
Using WebLogic File Services

W e b L o g i c  S e r v e r  6 . 0
D o c u m e n t  E d i t i o n  1 . 0

D e c e m b e r  2 0 0 0

BEA WebLogic
Server



Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Using WebLogic File Services

Document Edition Date Software Version

6.0 December 2000 BEA WebLogic Server 6.0



Contents

Preface

1. Using WebLogic File Services
Overview of WebLogic File Services ............................................................... 1-1

WebLogic File API Reference .......................................................................... 1-3

WebLogic File Objects and Classes........................................................... 1-3

Setting Up the WebLogic Server to Read and Write Files ........................ 1-5

Manufacturing T3File-Related Objects...................................................... 1-6

T3FileSystems and T3Files........................................................................ 1-8

The T3FileInputStream Class..................................................................... 1-9

The T3FileOutputStream Class.................................................................. 1-9

Programming with WebLogic File Services ................................................... 1-10

Step 1. Import Packages ........................................................................... 1-10

Step 2. Obtain a Remote T3Services Interface ........................................ 1-11

Step 3. Create a T3FileSystem and a T3File ............................................ 1-11

Step 4. Create and Use an OutputStream Object ..................................... 1-12

Step 5. Create and Use an InputStream Object ........................................ 1-12

Code Example .......................................................................................... 1-13
Using WebLogic File Services iii



iv Using WebLogic File Services



Preface

This document explains how to use WebLogic File services for client-side access to
native operating system files on the server.

This document covers the following topics:

� Chapter 1, “Using WebLogic File Services,” introduces WebLogic File,
describes the WebLogic File API, and provides instructions on programming
with WebLogic File.

What You Need to Know

This document is intended primarily for application developers who are interested in
reading and writing files within Java applications that run in the WebLogic Server
environment. It assumes a familiarity with the WebLogic Server platform, Java and
Java 2 enterprise Edition (J2EE) programming, and file I/O concepts.

e-docs Web Site

The BEA WebLogic Server product documentation is available on the BEA Systems,
Inc. corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.
Programming WebLogic JTA v

http://e-docs.bea.com


How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Server and include the release number.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSUPPORT at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes
vi Programming WebLogic JTA

http://www.adobe.com/
www.bea.com


� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

import java.io.Serializable;

public String getName();

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ( )

monospace
italic
text

Identifies variables in code.

Example:

String expr
Programming WebLogic JTA vii



UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
viii Programming WebLogic JTA



CHAPTER
1 Using WebLogic File 
Services 

This section describes the WebLogic File services and includes the following topics:

� Overview of WebLogic File Services

� WebLogic File API Reference

� Programming with WebLogic File Services

Overview of WebLogic File Services 

WebLogic File provides high-speed, client-side access to native operating system files
on the server. The client API extends the lowest-common-denominator capabilities of
Java (java.io.InputStream and java.io.OutputStream), which allows it to be
used seamlessly in existing code, with additional services that are specific to
manipulating remote files.

As a service, WebLogic File also has access to all of the other WebLogic facilities, like
logging, instrumentation, and workspaces. All WebLogic component-based services,
including File services, are integrated into the WebLogic framework and can share
access and resources. Their APIs share many common aspects that make building a
complex networked application easier. Your application may use a variety of these
services, all of which can share access to objects and client resources.
Using WebLogic File Services 1-9



1 Using WebLogic File Services
With WebLogic File, as with other WebLogic services, the client uses factory methods
to generate T3FileInputStream and T3FileOutputStream objects. These classes
extend the standard Java InputStream and OutputStream classes, allowing them to
be plugged into existing client code. They also provide additional methods that are
specific to remote file streams.

WebLogic File enhances read and write performance over a network by transmitting
data in buffers whose size is independent of the size of the requests, and by using
readAhead and writeBehind buffering. The implementation increases the rate of
data transfer in several ways.

� Data is transmitted in buffers whose size is independent of the size of application
requests. An application can make many small requests without adversely
affecting performance.

� The client does read ahead; that is, it automatically requests buffers ahead of the
application. While an application is processing a buffer of data, the next buffer is
being simultaneously retrieved.

� The client does write behind; that is, it allows the application to write buffers
beyond what has been flushed to the disk on the server. While an application is
preparing a buffer of data, the previous buffers are being simultaneously written
to the disk. A flush operation blocks on the client until an acknowledgment has
been received that all outstanding buffers have been flushed.

