
WebLogic Server
Programming

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 0
D o c u m e n t D a t e : M a r c h 3 , 2 0 0 1

WebLogic JNDI

BEA

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic JNDI

Document Edition Date Software Version

N/A March 3, 2001 BEA WebLogic Server Version 6.0

Programming WebLogic JNDI iii

Contents

About This Document
Audience..v

e-docs Web Site...v

How to Print the Document... vi

Contact Us! .. vi

Documentation Conventions .. vii

1. Introduction to WebLogic JNDI
Overview of JNDI in WebLogic Server .. 1-1

2. Programming with WebLogic JNDI
Using WebLogic JNDI from a Java Client.. 2-1

Setting Up JNDI Environment Properties for the InitialContext 2-2

Creating a Context Using a Hash Table ... 2-4

Creating a Context Using a WebLogic Environment Object 2-4

Creating a Context from a Server-Side Object... 2-5

Associating a WebLogic User with a Security Context 2-5

Using the Context to Look Up a Named Object.. 2-6

Using a Named Object to Get an Object Reference .. 2-7

Closing the Context ... 2-7

Using WebLogic JNDI in a Clustered Environment... 2-8

Clustering J2EE Services ... 2-8

Making Custom Objects Available to a WebLogic Server Cluster 2-9

Data Caching Design Pattern ... 2-11

Exactly-Once-Per-Cluster Design Pattern.. 2-12

Using WebLogic JNDI from a Client in a Clustered Environment 2-13

iv Programming WebLogic JNDI

Programming WebLogic JNDI v

About This Document

This document explains how to program with the JNDI feature provided with the BEA
WebLogic Server™ product. Specifically, it covers the following topics:

� Chapter 1, “Introduction to WebLogic JNDI,” provides an overview of the JNDI
capabilities in WebLogic Server.

� Chapter 2, “Programming with WebLogic JNDI,” explains how to program with
the WebLogic JNDI functionality in Java client applications.

Audience

This document is intended for programmers who are developing applications with
WebLogic Server and want to use the JNDI feature.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

vi Programming WebLogic JNDI

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Programming WebLogic JNDI vii

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

viii Programming WebLogic JNDI

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Programming WebLogic JNDI 1-1

CHAPTER

1 Introduction to
WebLogic JNDI

This sections presents an overview of the JNDI implementation in WebLogic Server.

Overview of JNDI in WebLogic Server

In an enterprise, naming services provide a means for your application to locate objects
on the network. A naming service associates names with objects and finds objects
based on their given names.

The Java Naming and Directory Interface (JNDI) is an application programming
interface (API) that provides naming services to Java applications. JNDI is an integral
component of the Sun Microsystems Java 2 Platform Enterprise Edition (J2EE)
technology.

JNDI is defined to be independent of any specific naming or directory service
implementation. It supports the use of a single method for accessing various new and
existing services,

The JNDI support provided by WebLogic Server is based on the standard JNDI API
classes defined by Sun Microsystems, Inc. This support allows any service-provider
implementation to be plugged into the JNDI framework using the standard SPI
conventions. In addition, JNDI allows Java applications in WebLogic Server to access
external directory services such as LDAP in a standardized fashion, by plugging in the
appropriate service-provider. WebLogic Server supports version 1.2.1 of the JNDI
API.

http://www.javasoft.com/products/jndi/index.html

1 Introduction to WebLogic JNDI

1-2 Programming WebLogic JNDI

The WebLogic Server implementation of JNDI supplies methods that:

� Give clients access to the WebLogic name services

� Make objects available in the WebLogic namespace

� Retrieve objects from the WebLogic namespace

Each WebLogic Server clusters is supported by a replicated cluster-wide JNDI tree
that provides access to both replicated and pinned RMI and EJB objects. While the
JNDI tree representing the cluster appears to the client as a single global tree, the tree
containing the cluster-wide services is actually replicated across each WebLogic
Server in the cluster. For more information, see Using WebLogic JNDI in a Clustered
Environment.

The integrated naming service provided by WebLogic Server JNDI may be used by
many other WebLogic services. For example, WebLogic RMI can bind and access
remote objects by both standard RMI methods and JNDI methods.

In addition to the standard Sun Microsystems Inc. interfaces for JNDI, WebLogic
Server provides its own implementation,
weblogic.jndi.WLInitialContextFactory, that uses the standard JNDI
interfaces.

