
Oracle® WebLogic Server
Securing WebLogic Web Services

10g Release 3 (10.3) 

July 2008



Oracle WebLogic Server Securing WebLogic Web Services, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure 
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you 
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any 
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law 
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, 
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. 
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. 
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal 
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, 
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the 
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended 
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use 
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and 
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective 
owners.

This software and documentation may provide access to or information on content, products and services from third parties. 
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to 
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or 
damages incurred due to your access to or use of third-party content, products, or services.



Securing WebLogic Web Services iii

Contents

1. Overview of Web Services Security
Overview of Web Services Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

What Type of Security Should You Configure?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

2. Configuring Message-Level Security
Overview of Message-Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Web Services Security Supported Standards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Main Use Cases of Message-Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Using Policy Files for Message-Level Security Configuration . . . . . . . . . . . . . . . . . . . . . 2-5

Using Policy Files With JAX-WS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

WS-Policy Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

WS-SecurityPolicy Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Version-Independent Policy Supported  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Configuring Simple Message-Level Security: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Ensuring That WebLogic Server Can Validate the Client’s Certificate  . . . . . . . . . . 2-10

Updating the JWS File with @Policy and @Policies Annotations  . . . . . . . . . . . . . 2-11

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair . . . . . . . . . . . . . . . . . . 2-15

Updating a Client Application to Invoke a Message-Secured Web Service . . . . . . . . . . 2-17

Invoking a Message-Secured Web Service From a Client Running in a WebLogic 
Server Instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

Creating and Using a Custom Policy File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21

Configuring the WS-Trust Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

Supported Token Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23



iv Securing WebLogic Web Services

Configuring WS-Trust Client Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation) . . .
2-29

Specification Backward Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30

WS-SecureConversation and Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

Updating a Client Application to Negotiate Security Contexts . . . . . . . . . . . . . . . . 2-31

Associating Policy Files at Runtime Using the Administration Console  . . . . . . . . . . . . 2-33

Using Security Assertion Markup Language (SAML) Tokens For Identity . . . . . . . . . . 2-34

Using SAML Tokens for Identity: Main Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Specifying the SAML Confirmation Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36

Associating a Web Service with a Security Configuration Other Than the Default . . . . 2-40

Valid Class Names and Token Types for Credential Provider . . . . . . . . . . . . . . . . . . . . 2-41

Using System Properties to Debug Message-Level Security  . . . . . . . . . . . . . . . . . . . . . 2-42

Using a Client-Side Security Policy File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42

Associating a Policy File with a Client Application: Main Steps  . . . . . . . . . . . . . . 2-43

Updating clientgen to Generate Methods That Load Policy Files . . . . . . . . . . . . . . 2-44

Updating a Client Application To Load Policy Files (JAX-RPC Only)  . . . . . . . . . 2-44

Using WS-SecurityPolicy 1.2 Policy Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47

Transport Level Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48

Protection Assertion Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49

WS-Security 1.0 Username and X509 Token Policies . . . . . . . . . . . . . . . . . . . . . . . 2-50

WS-Security 1.1 Username and X509 Token Policies . . . . . . . . . . . . . . . . . . . . . . . 2-52

WS-SecureConversation Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53

SAML Token Profile Policies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56

Choosing a Policy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57

Unsupported WS-SecurityPolicy 1.2 Assertions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58

Using the Optional Policy Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60

Configuring Element-Level Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61



Securing WebLogic Web Services v

Define and Use a Custom Element-Level Policy File  . . . . . . . . . . . . . . . . . . . . . . . 2-62

Implementation Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65

Smart Policy Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66

Example of Security Policy With Policy Alternatives . . . . . . . . . . . . . . . . . . . . . . . 2-66

Configuring Smart Policy Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69

Multiple Transport Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72

Example of Adding Security to MTOM Web Service. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73

Files Used by This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73

SecurityMtomService.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74

MtomClient.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78

configWss.py Script File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83

Build.xml File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-88

Building and Running the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-94

Deployed WSDL for SecurityMtomService. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-95

Example of Adding Security to Reliable Messaging Web Service . . . . . . . . . . . . . . . . 2-103

Overview of Secure and Reliable SOAP Messaging . . . . . . . . . . . . . . . . . . . . . . . 2-103

Overview of the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104

Files Used by This Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106

Revised ReliableEchoServiceImpl.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107

Revised configWss.py  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108

Revised configWss_Service.py  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-109

Building and Running the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111

 Proprietary Web Services Security Policy Files (JAX-RPC Only)  . . . . . . . . . . . . . . . 2-111

Abstract and Concrete Policy Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-112

Auth.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113

Sign.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-114

Encrypt.xml. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-116

Wssc-dk.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-116



vi Securing WebLogic Web Services

Wssc-sct.xml  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-119

3. Configuring Transport-Level Security
Configuring Transport-Level Security Through Policy  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Configuring Transport-Level Security Through Policy: Main Steps . . . . . . . . . . . . . 3-3

Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC 
Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Configuring Two-Way SSL for a Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Using a Custom SSL Adapter with Reliable Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

4. Configuring Access Control Security (JAX-RPC Only)
Configuring Access Control Security: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Updating the JWS File With the Security-Related Annotations . . . . . . . . . . . . . . . . . . . . 4-4

Updating the JWS File With the @RunAs Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Setting the Username and Password When Creating the  Service Object . . . . . . . . . . . . . 4-7



Securing WebLogic Web Services 1-1

C H A P T E R 1

Overview of Web Services Security

The following sections describe how to configure security for your Web Service:

“Overview of Web Services Security” on page 1-1

“What Type of Security Should You Configure?” on page 1-2

Overview of Web Services Security
To secure your WebLogic Web Service, you configure one or more of three different types of 
security.

Table 1-1  Web Services Security

Security Type Description

Message-level security Data in a SOAP message is digitally signed or encrypted. May also 
include identity tokens for authentication.  See Chapter 2, “Configuring 
Message-Level Security.”

Transport-level security SSL is used to secure the connection between a client application and the 
Web Service. See Chapter 3, “Configuring Transport-Level Security.”

Access control security Specifies which roles are allowed to access Web Services. See Chapter 4, 
“Configuring Access Control Security (JAX-RPC Only).”



Overv iew o f  Web  Se rv ices  Secur i t y

1-2 Securing WebLogic Web Services

What Type of Security Should You Configure?
Message-level security includes all the security benefits of SSL, but with additional flexibility 
and features. Message-level security is end-to-end, which means that a SOAP message is secure 
even when the transmission involves one or more intermediaries. The SOAP message itself is 
digitally signed and encrypted, rather than just the connection.  And finally, you can specify that 
only individual parts or elements of the message be signed, encrypted, or 
required.Transport-level security, however, secures only the connection itself. This means that if 
there is an intermediary between the client and WebLogic Server, such as a router or message 
queue, the intermediary gets the SOAP message in plain text.   When the intermediary sends the 
message to a second receiver, the second receiver does not know who the original sender was. 
Additionally, the encryption used by SSL is “all or nothing”: either the entire SOAP message is 
encrypted or it is not encrypted at all. There is no way to specify that only selected parts of the 
SOAP message be encrypted.  Message-level security can also include identity tokens for 
authentication. 

Transport-level security secures the connection between the client application and WebLogic 
Server with Secure Sockets Layer (SSL). SSL provides secure connections by allowing two 
applications connecting over a network to authenticate the other's identity and by encrypting the 
data exchanged between the applications. Authentication allows a server, and optionally a client, 
to verify the identity of the application on the other end of a network connection. A client 
certificate (two-way SSL) can be used to authenticate the user.

Encryption makes data transmitted over the network intelligible only to the intended recipient.

Transport-level security includes HTTP BASIC authentication as well as SSL.   

Access control security answers the question “who can do what?” First you specify the security 
roles that are allowed to access a Web Service; a security role is a privilege granted to users or 
groups based on specific conditions. Then, when a client application attempts to invoke a Web 
Service operation, the client authenticates itself to WebLogic Server, and if the client has the 
authorization, it is allowed to continue with the invocation. Access control security secures only 
WebLogic Server resources. That is, if you configure only access control security, the connection 
between the client application and WebLogic Server is not secure and the SOAP message is in 
plain text. 



Securing WebLogic Web Services 2-1

C H A P T E R 2

Configuring Message-Level Security

In this release of WebLogic Server, message-level security features are supported in both the 
JAX-RPC and JAX-WS stacks.

The following sections describe how to configure security for your Web Service:

“Overview of Message-Level Security” on page 2-2

“Main Use Cases of Message-Level Security” on page 2-4

“Using Policy Files for Message-Level Security Configuration” on page 2-5

“Configuring Simple Message-Level Security: Main Steps” on page 2-7

“Updating a Client Application to Invoke a Message-Secured Web Service” on page 2-17

“Creating and Using a Custom Policy File” on page 2-21

“Configuring the WS-Trust Client” on page 2-22

“Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation)” 
on page 2-29

“Associating Policy Files at Runtime Using the Administration Console” on page 2-33

“Using Security Assertion Markup Language (SAML) Tokens For Identity” on page 2-34

“Associating a Web Service with a Security Configuration Other Than the Default” on 
page 2-40

“Valid Class Names and Token Types for Credential Provider” on page 2-41



Conf igur ing  Message-Leve l  Secur i t y

2-2 Securing WebLogic Web Services

“Using System Properties to Debug Message-Level Security” on page 2-42

“Using a Client-Side Security Policy File” on page 2-42

“Using WS-SecurityPolicy 1.2 Policy Files” on page 2-47

“Choosing a Policy” on page 2-57

“Unsupported WS-SecurityPolicy 1.2 Assertions” on page 2-58

“Using the Optional Policy Assertion” on page 2-60

“Configuring Element-Level Security” on page 2-61

“Smart Policy Selection” on page 2-66

“Multiple Transport Assertions” on page 2-72

“Example of Adding Security to Reliable Messaging Web Service” on page 2-103

“Proprietary Web Services Security Policy Files (JAX-RPC Only)” on page 2-111

Overview of Message-Level Security
Message-level security specifies whether the SOAP messages between a client application and 
the Web Service invoked by the client should be digitally signed or encrypted, or both. It also can 
specify a shared security context between the Web Service and client in the event that they 
exchange multiple SOAP messages. You can use message-level security to assure:

Confidentiality, by encrypting message parts

Integrity, by digital signatures

Authentication, by requiring username, X.509, or SAML  tokens

See “Configuring Simple Message-Level Security: Main Steps” on page 2-7 for the basic steps 
you must perform to configure simple message-level security. This section discusses 
configuration of the Web Services runtime environment, as well as configuration of 
message-level security for a particular Web Service and how to code a client application to 
invoke the service.

You can also configure message-level security for a Web Service at runtime, after a Web Service 
has been deployed. See “Associating Policy Files at Runtime Using the Administration Console” 
on page 2-33 for details. 

Note: You cannot digitally sign or encrypt a SOAP attachment.



Overv iew  o f  Message-Leve l  Secur i t y

Securing WebLogic Web Services 2-3

Web Services Security Supported Standards
Note: Standards Supported by WebLogic Web Services is the definitive source of Web Service 

standards supported in this release. 

WebLogic Web Services implement the following OASIS Standard 1.1 Web Services Security 
(WS-Security 1.1) specifications, dated February 1, 2006:

WS-Security 1.0 and 1.1

Username Token Profile 1.0 and 1.1

X.509 Token Profile 1.0 and 1.1

SAML Token Profile 1.0 and 1.1

These specifications provide security token propagation, message integrity, and message 
confidentiality. These mechanisms can be used independently (such as passing a username token 
for user authentication) or together (such as digitally signing and encrypting a SOAP message and 
specifying that a user must use X.509 certificates for authentication).

Web Services Trust and Secure Conversation
Note: WS-Trust and WS-SecureConversation are supported for JAX-RPC only.

WebLogic Web Services  implement the Web Services Trust (WS-Trust 1.3) and Web Services 
Secure Conversation  (WS-SecureConversation 1.3)  specifications, which together provide 
secure communication between Web Services and their clients (either other Web Services or 
standalone Java client applications). 

The WS-Trust specification defines extensions that provide a framework for requesting and 
issuing security tokens, and to broker trust relationships.

The WS-SecureConversation specification defines mechanisms for establishing and sharing 
security contexts, and deriving keys from security contexts, to enable the exchange of multiple 
messages.  Together, the security context and derived keys potentially increase the overall 
performance and security of the subsequent exchanges.  

Web Services SecurityPolicy 1.2
The WS-Policy specification defines a framework for allowing Web Services to express their 
constraints and requirements. Such constraints and requirements are expressed as policy 
assertions. 

http://e-docs.bea.com/wls/docs103/webserv_intro/standards.html


Conf igur ing  Message-Leve l  Secur i t y

2-4 Securing WebLogic Web Services

WS-SecurityPolicy defines a set of security policy assertions for use with the WS-Policy 
framework to describe how messages are to be secured in the context of WSS: SOAP Message 
Security, WS-Trust and WS-SecureConversation. 

You configure message-level security for a Web Service by attaching one or more policy files 
that contain security policy statements, as specified by the WS-SecurityPolicy specification. See 
“Using Policy Files for Message-Level Security Configuration” on page 2-5 for detailed 
information about how the Web Services runtime environment uses security policy files.  

For information about the elements of the Web Services SecurityPolicy 1.2  that are not supported 
in this release of WebLogic Server, see “Unsupported WS-SecurityPolicy 1.2 Assertions” on 
page 2-58.

Main Use Cases of Message-Level Security
The  implementation of the Web Services Security: SOAP Message Security specification 
supports the following use cases:

Use X.509 certificates to sign and encrypt a SOAP message, starting from the client 
application that invokes the message-secured Web Service, to the WebLogic Server 
instance that is hosting the Web Service and back to the client application. 

Specify the SOAP message targets that are signed, encrypted, or required: the body, 
specific SOAP headers, or specific elements.

Include a token (username, SAML, or X.509) in the SOAP message for authentication.

Specify that a Web Service and its client (either another Web Service or a standalone 
application) establish and share a security context when exchanging multiple messages 
using WS-SecureConversation (WSSC).

Derive keys for each key usage in a secure context, once the context has been established 
and is being shared between a Web Service and its client. This means that a particular 
SOAP message uses two derived keys, one for signing and another for encrypting, and 
each SOAP message uses a different pair of derived keys from other SOAP messages. 
Because each SOAP message uses its own pair of derived keys, the message exchange 
between the client and Web Service is extremely secure.



Us ing  Po l i cy  F i l es  fo r  Message-Leve l  Secur i t y  Conf igurat ion

Securing WebLogic Web Services 2-5

Using Policy Files for Message-Level Security 
Configuration

You specify the details of message-level security for a WebLogic Web Service with one or more 
security policy files. The WS-SecurityPolicy specification provides a general purpose model and 
XML syntax to describe and communicate the security policies of a Web Service.

Note: Previous releases of WebLogic Server, released before the formulation of the 
WS-SecurityPolicy specification, used security policy files written under the WS-Policy 
specification, using a proprietary  schema for security policy. 

This release of WebLogic Server supports either security policy files that conform to the 
WS-SecurityPolicy 1.2 specification or the Web Services security policy schema first 
included in WebLogic Server 9, but not both in the same Web Service.  The formats are 
mutually incompatible.

For information about the packaged WS-SecurityPolicy 1.2 security policy files, see  
“Using WS-SecurityPolicy 1.2 Policy Files” on page 2-47. 

The security policy files used for message-level security are XML files that describe whether and 
how the SOAP messages resulting from an invoke of an operation should be digitally signed or 
encrypted. They can also specify that a client application authenticate itself using a username, 
SAML, or X.509 token. 

You use the @Policy and @Policies JWS annotations in your JWS file to associate policy files 
with your Web Service. You can associate any number of policy files with a Web Service, 
although it is up to you to ensure that the assertions do not contradict each other. You can specify 
a policy file at both the class- and method level of your JWS file.

Using Policy Files With JAX-WS
For maximum portability, Oracle recommends that you use  WS-Policy 1.2 and OASIS 
WS-SecurityPolicy 1.2 with JAX-WS. 

WS-Policy Namespace
WebLogic Server supports WS-Policy 1.2 with the following namespace:
http://schemas.xmlsoap.org/ws/2004/09/policy

Note: WebLogic Server also now supports WS-Policy 1.5 (now a W3C standard) with the 
following namespace:



Conf igur ing  Message-Leve l  Secur i t y

2-6 Securing WebLogic Web Services

http://www.w3.org/ns/ws-policy

WS-SecurityPolicy Namespace
In this release, the following OASIS WS-SX TC Web Services SecurityPolicy  namespace is now 
supported:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

In addition to this new version of the namespace, WebLogic Server continues to support the 
following Web Services SecurityPolicy namespace:
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

In most of the cases, the policy assertions are identical for either namespaces, with the following 
exceptions.

Trust10 and Trust13 assertion.  Both Trust10 and Trust13 assertions are supported in this 
release.

SC10SecurityContextToken and SC13SecurityContextToken, as described in “Specification 
Backward Compatibility” on page 2-30.

Derived Key using different WSSC versions (200502, 1.3).

Version-Independent Policy Supported
This version of WebLogic Server supports version-independent policy. You can combine 
protocol-specific policies such as WS-SecurityPolicy and WS-ReliableMessaging policy that are 
based on different versions of the WS-Policy specification.  At runtime, the merged policy file 
then contains two or more different namespaces. 

There are three versions of WS-SecurityPolicy in this release of WebLogic Server:

(1) WS-SecurityPolicy 1.2 OASIS standard. 

(2) WS-SecurityPolicy 1.2, as included in WebLogic Server  10.0.

(3) Proprietary format WebLogic Server  9.x-style policies (deprecated). 

You can mix and match any version of WS-Policy with (1),  (2), or a combination of (1) and (2).  
However, you cannot mix and match (3) with (1) or (2) and with different versions of WS-Policy.  

The version match possibilities are shown in Table 2-1.



Conf igur ing  S imple  Message-Leve l  Secur i t y :  Ma in  S teps

Securing WebLogic Web Services 2-7

If the client program wants to know what version of the policy or security policy is used, use the 
versioning API to return the namespace and versioning information. 

Configuring Simple Message-Level Security: Main Steps
The following procedure describes how to configure simple message-level security for the Web 
Services security runtime, a particular WebLogic Web Service, and a client application that 
invokes an operation of the Web Service. In this document, simple message-level security is 
defined as follows:

The message-secured Web Service uses the pre-packaged WS-SecurityPolicy files to 
specify its security requirements, rather than a user-created WS-SecurityPolicy file. See 
“Using Policy Files for Message-Level Security Configuration” on page 2-5 for a 
description of these files.

Table 2-1  Version-Independent Matrix

WS-Policy 1.5 WS-Policy 1.2 WS-Policy 1.5 
AND WS-Policy 
1.2

WS-SecurityPolicy 1.2 
OASIS standard

Y Y Y

WS-SecurityPolicy 1.2 
(WebLogic Server 10.0)

Y Y Y

WS-SecurityPolicy 1.2 
OASIS standard AND 
WS-SecurityPolicy 1.2 
(WebLogic Server  10.0)

Y Y Y

 WebLogic Server  
9.x-style

Y Y N

WebLogic Server  9.x-style 
AND WS-SecurityPolicy 
1.2 OASIS standard or 
WS-SecurityPolicy 1.2 
(WebLogic Server 10.0)

N N N



Conf igur ing  Message-Leve l  Secur i t y

2-8 Securing WebLogic Web Services

The Web Service makes its associated security policy files publicly available by attaching 
them to its deployed WSDL, which is also publicly visible.

The Web Services runtime uses the out-of-the-box private key and X.509 certificate pairs, 
store in the default keystores, for its encryption and digital signatures, rather than its own 
key pairs. These out-of-the-box pairs are also used by the core WebLogic Server security 
subsystem for SSL and are provided for demonstration and testing purposes. For this 
reason Oracle highly recommends you use your own keystore and key pair in production. 
To use key pairs other than out-of-the-box pairs, see “Using Key Pairs Other Than the 
Out-Of-The-Box SSL Pair” on page 2-15.

WARNING: If you plan to deploy the Web Service to a cluster in which different 
WebLogic Server instances are running on different computers, you must use 
a keystore and key pair other than the out-of-the-box ones, even for testing 
purposes. The reason is that the key pairs in the default WebLogic Server 
keystore, DemoIdentity.jks, are not guaranteed to be the same across 
WebLogic Servers running on different machines. 

If you were to use the default keystore, the WSDL of the deployed Web 
Service would specify the public key from one of these keystores, but the 
invoke of the service might actually be handled by a server running on a 
different computer, and in this case the server’s private key would not match 
the published public key and the invoke would fail. This problem only occurs 
if you use the default keystore and key pairs in a cluster, and is easily resolved 
by using your own keystore and key pairs.

The client invoking the Web Service uses a username token to authenticate itself, rather 
than an X.509 token.

The client invoking the Web Service is a stand-alone Java application, rather than a module 
running in WebLogic Server.

Later sections describe some of the preceding scenarios in more detail, as well as additional Web 
Services security uses cases that build on the simple message-level security use case.

It is assumed in the following procedure that you have already created a JWS file that implements 
a WebLogic Web Service and you want to update it so that the SOAP messages are digitally 
signed and encrypted. It is also assumed that you use Ant build scripts to iteratively develop your 
Web Service and that you have a working build.xml file that you can update with new 
information. Finally, it is assumed that you have a client application that invokes the non-secured 
Web Service. If these assumptions are not true, see:

Getting Started With WebLogic Web Services Using JAX-WS

http://e-docs.bea.com/wls/docs103/webserv/index.html


Conf igur ing  S imple  Message-Leve l  Secur i t y :  Ma in  S teps

Securing WebLogic Web Services 2-9

Getting Started With WebLogic Web Services Using JAX-RPC

To configure simple message-level security for a WebLogic Web Service:

1. Update your JWS file, adding WebLogic-specific @Policy and @Policies JWS annotations 
to specify the pre-packaged policy files that are attached to either the entire Web Service or 
to particular operations.

See “Updating the JWS File with @Policy and @Policies Annotations” on page 2-11, 
which describes how to specify any policy file.

2. Recompile and redeploy your Web Service as part of the normal iterative development 
process. 

See  Developing WebLogic Web Services in Getting Started With WebLogic Web Services 
Using JAX-WS and  Developing WebLogic Web Services in Getting Started With WebLogic 
Web Services Using JAX-RPC.

3. Create a keystore used by the client application. Oracle recommends that you create one client 
keystore per application user.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this 
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities” in 
Securing WebLogic Server. 

4. Create a private key and digital certificate pair, and load it into the client keystore. The same 
pair will be used to both digitally sign the client’s SOAP request and encrypt the SOAP 
responses from WebLogic Server. 

Make sure that the certificate’s key usage allows both encryption and digital signatures. 
Also see “Ensuring That WebLogic Server Can Validate the Client’s Certificate” on 
page 2-10 for information about how WebLogic Server ensures that the client’s certificate 
is valid.

WARNING: Oracle requires a key length of 1024 bits or larger.

You can use Sun Microsystem's keytool utility to perform this step.

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities” in 
Securing WebLogic Server.

5. Using the Administration Console, create users for authentication in your security realm. 

See “Users, Groups, and Security Roles” in Securing WebLogic Resources Using Roles and 
Policies.

http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#get_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#get_keys_certs_trustedcas
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/keytool.html
http://e-docs.bea.com/wls/docs103/secwlres/secroles.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/index.html
http://e-docs.bea.com/wls/docs103/webserv/setenv.html


Conf igur ing  Message-Leve l  Secur i t y

2-10 Securing WebLogic Web Services

6. Update your client application by adding the Java code to invoke the message-secured Web 
Service. 

See “Using a Client-Side Security Policy File” on page 2-42.

7. Recompile your client application.

See “Invoking Web Services” in Getting Started With WebLogic Web Services Using 
JAX-WS and  “Invoking Web Services” in Getting Started With WebLogic Web Services 
Using JAX-RPC for general information.

See the following sections for information about additional Web Service security uses cases that 
build on the basic message-level security use case:

“Using Key Pairs Other Than the Out-Of-The-Box SSL Pair” on page 2-15

“Creating and Using a Custom Policy File” on page 2-21

“Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation)” 
on page 2-29

“Associating Policy Files at Runtime Using the Administration Console” on page 2-33

“Using Security Assertion Markup Language (SAML) Tokens For Identity” on page 2-34

“Invoking a Message-Secured Web Service From a Client Running in a WebLogic Server 
Instance” on page 2-20

“Associating a Web Service with a Security Configuration Other Than the Default” on 
page 2-40

See “Using System Properties to Debug Message-Level Security” on page 2-42 for information 
on debugging problems with your message-secured Web Service.

Ensuring That WebLogic Server Can Validate the Client’s 
Certificate
You must ensure that WebLogic Server is able to validate the X.509 certificate that the client uses 
to digitally sign its SOAP request, and that WebLogic Server in turn uses to encrypt its SOAP 
responses to the client. Do one of the following:

Ensure that the client application obtains a digital certificate that WebLogic Server 
automatically trusts, because it has been issued by a trusted certificate authority.

http://e-docs.bea.com/wls/docs103/webserv_rpc/client.html
http://e-docs.bea.com/wls/docs103/webserv/client.html


Conf igur ing  S imple  Message-Leve l  Secur i t y :  Ma in  S teps

Securing WebLogic Web Services 2-11

Create a certificate registry which lists all the individual certificates trusted by WebLogic 
Server, and then ensure that the client uses one of these registered certificates.

For more information, see “SSL Certificate Validation” in Securing WebLogic Server.

Updating the JWS File with @Policy and @Policies 
Annotations
Use the @Policy and @Policies annotations in your JWS file to specify that the Web Service 
has one or more policy files attached to it. You can use these annotations at either the class or 
method level. 

See “Loading a Policy From the CLASSPATH” on page 2-15 for an additional policy option.

The @Policies annotation simply groups two or more @Policy annotations together. Use the 
@Policies annotation if you want to attach two or more policy files to the class or method. If 
you want to attach just one policy file, you can use @Policy on its own.

The @Policy annotation specifies a single policy file, where it is located, whether the policy 
applies to the request or response SOAP message (or both), and whether to attach the policy file 
to the public WSDL of the service. 

WARNING: As is true for all JWS annotations, the @Policy annotation cannot be overridden 
at runtime, which means that the policy file you specify at buildtime using the 
annotation will always be associated with the Web Service. This means, for 
example, that although you can view the associated policy file at runtime using 
the Administration Console, you cannot delete (unassociate) it. You can, 
however, associate additional policy files, as described in “Associating Policy 
Files at Runtime Using the Administration Console” on page 2-33. 