An application may specify the transfer buffer size, the number of buffers of read
ahead, and the number of buffers of write behind, or it may rely on default values. The
default buffer size is 100K, and the default number of buffers for both read ahead and
write behind is 1.

The defaults set by WebLogic File are usually the best choice for maximum speed. If
you decide not to use the defaults, here are some hints for choosing other values.

� Setting the buffer size. In general, the larger the transfer buffer size, the greater
the raw speed of the transfer. The difference can be significant; using a 1K
buffer might be almost an order of magnitude slower than a 100K buffer.
However, larger buffers require more memory on the client side, so you need to
determine the most effective settings for your configuration.

� Setting readAhead and writeBehind buffers. The best value for readAhead and
writeBehind depends on the rate at which your application processes buffers
relative to the transfer speed. With a consistently slower application, a single
buffer of readAhead and writeBehind provides the maximum benefit. A
1-10 Using WebLogic File Services



WebLogic File API Reference
consistently faster application does not benefit at all from increasing readAhead

and writeBehind. Thus, the default value of 1 works well in most cases.
However, if your application varies the rate at which it processes buffers, you
may want to increase readAhead and writeBehind so that the application can
always work at its maximum speed.

This document covers information specific to using the WebLogic File API. You
should also read Developing WebLogic Server Applications. If this is your first
experience working with InputStream and OutputStream in Java, you may also
want to read the information available in the JavaSoft tutorial.

WebLogic File API Reference 

The following classes and interfaces make up the weblogic.io.common package.

Package weblogic.io.common
Class java.lang.Object

Interface weblogic.io.common.IOServicesDef
Class java.io.InputStream

Class weblogic.io.common.T3FileInputStream
Class java.io.OutputStream

Class weblogic.io.common.T3FileOutputStream
Interface weblogic.io.common.T3File
Interface weblogic.io.common.T3FileSystem
Class java.lang.Throwable

(implements java.io.Serializable)
Class java.lang.Exception

Class weblogic.common.T3Exception

WebLogic File Objects and Classes 

weblogic.io.common.T3File
weblogic.io.common.T3FileSystem

The interfaces T3File and T3FileSystem define T3Files and
T3FileSystems. T3Files, which may represent local (usually client-side) or
remote (usually server-side) files, are produced by T3FileSystems, which
Using WebLogic File Services 1-11

http://e-docs.bea.com/wls/docs60/programming/index.html
http://java.sun.com/docs/books/tutorial/essential/io/index.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/io/common/package-summary.html


1 Using WebLogic File Services
may also represent local or remote files. T3Files and T3FileSystems make it
easy to write code that treats local and remote files uniformly. Objects from
these interfaces, like all service-related objects in the WebLogic framework,
are allocated by requests to an object factory. This gives the developer a fine
level of control over resources.

weblogic.io.common.T3FileOutputStream
weblogic.io.common.T3FileInputStream

Two classes from the weblogic.io.common package, T3FileInputStream
and T3FileOutputStream, provide server-side read and write access to
files.

weblogic.io.common.IOServicesDef
weblogic.common.T3ServicesDef

With its class variable services, a WebLogic client accesses the WebLogic
Server's services through methods in the
weblogic.common.T3ServicesDef. WebLogic Files and WebLogic File
Systems are accessed through the method, T3ServicesDef.io(), which
returns a weblogic.io.common.IOServicesDef object.
The IOServicesDef interface has methods for requesting a T3FileSystem
from the IOServices object factory (see “Manufacturing T3File-Related
Objects”). From a client, you supply the name of the fileSystem as an
argument to IOServicesDef.getFileSystem() and are returned a
T3FileSystem object. From a server-side object, call
IOServicesDef.getFileSystem() with an empty string or null. This
returns a pointer to the file system relative to the working directory of the
server.

The T3FileSystem interface has methods for requesting a T3File from the
IOServicesDef object factory, and the T3File interface has methods for
requesting a T3FileInput/OutputStream for reading or writing to the file.

