
Server
Programming

W e b L o g i c  S e r v e r  6 . 0
D o c u m e n t  D a t e  M a r c h  3 ,  2 0 0 1

BEA WebLogic

WebLogic Enterprise JavaBeans



Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Programming WebLogic Enterprise JavaBeans

Document Date Software Version

March 3, 2001 WebLogic Server 6.0



About This Document xvii
Audience xviii
e-docs Web Site xviii
How to Print the Document xviii
Related Information xix
Contact Us! xix
Documentation Conventions xx
EJB Features and Changes in WebLogic Server 1-1
Implementation of Nonfinal Specification 1-1
EJB 2.0 Upgrade for WebLogic Server 1-2
EJB 2.0 Features 1-2
Supported Features 1-2
Features in Development 1-3
Major EJB Changes in This Release 1-3
Message-Driven Bean Support 1-4
Container-Managed Persistence 1-4
EJB QL 1-5
Application Assembly Support in Deploying EJBs 1-5
.jar, .ear, and Directory Deployment Units 1-5
Unsupported Deployment Utilities 1-5
DDConverter Upgrade Utility 1-6
WebLogic Server EJB Design and Development 2-1
Invoking Deployed EJBs 2-1
Accessing EJBs from either Local or Remote Clients 2-2
Restrictions on Accessing EJB Instances 2-3
Storing EJB References in Home Handles 2-3
Using Home Handles Across a Firewall 2-3
EJB Design Tips 2-4
Preserve Transaction Resources 2-4
Allow the Datastore to Manage Transactions 2-5
Using Container-Managed Transactions Instead of Bean-Managed Transactions 2-5
Never Demarcate Transactions from Application 2-5
Use Correct Modeling for Entity EJBs 2-6
Entity EJBs Should Be Coarse-Grained 2-6
Entity EJBs Should Contain Business Logic 2-6
Optimize Entity EJB Data Access 2-6
Use isModified() Where Appropriate 2-7
Using Inheritance with EJBs 2-7
Using Session Beans 2-8
Using Message-Driven Beans 3-1



What Are Message-Driven Beans? 3-1
Differences Between Message-Driven Beans and Standard JMS Consumers 3-2
Differences Between Message-Driven Beans and Stateless Session EJBs 3-3
Concurrent Support for Message-Driven Beans 3-3
Invoking a Message-Driven Bean 3-4
Developing Message-Driven Beans 3-4
Bean Class Requirements 3-4
Creating and Removing Bean Instances 3-5
Using the Message-Driven Bean Context 3-6
Implementing Business Logic with onMessage() 3-6
Handling Exceptions 3-7
Transaction Services for Message-Driven Beans 3-7
Message Receipts 3-8
Message Acknowledgment 3-8
Deploying Message-Driven Beans in WebLogic Server 3-9
Deployment Descriptors 3-9
Deployment Elements 3-9
The WebLogic Server EJB Container 4-1
EJB Life Cycle in WebLogic Server 4-2
Stateless Session EJB Life Cycle 4-2
Initializing EJB Instances 4-2
Activating and Pooling EJBs 4-3
Stateful EJB Life Cycle 4-3
Initializing and Using EJB Instances 4-4
Passivating Stateful EJBs 4-4
Removing Stateful Session EJB Instances 4-5
Using max-beans-in-free-pool 4-6
Stateful Session EJB Requirements 4-7
Special Use of max-beans-in-free pool 4-7
Locking Model for Entity EJBs 4-8
ejbLoad() and ejbStore() Behavior for Entity EJBs 4-8
Using db-is-shared to Limit Calls to ejbLoad() 4-9
Restrictions and Warnings for db-is-shared 4-10
Using is-modified-method-name to Limit Calls to ejbStore() 4-10
Warning for is-modified-method-name 4-11
Using delay-updates-until-end-of-tx to Change ejbStore() Behavior 4-11
Setting the Entity EJBs to Read-Only 4-12
Read-Write Cache Strategy 4-12
Read-Only-Cache-Strategy 4-12
Restrictions for Read-Only EJBs 4-12



Read-Mostly Pattern 4-13
EJBs in WebLogic Server Clusters 4-14
Overview 4-14
Clustered EJBHome Objects 4-15
Clustered EJBObjects 4-15
Session EJBs in a Cluster 4-16
Stateless Session EJBs 4-16
Stateful Session EJBs 4-17
In-Memory Replication for Stateful Session EJBs 4-18
Requirements and Configuration 4-18
Limitations of In-Memory Replication 4-19
Entity EJBs in a Cluster 4-19
Read-Write Entity EJBs 4-19
Non-Transactional Datastores 4-21
Transaction Management 4-21
Transaction Management Responsibilities 4-21
Using javax.transaction.UserTransaction 4-22
Restriction for Container-Managed EJBs 4-23
Distributing Transactions Across Multiple EJBs 4-23
Calling Multiple EJBs from a Single Transaction Context 4-23
Encapsulating a Multi-Operation Transaction 4-24
Distributing Transactions Across EJBs in a WebLogic Server Cluster 4-24
Transaction Isolation Level 4-25
Limitations of TRANSACTION_SERIALIZABLE 4-25
Special Note for Oracle Databases 4-25
Resource Factories 4-26
Setting Up JDBC Datasource Factories 4-26
Setting up URL Connection Factories 4-27
Persistence Services 4-28
Using WebLogic Server RDBMS Persistence 4-29
Writing Finders for RDBMS Persistence 4-29
Finder Signature 4-30
finder-list Stanza 4-30
finder-query Element 4-31
Using WebLogic Query Language (WLQL) 4-31
Syntax 4-31
Operators 4-31
Operands 4-32
Examples of WLQL Expressions 4-33
Using Java Expressions in WLQL 4-34



Example of Finder Method Signatures 4-36
Restrictions 4-37
Locking and Caching Services for Entity EJBs 4-38
Pessimistic Locking Services 4-38
Database Locking Services 4-38
Setting Up Database Locking 4-39
Home Method Support for Entity EJBs 4-40
WebLogic Server Container-Managed Persistence Services 5-1
EJB 2.0 Persistence Features and Changes 5-2
“get” and “set” Method Restrictions 5-2
BLOB and CLOB DBMS Column Restrictions 5-2
EJB QL Requirement for EJB 2.0 Beans 5-3
isModified() Not Required for CMP Beans 5-3
Using EJB QL 5-3
Basic EJB QL Syntax 5-4
EJB QL String Literals 5-4
EJB QL Operators 5-4
Finder Methods 5-4
Finder Parameter Placeholders 5-5
Select Methods 5-5
EJB QL Conditional Expressions 5-5
EJB QL Examples 5-6
Migrating from (EJB 1.1) WLQL to (EJB 2.0) EJB QL 5-7
Using WebLogic Query Language Extension 5-8
ORDERBY 5-8
Container-Managed Relationships 5-8
One-to-One Relationships 5-9
One-to-Many Relationships 5-10
Many-to-Many Relationships 5-10
Unidirectional Relationships 5-10
Bidirectional Relationships 5-10
Primary Keys 5-11
Foreign Keys 5-11
Groups 5-11
Specifying Field Groups 5-12
Using Groups 5-12
Supported Data Types 5-13
Deploying EJBs to WebLogic Server 6-1
Required Steps for Deploying EJBs 6-1
Setting Deployment Properties 6-2



Generating EJB Container Classes 6-4
Loading EJB Classes into WebLogic Server 6-5
Deploying EJBs at WebLogic Server Startup 6-5
Deploying EJBs in Different Applications 6-6
Deploying EJBs in a Running WebLogic Server (Dynamic Deployment) 6-6
EJB Deployment Names 6-7
Viewing Deployed EJBs 6-7
Deploying New EJBs into a Running Environment 6-8
Undeploying Deployed EJBs 6-8
Undeploying EJBs 6-9
Updating Deployed EJBs 6-9
The Update Process 6-10
Updating the EJB 6-10
Deploying EJBs in the EJB Container 7-1
Roles and Responsibilities 7-1
WebLogic Server Deployment Files 7-2
Automatic Deployment Directory 7-4
Deploying Compiled EJB .jar Files 7-4
Deploying Uncompiled EJB .jar Files 7-5
Deploying from an EJB .jar Directory 7-6
WebLogic Server EJB Utilities 8-1
ejbc 8-1
Syntax 8-2
Arguments 8-2
Options 8-2
Examples 8-3
DDConverter 8-4
Converting EJBs for Use in WebLogic Server 6.0 8-4
Converting EJB CMP 1.1 Beans to EJB CMP 2.0 Beans 8-4
Converting CMP Beans between WebLogic Server Versions 8-5
Syntax 8-5
Arguments 8-6
Options 8-6
Examples 8-6
deploy 8-7
Syntax 8-7
Arguments 8-7
Options 8-8
WebLogic Server 6.0 EJB Deployment Properties 9-1
Manually Editing XML Deployment Files 9-1



DOCTYPE Header Information 9-2
Document Type Definitions (DTDs) for Validation 9-3
weblogic-ejb-jar.xml Deployment Descriptor File 9-4
Index of weblogic-ejb-jar Deployment Elements 9-5
allow-concurrent-calls 9-8
Function 9-8
Example 9-8
concurrency-strategy 9-9
Function 9-9
Example 9-9
db-is-shared 9-10
Function 9-10
Example 9-10
delay-updates-until-end-of-tx 9-11
Function 9-11
Example 9-11
description 9-12
Function 9-12
Example 9-12
destination-jndi-name 9-13
Function 9-13
Example 9-13
ejb-name 9-14
Function 9-14
Example 9-14
ejb-reference-description 9-15
Function 9-15
Example 9-15
ejb-ref-name 9-16
Function 9-16
Example 9-16
enable-call-by-reference 9-17
Function 9-17
Example 9-17
entity-cache 9-18
Function 9-18
Example 9-18
entity-clustering 9-19
Function 9-19
Example 9-19



entity-descriptor 9-20
Function 9-20
Example 9-20
finders-load-bean 9-21
Function 9-21
Example 9-21
home-call-router-class-name 9-22
Function 9-22
Example 9-22
home-is-clusterable 9-23
Function 9-23
Example 9-23
home-load-algorithm 9-24
Function 9-24
Example 9-24
idle-timeout-seconds 9-25
Function 9-25
Example 9-25
initial-beans-in-free-pool 9-26
Function 9-26
Example 9-26
is-modified-method-name 9-27
Function 9-27
Example 9-27
isolation-level 9-28
Function 9-28
Example 9-29
jndi-name 9-29
Function 9-29
Example 9-29
lifecycle 9-30
Function 9-30
Example 9-30
max-beans-in-cache 9-31
Function 9-31
Example 9-31
max-beans-in-free-pool 9-32
Function 9-32
Example 9-32
message-driven-descriptor 9-33



Function 9-33
Example 9-33
method 9-34
Function 9-34
Example 9-34
method-intf 9-35
Function 9-35
Example 9-35
method-name 9-36
Function 9-36
Example 9-36
method-param 9-37
Function 9-37
Example 9-37
method-params 9-38
Function 9-38
Example 9-38
passivation-strategy 9-39
Function 9-39
Example 9-39
persistence 9-40
Function 9-40
Example 9-40
persistence-type 9-41
Function 9-41
Example 9-41
persistence-use 9-42
Function 9-42
Example 9-42
persistent-store-dir 9-43
Function 9-43
Example 9-43
pool 9-44
Function 9-44
Example 9-44
principal-name 9-45
Function 9-45
Example 9-45
read-timeout-seconds 9-46
Function 9-46



Example 9-46
reference-descriptor 9-47
Function 9-47
Example 9-47
replication-type 9-48
Function 9-48
Example 9-48
res-env-ref-name 9-49
Function 9-49
Example 9-49
res-ref-name 9-50
Function 9-50
Example 9-50
resource-env-description 9-51
Function 9-51
Example 9-51
resource-description 9-52
Function 9-52
Example 9-52
role-name 9-53
Function 9-53
Example 9-53
run-as-identity-principal 9-54
Function 9-54
Example 9-54
security-role-assignment 9-55
Function 9-55
Example 9-55
stateful-session-cache 9-56
Function 9-56
Example 9-56
stateful-session-clustering 9-57
Function 9-57
Example 9-57
stateful-session-descriptor 9-58
Function 9-58
Example 9-58
stateless-bean-call-router-class-name 9-59
Function 9-59
Example 9-59



stateless-bean-is-clusterable 9-60
Function 9-60
Example 9-60
stateless-bean-load-algorithm 9-61
Function 9-61
Example 9-61
stateless-bean-methods-are-idempotent 9-62
Function 9-62
Example 9-62
stateless-clustering 9-63
Function 9-63
Example 9-63
stateless-session-descriptor 9-64
Function 9-64
Example 9-64
transaction-descriptor 9-65
Function 9-65
Example 9-65
transaction-isolation 9-66
Function 9-66
Example 9-66
trans-timeout-seconds 9-67
Function 9-67
Example 9-67
type-identifier 9-68
Function 9-68
Example 9-68
type-storage 9-69
Function 9-69
Example 9-69
type-version 9-70
Function 9-70
Example 9-70
weblogic-cmp-rdbms-jar.xml Deployment Descriptor File 9-71
Index of weblogic-cmp-rdbms-jar.xml Deployment Elements 9-71
cmp-field 9-73
Function 9-73
Example 9-73
cmr-field 9-74
Function 9-74



Example 9-74
column-map 9-75
Function 9-75
Example 9-75
data-source-name 9-76
Function 9-76
Example 9-76
dbms-column 9-77
Function 9-77
Example 9-77
ejb-name 9-78
Function 9-78
Example 9-78
field-group 9-79
Function 9-79
Example 9-79
field-map 9-80
Function 9-80
Example 9-80
foreign-key-column 9-81
Function 9-81
Example 9-81
group-name 9-82
Function 9-82
Example 9-82
key-column 9-83
Function 9-83
Example 9-83
max-elements 9-84
Function 9-84
Example 9-84
method-name 9-85
Function 9-85
Example 9-85
method-param 9-86
Function 9-86
Example 9-86
method-params 9-87
Function 9-87
Example 9-87



query-method 9-88
Function 9-88
Example 9-88
relation-name 9-89
Function 9-89
Example 9-89
relationship-role-name 9-90
Function 9-90
Example 9-90
table-name 9-91
Function 9-91
Example 9-91
weblogic-ql 9-92
Function 9-92
Example 9-92
weblogic-query 9-93
Function 9-93
Example 9-93
weblogic-relationship-role 9-94
Function 9-94
Example 9-94
WebLogic Server 5.1 EJB Deployment Properties 10-1
Manually Editing XML Deployment Files 10-1
Basic Conventions 10-2
DOCTYPE Header Information 10-2
Document Type Definitions (DTDs) for Validation 10-3
weblogic-ejb-jar.xml Deployment Descriptor File 10-4
Caching Properties 10-4
caching-descriptor 10-5
Persistence Properties 10-7
persistence-descriptor 10-7
Clustering Properties 10-10
clustering-descriptor 10-10
Transaction Properties 10-12
transaction-descriptor 10-13
EJB References 10-13
reference-descriptor 10-13
Isolation Level Settings 10-14
transaction-isolation 10-14
isolation-level 10-15



method 10-15
Security Role Assignments 10-17
security-role-assignment 10-17
enable-call-by-reference 10-17
weblogic-cmp-rdbms-jar.xml Deployment Descriptor File 10-17
RDBMS Definition Elements 10-19
pool-name 10-19
schema-name 10-19
table-name 10-19
EJB Field-Mapping Elements 10-20
attribute-map 10-20
object-link 10-20
bean-field 10-20
dbms-column 10-20
Finder Elements 10-21
finder-list 10-21
finder 10-21
method-name 10-21
method-params 10-21
method-param 10-22
finder-query 10-22
finder-expression 10-22





About This Document

This document describes how to develop and deploy Enterprise JavaBeans (EJBs) on
WebLogic Server.

This document is organized as follows:

� Chapter 1, “EJB Features and Changes in WebLogic Server,” is an overview of
EJB features supported in WebLogic Server.

� Chapter 2, “WebLogic Server EJB Design and Development,” is an overview of
design techniques developers can use to create EJBs.

� Chapter 3, “Using Message-Driven Beans,” explains how to develop and deploy
message-driven beans in the WebLogic Server container.

� Chapter 4, “The WebLogic Server EJB Container,” describes the services
available to the EJB with the WebLogic Services container.

� Chapter 5, “WebLogic Server Container-Managed Persistence Services,”
describes the EJB 2.0 container-managed persistence services available for the
WebLogic Server container.

� Chapter 6, “Deploying EJBs to WebLogic Server,” describes the steps necessary
to deploy EJB to WebLogic Server.

� Chapter 7, “Deploying EJBs in the EJB Container,” describes the process for
deploying EJBs in the EJB container.

� Chapter 8, “WebLogic Server EJB Utilities,” describes the utilities, shipped with
WebLogic Server, that are used with EJBs.

� Chapter 9, “WebLogic Server 6.0 EJB Deployment Properties,” describes the
WebLogic-specific deployment descriptors for the EJB 2.0 container that are
supplied in WebLogic Server 6.0.
Programming WebLogic Enterprise JavaBeans xvii



� Chapter 10, “WebLogic Server 5.1 EJB Deployment Properties,” describes the
WebLogic-specific deployment descriptors shipped with WebLogic Server 5.1.
These properties are provided for reference purposes.

Audience

This document is intended mainly for application developers who are interested in
developing Enterprise JavaBeans (EJBs) for use in dynamic Web-based applications.
Readers are assumed to be familiar with EJB architecture, XML coding, and Java
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
xviii Programming WebLogic Enterprise JavaBeans

http://www.adobe.com


Related Information 

Aditional documentation related to EJBs includes:

Java Remote Method Invocation (RMI)

Extensible Markup Language (XML)

Java Naming and Directory Interface (JNDI)

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic Enterprise JavaBeans xix

mailto:docsupport@bea.com
http://www.bea.com


Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[ ] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xx Programming WebLogic Enterprise JavaBeans



| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic Enterprise JavaBeans xxi



xxii Programming WebLogic Enterprise JavaBeans



Implementation of Nonfinal Specification
1 EJB Features and 
Changes in WebLogic 
Server 

WebLogic Server Version 6.0 includes an implementation of Sun Microsystems
Enterprise JavaBeans 1.1 and 2.0 architecture. This architecture defines a standard way
of creating server components that are part of distributed object-oriented applications.
Enterprise JavaBeans are the standard used to define server-side components.

The following sections provide an overview of the EJB features and the changes
introduced in the WebLogic Server Version 6.0 Enterprise JavaBeans implementation:

� Implementation of Nonfinal Specification

� EJB 2.0 Upgrade for WebLogic Server

� EJB 2.0 Features

� Major EJB Changes in This Release

Implementation of Nonfinal Specification

The Enterprise JavaBeans 2.0 implementation in WebLogic Server Version 6.0 will be
fully supported and can be used in production. However, be advised that the Sun
Microsystems EJB 2.0 specification is not yet finalized, and the WebLogic Server
implementation of the EJB 2.0 architecture is based on the most current public draft of
Programming WebLogic Enterprise JavaBeans 1-1



1 EJB Features and Changes in WebLogic Server
this specification. Consequently once the specification is finalized, there could be
changes to the Enterprise JavaBeans 2.0 implementation in future versions of
WebLogic Server. These changes may cause application code developed for
WebLogic Server Version 6.0 to be incompatible with EJB 2.0 implementations
supported in future releases.

EJB 2.0 Upgrade for WebLogic Server

Before you can use the EJB 2.0 features with WebLogic Server Version 6.0, you must
download the EJB20.jar file and the EJB 2.0 README file after you have installed
WebLogic Server Version 6.0. The EJB 2.0.jar file is an upgrade to WebLogic Server
Version 6.0 that enables the EJB 2.0 features. To download the .jar file:

1. Select the product download option from the BEA web site, http://www. bea.com.

2. Copy the zip file for the EJB 2.0 upgrade to your machine. This zip file contains
the EJB20.jar and the EJB 2.0 README files.

3. Use the instructions in the EJB 2.0 README file to install the JAR file.

EJB 2.0 Features

This section lists the EJB 2.0 features that are new to WebLogic Server Version 6.0
and the EJB 2.0 features that are in development.

Supported Features

Support for the following features is provided in WebLogic Server 6.0.

� Support for message-driven beans

� EJB 2.0 container-managed persistence services, including support for EJB-QL
1-2 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs60/ejb/message_beans.html
http://e-docs.bea.com/wls/docs60/ejb/cmp.html
http://e-docs.bea.com/wls/docs60/ejb/cmp.html#ejb20_ejbql


Major EJB Changes in This Release
� Support for entity EJB home methods

� EJB 2.0 XML deployment properties

� In-memory replication for stateful session EJBs in a cluster

� Database locking option for entity EJBs

� Improved EJB Deployment and redeployment capabilities

� isModified() no longer required for EJB 2.0 CMP entity beans

� Compliance with EJB 1.1 specification

Features in Development

Because the container is based on pre-release versions of the EJB 2.0 specification,
certain EJB 2.0 features are not yet available. Known differences between the
container and the publicly available EJB 2.0 specification are acknowledged in this
document where applicable.

The following EJB 2.0 container and WebLogic Server features will not be supported
until a future release of the WebLogic Server EJB 2.0 container:

� Support for the final EJB 2.0 specification

� Dependent objects

� Run-as-specified-identity

Major EJB Changes in This Release

This release of WebLogic Server Version 6.0 contains major changes to the supported
EJB features. The following sections describe some of those changes:
Programming WebLogic Enterprise JavaBeans 1-3

http://e-docs.bea.com/wls/docs60/ejb/cmp.html#ejb20_ejbql
http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.html#ejb20_homemethods
http://e-docs.bea.com/wls/docs60/ejb/reference.html#ejb20_xml
http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.html#ejb20_cluster
http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.html#ejb20_locking
http://e-docs.bea.com/wls/docs60/ejb/deploy.html
http://e-docs.bea.com/wls/docs60/ejb/cmp.html#ismod_req


1 EJB Features and Changes in WebLogic Server
Message-Driven Bean Support

EJBs are integrated with the Java Message Service (JMS) to provide the ability for a
message-driven bean to act as a standard JMS message consumer. The message-driven
bean is a stateless component that is invoked by the EJB container as a result of
receiving messages from a JMS Queue or Topic. The message-driven bean then
performs business logic based on the message contents. Using the message-driven
bean model allows EJB developers to work with a familiar framework and set of tools
and also provides access to the additional support provided by the container.

Message-driven beans have no home or remote interface, and therefore cannot be
directly accessed by internal or external clients. Clients interact with message-driven
beans only indirectly, by sending a message to a JMS Queue or Topic. WebLogic
Server automatically creates and removes message-driven bean instances as needed to
process incoming messages.

Only the WebLogic Server container directly interacts with a message-driven bean by
creating bean instances and passing JMS messages to those instances as necessary. The
goal of the message-driven bean model is to assure that developing an EJB, that is
asynchronously invoked to handle the processing of incoming JMS messages, is as
easy as developing the same functionality in any other JMS MessageListener. For
more information on message-driven beans, see “Developing Message-Driven Beans”
on page 3-4.

Container-Managed Persistence

This release provides added support for container-managed relationships among entity
beans. This container-managed persistence model is an improvement over the
limitations of the field-based approach to container-managed persistence in earlier
versions.

With container-managed persistence, database access calls are not written in the entity
bean. Instead, persistence is handled by the EJB container that is available at run time.
The persistent fields and relationships for which the container must generate data
access calls are specified in the deployment descriptors. When the entity bean is
deployed, the container is used to generate the necessary database access calls. For
more information on container-managed persistence, see “EJB 2.0 Persistence
Features and Changes” on page 5-2.
1-4 Programming WebLogic Enterprise JavaBeans



Major EJB Changes in This Release
EJB QL

This release supports for Enterprise JavaBeans Query Language (EJB QL). EJB QL is
a syntax for the definition of finder methods or queries for entity beans with
container-managed persistence. This syntax allows the Persistence Manager to provide
for the implementation of the finder methods. EJB QL defines finder methods so that
they are portable across containers and persistence managers. EJB QL is a declarative,
SQL-like language that is meant to be compiled to the target language of the persistent
datastore used by a Persistence Manager. For more information on EJB QL, see “Using
EJB QL” on page 5-3.

Application Assembly Support in Deploying EJBs

WebLogic Server simplifies the process of deploying multiple EJB deployment units
to one or more WebLogic Servers. When WebLogic Server is started, the EJBs are
automatically assembled and deployed to the appropriate WebLogic Server.

.jar, .ear, and Directory Deployment Units

You can deploy an Enterprise Application Archive (EAR) file or a Java Archive (JAR)
file by either copying the file to the config/examples/applications directory or
by deploying the file from the WebLogic Administration Console. The files and
subdirectories contained in the deployment directory must observe the same
restrictions as files and subdirectories stored in a .jar file.

Unsupported Deployment Utilities

The following EJB deployment utilities no longer exist with WebLogic Server Version
6.0:

� DDCreator

� EJB Deployment Wizard

WebLogic Server does not provide a DDCreator utility to generate new ejb-jar.xml

deployment files. However, you can use DDConverter with an earlier WebLogic
Server text deployment description to generate a valid ejb-jar.xml file.
Programming WebLogic Enterprise JavaBeans 1-5



1 EJB Features and Changes in WebLogic Server
Note: If you are an EJB provider and you need to create a new ejb-jar.xml file
from scratch, see the JavaSoft EJB 1.1 or 2.0 specification for instructions.

DDConverter Upgrade Utility

The new DDConverter utility provides a quick and easy way to upgrade earlier
WebLogic Server EJB deployment descriptors, such as those in WebLogic Server 5.1,
to WebLogic Server Version 6.0. DDConverter takes an existing WebLogic Server
text description file and generates the .xml and weblogic-ejb-jar.xml files
required for deploying to Version 6.0. DDConverter also automatically generates a
rdbms-jar.xml deployment file for entity EJBs that use WebLogic RDBMS-based
persistence services.

See “DDConverter” on page 8-4 for instructions on using the DDConverter utility.
1-6 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/index.html


CHAPTER
2 WebLogic Server EJB 
Design and 
Development

The following sections provide a collection of design tips and debugging points to keep
in mind when building applications with Enterprise JavaBeans. A number of these tips
apply to remote object models, Remote Method Invocation (RMI) and Common
Object Request Broker Architecture (CORBA), as much as they do to EJB.

Invoking Deployed EJBs

EJB Design Tips

Invoking Deployed EJBs

WebLogic Server automatically creates implementations of an EJB’s home and remote
interfaces that can function remotely. This means that all clients — whether they reside
in the same server as the EJB, or on a remote computer — can access deployed EJBs
in a similar fashion.

With the EJB 1.1 and 2.0 specification, all EJBs must specify their environment
properties using Java Naming and Directory Interface (JNDI). EJB clients can
configure their JNDI name spaces to include the home EJBs that reside anywhere on
the network — on multiple machines, application servers, or containers.
Programming WebLogic Enterprise JavaBeans 2-1



2 WebLogic Server EJB Design and Development
However, in designing enterprise application systems, you must still consider the
effects of transmitting data across a network between EJBs and their clients. Due to
network overhead, it is still more efficient to access beans from a “local” client — a
servlet or another EJB — than to do so from a remote client where data must be
marshalled, transmitted over the network, and then unmarshalled.

Accessing EJBs from either Local or Remote Clients

One difference between accessing EJBs from local clients or from remote clients is in
obtaining an InitialContext for the bean. Remote clients obtain an
6InitialContext from the WebLogic Server InitialContext factory. WebLogic
Server local clients generally use a getInitialContext method to perform this
lookup, similar to the following excerpt:

...

Context ctx = getInitialContext("t3://localhost:7001", "user1", "user1Password");

...

static Context getInitialContext(String url, String user, String password) {

Properties h = new Properties();

h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

h.put(Context.PROVIDER_URL, url);

h.put(Context.SECURITY_PRINCIPAL, user);

return new InitialContext(h);

}

Internal clients of an EJB, such as servlets, can simply create an InitialContext

using the default constructor, as shown here:

Context ctx = new InitialContext();
2-2 Programming WebLogic Enterprise JavaBeans



Invoking Deployed EJBs
Restrictions on Accessing EJB Instances

Although database concurrency is the default and recommended process for
concurrency access, it is possible to use entity EJBs that can be accessed by multiple
clients in a serial fashion. However, this process is available for use with legacy
applications that depend on this exclusive option. Using this exclusive option means
that if two clients attempt to access the same entity EJB instance (an instance having
the same primary key), the second client is blocked until the EJB is available. For more
information on the database concurrency option, see “Locking Model for Entity EJBs”
on page 4-8.

Simultaneous access to a stateful session EJB results in a RemoteException, as
required by the EJB 1.1 specification. However, you can set the
allow-concurrent-calls option to specify that a stateful session bean instance will
allow concurrent method calls. This access restriction on stateful session EJBs applies
whether the EJB client is remote or internal to WebLogic Server.

If multiple servlet classes access a session EJB, each servlet thread (rather than each
instance of the servlet class) must have its own session EJB instance. To avoid
concurrent access, a JSP/servelet can use a stateful session bean in request scope.