In your application code, you need not instantiate this class directly. Instead, you can
use the standard javax.naming.InitialContext class and set the appropriate hash
table properties, as documented in the section Setting Up JNDI Environment
Properties for the InitialContext. All interaction is done through the
javax.naming.Context interface, as described in the JNDI Javadoc.

For instructions for using the WebLogic JNDI API for client connections, see
Programming with WebLogic JNDI.

Programming WebLogic JNDI 2-1

CHAPTER

2 Programming with
WebLogic JNDI

This section discusses the following topics:

� Using WebLogic JNDI from a Java Client

� Setting Up JNDI Environment Properties for the InitialContext

� Using the Context to Look Up a Named Object

� Using a Named Object to Get an Object Reference

� Closing the Context

� Using WebLogic JNDI in a Clustered Environment

Using WebLogic JNDI from a Java Client

The WebLogic Server JNDI Service Provider Interface (SPI) provides an
InitialContext implementation that allows remote Java clients to connect yo
WebLogic Server. The client can specify standard JNDI environment properties that
identify a particular WebLogic Server deployment and related connection properties
for logging in to WebLogic Server.

To participate in a session with WebLogic Server, a Java client must be able to get an
object reference for a remote object and invoke operations on the object. To
accomplish this, the client application code must perform the following procedure:

2 Programming with WebLogic JNDI

2-2 Programming WebLogic JNDI

1. Set up JNDI environment properties for the InitialContext.

2. Establish an InitialContext with WebLogic Server.

3. Use the Context to look up a named object in the WebLogic Server namespace.

4. Use the named object to get a reference for the remote object and invoke
operations on the remote object.

5. Complete the session.

The following sections discuss JNDI client operations for connecting to a specific
WebLogic Server. For information about using JNDI in a cluster of WebLogic Servers,
see Using WebLogic JNDI from a Client in a Clustered Environment.

Before you can use JNDI to access an object in a WebLogic Server environment, you
must load the object into the WebLogic Server JNDI tree. For instructions loading
objects in the JNDI tree, see Managing JNDI.

Setting Up JNDI Environment Properties for
the InitialContext

The first task that must be performed by any Java client application is to create
environment properties. The InitialContext factory uses various properties to
customize the InitialContext for a specific environment. You can set these
properties either by using a hash table or the set() method of a WebLogic
Environment object. These properties, which are specified name-to-value pairs,
determine how the WLInitialContextFactory creates the Context. The following
properties are used to customize the InitialContext:

� Context.PROVIDER_URL— Specifies the URL of the WebLogic Server that
provides the name service. The default is t3://localhost:7001.

� Context.SECURITY_PRINCIPAL—Specifies the identity of the User (that is, a
User defined in a WebLogic Server security realm) for authentication purposes.
The property defaults to the guest User unless the thread has already been
associated with a WebLogic Server User. For more information, see Associating
a WebLogic User with a Security Context.

http://e-docs.bea.com/wls/docs60/adminguide/jndi.html

Setting Up JNDI Environment Properties for the InitialContext

Programming WebLogic JNDI 2-3

� Context.SECURITY_CREDENTIALS—Specifies either the password for the User
defined in the Context.SECURITY_PRINCIPAL property or an object that
implements the weblogic.security.acl.UserInfo interface with the
Context.SECURITY_CREDENTIALS property defined. If you pass a UserInfo
object in this property, the Context.PROVIDER_URL property is ignored. The
property defaults to the guest User unless the thread has already been
associated with a User. For more information, see Associating a WebLogic User
with a Security Context.

You can use the same properties on either a client or a server. If you define the
properties on a server-side object, a local Context is used. If you define the properties
on a client or another WebLogic Server server, the Context delegates to a remote
Context running on the WebLogic Server specified by the Context.PROVIDER_URL
property.

Listing 2-1 shows how to obtain a Context using the properties
Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL.

Listing 2-1 Obtaining a Context

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,

"t3://localhost:7001");

try {
ctx = new InitialContext(ht);
// Use the context in your program

}
catch (NamingException e) {

// a failure occurred
}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred

}
}

2 Programming with WebLogic JNDI

2-4 Programming WebLogic JNDI

Additional WebLogic-specific properties are also available for configuring security
parameters and controlling how objects are bound into the cluster-wide JNDI tree.
Note that bindings may or may not be replicated across the JNDI tree of each server
within the cluster. Properties such as these are identified by constants in the
weblogic.jndi.WLContext class. For more information about JNDI-related
clustering issues, see Using WebLogic JNDI from a Client in a Clustered
Environment.