Use the uri attribute to specify the location of the policy file, as described below:

To specify one of the pre-packaged security policy files that are installed with WebLogic 
Server, use the policy: prefix and the name of one of the policy files, as shown in the 
following example:

@Policy(uri="policy:Wssp1.2-2007-Https-BasicAuth.xml")

If you use the pre-packaged policy files, you do not have to create one yourself or package 
it in an accessible location. For this reason, Oracle recommends that you use the 
pre-packaged policy files whenever you can.

http://e-docs.bea.com/wls/docs103/secmanage/ssl.html#ssl_certificate_validation


Conf igur ing  Message-Leve l  Secur i t y

2-12 Securing WebLogic Web Services

See “Using Policy Files for Message-Level Security Configuration” on page 2-5 for 
information on the various types of message-level security provided by the pre-packaged 
policy files.

To specify a user-created policy file, specify the path (relative to the location of the JWS 
file) along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory of the 
one that contains the JWS file.

You can also specify a policy file that is located in a shared J2EE library; this method is 
useful if you want to share the file amongst multiple Web Services packaged in different 
J2EE archives.

Note: In this case, it is assumed that the policy file is in the META-INF/policies or 
WEB-INF/policies directory of the shared J2EE library. Be sure, when you package 
the library, that you put the policy file in this directory. 

To specify a policy file in a shared J2EE library, use the policy prefix and then the name 
of the policy file, as shown in the following example:

@Policy(uri=”policy:MySharedPolicy.xml”)

 See “Creating Shared J2EE Libraries and Optional Packages” in Developing Applications 
With WebLogic Server for information on creating shared libraries and setting up your 
environment so the Web Service can find the shared policy files.

You can also set the following attributes of the @Policy annotation:

direction—Specifies whether the policy file should be applied to the request (inbound) 
SOAP message, the response (outbound) SOAP message, or both.  The default value if you 
do not specify this attribute is both. The direction attribute accepts the following values:
– Policy.Direction.both

– Policy.Direction.inbound

– Policy.Direction.outbound

attachToWsdl—Specifies whether the policy file should be attached to the WSDL file 
that describes the public contract of the Web Service.  The default value of this attribute is 
false.

The following example shows how to use the @Policy and @Policies JWS annotations, with 
the relevant sections shown in bold:

http://e-docs.bea.com/wls/docs103/programming/libraries.html


Conf igur ing  S imple  Message-Leve l  Secur i t y :  Ma in  S teps

Securing WebLogic Web Services 2-13

Listing 2-1   Using @Policy and @Policies Annotations

package wssp12.wss10;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Policy;

import weblogic.jws.Policies;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.Oneway;

/**

 * This Web Service demonstrates how to use WS-SecurityPolicy 1.2

 * to enable message-level security specified in WS-Security 1.0.

 * 

 * The service authenticates the client with a username token. 

 * Both the request and response messages are signed and encrypted with X509

 certificates.

 *  

*/

@WebService(name="Simple", targetNamespace="http://example.org")

@WLHttpTransport(contextPath="/wssp12/wss10",

 serviceUri="UsernameTokenPlainX509SignAndEncrypt")

@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.

xml")

public class UsernameTokenPlainX509SignAndEncrypt {

  @WebMethod

  @Policies({

      @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),

      @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml")})

  public String echo(String s) {

    return s;

  }

  @WebMethod



Conf igur ing  Message-Leve l  Secur i t y

2-14 Securing WebLogic Web Services

  @Policies({

      @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),

      @Policy(uri="policy:Wssp1.2-2007-Sign-Wsa-Headers.xml")})

  public String echoWithWsa(String s) {

    return s;

  }

  @WebMethod

  @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",

 direction=Policy.Direction.inbound)

  @Oneway

  public void echoOneway(String s) {

    System.out.println("s = " + s);

  }

  @WebMethod

  @Policies({

      @Policy(uri="policy:Wssp1.2-2007-Wss1.0-X509-Basic256.xml",

direction=Policy.Direction.inbound),

      @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",

direction=Policy.Direction.inbound)

  })

  @Oneway

  public void echoOnewayX509(String s) {

    System.out.println("X509SignEncrypt.echoOneway: " + s);

  }

}

The following section of the example is the binding policy for the Web Service, specifying the 
policy:

@WebService(name="Simple", targetNamespace="http://example.org")

@WLHttpTransport(contextPath="/wssp12/wss10",

 serviceUri="UsernameTokenPlainX509SignAndEncrypt")

@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.

xml")



Conf igur ing  S imple  Message-Leve l  Secur i t y :  Ma in  S teps

Securing WebLogic Web Services 2-15

In the example, security policy files are attached to the Web Service at the method level. The 
specified policy files are those pre-packaged with WebLogic Server, which means that the 
developers do not need to create their own files or package them in the corresponding archive.

The Wssp1.2-2007-SignBody.xml policy file specifies that the body and WebLogic system 
headers of both the request and response SOAP message be digitally signed. The 
Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the request and 
response SOAP messages be encrypted.

Loading a Policy From the CLASSPATH
This release of WebLogic Server includes a 'load policy as resource from CLASSPATH' feature.  
This feature allows you to copy a policy file to the root directory of your Web application and 
then reference it directly by its name (for example, mypolicy.xml') from an @POLICY 
annotation in your JWS file.

To enable this feature, start WebLogic Server with
-Dweblogic.wsee.policy.LoadFromClassPathEnabled=true.

If you enable this feature, be aware of the following caveat: If you were to then move the policy 
file to the WEB-INF/policies directory, the same 'mypolicy.xml' reference in the @POLICY 
annotation will no longer work. You would need to add the policy prefix to the @POLICY 
annotation;  for example, 'policy:mypolicy.xml'.

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair
In the simple message-level configuration procedure, documented in “Configuring Simple 
Message-Level Security: Main Steps” on page 2-7, it is assumed that the Web Services runtime 
uses the private key and X.509 certificate pair that is provided out-of-the-box with WebLogic 
Server; this same key pair is also used by the core security subsystem for SSL and is provided 
mostly for demonstration and testing purposes. In production environments, the Web Services 
runtime typically uses its own two private key and digital certificate pairs, one for signing and 
one for encrypting SOAP messages. 

The following procedure describes the additional steps you must take to enable this use case.

1. Obtain two private key and digital certificate pairs to be used by the Web Services runtime. 
One of the pairs is used for digitally signing the SOAP message and the other for encrypting it. 

Although not required, Oracle recommends that you obtain two pairs that will be used only 
by WebLogic Web Services. You must also ensure that both of the certificate’s key usage 
matches what you are configuring them to do. For example, if you are specifying that a 



Conf igur ing  Message-Leve l  Secur i t y

2-16 Securing WebLogic Web Services

certificate be used for encryption, be sure that the certificate’s key usage is specified as for 
encryption or is undefined. Otherwise, the Web Services security runtime will reject the 
certificate.

WARNING: Oracle requires that the key length be 1024 bits or larger.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this 
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities” in 
Securing WebLogic Server. 

2. Create, if one does not currently exist, a custom identity keystore for WebLogic Server and 
load the private key and digital certificate pairs you obtained in the preceding step into the 
identity keystore.

If you have already configured WebLogic Server for SSL, then you have already created an 
identity keystore which you can also use in this step.

You can use WebLogic’s ImportPrivateKey utility and Sun Microsystem’s keytool 
utility to perform this step. For development purposes, the keytool utility is the easiest 
way to get started.

See “Creating a Keystore and Loading Private Keys and Trusted Certificate Authorities 
Into the Keystore” in Securing WebLogic Server.

3. Using the Administration Console, configure WebLogic Server to locate the keystore you 
created in the preceding step. If you are using a keystore that has already been configured for 
WebLogic Server, you do not need to perform this step.

See “Configuring Keystores for Production” in Securing WebLogic Server.

4. Using the Administration Console, create the default Web Service security configuration, 
which must be named default_wss. The default Web Service security configuration is used 
by all Web Services in the domain unless they have been explicitly programmed to use a 
different configuration.

See “Create a Web Service security configuration” in the Administration Console Online 
Help.

5. Update the default Web Services security configuration you created in the preceding step to 
use one of the private key and digital certificate pairs for digitally signing SOAP messages.

See “Specify the key pair used to sign SOAP messages” in Administration Console Online 
Help. In the procedure, when you create the properties used to identify the keystore and 
key pair, enter the exact value for the Name of each property (such as 

http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#get_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#keystore_creating
http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#keystore_creating
http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#ConfiguringKeystores
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDigitalSignatureKeystore.html


Updat ing  a  C l ien t  App l i cat ion  to  I nvoke  a  Message-Secured  Web Serv i ce

Securing WebLogic Web Services 2-17

IntegrityKeyStore, IntegrityKeyStorePassword, and so on), but enter the value that 
identifies your own previously-created keystore and key pair in the Value fields.

6. Similarly, update the default Web Services security configuration you created in a preceding 
step to use the second private key and digital certificate pair for encrypting SOAP messages.

See “Specify the key pair used to encrypt SOAP messages” in Administration Console 
Online Help. In the procedure, when you create the properties used to identify the keystore 
and key pair, enter the exact value for the Name of each property (such as 
ConfidentialityKeyStore. ConfidentialityKeyStorePassword, and so on), but 
enter the value that identifies your own previously-created keystore and key pair in the 
Value fields.

Updating a Client Application to Invoke a 
Message-Secured Web Service

When you update your Java code to invoke a message-secured Web Service, you must load a 
private key and digital certificate pair from the client’s keystore and pass this information, along 
with a username and password for user authentication if so required by the security policy, to the 
secure WebLogic Web Service being invoked. 

If the security policy file of the Web Service specifies that the SOAP request must be encrypted, 
then the Web Services client runtime automatically gets the server’s certificate from the policy 
file that is attached to the WSDL of the service, and uses it for the encryption. If, however, the 
policy file is not attached to the WSDL, or the entire WSDL itself is not available, then the client 
application must use a client-side copy of the policy file; for details, see “Using a Client-Side 
Security Policy File” on page 2-42.

Listing 2-2 shows a Java client application that invokes the message-secured WebLogic Web 
Service described by the JWS file in “Updating the JWS File With the Security-Related 
Annotations” on page 4-4.   The client application takes five arguments:

Client username for client authentication

Client password for client authentication

Client private key file 

Client digital certificate

WSDL of the deployed Web Service

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateEncryptionKeystore.html


Conf igur ing  Message-Leve l  Secur i t y

2-18 Securing WebLogic Web Services

The security-specific code in the sample client application is shown in bold (and described after 
the example):

Listing 2-2   Client Application Invoking a Message-Secured Web Service

package examples.webservices.security_jws.client;

import weblogic.security.SSL.TrustManager;

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;

import java.security.cert.X509Certificate;

/**
 *  Copyright © 1996, 2008, Oracle and/or its affiliates. 
* All rights reserved.
 */
public class SecureHelloWorldClient {
  public static void main(String[] args) throws Throwable {

    //username or password for the UsernameToken
    String username = args[0];
    String password = args[1];

    //client private key file
    String keyFile = args[2];

    //client certificate
    String clientCertFile = args[3];

    String wsdl = args[4];

    SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl + 
"?WSDL" );

    SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();

    //create credential provider and set it to the Stub
    List credProviders = new ArrayList();

    //client side BinarySecurityToken credential provider -- x509
    CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile, 



Updat ing  a  C l ien t  App l i cat ion  to  I nvoke  a  Message-Secured  Web Serv i ce

Securing WebLogic Web Services 2-19

keyFile);
    credProviders.add(cp);

    //client side UsernameToken credential provider
    cp = new ClientUNTCredentialProvider(username, password);
    credProviders.add(cp);

    Stub stub = (Stub)port;
    stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, 
credProviders);

    stub._setProperty(WSSecurityContext.TRUST_MANAGER,
      new TrustManager(){
         public boolean certificateCallback(X509Certificate[] chain, int 
validateErr){
           return true;
         }
       } );

    String response = port.sayHello("World");
    System.out.println("response = " + response);
  }
}

The main points to note about the preceding code are:

Import the WebLogic security TrustManager API:

import weblogic.security.SSL.TrustManager;

Import the following WebLogic Web Services security APIs to create the needed 
client-side credential providers, as specified by the policy files that are associated with the 
Web Service:

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

Use the ClientBSTCredentialProvider WebLogic API to create a binary security token 
credential provider from the client’s certificate and private key:

 CredentialProvider cp = 
    new ClientBSTCredentialProvider(clientCertFile, keyFile);

Use the ClientUNTCredentialProvider WebLogic API to create a username token from 
the client’s username and password, which are also known by WebLogic Server:

cp = new ClientUNTCredentialProvider(username, password);



Conf igur ing  Message-Leve l  Secur i t y

2-20 Securing WebLogic Web Services

Use the WSSecurityContext.CREDENTIAL_PROVIDER_LIST property to pass a List 
object that contains the binary security and username tokens to the JAX-RPC Stub:

stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, 
credProviders)

For JAX-WS, you might code this as follows:

import javax.xml.ws.BindingProvider;
:

Map<String, Object> rc = ((BindingProvider) port).getRequestContext();

rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

Use the weblogic.security.SSL.TrustManager WebLogic security API to verify that 
the certificate used to encrypt the SOAP request is valid. The Web Services client runtime 
gets this certificate from the deployed WSDL of the Web Service, which in production 
situations is not automatically trusted, so the client application must ensure that it is okay 
before it uses it to encrypt the SOAP request:

stub._setProperty(WSSecurityContext.TRUST_MANAGER,
      new TrustManager(){
         public boolean certificateCallback(X509Certificate[] chain, int 
validateErr){
           return true;
         }
       } );

This example shows the TrustManager API on the client side. The Web Service application 
must implement proper verification code to ensure security.

Invoking a Message-Secured Web Service From a Client 
Running in a WebLogic Server Instance
In the simple Web Services configuration procedure, described in “Configuring Simple 
Message-Level Security: Main Steps” on page 2-7, it is assumed that a stand-alone client 
application invokes the message-secured Web Service. Sometimes, however, the client is itself 
running in a WebLogic Server instance, as part of an EJB, a servlet, or another Web Service. In 
this case, you can use the core WebLogic Server security framework to configure the credential 
providers and trust manager so that your EJB, servlet, or JWS code contains only the simple 
invoke of the secured operation and no other security-related API usage.   

The following procedure describes the high level steps you must perform to make use of the core 
WebLogic Server security framework in this use case.



Creat ing  and  Us ing  a  Custom Po l i c y  F i l e

Securing WebLogic Web Services 2-21

1. In your EJB, servlet, or JWS code, invoke the Web Service operation as if it were not 
configured for message-level security. Specifically, do not create a CredentialProvider 
object that contains username or X.509 tokens, and do not use the TrustManager core 
security API to validate the certificate from the WebLogic Server hosting the secure Web 
Service. The reason you should not use these APIs in your client code is that the Web Services 
runtime will perform this work for you.

2. Using the Administration Console, configure the required credential mapping providers of the 
core security of the WebLogic Server instance that hosts your client application. The list of 
required credential mapper providers depends on the policy file that is attached to the Web 
Service you are invoking. Typically, you must configure the credential mapper providers for 
both username/password and X.509 certificates. See “Valid Class Names and Token Types for 
Credential Provider” on page 2-41 for the possible values.

Note: WebLogic Server includes a credential mapping provider for username/passwords 
and X.509. However, only username/password is configured by default.

3. Using the Administration Console, create the actual credential mappings in the credential 
mapping providers you configured in the preceding step. You must map the user principal, 
associated with the client running in the server, to the credentials that are valid for the Web 
Service you are invoking. See “Configuring a WebLogic Credential Mapping Provider” in 
Securing WebLogic Server.

4. Using the Administration Console, configure the core WebLogic Server security framework 
to trust the X.509 certificate of the invoked Web Service. See “Configuring the Credential 
Lookup and Validation Framework” in Securing WebLogic Server.

You are not required to configure the core WebLogic Server security framework, as described in 
this procedure, if your client application does not want to use the out-of-the-box credential 
provider and trust manager. Rather, you can override all of this configuration by using the same 
APIs in your EJB, servlet, and JWS code as in the stand-alone Java code described in “Using a 
Client-Side Security Policy File” on page 2-42. However, using the core security framework 
standardizes the WebLogic Server configuration and simplifies the Java code of the client 
application that invokes the Web Service.

Creating and Using a Custom Policy File
Although WebLogic Server includes a number of pre-packaged Web Services security policy 
files that typically satisfy the security needs of most programmers, you can also create and use 
your own WS-SecurityPolicy file if you need additional configuration. See “Using Policy Files 
for Message-Level Security Configuration” on page 2-5 for general information about security 
policy files and how they are used for message-level security configuration.

http://e-docs.bea.com/wls/docs103/secmanage/providers.html#weblogic_credmapper
http://e-docs.bea.com/wls/docs103/secmanage/providers.html#clv
http://e-docs.bea.com/wls/docs103/secmanage/providers.html#clv


Conf igur ing  Message-Leve l  Secur i t y

2-22 Securing WebLogic Web Services

Note: Use of element-level security always requires one or more custom policy files to specify 
the particular element path and name to be secured. 

When you create a custom policy file, you can separate out the three main security categories 
(authentication, encryption, and signing) into three separate policy files, as do the pre-packaged 
files, or create a single policy file that contains all three categories. You can also create a custom 
policy file that changes just one category (such as authentication) and use the pre-packaged files 
for the other categories (Wssp1.2-2007-SignBody.xml, Wssp1.2-SignBody.xml and 
Wssp1.2-2007-EncryptBody, Wssp1.2-EncryptBody). In other words, you can mix and 
match the number and content of the policy files that you associate with a Web Service. In this 
case, however, you must always ensure yourself that the multiple files do not contradict each 
other. 

Your custom policy file needs to comply with the standard format and assertions defined in 
WS-SecurityPolicy 1.2. Note, however, that this release of WebLogic Server does not completely 
implement WS-SecurityPolicy 1.2. For more information, see “Unsupported WS-SecurityPolicy 
1.2 Assertions” on page 2-58 . The root element of your WS-SecurityPolicy file must be 
<Policy> and include the following namespace declarations:

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

or 

http://www.w3.org/ns/ws-policy

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"

or

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

You can also use the pre-packaged WS-SecurityPolicy files as templates to create your own 
custom files. See “Using WS-SecurityPolicy 1.2 Policy Files” on page 2-47.

Configuring the WS-Trust Client
Note: In this release, WS-Trust is supported under JAX-RPC only.

WebLogic Server implements a WS-Trust client that retrieves security tokens from a Security 
Token Service (STS) for use in Web Services Security.   This WS-Trust client is used internally 
by the client side WebLogic Server Web Service runtime.  

You can configure the WS-Trust client  as follows:



Conf igur ing  the  WS-Trus t  C l i ent

Securing WebLogic Web Services 2-23

Through properties on the Web Service client stub for a standalone Web Service client.

Through MBean properties for a Web Service client running on the server.

In prior releases of WebLogic Server, the WS-Trust client could use only security tokens from an 
STS that was co-located with a Web Service and hosted by WebLogic Server.  However, in this 
release, the STS need only be accessible to the WS-Trust client; it does not need to be co-located. 

The WS-Trust client in prior releases  supported only  WS-SecureConversation tokens. It now 
also supports SAML tokens.

Supported Token Types
Web Service Secure Conversation Language (WS-SecureConversation) and SAML tokens are 
supported.  The tokens have the following namespace and URI:

For WS-SecureConversation 1.3:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

For WS-SecureConversation 1.2:

http://schemas.xmlsoap.org/ws/2005/02/sc

http://schemas.xmlsoap.org/ws/2005/02/sc/sct

For SAML 1.1:

urn:oasis:names:tc:SAML:1.0:assertion

Supported confirmation method is sender-vouches. 

For SAML 2.0: 

urn:oasis:names:tc:SAML:2.0:assertion

Supported confirmation methods are sender-vouches and bearer.

Configuring WS-Trust Client Properties
You set some of the configuration properties specifically for the WS-Trust client; others are 
determined through configuration information generally present for a Web Service client. For 
example, the type of token retrieved  is determined by the security policy of the Web Service that 
the Web Service client is invoking.

The properties that you can explicitly set and the token type they apply to are as follows.  
Subsequent sections show how to set these properties.



Conf igur ing  Message-Leve l  Secur i t y

2-24 Securing WebLogic Web Services

STS URI (WS-SecureConversation and SAML)

STS security policy (SAML)

STS SOAP version (SAML)

STS WS-Trust version (SAML)

Obtaining the URI of the Secure Token Service
There are three sources from which the WS-Trust client can obtain the URI of the secure token 
service (STS). The order of precedence is as follows: 

The URI for the STS, as contained in the sp:Issuer/wsa:Address element of the token 
assertion in the Web Service's security policy.

A configured STS URI. 

The co-located STS URI. This is the default if there is no other source 
(WS-SecureConversation only).

Configuring STS URI: Standalone Client
The following code example demonstrates setting the STS URI on a client stub.  The example 
assumes that the location of the STS URI is already known to the client. 

String wsdl = "http://myserver/wsscsecuredservice?wsdl";

WsscSecuredService service = new WsscSecuredService_Impl(wsdl);

WsscSecured port = service.getWsscSecuredSoapPort(); 

Stub stub = (Stub) port; 

String sts = "https://stsserver/standaloneSTS/wssc13/STS";

stub._setProperty("weblogic.wsee.wst.sts_endpoint_uri", sts); 

Configuring STS URI Using WLST: Client Running On Server Side
Listing 2-3  demonstrates using the WebLogic Scripting Tool (WLST) to create a credential 
provider for the WS-Trust client and then configuring the STS URI, as indicated by bold text.   

The provider class name can be one of the following:

weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider

weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

weblogic.wsee.security.saml.SAMLTrustCredentialProvider



Conf igur ing  the  WS-Trus t  C l i ent

Securing WebLogic Web Services 2-25

Listing 2-3   Configuring STS URI Using WLST

userName = sys.argv[1]

passWord = sys.argv[2]

host = sys.argv[3]+":"+sys.argv[4] 

sslhost = sys.argv[3]+":"+sys.argv[5] 

url="t3://"+ host connect(userName, passWord, url) 

edit() 

startEdit() 

defaultWss = cmo.lookupWebserviceSecurity('default_wss') 

#Create credential provider for SCT Trust Client 

wtm = defaultWss.createWebserviceCredentialProvider('trust_client_sct_cp') 

wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialPr

ovider') 

wtm.setTokenType('sct_trust') 

cpm = wtm.createConfigurationProperty('StsUri') 

cpm.setValue("https://" + sslhost + "/standaloneSTS/wssc13/STS") 

save() 

activate(block="true") 

disconnect() 

exit() 

Configuring STS URI Using Console: Client Running On Server Side
Configuring the STS URI through the WebLogic Server Administration Console allows the 
decision about which URI to use to be made at runtime, and not during the Web Service 
development cycle. 

Follow these steps to configure the STS URI through the Console: 

1. Create a Web Services security configuration, as described in the online help. This creates an 
empty configuration.

2. Edit the Web Services security configuration to create a credential provider, as described in 
the online help:

– On the Create Credential Provider tab, enter the following:

• A provider name, which is your name for this MBean instance.  

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/J2EEwebservicewebservicesecuritycredentialprovidercreatetitle.html


Conf igur ing  Message-Leve l  Secur i t y

2-26 Securing WebLogic Web Services

• The provider class name, which can be 
weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvi
der 

or 
weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

or
weblogic.wsee.security.saml.SAMLTrustCredentialProvider

• The token type, which is a short name to identify the token. For example,   
sct or saml. 

3. Select Next.

4. Enter the name/value pairs for the STS URI. 

5. Select Finish.

6. On the Security Configuration General tab, set the value of the  Default Credential Provider 
STS URI.  

The Default Credential Provider STS URL is the default STS endpoint URL for all 
WS-Trust enabled credential providers of this Web Service security configuration.

Configuring STS Security Policy: Standalone Client
The following code example demonstrates setting the STS security policy on a client stub, as 
indicated in bold. 

String wsdl = "http://myserver/samlsecuredservice?wsdl";

SamlSecuredService service = new SamlSecuredService_Impl(wsdl);

SamlSecured port = service.getSamlSecuredSoapPort(); 

Stub stub = (Stub) port; 

InputStream policy = loadPolicy();

stub._setProperty("weblogic.wsee.security.wst_bootstrap_policy", policy); 

Configuring STS Security Policy Using WLST: Client Running On Server Side 
Listing 2-4 demonstrates using WLST to create a credential provider for the default Web Services 
security configuration, and then configuring the STS security policy, as indicated by bold text. 
The value for the StsPolicy property must be either a policy included in WebLogic Server (see 



Conf igur ing  the  WS-Trus t  C l i ent

Securing WebLogic Web Services 2-27

“Using WS-SecurityPolicy 1.2 Policy Files” on page 2-47) or a custom policy file in a J2EE 
library (see “Creating and Using a Custom Policy File” on page 2-21).  

Listing 2-4   Configuring STS Security Policy Using WLST

userName = sys.argv[1]

passWord = sys.argv[2]

host = sys.argv[3]+":"+sys.argv[4]

sslhost = sys.argv[3]+":"+sys.argv[5]

samlstsurl = sys.argv[6]

url="t3://"+ host

print "Connect to the running adminSever"

connect(userName, passWord, url)

edit()

startEdit()

defaultWss = cmo.lookupWebserviceSecurity('default_wss')

#Create credential provider for SAML Trust Client

wtm = 

defaultWss.createWebserviceCredentialProvider('trust_client_saml_cp')

wtm.setClassName('weblogic.wsee.security.saml.SAMLTrustCredentialProvider'

)

wtm.setTokenType('saml_trust')

cpm = wtm.createConfigurationProperty('StsUri')

cpm.setValue(samlstsurl) 

cpm = wtm.createConfigurationProperty('StsPolicy')

cpm.setValue("Wssp1.2-2007-Https-UsernameToken-Plain")

save()

activate(block="true")

disconnect()

exit() 



Conf igur ing  Message-Leve l  Secur i t y

2-28 Securing WebLogic Web Services

Configuring STS Security Policy: Using the Console
Perform the following steps to configure the STS security policy using the console:

1. Create a Web Services security configuration, as described in the online help. This creates an 
empty configuration.

2. Edit the Web Services security configuration to create a credential provider, as described in 
the online help:

– On the Create Credential Provider tab, enter the following:

• A provider name, which is your name for this MBean instance.  

• The provider class name, which can be 
weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvi
der 

or 
weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

or
weblogic.wsee.security.saml.SAMLTrustCredentialProvider

• The token type, which is a short name to identify the token. For example,   
sct or saml. 

