure WebLogic Server as either a source site or
destination site as described in the sections that follow.

Configuring a Source Site: Main Steps
To configure a WebLogic Server instance in the role of a source site, complete the following main
steps:

1. Create and configure a SAML Credential Mapping provider V2 in your security realm.

2. Configure the federation services for the server instance in the realm that will serve as a
source site.

3. Create and configure the relying parties for which SAML assertions will be produced.

4. If you want to require relying parties to use SSL certificates to connect to the source site, add
any such certificates to the SAML credential mapping provider’s Certificate Registry.

Configuring a Destination Site: Main Steps
To configure a WebLogic Server instance in the role of a destination site, complete the following
main steps:

1. Create and configure a SAML Identity Assertion provider V2 in your security realm.

2. Configure the federation services for the server instance realm that will serve as a destination
site.

3. Create and configure the asserting parties from which SAML assertions will be consumed.

Conf igu r ing SAML 1 .1 Serv ices

Securing WebLogic Server 7-3

4. Establish trust by registering the asserting parties’ SSL certificates in the certificate registry
maintained by the SAML Identity Assertion provider.

Configuring a SAML 1.1 Source Site for Single Sign-On
The following topics explain how to configure a WebLogic Server instance as a SAML 1.1 source
site:

“Configure the SAML 1.1 Credential Mapping Provider” on page 7-3

“Configure the Source Site Federation Services” on page 7-3

“Configure Relying Parties” on page 7-4

“Replacing the Default Assertion Store” on page 7-5

Configure the SAML 1.1 Credential Mapping Provider
In your security realm, create a SAML Credential Mapping Provider V2 instance. The SAML
Credential Mapping provider is not part of the default security realm. See “Configuring a SAML
Credential Mapping Provider for SAML 1.1” on page 4-19.

Configure the SAML Credential Mapping provider as a SAML authority, using the Issuer URI,
Name Qualifier, and other attributes.

Configure the Source Site Federation Services
Configuration of a WebLogic Server instance as a SAML 1.1 source site is controlled by the
FederationServicesMBean. Access the FederationServicesMBean with the WebLogic
Scripting Tool or through the Administration Console, on the Environment →
Servers → ServerName → Configuration → Federation Services → SAML 1.1 Source Site
page. See Configure SAML source services in the Administration Console Online Help.

Configure SAML source site attributes as follows:

Enable the SAML Source Site. Allow the WebLogic server instance to serve as a SAML
source site by setting Source Site Enabled to true.

Set Source Site URL and Service URIs. Set the URL for the SAML source site. This is
the URL that hosts the Intersite Transfer Service and Assertion Retrieval Service. The
source site URL is encoded as a source ID in hex and Base64. When you configure a
SAML Asserting Party for Browser/Artifact profile, you specify the encoded source ID.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureSAMLSource.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-4 Securing WebLogic Server

Also specify the URIs for the Intersite Transfer Service and (to support Browser/Artifact
profile) the Assertion Retrieval Service. These URIs are also specified in the configuration
of an Asserting Party.

Add signing certificate. The SAML source site requires a trusted certificate with which to
sign assertions. Add this certificate to the keystore and enter the credentials (alias and
passphrase) to be used to access the certificate. The server’s SSL identity key/certificates
will be used by default if a signing alias and passphrase are not supplied.

Configure SSL for the Assertion Retrieval Service. You can require all access to the
Assertion Retrieval Service to use SSL by setting
FederationServicesMBean.arsRequiresSSL to true. You can require two-way SSL
authentication for the Assertion Retrieval Service by setting both arsRequiresSSL and
ARSRequiresTwoWaySSL to true.

Configure Relying Parties
A SAML Relying Party is an entity that relies on the information in a SAML assertion produced
by the SAML source site. You can configure how WebLogic Server produces SAML assertions
separately for each Relying Party or use the defaults established by the Federation Services
source site configuration for producing assertion.

You configure a Relying Party in the Administration Console, on the Security
Realms → RealmName → Providers → Credential Mapper →
SAMLCredentialMapperName → Management → Relying Parties page. See Create a SAML
Relying Party and Configure a SAML Relying Party in the Administration Console Online Help.

You can also configure a Relying Party with the WebLogic Scripting Tool. See “Configuring
Relying and Asserting Parties with WLST” on page 7-7.

Configure Supported Profiles
When you configure a SAML Relying Party, you can specify support for Artifact profile or POST
profile, for the purposes of SAML SSO. As an alternative configure a Relying Party to support
WSS/Holder-of-Key or WSS/Sender-Vouches profiles for Web Services Security purposes. Be
sure to configure support for the profiles that the SAML destination sites support.

If you support the POST profile, optionally create a form to use in POST profile assertions for
the Relying Party and set the pathname of that form in the POST Form attribute.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateRelyingParty.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateRelyingParty.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureRelyingParty.html

Conf igu r ing SAML 1 .1 Serv ices

Securing WebLogic Server 7-5

Assertion Consumer Parameters
For each SAML Relying Party, you can configure one or more optional query parameters (such
as a partner ID) that will be added to the ACS URL when redirecting to the destination site. In
the case of POST profile, these parameters will be included as form variables when using the
default POST form. If a custom POST form is in use, the parameters will be made available as a
Map of names and values, but the form may or may not constructed to include the parameters in
the POSTed data.

Replacing the Default Assertion Store
WebLogic Server uses a simple assertion store to maintain persistence for produced assertions.
You can replace this assertion store with a custom assertion store class that implements
weblogic.security.providers.saml.AssertionStoreV2. Configure WebLogic Server to
use your custom assertion store class, rather than the default class, using the
FederationServicesMBean.AssertionStoreClassName attribute. You can configure
properties to be passed to the initStore() method of your custom assertion store class by using
the FederationServicesMBean.AssertionStoreProperties attribute. Configure these
attributes in the Administration Console on the Environment: Servers →
ServerName → Configuration → Federation Services → SAML 1.1 Source Site page.

Configuring a SAML 1.1 Destination Site for Single Sign-On
The following topics describe how to configure WebLogic Server as a SAML destination site:

“Configure SAML Identity Assertion Provider” on page 7-5

“Configure Destination Site Federation Services” on page 7-5

“Configuring Asserting Parties” on page 7-7

Configure SAML Identity Assertion Provider
In your security realm, create and configure a SAML Identity Assertion Provider V2 instance.
The SAML Identity Assertion provider is not part of the default security realm. See “Configuring
a SAML Identity Assertion Provider for SAML 1.1” on page 5-30.

Configure Destination Site Federation Services
Before you configure WebLogic as a SAML destination site, you must first create a SAML
Identity Assertion Provider V2 instance in your security realm. Configuration of a WebLogic
Server instance as a SAML destination site is controlled by the FederationServicesMBean.

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-6 Securing WebLogic Server

You can access the FederationServicesMBean using the WebLogic Scripting Tool or through
the Administration Console, using the Environment: Servers → ServerName → Configuration
→ Federation Services → SAML 1.1 Destination Site page.

Configure the SAML destination site attributes as follows.

Enable the SAML Destination Site
Allow the WebLogic Server instance to serve as a SAML destination site by setting Destination
Site Enabled to true.

Set Assertion Consumer URIs
Set the URIs for the SAML Assertion Consumer Service. This is the URL that receives assertions
from source sites, so that the destination site can use the assertions to authenticate users. The
Assertion Consumer URI is also specified in the configuration of a Relying Party.

Configure SSL for the Assertion Consumer Service
You can require all access to the Assertion Consumer Service to use SSL by setting
FederationServicesMBean.acsRequiresSSL to true.

Add SSL Client Identity Certificate
The SAML destination site uses a trusted certificate with which to sign POST profile responses.
Add this certificate to the keystore and enter the credentials (alias and passphrase) to be used to
access the certificate.

Configure Single-Use Policy and the Used Assertion Cache or Custom Assertion Cache
Optionally, you can require that each POST profile assertion be used no more than once.
WebLogic Server maintains a cache of used assertions so that it can support a single-use policy
for assertions. You can replace this assertion cache with a custom assertion cache class that
implements weblogic.security.providers.saml.SAMLUsedAssertionCache. Configure
WebLogic Server to use your custom assertion cache class, rather than the default class, using the
FederationServicesMBean.SAMLUsedAssertionCache attribute. You can configure
properties to be passed to the initCache() method of your custom assertion cache class using
the FederationServicesMBean.UsedAssertionCacheProperties attribute. You can
configure these attributes in the Administration Console on the Environment → Servers →
ServerName → Configuration → Federation Services → SAML 1.1 Destination Site page.

Conf igu r ing SAML 1 .1 Serv ices

Securing WebLogic Server 7-7

Configure Recipient Check for POST Profile
Optionally, you can require that the recipient of the SAML Response must match the URL in the
HTTP Request. Do this by setting the POST Recipient Check Enabled attribute.

Configuring Asserting Parties
A SAML Asserting Party is a trusted SAML Authority (an entity that can authoritatively assert
security information in the form of SAML Assertions).Configure an Asserting Party in the
Administration Console, using the Security Realms → RealmName → Providers → Credential
Mapper → SAMLCredentialMapperName → Management: Asserting Parties page. See Create a
SAML Asserting Party and Configure a SAML Asserting Party in the Administration Console
Online Help.

You can also configure an Asserting Party with the WebLogic Scripting Tool. See “Configuring
Relying and Asserting Parties with WLST” on page 7-7.

Configure Supported Profiles
When you configure a SAML Asserting Party, you can specify support for Artifact profile or
POST profile, for the purposes of SAML SSO. Alternatively, configure an Asserting Party to
support WSS/Holder-of-Key or WSS/Sender-Vouches profiles for Web Services Security
purposes.

Configure Source Site ITS Parameters
For each SAML Asserting Party, configure zero or more optional query parameters (such as a
partner ID) that will be added to the ITS URL when redirecting to the source site.

Configuring Relying and Asserting Parties with WLST
SAML partners (Relying Parties and Asserting Parties) are maintained in a registry. You can
configure SAML partners using the WebLogic Administration Console or using WebLogic
Scripting Tool. The following example shows how you might configure two Relying Parties
using WLST in online mode.

Listing 7-1 Creating Relying Parties with WLST

connect('weblogic','weblogic','t3://localhost:7001')

rlm=cmo.getSecurityConfiguration().getDefaultRealm()

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateAssertingParty.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateAssertingParty.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureAssertingParty.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-8 Securing WebLogic Server

cm=rlm.lookupCredentialMapper('samlv2cm')

rp=cm.newRelyingParty()

rp.setDescription('test post profile')

rp.setProfile('Browser/POST')

rp.setAssertionConsumerURL('http://domain.example.com:7001/saml_destinatio

n/acs')

rp.setAssertionConsumerParams(array(['APID=ap_00001'],String))

rp.setSignedAssertions(true)

rp.setEnabled(true)

cm.addRelyingParty(rp)

rp=cm.newRelyingParty()

rp.setDescription('test artifact profile')

rp.setProfile('Browser/Artifact')

rp.setAssertionConsumerURL('http://domain.example.com:7001/saml_destinatio

n/acs')

rp.setAssertionConsumerParams(array(['APID=ap_00002'],String))

rp.setARSUsername('foo')

rp.setARSPassword('bar')

rp.setSSLClientCertAlias('demoidentity')

rp.setEnabled(true)

cm.addRelyingParty(rp)

disconnect()

exit()

The following example shows how you might edit an existing Asserting Party. The example gets
the Asserting Party, using its Asserting Party ID, and sets the Assertion Retrieval URL.

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-9

Listing 7-2 Editing an Asserting Party with WLST

connect('weblogic','weblogic','t3://localhost:7001')

rlm=cmo.getSecurityConfiguration().getDefaultRealm()

ia=rlm.lookupAuthenticationProvider('samlv2ia')

ap=ia.getAssertingParty('ap_00002')

ap.setAssertionRetrievalURL('https://hostname:7002/samlars/ars')

ia.updateAssertingParty(ap)

disconnect()

exit()

Configuring SAML 2.0 Services
This topic includes the following sections:

“Configuring SAML 2.0 Services: Main Steps” on page 7-9

“Configuring SAML 2.0 General Services” on page 7-11

“Configuring an Identity Provider Site for SAML 2.0 Single Sign-On” on page 7-14

“Configuring a Service Provider Site for SAML 2.0 Single Sign-On” on page 7-18

“Web Application Deployment Considerations for SAML 2.0” on page 7-24

Configuring SAML 2.0 Services: Main Steps
A summary of the main steps you take to configure SAML 2.0 services are as follows:

1. Determine whether you plan to have SAML 2.0 services running in more than one WebLogic
Server instance in the domain. If so, do the following:

a. Create a domain in which the RDBMS security store is configured.

The RDBMS security store is required by the SAML 2.0 security providers so that the
data they manage can be synchronized across all the WebLogic Server instances that
share that data.

Note that Oracle does not recommend upgrading an existing domain in place to use the
RDBMS security store. If you want to use the RDBMS security store, you should

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-10 Securing WebLogic Server

configure the RDBMS security store at the time of domain creation. If you have an
existing domain with which you want to use the RDBMS security store, create the new
domain and migrate your existing security realm to it.

For information, see Chapter 10, “Managing the RDBMS Security Store.”

b. Ensure that all SAML 2.0 services are configured identically in each WebLogic Server
instance. If you are configuring SAML 2.0 services in a cluster, each Managed Server in
that cluster must be configured individually.

c. Note the considerations described in “Web Application Deployment Considerations for
SAML 2.0” on page 7-24.

2. If you are configuring a SAML 2.0 Identity Provider site:

a. Create and configure an instance of the SAML 2.0 Credential Mapping provider in the
security realm.

b. Configure the SAML 2.0 general services identically and individually in each WebLogic
Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Identity Provider services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

d. Publish the metadata file describing your site, and manually distribute it to your Service
Provider partners.

e. Create and configure your Service Provider partners.

3. If you are configuring a SAML 2.0 Service Provider site:

a. Create and configure an instance of the SAML 2.0 Identity Assertion provider in the
security realm.

Optionally, you may also need to create and configure an instance of the SAML
Authentication provider.

b. Configure the SAML 2.0 general services identically and individually in each WebLogic
Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Service Provider services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

d. Publish the metadata file describing your site, and manually distribute it to your Identity
Provider partners.

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-11

e. Create and configure your Identity Provider partners.

The sections that follow provide details about each set of main steps.

Configuring SAML 2.0 General Services
Regardless of the SAML 2.0 role in which you wish to configure a WebLogic Server instance —
that is, as either a Service Provider or Identity Provider — you need to configure the server’s
general SAML 2.0 services. Configuration of the SAML 2.0 general services for a WebLogic
Server instance is controlled by the SingleSignOnServicesMBean. You can access the
SingleSignOnServicesMBean with the WebLogic Scripting Tool or through the
Administration Console, on the Environment → Servers → ServerName → Configuration →
Federation Services → SAML 2.0 General page.

Note: You cannot configure SAML 2.0 general services in a WebLogic Server instance until
you have first configured either the SAML 2.0 Identity Assertion or SAML 2.0
Credential Mapping provider and restarted the server instance.

The following sections describe SAML 2.0 general services:

“About SAML 2.0 General Services” on page 7-11

“Publishing and Distributing the Metadata File” on page 7-13

About SAML 2.0 General Services
The general SAML 2.0 services you configure include the following:

Whether you wish to enable the replicated cache

Enabling the replicated cache is required if you are configuring SAML 2.0 services on two
or more WebLogic Server instances in a domain, such as in a cluster. The replicated cache
enables server instances to share and be synchronized with the data that is managed by the
SAML 2.0 security providers; that is, either or both the SAML 2.0 Identity Assertion
provider and the SAML 2.0 Credential Mapping provider.

Note that the RDBMS security store is strongly recommended if you enable the replicated
cache. Therefore prior to configuring SAML 2.0 services, the preferred approach is first to
create a domain that is configured to use the RDBMS security store. For more information,
see Chapter 10, “Managing the RDBMS Security Store.”

Information about the local site

The site information you enter is primarily for the benefit of the business partners in the
SAML federation with whom you share it. Site information includes details about the local

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-12 Securing WebLogic Server

contact person who is your partners’ point of contact, your organization name, and your
organization’s URL.

Published site URL

This URL specifies the base URL that is used to construct endpoint URLs for the various
SAML 2.0 services. The published site URL should specify the host name and port at
which the server is visible externally, which might not be the same at which the server is
accessed locally. For example, if SAML 2.0 services are configured in a cluster, the host
name and port may correspond to the load balancer or proxy server that distributes client
requests to the Managed Servers in that cluster.

The published site URL should be appended with /saml2. For example:

https://www.avitek.com:7001/avitek-domain/aviserver/saml2

Entity ID

The entity ID is a human-readable string that uniquely distinguishes your site from the
other partner sites in your federation. When your partners need to generate or consume an
assertion, the SAML 2.0 services use the entity ID as part of the process of identifying the
partner that corresponds with that assertion.

Whether recipient check is enabled

If enabled, the recipient of the authentication request or response must match the URL in
the HTTP Request.

Whether TLS/SSL client authentication is required for invocations on the Artifact
Resolution Service. If enabled, SAML artifacts are encrypted when transmitted to partners.

Transport Layer Security keystore alias and passphrase, used for retrieving the server’s
keys that are used for securing outgoing communications with partners.

Whether Basic authentication client authentication is required when your partners invoke
the HTTPS bindings of the local site.

If you enable this setting, you also specify the client username and password to be used.
These credentials are then included in the published metadata file that you share with your
federated partners.

Whether requests for SAML artifacts received from your partners must be signed.

Configuration settings for the SAML artifact cache.

Keystore alias and passphrase for the key to be used when signing documents sent to your
federated partners, such as authentication requests or responses.

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-13

For information about the steps for configuring SAML 2.0 general services, see Configure SAML
2.0 general services in the Administration Console Online Help.

Publishing and Distributing the Metadata File
The local site information that is needed by your federated partners — such as the local site
contact information, entity ID, published site URL, whether TLS/SSL client authentication is
required, and so on — is published to a metadata file by clicking Publish Meta Data in the
SAML 2.0 General console page.

When you publish the metadata file, you specify an existing directory on the local machine in
which the file can be created. The process of distributing the metadata file to your federated
partners is a detail that is not implemented by WebLogic Server. However, you may send this file
via a number of commonly used mechanisms suitable for securely transferring electronic
documents, such as encrypted email or secure FTP.

Keep the following in mind regarding the metadata file:

Before you publish the metadata file, you should configure the Identity Provider and/or
Service Provider services for the SAML 2.0 roles in which the WebLogic Server instances
in your domain are enabled to function.

The configuration data for the SAML 2.0 services your site offers that is needed by your
federated partners is included in this metadata file, greatly simplifying the tasks your
partners perform to import your signing certificates, identify your site’s SAML 2.0 service
endpoints, and use the correct binding types for connecting to your site’s services, and so
on.

You should have only a single version of the metadata file that you share with your
federated partners, even if your site functions in the role of Service Provider with some
partners and Identity Provider with others. By having only a single version of the metadata
file, you reduce the likelihood that your configuration settings might become incompatible
with those of a partner.

If you change the local site’s SAML 2.0 configuration, you should update your metadata
file. Because the metadata file is shared with your partners, it will be convenient to
minimize the frequency with which you update your SAML 2.0 configuration so that your
partners can minimize the need to make concomitant updates to their own partner
registries.

When you receive a metadata file from a federated partner, place it in a location that can be
accessed by all the nodes in your domain in which SAML 2.0 services are configured. At

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureSAML20General.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureSAML20General.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-14 Securing WebLogic Server

the time you create a partner, you bring the contents the partner’s metadata file into the
partner registry.

Operations on the metadata file are available via the
com.bea.security.saml2.providers.registry.Partner Java interface.

Configuring an Identity Provider Site for SAML 2.0 Single
Sign-On
This section presents the following topics:

“Configure the SAML 2.0 Credential Mapping Provider” on page 7-14

“Configure SAML 2.0 Identity Provider Services” on page 7-14

“Create and Configure Web Single Sign-On Service Provider Partners” on page 7-15

Configure the SAML 2.0 Credential Mapping Provider
In your security realm, create a SAML 2.0 Credential Mapping provider instance. The SAML 2.0
Credential Mapping provider is not part of the default security realm. See “Configuring a SAML
2.0 Credential Mapping Provider for SAML 2.0” on page 4-20.

Configure the SAML 2.0 Credential Mapping provider as a SAML authority. Attributes you
specify include the following:

Issuer URI

Name Qualifier

Life span attributes for generated SAML 2.0 assertions

Name mapper class name

Whether generated assertions should include attribute information, which specify the
groups to which the identity contained in the assertion belongs

After you configure the SAML 2.0 Credential Mapping provider, configure SAML 2.0 general
services, as described in “Configuring SAML 2.0 General Services” on page 7-11.

Configure SAML 2.0 Identity Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Identity Provider site is controlled
by the SingleSignOnServicesMBean. You can access the SingleSignOnServicesMBean
using the WebLogic Scripting Tool (WLST), or through the Administration Console by using the

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/Partner.html

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-15

Environment → Servers → ServerName → Configuration → Federation Services → SAML 2.0
Identity Provider page.

The sections that follow summarize the configuration tasks. For more information about
performing these tasks, see Configure SAML 2.0 Identity Provider services in the Administration
Console Online Help.

Enable the SAML 2.0 Identity Provider Site
From the SAML 2.0 Identity Provider page in the console, allow the WebLogic Server instance
to serve as an Identity Provider site by setting the Enabled attribute to true.

Specify a Custom Login Web Application
Optionally, you may use a custom login web application to authenticate users into the Identity
Provider site. To configure a custom login web application, enable the Login Customized
attribute and specify the URL of the web application.

Enable Binding Types
Oracle recommends enabling all the available binding types for the endpoints of the Identity
Provider services; namely, POST, Redirect, and Artifact. Optionally you may select a preferred
binding type.

Publish Your Site’s Metadata File
After you have configured the SAML 2.0 general services and Identity Provider services, publish
your site’s metadata file and distribute it to your federated partners, as described in “Publishing
and Distributing the Metadata File” on page 7-13.

