
WebLogic Server
Installing and Using

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a r c h 6 , 2 0 0 1

BEA

WebLogic jDriver for Informix

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Installing and Using WebLogic jDriver for Informix

Part Number Document Date Software Version

N/A March 6, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience... vii

e-docs Web Site.. vii

How to Print the Document... viii

Related Information... viii

Contact Us! .. viii

Documentation Conventions ... ix

1. Installing WebLogic jDriver for Informix
Overview ... 1-1

Before You Begin.. 1-2

Evaluation Licenses.. 1-2

Installation Procedure.. 1-2

Using Connection Pools .. 1-2

Configuring a Connection Pool with WebLogic Server 1-3

Using the Connection Pool in Your Application 1-3

Client-Side Applications ... 1-3

Server-Side Applications .. 1-3

Verifying Your Connection to the Informix Database 1-4

Determining Your Database, Hostname, and Port .. 1-5

References ... 1-5

Documentation ... 1-6

Code Examples.. 1-6

2. Using WebLogic jDriver for Informix
What Is the WebLogic jDriver for Informix?.. 2-1

Mapping Types.. 2-2
Installing and Using WebLogic jDriver for Informix v

Connecting to an Informix DBMS .. 2-3

Connection Procedure .. 2-3

Connection Example .. 2-4

Additional Informix-Specific Properties for the Connection or Properties
Object .. 2-5

Manipulating Data with JDBC .. 2-6

Making a Simple SQL Query ... 2-7

Inserting, Updating, and Deleting Records .. 2-8

Creating and Using Stored Procedures and Functions 2-9

Disconnecting and Closing Objects.. 2-12

Retrieving the SERIAL Column After an Insert 2-12

Using the Informix INTERVAL Data Type... 2-13

Using ResultSetMetaData Methods ... 2-14

Using Autocommit Mode... 2-15

Support for Informix-Specific Features.. 2-16

Retrieving VARCHAR/CHAR Data as Bytes 2-16

Codeset Support .. 2-16

Using Unicode Streams in a Prepared Statement.............................. 2-17

WebLogic jDriver for Informix Conformance to JDBC 2-18

References ... 2-21

Documentation ... 2-22

Code Examples... 2-22
vi Installing and Using WebLogic jDriver for Informix

About This Document

This document describes how to install and develop applications using WebLogic
jDriver for Informix, BEA’s type-4 Java Database Connectivity (JDBC) driver for the
Informix Database management system.

This document is organized as follows:

� Chapter 1, “Installing WebLogic jDriver for Informix.”.

� Chapter 2, “Using WebLogic jDriver for Informix.”

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers are familar with SQL, general database
concepts, and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.
Installing and Using WebLogic jDriver for Informix vii

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.
viii Installing and Using WebLogic jDriver for Informix

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;
Installing and Using WebLogic jDriver for Informix ix

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
x Installing and Using WebLogic jDriver for Informix

CHAPTER
1 Installing WebLogic
jDriver for Informix

This document tells you how to install WebLogic jDriver for Informix, BEA’s
pure-Java Type 4 JDBC driver for Informix.

Specifically, it provides information about the following topics:

� Overview

� Before You Begin

� Installation Procedure

� Using Connection Pools

� Verifying Your Connection to the Informix Database

� Determining Your Database, Hostname, and Port

� References

Overview

WebLogic jDriver for Informix is a 100% pure Java implementation of the Java
Database Connectivity (JDBC) API, the industry standard for relational database
access from Java clients. It provides Java clients with direct access to the Informix
database management system (DBMS).
Installing and Using WebLogic jDriver for Informix 1-1

1 Installing WebLogic jDriver for Informix
Before You Begin

This section explains when and how you need to upgrade your software for WebLogic
Server Version 6.0.

Evaluation Licenses

The WebLogic jDriver licensing functionality is included in the license file located in
the directory where you installed this version of WebLogic jDriver for Informix. For
example:

c:\bea\license.bea

Installation Procedure

WebLogic jDriver for Informix is bundled with your WebLogic Server distribution
and is installed when you install WebLogic Server. The weblogic.jar file includes
the Informix classes. You do not need to perform any steps for installation.

Note: The standalone WebLogic jDriver for Informix will be available in the next
release.

Using Connection Pools

If you are using WebLogic jDriver for Informix with either WebLogic Server or
WebLogic Express, you can set up a pool of connections to your Informix DBMS that
will be established when WebLogic Server is started. Because the connections are
shared among users, these connection pools eliminate the overhead of opening a new
database connection for each user.
1-2 Installing and Using WebLogic jDriver for Informix

Using Connection Pools
Your application then uses a multitier (Type 3) JDBC driver, such as the WebLogic
Pool, JTS, or RMI driver, to connect to WebLogic Server. WebLogic Server then uses
WebLogic jDriver for Informix and one of the existing connections from the pool to
connect to the Informix database on behalf of your application.

Configuring a Connection Pool with WebLogic Server

1. Include the WebLogic jDriver for Informix classes in the WebLogic classpath used
to start WebLogic Server. For more information, see Starting and Stopping
WebLogic Servers in the Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html.

