
WebLogic Server
Installing and Using

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : A p r i l 9 , 2 0 0 1

BEA

WebLogic jDriver for
Microsoft SQL Server

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Installing and Using WebLogic jDriver for Microsoft SQL Server

Part Number Document Date Software Version

N/A April 9, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience..v

e-docs Web Site...v

How to Print the Document... vi

Related Information... vi

Contact Us! .. vi

Documentation Conventions .. vii

1. Installing WebLogic jDriver for Microsoft SQL Server
Overview ... 1-2

Before You Begin.. 1-2

Which Version Should I Use?.. 1-2

WebLogic jDriver for Microsoft SQL Server Versions 6.5 and 7.0... 1-2

WebLogic jDriver for Microsoft SQL Server Version 7.0 and 2000 . 1-3

Evaluation Licenses.. 1-3

Installation Procedure.. 1-3

Using Connection Pools .. 1-4

Configuring a Connection Pool with WebLogic Server 1-4

Using the Connection Pool in Your Application 1-4

Client-Side Applications ... 1-5

Server-Side Applications .. 1-5

Verifying Your SQL Server Installation ... 1-5

Setting a Port for SQL Server Connections... 1-6

Verifying the JDBC Driver With dbping .. 1-7

For More Information.. 1-8

Documentation ... 1-8

Code Examples... 1-8
Installing and Using WebLogic jDriver for Microsoft SQL Server iii

2. Using WebLogic jDriver for Microsoft SQL Server
What Is the WebLogic jDriver for Microsoft SQL Server? 2-1

Connecting to an SQL Server DBMS.. 2-2

Using A Language Other Than English for Connection 2-2

Connection Procedure .. 2-3

Connection Example .. 2-4

Adding Connection Options ... 2-5

Manipulating Data with JDBC .. 2-5

Making Simple SQL Queries ... 2-5

Inserting, Updating, and Deleting Records .. 2-6

Creating and Using Stored Procedures and Functions 2-7

Disconnecting and Closing Objects.. 2-10

Codeset Support... 2-10

JDBC Extensions ... 2-11

Support for JDBC Extended SQL .. 2-11

Querying Metadata ... 2-13

Sharing a Connection Object in Multithreaded Applications................... 2-13

Execute Keyword with Stored Procedures ... 2-13

JDBC Limitations .. 2-14

cursorName() Method Not Supported ... 2-14

java.sql.TimeStamp Limitations... 2-14

Changing autoCommit Mode ... 2-14

Statement.executeWriteText() Methods Not Supported 2-15

References ... 2-15

Related Documentation .. 2-15

Code Examples... 2-16
iv Installing and Using WebLogic jDriver for Microsoft SQL Server

About This Document

This document describes how to install and develop applications using WebLogic
jDriver for Microsoft SQL Server, BEA’s type-2 Java Database Connectivity (JDBC)
driver for the Microsoft SQL Server Database management system.

This document is organized as follows:

� Chapter 1, “Installing WebLogic jDriver for Microsoft SQL Server.”

� Chapter 2, “Using WebLogic jDriver for Microsoft SQL Server.”

Audience

This document is written for application developers who are interested in building
applications requiring database access. It is assumed that readers are familiar with
SQL, general database concepts, and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.
Installing and Using WebLogic jDriver for Microsoft SQL Server v

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The most up-to-date version of this document, Installing and Using WebLogic jDriver
for Microsoft SQL Server, is also available in HTML format on the BEA e-docs
website.To access the online HTML version on the BEA Web site, use the following
link:

Installing and Using WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html

You can view or print the PDF versions of these documents using Adobe Acrobat,
version 3.0 or higher.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.
vi Installing and Using WebLogic jDriver for Microsoft SQL Server

http://www.adobe.com
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Installing and Using WebLogic jDriver for Microsoft SQL Server vii

http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
viii Installing and Using WebLogic jDriver for Microsoft SQL Server

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Installing and Using WebLogic jDriver for Microsoft SQL Server ix

x Installing and Using WebLogic jDriver for Microsoft SQL Server

CHAPTER
1 Installing WebLogic
jDriver for Microsoft
SQL Server

This document tells you how to install WebLogic jDriver for Microsoft SQL Server,
BEA’s pure-Java Type 4 JDBC driver for Microsoft SQL Server, and provides
information about the following topics:

� Overview

� Before You Begin

� Installation Procedure

� Using Connection Pools

� Verifying Your SQL Server Installation

� Setting a Port for SQL Server Connections

� Verifying the JDBC Driver With dbping

� For More Information
Installing and Using WebLogic jDriver for Microsoft SQL Server 1-1

1 Installing WebLogic jDriver for Microsoft SQL Server
Overview

WebLogic jDriver for Microsoft SQL Server is a 100% pure Java implementation of
the Java Database Connectivity (JDBC) API, the industry standard for relational
database access from Java clients.It provides Java clients with direct access to
Microsoft SQL Server. The driver is available in two versions: one for SQL Server
versions 6.5 and 7.0, and another for SQL Server 7.0 only. Both versions function
identically, except as noted in the following section, Before You Begin.