Create and Configure Web Single Sign-On Service Provider Partners
A SAML 2.0 Service Provider partner is an entity that consumes the SAML 2.0 assertions
generated by the Identity Provider site. The configuration of Service Provider partners is
available from the Administration Console, using the Security Realms → RealmName →
Providers → Credential Mapper → SAML2CredentialMapperName → Management page.

The attributes that can be set on this console page can also be accessed programmatically via a
set of Java interfaces, which are identified in the sections that follow.

See Create a SAML 2.0 Web Single Sign-on Service Provider partner in the Administration
Console Online Help for complete details about the specific steps for configuring a Service
Provider partner. For a summary of the site information, signing certificates, and service endpoint

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureSAML20IdentityProviderServices.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WebSSOSPPartner.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-16 Securing WebLogic Server

information available when you configure a web single sign-on partner, see “Viewing Partner
Site, Certificate, and Service Endpoint Information” on page 7-23.

Obtain Your Service Provider Partner’s Metadata File
Before you configure a Service Provider partner for web single sign-on, you need to obtain the
partner’s SAML 2.0 metadata file via a trusted and secure mechanism, such as encrypted email
or an SSL-enabled FTP site. Your partner’s metadata file describes the partner site and binding
support, includes the partner’s certificates and keys, contains your partner’s SAML 2.0 service
endpoints, and more. Copy the partner’s metadata file into a location that can be accessed by each
node in your domain configured for SAML 2.0.

The SAML 2.0 metadata file is described in “Publishing and Distributing the Metadata File” on
page 7-13.

Create Partner and Enable Interactions
To create and enable a Service Provider partner for web single sign-on:

1. From the Management tab of the SAML 2.0 Credential Mapping provider page, specify the
partner’s name and metadata file.

2. From the General tab of the partner configuration page, enable interactions between the
partner and the WebLogic Server instance

WebLogic Server provides the com.bea.security.saml2.providers.registry.Partner
Java interface for configuring these attributes.

Configure How Assertions are Generated
Optionally from the General tab of the partner configuration page in the console, you can
configure the following attributes of the SAML 2.0 assertions generated specifically for this
Service Provider partner:

The Service Provider Name Mapper Class name

This is the Java class that overrides the default username mapper class with which the
SAML 2.0 Credential Mapping provider is configured in this security realm.

Time to Live attributes

The Time to Live attributes specify the interval of time during which the assertions
generated for this partner are valid. These attributes prevent expired assertions from being
used.

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/Partner.html

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-17

Whether to generate attribute information that is included in assertions

If enabled, the SAML 2.0 Credential Mapping provider adds, as attributes in the assertion,
the groups to which the corresponding user belongs.

Whether the assertions sent to this partner must be disposed of immediately after use

Whether this server’s signing certificate is included in assertions generated for this partner

WebLogic Server provides the
com.bea.security.saml2.providers.registry.SPPartner Java interface for
configuring these attributes.

Configure How Documents Are Signed
You can use the General tab of the Service Provider partner configuration page to determine how
the following documents exchanged with this partner must be signed:

Assertions

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.SPPartner interface

Authentication requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOSPPartner interface

Artifact requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOPartner interface

The attributes for specifying whether this partner accepts only signed assertions, or whether
authentication requests must be signed, are read-only: they are derived from the partner’s
metadata file.

Configure Artifact Binding and Transport Settings
Optionally, you also use the General tab of the Service Provider partner configuration page to
configure the following:

Whether SAML artifacts are delivered to this partner via the HTTP POST binding. If so,
you may also specify the URI of a custom web application that generates the HTTP POST
form for sending the SAML artifact.

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/SPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/SPPartner.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-18 Securing WebLogic Server

The URI of a custom web application that generate the HTTP POST form for sending
request or response messages via the POST binding.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

For added security in the exchange of documents with this partner, you can also specify a client
user name and password to be used by the Service Provider partner when connecting to the local
site’s binding using Basic authentication. This attribute is available via the
com.bea.security.saml2.providers.registry.BindingClientPartner Java interface.

Configuring a Service Provider Site for SAML 2.0 Single
Sign-On
This section presents the following topics:

“Configure the SAML 2.0 Identity Assertion Provider” on page 7-18

“Configure the SAML Authentication Provider” on page 7-19

“Configure SAML 2.0 Service Provider Services” on page 7-19

“Create and Configure Web Single Sign-On Identity Provider Partners” on page 7-20

Configure the SAML 2.0 Identity Assertion Provider
In your security realm, create an instance of the SAML 2.0 Identity Assertion provider. The
SAML 2.0 Identity Assertion provider is not part of the default security realm. The attributes you
specify for the SAML 2.0 Identity Assertion provider include the following:

Whether the replicated cache is enabled

If you are configuring SAML 2.0 Identity Provider services in two or more server
instances in the domain, this attribute must be enabled.

A custom name mapper class that overrides the default SAML 2.0 assertion name mapper
class

For more information about this security provider, see “Configuring a SAML 2.0 Identity
Assertion Provider for SAML 2.0” on page 5-31.

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/BindingClientPartner.html

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-19

Configure the SAML Authentication Provider
If you plan to enable virtual users, or consume attribute statements contained in assertions that
you receive from your Identity Provider partners, you need to create and configure an instance of
the SAML Authentication provider. For more information, see “Configuring the SAML
Authentication Provider” on page 5-18.

Configure SAML 2.0 General Services
After configuring the SAML 2.0 Identity Assertion provider, and optionally the SAML
Authentication provider, configure the SAML 2.0 general services, as described in “Configuring
SAML 2.0 General Services” on page 7-11.

Configure SAML 2.0 Service Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Service Provider site is controlled
by the SingleSignOnServicesMBean. You can access the SingleSignOnServicesMBean
using the WebLogic Scripting Tool (WLST), or through the Administration Console using the
Environment → Servers → ServerName → Configuration → Federation Services → SAML 2.0
Service Provider page.

You configure the SAML 2.0 Service Provider site attributes as summarized in the sections that
follow. For more information about these configuration tasks, see Configure SAML 2.0 Service
Provider services in the Administration Console Online Help.

Enable the SAML 2.0 Service Provider Site
From the Federation Services: SAML 2.0 Identity Provider page in the console, allow the
WebLogic Server instance to serve as a Service Provider site by setting the Enabled attribute to
true.

Specify How Documents Must Be Signed
Optionally you may enable the attributes that set the following document signing requirements:

Whether authentication requests sent to Identity Provider partners are signed

Whether assertions received from Identity Provider partners are signed

Specify How Authentication Requests Are Managed
Optionally you may enable the following attributes of the authentication request cache:

Maximum cache size

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureSAML20ServiceProviderServices.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureSAML20ServiceProviderServices.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-20 Securing WebLogic Server

Time-out value for authentication requests, which establishes the time interval beyond
which stored authentication requests are expired

Enable Binding Types
Oracle recommends enabling all the available binding types for the endpoints of the Service
Provider services; namely, POST, Redirect, and Artifact. Optionally you may specify a preferred
binding type.

Set Default URL
Optionally, you may specify the URL to which unsolicited authentication responses are sent if
they do not contain an accompanying target URL.

Create and Configure Web Single Sign-On Identity Provider Partners
A SAML 2.0 Identity Provider partner is an entity that generates SAML 2.0 assertions consumed
by the Service Provider site. The configuration of Identity Provider partners is available from the
Administration Console, using the Security Realms → RealmName → Providers →
Authentication → SAML2IdentityAsserterName → Management page.

The attributes that can be set on this console page can also be accessed programmatically via a
set of Java interfaces, which are identified in the sections that follow.

See Create a SAML 2.0 Web Single Sign-on Identity Provider partner in the Administration
Console Online Help for complete details about the specific steps for configuring a Service
Provider partner.

For a summary of the site information, signing certificates, and service endpoint information
available when you configure a web single sign-on partner, see “Viewing Partner Site,
Certificate, and Service Endpoint Information” on page 7-23.

The following sections summarize tasks for configuring an Identity Provider partner.

Obtain Your Identity Provider Partner’s Metadata File
Before you configure an Identity Provider partner for web single sign-on, you need to obtain the
partner’s SAML 2.0 metadata file via a trusted and secure mechanism, such as encrypted email
or an SSL-enabled FTP site. Your partner’s metadata file describes that partner site and binding
support, includes the partner’s certificates and keys, and so on. Copy the partner’s metadata file
into a location that can be accessed by each node in your domain configured for SAML 2.0.

The SAML 2.0 metadata file is described in “Publishing and Distributing the Metadata File” on
page 7-13.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateSAML20WebSSOIdPPartner.html

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-21

Create Partner and Enable Interactions
To create an Identity Provider partner and enable interactions for web single sign-on:

From the Management tab of the SAML 2.0 Identity Assertion configuration page, specify
the partner’s name and metadata file.

From the General tab of the partner configuration page, enable interactions between the
partner and the WebLogic Server instance.

WebLogic Server provides the com.bea.security.saml2.providers.registry.Partner
Java interface for configuring these attributes.

Configure Authentication Requests and Assertions
Optionally, you can configure the following attributes of the authentication requests generated
for, and assertions received from, this Identity Provider partner:

The Identity Provider Name Mapper Class name

This is the custom Java class that overrides the default username mapper class with which
the SAML 2.0 Identity Assertion provider is configured in this security realm. The custom
class you specify is used only for identities contained in assertions received from this
particular partner.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

Whether the identities contained in assertions received from this partner are mapped to
virtual users in the security realm

Note: To use this attribute, you must have a SAML Authentication provider configured in
the realm.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

Whether to consume attribute information contained in assertions received from this
partner

If enabled, the SAML 2.0 Identity Assertion provider extracts attribute information from
the assertion, which it uses in conjunction with the SAML Authentication provider (which
must be configured in the security realm) to determine the groups in the security realm to
which the corresponding user belongs.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/Partner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/IdPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/IdPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/IdPPartner.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-22 Securing WebLogic Server

Whether authentication requests sent to this Identity Provider partner must be signed. This
is a read-only attribute that is derived from the partner’s metadata file.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

Whether SAML artifact requests received from this Identity Provider partner must be
signed.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

Configure Redirect URIs
You can configure a set of URIs that, if invoked by an unauthenticated user, cause the user request
to be redirected to the Identity Provider partner where the user can be authenticated.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface for
configuring this attribute.

Configure Binding and Transport Settings
Optionally, you also use the General tab of the Service Provider partner configuration page to
configure the following:

Whether SAML artifacts are delivered to this partner via the HTTP POST method. If so,
you may also specify the URI of a custom web application that generates the HTTP POST
form for sending the SAML artifact.

The URL of the custom web application that generates the POST form for carrying the
SAML response for POST bindings to this Identity Provider partner.

The URL of the custom web application that generates the POST form for carrying the
SAML response for Artifact bindings to this Identity Provider partner.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

For added security in the exchange of documents with this partner, you can also specify a client
user name and password to be used by this Identity Provider partner when connecting to the local
site’s binding using Basic authentication. This attribute is available via the
com.bea.security.saml2.providers.registry.BindingClientPartner Java interface.

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOIdPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/BindingClientPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOIdPPartner.html

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-23

Viewing Partner Site, Certificate, and Service Endpoint
Information
When you configure SAML 2.0 partners, the partner configuration pages displayed by the
Administration Console include tabs for viewing and configuring the following additional
information about the partner:

The Site tab displays information about the Service Provider partner, which is derived from
the partner’s metadata file. The data in this tab is read-only.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.MetadataPartner Java interface for
partner site information.

The Single Sign-On Signing Certificate tab displays details about the partner’s signing
certificate, which are also derived from the partner’s metadata file. The data in this tab is
read-only.

Operations on these attributes are available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

The Transport Layer Client Certificate tab displays partner’s transport layer client
certificate. You can optionally import this certificate by clicking Import Certificate from
File.

Operations on this attribute is available from the
com.bea.security.saml2.providers.registry.BindingClientPartner Java
interface.

When configuring Service Provider partners, the Assertion Consumer Service Endpoints
tab is available, which displays the Service Provider partner’s ACS endpoints. This data is
also available from the
com.bea.security.saml2.providers.registry.WebSSOSPPartner Java interface.

When configuring Identity Provider partners, the Single Sign-On Service Endpoints tab is
available, which displays the Identity Provider partner’s single sign-on service endpoints.
This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

The Artifact Resolution Service Endpoints tab displays the partner’s ARS endpoints. This
data is also available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOIdPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/MetadataPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPartner.html

http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/BindingClientPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOSPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WebSSOPartner.html

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-24 Securing WebLogic Server

Web Application Deployment Considerations for SAML 2.0
When deploying web applications for SAML-based SSO in a clustered environment, note the
following considerations to prevent SAML-based single sign-on from failing:

“Deployment Descriptor Recommendations” on page 7-24

“Login Application Considerations for Clustered Environments” on page 7-25

Deployment Descriptor Recommendations
Note the following recommendations regarding the use of the following elements in deployment
descriptor files:

relogin-enabled

cookie-name

Use of relogin-enabled with CLIENT-CERT Authentication
If a user logs in to a web application and tries to access a resource for which that user is not
authorized, an HTTP FORBIDDEN (403) response is generated. This is standard web application
behavior. However, for backwards compatibility with earlier releases, WebLogic Server permits
web applications to use the relogin-enabled element in the weblogic.xml deployment
descriptor file, so that the response to an access failure results in a request to authenticate. In
certain circumstances, it can cause SAML 2.0 based web single sign-on to fail.

Normally, the SAML 2.0 Assertion Consumer Service (ACS) logs the user into the application
and redirects the user request to the target web application. However, if that web application is
enabled for SAML 2.0 single sign-on, is protected by CLIENT-CERT authentication, and has the
relogin-enabled deployment descriptor element set to true, an infinite loop can occur in
which a request to authenticate a user is issued repeatedly. This loop can occur when a user is
logged in to the web application and attempts to access a resource for which the user is not
permitted: instead of generating a FORBIDDEN message, a new authentication request is
generated that triggers another SAML 2.0 based web single sign-on attempt.

To prevent this situation from occurring in a web application that is protected by CLIENT-CERT
authentication, either remove the relogin-enabled deployment descriptor element for the web
application, or set the element to false. This enables standard web application authentication
behavior.

Conf igu r ing SAML 2 .0 Serv ices

Securing WebLogic Server 7-25

Use of Non-default Cookie Name
When the Assertion Consumer Service logs in the Subject contained in an assertion, an HTTP
servlet session is created using the default cookie name JSESSIONID. After successfully
processing the assertion, the ACS redirects the user’s request to the target web application. If the
target web application uses a cookie name other than JSESSIONID, the Subject’s identity is not
propagated to the target web application. As a result, the servlet container treats the user as if
unauthenticated, and consequently issues an authentication request.

To avoid this situation, do not change the default cookie name when deploying web applications
in a domain that are intended to be accessed by SAML 2.0 based single sign-on.

Login Application Considerations for Clustered Environments
Note the following two login limitations that are rare in clustered environments, but if they occur,
they may prevent a single sign-on session from succeeding.

When an Identity Provider’s single sign-on service receives an authentication request, it
redirects that request to the login application to authenticate the user. The login application
must execute on the same cluster node as that single sign-on service. If not, the Identity
Provider is unable to produce a SAML 2.0 assertion even if the authentication succeeds.

Under normal circumstances, the login application executes on the same node as the single
sign-on service, so likelihood of the authentication request being redirected to a login
application executing on a different node in the domain is very small. However, it may
happen if an authentication request is redirected by a cluster node different than the one
hosting the login application. You can almost always prevent this situation from occurring
if you configure the Identity Provider to use the default login URI with Basic
authentication.

When the SAML 2.0 Assertion Consumer Service (ACS) successfully consumes an
assertion, it logs in the Subject represented by the assertion. The ACS then redirects the
user request to the target application. Normally, the target application executes on the same
node as the ACS. However, in rare circumstances, the target application to which is the
user request is redirected executes on a cluster node other than the one hosting the ACS on
which the login occurred. When this circumstance occurs, the identity represented by the
assertion is not propagated to the target application node. The result is either another
attempt at the single sign-on process, or denied access.

Because the target application executes on the same node as the ACS, this situation is
expected to occur very rarely.

Conf igur ing S ing le S ign-On w i th Web Browse rs and HTTP C l ien ts

7-26 Securing WebLogic Server

Securing WebLogic Server 8-1

C H A P T E R 8

Migrating Security Data

You can export security data from one security realm or security provider and import the data into
another realm or provider. The following sections provide information about exporting and
importing security data.

“Overview of Security Data Migration” on page 8-1

“Migration Concepts” on page 8-2

“Formats and Constraints Supported by WebLogic Security Providers” on page 8-3

“Migrating Data with WLST” on page 8-6

Overview of Security Data Migration
WebLogic security realms persist different kinds of security data — for example, users and
groups (for the WebLogic Authentication provider), security policies (for the XACML
Authorization provider), security roles (for the XACML Role Mapping provider), and credential
maps (for the WebLogic Credential Mapping provider). When you configure a new security
realm or a new security provider, you may prefer to use the security data from your existing realm
or provider, rather than recreate all the users, groups, policies, roles, and credential maps. Several
WebLogic security providers support security data migration. This means you can export security
data from one security realm, and import it into a new security realm. You can migrate security
data for each security provider individually, or migrate security data for all the WebLogic
security providers at once (that is, security data for an entire security realm). Note that you can
only migrate security data from one provider to another if the providers use the same data format.
See“Formats and Constraints Supported by WebLogic Security Providers” on page 8-3. You

Migrat ing Secur i t y Data

8-2 Securing WebLogic Server

migrate security data through the WebLogic Administration Console or by using the WebLogic
Scripting Tool (WLST).

Migrating security data may be helpful when you:

Transition from development to production mode.

Copy production mode security configurations to security realms in new WebLogic Server
domains.

Move data from one security realm to a new security realm in the same WebLogic Server
domain, where one or more of the default WebLogic security providers will be replaced
with new security providers.

The remainder of this section describes security migration concepts, the formats and constraints
supported by the WebLogic security providers, and steps for migrating security data with WLST.

To migrate security data with the WebLogic Administration Console, see the following topics in
the Administration Console Online Help:

Export data from security realms

Import data into security realms

Export data from security providers

Import data into security providers

Migration Concepts
A format is a data format that specifies how security data should be exported or imported.
Supported formats are the list of data formats that a given security provider understands how to
process.

Constraints are key/value pairs that specify options to the export or import process. Use
constraints to control which security data is exported to or imported from the security provider’s
database (in the case of the WebLogic Server security providers, the embedded LDAP server).
For example, you may want to export only users (not groups) from an Authentication provider’s
database. Supported constraints are the list of constraints you can specify during the migration
process for a particular security provider. For example, you can specify that an Authentication
provider’s database be used to import users and groups, but not security policies.

Export files are the files to which security data is written (in the specified format) during the
export portion of the migration process. Import files are files from which security data is read

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ExportDataFromSecurityRealms.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ImportDataIntoSecurityRealms.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ExportDataFromSecurityProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ImportDataIntoSecurityProviders.html

Fo rmats and Const ra in ts Suppor ted by WebLog ic Secur i t y P rov ide rs

Securing WebLogic Server 8-3

(also in the specified format) during the import portion of the migration process. Both export and
import files are simply temporary storage locations for security data as it is migrated from one
security provider’s data store to another security provider’s data store.

Formats and Constraints Supported by WebLogic
Security Providers

In order for security data to be exported and imported between security providers, both security
providers must process the same format. Some data formats used for the WebLogic Server
security providers are unpublished; therefore, you cannot currently migrate security data from a
WebLogic security provider to a custom security provider, or vice versa, using the unpublished
formats.

WebLogic security providers support the following import and export formats.

WebLogic security providers support the following import and export constraints.

Table 8-1 Import and Export Formats Supported by the WebLogic Security Providers

WebLogic Provider Supported Format

WebLogic Authentication Provider DefaultAtn—unpublished format

XACML Authorization Provider XACML—standard XACML 2.0 format

DefaultAtz—unpublished format

WebLogic Authorization Provider DefaultAtz—unpublished format

XACML Role Mapping Provider XACML—standard XACML 2.0 format

DefaultRoles—unpublished format

WebLogic Role Mapping Provider DefaultRoles—unpublished format

WebLogic Credential Mapping Provider DefaultCreds—unpublished format

SAML Identity Asserter V2

SAML Credential Mapping Provider V2

XML Partner Registry—An XML format defined
by the SAML partner registry schema

JKS Key Store—A key store file format for
importing and exporting partner certificates only

LDIF Template—LDIF format

Migrat ing Secur i t y Data

8-4 Securing WebLogic Server

Table 8-2 Constraints Supported by the WebLogic Security Providers

WebLogic Security Provider Supported
Constraints

Description

WebLogic Authentication users

groups

Export all users or all groups

XACML Authorization None

WebLogic Authorization None

XACML Role Mapping None

WebLogic Role Mapping None

WebLogic Credential Mapping passwords With the constraint
passwords=cleartext, passwords
will be exported in clear text.
Otherwise, they will be exported
in encrypted form.

SAML Identity Asserter V2

SAML Credential Mapping V2

partners Which partners to import or
export. The constraint value can
be one of:

all—all partners
none—no partners
list—only listed partners
enabled—only enabled
partners
disabled—only disabled
partners

Fo rmats and Const ra in ts Suppor ted by WebLog ic Secur i t y P rov ide rs

Securing WebLogic Server 8-5

When exporting from the WebLogic Credential Mapping provider, SAML Credential Mapping
provider, or SAML Identity Asserter, you need to specify whether or not the passwords for the
credentials are exported in clear text. The constraint passwords=cleartext specifies that
passwords will be exported in clear text. Otherwise, they will be exported in encrypted form. The
mechanism used to encrypt passwords in each WebLogic Server domain is different; therefore,
you want to export passwords in clear text if you plan to use them in a different WebLogic Server

SAML Identity Asserter V2

SAML Credential Mapping V2

certificates Which certificates to import or
export. The constraint value can
be one of the following:

all—all certificates
none—no certificates
list—only listed certificates
referenced—only certificates
referenced by a partner

SAML Identity Asserter V2

SAML Credential Mapping V2

passwords With the constraint
passwords=cleartext, passwords
will be exported in clear text.
Otherwise, they will be exported
in encrypted form.