2. Use the Administration Console to set connection pools. To read about
connection pools, see Connection Pools in the Administration Guide or, to go
directly to the procedure, Create a JDBC Connection Pool in Online Help.

3. Start WebLogic Server.

Using the Connection Pool in Your Application

To use a connection pool, you must first establish a database connection. How you
establish that connection depends on whether the application in which you want to use
the connection pool is a client-side or a server-side application.

Client-Side Applications

To use a connection pool in a client-side application, establish the database connection
by using the WebLogic RMI driver. For more information about the RMI driver, see
“Using WebLogic Multitier Drivers” in Programming WebLogic JDBC.

Server-Side Applications

To use a connection pool in a server-side application (such as a servlet), establish your
database connection by using the WebLogic pool or jts drivers. For more
information, see:

� “Programming Tasks“ in Programming WebLogic HTTP Servlets
Installing and Using WebLogic jDriver for Informix 1-3

http://e-docs.bea.com/wls/docs60/adminguide/startstop.html
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html#connection_pools
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/jdbc/rmidriver.html
http://e-docs.bea.com/wls/docs60/servlet/progtasks.html

1 Installing WebLogic jDriver for Informix
Verifying Your Connection to the Informix
Database

Check your connection to the Informix database. You must have the following
information:

� For the user: Valid username and password

� For the database: Database name, host name, and port number

If you do not have the required information about your database, see Determining Your
Database, Hostname, and Port in the following section.

Once you have collected the required information, you can test your connection. At a
command line, type:

java utils.dbping INFORMIX4 user password db@host:port

The arguments in this command line are defined as follows:

� user is the Informix username of a valid user for this database.

� password is the password for the user.

� db@host:port—Together, these three arguments show how to reach your
Informix database:

� db is the name of the database.

� host is the name of the computer on which the Informix server is running.

� port is the number of the TCP/IP port on which the Informix server is
listening for connection requests.

Note the syntax of the command: the database name is followed by @ (the at
sign); the host name and port are separated by a colon.

For instructions for verifying your connection to a DBMS, see Testing Connections in
Configuring WebLogic JDBC Features in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/programming.html.
1-4 Installing and Using WebLogic jDriver for Informix

http://e-docs.bea.com/wls/docs60/jdbc/programming.html

Determining Your Database, Hostname, and Port
Determining Your Database, Hostname, and
Port

Before you can connect to your Informix server installation, you must answer the
following questions about it:

� What is the name of the database you will be accessing?

� What is the name of the host computer on which the Informix server is running?

� What is the TCP/IP address of the port on which the Informix server is listening
for connection requests?

To avoid confusion, be careful not to use the word server to mean both the machine on
which your database is running and the database instance itself. In this document we
avoid this pitfall by using the following terms:

� Host name refers to the name of a machine.

� Database name refers to the name of an Informix instance.

To get information about the Informix server to which you want to connect, look in
$INFORMIXDIR/etc/sqlhosts and find the appropriate entry under the SERVER
column. The entry in this file will tell you the host name and service name—located in
the far right column—for the connection. As long as you know the service name, you
can determine the port number.

Then look in your /etc/services file (or, on a Windows NT platform, in \Winnt

\system32\drivers\etc\services) to find the port number associated with the
service name.

References

This section provides references to documents and code examples that may helpful to
you.
Installing and Using WebLogic jDriver for Informix 1-5

1 Installing WebLogic jDriver for Informix
Documentation

� API reference at
http://www.weblogic.com/docs60/samples/examples/jdbc/package-summary.htm
l.

� “Using WebLogic jDriver for Informix” at
http://e-docs.bea.com/wls/docs60/jdbc/API-jinf4.

� Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/index.html.

Code Examples

WebLogic Server provides code examples to help you get started. Code examples are
located in the samples/examples/jdbc/informix4 directory of your WebLogic
Server distribution.
1-6 Installing and Using WebLogic jDriver for Informix

http://e-docs.bea.com/wls/docs60/informix4/API_jinf4.html
http://e-docs.bea.com/wls/docs60/jdbc/index.html

CHAPTER
2 Using WebLogic jDriver
for Informix

This section explains how to set up and use WebLogic jDriver for Informix.
Specifically, it discusses the following topics:

� What Is the WebLogic jDriver for Informix?

� Mapping Types

� Connecting to an Informix DBMS

� Manipulating Data with JDBC

� WebLogic jDriver for Informix Conformance to JDBC

� References

What Is the WebLogic jDriver for Informix?

WebLogic jdriver for Informix is a Type 4, pure-Java, two-tier driver. It requires no
client-side libraries because it connects to a database through a proprietary vendor
protocol at the wire-format level. Consequently, unlike a Type 2 two-tier driver, it
makes no native calls; it is written exclusively in Java.

A Type 4 driver is similar to a Type 2 driver in one respect, however. Because both
types are two-tier drivers, any client used with either type of driver requires an
in-memory copy of the driver to support its connection to the database.
Installing and Using WebLogic jDriver for Informix 2-1

2 Using WebLogic jDriver for Informix
WebLogic jDriver for Informix supports concurrent ResultSet execution. You are not
required to close one ResultSet on a Connection before you can open and work with
another. However, the driver cannot support both concurrent ResultSet execution and
client-side caching.

