
Oracle® WebLogic Server
WebLogic Web Services Reference

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server WebLogic Web Services Reference, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

WebLogic Web Services Reference iii

Contents

1. Overview of Reference Topics

2. Ant Task Reference
Overview of WebLogic Web Services Ant Tasks . 2-1

Using the Web Services Ant Tasks . 2-2

Setting the Classpath for the WebLogic Ant Tasks. 2-4

Differences in Operating System Case Sensitivity When Manipulating WSDL and
XML Schema Files . 2-5

clientgen . 2-6

jwsc . 2-22

wsdlc . 2-64

wsdlget . 2-78

3. JWS Annotation Reference
Overview of JWS Annotation Tags . 3-1

Web Services Metadata Annotations (JSR-181) . 3-4

JAX-WS Annotations (JSR-224) . 3-5

JAXB Annotations (JSR-222) . 3-7

Common Annotations (JSR-250). 3-8

WebLogic-specific Annotations . 3-8

weblogic.jws.AsyncFailure. 3-13

weblogic.jws.AsyncResponse. 3-15

weblogic.jws.Binding . 3-18

iv WebLogic Web Services Reference

weblogic.jws.BufferQueue. 3-20

weblogic.jws.Callback . 3-21

weblogic.jws.CallbackMethod. 3-23

weblogic.jws.CallbackService . 3-24

weblogic.jws.Context. 3-26

weblogic.jws.Conversation . 3-28

weblogic.jws.Conversational . 3-30

weblogic.jws.FileStore. 3-33

weblogic.jws.MessageBuffer . 3-33

weblogic.jws.Policies. 3-36

weblogic.jws.Policy . 3-37

weblogic.jws.ReliabilityBuffer . 3-39

weblogic.jws.ReliabilityErrorHandler . 3-41

weblogic.jws.ServiceClient . 3-43

weblogic.jws.StreamAttachments . 3-47

weblogic.jws.Transactional . 3-48

weblogic.jws.Types . 3-50

weblogic.jws.WildcardBinding . 3-52

weblogic.jws.WildcardBindings . 3-53

weblogic.jws.WLHttpTransport. 3-53

weblogic.jws.WLHttpsTransport . 3-55

weblogic.jws.WLJmsTransport . 3-57

weblogic.jws.WSDL . 3-58

weblogic.jws.security.CallbackRolesAllowed . 3-60

weblogic.jws.security.RolesAllowed . 3-61

weblogic.jws.security.RolesReferenced. 3-62

weblogic.jws.security.RunAs. 3-63

weblogic.jws.security.SecurityRole . 3-64

WebLogic Web Services Reference v

weblogic.jws.security.SecurityRoleRef . 3-66

weblogic.jws.security.UserDataConstraint. 3-67

weblogic.jws.security.WssConfiguration . 3-69

weblogic.jws.soap.SOAPBinding . 3-70

weblogic.jws.security.SecurityRoles (deprecated) . 3-74

weblogic.jws.security.SecurityIdentity (deprecated) . 3-76

4. Web Service Reliable Messaging Policy Assertion Reference
Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions .

4-1

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.1. 4-2

Graphical Representation . 4-2

Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.14-3

Element Descriptions . 4-3

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0
(Deprecated) . 4-5

Graphical Representation . 4-5

Example of a WS-Policy File With Web Service Reliable Messaging Assertions . . 4-6

Element Description . 4-7

5. Oracle Web Services Security Policy Assertion Reference
Overview of a Policy File That Contains Security Assertions . 5-2

Graphical Representation. 5-3

Example of a Policy File With Security Elements . 5-5

Element Description . 5-6

CanonicalizationAlgorithm . 5-6

Claims. 5-6

Confidentiality . 5-7

ConfirmationMethod . 5-7

vi WebLogic Web Services Reference

DigestAlgorithm. 5-9

EncryptionAlgorithm . 5-10

Identity . 5-10

Integrity . 5-11

KeyInfo . 5-11

KeyWrappingAlgorithm. 5-12

Label. 5-12

Length . 5-12

MessageAge . 5-12

MessageParts . 5-15

SecurityToken . 5-16

SecurityTokenReference . 5-17

SignatureAlgorithm . 5-17

SupportedTokens . 5-18

Target . 5-18

TokenLifeTime. 5-19

Transform. 5-19

UsePassword . 5-20

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed. 5-21

XPath 1.0 . 5-22

Pre-Defined wsp:Body() Function . 5-23

WebLogic-Specific Header Functions . 5-23

6. WebLogic Web Service Deployment Descriptor Element
Reference

Overview of weblogic-webservices.xml . 6-1

Graphical Representation . 6-2

WebLogic Web Services Reference vii

XML Schema. 6-4

Example of a weblogic-webservices.xml Deployment Descriptor File 6-5

Element Description . 6-5

acknowledgement-interval . 6-5

base-retransmission-interval. 6-6

buffer-retry-count . 6-7

buffer-retry-delay . 6-7

callback-protocol . 6-7

deployment-listener-list . 6-7

deployment-listener . 6-8

exposed . 6-8

http-flush-response . 6-8

http-response-buffersize . 6-8

login-config . 6-8

inactivity-timeout . 6-8

mbean-name . 6-9

port-component. 6-9

port-component-name. 6-9

reliability-config . 6-10

retransmission-exponential-backoff . 6-10

sequence-expiration . 6-10

service-endpoint-address . 6-11

stream-attachments . 6-11

transport-guarantee . 6-11

transaction-timeout . 6-12

validate-request. 6-12

weblogic-webservices. 6-12

webservice-contextpath . 6-13

viii WebLogic Web Services Reference

webservice-description. 6-13

webservice-description-name. 6-13

webservice-security . 6-14

webservice-serviceuri. 6-14

webservice-type . 6-14

wsdl . 6-14

wsdl-publish-file . 6-14

WebLogic Web Services Reference 1-1

C H A P T E R 1

Overview of Reference Topics

This document is a resource for software developers who develop WebLogic Web Services. The
following table summarizes the reference topics that are described.

Table 1-1 WebLogic Web Service Reference Topics

This Reference Topic . . . Describes . . .

Ant Task Reference WebLogic Web Services Ant tasks.

JWS Annotation Reference JWS annotations that you can use in the JWS file that implements
your Web Service.

Web Service Reliable
Messaging Policy
Assertion Reference

Policy assertions you can add to a WS-Policy file to configure the
Web Service reliable messaging feature of a WebLogic Web
Service.

1-2 WebLogic Web Services Reference

For an overview of WebLogic Web Services, samples, and related documentation, see
Introducing WebLogic Web Services.

Oracle Web Services
Security Policy Assertion
Reference

Policy assertions you can add to a WS-Policy file to configure the
message-level (digital signatures and encryption) security of a
WebLogic Web Service, using a proprietary Oracle security policy
schema.

Note: You may prefer to use files that conform to the OASIS
WS-SecurityPolicy specification, as described in
“Configuring Message-Level Security” in Securing
WebLogic Web Services.

WebLogic Web Service
Deployment Descriptor
Element Reference

Elements in the WebLogic-specific Web Services
deployment descriptor weblogic-webservices.xml.

Table 1-1 WebLogic Web Service Reference Topics (Continued)

This Reference Topic . . . Describes . . .

http://e-docs.bea.com/wls/docs103/webserv_intro/index.html
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html

WebLogic Web Services Reference 2-1

C H A P T E R 2

Ant Task Reference

The following sections provide reference information about the WebLogic Web Services Ant
tasks:

“Overview of WebLogic Web Services Ant Tasks” on page 2-1

“Using the Web Services Ant Tasks” on page 2-2

“clientgen” on page 2-6

“jwsc” on page 2-22

“wsdlc” on page 2-64

“wsdlget” on page 2-78

For detailed information on how to integrate and use these Ant tasks in your development
environment to program a Web Service and a client application that invokes the Web Service,
see:

Getting Started With WebLogic Web Services Using JAX-WS

Getting Started With WebLogic Web Services Using JAX-RPC

Overview of WebLogic Web Services Ant Tasks
Ant is a Java-based build tool, similar to the make command but much more powerful. Ant uses
XML-based configuration files (called build.xml by default) to execute tasks written in Java.

http://e-docs.bea.com/wls/docs103/webserv/index.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/index.html

2-2 WebLogic Web Services Reference

Oracle provides a number of Ant tasks that help you generate important Web Service-related
artifacts.

The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and EJB JAR
files. For more information, see the Apache Ant Manual.

Note: The Apache Jakarta Web site publishes online documentation for only the most current
version of Ant, which might be different from the version of Ant that is bundled with
WebLogic Server. To determine the version of Ant that is bundled with WebLogic
Server, run the following command after setting your WebLogic environment:
prompt> ant -version

To view the documentation for a specific version of Ant, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

The following table provides an overview of the Web Service Ant tasks provided by Oracle.

Using the Web Services Ant Tasks
The following table summarizes the steps to use the Web Services Ant tasks.

Table 2-1 WebLogic Web Service Ant Tasks

Ant Task Description

clientgen Generates the Service stubs and other client-side artifacts used to invoke a Web Service.

jwsc Compiles a Java Web Service (JWS)-annotated file into a Web Service.

wsdlc Generates a partial Web Service implementation based on a WSDL file.

wsdlget Downloads to the local directory a WSDL and its imported XML targets, such as XSD and
WSDL files.

Using the Web Serv ices Ant Tasks

WebLogic Web Services Reference 2-3

Table 2-2 Steps to Use the Web Services Ant Tasks

Step Description

1 Set up your environment. On Windows NT, execute the setDomainEnv.cmd command, located in
your domain directory. The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where
BEA_HOME is the top-level installation directory of the Oracle products and
domainName is the name of your domain.

On UNIX, execute the setDomainEnv.sh command, located in your
domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle products and
domainName is the name of your domain.

2 Create the build.xml file that
contains a call to the Web
Services Ant tasks.

The following example shows a simple build.xml file with a single target
called clean:

<project name="my-webservice">

 <target name="clean">

 <delete>

 <fileset dir="tmp" />

 </delete>

 </target>

</project>

This clean target deletes all files in the tmp subdirectory. Later sections
provide examples of specifying the Ant task in the build.xml file.

2-4 WebLogic Web Services Reference

Setting the Classpath for the WebLogic Ant Tasks
Each WebLogic Ant task accepts a classpath attribute or element so that you can add new
directories or JAR files to your current CLASSPATH environment variable.

The following example shows how to use the classpath attribute of the jwsc Ant task to add a
new directory to the CLASSPATH variable:

<jwsc srcdir="MyJWSFile.java"

 classpath="${java.class.path};my_fab_directory"

 ...

</jwsc>

3 For each WebLogic Web
Service Ant task you want to
execute, add an appropriate task
definition and target to the
build.xml file using the
<taskdef> and <target>
elements.

The following example shows how to add the jwsc Ant task to the build file;
the attributes of the task have been removed for clarity:

<taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask"

/>

<target name="build-service">

 <jwsc attributes go here...>

 ...

 </jwsc>

</target>

Note: You can name the WebLogic Web Services Ant tasks anything you
want by changing the value of the name attribute of the relevant
<taskdef> element. For consistency, however, this document uses
the names jwsc, clientgen, wsdlc, and wsdlget throughout.

4 Execute the Ant task or tasks
specified in the build.xml
file.

Type ant in the same directory as the build.xml file and specify the target.
For example:
prompt> ant build-service

5 Specify the context path and
service URI used in the URL
that invokes the Web Service.
(Optional)

You can set this information in several ways, as described in “Defining the
Context Path of a WebLogic Web Service” on page 2-26.

Table 2-2 Steps to Use the Web Services Ant Tasks (Continued)

Step Description

Using the Web Serv ices Ant Tasks

WebLogic Web Services Reference 2-5

The following example shows how to add to the CLASSPATH by using the <classpath>
element:

<jwsc ...>

 <classpath>

 <pathelement path="${java.class.path}" />

 <pathelement path="my_fab_directory" />

 </classpath>

...

</jwsc>

The following example shows how you can build your CLASSPATH variable outside of the
WebLogic Web Service Ant task declarations, then specify the variable from within the task
using the <classpath> element:

<path id="myClassID">

 <pathelement path="${java.class.path}"/>

 <pathelement path="${additional.path1}"/>

 <pathelement path="${additional.path2}"/>

</path>

<jwsc>

 <classpath refid="myClassID" />

...

</jwsc>

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or ant.bat
(Windows) configuration files in the WL_HOME\server\bin directory to set various
Ant-specific variables, where WL_HOME is the top-level directory of your WebLogic
Server installation If you need to update these Ant variables, make the relevant changes
to the appropriate file for your operating system.

Differences in Operating System Case Sensitivity When
Manipulating WSDL and XML Schema Files
Many WebLogic Web Service Ant tasks have attributes that you can use to specify a file, such as
a WSDL or an XML Schema file.

The Ant tasks process these files in a case-sensitive way. This means that if, for example, the
XML Schema file specifies two user-defined types whose names differ only in their capitalization
(for example, MyReturnType and MYRETURNTYPE), the clientgen Ant task correctly generates

2-6 WebLogic Web Services Reference

two separate sets of Java source files for the Java representation of the user-defined data type:
MyReturnType.java and MYRETURNTYPE.java.

However, compiling these source files into their respective class files might cause a problem if
you are running the Ant task on Microsoft Windows, because Windows is a case insensitive
operating system. This means that Windows considers the files MyReturnType.java and
MYRETURNTYPE.java to have the same name. So when you compile the files on Windows, the
second class file overwrites the first, and you end up with only one class file. The Ant tasks,
however, expect that two classes were compiled, thus resulting in an error similar to the
following:

c:\src\com\bea\order\MyReturnType.java:14:
class MYRETURNTYPE is public, should be declared in a file named
MYRETURNTYPE.java
public class MYRETURNTYPE
 ^

To work around this problem rewrite the XML Schema so that this type of naming conflict does
not occur, or if that is not possible, run the Ant task on a case sensitive operating system, such as
Unix.

clientgen
The clientgen Ant task generates, from an existing WSDL file, the client component files that
client applications use to invoke both WebLogic and non-WebLogic Web Services.

The generated artifacts for JAX-WS Web Services include:

The Java class for the Service interface implementation for the particular Web Service
you want to invoke.

JAXB data binding artifacts.

The Java class for any user-defined XML Schema data types included in the WSDL file.

The generated artifacts for JAX-RPC Web Services include:

The Java class for the Stub and Service interface implementations for the particular Web
Service you want to invoke.

The Java source code for any user-defined XML Schema data types included in the WSDL
file.

c l ientgen

WebLogic Web Services Reference 2-7

The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

A client-side copy of the WSDL file.

Two types of client applications use the generated artifacts of clientgen to invoke Web
Services:

Stand-alone Java clients that do not use the Java Platform, Enterprise Edition (Java EE)
Version 5 client container.

Java EE clients, such as EJBs, JSPs, and Web Services, that use the Java EE client
container.

You typically use the destDir attribute of clientgen to specify the directory into which all the
artifacts should be generated, and then compile the generate Java files yourself using the javac
Ant task. However, clientgen also provides a destFile attribute if you want the Ant task to
compile the Java files for you and package them, along with the other generated artifacts, into the
specified JAR file. You must specify one of either destFile or destDir, although you cannot
specify both.

The following sections provide more information about the clientgen Ant task:

Taskdef Classname

Examples

Child Elements

Attributes

Taskdef Classname
 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

Examples
<taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

...

<target name="build_client">

2-8 WebLogic Web Services Reference

<clientgen

 wsdl="http://example.com/myapp/myservice.wsdl"

 destDir="/output/clientclasses"

 packageName="myapp.myservice.client"

 serviceName="StockQuoteService" />

<javac ... />

</target>

When the sample build_client target is executed, clientgen uses the WSDL file specified
by the wsdl attribute to generate all the client-side artifacts needed to invoke the Web Service
specified by the serviceName attribute. The clientgen Ant task generates all the artifacts into
the /output/clientclasses directory. All generated Java code is in the
myapp.myservice.client package. After clientgen has finished, the javac Ant task then
compiles the Java code, both clientgen-generated as well as your own client application that
uses the generated artifacts and contains your business code.

If you want the clientgen Ant task to compile and package the generated artifacts for you,
specify the destFile attribute rather than destDir:

<clientgen

 wsdl="http://example.com/myapp/myservice.wsdl"

 destFile="/output/jarfiles/myclient.jar"

 packageName="myapp.myservice.client"

 serviceName="StockQuoteService" />

In the preceding example, you do not need to also specify the javac Ant task after clientgen
in the build.xml file, because the Java code has already been compiled.

You typically execute the clientgen Ant task on a WSDL file that is deployed on the Web and
accessed using HTTP. Sometimes, however, you might want to execute clientgen on a static
WSDL file that is packaged in an archive file, such as the WAR or JAR file generated by the jwsc
Ant task. In this case you must use the following syntax for the wsdl attribute:

wsdl="jar:file:archive_file!WSDL_file"

where archive_file refers to the full or relative (to the current directory) name of the archive
file and WSDL_file refers to the full pathname of the WSDL file, relative to the root directory of
the archive file. For example:

 <clientgen

wsdl="jar:file:output/myEAR/examples/webservices/simple/SimpleImpl.war!/WE

c l ientgen

WebLogic Web Services Reference 2-9

B-INF/SimpleService.wsdl"

 destDir="/output/clientclasses"

 packageName="myapp.myservice.client"/>

The preceding example shows how to execute clientgen on a static WSDL file called
SimpleService.wsdl, which is packaged in the WEB-INF directory of a WAR file called
SimpleImpl.war, which is located in the output/myEAR/examples/webservices/simple
sub-directory of the directory that contains the build.xml file.

You can use the standard Ant <sysproperty> nested element to set Java properties, such as the
username and password of a valid WebLogic Server user (if you have enabled access control on
the Web Service) or the name of a client-side trust store that contains trusted certificates, as
shown in the following example:

<clientgen

 wsdl="http://example.com/myapp/mySecuredService.wsdl"

 destDir="/output/clientclasses"

 packageName="myapp.mysecuredservice.client"

 serviceName="SecureStockQuoteService"

 <sysproperty key="javax.net.ssl.trustStore"

 value="/keystores/DemoTrust.jks"/>

 <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking"

 value="false"/>

 <sysproperty key="javax.xml.rpc.security.auth.username"

 value="juliet"/>

 <sysproperty key="javax.xml.rpc.security.auth.password"

 value="secret"/>

</clientgen>

Finally, in the preceding examples, it is assumed that the Web Service for which you are
generating client artifacts is based on JAX-RPC; the following example shows how to use the
type attribute to specify that the Web Service is based on JAX-WS:

<clientgen

 type="JAXWS"

 wsdl="http://${wls.hostname}:${wls.port}/JaxWsImpl/JaxWsImplService?WSDL"

 destDir="/output/clientclasses"

 packageName="examples.webservices.jaxws.client"/>

2-10 WebLogic Web Services Reference

Child Elements
The clientgen Ant task has the following WebLogic-specific child elements:

binding

xmlcatalog

See “Standard Ant Attributes and Elements That Apply To clientgen” on page 2-21 for the list of
elements associated with the standard Ant javac task that you can also set for the clientgen
Ant task.

binding
Use the <binding> child element to specify one of the following:

For JAX-WS, one or more customization files that specify one or more of the following:

– JAX-WS and JAXB custom binding declarations. For more information, see
“Customizing XML Schema-to-Java Mapping Using Binding Declarations” in Getting
Started With WebLogic Web Services Using JAX-WS.

– SOAP handler files. For more information, see “Creating and Using SOAP Message
Handlers” in Programming Advance Features of WebLogic Web Services Using
JAX-WS.

For JAX-RPC, one or more XMLBeans configuration files, which by convention end in
.xsdconfig. Use this element if your Web Service uses Apache XMLBeans data types as
parameters or return values.

The <binding> element is similar to the standard Ant <Fileset> element and has all the same
attributes. See the Apache Ant documentation on the Fileset element for the full list of attributes
you can specify.

Note: The <binding> element replaces the <xsdConfig> element, which is deprecated as of
version 10.0 of WebLogic Server.

xmlcatalog
Note: The <xmlcatalog> child element applies to JAX-WS only; this child element is not

valid for JAX-RPC.

The <xmlcatalog> child element specifies the ID of an embedded XML catalog. The following
shows the element syntax:

<xmlcatalog refid="id"/>

http://e-docs.bea.com/wls/docs103/webserv_adv/handlers.html
http://e-docs.bea.com/wls/docs103/webserv_adv/handlers.html
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#binding_declarations
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#binding_declarations

c l ientgen

WebLogic Web Services Reference 2-11

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog. You
embed an XML catalog in the build.xml file using the following syntax:
<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML resource
(WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using clientgen.
Relevant code lines are shown in bold.

<target name="clientgen">

<clientgen

 type="JAXWS"

 wsdl="${wsdl}"

 destDir="${clientclasses.dir}"

 packageName="xmlcatalog.jaxws.clientgen.client"

 catalog="wsdlcatalog.xml">

 <xmlcatalog refid="wsimportcatalog"/>

</clientgen>

</target>

<xmlcatalog id="wsimportcatalog">

 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"

 location="${basedir}/HelloTypes.xsd"/>

</xmlcatalog>

For more information, see “Using XML Catalogs” in Getting Started With WebLogic Web
Services Using JAX-WS.

Attributes
The table in the following section describes the attributes of the clientgen Ant task, and
specifies whether they are valid for JAX-WS or JAX-RPC Web Services or both. See “Standard
Ant Attributes and Elements That Apply To clientgen” on page 2-21 for the list of attributes
associated with the standard Ant javac task that you can also set for the clientgen Ant task.

http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html

2-12 WebLogic Web Services Reference

WebLogic-Specific clientgen Attributes

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

autoDetectWrappe
d

Specifies whether the clientgen Ant
task should try to determine whether the
parameters and return type of
document-literal Web Services are of
type wrapped or bare.

When the clientgen Ant task parses a
WSDL file to create the client stubs, it
attempts to determine whether a
document-literal Web Service uses
wrapped or bare parameters and return
types based on the names of the XML
Schema elements, the name of the
operations and parameters, and so on.
Depending on how the names of these
components match up, the clientgen
Ant task makes a best guess as to whether
the parameters are wrapped or bare. In
some cases, however, you might want the
Ant task to always assume that the
parameters are of type bare; in this case,
set the autoDetectWrapped attribute
to False.

Valid values for this attribute are True or
False. The default value is True.

Boolean No JAX-RPC

catalog Specifies an external XML catalog file.
For more information about creating
XML catalog files, see “Using XML
Catalogs” in Programming Advanced
Features of WebLogic Web Services
Using JAX-WS.

String No JAX-WS

{DOCROOT/webserv_adv/xml.html
{DOCROOT/webserv_adv/xml.html

c l ientgen

WebLogic Web Services Reference 2-13

destDir Directory into which the clientgen
Ant task generates the client source code,
WSDL, and client deployment descriptor
files.

You can set this attribute to any directory
you want. However, if you are generating
the client component files to invoke a
Web Service from an EJB, JSP, or other
Web Service, you typically set this
attribute to the directory of the Java EE
component which holds shared classes,
such as META-INF for EJBs,
WEB-INF/classes for Web
Applications, or APP-INF/classes for
Enterprise Applications. If you are
invoking the Web Service from a
stand-alone client, then you can generate
the client component files into the same
source code directory hierarchy as your
client application code.

String You must
specify either
the
destFile
or destDir
attribute, but
not both.

Both

destFile Name of a JAR file or exploded directory
into which the clientgen task
packages the client source code, compiled
classes, WSDL, and client deployment
descriptor files. If you specify this
attribute, the clientgen Ant task also
compiles all Java code into classes.

To create or update a JAR file, use a .jar
suffix when specifying the JAR file, such
as myclientjar.jar. If the attribute
value does not have a .jar suffix, then
the clientgen task assumes you are
referring to a directory name.

If you specify a JAR file or directory that
does not exist, the clientgen task
creates a new JAR file or directory.

String You must
specify either
the
destFile
or destDir
attribute, but
not both.

Both

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

2-14 WebLogic Web Services Reference

failonerror Specifies whether the clientgen
Ant task continues executing in the
event of an error.
Valid values for this attribute are True or
False. The default value is True, which
means clientgen continues executing
even after it encounters an error.

Boolean No Both

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

c l ientgen

WebLogic Web Services Reference 2-15

generateAsyncMet
hods

Specifies whether the clientgen Ant
task should include methods in the
generated stubs that client applications
can use to invoke a Web Service
operation asynchronously.

For example, if you specify True (which
is also the default value), and one of the
Web Service operations in the WSDL is
called getQuote, then the clientgen
Ant task also generates a method called
getQuoteAsync in the stubs which
client applications invoke instead of the
original getQuote method. This
asynchronous flavor of the operation also
has an additional parameter, of data type
weblogic.wsee.async.AsyncPre
CallContext, that client applications
can use to set asynchronous properties,
contextual variables, and so on.

Note: If the Web Service operation is
marked as one-way, the
clientgen Ant task never
generates the asynchronous
flavor of the stub, even if you
explicitly set the
generateAsyncMethods
attribute to True.

Valid values for this attribute are True or
False. The default value is True, which
means the asynchronous methods are
generated by default.

Boolean No JAX-RPC

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

2-16 WebLogic Web Services Reference

generatePolicyMe
thods

Specifies whether the clientgen Ant
task should include WS-Policy-loading
methods in the generated stubs. These
methods can be used by client
applications to load a local WS-Policy
file.

If you specify True, four flavors of a
method called getXXXSoapPort() are
added as extensions to the Service
interface in the generated client stubs,
where XXX refers to the name of the Web
Service. Client applications can use these
methods to load and apply local
WS-Policy files, rather than apply any
WS-Policy files deployed with the Web
Service itself. Client applications can
specify whether the local WS-Policy file
applies to inbound, outbound, or both
SOAP messages and whether to load the
local WS-Policy from an InputStream or a
URI.

Valid values for this attribute are True or
False. The default value is False,
which means the additional methods are
not generated.

See “Using a Client-Side Security
WS-Policy File” in Securing WebLogic
Web Services for more information.

Boolean No JAX-RPC

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#client_policy
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#client_policy

c l ientgen

WebLogic Web Services Reference 2-17

getRuntimeCatalo
g

Specifies whether the clientgen Ant
task should generate the XML catalog
artifacts in the client runtime
environment. To disable their generation,
set this flag to false. This value defaults
to true. For more information, see
“Disabling XML Catalogs in the Client
Runtime” in Programming Advanced
Features of WebLogic Web Services
Using JAX-WS.

Boolean No JAX-WS

handlerChainFile Specifies the name of the XML file that
describes the client-side SOAP message
handlers that execute when a client
application invokes a Web Service.

Each handler specified in the file executes
twice:
• Directly before the client application

sends the SOAP request to the Web
Service

• Directly after the client application
receives the SOAP response from the
Web Service

If you do not specify this clientgen
attribute, then no client-side handlers
execute, even if they are in your
CLASSPATH.

See “Creating and Using Client-Side
SOAP Message Handlers” in Programing
Advanced Features of WebLogic Web
Services Using JAX-RPC for details and
examples about creating client-side
SOAP message handlers.

String No JAX-RPC

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/handlers.html#client_handlers
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/handlers.html#client_handlers
http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html#genRuntimeCatalog
http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html#genRuntimeCatalog

2-18 WebLogic Web Services Reference

includeGlobalTyp
es

Specifies that the clientgen Ant task
should generate Java representations of
all XML Schema data types in the
WSDL, rather than just the data types that
are explicitly used in the Web Service
operations.

Valid values for this attribute are True or
False. The default value is False,
which means that clientgen generates
Java representations for only the
actively-used XML data types.

Boolean No JAX-RPC

jaxRPCWrappedArr
ayStyle

When the clientgen Ant task is
generating the Java equivalent to XML
Schema data types in the WSDL file, and
the task encounters an XML complex
type with a single enclosing sequence
with a single element with the
maxOccurs attribute equal to
unbounded, the task generates, by
default, a Java structure whose name is
the lowest named enclosing complex type
or element. To change this behavior so
that the task generates a literal array
instead, set the
jaxRPCWrappedArrayStyle to
False.

Valid values for this attribute are True or
False. The default value is True.

Boolean No JAX-RPC

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

c l ientgen

WebLogic Web Services Reference 2-19

packageName Package name into which the generated
client interfaces and stub files are
packaged.

If you do not specify this attribute, the
clientgen Ant task generates Java files
whose package name is based on the
targetNamespace of the WSDL file. For
example, if the targetNamespace is
http://example.org, then the
package name might be org.example
or something similar. If you want control
over the package name, then you should
specify this attribute.

If you do specify this attribute, Oracle
recommends you use all lower-case
letters for the package name.

String No Both

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

2-20 WebLogic Web Services Reference

serviceName Name of the Web Service in the WSDL
file for which the corresponding client
component files should be generated.

The Web Service name corresponds to the
<service> element in the WSDL file.

The generated mapping file and
client-side copy of the WSDL file will use
this name. For example, if you set
serviceName to CuteService, the
mapping file will be called
cuteService_java_wsdl_mappin
g.xml and the client-side copy of the
WSDL will be called
CuteService_saved_wsdl.wsdl.

String This attribute
is required
only if the
WSDL file
contains
more than
one
<service>
element.

The Ant task
returns an
error if you
do not
specify this
attribute and
the WSDL
file contains
more than
one
<service>
element.

JAX-RPC

type Specifies the type of Web Service for
which you are generating client artifacts:
JAX-WS or JAX-RPC.

Valid values are:
• JAXWS

• JAXRPC

Default value is JAXRPC.

String No Both

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

c l ientgen

WebLogic Web Services Reference 2-21

Standard Ant Attributes and Elements That Apply To clientgen
In addition to the WebLogic-defined clientgen attributes, you can also define the following
standard javac attributes; see the Ant documentation for additional information about each
attribute:

bootclasspath

bootClasspathRef

classpath

classpathRef

compiler

debug

debugLevel

depend

deprecation

destdir

encoding

extdirs

failonerror

fork

includeantruntime

wsdl Full path name or URL of the WSDL that
describes a Web Service (either
WebLogic or non-WebLogic) for which
the client component files should be
generated.

The generated stub factory classes in the
client JAR file use the value of this
attribute in the default constructor.

String Yes Both

Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task (Continued)

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

http://ant.apache.org/manual/

2-22 WebLogic Web Services Reference

includejavaruntime

listfiles

memoryInitialSize

memoryMaximumSize

nowarn

optimize

proceed

source

sourcepath

sourcepathRef

tempdir

verbose

You can use the standard Ant <sysproperty> child element to specify properties required by
the Web Service from which you are generating client-side artifacts. For example, if the Web
Service is secured, you can use the javax.xml.rpc.security.auth.username|password
properties to set the authenticated username and password. See the Ant documentation for the
java Ant task for additional information about <sysproperty>.

You can also use the following standard Ant child elements with the clientgen Ant task:

<FileSet>

<SourcePath>

<Classpath>

<Extdirs>

jwsc
The jwsc Ant task takes as input one or more Java Web Service (JWS) files that contains both
standard and WebLogic-specific JWS annotations and generates all the artifacts you need to
create a WebLogic Web Service.

The generated artifacts for JAX-WS Web Services include:

JSR-109 Web Service class file, such as the service endpoint interface (called
JWS_ClassNamePortType.java, where JWS_ClassName refers to the JWS class).

jwsc

WebLogic Web Services Reference 2-23

JAXB data binding artifact class file.

All required deployment descriptors, including:

– Servlet-based Web Service deployment descriptor file: web.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

Note: For JAX-WS Web Services:

The WSDL file is generated when the service endpoint is deployed.

No EJB deployment descriptors are required for EJB 3.0-based Web Services.

The generated artifacts for JAX-RPC Web Services include:

JSR-109 Web Service class file, such as the service endpoint interface (called
JWS_ClassNamePortType.java, where JWS_ClassName refers to the JWS class).

All required deployment descriptors, which can include:

– Standard and WebLogic-specific Web Services deployment descriptors:
webservices.xml, weblogic-webservices.xml, and
weblogic-webservices-policy.xml.

– JAX-RPC mapping files.

– Java class-implemented Web Services: web.xml and weblogic.xml.

– EJB-implemented Web Services: ejb-jar.xml and weblogic-ejb-jar.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

The XML Schema representation of any Java user-defined types used as parameters or
return values to the Web Service operations.

The WSDL file that publicly describes the Web Service.