SAML Identity Asserter V2

SAML Credential Mapping V2

importMode Specifies how to resolve name
conflicts between the imported
data and existing data in the
SAML registry. The constraint
value can be one of the following:

fail—the import operation
will fail if conflicts are
detected (default)
rename—rename the
imported entry that conflicts
replace—replace the existing
entry with the conflicting
imported entry

Table 8-2 Constraints Supported by the WebLogic Security Providers

Migrat ing Secur i t y Data

8-6 Securing WebLogic Server

domain. After the credential maps are imported into the new WebLogic Server domain, the
passwords are encrypted. Carefully protect the directory and file in which you export credential
maps in clear text as secure data is available on your system during the migration process.

Migrating Data with WLST
You can use the WebLogic Scripting Tool (WLST) to export and import data from a security
provider. Access the Runtime MBean for the security provider and use its importData or
exportData operation. For example, you might use WLST to import data using commands like
these:

domainRuntime()

cd(‘DomainServices/DomainRuntimeService/DomainConfiguration/mydomain/Secur

ityConfiguration/mydomain/DefaultRealm/myrealm/path-to-MBean/mbeanname’)

cmo.importData(format,filename,constraints)

where

mbeanname—Name of the security provider MBean.

format—A format that is valid for the particular security provider. See Table 8-1, “Import and
Export Formats Supported by the WebLogic Security Providers,” on page 8-3.

filename—The directory location and filename in which to export or import the security data.
Remember that, regardless of whether you are using a UNIX or Windows operating system, you
need to use a forward slash, not a back slash, as a path separator for pathname arguments in
WLST commands.

constraints—The constraints that limit the data to be exported or imported

For more information, see WebLogic Scripting Tool.

Migrating Data Using weblogic.admin
Note: The weblogic.Admin utility is deprecated. Use WLST instead.

You can also use the weblogic.Admin utility to export and import security data between security
realms and security providers. The format of the command is:
java weblogic.Admin -username username -password password \
INVOKE -mbean mbeanname \
-method methodname dataformat filename constraints

where

http://e-docs.bea.com/wls/docs103/config_scripting/index.html

Migrat ing Data Us ing web log ic .admin

Securing WebLogic Server 8-7

username—Name of the Admin user

password—Password of the Admin user

mbeanname—Name of the security provider MBean.

methodname—exportData or importData

dataformat—DefaultAtn, DefaultAtz, DefaultRoles, or DefaultCreds

filename—The directory location and filename in which to export or import the security data

constraints—The constraints that limit the data to be exported or imported

Note: The directory and file into which you export the security data should be carefully
protected with operating system security as they contain secure information about your
deployment.

For example:
java weblogic.Admin -username system -password weblogic INVOKE -mbean
Security:Name=myrealmDefaultAuthenticator -method importData DefaultAtn
d:\temp\security.info ““

Migrat ing Secur i t y Data

8-8 Securing WebLogic Server

Securing WebLogic Server 9-1

C H A P T E R 9

Managing the Embedded LDAP Server

WebLogic Server includes an embedded LDAP server that acts as the default security provider
data store for the WebLogic Authentication, Authorization, Credential Mapping, and Role
Mapping providers.The following sections explain how to manage the embedded LDAP server:

“Configuring the Embedded LDAP Server” on page 9-1

“Embedded LDAP Server Replication” on page 9-2

“Viewing the Contents of the Embedded LDAP Server from an LDAP Browser” on
page 9-3

“Exporting and Importing Information in the Embedded LDAP Server” on page 9-4

“LDAP Access Control Syntax” on page 9-6

Configuring the Embedded LDAP Server
The embedded LDAP server contains user, group, group membership, security role, security
policy, and credential map information. By default, each WebLogic Server domain has an
embedded LDAP server configured with the default values set for each type of information. The
WebLogic Authentication, Authorization, Credential Mapping, and Role Mapping providers use
the embedded LDAP server as their data store. If you use any of these providers in a new security
realm, you may want to change the default values for the embedded LDAP server to optimize its
use in your environment.

Managing the Embedded LDAP Server

9-2 Securing WebLogic Server

Note: The performance of the embedded LDAP server is best with fewer than 10,000 users. If
you have more users, consider using a different LDAP server and Authentication
provider.

See Configure the embedded LDAP server in the Administration Console Online Help.

The data file and change log file used by the embedded LDAP server can potentially grow quite
large. You can configure maximum sizes for these files with the following weblogic.Server
command line arguments:

-Dweblogic.security.ldap.maxSize=<max bytes>, which limits the size of the data
file used by the embedded LDAP server. When the data file exceeds the specified size,
WebLogic Server eliminates from the data file space occupied by deleted entries.

-Dweblogic.security.ldap.changeLogThreshold=<number of entries>, which
limits the size of the change log file used by the embedded LDAP server. When the change
log file exceeds the specified number of entries, WebLogic Server truncates the change log
by removing all entries that have been sent to all managed servers.

Embedded LDAP Server Replication
The WebLogic Server embedded LDAP server for a domain consists of a master LDAP server,
maintained in the domain’s Administration Server, and a replicated LDAP server maintained in
each Managed Server in the domain. When changes are made using a Managed Server, updates
are sent to the embedded LDAP server on the Administration Server. The embedded LDAP
server on the Administration Server maintains a log of all changes. The embedded LDAP server
on the Administration Server also maintains a list of Managed Servers and the current change
status for each one. The embedded LDAP server on the Administration Server sends appropriate
changes to each Managed Server and updates the change status for each server. This process
occurs when an update is made to the embedded LDAP server on the Administration Server.
However, depending on the number of updates, it may take several seconds or more for the
change to be replicated to the Managed Server.

You can configure the behavior of the embedded LDAP server on the Administration Server and
the Managed Servers in a domain using the Administration Console. On the Domain → Security
→ Embedded LDAP Server page in the Administration Console, you can set these attributes:

Refresh Replica At Startup—Specifies whether the embedded LDAP server in a Managed
Server should refresh all replicated data at boot time. This setting is useful if you have
made many changes when the Managed Server was not active, and you want to download
the entire replica instead of having the Administration Server push each change to the
Managed Server.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureEmbeddedLDAPServers.html

Viewing the Contents o f the Embedded LDAP Serve r f rom an LDAP Browser

Securing WebLogic Server 9-3

Master First—Specifies whether a Managed Server should always connect to the embedded
LDAP server on the Administration Server, instead of connecting to the local replicated
LDAP server.

See Configure the embedded LDAP server in the Administration Console Online Help.

Note: Deleting and modifying the configured security providers through the WebLogic
Administration Console may require manual clean up of the embedded LDAP server.
Use an external LDAP browser to delete unnecessary information.

Viewing the Contents of the Embedded LDAP Server from
an LDAP Browser

To view the contents of the embedded LDAP server through an LDAP browser:

1. Download and install an external LDAP browser. You can find one LDAP browser at the
following location:
http://www-unix.mcs.anl.gov/~gawor/ldap/

In this procedure it is assumed that you are using this LDAP browser; other LDAP
browsers may differ in detail.

2. In the WebLogic Server Administration Console, change the credential for the embedded
LDAP server:

a. Expand Domain → Security → Embedded LDAP.

b. In the Credential field, enter the new credential.

c. In the Confirm Credential field, enter the new credential again.

d. Click Save.

e. Reboot WebLogic Server.

Caution: Changing the credential can affect the operation of the domain. Do not perform this
step on a production server.

3. Start the LDAP browser. To start the LDAP Browser/Editor mentioned in step 1, use this
command:
lbe.sh

4. In the LDAP browser, configure a new connection in the LDAP browser:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureEmbeddedLDAPServers.html
http://www-unix.mcs.anl.gov/~gawor/ldap/

Managing the Embedded LDAP Server

9-4 Securing WebLogic Server

a. Select the QuickConnect tab.

a. Set the host field to localhost.

b. Set the port field to 7001 (7002 if SSL is being used).

c. Set the Base DN field to dc=mydomain where mydomain is the name of the WebLogic
Server domain you are using.

d. Uncheck the Anonymous Bind option.

e. Set the User DN field to cn=Admin.

f. Set the Password field to the credential you specified in Step 2.

5. Click the new connection.

Use the LDAP browser to navigate the hierarchy of the embedded LDAP server.

Note: You can also view the contents of the embedded LDAP server by exporting its data and
reviewing the exported file. See “Exporting and Importing Information in the Embedded
LDAP Server” on page 9-4.

Exporting and Importing Information in the Embedded
LDAP Server

You can export and import data from the embedded LDAP server using either the WebLogic
Server Administration Console or an LDAP browser. To export and import data with the Console,
use the Migration page of each security provider. See Export data from a security provider and
Import data into a security provider in the Administration Console Online Help.

WARNING: When you use the Administration Console Migration tab to export security data,
the export process deletes any existing files in the target directory with the .dat
extension. Always export security data to an empty directory.

This section describes how to use an LDAP browser to export and import data stored in the
embedded LDAP server. Table 9-1 summarizes where data is stored in the hierarchy of the
embedded LDAP server.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ExportDataFromSecurityProviders.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ImportDataIntoSecurityProviders.html

Expor t ing and Impor t ing In fo rmat ion in the Embedded LDAP Server

Securing WebLogic Server 9-5

To export security data from the embedded LDAP server using the LDAP Browser/Editor:

1. Enter the following command at a command prompt to start the LDAP Browser/Editor:
lbe.sh

2. Specify the data to be exported (for example, to export users specify
ou=people,ou=myrealm,dc=mydomain).

3. Select the LDIF → Export option.

4. Select Export all children.

5. Specify the name of the file into which the data will be exported.

To import security data into the embedded LDAP server using the LDAP Browser/Editor:

1. Enter the following command at a command prompt to start the LDAP browser:
lbe.sh

2. Specify the data to be imported (for example, to import users, specify
ou=people,ou=myrealm,dc=mydomain).

3. In the LDAP Browser/Editor, select the LDIF → Import option.

4. Select Update/Add.

5. Specify the name of the file from which the data will be imported.

Table 9-1 Location of Security Data in the Embedded LDAP Server

Security Data Embedded LDAP Server DN

Users ou=people,ou=myrealm,dc=mydomain

Groups ou=groups,ou=myrealm,dc=mydomain

Security roles ou=ERole,ou=myrealm,dc=mydomain

Security policies ou=EResource,ou=myrealm,dc=mydomain

Managing the Embedded LDAP Server

9-6 Securing WebLogic Server

LDAP Access Control Syntax
The embedded LDAP server supports the IETF LDAP Access Control Model for LDAPv3. This
section describes how that access control is implemented within the embedded LDAP server. You
can apply these rules directly to entries within the directory as intended by the standard or you
can configure and maintain them by editing the access control file (acls.prop).

Note: The default behavior of the embedded LDAP server is to allow access only from the
Admin account in WebLogic Server. The WebLogic security providers use only the
Admin account to access the embedded LDAP server. If you are not planning to access
the embedded LDAP server from an external LDAP browser or if you are planning only
to use the Admin account, you do not need to edit the acls.prop file and can ignore the
information in this section.

The Access Control File
The access control file (acls.prop) maintained by the embedded LDAP server contains the
complete list of access control lists (ACLs) for an entire LDAP directory. Each line in the access
control file contains a single access control rule. An access control rule is made up of the
following components:

Location in the LDAP directory where the rule applies. See “Access Control Location” on
page 9-7.

Scope within that location to which the rule applies. See “Access Control Scope” on
page 9-7.

Access rights (either grant or deny). See “Access Rights” on page 9-7.

Permissions (either grant or deny). See “Attribute Permissions” on page 9-8 and “Entry
Permissions” on page 9-9.

Attributes to which the rule applies. See “Attributes Types” on page 9-11.

Subject being granted or denied access. See “Subject Types” on page 9-11.

Listing 9-1 shows a sample access control file.

Listing 9-1 Sample acl.props File

[root]|entry#grant:r,b,t#[all]#public

LDAP Access Cont ro l Syntax

Securing WebLogic Server 9-7

ou=Employees,dc=octetstring,dc=com|subtree#grant:r,c#[all]#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:b,t#[entry]#public:
ou=Employees,dc=octetstring,dc=com|subtree#deny:r,c#userpassword#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:r#userpassword#this:
ou=Employees,dc=octetstring,dc=com|subtree#grant:w,o#userpassword,title,
description,
postaladdress,telephonenumber#this:
cn=schema|entry#grant:r#[all]#public:

Access Control Location
Each access control rule is applied to a given location in the LDAP directory. The location is
normally a distinguished name (DN) but the special location [root] can be specified in the
acls.prop file if the access control rule applies to the entire directory.

If an entry being accessed or modified on the LDAP server does not equal or reside below the
location of the access control rule, the given access control rule is not evaluated further.

Access Control Scope
The following access control scopes are defined:

Entry—An ACL with a scope of Entry is only evaluated if the entry in the LDAP directory
shares the same DN as the location of the access control rule. Such rules are useful when a
single entry contains more sensitive information than parallel or subentries entries.

Subtree—A scope of Subtree is evaluated if the entry in the LDAP directory equals or ends
with the location of this access control. This scope protects means the location entry and
all subentries.

If an entry in the directory is covered by conflicting access control rules (for example, where one
rule is an Entry rule and the other is a Subtree rule), the Entry rule takes precedence over rules
that apply because of the Subtree rule.

Access Rights
Access rights apply to an entire object or to attributes of the object. Access can be granted or
denied. Either of the actions grant or deny may be used when you create or update the access
control rule.

Each LDAP access right is discrete. One right does not imply another right. The rights specify
the type of LDAP operations that can be performed.

Managing the Embedded LDAP Server

9-8 Securing WebLogic Server

Attribute Permissions
The following permissions apply to actions involving attributes.

The m permission is required for all attributes placed on an object when it is created. Just as the w
and o permissions are used in the Modify operation, the m permission is used in the Add operation.
The w and o permissions have no bearing on the Add operation and m has no bearing on the
Modify operation. Since a new object does not yet exist, the a and m permissions needed to create
it must be granted to the parent of the new object. This requirement differs from w and o
permissions which must be granted on the object being modified. The m permission is distinct and
separate from the w and o permissions so that there is no conflict between the permissions needed
to add new children to an entry and the permissions needed to modify existing children of the
same entry. In order to replace values with the Modify operation, a user must have both the w and
o permissions.

Table 9-2 Attribute Permissions

Permission Description

r Read Read attributes. If granted, permits attributes
and values to be returned in a Read or Search
operation.

w Write Modify or add attributes. If granted, permits
attributes and values to be added in a Modify
operation.

o Obliterate Modify and delete attributes. If granted,
permits attributes and values to be deleted in a
Modify operation.

s Search Search entries with specified attributes. If
granted, permits attributes and values to be
included in a Search operation.

c Compare Compare attribute values. If granted, permits
attributes and values to be included in a
Compare operation.

m Make Make attributes on a new LDAP entry below
this entry.

LDAP Access Cont ro l Syntax

Securing WebLogic Server 9-9

Entry Permissions
The following permissions apply to entire LDAP entries.

Table 9-3 Entry Permissions

Permission Description

a Add Add an entry below this LDAP entry. If granted,
permits creation of an entry in the DIT subject to
control on all attributes and values placed on the
new entry at the time of creation. In order to add
an entry, permission must also be granted to add
at least the mandatory attributes.

d Delete Delete this entry. If granted, permits the entry to
be removed from the DIT regardless of controls
on attributes within the entry.

e Export Export entry and all subentries to new location.

If granted, permits an entry and its subentries (if
any) to be exported; that is, removed from the
current location and placed in a new location
subject to the granting of suitable permission at
the destination.

If the last RDN is changed, Rename permission
is also required at the current location.

In order to export an entry or its subentries, there
are no prerequisite permissions to the contained
attributes, including the RDN attribute. This is
true even when the operation causes new
attribute values to be added or removed as the
result of the changes to the RDN.

Managing the Embedded LDAP Server

9-10 Securing WebLogic Server

i Import Import entry and subentries from specified
location.

If granted, permits an entry and its subentries (if
any) to be imported; that is, removed from one
location and placed at the specified location (if
suitable permissions for the new location are
granted).

When you import an entry or its subentries, the
contained attributes, including the RDN
attributes, have no prerequisite permissions.
This is true even when the operation causes new
attribute values to be added or removed as the
result of the changes to RDN.

n RenameDN Change the DN of an LDAP entry. Granting the
Rename permission is necessary for an entry to
be renamed with a new RDN, taking into
account consequential changes to the DN of
subentries. If the name of the superior entry is
unchanged, the grant is sufficient.

When you rename an entry, there are no
prerequisite permissions for the contained
attributes, including the RDN attributes. This is
true even when the operation causes new
attribute values to be added or removed as the
result of the changes of RDN.

b BrowseDN Browse the DN of an entry. If granted, this
permission permits entries to be accessed using
directory operations that do not explicitly
provide the name of the entry.

t ReturnDN Allows DN of entry to be disclosed in an
operation result. If granted, this permission
allows the distinguished name of the entry to be
disclosed in the operation result.

Table 9-3 Entry Permissions

Permission Description

LDAP Access Cont ro l Syntax

Securing WebLogic Server 9-11

Attributes Types
The attribute types to which an access control rule applies should be listed in the ACL where
necessary. The following keywords are available:

[entry] indicates the permissions apply to the entire object. This could mean actions such
as delete the object, or add a child object.

[all] indicates the permissions apply to all attributes of the entry.

If the keyword [all] and another attribute are both specified within an ACL, the more specific
permission for the attribute overrides the less specific permission specified by the [all]
keyword.

Subject Types
Access control rules can be associated with a number of subject types. The subject of an access
control rule determines whether the access control rule applies to the currently connected session.

The following subject types are defined:

authzID—Applies to a single user that can be specified as part of the subject definition.
The identity of that user in the LDAP directory is typically defined as a DN.

Group—Applies to a group of users specified by one of the following object classes:

– groupOfUniqueNames
– groupOfNames

– groupOfUniqueURLs

The first two types of groups contain lists of users, and the third type allows users to be
included in the group automatically based on defined criteria.

Subtree—Applies to the DN specified as part of the subject and all subentries in the
LDAP directory tree.

IP Address—Applies to a particular Internet address. This subject type is useful when all
access must come through a proxy or other server. Applies only to a particular host, not to
a range or subnet.

Public—Applies to anyone connected to the directory, whether they are authenticated or
not.

This—Applies to the user whose DN matches that of the entry being accessed.

Managing the Embedded LDAP Server

9-12 Securing WebLogic Server

Grant/Deny Evaluation Rules
The decision whether to grant or deny a client access to the information in an entry is based on
many factors related to the access control rules and the entry being protected. Throughout the
decision making process, these guiding principles apply:

More specific rules override less specific ones (for example, individual user entries in an
ACL take precedence over a group entry).

If a conflict still exists in spite of the specificity of the rule, the subject of the rule
determines which rule will be applied. Rules based on an IP Address subject are given
the highest precedence, followed by rules that are applied to a specific AuthzID or This
subject. Next in priority are rules that apply to Group subjects. Last priority is given to
rules that apply to Subtree and Public subjects.

When there are conflicting ACL values, Deny takes precedence over Grant.

Deny is the default when there is no access control information. Additionally, an entry
scope takes precedence over a subtree scope.

Securing WebLogic Server 10-1

C H A P T E R 10

Managing the RDBMS Security Store

WebLogic Server provides the option of using an external RDBMS as a datastore that is used by
authorization, role mapping, credential mapping, and certificate registry providers. This
datastore, called the RDBMS security store, is strongly recommended for the use of SAML 2.0
services in two or more WebLogic Server instances in that domain, such as in a cluster.

Note: In order to use the RDBMS security store, the preferred approach is first to create a
domain in which the external RDBMS server is configured. Prior to booting the domain,
you create the tables in the datastore that are required by the RDBMS security store. The
WebLogic Server installation directory contains a set of SQL scripts that create these
tables for each supported database.

The following sections explain how to configure and manage the RDBMS security store:

“Security Providers that Use the RDBMS Security Store” on page 10-2

“Configuring the RDBMS Security Store” on page 10-3

“Upgrading a Domain to Use the RDBMS Security Store” on page 10-11

For the most up-to-date details about the specific database systems that are supported by
WebLogic Server to function as the RDBMS security store, see Supported Configurations.

http://edocs.bea.com/platform/suppconfigs/config_wls.html

Managing the RDBMS Secur i t y S to re

10-2 Securing WebLogic Server

Security Providers that Use the RDBMS Security Store
The following security providers use the RDBMS security store if that store is configured in a
domain:

XACML Authorization provider

XACML Role Mapping provider

The following providers for SAML 1.1:

– SAML Identity Assertion provider V2

– SAML Credential Mapping provider V2

The following providers for SAML 2.0:

– SAML 2.0 Identity Assertion provider

– SAML 2.0 Credential Mapping provider

WebLogic Credential Mapping provider

PKI Credential Mapping provider

Certificate Registry

When the RDBMS security store is configured in a domain, an instance of any of the preceding
security providers that has been created in the security realm automatically uses only the RDBMS
security store as a datastore, and not the embedded LDAP server. WebLogic security providers
configured in the domain that are not among those in the preceding list continue to use their
respective default stores; for example, the WebLogic Authentication provider continues to use
the embedded LDAP server.

Oracle recommends that you configure the RDBMS security store at the time of domain creation.
The Configuration Wizard has been enhanced to simplify this process. This utility includes an
option for testing the RDBMS connection to help ensure that when the domain is booted, the
security policies required to access the domain can be retrieved.

In addition to the Configuration Wizard, WebLogic Server also contains the
RDBMSSecurityStore MBean, which is the interface for configuring the RDBMS security store
via the WebLogic Scripting Tool (WLST).