Like all Type 4 JDBC drivers, WebLogic jDriver for Microsoft SQL Server is pure
Java; it requires no vendor-supported client libraries. WebLogic jDriver for Microsoft
SQL Server communicates directly with SQL Server through a TCP/IP network, using
the SQL Server Tabular Data Stream protocol, so DB-Library does not have to be
installed on a client computer.

Before You Begin

This section describes the differences between two versions of WebLogic jDriver for
Microsoft SQL Server.

Which Version Should I Use?

BEA offers two versions of the WebLogic jDriver for Microsoft SQL Server drivers.
One version supports Microsoft SQL Server versions 6.5 and 7.0, and the other version
supports Microsoft SQL Server version 7.0 and 2000.

WebLogic jDriver for Microsoft SQL Server Versions 6.5 and 7.0

� Supports SQL Server Versions 6.5.

� Supports SQL Server 7.0 with the following restrictions:
1-2 Installing and Using WebLogic jDriver for Microsoft SQL Server

Installation Procedure
� The SQL Server responds as if the connection were coming from an SQL
Server version 6.5 client, and implements the semantics of SQL Server
version 6.5. For instance, when executing a CREATE TABLE SQL statement,
the DBMS, by default, creates columns that do not allow null values. (This
behavior is normal for SQL Server version 6.5.)

� New SQL Server 7.0 data types are not supported.

WebLogic jDriver for Microsoft SQL Server Version 7.0 and 2000

� Supports SQL Server 7.0 and 2000. The SQL Server responds to requests made
from this driver as it does to requests from an SQL Server version 7.0 and 2000
client and implements the semantics of an SQL Server 7.0 and 2000. For
instance (in contrast to the semantics of SQL Server version 6.5), the DBMS, by
default, creates columns that allow null values.

� Supports new data types introduced with SQL Server Version 7.0 and 2000.

Evaluation Licenses

The Oracle licensing functionality is included in the license file located in the BEA
home directory where you installed WebLogic Server. For example:

c:\bea\license.bea

Installation Procedure

Microsoft SQL Server is bundled with your WebLogic Server distribution. For
Version 7.0 and 2000, the weblogic.jar file includes the Micrososft SQL Server
classes. However, if you are using Version 6.5, you must pre-pend the
mssqlserver4v65.jar file in the classpath as follows:

$ set
CLASSPATH=%CLASSPATH%;c:/bea/weblogic/lib/mssqlserver4v65.JAR;c:/
bea/weblogic600/lib/weblogic.jar.
Installing and Using WebLogic jDriver for Microsoft SQL Server 1-3

1 Installing WebLogic jDriver for Microsoft SQL Server
Using Connection Pools

If you are using WebLogic jDriver for Microsoft SQL Server with either WebLogic
Server or WebLogic Express, you can set up a pool of connections to your SQL Server
DBMS that will be established when WebLogic Server is started. Because the
connections are shared among users, these connection pools eliminate the overhead of
opening a new database connection for each user.

Your application then uses a multitier, or Type 3, JDBC driver, such as the WebLogic
Pool, JTS or RMI driver to connect to WebLogic Server. WebLogic Server then uses
WebLogic jDriver for Microsoft SQL Server and one of the existing connections from
the pool to connect to the SQL Server database on behalf of your application.

Configuring a Connection Pool with WebLogic Server

1. Include the WebLogic jDriver for Microsoft SQL Server classes in the WebLogic
classpath used to start WebLogic Server. For more information, see Starting and
Stopping WebLogic Servers in the Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html.

2. Use the Administration Console to set connection pools. To read about
connection pools, see Connection Pools in the Administration Guide.