The following code shows how a client obtains a T3FileSystem remote
interface, a T3File, and an OutputStream for writing to the file:

T3ServicesDef t3services;
Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.INITIAL_CONTEXT_FACTORY,

weblogic.jndi.WLInitialContextFactory.class.getName());
Context ctx = new InitialContext(env);
t3services = (T3ServicesDef)
ctx.lookup("weblogic.common.T3Services");
ctx.close();
T3FileSystem myFS = t3services.io().getFileSystem("usr");
1-12 Using WebLogic File Services



WebLogic File API Reference
T3File myFile = myFS.getFile("myDirectory/myFilename");
T3FileOutputStream t3os = myFile.getFileOutputStream();
t3os.write(b);

Wrap the code in a try/catch block to handle possible exceptions.

The recommended method of getting a T3FileInputStream or
T3FileOutputStream for a T3File is to invoke
T3File.getFileInputStream() or T3File.getFileOutputStream()
directly on a T3File object. T3FileInputStream and
T3FileOutputStream objects both extend standard java.io.* classes.

Setting Up the WebLogic Server to Read and Write Files 

Before you can use WebLogic File services, you must first establish one or more path
prefixes -- a fileSystem -- for use by clients. Set the Name and Path attributes for File
T3 service in the Administration Console. For example, to map the file system name
users to the path on the server host /usr/local/tmp, specify the Name as users and
specify the Path as /usr/local/tmp. a

When you request a T3FileSystem from the IOServicesDef factory -- eventually to
be used to creating a T3File and reading/writing to it with an input or output stream --
you use the registered fileSystem name as an argument for the getFileSystem()
method. The T3FileSystem object that is returned is mapped to the specified
fileSystem.

For security reasons, a WebLogic client cannot access files higher in the directory than
the lowest directory registered as part of a file system name. Filenames cannot contain
dot dot (..) or an Exception is thrown. For example, an attempt to read or write
/users/../filename throws an Exception.

Note: When you are setting file attributes on a Windows NT system, you cannot use
single backslashes (\) because they are interpreted as escape characters. Using
single backslashes when setting a property result in an error message similar
to this:

java.io.FileNotFoundException: Remote file name <filename>
malformed

You can either use double backslashes, as in this example:

weblogic.io.volume.vol=c:\\remote\\temp
Using WebLogic File Services 1-13



1 Using WebLogic File Services
or use forward slashes instead, which are properly mapped to a Window-style
syntax by the parser:

weblogic.io.volume.vol=c:/remote/temp

Manufacturing T3File-Related Objects 

In these examples, we show how to obtain request the input and output streams
necessary to read and write to a remote T3File. We obtain the remote T3File object
from a T3FileSystem interface. Here, users is the name of a fileSystem that is
specified using the Administration Console. It maps to the absolute path
/usr/local/users on the WebLogic Server host.

T3ServicesDef t3services = getT3Services("t3://localhost:7001");
// Get a T3FileSystem object from the IOServicesDef factory
// Give a registered fileSystem as an arg
T3FileSystem myFS = t3services.io().getFileSystem("users");
// Get a T3File from the T3FileSystem
T3File myFile = myFS.getFile("ben/notes");
// Get an OutputStream to write to the file
T3FileOutputStream t3os = myFile.getFileOutputStream();
// Write a byte "b" to the OutputStream
t3os.write(b);

This code creates and writes a byte to a file that maps to the Server host path
/usr/local/users/ben/notes.

The method getT3Services() is in class weblogic.common.T3Client. You can
add this method to your client.

This brief example illustrates the most common usage. There are other way to request
particular T3File-related objects from the IOServicesDef factory, through a set of
convenience methods that allow you to directly request a T3FileInputStream or
T3FileOutputStream without first creating a T3FileSystem or T3File object.

Here are examples of using the convenience methods provided by the IOServicesDef
factory.

You can request a T3FileInputStream or T3FileOutputStream object directly from the
IOServicesDef factory by calling the getFileInput/OutputStream() method, with
a pathname argument that follows this pattern:

/registeredFileSystem/fileName
1-14 Using WebLogic File Services



WebLogic File API Reference
where the registeredFileSystem is a mount-point registered in the Administration
Console as the Path attribute and the fileName is the name of the destination file.