Storing EJB References in Home Handles

Once a client has obtained the EJBHome object for an EJB instance, it can create a
reference to the home object by calling getHomeHandle(). getHomeHandle()
returns a HomeHandle object, which can be used to obtain the home interface to the
same EJB instance at a later time.

A client can pass the HomeHandle object as arguments to another client, and the
receiving client can use the handle to obtain a reference to the same EJBHome object.
Clients can also serialize the HomeHandle and store it in a file for later use.

Using Home Handles Across a Firewall

By default, WebLogic Server stores its IP address in the HomeHandle object for EJBs.
This can cause problems with certain firewall systems. If you are unable to locate
EJBHome objects using home handles passed across a firewall, use the following steps:

1. Start WebLogic Server.
Programming WebLogic Enterprise JavaBeans 2-3



2 WebLogic Server EJB Design and Development
2. Start the WebLogic Server Administration Console.

3. From the left-hand pane, expand the Servers node and select a server.

4. In the right-hand pane, select the Configuration tab for that server and then the
Network tab.

5. Check the Reverse DNS Allowed box to enable reverse DNS lookups.

When you enable reverse DNS lookups, WebLogic Server stores the DNS name of the
server, rather than the IP address, in EJB home handles.

EJB Design Tips

The following sections describe design tips for developing and deploying EJBs on
your system.

Preserve Transaction Resources

Database transactions are typically one of the most valuable resources in an online
transaction-processing system. When using EJBs with WebLogic Server, transaction
resources are even more valuable due to their relationship with database connections.

WebLogic Server can use a single connection pool to service multiple, simultaneous
database requests. The efficiency of the connection pool is largely determined by the
number and length of database transactions that use the pool. For non-transactional
database requests, WebLogic Server can allocate and deallocate a connection very
quickly, so that the same connection can be used by another client. However, for
transactional requests, a connection becomes “reserved” by the client for the duration
of the transaction.

To optimize transaction use on your system, always follow an “inside-out” approach
to transaction demarcation. Transactions should begin and end at the “inside” of the
system (the database) where possible, and move “outside” (toward the client
application) only as necessary. The following sections describe this rule in more detail.
2-4 Programming WebLogic Enterprise JavaBeans



EJB Design Tips
Allow the Datastore to Manage Transactions

Many RDBMS systems provide high-performance locking systems for OLTP
transactions. With the help of Transaction Processing (TP) monitors such as Tuxedo,
RDBMS systems can also manage complex decision support queries across multiple
datastores. If your underlying datastore has such capabilities, use them where possible.
You should never prevent the RDBMS from automatically delimiting transactions.

Using Container-Managed Transactions Instead of Bean-Managed Transactions

Your system should rarely rely on bean-managed transaction demarcation. Use
WebLogic Server container-managed transaction demarcation unless you have a
specific need for bean-managed transactions.

Possible scenarios where you may need bean-managed transactions are:

� You must define multiple transactions from within a single method call.
WebLogic Server demarcates transactions on a per-method basis; if you require
multiple transactions in a single method call, you must use bean-managed
transactions.

Note: However, keep in mind that if your EJBs use multiple transactions in a
single method call, it is still better to break the transactions out across
multiple methods and use container-managed transactions with the revised
bean.

� A single transaction must “span” multiple EJB method calls. For example, one
method begins a transaction, and another method commits or rolls back the
transaction. In general, this practice should be avoided where possible since it
requires detailed information about the workings of the EJB object. If it is
required, you must use bean-managed transaction coordination, and you must
coordinate client calls to the respective methods.

Never Demarcate Transactions from Application

In general, client applications are not guaranteed to stay active over long periods of
time. If a client begins a transaction and then exits before committing, it wastes
valuable transaction and connection resources in WebLogic Server. Moreover, even if
the client does not exit during a transaction, the duration of the transaction may be
unacceptable if it relies on user activity to commit or roll back data. Always demarcate
transactions at the WebLogic Server or RDBMS level where possible.
Programming WebLogic Enterprise JavaBeans 2-5



2 WebLogic Server EJB Design and Development
Use Correct Modeling for Entity EJBs

Reading and writing RDBMS data via an entity bean can consume valuable network
resources. Network traffic may occur between a client and WebLogic Server, as well
as between WebLogic Server and the underlying datastore. Use the following
suggestions to model entity EJB data correctly and avoid unnecessary network traffic.

Entity EJBs Should Be Coarse-Grained

You should not attempt to model every object in your system as an entity EJB. In
particular, small subsets of data consisting of only a few bytes should never exist as
entity EJBs, as the trade-off in network resources is unacceptable.

For example, line items in an invoice or cells in a spreadsheet are too fine-grained and
should not be accessed frequently over a network. In contrast, logical groupings of an
invoice’s entries, or a subset of cells in a spreadsheet may be modeled as an entity EJB,
if additional business logic is required for the data.

Entity EJBs Should Contain Business Logic

Even coarse-grained objects may be inappropriate for modeling as an entity EJB if the
data requires no additional business logic. For example, if the methods in your entity
EJB work only to set or retrieve data values, it is more appropriate to use JDBC calls
in an RDBMS client or to use a session EJB for modeling.

Entity EJBs should encapsulate additional business logic for the modeled data. For
example, a banking application that uses different business rules for “Platinum” and
“Gold” customers might model all customer accounts as entity EJBs; the EJB methods
can then apply the appropriate business logic when setting or retrieving data fields for
a particular customer type.

Optimize Entity EJB Data Access

Entity EJBs ultimately model fields that exist in a data store. Optimize entity EJBs
wherever possible to simplify and minimize database access. In particular:

� Limit the complexity of joins against EJB data.

� Avoid long-running operations that require disk access in the datastore.
2-6 Programming WebLogic Enterprise JavaBeans



EJB Design Tips
� Ensure that EJB methods return as much data as possible, so as to minimize
round-trips between the client and the datastore. For example, if your EJB client
must retrieve data fields, use bulk get/setAttributes() methods to minimize
network traffic.

Use isModified() Where Appropriate

Use the isModified() method in entity EJBs to eliminate unnecessary database
writes for read-only operations. However, this is no longer required for EJB 2.0
container-managed persistence (CMP) entity beans. See “Using
is-modified-method-name to Limit Calls to ejbStore()” on page 4-10 for more
information.

Using Inheritance with EJBs 

Using inheritance may be appropriate when building groups of related beans that share
common code. However, be aware of several inheritance restrictions that apply to EJB
implementations.

For bean-managed EJBs, the ejbCreate() method must return a primary key. Any
class that inherits from the bean-managed EJB class cannot have an ejbCreate()

method that returns a different primary key class. This restriction applies even if the
new class is derived from the base EJB’s primary key class. The restriction also applies
to the bean’s ejbFind() methods.

Additional restrictions exist for EJBs where inheriting another EJB implementation
changes the interface. For example, the following table describes a situation where a
derived bean adds a new method that is meant to be accessible remotely:

However if you use this example, you cannot have the BHome interface inherit from the
AHome interface, because AHome.create() and BHome.create() return different
remote interfaces.

Bean Method Interface Method

ABean afoo() ARemote afoo()

BBean (extends ABean) bfoo() BRemote bfoo()
Programming WebLogic Enterprise JavaBeans 2-7



2 WebLogic Server EJB Design and Development
You can still use inheritance to have methods in the beans that are unique to a particular
class, that inherit from a superclass or that are overridden in the subclass. See the
example Enterprise JavaBean subclass Child example packages and classes in the
WebLogic Server distribution.

Using Session Beans 

One way to design session beans is to use a model-view-controller design. The view is
the GUI form and the model is the piece of code that supplies data to the screen. In a
typical client-server system, the model lives on the same server as the view and talks
to the server.

The model should reside on the server, in the form of a session bean. (This is analogous
to having a servlet providing support for an HTML form, except that a model session
bean does not affect the final presentation.) With this design there should be one model
session bean instance for each GUI form instance, which acts as the form’s
representative on the server. For example, if you have a list of 100 network nodes to
display in a form, you might have a method called getNetworkNodes() on the
corresponding EJB which returns an array of values relevant to that list.

This approach keeps the overall transaction time short, and requires minimal network
bandwidth. In contrast, consider an approach where the GUI form calls an entity EJB
finder method that retrieves references to 100 separate network nodes. For each of the
references, the client must go back to the datastore to retrieve additional data, which
consumes considerable network bandwidth and may yield unacceptable performance.
2-8 Programming WebLogic Enterprise JavaBeans



CHAPTER
3 Using Message-Driven 
Beans

The following sections describe how to develop and deploy message-driven beans in
the EJB 2.0 for BEA WebLogic Server container. Because message-driven beans
utilize parts of the standard JMS API, you should first become familiar with the
WebLogic JMS messaging system before attempting to implement message-driven
beans. See the Programming WebLogic JMS document for more information.

� What Are Message-Driven Beans?

� Developing Message-Driven Beans

� Transaction Services for Message-Driven Beans

� Deploying Message-Driven Beans in WebLogic Server

What Are Message-Driven Beans?

A message-driven bean is a special kind of EJB that acts as a message consumer in the
WebLogic JMS messaging system. As with standard JMS message consumers,
message-driven beans receive messages from a JMS Queue or Topic, and perform
business logic based on the message contents.

EJB deployers create listeners to a Queue or Topic at deployment time, and WebLogic
Server automatically creates and removes message-driven bean instances as needed to
process incoming messages.
Programming WebLogic Enterprise JavaBeans 3-1

http://e-docs.bea.com/wls/docs60/jms/index.html


3 Using Message-Driven Beans
Differences Between Message-Driven Beans and 
Standard JMS Consumers

Because message-driven beans are implemented as EJBs, they benefit from several
key services that are not available to standard JMS consumers. Most importantly,
message-driven bean instances are wholly managed by the WebLogic Server EJB
container. Using a single message-driven bean class, WebLogic Server creates
multiple EJB instances as necessary to process large volumes of messages
concurrently. This stands in contrast to a standard JMS messaging system, where the
developer must create a MessageListener class that utilizes a server-wide session
pool.

The WebLogic Server container provides other standard EJB services to message-
driven beans, such as security services and automatic transaction management. These
services are described in more detail in “Transaction Management” on page 4-21 and
in “Transaction Services for Message-Driven Beans” on page 3-7.

Finally, message-driven beans benefit from the write-once, deploy-anywhere quality
of EJBs. Whereas a JMS MessageListener is tied to specific session pools,

Queues, or Topics, message-driven beans can be developed independently of available
server resources. A message-driven bean’s Queues and Topics are assigned only at
deployment time, utilizing resources available on the particular WebLogic Server
instance.

Note: One limitation of message-driven beans compared to standard JMS listeners is
that a given message bean deployment can be associated with only one Queue
or Topic, as described in Deploying Message-Driven Beans in WebLogic
Server. If your application requires a single JMS consumer to service
messages from multiple Queues or Topics, you must use a standard JMS
consumer, or deploy multiple message-driven bean classes.
3-2 Programming WebLogic Enterprise JavaBeans



What Are Message-Driven Beans?
Differences Between Message-Driven Beans and 
Stateless Session EJBs

In several ways, the dynamic creation and allocation of message-driven bean instances
mimics the behavior of stateless session EJB instances. However, message-driven
beans are different from stateless session EJBs (and other types of EJBs) in several
significant ways:

� Message-driven beans process multiple JMS messages asynchronously, rather
than processing a serialized sequence of method calls.

� Message-driven beans have no home or remote interface, and therefore cannot
be directly accessed by internal or external clients. Clients interact with
message-driven beans only indirectly, by sending a message to a JMS Queue or
Topic.

Note: Only the WebLogic Server container directly interacts with a message-driven
bean by creating bean instances and passing JMS messages to those instances
as necessary.

� WebLogic Server maintains the entire life cycle of a message-driven bean;
instances cannot be created or removed as a result of client requests or other API
calls.

Concurrent Support for Message-Driven Beans

Message-Driven Beans support concurrent processing for both topics and queues.
Previously, only concurrent processing for Queues was supported.

To ensure concurrency, change the weblogic-ejb-jar.xml deployment descriptor
max-beans-in-free-pool setting to >1. If this element is set to more than one, the
container will spawn as many threads as specified. For more information on this
element see, “max-beans-in-free-pool” on page 9-32.
Programming WebLogic Enterprise JavaBeans 3-3



3 Using Message-Driven Beans
Invoking a Message-Driven Bean

When a JMS Queue or Topic receives a message, use WebLogic Server to call an
associated message-driven bean as follows:

1. Obtain a new bean instance.

Obtain a new bean instance from the connection pool if one already exists, or
create a new one. See “Creating and Removing Bean Instances” on page 3-5.

2. If the bean cannot be located in the pool and a new one must be created, call the
bean’s setMessageDrivenContext() to associate the instance with a container
context. The bean can utilize elements of this context as described in “Using the
Message-Driven Bean Context” on page 3-6.

3. Call the bean’s onMessage() method to perform business logic. See
“Implementing Business Logic with onMessage()” on page 3-6.

Note: These instances can be pooled.

Developing Message-Driven Beans

To create message-driven EJBs, you must follow certain conventions described in the
JavaSoft EJB 2.0 specification, as well as observe several general practices that result
in proper bean behavior.

Bean Class Requirements

The EJB 2.0 specification provides detailed guidelines for defining the methods in a
message-driven bean class. The following output shows the basic components of a
message-driven bean class. Classes, methods, and method declarations in bold are
required as part of the EJB 2.0 specification:

public class MessageTraderBean implements
javax.ejb.MessageDrivenBean {

public MessageTraderBean() {...};
3-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html


Developing Message-Driven Beans
// An EJB constructor is required, and it must not

// accept parameters. The constructor must not be
declared as

// final or abstract.

public void onMessage(javax.jms.Message MessageName) {...}

// onMessage() is required, and must take a single
parameter of

// type javax.jms.Message. The throws clause (if
used) must not

// include an application exception. onMessage() must
not be

// declared as final or static.

public void ejbRemove() {...}

// ejbRemove() is required and must not accept
parameters.

// The throws clause (if used) must not include an
application

//exception. ejbRemove() must not be declared as
final or static.

finalize{};

// The EJB class cannot define a finalize() method

}

Creating and Removing Bean Instances

The WebLogic Server container calls the message-driven bean’s ejbCreate() and
ejbRemove() methods when creating or removing an instance of the bean class. As
with other EJB types, the ejbCreate() method in the bean class should prepare any
resources that are required for the bean’s operation. The ejbRemove() method should
release those resources, so that they are freed before WebLogic Server removes the
instance.
Programming WebLogic Enterprise JavaBeans 3-5



3 Using Message-Driven Beans
Message-driven beans should also perform some form of regular clean-up routine
outside of the ejbRemove() method, because the beans cannot rely on ejbRemove()

being called under all circumstances (for example, if the EJB throws a runtime
exception).

Using the Message-Driven Bean Context

WebLogic Server calls setMessageDrivenContext() to associate the
message-driven bean instance with a container context.This is not a client context; the
client context is not passed along with the JMS message. WebLogic Server provides
the EJB with a container context, whose properties can be accessed from within the
instance by using the following methods from the MessageDrivenContext interface:

� getCallerPrincipal()

� isCallerInRole()

� setRollbackOnly()— The EJB can use this method only if it utilizes
container-managed transaction demarcation.

� getRollbackOnly() — The EJB can use this method only if it utilizes
container-managed transaction demarcation.

� getUserTransaction()— The EJB can use this method only if it utilizes
bean-managed transaction demarcation.

Note: Although getEJBHome() is also inherited as part of the
MessageDrivenContext interface, message-driven EJBs do not have a home
interface. Calling getEJBHome() from within a message-driven EJB instance
yields an IllegalStateException.

Implementing Business Logic with onMessage()

The message-driven bean’s onMessage() method performs all of the business logic
for the EJB. WebLogic Server calls onMessage() when the EJB’s associated JMS
Queue or Topic receives a message, passing the full JMS message object as an
argument. It is the message-driven EJB’s responsibility to parse the message and
perform the necessary business logic in onMessage().
3-6 Programming WebLogic Enterprise JavaBeans



Transaction Services for Message-Driven Beans
Make sure that the business logic accounts for asynchronous message processing. For
example, it cannot be assumed that the EJB receives messages in the order they were
sent by the client. Instance pooling within the container means that messages are not
received or processed in a sequential order, although individual onMessage() calls to
a given message-driven bean instance are serialized.

See javax.jms.MessageListener.onMessage() for more information.

Handling Exceptions

Message-driven bean methods should not throw an application exception or a
RemoteException, even in onMessage(). If any method throws such an exception,
WebLogic Server immediately removes the EJB instance without calling
ejbRemove(). However, from the client perspective the EJB still exists, because
future messages are forwarded to a new instance that WebLogic Server creates.

Transaction Services for Message-Driven 
Beans

As with other EJB types, message-driven beans can demarcate transaction boundaries
either on their own (using bean-managed transactions), or by having the WebLogic
Server container manage transactions (container-managed transactions). In either case,
a message-driven bean does not receive a transaction context from the client that sends
a message. WebLogic Server always calls a bean’s onMessage()method by using the
transaction context specified in the bean’s deployment descriptor, as required by the
EJB 2.0 specification.

Because no client provides a transaction context for calls to a message-driven bean,
beans that use container-managed transactions must be deployed using the Required
or NotSupported transaction attribute in ejb-jar.xml. Transaction attributes are
defined in ejb-jar.xml as follows:

<assembly-descriptor>

<container-transaction>
Programming WebLogic Enterprise JavaBeans 3-7

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/jms/MessageListener.html


3 Using Message-Driven Beans
<method>

<ejb-name>MyMessageDrivenBeanQueueTx</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

</assembly-descriptor>

Message Receipts

The receipt of a JMS message that triggers a call to an EJB’s onMessage() method is
not generally included in the scope of a transaction. For EJBs that use bean-managed
transactions, the message receipt is always outside the scope of the bean’s transaction,
as described in the EJB 2.0 specification.

For EJBs that use container-managed transaction demarcation, WebLogic Server
includes the message receipt as part of the bean’s transaction only if the bean’s
transaction attribute is set to Required.

Message Acknowledgment

For message-driven beans that use container-managed transaction demarcation,
WebLogic Server automatically acknowledges a message when the EJB transaction
commits. If the EJB uses bean-managed transactions, both the receipt and the
acknowledgment of a message occur outside of the EJB transaction context. WebLogic
Server automatically acknowledges messages for EJBs with bean-managed
transactions, but the deployer can configure acknowledgment semantics using the
jms-acknowledge-mode deployment parameter.
3-8 Programming WebLogic Enterprise JavaBeans



Deploying Message-Driven Beans in WebLogic Server
Deploying Message-Driven Beans in 
WebLogic Server

To deploy a message-driven bean on WebLogic Server, you edit the XML file to create
the deployment descriptors that associate the EJB with a configured JMS destination.

Deployment Descriptors

The deployment descriptor for a message-driven bean also specifies:

� Whether the EJB is associated with a JMS Topic or Queue

� Whether an associated Topic is durable or non-durable

� Transaction attributes for the EJB

� JMS acknowledgment semantics to use for beans that demarcate their own
transactions

Deployment Elements

The EJB 2.0 specification adds the following new XML deployment elements for
deploying message-driven beans.

� message-driven-destination specifies whether the EJB should be associated
with a JMS Queue or Topic destination.

� subscription-durability specifies whether or not an associated Topic
should be durable.

� jms-acknowledge-mode specifies the JMS acknowledgment semantics to use
for beans that demarcate their own transaction boundaries. This element has two
possible values: AUTO_ACKNOWLEDGE (the default) or DUPS_OK_ACKNOWLEDGE.
Programming WebLogic Enterprise JavaBeans 3-9

http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#AUTO_ACKNOWLEDGE
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#DUPS_OK_ACKNOWLEDGE


3 Using Message-Driven Beans
These elements are defined in the ejb-jar.xml deployment file, as described in the
EJB 2.0 specification. The following excerpt shows a sample XML stanza for defining
a message-driven bean:

<enterprise-beans>

<message-driven>

<ejb-name>exampleMessageDriven1</ejb-name>

<ejb-class>examples.ejb20.message.MessageTraderBean</ejb-class>

<transaction-type>Container</transaction-type>

<message-driven-destination>

<jms-destination-type>

javax.jms.Topic

</jms-destination-type>

</message-driven-destination>

...

</message-driven>

...

</enterprise-beans>

In addition to the new ejb-jar.xml elements, the weblogic-ejb-jar.xml file
includes a new message-driven-descriptor stanza to associate the message-driven bean
with an actual destination in WebLogic Server.
3-10 Programming WebLogic Enterprise JavaBeans



CHAPTER
4 The WebLogic Server 
EJB Container

The following sections describe the services that are available to EJBs using the
WebLogic Server container:

� EJB Life Cycle in WebLogic Server

� Locking Model for Entity EJBs

� ejbLoad() and ejbStore() Behavior for Entity EJBs

� EJBs in WebLogic Server Clusters

� Transaction Management

� Resource Factories

� Persistence Services

� Locking and Caching Services for Entity EJBs

� Home Method Support for Entity EJBs

See “EJB Features and Changes in WebLogic Server” on page 1-1 for a basic
introduction to EJB in WebLogic Server.
Programming WebLogic Enterprise JavaBeans 4-1



4 The WebLogic Server EJB Container
EJB Life Cycle in WebLogic Server

The following sections describe the life cycle of EJB instances in WebLogic Server,
from the perspective of the server. These sections use the term EJB instance to refer to
the actual instance of the EJB class. EJB instance does not refer to the logical instance
of the EJB as seen from the point of view of a client.

Stateless Session EJB Life Cycle

WebLogic Server uses a free pool to improve performance and throughput for stateless
session EJBs. The free pool stores unbound stateless session EJBs. Unbound EJBs are
instances of a stateless session EJB class that are not processing a method call.

The following figure illustrates the WebLogic Server free pool, and the processes by
which stateless EJBs enter and leave the pool. Dotted lines indicate the “state” of the
EJB from the perspective of WebLogic Server.

Initializing EJB Instances

By default, no EJB instances exist in WebLogic Server at startup time. As clients
access individual beans, WebLogic Server initializes new instances of the EJB class.

EJB Busy EJB Unbound

EJB Does not exist

Method complete

Client request

C
li

en
t

R
eq

ue
st

<initial-beans-in-free-pool>

free pool
4-2 Programming WebLogic Enterprise JavaBeans



EJB Life Cycle in WebLogic Server
You can optionally set the initial-beans-in-free-pool property in
weblogic-ejb-jar.xml to automatically create unbound EJBs in the free pool
during startup. This can improve response time when accessing EJBs, because initial
client requests can be satisfied by activating the bean from the free pool (rather than
initializing the bean and then activating it). By default,
initial-beans-in-free-pool is set to 0.

Note: The maximum size of the free pool is limited either by available memory, or
the value of the max-beans-in-free-pool deployment element.

Activating and Pooling EJBs

When a client calls a method on a stateless EJB, WebLogic Server obtains an instance
from the free pool. The EJB remains active for the duration of the client’s method call.
After the method completes, the EJB is returned to the free pool. Because WebLogic
Server unbinds stateless session beans from clients after each method call, the actual
bean class instance that a client uses may be different from invocation to invocation.

If all instances of an EJB class are active and max-beans-in-free-pool has been
reached, new clients requesting the EJB class will be blocked until an active EJB
completes a method call. If the transaction times out (or, for non-transactional calls, if
five minutes elapse), WebLogic Server throws a RemoteException.

Stateful EJB Life Cycle

Note: This section describes the life cycle of stateful session EJBs in WebLogic
Server.

WebLogic Server uses a cache of bean instances to improve the performance of
stateful EJBs. The cache stores active EJB instances in memory so that they are
immediately available for client requests. Active EJBs consist of instances that are
currently in use by a client, as well as instances that were recently in use, as described
in the following sections. The cache is unlike the free pool insofar as beans in the cache
are bound to a particular client (as with stateful session beans).
Programming WebLogic Enterprise JavaBeans 4-3



4 The WebLogic Server EJB Container
The following figure illustrates the WebLogic Server cache, and the processes by
which stateful EJBs enter and leave the cache. Dotted lines indicate the state of the EJB
from the perspective of WebLogic Server.

Initializing and Using EJB Instances

No stateful EJB instances exist in WebLogic Server at startup time. (Entity EJBs
logically exist in a datastore, but they do not yet exist from the WebLogic Server
perspective.) As clients look up and obtain references to individual beans, WebLogic
Server initializes new instances of the EJB class and stores them in the cache.

While in cache, the EJBs can be quickly accessed by clients. WebLogic Server locks
a cached instance of an entity EJB only for the duration of a transaction. If the EJB is
not involved in a transaction, the instance is locked only for the duration of each
method invoke. This means that multiple clients can access the same entity EJB in a
serial fashion, but only if the bean is not involved in a transaction. See “Locking Model
for Entity EJBs” on page 4-8 for more information.

Passivating Stateful EJBs

To achieve high performance, WebLogic Server reserves the cache for EJBs that
clients are currently using and EJBs that were recently in use. When EJBs no longer
meet these criteria, they become eligible for passivation. Passivation is the process

EJB Activated EJB Passivated

EJB does not exist

Passivation

Activation
C

li
en

t
R

eq
ue

st

cache
4-4 Programming WebLogic Enterprise JavaBeans



EJB Life Cycle in WebLogic Server
WebLogic Server uses to remove an EJB from cache while preserving the EJB’s state
on disk. While passivated, EJBs use minimal WebLogic Server resources, but they are
not immediately available for client requests (as they are while in the cache).

Note: Stateful session EJBs must abide by certain rules to ensure that bean fields can
be serialized to persistent storage. See “Stateful Session EJB Requirements”
on page 4-7 for more information.

WebLogic Server provides the max-beans-in-cache deployment element, which
provides some control over when EJBs are passivated.

If max-beans-in-cache is reached and there are EJBs in cache that are not being
used, WebLogic Server passivates some of those beans. This occurs even if the unused
beans have not reached their idle-timeout-seconds limit. If
max-beans-in-cache is reached and all EJBs in the cache are being used by clients,
WebLogic Server throws a CacheFullException.

Note: When an EJB becomes eligible for passivation, it does not mean that
WebLogic Server passivates the bean immediately. In fact, the bean may not
be passivated at all. Passivation occurs only when the EJB is eligible for
passivation and there is pressure on server resources, or when WebLogic
Server performs regular cache maintenance.

Removing Stateful Session EJB Instances

The max-beans-in-cache and idle-timeout-seconds deployment elements also provide
some control over when stateful session EJBs are removed from the cache or from
disk:

� For cached EJB instances: When resources become scarce and there is a need
for memory in the cache, WebLogic Server examines EJB classes that are
approaching their max-beans-in-cache limit. Of those beans, WebLogic
Server takes EJB instances that have not been used for idle-timeout-seconds
and removes them from the cache (rather than passivating them to disk).
Removing, rather than passivating, the instance ensures that “inactive” EJBs do
not consume cache or disk resources in WebLogic Server.

If a stateful bean has been idle for longer than idle-timeout-seconds,
WebLogic Server may remove the instance from memory as a result of regular
cache maintenance, even if EJB’s max-beans-in-cache limit has not been
reached.
Programming WebLogic Enterprise JavaBeans 4-5



4 The WebLogic Server EJB Container
Note: Setting idle-timeout-seconds to 0 stops WebLogic Server from removing
EJBs as part of regular cache maintenance. However, EJBs may still be
passivated if cache resources become scarce.

� For passivated EJB instances: After a stateful session EJB instance has been
passivated, a client must use the EJB instance before idle-timeout-seconds
is reached. Otherwise, WebLogic Server removes the passivated instance from
disk.

Using max-beans-in-free-pool 

In general, you should not set the max-beans-in-free-pool element. When you ask
the free pool for a bean instance, there are three possible options that you can
encounter. They are as follows:

� Option 1: An instance is available in the pool. You are given that instance and
can proceed with processing.

� Option 2: No instance is available in the pool, but the number of instance in use
is max-beans-in-free-pool. In this case, WebLogic Server allocates a new
bean instance and gives it to you.

� Option 3: No instances are available in the pool and the number of instances in
use is already max-beans-in-free-pool. In this case, you sleep until either
your transaction times out or a bean instance becomes available.

By default, max-beans-in-free-pool is the Int.max. That does not mean that you
will be able to use 2 billion instances. Essentially, it means that Option 3 never
happens. If a pooled instance does not exist, you will always just allocate a new one.
In reality, you are limited by the number of executable threads. In most cases, each
thread will need, at most, a single bean instance.

The only reason to set max-beans-in-free-pool is to limit access to an underlying
resource. For example, if you use stateless session EJBs to implement a legacy
connection pool, you do not want to allocate more bean instance than the number of
connections that can be supported by your legacy system.
4-6 Programming WebLogic Enterprise JavaBeans



EJB Life Cycle in WebLogic Server
Stateful Session EJB Requirements

The EJB developer must ensure that a call to the ejbPassivate() method leaves a
stateful session bean in a condition where WebLogic Server can serialize its data and
passivate the bean’s instance. During passivation, WebLogic Server attempts to
serialize any fields that are not declared transient. This means that you must ensure
that all non-transient fields represent serializable objects, such as the bean’s remote
or home interface. With the EJB 1.1 specification, an EJB’s non-transient fields can
also include:

� A reference to the EJB’s JNDI environment context

� A reference to the UserTransaction object

As of the EJB 1.1 specification, references to the javax.ejb.SessionContext

object cannot be declared transient.