Conf igur ing the RDBMS Secur i t y S to re

Securing WebLogic Server 10-3

Configuring the RDBMS Security Store
To create and configuring the RDBMS security store in a domain, complete the tasks described
in the following sections:

“Create a Domain with the RDBMS Security Store” on page 10-3

“Create RDBMS Tables in the Security Datastore” on page 10-7

“Configure a JMS Topic for the RDBMS Security Store” on page 10-8

Create a Domain with the RDBMS Security Store
To use the RDBMS security store in a domain, Oracle recommends that you configure the
RDBMS security store at the time you create that domain. Modifying an existing domain in place
to use the RDBMS security store is possible; however, it is not recommended because if the
database connection is not configured correctly, the policies necessary for granting access to the
domain could become unavailable, resulting in a domain that cannot be used.

WebLogic Server provides two ways to create a domain in which the RDBMS security store may
be configured:

By using the Configuration Wizard, which includes an option to configure the RDBMS
security store. This option is available from the Customize Environment and Services
Settings page.

If you choose this option, the Configuration Wizard displays subsequent windows in which
you can:

a. Select the specific database system you wish to use as the RDBMS security store

b. Configure the database connection settings

c. Test the database connection

By using the WebLogic Scripting Tool (WLST) Offline. Operations for creating and
configuring the RDBMS security store are available via the RDBMSSecurityStore MBean.

Regardless of the method you choose to create the domain, be sure to configure the connection
properties for the database that serves as the RDBMS security store as explained in the following
sections.

Managing the RDBMS Secur i t y S to re

10-4 Securing WebLogic Server

Specifying Database Connection Properties
When configuring the RDBMS security store in either the Configuration Wizard or WLST, you
need to specify or configure the following:

RDBMS type

The following RDBMS systems are supported for containing the RDBMS security store:

– Oracle 9i, 10g, and 11g

– MS-SQL 2000 and 2005

– DB2 9.2 and 9.5

– PointBase RDBMS 5.1 included with WebLogic Server

Note: When you use the Configuration Wizard to configure the RDBMS security store, the
Configuration Wizard provides a drop-down list for selecting the database you want
to use. The databases appearing in this drop-down list are not exclusive to only those
supported for the RDBMS security store. Make sure you choose a database that is
supported for this purpose. (See Supported Configurations for the most up-to-date
list.)

JDBC driver and class name for connecting to the RDBMS

RDBMS name, host, port, and URL

Username and password of the domain user who can access the RDBMS system

Optionally, any properties that need to be passed to the RDBMS system

The parameters that you specify in the JDBC driver connection properties attribute must be a
comma-separated list. The following examples show the use of WLST to configure the database
connection properties for Oracle, MS-SQL, and DB2.

Oracle Example
Listing 10-1 shows an example of configuring Oracle for the RDBMS security store.

Listing 10-1 Configuring Oracle for the RDBMS Security Store

create('base_domain','SecurityConfiguration')

cd('/SecurityConfiguration/base_domain')

a=get('DefaultRealm')

http://edocs.bea.com/platform/suppconfigs/config_wls.html

Conf igur ing the RDBMS Secur i t y S to re

Securing WebLogic Server 10-5

cd('Realm/myrealm')

rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")

rdbms.setUsername('ortiz')

rdbms.setPasswordEncrypted('weblogic')

rdbms.setConnectionURL('jdbc:bea:oracle://avitek21:1521')

rdbms.setDriverName('weblogic.jdbc.oracle.OracleDriver')

rdbms.setConnectionProperties('user=ortiz,portNumber=1521,SID=pint101a,ser

verName=avitek21')

MS-SQL Example
Listing 10-2 shows an example of configuring MS-SQL for the RDBMS security store.

Listing 10-2 Configuring MS-SQL for the RDBMS Security Store

create('base_domain','SecurityConfiguration')

cd('/SecurityConfiguration/base_domain')

a=get('DefaultRealm')

cd('Realm/myrealm')

rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")

rdbms.setUsername('garnett')

rdbms.setPasswordEncrypted('weblogic')

rdbms.setConnectionURL('jdbc:bea:sqlserver://avitek6:1433')

rdbms.setDriverName('weblogic.jdbc.sqlserver.SQLServerDriver')

rdbms.setConnectionProperties('user=garnett,portNumber=1433,databaseName=w

ls3,serverName=avitek6')

DB2 Example
Listing 10-3 shows an example of configuring DB2 for the RDBMS security store.

Note: If you choose DB2, you have the option of selecting the WebLogic Type 4 JDBC driver
for DB2 that is provided in WebLogic Server. However, if you use this JDBC driver, you
must also specify the additional property BatchPerformanceWorkaround and set it to
true. If you do not set the BatchPerformanceWorkaround to true in this
configuration, WebLogic Server may fail to boot, generating a SecurityServiceException
message.

Managing the RDBMS Secur i t y S to re

10-6 Securing WebLogic Server

Listing 10-3 Configuring DB2 for the RDBMS Security Store

create('base_domain','SecurityConfiguration')

cd('/SecurityConfiguration/base_domain')

a=get('DefaultRealm')

cd('Realm/myrealm')

rdbms = create("myRDBMSSecurityStore", "RDBMSSecurityStore")

rdbms.setUsername('brady')

rdbms.setPasswordEncrypted('weblogic')

rdbms.setConnectionURL('jdbc:bea:db2://avitek3:50000')

rdbms.setDriverName('weblogic.jdbc.db2.DB2Driver')

rdbms.setConnectionProperties('user=brady,portNumber=50000,databaseName=wl

s,serverName=avitek3,batchPerformanceWorkaround=true')

For more information about specifying connection properties for the WebLogic Type 4 JDBC
driver for DB2, see “The DB2 Driver” in Type 4 JDBC Drivers.

For More Information About Default Connection Properties
Internally, the RDBMS security store uses Oracle Kodo to connect to and interoperate with the
database using the WebLogic Type 4 JDBC driver for DB2. The attributes set on the
RDBMSSecurityStore MBean are converted into attributes set on the properties of Kodo’s
javax.sql.DataSource implementation.

For more information about these attributes, see the following topics:

For more information about the attributes you can set on the RDBMSSecurityStore
MBean, see RDBMSSecurityStoreMBean in the WebLogic Server MBean Reference.

For information about the default database connection properties in the Kodo DataDource,
see “Using the Kodo DataSource” in the JDBC chapter of the Kodo JPA/JDO Reference
Guide, available at the following URL:

http://e-docs.bea.com/kodo/docs41/full/html/ref_guide_dbsetup.html#ref_
guide_dbsetup_builtin

Testing the Database Connection
During the process of configuring the RDBMS security store via the Configuration Wizard, you
are presented with the option of testing the database connection. Oracle strongly recommends
using this option because it can verify that the connection is set up properly. If there were a
problem with the database connection, you might not be able subsequently to boot the domain if

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/RDBMSSecurityStoreMBean.html
http://e-docs.bea.com/wls/docs103/jdbc_drivers/db2.html
http://e-docs.bea.com/kodo/docs41/full/html/ref_guide_dbsetup.html#ref_guide_dbsetup_builtin

Conf igur ing the RDBMS Secur i t y S to re

Securing WebLogic Server 10-7

the security providers that control access to that domain are unable to obtain the necessary
security policies.

For information about configuring the RDBMS security store via the Configuration Wizard, see
“Customizing the Environment” in Creating WebLogic Domains Using the Configuration
Wizard.

Create RDBMS Tables in the Security Datastore
Prior to booting the domain, the database administrator needs to run the SQL script that creates
the RDBMS tables in the datastore used by the RDBMS security store. A set of SQL scripts for
creating these tables for, and also removing them from, each supported RDBMS system is
available in the following WebLogic Server installation directory:
WL_HOME/server/lib

When running the appropriate SQL script for the database serving as the RDBMS security store,
be sure to specify the same connection properties, including the credentials of the user who has
access, the database URL, etc., as specified for that RDBMS during domain creation.

Table 10-1 identifies the name of each of these SQL scripts.

Table 10-1 SQL Scripts for Creating and Removing RDBMS Datastore Tables

RDBMS System SQL Script in WL_HOME/server/lib

For Creating Datastore Tables For Removing Datastore Tables

Oracle 9i, 10g,
11g

rdbms_security_store_oracle.sql rdbms_security_store_oracle_remove.sql

MS-SQL 2000,
2005

rdbms_security_store_sqlserver.sql rdbms_security_store_sqlserver_remove.sql

DB2 9.2, 9.5 rdbms_security_store_db2.sql rdbms_security_store_db2_remove.sql

PointBase 5.1 rdbms_security_store_pointbase.sql rdbms_security_store_pointbase_remove.sql

../../../common/docs103/install/../confgwiz/custom.html

Managing the RDBMS Secur i t y S to re

10-8 Securing WebLogic Server

Configure a JMS Topic for the RDBMS Security Store
If the RDBMS security store is configured in a domain that includes two or more WebLogic
Server instances, or a cluster, Oracle strongly recommends that you also perform the following
tasks:

1. Enable JMS notifications for that domain.

2. Configure a JMS topic that can be used by the RDBMS security store.

JMS notifications enable the security data that is contained in the RDBMS security store, and that
is managed by security providers in the realm, to be synchronized among all server instances in
the domain.

Caution: If you do not configure a JMS topic that can be used by the RDBMS security store
when configured in a multi-server or clustered domain, care should be taken when
making security policy or security configuration updates. If no JMS topic is
configured, it may be necessary to reboot the domain to ensure that all server
instances function consistently with regards to those security updates.

You can enable JMS notifications by booting the domain in which the RDBMS security store has
been configured, and configuring attributes on the RDBMSSecurityStore MBean via either of the
following mechanisms:

WebLogic Scripting Tool

The Security Realms → RealmName → RDDMS Security Store page in the
Administration Console

The attributes of the RDBMSSecurityStore MBean that must be set to enable JMS notifications
are listed and described in Table 10-2.

Conf igur ing the RDBMS Secur i t y S to re

Securing WebLogic Server 10-9

Table 10-2 RDBMSSecurityStore MBean Attributes for Configuring a JMS Topic

Attribute Name Description

JMSTopic The JMS topic to which the Kodo remote commit provider
should publish notifications and subscribe for notifications
sent from other JVMs. The target JMS topic needs to be
pre-deployed.

JMSTopicConnectionFactory The JNDI name of a
javax.jms.TopicConnectionFactory instance to
use for finding JMS topics.

The topic “Connection Factory Configuration” in
Configuring and Managing WebLogic JMS describes the
WebLogic JMS connection factory,
weblogic.jms.ConnectionFactory, which is a
javax.jms.TopicConnectionFactory instance.
Refer to this topic for information about configuring a
connection factory.

NotificationProperties A comma-delimited list of key-value properties to pass to
the JNDI InitialContext on construction, in the form
of xxKey=xxValue, xxKey=xxValue. The following
properties must be specified:
• java.naming.provider.url — Property for

specifying configuration information for the service
provider to use. The value of the property should
contain a URL string. For example:
iiops://localhost:7002

• java.naming.factory.initial — Property for
specifying the initial context factory to use. The value
of the property should be the fully-qualified class name
of the factory class that will create an initial context.
For example:
weblogic.jndi.WLInitialContextFactory

JNDIUserName The identity of any valid user in the security realm who has
access to JNDI.

http://e-docs.bea.com/wls/docs103/jms_admin/basic_config.html#jms_connection_factory_create

Managing the RDBMS Secur i t y S to re

10-10 Securing WebLogic Server

For more information, see the following topics:

Configure topics in the Administration Console Online Help

“Configuring Basic JMS System Resources” in Configuring and Managing WebLogic JMS

Configure the RDBMS security store in the Administration Console Online Help

RDBMSSecurityStoreMBean in the WebLogic Server MBean Reference

Configuring JMS Connection Recovery in the Event of Failure
Normally, the WebLogic Security Service contained in each WebLogic Server instance in a
multi-node domain connects at startup to the JMS server. If a security provider that uses the
RDBMS security store makes a change to its security data, all WebLogic Server instances are
notified via JMS, and the local caches used by the WebLogic Security Service in each server
instance are synchronized to that change.

If the JMS connection fails in a WebLogic Server instance that has been successfully started, the
WebLogic Security Service associated with that server instance starts the JMS connection
recovery process. The recovery process sleeps one second between reconnect attempts. The
recovery process is stopped if the JMS connection failure persists after the number of reconnect
attempts with which the JMSExceptionReconnectAttempts property has been configured is
reached. No further reconnect attempts are made: If a change is made to the security data in one
WebLogic Server instance, the local caches managed by the WebLogic Security Service in other
WebLogic Server instances are not synchronized to that change. However, if the JMS connection
is successfully recovered by other means (such as a server reboot), those caches become
synchronized.

If the JMS connection is not successfully started at the time a WebLogic Server instance is
booted, a timer task that makes reconnect attempts is automatically started. The timer task is

JNDIPassword The password of the user specified in the JNDIUserName
attribute.

JMSExceptionReconnectAttempts The number of reconnect attempts to be made if the JMS
system notifies Kodo of a serious connection error. The
default is 0, which causes an error to be logged, but does not
result in a reconnect attempt.

Table 10-2 RDBMSSecurityStore MBean Attributes for Configuring a JMS Topic

Attribute Name Description

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopics.html
http://e-docs.bea.com/wls/docs103/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureRDBMSSecurityStore.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/RDBMSSecurityStoreMBean.html

Upgrading a Domain to Use the RDBMS Secur i t y S to re

Securing WebLogic Server 10-11

cancelled once the connection is successfully made. Two system properties may be configured
for this timer task:

com.bea.common.security.jms.initialConnectionRecoverInterval

Specifies the delay, in milliseconds, before the connection recovery task is executed. The
default value is 1000, which causes the connection recovery process to be executed after a
delay of one second.

com.bea.common.security.jms.initialConnectionRecoverAttempts

Specifies the maximum number of reconnect attempts that can be made prior to cancelling
the timer task. The default value is 3600, which causes the timer task to be cancelled once
3600 reconnect attempts have been made. No further reconnect attempts are made.

You can calculate the maximum connection polling duration by multiplying the values specified
by each of the preceding system properties. For example, multiplying the default values of these
two properties yields a maximum polling duration of one hour (1000 millisecond delay multiplied
by 3600 reconnect attempts).

Upgrading a Domain to Use the RDBMS Security Store
To upgrade a domain to use the RDBMS security store, Oracle recommends creating a new
domain in which the RDBMS security store is configured. After you create the new domain, you
should export the security data from the security realm of the old domain, and import it into a
security realm of the new domain. When you import security data into a security realm in a
domain that uses the RDBMS security store, the data for the security providers that use the
RDBMS security store is automatically loaded into that datastore. Data for security providers that
do not use the RDBMS security store is automatically imported into the stores that those
providers normally use by default.

It is possible to selectively migrate security providers individually from one security realm to
another. However, when migrating security data to a domain that uses the RDBMS security store,
Oracle recommends migrating the security realm’s data in a single operation.

For information about migrating security realms, see the following topics:

Chapter 8, “Migrating Security Data”

Export data from security realms and Import data into security realms in the Administration
Console Online Help

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ExportDataFromSecurityRealms.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ImportDataIntoSecurityRealms.html

Managing the RDBMS Secur i t y S to re

10-12 Securing WebLogic Server

Securing WebLogic Server 11-1

C H A P T E R 11

Configuring Identity and Trust

This following sections describe how to configure identity and trust for WebLogic Server:

“Private Keys, Digital Certificates, and Trusted Certificate Authorities” on page 11-1

“Configuring Identity and Trust: Main Steps” on page 11-2

“Supported Formats for Identity and Trust” on page 11-3

“Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities” on
page 11-4

“Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities” on
page 11-11

“How WebLogic Server Locates Trust” on page 11-13

“Configuring Keystores for Production” on page 11-13

Before performing the steps in this chapter, review the Identity and Trust section in
Understanding WebLogic Security.

Private Keys, Digital Certificates, and Trusted Certificate
Authorities

Private keys, digital certificates, and trusted certificate authorities establish and verify server
identity and trust.

http://e-docs.bea.com/wls/docs103/secintro/concepts.html#identity_trust

Conf igur ing Ident i t y and T rust

11-2 Securing WebLogic Server

SSL uses public key encryption technology for authentication. With public key encryption, a
public key and a private key are generated for a server. Data encrypted with the public key can
only be decrypted using the corresponding private key and data encrypted with the private key
can only be decrypted using the corresponding public key. The private key is carefully protected
so that only the owner can decrypt messages that were encrypted using the public key.

The public key is embedded in a digital certificate with additional information describing the
owner of the public key, such as name, street address, and e-mail address. A private key and
digital certificate provide identity for the server.

The data embedded in a digital certificate is verified by a certificate authority and digitally signed
with the certificate authority’s digital certificate. Well-know certificate authorities include
Verisign and Entrust.net. The trusted certificate authority (CA) certificate establishes trust for a
certificate.

An application participating in an SSL connection is authenticated when the other party evaluates
and accepts the application’s digital certificate. Web browsers, servers, and other SSL-enabled
applications generally accept as genuine any digital certificate that is signed by a trusted
certificate authority and is otherwise valid. For example, a digital certificate can be invalidated
because it has expired or the digital certificate of the certificate authority used to sign it expired.
A server certificate can be invalidated if the host name in the digital certificate of the server does
not match the URL specified by the client.

Configuring Identity and Trust: Main Steps
To create identity and trust for a server:

1. Obtain digital certificates, private keys, and trusted CA certificates from the CertGen utility,
Sun Microsystem’s keytool utility, or a reputable vendor such as Entrust or Verisign. You
can also use the digital certificates, private keys, and trusted CA certificates provided by the
WebLogic Server kit. The demonstration digital certificates, private keys, and trusted CA
certificates should be used in a development environment only.

2. Store the private keys, digital certificates, and trusted CA certificates. Private keys and trusted
CA certificates are stored in a keystore.

Note: The preferred keystore format is JKS (Java KeyStore). WebLogic Server supports
private keys and trusted CA certificates stored in files or in the WebLogic Keystore
provider for the purpose of backward compatibility only.

Suppor ted Fo rmats f o r Ident i t y and T rust

Securing WebLogic Server 11-3

3. Configure the identity and trust keystores for WebLogic Server in the WebLogic Server
Administration Console. See Configure Keystores in the Administration Console Online
Help.

The remaining sections describe these steps.

Supported Formats for Identity and Trust
The PEM (Privacy Enhanced Mail) format is the preferred format for private keys, digital
certificates, and trusted certificate authorities (CAs). The preferred keystore format is the JKS
(Java KeyStore) format.

A.pem format file begins with this line:
----BEGIN CERTIFICATE----

and ends with this line:
----END CERTIFICATE----

A .pem format file supports multiple digital certificates (for example, a certificate chain can be
included). The order of certificates within the file is important. The server’s digital certificate
should be the first digital certificate in the file, followed by the issuer certificate, and so on. Each
certificate in the chain is followed by its issuer certificate. If the last certificate in the chain is the
self-signed (self-issued) root certificate of the chain, the chain is considered complete. Note that
the chain does not have to be complete.

When using the deprecated file-based private keys, digital certificates, and trusted CAs,
WebLogic Server can use digital certificates in either PEM or distinguished encoding rules
(DER) format.

A .der format file contains binary data for a single certificate. Thus, a.der file can be used only
for a single certificate, while a .pem file can be used for multiple certificates.

Microsoft is often used as a certificate authority. Microsoft issues trusted CA certificates in p7b
format, which must be converted to PEM before they can be used with WebLogic Server. For
more information, see “Converting a Microsoft p7b Format to PEM Format” on page 11-8.

Private key files (meaning private keys not stored in a keystore) must be in PKCS#5/PKCS#8
PEM format.

You can still use private keys and digital certificates used with other versions of WebLogic
Server with this version of WebLogic Server. Convert the private key and digital certificate from
distinguished encoding rules (DER) format to privacy-enhanced mail (PEM) format. For more

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureKeystoresAndSSL.html

Conf igur ing Ident i t y and T rust

11-4 Securing WebLogic Server

information, see the description of the der2pem utility in Using the WebLogic Server Java
Utilities in WebLogic Server Command Reference.

After converting the files, ensure the digital certificate file has the
-----BEGIN CERTIFICATE----- header and the -----END CERTIFICATE----- footer.
Otherwise, the digital certificate will not work.

Note: OpenSSL can add a header to the PEM certificate it generates. In order to use such
certificates with WebLogic Server, everything in front of "-----BEGIN
CERTIFICATE-----" should be removed from the certificate, which you can do with a
text editor.

Obtaining Private Keys, Digital Certificates, and Trusted
Certificate Authorities

Servers need a private key, a digital certificate containing the matching public key, and a
certificate for at least one trusted certificate authority. WebLogic Server supports private keys,
digital certificates, and trusted CA certificates from the following sources:

The demonstration digital certificates, private keys, and trusted CA certificates in the
WL_HOME\server\lib directory and the JAVA_HOME\jre\lib\security directory.

The demonstration digital certificates, private keys, and trusted CA certificates should be
used in a development environment only.

Sun Microsystem’s keytool utility can also be used to generate a private key, a
self-signed digital certificate for WebLogic Server, and a Certificate Signing Request
(CSR).

– Submit the CSR to a certificate authority to obtain a digital certificate for WebLogic
Server.

– Use the keytool utility to update the self-signed digital certificate with a new digital
certificate.

– Use the keytool utility to obtain trust and identity when using WebLogic Server in a
production environment.

For more information about Sun's keytool utility, see the keytool-Key and Certificate
Management Tool description at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html.

http://e-docs.bea.com/wls/docs103/admin_ref/utils.html#der2pem
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

Obta in ing P r i vate Keys , D ig i ta l Ce r t i f i cates , and T rusted Cer t i f i cate Autho r i t i es

Securing WebLogic Server 11-5

Note: When you use the keytool utility, the default key pair generation algorithm is Digital
Signature Algorithm (DSA). WebLogic Server does not support DSA. Specify
another key pair generation and signature algorithm when using WebLogic Server.