3. Select Next.

4. Enter the name/value pairs for the STS policy. 

5. Select Finish.

Configuring the STS SOAP Version and WS-Trust Version: Standalone Client
For a SAML STS,  you need to configure the WS-Trust version only if it is not the default 
(WS-Trust 1.3).   The supported values for WSEESecurityConstants.TRUST_VERSION are as 
follows:

http://docs.oasis-open.org/ws-sx/ws-trust/200512 (WS-Trust 1.3)

http://schemas.xmlsoap.org/ws/2005/02/trust 

You also need to configure the SOAP version if it is different from the SOAP version of the target 
Web Service for which you generated the standalone client.  (See Interface SOAPConstants for 

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/J2EEwebservicewebservicesecuritycredentialprovidercreatetitle.html
http://java.sun.com/javaee/5/docs/api/javax/xml/soap/SOAPConstants.html



Conf igur ing  and  Us ing  Secur i t y  Contex ts  and  De r i ved  Keys  (WS-SecureConversa t i on)

Securing WebLogic Web Services 2-29

the definitions of the constants.)  The supported values for 
WSEESecurityConstants.TRUST_SOAP_VERSION are as follows:

javax.xml.soap.SOAPConstants. URI_NS_SOAP_1_1_ENVELOPE (as per 
http://schemas.xmlsoap.org/soap/envelope/)

javax.xml.soap.SOAPConstants. URI_NS_SOAP_1_2_ENVELOPE ( as per 
http://www.w3.org/2003/05/soap-envelope)

Listing 2-5 shows an example of setting the WS-Trust and SOAP versions.

Listing 2-5   Setting the WS-Trust and SOAP Versions

// set WS-Trust version

stub._setProperty(WSEESecurityConstants.TRUST_VERSION, 

"http://docs.oasis-open.org/ws-sx/ws-trust/200512");

// set SOAP version

stub._setProperty(WSEESecurityConstants.TRUST_SOAP_VERSION, 

SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE);

Configuring and Using Security Contexts and Derived 
Keys (WS-SecureConversation)

Note: In this release, SecureConversation is supported under JAX-RPC only.

Oracle provides the following  pre-packaged WS-SecurityPolicy files to configure security 
contexts and derived keys:

WS-SecureConversation 1.2 (2005/2) specification:

– Wssp1.2-Wssc200502-Bootstrap-Https.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

WS-SecureConversation 1.3 versions of the  WS-SecureConversation 1.2 (2005/2) policy 
files:



Conf igur ing  Message-Leve l  Secur i t y

2-30 Securing WebLogic Web Services

– Wssp1.2-Wssc1.3-Bootstrap-Https.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

Additional WS-SecureConversation 1.3 policy files:

– Wssp1.2-Wssc1.3-Bootstrap-Https-BasicAuth.xml

– Wssp1.2-Wssc1.3-Bootstrap-Https-ClientCertReq.xml

It is recommended that you use the pre-packaged files if you want to configure security contexts, 
because these security policy files provide most of the required functionality and typical default 
values. See “WS-SecureConversation Policies” on page 2-53 for more information about these 
files.

WARNING: If you are deploying a Web Service that uses shared security contexts to a cluster, 
then you are required to also configure cross-cluster session state replication. For 
details, see “Failover and Replication in a Cluster” in Using WebLogic Server 
Clusters.

Code or configure your application to use the policy through policy annotations, policy attached 
to the application’s WSDL, or runtime policy configuration.

Specification Backward Compatibility
WebLogic Web Services implement the  Web Services Trust (WS-Trust 1.3) and Web Services 
Secure Conversation  (WS-SecureConversation 1.3) specifications.  Take note of the following 
differences from the WS-SecureConversation version of  02/2005:

The  Web Services Secure Conversation  (WS-SecureConversation 1.3)  specification 
requires  a token service to return wst:RequestSecurityToken to the initiating party in 
response to a wst:RequestSecurityToken.  One or more 
wst:RequestSecurityTokenResponse elements are contained within a single 
wst:RequestSecurityTokenResponseCollection.  

This differs from the previous version of the specification, in which 
wst:RequestSecurityTokenResponse was returned by the token service. 

The token service can return wst:RequestSecurityTokenResponse if the service policy 
specifies the  SC10SecurityContextToken, as described in the next bullet item.

The WS-SecurityPolicy 1.2 Errata document describes the following change to 
SecureConversationToken Assertion:

http://e-docs.bea.com/wls/docs103/cluster/failover.html


Conf igur ing  and  Us ing  Secur i t y  Contex ts  and  De r i ved  Keys  (WS-SecureConversa t i on)

Securing WebLogic Web Services 2-31

<sp:SC10SecurityContextToken />

changes to

<sp:SC13SecurityContextToken />

sp:SC10SecurityContextToken continues to be supported only when used with the 
WS-SecureConversation version of  02/2005.

WS-SecureConversation and Clusters
WS-SecureConversation is pinned to a particular WebLogic Server instance in the cluster. If a 
SecureConversation request lands in the wrong server, it is automatically rerouted to the correct 
server. If the server instance hosting the WS-SecureConversation fails, the SecureConversation 
will not be available until the server instance is brought up again.

Updating a Client Application to Negotiate Security 
Contexts
A client application that negotiates security contexts when invoking a Web Service is similar to 
a standard client application that invokes a message-secured Web Service, as described in “Using 
a Client-Side Security Policy File” on page 2-42.   The only real difference is that you can use the 
weblogic.wsee.security.wssc.utils.WSSCClientUtil API to explicitly cancel the 
secure context token. 

Note: WebLogic Server provides the WSSCCLientUtil API for your convenience only; the 
Web Services runtime automatically cancels the secure context token when the 
configured timeout is reached. Use the API only if you want to have more control over 
when the token is cancelled.

Listing 2-6 shows a simple example of a client application invoking a Web Service that is 
associated with a pre-packaged security policy file that enables secure conversations; the sections 
in bold which are relevant to security contexts are discussed after the example:

Listing 2-6   Client Application Using WS-SecureConversation

package examples.webservices.wssc.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;



Conf igur ing  Message-Leve l  Secur i t y

2-32 Securing WebLogic Web Services

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import weblogic.wsee.security.util.CertUtils;

import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;
import java.security.cert.X509Certificate;

/**
 * Copyright © 1996, 2008, Oracle and/or its affiliates. 
* All rights reserved.
 */
public class WSSecureConvClient {
  public static void main(String[] args) throws Throwable {

    String clientKeyStore = args[0];
    String clientKeyStorePass = args[1];
    String clientKeyAlias = args[2];
    String clientKeyPass = args[3];
    String serverCert = args[4];
    String wsdl = args[5];

    WSSecureConvService service = new WSSecureConvService_Impl(wsdl);
    WSSecureConvPortType port = service.getWSSecureConvServicePort();

    //create credential provider and set it to the Stub
    List credProviders = new ArrayList();

    //use x509 to secure wssc handshake
    credProviders.add(new ClientBSTCredentialProvider(clientKeyStore, 
clientKeyStorePass, clientKeyAlias, clientKeyPass));

    Stub stub = (Stub)port;

    stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, 
credProviders);
    stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT, 
CertUtils.getCertificate(serverCert));

    stub._setProperty(WSSecurityContext.TRUST_MANAGER,
        new TrustManager(){
          public boolean certificateCallback(X509Certificate[] chain, int 
validateErr){
            //need to validate if the server cert can be trusted
            return true;
          }
        }
    );



Assoc ia t ing  Po l i c y  F i l es  a t  Runt ime  Us ing  the  Admin is t rat ion  Conso le

Securing WebLogic Web Services 2-33

    System.out.println (port.sayHelloWithWSSC("Hello World, once"));
    System.out.println (port.sayHelloWithWSSC("Hello World, twice"));
    System.out.println (port.sayHelloWithWSSC("Hello World, thrice"));

    //cancel SecureContextToken after done with invocation
    WSSCClientUtil.terminateWssc(stub);
    System.out.println("WSSC terminated!");

  }
}

The points to notice in the preceding example are:

Import the WebLogic API used to explicitly terminate the secure context token:

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;

Set a property on the JAX-RPC stub which specifies that the client application must 
encrypt its request to WebLogic Server to cancel the secure context token with WebLogic 
Server’s public key:

stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT, 
CertUtils.getCertificate(serverCert));

Use the terminateWssc() method of the WSSClientUtil class to terminate the secure 
context token:

WSSCClientUtil.terminateWssc(stub);

Associating Policy Files at Runtime Using the 
Administration Console

The simple message-level configuration procedure, documented in “Configuring Simple 
Message-Level Security: Main Steps” on page 2-7, describes how to use the @Policy and 
@Policies JWS annotations in the JWS file that implements your Web Service to specify one 
or more policy files that are associated with your service. This of course implies that you must 
already know, at the time you program your Web Service, which policy files you want to 
associate with your Web Service and its operations. This might not always be possible, which is 
why you can also associate policy files at runtime, after the Web Service has been deployed, using 
the Administration Console.

You can use no @Policy or @Policies JWS annotations at all in your JWS file and associate 
policy files only at runtime using the Administration Console, or you can specify some policy 
files using the annotations and then associate additional ones at runtime. However, once you 



Conf igur ing  Message-Leve l  Secur i t y

2-34 Securing WebLogic Web Services

associate a policy file using the JWS annotations, you cannot change this association at runtime 
using the Administration Console. 

At runtime, the Administration Console allows you to associate as many policy files as you want 
with a Web Service and its operations, even if the policy assertions in the files contradict each 
other or contradict the assertions in policy files associated with the JWS annotations. It is up to 
you to ensure that multiple associated policy files work together. If any contradictions do exist, 
WebLogic Server returns a runtime error when a client application invokes the Web Service 
operation.

To use the Console to associate one or more WS-Policy files to a Web Service, the WS-Policy 
XML files must be located in either the META-INF/policies or WEB-INF/policies directory of 
the EJB JAR file (for EJB implemented Web Services) or WAR file (for Java class implemented 
Web Services), respectively.

See “Associate a WS-Policy file with a Web Service” in the Administration Console Online Help 
for detailed instructions on using the Administration Console to associate a policy file at runtime.

Using Security Assertion Markup Language (SAML) 
Tokens For Identity

The  SAML Token Profile 1.1 is part of the core set of WS-Security standards, and specifies how 
SAML assertions can be used for Web Services security. WebLogic Server 10.3 supports SAML 
Token Profile 1.1, including support for SAML 2.0 and SAML 1.1 assertions. SAML Token 
Profile 1.1 is backwards compatible with SAML Token Profile 1.0.

Note: SAML Token Profile 1.1 is supported only through WS-SecurityPolicy.  

Previous releases of WebLogic Server, released before the formulation of the 
WS-SecurityPolicy specification, used security policy files written under the WS-Policy 
specification, using a proprietary schema for security policy. These earlier security policy 
files support SAML Token Profile 1.0 and SAML 1.1 only.

In the simple Web Services configuration procedure, described in “Configuring Simple 
Message-Level Security: Main Steps” on page 2-7, it is assumed that users use username tokens 
to authenticate themselves. Because WebLogic Server implements the   SAML Token Profile 1.1  
of the Web Services Security specification, users can also use SAML tokens in the SOAP 
messages to authenticate themselves when invoking a Web Service operation, as described in this 
section.

Use of SAML tokens works server-to-server. This means that the client application is running 
inside of a WebLogic Server instance and then invokes a Web Service running in another 

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/ConfigureWSPolicyFile.html
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf


Using  Secur i t y  Asse r t i on  Markup  Language  (SAML)  Tokens  Fo r  Ident i t y

Securing WebLogic Web Services 2-35

WebLogic Server instance using SAML for identity. Because the client application is itself a Web 
Service, the Web Services security runtime takes care of all the SAML processing.

In addition to this server-to-server usage, you can also use SAML tokens from a standalone client 
via WS-Trust, as described in “Configuring the WS-Trust Client” on page 2-22.

Note: It is assumed in this section that you understand the basics of SAML and how it relates 
to core security in WebLogic Server. For general information, see “Security Assertion 
Markup Language (SAML)” in Understanding WebLogic Security.

It is also assumed in the following procedure that you have followed the steps in 
“Configuring Simple Message-Level Security: Main Steps” on page 2-7 and now want 
to enable the additional use case of using SAML tokens, rather than usename tokens, for 
identity.

Using SAML Tokens for Identity: Main Steps
1. Make sure that the SAML providers you need are configured and add the appropriate partner 

entries.  This step configures the core WebLogic Server security subsystem. For details, see 
the following sections in Securing WebLogic Server:

– Configuring a SAML Identity Assertion Provider

– Configuring a SAML Credential Mapping Provider

Note: You will need to configure both SAML 1.1 and SAML 2.0 security providers if you 
want to enable both versions of SAML for use with the SAML Token Profile. 

When configuring SAML 2.0 partner entries, you must use the endpoint URL of the 
target Web Service as the name of the partner for both WSSIdPPartner and 
WSSSPPartner entries. Specify the URL as HTTPS if SSL will be used.   

2. If you will be using policies that involve signatures related to SAML assertions (for example, 
SAML Holder-of-Key policies) where a key referenced by the assertion is used to sign the 
message, or Sender-Vouches policies where the sender’s key is used to sign the message, you 
need to configure keys and certificates for signing and verification.

Note: These keys and certificates are not used to create or verify signatures on the 
assertions themselves. Creating and verifying signatures on assertions is done using 
keys and certificates configured on the SAML security providers.

If you are using SAML Bearer policies, protection is provided by SSL and the PKI 
Credential Mapping provider is not needed.  

http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/secintro/concepts.html#saml_concepts
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WSSIdPPartner.html
http://e-docs.bea.com/wls/docs103/javadocs/com/bea/security/saml2/providers/registry/WSSSPPartner.html
http://e-docs.bea.com/wls/docs103/secmanage/atn.html#SAML_ID
http://e-docs.bea.com/wls/docs103/secmanage/providers.html#SAML_cred


Conf igur ing  Message-Leve l  Secur i t y

2-36 Securing WebLogic Web Services

If you are using SAML tokens from a standalone client via WS-TRUST, the tokens 
are passed in via the Web Service client stub, not via the PKI Credential Mapping 
provider.

a. Configure a PKI Credential Mapping provider on the sending side, and populate it with 
the keys and certificates to be used for signing.  setKeypairCredential creates a 
keypair mapping between the principalName, resourceid and credential action and 
the keystore alias and the corresponding password. 

pkiCM.setKeypairCredential(
type=<remote>, protocol=http,
remoteHost=hostname, remotePort=portnumber, 
path=/ContextPath/ServicePath,
username, Boolean('true'), None,
alias, passphrase)

The first (String) parameter is used to construct a Resource object that represents the 
endpoint of the target Web Service. The userName parameter is the user on whose 
behalf the signed Web Service message will be generated. The alias and passphrase 
parameters are the alias and passphrase used to retrieve the key/certificate from the 
keystore configured for the PKI Credential Mapping provider. The actual key and 
certificate should be loaded into the keystore before creating the KeypairCredential.

b. Add the same certificates to the Certificate Registry on the receiving side, so they can be 
validated by the Web Service security runtime:

reg.registerCertificate(certalias, certfile)

Specifying the SAML Confirmation Method
The WS-SecurityPolicy implies, but does not explicitly specify, the confirmation method for 
SAML assertions.   Consider the following general guidelines:

If the SamlToken assertion is inside either <sp:AsymerticBinding> or 
<sp:SymerticBinding>, then  the Holder of Key confirmation method is used.   

See Table 2-8 for examples of policies that use Holder of Key confirmation.

If the SamlToken assertion is inside  <sp:SignedSupportingTokens> then the Sender 
Vouches confirmation method is used.  

See Table 2-8 for examples of policies that use Sender Vouches confirmation.

If the SamlToken assertion is inside  <sp:SupportingTokens> then the Bearer 
confirmation method is used. Use transport-level security as described in  “Configuring 
Transport-Level Security” on page 3-1 in this case.  



Using  Secur i t y  Asse r t i on  Markup  Language  (SAML)  Tokens  Fo r  Ident i t y

Securing WebLogic Web Services 2-37

See Table 2-8 for examples of policies that use Bearer confirmation.

Specifying the SAML Confirmation Method (Proprietary Policy Only)
This section describes how to specify the SAML confirmation method in a policy file that uses 
the proprietary schema for security policy. 

Note: SAML V1.1 and V2.0 assertions use  <saml:SubjectConfirmation> and 
<saml2:SubjectConfimation>  elements, respectively, to specify the confirmation 
method; the confirmation method is not directly specified in the policy file.  

When you configure a Web Service to require SAML tokens for identity, you can specify one of 
the following confirmation methods:

sender-vouches

holder-of-key

See SAML Token Profile Support in WebLogic Web Services, as well as the Web Services 
Security: SAML Token Profile specification itself, for details about these confirmation methods.

1. Use a security policy file that specifies that SAML should be used for identity. The exact 
syntax depends on the type of confirmation method you want to configure 
(sender-vouchesm,  holder-of-key). 

To specify the sender-vouches confirmation method:

a. Create a <SecurityToken> child element of the  <Identity><SupportedTokens> 
elements and set the TokenType attribute to a value that indicates SAML token usage.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and 
specify sender-vouches.

For example:

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"
  
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-utility-1.0.xsd"
  xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
  >

  <wssp:Identity>
    <wssp:SupportedTokens>
      <wssp:SecurityToken 



Conf igur ing  Message-Leve l  Secur i t y

2-38 Securing WebLogic Web Services

        
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml
-token-profile-1.0#SAMLAssertionID">
        <wssp:Claims>
          
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
        </wssp:Claims>
      </wssp:SecurityToken>
    </wssp:SupportedTokens>
  </wssp:Identity>

</wsp:Policy>

To specify the holder-of-key confirmation method:

a. Create a <SecurityToken> child element of the  <Integrity><SupportedTokens> 
elements and set the TokenType attribute to a value that indicates SAML token usage.   

The reason you put the SAML token in the <Integrity> assertion for the  
holder-of-key confirmation method is that the Web Service runtime must prove the 
integrity of the message, which is not required by sender-vouches.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and 
specify holder-of-key.

For example:

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"
  
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
ssecurity-utility-1.0.xsd"
  xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">

  <wssp:Integrity>
    <wssp:SignatureAlgorithm
       URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
    <wssp:CanonicalizationAlgorithm
       URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

    <wssp:Target>
      <wssp:DigestAlgorithm 
         URI="http://www.w3.org/2000/09/xmldsig#sha1" />
      <wssp:MessageParts 
         Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
         wsp:Body()
      </wssp:MessageParts>
    </wssp:Target>



Using  Secur i t y  Asse r t i on  Markup  Language  (SAML)  Tokens  Fo r  Ident i t y

Securing WebLogic Web Services 2-39

    <wssp:SupportedTokens>
      <wssp:SecurityToken 
          IncludeInMessage="true" 
          
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml
-token-profile-1.0#SAMLAssertionID">
        <wssp:Claims>
          
<wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
        </wssp:Claims>
      </wssp:SecurityToken>
    </wssp:SupportedTokens>
  </wssp:Integrity>

</wsp:Policy>

c. By default, the WebLogic Web Services runtime always validates the X.509 certificate 
specified in the <KeyInfo> assertion of any associated WS-Policy file. To disable this 
validation when using SAML holder-of-key assertions, you must configure the Web 
Service security configuration associated with the Web service by setting a property on 
the SAML token handler. See “Disable X.509 certificate validation when using SAML 
holder_of_key assertions” in Administration Console Online Help for information on how 
to do this using the Administration Console.

See “Creating and Using a Custom Policy File” on page 2-21 for additional information 
about creating your own security policy file. See “Web Services Security Policy 
Assertion Reference” in WebLogic Web Services Reference for reference information 
about the assertions.

2. Update the appropriate  @Policy annotations in the JWS file that implements the Web Service 
to point to the security policy file from the preceding step.   For example, if you want invokes 
of all the operations of a Web Service to SAML for identity, specify the @Policy annotation 
at the class-level. 

You can mix and match the policy files that you associate with a Web Service, as long as 
they do not contradict each other and as long as you do not combine OASIS 
WS-SecurityPolicy 1.2 files with security policy files written under Oracle’s security 
policy schema. 

For example, you can create a simple MyAuth.xml file that contains only the <Identity> 
security assertion to specify use of SAML for identity and then associate it with the Web 
Service together with the pre-packaged Wssp1.2-2007-EncryptBody.xml and 
Wssp1.2-2007-SignBody.xml files. It is, however, up to you to ensure that multiple 
associated policy files do not contradict each other; if they do, you will either receive a 
runtime error or the Web Service might not behave as you expect.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/DisableX509Validation.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/DisableX509Validation.html
http://e-docs.bea.com/wls/docs103/webserv_ref/sec_assert.html
http://e-docs.bea.com/wls/docs103/webserv_ref/sec_assert.html


Conf igur ing  Message-Leve l  Secur i t y

2-40 Securing WebLogic Web Services

3. Recompile and redeploy your Web Service as part of the normal iterative development 
process. 

See   “Developing WebLogic Web Services” in Getting Started With WebLogic Web 
Services Using JAX-RPC.

4. Create a client application that runs in a WebLogic Server instance to invoke the main Web 
Service using SAML as identity. See “Invoking a Message-Secured Web Service From a 
Client Running in a WebLogic Server Instance” on page 2-20 for details.

Associating a Web Service with a Security Configuration 
Other Than the Default

Many use cases previously discussed require you to use the Administration Console to create the 
default Web Service security configuration called default_wss. After you create this 
configuration, it is applied to all Web Services that either do not use the 
@weblogic.jws.security.WssConfiguration JWS annotation or specify the annotation 
with no attribute.

There are some cases, however, in which you might want to associate a Web Service with a 
security configuration other than the default; such use cases include specifying different 
timestamp values for different services.

To associate a Web Service with a security configuration other than the default:

1. “Create a Web Service security configuration” in the Administration Console Online Help 
with a name that is not default_wss.

2. Update your JWS file, adding the @WssConfiguration annotation to specify the name of this 
security configuration. See “weblogic.jws.security.WssConfiguration” in the WebLogic Web 
Services Reference for additional information and an example.

WARNING: If you are going to package additional Web Services in the same Web 
application, and these Web Services also use the @WssConfiguration 
annotation, then you must specify the same security configuration for each 
Web Service. See “weblogic.jws.security.WssConfiguration” in the WebLogic 
Web Services Reference for more details.

3. Recompile and redeploy your Web Service as part of the normal iterative development 
process. 

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html
http://e-docs.bea.com/wls/docs103/webserv_ref/annotations.html#WssConfiguration
http://e-docs.bea.com/wls/docs103/webserv_ref/annotations.html#WssConfiguration


Val id  C lass  Names  and  Token  T ypes  fo r  Credent ia l  P rov ider

Securing WebLogic Web Services 2-41

See “Invoking Web Services” in Getting Started With WebLogic Web Services Using 
JAX-WS and  “DevelopingWebLogic Web Services” in Getting Started With WebLogic Web 
Services Using JAX-RPC.

WARNING: All Web Services security configurations are required to specify the same 
password digest use. Inconsistent password digest use in different Web Service 
security configurations will result in a runtime error.

Valid Class Names and Token Types for Credential 
Provider

When you create a security configuration, you need to supply the class name of the credential 
provider for this configuration. The valid class names and token types you can use are as follows:

weblogic.wsee.security.bst.ClientBSTCredentialProvider.  The token type is 
x509.

weblogic.wsee.security.unt.ClientUNTCredentialProvider.  The token type is 
ut.

weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider.  The  
token type is sct.

weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider.  The  
token type is sct.

weblogic.wsee.security.saml.SAMLTrustCredentialProvider.  The token type is 
saml.

http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html
http://e-docs.bea.com/wls/docs103/webserv/client.html


Conf igur ing  Message-Leve l  Secur i t y

2-42 Securing WebLogic Web Services

Using System Properties to Debug Message-Level 
Security

The following table lists the system properties you can set to debug problems with your 
message-secured Web Service.

Using a Client-Side Security Policy File
The section “Using Policy Files for Message-Level Security Configuration” on page 2-5 
describes how a WebLogic Web Service can be associated with one or more security policy files 
that describe the message-level security of the Web Service. These policy files are XML files that 
describe how a SOAP message should be digitally signed or encrypted and what sort of user 
authentication is required from a client that invokes the Web Service. Typically, the policy file 
associated with a Web Service is attached to its WSDL, which the Web Services client runtime 
reads to determine whether and how to digitally sign and encrypt the SOAP message request from 
an operation invoke from the client application.

Sometimes, however, a Web Service might not attach the policy file to its deployed WSDL or the 
Web Service might be configured to not expose its WSDL at all. In these cases, the Web Services 
client runtime cannot determine from the service itself the security that must be enabled for the 
SOAP message request. Rather, it must load a client-side copy of the policy file. This section 
describes how to update a client application to load a local copy of a policy file.

The client-side policy file is typically exactly the same as the one associated with a deployed Web 
Service. If the two files are different, and there is a conflict in the security assertions contained in 
the files, then the invoke of the Web Service operation returns an error.

Table 2-2  System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.dsig.verbose Boolean Prints information about digital signature 
processing.

weblogic.xml.crypto.encrypt.verbose Boolean Prints information about encryption processing.

weblogic.xml.crypto.keyinfo.verbose Boolean Prints information about key resolution processing.

weblogic.xml.crypto.wss.verbose Boolean Prints information about Web Service security 
token and token reference processing.



Us ing  a  Cl i en t-S ide  Secur i t y  Po l i cy  F i l e

Securing WebLogic Web Services 2-43

You can specify that the client-side policy file be associated with the SOAP message request, 
response, or both. Additionally, you can specify that the policy file be associated with the entire 
Web Service, or just one of its operations.

Associating a Policy File with a Client Application: Main 
Steps
The following procedure describes the high-level steps to associate a security policy file with the 
client application that invokes a Web Service operation.

It is assumed that you have created the client application that invokes a deployed Web Service, 
and that you want to update it by associating a client-side policy file. It is also assumed that you 
have set up an Ant-based development environment and that you have a working build.xml file 
that includes a target for running the clientgen Ant task. 

See “Invoking Web Services” in Getting Started With WebLogic Web Services Using JAX-WS and  
“Invoking a Web Service from a Stand-alone Client: Main Steps” in Getting Started With 
WebLogic Web Services Using JAX-RPC.

1. Create the client-side security policy files and save them in a location accessible by the client 
application. Typically, the security policy files are the same as those configured for the Web 
Service you are invoking, but because the server-side files are not exposed to the client 
runtime, the client application must load its own local copies.