Special Use of max-beans-in-free pool

The following options describe special cases when max-beans-in-free-pool can
be set to 0:

� Entity Beans: Never pool instances for entity beans. Instead, always allow a
new instance to be created.

� Stateless Session Beans: Always create a new instance for stateless session
beans.

� Stateful Session Beans: Not applicable for stateful session beans. These beans
are not pooled.

� Message-Driven Beans: Illegal instances of message-driven beans are created
and registered as JMS listeners during deployment. WebLogic Server never
creates new instances at runtime. So, this value must be set to > 0.
Programming WebLogic Enterprise JavaBeans 4-7



4 The WebLogic Server EJB Container
Locking Model for Entity EJBs

Database concurrency is the default for EJB 1.1 and 2.0. It must be set in the
deployment descriptors.

Exclusive locking was the default in WLS 5.1 and 4.5.1. This method of locking
provides reliable access to EJB data, and avoids unnecessary calls to ejbLoad() to
refresh the EJB instance’s persistent fields. However, in certain circumstances
pessimistic locking may not provide the best model for concurrent access to the EJB’s
data. Once a client has locked an EJB instance, other clients are blocked from the
EJB’s data even if they intend only to read the persistent fields.

To improve concurrent access for entity EJBs, the WebLogic Server EJB 2.0 container
enables you to defer locking services to the underlying database. In most cases, the
underlying data store can provide finer granularity for locking EJB data, and improve
throughput for concurrent access to the bean’s data. See“EJB Features and Changes in
WebLogic Server” on page 1-1 for more information.

ejbLoad() and ejbStore() Behavior for Entity 
EJBs

WebLogic Server reads and writes the persistent fields of entity EJBs using calls to
ejbLoad() and ejbStore(). By default, WebLogic Server calls ejbLoad() and
ejbStore() in the following manner:

1. A transaction is initiated for the entity EJB. The client may explicitly initiate a new
transaction and invoke the bean, this is called in demand, or WebLogic Server may
initiate a new transaction in accordance with the bean’s method transaction
attributes, this is called lazy loading .

2. WebLogic Server calls ejbLoad() to read the most current version of the bean’s
persistent data from the underlying data store. ejbLoad() is used with BMP and
CMP 1.1.
4-8 Programming WebLogic Enterprise JavaBeans



ejbLoad() and ejbStore() Behavior for Entity EJBs
BMP and CMP 2.0 can use in demand or lazy loading, which resets the
bean and then when needed reads the most current version of the beans’s
persistent data from the underlying store the next time the bean is loaded.

3. When the transaction commits, WebLogic Server calls ejbStore() to write
persistent fields back to the underlying datastore.

This simple process of calling ejbLoad() and ejbStore() ensures that new
transactions always use the latest version of the EJB’s persistent data, and always write
the data back to the data store upon committing. In certain circumstances, however,
you may want to limit calls to ejbLoad() and ejbStore() for performance reasons.
Alternately, you may want to call ejbStore() more frequently to view the
intermediate results of uncommitted transactions.

WebLogic Server provides several deployment parameters that enable you to
configure ejbLoad() and ejbStore() behavior.

Using db-is-shared to Limit Calls to ejbLoad()

WebLogic Server’s default behavior of calling ejbLoad() at the start of each
transaction works well for environments where multiple sources may update the
datastore. Since multiple clients (including WebLogic Server) may be modifying an
EJB’s underlying data, an initial call to ejbLoad() notifies the bean that it needs to
refresh its cached data and ensures that it works against the most current version of the
data.

In the special circumstance where only a single WebLogic Server instance ever
accesses a particular EJB, calling ejbLoad() in this manner is unnecessary. Because
no other clients or systems update the EJB’s underlying data, the WebLogic Server’s
cached version of the EJB data is always up-to-date. Calling ejbLoad() in this case
simply creates extra overhead for WebLogic Server clients that access the bean.

To avoid unnecessary calls to ejbLoad() in the case of a single WebLogic Server
instance accessing a particular EJB, WebLogic Server provides the db-is-shared
deployment parameter. By default, db-is-shared is set to “true” for each EJB, which
ensures that ejbLoad() is called at the start of each transaction. Where only a single
WebLogic Server instance ever accesses an EJB’s underlying data, you can set
db-is-shared to “false” in the bean’s weblogic-ejb-jar.xml file. When you
deploy an EJB with db-is-shared set to “false,” WebLogic Server calls ejbLoad()
for the bean only when:
Programming WebLogic Enterprise JavaBeans 4-9



4 The WebLogic Server EJB Container
� A client first references the EJB

� The EJB’s transaction is rolled back

Restrictions and Warnings for db-is-shared

Setting db-is-shared to “false” overrides WebLogic Server’s default ejbLoad()
behavior, regardless of whether the EJB’s underlying data is updated by one WebLogic
Server instance or multiple clients. If you incorrectly set db-is-shared to “false” and
multiple clients (database clients, other WebLogic Server instances, and so forth)
update the bean data, you run the risk of losing data integrity.

Also, due to caching limitations, you cannot set db-is-shared to “false” in a
WebLogic Server cluster.

Using is-modified-method-name to Limit Calls to 
ejbStore()

Note: This method is used for 1.1 CMP beans only. WebLogic Server 6.0’s 2.0 CMP
implementation automatically detects modifications of CMP fields and writes
only those changes to the underlying datastore. We recommend that you do not
use is-modified-method-name with BMP as you would need to create both
the is-modified-method-name method. and the ejbstore.

By default, WebLogic Server calls ejbStore() at the successful completion (commit)
of each transaction. ejbStore() is called at commit time regardless of whether the
EJB’s persistent fields were actually updated. WebLogic Server provides the
is-modified-method-name deployment parameter for cases where unnecessary
calls to ejbStore() may result in poor performance.

To use is-modified-method-name, EJB providers must first develop an EJB
method that “cues” WebLogic Server when persistent data has been updated. The
method must return “false” to indicate that no EJB fields were updated, or “true” to
indicate that some fields were modified.
4-10 Programming WebLogic Enterprise JavaBeans



ejbLoad() and ejbStore() Behavior for Entity EJBs
The EJB provider or EJB deployment descriptors then identify the name of this method
using the is-modified-method-name element in weblogic-ejb-jar.xml. WebLogic
Server calls the specified method name when a transaction commits, and calls
ejbStore() only if the method returns “true.”

Warning for is-modified-method-name

is-modified-method-name can improve performance by avoiding unnecessary
calls to ejbStore(). However, it places a greater burden on the EJB developer to
correctly identify when updates have occurred. If the specified
is-modified-method-name returns an incorrect flag to WebLogic Server, data
integrity problems can occur, and they may be difficult to track down.

If entity EJB updates appear to become “lost” in your system, start by ensuring that all
is-modified-method-name methods return “true” under every circumstance. In this
way, you can revert to WebLogic Server’s default ejbStore() behavior and possibly
correct the problem.

Using delay-updates-until-end-of-tx to Change ejbStore() 
Behavior

By default, WebLogic Server updates the persistent store of all beans in a transaction
only at the completion (commit) of the transaction. This generally improves
performance by avoiding unnecessary updates and repeated calls to ejbStore().

If your datastore uses an isolation level of READ_UNCOMMITTED, you may want to allow
other database users to view the intermediate results of in-progress transactions. In this
case, the default WebLogic Server behavior of updating the datastore only at
transaction completion may be unacceptable.

You can disable the default behavior by using the delay-updates-until-end-of-tx
deployment element. When you set this element to “false,” WebLogic Server calls
ejbStore() after each method call, rather than at the conclusion of the transaction.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.
Programming WebLogic Enterprise JavaBeans 4-11



4 The WebLogic Server EJB Container
Setting the Entity EJBs to Read-Only

Entity EJBs can also use the read-only cache strategy to modify basic ejbLoad()
and ejbStore() behavior:

You can set the cache strategy by directly editing the cache-strategy element in the
weblogic-ejb-jar.xml deployment file.

Read-Write Cache Strategy

The read-write strategy defines the default caching behavior for entity EJBs in
WebLogic Server. With read-write entity EJBs, multiple clients can use the same
bean instance in transactions, and data integrity is ensured.

For read-write EJBs, WebLogic Server loads EJB data into the cache at the
beginning of each transaction, or as described in “Using db-is-shared to Limit Calls to
ejbLoad()” on page 4-9. WebLogic Server calls ejbStore() at the successful commit
of a transaction, or as described under “Using is-modified-method-name to Limit Calls
to ejbStore()” on page 4-10.

Read-Only-Cache-Strategy

The read-only cache strategy can be used for entity EJBs that are never modified by
an EJB client, but may be updated periodically by an external source. For example, a
read-only entity EJB may be used to represent a stock quote for a particular
company, which is updated externally to the WebLogic Server system.

WebLogic Server never calls ejbStore() for a read-only entity EJB. ejbLoad() is
called initially when the EJB is created; afterwards, WebLogic Server calls ejbLoad()
only at intervals defined by the read-timeout-seconds deployment parameter.

Restrictions for Read-Only EJBs

Entity EJBs using the read-only cache strategy must observe the following
restrictions:

� They cannot require updates to the EJB data, because WebLogic Server never
calls ejbStore() for read-only entity EJBs.
4-12 Programming WebLogic Enterprise JavaBeans



ejbLoad() and ejbStore() Behavior for Entity EJBs
� Their transaction attributes must be set to NotSupported (the beans cannot rely
on a transaction).

� The EJB’s method calls must be idempoten. See “EJBs in WebLogic Server
Clusters” on page 4-14 for more information.

� Because the bean’s underlying data may be updated by an external source, calls
to ejbLoad() are governed by the deployment parameter,
read-timeout-seconds.

Read-Mostly Pattern

WebLogic Server does not support a read-mostly cache strategy setting in
weblogic-ejb-jar.xml. However, if you have EJB data that is only occasionally
updated, you can create a “read-mostly pattern” by implementing a combination of
read-only and read-write EJBs.

In a read-mostly pattern, a read-only entity EJB retrieves bean data at intervals
specified by read-timeout-seconds. A separate read-write entity EJB models the
same data as the read-only EJB, and updates the data at required intervals. See the
read-mostly EJB example in the WebLogic Server distribution for more information.

When creating a read-mostly pattern, use the following suggestions to reduce the
likelihood of data consistency problems:

� For all read-only EJBs, set read-timeout-seconds to the same value for all
beans that may be updated in the same transaction.

� For all read-only EJBs, set read-timeout-seconds to the smallest timeframe
that yields acceptable performance levels.

� Ensure that all read-write EJBs in the system update only the smallest portion
of data necessary; avoid beans that write numerous, unchanged fields to the
datastore at each ejbStore().

� Ensure that all read-write EJBs update their data in a timely fashion; avoid
involving read-write beans in long-running transactions that may span the
read-timeout-seconds setting for their read-only counterparts.
Programming WebLogic Enterprise JavaBeans 4-13



4 The WebLogic Server EJB Container
Note that in a WebLogic Server cluster, clients of the read-only EJB benefit from
using cached EJB data. Clients of the read-write EJB benefit from true transactional
behavior, since the read-write EJB’s state always matches the state of its data in the
underlying datastore. See “Entity EJBs in a Cluster” on page 4-19 for more
information.

EJBs in WebLogic Server Clusters

This section describes the behavior of EJBs and their associated transactions in a
WebLogic Server cluster, and explains key deployment descriptors that affect EJB
behavior in a cluster.

Overview

EJBs in a WebLogic Server cluster operate using modified versions of two key
structures: the Home object and the EJB object. In a single server (unclustered)
environment, a client looks up an EJB via the EJB’s home interface, which is backed
on the server by a corresponding Home object. After referencing the bean, the client
interacts with the bean’s methods via the remote interface, which is backed on the
server by an EJB object.

Home EJBHome
Interface Object

Remote EJB
Interface Object

WebLogic Server

Datastore

Client

comm
it

obtain bean

call method
4-14 Programming WebLogic Enterprise JavaBeans



EJBs in WebLogic Server Clusters
Clustered EJBHome Objects

In a WebLogic Server cluster, the server-side representation of the Home object can
be replaced by a cluster-aware “stub.” The cluster-aware home stub has knowledge of
EJB Home objects on all WebLogic Servers in the cluster. The clustered home stub
provides load balancing by distributing EJB lookup requests to available servers. It can
also support failover support for lookup requests, because it routes those requests to
available servers when other servers have failed.

All EJB types — stateless session, stateful session, and entity EJBs — can have
cluster-aware home stubs. Whether or not a cluster-aware home is created is
determined by the home-is-clusterable deployment property in
weblogic-ejb-jar.xml. If this property is set to “true” (the default), ejbc calls the
rmic compiler with the appropriate options to generate a cluster-aware home stub for
the EJB.

Clustered EJBObjects

In a WebLogic Server cluster, the server-side representation of the EJBObject can also
be replaced by a replica-aware EJBObject stub. This stub maintains knowledge about
all copies of the EJBObject that reside on servers in the cluster. The EJBObject stub
can provide load balancing and failover services for EJB method calls. For example, if

Datastore

Home Home
Stub

Remote Object
Stub

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

commit

obtain bean

call method

Client
Programming WebLogic Enterprise JavaBeans 4-15



4 The WebLogic Server EJB Container
a client invokes an EJB method call on a particular WebLogic Server and the server
goes down, the EJBObject stub can use failover services to make sure that the method
call goes to another, running server.

Whether or not an EJB can use a replica-aware EJBObject stub depends on the type of
EJB deployed and, for entity EJBs, the cache strategy selected at deployment time.

Session EJBs in a Cluster

The sections that follow describe cluster capabilities and limitations for different EJB
types.

Stateless Session EJBs

Stateless session EJBs can have both a cluster-aware home stub and a replica-aware
EJBObject stub. By default, WebLogic Server provides failover services for EJB
method calls, but only if a failure occurs between method calls. For example, failover
is automatically supported if there is a failure after a method completes, or if the
method fails to connect to a server. When failures occur while an EJB method is in
progress, WebLogic Server does not automatically failover from one server to another.

This default behavior ensures that database updates within an EJB method are not
“duplicated” due to a failover scenario. For example, if a client calls a method that
increments a value in a datastore and WebLogic Server fails over to another server
before the method completes, the datastore would be updated twice for the client’s
single method call.

If methods are written in such a way that repeated calls to the same method do not
cause duplicate updates, the method is said to be “idempotent.” For idempotent
methods, WebLogic Server provides the stateless-bean-methods-are-idempotent
deployment property. If you set this property to “true” in weblogic-ejb-jar.xml,
WebLogic Server assumes that the method is idempotent and will provide failover
services for the EJB method, even if a failure occurs during a method call.
4-16 Programming WebLogic Enterprise JavaBeans



EJBs in WebLogic Server Clusters
Stateful Session EJBs

Stateful session EJBs can utilize cluster-aware home stubs by setting
home-is-clusterable to “true.” This provides failover and load balancing for
stateful EJB lookups. Stateful session EJBs cannot use replica-aware EJBObject stubs,
and WebLogic Server does not provide failover services for method calls to stateful
session EJBs.

If you require cluster failover services for stateful objects, consider implementing the
stateful session EJB as a servlet. Servlets can maintain state through failover in a
cluster using either JDBC, an operating system file, or directly in memory. For more
information on in-memory replication for stateful session EJBs, see “In-Memory
Replication for Stateful Session EJBs” on page 4-18.

Datastore

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

failure

commit

during
method

obtain bean

call method

Client
Programming WebLogic Enterprise JavaBeans 4-17



4 The WebLogic Server EJB Container
In-Memory Replication for Stateful Session EJBs

The WebLogic Server EJB container introduces new clustering support for stateful
session EJBs. Whereas in WebLogic Server 5.1 only the EJBHome is clustered for
stateful session EJBs, the EJB container can also replicate the state of the EJB across
clustered WebLogic Server instances.

Replication support for stateful session EJBs is transparent to clients of the EJB. When
a stateful session EJB is deployed, WebLogic Server creates a cluster-aware EJBHome
stub and a replica-aware EJBObject stub for the stateful session EJB. The EJBObject
stub maintains a list of the primary WebLogic Server instance on which the EJB
instance runs, as well as the name of a secondary WebLogic Server to use for
replicating the bean’s state.

Each time a client of the EJB commits a transaction that modifies the EJB’s state,
WebLogic Server replicates the bean’s state to the secondary server instance.
Replication of the bean’s state occurs directly in memory, for best performance in a
clustered environment.

Should the primary server instance fail, the client’s next method invocation is
automatically transferred to the EJB instance on the secondary server. The secondary
server becomes the primary WebLogic Server for the EJB instance, and a new
secondary server is used to account for the possibility of additional failovers. Should
the EJB’s secondary server fail, WebLogic Server enlists a new secondary server
instance from the cluster.

Clients of a stateful session EJB are therefore guaranteed to have quick access to the
latest committed state of the EJB, except under the special circumstances described in
“Limitations of In-Memory Replication” on page 4-19.

Requirements and Configuration

To replicate the state of a stateful session EJB in a WebLogic Server cluster, ensure
that the cluster is homogeneous for the EJB class. In other words, deploy the same EJB
class to every WebLogic Server instance in the cluster, using the same deployment
descriptors. In-memory replication is not supported for heterogeneous clusters.

By default, WebLogic Server does not replicate the state of stateful session EJB
instances in a cluster. To enable replication, set the replication-type deployment
parameter to InMemory in the weblogic-ejb-jar.xml deployment file. For
example:
4-18 Programming WebLogic Enterprise JavaBeans



EJBs in WebLogic Server Clusters
<stateful-session-clustering>

...

<replication-type>InMemory</replication-type>

</stateful-session-clustering>

Limitations of In-Memory Replication

By replicating the state of a stateful session EJB, clients are generally guaranteed to
have the last committed state of the EJB, even if the primary WebLogic Server instance
fails. However, in certain rare failover scenarios, the last committed state may not be
available. This can happen when:

� A client commits a transaction involving a stateful EJB, but the primary
WebLogic Server fails before the EJB’s state is replicated. In this scenario, the
client’s next method invocation will work against the previous committed state,
if available.

� A client creates an instance of a stateful session EJB and commits an initial
transaction, but the primary WebLogic Server fails before the EJB’s initial state
can be replicated. In this scenario the client’s next method invocation will fail to
locate the bean instance, because the initial state could not be replicated. The
client would need to recreate the EJB instance using the clustered EJBHome stub,
and restart the transaction.

� Both the primary and secondary servers fail. In this scenario the client would
need to recreate the EJB instance and restart the transaction.

Entity EJBs in a Cluster

As with all EJB types, entity EJBs can utilize cluster-aware home stubs by setting
home-is-clusterable to “true.” The behavior of the EJBObject stub depends on the
cache-strategy deployment property in weblogic-ejb-jar.xml.

Read-Write Entity EJBs

read-write entity EJBs in a cluster behave similarly to entity EJBs in a non-clustered
system, in that:

� Multiple clients can use the bean in transactions.
Programming WebLogic Enterprise JavaBeans 4-19



4 The WebLogic Server EJB Container
� ejbLoad() is always called at the beginning of each transaction (since the
db-is-shared deployment parameter cannot be set to “false” in a cluster).

� ejbStore() behavior is governed by the same rules described in ejbLoad() and
ejbStore() Behavior for Entity EJBs.

read-write entity EJBs do not use a clustered EJBObject stub; a client’s method
calls to a particular EJB always go to a single WebLogic Server instance. If the server
that a client is using fails, the client must relocate the entity EJB using the
cluster-aware home stub.

read-write entity EJBs are cached on individual WebLogic Server instances. As
clients of a given EJB use the bean in transactions, the WebLogic Server instance
passes the transaction to the underlying datastore. This approach preserves data
integrity for clustered entity EJBs by allowing the backing datastore to manage all
transactional locking.

Datastore

Home Home
Stub

Remote Object
Stub

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

begin
...

commit

begin
...
commit

obtain bean

call methodcall methodcall method

obtain bean

call method

obtain bean

Client

Client
4-20 Programming WebLogic Enterprise JavaBeans



Transaction Management
Non-Transactional Datastores

If your backing store does not support transactional locking, additional design may be
required to preserve data integrity for entity EJBs in a cluster. One approach is to
ensure that all updates to a given entity EJB take place on the same WebLogic Server
instance. This approach forces multiple clients to access the EJB in a serial fashion,
because the WebLogic Server instance locks the EJB during transactions.

To implement this solution, you create a custom “dictionary” object to keep track of
which WebLogic Server instance is currently hosting a given entity EJB instance.
Clients to the EJB need to look up EJBs using the dictionary object, rather than the
EJB’s primary key class.

To support failover, the dictionary object also needs to keep track of which WebLogic
Server instances are currently available. This process can be accomplished by having
each participating WebLogic Server instance populate the JNDI tree with a unique
name. The dictionary object then polls the local JNDI tree at regular intervals to
determine whether a participating server’s JNDI “signature” available.

Transaction Management

The following sections describe EJBs in several transaction scenarios. EJBs that
engage in distributed transactions (transactions that make updates in multiple
datastores) cannot guarantee that all branches of the transaction commit or roll back as
a logical unit.

The current version of WebLogic Server supports Java Messaging Service (JMS),
which can be used for implementing distributed transactional applications.

Transaction Management Responsibilities

Session EJBs can rely on their own code, their client’s code, or the WebLogic Server
container to define transaction boundaries. Entity beans can use container- or
client-demarcated transaction boundaries, but they cannot define their own transaction
boundaries unless they observe certain restrictions.
Programming WebLogic Enterprise JavaBeans 4-21



4 The WebLogic Server EJB Container
If bean- or client-managed transactions are required, the managing code must use the
javax.transaction.UserTransaction interface. The EJB or client can then
access a UserTransaction object via JNDI and specify transaction boundaries with
explicit calls to tx.begin(), tx.commit(), tx.rollback(), and so forth. See
“Using javax.transaction.UserTransaction” on page 4-22 for more information on
defining transaction boundaries.

For EJBs that use container-managed transactions (or EJBs that mix container and
bean-managed transactions) the EJB 1.1 specification defines several deployment
elements to control the transactional requirements for individual EJB methods.

You can use two-phase commmit your EJBs. The two-phase commit protocol is a
method of coordinating a single transaction across two or more resource managers.
However, when usingtwo-phase commit with EJB 1.1 beans, you need to set up a
txdatasource for those beans. To set up the txdatasource, see “Setting Up JDBC
Datasource Factories” on page 4-26.

Note: If the EJB provider does not specify a transaction attribute for a method in the
ejb-jar.xml file, WebLogic Server uses the supports attribute by default.

Using javax.transaction.UserTransaction

To define transaction boundaries in EJB or client code, you must obtain a
UserTransaction object and begin a transaction before you obtain a Java
Transaction Service (JTS) or JDBC database connection. If you start a transaction after
obtaining a database connection, the connection has no relationship to the new
transaction, and there are no semantics to “enlist” the connection in a subsequent
transaction context. If a JTS connection is not associated with a transaction context, it
operates similarly to a standard JDBC connection, and updates are automatically
committed to the datastore.

Once you create a database connection within a transaction context, that connection
becomes “reserved” until the transaction either commits or rolls back. To maintain
performance and throughput for your applications, always ensure that your transaction
completes quickly, so that the database connection can be released and made available
to other client requests. See “Preserve Transaction Resources” on page 2-4 for more
information.

Note: You can associate only a single database connection with an active transaction
context.
4-22 Programming WebLogic Enterprise JavaBeans



Transaction Management
Restriction for Container-Managed EJBs

For container-managed entity EJBs, you can use the
javax.transaction.UserTransaction interface or access a transactional JDBC
connection from within an EJB method. However, you must ensure that the transaction
does not access the bean’s container-managed database fields. Also note that the nested
transaction in the EJB method ultimately commits or rolls back depending on the fate
of the entity EJB transaction.

Distributing Transactions Across Multiple EJBs

WebLogic Server does support transactions that are distributed over multiple
datasources; a single database transaction can span multiple EJBs on multiple servers.
This can be accomplished explicitly by starting a transaction and invoking several
EJBs. Or, a single EJB can invoke other EJBs that implicitly work within the same
transaction context. The following sections describe these scenarios.

Calling Multiple EJBs from a Single Transaction Context

In the following code fragment, a client application obtains a UserTransaction
object and uses it to begin and commit a transaction. The client invokes two EJBs
within the context of the transaction. The transaction attribute for each EJB has been
set to Required:

import javax.transaction.*;

...

u = (UserTransaction)
jndiContext.lookup("javax.transaction.UserTransaction");

u.begin();

account1.withdraw(100);

account2.deposit(100);

u.commit();

...
Programming WebLogic Enterprise JavaBeans 4-23



4 The WebLogic Server EJB Container
In the above code fragment, updates performed by the “account1” and “account2”
EJBs occur within the context of a single UserTransaction. The EJBs commit or roll
back as a logical unit. This is true regardless of whether “account1” and “account2”
reside on the same WebLogic Server, multiple WebLogic Servers, or a WebLogic
Server cluster.

The only requirement for wrapping EJB calls in this manner is that both “account1”
and “account2” must support the client transaction. The beans’ trans-attribute
element must be set to Required, Supports, or Mandatory.

Encapsulating a Multi-Operation Transaction

You can also use a “wrapper” EJB that encapsulates a transaction. The client calls the
wrapper EJB to perform an action such as a bank transfer. The wrapper EJB responds
by starting a new transaction and invoking one or more EJBs to do the work of the
transaction.

This type of transaction operates similarly to the scenario described in “Calling
Multiple EJBs from a Single Transaction Context” on page 4-23. The “wrapper” EJB
may explicitly obtain a transaction context before invoking other EJBs, or WebLogic
Server may automatically create a new transaction context if the EJB’s
trans-attribute element is set to Required or RequiresNew. All EJBs invoked by
the wrapper EJB must be able to support the transaction context (their
trans-attribute elements must be set to Required, Supports, or Mandatory).

Distributing Transactions Across EJBs in a WebLogic Server Cluster

WebLogic Server provides additional transaction performance benefits for EJBs that
reside in a WebLogic Server cluster. When a single transaction utilizes multiple EJBs,
WebLogic Server attempts to use EJB instances from a single WebLogic Server
instance, rather than using EJBs from different servers. This approach minimizes
network traffic for the transaction.

In some cases, a transaction can utilize EJBs that reside on multiple WebLogic Server
instances in a cluster. This can occur in heterogeneous clusters, where all EJBs have
not been deployed to all WebLogic Server instances. In these cases, WebLogic Server
uses a multitier connection to access the datastore, rather than multiple direct
connections. This approach uses fewer resources, and yields better performance for the
transaction. However, for best performance, the cluster should be homogeneous — all
EJBs should reside on all available WebLogic Server instances.
4-24 Programming WebLogic Enterprise JavaBeans



Transaction Management
Transaction Isolation Level

The isolation level for transactions is set in the transaction-isolation element of the
weblogic-ejb-jar.xml deployment file. WebLogic Server passes this value to the
underlying database. The behavior of the transaction depends both on the EJB’s
isolation level setting and the concurrency control of the underlying persistent store.

To mirror the transaction behavior in earlier versions of WebLogic Server, set
transaction-isolation to a value that is consistent with the default isolation level for
your data store.

Limitations of TRANSACTION_SERIALIZABLE

Many datastores provide limited support for detecting serialization problems, even for
a single user connection. Therefore, even if you set transaction-isolation to
TRANSACTION_SERIALIZABLE, you may experience serialization problems due to the
limitations of the datastore.

Refer to your RDBMS documentation for more details about isolation level support.

Special Note for Oracle Databases

Keep in mind that Oracle uses optimistic concurrency. As a consequence, even with a
setting of TRANSACTION_SERIALIZABLE, Oracle does not detect serialization
problems until commit time. The message returned is:

java.sql.SQLException: ORA-08177: can't serialize access for this
transaction

Even if you use the TRANSACTION_SERIALIZABLE setting for an EJB, you may receive
exceptions or rollbacks in the EJB client if contention occurs between clients for the
same rows. To avoid these problems, you must ensure that clients catch and examine
the SQL exceptions, and take appropriate action, such as restarting the transaction.

With WebLogic Server, you can set the isolation level for transactions to
TRANSACTION_READ_COMMITTED_FOR_UPDATE for methods on which this is defined.
When set, every SELECT query from that point on, will have FOR_UPDATE added to
require locks on the selected data. This condition remains in effect until the transaction
does a COMMIT or ROLLBACK.
Programming WebLogic Enterprise JavaBeans 4-25



4 The WebLogic Server EJB Container
Resource Factories

In WebLogic Server Version 6.0, EJBs can access JDBC connection pools by directly
instantiating a JDBC driver. However, it is recommended that you instead bind a JDBC
resource into the WebLogic Server JNDI tree as a resource factory.

Using resource factories enables the EJB to map a resource factory reference in the
EJB deployment descriptor to an available resource factory in a running WebLogic
Server. Although the resource factory reference must define the type of resource
factory to use, the actual name of the resource is not specified until the bean is
deployed.

The following sections explain how to bind JDBC and URL resources to JNDI names
in WebLogic Server.

Note: WebLogic Server also supports JMS connection factories.