The CertGen utility generates digital certificates and private keys that should be used only
for demonstration or testing purposes in a development environment, and not in a
production environment. Use the CertGen utility if you want to set an expiration date in the
digital certificate or specify a correct host name in the digital certificate so that you can use
host name verification. (The demonstration digital certificate provided by WebLogic Server
uses the machine’s default host name as the host name.) For more information about using
the CertGen utility to obtain private keys and digital certificates, see “Using the CertGen
Utility” on page 11-6.

Note: The Certificate Request Generator servlet is deprecated. Use the keytool utility from
Sun Microsystems in place of the Certificate Request Generator servlet. For more
information about keytool, see “Common Keytool Commands” on page 11-5.

Common Keytool Commands
Table 11-1 lists keytool commands you use when creating and using JKS keystores with
WebLogic Server.

Note: The keytool utility is a product of Sun Microsystems. Therefore, Oracle does not
provide complete documentation on the utility. For more information, see the
keytool-Key and Certificate Management Tool description at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html.

Table 11-1 Commonly Used keytool Commands

Command Description

keytool -genkey -keystore
keystorename -storepass
keystorepassword

Generates a new private key entry and self-signed digital
certificate in a keystore. If the keystore does not exist, it is
created.

keytool -import -alias
aliasforprivatekey
-file privatekeyfilename.pem
-keypass privatekeypassword
-keystore keystorename
-storepass keystorepassword

Updates the self-signed digital certificate with one signed
by a trusted CA.

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

Conf igur ing Ident i t y and T rust

11-6 Securing WebLogic Server

Using the CertGen Utility
Note: The CertGen utility generates digital certificates and private keys that should only be

used for demonstration or testing purposes, not in a production environment.

keytool -import -alias rootCA
-trustcacerts -file RootCA.pem
-keystore trust.jks -storepass
keystorepassword

keytool -import -alias
intermediate -trustcacerts
-file Intermediate.pem
-keystore keystorename
-storepass keystorepassword

Creates a custom keystore to be used for holding an
intermediate CA certificate.
• The first keytool command creates the keystore,

trust.jks, which holds the root CA certificate.
• The second keytool command imports the intermediate

CA certificate into trust.jks.

This enables WebLogic Server’s SSL implementation to
transmit the intermediate certificate with the server’s public
certificate to the client during the SSL handshake.

keytool -import -alias
aliasfortrustedca
-trustcacerts -file
trustedcafilename.pem
-keystore keystorename
-storepass keystorepassword

Loads a trusted CA certificate into a keystore. If the
keystore does not exist, it is created.

keytool -certreq -alias alias
-sigalg sigalg
-file certreq_file
-keypass privatekeypassword
-storetype keystoretype
-keystore keystorename
-storepass keystorepassword

Generates a Certificate Signing Request (CSR), using the
PKCS#10 format, and a self-signed certificate with a
private key.

Stores the CSR in the specified certreq_file, and the
certificate/private key pair as a key entry in the specified
keystore under the specified alias.

keytool -list -keystore
keystorename

Displays what is in the keystore.

keytool -delete -keystore
keystorename -storepass
keystorepassword -alias
privatekeyalias

Deletes the entry identified by the specified alias from the
keystore.

keytool -help Provides online help for keytool.

Table 11-1 Commonly Used keytool Commands (Continued)

Command Description

Obta in ing P r i vate Keys , D ig i ta l Ce r t i f i cates , and T rusted Cer t i f i cate Autho r i t i es

Securing WebLogic Server 11-7

The CertGen utility provides command line options to specify a CA certificate and key to be used
for issuing generated certificates. The digital certificates generated by the CertGen utility have
the host name of the machine on which they were generated as the value for its common name
field (cn) by default only. Command line options let you specify values for the cn and other
Subject domain name (DN) fields, such as orgunit, organization, locality, state, and
countrycode.

The CertGen utility generates public certificate and private key files in PEM and DER formats.
On Windows, double-click.der files to view the details of the generated digital certificate. The
.pem files can be used when you boot WebLogic Server or use the digital certificates with a
client.

By default, the CertGen utility uses the following demonstration digital certificate and
private-key files: CertGenCA.der and CertGenCAKey.der. CertGen looks for these files in the
current directory, or in the WL_HOME/server/lib directory, as specified in the weblogic.home
system property or the CLASSPATH. If you want to use these files, you need not specify CA files
on the command line. Alternatively, you can specify CA files on the command line.

For information about the CertGen utility’s syntax and arguments, see CertGen in the WebLogic
Server Command Reference.

For an example that generates a certificate and private key using the CertGen utility, and then
creates a keystore and stores a private key using the ImportPrivateKey utility, see
ImportPrivateKey in the WebLogic Server Command Reference.

Note: If you do not explicitly specify a hostname with the -cn option, CertGen uses the JDK
InetAddress.getHostname() method to get the hostname that it puts in the Subject
common name. The getHostName() method works differently on different platforms. It
returns a fully qualified domain name (FQDN) on some platforms (for example, Solaris)
and a short host name on other platforms (for example, Windows NT). On Solaris, the
result of InetAddress.getHostname() depends on how the hosts entry is configured
in the /etc/nsswitch.conf file.

If WebLogic Server is acting as a client (and by default host name verification is
enabled), you need to ensure that the host name specified in the URL matches the Subject
common name in the server certificate. Otherwise, connections will fail because the host
names do not match.

Using Your Own Certificate Authority
Many companies act as their own certificate authority. To use those trusted CA certificates with
WebLogic Server:

http://e-docs.bea.com/wls/docs103/admin_ref/utils.html#certgen
http://e-docs.bea.com/wls/docs103/admin_ref/utils.html#ImportPrivateKey

Conf igur ing Ident i t y and T rust

11-8 Securing WebLogic Server

1. Ensure the trusted CA certificates are in PEM format.

– If the trusted CA certificate is in DER format, use the der2pem utility to convert them.

– If the trusted CA certificate was issued by Microsoft, see “Converting a Microsoft p7b
Format to PEM Format” on page 11-8.

– If the trusted CA certificate has a custom file type, use the steps in “Converting a
Microsoft p7b Format to PEM Format” on page 11-8 to convert the trusted CA
certificate to PEM format.

2. Create a trust keystore. For more information, see “How WebLogic Server Locates Trust” on
page 11-13.

3. Store the trusted CA certificate in the trust keystore. For more information, see “How
WebLogic Server Locates Trust” on page 11-13.

4. Configure WebLogic Server to use the trust keystore. For more information, see “Configuring
Keystores for Production” on page 11-13.

Converting a Microsoft p7b Format to PEM Format
Digital certificates issued by Microsoft are in a format (p7b) that cannot be used by WebLogic
Server. The following example converts a digital certificate in p7b (PKCS#7) format to PEM
format on Windows XP:

1. In Windows Explorer, select the file (filename.p7b) you want to convert. Double-click on
the file to display a Certificates window.

2. In the left pane of the Certificates window, expand the file.

3. Expand the Certificates folder to display a list of certificates.

4. Select a certificate to convert to PEM format. Right-click on the certificate, then choose All
Tasks → Export to display the Certificate Export Wizard.

5. In the wizard, click Next

6. Select the Base-64 encoded X.509 (.CER) option. Then click Next. (Base-64 encoded is
the PEM format.)

7. In the File name: field, enter a name for the converted digital certificate; then click Nest.

Note: The wizard appends a.cer extension to the output file The .cer extension is a generic
extension which is appended to both base-64 encoded certificates and DER certificates.
You can change the extension to .pem after you exit the wizard.

http://e-docs.bea.com/wls/docs103/admin_ref/utils.html#der2pem

Obta in ing P r i vate Keys , D ig i ta l Ce r t i f i cates , and T rusted Cer t i f i cate Autho r i t i es

Securing WebLogic Server 11-9

8. Verify that the settings are correct. If the settings are correct, click Finish; if they are not
correct, click Back and make any necessary modifications.

Note: For p7b certificate files that contain certificate chains, you need to concatenate the issuer
PEM digital certificates to the certificate file. The resulting certificate file can be used by
WebLogic Server.

Obtaining a Digital Certificate for a Web Browser
Low-security browser certificates are easy to acquire and can be done from within the Web
browser, usually by selecting the Security menu item in Options or Preferences. Go to the
Personal Certificates item and ask to obtain a new digital certificate. You will be asked for some
information about yourself.

The digital certificate you receive contains public information, including your name and public
key, and additional information you would like authenticated by a third party, such as your E-mail
address. Later you will present the digital certificate when authentication is requested.

As part of the process of acquiring a digital certificate, the Web browser generates a
public-private key pair. The private key should remain secret. It is stored on the local file system
and should never leave the Web browser's machine, to ensure that the process of acquiring a
digital certificate is itself safe. With some browsers, the private key can be encrypted using a
password, which is not stored. When you encrypt your private key, you will be asked by the Web
browser for your password at least once per session.

Note: Digital certificates obtained from Web browsers do not work with other types of Web
browsers or on different versions of the same Web browser.

Using Certificate Chains (Deprecated)
Note: The use of file-based certificate chains is deprecated. Now the whole certificate chain is

imported into a keystore. The steps in this section are provided for the purpose of
backward compatibility only.

To use certificate chains with WebLogic Server:

1. Ensure that all the digital certificates are in PEM format. If they are in DER format, you can
convert them using the der2pem utility. If you are using a digital certificate issued by
Microsoft, see “Converting a Microsoft p7b Format to PEM Format” on page 11-8. You can
use the steps in the section to convert other types of digital certificates. Save the digital
certificate in Base 64 format.

http://e-docs.bea.com/wls/docs103/admin_ref/utils.html#der2pem

Conf igur ing Ident i t y and T rust

11-10 Securing WebLogic Server

2. Open a text editor and include all the digital certificate files into a single file. The order is
important. The server digital certificate should be the first digital certificate in the file. The
issuer of that digital certificate should be the next in the file and so on until you get to the
self-signed root certificate authority certificate. This digital certificate should be the last
certificate in the file.

You cannot have blank lines between digital certificates.

3. Specify the file in the Server Certificate File Name field on the Configuration → SSL page
in the WebLogic Server Administration Console.

Listing 11-1 shows a sample certificate chain.

Listing 11-1 Sample File with Certificate Chain

-----BEGIN CERTIFICATE-----
MIICyzCCAjSgAwIBAgIBLDANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCVVMxEzARBgNVBA
gTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBGcmFuY2lzY28xFTATBgNVBAoTDEJFQSBXZWJM
b2dpYzERMA8GA1UECxMIU2VjdXJpdHkxLzAtBgNVBAMTJkRlbW8gQ2VydGlmaWNhdGUgQXV0aG
9yaXR5IENvbnN0cmFpbnRzMR8wHQYJKoZIhvcNAQkBFhBzZWN1cml0eUBiZWEuY29tMB4XDTAy
MTEwMTIwMDIxMloXDTA2MTAxNTIwMDIxMlowgZ8xCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYW
xpZm9ybmlhMRYwFAYDVQQHEw1TYW4gRnJhbmNpc2NvMRUwEwYDVQQKEwxCRUEgV2ViTG9naWMx
ETAPBgNVBAsTCFNlY3VyaXR5MRkwFwYDVQQDExB3ZWJsb2dpYy5iZWEuY29tMR4wHAYJKoZIhv
cNAQkBFg9zdXBwb3J0QGJlYS5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMJX8nKU
gsFej8pEu/1IVcHUkwY0c2JbBzOryu3sce4QjX+rGxiCjoPm2MY=yts2BvonuJ6CztdZf8B/LB
EWCz+qRrtdFn9mKSZWGvrAkmMPz2RhXEOThpoRo5kZz2FQ9XF/PxIJXTYCM7yooRBwXoKYjquR
wiZNtUiU9kYi6Z3prAgMBAAEwDQYJKoZIhvcNAQEEBQADgYEAh2eqQGxEMUnNTwEUD
0tBq+7YuAkjecEocGXvi2G4YSoWVLgnVzJoJuds3c35KE6sxBe1luJQuQkE9SzALG/6lDIJ5ct
PsHFmZzZxY7scLl6hWj5ON8oN2YTh5Jo/ryqjvnZvqiNIWe/gqr2GLIkajC0mz4un1LiYORPig
3fBMH0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIC+jCCAmOgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCVVMxEzARBgNVBA
gTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBGcmFuY2lzY28xFTATBgNVBAoTDEJFQSBXZWJM
b2dpYzERMA8GA1UECxMIU2VjdXJpdHkxLzAtBgNVBAMTJkRlbW8gQ2VydGlmaWNhdGUgQXV0aG
9yaXR5IENvbnN0cmFpbnRzMR8wHQYJKoZIhvcNAQkBFhBzZWN1cml0eUBiZWEuY29tMB4XDTAy
MTEwMTIwMDIxMVoXDTA2MTAxNjIwMDIxMVowgbYxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYW
xpZm9ybmlhMRYwFAYDVQQHEw1TYW4gRnJhbmNpc2NvMRUwEwYDVQQKEwxCRUEgV2ViTG9naWMx
ETAPBgNVBAsTCFNlY3VyaXR5MS8wLQYDVQQDEyZEZW1vIENlcnRpZmljYXRlIEF1dGhvcml0eS
BDb25zdHJhaW50czEfMB0GCSqGSIb3DQEJARYQc2VjdXJpdHlAYmVhLmNvbTCBnzANBgkqhkiG
9w0BAQEFAAOBjQAwgYkCgYEA3ynD8l5JfLob4g6d94dNtI0Eep6QNl9bblmswnrjIYz1BVjjRj
NVal9fRs+8jvm85kIWlerKzIMJgiNsj50WlXzNX6orszggSsW15pqV0aYE9Re9K
CNNnORlsLjmRhuVxg9rJFEtjHMjrSYr2IDFhcdwPgIt0meWEVnKNObSFYcCAwEAAaMWMBQwEgY
DVR0TAQH/BAgwBgEB/wIBATANBgkqhkiG9w0BAQQFAAOBgQBS+0oqWxGyqbZO028zf9tQT2RKo

Stor ing P r i vate Keys , D ig i ta l Ce r t i f i ca tes , and T rusted Cer t i f i cate Autho r i t i es

Securing WebLogic Server 11-11

jfuwywrDoGW96Un5IqpFnBHIu5atliJo3OUpiH18KkwLN8DVP/3t3K3O3kXdIuLbqAL0i5xyBl
Ahr7gE5eVhIyeMg7ETBPLyGO2BF13Y24LlsO+MX9jW7fxMraPN608QeJXkZw0E0cGwrw2AQ==
-----END CERTIFICATE-----

Storing Private Keys, Digital Certificates, and Trusted
Certificate Authorities

Once you have obtained private keys, digital certificates, and trusted CA certificates, you need to
store them so that WebLogic Server can use them to find and verify identity. Private keys, their
associated digital certificates, and trusted CA certificates are stored in keystores. The keystores
can be configured through the WebLogic Server Administration Console or specified on the
command line. Use the Configuration → Keystore page in the WebLogic Server
Administration Console to configure identity and trust keystores for WebLogic Server. See
Configuring Keystores in the AAdministration Console Online Help.

For the purpose of backward compatibility, private keys and trusted CA certificates can be stored
in a file or in a JKS keystore accessed via the WebLogic Keystore provider. In addition, trusted
CA certificates can be stored in a JKS keystore. Use the Configuration → SSL page of the
WebLogic Server Administration Console to specify identity and trust options when using a file
or a JKS keystore accessed via the WebLogic Keystore provider.

Guidelines for Using Keystores
When you configure SSL, you have to decide how identity and trust will be stored. Although one
keystore can be used for both identity and trust, Oracle recommends using separate keystores for
both identity and trust because the identity keystore (private key/digital certificate pairs) and the
trust keystore (trusted CA certificates) may have different security requirements. For example:

For trust, you only have to put the certificates (non-sensitive data) in the keystore while for
identity, you have to put the certificate and private key (sensitive data) in the keystore.

The identity keystore may be prohibited by company policy from ever being put in the
network while the trust keystore can be distributed over the network.

The identity keystore may be protected by the operating system for both reading and
writing by non-authorized users while the trust keystore only needs to be write protected.

The identity keystore password is generally known to fewer people than the password for
the trust keystore.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Corecoreserverserverconfigkeystoretitle.html

Conf igur ing Ident i t y and T rust

11-12 Securing WebLogic Server

In general, systems within a domain have the same trust rules (use the same set of trusted CAs),
while they tend to have per-server identity. Identity requires a private key, and private keys
should not be copied from one system to another. Therefore, you should maintain separate
identity keystores for each system, each keystore containing only the server identity needed for
that system. However, trust keystores can be copied from system to system; thus making it easier
to standardize trust rules.

Identity is more likely to be stored in hardware keystores such as nCipher. Trust can be stored in
a file-based JDK keystore without having security issues because a trust store contains only
certificates, not private keys.

Creating a Keystore and Loading Private Keys and Trusted
Certificate Authorities into the Keystore
A keystore is for the secure storage and management of private keys/digital certificate pairs and
trusted CA certificates. Use the following mechanisms to create a keystore and load private keys
and trusted CA certificates into the keystore:

The WebLogic ImportPrivateKey utility. The ImportPrivateKey utility allows you to
take private key and digital certificate files and load them into a keystore. For more
information, see ImportPrivateKey in the WebLogic Server Command Reference.

Sun Microsystem’s keytool utility. Use the keytool utility to generate a private
key/digital certificate pair and then import the signed private key into the keystore. For
more information, see “How WebLogic Server Locates Trust” on page 11-13. While you
can use the keytool utility to generate new private keys and digital certificates and add
them to a keystore, the utility does not allow you to take an existing private key from a file
and import it into the keystore. Instead, use the WebLogic ImportPrivateKey utility.

Note: The keytool utility does allow you to import trusted CA certificates from a file into
a keystore.

Custom utilities. WebLogic Server can use keystores created with custom tools or utilities.
How to create and use these utilities is outside the scope of this document.

All private key entries in a keystore are accessed by WebLogic Server via unique aliases. You
specify the alias when loading the private key into the keystore. Aliases are case-insensitive; the
aliases Hugo and hugo would refer to the same keystore entry. Aliases for private keys are
specified in the Private Key Alias field on the Configuration → SSL page in the WebLogic
Server Administration Console. Although WebLogic Server does not use the alias to access
trusted CA certificates, the keystore does require an alias when loading a trusted CA certificate
into the keystore.

http://e-docs.bea.com/wls/docs103/admin_ref/utils.html#ImportPrivateKey

How WebLog ic Se rve r Locates T rust

Securing WebLogic Server 11-13

All certificate authorities in a keystore identified as trusted by WebLogic Server are trusted.

Configuring Demo Certificates for Clients
To use SSL in development mode between a client such as Eclipse and WebLogic Server,
configure the demo certificates in the JVM for both the client and the server:

1. Copy BEA_HOME/wlserver_10.3/server/lib/cacerts to the jre/lib/security
directory of the client’s JVM. For example, if you are using Eclipse with its default JDK, copy
cacerts to BEA_HOME/jdk160_03/jre/lib/security.

2. Copy BEA_HOME/wlserver_10.3/server/lib/cacerts to the jre/lib/security directory of
the WebLogic Server’s JVM. For a domain using JRockit, copy cacerts to
BEA_HOME/jrockit90_160_02/jre/lib/security.

3. Restart both WebLogic Server and the client.

As an alternative, you can import the certificates, rather than copying the cacerts files.

How WebLogic Server Locates Trust
WebLogic Server uses the following algorithm when it loads its trusted CA certificates:

1. If the keystore is specified by the -Dweblogic.security.SSL.trustedCAkeystore
command-line argument, load the trusted CA certificates from that keystore.

2. Else if the keystore is specified in the configuration file (config.xml), load trusted CA
certificates from the specified keystore. If the server is configured with DemoTrust, trusted
CA certificates will be loaded from the WL_HOME\server\lib\DemoTrust.jks and the
JDK cacerts keystores.

3. Else if the trusted CA file is specified in the configuration file (config.xml), load trusted CA
certificates from that file (this is only for compatibility with 6.x SSL configurations).

4. Else load trusted CA certificates from WL_HOME\server\lib\cacerts keystore.

Configuring Keystores for Production
By default, WebLogic Server is configured with two keystores:

DemoIdentity.jks—Contains a demonstration private key for WebLogic Server. This
keystore contains the identity for WebLogic Server.

Conf igur ing Ident i t y and T rust

11-14 Securing WebLogic Server

DemoTrust.jks—Contains the trusted certificate authorities from the
WL_HOME\server\lib\DemoTrust.jks and the JDK cacerts keystores. This keystore
establishes trust for WebLogic Server.

These keystores are located in the WL_HOME\server\lib directory. For testing and development
purposes, the keystore configuration is complete. However, do not use the demonstration
keystores in a production environment. Because the digital certificates and trusted CA certificates
in the demonstration keystores are signed by a WebLogic Server demonstration certificate
authority, a WebLogic Server installation using the demonstration keystores will trust any
WebLogic Server installation that also uses the demonstration keystores. You want to create a
secure environment where only your installations trust each other.

To configure keystores for use in a production environment:

1. Obtain private keys and digital certificates from a reputable certificate authority such as
Verisign, Inc. or Entrust.net. See “Obtaining Private Keys, Digital Certificates, and Trusted
Certificate Authorities” on page 11-4.

2. Create identity and trust keystores. See “Creating a Keystore and Loading Private Keys and
Trusted Certificate Authorities into the Keystore” on page 11-12.

3. Load the private keys and trusted CAs into the identity and trust keystores. See “Creating a
Keystore and Loading Private Keys and Trusted Certificate Authorities into the Keystore” on
page 11-12.

4. Use the WebLogic Server Administration Console to configure the identity and trust
keystores. See Configure Keystores in the Administration Console Online Help.