When you request a T3FileInputStream or T3FileOutputStream object directly,
without getting one from methods called on a T3FileSystem, you must include the
leading slash in the fileSystem name or the server generates this type of error:

java.io.FileNotFoundException: Remote file name filename is
relative

The T3FileInputStream object uses the defaults for buffer size and readAhead. If you
choose not to use the default settings for buffer size and readAhead/writeBehind, you
can set these values by using different factory methods that allow you to specify these
values. In this example, an InputStream object is created with a buffer size of 1024
bytes and 3 readAhead buffers:

int bufferSize = 1024;
int readAhead = 3;

T3ServicesDef t3services = getT3Services("t3://localhost:7001");
InputStream is =

t3services.io().getFileInputStream("/users/myfile",
bufferSize,
readAhead);

In this example, the OutputStream object is created with a buffer of 1024 bytes and 2
writeBehind buffers. For information on getT3Services(), see the javadoc for the
T3Services class.

int bufferSize = 1024;
int writeBehind = 2;

T3ServicesDef t3services = getT3Services("t3://localhost:7001");
Outputstream os =

t3services.io().getFileOutputStream("/users/myfile",
bufferSize,
writeBehind);

If an error occurs, the factory methods throw the exception
weblogic.common.T3Exception, which contains the cause of the problem as a
nested exception.
Using WebLogic File Services 1-15

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/common/T3Services.html


1 Using WebLogic File Services
T3FileSystems and T3Files 

weblogic.io.common.T3FileSystem

A T3FileSystem is made up of T3Files. You create and manage a T3File by
manufacturing a T3FileInput/OutputStream that is used to read and write the
file. A T3FileSystem may represent the local file system on a client, or a
remote file system on a WebLogic Server. This makes it easy to write code
that treats both local and remote file systems uniformly.

You request a T3FileSystem from the IOServicesDef factory with the
getFileSystem() method. From a client, you supply the name of the
fileSystem as an argument toIOServicesDef.getFileSystem() and
are returned a T3FileSystem object. From a server-side object, call
IOServicesDef.getFileSystem() with an empty string or null.
This returns a pointer to the file system relative to the working directory of
the server. The T3FileSystem interface also has other methods that return
the file-system-dependent file separator string, and the file-system-dependent
path separator string. This interface also contains more convenience methods
that allow direct access to file Input/OutputStreams without creating an
intermediary T3File object.

weblogic.io.common.T3File

You request a T3File by calling one of the T3FileSystem.getFile()
methods. Like a T3FileSystem, a T3File can represent either local or remote
files. In addition to methods for getting Input/OutputStreams to read and
write to the file, this interface also has accessory methods to get the file name
and path associated with the T3File object, to get its parent directory, to check
if the file exists and is a normal T3file, to test if you can read and write to the
file, to get its length and last modified date, to rename it, to make a directory,
and other file-related tasks.

The T3FileInputStream Class 

weblogic.io.common.T3FileInputStream

You customarily create a T3FileInputStream by calling the
T3File.getFileInputStream() method, which returns an object of the
class T3FileInputStream. This class extends the standard
java.io.InputStream class and provides two additional methods:
1-16 Using WebLogic File Services



WebLogic File API Reference
public int bufferSize();

which returns the current buffer size and

public int readAhead();

which returns the current number of buffers of read ahead.

The implementation of two other methods in T3FileInputStream that
override methods in java.io.InputStream are of interest:

� The method available() returns the number of bytes of unread data that
have been buffered on the client. It is never greater than the buffer size times
one plus the number of buffers of read ahead.

� The method skip() starts out by discarding data that has been requested
through read ahead and eventually issues a request to the server to skip any
remaining data.

Currently, T3FileInputStream does not support the following methods:
java.io.InputStream.mark() and java.io.InputStream.reset().

The T3FileOutputStream Class 

weblogic.io.common.T3FileOutputStream

You customarily create a T3FileOutputStream by calling the
T3File.getFileOutputStream() method, which returns an object of class
T3FileOutputStream. This class extends the standard
java.io.OutputStream class and provides two additional methods:

public int bufferSize();

which returns the current buffer size and

public int writeBehind();

which returns the current number of buffers of write behind. The
implementation of two other methods in T3FileOutputStream that override
methods in java.io.OutputStream are of interest:

� The method flush() blocks on the client until an acknowledgment has been
received that all outstanding buffers have been flushed to the server.