After generating all the artifacts, the jwsc Ant task compiles the Java and JWS files, packages
the compiled classes and generated artifacts into a deployable Web application WAR file, and
finally creates an exploded Enterprise Application directory that contains the JAR file. You then
deploy this Enterprise Application to WebLogic Server.

By default, the jwsc Ant task generates a Web Service that conforms to the JAX-RPC
specification. You can control the type of Web Services that is generated using the type attribute

http://www.jcp.org/en/jsr/detail?id=109

2-24 WebLogic Web Services Reference

of the <jws> child element. For example, to generate a JAX-WS Web Service, set
type="JAXWS" attribute of the <jws> child element.

Note: Although not typical, you can code your JWS file to explicitly implement
javax.ejb.SessionBean. See “Should You Implement a Stateless Session EJB?” in
Getting Started With WebLogic Web Services Using JAX-WS for details. Because this
case is not typical, it is assumed in this section that jwsc packages your Web Service in
a Web application WAR file, and EJB-specific information is generated only when
necessary.

You specify the JWS file or files you want the jwsc Ant task to compile using the <jws> element.
If the <jws> element is an immediate child of the jwsc Ant task, then jwsc generates a separate
WAR file for each JWS file. If you want all the JWS files, along with their supporting artifacts,
to be packaged in a single WAR file, then group all the <jws> elements under a single <module>
element. A single WAR file reduces WebLogic server resources and allows the Web Services to
share common objects, such as user-defined data types. Using this method you can also specify
the same context path for the Web Services; if they are each packaged in their own WAR file then
each service must also have a unique context path.

When you use the <module> element, you can use the <jwsfileset> child element to search for
a list of JWS files in one or more directories, rather than list each one individually using <jws>.

The following sections discuss additional important information about jwsc:

Specifying the Transport Used to Invoke the Web Service

Defining the Context Path of a WebLogic Web Service

Generating Client Artifacts for an Invoked Web Service

Updating an Existing Enterprise Application or Web Application

Taskdef Classname

Examples

Attributes and Child Elements of the jwsc Ant Task

Specifying the Transport Used to Invoke the Web Service
The <jws> element includes the following optional child elements for specifying the transports
(HTTP/S or JMS) that are used to invoke the Web Service:

http://e-docs.bea.com/wls/docs103/webserv/jws.html#ejb_impl

jwsc

WebLogic Web Services Reference 2-25

WLHttpTransport—Specifies the context path and service URI sections of the URL used to
invoke the Web Service over the HTTP/S transport, as well as the name of the port in the
generated WSDL.

WLJMSTransport—Specifies the context path and service URI sections of the URL used
to invoke the Web Service over the JMS transport, as well as the name of the port in the
generated WSDL. You also specify the name of the JMS queue and connection factory that
you have already configured for JMS transport.

The following guidelines describe the usage of the transport elements for the jwsc Ant task:

The transports you specify to jwsc always override any corresponding transport
annotations in the JWS file. In addition, all attributes of the transport annotation are
ignored, even if you have not explicitly specified the corresponding attribute for the
transport element, in which case the default value of the transport element attribute is used.

You can specify both transport elements for a particular JWS file. However, you can
specify only one instance of a particular transport element. For example, although you
cannot specify two different <WLHttpTransport> elements for a given JWS file, you can
specify one <WLHttpTransport> and one <WLJmsTransport> element.

The value of the serviceURI attribute can be the same when you specify both
<WLJMSTransport> and <WLHttpTransport>.

All transports associated with a particular JWS file must specify the same contextPath
attribute value.

If you specify more than one transport element for a particular JWS file, the value of the
portName attribute for each element must be unique among all elements. This means that
you must explicitly specify this attribute if you add more than one transport child element
to <jws>, because the default value of the element will always be the same and thus cause
an error when running the jwsc Ant task.

If you do not specify any transport as either one of the transport elements to the jwsc Ant
task or a transport annotation in the JWS file, then the Web Service’s default URL
corresponds to the default value of the WLHttpTransport element.

For JAX-RPC Web Services, when you program your JWS file, you can use an annotation to
specify the transport that clients use to invoke the Web Service, in particular
@weblogic.jws.WLHttpTransport or @weblogic.jws.WLJMSTransport. You can specify
only one of instance of a particular transport annotation in the JWS file. For example, although
you cannot specify two different @WLHttpTransport annotations, you can specify one
@WLHttpTransport and one @WLJmsTransport annotation. However, you might not know at

2-26 WebLogic Web Services Reference

the time that you are coding the JWS file which transports best suits your needs. For this reason,
it is often better to specify the transport at build-time.

Defining the Context Path of a WebLogic Web Service
There are a variety of places where the context path (also called context root) of a WebLogic Web
Service can be specified. This section describes how to determine which is the true context path
of the service based on its configuration, even if it is has been set in multiple places.

In the context of this discussion, a Web Service context path is the string that comes after the
host:port portion of the Web Service URL. For example, if the deployed WSDL of a
WebLogic Web Service is as follows:

http://hostname:7001/financial/GetQuote?WSDL

The context path for this Web Service is financial.

The following list describes the order of precedence, from most to least important, of all possible
context path specifications:

1. The contextPath attribute of the <module> element and <jws> element (when used as a
direct child of the jwsc Ant task.)

2. The contextPath attribute of the <WLXXXTransport> child elements of <jws>.

3. For JAX-RPC Web Services only, the contextPath attribute of the @WLXXXTransport JWS
annotations.

Note: This option applies to JAX-RPC Web Services only.

4. The default value of the context path, which is the name of the JWS file without any
extension.

Suppose, for example, that you specified the @WLHttpTransport annotation in your JAX-RPC
JWS file and set its contextPath attribute to financial. If you do not specify any additional
contextPath attributes in the jwsc Ant task in your build.xml file, then the context path for
this Web Service would be financial.

Assume that you then update the build.xml file and add a <WLHttpTransport> child element
to the <jws> element that specifies the JWS file and set its contextPath attribute to finance.
The context path of the Web Service would now be finance. If, however, you then group the
<jws> element (including its child <WLHttpTransport> element) under a <module> element,
and set its contextPath attribute to money, then the context path of the Web Service would now
be money.

jwsc

WebLogic Web Services Reference 2-27

If you do not specify any contextPath attribute in either the JWS file or the jwsc Ant task, then
the context path of the Web Service is the default value: the name of the JWS file without its
*.java extension.

If you group two or more <jws> elements under a <module> element and do not set the context
path using any of the other options listed above, then you must specify the contextPath attribute
of <module> to specify the common context path used by all the Web Services in the module.
Otherwise, the default context paths for all the Web Services in the module are going to be
different (due to different names of the implementing JWS files), which is not allowed in a single
WAR file.

Generating Client Artifacts for an Invoked Web Service
If one or more of the JWS files to be compiled itself includes an invoke of a different Web
Service, then you can use the <clientgen> element of jwsc to generate and compile the required
client component files, such as the Stub and Service interface implementations for the
particular Web Service you want to invoke. These files are packaged in the generated WAR file
so as to make them available to the invoking Web Service.

Updating an Existing Enterprise Application or Web
Application
Typically, jwsc generates a new Enterprise Application exploded directory at the location
specified by the destDir attribute. However, if you specify an existing Enterprise Application as
the destination directory, jwsc updates any existing application.xml file with the new Web
Services information.

Similarly, jwsc typically generates new Web application deployment descriptors (web.xml and
weblogic.xml) that describe the generated Web application. If, however, you have an existing
Web application to which you want to add Web Services, you can use the <descriptor> child
element of the <module> element to specify existing web.xml and weblogic.xml files; in this
case, jwsc copies these files to the destDir directory and adds new information to them. Use the
standard Ant <fileset> element to copy the other existing Web application files to the destDir
directory.

Note: The existing web.xml and weblogic.xml files pointed to by the <descriptor>
element must be XML Schema-based, not DTD-based which will cause the jwsc Ant
task to fail with a validation error.

2-28 WebLogic Web Services Reference

Taskdef Classname
<taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

Examples
The following examples show how to use the jwsc Ant task by including it in a build-service
target of the build.xml Ant file that iteratively develops your Web Service. See Getting Started
With WebLogic Web Services Using JAX-WS or Getting Started With WebLogic Web Services
Using JAX-RPC for samples of complete build.xml files that contain many other targets that
are useful when iteratively developing a WebLogic Web Service, such as clean, deploy,
client, and run.

The following sample shows a very simple usage of jwsc:

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/TestEar">

 <jws file="examples/webservices/jwsc/TestServiceImpl.java" />

 </jwsc>

 </target>

In the preceding example, the JWS file called TestServiceImpl.java is located in the
src/examples/webservices/jwsc sub-directory of the directory that contains the build.xml
file. The jwsc Ant task generates the Web Service artifacts in the output/TestEar
sub-directory. In addition to the Web Service JAR file, the jwsc Ant task also generates the
application.xml file that describes the Enterprise Application in the
output/TestEar/META-INF directory.

The following example shows a more complicated use of jwsc:

 <path id="add.class.path">

 <pathelement path="${myclasses-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

...

 <target name="build-service2">

 <jwsc

 srcdir="src"

http://e-docs.bea.com/wls/docs103/webserv/index.html
http://e-docs.bea.com/wls/docs103/webserv/index.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/index.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/index.html

jwsc

WebLogic Web Services Reference 2-29

 destdir="output/TestEar"

 verbose="on"

 debug="on"

 keepGenerated="yes"

 classpathref="add.class.path" >

 <jws file="examples/webservices/jwsc/TestServiceImpl.java" />

 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java" />

 <jws file="examples/webservices/jwsc/SecondTestServiceImpl.java" />

 </jwsc>

 </target>

The preceding example shows how to enable debugging and verbose output, and how to specify
that jwsc not regenerate any existing temporary files in the output directory. The example shows
how to use classpathref attribute to add to the standard CLASSPATH by referencing a path
called add.class.path that has been specified elsewhere in the build.xml file using the
standard Ant <path> target.

The example also shows how to specify multiple JWS files, resulting in separate Web Services
packaged in their own Web application WAR files, although all are still deployed as part of the
same Enterprise Application. If you want all three Web Services packaged in a single WAR file,
group the <jws> elements under a <module> element, as shown in the following example:

 <target name="build-service3">

 <jwsc

 srcdir="src"

 destdir="output/TestEar" >

 <module contextPath="test" name="myJar" >

 <jws file="examples/webservices/jwsc/TestServiceImpl.java" />

 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java" />

 <jws file="examples/webservices/jwsc/SecondTestServiceImpl.java" />

 </module>

 </jwsc>

 </target>

The preceding example shows how to package all three Web Services in a WAR file called
myJAR.war, located at the top level of the Enterprise Application exploded directory. The
contextPath attribute of <module> specifies that the context path of all three Web Services is
test; this value overrides any context path specified in a transport annotation of the JWS files.

2-30 WebLogic Web Services Reference

The following example shows how to specify that the Web Service can be invoked using all
transports (HTTP/HTTPS/JMS):

 <target name="build-service4">

 <jwsc

 srcdir="src"

 destdir="output/TestEar">

 <jws file="examples/webservices/jwsc/TestServiceImpl.java">

 <WLHttpTransport

 contextPath="TestService" serviceUri="TestService"

 portName="TestServicePortHTTP"/>

 <WLJmsTransport

 contextPath="TestService" serviceUri="JMSTestService"

 portName="TestServicePortJMS"

 queue="JMSTransportQueue"/>

 <clientgen

 wsdl="http://examples.org/complex/ComplexService?WSDL"

 serviceName="ComplexService"

 packageName="examples.webservices.simple_client"/>

 </jws>

 </jwsc>

 </target>

The preceding example also shows how to use the <clientgen> element to generate and include
the client-side artifacts (such as the Stub and Service implementations) of the Web Service
described by http://examples.org/complex/ComplexService?WSDL. This indicates that
the TestServiceImpl.java JWS file, in addition to implementing a Web Service, must also
acts as a client to the ComplexService Web Service and must include Java code to invoke
operations of ComplexService.

The following example is very similar to the preceding one, except that it groups the <jws>
elements under a <module> element:

<target name="build-service5">

 <jwsc

 srcdir="src"

 destdir="output/TestEar">

 <module contextPath="TestService" >

 <jws file="examples/webservices/jwsc/TestServiceImpl.java">

 <WLHttpTransport

jwsc

WebLogic Web Services Reference 2-31

 serviceUri="TestService"

 portName="TestServicePort1"/>

 </jws>

 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java" />

 <jws file="examples/webservices/jwsc/SecondTestServiceImpl.java" />

 <clientgen

 wsdl="http://examples.org/complex/ComplexService?WSDL"

 serviceName="ComplexService"

 packageName="examples.webservices.simple_client" />

 </module>

 </jwsc>

</target>

In the preceding example, the individual transport elements no longer define their own
contextPath attributes; rather, the parent <module> element defines it instead. This improves
maintenance and understanding of what jwsc actually does. Also note that the <clientgen>
element is a child of <module>, and not <jws> as in the previous example.

The following example show how to use the <jwsfileset> element:

 <target name="build-service6">

 <jwsc

 srcdir="src"

 destdir="output/TestEar" >

 <module contextPath="test" name="myJar" >

 <jwsfileset srcdir="src/examples/webservices/jwsc" >

 <include name="**/*.java" />

 </jwsfileset>

 </module>

 </jwsc>

 </target>

In the example, jwsc searches for *.java files in the directory
src/examples/webservices/jwsc, relative to the directory that contains build.xml,
determines which Java files contain JWS annotations, and then processes each file as if it had
been specified with a <jws> child element of <module>. The <include> element is a standard
Ant element, described in the documentation for the standard <FilesSet> task.

The following example shows how to specify that the jwsc Ant task not create new Web
application deployment descriptors, but rather, add to existing ones:

http://ant.apache.org/manual/
http://ant.apache.org/manual/

2-32 WebLogic Web Services Reference

<target name="build-service7">

 <jwsc

 srcdir="src"

 destdir="output/TestEar" >

 <module contextPath="test" name="myJar" explode="true" >

 <jws file="examples/webservices/jwsc/AnotherTestServiceImpl.java" />

 <FileSet dir="webapp" >

 <include name="**/*.java" />

 </FileSet>

 <descriptor file="webapp/WEB-INF/web.xml" />

 <descriptor file="webapp/WEB-INF/weblogic.xml" />

 </module>

 </jwsc>

</target>

In the preceding example, the explode="true" attribute of <module> specifies that the
generated Web application should be in exploded directory format, rather than the default WAR
archive file. The <descriptor> child elements specify jwsc should copy the existing web.xml
and weblogic.xml files, located in the webapp/WEB-INF subdirectory of the directory that
contains the build.xml file, to the new Web application exploded directory, and that new Web
Service information from the specified JWS file should be added to the files, rather than jwsc
creating new ones. The example also shows how to use the standard Ant <FileSet> task to copy
additional files to the generated WAR file; if any of the copied files are Java files, the jwsc Ant
task compiles the files and puts the compiled classes into the classes directory of the Web
application.

All preceding examples generated JAX-RPC Web Services by default; the following simple
example shows how to generate a JAX-WS Web Service by specifying the type="JAXWS"
attribute of the <jws> child element:

 <target name="build-service8">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/jaxws/JaxWsImpl.java"

 type="JAXWS”

 />

 </jwsc>

jwsc

WebLogic Web Services Reference 2-33

 </target>

You can specify the type attribute for the <jws> or <jwsfileset> elements.

Attributes and Child Elements of the jwsc Ant Task
The jwsc Ant task has a variety of attributes and three child elements: <jws>, <module>, and
<binding>.

The <module> element simply groups one or more JWS files (also specified with the <jws>
element) into a single module (WAR file); if you do not specify <module>, then each JWS file is
packaged into its own module, or WAR file.

The <jws> element (when used as either a child element of <jwsc> or <module>) has three
optional child elements: <WLHttpTransport>, <WLHttpsTransport>, and
<WLJMSTransport>. See “Specifying the Transport Used to Invoke the Web Service” on
page 2-24 for more information about using the transport elements.

The <clientgen> and <descriptor> elements are children only of the elements that generate
modules: either the actual <module> element itself, or <jws> when used as a child of jwsc, rather
than a child of <module>.

The <jwsfileset> element can be used only as a child of <module>.

The following graphic describes the hierarchy of the jwsc Ant task.

2-34 WebLogic Web Services Reference

Figure 2-1 Element Hierarchy of jwsc Ant Task

The following sections describe the attributes of the jwsc Ant task. See “Standard Ant Attributes
and Child Elements That Apply to jwsc” on page 2-38 for the list of attributes associated with the
standard Ant javac task that you can also set for the jwsc Ant task.

WebLogic-Specific jwsc Attributes
The following table summarizes the WebLogic-specific jwsc attributes.

jwsc

jws

WLHttpsTransport ?

WLJMSTransport ?

WLHttpTransport ?

*

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

module *

jws

WLHttpsTransport ?

WLJMSTransport ?

WLHttpTransport ?

*

descriptor *

jwsfileset *

clientgen *

clientgen *

descriptor *

binding *

#jws
#WLHttpsTransport
#WLJMSTransport
#WLHttpTransport
#module
#jws
#WLHttpsTransport
#WLJMSTransport
#WLHttpTransport
#descriptor
#jwsfileset
#clientgen_jwsc
#clientgen_jwsc
#descriptor
#binding

jwsc

WebLogic Web Services Reference 2-35

Table 2-4 Attributes of the jwsc Ant Task

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

applicationXml Specifies the full name and path of the
application.xml deployment descriptor of the
Enterprise Application. If you specify an existing file, the
jwsc Ant task updates it to include the Web Services
information. If the file does not exist, jwsc creates it. The
jwsc Ant task also creates or updates the corresponding
weblogic-application.xml file in the same
directory.

If you do not specify this attribute, jwsc creates or
updates the file
destDir/META-INF/application.xml, where
destDir is the jwsc attribute.

No Both

destdir The full pathname of the directory that will contain the
compiled JWS files, XML Schemas, WSDL, and
generated deployment descriptor files, all packaged into a
JAR or WAR file.

The jwsc Ant task creates an exploded Enterprise
Application at the specified directory, or updates one if
you point to an existing application directory. The jwsc
task generates the JAR or WAR file that implements the
Web Service in this directory, as well as other needed
files, such as the application.xml file in the
META-INF directory; the jwsc Ant task updates an
existing application.xml file if it finds one, or
creates a new one if not. Use the applicationXML
attribute to specify a different application.xml from
the default.

Yes Both

destEncoding Specifies the character encoding of the output files, such
as the deployment descriptors and XML files. Examples
of character encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is UTF-8.

No Both

2-36 WebLogic Web Services Reference

dotNetStyle Specifies that the jwsc Ant task should generate a
.NET-style Web Service.

In particular, this means that, in the WSDL of the Web
Service, the value of the name attribute of the <part>
element that corresponds to the return parameter is
parameters rather than returnParameters. This
applies only to document-literal-wrapped Web Services.

The valid values for this attribute are true and false.
The default value is true, which means .NET-style Web
Service are generated by default.

No JAX-RPC

enableAsyncServi
ce

Specifies whether the Web Service is using one or more
of the asynchronous features of WebLogic Web Service:
Web Service reliable messaging, asynchronous
request-response, buffering, or conversations.

In the case of Web Service reliable messaging, you must
ensure that this attribute is enabled for both the reliable
Web Service and the Web Service that is invoking the
operations reliably. In the case of the other features
(conversations, asynchronous request-response, and
buffering), the attribute must be enabled only on the client
Web Service.

When this attribute is set to true (default value),
WebLogic Server automatically deploys internal modules
that handle the asynchronous Web Service features.
Therefore, if you are not using any of these features in
your Web Service, consider setting this attribute to
false so that WebLogic Server does not waste resources
by deploying unneeded internal modules.

Valid values for this attribute are true and false. The
default value is true.

Note: This attribute is deprecated as of Version 9.2 of
WebLogic Server.

No Deprecated
attribute so
not
applicable.

Table 2-4 Attributes of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

jwsc

WebLogic Web Services Reference 2-37

keepGenerated Specifies whether the Java source files and artifacts
generated by this Ant task should be regenerated if they
already exist.

If you specify no, new Java source files and artifacts are
always generated and any existing artifacts are
overwritten.

If you specify yes, the Ant task regenerates only those
artifacts that have changed, based on the timestamp of any
existing artifacts.

Valid values for this attribute are yes or no. The default
value is no.

No Both

sourcepath The full pathname of top-level directory that contains the
Java files referenced by the JWS file, such as JavaBeans
used as parameters or user-defined exceptions. The Java
files are in sub-directories of the sourcepath directory that
correspond to their package names. The sourcepath
pathname can be either absolute or relative to the
directory which contains the Ant build.xml file.

For example, if sourcepath is /src and the JWS file
references a JavaBean called MyType.java which is in
the webservices.financial package, then this
implies that the MyType.java Java file is stored in the
/src/webservices/financial directory.

The default value of this attribute is the value of the
srcdir attribute. This means that, by default, the JWS
file and the objects it references are in the same package.
If this is not the case, then you should specify the
sourcepath accordingly.

No Both

Table 2-4 Attributes of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

2-38 WebLogic Web Services Reference

Standard Ant Attributes and Child Elements That Apply to jwsc
In addition to the WebLogic-defined jwsc attributes, you can also define the following standard
javac attributes; see the Ant documentation for additional information about each attribute:

bootclasspath

bootClasspathRef

classpath

classpathRef

compiler

debug

debugLevel

depend

deprecation

srcdir The full pathname of top-level directory that contains the
JWS file you want to compile (specified with the file
attribute of the <jws> child element). The JWS file is in
sub-directories of the srcdir directory that corresponds
to its package name. The srcdir pathname can be either
absolute or relative to the directory which contains the
Ant build.xml file.

For example, if srcdir is /src and the JWS file called
MyService.java is in the
webservices.financial package, then this implies
that the MyService.java JWS file is stored in the
/src/webservices/financial directory.

Yes Both

srcEncoding Specifies the character encoding of the input files, such as
the JWS file or configuration XML files. Examples of
character encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is the character
encoding set for the JVM.

No Both

Table 2-4 Attributes of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

http://ant.apache.org/manual/

jwsc

WebLogic Web Services Reference 2-39

destdir

encoding

extdirs

failonerror

fork

includeantruntime

includejavaruntime

listfiles

memoryInitialSize

memoryMaximumSize

nowarn

optimize

proceed

source

sourcepath

sourcepathRef

tempdir

verbose

You can also use the following standard Ant child elements with the jwsc Ant task:

<SourcePath>

<Classpath>

<Extdirs>

You can use the following standard Ant elements with the <jws> and <module> child elements
of the jwsc Ant task:

<FileSet>

<ZipFileSet>

2-40 WebLogic Web Services Reference

jws
The <jws> element specifies the name of a JWS file that implements your Web Service and for
which the Ant task should generate Java code and supporting artifacts and then package into a
deployable WAR file inside of an Enterprise Application.

You can specify the <jws> element in the following two different levels of the jwsc element
hierarchy:

An immediate child element of the jwsc Ant task. In this case, jwsc generates a separate
WAR file for each JWS file. You typically use this method if you are specifying just one
JWS file to the jwsc Ant task.

A child element of the <module> element, which in turn is a child of jwsc. In this case,
jwsc generates a single WAR file that includes all the generated code and artifacts for all
the JWS files grouped within the <module> element. This method is useful if you want all
JWS files to share supporting files, such as common Java data types.

You are required to specify either a <jws> or <module> child element of jwsc.

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page 2-28 for examples of using the element.

You can use the standard Ant <FileSet> child element with the <jws> element of jwsc.

You can use the <jws> child element when generating both JAX-WS and JAX-RPC Web
Services.

The following table describes the attributes of the <jws> element. The description specifies
whether the attribute applies in the case that <jws> is a child of jwsc, is a child of <module> or
in both cases.

jwsc

WebLogic Web Services Reference 2-41

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

compiledWsdl Full pathname of the JAR file generated by the wsdlc Ant
task based on an existing WSDL file. The JAR file contains
the JWS interface file that implements a Web Service based
on this WSDL, as well as data binding artifacts for
converting parameter and return value data between its Java
and XML representations; the XML Schema section of the
WSDL defines the XML representation of the data.

You use this attribute only in the “starting from WSDL” use
case, in which you first use the wsdlc Ant task to generate
the JAR file, along with the JWS file that implements the
generated JWS interface. After you update the JWS
implementation class with business logic, you run the jwsc
Ant task to generate a deployable Web Service, using the
file attribute to specify this updated JWS implementation
file.

You do not use the compiledWsdl attribute for the
“starting from Java” use case in which you write your JWS
file from scratch and the WSDL file that describes the Web
Service is generated by the WebLogic Web Services
runtime.

Applies to <jws> when used as a child of both jwsc and
<module>.

Only
required
for the
“starting
from
WSDL”
use case

Both

2-42 WebLogic Web Services Reference

contextPath Context path (or context root) of the Web Service.

For example, assume the deployed WSDL of a WebLogic
Web Service is as follows:

http://hostname:7001/financial/GetQuot
e?WSDL

The context path for this Web Service is financial.

The value of this attribute overrides any other context path
set for the JWS file. This includes the transport-related JWS
annotations, as well as the transport-related child elements
of <jws>.

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default
value of its contextPath is HelloWorldImpl.

Applies only when <jws> is a direct child of jwsc.

No Both

explode Specifies whether the generated WAR file that contains the
deployable Web Service is in exploded directory format or
not.

Valid values for this attribute are true or false. Default
value is false, which means that jwsc generates an actual
WAR archive file, and not an exploded directory.

Applies only when <jws> is a direct child of jwsc.

No Both

file The name of the JWS file that you want to compile. The
jwsc Ant task looks for the file in the srcdir directory.

Applies to <jws> when used as a child of both jwsc and
<module>.

Yes Both

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

jwsc

WebLogic Web Services Reference 2-43

generateWsdl Specifies whether the generated WAR file includes the
WSDL file. Valid values for this attribute are true or
false. Default value is false, which means that jwsc
generates an actual WAR archive file, and not an exploded
directory.

Applies to <jws> when used as a child of both jwsc and
<module>.

Yes JAX-WS

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

2-44 WebLogic Web Services Reference

includeSchemas The full pathname of the XML Schema file that describes an
XMLBeans parameter or return value of the Web Service.

To specify more than one XML Schema file, use either a
comma or semi-colon as a delimiter:

includeSchemas="po.xsd,customer.xsd"

This attribute is only supported in the case where the JWS
file explicitly uses an XMLBeans data type as a parameter
or return value of a Web Service operation. If you are not
using the XMLBeans data type, the jwsc Ant task returns
an error if you specify this attribute.

Additionally, you can use this attribute only for Web
Services whose SOAP binding is document-literal-bare.
Because the default SOAP binding of a WebLogic Web
Service is document-literal-wrapped, the corresponding
JWS file must include the following JWS annotation:

@SOAPBinding(
 style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,

parameterStyle=SOAPBinding.ParameterSt
yle.BARE)

For more information on XMLBeans, see
http://www.oracle.com/technology/community/welcome-b
e/index.html.

Applies to <jws> when used as a child of both jwsc and
<module>.

Note: As of WebLogic Server 9.1, using XMLBeans 1.X
data types (in other words, extensions of
com.bea.xml.XmlObject) as parameters or
return types of a WebLogic Web Service is
deprecated. New applications should use
XMLBeans 2.x data types.

Required if
you are
using an
XMLBean
s data type
as a
parameter
or return
value

JAX-RPC

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

http://www.oracle.com/technology/community/welcome-bea/index.html
http://www.oracle.com/technology/community/welcome-bea/index.html

jwsc

WebLogic Web Services Reference 2-45

name The name of the generated WAR file (or exploded directory,
if the explode attribute is set to true) that contains the
deployable Web Service. If an actual JAR archive file is
generated, the name of the file will have a .war extension.

The default value of this attribute is the name of the JWS
file, specified by the file attribute.

Applies only when <jws> is a direct child of jwsc.

No Both

type Specifies the type of Web Service to generate: JAX-WS or
JAX-RPC.

Valid values are:
• JAXWS

• JAXRPC

Default value is JAXRPC.

No Both

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

2-46 WebLogic Web Services Reference

module
The <module> element groups one or more <jws> elements together so that their generated code
and artifacts are packaged in a single Web application (WAR) file. The <module> element is a
child of the main jwsc Ant task.

You can group only Web Services implemented with the same backend component (Java class or
stateless session EJB) under a single <module> element; you cannot mix and match. By default,
jwsc always implements your Web Service as a plain Java class; the only exception is if you have
implemented a stateless session EJB in your JWS file. This means, for example, that if one of the
JWS files specified by the <jws> child element of <module> implements
javax.ejb.SessionBean, then all its sibling <jws> files must also implement

wsdlOnly Specifies that only a WSDL file should be generated for this
JWS file.

Note: Although the other artifacts, such as the deployment
descriptors and service endpoint interface, are not
generated, data binding artifacts are generated
because the WSDL must include the XML Schema
that describes the data types of the parameters and
return values of the Web Service operations.

The WSDL is generated into the destDir directory. The
name of the file is JWS_ClassNameService.wsdl,
where JWS_ClassName refers to the name of the JWS
class. JWS_ClassNameService is also the name of Web
Service in the generated WSDL file.

If you set this attribute to true but also set the explode
attribute to false (which is also the default value), then
jwsc ignores the explode attribute and always generates
the output in exploded format.

Valid values for this attribute are true or false. The
default value is false, which means that all artifacts are
generated by default, not just the WSDL file.

Applies only when <jws> is a child of jwsc.

No Both

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

jwsc

WebLogic Web Services Reference 2-47

javax.ejb.SessionBean. If this is not possible, then you cannot group all the JWS files under
a single <module>.

The Web Services within a module must have the same contextPath, but must have unique
serviceURIs. You can set the common contextPath by specifying it as an attribute to the
<module> element, or ensuring that the @WLXXXTransport annotations (for JAX-RPC only)
and/or <WLXXXTrasnsport> elements for each Web Service have the same value for the
contextPath attribute. The jwsc Ant task validates these values and returns an error if they are
not unique.

You must specify at least one <jws> child element of <module>.

You can use the <module> child element when generating both JAX-WS and JAX-RPC Web
Services.

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page 2-28 for examples of using the element.

The following table describes the attributes of the <module> element.

2-48 WebLogic Web Services Reference

Table 2-6 Attributes of the <module> Element of the jwsc Ant Task

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

contextPath Context path (or context root) of all the Web Services
contained in this module.

For example, assume the deployed WSDL of a WebLogic
Web Service is as follows:

http://hostname:7001/financial/GetQuot
e?WSDL

The context path for this Web Service is financial.

The value of this attribute overrides any other context path
set for any of the JWS files contained in this module. This
includes the transport-related JWS annotations, as well as
the transport-related child elements of <jws>.

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default
value of its contextPath is HelloWorldImpl.

Only
required to
ensure that
the context
paths of
multiple
Web
Services in
a single
WAR are
the same.
See
“Defining
the
Context
Path of a
WebLogic
Web
Service”
on
page 2-26

Both

explode Specifies whether the generated WAR file that contains the
deployable Web Service(s) is in exploded directory format
or not.

Valid values for this attribute are true or false. Default
value is false, which means that jwsc generates an actual
WAR archive file, and not an exploded directory.

No Both

generateWsdl Specifies whether the generated WAR file includes the
WSDL file. Valid values for this attribute are true or
false. Default value is false, which means that jwsc
generates an actual WAR archive file, and not an exploded
directory.

Yes JAX-WS

jwsc

WebLogic Web Services Reference 2-49

WLHttpTransport
Use the WLHttpTransport element to specify the context path and service URI sections of the
URL used to invoke the Web Service over the HTTP transport, as well as the name of the port in
the generated WSDL.

The <WLHttpTransport> element is a child of the <jws> element.

name The name of the generated WAR file (or exploded directory,
if the explode attribute is set to true) that contains the
deployable Web Service(s). If an actual WAR archive file is
generated, the name of the file will have a .war extension.

The default value of this attribute is jws.

No Both

wsdlOnly Specifies that only a WSDL file should be generated for
each JWS file specified by the <jws> child element of
<module>.

Note: Although the other artifacts, such as the deployment
descriptors and service endpoint interface, are not
generated, data binding artifacts are generated
because the WSDL must include the XML Schema
that describes the data types of the parameters and
return values of the Web Service operations.