Setting Up JDBC Datasource Factories

Follow these steps to bind a javax.sql.DataSource resource factory to a JNDI
name in WebLogic Server. Note that you can set up either a transactional or
non-transactional JDBC datasource as necessary:

1. Set up a JDBC connection pool in the Administration Console.

2. Start the WebLogic Server.

3. Start the WebLogic Server Administration Console.

4. In the Console, click the Services node and expand JDBC.

5. Select Data Sources and choose the Create a new Data Source option.

6. For non-transactional JDBC datasources, enter:

weblogic.jdbc.DataSource.jndi_name=pool_name

where jndi_name is the full WebLogic Server JNDI name to bind to the
datasource and pool_name is the name of the WebLogic Server connection pool
you created in step 1.
4-26 Programming WebLogic Enterprise JavaBeans



Resource Factories
For example, to set up a non-transactional connection pool for demonstration
purposes, you might enter:

weblogic.jdbc.DataSource.weblogic.jdbc.demoPool=demoPool

This binds a transactional datasource for the “demoPool” pool to the JNDI name,
“weblogic.jdbc.demoPool”.

For transactional JDBC datasources, enter:

weblogic.jdbc.TXDataSource.jndi_name=pool_name

where jndi_name is the full WebLogic Server JNDI name to bind to the
transactional datasource and pool_name is the name of the WebLogic Server
connection pool you created in step 1.

For example, to set up a non-transactional connection pool for demonstration
purposes, you might enter:

weblogic.jdbc.TXDataSource.weblogic.jdbc.jts.demoPool=demoPool

This binds a transactional datasource for the “demoPool” pool to the JNDI name,
“weblogic.jdbc.jts.demoPool”.

7. Click Create to save the changes.

8. Bind the JNDI name of the datasource to the EJB’s local JNDI environment. To
do this:

� Map an existing EJB resource factory reference to the JNDI name, or

� Directly edit the resource-description tag in the weblogic.ejb-jar.xml
deployment file using a text editor

Setting up URL Connection Factories

To setup a URL connection factory in WebLogic Server, bind a URL string to a JNDI
name using these instructions:

1. In a text editor, open the config.xml file for the instance of the WebLogic Server
you are using and set the URLResource attribute for the following config.xml
elements:

� WebServer

� VirtualHost:
Programming WebLogic Enterprise JavaBeans 4-27



4 The WebLogic Server EJB Container
2. Set the URLResource attribute for the WebServer element using the following
syntax:

<WebServer URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” DefaultWebApp=”default-tests”/>

3. Set the URLResource attribute for the VirtualHost element, when virtual hosting
is requred, using the following syntax:

<VirtualHostName=guestserver” targets=”myserver,test_web_server
“URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” VirtualHostNames=”guest.com”/>

4. Save the changes in config.xml and reboot WebLogic Server.

Persistence Services

An entity EJB can save its state in any transactional or non-transactional persistent
storage (“bean-managed persistence”), or it can ask the container to save its
non-transient instance variables automatically (“container-managed persistence”).
WebLogic Server allows both choices and a mixture of the two.

If an EJB uses container-managed persistence, the weblogic-ejb-jar.xml
deployment file specifies the type of persistence services that an EJB uses. High-level
definitions for automatic persistence services are stored in the persistence-type and
persistence-use elements. persistence-type defines one or more automatic services
that the EJB may use. persistence-use defines the actual service that the EJB uses
at deployment time.

Automatic persistence services use additional deployment files to specify their
deployment descriptors, and to define entity EJB finder methods. For example,
WebLogic Server RDBMS-based persistence services obtain deployment descriptors
and finder definitions from a particular bean using the bean’s
weblogic-cmp-rdbms-jar.xml file, described in “Using WebLogic Server RDBMS
Persistence” on page 4-29.

Third-party persistence services may use other file formats to configure deployment
descriptors. However, regardless of the file type, the configuration file must be
referenced in the persistence-type and persistence-use elements in
weblogic-ejb-jar.xml.
4-28 Programming WebLogic Enterprise JavaBeans



Persistence Services
Using WebLogic Server RDBMS Persistence

To use WebLogic Server RDBMS-based persistence, you must create a dedicated
XML deployment file and define the persistence elements for each EJB that will use
container-managed persistence. If this file is created by WebLogic Server utilities,
such as DDConverter, it is named weblogic-cmp-rdbms-jar.xml. If you create the
file from scratch, you can save it to a different filename. However, you must ensure
that the persistence-type and persistence-use elements in
weblogic-ejb-jar.xml refer to the correct file.

weblogic-cmp-rdbms-jar.xml defines the persistence options for EJBs using
WebLogic Server RDBMS-based persistence services.

Each weblogic-cmp-rdbms-jar.xml defines the following persistence options:

� EJB connection pools or data source for 2.0 CMP

� EJB field to database element mappings

� Finder method definitions (CMP 1.1)

� Foreign key mappings for relationships

� WebLogic Server-specific deployment descriptors for queries

Writing Finders for RDBMS Persistence

For EJBs that use RDBMS persistence, WebLogic Server Version 6.0 provides an easy
way to write dynamic finders. The EJB provider writes the method signature of a finder
in the EJBHome interface, and defines the finder’s query expressions in the
ejb-jar.xml deployment file.

ejbc creates implementations of the finder methods at deployment time, using the
queries in ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

� The finder method signature in EJBHome.

� A query stanza defined within ejb-jar.xml.

� An optional weblogic-query stanza within weblogic-cmp-rdbms-jar.xml.
Programming WebLogic Enterprise JavaBeans 4-29



4 The WebLogic Server EJB Container
The following sections explain how to write EJB finders using XML elements in
WebLogic Server deployment files.

Finder Signature

EJB providers specify finder method signatures using the form findMethodName().
Finder methods defined in weblogic-cmp-rdbms-jar.xml must return a Java
collection of EJB objects or a single object.

Note: EJB providers can also define a findByPrimaryKey(primkey) method that
returns a single object of the associated EJB class.

finder-list Stanza

The finder-list stanza associates one or more finder method signatures in
EJBHome with the queries used to retrieve EJB objects. The following is an example
of a simple finder-list stanza using WebLogic Server RDBMS-based persistence:

<finder-list>

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>

</finder-list>

Note: If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather
than Timestamp. If you do not use a qualified name, ejbc generates an error
message when you compile the deployment unit.
4-30 Programming WebLogic Enterprise JavaBeans



Persistence Services
finder-query Element

finder-query defines the WebLogic Query Language (WLQL) expression used to
query EJB objects from the RDBMS. WLQL uses a standard set of operators against
finder parameters, EJB attributes, and Java language expressions. See “Using
WebLogic Query Language (WLQL)” on page 4-31 for more information on WLQL.

Note: Always define the text of the finder-query value using the XML CDATA

attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

Using WebLogic Query Language (WLQL)

In the weblogic-cmp-rdbms-jar.xml file, each finder-query stanza must include
a WLQL string that defines the query used to return EJBs.

Note: Use WLQL for EJBs and its corresponding deployment files that are based on
the EJB 1.1 specification. WLQL is deprecated, and we do not recommend
that you continue to use it as it is not longer supported.

Syntax

WLQL strings use the prefix notation for comparison operators:

(operator operand1 operand2)

Additional WLQL operators accept a single operand, a text string, or a keyword.

Operators

The following are valid WLQL operators.

Operator Description Sample Syntax

= Equals (= operand1 operand2)

< Less than (< operand1 operand2)

> Greater than (> operand1 operand2)
Programming WebLogic Enterprise JavaBeans 4-31



4 The WebLogic Server EJB Container
Operands

Valid WLQL operands include:

� Another WLQL expression

� A container-managed field defined elsewhere in the
weblogic-cmp-rdbms-jar.xml file

<= Less than or equal to (<= operand1 operand2)

>= Greater than or equal to (>= operand1 operand2)

! Boolean not (! operand)

& Boolean and (& operand)

| Boolean or (| operand)

like Wildcard search based on % symbol
in the supplied text_string

(like text_string%)

isNull Value of single operand is null (isNull operand)

isNotNull Value of single operand is not null (isNotNull operand)

orderBy Orders results using specified
database columns

Note: Always specify a database
column name in the
orderBy clause, rather
than a persistent field name.
WebLogic Server does not
translate field names
specified in orderBy.

(orderBy 'column_name')

desc Orders results in descending order.
Used only in combination with
orderBy.

(orderBy 'column_name
desc')

Operator Description Sample Syntax
4-32 Programming WebLogic Enterprise JavaBeans



Persistence Services
Note: You cannot use RDBMS column names as operands in WLQL. Instead,
use the EJB attribute (field) that maps to the RDBMS column, as defined
in the attribute-map in weblogic-cmp-rdbms-jar.xml.

� A finder parameter or Java expression identified by $n, where n is the number of
the parameter or expression. By default, $n maps to the nth parameter in the
signature of the finder method. To write more advanced WLQL expressions that
embed Java expressions, map $n to a Java expression.

Note: The $n notation is based on an array that begins with 0, not 1. For example,
the first three parameters of a finder correspond to $0, $1, and $2.
Expressions need not map to individual parameters. Advanced finders can
define more expressions than parameters.

Examples of WLQL Expressions

The following example code shows excerpts from the
weblogic-cmp-rdbms-jar.xml file that use basic WLQL expressions.

� This example returns all EJBs that have the balance attribute greater than the
balanceGreaterThan parameter specified in the finder. The finder method
signature in EJBHome is:

public Enumeration findBigAccounts(double balanceGreaterThan)

throws FinderException, RemoteException;

The sample <finder> stanza is:

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>

Note that the balance field must be defined in the attribute map of the EJB’s
persistence deployment file.

Note: Always define the text of the finder-query value using the XML CDATA

attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.
Programming WebLogic Enterprise JavaBeans 4-33



4 The WebLogic Server EJB Container
� The following example shows how to use compound WLQL expressions. Also
note the use of single quotes (') to distinguish strings:

<finder-query><![CDATA[(& (> balance $0) (! (= accountType
'checking')))]]></finder-query>

� The following example finds all the EJBs in a table. It uses the sample finder
method signature:

public Enumeration findAllAccounts()

throws FinderException, RemoteException

The sample <finder> stanza uses an empty WLQL string:

<finder>

<method-name>findAllAccounts</method-name>

<finder-query></finder-query>

</finder>

� The following query finds all EJBs whose lastName field starts with “M”:

<finder-query><![CDATA[(like lastName M%)]]></finder-query>

� This query returns all EJBs that have a null firstName field:

<finder-query><![CDATA[(isNull firstName)]]></finder-query>

� This query returns all EJBs whose balance field is greater than 5000, and orders
the beans by the database column, id:

<finder-query><![CDATA[(orderBy 'id' (> ))]]></finder-query>

� This query is similar to the previous example, except that the EJBs are returned
in descending order:

<finder-query><![CDATA[(orderBy 'id desc' (>
))]]></finder-query>

Using Java Expressions in WLQL

WebLogic Server supports embedded Java statements in WLQL for writing advanced
finder capabilities. The basic WLQL functionality described in “Using WebLogic
Query Language (WLQL)” on page 4-31 provides capabilities that are necessary for
most finders.
4-34 Programming WebLogic Enterprise JavaBeans



Persistence Services
However, WebLogic Server Version 6.0’s EJB 2.0 container uses the EJB QL query
language (as required by the EJB 2.0 specification). EJB QL does not provide support
for embedded Java expressions. Therefore, to ensure easier upgrades to future EJB
containers, we recommend that you create entity EJB finders without embedding Java
expressions in WLQL.

This section describes how to embed Java expressions into WLQL by editing XML
elements directly in the deployment file.

In basic WLQL expressions, there is a one-to-one mapping between the parameters in
the finder method signature and the expressions designated by the $n notation. For
example, in the method signature:

public Enumeration findSomeAccounts(double maxBal, String ownerID)

throws FinderException, RemoteException

WLQL assigns $0 to the value of maxBal and $1 to the value of OwnerID by default.
Using this default mapping, you can create finders such as:

<finder>

<method-name>findSomeAccounts</method-name>

<method-params>

<method-param>double</method-param>

<method-param>java.lang.String</method-param>

</method-params>

<finder-query><![CDATA[(& (< balance $0) (= owner $1))]]></finder-query>

</finder>

WLQL also enables EJB developers to embed Java expressions within WLQL
expressions designated by $n. To use this feature, you must override the assignment of
individual $n expressions using the finder-expression stanza in
weblogic-cmp-rdbms-jar.xml.

The finder-expression stanza includes the following XML elements:

� expression-number identifies the number of the expression you want to
override. The expression number must be unique among the expressions defined
Programming WebLogic Enterprise JavaBeans 4-35

http://java.sun.com/products/ejb/docs.html


4 The WebLogic Server EJB Container
for a finder method. Expression numbers start at zero and continue in sequence
up to the total number of expressions used in the finder.

� expression-text contains the full Java expression that will replace the $n

expression number in the finder’s WLQL string. Within the expression text, you
can use the @n notation to refer to the nth parameter in the finder method
signature. Expressions need not map to individual parameters, advanced finders
can define more expressions than parameters.

Note: Always define the value of expression-text using the XML CDATA

attribute. Using CDATA ensures that the Java expression does not cause
compilation errors when the finder is compiled.

� expression-type identifies the Java return type of the Java expression. The
expression must produce a value that is compatible with the specified
expression-type. If you are unsure of the exact type of the return value,
specify an encompassing Java type (such as long when you expect that only an
int is necessary).

Note: If the generated Java expression is incompatible with the specified
expression-type, ejbc displays a error when you compile the EJB
code.

Example of Finder Method Signatures

The following example uses the finder method signature:

public Enumeration findSomeAccounts(double maxBal, String ownerID)

throws FinderException, RemoteException

By embedding a simple Java expression in the WLQL string, you can convert the
supplied maxBal value to another currency before querying the RDBMS. For example,
if maxBal is supplied in U.S. dollars and the conversion rate to pounds is 1.6483, you
can use a simple expression to multiply the value:

<finder>

<method-name>findSomeAccounts</method-name>

<method-params>

<method-param>double</method-param>

<method-param>java.lang.String</method-param>
4-36 Programming WebLogic Enterprise JavaBeans



Persistence Services
</method-params>

<finder-query>(& (< balance $0) (= owner $1))</finder-query>

<finder-expression>

<expression-number>0</expression-number>

<expression-text>@0 * 1.6483</expression-text>

<expression-type>long</expression-type>

</finder-expression>

</finder>

In the above example, $0 is replaced by the Java expression @0 * 1.6483, which
multiplies the value of maxBal by 1.6483. Because the EJB provider did not override
the value of $1, WLQL maps $1 to the second parameter in the finder method
signature, ownerID.

A more advanced version of this finder could use Java to determine the conversion rate
when converting maxBal:

...

<finder-expression>

<expression-number>0</expression-number>

<expression-text>@0 *
Double.parseDouble(System.getProperties().get(“rate.pounds.dollar
s”))</expression-text>

<expression-type>long</expression-type>

</finder-expression>

...

Restrictions

WebLogic Server does not parse or in any way validate the expression supplied in
expression-text. The EJB provider must ensure that the expression is valid Java.

Any errors in the expression text will appear as compilation errors when you
compile the EJB with ejbc.
Programming WebLogic Enterprise JavaBeans 4-37



4 The WebLogic Server EJB Container
Locking and Caching Services for Entity EJBs

The WebLogic Server Version 6.0 container supports both the database locking and
exclusive locking mechanisms. The default is database locking.

Pessimistic Locking Services

The EJB container in WebLogic Server can use exclusive locking mechanism for
entity EJB instances. As clients enlist an EJB or EJB method in a transaction, When
using exclusive locking, WebLogic Server places an exclusive lock on the EJB
instance or method for the duration of the transaction. Other clients requesting the
same EJB or method block until the current transaction completes.

This method of locking provides reliable access to EJB data, and avoids unnecessary
calls to ejbLoad() to refresh the EJB instance’s persistent fields. However,
pessimistic locking does not provide the best model for concurrent access to the EJB’s
data. Once a client has locked an EJB instance, other clients are blocked from the
EJB’s data even if they intend only to read the persistent fields.

To improve concurrent access for entity EJBs, the WebLogic Server container enables
you to defer locking services to the underlying database. In most cases, the underlying
data store can provide finer granularity for locking EJB data (as well as provide
deadlock detection), and improve throughput for concurrent access to the bean’s data.

Database Locking Services

With the database locking mechanism, the EJB container continues to cache instances
of entity EJB classes. However, the container does not cache the intermediate state of
the EJB instance between transactions. Instead, WebLogic Server calls ejbLoad() for
each instance at the beginning of a transaction to obtain the latest EJB data. The request
to commit data is subsequently passed along to the database. The database, therefore,
handles all lock management and deadlock detection for the EJB’s data.
4-38 Programming WebLogic Enterprise JavaBeans



Locking and Caching Services for Entity EJBs
Deferring locks to the underlying database provides an easy way to improve
throughput for concurrent access to entity EJB data, while also providing deadlock
detection. However, using database locking requires more detailed knowledge of the
underlying datastore’s lock policies, which can reduce the EJB’s portability among
different systems.

Setting Up Database Locking

The deployment descriptors specifies the locking mechanism to use for an EJB by
setting the concurrency-strategy deployment parameter in weblogic-ejb-jar.xml.
concurrency-strategy is set at the individual EJB level, so that you can mix locking
mechanisms within the EJB container.

The following excerpt from weblogic-ejb-jar.xml shows an EJB that uses
database locking:

<entity-descriptor>

<entity-cache>

...

<concurrency-strategy>Database</concurrency-strategy>

</entity-cache>

...

</entity-descriptor>

If you do not specify concurrency-strategy, WebLogic Server performs database
locking for entity EJB instances, as described in “Locking Model for Entity EJBs” on
page 4-8.
Programming WebLogic Enterprise JavaBeans 4-39



4 The WebLogic Server EJB Container
Home Method Support for Entity EJBs

The EJB 2.0 container provides new support for entity EJB home methods. Home
methods provide an easy way to perform business logic that does not require access to
an actual instance of an EJB. For example, using home methods you can query for
supporting data immediately after obtaining the home interface for an EJB (but before
using a finder to obtain EJB instances).

The EJB 2.0 specification provides few restrictions on developing and using entity
EJB home methods. Each home method must throw java.rmi.RemoteException,
and its method signature must not resemble a finder method or instance method. (For
example, the method cannot begin with find, create, or remove, since those
signatures are reserved for working with the EJB instance). Within these restrictions,
you can perform any business logic that does not involve the EJB instance.
4-40 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html


CHAPTER
5 WebLogic Server 
Container-Managed 
Persistence Services

The following sections describe the new container-managed persistence (CMP)
services available with the EJB 2.0 for BEA WebLogic Server container. This
information supplements the basic discussion of WebLogic RDBMS-based
persistence services in Persistence Services.

� EJB 2.0 Persistence Features and Changes

� Using EJB QL

� Using WebLogic Query Language Extension

� Container-Managed Relationships

� Groups

� Supported Data Types
Programming WebLogic Enterprise JavaBeans 5-1

http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.html#container_persistence


5 WebLogic Server Container-Managed Persistence Services
EJB 2.0 Persistence Features and Changes

The EJB 2.0 specification places new requirements on entity EJB finder methods and
field accessor methods, and introduces a new, portable query language for creating
finders. This section summarizes those features. See the complete EJB 2.0
specification for details.

Note: Container-managed persistence beans need to be configured with a connection
pool with maximum connections greater than 1. This is because WebLogic
Server’s container-managed persistence service may sometimes need to get
two connections simultaneously.

“get” and “set” Method Restrictions

The EJB 2.0 specification standardizes the “get” and “set” methods that a container
uses for reading and modifying container-managed fields. These container-generated
classes must begin with “get” or “set” and use the actual name of a persistent field
defined in ejb-jar.xml. The methods are also declared as public, protected, and
abstract.

BLOB and CLOB DBMS Column Restrictions

WebLogic Server cannot support BLOB and CLOB DBMS columns with EJB CMP
at this time, until JDBC defines a standard UPDATE mechanism for BLOBs and
CLOBs. The small BLOB/CLOB is accessible by JDBC1.x getX/setX methods.
However, if the column exceeds a certain size, the DBMS will shift to normal
BLOB/CLOB semantics which are not supported in CMP.

To work around this restriction, you can do one of the following:

� Use BMP with JDBC-specific driver code for UPDATEs.

� Use CMP with LONG RAW/LONG columns.
5-2 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html


Using EJB QL
EJB QL Requirement for EJB 2.0 Beans

The deployment descriptors must define each finder query for EJB 2.0 entity beans by
using an EJB QL query string.

You cannot use WebLogic Query Language (WLQL) with entity EJBs that use EJB
2.0 features, or that use EJB 2.0 deployment files. If you want to use WLQL, the entity
EJB and its deployment files must be based on the EJB 1.1 specification. See“Using
WebLogic Server RDBMS Persistence” on page 4-29 for more information on WLQL.

isModified() Not Required for CMP Beans

The isModified() method is no longer required for CMP entity EJBs based on the
EJB 2.0 specification. When you deploy EJB 2.0 entity beans with container-managed
persistence, WebLogic Server automatically detects which EJB fields have been
modified during a transaction, and writes only those fields to the underlying datastore.

You can still use isModified() for entity EJBs in the EJB 2.0 container that use
bean-managed persistence and CMP. See is-modified-method-name for more
information.

Using EJB QL

The EJB 2.0 specification introduces EJB QL as a portable query language for creating
entity EJB finders. EJB QL is an SQL-like language that uses a single WHERE clause to
select one or more entity EJB objects. The search space for an EJB QL query consists
of the EJB’s schema as defined in ejb-jar.xml (the bean’s collection of
container-managed fields and their associated database columns). Because EJB QL is
portable among containers, EJB QL strings are defined in ejb-jar.xml rather than in
weblogic-cmp-rdbms-jar.xml.
Programming WebLogic Enterprise JavaBeans 5-3



5 WebLogic Server Container-Managed Persistence Services
Basic EJB QL Syntax

The basic syntax of an EJB QL query consists of a mandatory FROM clause followed
by a WHERE clause.

The WHERE clause defines conditions that limit the result set in a similar manner to
WebLogic Query Language (WLQL). The remaining sections focus on the EJB QL
clauses and operators that you can specify in the WHERE clause.

Note: Because EJB QL queries may contain “>” and “<” characters, always specify
the entire EJB QL string within the CDATA tag to avoid confusing the query
syntax with XML elements.

EJB QL String Literals

As with WLQL, EJB QL designates literal string values by enclosing them within
single quotes. To represent a single quote as part of a literal string, use two consecutive
single quotes, as in:

WHERE accountType = ’partner’’s’

EJB QL Operators

EJB QL uses many of the same logical and arithmetic operators used in WLQL. See
“Migrating from (EJB 1.1) WLQL to (EJB 2.0) EJB QL” on page 5-7 for a list of
WLQL operators and their EJB QL counterparts. See the EJB 2.0 specification for
more detailed information about all EJB QL operators.

Finder Methods

The home interface of the entity bean defines one or more finder method. One is
defined for each way to find an entity object or collection of entity objects within the
home. The entity bean implementation uses the arguments of the finder method to
locate the requested entity objects. The finder method must be associated with a query
element in the deployment descriptor. The entity bean specifies the EJB QL finder
query and associates it with the finder method in the deployment descriptor. The finder
method is characterized by an EJB QL query string specified in the query element.
5-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html


Using EJB QL
Finder Parameter Placeholders

EJB QL enables you to represent finder method parameters using the convention ?n
where n indicates the number of the parameter in the associated finder method. In EJB
QL, the first finder parameter is represented by ?1.

If you are familiar with WLQL, be extra careful when converting WLQL strings that
contain parameter placeholders. In WLQL, the first finder parameter is represented by
0 (as in $0), whereas in EJB QL the parameter is represented by 1 (?1).

Select Methods

Select methods are special finder methods used within the entity bean instance. Select
methods are abstract methods that are defined in the entity bean’s implementation class
AND are defined by an EJB QL query string. Although these select methods are
similar to finder methods, they can return values of any cmp-field or cmr-field.

The EJB QL string that is specified for a select methods must have a SELECT clause
that designates the result type. Select methods are executed using the instance on
which the query is invoked.

EJB QL Conditional Expressions

The following table summarizes conditional expressions that you can use in the WHERE
clause of an EJB QL query. For more details on using EJB QL, see the EJB 2.0
specification.

EJB QL Expression Function Sample Syntax

[NOT] BETWEEN Compares values that are between (or
are not between) a range of values.

WHERE accountId BETWEEN 1000 and
2000

[NOT] IN Selects EJBs that match (or do not
match) those in a specified list of
string literals.

Note that the specified list must
contain only string literals.

WHERE accountId IN (’1000’,
’1020’, ’1025’)
Programming WebLogic Enterprise JavaBeans 5-5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html


5 WebLogic Server Container-Managed Persistence Services
EJB QL Examples

The following excerpts show sample EJB QL strings from the ejb-jar.xml file.

This example returns a collection of AccountBean EJBs whose balance values are
greater than the parameter passed to the findBigAccounts method:

<query>

<query-method>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[WHERE balance > ?1]]>

</ejb-ql>

</query>

The following ejb-ql element returns an account balance:

<ejb-ql><![CDATA[WHERE accountType IN (’partners’,
’channels’)]]></ejb-ql>

=, <> Selects value that are equal.

� Supports CMP field and local
bean interfaces only.

WHERE accountId = 1000
WHERE account <> 500

[NOT] LIKE
ESCAPE

Selects values based on wildcard
symbol (%) in the supplied
text_string

WHERE accountType LIKE ‘custom%’

IS [NOT] NULL Tests for NULL values. WHERE accountId IS NOT NULL

EJB QL Expression Function Sample Syntax
5-6 Programming WebLogic Enterprise JavaBeans



Using EJB QL
The following ejb-ql element returns a collection of EJBs whose accountType field
is NULL:

<ejb-ql><![CDATA[WHERE accountType IS NULL]]></ejb-ql>

Migrating from (EJB 1.1) WLQL to (EJB 2.0) EJB QL

If you have used previous versions of WebLogic Server, you may already have
container-managed entity EJBs that utilize (EJB 1.1) WLQL for finder methods. This
section provides a quick reference to common (EJB 1.1) WLQL operations, and
explains how to express those operations using (EJB 2.0) EJB QL. See the EJB 2.0
specification for a complete discussion of WLQL syntax.

Sample (EJB 1.1 )WLQL Syntax Equivalent (EJB 2.0) EJB QL Syntax

(= operand1 operand2) WHERE operand1 = operand2

(< operand1 operand2) WHERE operand1 < operand2

(> operand1 operand2) WHERE operand1 > operand2

(<= operand1 operand2) WHERE operand1 <= operand2

(>= operand1 operand2) WHERE operand1 >= operand2

(! operand) WHERE operand NOT value

(& operand) WHERE expression1 AND
expression2

(| operand) WHERE expression1 OR
expression2

(like text_string%) WHERE operand LIKE
‘text_string%’

(isNull operand) WHERE operand IS NULL

(isNotNull operand) WHERE operand IS NOT NULL
Programming WebLogic Enterprise JavaBeans 5-7

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html


5 WebLogic Server Container-Managed Persistence Services
Using WebLogic Query Language Extension

WebLogic Server has a SQL-like language, called WebLogic QL, that works with the
Finder expressions and is used to query EJB objects from the RDBMS. The query is
defined in the ejb-jar.xml deployment descriptor. The WebLogic specific query
extension included in Version 6.0 is ORDERBY.

ORDERBY

The WebLogic Query Language extension, ORDERBY, is a keyword that works with
the Finder method to allow you to specify which CMP file you want to use for your
selections.

The following example shows the use of the extension, ORDERBY.

ORDERBY

SELECT A from A for Account.Bean

ORDERBY A.id

Container-Managed Relationships

The entity bean relies on container-managed persistence to generate the methods that
perform persistent data access for the entity bean instances. The generated methods
transfer data between entity bean instances and the underlying resource manager.
Persistence is handled by the Container at runtime. The advantage of using
container-managed persistence is that the entity bean can be logically independent of
the data source in which the entity is stored. The container manages the mapping
between the logical and physical relationships at runtime and manages their referential
integrity.
5-8 Programming WebLogic Enterprise JavaBeans



Container-Managed Relationships
Persistent fields and relationships make up the entity bean’s abstract persistence
schema. The deployment descriptors indicate that the entity bean uses
container-managed persistence, and these descriptors are used as input to the container
well as data access, is deferred to the container.

Entity beans can have relationships with other beans. These relationships can be either
bidirectional or unidirectional. Also, support is provided for local and remote
relationships between EJBs. If the EJBs are on the same server and are part of the same
.jar file, they can have local relationships. If the EJBs are not on the same server, they
must be remote. For a relationship between local beans, multiple column mappings are
specified if the key implementing the relation is a compound key. For a remote bean,
only a single column-map is specified, since the primary key of the remote bean is
opaque. No column-map are specified if the role just specifies a group-name. No
group-name is specified if the relationship is remote.

You specify relationships in the ejb-jar.xml file and
weblogic-cmp-rdbms-jar.xml. You specify container-managed field mappings in
the weblogic-cmp-rdbms-jar.xml.