See “Creating and Using a Custom Policy File” on page 2-21 for information about 
creating security policy files.

2. Update the build.xml file that builds your client application by specifying to the clientgen 
Ant task that it should generate additional getXXXPort() methods in the JAX-RPC stub, 
where XXX refers to the name of the Web Service. These methods are later used by the client 
application to load the client-side policy files. 

See “Updating clientgen to Generate Methods That Load Policy Files” on page 2-44.

3. Update your Java client application to load the client-side policy files using the additional 
getXXXPort() methods that the clientgen Ant task generates.

See “Updating a Client Application To Load Policy Files (JAX-RPC Only)” on page 2-44.

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client

http://e-docs.bea.com/wls/docs103/webserv_rpc/client.html#standalone_invoke
http://e-docs.bea.com/wls/docs103/webserv/client.html


Conf igur ing  Message-Leve l  Secur i t y

2-44 Securing WebLogic Web Services

When you next run the client application, it will load local copies of the policy files that the Web 
Service client runtime uses to enable security for the SOAP request message.

Note: If you have a Web Services operation that already have a security policy (for example, 
one that was set in the WSDL file that was stored when generating the client from the 
server policy), then when you use this procedure to programmatically set the client-side 
security policy, all previously-existing policies will be removed.

Updating clientgen to Generate Methods That Load Policy 
Files
For JAX-RPC, set the generatePolicyMethods attribute of the clientgen Ant task to true 
to specify that the Ant task should generate additional getXXX() methods in the implementation 
of the JAX-RPC Service interface for loading client-side copies of policy files when you get a 
port, as shown in the following example:

    <clientgen

      wsdl="http://ariel:7001/policy/ClientPolicyService?WSDL"

      destDir="${clientclass-dir}"

      generatePolicyMethods="true"

      packageName="examples.webservices.client_policy.client"/>

See “Updating a Client Application To Load Policy Files (JAX-RPC Only)” on page 2-44 for a 
description of the additional methods that are generated and how to use them in a client 
application.

For JAX-WS, you use the weblogic.jws.jaxws.ClientPolicyFeature class to override the 
effective policy defined for a service.  weblogic.jws.jaxws.ClientPolicyFeature extends 
javax.xml.ws.WebServiceFeature.

Updating a Client Application To Load Policy Files (JAX-RPC 
Only)
When you set generatePolicyMethods="true" for clientgen, the Ant task generates 
additional methods in the implementation of the JAX-RPC Service interface that you can use to 
load policy files, where XXX refers to the name of the Web Service. 

You can use either an Array or Set of policy files to associate multiple files to a Web Service. If 
you want to associate just a single policy file, create a single-member Array or Set.

getXXXPort(String operationName, java.util.Set<java.io.InputStream> 
inbound, java.util.Set<java.io.InputStream> outbound)



Us ing  a  Cl i en t-S ide  Secur i t y  Po l i cy  F i l e

Securing WebLogic Web Services 2-45

Loads two different sets of client-side policy files from InputStreams and associates the 
first set to the SOAP request and the second set to the SOAP response. Applies to a 
specific operation, as specified by the first parameter.

getXXXPort(String operationName, java.io.InputStream[] inbound, 
java.io.InputStream[] outbound) 

Loads two different arrays of client-side policy files from InputStreams and associates the 
first array to the SOAP request and the second array to the SOAP response. Applies to a 
specific operation, as specified by the first parameter.

getXXXPort(java.util.Set<java.io.InputStream> inbound, 
java.util.Set<java.io.InputStream> outbound)

Loads two different sets of client-side policy files from InputStreams and associates the 
first set to the SOAP request and the second set to the SOAP response. Applies to all 
operations of the Web Service.

getXXXPort(java.io.InputStream[] inbound, java.io.InputStream[] 
outbound)

Loads two different arrays of client-side policy files from InputStreams and associates the 
first array to the SOAP request and the second array to the SOAP response. Applies to all 
operations of the Web Service.

Use these methods, rather than the normal getXXXPort() method with no parameters, for getting 
a Web Service port and specifying at the same time that invokes of all, or the specified, operation 
using that port have an associated policy file or files. 

Note: The following methods from a previous release of WebLogic Server have been 
deprecated; if you want to associate a single client-side policy file, specify a 
single-member Array or Set and use the corresponding method described above.

– getXXXPort(java.io.InputStream policyInputStream); 

Loads a single client-side policy file from an InputStream and applies it to both the 
SOAP request (inbound) and response (outbound) messages. 

– getXXXPort(java.io.InputStream policyInputStream, boolean inbound, 
boolean outbound);

Loads a single client-side policy file from an InputStream and applies it to either the 
SOAP request or response messages, depending on the Boolean value of the second 
and third parameters. 

Listing 2-7 shows an example of using these policy methods in a simple client application; the 
code in bold is described after the example.



Conf igur ing  Message-Leve l  Secur i t y

2-46 Securing WebLogic Web Services

Listing 2-7   Loading Policies in a Client Application

package examples.webservices.client_policy.client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;

import java.io.FileInputStream;
import java.io.IOException;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the ClientPolicyService Web service.
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates. 
* All rights reserved.
 */

public class Main {

  public static void main(String[] args)
      throws ServiceException, RemoteException, IOException {

      FileInputStream [] inbound_policy_array = new FileInputStream[2];
      inbound_policy_array[0] = new FileInputStream(args[1]);
      inbound_policy_array[1] = new FileInputStream(args[2]);

      FileInputStream [] outbound_policy_array = new FileInputStream[2];
      outbound_policy_array[0] = new FileInputStream(args[1]);
      outbound_policy_array[1] = new FileInputStream(args[2]);

      ClientPolicyService service = new ClientPolicyService_Impl(args[0] + 
"?WSDL");

      // standard way to get the Web Service port
      ClientPolicyPortType normal_port = service.getClientPolicyPort();

      // specify an array of policy files for the request and response
      // of a particular operation
      ClientPolicyPortType array_of_policy_port = 
service.getClientPolicyPort("sayHello", inbound_policy_array, 
outbound_policy_array);

    try {
      String result = null;
      result = normal_port.sayHello("Hi there!");
      result = array_of_policy_port.sayHello("Hi there!");
      System.out.println( "Got result: " + result );



Using  WS-Secur i t yPo l i c y  1 .2  Po l i c y  F i l es

Securing WebLogic Web Services 2-47

    } catch (RemoteException e) {
      throw e;
    }
  }
}

The second and third argument to the client application are the two policy files from which the 
application makes an array of FileInputStreams (inbound_policy_array and 
outbound_policy_array). The normal_port uses the standard parameterless method for 
getting a port; the array_of_policy_port, however, uses one of the policy methods to specify 
that an invoke of the sayHello operation using the port has multiple policy files (specified with 
an Array of FileInputStream) associated with both the inbound and outbound SOAP request 
and response:

      ClientPolicyPortType array_of_policy_port =  

service.getClientPolicyPort("sayHello", inbound_policy_array, 

outbound_policy_array);

Using WS-SecurityPolicy 1.2 Policy Files
WebLogic Server includes a number of WS-SecurityPolicy files you can use in most Web 
Services applications. The policy files are located in 
BEA_HOME/WL_HOME/server/lib/weblogic.jar. Within weblogic.jar, the policy files are 
located in /weblogic/wsee/policy/runtime. 

There are two sets of these policies.  In most of the cases, they perform identical functions, but 
the policy uses different namespace. 

The first set is new in this release and has a prefix of “Wssp1.2-2007-”.  These security policy 
files conform to the OASIS WS-SecurityPolicy 1.2 specification and have the following 
namespace:
<wsp:Policy

  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

  xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

  >

The second  set carries over from WebLogic Server version 10.0 and has the prefix  “Wssp1.2-”:

<wsp:Policy

  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

  xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"

  >



Conf igur ing  Message-Leve l  Secur i t y

2-48 Securing WebLogic Web Services

Oracle recommends that you use the  new policy namespace, as those are official namespaces 
from OASIS standards and they will perform better when interoperating with other vendors. The 
old  policies having the prefix of “Wssp1.2-” are  mainly for  users who want to interoperate with 
existing applications that already use this version of the policies. 

The following sections describe the available WS-SecurityPolicy 1.2 policy files:

“Transport Level Policies” on page 2-48

“Protection Assertion Policies” on page 2-49

“WS-Security 1.0 Username and X509 Token Policies” on page 2-50

“WS-Security 1.1 Username and X509 Token Policies” on page 2-52

“WS-SecureConversation Policies” on page 2-53

“SAML Token Profile Policies” on page 2-56

In addition, see “Choosing a Policy” on page 2-57 and “Configuring Smart Policy Selection” on 
page 2-69 for information about how to choose the best security policy approach for your Web 
Services implementation and  for information about WS-SecurityPolicy 1.2 elements that are not 
supported in this release of WebLogic Server.

Transport Level Policies
These policies require use of the https protocol to access WSDL and invoke Web Services 
operations:

Table 2-3  Transport Level Policies

Policy File Description

Wssp1.2-2007-Https.xml One way SSL.

Wssp1.2-2007-Https-Basic
Auth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if 
the Authorization header is not present in the request.

Wssp1.2-2007-Https-Clien
tCertReq.xml

Two way SSL. The recipient checks for the initiator’s public 
certificate. Note that the client certificate can be used for 
authentication.

Wssp1.2-2007-Https-User
nameToken-Digest.xml

One way SSL with digest Username Token.



Using  WS-Secur i t yPo l i c y  1 .2  Po l i c y  F i l es

Securing WebLogic Web Services 2-49

Protection Assertion Policies
Protection assertions are used to identify what is being protected and the level of  protection 
provided. Protection assertion policies cannot be used alone; they should be used only in 
combination with X.509 Token Policies. For example, you might use 
Wssp1.2-2007-Wss1.1-X509-Basic256.xml together with Wssp1.2-2007-SignBody.xml. 
The following policy files provide for the protection of message parts by signing or encryption:

Wssp1.2-2007-Https-User
nameToken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-BasicAuth.
xml

One way SSL with Basic Authentication. A 401 challenge occurs if 
the Authorization header is not present in the request.

Wssp1.2-Https-UsernameT
oken-Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-UsernameT
oken-Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-ClientCert
Req.xml

Two way SSL. The recipient checks for the initiator’s public 
certificate. Note that the client certificate can be used for 
authentication.

Table 2-4  Protection Assertion Policies

Policy File Description

Wssp1.2-2007-SignBod
y.xml

All message body parts are signed.

Wssp1.2-2007-Encrypt
Body.xml

All message body parts are encrypted.

Table 2-3  Transport Level Policies

Policy File Description



Conf igur ing  Message-Leve l  Secur i t y

2-50 Securing WebLogic Web Services

WS-Security 1.0 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of 
WS-Security 1.0:

Wssp1.2-2007-Sign-Ws
a-Headers.xml

WS-Addressing headers are signed.

Wssp1.2-SignBody.xml All message body parts are signed.

Wssp1.2-EncryptBody.
xml

All message body parts are encrypted.

Wssp1.2-Sign-Wsa-Hea
ders.xml

WS-Addressing headers are signed.

Table 2-5  WS-Security 1.0 Policies

Policy File Description

Wssp1.2-2007-Wss1.0-
X509-Basic256.xml

Mutual Authentication with X.509 Certificates. The message is 
signed and encrypted on both request and response. The 
algorithm of Basic256 should be used for both sides.

Wssp1.2-2007-Wss1.0-
UsernameToken-Digest
-X509-Basic256.xml

Username token with digested password is sent in the request 
for authentication. The encryption method is Basic256.

Wssp1.2-2007-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

Username token with plain text password is sent in the request 
for authentication, signed with the client's private key and 
encrypted with server's public key. The client also signs the 
request body and includes its public certificate, protected by 
the signature in the message. The server signs the response 
body with its private key and sends its public certificate in the 
message. Both request and response messages include signed 
time stamps. The encryption method is Basic256. 

Table 2-4  Protection Assertion Policies

Policy File Description



Using  WS-Secur i t yPo l i c y  1 .2  Po l i c y  F i l es

Securing WebLogic Web Services 2-51

Wssp1.2-Wss1.0-Usern
ameToken-Plain-X509-
Basic256.xml

Username token with plain text password is sent in the request 
for authentication, signed with the client's private key and 
encrypted with server's public key. The client also signs the 
request body and includes its public certificate, protected by 
the signature in the message. The server signs the response 
body with its private key and sends its public certificate in the 
message. Both request and response messages include signed 
time stamps. The encryption method is Basic256. 

Wssp1.2-Wss1.0-Usern
ameToken-Plain-X509-
TripleDesRsa15.xml

Username token with plain text password is sent in the request 
for authentication, signed with the client's private key and 
encrypted with server's public key. The client also signs the 
request body and includes its public certificate, protected by 
the signature in the message. The server signs the response 
body with its private key and sends its public certificate in the 
message. Both request and response messages include signed 
time stamps. The encryption method is TripleDes.

Wssp1.2-Wss1.0-Usern
ameToken-Digest-X509
-Basic256.xml

Username token with digested password is sent in the request 
for authentication. The encryption method is Basic256.

Wssp1.2-Wss1.0-Usern
ameToken-Digest-X509
-TripleDesRsa15.xml

Username token with digested password is sent in the request 
for authentication. The encryption method is TripleDes.

Wssp1.2-Wss1.0-X509-
Basic256.xml

Mutual Authentication with X.509 Certificates. The message is 
signed and encrypted on both request and response. The 
algorithm of Basic256 should be used for both sides.

Wssp1.2-Wss1.0-X509-
TripleDesRsa15.xml

Mutual Authentication with X.509 Certificates and message is 
signed and encrypted on both request and response. The 
algorithm of TripleDes should be used for both sides

Wssp1.2-Wss1.0-X509-
EncryptRequest-SignRe
sponse.xml

This policy is used where only the server has X.509v3 
certificates (and public-private key pairs). The request is 
encrypted and the response is signed.

Table 2-5  WS-Security 1.0 Policies

Policy File Description



Conf igur ing  Message-Leve l  Secur i t y

2-52 Securing WebLogic Web Services

WS-Security 1.1 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of 
WS-Security 1.1:

Table 2-6  WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-2007-Wss1.1-X5
09-Basic256.xml

WSS 1.1 X509 with asymmetric binding.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Digest-X50
9-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication with 
digested Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-X509-
Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication with 
plain-text Username Token.

Wssp1.2-2007-Wss1.1-En
cryptedKey-X509-SignedE
ndorsing.xml

WSS 1.1 X509 with symmetric binding and protected by signed 
endorsing supporting token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Digest-Encr
yptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with 
digested Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-Encry
ptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with 
plain-text Username Token.

Wssp1.2-2007-Wss1.1-DK
-X509-SignedEndorsing.x
ml

WSS 1.1 X509 with derived key symmetric binding and protected by 
signed endorsing supporting token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Digest-DK.x
ml

WSS 1.1 X509 with derived key symmetric binding and 
authentication with digested Username Token.

Wssp1.2-2007-Wss1.1-Us
ernameToken-Plain-DK.x
ml

WSS 1.1 X509 with derived key symmetric binding and 
authentication with plain-text Username Token.



Using  WS-Secur i t yPo l i c y  1 .2  Po l i c y  F i l es

Securing WebLogic Web Services 2-53

WS-SecureConversation Policies
The following policies implement  WS-SecureConversation 1.3 and WS-SecureConversation 
2005/2:

Wssp1.2-Wss1.1-X509-Ba
sic256.xml

This policy is similar to policy Wssp1.2-Wss1.0-X509-Basic256.xml 
except it uses additional WS-Security 1.1 features, including 
Signature Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-Encrypte
dKey.xml

This is a symmetric binding policy that uses the WS-Security 1.1 
Encrypted Key feature for both signature and encryption. It also uses 
WS-Security 1.1 features, including Signature Confirmation and 
Thumbprint key reference.

Wssp1.2-Wss1.1-Usernam
eToken-DK.xml

WSS 1.1 X509 with derived key symmetric binding and 
authentication with plain-text Username Token.

Wssp1.2-Wss1.1-Encrypte
dKey-X509-SignedEndorsi
ng.xml

This policy has all of the features defined in policy 
Wssp1.2-Wss1.1-EncryptedKey.xml, and in addition it uses sender's 
key to endorse the message signature. The endorsing key is also signed 
with the message signature.

Wssp1.2-Wss1.1-DK.xml This policy has all of features defined in policy 
Wssp1.2-Wss1.1-EncryptedKey.xml, except that instead of using an 
encrypted key, the request is signed using DerivedKeyToken1, then 
encrypted using a DerivedKeyToken2. Response is signed using 
DerivedKeyToken3, and encrypted using DerivedKeyToken4.

Wssp1.2-Wss1.1-DK-X50
9-Endorsing.xml

This policy has all features defined in policy 
Wssp1.2-Wss1.1-DK.xml, and in addition it uses the sender's key to 
endorse the message signature.

Wssp1.2-Wss1.1-X509-En
cryptRequest-SignRespons
e.xml

This policy is similar to policy 
Wssp1.2-Wss1.0-X509-EncryptRequest-SignResponse.xml, except 
that it uses additional WSS 1.1 features, including Signature 
Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-X509-Si
gnRequest-EncryptRespon
se.xml

This policy is the reverse of policy 
Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.xml: the 
request is signed and the response is encrypted.

Table 2-6  WS-Security 1.1 Username and X509 Token Policies

Policy File Description



Conf igur ing  Message-Leve l  Secur i t y

2-54 Securing WebLogic Web Services

Table 2-7  WS-SecureConversation Policies

Policy File Description

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https-BasicAuth.
xml

One way SSL with Basic Authentication. Timestamp is included.  The 
algorithm suite is Basic256.  The signature is encrypted.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https-ClientCertR
eq.xml

Two way SSL. The recipient checks for the initiator's public 
certificate. Note that the client certificate can be used for 
authentication.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https-UNT.xml

SSL Username token authentication.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages) occurs in https 
transport. The application messages are signed and encrypted with 
DerivedKeys.  The signature is also encrypted.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0. 
The application messages are signed and encrypted with 
DerivedKeys. The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages are both signed 
and encrypted.  The WS-Addressing headers are signed. Timestamp is 
included and signed. The signature is encrypted. The algorithm suite 
is Basic256.

Wssp1.2-2007-Wssc1.3-B
ootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1. 
The application messages are signed and encrypted with 
DerivedKeys. The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages are both signed 
and encrypted. The WS-Addressing headers are signed. Signature and 
encryption use derived keys from an encrypted key.

Wssp1.2-Wssc1.3-Bootstra
p-Https-BasicAuth.xml

One way SSL with Basic Authentication. Timestamp is included.  The 
algorithm suite is Basic256.  The signature is encrypted.

Wssp1.2-Wssc1.3-Bootstra
p-Https-ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public 
certificate. Note that the client certificate can be used for 
authentication.



Using  WS-Secur i t yPo l i c y  1 .2  Po l i c y  F i l es

Securing WebLogic Web Services 2-55

Wssp1.2-Wssc1.3-Bootstra
p-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages) occurs in https 
transport. The application messages are signed and encrypted with 
DerivedKeys.  The signature is also encrypted.

Wssp1.2-Wssc1.3-Bootstra
p-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0. 
The application messages are signed and encrypted with 
DerivedKeys. The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages are both signed 
and encrypted.  The WS-Addressing headers are signed. Timestamp is 
included and signed. The signature is encrypted. The algorithm suite 
is Basic256.

Wssp1.2-Wssc1.3-Bootstra
p-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1. 
The application messages are signed and encrypted with 
DerivedKeys. The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages are both signed 
and encrypted. The WS-Addressing headers are signed. Signature and 
encryption use derived keys from an encrypted key.

Wssp1.2-Wssc200502-Bo
otstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and 
RequestSecurityTokenResponse messages) occurs in https transport. 
The application messages are signed and encrypted with 
DerivedKeys.

Wssp1.2-Wssc200502-Bo
otstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0. 
The application messages are signed and encrypted with 
DerivedKeys. The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponse messages are both signed and 
encrypted. The WS-Addressing headers are signed. Timestamp is 
included and signed. The algorithm suite is Basic128.

Wssp1.2-Wssc200502-Bo
otstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1. 
The application messages are signed and encrypted with 
DerivedKeys. The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponse messages are both signed and 
encrypted. The WS-Addressing headers are signed. Signature and 
encryption use derived keys from an encrypted key.

Table 2-7  WS-SecureConversation Policies

Policy File Description



Conf igur ing  Message-Leve l  Secur i t y

2-56 Securing WebLogic Web Services

SAML Token Profile Policies
The policies shown in Table 2-8  implement WS-Security SAML Token Profile 1.0 and 1.1.

Table 2-8  WS-Security SAML Token Profile Policies 

Policy File Description 

Wssp1.2-2007-Saml1.1-Se
nderVouches-Wss1.0.xml

The message is signed and encrypted on both request and response 
with WSS1.0 asymmetric binding. SAML 1.1 token is sent in the 
request for authentication with Sender Vouches confirmation method, 
signed by the X509 token. 

Wssp1.2-2007-Saml1.1-Se
nderVouches-Wss1.1.xml

The message is signed and encrypted on both request and response 
with WSS1.1  X509 symmetric binding.  SAML 1.1 token is sent in 
the request for authentication with Sender Vouches confirmation 
method, signed by the X509 token.

Wssp1.2-2007-Saml2.0-Se
nderVouches-Wss1.1.xml

The message is signed and encrypted on both request and response 
with WSS1.1  X509 symmetric binding.  SAML 2.0 token is sent in 
the request for authentication with Sender Vouches confirmation 
method, signed by the X509 token.

Wssp1.2-2007-Saml2.0-Se
nderVouches-Wss1.1-Asy
mmetric.xml

The message is signed and encrypted on both request and response 
with WSS1.1 asymmetric binding. It uses additional WS-Security 1.1 
features, including Signature Confirmation and Thumbprint key 
reference. SAML 2.0 token is sent in the request for authentication 
with Sender Vouches confirmation method, signed by the X509 token.

Wssp1.2-2007-Saml1.1-H
olderOfKey-Wss1.0.xml

The message is signed and encrypted on both request and response 
with WSS1.0 asymmetric binding. SAML 1.1 token is sent in the 
request for authentication with Holder of Key confirmation method, in 
which the key inside the SAML Token is used for the signature.

Wssp1.2-2007-Saml1.1-H
olderOfKey-Wss1.1-Asym
metric.xml

The message is signed and encrypted on both request and response 
with WSS1.1 asymmetric binding. It uses additional WS-Security 1.1 
features, including Signature Confirmation and Thumbprint key 
reference. SAML 1.1 token is sent in the request for authentication 
with Holder of Key confirmation method, in which the key inside the 
SAML Token is used for the signature.



Choos ing  a  Po l i cy

Securing WebLogic Web Services 2-57

Choosing a Policy
WebLogic Server's implementation of WS-SecurityPolicy 1.2 makes a wide variety of security 
policy alternatives available to you. When choosing a security policy for your Web Service, you 
should consider your requirements in these areas:

Performance

Security

Interoperability

Credential availability (X.509 certificate, username token, clear or digest password)

Whenever possible, Oracle recommends that you:

Use a policy packaged in WebLogic Server rather than creating a custom policy.

Use a WS-SecurityPolicy 1.2 policy rather than a WebLogic Server 9.x style policy, unless 
you require features that are not yet supported by WS-SecurityPolicy 1.2 policies. 

Use transport-level policies (Wssp1.2-2007-Https-*.xml) only where message-level 
security is not required.

Use WS-Security 1.0 policies if you require interoperability with that specification. Use 
one of the following, depending on your authentication requirements and credential 
availability:
– Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

– Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

Wssp1.2-2007-Saml2.0-H
olderOfKey-Wss1.1-Asym
metric.xml

The message is signed and encrypted on both request and response 
with WSS1.1 asymmetric binding. It uses additional WS-Security 1.1 
features, including Signature Confirmation and Thumbprint key 
reference. SAML 2.0 token is sent in the request for authentication 
with Holder of Key confirmation method, in which the key inside the 
SAML Token is used for the signature.

Wssp1.2-2007-Saml2.0-Be
arer-Https.xml

One way SSL uses SAML 2.0 token with Bearer confirmation method 
for Authentication. 

Table 2-8  WS-Security SAML Token Profile Policies 

Policy File Description 



Conf igur ing  Message-Leve l  Secur i t y

2-58 Securing WebLogic Web Services

– Wssp1.2-2007-Wss1.0-X509-Basic256.xml

Use WS-Security 1.1 policies if you have strong security requirements. Use one of the 
following:
– Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

Use a WS-SecureConversation policy where WS-ReliableMessaging plus security are 
required:
– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

Unsupported WS-SecurityPolicy 1.2 Assertions
The WS-SecurityPolicy 1.2 assertions in  Table 2-9 are not supported in this release of WebLogic 
Server.

. 

Table 2-9  Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificati
on

Assertion Remarks

5.1.1 TokenInclusion includeTokenPolicy=Once is not supported.

5.4.1 UsernameToken Only <sp:UsernameToken11> and Password 
Derived Keys are not supported in this release. 
Other Username Tokens assertions are 
supported.

5.4.2 IssuedToken WS-Trust Policy assertion is not supported in 
this release.



Unsuppor ted  WS-Secur i t yPo l i c y  1 .2  Asse r t i ons

Securing WebLogic Web Services 2-59

5.4.3 X509Token Support all token types, except X509V1. 
<sp:WssX509V1Token10> and 
<sp:WssX509V1Token11> are not supported 
in this release.

5.4.4 KerberosToken Not supported in this release.

5.4.5 SpnegoContextToken Not supported in this release.

5.4.9 RelToken Not supported in this release.

5.4.11 KeyValueToken Not supported in this release.

6.5 Token Protection Token Protection in cases where 
includeTokenPolicy="Never", or in cases 
where the Token is not in the Message, is not 
supported in this release.

7.1 AlgorithmSuite /sp:AlgorithmSuite/wsp:Policy/sp:XPathFilter
20 assertion, 
/sp:AlgorithmSuite/wsp:Policy/sp:XPath10 
assertion and 
/sp:AlgorithmSuite/wsp:Policy/sp:SoapNormal
ization10 are not supported in this release. 

8.1 SupportingTokens Not supported in this release:

../sp:SignedParts assertion, 

../sp:SignedElements assertion 

../sp:EncryptedParts assertion 

../sp:EncryptedElements assertion

8.2
8.3
8.4
8.5

SignedSupportingTokens
EndorsingSupportingTokens
SignedEndorsingSupportingTok
ens
SignedEncrtptedSupportingTok
ens

Not supported in this release:

../sp:SignedParts assertion 

../sp:SignedElements assertion 

../sp:EncryptedParts assertion 

../sp:EncryptedElements assertion

The runtime will not be able to endorse the 
supporting token in cases where the token is not 
in the Message (such as for 
includeTokenPolicy=Never/Once).