Creating a Context Using a Hash Table

You can create a Context with a hash table in which you have specified the properties
described in Setting Up JNDI Environment Properties for the InitialContext.

To do so, pass the hash table to the constructor for InitialContext. The property
java.naming.factory.initial is used to specify how the InitialContext is
created. To use WebLogic JNDI, you must always set the
java.naming.factory.initial property to
weblogic.jndi.WLInitialContextFactory. This setting identifies the factory
that actually creates the Context.

Creating a Context Using a WebLogic Environment Object

You can also create a Context by using a WebLogic environment object implemented
by the weblogic.jndi.environment interface. Although the environment object is
WebLogic-specific, it offers the following advantages:

� A set of defaults which reduces the amount of code you need to write

� Convenience set() methods that provide compile-type type-safety. The
type-safety set() methods can save you time both writing and debugging code.

The WebLogic Environment object provides the following defaults:

� If you do not specify an InitialContext factory, WLInitialContextFactory
is used.

� If you do not specify a user and password in the
Context.SECURITY_PRINCIPAL and Context.CREDENTIALS properties, the

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jndi/WLInitialContextFactory.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jndi/Environment.html

Setting Up JNDI Environment Properties for the InitialContext

Programming WebLogic JNDI 2-5

guest User and password are used unless the thread has already been associated
with a user.

� If you do not specify a Context.PROVIDER_URL property,
t3://localhost:7001 is used.

If you want to create InitialContext with these defaults, write the following code:

Environment env = new Environment();
Context ctx = env.getInitialContext();

If you want to set only a WebLogic Server to a Distributed Name Service (DNS) name
for client cluster access, write the following code:

Environment env = new Environment();
env.setProviderURL("t3://myweblogiccluster.com:7001");
Context ctx = env.getInitialContext();

Creating a Context from a Server-Side Object

You may also need to create a Context from an object (an Enterprise JavaBean (EJB)
or Remote Method Invocation (RMI) object) that is instantiated in the Java Virtual
Machine (JVM) of WebLogic Server. When using a server-side object, you do not
need to specify the Context.PROVIDER_URL property. User names and passwords are
required only if you want to sign in as a specific User. Server-side contexts run in the
context of WebLogic Server.

To create a Context from within a server-side object, you first must create a new
InitialContext, as follows:

Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context is
created as a Context and is connected to the local naming service.

Associating a WebLogic User with a Security Context

Note: BEA recommends using the Java Authentication and Authorization Service
(JAAS) rather than JNDI to associate a User with a security context. For more
information, see Programming WebLogic Security.

http://e-docs.bea.com/wls/docs60/security/index.html

2 Programming with WebLogic JNDI

2-6 Programming WebLogic JNDI

Using the Context to Look Up a Named
Object

Every Java client application must obtain an initial object that provides services for the
application. An object cannot not be looked up, however, unless it is loaded in the
WebLogic Server namespace. For more information, see Managing JNDI in the
Administration Guide.

The lookup() method on the Context is used to obtain named objects. The argument
passed to the lookup() method is a string that contains the name of the desired object.
Listing 2-2 shows how to retrieve an EJB named ServiceBean.

Listing 2-2 Looking Up a Named Object

try {
ServiceBean bean = (ServiceBean)ctx.lookup("ejb.serviceBean");

}
catch (NameNotFoundException e) {

// binding does not exist
}
catch (NamingException e) {

// a failure occurred
}

http://e-docs.bea.com/wls/docs60/adminguide/jndi.html

Using a Named Object to Get an Object Reference

Programming WebLogic JNDI 2-7

Using a Named Object to Get an Object
Reference

EJB client applications get object references to EJB remote objects from EJB Homes.
RMI client applications get object references to other RMI objects from an initial
named object. Both initial named remote objects are known to WebLogic Server as
factories. A factory is any object that can return a reference to another object that is in
the WebLogic namespace.

The client application invokes a method on a factory to obtain a reference to a remote
object of a specific class. The client application then invokes methods on the remote
object, passing any required arguments.

Listing 2-3 contains a code fragment that obtains a remote object and then invokes a
method on it.