You can also use the WebLogic Scripting Tool or Java Management Extensions (JMX) APIs to
create a new security configuration. For more information see the WebLogic Scripting Tool and
Developing Custom Management Utilities with JMX manuals.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureKeystoresAndSSL.html
http://e-docs.bea.com/wls/docs103/config_scripting/index.html
http://e-docs.bea.com/wls/docs103/jmx/index.html

Securing WebLogic Server 12-1

C H A P T E R 12

Configuring SSL

Configuring SSL is an optional step; however, Oracle recommends SSL for production
environments. The following sections describe how to configure SSL for WebLogic Server.

Notes: The following sections apply to WebLogic Server deployments that use the security
features in this release of WebLogic Server as well as deployments that use Compatibility
Security.

All machines must be kept up to date with the current set of recommended patches from
the operating system vendors.

“SSL: An Introduction” on page 12-2

“One-Way and Two-Way SSL” on page 12-2

“Setting Up SSL: Main Steps” on page 12-2

“Using Host Name Verification” on page 12-3

“Enabling SSL Debugging” on page 12-4

“SSL Session Behavior” on page 12-5

“SSL Certificate Validation” on page 12-7

“Using the nCipher JCE Provider with WebLogic Server” on page 12-12

“Specifying the Version of the SSL Protocol” on page 12-14

Conf igur ing SSL

12-2 Securing WebLogic Server

SSL: An Introduction
Secure Sockets Layer (SSL) provides secure connections by allowing two applications
connecting over a network to authenticate each other’s identity and by encrypting the data
exchanged between the applications. Authentication allows a server and optionally a client to
verify the identity of the application on the other end of a network connection. Encryption makes
data transmitted over the network intelligible only to the intended recipient.

SSL in WebLogic Server is an implementation of the SSL 3.0 and Transport Layer Security
(TLS) 1.0 specifications.

WebLogic Server supports SSL on a dedicated listen port which defaults to 7002. To establish an
SSL connection, a Web browser connects to WebLogic Server by supplying the SSL listen port
and the HTTPs protocol in the connection URL, for example, https://myserver:7002.

Using SSL is computationally intensive and adds overhead to a connection. Avoid using SSL in
development environments when it is not necessary. However, always use SSL in a production
environment.

One-Way and Two-Way SSL
SSL can be configured one-way or two-way:

With one-way SSL, the server is must present a certificate to the client, but the client is not
required to present a certificate to the server. The client must authenticate the server, but
the server accepts a connection from any client. One-way SSL is common on the Internet
where customers want to create secure connections before they share personal data. Often,
clients will also use SSL to log on in order that the server can authenticate them.

With two-way SSL (SSL with client authentication), the server presents a certificate to the
client and the client presents a certificate to the server. WebLogic Server can be configured
to require clients to submit valid and trusted certificates before completing the SSL
connection.

Setting Up SSL: Main Steps
To set up SSL:

1. Obtain an identity (private key and digital certificates) and trust (certificates of trusted
certificate authorities) for WebLogic Server. Use the digital certificates, private keys, and
trusted CA certificates provided by the WebLogic Server kit, the CertGen utility, Sun

Us ing Host Name Ver i f i ca t i on

Securing WebLogic Server 12-3

Microsystem’s keytool utility, or a reputable vendor such as Entrust or Verisign to perform
this step.

2. Store the identity and trust. Private keys and trusted CA certificates which specify identity and
trust are stored in a keystore.

Note: This release of WebLogic Server supports private keys and trusted CA certificates
stored in files, or in the WebLogic Keystore provider for the purpose of backward
compatibility only.

3. Configure the identity and trust keystores for WebLogic Server in the WebLogic Server
Administration Console. See Configure Keystores in the Administration Console Online
Help.

4. Set SSL configuration options for the private key alias and password in the WebLogic Server
Administration Console. Optionally, set configuration options that require the presentation of
client certificates (for two-way SSL). See Configure SSL and Configure two-way SSL in the
Administration Console Online Help.

Note: To enable a WebLogic Server instance to use a FIPS-compliant (FIPS 140-2) crypto
module in the server’s SSL implementation, make sure that the server start script (for
example, startWebLogic.cmd/sh) contains the following:

jsafeFIPS.jar is added to the PRE_CLASSPATH variable.

The command line argument -Dweblogic.security.SSL.nojce=true is
specified.

FIPS 140-2 is a standard that describes U.S. Federal government requirements for
sensitive, but unclassified use.

For information on configuring identity and trust for WebLogic Server, see “Obtaining Private
Keys, Digital Certificates, and Trusted Certificate Authorities” on page 11-4 and “Storing Private
Keys, Digital Certificates, and Trusted Certificate Authorities” on page 11-11.

Using Host Name Verification
A host name verifier ensures the host name in the URL to which the client connects matches the
host name in the digital certificate that the server sends back as part of the SSL connection. A host
name verifier is useful when an SSL client (or a WebLogic Server acting as an SSL client)
connects to an application server on a remote host. It helps to prevent man-in-the-middle attacks.

By default, WebLogic Server has host name verification enabled. As a function of the SSL
handshake, WebLogic Server compares the common name in the SubjectDN in the SSL server’s

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureKeystoresAndSSL.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Corecoreserverserverconfigssltitle.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureTwowaySSL.html

Conf igur ing SSL

12-4 Securing WebLogic Server

digital certificate with the host name of the SSL server used to initiate the SSL connection. If
these names do not match, the SSL connection is dropped. The SSL client is the actual party that
drops the SSL connection if the names do not match.

If anything other than the default behavior is desired, either turn off host name verification or
configure a custom host name verifier. Turning off host name verification leaves WebLogic
Server vulnerable to man-in-the-middle attacks. Oracle recommends leaving host name
verification on in production environments.

In this release of WebLogic Server, the host name verification feature is updated so that if the
host name in the certificate matches the local machine’s host name, host name verification passes
if the URL specifies localhost, 127.0.01, or the default IP address of the local machine.

For more information, see the following topics in the Administration Console Online Help:

Verify Host Name Verification is enabled

Disable Host Name Verification

Configure a Custom Host Name Verifier

Configuring SSL

Enabling SSL Debugging
SSL debugging provides more detailed information about the SSL events that occurred during an
SSL handshake. The SSL debug trace displays information about:

Trusted certificate authorities

SSL server configuration information

Server identity (private key and digital certificate)

The encryption strength that is allowed

Enabled ciphers

SSL records that were passed during the SSL handshake

SSL failures detected by WebLogic Server (for example, trust and validity checks and the
default host name verifier)

I/O related information

Use the following command-line properties to enable SSL debugging:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/VerifyHostNameVerification.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/DisableHostNameVerification.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureACustomHostNameVerifier.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Corecoreserverserverconfigssltitle.html

SSL Sess ion Behav io r

Securing WebLogic Server 12-5

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

You can include SSL debugging properties in the start script of the SSL server, the SSL client,
and the Node Manager. For a Managed Server started by the Node Manager, specify this
command-line argument on the Remote Start page for the Managed Server.

SSL debugging dumps a stack trace whenever an ALERT is created in the SSL process. The types
and severity of the ALERTS are defined by the Transport Layer Security (TLS) specification.

The stack trace dumps information into the log file where the ALERT originated. Therefore,
when tracking an SSL problem, you may need to enable debugging on both sides of the SSL
connection (on both the SSL client or the SSL server). The log file contains detailed information
about where the failure occurred. To determine where the ALERT occurred, confirm whether
there is a trace message after the ALERT. An ALERT received after the trace message indicates
the failure occurred on the peer. To determine the problem, you need to enable SSL debugging
on the peer in the SSL connection.

When tracking an SSL problem, review the information in the log file to ensure:

The correct config.xml file was loaded

The setting for domestic, or export, is correct

The trusted certificate authority was valid and correct for this server.

The host name check was successful

The certificate validation was successful

Note: Sev 1 type 0 is a normal close ALERT, not a problem.

SSL Session Behavior
WebLogic Server allows SSL sessions to be cached. Those sessions live for the life of the server.

Clients that use SSL sockets directly can control the SSL session cache behavior. The SSL
session cache is specific to each SSL context. All SSL sockets created by SSL socket factory
instances returned by a particular SSL context can share the SSL sessions.

Clients default to resuming sessions at the same IP address and port. Multiple SSL sockets that
use the same host and port share SSL sessions by default, assuming the SSL sockets are using the
same underlying SSL context.

Clients that are not configured to use SSL sessions must call
setEnableSessionCreation(false) on the SSL socket to ensure that no SSL sessions are

Conf igur ing SSL

12-6 Securing WebLogic Server

cached. This setting only controls whether an SSL session is added to the cache; it does not stop
an SSL socket from finding an SSL session that was already cached. For example, SSL socket 1
caches the session, SSL socket 2 sets setEnableSessionCreation to false but it can still
reuse the SSL session from SSL socket 1 because that session was put in the cache.

SSL sessions exist for the lifetime of the SSL context; they are not controlled by the lifetime of
the SSL socket. Therefore, creating a new SSL socket and connecting to the same host and port
used by a previous session can resume a previous session as long as you create the SSL socket
using an SSL socket factory from the SSL context that has the SSL session in its cache.

By default, clients that use HTTPS URLs get a new SSL session for each URL because each URL
uses a different SSL context and therefore SSL sessions can not be shared or reused. You can
retrieve the SSL session by using the weblogic.net.http.HttpsClient class or the
weblogic.net.http.HttpsURLConnection class. Clients can also resume URLs by sharing a
SSLSocket Factory between them.

Session caching is maintained by the SSL context, which can be shared by threads. A single
thread has access to the entire session cache, not just one SSL session, so multiple SSL sessions
can be used and shared in a single (or multiple) thread.

The following command-line arguments are ignored:

weblogic.security.SSL.sessionCache.size

weblogic.security.SSL.sessionCache.ttl

Configuring RMI over IIOP with SSL
Use SSL to protect Internet Interop-Orb-Protocol (IIOP) connections to Remote Method
Invocation (RMI) remote objects. SSL secures connections through authentication and encrypts
the data exchanged between objects.

To use SSL to protect RMI over IIOP connections:

1. Configure WebLogic Server to use SSL.

2. Configure the client Object Request Broker (ORB) to use SSL. Refer to the product
documentation for your client ORB for information about configuring SSL.

3. Use the host2ior utility to print the WebLogic Server IOR to the console. The host2ior
utility prints two versions of the interoperable object reference (IOR), one for SSL
connections and one for non-SSL connections. The header of the IOR specifies whether or
not the IOR can be used for SSL connections.

SSL Cer t i f i ca te Va l idat ion

Securing WebLogic Server 12-7

4. Use the SSL IOR when obtaining the initial reference to the CosNaming service that accesses
the WebLogic Server JNDI tree.

For more information about using RMI over IIOP, see Programming WebLogic RMI.

SSL Certificate Validation
WebLogic Server ensures that each certificate in a certificate chain was issued by a certificate
authority. All X509 V3 CA certificates used with WebLogic Server must have the Basic
Constraint extension defined as CA, thus ensuring that all certificates in a certificate chain were
issued by a certificate authority. By default, any certificates for certificate authorities not meeting
this criteria are rejected. This section describes the command-line argument that controls the level
of certificate validation.

Note: If WebLogic Server is booted with a certificate chain that will not pass the certificate
validation, an information message is logged noting that clients could reject it.

Controlling the Level of Certificate Validation
By default WebLogic Server rejects any certificates in a certificate chain that do not have the
Basic Constraint extension defined as CA. However, you may be using certificates that do not
meet this requirement or you may want to increase the level of security to conform to the IETF
RFC 2459 standard. Use the following command-line argument to control the level of certificate
validation performed by WebLogic Server:
-Dweblogic.security.SSL.enforceConstraints=option

Table 12-1 describes the options for the command-line argument.

http://e-docs.bea.com/wls/docs103/rmi/index.html

Conf igur ing SSL

12-8 Securing WebLogic Server

Accepting Certificate Policies in Certificates
WebLogic Server offers limited support for Certificate Policy Extensions in X.509 certificates.
Use the weblogic.security.SSL.allowedcertificatepolicyids argument to provide a
comma separated list of Certificate Policy IDs. When WebLogic Server receives a certificate with
a critical Certificate Policies Extension, it verifies whether any Certificate Policy is on the list of
allowed certificate policies and whether there are any unsupported policy qualifiers. This release

Table 12-1 Options for -Dweblogic.security.SSL.enforceConstraints

Option Description

strong or true Use this option to ensure that the Basic Constraints extension on the CA
certificate is defined as CA.
For example:
-Dweblogic.security.SSL.enforceConstraints=strong

or
-Dweblogic.security.SSL.enforceConstraints=true

By default, WebLogic Server performs this level of certificate
validation.

strict Use this option to ensure the Basic Constraints extension on the CA
certificate is defined as CA and set to critical. This option enforces the
IETF RFC 2459 standard.

For example:
-Dweblogic.security.SSL.enforceConstraints=strict

This option is not the default because a number of commercially
available CA certificates do not conform to the IETF RFC 2459
standard.

off Use this option to turn off checking for the Basic Constraints extension.
The rest of the certificate is still validated.

For example:
-Dweblogic.security.SSL.enforceConstraints=off

Oracle does not recommend using this option in a production
environment. Instead, purchase new CA certificates that comply with
the IETF RFC 2459 standard. CA certificates from most commercial
certificate authorities should work with the default strong option.

SSL Cer t i f i ca te Va l idat ion

Securing WebLogic Server 12-9

of WebLogic Server supports Certification Practice Statement (CPS) Policy qualifiers and does
not support User Notice qualifiers. A certificate is also accepted if it contains a special policy
anyPolicy with the ID 2.5.29.32.0, which indicates that the CA does not wish to limit the set of
policies for this certificate.

To enable acceptance of Certificate Policies, start WebLogic Server with the following argument:

-Dweblogic.security.SSL.allowedcertificatepolicyids

<identifier1>,<identifier2>,...

This argument should contain a comma-separated list of Certificate Policy identifiers for all the
certificates with critical extensions that might be present in the certificate chain, back to the root
certificate, in order for WebLogic Server to accept such a certificate chain.

Checking Certificate Chains
Use the WebLogic Server ValidateCertChain command-line utility to confirm whether an
existing certificate chain will be rejected by WebLogic Server. The utility validates certificate
chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS keystores. A complete
certificate chain must be used with the utility. The following is the syntax for the
ValidateCertChain command-line utility:

java utils.ValidateCertChain -file pemcertificatefilename

java utils.ValidateCertChain -pem pemcertificatefilename

java utils.ValidateCertChain -pkcs12store pkcs12storefilename

java utils.ValidateCertChain -pkcs12file pkcs12filename password

java utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

java utils.ValidateCertChain -pem zippychain.pem

Cert[0]: CN=zippy,OU=FOR TESTING

ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Cert[1]: CN=CertGenCAB,OU=FOR TESTING

ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain appears valid

Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystore

Conf igur ing SSL

12-10 Securing WebLogic Server

Cert[0]: CN=corba1,OU=FOR TESTING ONLY,

O=MyOrganization,L=MyTown,ST=MyState,C=US

CA cert not marked with critical BasicConstraint indicating it is a CA

Cert[1]: CN=CACERT,OU=FOR TESTING ONLY,

O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain is invalid

Using Certificate Lookup and Validation Providers
WebLogic Server SSL has built-in certificate validation. Given a set of trusted CAs, this
validation:

Verifies that the last certificate in the chain is either a trusted CA or is issued by a trusted
CA.

Completes the certificate chain with trusted CAs.

Verifies the signatures in the chain.

Ensures that the chain has not expired.

You can use certificate lookup and validation (CLV) providers to perform additional validation
on the certificate chain. In this release, WebLogic Server has added two CLV providers:

WebLogic CertPath Provider—Completes certificate paths and validates certificates using
the trusted CA configured for a particular server instance, providing the same functionality
as the built-in SSL certificate validation. This is configured by default.

Certificate Registry—The system administrator makes a list of trusted CA certificates that
are allowed access to the server; a certificate is valid if the end certificate is in the registry.
The administrator revokes a certificate by removing it from the certificate registry, which is
an inexpensive mechanism for performing revocation checking. This is not configured by
default.

Alternatively, you can write a custom CertPathValidator to provide additional validation on the
certificate chain. See CertPath Providers in Developing Security Providers for WebLogic Server.

How SSL Certificate Validation Works in WebLogic Server
Outbound SSL and two-way inbound SSL in a WebLogic Server instance receive certificate
chains during the SSL handshake that must be validated. An example of two-way inbound SSL

http://e-docs.bea.com/wls/docs103/dvspisec/cert.html

SSL Cer t i f i ca te Va l idat ion

Securing WebLogic Server 12-11

is a browser connecting to a Web application over HTTPS where the browser sends the client’s
certificate chain to the Web application. The inbound certificate validation setting is used for all
two-way client certificate validation in the server.

Examples of WebLogic Server using outbound SSL (that is, acting as an SSL client) include:

Connecting to the Node Manager

Connecting to another WebLogic Server instance over the Administration port

Connecting to an external LDAP server, such as the LDAPAuthenticator

Using the Administration Console or WLST, you can independently configure inbound and
outbound SSL certificate validation using these SSLMBean attributes:
InboundCertificateValidation and OutboundCertificateValidation.

Legal values for both attributes are:

BUILTIN_SSL_VALIDATION: Use the built-in SSL certificate validation code to complete
and validate the certificate chain. That is, configure SSL to work as it has in previous
releases. This is the default behavior.

BUILTIN_SSL_VALIDATION_AND_CERT_PATH_VALIDATORS: Use the built-in trusted
CA-based validation and the configured CertPathValidator providers to perform additional
validation. That is, configure SSL to work as it has in previous releases and to do extra
validation.

See:

SSLMBean in the WebLogic Server MBean Reference

Set Up SSL in the Administration Console Online Help

Troubleshooting Problems with Certificate Validation
If SSL communications that worked properly in a previous release of WebLogic Server start
failing unexpectedly, the likely problem is that the certificate chain is failing the validation.

Determine where the certificate chain is being rejected, and decide whether to update the
certificate chain with one that will be accepted, or change the setting of the
-Dweblogic.security.SSL.enforceConstraints command-line argument.

To troubleshoot problems with certificates, use one of the following methods:

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/SSLMBean.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/SetUpSSL.html

Conf igur ing SSL

12-12 Securing WebLogic Server

If you know where the certificate chains for the processes using SSL communication are
located, use the ValidateCertChain command-line utility to check whether the certificate
chains will be accepted.

Turn on SSL debug tracing on the processes using SSL communication. The syntax for
SSL debug tracing is:
-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

The following message indicates the SSL failure results from problems in the certificate
chain:
<CA certificate rejected. The basic constraints for a CA certificate
were not marked for being a CA, or were not marked as critical>

When you use one-way SSL, look for this error in the client log. With two-way SSL, look
for this error in the client and server logs.

Using the nCipher JCE Provider with WebLogic Server
Note: Java Cryptography Extension (JCE) providers are written using the application

programming interfaces (APIs) in the JCE available in JDK 5.0. This type of provider is
different from the providers written using the WebLogic Security Service Provider
Interfaces (SSPIs). WebLogic Server does not provide a JCE provider by default.

SSL is a key component in the protection of resources available in Web servers. However, heavy
SSL traffic can cause bottlenecks that affect the performance of Web servers. JCE providers like
nCipher that use a hardware card for encryption offload SSL processing from Web servers, which
frees the servers to process more transactions. They also provide strong encryption and
cryptographic processes to preserve the integrity and secrecy of keys.

WebLogic Server supports the use of the following JCE providers:

The JDK JCE provider (SunJCE) in the JDK 5.0. For more information about the features
in the JDK JCE provider, see http://java.sun.com/products/jce.

By default, the JCE provider in the JDK 5.0 has export strength jurisdiction policy files.
After filling out the appropriate forms, the domestic strength jurisdiction policy files are
downloadable from Sun Microsystems at
http://java.sun.com/products/jce/javase.html#UnlimitedDownload.

WebLogic Server will continue to control the strength of the cryptography used by the
WebLogic Server Application Programming Interfaces (APIs). Client code without the
appropriate domestic strength cryptography setting will only be able to use the J2SE export

http://java.sun.com/products/jce/
http://java.sun.com/products/jce/javase.html#UnlimitedDownload

Using the nC iphe r JCE P rov ide r w i th WebLog ic Se rve r

Securing WebLogic Server 12-13

strength default cryptography. On the server, WebLogic Server will enable either export or
domestic strength cryptography.

The nCipher JCE provider. See http://www.ncipher.com.

To install the nCipher JCE provider:

1. Install and configure the hardware for the nCipher JCE provider according to the product’s
documentation.

2. Install the files for the nCipher JCE provider. The following files are required:

– Jurisdiction policy files—The JDK installs these files by default but they are of limited
export strength.

– Certificate that signed the JAR file

Note: This step may have been performed as part of installing the hardware for nCipher JCE
provider. In that case, verify that the files are correctly installed.

– The JCE provider JAR files

Choose an installation method for the files:

– Install files as an extension. Copy the files to one of the following locations:
JAVA_HOME/jre/lib/ext

For example:
BEA_HOME/jdk150_03/jre/lib/ext

– Install files in the CLASSPATH of the server.

3. Edit the Java security properties file (java.security) to add the nCipher JCE provider to
the list of approved JCE providers for WebLogic Server. The Java security properties file is
located in:
JAVA_HOME/jre/lib/security/java.security

Specify the nCipher JCE provider as:
security.provider.n=com.ncipher.provider.km.mCipherKM

where

n specifies the preference order that determines the order in which providers are searched
for requested algorithms when no specific provider is requested. The order is 1-based; 1 is
the most preferred, followed by 2, and so on.

http://www.ncipher.com

Conf igur ing SSL

12-14 Securing WebLogic Server

The nCipher JCE provider must follow the RSA JCA provider in the security properties
file. For example:
security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.rsajca.Provider

security.provider.3=com.ncipher.provider.km.mCipherKM

4. Boot WebLogic Server.

5. To ensure the nCipher JCE provider is working properly, enable debugging according to the
nCipher product documentation.