3. Start WebLogic Server.

Using the Connection Pool in Your Application

To use a connection pool, you must first establish a database connection. How you
establish that connection depends on whether the application in which you want to use
the connection pool as a client-side or a server-side application.
1-4 Installing and Using WebLogic jDriver for Microsoft SQL Server

http://e-docs.bea.com/wls/docs60/adminguide/startstop.html
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html#connection_pools

Verifying Your SQL Server Installation
Client-Side Applications

To use a connection pool in a client-side application, establish the database connection
by using the WebLogic RMI driver. For more information, see “Using WebLogic
Multitier JDBC Drivers” in Programming WebLogic JDBC.

Server-Side Applications

To use a connection pool in a server-side application (such as a servlet), establish your
database connection by using the WebLogic pool or jts drivers. For more
information, see:

� “Programming Tasks“ in Programming WebLogic HTTP Servlets

Verifying Your SQL Server Installation

Note: Verify that you are using version 6.5 or newer of Microsoft SQL Server. Older
versions of SQL Server do not properly support JDBC metadata functions and
have limited data type support.

To connect to SQL Server, you need the following information:

� Username and password of a valid SQL Server account

� Host name or IP number of the machine on which the SQL Server is running

� Address of the TCP/IP port at which the DBMS is listening for connection
requests

For Microsoft SQL Server, the default port number is 1433. Servers, however,
can be configured to listen on any port number. Verify the port number from
your configuration files. If you need help setting the port number, see the
following section, “Setting a Port for SQL Server Connections.”
Installing and Using WebLogic jDriver for Microsoft SQL Server 1-5

http://e-docs.bea.com/wls/docs60/jdbc/rmidriver.html
http://e-docs.bea.com/wls/docs60/jdbc/rmidriver.html
http://e-docs.bea.com/wls/docs60/servlet/progtasks.html

1 Installing WebLogic jDriver for Microsoft SQL Server
Setting a Port for SQL Server Connections

You set the host name and port for SQL Server connections by creating an entry in the
SQL Server configuration files. In the configuration files, a logical server name is
associated with a server machine name and port number. WebLogic jDriver for
Microsoft SQL Server does not use a logical server name; it uses only the host name
and the port number.

You must have administrator privileges to change your SQL Server settings. To set the
port:

1. Run MS SQL Server Setup.

2. Select Change Network Support.

3. Select TCP/IP.

4. Select the port you want to use, such as 1433.

Once you have set the port, you can verify, by using telnet, that the server is listening
on that port. Enter the following command:

$ telnet hostname_or_IP_address port

For example, to check whether the SQL Server is listening on port 1433 of a computer
named myhost, type:

$ telnet myhost 1433

If the server is not listening on the port, telnet displays an error message. If the server
is listening on the port, telnet displays nothing; eventually, the host drops the
connection.

You can test your login information by entering the following command:

$ isql -Uusername -Ppassword -Sserver
1-6 Installing and Using WebLogic jDriver for Microsoft SQL Server

Verifying the JDBC Driver With dbping
Verifying the JDBC Driver With dbping

You can use dbping, a WebLogic Java application, to verify that WebLogic jDriver
for Microsoft SQL Server can connect to your SQL Server. To use dbping, make sure
that the classes for WebLogic jDriver for Microsoft SQL Server are included in your
CLASSPATH, as described in Installation Procedure earlier in this document. Then type
the following command:

$ java utils.dbping MSSQLSERVER4 username password
[database@]host[:port]

The arguments in this command line are defined as follows:

� username is the name of the database user.

� password is the user’s password.

� database (optional) is the SQL Server database to be used.

� host is the name or IP number of the computer on which SQL Server is
running.

� port (optional) is the TCP/IP port on which the SQL Server is listening.

For example, the following command pings an SQL Server database called pubs on a
computer named myhost, using the default TCP/IP port, the sa login, and a null
password:

$ java utils.dbping MSSQLSERVER4 sa "" pubs@myhost

The output from the command includes code that you can use to connect to the
database in a Java program.

For more information about JDBC connections, see “Using WebLogic jDriver for
Microsoft SQL Server” in Installing and Using WebLogic jDriver for Microsoft SQL
Server.
Installing and Using WebLogic jDriver for Microsoft SQL Server 1-7

http://e-docs.bea.com/wls/docs60/mssqlserver4/API_jmsq4.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/API_jmsq4.html

1 Installing WebLogic jDriver for Microsoft SQL Server
For More Information

This section provides references to documents and code examples that maybe helpful
to you.

Documentation

� API reference at
http://www.weblogic.com/docs60/samples/examples/jdbc/package-summary.htm
l.