The WSDL is generated into the destDir directory. The
name of the file is JWS_ClassNameService.wsdl,
where JWS_ClassName refers to the name of the JWS
class. JWS_ClassNameService is also the name of Web
Service in the generated WSDL file.

If you set this attribute to true but also set the explode
attribute to false (which is also the default value), then
jwsc ignores the explode attribute and always generates
the output in exploded format.

Valid values for this attribute are true or false. The
default value is false, which means that all artifacts are
generated by default, not just the WSDL file.

No Both

Table 2-6 Attributes of the <module> Element of the jwsc Ant Task (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

2-50 WebLogic Web Services Reference

You can specify one or zero <WLHttpTransport> elements for a given JWS file.

See “Specifying the Transport Used to Invoke the Web Service” on page 2-24 for guidelines to
follow when specifying this element.

You can use the <WlHttpTransport> child element when generating both JAX-WS and
JAX-RPC Web Services.

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page 2-28 for examples of using the element.

The following table describes the attributes of <WLHttpTransport>.

Table 2-7 Attributes of the <WLHttpTransport> Child Element of the <jws> Element

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

contextPa
th

Context path (or context root) of the Web Service.

For example, assume the deployed WSDL of a
WebLogic Web Service is as follows:

http://hostname:7001/financial/
GetQuote?WSDL

The contextPath for this Web Service is
financial.

The default value of this attribute is the name of
the JWS file, without its extension. For example,
if the name of the JWS file is
HelloWorldImpl.java, then the default
value of its contextPath is HelloWorldImpl.

No Both

jwsc

WebLogic Web Services Reference 2-51

serviceUr
i

Web Service URI portion of the URL.

For example, assume the deployed WSDL of a
WebLogic Web Service is as follows:

http://hostname:7001/financial/
GetQuote?WSDL

The serviceUri for this Web Service is
GetQuote.

For JAX-WS, the default value of this attribute is
the serviceName element of the
@WebService annotation if specified.
Otherwise, the name of the JWS file, without its
extension, followed by Service. For example, if
the serviceName element of the
@WebService annotation is not specified and
the name of the JWS file is
HelloWorldImpl.java, then the default
value of its serviceUri is
HelloWorldImplService.

For JAX-RPC, the default value of this attribute is
the name of the JWS file, without its extension.
For example, if the name of the JWS file is
HelloWorldImpl.java, then the default
value of its serviceUri is HelloWorldImpl.

No Both

portName The name of the port in the generated WSDL.
This attribute maps to the name attribute of the
<port> element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the
JWS file. In particular, the default portName is
the value of the name attribute of @WebService
annotation, plus the actual text SoapPort. For
example, if @WebService.name is set to
MyService, then the default portName is
MyServiceSoapPort.

No Both

Table 2-7 Attributes of the <WLHttpTransport> Child Element of the <jws> Element (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

2-52 WebLogic Web Services Reference

WLHttpsTransport
Note: The <WLHttpsTransport> element is deprecated as of version 9.2 of WebLogic Server.

You should use the <WLHttpTransport> element instead because it now supports both
the HTTP and HTTPS protocols. If you want client applications to access the Web
Service using only the HTTPS protocol, then you must specify the
@weblogic.jws.security.UserDataConstraint JWS annotation in your JWS file.

Use the WLHttpsTransport element to specify the context path and service URI sections of the
URL used to invoke the Web Service over the secure HTTPS transport, as well as the name of
the port in the generated WSDL.

The <WLHttpsTransport> element is a child of the <jws> element. You can specify one or zero
<WLHttpsTransport> elements for a given JWS file. You can use the <WlHttpsTransport>
child element only for generating JAX-RPC Web Services. See “Specifying the Transport Used
to Invoke the Web Service” on page 2-24 for guidelines to follow when specifying this element.

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.

The following table describes the attributes of <WLHttpsTransport>.

Table 2-8 Attributes of the <WLHttpsTransport> Child Element of the <jws> Element

Attribute Description Required?

contextPath Context path (or context root) of the Web Service.

For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:

https://hostname:7001/financial/GetQuote?WSDL

The contextPath for this Web Service is financial.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its contextPath is
HelloWorldImpl.

No

jwsc

WebLogic Web Services Reference 2-53

WLJMSTransport
Note: You can use the <WLJmsTransport> child element only for generating JAX-RPC Web

Services.

Use the WLJMSTransport element to specify the context path and service URI sections of the
URL used to invoke the Web Service over the JMS transport, as well as the name of the port in
the generated WSDL. You also specify the name of the JMS queue and connection factory that
you have already configured for JMS transport.

serviceUri Web Service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:

https://hostname:7001/financial/GetQuote?WSDL

The serviceUri for this Web Service is GetQuote.

For JAX-WS, the default value of this attribute is the serviceName
element of the @WebService annotation if specified. Otherwise, the
name of the JWS file, without its extension, followed by Service. For
example, if the serviceName element of the @WebService annotation
is not specified and the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImplService.

For JAX-RPC, the default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImpl.

No

portName The name of the port in the generated WSDL. This attribute maps to the
name attribute of the <port> element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file. In particular,
the default portName is the value of the name attribute of @WebService
annotation, plus the actual text SoapPort. For example, if
@WebService.name is set to MyService, then the default portName
is MyServiceSoapPort.

No

Table 2-8 Attributes of the <WLHttpsTransport> Child Element of the <jws> Element (Continued)

Attribute Description Required?

2-54 WebLogic Web Services Reference

The <WLHJmsTransport> element is a child of the <jws> element. You can specify one or zero
<WLJmsTransport> elements for a given JWS file. See “Specifying the Transport Used to
Invoke the Web Service” on page 2-24 for guidelines to follow when specifying this element.

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page 2-28 for examples of using the element.

The following table describes the attributes of <WLJmsTransport>.

Table 2-9 Attributes of the <WLJMSTransport> Child Element of the <jws> Element

Attribute Description Required?

contextPath Context path (or context root) of the Web Service.

For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:

http://hostname:7001/financial/GetQuote?WSDL

The contextPath for this Web Service is financial.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its contextPath is
HelloWorldImpl.

No

serviceUri Web Service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:

http://hostname:7001/financial/GetQuote?WSDL

The serviceUri for this Web Service is GetQuote.

For JAX-WS, the default value of this attribute is the serviceName
element of the @WebService annotation if specified. Otherwise, the
name of the JWS file, without its extension, followed by Service. For
example, if the serviceName element of the @WebService annotation
is not specified and the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImplService.

For JAX-RPC, the default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the JWS file is
HelloWorldImpl.java, then the default value of its serviceUri is
HelloWorldImpl.

No

jwsc

WebLogic Web Services Reference 2-55

clientgen
Use the <clientgen> element if the JWS file itself invokes another Web Service and you want
the jwsc Ant task to automatically generate and compile the required client-side artifacts and
package them in the Web application WAR file together with the Web Service. The client-side
artifacts include:

The Java classes or the Stub and Service interface implementations for the particular
Web Service you want to invoke.

The Java classes for any user-defined XML Schema data types included in the WSDL file.

For JAX-RPC, the mapping deployment descriptor file which contains information about
the mapping between the Java user-defined data types and their corresponding XML
Schema types in the WSDL file.

portName The name of the port in the generated WSDL. This attribute maps to the
name attribute of the <port> element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file. In particular,
the default portName is the value of the name attribute of @WebService
annotation, plus the actual text SoapPort. For example, if
@WebService.name is set to MyService, then the default portName
is MyServiceSoapPort.

No

queue The JNDI name of the JMS queue that you have configured for the JMS
transport. See “Using JMS Transport as the Connection Protocol” in
Programming Advanced Features of WebLogic Web Services for details
about using JMS transport.

The default value of this attribute, if you do not specify it, is
weblogic.wsee.DefaultQueue. You must still create this JMS
queue in the WebLogic Server instance to which you deploy your Web
Service.

No

connectionFact
ory

The JNDI name of the JMS connection factory that you have configured
for the JMS transport.

The default value of this attribute is the default JMS connection factory for
your WebLogic Server instance.

No

Table 2-9 Attributes of the <WLJMSTransport> Child Element of the <jws> Element (Continued)

Attribute Description Required?

http://e-docs.bea.com/wls/docs103/webserv_adv/jmstransport.html

2-56 WebLogic Web Services Reference

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page 2-28 for examples of using the element.

You can specify the standard Ant <sysproperty> child element to specify properties required
by the Web Service from which you are generating client-side artifacts. For example, if the Web
Service is secured, you can use the javax.xml.rpc.security.auth.username|password
properties to set the authenticated username and password. See the Ant documentation for the
java Ant task for additional information about <sysproperty>.

You can use the <clientgen> child element for generating both JAX-WS and JAX-RPC Web
Services.

The following table describes the attributes of the <clientgen> element.

Table 2-10 Attributes of the <clientgen> Element

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

autoDetectWrapped Specifies whether the jwsc Ant task should
try to determine whether the parameters and
return type of document-literal Web
Services are of type wrapped or bare.

When the jwsc Ant task parses a WSDL
file to create the stubs, it attempts to
determine whether a document-literal Web
Service uses wrapped or bare parameters
and return types based on the names of the
XML Schema elements, the name of the
operations and parameters, and so on.
Depending on how the names of these
components match up, the jwsc Ant task
makes a best guess as to whether the
parameters are wrapped or bare. In some
cases, however, you might want the Ant
task to always assume that the parameters
are of type bare; in this case, set the
autoDetectWrapped attribute to
False.

Valid values for this attribute are True or
False. The default value is True.

No JAX-RPC

http://ant.apache.org/manual/

jwsc

WebLogic Web Services Reference 2-57

catalog Specifies an external XML catalog file. For
more information about creating XML
catalog files, see “Using XML Catalogs” in
Programming Advanced Features of
WebLogic Web Services Using JAX-WS.

No JAX-WS

handlerChainFile Specifies the name of the XML file that
describes the client-side SOAP message
handlers that execute when the JWS file
invokes a Web Service.

Each handler specified in the file executes
twice:
• directly before the JWS sends the

SOAP request to the invoked Web
Service.

• directly after the JWS receives the
SOAP response from the invoked Web
Service.

If you do not specify this attribute, then no
client-side handlers execute when the Web
Service is invoked from the JWS file, even
if they are in your CLASSPATH.

See “Creating and Using Client-Side SOAP
Message Handlers” in Programming
Advanced Features of WebLogic Web
Services Using JAX-RPC for details and
examples about creating client-side SOAP
message handlers.

No JAX-RPC

Table 2-10 Attributes of the <clientgen> Element (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/handlers.html#client_handlers
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/handlers.html#client_handlers
{DOCROOT/webserv_adv/xml.html

2-58 WebLogic Web Services Reference

generateAsyncMethods Specifies whether the jwsc Ant task should
include methods in the generated stubs that
the JWS file can use to invoke a Web
Service operation asynchronously.

For example, if you specify True (which is
also the default value), and one of the Web
Service operations in the WSDL is called
getQuote, then the jwsc Ant task also
generates a method called
getQuoteAsync in the stubs which the
JWS file can use instead of the original
getQuote method. This asynchronous
flavor of the operation also has an
additional parameter, of data type
weblogic.wsee.async.AsyncPreCa
llContext, that the JWS file can use to
set asynchronous properties, contextual
variables, and so on.

Note: If the operation of the Web Service
being invoked in the JWS file is
marked as one-way, the jwsc Ant
task never generates the
asynchronous flavor of the stub,
even if you explicitly set the
generateAsyncMethods
attribute to True.

Valid values for this attribute are True or
False. The default value is True, which
means the asynchronous methods are
generated by default.

No JAX-RPC

Table 2-10 Attributes of the <clientgen> Element (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

jwsc

WebLogic Web Services Reference 2-59

generatePolicyMethod
s

Specifies whether the jwsc Ant task should
include WS-Policy-loading methods in the
generated stubs. You can use these methods
in your JWS file, when invoking the Web
Service, to load a local WS-Policy file.

If you specify True, four flavors of a
method called getXXXSoapPort() are
added as extensions to the Service
interface in the generated client stubs,
where XXX refers to the name of the Web
Service. You can program the JWS file to
use these methods to load and apply local
WS-Policy files, rather than apply any
WS-Policy file deployed with the Web
Service itself. You can specify in the JWS
file whether the local WS-Policy file
applies to inbound, outbound, or both
SOAP messages and whether to load the
local WS-Policy file from an InputStream
or a URI.

Valid values for this attribute are True or
False. The default value is False, which
means the additional methods are not
generated.

See “Using a Client-Side Security
WS-Policy File” in Programming
Advanced Features of WebLogic Web
Services for more information.

No JAX-RPC

Table 2-10 Attributes of the <clientgen> Element (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#client_policy
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#client_policy

2-60 WebLogic Web Services Reference

includeGlobalTypes Specifies that the jwsc Ant task should
generate Java representations of all XML
Schema data types in the WSDL, rather
than just the data types that are explicitly
used in the Web Service operations.

Valid values for this attribute are True or
False. The default value is False, which
means that jwsc generates Java
representations for only the actively-used
XML data types.

No JAX-RPC

jaxRPCWrappedArraySt
yle

When the jwsc Ant task is generating the
Java equivalent to XML Schema data types
in the WSDL file, and the task encounters
an XML complex type with a single
enclosing sequence with a single element
with the maxOccurs attribute equal to
unbounded, the task generates, by default,
a Java structure whose name is the lowest
named enclosing complex type or element.
To change this behavior so that the task
generates a literal array instead, set the
jaxRPCWrappedArrayStyle to
False.

Valid values for this attribute are True or
False. The default value is True

No JAX-RPC

packageName Package name into which the generated
client interfaces and stub files are packaged.

Oracle recommends you use all lower-case
letters for the package name.

Yes Both

Table 2-10 Attributes of the <clientgen> Element (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

jwsc

WebLogic Web Services Reference 2-61

descriptor
Use the <descriptor> element to specify that, rather than create new Web application
deployment descriptors when generating the WAR that will contain the implementation of the
Web Service, the jwsc task should instead copy existing files and update them with the new
information. This is useful when you have an existing Web application to which you want to add
one or more Web Services. You typically use this element together with the standard <FileSet>
Ant task to copy other existing Web application artifacts, such as HTML files and Java classes,
to the jwsc-generated Web application.

You can use this element with only the following two deployment descriptor files:

web.xml

serviceName Name of the Web Service in the WSDL file
for which the corresponding client-side
artifacts should be generated.

The Web Service name corresponds to the
<service> element in the WSDL file.

The generated JAX-RPC mapping file and
client-side copy of the WSDL file will use
this name. For example, if you set
serviceName to CuteService, the
JAX-RPC mapping file will be called
cuteService_java_wsdl_mapping.
xml and the client-side copy of the WSDL
will be called
CuteService_saved_wsdl.wsdl.

This attribute is
required only if the
WSDL file
contains more than
one <service>
element.

The Ant task
returns an error if
you do not specify
this attribute and
the WSDL file
contains more than
one <service>
element.

JAX-RPC

wsdl Full path name or URL of the WSDL that
describes a Web Service (either WebLogic
or non-WebLogic) for which the client
artifacts should be generated.

The generated stub factory classes use the
value of this attribute in the default
constructor.

Yes Both

Table 2-10 Attributes of the <clientgen> Element (Continued)

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

2-62 WebLogic Web Services Reference

weblogic.xml

Use a separate <descriptor> element for each deployment descriptor file.

The <descriptor> element is a child of either <module> or <jws>, when the latter is a direct
child of the main jwsc Ant task.

Note: The existing web.xml and weblogic.xml files pointed to by the <descriptor>
element must be XML Schema-based, not DTD-based which will cause the jwsc Ant
task to fail with a validation error.

You can use the <descriptor> child element only for generating JAX-RPC Web Services. See
Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy. See
“Examples” on page 2-28 for examples of using the element.

The following table describes the attributes of the <descriptor> element.

jwsfileset
Use the <jwsfileset> child element of <module> to specify one or more directories in which
the jwsc Ant task searches for JWS files to compile. The list of JWS files that jwsc finds is then
treated as if each file had been individually specified with the <jws> child element of <module>.

Use the standard nested elements of the <FileSet> Ant task to narrow the search. For example,
use the <include> element to specify the pattern matching that <jwsfileset> should follow
when determining the JWS files it should include in the list. See the Ant documentation for details
about <FileSet> and its nested elements.

You can use the <jwsfileset> child element for generating both JAX-WS and JAX-RPC Web
Services.

See Figure 2-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page 2-28 for examples of using the element.

The following table describes the attributes of the <jwsfileset> element.

Table 2-11 Attributes of the <descriptor> Element

Attribute Description Required?

file Full pathname (either absolute or relative to the directory that contains the
build.xml file) of the existing deployment descriptor file. The
deployment descriptor must be XML Schema-based, not DTD-based.

The jwsc Ant task does not update this file directly, but rather, copies it
to the newly-generated Web application.

Yes

http://ant.apache.org/manual/

jwsc

WebLogic Web Services Reference 2-63

binding
Note:

Use the <binding> child element to specify one of the following:

For JAX-WS, one or more customization files that specify JAX-WS and JAXB custom
binding declarations. For more information, see “Customizing XML Schema-to-Java
Mapping Using Binding Declarations” in Getting Started With WebLogic Web Services
Using JAX-WS.

For JAX-RPC, one or more XMLBeans configuration files, which by convention end in
.xsdconfig. Use this element if your Web Service uses Apache XMLBeans data types as
parameters or return values.

The <binding> element is similar to the standard Ant <Fileset> element and has all the same
attributes. See the Apache Ant documentation on the Fileset element for the full list of attributes
you can specify.

Notes: The <binding> child element is not valid if you specify the compliedWsdl attribute of
the <jws> element.

The <binding> element replaces the <xsdConfig> element, which is deprecated as of
version 10.0 of WebLogic Server.

Table 2-12 Attributes of the <jwsfileset> Element

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

srcdir Specifies the directories (separated by semi-colons) that the
jwsc Ant task should search for JWS files to compile.

Yes Both

type Specifies the type of Web Service to generate for each found
JWS file: JAX-WS or JAX-RPC.

Valid values are:
• JAXWS

• JAXRPC

Default value is JAXRPC.

No Both

http://e-docs.bea.com/wls/docs103/webserv/data_types.html#binding_declarations
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#binding_declarations

2-64 WebLogic Web Services Reference

wsdlc
The wsdlc Ant task generates, from an existing WSDL file, a set of artifacts that together provide
a partial Java implementation of the Web Service described by the WSDL file. By specifying the
type attribute, you can generate a partial implementation based on either JAX-WS or JAX-RPC.

By default, it is assumed that the WSDL file includes a single <service> element from which
the wsdlc Ant task generates artifacts. You can, however, use the srcServiceName attribute to
specify a specific Web Service, in the case that there is more than one <service> element in the
WSDL file, or use the srcPortName attribute to specify a specific port of a Web Service in the
case that there is more than one <port> child element for a given Web Service.

The wsdlc Ant task generates the following artifacts:

A JWS interface file—or service endpoint interface—that implements the Web Service
described by the WSDL file. The interface includes full method signatures that implement
the Web Service operations, and JWS annotations (such as @WebService and
@SOAPBinding) that implement other aspects of the Web Service. You should not modify
this file.

Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values. The XML Schema of the
data types is specified in the WSDL, and the Java representation is generated by the wsdlc
Ant task. You should not modify this file.

A JWS file that contains a partial (stubbed-out) implementation of the generated JWS
interface. You need to modify this file to include your business code.

Optional Javadocs for the generated JWS interface.

After running the wsdlc Ant task, (which typically you only do once) you update the generated
JWS implementation file, for example, to add Java code to the methods so that they function as
defined by your business requirements. The generated JWS implementation file does not initially
contain any business logic because the wsdlc Ant task does not know how you want your Web
Service to function, although it does know the shape of the Web Service, based on the WSDL file.

When you code the JWS implementation file, you can also add additional JWS annotations,
although you must abide by the following rules:

The only standard JSR-181 JWS annotations you can include in the JWS implementation
file are @WebService and @HandlerChain, @SOAPMessageHandler, and
@SOAPMessageHandlers. If you specify any other JWS-181 JWS annotations, the jwsc
Ant task will return an error when you try to compile the JWS file into a Web Service.

wsd lc

WebLogic Web Services Reference 2-65

Additionally, you can specify only the serviceName and endpointInterface attributes
of the @WebService annotation. Use the serviceName attribute to specify a different
<service> WSDL element from the one that the wsdlc Ant task used, in the rare case that
the WSDL file contains more than one <service> element. Use the endpointInterface
attribute to specify the JWS interface generated by the wsdlc Ant task.

For JAX-RPC Web Services, you can specify WebLogic-specific JWS annotations, as
required. You cannot use any WebLogic-specific JWS annotations in a JAX-WS Web
Service.

For JAX-WS, you can specify JAX-WS (JSR 224), JAXB (JSR 222), or Common (JSR
250) annotations, as required.

After you have coded the JWS file with your business logic, run the jwsc Ant task to generate a
complete Java implementation of the Web Service. Use the compiledWsdl attribute of jwsc to
specify the JAR file generated by the wsdlc Ant task which contains the JWS interface file and
data binding artifacts. By specifying this attribute, the jwsc Ant task does not generate a new
WSDL file but instead uses the one in the JAR file. Consequently, when you deploy the Web
Service and view its WSDL, the deployed WSDL will look just like the one from which you
initially started.

Note: The only potential difference between the original and deployed WSDL is the value of
the location attribute of the <address> element of the port(s) of the Web Service. The
deployed WSDL will specify the actual hostname and URI of the deployed Web Service,
which is most likely different from that of the original WSDL. This difference is to be
expected when deploying a real Web Service based on a static WSDL.

Depending on the type of partial implementation you generate (JAX-WS or JAX-RPC), the Java
package name of the generated complex data types differs, as described in the following
guidelines:

For JAX-WS, if you specify the packageName attribute, then all artifacts (Java complex
data types, JWS interface, and the JWS interface implementation) are generated into this
package. If you want to change the package name of the generated Java complex data
types in this case, use the <binding> child element of the wsdlc Ant task to specify a
custom binding declarations file. For information about creating a custom binding
declarations file, see “Customizing Binding Declarations” in Getting Started With
WebLogic Web Services Using JAX-WS.

For JAX-RPC, if you specify the packageName attribute of the wsdlc Ant task, only the
generated JWS interface and implementation are in this package. The package name of the
generated Java complex data types, however, always corresponds to the XSD Schema type
namespace, whether you specify the packageName attribute or not.

http://e-docs.bea.com/wls/docs103/webserv/data_types.html#custom_binding_declarations

2-66 WebLogic Web Services Reference

See “Creating a Web Service from a WSDL File” in Getting Started With WebLogic Web
Services Using JAX-WS for a complete example of using the wsdlc Ant task in conjunction with
jwsc.

The following sections discuss additional important information about wsdlc:

Taskdef Classname

Example

Child Elements

Attributes

Taskdef Classname
 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

Example
The following excerpt from an Ant build.xml file shows how to use the wsdlc and jwsc Ant
tasks together to build a WebLogic Web Service. The build file includes two different targets:
generate-from-wsdl that runs the wsdlc Ant task against an existing WSDL file, and
build-service that runs the jwsc Ant task to build a deployable Web Service from the artifacts
generated by the wsdlc Ant task:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="generate-from-wsdl">

 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc"
 type="JAXWS" />

 </target>

 <target name="build-service">

http://e-docs.bea.com/wls/docs103/webserv/use_cases.html#create_from_wsdl

wsd lc

WebLogic Web Services Reference 2-67

 <jwsc
 srcdir="src"
 destdir="output/wsdlcEar">

 <jws file=
"examples/webservices/wsdlc/TemperatureService_TemperaturePortTypeImpl.java"
 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
 type="JAXWS"/>

 </jwsc>

 </target>

In the example, the wsdlc Ant task takes as input the TemperatureService.wsdl file and
generates the JAR file that contains the JWS interface and data binding artifacts into the directory
output/compiledWsdl. The name of the JAR file is TemperatureService_wsdl.jar. The
Ant task also generates a JWS file that contains a stubbed-out implementation of the JWS
interface into the output/impl/examples/webservices/wsdlc directory (a combination of
the value of the destImplDir attribute and the directory hierarchy corresponding to the specified
packageName).

For JAX-WS, the name of the stubbed-out JWS implementation file is based on the name of the
<service> element and its inner <port> element in the WSDL file. For example, if the service
name is TemperatureService and the port name is TemperaturePortType, then the generated
JWS implementation file is called TemperatureService_TemperaturePortTypeImpl.java.

For JAX-RPC, the name of the stubbed-out JWS implementation file is based on the name of the
<portType> element that corresponds to the first <service> element. For example, if the
portType name is TemperaturePortType, then the generated JWS implementation file is
called TemperaturePortTypeImpl.java.

After running wsdlc, you code the stubbed-out JWS implementation file, adding your business
logic. Typically, you move this JWS file from the wsdlc-output directory to a more permanent
directory that contains your application source code; in the example, the fully coded
TemperatureService_TemperaturePortTypeImpl.java JWS file has been moved to the
directory src/examples/webservices/wsdlc/. You then run the jwsc Ant task, specifying
this JWS file as usual. The only additional attribute you must specify is compiledWsdl to point
to the JAR file generated by the wsdlc Ant task, as shown in the preceding example. This
indicates that you do not want the jwsc Ant task to generate a new WSDL file, because you want
to use the original one that has been compiled into the JAR file.

Child Elements
The wsdlc Ant task has the following WebLogic-specific child elements:

2-68 WebLogic Web Services Reference

<binding>

<xmlcatalog>

For a list of elements associated with the standard Ant javac task that you can also set for the
wsdlc Ant task, see “Standard Ant javac Attributes That Apply To wsdlc” on page 2-77.

binding
Use the <binding> child element to specify one of the following:

For JAX-WS, one or more customization files that specify JAX-WS and JAXB custom
binding declarations. For more information, see “Customizing XML Schema-to-Java
Mapping Using Binding Declarations” in Getting Started With WebLogic Web Services
Using JAX-WS.

For JAX-RPC, one or more XMLBeans configuration files, which by convention end in
.xsdconfig. Use this element if your Web Service uses Apache XMLBeans data types as
parameters or return values.

The <binding> element is similar to the standard Ant <Fileset> element and has all the same
attributes. See the Apache Ant documentation on the Fileset element for the full list of attributes
you can specify.

Note: The <binding> element replaces the <xsdConfig> element, which is deprecated as of
version 10.0 of WebLogic Server.

xmlcatalog
The <xmlcatalog> child element specifies the ID of an embedded XML catalog. The following
shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog. You
embed an XML catalog in the build.xml file using the following syntax:
<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML resource
(WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using wsdlc.
Relevant code lines are shown in bold.

http://e-docs.bea.com/wls/docs103/webserv/data_types.html#binding_declarations
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#binding_declarations

wsd lc

WebLogic Web Services Reference 2-69

<target name="wsdlc">

 <wsdlc

 srcWsdl="wsdl_files/TemperatureService.wsdl"

 destJwsDir="output/compiledWsdl"

 destImplDir="output/impl"

 packageName="examples.webservices.wsdlc"

 <xmlcatalog refid="wsimportcatalog"/>

 </wsdlc>

</target>

<xmlcatalog id="wsimportcatalog">

 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"

 location="${basedir}/HelloTypes.xsd"/>

</xmlcatalog>

For more information, see “Using XML Catalogs” in Getting Started With WebLogic Web
Services Using JAX-WS.

Attributes
The table in the following section describes the attributes of the wsdlc Ant task. See “Standard
Ant javac Attributes That Apply To wsdlc” on page 2-77 for the list of attributes associated with
the standard Ant javac task that you can also set for the wsdlc Ant task.

WebLogic-Specific wsdlc Attributes
The following table describes the WebLogic-specific wsdlc attributes.

http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html

2-70 WebLogic Web Services Reference

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

autoDetectWr
apped

Specifies whether the wsdlc Ant task
should try to determine whether the
parameters and return type of
document-literal Web Services are of type
wrapped or bare.

When the wsdlc Ant task parses a WSDL
file to create the partial JWS file that
implements the Web Service, it attempts to
determine whether a document-literal Web
Service uses wrapped or bare parameters
and return types based on the names of the
XML Schema elements, the name of the
operations and parameters, and so on.
Depending on how the names of these
components match up, the wsdlc Ant task
makes a best guess as to whether the
parameters are wrapped or bare. In some
cases, however, you might want the Ant
task to always assume that the parameters
are of type bare; in this case, set the
autoDetectWrapped attribute to
False.

Valid values for this attribute are True or
False. The default value is True.

Boolean No JAX-RPC

catalog Specifies an external XML catalog file. For
more information about creating XML
catalog files, see “Using XML Catalogs” in
Programming Advanced Features of
WebLogic Web Services Using JAX-WS.

String No Both

{DOCROOT/webserv_adv/xml.html

wsd lc

WebLogic Web Services Reference 2-71

destImplDir Directory into which the stubbed-out JWS
implementation file is generated.

The generated JWS file implements the
generated JWS interface file (contained
within the JAR file). You update this JWS
implementation file, adding Java code to the
methods so that they behave as you want,
then later specify this updated JWS file to
the jwsc Ant task to generate a deployable
Web Service.

String No Both

destJavadocD
ir

Directory into which Javadoc that describes
the JWS interface is generated.

Because you should never unjar or update
the generated JAR file that contains the
JWS interface file that implements the
specified Web Service, you can get detailed
information about the interface file from
this generated Javadoc. You can then use
this documentation, together with the
generated stubbed-out JWS implementation
file, to add business logic to the partially
generated Web Service.

String No Both

destJwsDir Directory into which the JAR file that
contains the JWS interface and data binding
artifacts should be generated.

The name of the generated JAR file is
WSDLFile_wsdl.jar, where
WSDLFile refers to the root name of the
WSDL file. For example, if the name of the
WSDL file you specify to the file
attribute is MyService.wsdl, then the
generated JAR file is
MyService_wsdl.jar.

String Yes Both

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task (Continued)

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

2-72 WebLogic Web Services Reference

explode Specifies whether the generated JAR file
that contains the generated JWS interface
file and data binding artifacts is in exploded
directory format or not.

Valid values for this attribute are true or
false. Default value is false, which
means that wsdlc generates an actual JAR
archive file, and not an exploded directory.

Boolean No Both

jaxRPCWrappe
dArrayStyle

When the wsdlc Ant task is generating the
Java equivalent to XML Schema data types
in the WSDL file, and the task encounters
an XML complex type with a single
enclosing sequence with a single element
with the maxOccurs attribute equal to
unbounded, the task generates, by default,
a Java structure whose name is the lowest
named enclosing complex type or element.
To change this behavior so that the task
generates a literal array instead, set the
jaxRPCWrappedArrayStyle to
False.

Valid values for this attribute are True or
False. The default value is True.

Boolean No JAX-RPC

packageName Package into which the generated JWS
interface and implementation files should
be generated.

If you do not specify this attribute, the
wsdlc Ant task generates a package name
based on the targetNamespace of the
WSDL.

String No Both

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task (Continued)

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

wsd lc

WebLogic Web Services Reference 2-73

srcBindingNa
me

Name of the WSDL binding from which the
JWS interface file should be generated.

The wsdlc Ant task runs against the first
<service> element it finds in the WSDL
file. Therefore, you only need to specify the
srcBindingName attribute if there is
more than one <binding> element
associated with this first <service>
element.

If the namespace of the binding is the same
as the namespace of the service, then you
just need to specify the name of the binding
for the value of this attribute. For example:

srcBindingName="MyBinding"

However, if the namespace of the binding is
different from the namespace of the service,
then you must also specify the namespace
URI, using the following format:

srcBindingName="{URI}Bindin
gName"

For example, if the namespace URI of the
MyBinding binding is
www.examples.org, then you specify
the attribute value as follows:

srcBindingName="{www.exampl
es.org}MyBinding"

Note: This attribute is deprecated as of
Version 9.2 of WebLogic Server.
Use srcPortName or
srcServiceName instead.

String Only if the
WSDL file
contains more
than one
<binding>
element

JAX-RPC

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task (Continued)

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

2-74 WebLogic Web Services Reference

srcPortName Name of the WSDL port from which the
JWS interface file should be generated.

Set the value of this attribute to the value of
the name attribute of the <port> element
that corresponds to the Web Service port for
which you want to generate a JWS interface
file. The <port> element is a child element
of the <service> element in the WSDL
file.