Specifying the Version of the SSL Protocol
WebLogic Server supports both the SSL V3.0 and TLS V1.0 protocols. When WebLogic Server
is acting as an SSL server, the protocol that the client specifies as preferred in its client hello
message. When WebLogic Server is acting as an SSL client, it specifies TLS1.0 as the preferred
protocol in its SSL V2.0 client hello message, but can use SSL V3.0 as well, if that is the highest
version that the SSL server on the other end supports. The peer must respond with an SSL V3.0
or TLS V1.0 message or the SSL connection is dropped.

While in most cases the SSL V3.0 protocol is acceptable some circumstances (compatibility, SSL
performance, and environments with maximum security requirements) make the TLS V1.0
protocol more desirable. The weblogic.security.SSL.protocolVersion command-line
argument lets you specify which protocol is used for SSL connections.

Note: The SSL V3.0 and TLS V1.0 protocols can not be interchanged. Only use the TLS V1.0
protocol if you are certain all desired SSL clients are capable of using the protocol.

The following command-line argument can be specified so that WebLogic Server supports only
SSL V3.0 or TLS V1.0 connections:

-Dweblogic.security.SSL.protocolVersion=SSL3—Only SSL V3.0 messages are
sent and accepted.

-Dweblogic.security.SSL.protocolVersion=TLS1—Only TLS V1.0 messages are
sent and accepted.

-Dweblogic.security.SSL.protocolVersion=ALL—This is the default behavior.

Securing WebLogic Server 13-1

C H A P T E R 13

Configuring Security for a WebLogic
Domain

The following sections describe how to set security configuration options for a WebLogic
domain:

“Important Information Regarding Cross-Domain Security Support” on page 13-1

“Enabling Trust Between WebLogic Server Domains” on page 13-2

“Using Connection Filters” on page 13-6

“Using the Java Authorization Contract for Containers” on page 13-8

“Viewing MBean Attributes” on page 13-8

“How Passwords Are Protected in WebLogic Server” on page 13-8

“Protecting User Accounts” on page 13-9

Note: These sections apply to WebLogic Server deployments using the security features in this
release of WebLogic Server as well as deployments using Compatibility Security.

Important Information Regarding Cross-Domain Security
Support

This section describes important information regarding support for the cross-domain security
solution.

As described in “Enabling Trust Between WebLogic Server Domains” on page 13-2,
cross-domain security establishes trust between domains such that principals in a subject from

Conf igur ing Secur i t y fo r a WebLog ic Domain

13-2 Securing WebLogic Server

one WebLogic Server domain can make calls in another domain. WebLogic Server establishes
a security role for cross-domain users, and uses the WebLogic Credential Mapping security
provider in each domain to store the credentials to be used by the cross-domain users.

In this release of WebLogic Server, subsystems such as JMS, JTA, MDB, and WAN replication
implement cross-domain security. These subsystems can authenticate and send the required
credentials across domains.

However, the EJB container does not implement the solution for cross-domain security. As a
result, the WLS cross-domain security feature does not work in the following situations:

WLI domain

With ALSB, when ALSB is configured to use the SB and DSP transports.

ALDSP domain

For these domain types, the alternative is to use the global trust feature, in which global trust is
established between two domains by using the same domain credential in each domain. For
information about the global trust approach in WLS, see “Enabling Global Trust” on page 13-5.

Enabling Trust Between WebLogic Server Domains
Trust between domains is established so that principals in a Subject from one WebLogic Server
domain can make calls in another domain. In previous releases of WebLogic Server, there was
only one type of domain trust which is now referred to as Global Trust. WebLogic Server now
supports a type of domain trust that is referred to as Cross Domain Security.

“Enabling Cross Domain Security Between WebLogic Server Domains” on page 13-2

“Enabling Global Trust” on page 13-5

Enabling Cross Domain Security Between WebLogic Server
Domains
Note: Please see “Important Information Regarding Cross-Domain Security Support” on

page 13-1 before enabling cross domain security.

Cross Domain Security establishes trust between two WebLogic Server domain pairs by using a
credential mapper to configure communication between these WebLogic Server domains.
Configuration and use of cross-domain security is described in the following sections:

“Configuring Cross-Domain Security” on page 13-3

Enab l ing T rust Between WebLog ic Serve r Domains

Securing WebLogic Server 13-3

“Configuring a Cross-Domain User” on page 13-3

“Configure a Credential Mapping for Cross-Domain Security” on page 13-4

In addition to the approach that uses a Credential Mapping security provider for cross-domain
security, WebLogic Server also enables a different approach, under which global trust is
established between two or more domains by using the same domain credential in each domain.
If you enable global trust between two or more domains, the trust relationship is transitive and
symmetric. In other words, if Domain A trusts Domain B and Domain B trusts Domain C, then
Domain A will also trust Domain C and Domain B and Domain C will both trust Domain A. In
most cases, the Cross Domain Security approach is preferable to the global trust approach,
because its use of a specific user group and role for cross-domain actions allows for finer grained
security. For information about the global trust approach in WebLogic Server, see “Enabling
Global Trust” on page 13-5.

Configuring Cross-Domain Security
To configure cross-domain security in a WebLogic Server domain, set the
SecurityConfigurationMBean.CrossDomainSecurityEnabled attribute to true. To do this
in the WebLogic Server Administration Console:

1. Click the name of the domain in the Domain Configuration panel.

2. Open the Security: General tab in the console.

3. Check Cross Domain Security Enabled.

If you maintain any WebLogic Server domains that have not enabled cross-domain security, you
need to add their domain names to the list of excluded domains, in the
SecurityConfigurationMBean.ExcludedDomainNames attributes. To do this in the
WebLogic Server Administration Console:

1. Click the name of the domain in the Domain Configuration panel.

2. Open the Security: General tab in the console.

3. In the Excluded Domain Names field, enter the names of any domains that do not have
cross-domain security enabled. Enter the names of these domains separated either by
semicolons or line breaks.

Configuring a Cross-Domain User
Cross-domain security in WebLogic Server uses a global security role named
CrossDomainConnector with resource type remote and a group named

Conf igur ing Secur i t y fo r a WebLog ic Domain

13-4 Securing WebLogic Server

CrossDomainConnectors, which is assigned the CrossDomainConnector role. Invocation
requests from remote domains are expected to be from users with the CrossDomainConnector
role. By default, the CrossDomainConnectors has no users as members. You need to create one
or more users and add them to the group CrossDomainConnectors. Typically, such a user will
be a virtual system user and preferably should have no privileges other than those granted by the
CrossDomainConnector security role.

Configure a Credential Mapping for Cross-Domain Security
Note: The Credential Mapper identifies domains by their names. Therefore, it is important that

the domains involved have unique names.

In each WebLogic Server domain, you need to specify a credential to be used by each user on
each remote domain that needs to be trusted. Do this by configuring credential mappings for each
domain in the connection. Each credential mapping needs to specify:

The resource protocol, which is named cross-domain-protocol

The name of the remote domain that needs to interact with the local domain

The name of the user in the remote domain that will be authorized to interact with the local
domain

The password of the user in the remote domain that will be authorized to interact with the
local domain

To configure a cross-domain security credential mapping in the WebLogic Server Administration
Console, click Security Realms in the left panel.

1. Click the name of your security realm (default is myrealm).

2. On the Credential Mappings → Default tab, click New.

3. On the Creating the Remote Resource for the Security Credential Mapping:

– Select Use cross-domain protocol.

– In the Remote Domain field, enter the name of the remote domain that needs to interact
with the local domain.

4. Click Next.

5. On the Create a New Security Credential Map Entry page, enter the following:

Local User: cross-domain

Enab l ing T rust Between WebLog ic Serve r Domains

Securing WebLogic Server 13-5

Remote User: User configured in the Remote Domain that is authorized to interact with
the Local Domain.

Password: The password for the Remote User.

6. Click Finish.

See Create a Cross-Domain Security Credential Mapping in the Administration Console Online
Help.

Enabling Global Trust
Note: Enabling Global Trust between WebLogic Server domains has the potential to open the

servers up to man-in-the-middle attacks. Great care should be taken when enabling trust
in a production environment. Oracle recommends having strong network security such
as a dedicated communication channel or protection by a strong firewall.

WebLogic Server enables you to establish global trust between two or more domains. You do this
by specifying the same Domain Credential for each of the domains. By default, the Domain
Credential is randomly generated and therefore, no two domains will have the same Domain
Credential. If you want two WebLogic Server domains to interoperate, you need to replace the
generated credential with a credential you select, and set the same credential in each of the
domains. For configuration information, see Enable global trust between domains in the
Administration Console Online Help.

If you enable global trust between two domains, the trust relationship is transitive and symmetric.
In other words, if Domain A trusts Domain B and Domain B trusts Domain C, then Domain A
will also trust Domain C and Domain B and Domain C will both trust Domain A. In most cases,
the credential mapper approach, described in “Enabling Cross Domain Security Between
WebLogic Server Domains” on page 13-2, is preferable to the global trust approach, because it
is provides closer control over access.

Global trust between domains is established so that principals in a Subject from one WebLogic
Server domain are accepted as principals in another domain. When this feature is enabled,
identity is passed between WebLogic Server domains over an RMI connection without requiring
authentication in the second domain (for example: log in to Domain 1 as Joe, make an RMI call
to Domain 2 and Joe is still authenticated). WebLogic Server signs Principals with the Domain
Credential as Principals are created. When a Subject is received from a remote source, its
Principals are validated (the signature is recreated and if it matches, the remote domain has the
same Domain Credential). If validation fails, an error is generated. If validation succeeds, the
Principals are trusted as if they were created locally.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/CreateCrossDomainCredentialMapping.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/EnableGlobalTrustBetweenDomains.html

Conf igur ing Secur i t y fo r a WebLog ic Domain

13-6 Securing WebLogic Server

Note: Any credentials in clear text are encrypted the next time the config.xml file is persisted
to disk.

If you are enabling global trust between domains in a Managed Server environment, you must
stop the Administration Server and all the Managed Servers in both domains and then restart
them. If this step is not performed, servers that were not rebooted will not trust the servers that
were rebooted.

Keep the following points in mind when enabling global trust between WebLogic Server
domains:

Because a domain will trust remote Principals without requiring authentication, it is
possible to have authenticated users in a domain that are not defined in the domain’s
authentication database. This situation can cause authorization problems.

Any authenticated user in a domain can access any other domain that has trust enabled
with the original domain without re-authenticating. There is no auditing of this login and
group membership is not validated. Therefore, if Joe is a member of the Administrators
group in the original domain where he authenticated, he is automatically a member of the
Administrators group for all trusted domains to which he makes RMI calls.

If Domain 2 trusts both Domain 1 and Domain 3, Domain 1 and Domain 3 now implicitly
trust each other. Therefore, members of the Administrators Group in Domain 1 are
members of the Administrators group in Domain 3. This may not be a desired trust
relationship.

If you extended the WLSUser and WLSGroup Principal classes, the custom Principal
classes must be installed in the server’s classpath in all domains that share trust.

To avoid these issues, Oracle recommends that rather than enabling global trust between two
domains, you should instead configure users with the CrossDomainConnector role and use the
credential mapping approach described in “Enabling Cross Domain Security Between WebLogic
Server Domains” on page 13-2.

Using Connection Filters
Connection filters allow you to deny access at the network level. They can be used to protect
server resources on individual servers, server clusters, or an entire internal network or intranet.
For example, you can deny any non-SSL connections originating outside of your corporate
network. Network connection filters are a type of firewall in that they can be configured to filter
on protocols, IP addresses, and DNS node names.

Using Connect ion F i l t e rs

Securing WebLogic Server 13-7

Connection filters are particularly useful when using the Administration port. Depending on your
network firewall configuration, you may be able to use a connection filter to further restrict
administration access. A typical use might be to restrict access to the Administration port to only
the servers and machines in the domain. An attacker who gets access to a machine inside the
firewall, still cannot perform administration operations unless the attacker is on one of the
permitted machines.

WebLogic Server provides a default connection filter called
weblogic.security.net.ConnectionFilterImpl. This connection filter accepts all
incoming connections and also provides static factory methods that allow the server to obtain the
current connection filter. To configure this connection filter to deny access, simply enter the
connection filters rules in the WebLogic Administration Console.

You can also use a custom connection filter by implementing the classes in the
weblogic.security.net package. For information about writing a connection filter, see Using
Network Connection Filters in Programming WebLogic Security. Like the default connection
filter, custom connection filters are configured in the WebLogic Administration Console.

To configure a connection filter:

1. Enable the logging of accepted messages. This Connection Logger Enabled option logs
successful connections and connection data in the server. This information can be used to
debug problems relating to server connections.

2. Choose which connection filter is to be used in the domain.

– To configure the default connection filter, specify
weblogic.security.net.ConnectionFilterImpl in Connection Filter.

– To configure a custom connection filter, specify the class that implements the network
connection filter in Connection Filter. This class must also be specified in the
CLASSPATH for WebLogic Server.

3. Enter the syntax for the connection filter rules.

For more information:

See Configure connection filtering in the Administration Console Online Help.

For information about connection filter rules and writing a custom connection filter, see
Using Network Connection Filters and Developing Custom Connection Filters in
Programming WebLogic Security.

You can also use the WebLogic Scripting Tool or Java Management Extensions (JMX)
APIs to create a new security configuration.

http://e-docs.bea.com/wls/docs103/security/con_filtr.html
http://e-docs.bea.com/wls/docs103/security/con_filtr.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/ConfigureConnectionFiltering.html
http://e-docs.bea.com/wls/docs103/security/con_filtr.html
http://e-docs.bea.com/wls/docs103/security/con_filtr.html#server_prot_0112

Conf igur ing Secur i t y fo r a WebLog ic Domain

13-8 Securing WebLogic Server

Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) Standard can replace the EJB and Servlet
container deployment and authorization provided by WebLogic Server. When you configure a
WebLogic Server domain to use JACC, EJB and servlet authorization decisions are made by the
classes in the JACC framework. All other authorization decisions within WebLogic Server are
still determined by the WebLogic Security Framework. For information about the WebLogic
JACC provider, see Using the Java Authorization Contract for Containers in Programming
WebLogic Security.

You configure WebLogic Server to use JACC with a command line start option. For more
information, see the description of the -Djava.security.manager option in the
weblogic.Server Command-Line Reference.

Note that an Administration Server and all Managed Servers in a domain need to have the same
JACC configuration. If you change the JACC setting on the Administration Server, you should
shut down the Managed Server and reboot them with the same settings as the Administration
Server to avoid creating a security vulnerability. Otherwise, it may appear that EJBs and servlets
in your domain are protected by WebLogic Security Framework roles and policies, when in fact
the Managed Servers are still operating under JACC.

Viewing MBean Attributes
The Anonymous Admin Lookup Enabled option specifies whether anonymous, read-only access
to WebLogic Server MBeans should be allowed from the MBean API. With this anonymous
access, you can see the value of any MBean attribute that is not explicitly marked as protected by
the WebLogic Server MBean authorization process. This option is enabled by default to assure
backward compatibility. For greater security, you should disable this anonymous access.

To verify the setting of the Anonymous Admin Lookup Enabled option through the WebLogic
Administration Console, see the Domain → Security → General page in the Administration
Console or the SecurityConfigurationMBean.AnonymousAdminLookupEnabled attribute.

How Passwords Are Protected in WebLogic Server
It is important to protect passwords that are used to access resources in a WebLogic Server
domain. In the past, usernames and passwords were stored in clear text in a WebLogic security
realm. Now all the passwords in a WebLogic Server domain are hashed. The
SerializedSystemIni.dat file contains the hashes for the passwords. It is associated with a
specific WebLogic Server domain so it cannot be moved from domain to domain.

http://e-docs.bea.com/wls/docs103/security/server_prot.html#JACC
http://e-docs.bea.com/wls/docs103/admin_ref/weblogicServer.html#security

Pro tec t ing User Accounts

Securing WebLogic Server 13-9

If the SerializedSystemIni.dat file is destroyed or corrupted, you must reconfigure the
WebLogic Server domain. Therefore, you should take the following precautions:

Make a backup copy of the SerializedSystemIni.dat file and put it in a safe location.

Set permissions on the SerializedSystemIni.dat file such that the system
administrator of a WebLogic Server deployment has write and read privileges and no other
users have any privileges.

Protecting User Accounts
WebLogic Server defines a set of configuration options to protect user accounts from intruders.
In the default security configuration, these options are set for maximum protection. You can use
the Administration Console to modify these options on the Configuration → User Lockout page.

As a system administrator, you have the option of turning off all the configuration options,
increasing the number of login attempts before a user account is locked, increasing the time
period in which invalid login attempts are made before locking the user account, and changing
the amount of time a user account is locked. Remember that changing the configuration options
lessens security and leaves user accounts vulnerable to security attacks. See Set user lockout
attributes in the Administration Console Online Help.

Notes: The User Lockout options apply to the default security realm and all its security
providers. The User Lockout options do not work with custom security providers in a
security realm other than the default security realm. To use the User Lockout options with
custom security providers, configure the custom security providers in the default security
realm. Include the customer providers in the authentication process after the WebLogic
Authentication provider and the WebLogic Identity Assertion provider. This ordering
may cause a small performance hit.

If you are using an Authentication provider that has its own mechanism for protecting
user accounts, disable Lockout Enabled.

If a user account becomes locked and you delete the user account and add another user
account with the same name and password, the User Lockout configuration options will
not be reset.

For information about unlocking a locked user account on the Administration Server, see Unlock
a user account in the Administration Console Online Help. Unlocking a locked user account on a
Managed Server cannot be done through the WebLogic Administration Console. The unlock
information is propagated through a multicast message which is only configured in a cluster
environment. Use the following command instead:

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/SetLockoutAttributes.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/SetLockoutAttributes.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/UnlockUserAccounts.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/UnlockUserAccounts.html

Conf igur ing Secur i t y fo r a WebLog ic Domain

13-10 Securing WebLogic Server

java weblogic.Admin -url url -username adminuser

-password passwordforadminuser -type

weblogic.management.security.authentication.UserLockoutManager -method

clearLockout lockedusername

You can also wait the time specified in the Lockout Duration attribute: the user account will be
unlocked after the specified time.

Securing WebLogic Server 14-1

C H A P T E R 14

Using Compatibility Security

Compatibility security is the capability to run security configurations developed with WebLogic
Server 6.x in this release of WebLogic Server. In Compatibility security, you manage 6.x security
realms, users, groups, and ACLs, protect user accounts, and configure the Realm Adapter
Auditing provider and optionally the Identity Assertion provider in the Realm Adapter
Authentication provider. The following sections describe how to configure Compatibility
security:

“Running Compatibility Security: Main Steps” on page 14-2

“Limited Visibility of Compatibility Security MBeans” on page 14-2

“The Default Security Configuration in the CompatibilityRealm” on page 14-3

“Configuring a Realm Adapter Authentication Provider” on page 14-4

“Configuring the Identity Assertion Provider in the Realm Adapter Authentication
Provider” on page 14-5

“Configuring a Realm Adapter Auditing Provider” on page 14-5

“Protecting User Accounts in Compatibility Security” on page 14-5

“Accessing 6.x Security from Compatibility Security” on page 14-6

Note: Compatibility security is deprecated in this release of WebLogic Server and will not be
supported in future major releases. Oracle strongly recommends upgrading your
WebLogic Server deployment to the security features in this release of WebLogic Server.
You should only use Compatibility security pending such an upgrade.

Using Compat ib i l i t y Secur i t y

14-2 Securing WebLogic Server

Running Compatibility Security: Main Steps
To set up Compatibility security:

1. Make a backup copy of your 6.x WebLogic domain (including your config.xml file) before
using Compatibility security.

2. Add the following to the 6.x config.xml file if it does not exist, replacing the values with
the actual names of your domain, security realm, and FileRealm:
<Security Name=”mydomain” Realm=”mysecurity”/>
<Realm Name=”mysecurity” FileRealm=”myrealm”/>
<FileRealm Name=”myrealm”/>

3. Install the current version of WebLogic Server in a new directory location. Do not overwrite
your existing 6.x installation directory. For more information, see Installation Guide.

4. Modify the start script for your 6.x server to point to the new WebLogic Server installation.
Specifically, you need to modify:

– The classpath to point to the weblogic.jar file in the new WebLogic Server
installation.

– The JAVA_HOME variable to point to the new WebLogic Server installation.

5. Use the start script for your 6.x server to boot the new version of WebLogic Server.

To verify whether you are running Compatibility security correctly, open the new WebLogic
Server Administration Console. If you are running Compatibility security, a Compatibility
Security node is displayed on the left in the Domain Structure pane.

Limited Visibility of Compatibility Security MBeans
All Compatibility security MBeans are marked excluded and therefore have limited visibility in
the WebLogic Scripting Tool. For example, if you use a command like this:

java weblogic.WLST

connect()

ls()

then the attributes of the DomainMBean will be listed, excluding Compatibility security attributes
such as FileRealmMBean. However, if you address a Compatibility MBean directly, you can
access it, as in this example:

../../../common/docs103/install/index.html

The Defau l t Secur i t y Conf igura t i on in the Compat ib i l i t yRea lm

Securing WebLogic Server 14-3

java weblogic.WLST

connect()

cmo.getFileRealms()

The Default Security Configuration in the
CompatibilityRealm

By default, the CompatibilityRealm is configured with a Realm Adapter Adjudication
provider, a Realm Adapter Authentication provider, a WebLogic Authorization provider, a
Realm Adapter Authorization provider, a WebLogic Credential Mapping provider, and a
WebLogic Role Mapping provider.

In the CompatibilityRealm, the Realm Adapter Authentication provider is populated
with users and groups from the 6.x security realm defined in the config.xml file.

– If you used the File realm in your 6.x security configuration, you can manage the users
and groups in the Realm Adapter Authentication provider following the steps in Define
Users and Define Groups topics of the Compatibility security section of the
Administration Console Online Help.

– If you are using an alternate security realm (LDAP, Windows NT, RDBMS, or custom),
you must use the administration tools provided by that realm to manage users and
groups.