� Using WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs60/jdbc/API-jmsq4.

� Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/index.html.

Code Examples

WebLogic Server provides several code examples to help you get started. Code
examples are located in samples/examples/jdbc/mssqlserver4 directory of your
WebLogic Server installation.
1-8 Installing and Using WebLogic jDriver for Microsoft SQL Server

http://e-docs.bea.com/wls/docs60/mssqlserver4/API_jmsq4.html
http://e-docs.bea.com/wls/docs60/jdbc/index.html

CHAPTER
2 Using WebLogic jDriver
for Microsoft SQL
Server

This chapter explains how to set up and use WebLogic jDriver for Microsoft SQL
Server, as described in the following topics:

� What Is the WebLogic jDriver for Microsoft SQL Server?

� Connecting to an SQL Server DBMS

� Codeset Support

� JDBC Extensions

� JDBC Limitations

� References

What Is the WebLogic jDriver for Microsoft
SQL Server?

WebLogic jDriver for Microsoft SQL Server is a Type 4, pure-Java, two-tier driver. It
requires no client-side libraries because it connects to the database via a proprietary
vendor protocol at the wire-format level.
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-1

2 Using WebLogic jDriver for Microsoft SQL Server
A Type 4 JDBC driver is similar to a Type 2 driver in many other ways. Type 2 and
Type 4 drivers are two-tier drivers — each client requires an in-memory copy of the
driver to support its connection to the database. For more information on the types of
JDBC drivers, see Introduction to WebLogic JDBC in Programming WebLogic JDBC
at http://e-docs.bea.com/wls/docs60/jdbc/intro.html.

Within the WebLogic environment, you can use either a Type 2 or a Type 4 two-tier
driver to connect the WebLogic Server to a database, and then one of WebLogic’s
multitier drivers, the RMI, JTS, or Pool driver. These are pure-Java Type 3 multitier
JDBC drivers, for client connections to the WebLogic Server.

The API reference for JDBC, for which this driver is compliant, is available online at
JavaSoft at http://www.java.sun.com.

Note: WebLogic jDriver for Microsoft SQL Server has been known under two other
names, FastForward from Connect Software and, subsequently, as
jdbcKona/MSSQLServer.

Connecting to an SQL Server DBMS

The following topics describe how to connect WebLogic jDriver for Microsoft SQL
Server to WebLogic Server.

Using A Language Other Than English for Connection

For Microsoft SQL Server databases that use a language other than English, you must
specify the language property to reflect the language you use. For example, to specify
the French language, add the following property when making a connection:

props.put(“language”,”francais”)

Failure to specify this property may result in exceptions, such as a “Primary Key
Constraint Violation.”
2-2 Installing and Using WebLogic jDriver for Microsoft SQL Server

http://e-docs.bea.com/wls/docs60/jdbc/intro.html
http://www.JavaSoft.com

Connecting to an SQL Server DBMS
Connection Procedure

Complete the following procedure to set up your application to connect to WebLogic
Server using WebLogic jDriver for Microsoft SQL Server.

In steps 1 and 3, describe the JDBC driver. In the first step, you use the full package
name of the driver, which is dot-delimited. In the third step, you identify the driver
with its URL, which is colon-delimited. The URL must include the following string:
weblogic:jdbc:mssqlserver4. It may also include other information, such as the
server host name and the database name.

1. Load and register the JDBC driver by doing the following:

a. Call Class.forName().newInstance() with the full class name of the
WebLogic jDriver for Microsoft SQL Server JDBC driver class.

b. Cast it to a java.sql.Driver object.

For example:

Driver myDriver = (java.sql.Driver)Class.forName
("weblogic.jdbc.mssqlserver4.Driver").newInstance();

2. Create a java.util.Properties object describing the connection. This object
contains name-value pairs containing information such as username, password,
database name, server name, and port number. For example:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("db", "myDB");
props.put("server", "myHost");
props.put("port", "8659");

3. Create a JDBC Connection object, which becomes an integral piece in your
JDBC operations, by calling the Driver.connect() method. This method takes,
as its parameters, the URL of the driver and the java.util.Properties object
you created in step 2. For example:

Connection conn =
myDriver.connect("jdbc:weblogic:mssqlserver4", props);
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-3

2 Using WebLogic jDriver for Microsoft SQL Server
Connection Example

The following sample code shows how to use a Properties object to connect to a
database named myDB on a server named myHost:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("db", "myDB");
props.put("server", "myHost");
props.put("port", "8659");

Driver myDriver = (Driver)

Class.forName("weblogic.jdbc.mssqlserver4.Driver").newInstance();
Connection conn =
myDriver.connect("jdbc:weblogic:mssqlserver4", props);

You can combine the db, server, and port properties into one server property, as
shown in the following example:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("server", "myDB@myHost:8659");
// props.put("appname", "MyApplication");
// props.put("hostname", "MyHostName");

The last two properties, appname and hostname, are optional and are passed to the
Microsoft SQL server, where they can be read in the sysprocesses table under the
column names program_name and hostname. The hostname value is prepended with
WebLogic.