Listing 2-3 Using a Named Object to Get an Object Reference

ServiceBean bean = ServiceBean.Home.create("ejb.ServiceBean")

Servicebean.additem(66);

Closing the Context

After clients finish working with a context, the client should close the context in order
to release resources. We recommend that you use a finally{} block and wrap the
close() method in a try{} block. If you attempt to close a context that was never
instantiated because of an error, the Java client application throws an exception.

In Listing 2-4, the client closes the context, releasing the resource being used.

2 Programming with WebLogic JNDI

2-8 Programming WebLogic JNDI

Listing 2-4 Closing the Context

try {
ctx.close();

} catch (Exception e) {
//a failure occurred
}

Using WebLogic JNDI in a Clustered
Environment

The intent of WebLogic JNDI is to provide a naming service for J2EE services,
specifically EJB, RMI, and Java Messaging Service (JMS). Therefore, it is important
to understand the implications of binding an object to the JNDI tree in a clustered
environment.

The following sections discuss how WebLogic JNDI is implemented in a clustered
environment and offer some approaches you can take to make your own objects
available to JNDI clients.

Clustering J2EE Services

WebLogic RMI is the enabling technology that allows clients in one JVM to access
EJBs and JMS services from a client in another JVM. RMI stubs marshal incoming
calls from the client to the RMI server object. To make J2EE services available to a
client, WebLogic Server binds an object—in this case, an RMI stub for a particular
service—into its JNDI tree under a particular name. WebLogic Clusters extend
WebLogic JNDI from a single server to a server that contains all the offerings provided
by the cluster. This extension is accomplished by replicating the bindings the RMI
stubs—bound in each WebLogic Server to all the other WebLogic Servers in the
cluster. When a client connects to a cluster, it is actually connecting to one of the
WebLogic Servers already in the cluster. Because the JNDI tree for this WebLogic
Server contains the stubs for all services offered by the other WebLogic Servers in the

Using WebLogic JNDI in a Clustered Environment

Programming WebLogic JNDI 2-9

cluster in addition to its own services, the cluster appears to the client as one WebLogic
Server hosting all of the cluster-wide services. When a new WebLogic Server joins a
cluster, each WebLogic Server already in the cluster is responsible for sharing
information about its own services to the new WebLogic Server. With the information
collected from all the other servers in the cluster, the new server may create its own
copy of the cluster-wide JNDI tree.

A clustered service provides failover and load balancing. To be clustered, a service
must be deployed on multiple WebLogic Servers and bound to the same name within
the JNDI tree. With clustered services, special clusterable stubs use the chosen
algorithm for load balancing and failover.

In a clustered environment, WebLogic JNDI is designed specifically to work
efficiently with RMI stubs. RMI stubs significantly affect how WebLogic JNDI is
implemented in a clustered environment:

� RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs
across all WebLogic Servers in a cluster with little overhead in terms of
server-to-server cross-talk.

� RMI stubs serve as proxies for server objects. While stubs are replicated across
WebLogic Servers, the actual service is provided by a server object hosted on
only one of the WebLogic Servers. If that WebLogic Server fails, the service
offered by the server object is no longer available. For this reason, if the host
WebLogic Server (that is, the WebLogic Server that initially bound the object to
its JNDI tree) fails, the binding for the object is removed from all other
WebLogic Servers in the cluster.

Making Custom Objects Available to a WebLogic Server
Cluster

When you bind a custom object into a JNDI tree in a WebLogic Server cluster, the
object is handled as described in Clustering J2EE Services. However, custom object
often have characteristics not shared by RMI stubs. Therefore, the default behavior of
WebLogic JNDI within a cluster may not be suitable for a custom object.

Suppose the custom object needs to be accessed only by EJBs that are deployed on
only one WebLogic Server. Obviously it is unnecessary to replicate this custom object
throughout all the WebLogic Servers in the cluster. In fact, you should avoid

2 Programming with WebLogic JNDI

2-10 Programming WebLogic JNDI

replicating the custom object in order to avoid any performance degradation due to
unnecessary server-to-server communication. To create a binding that is not replicated
across WebLogic Servers in a cluster, you must specify the REPLICATE_BINDINGS
property when creating the context that binds the custom object to the namespace.
Listing 2-5 illustrates the use of the REPLICATE_BINDINGS property.