If you do not specify this attribute, wsdlc
generates a JWS interface file from the
service specified by srcServiceName.

Note: For JAX-RPC, if you specify this
attribute, you cannot also specify
srcServiceName.

String No Both

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task (Continued)

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

wsd lc

WebLogic Web Services Reference 2-75

srcServiceNa
me

Name of the Web Service from which the
JWS interface file should be generated.

Set the value of this attribute to the value of
the name attribute of the <service>
element that corresponds to the Web
Service for which you want to generate a
JWS interface file.

The wsdlc Ant task generates a single JWS
endpoint interface and data binding JAR
file for a given Web Service. This means
that if the <service> element contains
more than one <port> element, the
following must be true:
• The bindings for each port must be the

same or equivalent to each other.
• The transport for each port must be

different. The wsdlc Ant task
determines the transport for a port from
the address listed in its <address>
child element. Because WebLogic Web
Services support only three transports
(JMS, HTTP, and HTTPS), this means
that there can be at most three <port>
child elements for the <service>
element specified by this attribute. The
generated JWS implementation file will
then include the corresponding
@WLXXXTransport annotations (for
JAX-RPC Web Services).

If you do not specify either this or the
srcPortName attribute, the WSDL file
must include only one <service>
element. The wsdlc Ant task generates the
JWS interface file and data binding JAR file
from this single Web Service.

Note: For JAX-RPC, if you specify this
attribute, you cannot also specify
srcPortName.

String No Both

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task (Continued)

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

2-76 WebLogic Web Services Reference

srcWsdl Name of the WSDL from which to generate
the JAR file that contains the JWS interface
and data binding artifacts.

The name must include its pathname, either
absolute or relative to the directory which
contains the Ant build.xml file.

String Yes Both

type Specifies the type of Web Service for which
you are generating a partial
implementation: JAX-WS or JAX-RPC.

Valid values are:
• JAXWS

• JAXRPC

Default value is JAXRPC.

String No Both

typeFamily Specifies the type of data binding classes to
generate.

Valid values are:
• TYLAR—Refers to the standard

WebLogic Web Services data binding
classes, described in Data Types and
Data Binding.

• XMLBEANS

• XMLBEANS_APACHE

Default value is TYLAR.

Note: JAXB data binding classes are
always generated for a JAX-WS
Web Service.

String No JAX-RPC

wlw81Callbac
kGen

Specifies whether to generate a WebLogic
Workshop 8.1 style callback.

Valid values for this attribute are True or
False. The default value is False.

Boolean No JAX-RPC

Table 2-13 WebLogic-specific Attributes of the wsdlc Ant Task (Continued)

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

http://e-docs.bea.com/wls/docs103/webserv/data_types.html
http://e-docs.bea.com/wls/docs103/webserv/data_types.html

wsd lc

WebLogic Web Services Reference 2-77

Standard Ant javac Attributes That Apply To wsdlc
In addition to the WebLogic-specific wsdlc attributes, you can also define the following standard
javac attributes; see the Ant documentation for additional information about each attribute:

bootclasspath

bootClasspathRef

classpath

classpathRef

compiler

debug

debugLevel

depend

deprecation

destdir

encoding

extdirs

failonerror

fork

includeantruntime

includejavaruntime

listfiles

memoryInitialSize

memoryMaximumSize

nowarn

optimize

proceed

source

sourcepath

sourcepathRef

tempdir

http://ant.apache.org/manual/

2-78 WebLogic Web Services Reference

verbose

You can also use the following standard Ant child elements with the wsdlc Ant task:

<FileSet>

<SourcePath>

<Classpath>

<Extdirs>

wsdlget
The wsdlget Ant task downloads to the local directory a WSDL and its imported XML
resources.

You may wish to use the download files when defining and referencing an XML catalog to
redirect remote XML resources in your application to a local version of the resources. For more
information about using XML catalogs, see “Using XML Catalogs” in Programming Advanced
Features of WebLogic Web Services Using JAX-WS.

The following sections discuss additional important information about wsdlget:

Taskdef Classname

Example

Child Elements

Attributes

Taskdef Classname
 <taskdef name="wsdlget"

 classname="weblogic.wsee.tools.anttasks.WsdlGetTask"/>

Example
The following excerpt from an Ant build.xml file shows how to use the wsdlget Ant task to
download a WSDL and its imported XML resources. The XML resources will be saved to the
wsdl folder in the directory from which the Ant task is run.

<target name="wsdlget"

 <wsdlget

 wsdl="http://host/service?wsdl"

http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html

wsdlget

WebLogic Web Services Reference 2-79

 destDir="./wsdl/"

 />

</target>

Child Elements
The wsdlget Ant task has one WebLogic-specific child element: <xmlcatalog>. The
<xmlcatalog> child element specifies the ID of an embedded XML catalog. The following
shows the element syntax:

<xmlcatalog refid="id"/>

The ID referenced by <xmlcatalog> must match the ID of an embedded XML catalog. You
embed an XML catalog in the build.xml file using the following syntax:
<xmlcatalog id="id">
 <entity publicid="public_id" location="uri"/>
</xmlcatalog>

In the above syntax, public_id specifies the public identifier of the original XML resource
(WSDL or XSD) and uri specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using wsdlget.
Relevant code lines are shown in bold.

<target name="wsdlget">

<wsdlget

 wsdl="${wsdl}"

 destDir="${wsdl.dir}"

 catalog="wsdlcatalog.xml"/>

 <xmlcatalog refid="wsimportcatalog"/>

</wsdlget>

</target>

<xmlcatalog id="wsimportcatalog">

 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"

 location="${basedir}/HelloTypes.xsd"/>

</xmlcatalog>

For more information, see “Using XML Catalogs” in Getting Started With WebLogic Web
Services Using JAX-WS.

http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html

2-80 WebLogic Web Services Reference

Attributes
The following table describes the attributes of the wsdlget Ant task.

Table 2-14 WebLogic-specific Attributes of the wsdlget Ant Task

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

catalog Specifies an external XML catalog file. For
more information about creating XML
catalog files, see “Using XML Catalogs” in
Programming Advanced Features of
WebLogic Web Services Using JAX-WS.

String No Both

destDir Directory into which the XML resources
are copied.

The generated JWS file implements the
generated JWS interface file (contained
within the JAR file). You update this JWS
implementation file, adding Java code to the
methods so that they behave as you want,
then later specify this updated JWS file to
the jwsc Ant task to generate a deployable
Web Service.

String Yes Both

wsdl Name of the WSDL to copy to the local
directory.

String No Both

http://e-docs.bea.com/wls/docs103/webserv_adv/xml.html

wsdlget

WebLogic Web Services Reference 2-81

2-82 WebLogic Web Services Reference

wsdlget

WebLogic Web Services Reference 2-83

2-84 WebLogic Web Services Reference

WebLogic Web Services Reference 3-1

C H A P T E R 3

JWS Annotation Reference

The following sections provide reference documentation about the WebLogic-specific JWS
annotations:

“Overview of JWS Annotation Tags” on page 3-1

“Web Services Metadata Annotations (JSR-181)” on page 3-4

“JAX-WS Annotations (JSR-224)” on page 3-5

“JAXB Annotations (JSR-222)” on page 3-7

“Common Annotations (JSR-250)” on page 3-8

“WebLogic-specific Annotations” on page 3-8

Overview of JWS Annotation Tags
The WebLogic Web Services programming model uses the JDK 5.0 metadata annotations feature
(specified by JSR-175). In this programming model, you create an annotated Java file and then
use Ant tasks to compile the file into the Java source code and generate all the associated artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the Java
code that determines how your Web Service behaves. A JWS file is an ordinary Java class file
that uses annotations to specify the shape and characteristics of the Web Service.

The JWS annotations that are supported vary based on whether you are creating a JAX-WS or
JAX-RPC Web Service. The following table compares the Web Service annotation support for
JAX-WS and JAX-RPC.

http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html#annotations
http://www.jcp.org/en/jsr/detail?id=175

3-2 WebLogic Web Services Reference

You can target a JWS annotation at either the class-, method- or parameter-level in a JWS file.
Some annotations can be targeted at more than one level, such as @SecurityRoles that can be
targeted at both the class and method level.

The following example shows a simple JWS file that uses standard JSR-181, shown in bold:

package examples.webservices.complex;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

Table 3-1 Web Service Annotation Support

Annotations JAX-WS JAX-RPC

Web Services Metadata Annotations (JSR-181)

JAX-WS Annotations (JSR-224)

JAXB Annotations (JSR-222)

Common Annotations (JSR-250)

WebLogic-specific Annotations

Ove rv i ew o f JWS Annotat ion Tags

WebLogic Web Services Reference 3-3

/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 *
*/

public class ComplexImpl {

 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".

 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }

 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".

 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 System.out.println("echoComplexType called");

3-4 WebLogic Web Services Reference

 return struct;
 }
}

The following sections describe the JWS annotations that are supported.

Web Services Metadata Annotations (JSR-181)
The following table summarizes the standard JSR-181 annotations that you can use in your JWS
file to specify the shape and behavior of your Web Service. Each of these annotations are
available with the javax.jws or javax.jws.soap package and are described in more detail in
the Web Services Metadata for the Java Platform (JSR-181) specification.

Table 3-2 Standard JSR-181 JWS Annotations

This annotation . . . Specifies . . .

javax.jws.WebService At the class level that the JWS file implements a Web Service. For
more information, see “Specifying that the JWS File Implements a
Web Service (@WebService Annotation)” in Getting Started With
WebLogic Web Services Using JAX-WS or Getting Started With
WebLogic Web Services Using JAX-RPC.

javax.jws.WebMethod That a method of the JWS file should be exposed as a public operation
of the Web Service. For more information, see “Specifying That a
JWS Method Be Exposed as a Public Operation (@WebMethod and
@OneWay Annotations)” in Getting Started With WebLogic Web
Services Using JAX-WS or Getting Started With WebLogic Web
Services Using JAX-RPC.

javax.jws.OneWay That an operation not return a value to the calling application. For
more information, see “Specifying That a JWS Method Be Exposed as
a Public Operation (@WebMethod and @OneWay Annotations)” in
Getting Started With WebLogic Web Services Using JAX-WS or
Getting Started With WebLogic Web Services Using JAX-RPC.

javax.jws.WebParam The mapping between operation input parameters of the Web Service
and elements of the generated WSDL file, as well as specify the
behavior of the parameter. For more information, see “Customizing
the Mapping Between Operation Parameters and WSDL Parts
(@WebParam Annotation)” in Getting Started With WebLogic Web
Services Using JAX-WS or Getting Started With WebLogic Web
Services Using JAX-RPC.

http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebService
http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebService
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebService
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebService
http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebMethod
http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebMethod
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebMethod
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebMethod
http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebParam
http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebParam
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebParam
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebParam
http://e-docs.bea.com/wls/docs103/webserv/jws.html#OneWay
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#OneWay

JAX-WS Annotat i ons (JSR-224)

WebLogic Web Services Reference 3-5

JAX-WS Annotations (JSR-224)
Note: The JAX-WS JWS annotations are relevant to JAX-WS Web Services only. This section

does not apply to JAX-RPC Web Services.

The following table summarizes the JAX-WS (JSR-224) annotations that you can use in your
JWS file to specify the shape and behavior of your Web Service. Each of these annotations are
available with the javax.xml.ws package and are described in more detail in JAX-WS 2.1
Annotations,

javax.jws.WebResult The mapping between the Web Service operation return value and the
corresponding element of the generated WSDL file. For more
information, see “Customizing the Mapping Between the Operation
Return Value and a WSDL Element (@WebResult Annotation)” in
Getting Started With WebLogic Web Services Using JAX-WS or
Getting Started With WebLogic Web Services Using JAX-RPC.

javax.jws.HandlerChain An external handler chain. For more information, see “Creating and
Using SOAP Message Handlers” in Programming Advanced Features
of WebLogic Web Services Using JAX-WS or Programming Advanced
Features of WebLogic Web Services Using JAX-RPC.

javax.jws.soap.SOAPBinding At the class level the SOAP bindings of the Web Service (such as,
document-encoded or document-literal-wrapped). For
more information, see “Specifying the Mapping of the Web Service to
the SOAP Message Protocol (@SOAPBinding Annotation)” in
Getting Started With WebLogic Web Services Using JAX-WS or
Getting Started With WebLogic Web Services Using JAX-RPC.

Table 3-2 Standard JSR-181 JWS Annotations (Continued)

This annotation . . . Specifies . . .

http://e-docs.bea.com/wls/docs103/webserv/jws.html#SOAPBinding
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#SOAPBinding
http://e-docs.bea.com/wls/docs103/webserv/jws.html#WebResult
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#WebResult
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/handlers.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/handlers.html
http://e-docs.bea.com/wls/docs103/webserv_adv/handlers.html
http://e-docs.bea.com/wls/docs103/webserv_adv/handlers.html

3-6 WebLogic Web Services Reference

Table 3-3 JAX-WS (JSR-244) Annotations

This annotation . . . Specifies . . .

javax.xml.ws.Action Whether to allow an explicit association of a WS-Addressing
Action message addressing property with input, output,
and fault messages of the mapped WSDL operation.

javax.xml.ws.BindingType The binding to use for a Web Service implementation class. For
more information, see “Specifying the Binding Type to Use for
an Endpoint (@BindingType Annotation)” in Getting Started
With WebLogic Web Services Using JAX-WS.

javax.xml.ws.FaultAction Whether to allow an explicit association of a WS-Addressing
Action message addressing property with the fault messages
of the WSDL operation mapped from the exception class. The
@FaultAction annotation is used inside an @Action
annotation.

javax.xml.ws.RequestWrapper The request wrapper bean to be used at runtime for the methods
in the endpoint interface.

javax.xml.ws.ResponseWrapper The response wrapper bean to be used at runtime for the
methods in the endpoint interface.

javax.xml.ws.ServiceMode Whether a provider implementation works with the entire
protocol message or with the payload only.

javax.xml.ws.WebEndpoint The getPortName() methods of a generated service
interface.

javax.xml.ws.WebFault Service-specific exception classes to customize to the local and
namespace name of the fault element and the name of the fault
bean.

javax.xml.ws.WebServiceClient A generated service interface.

javax.xml.ws.WebServiceProvider A provider implementation class.

javax.xml.ws.WebServiceRef A reference to a Web Service. For more information, see
“Defining a Reference to a Web Service Using the
@WebServiceRef Annotation” in Getting Started With
WebLogic Web Services Using JAX-WS.

http://e-docs.bea.com/wls/docs103/webserv/jws.html#BindingType
http://e-docs.bea.com/wls/docs103/webserv/jws.html#BindingType
http://e-docs.bea.com/wls/docs103/webserv/client.html#WebServiceRef
http://e-docs.bea.com/wls/docs103/webserv/client.html#WebServiceRef

JAXB Annotat i ons (JSR-222)

WebLogic Web Services Reference 3-7

JAXB Annotations (JSR-222)
Note: The JAXB JWS annotations are relevant to JAX-WS Web Services only. This section

does not apply to JAX-RPC Web Services.

The JAXB (JSR-222) specification defines the JAXB annotations that you can use in your JWS
file to specify the shape and behavior of your Web Service. The JAXB annotations are
summarized in the following table. Each of these annotations are available with the
javax.xml.bind.annotation package and are described in more detail in “Customizing
Java-to-XML Schema Mapping Using JAXB Annotations” in Getting Started With WebLogic
Web Services Using JAX-WS or the JAXB (JSR-222) specification.

Table 3-4 JAXB Mapping Annotations (JSR-222)

This annotation . . . Specifies . . .

java.xml.bind.annotation.XmlAccessorType Whether fields or properties are serialized by default.
For more information, see “Specifying Default
Serialization (@XmlAccessorType)” in Getting
Started With WebLogic Web Services Using
JAX-WS.

java.xml.bind.annotation.XmlElement That a property contained in a class be mapped to a
local element in the XML schema complex type to
which the containing class is mapped. For more
information, see “Mapping Properties to Local
Elements (@XmlElement)” in Getting Started With
WebLogic Web Services Using JAX-WS.

java.xml.bind.annotation.XmlRootElement That a top-level class be mapped to a global
element in the XML schema that is used by the
WSDL of the Web Service. For more information,
see “Mapping a Top-level Class to a Global Element
(@XmlRootElement)” in Getting Started With
WebLogic Web Services Using JAX-WS.

http://jcp.org/en/jsr/detail?id=222
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlAccessorType
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlAccessorType
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlElement
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlElement
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlRootElement
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlRootElement
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#jaxb_annotations
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#jaxb_annotations
http://jcp.org/en/jsr/detail?id=222

3-8 WebLogic Web Services Reference

Common Annotations (JSR-250)
Note: The JAXB JWS annotations are relevant to JAX-WS Web Services only. This section

does not apply to JAX-RPC Web Services.

The following table summarizes the JAX-WS (JSR-224) annotations that you can use in your
JWS file to specify the shape and behavior of your Web Service.

Each of these annotations are available with the javax.annotation package and are described
in more detail in the Common Annotations for the Java Platform (JSR-250) specification.

WebLogic-specific Annotations
WebLogic Web Services define a set of JWS annotations that you can use to specify behavior and
features in addition to the standard JSR-181 JWS annotations. The following table summarizes

java.xml.bind.annotation.XmlSeeAlso The other classes to bind when binding the current
class. For more information, see “Binding a Set of
Classes (@XmlSeeAlso)” in Getting Started With
WebLogic Web Services Using JAX-WS.

java.xml.bind.annotation.XmlType That a class or enum type be mapped to an XML
Schema type. For more information, see “Mapping a
Value Class to a Schema Type (@XmlType)” in
Getting Started With WebLogic Web Services Using
JAX-WS.

Table 3-4 JAXB Mapping Annotations (JSR-222) (Continued)

This annotation . . . Specifies . . .

Table 3-5 Common Annotations (JSR-250)

This annotation . . . Specifies . . .

javax.annotation.Re
source

A resource that is needed by the application. This annotation may be applied to an
application component class or to fields or methods of the component class.

javax.annotation.Po
stConstruct

A method that needs to be executed after dependency injection is done to perform
initialization.

javax.annotation.Pr
eDestroy

A callback notification om a method to signal that the instance is in the process of
being removed by the container.

http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlSeeAlso
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlSeeAlso
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlType
http://e-docs.bea.com/wls/docs103/webserv/data_types.html#XmlType

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-9

the WebLogic-specific annotations and whether they are supported for JAX-WS or JAX-RPC.
(The majority of annotations are supported for JAX-RPC only.) Each annotation is described in
more detail in the sections that follow.

Table 3-6 WebLogic-specific Annotations

This annotation . . . Specifies . . . JAX-WS,
JAX-RPC, or
Both?

weblogic.jws.AsyncFailure The method that handles a potential failure when the main
JWS file invokes an operation of another Web Service
asynchronously.

JAX-RPC

weblogic.jws.AsyncResponse The method that handles the response when the main JWS
file invokes an operation of another Web Service
asynchronously.

JAX-RPC

weblogic.jws.Binding Whether the Web Service uses version 1.1 or 1.2 of the
Simple Object Access Protocol (SOAP) implementation
when accepting or sending SOAP messages.

JAX-RPC

weblogic.jws.BufferQueue The JNDI name of the JMS queue to which WebLogic
Server stores:
• Buffered Web Service operation invocation.
• Reliable Web Service operation invocation.

JAX-RPC

weblogic.jws.Callback That the annotated variable is a callback, which means
that you can use the variable to send callback events back
to the client Web Service that invoked an operation of the
target Web Service.

JAX-RPC

weblogic.jws.CallbackMethod The method in the client Web Service that handles the
messages it receives from the callback Web Service.

JAX-RPC

weblogic.jws.CallbackService That the JWS file is actually a Java interface that describes
a callback Web Service.

JAX-RPC

weblogic.jws.Context That the annotated field provides access to the runtime
context of the Web Service.

JAX-RPC

3-10 WebLogic Web Services Reference

weblogic.jws.Conversation That a method annotated with the @Conversation
annotation can be invoked as part of a conversation
between two WebLogic Web Services or a stand-alone
Java client and a conversational Web Service.

JAX-RPC

weblogic.jws.Conversational That a JWS file implements a conversational Web
Service.

JAX-RPC

weblogic.jws.FileStore That the Web Service does not use the default WebLogic
Server default filestore to store internal state information,
such as conversational state, but rather uses one specified
by the programmer.

JAX-RPC

weblogic.jws.MessageBuffer Which public methods of a JWS are buffered. If specified
at the class-level, then all public methods are buffered; if
you want only a subset of the methods to be buffered,
specify the annotation at the appropriate method-level.

JAX-RPC

weblogic.jws.Policies An array of @weblogic.jws.Policy annotations. Both

weblogic.jws.Policy That a WS-Policy file, which contains information about
digital signatures, encryption, or Web Service reliable
messaging, should be applied to the request or response
SOAP messages.

Both

weblogic.jws.ReliabilityBuffer Reliable messaging properties for an operation of a
reliable Web Service, such as the number of times
WebLogic Server should attempt to deliver the message
from the JMS queue to the Web Service implementation,
and the amount of time that the server should wait in
between retries.

JAX-RPC

weblogic.jws.ReliabilityErrorHa
ndler

The method that handles the error that results when a
client Web Service invokes a reliable Web Service, but the
client does not receive an acknowledgement that the
reliable Web Service actually received the message.

JAX-RPC

Table 3-6 WebLogic-specific Annotations (Continued)

This annotation . . . Specifies . . . JAX-WS,
JAX-RPC, or
Both?

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-11

weblogic.jws.ServiceClient That the annotated variable in the JWS file is a stub used
to invoke another WebLogic Web Service when using the
following features:
• Web Service reliable messaging
• Asynchronous request-response
• Conversations

JAX-RPC

weblogic.jws.StreamAttachments That the WebLogic Web Services runtime use streaming
APIs when reading the parameters of all methods of the
Web Service.

JAX-RPC

weblogic.jws.Transactional Whether the annotated operation, or all the operations of
the JWS file when the annotation is specified at the
class-level, runs or run inside of a transaction.

JAX-RPC

weblogic.jws.Types A comma-separated list of fully qualified Java class
names of the alternative data types for a return type or
parameter.

JAX-RPC

weblogic.jws.WildcardBinding The XML Schema data type to which a wildcard class,
such as javax.xml.soap.SOAPElement or
org.apache.xmlbeans.XmlObject, binds.

JAX-RPC

weblogic.jws.WildcardBindings An array of @weblogic.jws.WildcardBinding
annotations.

JAX-RPC

weblogic.jws.WLHttpTransport The context path and service URI sections of the URL
used to invoke the Web Service over the HTTP transport,
as well as the name of the port in the generated WSDL.

JAX-RPC

weblogic.jws.WLHttpsTransport The context path and service URI sections of the URL
used to invoke the Web Service over the HTTPS
transport, as well as the name of the port in the generated
WSDL.

JAX-RPC

weblogic.jws.WLJmsTransport The context path and service URI sections of the URL
used to invoke the Web Service over the JMS transport, as
well as the name of the port in the generated WSDL.

JAX-RPC

Table 3-6 WebLogic-specific Annotations (Continued)

This annotation . . . Specifies . . . JAX-WS,
JAX-RPC, or
Both?

3-12 WebLogic Web Services Reference

weblogic.jws.WSDL Whether to expose the WSDL of a deployed WebLogic
Web Service.

JAX-RPC

weblogic.jws.security.CallbackR
olesAllowed

An array of @SecurityRole JWS annotations that list
the roles that are allowed to invoke the callback methods
of the Web Service.

JAX-RPC

weblogic.jws.security.RolesAllo
wed

Whether to enable basic authentication for a Web Service. JAX-RPC

weblogic.jws.security.RolesRefer
enced

The list of role names that reference actual roles that are
allowed to invoke the Web Service.

JAX-RPC

weblogic.jws.security.RunAs The role and user identity which actually runs the Web
Service in WebLogic Server.

JAX-RPC

weblogic.jws.security.SecurityRo
le

The name of a role that is allowed to invoke the Web
Service.

JAX-RPC

weblogic.jws.security.SecurityRo
leRef

A role name reference that links to an already-specified
role that is allowed to invoke the Web Service.

JAX-RPC

weblogic.jws.security.UserDataC
onstraint

Whether the client is required to use the HTTPS transport
when invoking the Web Service.

JAX-RPC

weblogic.jws.security.WssConfig
uration

The name of the Web Service security configuration you
want the Web Service to use.

JAX-RPC

weblogic.jws.soap.SOAPBinding The mapping of a Web Service operation onto the SOAP
message protocol.

JAX-RPC

weblogic.jws.security.SecurityRo
les (deprecated)

The roles that are allowed to access the operations of the
Web Service.

JAX-RPC

weblogic.jws.security.SecurityId
entity (deprecated)

The identity assumed by the Web Service when it is
invoked.

JAX-RPC

Table 3-6 WebLogic-specific Annotations (Continued)

This annotation . . . Specifies . . . JAX-WS,
JAX-RPC, or
Both?

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-13

weblogic.jws.AsyncFailure

Description
Target: Method

Specifies the method that handles a potential failure when the main JWS file invokes an operation
of another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously, the response
(or exception, in the case of a failure) does not return immediately after the operation invocation,
but rather, at some later point in time. Because the operation invocation did not wait for a
response, a separate method in the JWS file must handle the response when it does finally return;
similarly, another method must handle a potential failure. Use the @AsyncFailure annotation to
specify the method in the JWS file that will handle the potential failure of an asynchronous
operation invocation.

The @AsyncFailure annotation takes two parameters: the name of the stub for the Web Service
you are invoking and the name of the operation that you are invoking asynchronously. The stub
is the one that has been annotation with the @ServiceClient annotation.

The method that handles the asynchronous failure must follow these guidelines:

Return void.

Be named onMethodNameAsyncFailure, where MethodName is the name of the method
you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:

port.getQuoteAsync (apc, symbol);

where getQuote is the non-asynchronous name of the method, apc is the asynchronous
pre-call context, and symbol is the usual parameter to the getQuote operation.

Have two parameters: the asynchronous post-call context (contained in the
weblogic.wsee.async.AsyncPostCallContext object) and the Throwable exception,
potentially thrown by the asynchronous operation call.

Within the method itself you can get more information about the method failure from the context,
and query the specific type of exception and act accordingly.

Typically, you always use the @AsyncFailure annotation to explicitly specify the method that
handles asynchronous operation failures. The only time you would not use this annotation is if
you want a single method to handle failures for two or more stubs that invoke different Web

3-14 WebLogic Web Services Reference

Services. In this case, although the stubs connect to different Web Services, each Web Service
must have a similarly named method, because the Web Services runtime relies on the name of the
method (onMethodNameAsyncFailure) to determine how to handle the asynchronous failure,
rather than the annotation. However, if you always want a one-to-one correspondence between a
stub and the method that handles an asynchronous failure from one of the operations, then Oracle
recommends that you explicitly use @AsyncFailure.

See “Invoking a Web Service Using Asynchronous Request-Response” in Programming
Advanced Features of WebLogic Web Services Using JAX-RPC for detailed information and
examples of using this annotation.

Attributes

Example
The following sample snippet shows how to use the @AsyncFailure annotation in a JWS file
that invokes the operation of another Web Service asynchronously; only the relevant Java code
is included:

package examples.webservices.async_req_res;

...

Table B-1 Attributes of the weblogic.jws.AsyncFailure JWS Annotation Tag

Name Description Data Type Required?

target The name of the stub of the Web Service for which you
want to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

String Yes

operation The name of the operation that you want to invoke
asynchronously.

This is the actual name of the operation, as it appears in
the WSDL file. When you invoke this operation in the
main code of the JWS file, you add Async to its name.

For example, if set operation="getQuote", then in
the JWS file you invoke it asynchronously as follows:

 port.getQuoteAsync (apc, symbol);

String Yes

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/asynch.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-15

public class StockQuoteClientImpl {

 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")
 private StockQuotePortType port;

 @WebMethodpublic void getQuote (String symbol) {

 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("symbol", symbol);

 try {
 port.getQuoteAsync(apc, symbol);
 System.out.println("in getQuote method of StockQuoteClient WS");
 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

 }

...

 @AsyncFailure(target="port", operation="getQuote")
 public void onGetQuoteAsyncFailure(AsyncPostCallContext apc, Throwable e) {
 System.out.println("-------------------");
 e.printStackTrace();
 System.out.println("-------------------");
 }

}

The example shows a stub called port, used to invoke the Web Service located at
http://localhost:7001/async/StockQuote. The getQuote operation is invoked
asynchronously, and any exception from this invocation is handled by the
onGetQuoteAsyncFailure method, as specified by the @AsyncFailure annotation.

weblogic.jws.AsyncResponse

Description
Target: Method

Specifies the method that handles the response when the main JWS file invokes an operation of
another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously, the response
does not return immediately after the operation invocation, but rather, at some later point in time.

3-16 WebLogic Web Services Reference

Because the operation invocation did not wait for a response, a separate method in the JWS file
must handle the response when it does finally return. Use the @AsyncResponse annotation to
specify the method in the JWS file that will handle the response of an asynchronous operation
invocation.

The @AsyncResponse annotation takes two parameters: the name of the stub for the Web Service
you are invoking and the name of the operation that you are invoking asynchronously. The stub
is the one that has been annotation with the @ServiceClient annotation.

The method that handles the asynchronous response must follow these guidelines:

Return void.

Be named onMethodNameAsyncResponse, where MethodName is the name of the method
you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:

port.getQuoteAsync (apc, symbol);

where getQuote is the non-asynchronous name of the method, apc is the asynchronous
pre-call context, and symbol is the usual parameter to the getQuote operation.

Have two parameters: the asynchronous post-call context (contained in the
weblogic.wsee.async.AsyncPostCallContext object) and the usual return value of
the operation.

Within the asynchronous-response method itself you add the code to handle the response. You
can also get more information about the method invocation from the context.

Typically, you always use the @AsyncResponse annotation to explicitly specify the method that
handles asynchronous operation responses. The only time you would not use this annotation is if
you want a single method to handle the response for two or more stubs that invoke different Web
Services. In this case, although the stubs connect to different Web Services, each Web Service
must have a similarly named method, because the Web Services runtime relies on the name of the
method (onMethodNameAsyncResponse) to determine how to handle the asynchronous
response, rather than the annotation. However, if you always want a one-to-one correspondence
between a stub and the method that handles an asynchronous response from one of the operations,
then Oracle recommends that you explicitly use @AsyncResponse.

See “Invoking a Web Service Using Asynchronous Request-Response” in Programming
Advanced Features of WebLogic Web Services Using JAX-RPC for detailed information and
examples of using this annotation.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/asynch.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-17

Attributes

Example
The following sample snippet shows how to use the @AsyncResponse annotation in a JWS file
that invokes the operation of another Web Service asynchronously; only the relevant Java code
is included:

package examples.webservices.async_req_res;

...

public class StockQuoteClientImpl {

 @ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
 serviceName="StockQuoteService", portName="StockQuote")
 private StockQuotePortType port;

 @WebMethodpublic void getQuote (String symbol) {

 AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
 apc.setProperty("symbol", symbol);

 try {
 port.getQuoteAsync(apc, symbol);
 System.out.println("in getQuote method of StockQuoteClient WS");

Table B-2 Attributes of the weblogic.jws.AsyncResponse JWS Annotation Tag

Name Description Data Type Required?

target The name of the stub of the Web Service for which you
want to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

String Yes

operation The name of the operation that you want to invoke
asynchronously.

This is the actual name of the operation, as it appears in
the WSDL file. When you invoke this operation in the
main code of the JWS file, you add Async to its name.

For example, if set operation="getQuote", then in
the JWS file you invoke it asynchronously as follows:

 port.getQuoteAsync (apc, symbol);

String Yes

3-18 WebLogic Web Services Reference

 }
 catch (RemoteException e) {
 e.printStackTrace();
 }

 }

...

 @AsyncResponse(target="port", operation="getQuote")
 public void onGetQuoteAsyncResponse(AsyncPostCallContext apc, int quote) {
 System.out.println("-------------------");
 System.out.println("Got quote " + quote);
 System.out.println("-------------------");
 }

}

The example shows a stub called port, used to invoke the Web Service located at
http://localhost:7001/async/StockQuote. The getQuote operation is invoked
asynchronously, and the response from this invocation is handled by the
onGetQuoteAsyncResponse method, as specified by the @AsyncResponse annotation.

weblogic.jws.Binding

Description
Target: Class

Specifies whether the Web Service uses version 1.1 or 1.2 of the Simple Object Access Protocol
(SOAP) implementation when accepting or sending SOAP messages. By default, WebLogic Web
Services use SOAP 1.1.