For information about configuring a Realm Adapter Authentication provider, see
“Configuring a Realm Adapter Authentication Provider” on page 14-4

You can use implementations of the weblogic.security.acl.CertAuthenticator
class in Compatibility security by configuring the Identity Assertion provider in the Realm
Adapter Authentication provider. For more information, see “Configuring the Identity
Assertion Provider in the Realm Adapter Authentication Provider” on page 14-5.

Access Control Lists (ACLs) in the 6.x security realm are used to populate the Realm
Adapter Authorization provider.

The Realm Adapter Adjudication provider enables the use of both ACLs and security roles
and security policies in Compatibility security. The Realm Adapter Adjudication provider
can be used only with the Realm Adapter Authentication provider and the WebLogic
Authorization provider. It resolves access decision conflicts between ACLs and new
security policies set through the Administration Console. The Realm Adapter Adjudication
provider permits access if the one authorization provider votes PERMIT and the other
authorization provider votes DENY.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/DefineUsers.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/DefineUsers.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/DefineGroups.html

Using Compat ib i l i t y Secur i t y

14-4 Securing WebLogic Server

The WebLogic Credential Mapping provider allows the use of credential maps in
Compatibility security. For more information, see Programming WebLogic Resource
Adapters.

You can add a Realm Adapter Auditing provider to access implementations of the
weblogic.security.audit.AuditProvider class from the CompatibilityRealm. For
more information, see Configure a Realm Adapter Auditing Provider in the Administration
Console Online Help.

Configuring a Realm Adapter Authentication Provider
When using Compatibility security, a Realm Adapter Authentication provider is by default
configured for the CompatibilityRealm. For information about using the Realm Adapter
Authentication provider in the CompatibilityRealm, see “The Default Security Configuration
in the CompatibilityRealm” on page 14-3.

The Realm Adapter Authentication provider also allows use of implementations of the
weblogic.security.acl.CertAuthenticator class with this release of WebLogic Server.
The Realm Adapter Authentication provider includes an Identity Assertion provider that asserts
identity based on X.509 tokens. For information about using a CertAuthenticator with WebLogic
Server, “Configuring the Identity Assertion Provider in the Realm Adapter Authentication
Provider” on page 14-5.

When you add a Realm Adapter Authentication provider to a security realm with an
Authentication provider already configured, WebLogic Server sets the JAAS Control Flag on the
Realm Adapter Authentication provider to OPTIONAL and checks for the presence of a
fileRealm.properties file in the domain directory. WebLogic Server will not add the Realm
Adapter Authentication provider to the security realm if the fileRealm.properties file does
not exist.

Note: The subjects produced by the Realm Adapter Authentication provider do not contain
principals for the groups to which a user belongs. Use the
weblogic.security.SubjectUtils.isUserInGroup() method to determine
whether a user is in a group. When you use subjects produced by the Realm Adapter
Authentication provider, you cannot iterate the complete set of groups to which a user
belongs.

http://e-docs.bea.com/wls/docs103/resadapter/index.html
http://e-docs.bea.com/wls/docs103/resadapter/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/ConfigureARealmAdapterAuditingProvider.html

Conf igur ing the Ident i t y Asse r t i on P rov ide r in the Rea lm Adapte r Authent i ca t i on Prov ider

Securing WebLogic Server 14-5

Configuring the Identity Assertion Provider in the Realm
Adapter Authentication Provider

The Realm Adapter Authentication provider includes an Identity Assertion provider.The Identity
Assertion provider provides backward compatibility for implementations of the deprecated
weblogic.security.acl.CertAuthenticator class. The identity assertion is performed on
X.509 tokens. By default, the Identity Assertion provider is not enabled in the Realm Adapter
Authentication provider.

For information about how to enable the Identity Assertion provider, see Enable the Identity
Assertion provider in the Administration Console Online Help.

Configuring a Realm Adapter Auditing Provider
The Realm Adapter Auditing provider allows you to use implementations of the
weblogic.security.audit.AuditProvider interface when using Compatibility security. In
order for the Realm Adapter Auditing provider to work properly, the implementation of the
AuditProvider interface must have been defined. You can define the AuditProvider class
using the Administration Console, in the Audit Provider Class field on the Domain:
Compatibility Security → General page.

For information, see Configure a Realm Adapter Auditing provider in the Administration
Console Online Help.

Protecting User Accounts in Compatibility Security
Password guessing is a common type of security attack. In this type of attack, a hacker attempts
to log in to a computer using various combinations of usernames and passwords. WebLogic
Server provides a set of lockout configuration options to protect user accounts from this kind of
attack. By default, these options are set for maximum protection. As a system administrator, you
have the option of turning off all the options, increasing the number of login attempts before a
user account is locked, increasing the time period in which invalid login attempts are made before
locking the user account, and changing the amount of time a user account is locked. Remember
that changing the configuration options lessens security and leaves user accounts vulnerable to
security attacks.

There are two sets of configuration options available to protect user accounts, one set at the
domain and one set at the security realm. You may notice that if you set one set of configuration
options (for example, the options for the security realm) and exceed any of the values, the user

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/audit/AuditProvider.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/ConfigureARealmAdapterAuditingProvider.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/security/acl/CertAuthenticator.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/ConfigureAnIdentityAssertionProvider.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/ConfigureAnIdentityAssertionProvider.html

Using Compat ib i l i t y Secur i t y

14-6 Securing WebLogic Server

account is not locked. This happens because the user account lockout options at the domain
override the user account options at the security realm. To avoid this situation, disable the user
account lockout options at the security realm.

WARNING: If you disable the user lockout configuration option at the security realm, you
must set the user lockout configuration options on the domain otherwise the user
accounts will not be protected.

For information, see Protect user accounts and Unlock user accounts in the Administration
Console Online Help.

Accessing 6.x Security from Compatibility Security
Using Compatibility security assumes that you have an existing config.xml file with a security
realm that defines users and groups and ACLs that protect the resources in your WebLogic Server
domain. WebLogic Server 6.x security management tasks such as configuring a security realm or
defining ACLs should not be required and therefore those management tasks are not described in
this section. However, if you corrupt an existing 6.x security realm and have no choice but to
restore it, the following 6.x security management tasks are described in the Compatibility
Security topic of the Administration Console Online Help:

Configure LDAP V1 security realms

Configure LDAP V2 security realms

Configure RDBMS security realms

Configure Windows NT security realms

Configure wlauth for UNIX security realms

Configure UNIX security realms

Configure Custom security realms

Configure Caching realms

Configure the File realm

Define ACLs

Define groups

Delete groups

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/ProtectUserAccounts.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security_compat/UnlockUserAccounts.html

Access ing 6 . x Secur i t y f rom Compat ib i l i t y Secur i t y

Securing WebLogic Server 14-7

Define users

Delete users

Change user passwords

Change the system password

Disable the Guest user

WARNING: Compatibility security provides backward compatibility only and should not be
considered a long-term security solution.

Using Compat ib i l i t y Secur i t y

14-8 Securing WebLogic Server

Securing WebLogic Server 15-1

C H A P T E R 15

Security Configuration MBeans

This section describes MBeans used in configuring the WebLogic Security Framework. Each
MBean attribute is marked either dynamic, meaning that the attribute value can be changed
without requiring a server restart, or non-dynamic, meaning that if you change the attribute value,
you need to restart the server for the change to take effect. Note also that if an edit is made to a
non-dynamic attribute, no edits to dynamic attributes will take effect until after restart. This is to
assure that a batch of updates having a combination of dynamic and non-dynamic attribute edits
will not be partially activated.

Any security MBeans not listed are completely non-dynamic (create or destroy MBean, change
any attribute).

For more information about WebLogic Security MBeans, see:

Managing Security Realms with JMX in Developing Custom Management Utilities with
JMX

Security MBeans in the WebLogic Server MBean Reference

SSLMBean
Creating or destroying this bean is dynamic.

Dynamic attributes:

Enabled, TwoWaySSLEnabled, ClientCertificateEnforced, ListenPort

Ciphersuites, ExportKeyLifespan, SSLRejectionLoggingEnabled, LoginTimeoutMillis

http://e-docs.bea.com/wls/docs103/jmx/editsecurity.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/html/security.html

Secur i t y Conf igura t i on MBeans

15-2 Securing WebLogic Server

ServerCertificateChainFileName, ServerKeyFileName, ServerCertificateFileName,
TrustedCAFileName

ServerPrivateKeyAlias, ServerPrivateKeyPassPhrase

IdentityAndTrustLocations

InboundCertificateValidation, OutboundCertificateValidation

All other attributes are non-dynamic.

ServerMBean
Creating or destroying this bean is dynamic.

Dynamic attributes:

KeyStores

CustomIdentityKeyStoreFileName, CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhrase

CustomTrustKeyStoreFileName, CustomTrustKeyStoreType, CustomTrustKeyStorePassPhrase

JavaStandardTrustKeyStorePassPhrase

All other attributes are non-dynamic.

EmbeddedLDAPMBean
Dynamic attributes:

Credential

All other attributes are non-dynamic

SecurityMBean
Dynamic attributes:

ConnectionFilterRules

ConnectionLoggerEnabled

All other attributes are non-dynamic

Secur i t yConf igura t i onMBean

Securing WebLogic Server 15-3

SecurityConfigurationMBean
Dynamic attributes:

Credential

ConnectionFilterRules, ConnectionLoggerEnabled, CompatibilityConnectionFiltersEnabled

NodeManagerUsername, NodeManagerPassword

All other attributes are non-dynamic.

RealmMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

DeployRoleIgnored, DeployPolicyIgnored, DeployCredentialMappingIgnored

FullyDelegateAuthorization

ValidateDDSecurityData, SecurityDDModel

CombinedRoleMappingEnabled

All other attributes are non-dynamic

WindowsNTAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

BadDomainControllerRetryInterval

MapUPNNames, LogonType

MapNTDomainName

All other attributes are non-dynamic.

CustomDBMSAuthenticatorMBean
Creating or destroying this MBean is non-dynamic. The ControlFlag and read-only provider
attributes (such as ProviderClassName and Description) are non-dynamic. All other attributes are
dynamic.

Secur i t y Conf igura t i on MBeans

15-4 Securing WebLogic Server

ReadonlySQLAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

The ControlFlag and read-only provider attributes (such as ProviderClassName and Description)
are non-dynamic. All other attributes are dynamic.

SQLAuthenticatorMBean
Creating or destroying this MBean is non-dynamic.

The ControlFlag and read-only provider attributes (such as ProviderClassName and Description)
are non-dynamic. All other attributes are dynamic.

DefaultAuditorMBean
Creating or destroying this MBean is non-dynamic.

Dynamic attributes:

 Severity

 All other attributes are non-dynamic

Compatibility Security MBeans
All MBeans used for Compatibility security are completely non-dynamic (create or destroy
MBean, change any attribute). These MBeans include:

RealmMBean

FileRealmMBean

BasicRealmMBean

CachingRealmMBean

PasswordPolicyMBean

CustomRealmMBean

LDAPRealmMBean

NTRealmMBean

RDBMSRealmMBean

Use rLockoutManagerMBean

Securing WebLogic Server 15-5

UnixRealmMBean

UserLockoutManagerMBean
This MBean is completely non-dynamic (create or destroy MBean, change any attribute).

Other Security Provider MBeans
All other security MBeans are completely non-dynamic (create or destroy MBean, change any
attribute).

Secur i t y Conf igura t i on MBeans

15-6 Securing WebLogic Server

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Securing WebLogic Server, 10g Release 3 (10.3)
	Introduction and Roadmap
	Document Scope
	Document Audience
	Guide to This Document
	Related Information
	Security Samples and Tutorials
	Security Examples in the WebLogic Server Distribution

	New and Changed Security Features

	Overview of Security Management
	Security Realms in WebLogic Server
	Security Providers
	Security Policies and WebLogic Resources
	WebLogic Resources
	Deployment Descriptors and the WebLogic Server Administration Console

	The Default Security Configuration in WebLogic Server
	Configuring WebLogic Security: Main Steps
	Methods of Configuring Security
	What Is Compatibility Security?
	Management Tasks Available in Compatibility Security

	Customizing the Default Security Configuration
	Why Customize the Default Security Configuration?
	Before You Create a New Security Realm
	Creating and Configuring a New Security Realm: Main Steps

	Configuring WebLogic Security Providers
	When Do You Need to Configure a Security Provider?
	Reordering Security Providers
	Configuring an Authorization Provider
	Configuring the WebLogic Adjudication Provider
	Configuring a Role Mapping Provider
	Configuring the WebLogic Auditing Provider
	Auditing ContextHandler Elements
	Configuration Auditing
	Enabling Configuration Auditing
	Configuration Auditing Messages
	Audit Events and Auditing Providers

	Configuring a WebLogic Credential Mapping Provider
	Configuring a PKI Credential Mapping Provider
	PKI Credential Mapper Attributes
	Credential Actions

	Configuring a SAML Credential Mapping Provider for SAML 1.1
	Configuring Assertion Lifetime
	Relying Party Registry

	Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0
	SAML 2.0 Credential Mapping Provider Attributes
	Service Provider Partners
	Partner Lookup Strings Required for Web Service Partners
	Management of Partner Certificates
	Java Interface for Configuring Service Provider Partner Attributes

	Configuring the Certificate Lookup and Validation Framework
	CertPath Provider
	Certificate Registry

	Configuring a WebLogic Keystore Provider

	Configuring Authentication Providers
	Choosing an Authentication Provider
	Using More Than One Authentication Provider
	Setting the JAAS Control Flag Option
	Changing the Order of Authentication Providers

	Configuring the WebLogic Authentication Provider
	Configuring LDAP Authentication Providers
	Requirements for Using an LDAP Authentication Provider
	Configuring an LDAP Authentication Provider: Main Steps
	Accessing Other LDAP Servers
	Dynamic Groups and WebLogic Server
	Configuring Failover for LDAP Authentication Providers
	LDAP Failover Example 1
	LDAP Failover Example 2

	Improving the Performance of WebLogic and LDAP Authentication Providers
	Optimizing the Group Membership Caches
	Configuring Dynamic Groups in the iPlanet Authentication Provider to Improve Performance
	Optimizing the Principal Validator Cache
	Configuring the Active Directory Authentication Provider to Improve Performance

	Configuring RDBMS Authentication Providers
	Common RDBMS Authentication Provider Attributes
	Data Source Attribute
	Group Searching Attributes
	Group Caching Attributes

	Configuring the SQL Authentication Provider
	Password Attributes
	SQL Statement Attributes

	Configuring the Read-Only SQL Authenticator
	Configuring the Custom DBMS Authenticator
	Plug-In Class Attributes

	Configuring a Windows NT Authentication Provider
	Domain Controller Settings
	LogonType Setting
	UPN Names Settings

	Configuring the SAML Authentication Provider
	Configuring the Password Validation Provider
	Password Composition Rules for the Password Validation Provider
	Using the Password Validation Provider with the WebLogic Authentication Provider
	Using WLST to Create and Configure the Password Validation Provider
	Creating an Instance of the Password Validation Provider
	Specifying the Password Composition Rules

	Configuring Identity Assertion Providers
	How an LDAP X509 Identity Assertion Provider Works
	Configuring an LDAP X509 Identity Assertion Provider: Main Steps
	Configuring a Negotiate Identity Assertion Provider
	Configuring a SAML Identity Assertion Provider for SAML 1.1
	Asserting Party Registry
	Certificate Registry

	Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
	Identity Provider Partners

	Ordering of Identity Assertion for Servlets
	Configuring Identity Assertion Performance in the Server Cache
	Configuring a User Name Mapper
	Configuring a Custom User Name Mapper

	Configuring Single Sign-On with Microsoft Clients
	Overview of Single Sign-On with Microsoft Clients
	System Requirements for SSO with Microsoft Clients
	Single Sign-On with Microsoft Clients: Main Steps
	Configuring Your Network Domain to Use Kerberos
	Creating a Kerberos Identification for WebLogic Server
	Configuring Microsoft Clients to Use Windows Integrated Authentication
	Configuring a .NET Web Service
	Configuring an Internet Explorer Browser
	Configure Local Intranet Domains
	Configure Intranet Authentication
	Verify the Proxy Settings
	Set Integrated Authentication for Internet Explorer 6.0

	Creating a JAAS Login File
	Configuring the Identity Assertion Provider
	Using Startup Arguments for Kerberos Authentication with WebLogic Server
	Verifying Configuration of SSO with Microsoft Clients

	Configuring Single Sign-On with Web Browsers and HTTP Clients
	Configuring SAML 1.1 Services
	Enabling Single Sign-on with SAML 1.1: Main Steps
	Configuring a Source Site: Main Steps
	Configuring a Destination Site: Main Steps

	Configuring a SAML 1.1 Source Site for Single Sign-On
	Configure the SAML 1.1 Credential Mapping Provider
	Configure the Source Site Federation Services
	Configure Relying Parties
	Replacing the Default Assertion Store

	Configuring a SAML 1.1 Destination Site for Single Sign-On
	Configure SAML Identity Assertion Provider
	Configure Destination Site Federation Services
	Configuring Asserting Parties

	Configuring Relying and Asserting Parties with WLST

	Configuring SAML 2.0 Services
	Configuring SAML 2.0 Services: Main Steps
	Configuring SAML 2.0 General Services
	About SAML 2.0 General Services
	Publishing and Distributing the Metadata File

	Configuring an Identity Provider Site for SAML 2.0 Single Sign-On
	Configure the SAML 2.0 Credential Mapping Provider
	Configure SAML 2.0 Identity Provider Services
	Create and Configure Web Single Sign-On Service Provider Partners

	Configuring a Service Provider Site for SAML 2.0 Single Sign-On
	Configure the SAML 2.0 Identity Assertion Provider
	Configure the SAML Authentication Provider
	Configure SAML 2.0 General Services
	Configure SAML 2.0 Service Provider Services
	Create and Configure Web Single Sign-On Identity Provider Partners

	Viewing Partner Site, Certificate, and Service Endpoint Information
	Web Application Deployment Considerations for SAML 2.0
	Deployment Descriptor Recommendations
	Login Application Considerations for Clustered Environments

	Migrating Security Data
	Overview of Security Data Migration
	Migration Concepts
	Formats and Constraints Supported by WebLogic Security Providers
	Migrating Data with WLST
	Migrating Data Using weblogic.admin

	Managing the Embedded LDAP Server
	Configuring the Embedded LDAP Server
	Embedded LDAP Server Replication
	Viewing the Contents of the Embedded LDAP Server from an LDAP Browser
	Exporting and Importing Information in the Embedded LDAP Server
	LDAP Access Control Syntax
	The Access Control File
	Access Control Location
	Access Control Scope
	Access Rights
	Attribute Permissions
	Entry Permissions

	Attributes Types
	Subject Types
	Grant/Deny Evaluation Rules

	Managing the RDBMS Security Store
	Security Providers that Use the RDBMS Security Store
	Configuring the RDBMS Security Store
	Create a Domain with the RDBMS Security Store
	Specifying Database Connection Properties
	Testing the Database Connection

	Create RDBMS Tables in the Security Datastore
	Configure a JMS Topic for the RDBMS Security Store
	Configuring JMS Connection Recovery in the Event of Failure

	Upgrading a Domain to Use the RDBMS Security Store

	Configuring Identity and Trust
	Private Keys, Digital Certificates, and Trusted Certificate Authorities
	Configuring Identity and Trust: Main Steps
	Supported Formats for Identity and Trust
	Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities
	Common Keytool Commands
	Using the CertGen Utility
	Using Your Own Certificate Authority
	Converting a Microsoft p7b Format to PEM Format
	Obtaining a Digital Certificate for a Web Browser
	Using Certificate Chains (Deprecated)

	Storing Private Keys, Digital Certificates, and Trusted Certificate Authorities
	Guidelines for Using Keystores
	Creating a Keystore and Loading Private Keys and Trusted Certificate Authorities into the Keystore
	Configuring Demo Certificates for Clients

	How WebLogic Server Locates Trust
	Configuring Keystores for Production

	Configuring SSL
	SSL: An Introduction
	One-Way and Two-Way SSL
	Setting Up SSL: Main Steps
	Using Host Name Verification
	Enabling SSL Debugging
	SSL Session Behavior
	Configuring RMI over IIOP with SSL
	SSL Certificate Validation
	Controlling the Level of Certificate Validation
	Accepting Certificate Policies in Certificates
	Checking Certificate Chains
	Using Certificate Lookup and Validation Providers
	How SSL Certificate Validation Works in WebLogic Server
	Troubleshooting Problems with Certificate Validation

	Using the nCipher JCE Provider with WebLogic Server
	Specifying the Version of the SSL Protocol

	Configuring Security for a WebLogic Domain
	Important Information Regarding Cross-Domain Security Support
	Enabling Trust Between WebLogic Server Domains
	Enabling Cross Domain Security Between WebLogic Server Domains
	Configuring Cross-Domain Security
	Configuring a Cross-Domain User
	Configure a Credential Mapping for Cross-Domain Security

	Enabling Global Trust

	Using Connection Filters
	Using the Java Authorization Contract for Containers
	Viewing MBean Attributes
	How Passwords Are Protected in WebLogic Server
	Protecting User Accounts

	Using Compatibility Security
	Running Compatibility Security: Main Steps
	Limited Visibility of Compatibility Security MBeans
	The Default Security Configuration in the CompatibilityRealm
	Configuring a Realm Adapter Authentication Provider
	Configuring the Identity Assertion Provider in the Realm Adapter Authentication Provider
	Configuring a Realm Adapter Auditing Provider
	Protecting User Accounts in Compatibility Security
	Accessing 6.x Security from Compatibility Security

	Security Configuration MBeans
	SSLMBean
	ServerMBean
	EmbeddedLDAPMBean
	SecurityMBean
	SecurityConfigurationMBean
	RealmMBean
	WindowsNTAuthenticatorMBean
	CustomDBMSAuthenticatorMBean
	ReadonlySQLAuthenticatorMBean
	SQLAuthenticatorMBean
	DefaultAuditorMBean
	Compatibility Security MBeans
	UserLockoutManagerMBean
	Other Security Provider MBeans