� The method close() method does an automatic flush().
Using WebLogic File Services 1-17



1 Using WebLogic File Services
If an error occurs on the server while a file is being written, the client is
asynchronously notified and all subsequent operations -- write(), flush(),
or close() -- generates a java.io.IOException.

Programming with WebLogic File Services 

Here are step-by-step instructions on how to request and use T3File-related objects in
your application.

� Step 1. Import Packages

� Step 2. Obtain a Remote T3Services Interface

� Step 3. Create a T3FileSystem and a T3File

� Step 4. Create and Use an OutputStream Object

� Step 5. Create and Use an InputStream Object

A code example is provided following these steps.

Step 1. Import Packages

In addition to other packages you import for your program, WebLogic File
applications import the following:

import java.io.*;
import weblogic.common.*;
import weblogic.io.common.*;

Step 2. Obtain a Remote T3Services Interface 

From a WebLogic client application, you access the T3File services via the
T3ServicesDef remote factory interface that lives on the WebLogic Server. Your client
obtains a remote stub to the T3Services object via a JNDI look-up. We define and list
1-18 Using WebLogic File Services



Programming with WebLogic File Services
a method called getT3Services() that you can add to you client to access the
T3Services stub. For information on getT3Services(), see the javadoc for the
T3Services class.

You can simply call the method giving the URL of the WebLogic Server as an
argument as follows:

T3ServicesDef t3services = getT3Services("t3://weblogicurl:7001")

Step 3. Create a T3FileSystem and a T3File 

In general, perform the following steps to begin working with reading and writing
files:

� Get a T3FileSystem object.

� Make a request to the T3FileSystem object for a T3File. You can then read from
or write to this file.

Use the T3ServicesDef remote interface to access the IOServices factory. Call the
IOServices factory method getFileSystem() to get a T3FileSystem object. Supply
the name of a file system that is registered on the WebLogic Server as an argument.
You register a file system using the Administration Console.

For this example, we assume the following file system property is configured with a
name of myFS and a path of /usr/local.

T3Files created in the T3FileSystem mapped to myFS are physically located in the
directory /usr/local on the WebLogic Server's host. Here is the code to get the
T3FileSystem and a T3File named test:

T3FileSystem t3fs =
t3services.io().getFileSystem("myFS");
T3File myFile = t3fs.getFile("test");

We can also check to see if the file exists before we read from or write to it, as shown
here:

if (myFile.exists()) {
System.out.println("The file already exists");

}
else {

// Create a file with an array of bytes. We'll write it
// to an output stream in the next step
Using WebLogic File Services 1-19

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/common/T3Services.html


1 Using WebLogic File Services
byte b[] = new byte[11];
b[0]='H'; b[1]='e'; b[2]='l'; b[3]='l'; b[4]='o'; b[5]=' ';
b[6]='W'; b[7]='o'; b[8]='r'; b[9]='l'; b[10]='d';

}

Step 4. Create and Use an OutputStream Object 

We have assembled an array of bytes that we'd like to write to a T3File on the
WebLogic Server. You customarily create a T3File, and then request an
OutputStream to write to it, using the T3File.getOutputStream() method.

Using the T3File myFile that we created in the previous step, this example illustrates
this process:

Outputstream os =
myFile.getFileOutputStream();
os.write(b);
os.close();

Always close the OutputStream object when work with it is completed.

Step 5. Create and Use an InputStream Object 

Now we have got a T3File that we'd like to read from and confirm its contents. You
request and use an InputStream object with the same patterns you use for an
OutputStream object.

Here we request an InputStream object with which we can read from the T3File
myFile. This opens an InputStream to the T3File. In this example, we're reading
bytes; first, we allocate an array of bytes to read into. This array is later used to create
a String that can be displayed. Then, we use the standard methods of the
java.io.InputStream class to read from the T3File, as shown here:

byte b[] = new byte[11];
InputStream is = myFile.getFileInputStream();
is.read(b);
is.close();

Now let's create a String for display to confirm the results:
1-20 Using WebLogic File Services



Programming with WebLogic File Services
String result = new String(b);
System.out.println("Read from file " + T3File.getName()

" on the WebLogic Server:");
System.out.println(result);
is.close();

Always close the InputStream object when work with it is completed.