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-19

Attributes

Example
The following example shows how to specify SOAP 1.2; only the relevant code is shown:

package examples.webservices.soap12;

...

import javax.jws.WebMethod;

import javax.jws.WebService;

import weblogic.jws.Binding;

@WebService(name="SOAP12PortType",

 serviceName="SOAP12Service",

 targetNamespace="http://example.org")

@Binding(Binding.Type.SOAP12)

public class SOAP12Impl {

 @WebMethod()

 public String sayHello(String message) {

...

 }

}

Table B-3 Attributes of the weblogic.jws.Binding JWS Annotation Tag

Name Description Data Type Required?

value Specifies the version of SOAP used in the request and
response SOAP messages when the Web Service is
invoked.

Valid values for this attribute are:
• Type.SOAP11

• Type.SOAP12

The default value is Type.SOAP11.

enum No

3-20 WebLogic Web Services Reference

weblogic.jws.BufferQueue

Description
Target: Class

Specifies the JNDI name of the JMS queue to which WebLogic Server stores:

Buffered Web Service operation invocation.

Reliable Web Service operation invocation.

When used with buffered Web Services, you use this annotation in conjunction with
@MessageBuffer, which specifies the methods of a JWS that are buffered. When used with
reliable Web Services, you use this annotation in conjunction with @Policy, which specifies the
reliable messaging WS-Policy file associated with the Web Service.

If you have enabled buffering or reliable messaging for a Web Service, but do not specify the
@BuffereQueue annotation, WebLogic Server uses the default Web Services JMS queue
(weblogic.wsee.DefaultQueue) to store buffered or reliable operation invocations. This JMS
queue is also the default queue for the JMS transport features. It is assumed that you have already
created this JMS queue if you intend on using it for any of these features.

See “Creating Buffered Web Services” and “Using Web Services Reliable Messaging” in
Programming Advanced Features of WebLogic Web Services Using JAX-RPC for detailed
information and examples of creating buffered or reliable Web Services.

Attributes

Example
The following example shows a code snippet from a JWS file in which the public operation is
buffered and the JMS queue to which WebLogic Server queues the operation invocation is called
my.buffere.queue; only the relevant Java code is shown:

package examples.webservices.buffered;

Table B-4 Attributes of the weblogic.jws.BufferQueue JWS Annotation Tag

Name Description Data Type Required?

name The JNDI name of the JMS queue to which the buffered
or reliable operation invocation is queued.

String Yes

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/buffered.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-21

...

@WebService(name="BufferedPortType",

 serviceName="BufferedService",

 targetNamespace="http://example.org")

@BufferQueue(name="my.buffer.queue")

public class BufferedImpl {

...

 @WebMethod()

 @MessageBuffer(retryCount=10, retryDelay="10 seconds")

 @Oneway()

 public void sayHelloNoReturn(String message) {

 System.out.println("sayHelloNoReturn: " + message);

 }

}

weblogic.jws.Callback

Description
Target: Field

Specifies that the annotated variable is a callback, which means that you can use the variable to
send callback events back to the client Web Service that invoked an operation of the target Web
Service.

You specify the @Callback annotation in the target Web Service so that it can call back to the
client Web Service. The data type of the annotated variable is the callback interface.

The callback feature works between two WebLogic Web Services. When you program the
feature, however, you create the following three Java files:

Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this

3-22 WebLogic Web Services Reference

method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

See “Using Callbacks to Notify Clients of Events” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC for additional overview and procedural information
about programming callbacks.

The @Callback annotation does not have any attributes.

Example
The following example shows a very simple target Web Service in which a variable called
callback is annotated with the @Callback annotation. The data type of the variable is
CallbackInterface; this means a callback Web Service must exist with this name. After the
variable is injected with the callback information, you can invoke the callback methods defined
in CallbackInterface; in the example, the callback method is callbackOperation().

The text in bold shows the relevant code:

package examples.webservices.callback;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Callback;

import javax.jws.WebService;

import javax.jws.WebMethod;

@WebService(name="CallbackPortType",

 serviceName="TargetService",

 targetNamespace="http://examples.org/")

@WLHttpTransport(contextPath="callback",

 serviceUri="TargetService",

 portName="TargetServicePort")

public class TargetServiceImpl {

 @Callback

 CallbackInterface callback;

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/callback.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-23

 @WebMethod

 public void targetOperation (String message) {

 callback.callbackOperation (message);

 }

}

weblogic.jws.CallbackMethod

Description
Target: Method

Specifies the method in the client Web Service that handles the messages it receives from the
callback Web Service. Use the attributes to link the callback message handler methods in the
client Web Service with the callback method in the callback interface.

The callback feature works between two WebLogic Web Services. When you program the
feature, however, you create the following three Java files:

Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this
method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

See “Using Callbacks to Notify Clients of Events” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC for additional overview and procedural information
about programming callbacks.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/callback.html

3-24 WebLogic Web Services Reference

Attributes

Example
The following example shows a method of a client Web Service annotated with the
@CallbackMethod annotation. The attributes show that a variable called port must have
previously been injected with stub information and that the annotated method will handle
messages received from a callback operation called callbackOperation().

 @CallbackMethod(target="port", operation="callbackOperation")

 @CallbackRolesAllowed(@SecurityRole(role="engineer",

mapToPrincipals="shackell"))

 public void callbackHandler(String msg) {

 System.out.println (msg);

 }

weblogic.jws.CallbackService

Description
Target: Class

Specifies that the JWS file is actually a Java interface that describes a callback Web Service. This
annotation is analogous to the @javax.jws.WebService, but specific to callbacks and with a
reduced set of attributes.

Table B-5 Attributes of the weblogic.jws.CallbackMethod JWS Annotation Tag

Name Description Data Type Required?

operation Specifies the name of the callback method in the
callback interface for which this method will handle
callback messages.

String Yes

target Specifies the name of the stub for which you want to
receive callbacks.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

String Yes

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-25

The callback feature works between two WebLogic Web Services. When you program the
feature, however, you create the following three Java files:

Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this
method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

Use the @CallbackInterface annotation to specify that the Java file is a callback interface file.

When you program the callback interface, you specify one or more callback methods; as with
standard non-callback Web Services, you annotate these methods with the
@javax.jws.WebMethod annotation to specify that they are Web Service operations. However,
contrary to non-callback methods, you never write the actual implementation code for these
callback methods; rather, when you compile the client Web Service with the jwsc Ant task, the
task automatically creates an implementation of the interface and packages it into a Web Service.
This generated implementation specifies that the callback methods all do the same thing: send a
message from the target Web Service that invokes the callback method back to the client Web
Service.

See “Using Callbacks to Notify Clients of Events” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC for additional overview and procedural information
about programming callbacks.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/callback.html

3-26 WebLogic Web Services Reference

Attributes

Example
The following example shows a very simple callback interface. The resulting callback Web
Service has one callback method, callbackOperation().

package examples.webservices.callback;

import weblogic.jws.CallbackService;

import javax.jws.Oneway;

import javax.jws.WebMethod;

@CallbackService

public interface CallbackInterface {

 @WebMethod

 @Oneway

 public void callbackOperation (String msg);

}

weblogic.jws.Context

Description
Target: Field

Table B-6 Attributes of the weblogic.jws.CallbackService JWS Annotation Tag

Name Description Data Type Required?

name Name of the callback Web Service. Maps to the
<wsdl:portType> element in the WSDL file.

Default value is the unqualified name of the Java class in
the JWS file.

String No

serviceName Service name of the callback Web Service. Maps to the
<wsdl:service> element in the WSDL file.

Default value is the unqualified name of the Java class in
the JWS file, appended with the string Service.

String No

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-27

Specifies that the annotated field provides access to the runtime context of the Web Service.

When a client application invokes a WebLogic Web Service that was implemented with a JWS
file, WebLogic Server automatically creates a context that the Web Service can use to access, and
sometimes change, runtime information about the service. Much of this information is related to
conversations, such as whether the current conversation is finished, the current values of the
conversational properties, changing conversational properties at runtime, and so on. Some of the
information accessible via the context is more generic, such as the protocol that was used to
invoke the Web Service (HTTP/S or JMS), the SOAP headers that were in the SOAP message
request, and so on. The data type of the annotation field must be
weblogic.wsee.jws.JwsContext, which is a WebLogic Web Service API that includes
methods to query the context.

For additional information about using this annotation, see “Accessing Runtime Information
about a Web Service Using JwsContext” in Getting Started With WebLogic Web Services Using
JAX-RPC.

This annotation does not have any attributes.

Example
The following snippet of a JWS file shows how to use the @Context annotation; only parts of the
file are shown, with relevant code in bold:

...

import weblogic.jws.Context;

import weblogic.wsee.jws.JwsContext;

...

public class JwsContextImpl {

 @Context

 private JwsContext ctx;

 @WebMethod()

 public String getProtocol() {

...

http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#jwscontext
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#jwscontext

3-28 WebLogic Web Services Reference

weblogic.jws.Conversation

Description
Target: Method

Specifies that a method annotated with the @Conversation annotation can be invoked as part of
a conversation between two WebLogic Web Services or a stand-alone Java client and a
conversational Web Service.

The conversational Web Service typically specifies three methods, each annotated with the
@Conversation annotation that correspond to the start, continue, and finish phases of a
conversation. Use the @Conversational annotation to specify, at the class level, that a Web
Service is conversational and to configure properties of the conversation, such as the maximum
idle time.

If the conversation is between two Web Services, the client service uses the @ServiceClient
annotation to specify the wsdl, service name, and port of the invoked conversational service. In
both the service and stand-alone client cases, the client then invokes the start, continue, and finish
methods in the appropriate order to conduct a conversation.The only additional requirement to
make a Web Service conversational is that it implement java.io.Serializable.

See “Creating Conversational Web Services” in Programming Advanced Features of WebLogic
Web Services Using JAX-RPC for detailed information and examples of using this annotation.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/conversation.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-29

Attributes

Example
The following sample snippet shows a JWS file that contains three methods, start, middle, and
finish) that are annotated with the @Conversation annotation to specify the start, continue,
and finish phases, respectively, of a conversation.

...

public class ConversationalServiceImpl implements Serializable {

 @WebMethod

 @Conversation (Conversation.Phase.START)

 public String start() {

 // Java code for starting a conversation goes here

 }

 @WebMethod

 @Conversation (Conversation.Phase.CONTINUE)

Table B-7 Attributes of the weblogic.jws.Conversation JWS Annotation Tag

Name Description Data Type Required?

value Specifies the phase of a conversation that the annotated
method implements.

Possible values are:
• Phase.START

Specifies that the method starts a new conversation. A
call to this method creates a new conversation ID and
context, and resets its idle and age timer.

• Phase.CONTINUE

Specifies that the method is part of a conversation in
progress. A call to this method resets the idle timer.
This method must always be called after the start
method and before the finish method.

• Phase.FINISH

Specifies that the method explicitly finishes a
conversation in progress.

Default value is Phase.CONTINUE

enum No

3-30 WebLogic Web Services Reference

 public String middle(String message) {

 // Java code for continuing a conversation goes here

 }

 @WebMethod

 @Conversation (Conversation.Phase.FINISH)

 public String finish(String message) {

 // Java code for finishing a conversation goes here

 }

}

weblogic.jws.Conversational

Description
Target: Class

Specifies that a JWS file implements a conversational Web Service.

You are not required to use this annotation to specify that a Web Service is conversational; by
simply annotating a single method with the @Conversation annotation, all the methods of the
JWS file are automatically tagged as conversational. Use the class-level @Conversational
annotation only if you want to change some of the conversational behavior or if you want to
clearly show at the class level that the JWS if conversational.

If you do use the @Conversational annotation in your JWS file, you can specify it without any
attributes if their default values suit your needs. However, if you want to change values such as
the maximum amount of time that a conversation can remain idle, the maximum age of a
conversation, and so on, specify the appropriate attribute.

See “Creating Conversational Web Services” in Programming Advanced Features of WebLogic
Web Services Using JAX-RPC for detailed information and examples of using this annotation.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/conversation.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-31

Attributes

Table B-8 Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description Data Type Required?

maxIdleTime Specifies the amount of time that a conversation can remain
idle before it is finished by WebLogic Server. Activity is
defined by a client Web Service executing one of the phases
of the conversation.

Valid values are a number and one of the following terms:
• seconds

• minutes

• hours

• days

• years

For example, to specify a maximum idle time of ten minutes,
specify the annotation as follows:
@Conversational(maxIdleTime="10 minutes")

If you specify a zero-length value (such as 0 seconds, or 0
minutes and so on), then the conversation never times out
due to inactivity.

Default value is 0 seconds.

String No

maxAge The amount of time that a conversation can remain active
before it is finished by WebLogic Server.

Valid values are a number and one of the following terms:
• seconds

• minutes

• hours

• days

• years

For example, to specify a maximum age of three days, specify
the annotation as follows:
@Conversational(maxAge="3 days")

Default value is 1 day.

String No

3-32 WebLogic Web Services Reference

Example
The following sample snippet shows how to specify that a JWS file implements a conversational
Web Service. The maximum amount of time the conversation can be idle is ten minutes, and the
maximum age of the conversation, regardless of activity, is one day. The continue and finish
phases of the conversation can be executed by a user other than the one that started the
conversation; if this happens, then the corresponding methods are run as the new user, not the
original user.

package examples.webservices.conversation;

...

@Conversational(maxIdleTime="10 minutes",

 maxAge="1 day",

runAsStartUs
er

Specifies whether the continue and finish phases of an existing
conversation are run as the user who started the conversation.

Typically, the same user executes the start, continue, and
finish methods of a conversation, so that changing the value of
this attribute has no effect. However, if you set the
singlePrincipal attribute to false, which allows users
different from the user who initiated the conversation to
execute the continue and finish phases of an existing
conversation, then the runAsStartUser attribute specifies
which user the methods are actually “run as”: the user who
initiated the conversation or the different user who executes
subsequent phases of the conversation.

Valid values are true and false. Default value is false.

boolean No

singlePrinci
pal

Specifies whether users other than the one who started a
conversation are allowed to execute the continue and finish
phases of the conversation.

Typically, the same user executes all phases of a conversation.
However, if you set this attribute to false, then other users
can obtain the conversation ID of an existing conversation and
use it to execute later phases of the conversation.

Valid values are true and false. Default value is false.

boolean No

Table B-8 Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description Data Type Required?

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-33

 runAsStartUser=false,

 singlePrincipal=false)

public class ConversationalServiceImpl implements Serializable {

...

weblogic.jws.FileStore

Description
Target: Class

Specifies that the Web Service does not use the default WebLogic Server default filestore to store
internal state information, such as conversational state, but rather uses one specified by the
programmer. If you do not specify this JWS annotation in your JWS file, the Web Service uses
the default filestore configured for WebLogic Server.

You can also use this JWS annotation for reliable Web Services to store internal state.

If you deploy the Web Service in a cluster, be sure you specify the logical name of the filestore
so that the same name of the filestore can be used on all servers in the cluster

Note: This annotation applies only to filestores, not to JDBC stores.

Attributes

weblogic.jws.MessageBuffer

Description
Target: Class, Method

Specifies which public methods of a JWS are buffered. If specified at the class-level, then all
public methods are buffered; if you want only a subset of the methods to be buffered, specify the
annotation at the appropriate method-level.

Table B-9 Attributes of the weblogic.jws.FileStore JWS Annotation Tag

Name Description Data Type Required?

storeName Specifies the name of the filestore. String Yes

3-34 WebLogic Web Services Reference

When a client Web Service invokes a buffered operation of a different WebLogic Web Service,
WebLogic Server (hosting the invoked Web Service) puts the invoke message on a JMS queue
and the actual invoke is dealt with later on when the WebLogic Server delivers the message from
the top of the JMS queue to the Web Service implementation. The client does not need to wait
for a response, but rather, continues on with its execution. For this reason, buffered operations
(without any additional asynchronous features) can only return void and must be marked with
the @Oneway annotation. If you want to buffer an operation that returns a value, you must use
asynchronous request-response from the invoking client Web Service. See “Invoking a Web
Service Using Asynchronous Request-Response” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC for more information.

Buffering works only between two Web Services in which one invokes the buffered operations
of the other.

Use the optional attributes of @MessageBuffer to specify the number of times the JMS queue
attempts to invoke the buffered Web Service operation until it is invoked successfully, and the
amount of time between attempts.

Use the optional class-level @BufferQueue annotation to specify the JMS queue to which the
invoke messages are queued. If you do not specify this annotation, the messages are queued to
the default Web Service queue, weblogic.wsee.DefaultQueue.

See “Creating Buffered Web Services” in Programming Advanced Features of WebLogic Web
Services Using JAX-RPC for detailed information and examples for using this annotation.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/asynch.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/asynch.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/buffered.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-35

Attributes

Example
The following example shows a code snippet from a JWS file in which the public operation
sayHelloNoReturn is buffered and the JMS queue to which WebLogic Server queues the
operation invocation is called my.buffere.queue. The WebLogic Server instance that hosts the
invoked Web Service tries a maximum of 10 times to deliver the invoke message from the JMS
queue to the Web Service implementation, waiting 10 seconds between each retry. Only the
relevant Java code is shown in the following snippet:

package examples.webservices.buffered;

...

Table B-10 Attributes of the weblogic.jws.MessageBuffer JWS Annotation Tag

Name Description Data Type Required?

retryCount Specifies the number of times that the JMS queue on the
invoked WebLogic Server instance attempts to deliver the
invoking message to the Web Service implementation
until the operation is successfully invoked.

Default value is 3.

int No

retryDelay Specifies the amount of time that elapses between
message delivery retry attempts. The retry attempts are
between the invoke message on the JMS queue and
delivery of the message to the Web Service
implementation.

Valid values are a number and one of the following terms:
• seconds

• minutes

• hours

• days

• years

For example, to specify a retry delay of two days, specify:

@MessageBuffer(retryDelay="2 days")

Default value is 5 seconds.

String No

3-36 WebLogic Web Services Reference

@WebService(name="BufferedPortType",

 serviceName="BufferedService",

 targetNamespace="http://example.org")

@BufferQueue(name="my.buffer.queue")

public class BufferedImpl {

...

 @WebMethod()

 @MessageBuffer(retryCount=10, retryDelay="10 seconds")

 @Oneway()

 public void sayHelloNoReturn(String message) {

 System.out.println("sayHelloNoReturn: " + message);

 }

}

weblogic.jws.Policies

Description
Target: Class, Method

Specifies an array of @weblogic.jws.Policy annotations.

Use this annotation if you want to attach more than one WS-Policy files to a class or method of
a JWS file. If you want to attach just one WS-Policy file, you can use the
@weblogic.jws.Policy on its own.

See “Using Web Services Reliable Messaging” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC and “Configuring Message-Level Security” in Securing
WebLogic Web Services for detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

Example
@Policies({

 @Policy(uri="policy:firstPolicy.xml"),

 @Policy(uri="policy:secondPolicy.xml")

 })

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-37

weblogic.jws.Policy

Description
Target: Class, Method

Specifies that a WS-Policy file, which contains information about digital signatures, encryption,
or Web Service reliable messaging, should be applied to the request or response SOAP messages.

This annotation can be used on its own to apply a single WS-Policy file to a class or method. If
you want to apply more than one WS-Policy file to a class or method, use the
@weblogic.jws.Policies annotation to group them together.

If this annotation is specified at the class level, the indicated WS-Policy file or files are applied
to every public operation of the Web Service. If the annotation is specified at the method level,
then only the corresponding operation will have the WS-Policy file applied.

By default, WS-Policy files are applied to both the request (inbound) and response (outbound)
SOAP messages. You can change this default behavior with the direction attribute.

Also by default, the specified WS-Policy file is attached to the generated and published WSDL
file of the Web Service so that consumers can view all the WS-Policy requirements of the Web
Service. Use the attachToWsdl attribute to change this default behavior.

See “Using Web Services Reliable Messaging” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC and “Configuring Message-Level Security” in Securing
WebLogic Web Services for detailed information and examples of using this annotation.

Note: As is true for all JWS annotations, the @Policy annotation cannot be overridden at
runtime, which means that the WS-Policy file you specify at buildtime using the
annotation will always be associated with the Web Service. This means, for example, that
although you can view the associated WS-Policy file at runtime using the Administration
Console, you cannot delete (unassociate) it. You can, however, associate additional
WS-Policy files using the console; see “Associate a WS-Policy file with a Web Service”
in the Administration Console Online Help for detailed instructions.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/ConfigureWSPolicyFile.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html

3-38 WebLogic Web Services Reference

Attributes

Table B-11 Attributes of the weblogic.jws.Policies JWS Annotation Tag

Name Description Data Type Required?

uri Specifies the location from which to retrieve the
WS-Policy file.

Use the http: prefix to specify the URL of a WS-Policy
file on the Web.

Use the policy: prefix to specify that the WS-Policy file
is packaged in the Web Service archive file or in a
shareable Java EE library of WebLogic Server, as shown
in the following example:

@Policy(uri="policy:MyPolicyFile.xml")

If you are going to publish the WS-Policy file in the Web
Service archive, the WS-Policy XML file must be located
in either the META-INF/policies or
WEB-INF/policies directory of the EJB JAR file (for
EJB implemented Web Services) or WAR file (for Java
class implemented Web Services), respectively.

For information on publishing the WS-Policy file in a
library, see “Creating Shared J2EE Libraries and Optional
Packages” in Developing Applications With WebLogic
Server.

String Yes

direction Specifies when to apply the policy: on the inbound request
SOAP message, the outbound response SOAP message,
or both (default).

Valid values for this attribute are:
• Policy.Direction.both

• Policy.Direction.inbound

• Policy.Direction.outbound

The default value is Policy.Direction.both.

enum No

attachToWsdl Specifies whether the WS-Policy file should be attached
to the WSDL that describes the Web Service.

Valid values are true and false. Default value is
false.

boolean No

http://e-docs.bea.com/wls/docs103/programming/libraries.html
http://e-docs.bea.com/wls/docs103/programming/libraries.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-39

Example
 @Policy(uri="policy:myPolicy.xml",

 attachToWsdl=true,

 direction=Policy.Direction.outbound)

weblogic.jws.ReliabilityBuffer

Description
Target: Method

Specifies reliable messaging properties for an operation of a reliable Web Service, such as the
number of times WebLogic Server should attempt to deliver the message from the JMS queue to
the Web Service implementation, and the amount of time that the server should wait in between
retries.

Note: It is assumed when you specify this annotation in a JWS file that you have already
enabled reliable messaging for the Web Service by also including a @Policy annotation
that specifies a WS-Policy file that has Web Service reliable messaging policy assertions.

If you specify the @ReliabilityBuffer annotation, but do not enable reliable
messaging with an associated WS-Policy file, then WebLogic Server ignores this
annotation.

See “Using Web Services Reliable Messaging” in Programming Advanced Features of
WebLogic Web Services Using JAX-RPC for detailed information about enabling Web Services
reliable messaging for your Web Service.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html

3-40 WebLogic Web Services Reference

Attributes

Example
The following sample snippet shows how to use the @ReliabilityBuffer annotation at the
method-level to change the default retry count and delay of a reliable operation; only relevant
Java code is shown:

package examples.webservices.reliable;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.jws.Oneway;

Table B-12 Attributes of the weblogic.jws.ReliabilityBuffer JWS Annotation Tag

Name Description Data Type Required?

retryCount Specifies the number of times that the JMS queue on the
destination WebLogic Server instance attempts to deliver
the message from a client that invokes the reliable
operation to the Web Service implementation.

Default value is 3.

int No

retryDelay Specifies the amount of time that elapses between
message delivery retry attempts. The retry attempts are
between the client’s request message on the JMS queue
and delivery of the message to the Web Service
implementation.

Valid values are a number and one of the following terms:
• seconds

• minutes

• hours

• days

• years

For example, to specify a retry delay of two days, specify:

@ReliabilityBuffer(retryDelay="2
days")

Default value is 5 seconds.

String No

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-41

...

import weblogic.jws.ReliabilityBuffer;

import weblogic.jws.Policy;

@WebService(name="ReliableHelloWorldPortType",

 serviceName="ReliableHelloWorldService")

...

@Policy(uri="ReliableHelloWorldPolicy.xml",

 direction=Policy.Direction.inbound,

 attachToWsdl=true)

public class ReliableHelloWorldImpl {

 @WebMethod()

 @Oneway()

 @ReliabilityBuffer(retryCount=10, retryDelay="10 seconds")

 public void helloWorld(String input) {

 System.out.println(" Hello World " + input);

 }

}

weblogic.jws.ReliabilityErrorHandler

Description
Target: Method

Specifies the method that handles the error that results when a client Web Service invokes a
reliable Web Service, but the client does not receive an acknowledgement that the reliable Web
Service actually received the message.

This annotation is relevant only when you implement the Web Service reliable messaging
feature; you specify the annotation in the client-side Web Service that invokes a reliable Web
Service.

The method you annotate with the @ReliabilityErrorHandler annotation takes a single
parameter of data type weblogic.wsee.reliability.ReliabilityErrorContext. You can
use this context to get more information about the cause of the error, such as the operation that
caused it, the target Web Service, the fault, and so on. The method must return void.

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/wsee/reliability/ReliabilityErrorContext.html

3-42 WebLogic Web Services Reference

The single attribute of the @ReliabilityErrorHandler annotation specifies the variable into
which you have previously injected the stub information of the reliable Web Service that the
client Web Service is invoking; you inject this information in a variable using the
@weblogic.jws.ServiceClient annotation.

Attributes

Example
The following code snippet from a client Web Service that invokes a reliable Web Service shows
how to use the @ReliabilityErrorHandler annotation; not all code is shown, and the code
relevant to this annotation is shown in bold:

package examples.webservices.reliable;

...

import weblogic.jws.ServiceClient;

import weblogic.jws.ReliabilityErrorHandler;

import examples.webservices.reliable.ReliableHelloWorldPortType;

import weblogic.wsee.reliability.ReliabilityErrorContext;

import weblogic.wsee.reliability.ReliableDeliveryException;

@WebService(name="ReliableClientPortType",

...

public class ReliableClientImpl

{

 @ServiceClient(

wsdlLocation="http://localhost:7001/ReliableHelloWorld/ReliableHelloWorld?

WSDL",

Table B-13 Attributes of the weblogic.jws.ReliabilityErrorHandler JWS Annotation Tag

Name Description Data Type Required?

target Specifies the target stub name for which this method
handles reliability failures.

String Yes

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-43

 serviceName="ReliableHelloWorldService",

 portName="ReliableHelloWorldServicePort")

 private ReliableHelloWorldPortType port;

 @WebMethod

 public void callHelloWorld(String input, String serviceUrl)

 throws RemoteException {

 ...

 }

 @ReliabilityErrorHandler(target="port")

 public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {

 ReliableDeliveryException fault = ctx.getFault();

 String message = null;

 if (fault != null) {

 message = ctx.getFault().getMessage();

 }

 String operation = ctx.getOperationName();

 System.out.println("Reliable operation " + operation + " may have not

invoked. The error message is " + message);

 }

}

In the example, the port variable has been injected with the stub that corresponds to the
ReliableHelloWorldService Web Service, and it is assumed that at some point in the client
Web Service an operation of this stub is invoked. Because the
onReliableMessageDeliveryError method is annotated with the
@ReliabilityErrorHandler annotation and is linked with the port stub, the method is
invoked if there is a failure in an invoke of the reliable Web Service. The reliable error handling
method uses the ReliabilityErrorContext object to get more details about the cause of the
failure.

weblogic.jws.ServiceClient

Description
Target: Field

3-44 WebLogic Web Services Reference

Specifies that the annotated variable in the JWS file is a stub used to invoke another WebLogic
Web Service when using the following features:

Web Service reliable messaging

Asynchronous request-response

Conversations

You use the reliable messaging and asynchronous request-response features only between two
Web Services; this means, for example, that you can invoke a reliable Web Service operation
only from within another Web Service, not from a stand-alone client. In the case of reliable
messaging, the feature works between any two application servers that implement the
WS-ReliableMessaging specification. In the case of asynchronous request-response, the feature
works only between two WebLogic Server instances.

You use the @ServiceClient annotation in the client Web Service to specify which variable is
a port type for the Web Service described by the @ServiceClient attributes. The Enterprise
Application that contains the client Web Service must also include the stubs of the Web Service
you are invoking; you generate the stubs with the clientgen Ant task.

See Programming Advanced Features of WebLogic Web Services Using JAX-RPC for additional
information and examples of using the @ServiceClient annotation.

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/index.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-45

Attributes

Table B-14 Attributes of the weblogic.jws.ServiceClient JWS Annotation Tag

Name Description Data Type Required?

serviceName Specifies the name of the Web Service that you are
invoking. Corresponds to the name attribute of the
<service> element in the WSDL of the invoked Web
Service.

If you used a JWS file to implement the invoked Web
Service, this attribute corresponds to the serviceName
attribute of the @WebService JWS annotation in the
invoked Web Service.

String Yes

portName Specifies the name of the port of the Web Service you are
invoking. Corresponds to the name attribute of the
<port> child element of the <service> element.

If you used a JWS file to implement the invoked Web
Service, this attribute corresponds to the portName
attribute of the @WLHttpTransport JWS
annotation in the invoked Web Service.
If you do not specify this attribute, it is assumed that the
<service> element in the WSDL contains only one
<port> child element, which @ServiceClient uses.
If there is more than one port, the client Web Service
returns a runtime exception.

String No

wsdlLocation Specifies the WSDL file that describes the Web Service
you are invoking.

If you do not specify this attribute, the client Web Service
uses the WSDL file from which the clientgen Ant task
created the Service implementation of the Web Service
to be invoked.

String No

endpointAddres
s

Specifies the endpoint address of the Web Service you are
invoking.

If you do not specify this attribute, the client Web Service
uses the endpoint address specified in the WSDL file.

String No

3-46 WebLogic Web Services Reference

Example
The following JWS file excerpt shows how to use the @ServiceClient annotation in a client
Web Service to annotate a field (port) with the stubs of the Web Service being invoked (called
ReliableHelloWorldService whose WSDL is at the URL
http://localhost:7001/ReliableHelloWorld/ReliableHelloWorld?WSDL); only
relevant parts of the example are shown:

package examples.webservices.reliable;

import javax.jws.WebService;

...

import weblogic.jws.ServiceClient;

import examples.webservices.reliable.ReliableHelloWorldPortType;

@WebService(...

public class ReliableClientImpl

{

 @ServiceClient(

wsdlLocation="http://localhost:7001/ReliableHelloWorld/ReliableHelloWorld?

WSDL",

 serviceName="ReliableHelloWorldService",

 portName="ReliableHelloWorldServicePort")

 private ReliableHelloWorldPortType port;

 @WebMethod

 public void callHelloWorld(String input, String serviceUrl)

 throws RemoteException {

 port.helloWorld(input);

 System.out.println(" Invoked the ReliableHelloWorld.helloWorld operation

reliably.");

 }

}

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-47

weblogic.jws.StreamAttachments

Description
Target: Class

Specifies that the WebLogic Web Services runtime use streaming APIs when reading the
parameters of all methods of the Web Service. This increases the performance of Web Service
operation invocation, in particular when the parameters are large, such as images.

You cannot use this annotation if you are also using the following features in the same Web
Service:

Conversations

Reliable Messaging

JMS Transport

A proxy server between the client application and the Web Service it invokes

The @StreamAttachments annotation does not have any attributes.

Example
The following simple JWS file shows how to specify the @StreamAttachments annotation; the
single method, echoAttachment(), simply takes a DataHandler parameter and echoes it back
to the client application that invoked the Web Service operation. The WebLogic Web Services
runtime uses streaming when reading the DataHandler content.

package examples.webservices.stream_attach;

import javax.jws.WebMethod;

import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.StreamAttachments;

import javax.activation.DataHandler;

import java.rmi.RemoteException;

@WebService(name="StreamAttachPortType",

 serviceName="StreamAttachService",

 targetNamespace="http://example.org")

3-48 WebLogic Web Services Reference

@WLHttpTransport(contextPath="stream_attach",

 serviceUri="StreamAttachService",

 portName="StreamAttachServicePort")

@StreamAttachments

/**

 * Example of stream attachments

 */

public class StreamAttachImpl {

 @WebMethod()

 public DataHandler echoAttachment(DataHandler dh) throws RemoteException {

 return dh;

 }

}

weblogic.jws.Transactional

Description
Target: Class, Method

Specifies whether the annotated operation, or all the operations of the JWS file when the
annotation is specified at the class-level, runs or run inside of a transaction. By default, the
operations do not run inside of a transaction.