WebLogic jDriver for Informix supports Informix OnLine versions 7.x and 9.x, with
7.x data types, plus the 9.x INT8 and SERIAL8 data types.

Mapping Types

The following table shows how to map:

� Informix types to WebLogic jDriver for Informix types

� WebLogic jDriver for Informix types to Java types

Informix WebLogic jDriver
for Informix

Java Type

Byte Binary use java.io.InputStream

Char Char java.lang.String

Date Date java.sql.Date

Datetime Timestamp java.sql.Timestamp

Decimal Decimal java.math.BigDecimal

Float Decimal java.math.BigDecimal

Integer Integer java.lang.Integer

Integer8 Long java.lang.BigInt

Interval InformixInterval Literal string in Informix

Money Decimal java.math.BigDecimal

NChar Char java.lang.String

NVarchar Varchar java.lang.String
2-2 Installing and Using WebLogic jDriver for Informix

Connecting to an Informix DBMS
Connecting to an Informix DBMS

This section presents instructions for coding the step of connecting to an Informix
DBMS and a piece of sample code that shows how such a connection is made.

Connection Procedure

Complete the following three-step procedure to set up your application to connect to
Informix using WebLogic jDriver for Informix:

1. Load and register the JDBC driver by doing the following:

a. Call Class.forName().newInstance() with the full name of the WebLogic
jDriver for Informix JDBC driver class.

b. Cast it to a java.sql.Driver object.

For example:

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.informix4.Driver").newInstance();

Serial Integer java.lang.Integer

Serial8 Long java.lang.BigInt

Smallfloat Decimal java.math.BigDecimal

Smallint Smallint java.lang.Integer

Text Longvarchar use java.io.InputStream

Varchar Varchar java.lang.String

Informix WebLogic jDriver
for Informix

Java Type
Installing and Using WebLogic jDriver for Informix 2-3

2 Using WebLogic jDriver for Informix
2. Create a java.util.Properties object describing the connection. This object
contains name-value pairs containing information such as username, password,
database name, server name, and port number. For example:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("db", "myDB");
props.put("server", "myHost");
props.put("port", "8659");

3. Create a JDBC Connection object, which becomes an integral piece in your
JDBC operations, by calling the Driver.connect() method. This method takes,
as its parameters, the URL of the driver and the java.util.Properties object
you created in step 2. For example:

Connection conn =
myDriver.connect("jdbc:weblogic:informix4", props);

In steps 1 and 3, you describe the JDBC driver. In the first step, you use the full
package name of the driver. Note that it is dot-delimited. In the third step, you identify
the driver with its URL, which is colon-delimited. The URL must include the
following string: weblogic:jdbc:informix4. It may also include other information,
such as the server host name and the database name.

Connection Example

The following sample code shows how to use a Properties object to connect to a
database named myDB on a server named myHost:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("db", "myDB");
props.put("server", "myHost");
props.put("port", "8659");

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.informix4.Driver").newInstance();

Connection conn =
myDriver.connect("jdbc:weblogic:informix4", props);

You can combine the db, server, and port properties into one server property, as
shown in the following example:
2-4 Installing and Using WebLogic jDriver for Informix

Connecting to an Informix DBMS
Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("server", "myDB@myHost:8659");

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.informix4.Driver").newInstance();

Connection conn =
myDriver.connect("jdbc:weblogic:informix4", props);

Various methods can be used to supply information in the URL or in the Properties
object. Information passed in the URL of the driver does not need to be included in the
Properties object.

Additional Informix-Specific Properties for the
Connection or Properties Object

This section describes other Informix-specific properties that you can set in the
connection URL or Properties object. These properties give you more control over an
Informix-specific environment. For more information, see your Informix
documentation.

weblogic.informix4.login_timeout_secs=seconds_to_wait

When an attempt to log in to an Informix server times out, WebLogic jDriver
for Informix returns an SQLException. By default, the driver waits 90
seconds before it times out. You can modify the timeout period by setting this
property to the number of seconds you want to wait before returning an
SQLException.

weblogic.informix4.delimited_identifiers=y

The Informix environment variable DELIMIDENT is used to enable and disable
ANSI SQL Delimited Identifiers. The default is off (n).

weblogic.informix4.db_money=currency

The Informix environment variable DBMONEY is used to set the display of the
currency symbol. The default value is now $., which can be overridden with
this property.

weblogic.informix4.db_date=dateformat

The Informix environment variable DBDATE allows a user to specify the input
format of dates. It sets the Informix DBDATE environment variable at login.
Installing and Using WebLogic jDriver for Informix 2-5

2 Using WebLogic jDriver for Informix
The default value is Y4MD. Two-digit years (formats containing Y2) are not
supported by the driver. Note that you cannot use this variable to format,
correctly, a date obtained from a ResultSet.getString() statement.
Instead, use ResultSet.getDate() to obtain a java.util.Date object
and then format the date in your code.

The following sample code shows how these properties are used in a URL:

jdbc:weblogic:informix4:mydb@host:1493
?weblogic.informix4.delimited_identifiers=y
&weblogic.informix4.db_money=DM
&weblogic.informix4.db_date=Y4MD

Note: A URL is always entered as a single line. In the previous example, a single
URL is presented on multiple lines to enhance readability.