WebLogic Server supports three types of relationship mappings that are managed by
WebLogic RDBMS container-managed persistence (CMP):

� One-to-one

� One-to-many

� Many-to-many

One-to-One Relationships

A WebLogic Server one-to-one relationship involves the physical mapping from a
foreign key in one bean to the primary key in another bean. See “Primary Keys” on
page 5-11 for more information on primary keys.
Programming WebLogic Enterprise JavaBeans 5-9



5 WebLogic Server Container-Managed Persistence Services
One-to-Many Relationships

A WebLogic Server one -o-many relationship involves the physical mapping from a
foreign key in one bean to the primary key of another. However, in a one-to-many
relationship, the foreign key is always contained in the role that occupies the “many”
side of the relationship.

Many-to-Many Relationships

A WebLogic Server many-to-many relationship involves the physical mapping of a
join table. Each row in the join table contains two foreign keys that map to the primary
keys of the entities involved in the relationship.

Unidirectional Relationships

Unidrectional relationships can only navigate in one direction. These types of
relationships are used with remote beans, and only unidirectional relationships can be
remote. A remote bean is one whose abstract persistence schema is not defined in the
same ejb-jar file. For example, if entity A and entity B are in a one-to-one,
unidirectional relationship and the direction is from entity A to entity B, than entity A
is aware of entity B, but entity B is unaware of entity A. This type of relationship is
implemented with a cmr-field on the entity bean from which navigation can take place
and no related cmr-field on the target entity bean.

Bidirectional Relationships

Bidirectional relationships can be navigated in both directions. These types of
container-managed relationships can exist only among beans whose abstract
persistence schemas are defined in the same ejb-jar file and therefore managed by the
same container. For example, if entity A and entity B are in a one-to-one bidirectional
relationship, both are aware of each other.
5-10 Programming WebLogic Enterprise JavaBeans



Groups
Primary Keys

The primary key is an object that uniquely identifies an entity bean within its home.
The container must be able to manipulate the primary key of an entity bean. The
primary key is specified in the deployment descriptor. You can specify a primary key
class for an entity bean with container-managed persistence by mapping the primary
key to either a single field or to multiple fields in the entity bean class.

A cmp field of the type BigDecimal should not be used as a primary key field for CMP
beans. The boolean BigDecimal.equals (object x) method considers two
BigDecimal equal only if they are equal in value and scale. This is because there are
differences in precision between the Java language and different databases. For
example, the method does not consider 7.1 and 7.10 to be equal. Consequently, this
method will most likely return false or cause the CMP bean to fail. If you need to use
BigDecimal as the primary key, you should:

1. Implement a primary key class.

2. In this primary key class, implement the boolean equal (Object x) method.

3. In the equal method, use boolean BigDecimal.compareTo(BigDecimal

val).

Foreign Keys

Foreign key columns in the database that are mapped to cmr fields in a bean must allow
null values. If not, an error will be thrown by JDBC when a bean instance is created.

Groups

In container-managed persistence, you use groups to specify certain persistent
attributes of an entity bean. A field-group represents a subset of the cmp and cmr-fields
of a bean. You can out related fields in a bean into groups that are faulted into memory
Programming WebLogic Enterprise JavaBeans 5-11



5 WebLogic Server Container-Managed Persistence Services
together as a unit. You can associate a group with a query or relationship, so that when
a bean is loaded as the result of executing a query or following a relationship, only the
fields mentioned in the group are loaded.

A special group named “default” is used for queries and relationships that have no
group specified. By default, the default group contains all of a bean's cmp-fields and
any cmr-fields that add a foreign key to the persistent state of the bean.

A field can belong to multiple groups. In this case, the getXXX() method for the field
will fault in the first group that contains the field.

Field groups are specified in the weblogic-rdbms-cmp-jar.xml file. You use field
groups when you want to access a subset of fields.

Specifying Field Groups

Field groups are specified in the weblogic-rdbms-cmp-jar.xml file as follows:

<group-name>financial-data</group-name>
<group-name>medical-data</group-name>

<cmr-field>patient</cmr-field>
<cmr-field>doctors</cmr-fields>
<cmr-field>insurance-providers</cmr-fields>

You use field groups when you want to access a subset of fields.

Using Groups

The field group is an optimizing element that should be used with care because it is
possible to corrupt the database.

For example,

You have the following cmp fields; A, B, and C.

A and B belong to the same group.

You set up the following scenario:

getA() // loads A and B
modify A
// then an external process modifies the row getC()

Because C is not in the group, there are two possibilities:
5-12 Programming WebLogic Enterprise JavaBeans



Supported Data Types
� The container will load C and all the other fields as well. In this case, the
modification that was made to A will be lost.

� The container will load C and only C. When the transaction commits, the new
value for A that was assigned during the transaction might overwrite the newer
value in the database.

In both cases, the database will be corrupted. The reason is that you told the container
that within this transaction, that only A and B would be read and instead C also was
read. The correct step to take would have been to add C to the group or to specify no
groups at all.

Supported Data Types

The following table provides a list of the Java data types for CMP fields used in
WebLogic Server and shows how they map to the Oracle extensions for the standard
SQL data types.

Java Types for CMP Fields Oracle Data Types

boolean SMALLINT

byte SMALLINT

char SMALLINT

double NUMBER

float NUMBER

int INTEGER

long NUMBER

short SMALLINT

java.lang.String VARCHAR/VARCHAR2

java.lang.Boolean SMALLINT

java.lang.Byte SMALLINT
Programming WebLogic Enterprise JavaBeans 5-13



5 WebLogic Server Container-Managed Persistence Services
The SQL CHAR data type should not be used for database columns that are mapped
to cmp fields. This is especially important for fields that are part of the primary key,
because padding blanks that are returned by the JDBC driver can cause equality
comparisons to fail when they should not. Use the SQL VARCHAR data type instead
of SQL CHAR.

A cmp field of type byte[] cannot be used as a primary key unless it is wrapped in a
user-defined primary key class that provides meaningful equals() and hashCode()
methods. This is because the byte[] class does not provide useful equals/hashCode.

java.lang.Character SMALLINT

java.lang.Double NUMBER

java.lang.Float NUMBER

java.lang.Integer INTEGER

java.lang.Long NUMBER

java.lang.Short SMALLINT

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATE

java.math.BigDecimal NUMBER

byte[] RAW, LONG RAW

serializable RAW, LONG RAW

Java Types for CMP Fields Oracle Data Types
5-14 Programming WebLogic Enterprise JavaBeans



CHAPTER
6 Deploying EJBs to 
WebLogic Server

The following sections provide an overview of deploying EJBs to WebLogic Server,
and explain how to set the deployment properties used to EJBs. They also describe the
two different ways you can deploy EJBs to WebLogic Server: static deployment and
dynamic deployment.

� Required Steps for Deploying EJBs

� Deploying EJBs at WebLogic Server Startup

� Deploying EJBs in a Running WebLogic Server (Dynamic Deployment)

Required Steps for Deploying EJBs

Deploying EJBs to WebLogic Server involves the following steps:

1. Setting the EJB deployment descriptors

2. Generating EJB container classes

3. Loading EJB classes in

4. Deploying EJBs at WebLogic Server startup or dynamically

The following sections described these steps in detail.
Programming WebLogic Enterprise JavaBeans 6-1



6 Deploying EJBs to WebLogic Server
Setting Deployment Properties

The deployment process begins with a .jar file or a deployment directory that
contains the compiled EJB interfaces and implementation classes created by the EJB
provider. Regardless of whether the compiled classes are stored in a .jar file or a
deployment directory, they must reside in subdirectories that match their Java package
structures.

The EJB provider should also supply an EJB compliant ejb-jar.xml file that
describes the bundled EJB(s). The ejb-jar.xml file and any other required XML
deployment file must reside in a top-level META-INF subdirectory of the .jar or
deployment directory.

Note: The deployment descriptors do not need to include a MANIFEST file in the
.jar file, as was required with the EJB 1.0 specification. See the JavaSoft EJB
1.1 or 2.0 specification for more information.

As is, the basic .jar or deployment directory cannot be deployed to WebLogic Server.
You must first create and configure WebLogic Server-specific deployment
descriptions in the weblogic-ejb-jar.xml file, and add that file to the deployment.
weblogic-ejb-jar.xml defines caching, clustering, and performance behavior, and
is required for all EJBs. See “weblogic-ejb-jar.xml Deployment Descriptor File” on
page 10-4 for a complete list of properties available in the file.

EJB home,
remote, bean

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

EJB home,
remote, bean

ejb-jar.xml

Step 1:
Set deployment
properties

.jar file or deployment directory .jar file or deployment directory
6-2 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/index.html
http://java.sun.com/products/ejb/index.html


Required Steps for Deploying EJBs
If you are deploying an entity EJB that uses container-managed persistence, you must
also include an additional deployment file for the bean’s persistence type. For
WebLogic Server RDBMS-based persistence services the file is generally named
weblogic-cmp-rdbms-jar.xml, and you require a separate file for each bean that
uses RDBMS persistence. If you use a third-party persistence vendor, the file type as
well as its contents may be different from weblogic-cmp-rdbms-jar.xml; refer to
your persistence vendor’s documentation for details.

If you do not have an ejb-jar.xml file, you must manually create or edit an existing
one to set the necessary deployment properties for the EJB. You can use a text editor
to edit the properties.

See “Manually Editing XML Deployment Files” on page 9-1 for a description of the
WebLogic Server Version 6.0 specific properties and files, and guidelines for editing
those files by hand.

See “Manually Editing XML Deployment Files” on page 10-1 for a description of the
WebLogic Server 5.1 specific properties and files, and guidelines for editing those files
by hand. These properties are provided for reference purposes, in case you need to edit
the deployment files for 1.0 or 1.1 EJBs. To deploy an EJB to a WebLogic Server 2.0
EJB container, you can either edit the deployment properties of existing EJB 1.0 or 1.1
beans, or use the DDConverter utility, provided with WebLogic Server Version 6.0,
to convert the deployment descriptors.
Programming WebLogic Enterprise JavaBeans 6-3



6 Deploying EJBs to WebLogic Server
Generating EJB Container Classes

After you compile the EJB classes and add the required WebLogic Server XML
deployment files identified in “Setting Deployment Properties” on page 6-2 to your
deployment unit, you must generate the container classes that are used to access the
EJB. Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces (home and
remote) that clients use.

The ejbc compiler generates container classes according to the deployment properties
you have specified in WebLogic Server-specific XML deployment files. For example,
if you indicate that your EJBs will be used in a cluster, ejbc creates special
cluster-aware classes that will be used for deployment.

EJB home,
remote, bean

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

Step 2:
Generate
container
classes

.jar file or deployment directory

EJB home,
remote, bean

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

.jar file or deployment directory

ejbHomeImpl.class

ejbHomeImplWLStub.class

ejbHomeImplWLSkel.class

ejbPSWeblogic_CMP_RDBMS.class

ejbEOImpl.class
6-4 Programming WebLogic Enterprise JavaBeans



Deploying EJBs at WebLogic Server Startup
You can also use ejbc directly from the command line by supplying the required
options and arguments. See “ejbc” on page 8-1 for more information.

Loading EJB Classes into WebLogic Server

Classloaders in Weblogic Server are hierarchical. When you start WebLogic Server,
the Java system classloader is active and is the parent of all subsequent classloaders
that WebLogic Server creates. When WebLogic Server deploys an application, it
creates two new classloaders: one for EJBs and one for Web applications. The EJB
classloader is a child of the Java system classloader and the Web application
classloader is a child of the EJB classloader.

For more information on classloading, see “Classloader Overview” and “About
Application Classloaders” in Developing WebLogic Server Applications.

Deploying EJBs at WebLogic Server Startup

To deploy EJBs automatically when WebLogic Server starts:

1. Follow the instructions in “Setting Deployment Properties” on page 6-2 to ensure
that your deployable EJB .jar file or deployment directory contains the required
WebLogic Server XML deployment files.

2. Use a text editor to edit the XML deployment properties, as necessary.

3. Follow the instructions in “Generating EJB Container Classes” on page 6-4 to
compile implementation classes required for WebLogic Server.

Compiling the container places the .jar file in the
weblogic/config/examples/applications directory, where it is
automatically deployed when WebLogic Server starts. If your EJB .jar file is
located in a different directory, make sure that you copy it to this directory if you
want to deploy it at startup.

4. Start WebLogic Server.

When you boot WebLogic Server, it automatically attempts to deploy the
specified EJB .jar file or deployment directory.
Programming WebLogic Enterprise JavaBeans 6-5

http://e-docs.bea.com/wls/docs60/programming/packaging.html


6 Deploying EJBs to WebLogic Server
5. Launch the Administration Console.

6. In the right pane, click EJB Deployments.

A list of the EJB deployments for the server displays in the right-hand pane.

Deploying EJBs in Different Applications

When EJBs are not depoyed in the same application, call by reference cannot be
used to invoke on the EJBs. Instead, pass by value would be used. Components
that commonly interact with each other should be located in the same application
where they can do call by reference. By default, EJB methods called from within
the same server pass arguments by reference. This increases the performance of
method invocation because parameters are not copied. Pass by value is always
necessary when the EJB is called remotely (not from within the server

Deploying EJBs in a Running WebLogic 
Server (Dynamic Deployment)

Although placing the EJB .jar file or deployment directory in the
weblogic/config/examples/applications directory allows you to automatically
deploy the EJB, it requires that you start or reboot the server before the bean can be
used. Once a bean has been deployed, another edit and reboot is required to remove the
bean.

Dynamic deployment is provided for situations where rebooting WebLogic Server is
not feasible. Using dynamic deployment features, you can:

� Deploy a newly developed EJB to a running, production system

� Remove a deployed EJB to restrict access to data

� Update a deployed EJB implementation class to fix a bug or test a new feature
6-6 Programming WebLogic Enterprise JavaBeans



Deploying EJBs in a Running WebLogic Server (Dynamic Deployment)
Whether you deploy or update the EJB from the command line or the Administration
Console, you use the dynamic deployment features. The following sections describe
dynamic deployment concepts and procedures.

To work with beans in a dynamic deployment environment (running server), you first
follow the steps described in “Required Steps for Deploying EJBs” on page 6-1.

EJB Deployment Names

When you deploy an EJB .jar file or deployment directory, you must specify a name
for the deployment unit. This name provides a shorthand reference to the EJB
deployment that you can later use to undeploy or update the EJB.

When you deploy an EJB, WebLogic Server implicitly assigns a deployment name that
matches the path and filename of the .jar file or deployment directory. You can use
this assigned name to undeploy or update the bean after the server has started.

Note: The EJB deployment name remains active in WebLogic Server until the server
is rebooted. Undeploying an EJB does not remove the associated deployment
name, because you may later re-use that name to deploy the bean.

Viewing Deployed EJBs

To view EJBs that are deployed on a local WebLogic Server, use the following steps:

From the command line:

1. Enter the following:

% java weblogic.deploy list password

where password is the password for the WebLogic Server System account.

2. To list deployed EJBs on a remote server, specify the port and host options as
follows:

% java weblogic.deploy -port port_number -host host_name
list password

From the WebLogic Server Administration Console:
Programming WebLogic Enterprise JavaBeans 6-7



6 Deploying EJBs to WebLogic Server
1. Choose EJB Deployments from J2EE node in the right-hand pane of the Console.

2. View a list of deployed EJBs.

Deploying New EJBs into a Running Environment

To deploy an EJB .jar file or deployment directory that has not been deployed to
WebLogic Server:

Use the command:

% java weblogic.deploy -port port_number -host host_name
deploy password name source

where:

� name is the string you want to assign to this EJB deployment unit

� source is the full path and filename of the EJB .jar file you want to deploy, or
the full path of the EJB deployment directory

For example:

% java weblogic.deploy -port 7001 -host localhost deploy
weblogicpwd CMP_example
c:\weblogic\myserver\unjarred\containerManaged\

Undeploying Deployed EJBs

Undeploying an EJB effectively prohibits all clients from using the EJB. When you
undeploy the EJB, the specified EJB’s implementation class is immediately marked as
unavailable in the server. WebLogic Server automatically removes the implementation
class and propagates an UndeploymentException to all clients that were using the
bean.

Undeployment does not automatically remove the specified EJB’s public interface
classes. Implementations of the home interface, remote interface, and any support
classes referenced in the public interfaces, remain in the server until all references to
those classes are released. At that point, the public classes may be removed due to
normal Java garbage collection routines.
6-8 Programming WebLogic Enterprise JavaBeans



Deploying EJBs in a Running WebLogic Server (Dynamic Deployment)
Similarly, undeploying an EJB does not remove the deployment name associated with
the EJB .jar file or deployment directory. The deployment name remains in the server
to allow for later updates of the EJB.

Undeploying EJBs

To undeploy a deployed EJB, use the following steps:

From the command line:

you need only reference the assigned deployment unit name, as in:

% java weblogic.deploy -port 7001 -host localhost undeploy
weblogicpwd CMP_example

From the WebLogic Server Administration Console:

1. Choose EJB Deployments from J2EE node in the right-hand pane of the Console.

2. Click the EJB you want to undeploy from the list.

3. Choose the Target tab and undeploy the EJB by toggling the server to the
Available column.

Undeploying an EJB does not remove the EJB deployment name from WebLogic
Server. The EJB will remain undeployed for the duration of the Server session, as long
as you do not change it once it had been undeployed. You cannot re-use the
deployment name with the deploy argument until you reboot the server. You can
re-use the deployment name to update the deployment, as described in the following
section.

Updating Deployed EJBs

When you update the contents of an EJB .jar file or deployment directory that has
been deployed to WebLogic Server, those updates are not reflected in WebLogic
Server until:

� You reboot the server (if the .jar or directory is to be automatically deployed),
or

� You update the EJB deployment using the WebLogic Server Administration
Console.
Programming WebLogic Enterprise JavaBeans 6-9



6 Deploying EJBs to WebLogic Server
Updating an EJB deployment enables an EJB provider to make changes to a deployed
EJB’s implementation classes, recompile, and then “refresh” the implementation
classes in a running server.

The Update Process

When you update the currently-loaded implementation, classes for the EJB are
immediately marked as unavailable in the server, and the EJB’s classloader and
associated classes are removed. WebLogic Server automatically propagates a
RedeploymentException to all clients that were using the bean. At the same time, a
new EJB classloader is created, which loads and maintains the revised EJB
implementation classes.

When clients next acquire a reference to the EJB, their EJB method calls use the
updated EJB implementation classes.

Note: You can update only the EJB implementation classes, as described in
“Loading EJB Classes into WebLogic Server” on page 6-5. You cannot update
the EJB’s public interfaces, or any support classes that are used by the public
interfaces. If you make any changes to the EJB’s public classes and attempt to
update the EJB, WebLogic Server displays an incompatible class change error
when a client next uses the EJB instance.

Updating the EJB

To update or redeploy the EJB implementation class, use the following steps:

From the command line:

Use the update argument and specify the active EJB deployment name:

% java weblogic.deploy -port 7001 -host localhost update
weblogicpwd CMP_example

From the WebLogic Server Administration Console:

1. Choose EJB Deployments from J2EE node in the right-hand pane of the Console.

2. Click the EJB you want to update from the list.

3. Choose the Target tab and update the EJB by toggling the server to the Chosen
column.
6-10 Programming WebLogic Enterprise JavaBeans



Deploying EJBs in a Running WebLogic Server (Dynamic Deployment)
You can update only the EJB implementation class, not the public interfaces or public
support classes

.

Programming WebLogic Enterprise JavaBeans 6-11



6 Deploying EJBs to WebLogic Server
6-12 Programming WebLogic Enterprise JavaBeans



CHAPTER
7 Deploying EJBs in the 
EJB Container

The BEA WebLogic Server container provides simplified methods for deploying and
redeploying EJBs. The following sections describe how to deploy EJBs into the EJB
2.0 container.

You can continue to deploy EJB 1.1 beans into the EJB 1.1 container by using the
instructions in “Deploying EJBs in a Running WebLogic Server (Dynamic
Deployment)” on page 6-6. You should become familiar with those EJB 1.1
instructions before attempting to deploy EJB 2.0 beans.

� Roles and Responsibilities

� WebLogic Server Deployment Files

� Automatic Deployment Directory

� Deploying Compiled EJB .jar Files

� Deploying Uncompiled EJB .jar Files

� Deploying from an EJB .jar Directory

Roles and Responsibilities

The following sections are written primarily for:

� Deployers who are configuring EJBs to run in the WebLogic Server container
Programming WebLogic Enterprise JavaBeans 7-1



7 Deploying EJBs in the EJB Container
� Application Assemblers who are linking multiple EJBs and EJB resources to
create larger web application systems

� EJB developers who are creating and configuring new EJB .jar files

With WebLogic Server, you can create, modify, and deploy EJBs in one or more
WebLogic Servers. You can set up your EJB deployments, and map EJB references to
actual resource factories, roles, and other EJBs available on a server by editing the
XML.

WebLogic Server Deployment Files

To modify the deployment properties, you need to update the XML deployment
descriptor dtds in the XML files.

The weblogic-ejb-jar.xml contains descriptors that define the caching, clustering,
and performance behavior of EJBs. It also contains descriptors that map available
WebLogic Server resources to EJBs. WebLogic Server resources include security role
names, data sources such as JDBC pools and JMS connection factories, and other
deployed EJBs. Descriptors for container-managed persistence services are available
in weblogic-cmp-rdbms.xml.
7-2 Programming WebLogic Enterprise JavaBeans



WebLogic Server Deployment Files
Descriptors in weblogic-ejb-jar.xml are linked to EJB names in ejb-jar.xml,
resource names in a running WebLogic Server, and to persistence type data defined in
weblogic-cmp-rdbms-jar.xml (for entity EJBs using RDBMS persistence). The
following figure shows the relationship among these components.

See “Manually Editing XML Deployment Files” on page 10-1 to manually edit the
XML deployment files.

<security-role-assignment>. . .
<weblogic-enterprise-bean>

<ejb-name>. . .
<caching-descriptor>. . .
<clustering-descriptor>. . .
<resource-descriptor>. . .
<reference-descriptor>. . .
<persistence-descriptor>. . .

</ejb-name>
</weblogic-enterprise-bean>

weblogic-ejb-jar.xml

Principal

JDBC Pool

JMS

<weblogic-rdbms-bean>
. . .

</weblogic-rdbms-bean>

weblogic-cmp-rdbms-jar.xml

<assembly-descriptor>
<security-role>. . .

</assembly-descriptor>
<entity>

<ejb-name>. . .
<ejb-ref>. . .

</entity>

ejb-jar.xml
WebLogic Server

EJB
Programming WebLogic Enterprise JavaBeans 7-3



7 Deploying EJBs in the EJB Container
Automatic Deployment Directory

The weblogic/config/domain/applications directory acts as an automatic
deployment directory for EJB .jar files and EJB .jar deployment directories. When
you start WebLogic Server, it automatically deploys any valid EJB .jar files or .jar
directories that reside in the applications directory.

WebLogic Server also checks the contents of applications every ten seconds to
determine whether an EJB deployment has changed. If a deployment has changed, it
is automatically redeployed using the dynamic deployment feature.

See the sections below for more information on deploying and redeploying compiled
.jar files, uncompiled .jar files, and .jar directories using the applications
directory.

Note: WebLogic Server Version 6.0 also uses a new $wl_temp_do_not_delete

directory to copy EJB .jar files before deploying them into the EJB
container. You should not add, remove, or modify files in this directory, nor
should you delete this directory while the server is running.

The home and remote interfaces for an EJB are required in the classpath of any calling
conponent. When the EJB classes are compiled, they can be placed in the a directory
in the classpath, such as .../config/<domain>/clientclasses.

Deploying Compiled EJB .jar Files

You create compiled EJB 2.0 .jar files by:

1. Compiling your EJB classes and interfaces using javac.

2. Packaging the EJB classes and interfaces into a valid .jar file.

3. Using weblogic.ejbc on the .jar file to generate WebLogic Server container
classes.

These steps are similar to the steps required for compiling and deploying EJB 1.1
beans.
7-4 Programming WebLogic Enterprise JavaBeans



Deploying Uncompiled EJB .jar Files
You may already have compiled .jar files that you used for deploying EJBs to the
container in WebLogic Server Version 6.0 EJB 1.1 container. To deploy these files to
the EJB 2.0 container:

1. Run weblogic.ejbc against the .jar file to generate EJB 2.0 container-classes.

2. Copy the compiled .jar files into weblogic/config/domain/applications.

Note: The container does not support deploying EJB 1.1-compliant CMP entity
beans into the EJB 2.0 container. If you have EJB 1.1-compliant CMP beans,
you must deploy them into the EJB 1.1 container.

If you change the contents of a compiled EJB .jar file in applications (by
repackaging, recompiling, or copying over the existing .jar file), WebLogic Server
automatically attempts to redeploy the .jar using the dynamic deployment feature.

Note: Because the automatic redeployment feature uses dynamic deployment,
WebLogic Server can only redeploy an EJB’s implementation classes. You
cannot redeploy an EJB’s public interfaces.

Deploying Uncompiled EJB .jar Files

The WebLogic Server container also enables you to automatically deploy .jar files
that contain uncompiled EJB classes and interfaces. An uncompiled EJB .jar file has
the same structure as a compiled file, with the following exceptions:

� You do not have to compile individual class files and interfaces.

� You do not have to use weblogic.ejbc on the packaged .jar file to generate
WebLogic Server container classes.

The .java or .class files in the .jar file must still be packaged in subdirectories that
match their Java package hierarchy. Also, as with all EJB .jar files, you must include
the appropriate XML deployment files in a top-level META-INF directory.

Once you have packaged the uncompiled classes, simply copy the .jar into the
%BEA_HOME%\wlserver6.0\config\<your domain>\applications directory. If
necessary, WebLogic Server automatically runs javac (or a compiler you specify) to
Programming WebLogic Enterprise JavaBeans 7-5



7 Deploying EJBs in the EJB Container
compile the .java files, and runs weblogic.ejbc to generate container classes. The
compiled classes are copied into a new .jar file in
weblogic/config/examples/applications, and deployed to the EJB container.

Should you ever modify an uncompiled .jar in applications (either by
repackaging or copying over the .jar file), WebLogic Server automatically
recompiles and redeploys the .jar using the same steps.

Note: Because the automatic redeployment feature uses dynamic deployment,
WebLogic Server can only redeploy an EJB’s implementation classes. You
cannot redeploy an EJB’s public interfaces.

Deploying from an EJB .jar Directory

The EJB 2.0 container also enables you to deploy EJBs using an EJB .jar

subdirectory in the applications directory. Using this method is similar to using an
uncompiled .jar file, in that you do not need to compile EJB classes and interfaces,
and you do not need to run weblogic.ejbc. Using a .jar subdirectory also removes
the requirement for packaging the EJB deployment into a .jar file. You simply create
a subdirectory in applications that has the same structure of an EJB .jar file.

For example, the following files define a valid EJB .jar deployment directory for use
with the WebLogic Server EJB 2.0 container:

� /weblogic/config/examples/applications/statefulSession/examples/
ejb/basic/statefulSession/ProcessingErrorException.java

� /weblogic/config/examples/applications/statefulSession/examples/
ejb/basic/statefulSession/TradeResult.java

� /weblogic/config/examples/applications/statefulSession/examples/
ejb/basic/statefulSession/TraderBean.java

� /weblogic/config/examples/applications/statefulSession/examples/
ejb/basic/statefulSession/TraderHome.java

� /weblogic/config/examples/applications/statefulSession/examples/
ejb/basic/statefulSession/Trader.java

� /weblogic/config/examples/applications/statefulSession/META-INF/
ejb-jar.xml
7-6 Programming WebLogic Enterprise JavaBeans



Deploying from an EJB .jar Directory
� /weblogic/config/examples/applications/statefulSession/META-INF/
weblogic-ejb-jar.xml

When you use an EJB .jar directory in this manner, WebLogic Server automatically
redeploys the EJB when the ejb-jar.xml deployment file has changed. If you are
developing a new EJB using a .jar directory, you can trigger redeployment by
changing the timestamp of ejb-jar.xml (on UNIX systems, use the touch
command; on Windows NT, open and save the file in a text editor).
Programming WebLogic Enterprise JavaBeans 7-7



7 Deploying EJBs in the EJB Container
7-8 Programming WebLogic Enterprise JavaBeans



CHAPTER
8 WebLogic Server EJB 
Utilities 

The following sections provide a complete reference to the utilities and support files
supplied with WebLogic Server EJBs:

� ejbc (weblogic.ejbc)

� DDConverter (weblogic.ejb.utils.DDConverter)

� deploy (weblogic.deploy)

ejbc

WebLogic Server includes the weblogic.ejbc utility for compiling EJB 2.0 and 1.1
container classes. If you compile .jar files for deployment into the EJB container, you
must use weblogic.ejbc to generate the container classes.

weblogic.ejbc does the following:

� Places the EJB classes, interfaces, and XML deployment descriptor files in a
specified .jar file.

� Checks all EJB classes and interfaces for compliance with the EJB specification.

� Generates WebLogic Server container classes for the EJBs.

� Runs each EJB container class through the RMI compiler to create a client-side
stub and a server-side skeleton.
Programming WebLogic Enterprise JavaBeans 8-1



8 WebLogic Server EJB Utilities
If you specify an output .jar file, ejbc places all generated files into the .jar.

By default, ejbc uses javac as a compiler. For faster performance, specify a different
compiler (such as Symantec’s sj) using the -compiler flag.