Driver myDriver = (java.sql.Driver)
Class.forName

("weblogic.jdbc.mssqlserver4.Driver").newInstance();
Connection conn =

myDriver.connect("jdbc:weblogic:mssqlserver4", props);

Various methods can be used to supply information in the URL or in the Properties
object. The information you pass in the URL of the driver does not need to be included
in the Properties object.
2-4 Installing and Using WebLogic jDriver for Microsoft SQL Server

Manipulating Data with JDBC
Adding Connection Options

You can also add connection options to the end of the connection URL. Separate the
URL from the connection options with a question mark, and separate options with
ampersands, as shown in the following example:

String myUrl =
"jdbc:weblogic:mssqlserver4:db@myhost:myport?

user=sa&password=";

To find out more about URL options at run time, use Driver.getPropertyInfo().

Manipulating Data with JDBC

This section is a brief introduction to data manipulation with JDBC, and provides basic
procedures for implementing the following basic tasks in an application:

� Making Simple SQL Queries

� Inserting, Updating, and Deleting Records

� Creating and Using Stored Procedures and Functions

� Disconnecting and Closing Objects

For more information, see your Microsoft SQL Server documentation and
Java-oriented texts about JDBC.

Note: The WebLogic jDriver for Microsoft SQL Server cannot handle question
marks (“?”) in table names or column names. To avoid errors, do not use
question marks in the table names and column names in your database.

Making Simple SQL Queries

The most fundamental task in database access is to retrieve data. With WebLogic
jDriver for Microsoft SQL Server, you can retrieve data by completing the following
three-step procedure:
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-5

2 Using WebLogic jDriver for Microsoft SQL Server
1. Create a Statement to send an SQL query to the DBMS.

2. Execute the Statement.

3. Retrieve the results into a ResultSet. In this example, we execute a simple query
on the Employee table (alias emp) and display data from three of the columns. We
also access and display metadata about the table from which the data was
retrieved. Note that we close the Statement at the end.

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
ResultSet rs = stmt.getResultSet();

while (rs.next()) {
System.out.println(rs.getString("empid") + " - " +

rs.getString("name") + " - " +
rs.getString("dept"));

}

ResultSetMetaData md = rs.getMetaData();

System.out.println("Number of columns: " +
md.getColumnCount());

stmt.close();

Inserting, Updating, and Deleting Records

In this section we show how to perform three common database tasks: inserting,
updating, and deleting records from a database table. We use a JDBC
PreparedStatement for these operations: first we create the PreparedStatement; then we
execute and close it.

A PreparedStatement (subclassed from JDBC Statement) allows you to execute the
same SQL repeatedly with different values.

In the following sample code, we create a PreparedStatement. Note the use of the ?
syntax:

String inssql =
"insert into emp(empid, name, dept) values (?, ?, ?)";

PreparedStatement pstmt = conn.prepareStatement(inssql);
pstmt.setString(1, "12345");
pstmt.setString(2, "gumby");
2-6 Installing and Using WebLogic jDriver for Microsoft SQL Server

Manipulating Data with JDBC
pstmt.setString(3, "Cartoons");

Next, we use a PreparedStatement to update records. In the following example, we add
the value of the counter i to the current value of the dept field:

String updsql =
"update emp set dept = dept + ? where empid = ?";

PreparedStatement pstmt2 = conn.prepareStatement(updsql);

pstmt2.setString(1, "Cartoons");
pstmt2.setString(2, "12345);

Finally, we use a PreparedStatement to delete the records that we
added and then updated:

String delsql = "delete from emp where empid = ?";
PreparedStatement pstmt3 = conn.prepareStatement(delsql);
pstmt3.setString(1, "12345");

Creating and Using Stored Procedures and Functions

You can use WebLogic jDriver for Microsoft SQL Server to create, use, and drop
stored procedures and functions.