Note the use of ? and &, which are special characters for URLs.

The following sample code shows how these properties might be used with a
Properties object:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("weblogic.informix4.delimited_identifiers", "y");
props.put("weblogic.informix4.db_money", "DM");

Connection conn = myDriver.connect
(jdbc:weblogic:informix4:myDB@myHost:8659",props);

Manipulating Data with JDBC

This section provides basic procedures for implementing the following tasks in a
program:

� Making a Simple SQL Query

� Inserting, Updating, and Deleting Records

� Creating and Using Stored Procedures and Functions

� Disconnecting and Closing Objects
2-6 Installing and Using WebLogic jDriver for Informix

Manipulating Data with JDBC
� Retrieving the SERIAL Column After an Insert

� Using the Informix INTERVAL Data Type

� Using ResultSetMetaData Methods

� Using Autocommit Mode

These procedures are limited to basic JDBC methodology; they are intended as a brief
introduction to data manipulation with JDBC. For more information, see your
Informix documentation and Java-oriented texts about JDBC. See also JavaSoft’s
JDBC tutorial at http://java.sun.com/docs/books/tutorial/jdbc/index.html.

Making a Simple SQL Query

The most fundamental task in database access is to retrieve data. With WebLogic
jDriver for Informix, you can retrieve data by completing the following three-step
procedure:

1. Create a Statement to send an SQL query to the DBMS.

2. Execute the Statement.

3. Retrieve the results and save them in a ResultSet. In this example, we execute a
simple query on the Employee table (alias emp) and display data from three of the
columns. We also access and display metadata about the table from which the
data was retrieved. Note that we close the Statement at the end.

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
ResultSet rs = stmt.getResultSet();

while (rs.next()) {
System.out.println(rs.getString("empid") + " - " +

rs.getString("name") + " - " +
rs.getString("dept"));

}

ResultSetMetaData md = rs.getMetaData();

System.out.println("Number of columns: " +
md.getColumnCount());

for (int i = 1; i <= md.getColumnCount(); i++) {
System.out.println("Column Name: " +
Installing and Using WebLogic jDriver for Informix 2-7

http://java.sun.com/docs/books/tutorial/jdbc/index.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

2 Using WebLogic jDriver for Informix
md.getColumnName(i));
System.out.println("Nullable: " +
md.isNullable(i));

System.out.println("Precision: " +
md.getPrecision(i));

System.out.println("Scale: " +
md.getScale(i));

System.out.println("Size: " +
md.getColumnDisplaySize(i));

System.out.println("Column Type: " +
md.getColumnType(i));

System.out.println("Column Type Name: "+
md.getColumnTypeName(i));

System.out.println("");
}

stmt.close();

Inserting, Updating, and Deleting Records

We illustrate three common database tasks in this step: inserting, updating, and
deleting records from a database table. We use a JDBC PreparedStatement for these
operations; we create the PreparedStatement, then execute it and close it.

A PreparedStatement (subclassed from JDBC Statement) allows you to execute the
same SQL over and over again with different values. PreparedStatements use the
JDBC “?” syntax.

String inssql =
"insert into emp(empid, name, dept) values (?, ?, ?)";

PreparedStatement pstmt = conn.prepareStatement(inssql);
for (int i = 0; i < 100; i++) {
pstmt.setInt(1, i);
pstmt.setString(2, "Person " + i);
pstmt.setInt(3, i);
pstmt.execute():

}
pstmt.close();

We also use a PreparedStatement to update records. In this example, we add the value
of the counter “i” to the current value of the “dept” field.

String updsql =
"update emp set dept = dept + ? where empid = ?";
2-8 Installing and Using WebLogic jDriver for Informix

Manipulating Data with JDBC
PreparedStatement pstmt2 = conn.prepareStatement(updsql);
for (int i = 0; i < 100; i++) {
pstmt2.setInt(1, i);
pstmt2.setInt(2, i);
pstmt2.execute();

}
pstmt2.close();

Finally, we use a PreparedStatement to delete the records that were added and then
updated.

String delsql = "delete from emp where empid = ?";
PreparedStatement pstmt3 = conn.prepareStatement(delsql);
for (int i = 0; i < 100; i++) {
pstmt3.setInt(1, i);
pstmt3.execute();

}
pstmt3.close();

Creating and Using Stored Procedures and Functions

You can use WebLogic jDriver for Informix to create, use, and drop stored procedures
and functions.

In the following sample code, we execute a series of Statements to drop a set of stored
procedures and functions from the database:

Statement stmt = conn.createStatement();
try {stmt.execute("drop procedure proc_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure func_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure proc_getresults");}
catch (SQLException e) {;}
stmt.close();

We use a JDBC Statement to create a stored procedure or function, and then we use a
JDBC CallableStatement (subclassed from Statement) with the JDBC ? syntax to set
IN and OUT parameters.

Stored procedure input parameters are mapped to JDBC IN parameters, using the
CallableStatement.setXXX() methods, such as setInt(), and the JDBC
PreparedStatement ? syntax. Stored procedure output parameters are mapped to JDBC
Installing and Using WebLogic jDriver for Informix 2-9

2 Using WebLogic jDriver for Informix
OUT parameters, using the CallableStatement.registerOutParameter()
methods and JDBC PreparedStatement ? syntax. A parameter may be set to both IN

and OUT. If it is, calls to both setXXX() and registerOutParameter() on the same
parameter number must be made.