Table 2-9  Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificati
on

Assertion Remarks



Conf igur ing  Message-Leve l  Secur i t y

2-60 Securing WebLogic Web Services

Using the Optional Policy Assertion
WebLogic Server 10.3 supports the Optional WS-Policy assertion. Consider the use of 
Optional in the following example:  

<sp:SignedEncryptedSupportingTokens>

<wsp:Policy>

<sp:UsernameToken

sp:IncludeToken="…/IncludeToken/AlwaysToRecipient" 

wsp:Optional="true" >

<wsp:Policy>

<sp:WssUsernameToken10/>

</wsp:Policy>

8.6 EncryptedSupportingTokens UserName Token is the only 
EncryptionSupportingTokens supported in this 
release. 

Other type of tokens are not supported.

8.7 EndorsingEncryptedSupporting
Tokens

Not supported in this release.

8.8 SignedEndorsingEncryptedSup
portingTokens

Not supported in this release.

9.1 WSS10 Assertion <sp:MustSupportRefExternalURI> and 
<sp:MustSupportRefEmbeddedToken> are not 
supported in this release.

9.2 WSS11 Assertion <sp:MustSupportRefExternalURI> and 
<sp:MustSupportRefEmbeddedToken> are not 
supported in this release.

10.1 Trust13 Assertion MustSupportClientChallenge, 
MustSupportServerChallenge are not supported 
in this release. This assertion is supported only 
in WS-SecureConversation policy.

Table 2-9  Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificati
on

Assertion Remarks



Conf igur ing  E lement-Leve l  Secur i ty

Securing WebLogic Web Services 2-61

</sp:UsernameToken>

</wsp:Policy>

</sp:SignedEncryptedSupportingTokens> 

In the example, specifying the Username Token for authorization is optional. The client can 
continue if it cannot generate the Username Token because the user is anonymous or when there 
is no security context. 

During the Security Policy enforcement process, the message is not rejected if the missing 
element has the Policy assertion with the attribute of wsp:Optional="true". 

The following security policy assertions are now supported by the Optional policy assertion: 

Username Token 

SAML Token 

Signature parts or signature elements 

Encryption parts or encryption elements 

Derive Key Token 

Configuring Element-Level Security
WebLogic Server supports the element-level assertions defined in WS-SecurityPolicy 1.2. These 
assertions allow you to apply a signature or encryption to selected elements within the SOAP 
request or response message, enabling you to target only the specific data in the message that 
requires security and thereby reduce the computational requirements.  

In addition, the assertion RequiredElements allows you to ensure that the message contains a 
specific header element.

The following element-level assertions are available:

EncryptedElements

ContentEncryptedElements

SignedElements

RequiredElements

In order to specify an element-level assertion, you must identify the particular  request element 
or response element to which it applies. 

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826513


Conf igur ing  Message-Leve l  Secur i t y

2-62 Securing WebLogic Web Services

You use XPath expressions in policy files to identify these elements, via  either XPath Version 
1.0 (http://www.w3.org/TR/xpath) or XPath Filter Version 2.0 
(http://www.w3.org/TR/xmldsig-filter2/) syntax.  The examples in this section use the default 
syntax, XPath Version 1.0.

Because each of these assertions identifies one or more particular elements in Web Service 
message, you must use custom security policy files for all element-level security assertions. 
These custom policy files are typically combined with pre-packaged security policy files, with 
the pre-packaged files defining the way that signing or encryption is performed, and the custom 
policy files identifying the particular elements that are to be signed or encrypted.

Define and Use a Custom Element-Level Policy File
The first step is to determine the XPath expression that identifies the target element. To do this, 
you need to understand the format of the SOAP messages used by your web service, either 
through direct inspection or via analysis of the service’s WSDL and XML Schema. 

How you determine the format of the SOAP message, and therefore the required XPath 
expression, is heavily dependent on the tools you have available and is outside the scope of this 
document.  For example, you might do the following:

1. Run the Web Service without element-level security.

2. Turn on SOAP tracing.

3. Inspect the SOAP message in the logs.

4. Produce the XPath expression from the SOAP message. 

Or, you might have a software tool that allows you to produce a sample SOAP request for a given 
WSDL, and then use it to generate the XPath expression.

Consider the example of a Web Service that has a “submitOrderRequest” operation that will 
receive a SOAP request of the form shown in Listing 2-8.  

The sections in bold will be later used to construct the custom element-level policy.

Listing 2-8   submitOrderRequest SOAP Request

<env:Envelope 

        xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

  <env:Header/>



Conf igur ing  E lement-Leve l  Secur i ty

Securing WebLogic Web Services 2-63

  <env:Body>

    <ns1:submitOrderRequest

            xmlns:ns1="http://www.bea.com/OrderService">

      <ns1:OrderRequest>

        <ns1:orderNumber>4815162342</ns1:orderNumber>

        <ns1:creditCard>

          <ns1:cctype>MasterCard</ns1:cctype>

          <ns1:expires>12-01-2020</ns1:expires>

          <ns1:ccn>1234-567890-4444</ns1:ccn>

        </ns1:creditCard>

      </ns1:OrderRequest>

    </ns1:submitOrderRequest>

  </env:Body>

</env:Envelope>

Assume that you require that the <ns1:creditCard> element and its child elements be 
encrypted. To do this, you use the information obtained from the bold sections of  Listing 2-8 to 
create a custom security policy file, perhaps called EncryptCreditCard.xml.

Consider the example shown in Listing 2-9.

Listing 2-9   EncryptCreditCard.xml Custom Policy File

<?xml version="1.0"?>

<wsp:Policy 

xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512”>

<sp:EncryptedElements 

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/”>



Conf igur ing  Message-Leve l  Secur i t y

2-64 Securing WebLogic Web Services

<sp:XPath xmlns:myns="http://www.bea.com/OrderService”>

/soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/m

yns:creditCard

</sp:XPath>

</sp:EncryptedElements>

</wsp:Policy>

As described in the WS-SecurityPolicy  1.2 Specification, the 
/sp:EncryptedElements/sp:XPath element contains a string specifying an XPath expression 
that identifies the nodes to be confidentiality protected. The XPath expression is evaluated against 
the S:Envelope element node of the message. Multiple instances of this element may appear 
within this assertion and should be treated as separate references.

Note the following:

The root element must be <wsp:Policy> with the prefix (in this case wsp) mapping to the 
full WS-Policy namespace.

The assertion (in this case EncryptedElements) must also be namespace-qualified with 
the full WS-SecurityPolicy 1.2 namespace, as indicated by the “sp” prefix.

The creditCard element in the SOAP message is namespace-qualified (via the ns1 
prefix), and has parent elements: OrderRequest, submitOrderRequest, Body, and 
Envelope. Each of these elements is namespace-qualified. 

The XPath query (beginning with /soapenv:Envelope…) matches the location of the 
creditCard element:

    
/soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderReques
t/myns:creditCard

The namespace prefixes in the SOAP message need not match the prefixes in the custom 
security policy file. It is important only that the full namespaces to which the prefixes map  
are the same in both the message and policy assertion.

WebLogic Server handles the mapping of SOAP 1.1 and SOAP 1.2 namespaces, and 
WS-Addressing 2004/08 and WS-Addressing 1.0 namespaces.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516


Conf igur ing  E lement-Leve l  Secur i ty

Securing WebLogic Web Services 2-65

Adding the Policy Annotation to JWS File
After you have created your custom policy, add a Policy annotation to your JWS file so that the 
ElementEncryption policy is used for submitOrder web service requests, as shown in 
Listing 2-10.  

Listing 2-10   Adding Policy Annotation for Custom Policy File

@WebMethod

@Policies({

@Policy(uri=”policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plan-X509-Basic256

.xml”),

@Policy(uri=”../policies/EncryptCreditCard.xml”,

direction=Policy.Direction.inbound)})

public String submitOrderRequest (OrderRequest orderRequest) {

    return orderService.processOrder(orderRequest);

}

Because the creditCard element is present in the SOAP request, but not the response, the code 
fragment configures the EncryptedElements custom policy only in the “inbound” direction.

Implementation Notes
Keep the following considerations in mind when implementing element-level security:

You can include multiple element-level assertions in a policy; all are executed.

You can include multiple <sp:XPath> expressions in a single assertions; all are executed.

The EncryptedElements assertion causes the identified element and all of its children to 
be encrypted. 

The ContentEncryptedElements assertion does  not encrypt the identified element, but 
does encrypt all of its children.



Conf igur ing  Message-Leve l  Secur i t y

2-66 Securing WebLogic Web Services

The RequiredElements assertion may be used to test for the presence of a top-level 
element in the SOAP header. If the element is not found, a SOAP Fault will be raised. 

RequiredElements assertions cannot be used to test for elements in the SOAP Body.

Smart Policy Selection
Multiple policy alternatives for any given Web Service are supported, which provides the service 
with significant flexibility.  

Consider that a Web Service might support any of the following:

Different versions of the standard. For example, the Web Service might allow WSRM 1.0 
and WSRM 1.1, WSS1.0 and WSS 1.1, WSSC 1.1 and WWSSC 1.2, SAML 1.1 or SAML 
2.0. 

Different credentials for authentication. For example, the Web Service might allow either 
username token,  X509, or SAML token for authentication. 

Different security requirements for internal and external clients. For example, external 
authentication might require a SAML token,  while internal employee authentication  
requires only a username token for authentication. 

The Web Services client can also handle multiple policy alternatives. The same client can 
interoperate with different services that have different policy or policy alternatives. 

For example, the same client can talk to one service that requires SAML 1.1 Token Profile 1.0 
for authentication, while another service requires SAML 2.0 Token Profile 1.1 for authentication.

Example of Security Policy With Policy Alternatives
Listing 2-11 shows an example of a security policy that supports both WS-Security 1.0 and 
WS-Security 1.1. 

Note: Within the <wsp:ExactlyOne> element, each policy alternative is encapsulated within a 
<wsp:All> element. 

Listing 2-11   Policy Defining Multiple Alternatives

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
<wsp:ExactlyOne>



Smart  Po l i c y  Se lec t ion

Securing WebLogic Web Services 2-67

  <wsp:All>
    <sp:AsymmetricBinding>
      <wsp:Policy>
        <sp:InitiatorToken>
          <wsp:Policy>
             <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/AlwaysToRecipient">
               <wsp:Policy>
                 <sp:WssX509V3Token10/>
               </wsp:Policy>
             </sp:X509Token>
          </wsp:Policy>
        </sp:InitiatorToken>
        <sp:RecipientToken>
          <wsp:Policy>
             <sp:X509Token
             
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/Never">
               <wsp:Policy>
                 <sp:WssX509V3Token10/>
               </wsp:Policy>
             </sp:X509Token>
          </wsp:Policy>
        </sp:RecipientToken>
        <sp:AlgorithmSuite>
          <wsp:Policy>
            <sp:Basic256/>
          </wsp:Policy>
        </sp:AlgorithmSuite>
        <sp:Layout>
          <wsp:Policy>
            <sp:Lax/>
          </wsp:Policy>
        </sp:Layout>
        <sp:IncludeTimestamp/>
        <sp:ProtectTokens/>
        <sp:OnlySignEntireHeadersAndBody/>
      </wsp:Policy>
    </sp:AsymmetricBinding>
    <sp:SignedParts>
      <sp:Body/>
    </sp:SignedParts>
    <sp:Wss10>
      <wsp:Policy>
        <sp:MustSupportRefKeyIdentifier/>
        <sp:MustSupportRefIssuerSerial/>
      </wsp:Policy>



Conf igur ing  Message-Leve l  Secur i t y

2-68 Securing WebLogic Web Services

    </sp:Wss10>
  </wsp:All>
  <wsp:All>
    <sp:AsymmetricBinding>
      <wsp:Policy>
        <sp:InitiatorToken>
          <wsp:Policy>
            <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/AlwaysToRecipient">
              <wsp:Policy>
                <sp:RequireThumbprintReference/>
                <sp:WssX509V3Token11/>
              </wsp:Policy>
            </sp:X509Token>
          </wsp:Policy>
        </sp:InitiatorToken>
        <sp:RecipientToken>
          <wsp:Policy>
            <sp:X509Token
            
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/Never">
              <wsp:Policy>
                <sp:RequireThumbprintReference/>
                <sp:WssX509V3Token11/>
              </wsp:Policy>
            </sp:X509Token>
          </wsp:Policy>
        </sp:RecipientToken>
        <sp:AlgorithmSuite>
          <wsp:Policy>
            <sp:Basic256/>
          </wsp:Policy>
        </sp:AlgorithmSuite>
        <sp:Layout>
          <wsp:Policy>
            <sp:Lax/>
          </wsp:Policy>
        </sp:Layout>
        <sp:IncludeTimestamp/>
        <sp:ProtectTokens/>
          <sp:OnlySignEntireHeadersAndBody/>
        </wsp:Policy>
      </sp:AsymmetricBinding>
      <sp:SignedParts>
        <sp:Body/>
      </sp:SignedParts>
      <sp:Wss11>



Smart  Po l i c y  Se lec t ion

Securing WebLogic Web Services 2-69

        <wsp:Policy>
          <sp:MustSupportRefKeyIdentifier/>
          <sp:MustSupportRefIssuerSerial/>
          <sp:MustSupportRefThumbprint/>
          <sp:MustSupportRefEncryptedKey/>
          <sp:RequireSignatureConfirmation/>
        </wsp:Policy>
      </sp:Wss11>
    </wsp:All>
  </wsp:ExactlyOne>
</wsp:Policy>

Configuring Smart Policy Selection
You can configure multiple policy alternatives for a single Web Service by creating a custom  
policy, as shown in Listing 2-11. You then configure the Web Service client  to make a policy 
selection preference.  

In this release of WebLogic Server, you can configure the policy selection preferences for the 
Web Service client by using the WebLogic Server Administration Console, and via stub 
properties.  

The following preferences are supported: 

Security 

Performance 

Compatibility 

How the Policy Preference is Determined
The Web Services runtime  uses your policy selection preference to examine the policy 
alternatives and select the best choice. 

If there are multiple policy choices, the system uses the configured preference list, the availability 
of the credential, and setting of the optional function to determine the best selection policy. 

If multiple policy alternatives exist for a client, the following selection rules are used: 

If the preference is not set, the first policy alternative will be picked, except if the policy 
alternative is defined as wsp:optional=true. 



Conf igur ing  Message-Leve l  Secur i t y

2-70 Securing WebLogic Web Services

If the preference is set to security first, then the policy that has the most security features is 
selected. 

If the preference is set to compatibility/interop first, then the policy that has the lowest 
version is selected. 

If the preference is set to performance first, then the policy with the fewest security 
features is selected. 

For the optional policy assertions, the following selection rules are used: 

If the default policy selection preference is set, then the optional attribute on any assertion 
is ignored. 

If the Compatibility or Performance preference is set, then any assertion with an optional 
attribute is ignored; therefore the assertion is ignored. 

If the security policy selection preference is set, optional assertions are included and 
alternative assertions are never generated. 

Configuring Smart Policy Selection in the Console
Perform the following steps to configure smart policy selection in the Console:

1. If you do not already have a functional Web Services security configuration,  create a Web 
Services security configuration as described in the online help.

2. Edit the Web Services security configuration.  On the General tab, set the Policy Selection 
Preference.   The following values are supported:

– None (default) 

– Security then Compatibility then Performance (SCP)

– Security then Performance then Compatibility  (SPC)

– Compatibility then Security then Performance  (CSP)

– Compatibility then Performance then Security (CPS)

– Performance then Compatibility then Security (PCS)

– Performance then Security then Compatibility (PSC

3. Save and activate your changes. 

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html


Smart  Po l i c y  Se lec t ion

Securing WebLogic Web Services 2-71

Understanding Body Encryption in Smart Policy
In smart policy selection scenarios, whether or not the Body will be encrypted (for example, 
<sp:EncryptedParts> <sp:Body /></sp:EncryptedParts>) depends on the following 
policy selection preference rules:

Default -- The first policy alternative will be used for the determination. If the encrypted 
body assertion is in the first policy alternative, the body is encrypted.  If the encrypted 
body assertion is not in the first policy alternative, the body is not encrypted.  

SCP, SPC -- encrypted

PCS, PSC -- not encrypted

CPS -- not encrypted

CSP -- encrypted

Consider the following two examples. In  Listing 2-12,  the encrypted body assertion is in the first 
policy alternative.  Therefore,  in the default preference case the body is encrypted.  For policy 
selection preferences other than the default, the other preference rules apply.

Listing 2-12   Body Assertion in First Policy Alternative

<?xml version="1.0"?>

<wsp:Policy

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

>

<wsp:ExactlyOne>

<sp:EncryptedParts>

<sp:Body/>

</sp:EncryptedParts>

<sp:EncryptedParts/>

</wsp:ExactlyOne>

</wsp:Policy>



Conf igur ing  Message-Leve l  Secur i t y

2-72 Securing WebLogic Web Services

By contrast, in  Listing 2-13,  the encrypted body assertion is not in the first policy alternative. 
Therefore,  in the default preference case the body is not encrypted.  For policy selection 
preferences other than the default, the other preference rules apply.

Listing 2-13   Body Assertion Not in First Policy Alternative

<?xml version="1.0"?>

<wsp:Policy

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

>

<wsp:ExactlyOne>

<sp:EncryptedParts/>

<sp:EncryptedParts>

<sp:Body/>

</sp:EncryptedParts>

</wsp:ExactlyOne>

</wsp:Policy>

Smart Policy Selection for a Standalone Client
You can set the  policy selection preference  via the stub property. 

The following example sets the stub property for security, compatibility, and performance 
preferences: 
stub._setProperty(WLStub.POLICY_SELECTION_PREFERENCE, 

WLStub.PREFERENCE_SECURITY_COMPATIBILITY_PERFORMANCE); 

If the policy selection preference is not set, then the default preference (None) is used. 

Multiple Transport Assertions
If there are multiple available transport-level assertions in your security policies, WebLogic 
Server uses the policy that requires https. If more than one policy alternative requires https, 
WebLogic Server randomly picks one of them. You should therefore avoid using multiple policy 
alternatives that contain mixed transport-level policy assertions.



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-73

Example of Adding Security to MTOM Web Service
As described in Optimizing Binary Data Transmission Using MTOM/XOP,  SOAP Message 
Transmission Optimization Mechanism/XML-binary Optimized Packaging (MTOM/XOP) 
defines a method for optimizing the transmission of XML data of type xs:base64Binary or 
xs:hexBinary in SOAP messages.

This section describes a combination of two examples that are already included with WebLogic 
Server : 

WL_HOME\samples\server\examples\src\examples\webservices\wss1.1

WL_HOME\samples\server\examples\src\examples\webservices\mtom.  

These existing  examples include functional code and extensive instructions.html files that 
describes their use and function, how to build them, and so forth  This section does not repeat that 
information, but instead concentrates on the changes made to these examples, and the reasons for 
the changes.

Files Used by This Example
The example uses the files shown in Table 2-10. The contents of the source files are shown in 
subsequent sections.:

Table 2-10  Files Used in MTOM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the 
example.

configWss.py WLST script that configures a Web Service security configuration.  
This file is copied without change from 
WL_HOME\samples\server\examples\src\examples\web
services\wss1.1

MtomClient.java Standalone client application that invokes the MTOM Web Service. 
This file uses the JAX-RPC Stubs generated by clientgen, based on the 
WSDL of the Web Service.

SecurityMtomService.java JWS file that implements the MTOM Web Service. The JWS file uses 
the @Policy annotation to specify the WS-Policy files that are 
associated with the Web Service. 

http://e-docs.bea.com/wls/docs103/webserv_adv/mtom.html


Conf igur ing  Message-Leve l  Secur i t y

2-74 Securing WebLogic Web Services

SecurityMtomService.java
The SecurityMtomService.java JWS file is the same as that in  
WL_HOME\samples\server\examples\src\examples\webservices\mtom\MtomService.
java, with the additional Policy annotations shown in bold.   

Listing 2-14   SecurityMtomService.java

package examples.webservices.security_mtom;

import weblogic.jws.Binding;

import weblogic.jws.Policy;

import weblogic.jws.Policies;

import weblogic.jws.Context;

import weblogic.jws.WLDeployment;

import weblogic.wsee.jws.JwsContext;

clientkeyStore.jks Client-side key store, used to create a client-side BinarySecurityToken 
credential provider. 

This file is copied without change from 
WL_HOME\samples\server\examples\src\examples\web
services\wss1.1\certs

serverkeyStore.jks Server-side key store, used to create a  Server-side 
BinarySecurityToken credential provider. 

This file is copied without change from 
WL_HOME\samples\server\examples\src\examples\web
services\wss1.1\certs

testServerCertTempCert.de
r

Server-side certificate, used to create a client-side 
BinarySecurityToken credential provider.  

This file is copied without change from 
WL_HOME\samples\server\examples\src\examples\web
services\wss1.1\certs 

Table 2-10  Files Used in MTOM/Security Example

File Description



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-75

import weblogic.wsee.mtom.api.MtomPolicyInfo;

import weblogic.wsee.mtom.api.MtomPolicyInfoFactory;

import weblogic.wsee.policy.framework.PolicyException;

import javax.jws.WebService;

import javax.jws.WebMethod;

import java.rmi.RemoteException;

/**

 * Sample to MTOM with JAX-RPC

 *

 * @author Copyright © 1996, 2008, Oracle and/or its affiliates. 

* All rights reserved.

 */

@WebService

@Binding(Binding.Type.SOAP12)

//enable WSS + MTOM for this web service by adding the following canned 

policy files

@Policies({

    @Policy(uri = "policy:Mtom.xml"),

    @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml"), 

    @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml"),

@Policy(uri = "policy:Wssp1.2-Wss1.1-EncryptedKey.xml")

})

public class SecurityMtomService {

  public SecurityMtomService() {



Conf igur ing  Message-Leve l  Secur i t y

2-76 Securing WebLogic Web Services

  }

  /**

   * Input is sent as XOP'ed binary octet stream

   *

   * @param bytes input bytes

   * @return A simple String

   */

  @WebMethod

  public String echoBinaryAsString(byte[] bytes) {

    return new String(bytes);

  }

  /**

   * Output is sent as as XOP'ed binary octet stream

   *

   * @param s a simple String

   * @return byte[]

   */

  @WebMethod

  public byte[] echoStringAsBinary(String s) {

    return s.getBytes();

  }

  /**

   * input byte[] is sent as as XOP'ed binary octet stream

   *



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-77

   * @param array input byte[] array

   * @return String[]

   */

  @WebMethod

  public String[] echoBinaryArrayAsStringArray(byte[] array) {

    String[] strings = new String[1];

    strings[0] = new String(array);

    return strings;

  }

}

You can specify the @Policy annotation at both the class- and method- level. In this example, the 
annotation is used at the class-level to specify the pre-packaged WS-Policy files, which means all 
public operations of the Web Service are associated with the specified WS-Policy files.  

You use the @Policies annotation to group together multiple @Policy annotations. You can 
specify this annotation at both the class- and method-level.  In this example, the annotation is used 
at the class-level to group the four @Policy annotations that specify the pre-packaged WS-Policy 
files: 

The pre-packaged WS-Policy file Mtom.xml enables MTOM encoding.

As described in “Protection Assertion Policies” on page 2-49, the 
Wssp1.2-2007-SignBody.xml policy file specifies that the body and WebLogic system 
headers of both the request and response SOAP message be digitally signed. 

The Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the 
request and response SOAP messages be encrypted. 

The Wssp1.2-Wss1.1-EncryptedKey.xml symmetric binding policy uses the 
WS-Security 1.1 Encrypted Key feature. The client application invoking the Web Service 
must use the encrypted key to encrypt and sign, and the server must send Signature 
Confirmation. 



Conf igur ing  Message-Leve l  Secur i t y

2-78 Securing WebLogic Web Services

MtomClient.java
MtomClient.java is a standalone client application that invokes the SecurityMtomService 
Web Service.  It uses the JAX-RPC stubs generated by clientgen, based on the WSDL of the Web 
Service.  The MtomClient code is shown in Listing 2-15.  

Listing 2-15    MtomClient.java

package examples.webservices.security_mtom.client;

import java.rmi.RemoteException;

import java.security.cert.X509Certificate;

import java.util.ArrayList;

import java.util.List;

import javax.xml.rpc.Stub;

import weblogic.security.SSL.TrustManager;

// Import classes to create the Binary and Username tokens

import weblogic.wsee.security.bst.ClientBSTCredentialProvider;

import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

// Import classes for creating the client-side credential provider

import weblogic.xml.crypto.wss.WSSecurityContext;

import weblogic.xml.crypto.wss.provider.CredentialProvider;

import weblogic.wsee.security.util.CertUtils;

/**



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-79

 * @author Copyright © 1996, 2008, Oracle and/or its affiliates. 

* All rights reserved. 