Listing 2-5 Using the REPLICATE_BINDINGS Property

Hashtable ht = new Hashtable();
//turn off binding replication
ht.put(WLContext.REPLICATE_BINDINGS, "false");
try {

Context ctx = new InitialContext(ht);
//bind the object
ctx.bind("my_object", MyObect);

} catch (NamingException ne) {
//failure occured

}

When you are using this technique and you need to use the custom object, you must
explicitly obtain an Initial Context for the WebLogic Server. If you connect to any
other WebLogic Server in the cluster, the binding does not appear in the JNDI tree.

If you need to your custom object accessible from any WebLogic Server in the cluster,
use one of the following techniques:

� Rely on WebLogic JNDI’s default behavior of replicating JNDI bindings to
replicate the custom object across all WebLogic Servers in the cluster.

� Deploy the custom object on each WebLogic Server in the cluster without
replicating the JNDI bindings.

The technique you use has an effect on your application’s performance and the
availability of the custom object as described in the following sections.

Using WebLogic JNDI in a Clustered Environment

Programming WebLogic JNDI 2-11

Performance

Relying on WebLogic JNDI to copy an object from one WebLogic Server to all of the
other WebLogic Servers in a cluster can have an adverse effect on performance due to
additional server-to-server communication. The effect on performance depends on the
size of the custom object. If the custom object is large or dynamic in size, BEA
recommends avoid this technique. Instead, you can use the design pattern described in
Data Caching Design Pattern.

Availability

When using WebLogic JNDI to replicate bindings, the bound object will be handled
as if it owned by the host WebLogic Server. If the host WebLogic Server fails, the
custom object is removed from all the WebLogic Servers in the cluster. While this is
the appropriate behavior in cases where the bound object is an RMI stub referring back
to the host WebLogic Server, it may not be the appropriate behavior for your custom
object. This behavior can have an adverse effect on the availability of the custom
object. If the availability of the custom object is critical, you can use the design pattern
described in Data Caching Design Pattern.

Data Caching Design Pattern

A common task in web applications is to cache data used by multiple objects for a
period of time to avoid the overhead associated with data computation or connecting
to another service. (For caching JDBC accessible data, you should use read-only entity
EJBs. For more information, see Programming WebLogic Enterprise JavaBeans.)

Suppose you have designed a non-RMI, data caching object that performs well on
single WebLogic Server and you would like to use this same object within a WebLogic
cluster. If you bind the data caching object in the JNDI tree of one of the WebLogic
Servers, WebLogic JNDI will, by default, copy the object to each of the other
WebLogic Servers in the cluster. It is important to note that since this is not an RMI
object, what you are binding into the JNDI tree (and copying to the other WebLogic
Servers) is the object itself, not a stub that refers to a single instance of the object
hosted on one of the WebLogic Servers. For the sake of performance and availability
is often desirable to avoid using WebLogic JNDI’s binding replication to copy large
custom objects with high availability requirements to all of the WebLogic Servers in a
cluster.

http://e-docs.bea.com/wls/docs60/ejb/index.html

2 Programming with WebLogic JNDI

2-12 Programming WebLogic JNDI

As an alternative, you can deploy a separate instance of the custom object on each of
the WebLogic Servers in the cluster. When binding the object to each WebLogic
Server’s JNDI tree, you should make sure to turn off binding replication as described
in the Making Custom Objects Available to a WebLogic Server Cluster section. In this
design pattern, each WebLogic Server has a copy of the custom object but you will
avoid copying large amounts of data from server to server.

Each instance of the object should maintain its own logic for when it needs to refresh
its cache independently of the other data cache objects in the cluster. For example,
suppose a client accesses the data cache on one WebLogic Server. It is the first time
the caching object has been accessed, so it computes or obtains the information and
saves a copy of the information for future requests. Now suppose another client
connects to the cluster to perform the same task as the first client only this time the
connection is made to a different WebLogic Server in the cluster. If this the first time
this particular data caching object has been accessed, it will need to compute the
information regardless of whether other data caching objects in the cluster already
have the information cached. Of course, for any future requests, this instance of the
data cache object will be able to refer to the information it has saved.

Exactly-Once-Per-Cluster Design Pattern

In some cases, it is desirable to have a service that appears only once in the cluster. This
is accomplished by deploying the service on one machine only. For RMI objects, you
can use the default behavior of WebLogic JNDI to replicate the binding (the RMI stub)
and the single instance of your object will be accessible from all WebLogic Servers in
the cluster. This is referred to as a pinned service. For non-RMI objects, make sure that
you use the REPLICATE_BINDINGS property when binding the object to the
namespace. In this case, you will need to explicitly connect to the host WebLogic
Server to access the object. Alternatively, you can create an RMI object that is
deployed on the same host WebLogic Server that can act as a proxy for your non-RMI
object. The stub for the proxy can be replicated (using the default WebLogic JNDI
behavior) allowing clients connected to any WebLogic Server in the cluster to access
the non-RMI object via the RMI proxy.