In the following example, we use a JDBC Statement to create a stored procedure and
then execute the stored procedure with a CallableStatement. We use the
registerOutParameter() method to set an output parameter for the squared value.

Statement stmt1 = conn.createStatement();
stmt1.execute

("CREATE OR REPLACE PROCEDURE proc_squareInt " +
"(field1 IN OUT INTEGER, field2 OUT INTEGER) IS " +
"BEGIN field2 := field1 * field1; field1 := " +
"field1 * field1; END proc_squareInt;");

stmt1.close();

String sql = "{call proc_squareInt(?, ?)}";
CallableStatement cstmt1 = conn.prepareCall(sql);

// Register out parameters
cstmt1.registerOutParameter(2, java.sql.Types.INTEGER);
for (int i = 0; i < 5; i++) {
cstmt1.setInt(1, i);
cstmt1.execute();
System.out.println(i + " " + cstmt1.getInt(1) + " "
+ cstmt1.getInt(2));

} cstmt1.close();

Next, we use similar code to create and execute a stored function that squares an
integer:

Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +

"(field1 IN INTEGER) RETURN INTEGER IS " +
"BEGIN return field1 * field1; " +
"END func_squareInt;");

stmt2.close();

sql = "{ ? = call func_squareInt(?)}";
CallableStatement cstmt2 = conn.prepareCall(sql);

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int i = 0; i < 5; i++) {
cstmt2.setInt(2, i);
cstmt2.execute();
2-10 Installing and Using WebLogic jDriver for Informix

Manipulating Data with JDBC
System.out.println(i + " " + cstmt2.getInt(1) +
" " + cstmt2.getInt(2));

}
cstmt2.close();

Now we use a stored procedure named sp_getmessages. (The code for this stored
procedure is not included with this example.) sp_getmessages takes a message
number as an input parameter and returns the message text, in a ResultSet as an output
parameter. Before OUT parameters and return status are available, you must execute the
Statement.execute() and Statement.getResult() methods on all ResultSets
returned by a stored procedure.

String sql = "{ ? = call sp_getmessage(?, ?)}";
CallableStatement stmt = conn.prepareCall(sql);

stmt.registerOutParameter(1, java.sql.Types.INTEGER);
stmt.setInt(2, 18000); // msgno 18000
stmt.registerOutParameter(3, java.sql.Types.VARCHAR);

First, we set up the three parameters to the CallableStatement:

� Parameter 1 (output only) is the stored procedure return value.

� Parameter 2 (input only) is the msgno argument to sp_getmessage.

� Parameter 3 (output only) is the message text return for the message number.

Next, we execute the stored procedure and check the return value to determine whether
the ResultSet is empty. If it is not, we use a loop to retrieve and display its contents.

boolean hasResultSet = stmt.execute();
while (true)
{

ResultSet rs = stmt.getResultSet();
int updateCount = stmt.getUpdateCount();
if (rs == null && updateCount == -1) // no more results
break;

if (rs != null) {
// Process the ResultSet until it is empty
while (rs.next()) {
System.out.println
("Get first col by id:" + rs.getString(1));

}
} else {
// we have an update count
System.out.println("Update count = " +
stmt.getUpdateCount());

}

Installing and Using WebLogic jDriver for Informix 2-11

2 Using WebLogic jDriver for Informix
stmt.getMoreResults();
}

After we finish processing the ResultSet, the OUT parameters and return status
are available, as shown in the following example:

int retstat = stmt.getInt(1);
String msg = stmt.getString(3);

System.out.println("sp_getmessage: status = " +
retstat + " msg = " + msg);

stmt.close();

Disconnecting and Closing Objects

Sometimes you may want to commit changes you have made to the database before
closing a connection. You can do so by calling the commit() method.

When autocommit is set to true (the default JDBC transaction mode) each SQL
statement is its own transaction. After we created the Connection for these examples,
however, we set autocommit to false. In this mode, the Connection always has an
implicit transaction associated with it; any call to the rollback() or commit()
method ends the current transaction and starts a new one. Calling commit() before
close() ensures that all transactions are completed before the Connection is closed.

Just as you close Statements, PreparedStatements, and CallableStatements when you
have finished working with them, you should always call the close() method on the
connection as a final cleanup step in your application, in a try {} block. You should
catch exceptions and deal with them appropriately. The final two lines of this example
contain calls to commit and close the connection.

conn.commit();
conn.close();

Retrieving the SERIAL Column After an Insert

You can obtain serial values after an insert by using the
Statement.getSerialNumber() method, a WebLogic extension to JDBC in
WebLogic jDriver for Informix. This method allows you to track the index order of
rows as you add them to the table. You must create the table with a SERIAL column.
2-12 Installing and Using WebLogic jDriver for Informix

Manipulating Data with JDBC
To use this extension, you must cast your Statement object explicitly to
weblogic.jdbc.informix4.Statement.