Syntax 

$ java weblogic.ejbc [options] <source jar file>

<target directory or jar file>

Note: If you output to a .jar file, the output .jar name must be different from the
input .jar name.

Arguments 

Options 

Argument Description

<source jar
file>

Specifies the .jar file containing the compiled EJB classes,
interfaces, and XML deployment files.

<target
directory or jar
file>

Specifies the destination .jar file or deployment directory in which
ejbc places the output .jar. If you specify an output .jar file,
ejbc places the original EJB classes, interfaces, and XML
deployment files in the .jar, as well as the new container classes
that ejbc generates.

Option Description

-help Prints a list of all options available for the compiler.
8-2 Programming WebLogic Enterprise JavaBeans



ejbc
Examples

The following example uses the javac compiler against an input .jar file in
c:\weblogic\samples\examples\ejb\basic\containerManaged\build. The
output .jar is placed in c:\weblogic\config\examples\applications.

$ java weblogic.ejbc -compiler javac
c:\weblogic\samples\examples\ejb\basic\containerManaged\build\std
_ejb_basic_containerManaged.jar
c:\weblogic\config\examples\ejb_basic_containerManaged.jar

The following example checks a .jar file for compliance with the EJB 1.1
specification and generates WebLogic Server container classes, but does not generate
RMI stubs:

$ java weblogic.ejbc -normi
c:\weblogic\samples\examples\ejb\basic\containerManaged\build\std
_ejb_basic_containerManaged.jar

-version Prints ejbc version information.

-idl Generates CORBA Interface Definition Language for remote
interfaces.

-idlOverwrite Overwrites existing IDL files.

-idlVerbose Displays verbose information while generating IDL.

-idlDirectory
<dir>

Specifies the directory where ejbc creates IDL files. By default,
ejbc uses the current directory.

-keepgenerated Saves the intermediate Java files generated during compilation.

-compiler
<compiler name>

Sets the compiler for ejbc to use.

-normi Passed through to Symantec's java compiler, sj, to stop generation
of RMI stubs. Otherwise sj creates its own RMI stubs, which are
unnecessary for the EJB.

-classpath
<path>

Sets a CLASSPATH used during compilation. This overrides the
system or shell CLASSPATH.
Programming WebLogic Enterprise JavaBeans 8-3



8 WebLogic Server EJB Utilities
DDConverter

The DDConverter is a command line utility that converts WebLogic Server EJB
deployment descriptors to WebLogic Server 6.0. Also, it allows you to convert
deployment descriptors for WebLogic Server 4.5 container-managed persistence
(CMP) 1.0 beans to CMP 1.1 beans, which run under WebLogic Server 6.0. With the
DDConverter, the output of Weblogic Server 4.5 (EJB 1.0) is a .txt file; the output
of WebLogic Server 5.1 (EJB 1.1) is a .jar file.

Converting EJBs for Use in WebLogic Server 6.0

The conversion options are:

� To convert (WebLogic Server 5.1) 1.1 EJBs to (WebLogic Server 6.0) 2.0 EJBs,
input the WebLogic 5.1 .jar file, which includes the deployment descriptor
XML files and any classes into the DDConverter. The output goes to a .jar file
that includes the WebLogic 6.0 deployment descriptor XML files. Any necessary
classes also are copied to the .jar file. Now, the .jar file can now be deployed
to WebLogic Server 6.0.

� To convert (WebLogic 4.5) 1.0 EJBs to (WebLogic 6.0) 2.0 EJBs, input the
WebLogic 4.5 deployment descriptor text into the DDConverter. The output
goes to a .jar file that only includes the WebLogic 6.0 deployment descriptor.
If any classes need to be copied to the .jar file, you will need to manually add
them before you can deploy the file to WebLogic Server 6.0.

Converting EJB CMP 1.1 Beans to EJB CMP 2.0 Beans

To convert EJB CMP 1.1 beans to 2.0 beans:

1. Input the deployment descriptors into the DDConverter.

The output goes to the .jar file.

2. Extract the XML deployment descriptors.
8-4 Programming WebLogic Enterprise JavaBeans



DDConverter
3. Modify the source code.

4. Compile the modified java file with the extracted XML deployment descriptors,
which creates the .jar file.

5. Deploy the bean.

Except for CMP beans, all other beans are converted to EJB 2.0 beans as
needed, with little or no source code changes. You can input the deployment
descriptors, output to a .jar file, and then deploy the bean.

Converting CMP Beans between WebLogic Server 
Versions

The DDConverter tool supports the following conversions:

� WebLogic 4.5 CMP 1.0 DTD conversion to WebLogic 6.0 CMP 1.1 DTD. The
tool cannot produce a 6.0 CMP 2.0 DTD. (In other words, -EJBVer 2.0 has no
effect.)

� WebLogic 5.1 CMP 1.1 DTD conversion to WebLogic 6.0 CMP 2.0 DTD. The
tool cannot produce a 6.0 CMP 1.1 DTD. (In other words, -EJBVer 1.1 has no
effect.)

To make these conversions:

1. Input the WebLogic Server 4.5 or 5.1 deployment descriptor text into the
DDConverter.

The output goes to a .jar file that only includes CMP 1.1 or 2.0 WebLogic
Server 6.0 deployment descriptors.

2. Manually add the class files to the .jar file.

Syntax 

$ java weblogic.ejb20.utils.DDConverter [options] file1 [file2...]
Programming WebLogic Enterprise JavaBeans 8-5



8 WebLogic Server EJB Utilities
Arguments 

DDConverter takes one argument of file1 [file2...], which specifies a text file
containing an EJB 1.0 or 1.5 compliant deployment descriptor.

DDConverter uses the beanHomeName property of EJBs in the text deployment
descriptor to define new ejb-name elements in the resultant ejb-jar.xml file.

Options

Examples

The following example converts an EJB 1.0-compliant WebLogic Server
DeploymentDescriptor.txt file into a collection of EJB 1.1-compliant XML files.
The XML files are created in the destDir subdirectory:

Option Description

-d destDir Specifies the destination directory for the output of
the .jar files.

This is a required option.

-combine jar name Specifies a .jar file in which you combine all beans in
the source files.

-EJBVer output EJB
version

Specifies the output EJB version number, such as 2.0
or 1.1.

-log log file Specifies a file into which the log information can be
placed instead of the ddconverter.log.

-verboseLog Specifies that extra information on the conversion be
placed in the ddconverter.log.

-help Prints a list of all options available for the
DDConverter utility.
8-6 Programming WebLogic Enterprise JavaBeans



deploy
$ java weblogic.ejb20.utils.DDConverter -d destDir
DeploymentDescriptor.txt

deploy

Given an EJB compliant .jar file, the .jar’s EJBs are deployed into a running
WebLogic Server.

Syntax 

$ java weblogic.deploy [options] [list|deploy|undeploy|update]
password {name} {source}

Arguments 

Argument Description

list Lists all EJB deployment units in the specified
WebLogic Server.

deploy Deploys an EJB .jar to the specified server.

undeploy Removes an existing EJB deployment unit from the
specified server.

update Redeploys an EJB deployment unit in the specified
server.

password Specifies the system password for the WebLogic
Server.

{name} Identifies the name of the EJB deployment unit. This
name can be specified at deployment time, either
with the deploy or console utilities.
Programming WebLogic Enterprise JavaBeans 8-7



8 WebLogic Server EJB Utilities
Options 

{source} Specifies the exact location of the EJB .jar file, or
the path to the top level of an EJB deployment
directory.

Option Description

-help Prints a list of all options available for the deploy
utility.

-version Prints the version of the utility.

-port <port> Specifies the port number of the WebLogic Server to
use for deploying the.jar. If you do not specify this
option, the deploy utility attempts to connect using
port number 7001.

-host <host> Specifies the host name of the WebLogic Server to
use for deploying the.jar. If you do not specify this
option, the deploy utility attempts to connect using
host name localhost.

-user Specifies the system username of the WebLogic
Server to be used to deploy the .jar file. If you do
not specify this option, deploy attempts to make a
connection using the system usernamesystem. You
use the weblogic.system.user property to
define the system username.

-debug Prints detailed debugging information during the
deployment process.
8-8 Programming WebLogic Enterprise JavaBeans



CHAPTER
9 WebLogic Server 6.0
EJB Deployment 
Properties

The following sections provide a complete reference of the WebLogic specific XML
deployment properties used in the WebLogic Server 6.0 EJB 2.0 container and an
explanation of how to edit the XML deployment properties manually.

� Manually Editing XML Deployment Files

� weblogic-ejb-jar.xml Deployment Descriptor File

� Index of weblogic-ejb-jar Deployment Elements

� weblogic-cmp-rdbms-jar.xml Deployment Descriptor File

� Index of weblogic-cmp-rdbms-jar.xml Deployment Elements

Manually Editing XML Deployment Files

To create and deploy message-driven beans, or use the new caching and clustering
deployment elements, you must edit the following XML deployment files manually,
using a text editor:

� weblogic-ejb.jar

� weblogic-cmp-rdbms.jar
Programming WebLogic Enterprise JavaBeans 9-1



9 WebLogic Server 6.0 EJB Deployment Properties
See also “Basic Conventions” on page 10-2 for more information on the conventions
to use when modifying XML deployment files.

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose. The correct text for the PUBLIC element for each XML deployment file is as
follows.

For example, the entire DOCTYPE header for a weblogic-ejb-jar.xml file is as
follows:

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'>

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

XML File PUBLIC Element String

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ‘http://www.java.sun.com/dtd/ejb-jar_2_0.dtd’

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN‘
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-j
ar.dtd‘

weblogic-cmp-rdbms
-jar.xml

‘-// BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS
Persistence//EN‘
‘http://www.bea.com/servers/wls600/dtd/weblogic-rdbms
20-persistence-600.dtd‘
9-2 Programming WebLogic Enterprise JavaBeans



Manually Editing XML Deployment Files
Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server ignores the
DTDs embedded within the DOCTYPE header of XML deployment files, and instead
uses the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid parser
errors.

The following links provide the new public DTD locations for XML deployment files
used with the WebLogic Server EJB 2.0 container:

� http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

� http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd

contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

� http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-

persistence-600.dtd contains the DTD that defines container-managed
persistence properties for entity EJBs. This DTD is changed from WebLogic
Server Version 5.1, and you must still include a
weblogic-cmp-rdbms-jar.xml file for entity EJBs using WebLogic Server
RDBMS-based persistence.

Use the existing DTD file located at:

http://www.bea.com/servers/wls600/dtd/weblogic-rdbms-
persistence-600.dtd

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.
Programming WebLogic Enterprise JavaBeans 9-3

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html


9 WebLogic Server 6.0 EJB Deployment Properties
weblogic-ejb-jar.xml Deployment 
Descriptor File

weblogic-ejb-jar.xml defines EJB deployment descriptor DTDs which are unique
to WebLogic Server. The EJB 2.0 container uses a version of
weblogic-ejb-jar.xml that is different from the one shipped with WebLogic Server
Version 5.1. The revised DTD for weblogic-ejb-jar.xml includes new elements
for enabling stateful session EJB replication, configuring entity EJB locking behavior,
and assigning JMS Queue and Topic names for message-driven beans. The new DTD
also reorganizes the major stanzas into more logical sections.

You can continue to use the earlier weblogic-ejb-jar.xml DTD for EJB 1.1 that
you will deploy into the EJB 1.1 container. However, if you want to use any of the new
EJB 2.0 features or deploy beans into the EJB 2.0 container, you must use the DTD
described in the sections listed in “Index of weblogic-ejb-jar Deployment Elements”
on page 9-5.

The top level elements in the EJB weblogic-ejb-jar.xml are as follows:

� description of the file

� Copyright information

� weblogic-enterprise-bean

� ejb-name

� entity-descriptor | stateless-session-descriptor | stateful-session-descriptor |
message-driven-descriptor

� transaction-descriptor

� reference-descriptor

� enable-call-by-reference

� jndi-name

� security-role-assignment

� transaction-isolation
9-4 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
Use the links above, or see “Manually Editing XML Deployment Files” on page 9-1
for more information about individual EJB 2.0 deployment stanzas and elements. See
also “Manually Editing XML Deployment Files” on page 10-1 for complete
information about the deployment elements introduced for EJB 1.1.

Index of weblogic-ejb-jar Deployment 
Elements

� “allow-concurrent-calls” on page 9-8

� “concurrency-strategy” on page 9-9

� “db-is-shared” on page 9-10

� “delay-updates-until-end-of-tx” on page 9-11

� “description” on page 9-12

� “destination-jndi-name” on page 9-13

� “ejb-name” on page 9-14

� “ejb-reference-description” on page 9-15

� “ejb-ref-name” on page 9-16

� “enable-call-by-reference” on page 9-17

� “entity-cache” on page 9-18

� “entity-clustering” on page 9-19

� “entity-descriptor” on page 9-20

� “finders-load-bean” on page 9-21

� “home-call-router-class-name” on page 9-22

� “home-is-clusterable” on page 9-23

� “home-load-algorithm” on page 9-24
Programming WebLogic Enterprise JavaBeans 9-5



9 WebLogic Server 6.0 EJB Deployment Properties
� “idle-timeout-seconds” on page 9-25

� “initial-beans-in-free-pool” on page 9-26

� “is-modified-method-name” on page 9-27

� “isolation-level” on page 9-28

� “jndi-name” on page 9-29

� “lifecycle” on page 9-30

� “max-beans-in-cache” on page 9-31

� “max-beans-in-free-pool” on page 9-32

� “message-driven-descriptor” on page 9-33

� “method” on page 9-34

� “method-intf” on page 9-35

� “method-name” on page 9-36

� “method-param” on page 9-37

� “method-params” on page 9-38

� “passivation-strategy” on page 9-39

� “persistence” on page 9-40

� “persistence-type” on page 9-41

� “persistence-use” on page 9-42

� “persistent-store-dir” on page 9-43

� “pool” on page 9-44

� “principal-name” on page 9-45

� “read-timeout-seconds” on page 9-46

� “reference-descriptor” on page 9-47

� “replication-type” on page 9-48

� “res-env-ref-name” on page 9-49
9-6 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
� “res-ref-name” on page 9-50\

� “resource-env-description” on page 9-51

� “resource-description” on page 9-52

� “role-name” on page 9-53

� “run-as-identity-principal” on page 9-54

� “security-role-assignment” on page 9-55

� “stateful-session-cache” on page 9-56

� “stateful-session-clustering” on page 9-57

� “stateful-session-descriptor” on page 9-58

� “stateless-bean-call-router-class-name” on page 9-59

� “stateless-bean-is-clusterable” on page 9-60

� “stateless-bean-load-algorithm” on page 9-61

� “stateless-bean-methods-are-idempotent” on page 9-62

� “stateless-clustering” on page 9-63

� “stateless-session-descriptor” on page 9-64

� “transaction-descriptor” on page 9-65

� “transaction-isolation” on page 9-66

� “trans-timeout-seconds” on page 9-67

� “type-identifier” on page 9-68

� “type-storage” on page 9-69

� “type-version” on page 9-70
Programming WebLogic Enterprise JavaBeans 9-7



9 WebLogic Server 6.0 EJB Deployment Properties
allow-concurrent-calls

Function

The allow-concurrent-calls element specifies whether a stateful session bean
instance will allow concurrent method calls. By default, allows-concurrent-calls
is false. However, when this value is set to true, the EJB container blocks the
concurrent method call and allows it to proceed when the previous call has completed.

Example

See “stateful-session-descriptor” on page 9-58.

Range of values: true | false

Default value: false

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
9-8 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
concurrency-strategy

Function

This element determines ejbLoad() and ejbStore() behavior for entity EJB
instances. You can set this element to one of three possible values:

� Exclusive was the default locking behavior for WebLogic Server versions 3.1
through 5.1. WebLogic Server places an exclusive lock on cached entity EJB
instances when the bean is associated with a transaction. Other requests for the
EJB instance block until the transaction completes.

� Database is the default locking behavior for Weblogic Server versions 6.x. This
value causes WebLogic Server to defer locking requests for an entity EJB to the
underlying datastore. With the Database concurrency strategy, WebLogic Server
does not cache the intermediate results of entity EJBs involved in a transaction.

� ReadOnly designates an entity EJB that is never modified. WebLogic Server
calls ejbLoad() for ReadOnly beans based on the read-timeout-seconds
parameter.

See“Locking and Caching Services for Entity EJBs” on page 4-38 for more
information on the Exclusive and Database locking behaviors. See“Read-Write
Cache Strategy” on page 4-12 for more information about read-only entity EJBs.

Example

The following entry identifies the AccountBean class as a read-only entity EJB:

Range of values: Exclusive | Database | ReadOnly

Default value: Database

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-9



9 WebLogic Server 6.0 EJB Deployment Properties
<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<concurrency-strategy>ReadOnly</concurrency-strategy>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>

db-is-shared

Function

The db-is-shared element applies only to entity beans. When set to true WebLogic
Server assumes that EJB data could be modified between transactions and reloads data
at the beginning of each transaction. When set to falseWebLogic Server assumes that
it has exclusive access to the EJB data in the persistent store. See “Using db-is-shared
to Limit Calls to ejbLoad()” on page 4-9 for more information.

Example

See “persistence” on page 9-40.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
9-10 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
delay-updates-until-end-of-tx

Function

Set this element to true (the default) to update the persistent store of all beans in a
transaction at the completion of the transaction. This generally improves performance
by avoiding unnecessary updates. However, it does not preserve the ordering of
database updates within a database transaction.

If your datastore uses an isolation level of TRANSACTION_READ_UNCOMMITTED, you
may want to allow other database users to view the intermediate results of in-progress
transactions. In this case, set delay-updates-until-end-of-tx to false to update
the bean's persistent store at the conclusion of each method invoke. See “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-8 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

Example

The following entry specifies that WebLogic Server call ejbStore() at the end of
each method invocation:

<entity-descriptor>

<persistence>

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-11



9 WebLogic Server 6.0 EJB Deployment Properties
<delay-updates-until-end-of-tx>false</delay-updates-until-end-of-
tx>

</persistence>

</entity-descriptor>

description

Function

The description element is used to provide text that describes the parent element.

Example

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean,
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
9-12 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
destination-jndi-name

Function

destination-jndi-name specifies the JNDI name of an actual JMS Queue or Topic
available in WebLogic Server.

Example

See “message-driven-descriptor” on page 9-33.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in message-driven-descriptor.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-13



9 WebLogic Server 6.0 EJB Deployment Properties
ejb-name

Function

ejb-name specifies the name of an EJB to which WebLogic Server applies isolation
level properties.

Example

See “method” on page 9-34.

Range of values: Name of an EJB defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in method stanza.

Parent elements: weblogic-enterprise-bean
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
9-14 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
ejb-reference-description

Function

The resource-description stanza maps a resource reference defined in
ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

The resource-description stanza can contain additional elements as shown here:

<reference-descriptor>

<ejb-reference-description>

<ejb-ref-name>...</ejb-ref-name>

<jndi-name>...</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-15



9 WebLogic Server 6.0 EJB Deployment Properties
ejb-ref-name

Function

The resource-description stanza maps a resource reference named in
ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

� ejb-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

� jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

Example

The resource-description stanza can contain additional elements as shown here:

<reference-descriptor>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

ejb-reference-description

Deployment file: weblogic-ejb-jar.xml
9-16 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
enable-call-by-reference

Function

By default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation because parameters
are not copied.

If you set enable-call-by-reference to False parameters to EJB methods are
copied (pass-by-value) in accordance with the EJB 1.1 specification. Pass by value is
always necessary when the EJB is called remotely (not from within the server).

Example

The following example enables pass-by-value for EJB methods:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

...

<enable-call-by-reference>false</enable-call-by-reference>

</weblogic-enterprise-bean>

Range of values: true | false

Default value: true

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

ejb-reference-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-17



9 WebLogic Server 6.0 EJB Deployment Properties
entity-cache

Function

The entity-cache element defines options used to cache entity EJB instances within
WebLogic Server. See“EJB Life Cycle in WebLogic Server” on page 4-2 for a general
discussion of the caching services available in WebLogic Server.

Example

<entity-descriptor>

<entity-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<read-timeout-seconds>...<read-timeout-seconds>

<concurrency-strategy>...</concurrency-strategy>

</entity-cache>

<lifecycle>...</lifecycle>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The entity-cache stanza is optional, and is valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
9-18 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
entity-clustering

Function

The entity-clustering stanza contains elements that determines how WebLogic
Server replicates entity EJB instances in a cluster.

Example

The following excerpt shows the structure of a entity-clustering stanza:

<entity-clustering>

<home-is-clusterable>true</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

</entity-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for entity EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-19



9 WebLogic Server 6.0 EJB Deployment Properties
entity-descriptor

Function

The entity-descriptor stanza defines caching, clustering, and persistence
properties for entity EJBs in WebLogic Server.

Example

The following example shows the structure of the entity-descriptor stanza:

<entity-descriptor>

<entity-cache>...</entity-cache>

<lifecycle>...</lifecycle>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One entity-descriptor stanza is required for each entity EJB in the .jar.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
9-20 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
finders-load-bean

Function

finders-load-bean determines whether WebLogic Server loads the EJB into the
cache after a call to a finder method returns a reference to the bean. If you set this
element to true, WebLogic immediately loads the bean into the cache if a reference
to a bean is returned by the finder. If you set this element to false, WebLogic Server
does not load automatically load the bean into the cache until the first method
invocation; this behavior is consistent with the EJB 1.1 specification.

Example

The following entry specifies that EJBs are loaded into the WebLogic Server cache
automatically when a finder method returns a reference to the bean:

<entity-descriptor>

<persistence>

<finders-load-bean>true</finders-load-bean>

</persistence>

</entity-descriptor>

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for CMP entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-21



9 WebLogic Server 6.0 EJB Deployment Properties
home-call-router-class-name

Function

home-call-router-class-name specifies the name of a custom class to use for
routing bean method calls. This class must implement
weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Example

See “entity-clustering” on page 9-19 and “stateful-session-clustering” on page 9-57.

Range of values: Valid router class name

Default value: n/a

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
9-22 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
home-is-clusterable

Function

When home-is-clusterable is true, the EJB can be deployed from multiple
WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the
servers on which this bean is deployed, and if a server hosting the bean is unreachable,
the call automatically fails over to another server hosting the bean.

Example

See “entity-clustering” on page 9-19.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-23



9 WebLogic Server 6.0 EJB Deployment Properties
home-load-algorithm

Function

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this property is not defined, WebLogic Server uses the
algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

� round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

� random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

� weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “entity-clustering” on page 9-19 and “stateful-session-clustering” on page 9-57.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
9-24 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
idle-timeout-seconds

Function

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server may remove the
bean instance if the number of beans in cache approaches the limit of
max-beans-in-cache. See “EJB Life Cycle in WebLogic Server” on page 4-2 for
more information.

Example

The following entry indicates that the stateful session EJB, AccountBean, should
become eligible for removal if max-beans-in-cache is reached and the bean has
been in cache for 20 minutes:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<stateful-session-descriptor>

<entity-cache>

<max-beans-in-cache>200</max-beans-in-cache>

Range of values: 1 to maxSeconds

Default value: 600

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean,
stateful-session-descriptor,

stateful-session-cache

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-25



9 WebLogic Server 6.0 EJB Deployment Properties
<idle-timeout-seconds>1200</idle-timeout-seconds>

</entity-cache>

</stateful-session-descriptor>

</weblogic-enterprise-bean>

initial-beans-in-free-pool

Function

If you specify a value for initial-beans-in-free-pool, you set the intital size
ofthe pool. WebLogic Server populates the free pool with the specified number of bean
instances for every bean class at startup. Populating the free pool in this way improves
initial response time for the EJB, because initial requests for the bean can be satisfied
without generating a new instance.

Example

See “pool” on page 9-44.

Range of values: 0 to maxBeans

Default value: 0

Requirements: Optional element. Valid only for stateless session EJBs.

Parent elements: weblogic-enterprise-bean,
transaction-descriptor

Deployment file: weblogic-ejb-jar.xml
9-26 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
is-modified-method-name

Function

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance for EJB
1.1-compliant beans, and for beans that use bean-managed persistence. However, any
errors in the method’s return value can cause data inconsistency problems. See“Using
is-modified-method-name to Limit Calls to ejbStore()” on page 4-10 for more
information.

Note: isModified() is no longer required for 2.0 CMP entity EJBs based on the
EJB 2.0 specification However, it still applies to BMP and 1.1 CMP EJBs.
When you deploy EJB 2.0 entity beans with container-managed persistence,
WebLogic Server automatically detects which EJB fields have been modified,
and writes only those fields to the underlying datastore.

Example

The following entry specifies that the EJB method named semidivine will notify
WebLogic Server when the EJB has been modified:

<entity-descriptor>

<persistence>

Range of values: Valid entity EJB method name

Default value: None

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-27



9 WebLogic Server 6.0 EJB Deployment Properties
<is-modified-method-name>isModified</is-modified-method-name>

</persistence>

</entity-descriptor>

isolation-level

Function

isolation-level specifies the isolation level for all of the EJB’s database
operations. The following are possible values for isolation-level:

� ReadUncommitted: The transaction can view uncommitted updates from other
transactions.

� ReadCommitted: The transaction can view only committed updates from other
transactions.

� RepeatableRead: Once the transaction reads a subset of data, repeated reads of
the same data return the same values, even if other transactions have
subsequently modified the data.

� Serializable: Simultaneously executing this transaction multiple times has the
same effect as executing the transaction multiple times in a serial fashion.

Refer to your database documentation for more information on the implications and
support for different isolation levels.

Range of values: Serializable | ReadCommitted | ReadUncommitted |
RepeatableRead

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean,
transaction-isolation

Deployment file: weblogic-ejb-jar.xml
9-28 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
Example

See “transaction-isolation” on page 9-66.

jndi-name

Function

jndi-name specifies the JNDI name of an actual EJB or resource available in
WebLogic Server.

Example

See “resource-description” on page 9-52 and “ejb-reference-description” on page 9-15.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in resource-description and ejb-reference-description.

Parent elements: weblogic-enterprise-bean

and

weblogic-enterprise-bean
reference-description

resource-description

and

weblogic-enterprise-bean
reference-description

ejb-reference-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-29



9 WebLogic Server 6.0 EJB Deployment Properties
lifecycle

Function

The lifecycle stanza defines properties that affect the lifecycle of entity EJB
instances within WebLogic Server. Currently, thelifecycle stanza includes only one
element: passivation-strategy.

Example

<entity-descriptor>

<lifecycle>

<passivation-strategy>...</passivation-strategy>

</lifecycle>

</entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The lifecycle stanza is optional. lifecycle is valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

and

weblogic-enterprise-bean

stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
9-30 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
max-beans-in-cache

Function

The max-beans-in-cache element specifies the maximum number of objects of this
class that are allowed in memory. When max-bean-in-cache is reached, WebLogic
Server passivates some EJBs that have not been recently used by a client.
max-beans-in-cache also affects when EJBs are removed from the WebLogic
Server cache, as described in“Locking and Caching Services for Entity EJBs” on page
4-38.

Example

The following entry enables WebLogic Server to cache a maximum of 200 instances
of the AccountBean class:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<max-beans-in-cache>200</max-beans-in-cache>

</entity-cache>

Range of values: 1 to maxBeans

Default value: 100

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-cache

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-31



9 WebLogic Server 6.0 EJB Deployment Properties
</entity-descriptor>

</weblogic-enterprise-bean>

max-beans-in-free-pool

Function

WebLogic Server maintains a free pool of EJBs for every stateless session bean and
message driven bean class. The max-beans-in-free-pool element defines the size
of this pool. By default, max-beans-in-free-pool has no limit; the maximum
number of beans in the free pool is limited only by the available memory. See
“Stateless Session EJB Life Cycle” on page 4-2 or “Differences Between
Message-Driven Beans and Stateless Session EJBs” on page 3-3 for more information.

Example

See “pool” on page 9-44.

Range of values: 0 to maxBeans

Default value: max Int

Requirements: Optional element. Valid only for stateless session EJBs.

Parent elements: weblogic-enterprise-bean,
transaction-descriptor

Deployment file: weblogic-ejb-jar.xml
9-32 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
message-driven-descriptor

Function

The message-driven-descriptor stanza associates a message-driven bean with a
JMS destination in WebLogic Server. This stanza currently includes only one XML
element, destination-jndi-name.

Example

The following example shows the structure of the message-driven-descriptor
stanza:

<message-driven-descriptor>

<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One message-driven-descriptor stanza is required for each message-driven
bean in the .jar.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-33



9 WebLogic Server 6.0 EJB Deployment Properties
method

Function

The method stanza defines method-level transaction isolation settings for an EJB.

Example

The method stanza can contain the elements shown here:

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. You can specify more than one method stanza to configure multiple
EJB methods.

Parent elements: weblogic-enterprise-bean

transaction-isolation

Deployment file: weblogic-ejb-jar.xml
9-34 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
method-intf

Function

method-intf specifies the EJB interface to which WebLogic Server applies isolation
level properties. Use this element only if you need to differentiate between methods
having the same signature in the EJB’s home and remote interface.