*/

public class MtomClient {

  private static final String FOO = "FOO";

  private static SecurityMtomService port;

  public MtomClient(String args[]) throws Exception {

    //client keystore file

    String clientKeyStore = args[0];

    String clientKeyStorePass = args[1];

    String clientKeyAlias = args[2];

    String clientKeyPass = args[3];

    //server certificate

    String serverCertFile = args[4];

    String wsdl = args[5];

    SecurityMtomServiceService service = new 

SecurityMtomServiceService_Impl(wsdl);

    port = service.getSecurityMtomServiceSoapPort();

X509Certificate serverCert = (X509Certificate) 

CertUtils.getCertificate(serverCertFile);

    //create emtpy list of credential providers

    List credProviders = new ArrayList();



Conf igur ing  Message-Leve l  Secur i t y

2-80 Securing WebLogic Web Services

    //Create client-side BinarySecurityToken credential provider that uses

    // X.509 for identity, based on certificate and keys parameters

    CredentialProvider cp = new ClientBSTCredentialProvider(clientKeyStore, 

clientKeyStorePass, clientKeyAlias, clientKeyPass, "JKS", serverCert);

    credProviders.add(cp);

    Stub stub = (Stub) port;

    // Set stub property to point to list of credential providers

    stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, 

credProviders);

    // setup the TrustManager.

    stub._setProperty(WSSecurityContext.TRUST_MANAGER,

        new TrustManager() {

          public boolean certificateCallback(X509Certificate[] chain, int 

validateErr) {

            //Typically in a real-life application, Java code that actually

            //verifies the certificate goes here; for sake of simplicity, this

            //example assumes the certificate is valid and simply returns true.

            return true;

          }

        });

  }

  public static void main(String[] args) throws Exception {

    MtomClient client = new MtomClient(args);



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-81

    client.invokeEchoBinaryAsString();

    client.invokeEchoStringAsBinary();

    client.invokeEchoBinaryArrayAsStringArray();

  }

  public void invokeEchoBinaryArrayAsStringArray() throws RemoteException {

    System.out.println("sending a String '" + FOO + "' as a byte array.");

    String result = 

port.echoBinaryArrayAsStringArray(FOO.getBytes()).getJavaLangstring()[0];

    System.out.println("echoing '" + result + "' as a String array.");

  }

  public void invokeEchoStringAsBinary() throws RemoteException {

    System.out.println("sending a String '" + FOO + "'");

    String result = new String(port.echoStringAsBinary(FOO));

    System.out.println("echoing '" + result + "' as a byte array.");

  }

  public void invokeEchoBinaryAsString() throws RemoteException {

    System.out.println("sending a String '" + FOO + "' as a byte array.");

    String result = port.echoBinaryAsString(FOO.getBytes());

    System.out.println("echoing '" + result + "' as a String.");

  }

}

The client application takes six arguments:

Client keystore



Conf igur ing  Message-Leve l  Secur i t y

2-82 Securing WebLogic Web Services

Client keystore password

Client key alias 

Client key password

The server certificate file

WSDL of the deployed Web Service

The client application uses the following WebLogic Web Services security APIs to create the 
needed client-side credential providers, as specified by the WS-Policy files that are associated 
with the Web Service:

weblogic.wsee.security.bst.ClientBSTCredentialProvider to create a binary security token 
credential provider, using the certificate and private key. 

weblogic.xml.crypto.wss.WSSecurityContext to specify the list of credential providers to 
the JAX-RPC stub. 

weblogic.xml.crypto.wss.provider.CredentialProvider, which is the main credential 
provider class. 

When you write this client application, you need to consult the WS-Policy files associated with 
a Web Service to determine the types and number of credential providers that must be set in the 
JAX-RPC stub. Typically, if the WS-Policy file specifies that SOAP messages must be signed or 
encrypted, using X.509 for identity, then you must create a ClientBSTCredentialProvider. (If it 
specifies that the user provides a username token for identity, then the application must create a 
ClientUNTCredentialProvider.)

The example creates a client BST credential provider for the indicated keystore, certificate alias, 
and server certificate.  The certificate passed for the parameter serverCert is used to encrypt 
the message body contents and to  verify the received signature. Any KeyInfo received as part of 
the in-bound signature (for example,  certificate thumbprint) must correctly identify the same 
server certificate. 

The Web Services client runtime also consults this WSDL so it can correctly create the security 
headers in the SOAP request when an operation is invoked. 

Finally, the client application must use the weblogic.security.SSL.TrustManager WebLogic 
security API to verify that the certificate used to encrypt the SOAP request is valid. The client 
runtime gets this certificate (serverCert in the example)  from the deployed WSDL of the Web 
Service, which in real-life situations is not automatically trusted, so the client application must 
ensure that it is okay before it uses it to encrypt the SOAP request. 

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/wsee/security/bst/ClientBSTCredentialProvider.html


Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-83

Note: The client-side certificate and private key used in this example  have been created for 
simple testing purposes, and therefore are always trusted by WebLogic Server. For this 
reason, there is no additional server-side security configuration needed to run this 
example. In real life, however, the client application would use a certificate from a real 
certificate authority, such as Verisign. In this case, administrators would need to use the 
WebLogic Administration Console to add this certificate to the list that is trusted by 
WebLogic Server. 

configWss.py Script File
The SecurityMtomService Web Service does not explicitly invoke any WebLogic Server API to 
handle the requirements imposed by any associated policy files, nor does this Web Service have 
to understand which, if any, security providers, tokens, or other such mechanisms are involved. 

The script file configWss.py uses WLST to create and configure the default  Web Service 
security configuration,  default_wss, for the active security realm. (The default Web Service 
security configuration is used by all Web Services in the domain unless they have been explicitly 
programmed to use a different configuration.)  Further, this script makes sure that x509 tokens 
are supported, creates the needed security providers, and so forth.  

Listing 2-16 shows the configWss.py file.  The build.xml file provides the command input.  
Sections of particular interest are shown in bold. 

Listing 2-16   configWss.py

userName = sys.argv[1]

passWord = sys.argv[2]

url="t3://"+sys.argv[3]+":"+sys.argv[4]

print "Connect to the running adminSever"

connect(userName, passWord, url)

edit()

startEdit()



Conf igur ing  Message-Leve l  Secur i t y

2-84 Securing WebLogic Web Services

#Enable assert x509 in SecurityConfiguration

rlm = cmo.getSecurityConfiguration().getDefaultRealm()

ia = rlm.lookupAuthenticationProvider("DefaultIdentityAsserter")

activeTypesValue = list(ia.getActiveTypes())

existed = "X.509" in activeTypesValue

if existed == 1:

  print 'assert x509 is aleady enabled'

else:

  activeTypesValue.append("X.509")

ia.setActiveTypes(array(activeTypesValue,java.lang.String))

ia.setDefaultUserNameMapperAttributeType('CN');

ia.setUseDefaultUserNameMapper(Boolean('true'));

#Create default WebServcieSecurity

securityName='default_wss'

defaultWss=cmo.lookupWebserviceSecurity(securityName)

if defaultWss == None:

  print 'creating new webservice security bean for: ' + securityName

  defaultWss = cmo.createWebserviceSecurity(securityName)

else:

  print 'found exsiting bean for: ' + securityName

  

#Create credential provider for DK

cpName='default_dk_cp'

wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-85

if wtm == None:

wtm = defaultWss.createWebserviceCredentialProvider(cpName)

wtm.setClassName('weblogic.wsee.security.wssc.v200502.dk.DKCredentialProvi

der')

wtm.setTokenType('dk')

cpm = wtm.createConfigurationProperty('Label')

cpm.setValue('WS-SecureConversationWS-SecureConversation')

cpm = wtm.createConfigurationProperty('Length')

cpm.setValue('16')

else:

  print 'found exsiting bean for: DK ' + cpName

#Create credential provider for x.509 

cpName='default_x509_cp'

wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)

if wtm == None:

wtm = defaultWss.createWebserviceCredentialProvider(cpName)

wtm.setClassName('weblogic.wsee.security.bst.ServerBSTCredentialProvider')

wtm.setTokenType('x509')

else:

  print 'found exsiting bean for: x.509 ' + cpName

  

#Custom keystore for xml encryption

cpName='ConfidentialityKeyStore'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:



Conf igur ing  Message-Leve l  Secur i t y

2-86 Securing WebLogic Web Services

cpm = wtm.createConfigurationProperty(cpName)

keyStoreName=sys.argv[5]

cpm.setValue(keyStoreName)

cpName='ConfidentialityKeyStorePassword'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty(cpName)

cpm.setEncryptValueRequired(Boolean('true'))

KeyStorePasswd=sys.argv[6]

cpm.setEncryptedValue(KeyStorePasswd)

cpName='ConfidentialityKeyAlias'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty(cpName)

keyAlias=sys.argv[7]

cpm.setValue(keyAlias)

cpName='ConfidentialityKeyPassword'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty('ConfidentialityKeyPassword')

cpm.setEncryptValueRequired(Boolean('true'))

keyPass=sys.argv[8]

cpm.setEncryptedValue(keyPass)



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-87

#Custom keystore for xml digital signature

cpName='IntegrityKeyStore'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty(cpName)

keyStoreName=sys.argv[5]

cpm.setValue(keyStoreName)

cpName='IntegrityKeyStorePassword'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty(cpName)

cpm.setEncryptValueRequired(Boolean('true'))

KeyStorePasswd=sys.argv[6]

cpm.setEncryptedValue(KeyStorePasswd)

cpName='IntegrityKeyAlias'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty(cpName)

keyAlias=sys.argv[7]

cpm.setValue(keyAlias)

cpName='IntegrityKeyPassword'

cpm=wtm.lookupConfigurationProperty(cpName)

if cpm == None:

cpm = wtm.createConfigurationProperty(cpName)



Conf igur ing  Message-Leve l  Secur i t y

2-88 Securing WebLogic Web Services

cpm.setEncryptValueRequired(Boolean('true'))

keyPass=sys.argv[8]

cpm.setEncryptedValue(keyPass)

#Create token handler for x509 token

#cpName='default_x509_handler'

th=defaultWss.lookupWebserviceTokenHandler(cpName)

if th == None:

th = defaultWss.createWebserviceTokenHandler(cpName)  

th.setClassName('weblogic.xml.crypto.wss.BinarySecurityTokenHandler')

th.setTokenType('x509')

cpm = th.createConfigurationProperty('UseX509ForIdentity')

cpm.setValue('true')

save()

activate(block="true")

disconnect()

exit()

Build.xml File
The build.xml file has the targets shown in Table 2-11.



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-89

 

The complete build.xml file is shown in Listing 2-17.  

Listing 2-17   build.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name="webservices.security_mtom" default="all" basedir=".">

  <!-- set global properties for this build -->

  <property file="../../../examples.properties"/>

  <property name="client.dir" 

value="${client.classes.dir}/webservicesSecurityMtom_Client" />

  <property name="package.dir" value="examples/webservices/security_mtom"/>

  <property name="package" value="examples.webservices.security_mtom"/>

  <property name="ws.file" value="SecurityMtomService" />

Table 2-11  build.xml targets

Target Description

client Target that builds the Security MTOM Web Service client.

config.server.security Target that configures the Web Service security.

deploy Target that deploys the Web Service.

server Target that builds the Security MTOM Web Service.

clean Deletes temporary directories.

build Depends on server, client, and clean.

run Target that runs the Security MTOM Web Service client.

all Default target.  Depends on build, deploy.



Conf igur ing  Message-Leve l  Secur i t y

2-90 Securing WebLogic Web Services

  <property name="ear.dir" 

value="${examples.build.dir}/webservicesSecurityMtomEar" />

  <property name="cert.dir" value="${basedir}/certs" />

  <property name="certs.dir" value="${basedir}/certs" />

  <!--client keystore-->

  <property name="client-keystore-name" value="clientKeyStore.jks"/>

  <property name="client-keystore-pass" value="keystorepw"/>  

  <property name="client-cert" value="ClientCert"/>

  <property name="client-key" value="ClientKey"/>

  <property name="client-key-pass" value="ClientKeyPass"/>

  <property name="client-cert-alias" value="testClientCert"/>

  

  <!--server keystore-->

  <property name="server-keystore-name" value="serverKeyStore.jks"/>

  <property name="server-keystore-pass" value="keystorepw"/>

  <property name="server-cert" value="ServerCert"/>

  <property name="server-key" value="ServerKey"/>

  <property name="server-key-pass" value="ServerKeyPass"/>

  <property name="server-cert-alias" value="testServerCert"/>

  <path id="client.class.path">

    <pathelement path="${client.dir}"/>

    <pathelement path="${java.class.path}"/>

  </path>

  <!-- Web Service WLS Ant task definitions -->

  <taskdef name="jwsc"



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-91

    classname="weblogic.wsee.tools.anttasks.JwscTask" />

  <taskdef name="clientgen"

      classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

  <target name="all" depends="build, deploy"/>

  <target name="build" depends="clean,server,client"/>

  <target name="clean">

    <delete dir="${ear.dir}"/>

    <delete dir="${client.dir}"/>

  </target>

  <!-- Target that builds the MTOM Web Service -->

  <target name="server" description="Target that builds the MTOM Web 

Service">

    <jwsc

      srcdir="${examples.src.dir}/${package.dir}"

      sourcepath="${examples.src.dir}"

      destdir="${ear.dir}"

      classpath="${java.class.path}"

      fork="true"

      keepGenerated="true"

      deprecation="${deprecation}"

      debug="${debug}">

        <jws file="SecurityMtomService.java" explode="true"/>

    </jwsc>

  </target>



Conf igur ing  Message-Leve l  Secur i t y

2-92 Securing WebLogic Web Services

  <!-- Target that builds the MTOM Web Service client -->

  <target name="client" description="Target that builds the source Web 

Service">

    <mkdir dir="${client.dir}/${package.dir}/client/"/>

    <clientgen

      wsdl="${ear.dir}/${ws.file}/WEB-INF/${ws.file}Service.wsdl"

      destDir="${client.dir}"

      classpath="${java.class.path}"

      packageName="${package}.client"/>

    <copy file="MtomClient.java" 

todir="${client.dir}/${package.dir}/client/"/>

    <javac

      srcdir="${client.dir}" destdir="${client.dir}"

      classpath="${java.class.path}"

      includes="${package.dir}/client/**/*.java"/>

  </target>

  <!-- Target that deploys the MTOM Web Service -->

  <target name="deploy" description="Target that deploys the reliable 

destination Web Service">

    <wldeploy

      action="deploy"

      source="${ear.dir}"

      user="${wls.username}"

      password="${wls.password}"

      verbose="true"

      adminurl="t3://${wls.hostname}:${wls.port}"



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-93

      targets="${wls.server.name}"

      failonerror="${failondeploy}"/>

  </target>

  <!-- Target that runs the MTOM Web Service client -->

  <target name="run" >

    <java fork="true"

      classname="examples.webservices.security_mtom.client.MtomClient"

      failonerror="true" >

  <jvmarg line="-Dweblogic.wsee.verbose=*"/>

      <classpath refid="client.class.path"/>

      <arg line="  

      ${basedir}/certs/${client-keystore-name}

      ${client-keystore-pass}

      ${client-cert-alias}

      ${client-key-pass}    

      ${basedir}/certs/testServerCertTempCert.der

      

http://${wls.hostname}:${wls.port}/SecurityMtomService/SecurityMtomService

?WSDL" />

    </java>

  </target>

    <!-- Target the configure the web service security -->

  <target name="config.server.security" description="Target the configure 

the web service security">

    <copy todir="${examples.domain.dir}" overwrite="true">

      <fileset dir="${certs.dir}" includes="${server-keystore-name}"/>



Conf igur ing  Message-Leve l  Secur i t y

2-94 Securing WebLogic Web Services

    </copy>

      

    <java classname="weblogic.WLST" fork="true" failonerror="true">

      <arg line="configWss.py ${wls.username} ${wls.password} 

${wls.hostname} ${wls.port}

      ${server-keystore-name} ${server-keystore-pass} ${server-cert-alias} 

${server-key-pass}" />

    </java>

   

  </target>

</project>

Building and Running the Example
Follow these steps to build and run the example:

1. Start the Examples server

2. Set up your environment, as described in the 
BEA_HOME\WL_HOME\samples\server\examples\src\examples\examples.html 
instructions file.

BEA_HOME\WL_HOME\samples\domains\wl_server>setExamplesEnv.cmd

3. Change to the 
BEA_HOME\WL_HOME\samples\server\examples\src\examples\webservices 
directory and create a new subdirectory called security_mtom.

4. Cut and paste the contents of the build.xml, configWss.py, MtomClient.java, and 
SecurityMtomService.java sections to files with the same names in the 
BEA_HOME\WL_HOME\samples\server\examples\src\examples\webservices\secur
ity_mtom directory.

5. Copy all of the files (clientKeyStore.jks, serverKeyStore.jks, and 
testServerCertTempCert.der) from 



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-95

BEA_HOME\WL_HOME\samples\server\examples\src\examples\webservices\wss1.
1\certs

to a new certs subdirectory 

BEA_HOME\WL_HOME\samples\server\examples\src\examples\webservices\secur
ity_mtom\certs

6. Change to the 
BEA_HOME\WL_HOME\samples\server\examples\src\examples\webservices\secur
ity_mtom directory. 

7. Execute the following command:

prompt> ant config.server.security

8. Restart Weblogic Server. 

9. Build, deploy and run the example:

prompt> ant build deploy run

Deployed WSDL for SecurityMtomService
The deployed WSDL for the SecurityMtomService Web Service is available at the following 
URL:

 http://host:port/SecurityMtomService/SecurityMtomService?WSDL

The complete WSDL is shown in Listing 2-18.

Listing 2-18   Deployed WSDL for SecurityMtomService

<?xml version="1.0" encoding="UTF-8" ?> 

- <s1:definitions name="SecurityMtomServiceServiceDefinitions" 

targetNamespace="http://examples/webservices/security_mtom" xmlns="" 

xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri

ty-utility-1.0.xsd" xmlns:s1="http://schemas.xmlsoap.org/wsdl/" 

xmlns:s2="http://examples/webservices/security_mtom" 

xmlns:s3="http://schemas.xmlsoap.org/wsdl/soap12/" 

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">



Conf igur ing  Message-Leve l  Secur i t y

2-96 Securing WebLogic Web Services

  <wsp:UsingPolicy s1:Required="true" /> 

- <wsp:Policy s0:Id="Mtom.xml">

  <wsoma:OptimizedMimeSerialization 

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeser

ialization" /> 

  </wsp:Policy>

- <wsp:Policy s0:Id="Wssp1.2-Wss1.1-EncryptedKey.xml">

- <sp:SymmetricBinding 

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">

- <wsp:Policy>

- <sp:ProtectionToken>

- <wsp:Policy>

- <sp:X509Token 

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

/IncludeToken/Never">

- <wsp:Policy>

  <sp:RequireThumbprintReference /> 

  <sp:WssX509V3Token11 /> 

  </wsp:Policy>

  </sp:X509Token>

  </wsp:Policy>

  </sp:ProtectionToken>

- <sp:AlgorithmSuite>

- <wsp:Policy>

  <sp:Basic256 /> 

  </wsp:Policy>

  </sp:AlgorithmSuite>

- <sp:Layout>

- <wsp:Policy>



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-97

  <sp:Lax /> 

  </wsp:Policy>

  </sp:Layout>

  <sp:IncludeTimestamp /> 

  <sp:OnlySignEntireHeadersAndBody /> 

  </wsp:Policy>

  </sp:SymmetricBinding>

- <sp:Wss11 

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">

- <wsp:Policy>

  <sp:MustSupportRefKeyIdentifier /> 

  <sp:MustSupportRefIssuerSerial /> 

  <sp:MustSupportRefThumbprint /> 

  <sp:MustSupportRefEncryptedKey /> 

  <sp:RequireSignatureConfirmation /> 

  </wsp:Policy>

  </sp:Wss11>

  </wsp:Policy>

- <wsp:Policy s0:Id="Wssp1.2-2007-EncryptBody.xml">

- <sp:EncryptedParts 

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

  <sp:Body /> 

  </sp:EncryptedParts>

  </wsp:Policy>

- <wsp:Policy s0:Id="Wssp1.2-2007-SignBody.xml">

- <sp:SignedParts 

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

  <sp:Body /> 



Conf igur ing  Message-Leve l  Secur i t y

2-98 Securing WebLogic Web Services

  </sp:SignedParts>

  </wsp:Policy>

- <s1:types>

- <xs:schema attributeFormDefault="unqualified" 

elementFormDefault="qualified" 

targetNamespace="java:examples.webservices.security_mtom" 

xmlns:s0="http://schemas.xmlsoap.org/wsdl/" 

xmlns:s1="http://examples/webservices/security_mtom" 

xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap12/" 

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 

xmlns:xs="http://www.w3.org/2001/XMLSchema">

- <xs:complexType name="ArrayOfJavaLangstring_literal">

- <xs:sequence>

  <xs:element maxOccurs="unbounded" minOccurs="0" name="JavaLangstring" 

nillable="true" type="xs:string" /> 

  </xs:sequence>

  </xs:complexType>

  <xs:element name="ArrayOfJavaLangstring_literal" 

type="java:ArrayOfJavaLangstring_literal" 

xmlns:java="java:examples.webservices.security_mtom" /> 

  <xs:element name="base64Binary_literal" type="xs:base64Binary" /> 

  </xs:schema>

- <xs:schema attributeFormDefault="unqualified" 

elementFormDefault="qualified" 

targetNamespace="http://examples/webservices/security_mtom" 

xmlns:s0="http://schemas.xmlsoap.org/wsdl/" 

xmlns:s1="http://examples/webservices/security_mtom" 

xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap12/" 

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 

xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:import namespace="java:examples.webservices.security_mtom" /> 

- <xs:element name="echoBinaryAsString">



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-99

- <xs:complexType>

- <xs:sequence>

  <xs:element name="bytes" type="xs:base64Binary" /> 

  </xs:sequence>

  </xs:complexType>

  </xs:element>

- <xs:element name="echoBinaryAsStringResponse">

- <xs:complexType>

- <xs:sequence>

  <xs:element name="return" type="xs:string" /> 

  </xs:sequence>

  </xs:complexType>

  </xs:element>

- <xs:element name="echoBinaryArrayAsStringArray">

- <xs:complexType>

- <xs:sequence>

  <xs:element name="array" type="xs:base64Binary" /> 

  </xs:sequence>

  </xs:complexType>

  </xs:element>

- <xs:element name="echoBinaryArrayAsStringArrayResponse">

- <xs:complexType>

- <xs:sequence>

  <xs:element name="return" type="java:ArrayOfJavaLangstring_literal" 

xmlns:java="java:examples.webservices.security_mtom" /> 

  </xs:sequence>

  </xs:complexType>

  </xs:element>



Conf igur ing  Message-Leve l  Secur i t y

2-100 Securing WebLogic Web Services

- <xs:element name="echoStringAsBinary">

- <xs:complexType>

- <xs:sequence>

  <xs:element name="s" type="xs:string" /> 

  </xs:sequence>

  </xs:complexType>

  </xs:element>

- <xs:element name="echoStringAsBinaryResponse">

- <xs:complexType>

- <xs:sequence>

  <xs:element name="return" type="xs:base64Binary" /> 

  </xs:sequence>

  </xs:complexType>

  </xs:element>

  </xs:schema>

  </s1:types>

- <s1:message name="echoBinaryAsString">

  <s1:part element="s2:echoBinaryAsString" name="parameters" /> 

  </s1:message>

- <s1:message name="echoBinaryAsStringResponse">

  <s1:part element="s2:echoBinaryAsStringResponse" name="parameters" /> 

  </s1:message>

- <s1:message name="echoBinaryArrayAsStringArray">

  <s1:part element="s2:echoBinaryArrayAsStringArray" name="parameters" /> 

  </s1:message>

- <s1:message name="echoBinaryArrayAsStringArrayResponse">

  <s1:part element="s2:echoBinaryArrayAsStringArrayResponse" 

name="parameters" /> 



Example  o f  Add ing  Secur i t y  t o  MTOM Web Serv i ce

Securing WebLogic Web Services 2-101

  </s1:message>

- <s1:message name="echoStringAsBinary">

  <s1:part element="s2:echoStringAsBinary" name="parameters" /> 

  </s1:message>

- <s1:message name="echoStringAsBinaryResponse">

  <s1:part element="s2:echoStringAsBinaryResponse" name="parameters" /> 

  </s1:message>

- <s1:portType name="SecurityMtomService" 

wsp:PolicyURIs="#Wssp1.2-2007-SignBody.xml #Wssp1.2-2007-EncryptBody.xml 

#Wssp1.2-Wss1.1-EncryptedKey.xml">

- <s1:operation name="echoBinaryAsString" parameterOrder="parameters">

  <s1:input message="s2:echoBinaryAsString" /> 

  <s1:output message="s2:echoBinaryAsStringResponse" /> 

  </s1:operation>

- <s1:operation name="echoBinaryArrayAsStringArray" 

parameterOrder="parameters">

  <s1:input message="s2:echoBinaryArrayAsStringArray" /> 

  <s1:output message="s2:echoBinaryArrayAsStringArrayResponse" /> 

  </s1:operation>

- <s1:operation name="echoStringAsBinary" parameterOrder="parameters">

  <s1:input message="s2:echoStringAsBinary" /> 

  <s1:output message="s2:echoStringAsBinaryResponse" /> 

  </s1:operation>

  </s1:portType>

- <s1:binding name="SecurityMtomServiceServiceSoapBinding" 

type="s2:SecurityMtomService">

  <s3:binding style="document" 

transport="http://schemas.xmlsoap.org/soap/http" /> 

- <wsp:Policy>



Conf igur ing  Message-Leve l  Secur i t y

2-102 Securing WebLogic Web Services

  <wsp:PolicyReference URI="#Mtom.xml" /> 

  </wsp:Policy>

- <s1:operation name="echoBinaryAsString">

  <s3:operation style="document" /> 

- <s1:input>

  <s3:body parts="parameters" use="literal" /> 

  </s1:input>

- <s1:output>

  <s3:body parts="parameters" use="literal" /> 

  </s1:output>

  </s1:operation>

- <s1:operation name="echoBinaryArrayAsStringArray">

  <s3:operation style="document" /> 

- <s1:input>

  <s3:body parts="parameters" use="literal" /> 

  </s1:input>

- <s1:output>

  <s3:body parts="parameters" use="literal" /> 

  </s1:output>

  </s1:operation>

- <s1:operation name="echoStringAsBinary">

  <s3:operation style="document" /> 

- <s1:input>

  <s3:body parts="parameters" use="literal" /> 

  </s1:input>

- <s1:output>

  <s3:body parts="parameters" use="literal" /> 



Example  o f  Add ing  Secur i t y  to  Re l iab le  Messag ing  Web Serv i ce

Securing WebLogic Web Services 2-103

  </s1:output>

  </s1:operation>

  </s1:binding>

- <s1:service name="SecurityMtomServiceService">

- <s1:port binding="s2:SecurityMtomServiceServiceSoapBinding" 

name="SecurityMtomServiceSoapPort">

  <s3:address 

location="http://localhost:7001/SecurityMtomService/SecurityMtomService" 

/> 

  </s1:port>

  </s1:service>

  </s1:definitions>

Example of Adding Security to Reliable Messaging Web 
Service

This section describes an update to an example that is already included with WebLogic Server: 

WL_HOME\samples\server\examples\src\examples\webservices\wsrm_security

This section shows how to update the example to use the most recent version of the policy file. 
Oracle recommends that you use the  new policy namespace, as shown in the revised example, as 
those are official namespaces from OASIS standards and they will perform better when 
interoperating with other vendors. 

Overview of Secure and Reliable SOAP Messaging
Reliable SOAP messaging is a framework whereby an application running in one WebLogic 
Server instance can reliably invoke a Web Service running on another WebLogic Server instance. 
Reliable is defined as the ability to guarantee message delivery between the two Web Services. 