The following simple code example shows how to use the getSerialNumber()
method:

weblogic.jdbc.informix4.Statement stmt =
(weblogic.jdbc.informix4.Statement)conn.createStatement();

String sql = "CREATE TABLE test (s SERIAL, count INT)";
stmt.executeUpdate(sql);

for (int i = 100; i < 110 ; i++) {
sql = "INSERT INTO test VALUES (0, " + i + ")";
stmt.executeUpdate(sql);
int ser = stmt.getSerialNumber();
System.out.println("serial number is: " + ser);

}
sql = "SELECT * from test";
ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {

System.out.println("row: " + rs.getString(2) +
" serial: " + rs.getString(1));

Using the Informix INTERVAL Data Type

To use the Informix INTERVAL data type, import
weblogic.jdbc.common.InformixInterval and cast your objects to
weblogic.jdbc.common.InformixInterval.

Use a literal string in the Informix INTERVAL format to enter an INTERVAL value
in an SQL statement. Use preparedStatement.setString() to set an INTERVAL
value parameter in a prepared statement.

For retrieving INTERVAL data from an Informix server, WebLogic jDriver for
Informix supports three standard API methods on a ResultSet:

� ResultSet.getString() returns a String representation of the interval in the
standard Informix format. Returns null if the interval is null.

� ResultSet.getBytes() returns the actual bytes returned by the server to
represent the interval.
Installing and Using WebLogic jDriver for Informix 2-13

2 Using WebLogic jDriver for Informix
� ResultSet.getObject() returns an object of type
weblogic.jdbc.common.InformixInterval. Returns null if the interval is
null.

The InformixInterval interface provides the following public methods:

String getString() throws SQLException

Identical to ResultSet.getString()

int getYear() throws SQLException

Returns the signed year of the INTERVAL or zero if YEAR is not defined

int getMonth() throws SQLException

Returns the signed year of the interval or zero if MONTH is not defined

int getDay() throws SQLException

Returns the signed day of the interval or zero if DAY is not defined

int getHour() throws SQLException

Returns the signed hour of the interval or zero if HOUR is not defined

int getMinute() throws SQLException

Returns the signed minute of the interval or zero if MINUTE is not defined

int getSecond() throws SQLException

Returns the signed second of the interval or zero if SECOND is not defined

int getFraction() throws SQLException

Returns the actual value of the FRACTION times 10**5

Using ResultSetMetaData Methods

You can access the metadata returned by the Informix server (along with query results)
by using the ResultSetMetaData methods. However, the Informix server does not
return information for the following:

getSchemaName(int)
getTableName(int)
getCatalogName(int)
2-14 Installing and Using WebLogic jDriver for Informix

Manipulating Data with JDBC
Using Autocommit Mode

Unlike other database system attributes, the autocommit mode of an Informix database
cannot be set dynamically. It is defined when the database is created. You cannot
change it with a call to the Connection.setAutoCommit method. Only non-ANSI,
non-logged databases support the ability to change autocommit dynamically.

The JDBC specification states that the autocommit mode should be true by default but,
with Informix, it is not possible to make true the default autocommit setting. Informix
allows you only to identify the autocommit mode. To change this mode, you must first
rebuild your database. (For more information, see “CREATE DATABASE” in the
Informix documentation.)

The fact that the database must be rebuilt before the autocommit state can be changed
affects how transactions and locking work. Various JDBC programs behave
differently, depending on how the Informix database is created in each program.

Before you decide to depend on autocommit, you should know the setting of
autocommit for the database that you will use. You can check the autocommit mode
for a database with the Connection.getAutoCommit()method. This method returns
true if autocommit is enabled. For Informix, this method returns false, by default, for
an ANSI databases; for a non-ANSI database, it may return true or false, depending on
how the database was created.

The following settings are supported by WebLogic jDriver for Informix when you call
the Connection.setAutoCommit() method:

� For ANSI databases, only autocommit=false is supported.

� For non-ANSI databases, autocommit can be set to either true or false.

� For non-ANSI databases without logging, only autocommit=true is supported.

Your program must then operate in accordance with the state of your Informix
database.

If you are using a non-ANSI database and you set autocommit to false, all transactional
SQL must be implemented by using the Connection.commit() or
Connection.rollback() method. You should never execute the explicit transaction
controls BEGIN WORK, COMMIT WORK, or ROLLBACK WORK on a Statement,
because WebLogic jDriver for Informix uses transaction commands internally to
simulate an autocommit=false status. You should always control a transaction using
commit() and rollback() methods in the Connection class.
Installing and Using WebLogic jDriver for Informix 2-15

2 Using WebLogic jDriver for Informix
For non-ANSI databases without logging, autocommit=false cannot be supported,
because transactions are not supported. Consequently, only autocommit=true is
supported for use with such databases.

Support for Informix-Specific Features

WebLogic jDriver for Informix includes support for other Informix-specific features
that may not be part of the JDBC specification, but that provide additional power for a
programmer writing a client application for an Informix database. These features
include:

� Retrieving VARCHAR/CHAR Data as Bytes

� Codeset Support

� Using Unicode Streams in a Prepared Statement

They are described in the following sections.