Example

See “method” on page 9-34.

Range of values: Home | Remote

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-35



9 WebLogic Server 6.0 EJB Deployment Properties
method-name

Function

method-name specifies the name of an individual EJB method to which WebLogic
Server applies isolation level properties. Use the asterisk (*) to specify all methods in
the EJB’s home and remote interfaces.

If you specify a method-name, the method must be available in the specified ejb-name.

Example

See “method” on page 9-34.

Range of values: Name of an EJB defined in ejb-jar.xml | *

Default value: n/a

Requirements: Required element in method stanza.

Parent elements: weblogic-enterprise-bean
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
9-36 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
method-param

Function

The method-param stanza specifies the fully-qualified Java type of a method
parameter.

Example

See “method-params” on page 9-38.

Range of values: Fully qualified Java type of a method parameter

Default value: n/a

Requirements: Required element in method-params.

Parent elements: weblogic-enterprise-bean

transaction-isolation
method

method-params

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-37



9 WebLogic Server 6.0 EJB Deployment Properties
method-params

Function

The method-params stanza contains one or more elements that define the Java type
name of each of the method’s parameters.

Example

The method-params stanza contains one or more method-param elements, as shown
here:

<method-params>

<method-param>java.lang.String</method-param>

...

</method-params>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional stanza.

Parent elements: weblogic-enterprise-bean

transaction-isolation
method

Deployment file: weblogic-ejb-jar.xml
9-38 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
passivation-strategy

Function

The passivation-strategy element determines whether or not WebLogic Server
maintains the intermediate state of entity EJBs in its cache. See “Locking and Caching
Services for Entity EJBs” on page 4-38 for more information.

Example

The following entry reverts to WebLogic Server locking and caching behavior:

<entity-descriptor>

<lifecycle>

<passivation-strategy>default</passivation-strategy>

</lifecycle>

</entity-descriptor>

Range of values: default | transaction

Default value: default

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

lifecycle

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-39



9 WebLogic Server 6.0 EJB Deployment Properties
persistence

Function

The persistence stanza defines properties that determine the persistence type,
transaction commit behavior, and ejbLoad() and ejbStore() behavior for entity
EJBs in WebLogic Server.

Example

<entity-descriptor>

<persistence>

<is-modified-method-name>...</is-modified-method-name>

<delay-updates-until-end-of-tx>...</delay-updates-until-end-of-tx
>

<finders-load-beand>...</finders-load-bean>

<persistence-type>...</persistence-type>

<db-is-shared>false</db-is-shared>

<persistence-use>...</persistence-use>

</persistence>

</entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
9-40 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
persistence-type

Function

The persistence-type stanza defines a persistence service that the entity EJB can
use. You can define multiple persistence-type stanzas in
weblogic-ejb-jar.xml for testing your EJB with multiple persistence services.
Only the persistence type defined in persistence-use is actually used during
deployment.

persistence-type includes several elements that identify the persistence types:

� Name

� Version

� Path of the file that stores data fields and configuration information

Example

The following excerpt shows a sample persistence-type stanza:

<persistence>

<persistence-type>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-41



9 WebLogic Server 6.0 EJB Deployment Properties
<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-type>

</persistence>

persistence-use

Function

The persistence-use stanza is similar to persistence-type, but it defines the
persistence service actually used during deployment. persistence-use uses the
type-identifier and type-version elements defined in a persistence-type to identify
the service.

Example

To deploy an EJB using the WebLogic Server RDBMS-based persistence service
defined in persistence-type, use the following persistence-use stanza:

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

</persistence-use>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
9-42 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
persistent-store-dir

Function

The persistent-store-dir element specifies a file system directory where
WebLogic Server stores the state of passivated stateful session bean instances.

Example

See “stateful-session-descriptor” on page 9-58.

Range of values: Fully qualified filesystem path

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-43



9 WebLogic Server 6.0 EJB Deployment Properties
pool

Function

The pool stanza configures the behavior of the WebLogic Server free pool for a
stateless session and message driven EJBs.

Example

The pool stanza can contain the elements shown here:

<stateless-session-descriptor>

<pool>

<max-beans-in-free-pool>500</max-beans-in-free-pool>

<initial-beans-in-free-pool>250</initial-beans-in-free-pool>

</pool>

</stateless-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
stateless-session-descriptor

Deployment file: weblogic-ejb-jar.xml
9-44 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
principal-name

Function

principal-name specifies the name of an actual WebLogic Server principal to apply
to the specified role-name.

Example

See “security-role-assignment” on page 9-55.

Range of values: valid WebLogic Server principal name

Default value: n/a

Requirements: At least one principal-name is required in the security-role-assignment stanza.
You may define more than one principal-name for each role-name.

Parent elements: weblogic-enterprise-bean
security-role-assignment

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-45



9 WebLogic Server 6.0 EJB Deployment Properties
read-timeout-seconds

Function

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds
is set to 0, and WebLogic Server calls ejbLoad() only when the bean is brought into
the cache.

Example

The following entry causes WebLogic Server to call ejbLoad() for instances of the
AccountBean class only when the instance is first brought into the cache:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<read-timeout-seconds>0</read-timeout-seconds>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>

Range of values: 0 to maxSeconds

Default value: 0

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

Deployment file: weblogic-ejb-jar.xml
9-46 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
reference-descriptor

Function

The reference-descriptor stanza maps references in the ejb-jar.xml file to the
JNDI names of actual resource factories and EJBs available in WebLogic Server.

Example

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

...

</resource-description>

<ejb-reference-description>

...

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-47



9 WebLogic Server 6.0 EJB Deployment Properties
replication-type

Function

The replication-type element determines whether or not WebLogic Server
replicates the state of stateful session EJBs across WebLogic Server instances in a
cluster. If you select InMemory, the state of the EJB is replicated. If you select None,
the state is not replicated.

Example

See “stateful-session-clustering” on page 9-57.

Range of values: InMemory | None

Default value: None

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
9-48 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
res-env-ref-name

Function

res-env-ref-name specifies a resource environment reference name.

Example

See “resource-env-description” on page 9-51.

Range of values: A valid resource environment reference name from the ejb-jar.xml file

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-env-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-49



9 WebLogic Server 6.0 EJB Deployment Properties
res-ref-name

Function

res-ref-name specifies a resource reference name. This is the reference that the EJB
provider places within the ejb-jar.xml deployment file.

Example

See “resource-description” on page 9-52.

Range of values: A valid resource reference name from the ejb-jar.xml file

Default value: n/a

Requirements: Required element if the EJB specifies resource references in ejb-jar.xml

Parent elements: weblogic-enterprise-bean
reference-description

resource-description

Deployment file: weblogic-ejb-jar.xml
9-50 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
resource-env-description

Function

The resource-env-description stanza maps a resource environment reference
defined in ejb-jar.xml to the JNDI name of an actual resource available in
WebLogic Server.

Example

The resource-env-description stanza can contain additional elements as shown
here:

<reference-descriptor>

<resource-env-description>

<res-env-ref-name>. . .</res-env-ref-name>

<jndi-name>...</jndi-name>

<reference-env-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-51



9 WebLogic Server 6.0 EJB Deployment Properties
resource-description

Function

The resource-description stanza maps a resource reference defined in
ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

The resource-description stanza can contain additional elements as shown here:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>...</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

Deployment file: weblogic-ejb-jar.xml
9-52 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
role-name

Function

role-name identifies an application role name that the EJB provider placed in the
ejb-jar.xml deployment file. Subsequent principal-name elements in the stanza map
WebLogic Server principals to the specified role-name.

Example

See “security-role-assignment” on page 9-55.

Range of values: An EJB role name defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in security-role-assignment.

Parent elements: weblogic-enterprise-bean
security-role-assignment

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-53



9 WebLogic Server 6.0 EJB Deployment Properties
run-as-identity-principal

Function

run-as-identity-principal specifies the principal to be used as the identity for
beans that have a security-identity.run-as-specified-identity set in the
ejb-jar.xml.

The principal named in this element must be one of the principals mapped to the
run-as-specified-identity role.

Example

The run-as-identity-principal stanza can contain additional elements as shown
here:

<weblogic-ejb-jar>

<weblogic-enterprise-bean>

<run-as-identity-principal>Fred</run-as-identity-principal>

</weblogic-enterprise-bean>

</weblogic-ejb-jar>

Range of values: Principal that will be used as the identity as defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in security-role-assignment.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
9-54 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
security-role-assignment

Function

The security-role-assignment stanza maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

Example

The security-role stanza can contain one or more of the following elements:

<security-role-assignment>

<role-name>PayrollAdmin</role-name>

<principal-name>Tanya</principal-name>

<principal-name>system</principal-name>

...

</security-role-assignment>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required element if ejb-jar.xml defines application roles.

Parent elements: weblogic-ejb-jar

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-55



9 WebLogic Server 6.0 EJB Deployment Properties
stateful-session-cache

Function

The stateful-session-cache stanza defines properties used to cache stateful
session EJB instances within WebLogic Server. See“EJB Life Cycle in WebLogic
Server” on page 4-2 for a general discussion of the caching services available in
WebLogic Server.

Example

<stateful-session-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<read-timeout-seconds>...<read-timeout-seconds>

</stateful-session-cache>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The stateful-session-cache stanza is optional, and is valid only for stateful
session EJBs.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
9-56 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
stateful-session-clustering

Function

The stateful-session-clustering stanza contains elements that determine how
WebLogic Server replicates stateful session EJB instances in a cluster.

Example

The following excerpt shows the structure of a entity-clustering stanza:

<stateful-session-clustering>

<home-is-clusterable>true</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

<replication-type>InMemory</replication-type>

</stateful-session-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-57



9 WebLogic Server 6.0 EJB Deployment Properties
stateful-session-descriptor

Function

The stateful-session-descriptor stanza defines caching, clustering, and
persistence properties for stateful session EJBs in WebLogic Server.

Example

The following example shows the structure of the stateful-session-descriptor
stanza:

<stateful-session-descriptor>

<stateful-session-cache>...</stateful-session-cache>

<lifecycle>...</lifecycle>

<persistence>...</persistence>

<allow-concurrent-calls>...</allow-concurrent-calls>

<persistent-store-dir>/weblogic/myserver</persistent-store-dir>

<stateful-session-clustering>...</stateful-session-clustering>

</stateful-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateful-session-descriptor stanza is required for each stateful session
EJB in the .jar.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
9-58 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
stateless-bean-call-router-class-name

Function

stateless-bean-call-router-class-name specifies the name of a custom class
to use for routing bean method calls. This class must implement
weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Example

See “stateless-clustering” on page 9-63.

Range of values: Valid router class name

Default value: n/a

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-59



9 WebLogic Server 6.0 EJB Deployment Properties
stateless-bean-is-clusterable

Function

When stateless-bean-is-clusterable is true, the EJB can be deployed from
multiple WebLogic Servers in a cluster. Calls to the home stub are load-balanced
between the servers on which this bean is deployed, and if a server hosting the bean is
unreachable, the call automatically fails over to another server hosting the bean.

Example

See “stateless-clustering” on page 9-63.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
9-60 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
stateless-bean-load-algorithm

Function

stateless-bean-load-algorithm specifies the algorithm to use for load balancing
between replicas of the EJB home. If this property is not defined, WebLogic Server
uses the algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define stateless-bean-load-algorithm as one of the following values:

� round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

� random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

� weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “stateless-clustering” on page 9-63.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-61



9 WebLogic Server 6.0 EJB Deployment Properties
stateless-bean-methods-are-idempotent

Function

You can set this element to either true or false. Set
stateless-bean-methods-are-idempotent to “true” only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
property to true makes it possible for the bean stub to recover automatically from any
failure as long as another server hosting the bean can be reached.

Example

See “stateless-clustering” on page 9-63.

Range of values: true | false

Default value: false

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
9-62 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
stateless-clustering

Function

The stateless-clustering stanza contains elements that determine how
WebLogic Server replicates stateless session EJB instances in a cluster.

Example

The following excerpt shows the structure of a stateless-clustering stanza:

<stateless-clustering>

<stateless-bean-is-clusterable>true</stateless-bean-is-clusterabl
e>

<stateless-bean-load-algorithm>random</stateless-bean-load-algori
thm>

<stateless-bean-call-router-class-name>beanRouter</stateless-bean
-call-router-class-name>

<stateless-bean-methods-are-idempotent>true</stateless-bean-metho
ds-are-idempotent>

</stateless-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-63



9 WebLogic Server 6.0 EJB Deployment Properties
stateless-session-descriptor

Function

The stateless-session-descriptor stanza defines caching, clustering, and
persistence properties for stateless session EJBs in WebLogic Server.

Example

The following example shows the structure of the stateless-session-descriptor
stanza:

<stateless-session-descriptor>

<pool>...</pool>

<stateless-clustering>...</stateless-clustering>

</stateless-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateless-session-descriptor stanza is required for each stateless
session EJB in the .jar.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
9-64 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
transaction-descriptor

Function

The transaction-descriptor stanza contains elements that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:
trans-timeout-seconds.

Example

The following example shows the structure of the transaction-descriptor stanza:

<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-65



9 WebLogic Server 6.0 EJB Deployment Properties
transaction-isolation

Function

The transaction-isolation defines method-level transaction isolation settings for
an EJB.

Example

The transaction-isolation stanza can contain the elements shown here:

<transaction-isolation>

<isolation-level>Serializable</isolation-level>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</transaction-isolation>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: transaction-description

Deployment file: weblogic-ejb-jar.xml
9-66 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
trans-timeout-seconds

Function

The trans-timeout-seconds element specifies the maximum duration for an EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

Example

See “transaction-descriptor” on page 9-65.

Range of values: 0 to max

Default value: 30

Requirements: Optional element. Valid only for all EJBs.

Parent elements: weblogic-enterprise-bean,
transaction-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-67



9 WebLogic Server 6.0 EJB Deployment Properties
type-identifier

Function

type-identifier contains text that identifies an entity EJB persistence type.
WebLogic Server RDBMS-based persistence uses the identifier,
WebLogic_CMP_RDBMS. If you use a different persistence vendor, consult the vendor’s
documentation for information on the correct type-identifier.

Example

See “persistence-type” on page 9-41 for an example that shows the complete
persistence-type definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type

and

weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-use

Deployment file: weblogic-ejb-jar.xml
9-68 Programming WebLogic Enterprise JavaBeans



Index of weblogic-ejb-jar Deployment Elements
type-storage

Function

type-storage defines the full path of the file that stores data for this persistence type.
The path must specify the file’s location relative to the top level of the EJB’s .jar
deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the .jar file.

Example

See “persistence-type” on page 9-41 for an example that shows the complete
persistence-type definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 9-69



9 WebLogic Server 6.0 EJB Deployment Properties
type-version

Function

type-version identifies the version of the specified persistence type.

Note: If you use WebLogic Server RDBMS-based persistence, the specified version
must exactly match the RDBMS persistence version for the WebLogic Server
release. Specifying an incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

Example

See persistence-type for an example that shows the complete persistence-type
definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type

and

weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-use

Deployment file: weblogic-ejb-jar.xml
9-70 Programming WebLogic Enterprise JavaBeans



weblogic-cmp-rdbms-jar.xml Deployment Descriptor File
weblogic-cmp-rdbms-jar.xml Deployment 
Descriptor File

weblogic-cmp-rdbms-jar.xml defines deployment properties for a entity EJBs that
uses WebLogic Server RDBMS-based persistence services. The EJB 2.0 container
uses a version of weblogic-cmp-rdbms-jar.xml that is different from the one
shipped with WebLogic Server Version 5.1. See Persistence Services for more
information.

You can continue to use the earlier weblogic-cmp-rdbms-jar.xmlDTD for EJB 1.1
beans that you will deploy on the WebLogic Server Version 6.0. However, if you want
to use any of the new CMP 2.0 features, you must use the DTD described in the
sections listed in “Index of weblogic-cmp-rdbms-jar.xml Deployment Elements” on
page 9-71.

Index of weblogic-cmp-rdbms-jar.xml 
Deployment Elements

� “cmp-field” on page 9-73

� “cmr-field” on page 9-74

� “column-map” on page 9-75

� “data-source-name” on page 9-76

� “foreign-key-column” on page 9-81

� “ejb-name” on page 9-78

� “field-group” on page 9-79

� “foreign-key-column” on page 9-81

� “foreign-key-column” on page 9-81
Programming WebLogic Enterprise JavaBeans 9-71



9 WebLogic Server 6.0 EJB Deployment Properties
� “group-name” on page 9-82

� “key-column” on page 9-83

� “max-elements” on page 9-84

� “method-name” on page 9-85

� “method-param” on page 9-86

� “method-params” on page 9-87

� “query-method” on page 9-88

� “relation-name” on page 9-89

� “relationship-role-name” on page 9-90

� “table-name” on page 9-91

� “weblogic-ql” on page 9-92

� “weblogic-query” on page 9-93

� “weblogic-relationship-role” on page 9-94
9-72 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
cmp-field

Function

This name specifies the mapped field in the bean instance which should be populated
with information from the database.

Example

See “field-map” on page 9-80.

Range of values: Valid name

Default value: n/a

Requirements: Field is case sensitive and must match the name of the field in the bean and must also
have a cmp-entry entry in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean
field-map

weblogic-rdbms-relation
field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-73



9 WebLogic Server 6.0 EJB Deployment Properties
cmr-field

Function

The cmr-field element specifies the name of a cmr-field.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock purchases</cmp-field>

<cmr-field>stock options</cmr-field>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: The field referenced in cmr-field must have a matching cmr-field entry in the
ejb-jar.xml.

Parent elements: weblogic-rdbms-relation

field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
9-74 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
column-map

Function

This element represents the mapping of a foreign key column in one table in a database
to a corresponding primary key. The two columns may or may not be in the same table.
The tables to which the column belong are implicit from the context in which the
column-map element appears in the deployment descriptor.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<column-map
<foreign-key-column>account-id</foreign-key-column>

<key-column>id</key-column>
</column-map>

</weblogic-rdbms-bean>
</weblogic-rdbms-jar>

Range of values: n/a.

Default value: n/a

Requirements: The value of a key-column entry that refers to a remote bean must always be empty.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-75



9 WebLogic Server 6.0 EJB Deployment Properties
data-source-name

Function

The data-source-name that specifies the JDBC data source name to be used for all
database connectivity for this bean.

Example

See “table-name” on page 9-91.

Range of values: Valid name of the data source used for all data base connectivity for this bean.

Default value: n/a

Requirements: Must be defined as a standard WebLogic Server JDBC data source for database
connectivity. See Programming WebLogic JDBC for more information.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
9-76 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs60/jdbc/index.html


Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
dbms-column

Function

The name of the database column to which the field should be mapped.

Example

See “field-map” on page 9-80.

Range of values: Valid name

Default value: n/a

Requirements: dbms-column is case maintaining, although not all databases require case sensitive
entires.

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-77



9 WebLogic Server 6.0 EJB Deployment Properties
ejb-name

Function

The name that specifies an EJB as defined in the ejb-cmp-rdbms.xml. This name must
match the ejb-name of a cmp entity bean contained in the ejb-jar.xml.

Example

See “table-name” on page 9-91.

Range of values: Valid name of an EJB.

Default value: n/a

Requirements: Must match the ejb-name of the cmp entity bean defined in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
9-78 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
field-group

Function

The field-group element represents a subset of the cmp and cmr fields of a bean.
Related fields in a bean can be put into groups that are faulted into memory together
as a unit. A group can be associated with a finder or relationship, so that when a bean
is loaded as the result of executing a finder or following a relationship, only the fields
specified in the group are loaded.

A field may belong to multiple groups. In this case, the getXXX method for the field
faults in the first group that contains the field.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: A special group named default is used for finders and relationships that have no group
specified.

Requirements: The default group contains all of a bean’s cmp fields, but none of its cmr fields.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-79



9 WebLogic Server 6.0 EJB Deployment Properties
field-map

Function

The name of the mapped field for a particular column in a database that corresponds
to a cmp field in the bean instance.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<field-map>
<cmp-field>accountId</cmp-field>

<dbms-column>id</dbms-column>
</field-map>

<field-map>
<cmp-field>balance</cmp-field>

<dbms-column>bal</dbms-column>
</field-map>

<field-map>
<cmp-field>accountType</cmp-field>

<dbms-column>type</dbms-column>
</field-map>

</weblogic-rdbms-bean>
</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: Field mapped to the column in the database must correspond to a cmp field in the bean.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
9-80 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
foreign-key-column

Function

The foreign-key-column element represents a column of a foreign key in the
database.

Example

See “column-map” on page 9-75.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a foreign key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-81



9 WebLogic Server 6.0 EJB Deployment Properties
group-name

Function

The group-name element specifies the name of a field group.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock purchases</cmp-field>

<cmr-field>stock options</cmr-field>

<group-name>financial data</group-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-relation

field-group

weblogic-rdbms-bean

finder

finder-query

Deployment file: weblogic-cmp-rdbms-jar.xml
9-82 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
key-column

Function

The key-column element represents a column of a primary key in the database.

Example

See “column-map” on page 9-75.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a primary key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-83



9 WebLogic Server 6.0 EJB Deployment Properties
max-elements

Function

max-elements specifies the maximum number of elements that should be returned by
a multi-valued query.

Example

The XML stanza can contain the elements shown here:

<max-elements>100</max-elements>

<!ELEMENT max-element (PCDATA)>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
9-84 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
method-name

Function

The method-name element specifies the name of a finder or ejbSelect method.

Example

See “weblogic-query” on page 9-93.

Range of values: n/a

Default value: n/a

Requirements: This element may not be used as a wildcard.

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-85



9 WebLogic Server 6.0 EJB Deployment Properties
method-param

Function

The method-param element contains the fully qualified Java type name of a method
parameter.

Example

The XML stanza can contain the elements shown here:

<method-param>java.lang.String</method-param>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

method-params

Deployment file: weblogic-cmp-rdbms-jar.xml
9-86 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
method-params

Function

The method-params element contains an ordered list of the fully-qualified Java type
names of the method parameters.

Example

See “weblogic-query” on page 9-93.

Range of values: list of valid names

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-87



9 WebLogic Server 6.0 EJB Deployment Properties
query-method

Function

The query-method element specifies the method that is associated with a
weblogic-query. It also uses the same format as the ejb-jar.xml descriptor.

Example

See “weblogic-query” on page 9-93.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
9-88 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
relation-name

Function

The relation-name element specifies the name of a relation.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>

<table-name>stocks</table-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: Must match the ejb-relation-name of an ejb-relation in the associated
ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-89



9 WebLogic Server 6.0 EJB Deployment Properties
relationship-role-name

Function

The relationship-role-name element specifies the name of a relationship role.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<weblogic-relationship-role>stockholder</weblogic-
relationship-role>

<relationship-role-name>stockholders</relationship-
role-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: The name must match the ejb-relationship-role-name of an
ejb-relationship-role in the associated ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
9-90 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
table-name

Function

The fully qualified SQL name of the table. The user defined for the data-source for
this bean must have read and write privileges for this table, but does not necessarily
need schema modification privileges.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms.jar>

<weblogic-rdbms-bean>

<ejb-name>containerManaged</ejb-name>

<data-source-name>examples-dataSource-demoPool</data-source-name>

<table-name>ejbAccounts</table-name>

</weblogic-rdbms-bean>

</weblogic-rdbms-jar>

Range of values: Valid, fully qualified SQL name of the source table in the database.

Default value: n/a

Requirements: table-name must be set in all cases.

Parent elements: weblogic-rdbms-bean

weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-91



9 WebLogic Server 6.0 EJB Deployment Properties
weblogic-ql

Function

The weblogic-ql element specifies a query that contains a WebLogic specific
extension to EJB-QL. You should specify queries that only use standard EJB-QL
language features in the ejb-jar.xml deployment descriptor.

Example

See “weblogic-query” on page 9-93.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
9-92 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
weblogic-query

Function

The weblogic-query element allows you to associate WebLogic specific attributes
with a query, as necessary. For example, weblogic-query can be used to specify a
query that contains a WebLogic specific extension to EJB-QL. Queries that do not take
advantage of WebLogic extensions to EJB-QL should be specified in the
ejb-jar.xml deployment descriptor.

Also, the weblogic-query element is used to associate a field-group with the
query if the query retrieves an entity bean that should be pre-loaded into the cache by
the query.

Example

The XML stanza can contain the elements shown here:

<weblogic-query>

<query-method>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

<query-method>

<weblogic-ql>WHERE BALANCE>10000
ORDERBY NAME</weblogic-ql>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 9-93



9 WebLogic Server 6.0 EJB Deployment Properties
</weblogic-query>

weblogic-relationship-role

Function

The weblogic-relationship-role element is used to express a mapping from a
foreign key to a primary key. Only one mapping is specified for one-to-one
relationships when the relationship is local. However, with a many-to-many
relationship, you must specify two mappings

Multiple column mappings are specified for a single role, it the key is complex. No
column-map is specified if the role is just specifying a group-name.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>

<table-name>stocks</table-name>

<weblogic-relationship-role>stockholder
</weblogic-relationship-role>

Range of values: Valid name

Default value: n/a

Requirements: The mapping of a role to a table is specified in the associated weblogic-rdbms-bean
and ejb-relation elements.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
9-94 Programming WebLogic Enterprise JavaBeans



Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
</weblogic-rdbms-relation>

</weblogic-rdbms-jar>
Programming WebLogic Enterprise JavaBeans 9-95



9 WebLogic Server 6.0 EJB Deployment Properties
9-96 Programming WebLogic Enterprise JavaBeans



CHAPTER
10 WebLogic Server 5.1 
EJB Deployment 
Properties 

The following sections provide a complete reference for the WebLogic Server 5.1
specific XML deployment properties used in the WebLogic Server EJB 1.1 container
and an explanation of how to edit the XML deployment files manually. Use these
sections if you need to refer to a list of the deployment descriptors used for EJB 1.1
beans. You can either edit the XML or use the DDConverter to convert the EJB 1.1
deployment descriptors to EJB 2.0 XML that can be used in the EJB 2.0 container.

� Manually Editing XML Deployment Files

� weblogic-ejb-jar.xml Deployment Descriptor File

� weblogic-cmp-rdbms-jar.xml Deployment Descriptor File

Manually Editing XML Deployment Files

To define or make changes to the XML deployment descriptors used in the WebLogic
Server EJB 1.1 container you must manually define or edit the XML elements in the
following files:

� weblogic ejb.jar

� weblogic.cmp.rdbms.jar
Programming WebLogic Enterprise JavaBeans 10-1



10 WebLogic Server 5.1 EJB Deployment Properties
Basic Conventions

To manually edit XML elements:

� Make sure that you use an ASCII text editor that does not reformat the XML or
insert additional characters that could invalidate the file

� Use the correct case for file and directory names, even if your operating system
ignores the case.

� To use the default value for an optional element, you can either omit the entire
element definition or specify a blank value, as in:

<max-beans-in-cache></max-beans-in-cache>

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose. The correct text for the PUBLIC element for each XML deployment file is as
follows.

XML File PUBLIC Element String

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN’

‘http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN’

‘http://www.bea.com/servers/wls510/dtd/weblogic-ejb-j
ar.dtd’

weblogicmp-rdbms
-jar.xml

‘-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS
Persistence//EN’

http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-
persistence.dtd
10-2 Programming WebLogic Enterprise JavaBeans



Manually Editing XML Deployment Files
For example, the entire DOCTYPE header for a weblogic-ejb-jar.xml file is as
follows:

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN'

'http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd '>

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server utilities
ignore the DTDs embedded within the DOCTYPE header of XML deployment files, and
instead use the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

The following links provide the public DTD locations for XML deployment files used
with WebLogic Server:

� ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.

� weblogic-ejb-jar.dtd contains the DTD used for creating
weblogic-ejb-jar.xml, which defines EJB properties used for deployment to
WebLogic Server. This file is located at
http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd

� weblogic-rdbms-persistence.dtd contains the DTD that defines
container-managed persistence properties for entity EJBs. This DTD is used to
create the weblogic-rdbms-persistence.xml file for using WebLogic Server
persistence services. Third-party persistence vendors may also create XML
deployment files that conform to this DTD. This file is located at
http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persistence.dtd
Programming WebLogic Enterprise JavaBeans 10-3



10 WebLogic Server 5.1 EJB Deployment Properties
Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-ejb-jar.xml Deployment 
Descriptor File

weblogic-ejb-jar.xml defines EJB deployment properties unique to WebLogic
Server. The top level elements in weblogic-ejb-jar.xml are as follows:

� description of the file

� copyright information

� weblogic-enterprise-bean

� ejb-name

� caching-descriptor

� persistence-descriptor

� clustering-descriptor

� transaction-descriptor

� reference-descriptor

� jndi-name

� transaction-isolation

� security-role-assignment

Caching Properties

This section describes the weblogic-ejb-jar.xml caching properties.
10-4 Programming WebLogic Enterprise JavaBeans



weblogic-ejb-jar.xml Deployment Descriptor File
caching-descriptor

The caching-descriptor stanza affects the number of EJBs in the WebLogic Server
cache as well as the length of time before EJBs are passivated or pooled. The entire
stanza, as well as each of its elements, is optional. WebLogic Server uses default
values where no elements are defined.