In the following sample code, we execute a series of Statements to drop a set of stored
procedures and functions from the database:

Statement stmt = conn.createStatement();
try {stmt.execute("drop procedure proc_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure func_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure proc_getresults");}
catch (SQLException e) {;}
stmt.close();

We use a JDBC Statement to create a stored procedure or function, and then we use a
JDBC CallableStatement (subclassed from Statement) with the JDBC ? syntax to set
IN and OUT parameters.
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-7

2 Using WebLogic jDriver for Microsoft SQL Server
Stored procedure input parameters are mapped to JDBC IN parameters, using the
CallableStatement.setXXX() methods, such as setInt(), and the JDBC
PreparedStatement ? syntax. Stored procedure output parameters are mapped to JDBC
OUT parameters, using the CallableStatement.registerOutParameter()
methods and JDBC PreparedStatement ? syntax. A parameter may be set to both IN

and OUT. If it is, calls to both setXXX() and registerOutParameter() on the same
parameter number must be made.

In the following example, we use a JDBC Statement to create a stored procedure and
then execute the stored procedure with a CallableStatement. We use the
registerOutParameter() method to set an output parameter for the squared value.

Statement stmt1 = conn.createStatement();
stmt1.execute

("CREATE OR REPLACE PROCEDURE proc_squareInt " +
"(field1 IN OUT INTEGER, field2 OUT INTEGER) IS " +
"BEGIN field2 := field1 * field1; field1 := " +
"field1 * field1; END proc_squareInt;");

stmt1.close();

String sql = "{call proc_squareInt(?, ?)}";
CallableStatement cstmt1 = conn.prepareCall(sql);

// Register out parameters
cstmt1.registerOutParameter(2, java.sql.Types.INTEGER);

Next, we use similar code to create and execute a stored function that squares an
integer:

Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +

"(field1 IN INTEGER) RETURN INTEGER IS " +
"BEGIN return field1 * field1; " +

"END func_squareInt;");
stmt2.close();

sql = "{ ? = call func_squareInt(?)}";
CallableStatement cstmt2 = conn.prepareCall(sql);

cstmt2.registerOutParameter(1, Types.INTEGER);
2-8 Installing and Using WebLogic jDriver for Microsoft SQL Server

Manipulating Data with JDBC
In the following example we use a stored procedure named sp_getmessages. (The
code for this stored procedure is not included with this example.) sp_getmessages
takes a message number as an input parameter and returns the message text, as an
output parameter, in a ResultSet. You must process all ResultSets returned by a stored
procedure using the Statement.execute() and Statement.getResult()methods
before OUT parameters and return status are available.

String sql = "{ ? = call sp_getmessage(?, ?)}";
CallableStatement stmt = conn.prepareCall(sql);

stmt.registerOutParameter(1, java.sql.Types.INTEGER);
stmt.setInt(2, 18000); // msgno 18000
stmt.registerOutParameter(3, java.sql.Types.VARCHAR);

First, we set up the three parameters to the CallableStatement:

1. Parameter 1 (output only) is the stored procedure return value.

2. Parameter 2 (input only) is the msgno argument to sp_getmessage.

3. Parameter 3 (output only) is the message text return for the message number.

Next, we execute the stored procedure and check the return value to determine whether
the ResultSet is empty. If it is not, we use a loop to retrieve and display its contents.

boolean hasResultSet = stmt.execute();
while (true)
{

ResultSet rs = stmt.getResultSet();
int updateCount = stmt.getUpdateCount();
if (rs == null && updateCount == -1) // no more results
break;

if (rs != null) {
// Process the ResultSet until it is empty
while (rs.next()) {
System.out.println
("Get first col by id:" + rs.getString(1));

}
} else {
// we have an update count
System.out.println("Update count = " +
stmt.getUpdateCount());

}
stmt.getMoreResults();

}

After we finish processing the ResultSet, the OUT parameters and return status
are available, as shown in the following example:
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-9

2 Using WebLogic jDriver for Microsoft SQL Server
int retstat = stmt.getInt(1);
String msg = stmt.getString(3);

System.out.println("sp_getmessage: status = " +
retstat + " msg = " + msg);

stmt.close();

Disconnecting and Closing Objects

You may want to call the commit() method to commit changes you have made to the
database before closing a connection.