Retrieving VARCHAR/CHAR Data as Bytes

WebLogic jDriver for Informix provides an extension to JDBC for Informix that
allows programmers to retrieve VARCHAR and CHAR columns by using the
ResultSet.getBytes(String columnName) and ResultSet.getBytes(int

columnIndex) methods. Although this task is outside the scope of the JDBC
specification, it was implemented in response to customer requests. No cast of the
ResultSet is required to take advantage of this feature.

Codeset Support

As a Java application, WebLogic jDriver for Informix handles character strings as
Unicode strings. To exchange character strings with a database that may operate with
a different codeset, you must set the weblogic.codeset connection property to the
proper JDK codeset. If there is no direct mapping between the codeset of your database
and the character sets provided with the JDK, you can set the weblogic.codeset
connection property to the most appropriate Java character set.
2-16 Installing and Using WebLogic jDriver for Informix

Manipulating Data with JDBC
For example, to use the cp932 codeset, create a Properties object and set the
weblogic.codeset property before calling Driver.connect(), as shown in the
following sample code:

java.util.Properties props = new java.util.Properties();
props.put("weblogic.codeset", "cp932");
props.put("user", "scott");
props.put("password", "tiger");

String connectUrl = "jdbc:weblogic:informix4:myDB@myHost:1493";

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.informix4.Driver").newInstance();
Connection conn =

myDriver.connect(connectUrl, props);

Using Unicode Streams in a Prepared Statement

If you are using the PreparedStatement.setUnicodeStream method, you can
create either your own InputStream object or a
weblogic.jdbc.informix4.UnicodeInputStream object, using a String value in
the constructor. The following sample code shows how to input a Unicode stream into
an Informix TEXT column (using the connectUrl and props objects created earlier):

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.informix4.Driver").newInstance();
Connection c =

myDriver.connect(connectUrl, props);

PreparedStatement ps =
c.prepareStatement("insert into dbTEST values (99,?)");

String s = new String("\u93e1\u68b0\u897f");
weblogic.jdbc.informix4.UnicodeInputStream uis =

new weblogic.jdbc.informix4.UnicodeInputStream(s);

try {
ps.setUnicodeStream(1,uis,uis.available());

}
catch (java.io.IOException ioe) {

System.out.println("-- IO Exception in setUnicodeStream");
}
ps.executeUpdate();

To retrieve data from a UnicodeInputStream use java.io.InputStream. For
example:
Installing and Using WebLogic jDriver for Informix 2-17

2 Using WebLogic jDriver for Informix
InputStream uisout = rs.getUnicodeStream(2);
int i=0;
while (true) {
try {
i = uisout.read(); // read 1 byte at a time from UnicodeStream

}
catch (IOException e) {

System.out.println("-- IOException reading UnicodeStream");
}

For more information, check the full example provided with the WebLogic Server
installation, in the samples/examples/jdbc/informix4 directory.

WebLogic jDriver for Informix Conformance
to JDBC

WebLogic jDriver for Informix is a complete implementation of the JDBC
specification, except for those features described in the JDBC specification that are
either unsupported or unavailable in Informix. Because there is often confusion about
the implementation of the DatabaseMetaData interface, we list all its methods in this
section. Most of these methods are supported; some are planned for a future release;
and some (because of Informix limitations or implementations) will not be supported
by WebLogic jDriver for Informix.

The following DatabaseMetaData methods are supported:
allProceduresAreCallable()
allTablesAreSelectable()
dataDefinitionCausesTransactionCommit()
dataDefinitionIgnoredInTransactions()
doesMaxRowSizeIncludeBlobs()
getCatalogSeparator()
getCatalogTerm()
getColumns()
getDatabaseProductName()
getDatabaseProductVersion()
getDefaultTransactionIsolation()
getDriverMajorVersion()
getDriverMinorVersion()
getDriverName()
2-18 Installing and Using WebLogic jDriver for Informix

WebLogic jDriver for Informix Conformance to JDBC
getDriverVersion()
getExportedKeys()
getExtraNameCharacters()
getIdentifierQuoteString()
getImportedKeys()
getMaxBinaryLiteralLength()
getMaxCatalogNameLength()
getMaxCharLiteralLength()
getMaxColumnNameLength()
getMaxColumnsInGroupBy()
getMaxColumnsInIndex()
getMaxColumnsInOrderBy()
getMaxColumnsInSelect()
getMaxColumnsInTable()
getMaxConnections()
getMaxCursorNameLength()
getMaxIndexLength()
getMaxProcedureNameLength()
getMaxRowSize()
getMaxSchemaNameLength()
getMaxStatementLength()
getMaxStatements()
getMaxTableNameLength()
getMaxTablesInSelect()
getMaxUserNameLength()
getNumericFunctions()
getPrimaryKeys()
getProcedures()
getProcedureTerm()
getSchemas()
getSchemaTerm()
getSearchStringEscape()
getSQLKeywords()
getStringFunctions()
getSystemFunctions()
getTables()
getTableTypes()
getTimeDateFunctions()
getTypeInfo()
getURL()
getUserName()
isCatalogAtStart()
isReadOnly()
nullPlusNonNullIsNull()
nullsAreSortedAtEnd()
nullsAreSortedAtStart()
Installing and Using WebLogic jDriver for Informix 2-19