The following is a sample caching-descriptor stanza that shows the caching
elements described in this section:

<caching-descriptor>

<max-beans-in-free-pool>500</max-beans-in-free-pool>

<initial-beans-in-free-pool>50</initial-beans-in-free-pool>

<max-beans-in-cache>1000</max-beans-in-cache>

<idle-timeout-seconds>20</idle-timeout-seconds>

<cache-strategy>Read-Write</cache-strategy>

<read-timeout-seconds>0</read-timeout-seconds>

</caching-descriptor>

max-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.

WebLogic Server maintains a free pool of EJBs for every stateless session bean class
only. This optional element defines the size of the pool. By default,
max-beans-in-free-pool has no limit; the maximum number of beans in the free
pool is limited only by the available memory. See “Initializing and Using EJB
Instances” on page 4-4 in “The WebLogic Server EJB Container” on page 4-1 for more
information.

initial-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.
Programming WebLogic Enterprise JavaBeans 10-5



10 WebLogic Server 5.1 EJB Deployment Properties
If you specify a value for initial-bean-in-free-pool, WebLogic Server
populates the free pool with the specified number of stateless session bean instances at
startup. Populating the free pool in this way improves initial response time for the EJB,
since initial requests for the bean can be satisfied without generating a new instance.

initial-bean-in-free-pool defaults to 0 if the element is not defined.

max-beans-in-cache

Note: This element is valid only for stateful session EJBs and entity EJBs.

This element specifies the maximum number of objects of this class that are allowed
in memory. When max-bean-in-cache is reached, WebLogic Server passivates
some EJBs that have not been recently used by a client. max-beans-in-cache also
affects when EJBs are removed from the WebLogic Server cache, as described in
“Removing Stateful Session EJB Instances” on page 4-5.

The default value of max-beans-in-cache is 100.

idle-timeout-seconds

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server may remove the
bean instance if the number of beans in cache approaches the limit of
max-beans-in-cache. See “EJB Life Cycle in WebLogic Server” on page 4-2 for
more information.

idle-timeout-seconds defaults to 600 if you do not define the element.

cache-strategy

The cache-strategy element can be one of the following:

� Read-Write

� Read-Only

The default value is Read-Write. See “Setting the Entity EJBs to Read-Only” on page
4-12 for more information.
10-6 Programming WebLogic Enterprise JavaBeans



weblogic-ejb-jar.xml Deployment Descriptor File
read-timeout-seconds

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds
is set to 600 seconds. If you set this value to 0, WebLogic Server calls ejbLoad only
when the bean is brought into the cache.

Persistence Properties

This section describes the weblogic-ejb-jar.xml persistence properties.

persistence-descriptor

The persistence-descriptor stanza specifies persistence options for entity EJBs.
The following shows all elements contained in the persistence-descriptor
stanza:

<persistence-descriptor>

<is-modified-method-name>. . .</is-modified-method-name>

<delay-updates-until-end-of-tx>. . .</delay-updates-until-end-of-tx>

<persistence-type>

<type-identifier>. . .</type-identifier>

<type-version>. . .</type-version>

<type-storage>. . .</type-storage>

</persistence-type>

<db-is-shared>. . .</db-is-shared>

<stateful-session-persistent-store-dir>

. . .

</stateful-session-persistent-store-dir>

<persistence-use>. . .</persistence-use>
Programming WebLogic Enterprise JavaBeans 10-7



10 WebLogic Server 5.1 EJB Deployment Properties
</persistence-descriptor>

is-modified-method-name

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance. However,
any errors in the method’s return value can cause data inconsistency problems. See
“Using is-modified-method-name to Limit Calls to ejbStore()” on page 4-10 for more
information.

delay-updates-until-end-of-tx

Set this element to true (the default), to update the persistent store of all beans in a
transaction at the completion of the transaction. This generally improves performance
by avoiding unnecessary updates. However, it does not preserve the ordering of
database updates within a database transaction.

If your datastore uses an isolation level of TRANSACTION_READ_UNCOMMITTED, you
may want to allow other database users to view the intermediate results of in-progress
transactions. In this case, set delay-updates-until-end-of-tx to false to update
the bean's persistent store at the conclusion of each method invoke. See “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-8 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

persistence-type

A persistence-type defines a persistence service that can be used by an EJB. You
can define multiple persistence-type entries in weblogic-ejb-jar.xml for
testing with multiple persistence services. Only the persistence type defined in
“persistence-use” on page 10-10 is used during deployment.

persistence-type includes several elements that define the properties of a service:
10-8 Programming WebLogic Enterprise JavaBeans



weblogic-ejb-jar.xml Deployment Descriptor File
� type-identifier contains text that identifies the specified persistence type.
For example, WebLogic Server RDBMS persistence uses the identifier,
WebLogic_CMP_RDBMS.

� type-version identifies the version of the specified persistence type.

Note: The specified version must exactly match the RDBMS persistence version for
the WebLogic Server release. Specifying an incorrect version results in the
error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

� type-storage defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level
of the EJB’s .jar deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the .jar file.

The following shows an example persistence-type stanza with values appropriate
for WebLogic Server RDBMS persistence:

<persistence-type>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-type>

db-is-shared

The db-is-shared element applies only to entity beans. When set to true (the
default value), WebLogic Server assumes that EJB data could be modified between
transactions and reloads data at the beginning of each transaction. When set to false,
WebLogic Server assumes that it has exclusive access to the EJB data in the persistent
store. See “Using db-is-shared to Limit Calls to ejbLoad()” on page 4-9 for more
information.
Programming WebLogic Enterprise JavaBeans 10-9



10 WebLogic Server 5.1 EJB Deployment Properties
stateful-session-persistent-store-dir

stateful-session-persistent-store-dir specifies the file system directory
where WebLogic Server stores the state of passivated stateful session bean instances.

persistence-use

The persistence-use element is similar to persistence-type, but it defines the
persistence service actually used during deployment. persistence-use uses the
type-identifier and type-version elements defined in a persistence-type to
identify the service.

For example, to actually deploy an EJB using the WebLogic Server RDBMS-based
persistence service defined in persistence-type, the persistence-use stanza would
resemble:

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

</persistence-use>

Clustering Properties

This section describes the weblogic-ejb-jar.xml clustering properties.

clustering-descriptor

The clustering-descriptor stanza defines the replication properties and behavior
for EJBs deployed in a WebLogic Server cluster. The clustering-descriptor

stanza and each of its elements are optional, and are not applicable to single-server
systems.

The following shows all elements contained in the clustering-descriptor stanza:

<clustering-descriptor>
10-10 Programming WebLogic Enterprise JavaBeans



weblogic-ejb-jar.xml Deployment Descriptor File
<home-is-clusterable>. . .</home-is-clusterable>

<home-load-algorithm>. . .</home-load-algorithm>

<home-call-router-class-name>. . .</home-call-router-class-name>

<stateless-bean-is-clusterable>. . .</stateless-bean-is-clusterable>

<stateless-bean-load-algorithm>. . .</stateless-bean-load-algorithm>

<stateless-bean-call-router-class-name>. . .</stateless-bean-call-router-class-name>

<stateless-bean-methods-are-idempotent>. . .</stateless-bean-methods-are-idempotent>

</clustering-descriptor>

home-is-clusterable

You can set this element to either true or false. When home-is-clusterable is
true, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to
the home stub are load-balanced between the servers on which this bean is deployed,
and if a server hosting the bean is unreachable, the call automatically fails over to
another server hosting the bean.

home-load-algorithm

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this element is not defined, WebLogic Server uses the
algorithm specified by the server element,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

� round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

� random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

� weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.
Programming WebLogic Enterprise JavaBeans 10-11



10 WebLogic Server 5.1 EJB Deployment Properties
home-call-router-class-name

home-call-router-class-name specifies the custom class to use for routing bean
method calls. This class must implement
weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

stateless-bean-is-clusterable

This element is similar to home-is-clusterable, but it is applicable only to stateless
session EJBs.

stateless-bean-load-algorithm

This element is similar to home-load-algorithm, but it is applicable only to stateless
session EJBs.

stateless-bean-call-router-class-name

Thiselement is similar to home-call-router-class-name, but it is applicable only
to stateless session EJBs.

stateless-bean-methods-are-idempotent

You can set this element to either true or false. Set
stateless-bean-methods-are-idempotent to true only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
element to true makes it possible for the bean stub to automatically recover from any
failure as long as another server hosting the bean can be reached.

Note: This element is applicable only to stateless session EJBs.

Transaction Properties

This section describes the weblogic-ejb-jar.xml transaction properties.
10-12 Programming WebLogic Enterprise JavaBeans



weblogic-ejb-jar.xml Deployment Descriptor File
transaction-descriptor

The transaction-descriptor stanza contains elements that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:

<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

trans-timeout-seconds

The trans-timeout-seconds element specifies the maximum duration for the EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

If you specify no value for trans-timeout-seconds, container-initiated transactions
timeout after five minutes, by default.

EJB References

This section describes the weblogic-ejb-jar.xml EJB references.

reference-descriptor

The reference-descriptor stanza maps references in the ejb-jar.xml file to the
JNDI names of actual resource factories and EJBs available in WebLogic Server.

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>. . .</jndi-name>

</resource-description>
Programming WebLogic Enterprise JavaBeans 10-13



10 WebLogic Server 5.1 EJB Deployment Properties
<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>

resource-description

The following elements define an individual resource-description:

� res-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

� jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

ejb-reference-description

The following elements define an individual ejb-reference-description:

� res-ref-name specifies an EJB reference name. This is the reference that the
EJB provider places within the ejb-jar.xml deployment file.

� jndi-name specifies the JNDI name of an actual EJB available in WebLogic
Server.

Isolation Level Settings

This section describes the weblogic-ejb-jar.xml isolation level settings.

transaction-isolation

The transaction-isolation stanza specifies the transaction isolation level for EJB
methods. The stanza consists of one or more isolation-level elements that apply
to a range of EJB methods. For example:

<transaction-isolation>
10-14 Programming WebLogic Enterprise JavaBeans



weblogic-ejb-jar.xml Deployment Descriptor File
<isolation-level>Serializable</isolation-level>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</transaction-isolation>

The following sections describe each element in transaction-isolation.

isolation-level

isolation-level defines a valid transaction isolation level to apply to specific EJB
methods. The following are possible values for isolation-level:

� TRANSACTION_READ_UNCOMMITTED: The transaction can view uncommitted
updates from other transactions.

� TRANSACTION_READ_COMMITTED: The transaction can view only committed
updates from other transactions.

� TRANSACTION_REPEATABLE_READ: Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

� TRANSACTION_SERIALIZABLE: Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.

Refer to your database documentation for more information on the implications and
support for different isolation levels.

method
Programming WebLogic Enterprise JavaBeans 10-15



10 WebLogic Server 5.1 EJB Deployment Properties
The method stanza defines the EJB methods to which an isolation level applies.
method defines a range of methods using the following elements:

� description is an optional element that describes the method.

� ejb-name identifies the EJB to which WebLogic Server applies isolation level
properties.

� method-intf is an optional element that indicates whether the specified
method(s) reside in the EJB’s home or remote interface. The value of this
element must be “Home” or “Remote”. If you do not specify method-intf, you
can apply an isolation to methods in both interfaces.

� method-name specifies either the name of an EJB method or an asterisk (*) to
designate all EJB methods.

� method-params is an optional stanza that lists the Java types of each of the
method’s parameters. The type of each parameter must be listed in order, using
individual method-param elements within the method-params stanza.

For example, the following method stanza designates all methods in the
“AccountBean” EJB:

<method>

<ejb-name>AccountBean</ejb-name>

<method-name>*</method-name>

</method>

The following stanza designates all methods in the remote interface of
“AccountBean:”

<method>

<ejb-name>AccountBean</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>
10-16 Programming WebLogic Enterprise JavaBeans



weblogic-cmp-rdbms-jar.xml Deployment Descriptor File
Security Role Assignments

This section describes the weblogic-ejb-jar.xml security role assignments.

security-role-assignment

The security-role-assignment stanza maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

security-role-assignment can contain one or more pairs of the following
elements:

� role-name is the application role name that the EJB provider placed in the
ejb-jar.xml deployment file.

� principal-name specifies the name of an actual WebLogic Server principal.

enable-call-by-reference

By default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation since parameters are
not copied.

If you set enable-call-by-reference to false, parameters to EJB methods are
copied (pass by value) in accordance with the EJB 1.1 specification. Pass by value is
always necessary when the EJB is called remotely (not from within the server).

weblogic-cmp-rdbms-jar.xml Deployment 
Descriptor File

weblogic-cmp-rdbms-jar.xml defines deployment properties for a single entity
EJB that uses WebLogic Server RDBMS-based persistence services. See “Persistence
Services” on page 4-28 for more information.

The top-level element of weblogic-cmp-rdbms-jar.xml are as follows:
Programming WebLogic Enterprise JavaBeans 10-17



10 WebLogic Server 5.1 EJB Deployment Properties
� description of the file

� copyright information

� weblogic-enterprise-bean stanza

<weblogic-enterprise-bean>

<pool-name>finance_pool</pool-name>

<schema-name>FINANCE_APP</schema-name>

<table-name>ACCOUNT</table-name>

<attribute-map>

<object-link>

<bean-field>accountID</bean-field>

<dbms-column>ACCOUNT_NUMBER</dbms-column>

</object-link>

<object-link>

<bean-field>balance</bean-field>

<dbms-column>BALANCE</dbms-column>

</object-link>

</attribute-map>

<finder-list>

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

<finder-expression>. . .</finder-expression>
10-18 Programming WebLogic Enterprise JavaBeans



weblogic-cmp-rdbms-jar.xml Deployment Descriptor File
</finder>

</finder-list>

</weblogic-enterprise-bean>

RDBMS Definition Elements

This section describes the weblogic-cmp-rdbms-jar.xml RDBMS definition
elements.

pool-name

pool-name specifies name of the WebLogic Server connection pool to use for this
EJB’s database connectivity. See Using connection pools for more information.

schema-name

schema-name specifies the schema where the source table is located in the database.
This element is required only if you want to use a schema that is not the default schema
for the user defined in the EJB’s connection pool.

Note: This field is case sensitive, although many SQL implementations ignore case.

table-name

table-name specifies the source table in the database. This element is required in all
cases.

Note: The user defined in the EJB’s connection pool must have read and write
privileges to the specified table, though not necessarily schema modification
privileges. This field is case sensitive, although many SQL implementations
ignore case.
Programming WebLogic Enterprise JavaBeans 10-19

http://e-docs.bea.com/wls/docs60/jdbc/index.html


10 WebLogic Server 5.1 EJB Deployment Properties
EJB Field-Mapping Elements

This section describes the weblogic-cmp-rdbms-jar.xml EJB field-mapping
elements.

attribute-map

The attribute-map stanza links a single field in the EJB instance to a particular
column in the database table. The attribute-map must have exactly one entry for
each field of an EJB that uses WebLogic Server RDBMS-based persistence.

object-link

Each attribute-map entry consists of an object-link stanza, which represents a
link between a column in the database and a field in the EJB instance.

bean-field

bean-field specifies the field in the EJB instance that should be populated from the
database. This element is case sensitive and must precisely match the name of the field
in the bean instance.

The field referenced in this tag must also have a cmp-field element defined in the
ejb-jar.xml file for the bean.

dbms-column

dbms-column specifies the database column to which the EJB field is mapped. This
tag is case sensitive, although many databases ignore the case.

Note: WebLogic Server does not support quoted RDBMS keywords as entries to
dbms-column. For example, you cannot create an attribute map for column
names such as “create” or “select” if those names are reserved in the
underlying datastore.
10-20 Programming WebLogic Enterprise JavaBeans



weblogic-cmp-rdbms-jar.xml Deployment Descriptor File
Finder Elements

This section describes the weblogic-cmp-rdbms-jar.xml finder elements.

finder-list

The finder-list stanza defines the set of all finders that are generated to locate sets
of beans. See “Writing Finders for RDBMS Persistence” on page 4-29 for more
information.

finder-list must contain exactly one entry for each finder method defined in the
home interface, except for findByPrimarykey. If an entry is not provided for
findByPrimaryKey, one is generated at compilation time.

Note: If you do provide an entry for findByPrimaryKey, WebLogic Server uses
that entry without validating it for correctness. In most cases, you should omit
an entry for findByPrimaryKey and accept the default, generated method.

finder

The finder stanza describes a finder method defined in the home interface. The
elements contained in the finder stanza enable WebLogic Server to identify which
method in the home interface is being described, and to perform required database
operations.

method-name

method-name defines the name of the finder method in the home interface. This tag
must contain the exact name of the method.

method-params

The method-params stanza defines the list of parameters to the finder method being
specified in method-name.

Note: WebLogic Server compares this list against the parameter types for the finder
method in the EJB’s home interface; the order and type for the parameter list
must exactly match the order and type defined in the home interface.
Programming WebLogic Enterprise JavaBeans 10-21



10 WebLogic Server 5.1 EJB Deployment Properties
method-param

method-param defines the fully-qualified name for the parameter’s type. The type
name is evaluated into a java.lang.Class object, and the resultant object must
precisely match the respective parameter in the EJB’s finder method.

You can specify primitive parameters using their primitive names (such as “double” or
“int”). If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather than
Timestamp. If you do not use a qualified name, ejbc generates an error message when
you compile the deployment unit.

finder-query

finder-query specifies the WebLogic Query Language (WLQL) string that is used
to retrieve values from the database for this finder. See “Using WebLogic Query
Language (WLQL)” on page 4-31 for more information.

Note: Always define the text of the finder-query value using the XML CDATA

attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

finder-expression

finder-expression specifies a Java language expression to use as a variable in the
database query for this finder.

Note: Future versions of the WebLogic Server EJB container will use the EJB QL
query language (as required by the EJB 2.0 specification). EJB QL does not
provide support for embedded Java expressions. Therefore, to ensure easier
upgrades to future EJB containers, create entity EJB finders without
embedding Java expressions in WLQL.
10-22 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html

	1 EJB Features and Changes in WebLogic Server
	Implementation of Nonfinal Specification
	EJB 2.0 Upgrade for WebLogic Server
	EJB 2.0 Features
	Supported Features
	Features in Development

	Major EJB Changes in This Release
	Message-Driven Bean Support
	Container-Managed Persistence
	EJB QL
	Application Assembly Support in Deploying EJBs
	.jar, .ear, and Directory Deployment Units
	Unsupported Deployment Utilities
	DDConverter Upgrade Utility



	2 WebLogic Server EJB Design and Development
	Invoking Deployed EJBs
	Accessing EJBs from either Local or Remote Clients
	Restrictions on Accessing EJB Instances
	Storing EJB References in Home Handles
	Using Home Handles Across a Firewall


	EJB Design Tips
	Preserve Transaction Resources
	Allow the Datastore to Manage Transactions
	Using Container-Managed Transactions Instead of Bean-Managed Transactions
	Never Demarcate Transactions from Application

	Use Correct Modeling for Entity EJBs
	Entity EJBs Should Be Coarse-Grained
	Entity EJBs Should Contain Business Logic
	Optimize Entity EJB Data Access
	Use isModified() Where Appropriate

	Using Inheritance with EJBs
	Using Session Beans


	3 Using Message-Driven Beans
	What Are Message-Driven Beans?
	Differences Between Message-Driven Beans and Standard JMS Consumers
	Differences Between Message-Driven Beans and Stateless Session EJBs
	Concurrent Support for Message-Driven Beans
	Invoking a Message-Driven Bean

	Developing Message-Driven Beans
	Bean Class Requirements
	Creating and Removing Bean Instances
	Using the Message-Driven Bean Context
	Implementing Business Logic with onMessage()
	Handling Exceptions

	Transaction Services for Message-Driven Beans
	Message Receipts
	Message Acknowledgment

	Deploying Message-Driven Beans in WebLogic Server
	Deployment Descriptors
	Deployment Elements


	4 The WebLogic Server EJB Container
	EJB Life Cycle in WebLogic Server
	Stateless Session EJB Life Cycle
	Initializing EJB Instances
	Activating and Pooling EJBs

	Stateful EJB Life Cycle
	Initializing and Using EJB Instances
	Passivating Stateful EJBs
	Removing Stateful Session EJB Instances

	Using max-beans-in-free-pool
	Stateful Session EJB Requirements

	Special Use of max-beans-in-free pool

	Locking Model for Entity EJBs
	ejbLoad() and ejbStore() Behavior for Entity EJBs
	Using db-is-shared to Limit Calls to ejbLoad()
	Restrictions and Warnings for db-is-shared
	Using is-modified-method-name to Limit Calls to ejbStore()
	Warning for is-modified-method-name

	Using delay-updates-until-end-of-tx to Change ejbStore() Behavior
	Setting the Entity EJBs to Read-Only
	Read-Write Cache Strategy
	Read-Only-Cache-Strategy
	Restrictions for Read-Only EJBs
	Read-Mostly Pattern


	EJBs in WebLogic Server Clusters
	Overview
	Clustered EJBHome Objects
	Clustered EJBObjects

	Session EJBs in a Cluster
	Stateless Session EJBs
	Stateful Session EJBs

	In-Memory Replication for Stateful Session EJBs
	Requirements and Configuration
	Limitations of In-Memory Replication
	Entity EJBs in a Cluster
	Read-Write Entity EJBs
	Non-Transactional Datastores


	Transaction Management
	Transaction Management Responsibilities
	Using javax.transaction.UserTransaction
	Restriction for Container-Managed EJBs

	Distributing Transactions Across Multiple EJBs
	Calling Multiple EJBs from a Single Transaction Context
	Encapsulating a Multi-Operation Transaction
	Distributing Transactions Across EJBs in a WebLogic Server Cluster

	Transaction Isolation Level
	Limitations of TRANSACTION_SERIALIZABLE
	Special Note for Oracle Databases


	Resource Factories
	Setting Up JDBC Datasource Factories
	Setting up URL Connection Factories

	Persistence Services
	Using WebLogic Server RDBMS Persistence
	Writing Finders for RDBMS Persistence
	Finder Signature
	finder-list Stanza
	finder-query Element

	Using WebLogic Query Language (WLQL)
	Syntax
	Operators
	Operands
	Examples of WLQL Expressions
	Using Java Expressions in WLQL
	Example of Finder Method Signatures
	Restrictions


	Locking and Caching Services for Entity EJBs
	Pessimistic Locking Services
	Database Locking Services
	Setting Up Database Locking

	Home Method Support for Entity EJBs

	5 WebLogic Server Container-Managed Persistence Services
	EJB 2.0 Persistence Features and Changes
	“get” and “set” Method Restrictions
	BLOB and CLOB DBMS Column Restrictions
	EJB QL Requirement for EJB 2.0 Beans
	isModified() Not Required for CMP Beans

	Using EJB QL
	Basic EJB QL Syntax
	EJB QL String Literals
	EJB QL Operators

	Finder Methods
	Finder Parameter Placeholders
	Select Methods

	EJB QL Conditional Expressions
	EJB QL Examples
	Migrating from (EJB 1.1) WLQL to (EJB 2.0) EJB QL

	Using WebLogic Query Language Extension
	ORDERBY

	Container-Managed Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships
	Unidirectional Relationships
	Bidirectional Relationships
	Primary Keys
	Foreign Keys

	Groups
	Specifying Field Groups
	Using Groups

	Supported Data Types

	6 Deploying EJBs to WebLogic Server
	Required Steps for Deploying EJBs
	Setting Deployment Properties
	Generating EJB Container Classes
	Loading EJB Classes into WebLogic Server

	Deploying EJBs at WebLogic Server Startup
	Deploying EJBs in Different Applications

	Deploying EJBs in a Running WebLogic Server (Dynamic Deployment)
	EJB Deployment Names
	Viewing Deployed EJBs
	Deploying New EJBs into a Running Environment
	Undeploying Deployed EJBs
	Undeploying EJBs

	Updating Deployed EJBs
	The Update Process
	Updating the EJB



	7 Deploying EJBs in the EJB Container
	Roles and Responsibilities
	WebLogic Server Deployment Files
	Automatic Deployment Directory
	Deploying Compiled EJB .jar Files
	Deploying Uncompiled EJB .jar Files
	Deploying from an EJB .jar Directory

	8 WebLogic Server EJB Utilities
	ejbc
	Syntax
	Arguments
	Options
	Examples

	DDConverter
	Converting EJBs for Use in WebLogic Server 6.0
	Converting EJB CMP 1.1 Beans to EJB CMP 2.0 Beans
	Converting CMP Beans between WebLogic Server Versions
	Syntax
	Arguments
	Options
	Examples

	deploy
	Syntax
	Arguments
	Options


	9 WebLogic Server 6.0 EJB Deployment Properties
	Manually Editing XML Deployment Files
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation

	weblogic-ejb-jar.xml Deployment Descriptor File
	Index of weblogic-ejb-jar Deployment Elements
	allow-concurrent-calls
	Function
	Example

	concurrency-strategy
	Function
	Example

	db-is-shared
	Function
	Example

	delay-updates-until-end-of-tx
	Function
	Example

	description
	Function
	Example

	destination-jndi-name
	Function
	Example

	ejb-name
	Function
	Example

	ejb-reference-description
	Function
	Example

	ejb-ref-name
	Function
	Example

	enable-call-by-reference
	Function
	Example

	entity-cache
	Function
	Example

	entity-clustering
	Function
	Example

	entity-descriptor
	Function
	Example

	finders-load-bean
	Function
	Example

	home-call-router-class-name
	Function
	Example

	home-is-clusterable
	Function
	Example

	home-load-algorithm
	Function
	Example

	idle-timeout-seconds
	Function
	Example

	initial-beans-in-free-pool
	Function
	Example

	is-modified-method-name
	Function
	Example

	isolation-level
	Function
	Example

	jndi-name
	Function
	Example

	lifecycle
	Function
	Example

	max-beans-in-cache
	Function
	Example

	max-beans-in-free-pool
	Function
	Example

	message-driven-descriptor
	Function
	Example

	method
	Function
	Example

	method-intf
	Function
	Example

	method-name
	Function
	Example

	method-param
	Function
	Example

	method-params
	Function
	Example

	passivation-strategy
	Function
	Example

	persistence
	Function
	Example

	persistence-type
	Function
	Example

	persistence-use
	Function
	Example

	persistent-store-dir
	Function
	Example

	pool
	Function
	Example

	principal-name
	Function
	Example

	read-timeout-seconds
	Function
	Example

	reference-descriptor
	Function
	Example

	replication-type
	Function
	Example

	res-env-ref-name
	Function
	Example

	res-ref-name
	Function
	Example

	resource-env-description
	Function
	Example

	resource-description
	Function
	Example

	role-name
	Function
	Example

	run-as-identity-principal
	Function
	Example

	security-role-assignment
	Function
	Example

	stateful-session-cache
	Function
	Example

	stateful-session-clustering
	Function
	Example

	stateful-session-descriptor
	Function
	Example

	stateless-bean-call-router-class-name
	Function
	Example

	stateless-bean-is-clusterable
	Function
	Example

	stateless-bean-load-algorithm
	Function
	Example

	stateless-bean-methods-are-idempotent
	Function
	Example

	stateless-clustering
	Function
	Example

	stateless-session-descriptor
	Function
	Example

	transaction-descriptor
	Function
	Example

	transaction-isolation
	Function
	Example

	trans-timeout-seconds
	Function
	Example

	type-identifier
	Function
	Example

	type-storage
	Function
	Example

	type-version
	Function
	Example


	weblogic-cmp-rdbms-jar.xml Deployment Descriptor File
	Index of weblogic-cmp-rdbms-jar.xml Deployment Elements
	cmp-field
	Function
	Example

	cmr-field
	Function
	Example

	column-map
	Function
	Example

	data-source-name
	Function
	Example

	dbms-column
	Function
	Example

	ejb-name
	Function
	Example

	field-group
	Function
	Example

	field-map
	Function
	Example

	foreign-key-column
	Function
	Example

	group-name
	Function
	Example

	key-column
	Function
	Example

	max-elements
	Function
	Example

	method-name
	Function
	Example

	method-param
	Function
	Example

	method-params
	Function
	Example

	query-method
	Function
	Example

	relation-name
	Function
	Example

	relationship-role-name
	Function
	Example

	table-name
	Function
	Example

	weblogic-ql
	Function
	Example

	weblogic-query
	Function
	Example

	weblogic-relationship-role
	Function
	Example



	10 WebLogic Server 5.1 EJB Deployment Properties
	Manually Editing XML Deployment Files
	Basic Conventions
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation

	weblogic-ejb-jar.xml Deployment Descriptor File
	Caching Properties
	caching-descriptor

	Persistence Properties
	persistence-descriptor

	Clustering Properties
	clustering-descriptor

	Transaction Properties
	transaction-descriptor

	EJB References
	reference-descriptor

	Isolation Level Settings
	transaction-isolation
	isolation-level
	method

	Security Role Assignments
	security-role-assignment
	enable-call-by-reference


	weblogic-cmp-rdbms-jar.xml Deployment Descriptor File
	RDBMS Definition Elements
	pool-name
	schema-name
	table-name

	EJB Field-Mapping Elements
	attribute-map
	object-link
	bean-field
	dbms-column

	Finder Elements
	finder-list
	finder
	method-name
	method-params
	method-param
	finder-query
	finder-expression