This design pattern for an exactly-once-per-cluster service presents an additional
challenge for services with high availability requirements. Since the failover feature of
WebLogic Clusters relies on having multiple deployments of each clustered service,
failover for an exactly-once-per-cluster service will not be available. For services that
require high availability, it is suggested that you implement a hardware,

Using WebLogic JNDI in a Clustered Environment

Programming WebLogic JNDI 2-13

High-Availability (HA) framework for the host WebLogic Server. The framework
allows WebLogic Server to be restarted in the event of a failure with a minimal amount
of disruption to availability of the service.

Using WebLogic JNDI from a Client in a Clustered
Environment

The JNDI binding for an object can appear in the JNDI tree for one WebLogic Server
in the cluster, or it can be replicated to all the WebLogic Servers in the cluster. If the
object of interest is bound in only one WebLogic Server, you must explicitly connect
to the host WebLogic Server by setting the Context.PROVIDER_URL property to the
host WebLogic Server’s URL when creating the Initial Context, as described in Using
WebLogic JNDI from a Java Client.

In most cases, however, the object of interest is either a clustered service or a pinned
service. As a result, a stub for the service is displayed in the JNDI tree for each
WebLogic Server in the cluster. In this case, the client does not need to name a specific
WebLogic Server to provide its naming service. In fact, it is best for the client to simply
request that a WebLogic Cluster provide a naming service, in which case the context
factory in WebLogic Server can choose whichever WebLogic Server in the cluster
seems most appropriate for the client. Currently, a naming service provider is chosen
within WebLogic using DNS round-robining.

The context that is returned to a client of clustered services is, in general, implemented
as a failover stub that can transparently change the naming service provider if a failure
(such as a communication failure) with the selected WebLogic Server occurs.

Listing 2-6 shows how a client uses the cluster’s naming service.

Listing 2-6 Using the Naming Service in a WebLogic Cluster

Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL, "t3://acmeCluster:7001");
try {

Context ctx = new InitialContext(ht);
// Do the client's work

}

2 Programming with WebLogic JNDI

2-14 Programming WebLogic JNDI

catch (NamingException ne) {
// A failure occurred

}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred

}
}

The hostname specified as part of the provider URL is the DNS name for the cluster
that can be defined by the weblogic.cluster.name property. This command-line
property is set when the cluster is started. It maps to the list of hosts providing naming
service in this cluster. For more information, see Configuring WebLogic Servers and
Clusters.

In Listing 2-6, the cluster name acmeCluster is used to connect to any of the
WebLogic Servers in the cluster. The resulting Context is replicated so that it can fail
over transparently to any WebLogic Server in the cluster.

An alternative method of specifying the initial point of contact with the WebLogic
Cluster is to supply a comma-delimited list of DNS Server names or IP addresses, as
shown in the following sample code:

ht.put(Context.PROVIDER_URL, "t3://acme1,acme2,acme3:7001");

Notice that all the WebLogic Servers must listen on the same port, as specified at the
end of the URL.

http://e-docs.bea.com/wls/docs60/adminguide/config.html
http://e-docs.bea.com/wls/docs60/adminguide/config.html

	Copyright
	Contents
	1 Introduction to WebLogic JNDI
	Overview of JNDI in WebLogic Server

	2 Programming with WebLogic JNDI
	Using WebLogic JNDI from a Java Client
	Setting Up JNDI Environment Properties for the InitialContext
	Creating a Context Using a Hash Table
	Creating a Context Using a WebLogic Environment Object
	Creating a Context from a Server-Side Object
	Associating a WebLogic User with a Security Context

	Using the Context to Look Up a Named Object
	Using a Named Object to Get an Object Reference
	Closing the Context
	Using WebLogic JNDI in a Clustered Environment
	Clustering J2EE Services
	Making Custom Objects Available to a WebLogic Server Cluster
	Performance
	Availability

	Data Caching Design Pattern
	Exactly-Once-Per-Cluster Design Pattern
	Using WebLogic JNDI from a Client in a Clustered Environment