2 Using WebLogic jDriver for Informix
nullsAreSortedHigh()
nullsAreSortedLow()
storesLowerCaseIdentifiers()
storesLowerCaseQuotedIdentifiers()
storesMixedCaseIdentifiers()
storesMixedCaseQuotedIdentifiers()
storesUpperCaseIdentifiers()

storesUpperCaseQuotedIdentifiers()
supportsAlterTableWithAddColumn()
supportsAlterTableWithDropColumn()
supportsANSI92EntryLevelSQL()
supportsANSI92FullSQL()
supportsANSI92IntermediateSQL()
supportsCatalogsInDataManipulation()
supportsCatalogsInIndexDefinitions()
supportsCatalogsInPrivilegeDefinitions()
supportsCatalogsInProcedureCalls()

supportsCatalogsInTableDefinitions()
supportsColumnAliasing()
supportsConvert()
supportsCoreSQLGrammar()
supportsCorrelatedSubqueries()
supportsDataDefinitionAndDataManipulationTransactions()

supportsDataManipulationTransactionsOnly()
supportsDifferentTableCorrelationNames()
supportsExpressionsInOrderBy()
supportsExtendedSQLGrammar()
supportsFullOuterJoins()
supportsGroupBy()
supportsGroupByBeyondSelect()
supportsGroupByUnrelated()
supportsIntegrityEnhancementFacility()
supportsLikeEscapeClause()
supportsLimitedOuterJoins()
supportsMinimumSQLGrammar()
supportsMixedCaseIdentifiers()
supportsMixedCaseQuotedIdentifiers()
supportsMultipleResultSets()
supportsMultipleTransactions()
supportsNonNullableColumns()
supportsOpenCursorsAcrossCommit()
supportsOpenCursorsAcrossRollback()

supportsOpenStatementsAcrossCommit()

supportsOpenStatementsAcrossRollback()
supportsOrderByUnrelated()
2-20 Installing and Using WebLogic jDriver for Informix

References
supportsOuterJoins()
supportsPositionedDelete()
supportsPositionedUpdate()
supportsSchemasInDataManipulation()
supportsSchemasInIndexDefinitions()
supportsSchemasInPrivilegeDefinitions()
supportsSchemasInProcedureCalls()
supportsSchemasInTableDefinitions()
supportsSelectForUpdate()
supportsStoredProcedures()

supportsSubqueriesInComparisons()
supportsSubqueriesInExists()
supportsSubqueriesInIns()
supportsSubqueriesInQuantifieds()
supportsTableCorrelationNames()
supportsTransactionIsolationLevel()
supportsTransactions()
supportsUnion()
supportsUnionAll()
usesLocalFilePerTable()
usesLocalFiles()

Support for the following methods has been implemented and is now being tested:
getBestRowIdentifier()
getColumnPrivileges()
getTablePrivileges()

Support for the following methods is planned:
getIndexInfo()
supportsConvert()

The following methods will not be supported:
getCatalogs()
getCrossReference()
getProcedureColumns()
getVersionColumns()

References

This section provides references to documents and code examples that may help you
learn about using WebLogic jDriver for Informix.
Installing and Using WebLogic jDriver for Informix 2-21

2 Using WebLogic jDriver for Informix
Documentation

� Introduction to JDBC in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/intro.html.

Contains information about other WebLogic JDBC drivers, additional
documentation, support resources, and more.

� Using connection pools with server-side Java in Programming Tasks in
Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs60/servlet/progtasks.html.

� Managing JDBC Connectivity in Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html.

Describes administrative tasks for configuring JDBC connectivity, such as
creating connection pools, datasources, and multipools.

� JavaSoft’s JDBC tutorial at http://java.sun.com/docs/books/tutorial
/jdbc/index.html.

Code Examples

To help you get started, WebLogic jDriver for Informix provides several code
examples. You can find them in the samples/examples/jdbc/informix4 directory
of your WebLogic jDriver for Informix installation.
2-22 Installing and Using WebLogic jDriver for Informix

http://e-docs.bea.com/wls/docs60/servlet/progtasks.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Installing WebLogic jDriver for Informix
	Overview
	Before You Begin
	Evaluation Licenses

	Installation Procedure
	Using Connection Pools
	Configuring a Connection Pool with WebLogic Server
	Using the Connection Pool in Your Application
	Client-Side Applications
	Server-Side Applications

	Verifying Your Connection to the Informix Database
	Determining Your Database, Hostname, and Port
	References
	Documentation
	Code Examples

	2 Using WebLogic jDriver for Informix
	What Is the WebLogic jDriver for Informix?
	Mapping Types
	Connecting to an Informix DBMS
	Connection Procedure
	Connection Example
	Additional Informix-Specific Properties for the Connection or Properties Object

	Manipulating Data with JDBC
	Making a Simple SQL Query
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects
	Retrieving the SERIAL Column After an Insert
	Using the Informix INTERVAL Data Type
	Using ResultSetMetaData Methods
	Using Autocommit Mode
	Support for Informix-Specific Features
	Retrieving VARCHAR/CHAR Data as Bytes
	Codeset Support
	Using Unicode Streams in a Prepared Statement

	WebLogic jDriver for Informix Conformance to JDBC
	References
	Documentation
	Code Examples