WebLogic Web Services conform to the WS-ReliableMessaging 1.1 specification, which 
describes how two Web Services running on different WebLogic Server application servers can 
communicate reliably in the presence of failures in software components, systems, or networks. 
In particular, the specification describes an interoperable protocol in which a message sent from 
a source endpoint (client Web Service) to a destination endpoint (Web Service whose operations 

http://e-docs.bea.com/wls/docs103/webserv_intro/standards.html#wp1081609


Conf igur ing  Message-Leve l  Secur i t y

2-104 Securing WebLogic Web Services

can be invoked reliably) is guaranteed either to be delivered, according to one or more delivery 
assurances, or to raise an error. The WS-ReliableMessaging specification defines an 
interoperable way to provide security by composing WS-ReliableMessaging with 
WS-SecureConversation and associating a reliable sequence with a secure session. At sequence 
creation time, the sending side needs to present a Security Token Reference to point to a Security 
Context Token that will be used to identify the owner of the sequence. All subsequent sequence 
messages and protocol messages in both directions will need to demonstrate proof-of-possession 
of the referenced key. 

WebLogic reliable SOAP messaging works only between two Web Services. This means that you 
can invoke a WebLogic Web Service reliably only from another Web Service, and not from a 
standalone client application. This example shows how to create both types of Web Services 
(source and destination).  The WsrmSecurityClient.java class is a standalone Java 
application that then invokes the source Web Service.

Overview of the Example
The existing example shows how to provide security functionality on top of reliability for Web 
Services messaging by creating two WebLogic Web Services:

Web Service whose operations can be invoked using reliable and secure SOAP messaging 
(destination endpoint).  The destination ReliableEchoService Web Service has two 
operations that can be invoked reliably and in a secure way: echo and echoOneway.

Client Web Service that invokes an operation of the first Web Service in a reliable and 
secure way (source endpoint). The source ReliableEchoClientService Web Service 
has one operation for invoking the echo and echoOneway operations of the 
ReliableEchoService Web Service reliably and in a secure way within one 
conversation: echo.

The existing  example includes functional code and an extensive instructions.html file that 
describes its use and function, how to build it, and so forth  This section does not repeat that 
information, but instead concentrates on the changes made to the example, and the reasons for the 
changes.

How the Example Sets Up WebLogic Security
The configWSS.py WLST script sets up security for the WebLogic Server instance that hosts 
the source and destination Web Service. The security requirements are dictated by the 
WS-SecurityPolicy files associated with the destination Web Service.  



Example  o f  Add ing  Secur i t y  to  Re l iab le  Messag ing  Web Serv i ce

Securing WebLogic Web Services 2-105

The  Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml policy imposes the following 
requirements:

WS-SecureConversation handshake is protected by WS-Security 1.0. 

The application messages are signed and encrypted with DerivedKeys. 

The soap:Body of the RequestSecurityToken and 
RequestSecurityTokenResponseCollection messages (part of the WS-SecureConversation 
handshake) are both signed and encrypted.  

The WS-Addressing headers are signed. 

Timestamp is included and signed. 

The signature is encrypted. 

The algorithm suite is Basic256.

In response, the configWSS.py WLST script  performs the following functions: 

Enables  X.509 tokens for the default IdentityAsserter  in the default security realm.

Creates the default Web Service security configuration.

Configures a credential provider for the Security Context Token.

Configures a credential provider for Derived Key.

Configures a BinarySecurityTokenHandler token handler for X.509 tokens.

Configures a ServerBSTCredentialProvider credential provider for X.509 tokens. 

Configures keystores for confidentiality and integrity. 

Configures the PKI credential mapper. This maps the initiator and target resource to  a key 
pair or public certificate 

In addition, the configWSSRuntime.py WLST script also  performs the following functions: 

Sets up the PKI credential mapper (configured by configWSS.py)  to invoke  the 
destination Web Service.  



Conf igur ing  Message-Leve l  Secur i t y

2-106 Securing WebLogic Web Services

Files Used by This Example
The example uses the files shown in Table 2-12. The contents of revised source files are shown 
in subsequent sections.:

Table 2-12  Files Used in WSRM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the 
example.

ReliableEchoClientService
Impl.java

JWS file that implements the source Web Service that reliably invokes 
the echoOneWay and echo operation of the ReliableEchoService Web 
Service in a secure way. This JWS file uses the @ServiceClient 
annotation to specify the Web Service it invokes reliably. 

ReliableEchoServiceImpl.j
ava

JWS file that implements the reliable destination Web Service. This 
JWS file uses the @Policy annotation to specify a WS-Policy file that 
contains reliable SOAP messaging assertions.  

ws_rm_configuration.py WLST script that configures a SAF Agent, FileStore, JMS Server, and 
JMS queue, which are required for reliable SOAP messaging. Execute 
this script for the WebLogic Server instance that hosts the reliable 
destination Web Service. The out-of-the-box Examples server has 
already been configured for the source Web Service that invokes an 
operation reliably. 

configWss.py WLST script that configures a credential provider for Security 
Context Token, a credential provider for Derived Key, a credential 
provider for x.509, KeyStores for Confidentiality and Integrity, and 
PKI Cred Mapper which are required for secure SOAP messaging. 
Execute this script for the WebLogic Server instance that hosts the 
source and destination Web Service. Remember to restart the 
Weblogic server after executing this script

configWss_Service.py WLST script that configures a credential provider for Security 
Context Token, a credential provider for Derived Key, a credential 
provider for x.509, KeyStores for Confidentiality and Integrity which 
are required by the server host the destination Web Service for secure 
SOAP messaging. Execute this script for the WebLogic Server 
instance that hosts the destination Web Service when the source and 
destination Web Service are hosted in two servers.  Remember to 
restart the Weblogic server after executing this script.



Example  o f  Add ing  Secur i t y  to  Re l iab le  Messag ing  Web Serv i ce

Securing WebLogic Web Services 2-107

Revised ReliableEchoServiceImpl.java
The ReliableEchoServiceImpl.java JWS file is the same as that in  
WL_HOME\samples\server\examples\src\examples\webservices\wsrm_security\Rel
iableEchoServiceImpl.java, with the revised Policy annotation shown in bold.   

Listing 2-19   ReliableEchoServiceImpl.java

@WebService(name = "ReliableEchoPort",

    serviceName = "ReliableEchoService")

@WLHttpTransport(contextPath = "WsrmSecurity", serviceUri = 

"ReliableEchoService")

@Policies({

  @Policy(uri="policy:Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml"),

  @Policy(uri="policy:Reliability1.1_SequenceSTR")}

)
 

configWssRuntime.py WLST script that configures a KeyPair Credential for invoking the 
destination Web Service.  

certs/testServerCertTempC
ert.der

Server-side certificate, used create client-side BinarySecurityToken 
credential provider.  

certs/clientKeyStore.jks Client-side key store, used to create client-side BinarySecurityToken 
credential provider.  

certs/serverKeyStore.jks Server-side key store, used to create Server-side BinarySecurityToken 
credential provider.  

WsrmSecurityClient.java Standalone Java client application that invokes the source WebLogic 
Web Service, that in turn invokes an operation of the 
ReliableEchoService Web Service in a reliable and secure way.  

Table 2-12  Files Used in WSRM/Security Example

File Description



Conf igur ing  Message-Leve l  Secur i t y

2-108 Securing WebLogic Web Services

You can specify the @Policy annotation at both the class- and method- level. In this example, the 
annotation is used at the class-level to specify the pre-packaged WS-Policy files, which means all 
public operations of the Web Service are associated with the specified WS-Policy files.  

Revised configWss.py
The ReliableEchoServiceImpl Web Service does not explicitly invoke any WebLogic Server API 
to handle the requirements imposed by any associated policy files, nor does this Web Service 
have to understand which, if any, security providers, tokens, or other such mechanisms are 
involved. 

The script file configWss.py uses WLST to create and configure the default  Web Service 
security configuration,  default_wss, for the active security realm. (The default Web Service 
security configuration is used by all Web Services in the domain unless they have been explicitly 
programmed to use a different configuration.)  Further, this script makes sure that x509 tokens 
are supported, creates the needed security providers, and so forth.  

The configWss.py file is the same as that in  
WL_HOME\samples\server\examples\src\examples\webservices\wsrm_security\con

figWss.py, with the changes shown in bold.   The build.xml file provides the command input.

Listing 2-20   configWss.py 

:

#Create credential provider for SCT

cpName='default_sct_cp'

wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)

if wtm == None:

  print 'creating new webservice credential provider : ' + cpName

  wtm = defaultWss.createWebserviceCredentialProvider(cpName)

  

wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.ServerSCCredentialPr

ovider')

  wtm.setTokenType('sct')

  cpm = wtm.createConfigurationProperty('TokenLifeTime')



Example  o f  Add ing  Secur i t y  to  Re l iab le  Messag ing  Web Serv i ce

Securing WebLogic Web Services 2-109

  cpm.setValue('43200000')

else:

  print 'found exsiting bean for: ' + cpName

#Create credential provider for DK

cpName='default_dk_cp'

wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)

if wtm == None:

wtm = defaultWss.createWebserviceCredentialProvider(cpName)

wtm.setClassName('weblogic.wsee.security.wssc.v13.dk.DKCredentialProvider'

)

wtm.setTokenType('dk')

cpm = wtm.createConfigurationProperty('Label')

cpm.setValue('WS-SecureConversationWS-SecureConversation')

cpm = wtm.createConfigurationProperty('Length')

cpm.setValue('16')

else:

  print 'found exsiting bean for: DK ' + cpName

:

Revised configWss_Service.py
The configWss_Service.py script is similar to configWss.py, but it is used only when the 
source and destination Web Service are hosted in two servers. 

The configWss_Service.py file is the same as that in  
WL_HOME\samples\server\examples\src\examples\webservices\wsrm_security\con

figWss_Service.py, with the changes shown in bold.   The build.xml file provides the 
command input.



Conf igur ing  Message-Leve l  Secur i t y

2-110 Securing WebLogic Web Services

Listing 2-21   configWss_Service.py

:

 #Create credential provider for SCT

cpName='default_sct_cp'

wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)

if wtm == None:

  print 'creating new webservice credential provider : ' + cpName

  wtm = defaultWss.createWebserviceCredentialProvider(cpName)

  

wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.ServerSCCredentialPr

ovider')

  wtm.setTokenType('sct')

  cpm = wtm.createConfigurationProperty('TokenLifeTime')

  cpm.setValue('43200000')

else:

  print 'found exsiting bean for: ' + cpName

#Create credential provider for DK

cpName='default_dk_cp'

wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)

if wtm == None:

wtm = defaultWss.createWebserviceCredentialProvider(cpName)

wtm.setClassName('weblogic.wsee.security.wssc.v13.dk.DKCredentialProvider'

)

wtm.setTokenType('dk')

cpm = wtm.createConfigurationProperty('Label')

cpm.setValue('WS-SecureConversationWS-SecureConversation')



Propr ie ta r y  Web  Serv i ces  Secur i t y  Po l i c y  F i l es  ( JAX-RPC On l y )

Securing WebLogic Web Services 2-111

cpm = wtm.createConfigurationProperty('Length')

cpm.setValue('16')

else:

  print 'found existing bean for: DK ' + cpName

:

Building and Running the Example
After you have changed the example to use the new policy namespace,  follow the steps in the 
WL_HOME\samples\server\examples\src\examples\webservices\wsrm_security\ins

tructions.html file to build and run the example.  

There are no changes needed to these steps.

 Proprietary Web Services Security Policy Files (JAX-RPC 
Only)

Previous releases of WebLogic Server, released before the formulation of the WS-SecurityPolicy 
specification, used security policy files written under the WS-Policy specification, using a 
proprietary  schema for security policy. 

Notes: The security policy files written under the  Web Services security policy schema are 
deprecated in this release.

WS-SecurityPolicy 1.2 policy files and proprietary Web Services security policy schema 
files are not mutually compatible; you cannot define both types of policy file in the same 
Web Service. If you want to use WS-Security 1.1 features, you must use the 
WS-SecurityPolicy 1.2 policy file format.

This section describes the set of pre-packaged Web Services security policy schema files 
included in WebLogic Server. These policy files are all abstract; see “Abstract and Concrete 
Policy Files” on page 2-112 for details.

The policy assertions used in these security policy files to configure message-level security for a 
WebLogic Web Service are based on the assertions described in the December 18, 2002 version 
of the Web Services Security Policy Language (WS-SecurityPolicy) specification. This means 
that although the exact syntax and usage of the assertions in WebLogic Server are different, they 



Conf igur ing  Message-Leve l  Secur i t y

2-112 Securing WebLogic Web Services

are similar in meaning to those described in the specification. The assertions are not based on later 
updates of the specification.

The pre-packaged Web Services security policy files are:

Auth.xml—Specifies that the client must authenticate itself. Can be used on its own, or 
together with Sign.xml and Encrypt.xml.

Sign.xml—Specifies that the SOAP messages are digitally signed. Can be used on its own, 
or together with Auth.xml and Encrypt.xml.

Encrypt.xml—Specifies that the SOAP messages are encrypted. Can be used on its own, or 
together with Auth.xml and Sign.xml.

Wssc-dk.xml—Specifies that the client and service share a security context when multiple 
messages are exchanged and that derived keys are used for encryption and digital 
signatures, as described by the WS-SecureConversation specification. 

Note: This pre-packaged policy file is meant to be used on its own and not together with 
Auth.xml, Sign.xml, Encrypt.xml, or Wssc-sct.xml. Also, Oracle recommends 
that you use this policy file, rather than Wssc-sct.xml, if you want the client and 
service to share a security context, due to its higher level of security.

Wssc-sct.xml—Specifies that the client and service share a security context when multiple 
messages are exchanged, as described by the WS-SecureConversation specification.

Note: This pre-packaged policy file is meant to be used on its own and not together with 
Auth.xml, Sign.xml, Encrypt.xml, or Wssc-dk.xml. Also, Oracle provides this 
policy file to support the various use cases of the WS-SecureConversation 
specification; however, Oracle recommends that you use the Wssc-dk.xml policy file, 
rather than Wssc-sct.xml, if you want the client and service to share a security 
context, due to its higher level of security.

Abstract and Concrete Policy Files
The WebLogic Web Services runtime environment recognizes two slightly different types of 
security policy files: abstract and concrete.

Abstract policy files do not explicitly specify the security tokens that are used for authentication, 
encryption, and digital signatures, but rather, the Web Services runtime environment determines 
the security tokens when the Web Service is deployed. Specifically, this means the <Identity> 
and <Integrity> elements (or assertions) of the policy files do not contain a  
<SupportedTokens><SecurityToken> child element, and the <Confidentiality> element 
policy file does not contain a <KeyInfo><SecurityToken> child element. 



Propr ie ta r y  Web  Serv i ces  Secur i t y  Po l i c y  F i l es  ( JAX-RPC On l y )

Securing WebLogic Web Services 2-113

If your Web Service is associated with only the pre-packaged policy files, then client 
authentication requires username tokens. Web Services support only one type of token for 
encryption and digital signatures (X.509), which means that in the case of the  <Integrity> and 
<Confidentiality> elements, concrete and abstract policy files end up being essentially the 
same.

If your Web Service is associated with an abstract policy file and it is published as an attachment 
to the WSDL (which is the default behavior), the static WSDL file packaged in the Web Service 
archive file (JAR or WAR) will be slightly different than the dynamic WSDL of the deployed 
Web Service. This is because the static WSDL, being abstract, does not include specific 
<SecurityToken> elements, but the dynamic WSDL does include these elements because the 
Web Services runtime has automatically filled them in when it deployed the service. For this 
reason, in the code that creates the JAX-RPC stub in your client application, ensure that you 
specify the dynamic WSDL or you will get a runtime error when you try to invoke an operation:

HelloService service = new HelloService(Dynamic_WSDL);

You can specify either the static or dynamic WSDL to the clientgen Ant task in this case. See 
“Browsing to the WSDL of the Web Service” in Getting Started With WebLogic Web Services 
Using JAX-RPC for information on viewing the dynamic WSDL of a deployed Web Service.

Concrete policy files explicitly specify the details of the security tokens at the time the Web 
Service is programmed. Programmers create concrete security policy files when they know, at the 
time they are programming the service, the details of the type of authentication (such as using 
x509 or SAML tokens); whether multiple private key and certificate pairs from the keystore are 
going to be used for encryption and digital signatures; and so on.

Auth.xml
The WebLogic Server Auth.xml file, shown below, specifies that the client application invoking 
the Web Service must authenticate itself with one of the tokens (username or X.509) that support 
authentication. 

Because the pre-packaged Web Services security policy schema files are abstract, there is no 
specific username or X.509 token assertions in the Auth.xml file at development-time. 
Depending on how you have configured security for WebLogic Server, either a username token, 
an X.509 token, or both will appear in the actual runtime-version of the Auth.xml policy file 
associated with your Web Service. Additionally, if the runtime-version of the policy file includes 
an X.509 token and it is applied to a client invoke, then the entire body of the SOAP message is 
signed.

http://e-docs.bea.com/wls/docs103/webserv/setenv.html#browse_wsdl


Conf igur ing  Message-Leve l  Secur i t y

2-114 Securing WebLogic Web Services

If you want to specify that only X.509, and never username tokens, be used for identity, or want 
to specify that, when using X.509 for identity, only certain parts of the SOAP message be signed, 
then you must create a custom security policy file.

Listing 2-22   Auth.xml

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"

  >

  <wssp:Identity/>

</wsp:Policy>

Sign.xml
The WebLogic Server Sign.xml file specifies that the body and WebLogic-specific system 
headers of the SOAP message be digitally signed. It also specifies that the SOAP message include 
a Timestamp, which is digitally signed, and that the token used for signing is also digitally signed. 
The token used for signing is included in the SOAP message.

The following headers are signed when using the Sign.xml security policy file:

SequenceAcknowledgement

AckRequested

Sequence

Action

FaultTo

From

MessageID

RelatesTo

ReplyTo

To

SetCookie



Propr ie ta r y  Web  Serv i ces  Secur i t y  Po l i c y  F i l es  ( JAX-RPC On l y )

Securing WebLogic Web Services 2-115

Timestamp

The WebLogic Server Sign.xml file is shown below:

Listing 2-23   Sign.xml

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"
  
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
  xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
  >

  <wssp:Integrity>

    <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

    <wssp:CanonicalizationAlgorithm 
          URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
      <wssp:MessageParts 
          Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
          wls:SystemHeaders()
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
      <wssp:MessageParts 
          Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
          wls:SecurityHeader(wsu:Timestamp)
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
      <wssp:MessageParts 
          Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
          wsp:Body()
      </wssp:MessageParts>
    </wssp:Target>

  </wssp:Integrity>



Conf igur ing  Message-Leve l  Secur i t y

2-116 Securing WebLogic Web Services

  <wssp:MessageAge/>

</wsp:Policy>

Encrypt.xml
The WebLogic Server Encrypt.xml file specifies that the entire body of the SOAP message be 
encrypted. By default, the encryption token is not included in the SOAP message.

Listing 2-24   Encrypt.xml

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"
  >

  <wssp:Confidentiality>
    <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
    <wssp:Target>
      <wssp:EncryptionAlgorithm 
         URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
      <wssp:MessageParts 
         Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
         wsp:Body()
      </wssp:MessageParts>
    </wssp:Target>
    <wssp:KeyInfo/>
  </wssp:Confidentiality>

</wsp:Policy>

Wssc-dk.xml
Specifies that the client and Web Service share a security context, as described by the 
WS-SecureConversation specification, and that a derived key token is used. This ensures the 
highest form of security. 

This policy file provides the following configuration:

A derived key token is used to sign all system SOAP headers, the timestamp security 
SOAP header, and the SOAP body. 



Propr ie ta r y  Web  Serv i ces  Secur i t y  Po l i c y  F i l es  ( JAX-RPC On l y )

Securing WebLogic Web Services 2-117

A derived key token is used to encrypt the body of the SOAP message. This token is 
different from the one used for signing.

Each SOAP message uses its own pair of derived keys.

For both digital signatures and encryption, the key length is 16 (as opposed to the default 
32)

The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to 
create a custom security policy file, described in later sections.

WARNING: If you specify this pre-packaged security policy file, you should not also specify 
any other pre-packaged security policy file.

Listing 2-25   Wssc-dk.xml

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"
  
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
  xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
  >

  <wssp:Integrity SupportTrust10="true">
    <wssp:SignatureAlgorithm 
URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
    <wssp:CanonicalizationAlgorithm 
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <wssp:MessageParts 
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
          wls:SystemHeaders()
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <wssp:MessageParts 
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">



Conf igur ing  Message-Leve l  Secur i t y

2-118 Securing WebLogic Web Services

          wls:SecurityHeader(wsu:Timestamp)
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
       wsp:Body()
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:SupportedTokens>
      <wssp:SecurityToken IncludeInMessage="true"
        TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
        DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
        <wssp:Claims>
          <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
          <wssp:Length>16</wssp:Length>
        </wssp:Claims>
      </wssp:SecurityToken>
    </wssp:SupportedTokens>

  </wssp:Integrity>

  <wssp:Confidentiality SupportTrust10="true">

    <wssp:Target>
      <wssp:EncryptionAlgorithm 
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
      <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
    </wssp:Target>

    <wssp:KeyInfo>
      <wssp:SecurityToken IncludeInMessage="true"
        TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
        DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
        <wssp:Claims>
          <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
          <wssp:Length>16</wssp:Length>
        </wssp:Claims>
      </wssp:SecurityToken>
    </wssp:KeyInfo>

  </wssp:Confidentiality>

  <wssp:MessageAge/>

</wsp:Policy>



Propr ie ta r y  Web  Serv i ces  Secur i t y  Po l i c y  F i l es  ( JAX-RPC On l y )

Securing WebLogic Web Services 2-119

Wssc-sct.xml
Specifies that the client and Web Service share a security context, as described by the 
WS-SecureConversation specification. In this case, security context tokens are used to encrypt 
and sign the SOAP messages, which differs from Wssc-dk.xml in which derived key tokens are 
used. The Wssc-sct.xml policy file is provided to support all the use cases of the specification; 
for utmost security, however, Oracle recommends you always use Wssc-dk.xml when specifying 
shared security contexts due to its higher level of security.

This security policy file provides the following configuration:

A security context token is used to sign all system SOAP headers, the timestamp security 
SOAP header, and the SOAP body. 

A security context token is used to encrypt the body of the SOAP message. 

The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to 
create a custom security policy file, described in later sections.

WARNING: If you specify this pre-packaged security policy file, you should not also specify 
any other pre-packaged security policy file.

Listing 2-26   Wssc-sct.xml

<?xml version="1.0"?>

<wsp:Policy
  xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
  xmlns:wssp="http://www.bea.com/wls90/security/policy"
  
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
  xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
  >

  <wssp:Integrity SupportTrust10="true">
    <wssp:SignatureAlgorithm 
URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
    <wssp:CanonicalizationAlgorithm 
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>      



Conf igur ing  Message-Leve l  Secur i t y

2-120 Securing WebLogic Web Services

<wssp:MessageParts 
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
         wls:SystemHeaders()
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <wssp:MessageParts 
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
         wls:SecurityHeader(wsu:Timestamp)
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:Target>
      <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
      wsp:Body()
      </wssp:MessageParts>
    </wssp:Target>

    <wssp:SupportedTokens>
      <wssp:SecurityToken IncludeInMessage="true"
        TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
      </wssp:SecurityToken>
    </wssp:SupportedTokens>

  </wssp:Integrity>

  <wssp:Confidentiality SupportTrust10="true">

    <wssp:Target>
      <wssp:EncryptionAlgorithm 
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
      <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
    </wssp:Target>

    <wssp:KeyInfo>
      <wssp:SecurityToken IncludeInMessage="true"
        TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
      </wssp:SecurityToken>
    </wssp:KeyInfo>
  </wssp:Confidentiality>

  <wssp:MessageAge />

</wsp:Policy>



Securing WebLogic Web Services 3-1

C H A P T E R 3

Configuring Transport-Level Security

Transport-level security refers to securing the connection between a client application and a Web 
Service with Secure Sockets Layer (SSL) or HTTP Basic authentication, either alone or in 
combination.  

SSL provides secure connections by allowing two applications connecting over a network to 
authenticate the other's identity and by encrypting the data exchanged between the applications. 
Authentication allows a server, and optionally a client, to verify the identity of the application on 
the other end of a network connection. A client certificate (two-way SSL) can be used to 
authenticate the user.

See “Secure Sockets Layer (SSL)” in Understanding WebLogic Security for general information 
about SSL and the implementations included in WebLogic Server. 

The following sections describe how to configure transport-level security for your Web Service:

“Configuring Transport-Level Security Through Policy” on page 3-1

“Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC 
Only)” on page 3-4

“Configuring Two-Way SSL for a Client Application” on page 3-6

“Using a Custom SSL Adapter with Reliable Messaging” on page 3-7

Configuring Transport-Level Security Through Policy
You can specify a policy that requires SSL, HTTP BASIC authentication, or both. 

http://e-docs.bea.com/wls/docs103/secintro/concepts.html#concepts006


Conf igur ing  T ranspo r t -Leve l  Secur i t y

3-2 Securing WebLogic Web Services

If the policy requires SSL, make sure you configure SSL for the core WebLogic Server security 
subsystem. You can configure one-way SSL where WebLogic Server is required to present a 
certificate to the client application, or two-way SSL where both the client applications and 
WebLogic server present certificates to each other. 

To configure two-way or one-way SSL for the core WebLogic Server security subsystem, see 
“Configuring SSL” in Securing WebLogic Server.

For example, the Oracle-supplied  Wssp1.2-2007-Saml2.0-Bearer-Https.xml policy file 
includes the following assertion indicating that the policy is expecting a client certificate via SSL, 
as shown in Listing 3-1.

Listing 3-1   Specifying SSL in a Policy

<sp:TransportToken> 

<wsp:Policy>

<sp:HttpsToken/>

</wsp:Policy>

</sp:TransportToken> 

If two-way SSL is required, also use the RequireClientCertificate assertion, as shown in 
Listing 3-2.

Listing 3-2   Two-Way SSL in a Policy

<sp:TransportToken>

<wsp:Policy>

<sp:HttpsToken >

<wsp:Policy>

<sp:RequireClientCertificate/>

</wsp:Policy>

</sp:HttpsToken>

</wsp:Policy>

</sp:TransportToken>

http://e-docs.bea.com/wls/docs103/secmanage/ssl.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  Through  Po l i cy

Securing WebLogic Web Services 3-3

The Wssp1.2-2007-Https-BasicAuth.xml policy file requires both a client certificate via 
SSL and HTTP BASIC Authentication, as shown in Listing 3-3. 