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-49

Attributes

Example
The following example shows how to use the @Transactional annotation to specify that an
operation of a Web Service executes as part of a transaction:

package examples.webservices.transactional;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Transactional;

@WebService(name="TransactionPojoPortType",
 serviceName="TransactionPojoService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="transactionsPojo",
 serviceUri="TransactionPojoService",
 portName="TransactionPojoPort")

/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.
*/

public class TransactionPojoImpl {

Table B-15 Attributes of the weblogic.jws.Transactional JWS Annotation Tag

Name Description Data Type Required?

value Specifies whether the operation (when used at the method
level) or all the operations of the Web Service (when
specified at the class level) run inside of a transaction.

Valid values are true and false. Default value is
false.

boolean No

timeout Specifies a timeout value, in seconds, for the current
transaction.

The default value for this attribute is 30 seconds.

int No

3-50 WebLogic Web Services Reference

 @WebMethod()
 @Transactional(value=true)

 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }

}

weblogic.jws.Types

Description
Target: Method, Parameter

Specifies a comma-separated list of fully qualified Java class names of the alternative data types
for a return type or parameter. The alternative data types must extend the data type specified in
the method signature; if this is not the case, the jwsc Ant task returns a validation error when you
compile the JWS file into a Web Service.

For example, assume you have created the Address base data type, and then created USAAddress
and CAAddress that extend this base type. If the method signature specifies that it takes an
Address parameter, you can annotate the parameter with the @Types annotation to specify that
that the public operation also takes USAAddress and CAAddress as a parameter, in addition to
the base Address data type.

You can also use this annotation to restrict the data types that can be contained in parameters or
return values of collection data types, such as java.util.Collection or java.util.List. By
restricting the allowed contained data types, the generated WSDL is specific and unambiguous,
and the Web Services runtime can do a better job of qualifying the parameters when a client
application invokes a Web Service operation.

If you specify this annotation at the method-level, then it applies only to the return value. If you
want the annotation to apply to parameters, you must specify it at the parameter-level for each
relevant parameter.

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-51

Attributes

Example
The following example shows a simple JWS file that uses the @Types annotation, with relevant
Java code shown in bold:

package examples.webservices.types;

import javax.jws.WebMethod;

import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Types;

import examples.webservices.types.BasicStruct;

@WebService(serviceName="TypesService",

 name="TypesPortType",

 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="types",

 serviceUri="TypesService",

 portName="TypesServicePort")

public class TypesImpl {

 @WebMethod()

 @Types({"examples.webservices.types.ExtendedStruct"})

 public BasicStruct echoStruct(

 @Types({"examples.webservices.types.ExtendedStruct"}) BasicStruct

struct)

 {

 System.out.println("echoStruct called");

Table B-16 Attributes of the weblogic.jws.Types JWS Annotation Tag

Name Description Data Type Required?

value Comma-separated list of fully qualified class names for
either the alternative data types that can also be used
instead of the original data type, or the allowed data types
contained in the collection-type parameter or return value.

String[] Yes

3-52 WebLogic Web Services Reference

 return struct;

 }

}

In the example, the signature of the echoStruct() method shows that it takes a BasicStruct
value as both a parameter and a return value. However, because both the method and the struct
parameter are annotated with the @Types annotation, a client application invoking the
echoStruct operation can also pass it a parameter of data type ExtendedStruct; in this case
the operation also returns an ExtendedStruct value. It is assumed that ExtendedStruct
extends BasicStruct.

weblogic.jws.WildcardBinding

Description
Target: Class

Specifies the XML Schema data type to which a wildcard class, such as
javax.xml.soap.SOAPElement or org.apache.xmlbeans.XmlObject, binds. By default,
these Java data types bind to the <xsd:any> XML Schema data type. By using this class-level
annotation, you can specify that the wildcard classes bind to <xsd:anyType> instead.

Attributes

Table B-17 Attributes of the weblogic.jws.WildcardBinding JWS Annotation Tag

Name Description Data Type Required?

className Specifies the fully qualified name of the wildcard class for
which this binding applies. Typical values are
javax.xml.soap.SOAPElement and
org.apache.xmlbeans.XmlObject.

String Yes

binding Specifies the XML Schema data type to which the
wildcard class should bind.

You can specify one of the following values:
• WildcardParticle.ANY

• WildcardParticle.ANYTYPE

enum Yes

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-53

Example
The following example shows how to use the @WildcardBinding annotation to specify that the
Apache XMLBeans data type XMLObject should bind to the <xsd:any> XML Schema data type
for this Web Service:

@WildcardBindings({

 @WildcardBinding(className="org.apache.xmlbeans.XmlObject",

 binding=WildcardParticle.ANY),

 @WildcardBinding(className="org.apache.xmlbeans.XmlObject[]",

 binding=WildcardParticle.ANY)})

public class SimpleImpl {

...

weblogic.jws.WildcardBindings

Description
Target: Class

Specifies an array of @weblogic.jws.WildcardBinding annotations.

This JWS annotation does not have any attributes.

See “weblogic.jws.WildcardBinding” on page 3-52 for an example.

weblogic.jws.WLHttpTransport

Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web Service
over the HTTP transport, as well as the name of the port in the generated WSDL.

You can specify this annotation only once (maximum) in a JWS file.

3-54 WebLogic Web Services Reference

Attributes

Table B-18 Attributes of the weblogic.jws.WLHttpTransport JWS Annotation Tag

Name Description Data Type Required?

contextPath Context path of the Web Service. You use this value in the
URL that invokes the Web Service.

For example, assume you set the context path for a Web
Service to financial; a possible URL for the WSDL of
the deployed WebLogic Web Service is as follows:

http://hostname:7001/financial/GetQuo
te?WSDL

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default
value of its contextPath is HelloWorldImpl.

String No

serviceUri Web Service URI portion of the URL. You use this value
in the URL that invokes the Web Service.

For example, assume you set this attribute to GetQuote;
a possible URL for the deployed WSDL of the service is
as follows:

http://hostname:7001/financial/GetQuo
te?WSDL

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default
value of its serviceUri is HelloWorldImpl.

String No

portName The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file.
In particular, the default portName is the value of the
name attribute of @WebService annotation, plus the
actual text SoapPort. For example, if
@WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

String No

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-55

Example
@WLHttpTransport(contextPath="complex",

 serviceUri="ComplexService",

 portName="ComplexServicePort")

weblogic.jws.WLHttpsTransport

Description
Target: Class

Note: The @weblogic.jws.WLHttpsTransport annotation is deprecated as of version 9.2 of
WebLogic Server. You should use the @weblogic.jws.WLHttpTransport annotation
instead because it now supports both the HTTP and HTTPS protocols. If you want client
applications to access the Web Service using only the HTTPS protocol, then you must
specify the @weblogic.jws.security.UserDataConstraint JWS annotation in
your JWS file.

Specifies the context path and service URI sections of the URL used to invoke the Web Service
over the HTTPS transport, as well as the name of the port in the generated WSDL.

You can specify this annotation only once (maximum) in a JWS file.

3-56 WebLogic Web Services Reference

Attributes

Table B-19 Attributes of the weblogic.jws.WLHttpsTransport JWS Annotation Tag

Name Description Data Type Required?

contextPath Context path of the Web Service. You use this value in the
URL that invokes the Web Service.

For example, assume you set the context path for a Web
Service to financial; a possible URL for the WSDL of
the deployed WebLogic Web Service is as follows:

https://hostname:7001/financial/GetQu
ote?WSDL

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default
value of its contextPath is HelloWorldImpl.

String No

serviceUri Web Service URI portion of the URL. You use this value
in the URL that invokes the Web Service.

For example, assume you set this attribute to GetQuote;
a possible URL for the deployed WSDL of the service is
as follows:

https://hostname:7001/financial/GetQu
ote?WSDL

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is HelloWorldImpl.java, then the default
value of its serviceUri is HelloWorldImpl.

String No

portName The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

The default value of this attribute is based on the
@javax.jws.WebService annotation of the JWS file.
In particular, the default portName is the value of the
name attribute of @WebService annotation, plus the
actual text SoapPort. For example, if
@WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

String No

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-57

Example
@WLHttpsTransport(portName="helloSecurePort",

 contextPath="secure",

 serviceUri="SimpleSecureBean")

weblogic.jws.WLJmsTransport

Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web Service
over the JMS transport, as well as the name of the port in the generated WSDL. You also use this
annotation to specify the JMS queue to which WebLogic Server queues the SOAP request
messages from invokes of the operations.

You can specify this annotation only once (maximum) in a JWS file.

Attributes

Table B-20 Attributes of the weblogic.jws.WLJmsTransport JWS Annotation Tag

Name Description Data Type Required?

contextPath Context path (or context root) of the Web Service. You
use this value in the URL that invokes the Web Service.

String No

serviceUri Web Service URI portion of the URL used by client
applications to invoke the Web Service.

String No

queue The JNDI name of the JMS queue that you have
configured for the JMS transport. See “Using JMS
Transport as the Connection Protocol” in Programming
Advanced Features of WebLogic Web Services Using
JAX-RPC for details about using JMS transport.

The default value of this attribute, if you do not specify it,
is weblogic.wsee.DefaultQueue. You must still
create this JMS queue in the WebLogic Server instance to
which you deploy your Web Service.

String No

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/jmstransport.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/jmstransport.html

3-58 WebLogic Web Services Reference

Example
The following example shows how to specify that the JWS file implements a Web Service that is
invoked using the JMS transport. The JMS queue to which WebLogic Server queues SOAP
message requests from invokes of the service operations is JMSTransportQueue; it is assumed
that this JMS queue has already been configured for WebLogic Server.

WLJmsTransport(contextPath="transports",

 serviceUri="JMSTransport",

 queue="JMSTransportQueue",

 portName="JMSTransportServicePort")

weblogic.jws.WSDL

Description
Target: Class

Specifies whether to expose the WSDL of a deployed WebLogic Web Service.

By default, the WSDL is exposed at the following URL:

http://[host]:[port]/[contextPath]/[serviceUri]?WSDL

where:

host refers to the computer on which WebLogic Server is running.

portName The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

If you do not specify this attribute, the jwsc generates a
default name based on the name of the class that
implements the Web Service.

String No

connectionFact
ory

The JNDI name of the JMS connection factory that you
have configured for the JMS transport. See “Using JMS
Transport as the Connection Protocol” in Programming
Advanced Features of WebLogic Web Services Using
JAX-RPC for details about using JMS transport.

String Yes

Table B-20 Attributes of the weblogic.jws.WLJmsTransport JWS Annotation Tag

Name Description Data Type Required?

http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/jmstransport.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/jmstransport.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-59

port refers to the port number on which WebLogic Server is listening (default value is
7001).

contextPath and serviceUri refer to the value of the contextPath and serviceUri
attributes, respectively, of the @WLHttpTransport JWS annotation of the JWS file that
implements your Web Service.

For example, assume you used the following @WLHttpTransport annotation:

@WLHttpTransport(portName="helloPort",

 contextPath="hello",

 serviceUri="SimpleImpl")

The URL to get view the WSDL of the Web Service, assuming the service is running on a host
called ariel at the default port number, is:

http://ariel:7001/hello/SimpleImpl?WSDL

Attributes

Example
The following use of the @WSDL annotation shows how to specify that the WSDL of a deployed
Web Service not be exposed; only relevant Java code is shown:

package examples.webservices;

import weblogic.jws.WSDL;

@WebService(name="WsdlAnnotationPortType",

 serviceName="WsdlAnnotationService",

 targetNamespace="http://example.org")

@WSDL(exposed=false)

public class WsdlAnnotationImpl {

Table B-21 Attributes of the weblogic.jws.WSDL JWS Annotation Tag

Name Description Data Type Required?

exposed Specifies whether to expose the WSDL of a deployed
Web Service.

Valid values are true and false. Default value is true,
which means that by default the WSDL is exposed.

boolean No

3-60 WebLogic Web Services Reference

...

}

weblogic.jws.security.CallbackRolesAllowed

Description
Target: Method, Field

Specifies an array of @SecurityRole JWS annotations that list the roles that are allowed to
invoke the callback methods of the Web Service. A user that is mapped to an unspecified role, or
is not mapped to any role at all, would not be allowed to invoke the callback methods.

If you use this annotation at the field level, then the specified roles are allowed to invoke all
callback operations of the Web Service. If you use this annotation at the method-level, then the
specified roles are allowed to invoke only that callback method. If specified at both levels, the
method value overrides the field value if there is a conflict.

Attributes

Example
The following example shows how to use the @CallbackRolesAllowed annotation at the
method level to specify that the role engineer is allowed to invoke the callback method:

 @CallbackMethod(target="port", operation="callbackOperation")

 @CallbackRolesAllowed(@SecurityRole(role="engineer",

mapToPrincipals="shackell"))

 public void callbackHandler(String msg) {

 System.out.println (msg);

 }

Table B-22 Attributes of the weblogic.jws.security.CallbackRolesAllowed JWS Annotation Tag

Name Description Data Type Required?

value Array of
@weblogic.jws.security.RolesAllowed that
list the roles allowed to invoke the callback methods.

String[] Yes

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-61

weblogic.jws.security.RolesAllowed

Description
Target: Class, Method

Specifies whether to enable basic authentication for a Web Service. In particular, it specifies an
array of @SecurityRole JWS annotations that describe the list of roles that are allowed to invoke
the Web Service. A user that is mapped to an unspecified role, or is not mapped to any role at
all, would not be allowed to invoke the Web Service.

If you use this annotation at the class-level, then the specified roles are allowed to invoke all
operations of the Web Service. To specify roles for just a specific set of operations, specify the
annotation at the operation-level.

Attributes

Example
package examples.webservices.security_roles;

...

import weblogic.jws.security.RolesAllowed;

import weblogic.jws.security.SecurityRole;

@WebService(name="SecurityRolesPortType",

 serviceName="SecurityRolesService",

 targetNamespace="http://example.org")

@RolesAllowed ({

 @SecurityRole (role="manager",

 mapToPrincipals={ "juliet","amanda" }),

 @SecurityRole (role="vp")

})

Table B-23 Attributes of the weblogic.jws.security.RolesAllowed JWS Annotation Tag

Name Description Data Type Required?

value Array of
@weblogic.jws.security.RolesAllowed that
list the roles allowed to invoke the Web Service methods.

String[] Yes

3-62 WebLogic Web Services Reference

public class SecurityRolesImpl {

...

In the example, only the roles manager and vp are allowed to invoke the Web Service. Within
the context of the Web Service, the users juliet and amanda are assigned the role manager. The
role vp, however, does not include a mapToPrincipals attribute, which implies that users have
been mapped to this role externally. It is assumed that you have already added the two users
(juliet and amanda) to the WebLogic Server security realm.

weblogic.jws.security.RolesReferenced

Description
Target: Class

Specifies the list of role names that reference actual roles that are allowed to invoke the Web
Service. In particular, it specifies an array of @SecurityRoleRef JWS annotations, each of
which describe a link between a referenced role name and an actual role defined by a
@SecurityRole annotation.

This JWS annotation does not have any attributes.

Example
package examples.webservices.security_roles;

...

import weblogic.jws.security.RolesAllowed;

import weblogic.jws.security.SecurityRole;

import weblogic.jws.security.RolesReferenced;

import weblogic.jws.security.SecurityRoleRef;

@WebService(name="SecurityRolesPortType",

 serviceName="SecurityRolesService",

 targetNamespace="http://example.org")

@RolesAllowed ({

 @SecurityRole (role="manager",

 mapToPrincipals={ "juliet","amanda" }),

 @SecurityRole (role="vp")

})

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-63

@RolesReferenced (

 @SecurityRoleRef (role="mgr", link="manager")

)

public class SecurityRolesImpl {

...

In the example, the role mgr is linked to the role manager, which is allowed to invoke the Web
Service. This means that any user who is assigned to the role of mgr is also allowed to invoke the
Web Service.

weblogic.jws.security.RunAs

Description
Target: Class

Specifies the role and user identity which actually runs the Web Service in WebLogic Server.

For example, assume that the @RunAs annotation specifies the roleA role and userA principal.
This means that even if the Web Service is invoked by userB (mapped to roleB), the relevant
operation is actually executed internal as userA.

Attributes

Example
package examples.webservices.security_roles;

Table B-24 Attributes of the weblogic.jws.security.RunAs JWS Annotation

Name Description Data Type Required?

role Specifies the role which the Web Service should be run as. String Yes

mapToPrincipal Specifies the principal user that maps to the role.

It is assumed that you have already configured the
specified principal (user) as a valid WebLogic Server
user, typically using the Administration Console. See
“Create users” in the Administration Console
Online Help for details.

String Yes

http://e-docs.bea.com/wls/docs103//ConsoleHelp/taskhelp/security/DefineUsers.html

3-64 WebLogic Web Services Reference

import weblogic.jws.security.RunAs;

...

@WebService(name="SecurityRunAsPortType",

 serviceName="SecurityRunAsService",

 targetNamespace="http://example.org")

@RunAs (role="manager", mapToPrincipal="juliet")

public class SecurityRunAsImpl {

...

The example shows how to specify that the Web Service is always run as user juliet, mapped
to the role manager, regardless of who actually invoked the Web Service.

weblogic.jws.security.SecurityRole

Description
Target: Class, Method

Specifies the name of a role that is allowed to invoke the Web Service. This annotation is always
specified in the JWS file as a member of a @RolesAllowed array.

When a client application invokes the secured Web Service, it specifies a user and password as
part of its basic authentication. It is assumed that an administrator has already configured the user
as a valid WebLogic Server user using the Administration Console; for details see “Create Users”
in the Administration Console Online Help.

The user that is going to invoke the Web Service must also be mapped to the relevant role. You
can perform this task in one of the following two ways:

Use the Administration Console to map the user to the role. In this case, you do not specify
the mapToPrincipals attribute of the @SecurityRole annotation. For details, see “Add
Users to Roles” in the Administration Console Online Help.

Map the user to a role only within the context of the Web Service by using the
mapToPrincipals attribute to specify one or more users.

To specify that multiple roles are allowed to invoke the Web Service, include multiple
@SecurityRole annotations within the @RolesAllowed annotation.

http://e-docs.bea.com/wls/docs103//ConsoleHelp/taskhelp/security/DefineUsers.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/AddUsersToRoles.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/security/AddUsersToRoles.html

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-65

Attributes

Example
package examples.webservices.security_roles;

...

import weblogic.jws.security.RolesAllowed;

import weblogic.jws.security.SecurityRole;

@WebService(name="SecurityRolesPortType",

 serviceName="SecurityRolesService",

 targetNamespace="http://example.org")

@RolesAllowed ({

 @SecurityRole (role="manager",

 mapToPrincipals={ "juliet","amanda" }),

 @SecurityRole (role="vp")

})

public class SecurityRolesImpl {

...

In the example, only the roles manager and vp are allowed to invoke the Web Service. Within
the context of the Web Service, the users juliet and amanda are assigned the role manager. The
role vp, however, does not include a mapToPrincipals attribute, which implies that users have
been mapped to this role externally. It is assumed that you have already added the two users
(juliet and amanda) to the WebLogic Server security realm.

Table B-25 Attributes of the weblogic.jws.security.SecurityRole JWS Annotation

Name Description Data Type Required?

role The name of the role that is allowed to invoke the Web
Service.

String Yes

mapToPrincipal
s

An array of user names that map to the role.

If you do not specify this attribute, it is assumed that you
have externally defined the mapping between users and
the role, typically using the Administration Console.

String[] No

3-66 WebLogic Web Services Reference

weblogic.jws.security.SecurityRoleRef

Description
Target: Class

Specifies a role name reference that links to an already-specified role that is allowed to invoke
the Web Service.

Users that are mapped to the role reference can invoke the Web Service as long as the referenced
role is specified in the @RolesAllowed annotation of the Web Service.

Attributes

Example
package examples.webservices.security_roles;

...

import weblogic.jws.security.RolesAllowed;

import weblogic.jws.security.SecurityRole;

import weblogic.jws.security.RolesReferenced;

import weblogic.jws.security.SecurityRoleRef;

@WebService(name="SecurityRolesPortType",

 serviceName="SecurityRolesService",

 targetNamespace="http://example.org")

@RolesAllowed ({

 @SecurityRole (role="manager",

Table B-26 Attributes of the weblogic.jws.security.SecurityRoleRef JWS Annotation

Name Description Data Type Required?

role Name of the role reference. String Yes

link Name of the already-specified role that is allowed to
invoke the Web Service. The value of this attribute
corresponds to the value of the role attribute of a
@SecurityRole annotation specified in the same
JWS file.

String Yes

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-67

 mapToPrincipals={ "juliet","amanda" }),

 @SecurityRole (role="vp")

})

@RolesReferenced (

 @SecurityRoleRef (role="mgr", link="manager")

)

public class SecurityRolesImpl {

...

In the example, the role mgr is linked to the role manager, which is allowed to invoke the Web
Service. This means that any user who is assigned to the role of mgr is also allowed to invoke the
Web Service.

weblogic.jws.security.UserDataConstraint

Description
Target: Class

Specifies whether the client is required to use the HTTPS transport when invoking the Web
Service.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection between the client and
Web Service if the transport attribute of this annotation is set to either Transport.INTEGRAL
or Transport.CONFIDENTIAL in the JWS file that implements the Web Service.

If you specify this annotation in your JWS file, you must also specify the
weblogic.jws.WLHttpTransport annotation (or the <WLHttpTransport> element of the
jwsc Ant task) to ensure that an HTTPS binding is generated in the WSDL file by the jwsc Ant
task.

3-68 WebLogic Web Services Reference

Attributes

Example
package examples.webservices.security_https;

import weblogic.jws.security.UserDataConstraint;

...

@WebService(name="SecurityHttpsPortType",

 serviceName="SecurityHttpsService",

 targetNamespace="http://example.org")

@UserDataConstraint(

 transport=UserDataConstraint.Transport.CONFIDENTIAL)

public class SecurityHttpsImpl {

...

Table B-27 Attributes of the weblogic.jws.security.UserDataConstraint JWS Annotation

Name Description Data Type Required?

transport Specifies whether the client is required to use the HTTPS
transport when invoking the Web Service.

Valid values are:
• Transport.NONE—Specifies that the Web Service

does not require any transport guarantees.
• Transport.INTEGRAL—Specifies that the Web

Service requires that the data be sent between the
client and Web Service in such a way that it cannot be
changed in transit.

• Transport.CONFIDENTIAL—Specifies that the
Web Service requires that data be transmitted so as to
prevent other entities from observing the contents of
the transmission.

Default value is Transport.NONE.

enum No

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-69

weblogic.jws.security.WssConfiguration

Description
Target: Class

Specifies the name of the Web Service security configuration you want the Web Service to use.
If you do not specify this annotation in your JWS file, the Web Service is associated with the
default security configuration (called default_wss) if it exists in your domain.

The @WssConfiguration annotation only makes sense if your Web Service is configured for
message-level security (encryption and digital signatures). The security configuration, associated
to the Web Service using this annotation, specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption
and digital signatures, and so on.

WebLogic Web Services are not required to be associated with a security configuration; if the
default behavior of the Web Services security runtime is adequate then no additional
configuration is needed. If, however, a Web Service requires different behavior from the default
(such as using an X.509 certificate for identity, rather than the default username/password token),
then the Web Service must be associated with a security configuration.

Before you can successfully invoke a Web Service that specifies a security configuration, you
must use the Administration Console to create it. For details, see “Create a Web Services security
configuration” in the Administration Console Online Help. For general information about
message-level security, see “Configuring Message-Level Security” in Securing WebLogic Web
Services.

Note: All WebLogic Web Services packaged in a single Web Application must be associated
with the same security configuration when using the @WssConfiguration annotation.
This means, for example, that if a @WssConfiguration annotation exists in all the JWS
files that implement the Web Services contained in a given Web Application, then the
value attribute of each @WssConfiguration must be the same.

To specify that more than one Web Service be contained in a single Web Application
when using the jwsc Ant task to compile the JWS files into Web Services, group the
corresponding <jws> elements under a single <module> element.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html

3-70 WebLogic Web Services Reference

Attributes

Example
The following example shows how to specify that a Web Service is associated with the
my_security_configuration security configuration; only the relevant Java code is shown:

package examples.webservices.wss_configuration;

import javax.jws.WebService;

...

import weblogic.jws.security.WssConfiguration;

@WebService(...

...

@WssConfiguration(value="my_security_configuration")

public class WssConfigurationImpl {

...

weblogic.jws.soap.SOAPBinding

Description
Target: Method

Specifies the mapping of a Web Service operation onto the SOAP message protocol.

This annotation is analogous to @javax.jws.soap.SOAPBinding except that it applies to a
method rather than the class. With this annotation you can specify, for example, that one Web

Table B-28 Attributes of the weblogic.jws.security.WssConfiguration JWS Annotation Tag

Name Description Data Type Required?

value Specifies the name of the Web Service security
configuration that is associated with this Web Service.
The default configuration is called default_wss.

You must create the security configuration (even the
default one) using the Administration Console before you
can successfully invoke the Web Service.

String Yes

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-71

Service operation uses RPC-encoded SOAP bindings and another operation in the same Web
Service uses document-literal-wrapped SOAP bindings.

Note: Because @weblogic.jws.soap.SOAPBinding and @javax.jws.soap.SOAPBinding
have the same class name, be careful which annotation you are referring to when using it
in your JWS file.

Attributes

Table B-29 Attributes of the weblogic.jws.soap.SOAPBinding JWS Annotation

Name Description Data Type Required?

style Specifies the message style of the request and response
SOAP messages of the invoked annotated operation.

Valid values are:
• SOAPBinding.Style.RPC

• SOAPBinding.Style.DOCUMENT.

Default value is SOAPBinding.Style.DOCUMENT.

enum No

3-72 WebLogic Web Services Reference

Example
The following simple JWS file shows how to specify that, by default, the operations of the Web
Service use document-literal-wrapped SOAP bindings; you specify this by using the
@javax.jws.soap.SOAPBinding annotation at the class-level. The example then shows how to
specify different SOAP bindings for individual methods by using the
@weblogic.jws.soap.SOAPBinding annotation at the method-level. In particular, the
sayHelloDocLitBare() method uses document-literal-bare SOAP bindings, and the
sayHelloRPCEncoded() method uses RPC-encoded SOAP bindings.

package examples.webservices.soap_binding_method;

use Specifies the formatting style of the request and response
SOAP messages of the invoked annotated operation.

Valid values are:
• SOAPBinding.Use.LITERAL

• SOAPBinding.Use.ENCODED

Default value is SOAPBinding.Use.LITERAL.

enum No

parameterStyle Determines whether method parameters represent the
entire message body, or whether the parameters are
elements wrapped inside a top-level element named after
the operation.

Valid values are:
• SOAPBinding.ParameterStyle.BARE
• SOAPBinding.ParameterStyle.WRAPPED

Default value is
SOAPBinding.ParameterStyle.WRAPPED

Note: This attribute applies only to Web Services of
style document-literal. Or in other words, you can
specify this attribute only if you have also set the
style attribute to
SOAPBinding.Style.DOCUMENT and the
use attribute to
SOAPBinding.Use.LITERAL.

enum No

Table B-29 Attributes of the weblogic.jws.soap.SOAPBinding JWS Annotation

Name Description Data Type Required?

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-73

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import weblogic.jws.WLHttpTransport;

@WebService(name="SoapBindingMethodPortType",

 serviceName="SoapBindingMethodService",

 targetNamespace="http://example.org")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,

 use=SOAPBinding.Use.LITERAL,

 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="soap_binding_method",

 serviceUri="SoapBindingMethodService",

 portName="SoapBindingMethodServicePort")

/**

 * Simple JWS example that shows how to specify soap bindings for a method.

 */

public class SoapBindingMethodImpl {

 @WebMethod()

 @weblogic.jws.soap.SOAPBinding(

 style=SOAPBinding.Style.DOCUMENT,

 use=SOAPBinding.Use.LITERAL,

 parameterStyle=SOAPBinding.ParameterStyle.BARE)

 public String sayHelloDocLitBare(String message) {

 System.out.println("sayHelloDocLitBare" + message);

 return "Here is the message: '" + message + "'";

 }

 @WebMethod()

 @weblogic.jws.soap.SOAPBinding(

 style=SOAPBinding.Style.RPC,

 use=SOAPBinding.Use.ENCODED)

 public String sayHelloRPCEncoded (String message) {

 System.out.println("sayHelloRPCEncoded" + message);

 return "Here is the message: '" + message + "'";

3-74 WebLogic Web Services Reference

 }

}

weblogic.jws.security.SecurityRoles (deprecated)

Description
Target: Class, Method

Note: The @weblogic.security.jws.SecurityRoles JWS annotation is deprecated
beginning in WebLogic Server 9.0.

Specifies the roles that are allowed to access the operations of the Web Service.

If you specify this annotation at the class level, then the specified roles apply to all public
operations of the Web Service. You can also specify a list of roles at the method level if you want
to associate different roles to different operations of the same Web Service.

Note: The @SecurityRoles annotation is supported only within the context of an
EJB-implemented Web Service. For this reason, you can specify this annotation only
inside of a JWS file that explicitly implements javax.ejb.SessionBean. See
“Securing Enterprise JavaBeans (EJBs)” in Programming WebLogic Security for
conceptual information about what it means to secure access to an EJB. See “Should You
Implement a Stateless Session EJB?” in Getting Started With WebLogic Web Services
Using JAX-RPC for information about explicitly implementing an EJB in a JWS file.

http://e-docs.bea.com/wls/docs103/security/ejb_client.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#ejb_impl
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#ejb_impl

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-75

Attributes

Example
The following example shows how to specify, at the class-level, that the Web Service can be
invoked only by the Admin role; only relevant parts of the example are shown:

package examples.webservices.security_roles;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

import weblogic.ejbgen.Session;

import javax.jws.WebService;

...

import weblogic.jws.security.SecurityRoles;

@Session(ejbName="SecurityRolesEJB")

@WebService(...

// Specifies the roles who can invoke the entire Web Service

@SecurityRoles(rolesAllowed="Admnin")

Table B-30 Attributes of the weblogic.jws.security.SecurityRoles JWS Annotation

Name Description Data Type Required?

rolesAllowed Specifies the list of roles that are allowed to access the
Web Service.

This annotation is the equivalent of the
<method-permission> element in the
ejb-jar.xml deployment descriptor of the stateless
session EJB that implements the Web Service.

Array of
String

No

rolesReference
d

Specifies a list of roles referenced by the Web Service.

The Web Service may access other resources using the
credentials of the listed roles.

This annotation is the equivalent of the
<security-role-ref> element in the
ejb-jar.xml deployment descriptor of the stateless
session EJB that implements the Web Service.

Array of
String

No

3-76 WebLogic Web Services Reference

public class SecurityRolesImpl implements SessionBean {

...

weblogic.jws.security.SecurityIdentity (deprecated)

Description
Target: Class

Note: The @weblogic.security.jws.SecurityIdentity JWS annotation is deprecated
beginning in WebLogic Server 9.1.

Specifies the identity assumed by the Web Service when it is invoked.

Unless otherwise specified, a Web Service assumes the identity of the authenticated invoker. This
annotation allows the developer to override this behavior so that the Web Service instead
executes as a particular role. The role must map to a user or group in the WebLogic Server
security realm.

Note: The @SecurityIdentity annotation only makes sense within the context of an
EJB-implemented Web Service. For this reason, you can specify this annotation only
inside of a JWS file that explicitly implements javax.ejb.SessionBean. See
“Securing Enterprise JavaBeans (EJBs)” in Programming WebLogic Security for
conceptual information about what it means to secure access to an EJB. See “Should You
Implement a Stateless Session EJB?” in Getting Started With WebLogic Web Services
Using JAX-RPC for information about explicitly implementing an EJB in a JWS file.

Attributes

Example
The following example shows how to specify that the Web Service, when invoked, runs as the
Admin role:

Table B-31 Attributes of the weblogic.jws.security.SecurityIdentity JWS Annotation

Name Description Data Type Required?

value Specifies the role which the Web Service assumes when it
is invoked. The role must map to a user or group in the
WebLogic Server security realm.