Code Example 

The full code example is a runnable example that we ship in the examples/io
directory in the distribution. You can compile and run the example using the
instructions located in the same directory. The example uses a main()method so that
you can run the example from the command line.

public class HelloWorld {

public static void main(String[] argv) {

// Strings for the WebLogic Server URL, the T3FileSystem
// name, and the T3File name
String url;
String fileSystemName;
String fileName;

// Check the user's input, and then use it if correct
if (argv.length == 2) {

url = argv[0];
// Use the local file system on the client
fileSystemName = "";
fileName = argv[1];

}
else if (argv.length == 3) {

url = argv[0];
fileSystemName = argv[1];
fileName = argv[2];

}
else {

System.out.println("Usage: java example.io.HelloWorld " +
"WebLogicURL fileSystemName fileName");

System.out.println("Example: java example.io.HelloWorld " +
"t3://localhost:7001 users test");

return;
}

Using WebLogic File Services 1-21



1 Using WebLogic File Services
// Obtain remote T3Services factory from WebLogic Server
try {
T3Services t3services = getT3Services(url);

// Get the file system and the file
System.out.println("Getting the file system " + fileSystemName);
T3FileSystem fileSystem =
t3services.io().getFileSystem(fileSystemName);

System.out.println("Getting the file " + fileName);
T3File file = fileSystem.getFile(fileName);

if (file.exists()) {
// The file exists. Don't do anything
System.out.println("The file already exists");

}
else {

// The file does not exist. Create it.
byte b[] = new byte[11];
b[0]='H'; b[1]='e'; b[2]='l'; b[3]='l'; b[4]='o'; b[5]=' ';
b[6]='W'; b[7]='o'; b[8]='r'; b[9]='l'; b[10]='d';

// Get an OutputStream and write to the file
System.out.println("Writing to the file");
OutputStream os = file.getFileOutputStream();
os.write(b);
os.close();

}

// Get an InputStream and read from the file
byte b[] = new byte[11];
System.out.println("Reading from the file");
InputStream is = file.getFileInputStream();
is.read(b);
is.close();

// Report the result
String result = new String(b);
System.out.println("File contents is: " + result);

}
catch (Exception e) {
System.out.println("The following exception occurred " +

"while running the HelloWorld example.");
e.printStackTrace();
if (!fileSystemName.equals("")) {

System.out.println("Make sure the WebLogic server at " +
url + " was started with " +
"the property weblogic.io.fileSystem." +
fileSystemName + " set.");

}

1-22 Using WebLogic File Services



Programming with WebLogic File Services
}
}

private static T3ServicesDef getT3Services(String wlUrl)
throws javax.naming.NamingException

{
T3ServicesDef t3s;
Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, wlUrl);
env.put(Context.INITIAL_CONTEXT_FACTORY,

weblogic.jndi.WLInitialContextFactory.class.getName());
Context ctx = new InitialContext(env);
t3s = (T3ServicesDef) ctx.lookup("weblogic.common.T3Services");
ctx.close();
return(t3s);

}
}

Using WebLogic File Services 1-23



1 Using WebLogic File Services
1-24 Using WebLogic File Services


	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	1. Using WebLogic File Services
	Preface
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions


	1 Using WebLogic File Services
	Overview of WebLogic File Services
	WebLogic File API Reference
	WebLogic File Objects and Classes
	weblogic.io.common.T3File weblogic.io.common.T3FileSystem
	weblogic.io.common.T3FileOutputStream weblogic.io.common.T3FileInputStream
	weblogic.io.common.IOServicesDef weblogic.common.T3ServicesDef

	Setting Up the WebLogic Server to Read and Write Files
	Manufacturing T3File-Related Objects
	T3FileSystems and T3Files
	weblogic.io.common.T3FileSystem
	weblogic.io.common.T3File

	The T3FileInputStream Class
	weblogic.io.common.T3FileInputStream

	The T3FileOutputStream Class
	weblogic.io.common.T3FileOutputStream


	Programming with WebLogic File Services
	Step 1. Import Packages
	Step 2. Obtain a Remote T3Services Interface
	Step 3. Create a T3FileSystem and a T3File
	Step 4. Create and Use an OutputStream Object
	Step 5. Create and Use an InputStream Object
	Code Example
	public class HelloWorld { public static void main(String[] argv) { // Strings for the WebLogic Se...