Listing 3-3   SSL and HTTP Basic Authentication in a Policy

<sp:TransportToken>

<wsp:Policy>

<sp:HttpsToken>

<wsp:Policy>

<sp:HttpBasicAuthentication/>

</wsp:Policy>

</sp:HttpsToken>

</wsp:Policy>

</sp:TransportToken>

Configuring Transport-Level Security Through Policy: 
Main Steps
To configure transport-level Web Services security via one or more policy files:

1. Configure SSL for the core WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a certificate 
to the client application, or two-way SSL where both the client applications and WebLogic 
server present certificates to each other. 

To configure two-way or one-way SSL for the core WebLogic Server security subsystem, 
see “Configuring SSL” in Securing WebLogic Server.

2. Use @Policy or @Policies JWS annotations in  your JWS file, or associate policy files only 
at runtime using the Administration Console, or specify some policy files using the 
annotations and then associate additional ones at runtime. 

3. If you added  @Policy or @Policies JWS annotations in  your JWS file, compile and 
redeploy your Web Service as part of the normal iterative development process. 

See  “Developing WebLogic Web Services” in Getting Started With WebLogic Web 
Services Using JAX-RPC

http://e-docs.bea.com/wls/docs103/secmanage/ssl.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

3-4 Securing WebLogic Web Services

4. When you run the client application that invokes the Web Service, specify certain properties 
to indicate the SSL implementation that your application should use. In particular:

– To specify the Certicom SSL implementation, use the following properties

-Djava.protocol.handler.pkgs=weblogic.net
-Dweblogic.security.SSL.trustedCAKeyStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list 
of trusted certificates (one of which should be the server’s certificate).To disable host 
name verification, also specify the following property:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

– To specify Sun’s SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list 
of trusted certificates (one of which should be the server’s certificate). To disable host 
name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

 See “Configuring Two-Way SSL for a Client Application” on page 3-6 for details about 
two-way SSL.

Configuring Transport-Level Security Via 
UserDataConstraint: Main Steps (JAX-RPC Only)

The  UserDataConstraint  annotation requires that the Web Service be invoked using the 
HTTPS transport.

To configure transport-level Web Services security via the UserDataConstraint annotation  in 
your JWS file:

1. Configure SSL for the core WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a certificate 
to the client application, or two-way SSL where both the client applications and WebLogic 
server present certificates to each other. 

To configure two-way or one-way SSL for the core WebLogic Server security subsystem, 
see “Configuring SSL” in Securing WebLogic Server.

http://e-docs.bea.com/wls/docs103/secmanage/ssl.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  V ia  UserDataConst ra int :  Ma in  Steps  ( JAX-RPC Onl y )

Securing WebLogic Web Services 3-5

2. In the JWS file that implements your Web Service, add the 
@weblogic.jws.security.UserDataConstraint annotation to require that the Web 
Service be invoked using the HTTPS transport.

For details, see “weblogic.jws.security.UserDataConstraint” in the WebLogic Web Services 
Reference.

3. Recompile and redeploy your Web Service as part of the normal iterative development 
process. 

See  “Developing WebLogic Web Services” in Getting Started With WebLogic Web 
Services Using JAX-RPC

4. Update the build.xml file that invokes the clientgen Ant task to use a static WSDL to 
generate the JAX-RPC stubs of the Web Service, rather than the dynamic deployed WSDL of 
the service. 

The reason clientgen cannot generate the stubs from the dynamic WSDL in this case is 
that when you specify the @UserDataConstraint annotation, all client applications are 
required to specify a truststore, including clientgen. However, there is currently no way 
for clientgen to specify a truststore, thus the Ant task must generate its client 
components from a static WSDL that describes the Web Service in the same way as the 
dynamic WSDL.

5. When you run the client application that invokes the Web Service, specify certain properties 
to indicate the SSL implementation that your application should use. In particular:

– To specify the Certicom SSL implementation, use the following properties

-Djava.protocol.handler.pkgs=weblogic.net
-Dweblogic.security.SSL.trustedCAKeyStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list 
of trusted certificates (one of which should be the server’s certificate).To disable host 
name verification, also specify the following property:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

– To specify Sun’s SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list 
of trusted certificates (one of which should be the server’s certificate). To disable host 
name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

http://e-docs.bea.com/wls/docs103/webserv_ref/annotations.html#UserDataConstraint
http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

3-6 Securing WebLogic Web Services

 See “Configuring Two-Way SSL for a Client Application” on page 3-6 for details about 
two-way SSL.

Configuring Two-Way SSL for a Client Application
If you configured two-way SSL for WebLogic Server, the client application must present a 
certificate to WebLogic Server, in addition to WebLogic Server presenting a certificate to the 
client application as required by one-way SSL. You must also follow these requirements:

Create a client-side keystore that contains the client’s private key and X.509 certificate 
pair. 

The SSL package of J2SE requires that the password of the client’s private key must be the 
same as the password of the client’s keystore. For this reason, the client keystore can 
include only one private key and X.509 certificate pair.

Configure the core WebLogic Server’s security subsystem, mapping the client’s X.509 
certificate in the client keystore to a user. See “Configuring a User Name Mapper” in 
Securing WebLogic Server.

Create a truststore which contains the certificates that the client trusts; the client 
application uses this truststore to validate the certificate it receives from WebLogic Server. 
Because of the J2SE password requirement described in the preceding bullet item, this 
truststore must be different from the keystore that contains the key pair that the client 
presents to the server.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this 
step. For development purposes, the keytool utility is the easiest way to get started.

See “Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities” in 
Securing WebLogic Server.

When you run the client application that invokes the Web Service, specify the following 
properties:
– -Djavax.net.ssl.trustStore=trustStore

– -Djavax.net.ssl.trustStorePassword=trustStorePassword

where trustStore specifies the name of the client-side truststore that contains the list of 
trusted certificates (one of which should be the server’s certificate) and 
trustStorePassword specifies the truststore’s password.

The preceding properties are in addition to the standard properties you must set to specify 
the client-side keystore:

http://e-docs.bea.com/wls/docs103/secmanage/identity_trust.html#get_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs103/secmanage/atn.html#user_name_mapper
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/keytool.html


Us ing  a  Cus tom SSL  Adapte r  w i th  Re l iab le  Messag ing

Securing WebLogic Web Services 3-7

– -Djavax.net.ssl.keyStore=keyStore

– -Djavax.net.ssl.keyStorePassword=keyStorePassword

Using a Custom SSL Adapter with Reliable Messaging
Note: All objects placed into Stub and MessageContext properties must be serializable and 

externalizable, and must have their implementations available on the server system 
CLASSPATH.  This section describes the specific case of a custom SSLAdapter 
implementation.

You can use a custom SSLAdapter implementation to provide client certificates and other 
services needed to establish SSL connections between client and server when using reliable 
messaging or buffering. The reliable messaging and buffering subsystems persist the state of a 
request over an SSL connection. In doing so, they persist the instance of the custom SSLAdapter 
used to establish the connection.

When the request is restored from persistence, the persistence facility must have access to the 
custom SSLAdapter class in order to properly restore the custom SSLAdapter object saved with 
the request. To allow for this, you must provide your custom SSLAdapter class via the server's 
system CLASSPATH (and not within an application deployed to the server). 

The custom SSLAdapter must extend  SSLAdapter, and is installed and enabled via the following 
procedure: 

1. Create an instance of 
weblogic.wsee.connection.transport.https.HttpsTransportInfo.

2. Set the custom SSL adapter on that transport info by calling 
HttpsTransportInfo.setSSLAdapter(SSLAdapter adapter).

3. Set the transport info on the web services stub instance (stub of type 
javax.xml.rpc.Stub) by calling

stub._setProperty(weblogic.wsee.connection.soap.SoapClientConnection.TR
ANSPORT_INFO_PROPERTY,ti);

Where stub is the Web Services stub, and ti is the HttpsTransportInfo you 
configured.

If you do not follow this procedure and provide the custom SSLAdapter class on the system 
CLASSPATH, a ClassNotFoundException exception is generated:

  java.io.IOException: java.lang.ClassNotFoundException:
  examples.webservices.client.ServiceBase$TestSSLAdapter

http://e-docs.bea.com/wls/docs103/javadocs/weblogic/wsee/connection/transport/https/SSLAdapter.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/wsee/connection/transport/https/SSLAdapter.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

3-8 Securing WebLogic Web Services



Securing WebLogic Web Services 4-1

C H A P T E R 4

Configuring Access Control Security 
(JAX-RPC Only)

The following sections describe how to configure security for your Web Service:

“Configuring Access Control Security: Main Steps” on page 4-1

“Updating the JWS File With the Security-Related Annotations” on page 4-4

“Updating the JWS File With the @RunAs Annotation” on page 4-6

“Setting the Username and Password When Creating the Service Object” on page 4-7

Configuring Access Control Security: Main Steps
Access control security refers to configuring the Web Service to control the users who are 
allowed to access it, and then coding your client application to authenticate itself, using HTTP/S 
or username tokens, to the Web Service when the client invokes one of its operations. 

You specify access control security for your Web Service by using one or more of the following 
annotations in your JWS file:

weblogic.jws.security.RolesAllowed

weblogic.jws.security.SecurityRole

weblogic.jws.security.RolesReferenced

weblogic.jws.security.SecurityRoleRef

weblogic.jws.security.RunAs



Conf igur ing  Access  Cont ro l  Secur i t y  ( JAX-RPC On l y )

4-2 Securing WebLogic Web Services

Note: The @weblogic.security.jws.SecurityRoles and 
@weblogic.security.jws.SecurityIdentity JWS annotations were deprecated as 
of WebLogic Server 9.1.

The following procedure describes the high-level steps to use these annotations to enable access 
control security; later sections in the chapter describe the steps in more detail.

Note: It is assumed in the following procedure that you have already created a JWS file that 
implements a WebLogic Web Service and you want to update it with access control 
security. It is also assumed that you use Ant build scripts to iteratively develop your Web 
Service and that you have a working build.xml file that you can update with new 
information. Finally, it is assumed that you have a client application that invokes the 
non-secured Web Service. If these assumptions are not true, see:

Getting Started With WebLogic Services Using JAX-RPC

1. Update your JWS file, adding the @weblogic.jws.security.RolesAllowed, 
@weblogic.jws.security.SecurityRole, 
@weblogic.jws.security.RolesReferenced, or 
@weblogic.jws.security.SecurityRoleRef annotations as needed at the appropriate 
level (class or operation).

See “Updating the JWS File With the Security-Related Annotations” on page 4-4.

2. Optionally specify that WebLogic Server internally run the Web Service using a specific role, 
rather than the role assigned to the user who actually invokes the Web Service, by adding the 
@weblogic.jws.security.RunAs JWS annotation. 

See “Updating the JWS File With the @RunAs Annotation” on page 4-6.

3. Optionally specify that your Web Service can be, or is required to be, invoked using HTTPS 
by adding the @weblogic.jws.security.UserDataConstraint JWS annotation.

See“Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC 
Only)” on page 3-4  for details. This section also discusses how to update your client 
application to use SSL.

4. Recompile and redeploy your Web Service as part of the normal iterative development 
process. 

See  “Developing WebLogic Web Services” in Getting Started With WebLogic Web 
Services Using JAX-RPC.

5. Using the Administration Console, create valid WebLogic Server users, if they do not already 
exist. If the mapping of users to roles is external, also use the Administration Console to create 
the roles specified by the @SecurityRole annotation and map the users to the roles.

http://e-docs.bea.com/wls/docs103/webserv_rpc/setenv.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/index.html 


Conf igur ing  Access  Cont ro l  Secur i t y :  Ma in  S teps

Securing WebLogic Web Services 4-3

Note: The mapping of users to roles is defined externally if you do not specify the 
mapToPrincipals attribute of the @SecurityRole annotation in your JWS file to 
list all users who can invoke the Web Service.

See “Users, Groups, and Security Roles” in Securing WebLogic Resources Using Roles 
and Policies.

6. Update your client application to use the HttpTransportInfo WebLogic API to specify the 
appropriate user and password when creating the  Service object. 

See “Setting the Username and Password When Creating the Service Object” on page 4-7.

7. Update the clientgen Ant task in your build.xml file to specify the username and 
password of a valid WebLogic user (in the case where your Web Service uses the 
@RolesAllowed annotation) and the trust store that contains the list of trusted certificates, 
including WebLogic Server’s (in the case you specify @UserDataConstraint). 

You do this by adding the standard Ant <sysproperty> nested element to the clientgen 
Ant task, and set the key attribute to the required Java property, as shown in the following 
example.  

Note: The example hard-codes the username and password; prompting for both provides 
more security.  You need the username and password for @RolesAllowed,  and 
trustStore if SSL must be used.

<clientgen
    wsdl="http://example.com/myapp/myservice.wsdl"
    destDir="/output/clientclasses"
    packageName="myapp.myservice.client"
    serviceName="StockQuoteService" >
    <sysproperty key="javax.net.ssl.trustStore" 
                 value="/keystores/DemoTrust.jks"/>
    <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking" 
                 value="false"/>
    <sysproperty key="javax.xml.rpc.security.auth.username"
                 value="juliet"/>
    <sysproperty key="javax.xml.rpc.security.auth.password"
                 value="secret"/> 
</clientgen>

8. Regenerate client-side components and recompile client Java code as usual.

http://e-docs.bea.com/wls/docs103/secwlres/secroles.html


Conf igur ing  Access  Cont ro l  Secur i t y  ( JAX-RPC On l y )

4-4 Securing WebLogic Web Services

Updating the JWS File With the Security-Related 
Annotations

Use the WebLogic-specific @weblogic.jws.security.RolesAllowed annotation in your 
JWS file to specify an array of @weblogic.jws.security.SecurityRoles annotations that 
list the roles that are allowed to invoke the Web Service. You can specify these two annotations 
at either the class- or method-level. When set at the class-level, the roles apply to all public 
operations. You can add additional roles to a particular operation by specifying the annotation at 
the method level.

The @SecurityRole annotation has the following two attributes:

role—Name of the role that is allowed to invoke the Web Service.

mapToPrincipals—List of users that map to the role.  If you specify one or more users 
with this attribute, you do not have to externally create the mapping between users and 
roles, typically using the Administration Console.  However, the mapping specified with 
this attribute applies only within the context of the Web Service.

The @RolesAllowed annotation does not have any attributes.

You can also use the @weblogic.jws.security.RolesReferenced annotation to specify an 
array of @weblogic.jws.security.SecurityRoleRef annotations that list references to 
existing roles. For example, if the role manager is already allowed to invoke the Web Service, 
you can specify that the mgr role be linked to the manager role and any user mapped to mgr is 
also able to invoke the Web Service. You can specify these two annotations only at the 
class-level.

The @SecurityRoleRef annotation has the following two attributes:

role—Name of the role reference.

link—Name of the already-specified role that is allowed to invoke the Web Service.  The 
value of this attribute corresponds to the value of the role attribute of a @SecurityRole 
annotation specified in the same JWS file.

The @RolesReferenced annotation does not have any attributes.

The following example shows how to use the annotations described in this section in a JWS file, 
with the relevant sections shown in bold:

package examples.webservices.security_roles;



Updat ing  the  JWS F i l e  Wi th  the  Secur i t y -Re lated  Annotat i ons

Securing WebLogic Web Services 4-5

import javax.jws.WebMethod;

import javax.jws.WebService;

// WebLogic JWS annotations

import weblogic.jws.WLHttpTransport;

import weblogic.jws.security.RolesAllowed;

import weblogic.jws.security.RolesReferenced;

import weblogic.jws.security.SecurityRole;

import weblogic.jws.security.SecurityRoleRef;

@WebService(name="SecurityRolesPortType",

            serviceName="SecurityRolesService",

            targetNamespace="http://example.org")

@WLHttpTransport(contextPath="security", 

                 serviceUri="SecurityRolesService",

                  portName="SecurityRolesPort")

@RolesAllowed (  {

    @SecurityRole (role="manager",

                   mapToPrincipals={ "juliet","amanda" }),

    @SecurityRole (role="vp")

} )

@RolesReferenced (

    @SecurityRoleRef (role="mgr", link="manager")

)

/**

 * This JWS file forms the basis of simple Java-class implemented WebLogic

 * Web Service with a single operation: sayHello

 *

 */

public class SecurityRolesImpl {

  @WebMethod()

  public String sayHello(String message) {

    System.out.println("sayHello:" + message);

    return "Here is the message: '" + message + "'";

  }



Conf igur ing  Access  Cont ro l  Secur i t y  ( JAX-RPC On l y )

4-6 Securing WebLogic Web Services

}

The example shows how to specify that only the manager, vp, and mgr roles are allowed to 
invoke the Web Service. The mgr role is actually a reference to the manager role. The users 
juliet and amanda are mapped to the manager role within the context of the Web Service. 
Because no users are mapped to the vp role, it is assumed that the mapping occurs externally, 
typically using the Administration Console to update the WebLogic Server security realm.

See “JWS Annotation Reference” in WebLogic Web Services Reference for reference information 
on these annotations.

Updating the JWS File With the @RunAs Annotation
Use the WebLogic-specific @weblogic.jws.security.RunAs annotation in your JWS file to 
specify that the Web Service is always run as a particular role. This means that regardless of the 
user who  initially invokes the Web Service  (and the role to which the user is mapped), the 
service is internally executed as the specified role.

You can set the @RunAs annotation only at the class-level. The annotation has the following 
attributes:

role—Role which the Web Service should run as.

mapToPrincipal—Principal user that maps to the role. 

The following example shows how to use the @RunAs annotation in a JWS file, with the relevant 
sections shown in bold:

package examples.webservices.security_roles;

import javax.jws.WebMethod;

import javax.jws.WebService;

// WebLogic JWS annotations

import weblogic.jws.WLHttpTransport;

import weblogic.jws.security.RunAs;

@WebService(name="SecurityRunAsPortType",

            serviceName="SecurityRunAsService",

            targetNamespace="http://example.org")

http://e-docs.bea.com/wls/docs103/webserv_ref/annotations.html


Set t ing  the  Username  and  Password  When Creat ing  the  Serv ice  Ob jec t

Securing WebLogic Web Services 4-7

@WLHttpTransport(contextPath="security_runas",

                 serviceUri="SecurityRunAsService",

                 portName="SecurityRunAsPort")

@RunAs (role="manager", mapToPrincipal="juliet")

/**

 * This JWS file forms the basis of simple WebLogic

 * Web Service with a single operation: sayHello

 *

 */

public class SecurityRunAsImpl {

  @WebMethod()

  public String sayHello(String message) {

    System.out.println("sayHello:" + message);

    return "Here is the message: '" + message + "'";

  }

}

Setting the Username and Password When Creating the  
Service Object

When you use the @RolesAllowed JWS annotation to secure a Web Service, only the specified 
roles are allowed to invoke the Web Service operations. This means that you must specify the 
username and password of a user that maps to the role when creating the Service object in your 
client application that invokes the protected Web Service.

WebLogic Server provides the HttpTransportInfo class for setting the username and 
password and passing it to the Service constructor. The following example is based on the 
standard way to invoke a Web Service from a standalone Java client (as described in “Invoking 
Web Services” in Getting Started With WebLogic Web Services Using JAX-RPC) but also shows 
how to use the HttpTransportInfo class to set the username and password. The sections in bold 
are discussed after the example.

package examples.webservices.sec_wsdl.client;

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

import java.rmi.RemoteException;

http://e-docs.bea.com/wls/docs103/webserv_rpc/client.html
http://e-docs.bea.com/wls/docs103/webserv_rpc/client.html


Conf igur ing  Access  Cont ro l  Secur i t y  ( JAX-RPC On l y )

4-8 Securing WebLogic Web Services

import javax.xml.rpc.ServiceException;

import javax.xml.rpc.Stub;

/**

 * This is a simple standalone client application that invokes the

 * the <code>sayHello</code> operation of the SecWsdlService Web service.

 *

 * @author Copyright © 1996, 2008, Oracle and/or its affiliates. 

* All rights reserved.

 */

public class Main {

  public static void main(String[] args)

      throws ServiceException, RemoteException{

    HttpTransportInfo info = new HttpTransportInfo();

    info.setUsername("juliet".getBytes());

    info.setPassword("secret".getBytes());

    SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL", 

info);

    SecWsdlPortType port = service.getSecWsdlPort();

    try {

      String result = null;

      result = port.sayHello("Hi there!");

      System.out.println( "Got result: " + result );

    } catch (RemoteException e) {

      throw e;

    }

  }

}

The main points to note in the preceding example are as follows:

Import the HttpTransportInfo class into your client application:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

Use the setXXX() methods of the HttpTransportInfo class to set the username and 
password:



Set t ing  the  Username  and  Password  When Creat ing  the  Serv ice  Ob jec t

Securing WebLogic Web Services 4-9

HttpTransportInfo info = new HttpTransportInfo();
info.setUsername("juliet".getBytes());
info.setPassword("secret".getBytes());

In the example, it is assumed that the user juliet with password secret is a valid 
WebLogic Server user and has been mapped to the role specified in the @RolesAllowed 
JWS annotation of the Web Service.

If you are accessing a Web Service using a proxy, the Java code would be similar to:

HttpTransportInfo info = new HttpTransportInfo();
Proxy p = new Proxy(Proxy.Type.HTTP, new  InetSocketAddress(proxyHost, 
Integer.parseInt(proxyPort)));
info.setProxy(p);
info.setProxyUsername(user.getBytes());
info.setProxyPassword(pass.getBytes());

Pass the info object that contains the username and password to the Service constructor 
as the second argument, in addition to the standard WSDL first argument:

SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL", 
info);

See “Invoking Web Services” in Getting Started With WebLogic Web Services Using JAX-RPC 
for general information about invoking a non-secured Web Service.

http://e-docs.bea.com/wls/docs103/webserv_rpc/client.html


Conf igur ing  Access  Cont ro l  Secur i t y  ( JAX-RPC On l y )

4-10 Securing WebLogic Web Services


	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Securing WebLogic Web Services, 10g Release 3 (10.3)
	Overview of Web Services Security
	Overview of Web Services Security
	What Type of Security Should You Configure?

	Configuring Message-Level Security
	Overview of Message-Level Security
	Web Services Security Supported Standards
	Web Services Trust and Secure Conversation
	Web Services SecurityPolicy 1.2


	Main Use Cases of Message-Level Security
	Using Policy Files for Message-Level Security Configuration
	Using Policy Files With JAX-WS
	WS-Policy Namespace
	WS-SecurityPolicy Namespace
	Version-Independent Policy Supported

	Configuring Simple Message-Level Security: Main Steps
	Ensuring That WebLogic Server Can Validate the Client’s Certificate
	Updating the JWS File with @Policy and @Policies Annotations
	Loading a Policy From the CLASSPATH

	Using Key Pairs Other Than the Out-Of-The-Box SSL Pair

	Updating a Client Application to Invoke a Message-Secured Web Service
	Invoking a Message-Secured Web Service From a Client Running in a WebLogic Server Instance

	Creating and Using a Custom Policy File
	Configuring the WS-Trust Client
	Supported Token Types
	Configuring WS-Trust Client Properties
	Obtaining the URI of the Secure Token Service
	Configuring STS URI: Standalone Client
	Configuring STS URI Using WLST: Client Running On Server Side
	Configuring STS URI Using Console: Client Running On Server Side
	Configuring STS Security Policy: Standalone Client
	Configuring STS Security Policy Using WLST: Client Running On Server Side
	Configuring STS Security Policy: Using the Console
	Configuring the STS SOAP Version and WS-Trust Version: Standalone Client


	Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation)
	Specification Backward Compatibility
	WS-SecureConversation and Clusters
	Updating a Client Application to Negotiate Security Contexts

	Associating Policy Files at Runtime Using the Administration Console
	Using Security Assertion Markup Language (SAML) Tokens For Identity
	Using SAML Tokens for Identity: Main Steps
	Specifying the SAML Confirmation Method
	Specifying the SAML Confirmation Method (Proprietary Policy Only)


	Associating a Web Service with a Security Configuration Other Than the Default
	Valid Class Names and Token Types for Credential Provider
	Using System Properties to Debug Message-Level Security
	Using a Client-Side Security Policy File
	Associating a Policy File with a Client Application: Main Steps
	Updating clientgen to Generate Methods That Load Policy Files
	Updating a Client Application To Load Policy Files (JAX-RPC Only)

	Using WS-SecurityPolicy 1.2 Policy Files
	Transport Level Policies
	Protection Assertion Policies
	WS-Security 1.0 Username and X509 Token Policies
	WS-Security 1.1 Username and X509 Token Policies
	WS-SecureConversation Policies
	SAML Token Profile Policies

	Choosing a Policy
	Unsupported WS-SecurityPolicy 1.2 Assertions
	Using the Optional Policy Assertion
	Configuring Element-Level Security
	Define and Use a Custom Element-Level Policy File
	Adding the Policy Annotation to JWS File

	Implementation Notes

	Smart Policy Selection
	Example of Security Policy With Policy Alternatives
	Configuring Smart Policy Selection
	How the Policy Preference is Determined
	Configuring Smart Policy Selection in the Console
	Understanding Body Encryption in Smart Policy
	Smart Policy Selection for a Standalone Client

	Multiple Transport Assertions

	Example of Adding Security to MTOM Web Service
	Files Used by This Example
	SecurityMtomService.java
	MtomClient.java
	configWss.py Script File
	Build.xml File
	Building and Running the Example
	Deployed WSDL for SecurityMtomService

	Example of Adding Security to Reliable Messaging Web Service
	Overview of Secure and Reliable SOAP Messaging
	Overview of the Example
	How the Example Sets Up WebLogic Security

	Files Used by This Example
	Revised ReliableEchoServiceImpl.java
	Revised configWss.py
	Revised configWss_Service.py
	Building and Running the Example

	Proprietary Web Services Security Policy Files (JAX-RPC Only)
	Abstract and Concrete Policy Files
	Auth.xml
	Sign.xml
	Encrypt.xml
	Wssc-dk.xml
	Wssc-sct.xml


	Configuring Transport-Level Security
	Configuring Transport-Level Security Through Policy
	Configuring Transport-Level Security Through Policy: Main Steps

	Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC Only)
	Configuring Two-Way SSL for a Client Application
	Using a Custom SSL Adapter with Reliable Messaging

	Configuring Access Control Security (JAX-RPC Only)
	Configuring Access Control Security: Main Steps
	Updating the JWS File With the Security-Related Annotations
	Updating the JWS File With the @RunAs Annotation
	Setting the Username and Password When Creating the Service Object