String Yes

http://e-docs.bea.com/wls/docs103/security/ejb_client.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#ejb_impl
http://e-docs.bea.com/wls/docs103/webserv_rpc/jws.html#ejb_impl

WebLog ic-spec i f i c Annotat ions

WebLogic Web Services Reference 3-77

package examples.webservices.security_roles;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

import weblogic.ejbgen.Session;

import javax.jws.WebService;

...

import weblogic.jws.security.SecurityIdentity;

@Session(ejbName="SecurityRolesEJB")

@WebService(...

// Specifies that the Web Service runs as the Admin role

@SecurityIdentity(value="Admin")

public class SecurityRolesImpl implements SessionBean {

...

3-78 WebLogic Web Services Reference

WebLogic Web Services Reference 4-1

C H A P T E R 4

Web Service Reliable Messaging Policy
Assertion Reference

The following sections provide reference information about Web Service reliable messaging
policy assertions in a WS-Policy file:

“Overview of a WS-Policy File That Contains Web Service Reliable Messaging
Assertions” on page 4-1

“WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.1” on
page 4-2

“WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0
(Deprecated)” on page 4-5

Note: This section applies only to JAX-RPC Web Services, and not to JAX-WS Web Services.

Overview of a WS-Policy File That Contains Web Service
Reliable Messaging Assertions

You use WS-Policy files to configure reliable messaging capabilities of a WebLogic Web Service
running on a destination endpoint. Use the @Policy JWS annotations in the JWS file that
implements the Web Service to specify the name of the WS-Policy file that is associated with a
Web Service.

A WS-Policy file is an XML file that conforms to the WS-Policy specification. The root element
of a WS-Policy file is always <wsp:Policy>. To configure Web Service reliable messaging, you
first add a <wsrmp:RMAssertion> child element; its main purpose is to group all the reliable
messaging policy assertions together. Then you add as child elements to <wsrmp:RMAssertion>

4-2 WebLogic Web Services Reference

to define the Web Service reliable messaging. All these assertions conform to the
WS-PolicyAssertions specification.

WebLogic Server includes default WS-Policy files that contain typical reliable messaging
assertions that you can use if you do not want to create your own WS-Policy file. The default
WS-Policy files are defined in “Default WS-Policy File for Reliable Messaging” in
Programming Advanced Features of WebLogic Web Services.

For task-oriented information about creating a reliable WebLogic Web Service, see ”Using Web
Service Reliable Messaging” in Programming Advanced Features of WebLogic Web Services.

WS-Policy File With Web Service Reliable Messaging
Assertions—Version 1.1

The following sections describe how to create a WS-Policy file with Web Service reliable
messaging assertions that are based on WS Reliable Messaging Policy Assertion Version 1.1.

Graphical Representation
The following graphic describes the element hierarchy of Web Service reliable messaging policy
assertions in a WS-Policy file.

Note: You must enter the assertions in the ordered listed in the graphic below.

Figure 4-1 Element Hierarchy of Web Service Reliable Messaging Policy Assertions 1.1

Policy

wsp:Policy

wsrmp:SequenceSTR

wsrmp:SequenceTransportSecurity

wsrmp:DeliveryAssurance

wsrmp:RMAssertion

http://e-docs.bea.com/wls/docs103/webserv_adv/rm.html
http://e-docs.bea.com/wls/docs103/webserv_adv/rm.html
http://e-docs.bea.com/wls/docs103/webserv_adv/wspolicy.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702
#policy1.1
#SequenceSTR
#SequenceTransportSecurity
#AcknowledgementInterval
#RMAssertion1.1

WS-Po l i cy F i l e Wi th Web Serv ice Re l iab le Messag ing Asser t i ons—Vers ion 1 .1

WebLogic Web Services Reference 4-3

Example of a WS-Policy File With Web Service Reliable
Messaging Assertions 1.1
The following example shows a simple WS-Policy file used to configure reliable messaging for
a WebLogic Web Service.

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

 <wsrmp:RMAssertion

 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">

 <wsrmp:SequenceSTR/>

 <wsrmp:DeliveryAssurance>

 <wsp:Policy>

 <wsrmp:ExactlyOnce/>

 </wsp:Policy>

 </wsrmp:DeliveryAssurance>

 </wsrmp:RMAssertion>

</wsp:Policy>

Element Descriptions
The following sections describe the elements in the Web Services Reliable Messaging WS-Policy
file.

wsp:Policy
Groups nested policy assertions.

wsrmp:RMAssertion
Main Web Service reliable messaging assertion that groups all the other assertions under a single
element. The presence of this assertion in a WS-Policy file indicates that the corresponding Web
Service must be invoked reliably.

4-4 WebLogic Web Services Reference

The following table summarizes the attributes of the wsrmp:RMAssertion element.

wsrmp:SequenceSTR
Specifies that in order to secure messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the CreateSequence message. You can
only specify one security assertion; that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

wsrmp:SequenceTransportSecurity
Specifies that in order to secure messages in a reliable sequence, the runtime will use the SSL
transport session that is used to send the CreateSequence message. This assertion must be used
in conjunction with the sp:TransportBinding assertion that requires the use of some
transport-level security mechanism (for example, sp:HttpsToken). You can only specify one
security assertion; that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

wsrmp:DeliveryAssurance
Specifies the delivery assurance (or quality of service) of the Web Service. You can set one of the
delivery assurances defined in the following table. If not set, the delivery assurance defaults to
ExactlyOnce.

Table B-32 Attributes of <wsrmp:RMAssertion>

Attribute Description Required?

optional Specifies whether the Web Service requires the operations to be
invoked reliably. Valid values for this attribute are true and false.
Default value is false.

No

Table 4-1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

wsrmp:AtMostOnce Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

wsrmp:AtLeastOnce Every message is delivered at least once. It is possible that some
messages are delivered more than once.

WS-Po l ic y F i l e Wi th Web Serv i ce Re l iab le Me ssag ing Asser t i ons—Vers ion 1 .0 (Deprecated)

WebLogic Web Services Reference 4-5

The delivery assurance must be enclosed by wsp:Policy element. For example:

<wsrmp:DeliveryAssurance>

 <wsp:Policy>

 <wsrmp:ExactlyOnce/>

 </wsp:Policy>

</wsrmp:DeliveryAssurance>

WS-Policy File With Web Service Reliable Messaging
Assertions—Version 1.0 (Deprecated)

The following sections describe how to create a WS-Policy file with Web Service reliable
messaging assertions that are based on WS Reliable Messaging Policy Assertion 1.0.

Graphical Representation
The following graphic describes the element hierarchy of Web Service reliable messaging policy
assertions in a WS-Policy file.

Note: You must enter the assertions in the ordered listed in the graphic below.

wsrmp:ExactlyOnce Every message is delivered exactly once, without duplication.This
value is enabled by default.

wsrmp:InOrder Messages are delivered in the order that they were sent. This
delivery assurance can be combined with one of the preceding three
assurances. This value is enabled by default.

Table 4-1 Delivery Assurances for Reliable Messaging (Continued)

Delivery Assurance Description

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

4-6 WebLogic Web Services Reference

Figure 4-2 Element Hierarchy of Web Service Reliable Messaging Policy Assertions

Example of a WS-Policy File With Web Service Reliable
Messaging Assertions
The following example shows a simple WS-Policy file used to configure reliable messaging for
a WebLogic Web Service:

<?xml version="1.0"?>

<wsp:Policy

 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:beapolicy="http://www.bea.com/wsrm/policy"

 >

 <wsrm:RMAssertion >

 <wsrm:InactivityTimeout

 Milliseconds="600000" />

 <wsrm:BaseRetransmissionInterval

 Milliseconds="3000" />

 <wsrm:ExponentialBackoff />

 <wsrm:AcknowledgementInterval

 Milliseconds="200" />

Policy

wsrm:InactivityTimeout

wsrm:BaseRetransmissionInterval

wsrm:ExponentialBackoff

wsrm:AcknowledgementInterval

wsrm:RMAssertion

beapolicy:Expires

beapolicy:QOS

#AcknowledgementInterval
#BaseRetransmissionInterval
#RMAssertion
#ExponentialBackoff
#ExponentialBackoff
#ExponentialBackoff
#InactivityTimeout

WS-Po l ic y F i l e Wi th Web Serv i ce Re l iab le Me ssag ing Asser t i ons—Vers ion 1 .0 (Deprecated)

WebLogic Web Services Reference 4-7

 <beapolicy:Expires Expires="P1D" optional="true"/>

 </wsrm:RMAssertion>

</wsp:Policy>

Element Description
The following sections describe the elements in the Web Services Reliable Messaging WS-Policy
file.

beapolicy:Expires
Specifies an amount of time after which the reliable Web Service expires and does not accept any
new sequences. Client applications invoking this instance of the reliable Web Service will receive
an error if they try to invoke an operation after the expiration duration.

The default value of this element, if not specified in the WS-Policy file, is for the Web Service to
never expires.

beapolicy:QOS
Specifies the delivery assurance (or Quality Of Service) of the Web Service:

Table B-33 Attributes of <beapolicy:Expires>

Attribute Description Required?

Expires The amount of time after which the reliable Web Service expires. The
format of this attribute conforms to the XML Schema duration data
type. For example, to specify that the reliable Web Service expires
after 3 hours, specify Expires="P3H".

Yes

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration

4-8 WebLogic Web Services Reference

wsrm:AcknowledgementInterval
Specifies the maximum interval, in milliseconds, in which the destination endpoint must transmit
a stand alone acknowledgement.

A destination endpoint can send an acknowledgement on the return message immediately after it
has received a message from a source endpoint, or it can send one separately in a stand alone
acknowledgement. In the case that a return message is not available to send an acknowledgement,
a destination endpoint may wait for up to the acknowledgement interval before sending a stand
alone acknowledgement. If there are no unacknowledged messages, the destination endpoint may
choose not to send an acknowledgement.

This assertion does not alter the formulation of messages or acknowledgements as transmitted.
Its purpose is to communicate the timing of acknowledgements so that the source endpoint may
tune appropriately.

Table B-34 Attributes of <beapolicy:QOS>

Attribute Description Required?

QOS Specifies the delivery assurance. You can specify exactly one of the
following values:
• AtMostOnce—Messages are delivered at most once, without

duplication. It is possible that some messages may not be
delivered at all.

• AtLeastOnce—Every message is delivered at least once. It is
possible that some messages be delivered more than once.

• ExactlyOnce—Every message is delivered exactly once,
without duplication.

You can also add the InOrder string to specify that the messages be
delivered in order.

If you specify one of the XXXOnce values, but do not specify
InOrder, then the messages are not guaranteed to be in order. This is
different from the default value if the entire QOS element is not
specified (exactly once in order).

This attribute defaults to ExactlyOnce InOrder.

Example: <beapolicy:QOS QOS="AtMostOnce InOrder"
/>

Yes

WS-Po l ic y F i l e Wi th Web Serv i ce Re l iab le Me ssag ing Asser t i ons—Vers ion 1 .0 (Deprecated)

WebLogic Web Services Reference 4-9

This element is optional. If you do not specify this element, the default value is set by the store
and forward (SAF) agent configured for the destination endpoint.

wsrm:BaseRetransmissionInterval
Specifies the interval, in milliseconds, that the source endpoint waits after transmitting a message
and before it retransmits the message.

If the source endpoint does not receive an acknowledgement for a given message within the
interval specified by this element, the source endpoint retransmits the message. The source
endpoint can modify this retransmission interval at any point during the lifetime of the sequence
of messages. This assertion does not alter the formulation of messages as transmitted, only the
timing of their transmission.

This element can be used in conjunctions with the <wsrm:ExponentialBackoff> element to
specify that the retransmission interval will be adjusted using the algorithm specified by the
<wsrm:ExponentialBackoff> element.

This element is optional. If you do not specify this element, the default value is set by the store
and forward (SAF) agent configured for the source endpoint. If using the Administration Console
to configure the SAF agent, this value is labeled Retry Delay Base.

wsrm:ExponentialBackoff
Specifies that the retransmission interval will be adjusted using the exponential backoff
algorithm.

Table B-35 Attributes of <wsrm:AcknowledgementInterval>

Attribute Description Required?

Milliseconds Specifies the maximum interval, in milliseconds, in which the
destination endpoint must transmit a stand alone acknowledgement.

Yes

Table B-36 Attributes of <wsrm:BaseRetransmissionInterval>

Attribute Description Required?

Milliseconds Number of milliseconds the source endpoint waits to retransmit
message.

Yes

4-10 WebLogic Web Services Reference

This element is used in conjunction with the <wsrm:BaseRetransmissionInterval> element.
If a destination endpoint does not acknowledge a sequence of messages for the amount of time
specified by <wsrm:BaseRetransmissionInterval>, the exponential backoff algorithm will
be used for timing of successive retransmissions by the source endpoint, should the message
continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals should
increase exponentially, based on the base retransmission interval. For example, if the base
retransmission interval is 2 seconds, and the exponential backoff element is set in the WS-Policy
file, successive retransmission intervals if messages continue to be unacknowledged are 2, 4, 8,
16, 32, and so on.

This element is optional. If not set, the same retransmission interval is used in successive retries,
rather than the interval increasing exponentially.

This element has no attributes.

wsrm:InactivityTimeout
Specifies (in milliseconds) a period of inactivity for a sequence of messages. A sequence of
messages is defined as a set of messages, identified by a unique sequence number, for which a
particular delivery assurance applies; typically a sequence originates from a single source
endpoint. If, during the duration specified by this element, a destination endpoint has received no
messages from the source endpoint, the destination endpoint may consider the sequence to have
been terminated due to inactivity. The same applies to the source endpoint.

This element is optional. If it is not set in the WS-Policy file, then sequences never time-out due
to inactivity.

wsrm:RMAssertion
Main Web Service reliable messaging assertion that groups all the other assertions under a single
element.

The presence of this assertion in a WS-Policy file indicates that the corresponding Web Service
must be invoked reliably.

Table B-37 Attributes of <wsrm:InactivityTimeout>

Attribute Description Required?

Milliseconds The number of milliseconds that defines a period of inactivity. Yes

WS-Po l ic y F i l e Wi th Web Serv i ce Re l iab le Me ssag ing Asser t i ons—Vers ion 1 .0 (Deprecated)

WebLogic Web Services Reference 4-11

Table B-38 Attributes of <wsrm:RMAssertion>

Attribute Description Required?

optional Specifies whether the Web Service requires the operations to be
invoked reliably.

Valid values for this attribute are true and false. Default value is
false.

No

4-12 WebLogic Web Services Reference

WebLogic Web Services Reference 5-1

C H A P T E R 5

Oracle Web Services Security Policy
Assertion Reference

Previous releases of WebLogic Server, released before the formulation of the OASIS
WS-SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for Web Services security policy. This release of
WebLogic Server supports security policy files that conform to the OASIS WS-SecurityPolicy
1.2 specification. It still supports the proprietary Web Services security policy files first included
in WebLogic Server 9, but this legacy policy format is deprecated and should not be used for new
applications.

The following sections provide reference information about the security assertions you can
configure in a Web Services security policy file using the proprietary schema:

“Overview of a Policy File That Contains Security Assertions” on page 5-2

“Graphical Representation” on page 5-3

“Example of a Policy File With Security Elements” on page 5-5

“Element Description” on page 5-6

“Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed” on page 5-21

Note: This section applies only to JAX-RPC Web Services using policies written under the
Oracle Web Services security policy schema, and not to JAX-WS Web Services or to
policies written under the OASIS WS-SecurityPolicy 1.2 specification.

http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf
http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf

5-2 WebLogic Web Services Reference

Overview of a Policy File That Contains Security
Assertions

You can use policy files to configure the message-level security of a WebLogic Web Service. Use
the @Policy and @Policies JWS annotations in the JWS file that implements the Web Service
to specify the name of the security policy file that is associated with a WebLogic Web Service.

A security policy file is an XML file that conforms to the WS-Policy specification. The root
element of a WS-Policy file is always <wsp:Policy>. To configure message-level security, you
add policy assertions that specify the type of tokens supported for authentication and how the
SOAP messages should be encrypted and digitally signed.

Note: These security policy assertions are based on the assertions described in the December
18, 2002 version of the Web Services Security Policy Language (WS-SecurityPolicy)
specification. This means that although the exact syntax and usage of the assertions in
WebLogic Server are different, they are similar in meaning to those described in the
specification. The assertions are not based on the latest update of the specification (13
July 2005.)

WebLogic Server includes five security policy files that use the Oracle Web Services security
policy schema (Auth.xml, Sign.xml, Encrypt.xml, Wssc-dk.xml, and Wssc-sct.xml).
These packaged policy files contain typical security assertions that you can use if you do not want
to create your own security policy file. For details about these files, see Oracle Web Services
Security Policy Files.

Policy files using the Oracle Web Services security policy schema have the following namespace

<wsp:Policy

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wssp="http://www.bea.com/wls90/security/policy"

 >

This release of WebLogic Server also includes a large number of packaged policy files that
conform to the OASIS WS-SecurityPolicy 1.2 specification. WS-SecurityPolicy 1.2 policy files
and Oracle proprietary Web Services security policy schema files are not mutually compatible;
you cannot use both types of policy file in the same Web Services security configuration. For
information about using WS-SecurityPolicy 1.2 security policy files, see Using
WS-SecurityPolicy Policy Files.

See Configuring Message-Level Security (Digital Signatures and Encryption) for task-oriented
information about creating a message-level secured WebLogic Web Service.

http://www-106.ibm.com/developerworks/library/specification/ws-polfram/
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#BEA_prop
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#BEA_prop
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#wssp12
http://e-docs.bea.com/wls/docs103/webserv_sec/message.html#wssp12

Graphica l Representat ion

WebLogic Web Services Reference 5-3

Graphical Representation
The following graphic describes the element hierarchy of the security assertions in a Oracle
security policy file.

5-4 WebLogic Web Services Reference

Figure 5-1 Element Hierarchy of Oracle Security Policy Assertions

SecurityToken +

Integrity

SignatureAlgorithm

CanonicalizationAlgorithm

Target +

DigestAlgorithm
Transform *
MessageParts

Confidentiality
KeyWrappingAlgorithm

Target +

EncryptionAlgorithm

MessageParts

KeyInfo

SecurityToken *

Policy

MessageAge

Transform *

Identity

SupportedTokens ?

SupportedTokens ?

Claims ?

UsePassword ?

ConfirmationMethod ?

SecurityToken +

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

SecurityTokenReference *

TokenLifeTime ?
Length ?

Label ?

#SecurityToken
#Integrity
#SignatureAlgorithm
#CanonicalizationAlgorithm
#Target
#DigestAlgorithm
#Transform
#MessageParts
#Confidentiality
#KeyWrappingAlgorithm
#Target
#EncryptionAlgorithm
#MessageParts
#KeyInfo
#SecurityToken
#MessageAge
#Transform
#Identity
#SupportedTokens
#SecurityToken
#SupportedTokens
#Claims
#UsePassword
#SecurityTokenReference
#ConfirmationMethod
#TokenLifeTime
#Length
#Label

Example o f a Po l i c y F i l e Wi th Secur i t y E lements

WebLogic Web Services Reference 5-5

Example of a Policy File With Security Elements
<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >

 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-pro
file-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>

 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(Assertion)
 </wssp:MessageParts>
 </wssp:Target>

 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()</wssp:MessageParts>
 </wssp:Target>

 <wssp:KeyInfo />
 </wssp:Confidentiality>

5-6 WebLogic Web Services Reference

</wsp:Policy>

Element Description

CanonicalizationAlgorithm
Specifies the algorithm used to canonicalize the SOAP message elements that are digitally
signed.

Note: The WebLogic Web Services security runtime does not support specifying an
InclusiveNamespaces PrefixList that contains a list of namespace prefixes or a token
indicating the presence of the default namespace to the canonicalization algorithm.

Claims
Specifies additional metadata information that is associated with a particular type of security
token. Depending on the type of security token, you can or must specify the following child
elements:

For username tokens, you can define a <UsePassword> child element to specify whether
you want the SOAP messages to use password digests.

For SAML tokens, you must define a <ConfirmationMethod> child element to specify
the type of SAML confirmation (sender-vouches or holder-of-key).

By default, a security token for a secure conversation has a lifetime of 12 hours. To change this
default value, define a <TokenLifeTime> child element to specify a new lifetime, in
milliseconds, of the security token.

This element does not have any attributes.

Table B-39 Attributes of <CanonicalizationAlgorithm>

Attribute Description Required?

URI The algorithm used to canonicalize the SOAP message being signed.

You can specify only the following canonicalization algorithm:
http://www.w3.org/2001/10/xml-exc-cl4n#

Yes

Element Descr ip t ion

WebLogic Web Services Reference 5-7

Confidentiality
Specifies that part or all of the SOAP message must be encrypted, as well as the algorithms and
keys that are used to encrypt the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
encrypted using triple-DES.

ConfirmationMethod
Specifies the type of confirmation method that is used when using SAML tokens for identity. You
must specify one of the following two values for this element: sender-vouches or
holder-of-key. For example:

 <wssp:Claims>

 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>

 </wssp:Claims>

This element does not have any attributes.

The <ConfirmationMethod> element is required only if you are using SAML tokens.

The exact location of the <ConfirmationMethod> assertion in the security policy file depends
on the type configuration method you are configuring. In particular:

sender-vouches:

Specify the <ConfirmationMethod> assertion within an <Identity> assertion, as shown in the
following example:

<?xml version="1.0"?>

<wsp:Policy

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wssp="http://www.bea.com/wls90/security/policy"

Table B-40 Attributes of <Confidentiality>

Attribute Description Required?

SupportTrust10 .

The valid values for this attribute are true and false. The default
value is false.

No

5-8 WebLogic Web Services Reference

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecur

ity-utility-1.0.xsd"

 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"

 >

 <wssp:Identity>

 <wssp:SupportedTokens>

 <wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token

-profile-1.0#SAMLAssertionID">

 <wssp:Claims>

 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>

 </wssp:Claims>

 </wssp:SecurityToken>

 </wssp:SupportedTokens>

 </wssp:Identity>

</wsp:Policy>

holder-of-key:

Specify the <ConfirmationMethod> assertion within an <Integrity> assertion. The reason
you put the SAML token in the <Integrity> assertion for this confirmation method is that the
Web Service runtime must prove the integrity of the message, which is not required by
sender-vouches.

For example:

<?xml version="1.0"?>

<wsp:Policy

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecur

ity-utility-1.0.xsd"

 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">

 <wssp:Integrity>

 <wssp:SignatureAlgorithm

 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

Element Descr ip t ion

WebLogic Web Services Reference 5-9

 <wssp:CanonicalizationAlgorithm

 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <wssp:Target>

 <wssp:DigestAlgorithm

 URI="http://www.w3.org/2000/09/xmldsig#sha1" />

 <wssp:MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

 wsp:Body()

 </wssp:MessageParts>

 </wssp:Target>

 <wssp:SupportedTokens>

 <wssp:SecurityToken

 IncludeInMessage="true"

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token

-profile-1.0#SAMLAssertionID">

 <wssp:Claims>

 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>

 </wssp:Claims>

 </wssp:SecurityToken>

 </wssp:SupportedTokens>

 </wssp:Integrity>

</wsp:Policy>

For more information about the two SAML confirmation methods (sender-vouches or
holder-of-key), see SAML Token Profile Support in WebLogic Web Services.

DigestAlgorithm
Specifies the digest algorithm that is used when digitally signing the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

http://e-docs.bea.com/wls/docs103/secintro/archtect.html#saml_web_services

5-10 WebLogic Web Services Reference

EncryptionAlgorithm
Specifies the encryption algorithm that is used when encrypting the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

Identity
Specifies the type of security tokens (username, X.509, or SAML) that are supported for
authentication.

This element has no attributes.

Table B-41 Attributes of <DigestAlgorithm>

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the
specified parts of a SOAP message.
You can specify only the following digest algorithm:
http://www.w3.org/2000/09/xmldsig#sha1

Yes

Table B-42 Attributes of <EncryptionAlgorithm>

Attribute Description Required?

URI The encryption algorithm used to encrypt specified parts of the SOAP
message.

Valid values are:
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#aes128-cbc

When interoperating between Web Services built with WebLogic
Workshop 8.1, you must specify
http://www.w3.org/2001/04/xmlenc#aes128-cbc as the
encryption algorithm.

Yes

http://e-docs.bea.com/workshop/docs81/index.html
http://e-docs.bea.com/workshop/docs81/index.html

Element Descr ip t ion

WebLogic Web Services Reference 5-11

Integrity
Specifies that part or all of the SOAP message must be digitally signed, as well as the algorithms
and keys that are used to sign the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
digitally signed and only algorithms using SHA1 and an RSA key are accepted.

KeyInfo
Used to specify the security tokens that are used for encryption.

This element has no attributes.

Table B-43 Attributes of <Integrity>

Attribute Description Required?

SignToken Specifies whether the security token, specified using the
<SecurityToken> child element of <Integrity>, should also
be digitally signed, in addition to the specified parts of the SOAP
message.

The valid values for this attribute are true and false. The default
value is true.

No

SupportTrust10 .

The valid values for this attribute are true and false. The default
value is false.

No

X509AuthCond
itional

Whenever an Identity assertion includes X.509 tokens in the supported
token list, your policy must also have an Integrity assertion. The server
will not accept X.509 tokens as proof of authentication unless the
token is also used in a digital signature.

If the Identity assertion accepts other token types, you may use the
X509AuthConditional attribute of the Integrity assertion to specify
that the digital signature is required only when the actual
authentication token is an X.509 token. Remember that abstract
Identity assertions are pre-processed at deploy time and converted into
concrete assertions by inserting a list of all token types supported by
your runtime environment.

No

5-12 WebLogic Web Services Reference

KeyWrappingAlgorithm
Specifies the algorithm used to encrypt the message encryption key.

Label
Specifies a label for the security context token. Used when configuring WS-SecureConversation
security contexts.

This element has no attributes.

Length
Specifies the length of the key when using security context tokens and derived key tokens. This
assertion only applies to WS-SecureConversation security contexts.

The default value is 32.

This element has no attributes.

MessageAge
Specifies the acceptable time period before SOAP messages are declared stale and discarded.

When you include this security assertion in your security policy file, the Web Services runtime
adds a <Timestamp> header to the request or response SOAP message, depending on the
direction (inbound, outbound, or both) to which the security policy file is associated. The
<Timestamp> header indicates to the recipient of the SOAP message when the message expires.

Table B-44 Attributes of <KeyWrappingAlgorithm>

Attribute Description Required?

URI The algorithm used to encrypt the SOAP message encryption
key.

Valid values are:
• http://www.w3.org/2001/04/xmlenc#rsa-1_5

(to specify the RSA-v1.5 algorithm)
• http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

(to specify the RSA-OAEP algorithm)

Yes

Element Descr ip t ion

WebLogic Web Services Reference 5-13

For example, assume that your security policy file includes the following <MessageAge>
assertion:

<wsp:Policy

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecur

ity-utility-1.0.xsd"

 >

...

 <wssp:MessageAge Age="300" />

</wsp:Policy>

The resulting generated SOAP message will have a <Timestamp> header similar to the following
excerpt:

<wsu:Timestamp

 wsu:Id="Dy2PFsX3ZQacqNKEANpXbNMnMhm2BmGOA2WDc2E0JpiaaTmbYNwT"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecur

ity-utility-1.0.xsd">

 <wsu:Created>2005-11-09T17:46:55Z</wsu:Created>

 <wsu:Expires>2005-11-09T17:51:55Z</wsu:Expires>

</wsu:Timestamp>

In the example, the recipient of the SOAP message discards the message if received after
2005-11-09T17:51:55Z, or five minutes after the message was created.

The Web Services runtime, when generating the SOAP message, sets the <Created> header to
the time when the SOAP message was created and the <Expires> header to the creation time
plus the value of the Age attribute of the <MessageAge> assertion.

The following table describes the attributes of the <MessageAge> assertion.

Table B-45 Attributes of <MessageAge>

Attribute Description Required?

Age Specifies the actual maximum age time-out for a SOAP message, in
seconds.

No

5-14 WebLogic Web Services Reference

The following table lists the properties that describe the timestamp behavior of the WebLogic
Web Services security runtime, along with their default values.

You typically never need to change the values of the preceding timestamp properties. However,
if you do need to, you must use the Administration Console to create the default_wss Web
Service Security Configuration, if it does not already exist, and then update its timestamp
configuration by clicking on the Timestamp tab. See Create a Web Service security
configuration for task information and Domains: Web Services Security: Timestamp for
additional reference information about these timestamp properties.

Table 5-1 Timestamp Behavior Properties

Property Description Default Value

Clock
Synchronized

Specifies whether the Web Service assumes synchronized clocks. true

Clock Precision If clocks are synchronized, describes the accuracy of the
synchronization.

Note: This property is deprecated as of release 9.2 of WebLogic
Web Services. Use the Clock Skew property instead. If both
properties are set, then Clock Skew takes precedence.

60000
milliseconds

Clock Skew Specifies the allowable difference, in milliseconds, between the
sender and receiver of the message.

60000
milliseconds

Lax Precision Allows you to relax the enforcement of the clock precision property.

Note: This property is deprecated as of release 9.2 of WebLogic
Web Services. Use the Clock Skew property instead.

false

Max Processing
Delay

Specifies the freshness policy for received messages. -1

Validity Period Represents the length of time the sender wants the outbound message
to be valid.

60 seconds

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/J2EEwebservicewebservicesecuritytimestamptitle.html

Element Descr ip t ion

WebLogic Web Services Reference 5-15

MessageParts
Specifies the parts of the SOAP message that should be signed or encrypted, depending on the
grand-parent of the element. You can use either an XPath 1.0 expression or a set of pre-defined
functions within this assertion to specify the parts of the SOAP message.

The MessageParts assertion is always a child of a Target assertion. The Target assertion can
be a child of either an Integrity assertion (to specify how the SOAP message is digitally
signed) or a Confidentiality assertion (to specify how the SOAP messages are encrypted.)

See “Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed” on page 5-21 for detailed information about using this assertion, along with a variety of
examples.

Table B-46 Attributes of <MessageParts>

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP message
that should be signed or encrypted. If this attribute is not specified,
then XPath 1.0 is assumed.

The value of this attribute must be one of the following:
• http://www.w3.org/TR/1999/REC-xpath-19991116 :

Specifies that an XPath 1.0 expression should be used against the
SOAP message to specify the part to be signed or encrypted.

• http://schemas.xmlsoap.org/2002/12/wsse#part :
Convenience dialect used to specify that the entire SOAP body
should be signed or encrypted.

• http://www.bea.com/wls90/security/policy/wsee#p
art : Convenience dialect to specify that the WebLogic-specific
headers should be signed or encrypted. You can also use this
dialect to use QNames to specify the parts of the security header
that should be signed or encrypted.

See “Using MessageParts To Specify Parts of the SOAP Messages
that Must Be Encrypted or Signed” on page 5-21 for examples of
using these dialects.

Yes

5-16 WebLogic Web Services Reference

SecurityToken
Specifies the security token that is supported for authentication, encryption or digital signatures,
depending on the parent element.

For example, if this element is defined in the <Identity> parent element, then is specifies that
a client application, when invoking the Web Service, must attach a security token to the SOAP
request. For example, a Web Service might require that the client application present a SAML
authorization token issued by a trusted authorization authority for the Web Service to be able to
access sensitive data. If this element is part of <Confidentiality>, then it specifies the token
used for encryption.

The specific type of the security token is determined by the value of its TokenType attribute, as
well as its parent element.

By default, a security token for a secure conversation has a lifetime of 12 hours. To change this
default value, add a <Claims> child element that itself has a <TokenLifeTime> child element,
as described in “Claims” on page 5-6.

Table B-47 Attributes of <SecurityToken>

Attribute Description Required?

DerivedFromToke
nType

Specifies what security token it is derived from. For example, a
value of “http://schemas.xmlsoap.org/ws/2005/02/sc/sct” specifies
that it is derived from an old version of Secure Conversation Token.

No

Element Descr ip t ion

WebLogic Web Services Reference 5-17

SecurityTokenReference
For internal use only.