When autocommit is set to true (the default JDBC transaction mode) each SQL
statement is its own transaction. After we created the Connection for these examples,
however, we set autocommit to false. In this mode, the Connection always has an
implicit transaction associated with it; any call to the rollback() or commit()
method ends the current transaction and start a new one. Calling commit() before
close() ensures that all transactions are completed before the Connection is closed.

Just as you close Statements, PreparedStatements, and CallableStatements when you
have finished working with them, you should always call the close() method on the
connection as final cleanup in your application, in a finally {} block. You should
catch exceptions and deal with them appropriately. The final two lines of this example
contain calls to commit and close the connection:

conn.commit();
conn.close();

Codeset Support

As a Java application, WebLogic jDriver for Microsoft SQL Server handles character
strings as Unicode strings. To exchange character strings with a database that may
operate with a different codeset, the driver attempts to detect the codeset of the
database and convert Unicode strings using a character set supported by the JDK. If
there is no direct mapping between the codeset of your database and the character sets
provided with the JDK, you can set the weblogic.codeset connection property to the
2-10 Installing and Using WebLogic jDriver for Microsoft SQL Server

JDBC Extensions
most appropriate Java character set. For example, to use the cp932 codeset, create a
Properties object and set the weblogic.codeset property before calling
Driver.connect(), as shown in the following sample code:

java.util.Properties props = new java.util.Properties();
props.put("weblogic.codeset", "cp932");
props.put("user", "sa");
props.put("password", "");

String connectUrl = "jdbc:weblogic:mssqlserver4:myhost:1433";

Driver myDriver = (Driver)Class.forName
("weblogic.jdbc.mssqlserver4.Driver").newInstance();

Connection conn = myDriver.connect(connectUrl, props);

JDBC Extensions

This section describes the following extensions to JDBC:

� Support for JDBC Extended SQL

� Querying Metadata

� Sharing a Connection Object in Multithreaded Applications

� Execute Keyword with Stored Procedures

Support for JDBC Extended SQL

The JavaSoft JDBC specification includes SQL Extensions, also called SQL Escape
Syntax. WebLogic jDriver for Microsoft SQL Server supports and Extended SQL.
Extended SQL provides access to common SQL extensions in a way that is portable
between DBMSs.

For example, the function to extract the day name from a date is not defined by the SQL
standards. For Oracle, the SQL is:

select to_char(date_column, 'DAY') from table_with_dates
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-11

2 Using WebLogic jDriver for Microsoft SQL Server
Using Extended SQL, you can retrieve the day name for both DBMSs as follows:

select {fn dayname(date_column)} from table_with_dates

The following example code demonstrates several features of Extended SQL:

String query =
"-- This SQL includes comments and " +

"JDBC extended SQL syntax.\n" +
"select into date_table values(\n" +
" {fn now()}, -- current time \n" +
" {d '1997-05-24'}, -- a date \n" +
" {t '10:30:29' }, -- a time \n" +
" {ts '1997-05-24 10:30:29.123'}, -- a timestamp\n" +
" '{string data with { or } will not be altered}'\n" +
"-- Also note that you can safely include" +

" { and } in comments or\n" +
"-- string data.";
Statement stmt = conn.createStatement();
stmt.executeUpdate(query);

Extended SQL is delimited with curly braces ({}) to differentiate it from common
SQL. Comments are preceded by two hyphens, and are ended by a newline (\n). The
entire Extended SQL sequence, including comments, SQL, and Extended SQL, is
placed within double quotes and passed to the execute() method of a Statement
object.

The following code sample shows how Extended SQL can be used as part of a
CallableStatement:

CallableStatement cstmt =
conn.prepareCall("{ ? = call func_squareInt(?)}");

The following example shows how you can nest extended SQL expressions:

select {fn dayname({fn now()})}

You can retrieve lists of supported Extended SQL functions from a DatabaseMetaData
object. The following example shows how to list the functions supported by a JDBC
driver:

DatabaseMetaData md = conn.getMetaData();
System.out.println("Numeric functions: " +

md.getNumericFunctions());
System.out.println("\nString functions: " +

md.getStringFunctions());
System.out.println("\nTime/date functions: " +
2-12 Installing and Using WebLogic jDriver for Microsoft SQL Server

JDBC Extensions
md.getTimeDateFunctions());
System.out.println("\nSystem functions: " +

md.getSystemFunctions());
conn.close();

For a description of Extended SQL, see Chapter 11 of the JDBC 1.2 specification at
JavaSoft, available at: http://splash.javasoft.com/jdbc for a description of
Extended SQL.