You should never include this security assertion in your custom security policy file; it is described
in this section for informational purposes only. The WebLogic Web Services runtime
automatically inserts this security assertion in the security policy file that is published in the
dynamic WSDL of the deployed Web Service. The security assertion specifies WebLogic
Server’s public key; the client application that invokes the Web Service then uses it to encrypt
the parts of the SOAP message specified by the security policy file. The Web Services runtime
then uses the server’s private key to decrypt the message.

SignatureAlgorithm
Specifies the cryptographic algorithm used to compute the digital signature.

IncludeInMessage Specifies whether to include the token in the SOAP message.

Valid values are true or false.

The default value of this attribute is false when used in the
<Confidentiality> assertion and true when used in the
<Integrity> assertion.

The value of this attribute is always true when used in the
<Identity> assertion, even if you explicitly set it to false.

No

TokenType Specifies the type of security token. Valid values are:
• http://docs.oasis-open.org/wss/2004/01/oasis-2

00401-wss-x509-token-profile-1.0#X509v3 (To
specify a binary X.509 token)

• http://docs.oasis-open.org/wss/2004/01/oasis-2
00401-wss-username-token-profile-1.0#Usernam
eToken (To specify a username token)

• http://docs.oasis-open.org/wss/2004/01/oasis-2
004-01-saml-token-profile-1.0#SAMLAssertionI
D (To specify a SAML token)

Yes

Table B-47 Attributes of <SecurityToken>

Attribute Description Required?

5-18 WebLogic Web Services Reference

SupportedTokens
Specifies the list of supported security tokens that can be used for authentication, encryption, or
digital signatures, depending on the parent element.

This element has no attributes.

Target
Encapsulates information about which targets of a SOAP message are to be encrypted or signed,
depending on the parent element.

The child elements also depend on the parent element; for example, when used in <Integrity>,
you can specify the <DigestAlgorithm>, <Transform>, and <MessageParts> child elements.
When used in <Confidentiality>, you can specify the <EncryptionAlgorithm>,
<Transform>, and <MessageParts> child elements.

You can have one or more targets.

Table B-48 Attributes of <SignatureAlgorithm>

Attribute Description Required?

URI Specifies the cryptographic algorithm used to compute the signature.

Note: Be sure that you specify an algorithm that is compatible with
the certificates you are using in your enterprise.

Valid values are:
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Yes

Element Descr ip t ion

WebLogic Web Services Reference 5-19

TokenLifeTime
Specifies the lifetime, in seconds, of the security context token or derived key token. This element
is used only when configuring WS-SecurityConversation security contexts.

The default lifetime of a security token is 12 hours (43,200 seconds).

This element has no attributes.

Transform
Specifies the URI of a transformation algorithm that is applied to the parts of the SOAP message
that are signed or encrypted, depending on the parent element.

You can specify zero or more transforms, which are executed in the order they appear in the
<Target> parent element.

Table B-49 Attributes of <Target>

Attribute Description Required?

encryptContent
Only

Specifies whether to encrypt an entire element, or just its content.
This attribute can be specified only when <Target> is a child
element of <Confidentiality>.
Default value of this attribute is true, which means that only the
content is encrypted.

No

5-20 WebLogic Web Services Reference

UsePassword
Specifies that whether the plaintext or the digest of the password appear in the SOAP messages.
This element is used only with username tokens.

Table B-50 Attributes of <Transform>

Attribute Description Required?

URI Specifies the URI of the transformation algorithm.

Valid URIs are:
• http://www.w3.org/2000/09/xmldsig#base64

(Base64 decoding transforms)
• http://www.w3.org/TR/1999/REC-xpath-19991116

(XPath filtering)

For detailed information about these transform algorithms, see
XML-Signature Syntax and Processing.

Yes

http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg

Using MessagePar ts To Spec i f y Pa r ts o f the SOAP Messages that Must Be Enc rypted o r S igned

WebLogic Web Services Reference 5-21

Using MessageParts To Specify Parts of the SOAP
Messages that Must Be Encrypted or Signed

When you use either the Integrity or Confidentiality assertion in your security policy file,
you are required to also use the Target child assertion to specify the targets of the SOAP message
to digitally sign or encrypt. The Target assertion in turn requires that you use the MessageParts
child assertion to specify the actual parts of the SOAP message that should be digitally signed or
encrypted. This section describes various ways to use the MessageParts assertion.

See “Example of a Policy File With Security Elements” on page 5-5 for an example of a complete
security policy file that uses the MessageParts assertion within a Confidentiality assertion.
The example shows how to specify that the entire body, as well as the Assertion security
header, of the SOAP messages should be encrypted.

You use the Dialect attribute of MessageParts to specify the dialect used to identify the SOAP
message parts. The WebLogic Web Services security runtime supports the following three
dialects:

Table B-51 Attributes of <UsePassword>

Attribute Description Required?

Type Specifies the type of password. Valid values are:
• http://docs.oasis-open.org/wss/2004/01/oasis-20

0401-wss-username-token-profile-1.0#PasswordT
ext : Specifies that cleartext passwords should be used in the
SOAP messages.

• http://docs.oasis-open.org/wss/2004/01/oasis-20
0401-wss-username-token-profile-1.0#PasswordD
igest : Specifies that password digests should be used in the
SOAP messages.

Note: For backward compatibility reasons, the two preceding URIs
can also be specified with an initial "www." For example:

• http://www.docs.oasis-open.org/wss/2004/01/oasi
s-200401-wss-username-token-profile-1.0#Passw
ordText

• http://www.docs.oasis-open.org/wss/2004/01/oasi
s-200401-wss-username-token-profile-1.0#Passw
ordDigest

Yes

5-22 WebLogic Web Services Reference

XPath 1.0

Pre-Defined wsp:Body() Function

WebLogic-Specific Header Functions

Be sure that you specify a message part that actually exists in the SOAP messages that result from
a client invoke of a message-secured Web Service. If the Web Services security runtime
encounters an inbound SOAP message that does not include a part that the security policy file
indicates should be signed or encrypted, then the Web Services security runtime returns an error
and the invoke fails. The only exception is if you use the WebLogic-specific
wls:SystemHeader() function to specify that any WebLogic-specific SOAP header in a SOAP
message should be signed or encrypted; if the Web Services security runtime does not find any
of these headers in the SOAP message, the runtime simply continues with the invoke and does
not return an error.

XPath 1.0
This dialect enables you to use an XPath 1.0 expression to specify the part of the SOAP message
that should be signed or encrypted. The value of the Dialect attribute to enable this dialect is
http://www.w3.org/TR/1999/REC-xpath-19991116.

You typically want to specify that the parts of a SOAP message that should be encrypted or
digitally signed are child elements of either the soap:Body or soap:Header elements. For this
reason, Oracle provides the following two functions that take as parameters an XPath expression:

wsp:GetBody(xpath_expression)—Specifies that the root element from which the
XPath expression starts searching is soap:Body.

wsp:GetHeader(xpath_expression)—Specifies that the root element from which the
XPath expression starts searching is soap:Header.

You can also use a plain XPath expression as the content of the MessageParts assertion, without
one of the preceding functions. In this case, the root element from which the XPath expression
starts searching is soap:Envelope.

The following example specifies that the AddInt part, with namespace prefix n1 and located in
the SOAP message body, should be signed or encrypted, depending on whether the parent
Target parent is a child of Integrity or Confidentiality assertion:

<wssp:MessageParts

 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"

 xmlns:n1="http://www.bea.com/foo">

Using MessagePar ts To Spec i f y Pa r ts o f the SOAP Messages that Must Be Enc rypted o r S igned

WebLogic Web Services Reference 5-23

 wsp:GetBody(./n1:AddInt)

</wssp:MessageParts>

The preceding example shows that you should define the namespace of a part specified in the
XPath expression (n1 in the example) as an attribute to the MessageParts assertion, if you have
not already defined the namespace elsewhere in the security policy file.

The following example is similar, except that the part that will be signed or encrypted is
wsu:Timestamp, which is a child element of wsee:Security and is located in the SOAP
message header:

<wssp:MessageParts

 Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">

 wsp:GetHeader(./wsse:Security/wsu:Timestamp)

</wssp:MessageParts>

In the preceding example, it is assumed that the wsee: and wse: namespaces have been defined
elsewhere in the security policy file.

Note: It is beyond the scope of this document to describe how to create XPath expressions. For
detailed information, see the XML Path Language (XPath), Version 1.0, specification.

Pre-Defined wsp:Body() Function
The XPath dialect described in “XPath 1.0” on page 5-22 is flexible enough for you to pinpoint
any part of the SOAP message that should be encrypted or signed. However, sometimes you
might just want to specify that the entire SOAP message body be signed or encrypted. In this case
using an XPath expression is unduly complicated, so Oracle recommends you use the dialect that
pre-defines the wsp:Body() function for just this purpose, as shown in the following example:

<wssp:MessageParts

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">

 wsp:Body()

</wssp:MessageParts>

WebLogic-Specific Header Functions
Oracle provides its own dialect that pre-defines a set of functions to easily specify that some or
all of the WebLogic security or system headers should be signed or encrypted. Although you can
achieve the same goal using the XPath dialect, it is much simpler to use this WebLogic dialect.
You enable this dialect by setting the Dialect attribute to
http://www.bea.com/wls90/security/policy/wsee#part.

http://www.w3.org/TR/xpath

5-24 WebLogic Web Services Reference

The wls:SystemHeaders() function specifies that all of the WebLogic-specific headers should
be signed or encrypted. These headers are used internally by the WebLogic Web Services runtime
for various features, such as reliable messaging and addressing. The headers are:

wsrm:SequenceAcknowledgement

wsrm:AckRequested

wsrm:Sequence

wsa:Action

wsa:FaultTo

wsa:From

wsa:MessageID

wsa:RelatesTo

wsa:ReplyTo

wsa:To

wsax:SetCookie

The following example shows how to use the wls:SystemHeader() function:

<wssp:MessageParts

 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">

 wls:SystemHeaders()

</wssp:MessageParts>

Use the wls:SecurityHeader(header) function to specify a particular part in the security
header that should be signed or encrypted, as shown in the following example:

<wssp:MessageParts

 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">

 wls:SecurityHeader(wsa:From)

</wssp:MessageParts>

In the example, only the wsa:From security header is signed or encrypted. You can specify any
of the preceding list of headers to the wls:SecurityHeader() function.

Using MessagePar ts To Spec i f y Pa r ts o f the SOAP Messages that Must Be Enc rypted o r S igned

WebLogic Web Services Reference 5-25

5-26 WebLogic Web Services Reference

WebLogic Web Services Reference 6-1

C H A P T E R 6

WebLogic Web Service Deployment
Descriptor Element Reference

The following sections provide information about the WebLogic-specific Web Services
deployment descriptor file, weblogic-webservices.xml:

“Overview of weblogic-webservices.xml” on page 6-1

“Graphical Representation” on page 6-2

“XML Schema” on page 6-4

“Example of a weblogic-webservices.xml Deployment Descriptor File” on page 6-5

“Element Description” on page 6-5

Note: This section applies only to JAX-RPC Web Services, and not to JAX-WS Web Services.

Overview of weblogic-webservices.xml
The standard Java EE deployment descriptor for Web Services is called webservices.xml. This
file specifies the set of Web Services that are to be deployed to WebLogic Server and the
dependencies they have on container resources and other services. See the Web Services XML
Schema for a full description of this file.

The WebLogic equivalent to the standard Java EE webservices.xml deployment descriptor file
is called weblogic-webservices.xml. This file contains WebLogic-specific information about
a WebLogic Web Service, such as the URL used to invoke the deployed Web Service,
configuration settings such as timeout values, and so on.

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd

6-2 WebLogic Web Services Reference

Both deployment descriptor files are located in the same location on the Java EE archive that
contains the Web Service. In particular:

For Java class-implemented Web Services, the Web Service is packaged as a Web
application WAR file and the deployment descriptors are located in the WEB-INF
directory.

For stateless session EJB-implemented Web Services, the Web Service is packaged as an
EJB JAR file and the deployment descriptors are located in the META-INF directory.

The structure of the weblogic-webservices.xml file is similar to the structure of the Java EE
webservices.xml file in how it lists and identifies the Web Services that are contained within
the archive. For example, for each Web Service in the archive, both files have a
<webservice-description> child element of the appropriate root element (<webservices>
for the Java EE webservices.xml file and <weblogic-webservices> for the
weblogic-webservices.xml file)

This section is published for informational purposes only. Typically, configuration updates are
made using the Administration Console or using JWS annotations and you will not need to edit
either of the deployment descriptor files directly.

Note: The data type definitions of two elements in the weblogic-webservices.xml file
(login-config and transport-guarantee) are imported from the Java EE Schema for the
web.xml file. See the Servlet Deployment Descriptor Schema for details about these
elements and data types.

Graphical Representation
The following graphic describes the element hierarchy of the weblogic-webservices.xml
deployment descriptor file.

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

Graphica l Representat ion

WebLogic Web Services Reference 6-3

Figure 6-1 Element Hierarchy of weblogic-webservices.xml

weblogic-webservices

webservice-description +

webservice-description-name

wsdl-publish-file ?

port-component-name

service-endpoint-address ?

webservice-contextpath

webservice-serviceuri

login-config ?

transport-guarantee ?

wsdl ?

exposed

deployment-listener-list ?

deployment-listener +

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

webservice-type ?

transaction-timeout ?

callback-protocol

...
...

port-component *

#weblogic-webservices
#webservice-description
#port-component
#webservice-description-name
#wsdl-publish-file
#port-component-name
#service-endpoint-address
#webservice-contextpath
#webservice-serviceuri
#login-config
#transport-guarantee
#wsdl
#exposed
#deployment-listener-list
#deployment-listener
#webservice-type
#transaction-timeout
#callback-protocol

6-4 WebLogic Web Services Reference

Figure 6-2 Element Hierarchy of weblogic-webservices.xml (Continued)

XML Schema
For the XML Schema file that describes the weblogic-webservices.xml deployment
descriptor, see
http://www.bea.com/ns/weblogic/weblogic-webservices/1.0/weblogic-webservices.xsd.

http-flush-response ?

http-response-buffersize ?

inactivity-timeout ?

base-retransmission-interval ?

acknowledgement-interval ?

sequence-expiration ?

webservice-security ?

mbean-name

buffer-retry-delay ?

* : Zero or more
+: One or more

No annotation: Exactly one

? : Zero or one

...

stream-attachments ?

validate-request ?

..

.

reliability-config ?

retransmission-exponential-backoff ?

buffer-retry-count ?

#http-flush-response
#stream-attachments
#validate-request
#http-response-buffersize
#inactivity-timeout
#base-retransmission-interval
#retransmission-exponential-backoff
#acknowledgement-interval
#sequence-expiration
#webservice-security
#mbean-name
#buffer-retry-delay
#reliability-config
#buffer-retry-count

Example o f a web log ic-webserv ices . xml Dep lo yment Descr ip to r F i l e

WebLogic Web Services Reference 6-5

Example of a weblogic-webservices.xml Deployment
Descriptor File

The following example shows a simple weblogic-webservices.xml deployment descriptor:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-webservices
 xmlns="http://www.bea.com/ns/weblogic/weblogic-webservices">

 <webservice-description>
 <webservice-description-name>MyService</webservice-description-name>
 <port-component>
 <port-component-name>MyServiceServicePort</port-component-name>
 <service-endpoint-address>
 <webservice-contextpath>/MyService</webservice-contextpath>
 <webservice-serviceuri>/MyService</webservice-serviceuri>
 </service-endpoint-address>
 <reliability-config>
 <inactivity-timeout>P0DT600S</inactivity-timeout>
 <base-retransmission-interval>P0DT3S</base-retransmission-interval>
 <retransmission-exponential-backoff>true
 </retransmission-exponential-backoff>
 <acknowledgement-interval>P0DT3S</acknowledgement-interval>
 <sequence-expiration>P1D</sequence-expiration>
 <buffer-retry-count>3</buffer-retry-count>
 <buffer-retry-delay>P0DT5S</buffer-retry-delay>
 </reliability-config>
 </port-component>
 </webservice-description>

</weblogic-webservices>

Element Description
The following sections describe each element in the weblogic-webservices.xml deployment
descriptor file.

acknowledgement-interval
The <acknowledgement-interval> child element of the <reliability-config> element
specifies the maximum interval during which the destination endpoint must transmit a
stand-alone acknowledgement.

A destination endpoint can send an acknowledgement on the return message immediately after it
has received a message from a source endpoint, or it can send one separately as a stand-alone

6-6 WebLogic Web Services Reference

acknowledgement. If a return message is not available to send an acknowledgement, a destination
endpoint may wait for up to the acknowledgement interval before sending a stand-alone
acknowledgement. If there are no unacknowledged messages, the destination endpoint may
choose not to send an acknowledgement.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

The following table describes the duration format fields.

This value defaults to P0DT3S (3 seconds).

base-retransmission-interval
The <base-retransmission-interval> child element of the <reliability-config>
element specifies the interval of time that must pass before a message is retransmitted to the RM
destination.

If the source endpoint does not receive an acknowledgement for a given message within the
specified interval, the source endpoint retransmits the message. The source endpoint can modify
this retransmission interval at any point during the lifetime of the sequence of messages.

This element can be used in conjunction with the <retransmission-exponential-backoff>
element to specify the algorithm that is used to adjust the retransmission interval.

Table 6-1 Duration Format Description

Field Description

nY Number of years (n).

nM Number of months (n).

nD Number of days (n).

T Date and time separator.

nH Number of hours (n).

nM Number of minutes (n).

nS Number of seconds (n).

Element Descr ip t ion

WebLogic Web Services Reference 6-7

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

For information about the duration format, see Table 6-1. This value defaults to P0DT3S (3
seconds).

buffer-retry-count
The <buffer-retry-count> child element of the <reliability-config> element specifies
the number of times that the JMS queue on the destination WebLogic Server instance attempts to
deliver the message from a client that invokes the reliable operation to the Web Service
implementation. This value defaults to 3.

buffer-retry-delay
The <buffer-retry-delay> child element of the <reliability-config> element specifies
the amount of time that elapses between message delivery retry attempts. The retry attempts are
between the client’s request message on the JMS queue and delivery of the message to the Web
Service implementation.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

For information about the duration format, see Table 6-1. This value defaults to P0DT5S (5
seconds).

callback-protocol
The <callback-protocol> child element of the <port-component> element specifies the
protocol used for callbacks to notify clients of an event. Valid values include: http, https, or
jms.

deployment-listener-list
For internal use only.

6-8 WebLogic Web Services Reference

deployment-listener
For internal use only.

exposed
The <exposed> child element of the <wsdl> element is a boolean attribute indicating whether
the WSDL should be exposed to the public when the Web Service is deployed.

http-flush-response
The <http-flush-response> child element of the <port-component> element specifies
whether or not you want to flush the reliable response. This value defaults to true.

http-response-buffersize
The <http-response-buffersize> child element of the <port-component> element
specifies the size of the reliable response buffer that is used to cache the request on the server.
This value defaults to 0.

login-config
The <j2ee:login-config> element specifies the authentication method that should be used,
the realm name that should be used for this application, and the attributes that are needed by the
form login mechanism.

The XML Schema data type of the <j2ee:login-config> element is
<j2ee:login-configType>, and is defined in the Java EE Schema that describes the standard
web.xml deployment descriptor. For the full reference information, see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

inactivity-timeout
The <inactivity-timeout> child element of the <reliability-config> element specifies
an inactivity interval. If, during the specified interval, an endpoint (RM source or RM destination)
has not received application or control messages, the endpoint may consider the RM sequence to
have been terminated due to inactivity.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

Element Descr ip t ion

WebLogic Web Services Reference 6-9

PnYnMnDTnHnMnS

For information about the duration format, see Table 6-1. This value defaults to P0DT600S (600
seconds).

mbean-name
The <mbean-name> child element of the <webservice-security> element specifies the name
of the Web Service security configuration (specifically an instantiation of the
WebserviceSecurityMBean) that is associated with the Web Services described in the
deployment descriptor file. The default configuration is called default_wss.

The associated security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption
and digital signatures, and so on.

You must create the security configuration (even the default one) using the Administration
Console before you can successfully invoke the Web Service.

Note: The Web Service security configuration described by this element applies to all Web
Services contained in the weblogic-webservices.xml file. The jwsc Ant task always
packages a Web Service in its own JAR or WAR file, so this limitation is not an issue if
you always use the jwsc Ant task to generate a Web Service. However, if you update the
weblogic-webservices.xml deployment descriptor manually and add additional Web
Service descriptions, you cannot associate different security configurations to different
services.

port-component
The <port-component> element is a holder of other elements used to describe a Web Service
port. The child elements of the <port-component> element specify WebLogic-specific
characteristics of the Web Service port, such as the context path and service URI used to invoke
the Web Service after it has been deployed to WebLogic Server.

port-component-name
 The <port-component-name> child element of the <port-component> element specifies the
internal name of the WSDL port. The value of this element must be unique for all
<port-component-name> elements within a single weblogic-webservices.xml file.

6-10 WebLogic Web Services Reference

reliability-config
The <reliability-config> element groups together the reliable messaging configuration
elements. The child elements of the <reliability-config> element specify runtime
configuration values such as retransmission and timeout intervals for reliable messaging.

retransmission-exponential-backoff
The <retransmission-exponential-backoff> child element of the
<reliability-config> element is a boolean attribute that specifies whether the message
retransmission interval will be adjusted using the exponential backoff algorithm.

This element is used in conjunction with the <base-retransmission-interval> element. If
a destination endpoint does not acknowledge a sequence of messages for the time interval
specified by <base-retransmission-interval>, the exponential backoff algorithm is used
for timing successive retransmissions by the source endpoint, should the message continue to go
unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals should
increase exponentially, based on the base retransmission interval. For example, if the base
retransmission interval is 2 seconds, and the exponential backoff element is set, successive
retransmission intervals if messages continue to go unacknowledged are 2, 4, 8, 16, 32, and so on.

This value defaults to false—the same retransmission interval is used in successive retries,
rather than the interval increasing exponentially.

sequence-expiration
The <sequence-expiration> child element of the <reliability-config> element specifies
the expiration time for a sequence regardless of activity.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

For information about the duration format, see Table 6-1. This value defaults to P1D (1 day).

Element Descr ip t ion

WebLogic Web Services Reference 6-11

service-endpoint-address
The <service-endpoint-address> element groups the WebLogic-specific context path and
service URI values that together make up the Web Service endpoint address, or the URL that
invokes the Web Service after it has been deployed to WebLogic Server.

These values are specified with the <webservice-contextpath> and
<webserivce-serviceuri> child elements.

stream-attachments
The <stream-attachments> child element of the <port-component> element is a boolean
value that specifies whether the WebLogic Web Services runtime uses streaming APIs when
reading the parameters of all methods of the Web Service. This increases the performance of Web
Service operation invocation, in particular when the parameters are large, such as images.

You cannot use this annotation if you are also using the following features in the same Web
Service:

Conversations

Reliable Messaging

JMS Transport

A proxy server between the client application and the Web Service it invokes

transport-guarantee
The j2ee:transport-guarantee element specifies the type of communication between the
client application invoking the Web Service and WebLogic server.

The value of this element is either NONE, INTEGRAL, or CONFIDENTIAL. NONE means that
the application does not require any transport guarantees. A value of INTEGRAL means that the
application requires that the data sent between the client and server be sent in such a way that it
cannot be changed in transit. CONFIDENTIAL means that the application requires that the data
be transmitted in a way that prevents other entities from observing the contents of the
transmission. In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates
that the use of SSL is required.

The XML Schema data type of the j2ee:transport-guarantee element is
j2ee:transport-guaranteeType, and is defined in the Java EE Schema that describes the

6-12 WebLogic Web Services Reference

standard web.xml deployment descriptor. For the full reference information, see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

transaction-timeout
The <transaction-timeout> child element of the <port-component> element specifies a
timeout value for the current transaction, if the Web Service operation(s) are running as part of a
transaction.

This value must be a positive value and conform to the XML schema duration lexical format, as
follows:

PnYnMnDTnHnMnS

For information about the duration format, see Table 6-1. This value defaults to P0DT3S (3
seconds).

This value defaults to 30 seconds.

validate-request
The <validate-request> child element of the <port-component> element is a boolean value
that specifies whether the reliable request should be validated.

The value specified must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMnDTnHnMnS

For information about the duration format, see Table 6-1. This value defaults to P0DT3S (3
seconds).

weblogic-webservices
The <weblogic-webservices> element is the root element of the WebLogic-specific Web
Services deployment descriptor (weblogic-webservices.xml).

The element specifies the set of Web Services contained in the Java EE component archive in
which the deployment descriptor is also contained. The archive is either an EJB JAR file (for
stateless session EJB-implemented Web Services) or a WAR file (for Java class-implemented
Web Services)

Element Descr ip t ion

WebLogic Web Services Reference 6-13

webservice-contextpath
The <webservice-contextpath> element specifies the context path portion of the URL used
to invoke the Web Service. The URL to invoke a Web Service deployed to WebLogic Server is:

http://host:port/contextPath/serviceURI

where

host is the host computer on which WebLogic Server is running.

port is the port address to which WebLogic Server is listening.

contextPath is the value of this element

serviceURI is the value of the webservice-serviceuri element.

When using the jwsc Ant task to generate a Web Service from a JWS file, the value of the
<webservice-contextpath> element is taken from the contextPath attribute of the
WebLogic-specific @WLHttpTransport annotation or the <WLHttpTransport> child element
of jwsc.

webservice-description
The <webservice-description> element is a holder of other elements used to describe a Web
Service. The <webservice-description> element defines a set of port components (specified
using one or more <port-component> child elements) that are associated with the WSDL ports
defined in the WSDL document.

There may be multiple <webservice-description> elements defined within a single
weblogic-webservices.xml file, each corresponding to a particular stateless session EJB or
Java class contained within the archive, depending on the implementation of your Web Service.
In other words, an EJB JAR contains the EJBs that implement a Web Service, a WAR file
contains the Java classes.

webservice-description-name
The <webservice-description-name> element specifies the internal name of the Web
Service. The value of this element must be unique for all <webservice-description-name>
elements within a single weblogic-webservices.xml file.

6-14 WebLogic Web Services Reference

webservice-security
Element used to group together all the security-related elements of the
weblogic-webservices.xml deployment descriptor.

webservice-serviceuri
The <webservice-serviceuri> element specifies the Web Service URI portion of the URL
used to invoke the Web Service. The URL to invoke a Web Service deployed to WebLogic Server
is:

http://host:port/contextPath/serviceURI

where

host is the host computer on which WebLogic Server is running.

port is the port address to which WebLogic Server is listening.

contextPath is the value of the webservice-contextpath element

serviceURI is the value of this element.

When using the jwsc Ant task to generate a Web Service from a JWS file, the value of the
<webservice-serviceuri> element is taken from the serviceURI attribute of the
WebLogic-specific @WLHttpTransport annotation or the <WLHttpTransport> child element
of jwsc.

webservice-type
The <webservice-type> element specifies whether the Web Service is based on the JAX-WS
or JAX-RPC standard. Valid values include: JAXWS and JAXRPC. This value defaults to JAXRPC.

wsdl
Element used to group together all the WSDL-related elements of the
weblogic-webservices.xml deployment descriptor.

wsdl-publish-file
The <wsdl-publish-file> element specifies a directory (on the computer which hosts the Web
Service) to which WebLogic Server should publish a hard-copy of the WSDL file of a deployed
Web Service; this is in addition to the standard WSDL file accessible via HTTP.

Element Descr ip t ion

WebLogic Web Services Reference 6-15

For example, assume that your Web Service is implemented with an EJB, and its WSDL file is
located in the following directory of the EJB JAR file, relative to the root of the JAR:

META-INF/wsdl/a/b/Fool.wsdl

Further assume that the weblogic-webservices.xml file includes the following element for a
given Web Service:

<wsdl-publish-file>d:/bar</wsdl-publish-file>

This means that when WebLogic Server deploys the Web Service, the server publishes the
WSDL file at the standard HTTP location, but also puts a copy of the WSDL file in the following
directory of the computer on which the service is running:

d:/bar/a/b/Foo.wsdl

Note: Only specify this element if client applications that invoke the Web Service need to
access the WSDL via the local file system or FTP; typically, client applications access
the WSDL using HTTP, as described in “Browsing to the WSDL of the Web Service” in
Getting Started With WebLogic Web Services Using JAX-RPC.

The value of this element should be an absolute directory pathname. This directory must exist on
every machine which hosts a WebLogic Server instance or cluster to which you deploy the Web
Service.

http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html#browse_wsdl

6-16 WebLogic Web Services Reference

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server WebLogic Web Services Reference, 10g Release 3 (10.3)
	Overview of Reference Topics
	JWS Annotation Reference
	Overview of JWS Annotation Tags
	Web Services Metadata Annotations (JSR-181)
	JAX-WS Annotations (JSR-224)
	JAXB Annotations (JSR-222)
	Common Annotations (JSR-250)
	WebLogic-specific Annotations
	weblogic.jws.AsyncFailure
	weblogic.jws.AsyncResponse
	weblogic.jws.Binding
	weblogic.jws.BufferQueue
	weblogic.jws.Callback
	weblogic.jws.CallbackMethod
	weblogic.jws.CallbackService
	weblogic.jws.Context
	weblogic.jws.Conversation
	weblogic.jws.Conversational
	weblogic.jws.FileStore
	weblogic.jws.MessageBuffer
	weblogic.jws.Policies
	weblogic.jws.Policy
	weblogic.jws.ReliabilityBuffer
	weblogic.jws.ReliabilityErrorHandler
	weblogic.jws.ServiceClient
	weblogic.jws.StreamAttachments
	weblogic.jws.Transactional
	weblogic.jws.Types
	weblogic.jws.WildcardBinding
	weblogic.jws.WildcardBindings
	weblogic.jws.WLHttpTransport
	weblogic.jws.WLHttpsTransport
	weblogic.jws.WLJmsTransport
	weblogic.jws.WSDL
	weblogic.jws.security.CallbackRolesAllowed
	weblogic.jws.security.RolesAllowed
	weblogic.jws.security.RolesReferenced
	weblogic.jws.security.RunAs
	weblogic.jws.security.SecurityRole
	weblogic.jws.security.SecurityRoleRef
	weblogic.jws.security.UserDataConstraint
	weblogic.jws.security.WssConfiguration
	weblogic.jws.soap.SOAPBinding
	weblogic.jws.security.SecurityRoles (deprecated)
	weblogic.jws.security.SecurityIdentity (deprecated)

	Web Service Reliable Messaging Policy Assertion Reference
	Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions
	WS-Policy File With Web Service Reliable Messaging Assertions-Version 1.1
	Graphical Representation
	Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.1
	Element Descriptions

	WS-Policy File With Web Service Reliable Messaging Assertions-Version 1.0 (Deprecated)
	Graphical Representation
	Example of a WS-Policy File With Web Service Reliable Messaging Assertions
	Element Description

	Oracle Web Services Security Policy Assertion Reference
	Overview of a Policy File That Contains Security Assertions
	Graphical Representation
	Example of a Policy File With Security Elements
	Element Description
	CanonicalizationAlgorithm
	Claims
	Confidentiality
	ConfirmationMethod
	DigestAlgorithm
	EncryptionAlgorithm
	Identity
	Integrity
	KeyInfo
	KeyWrappingAlgorithm
	Label
	Length
	MessageAge
	MessageParts
	SecurityToken
	SecurityTokenReference
	SignatureAlgorithm
	SupportedTokens
	Target
	TokenLifeTime
	Transform
	UsePassword

	Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed
	XPath 1.0
	Pre-Defined wsp:Body() Function
	WebLogic-Specific Header Functions

	WebLogic Web Service Deployment Descriptor Element Reference
	Overview of weblogic-webservices.xml
	Graphical Representation
	XML Schema
	Example of a weblogic-webservices.xml Deployment Descriptor File
	Element Description
	acknowledgement-interval
	base-retransmission-interval
	buffer-retry-count
	buffer-retry-delay
	callback-protocol
	deployment-listener-list
	deployment-listener
	exposed
	http-flush-response
	http-response-buffersize
	login-config
	inactivity-timeout
	mbean-name
	port-component
	port-component-name
	reliability-config
	retransmission-exponential-backoff
	sequence-expiration
	service-endpoint-address
	stream-attachments
	transport-guarantee
	transaction-timeout
	validate-request
	weblogic-webservices
	webservice-contextpath
	webservice-description
	webservice-description-name
	webservice-security
	webservice-serviceuri
	webservice-type
	wsdl
	wsdl-publish-file