Querying Metadata

You can query metadata for the current database only. The metadata methods call the
corresponding SQL Server stored procedures, which only operate on the current
database. For example, if the current database is master, only the metadata relative to
master is available on the connection.

Sharing a Connection Object in Multithreaded
Applications

WebLogic jDriver for Microsoft SQL Server allows you to write multithreaded
applications in which multiple threads share a single Connection option. Each thread
can have an active Statement object. However, if you call Statement.cancel() on
one thread, SQL Server may cancel a Statement on a different thread. Which Statement
is cancelled depends on timing issues in the SQL Server. To avoid unexpected
cancellations, we recommend that you get a separate Connection for each thread.

Execute Keyword with Stored Procedures

A Transact-SQL feature allows you to omit the EXECUTE keyword on a stored
procedure when the stored procedure is the first command in the batch. However, when
a stored procedure has parameters, WebLogic jDriver for Microsoft SQL Server adds
variable declarations (specific to the JDBC implementation) before the procedure call.
Because of this [What’s this?variable declarations?], it is good practice to use the
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-13

http://splash.javasoft.com/jdbc

2 Using WebLogic jDriver for Microsoft SQL Server
EXECUTE keyword for stored procedures. Note that the JDBC extended SQL stored
procedure syntax, which does not include the EXECUTE keyword, is not affected by this
issue.

JDBC Limitations

This section describes the following limitations to JDBC:

� cursorName() Method Not Supported

� java.sql.TimeStamp Limitations

� Changing autoCommit Mode

� Statement.executeWriteText() Methods Not Supported

cursorName() Method Not Supported

The cursorName() method is not supported.

java.sql.TimeStamp Limitations

The java.sql.TimeStamp class in the JavaSoft JDK is limited to dates after 1970.
Earlier dates raise an exception. However, if you retrieve dates using getString(),
WebLogic jDriver for Microsoft SQL Server uses its own date class to overcome the
limitation.

Changing autoCommit Mode

Call Connection.setAutoCommit() with a true or false argument to enable or
disable chained transaction mode. When autoCommit is false, the WebLogic jDriver
for Microsoft SQL Server driver begins a transaction whenever the previous
2-14 Installing and Using WebLogic jDriver for Microsoft SQL Server

References
transaction is committed or rolled back. You must explicitly end your transactions with
a commit or rollback. If there is an uncommitted transaction when you call
setAutoCommit(), the driver rolls back the transaction before changing the mode, so
be sure to commit any changes before you call this method.

Statement.executeWriteText() Methods Not Supported

The WebLogic Type 2 JDBC drivers support an extension that allows you to write text
and image data into a row as part of an SQL INSERT or UPDATE statement without
using a text pointer. This extension, Statement.exexecuteWriteText() requires
the DB-Library native libraries, and thus is not supported by the WebLogic jDriver for
Microsoft SQL Server.

Use the following methods to read and write text and image data with streams:

� prepareStatement.setAsciiStream()

� prepareStatement.setBinaryStream()

� ResultSet.getAsciiStream()

� ResultSet.getBinaryStream()

References

This section provides references to documents and code examples that may help you
learn about using BEA WebLogic jDriver for Microsoft SQL Server.

Related Documentation

� Introduction to JDBC in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/intro.html.

Contains information about other WebLogic JDBC drivers, additional
documentation, support resources, and more.
Installing and Using WebLogic jDriver for Microsoft SQL Server 2-15

2 Using WebLogic jDriver for Microsoft SQL Server
� Using connection pools with server-side Java in Programming Tasks in
Programming WebLogic HTTP Servlets at {DOCROOT}/servlet/progtasks.html.

� Managing JDBC Connectivity in Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html.

Describes administrative tasks for configuring JDBC connectivity, such as
creating connection pools, datasources, and multipools.

� JavaSoft’s JDBC tutorial
http://java.sun.com/docs/books/tutorial/jdbc/index.html.

Code Examples

To help you get started, WebLogic Server provides several code examples for using
WebLogic jDriver for Microsoft SQL Server. The examples are located in the
samples/examples/jdbc/msqlserver4 directory of your WebLogic Server
installation.
2-16 Installing and Using WebLogic jDriver for Microsoft SQL Server

http://e-docs.bea.com/wls/docs60/servlet/progtasks.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Installing WebLogic jDriver for Microsoft SQL Server
	Overview
	Before You Begin
	Which Version Should I Use?
	WebLogic jDriver for Microsoft SQL Server Versions 6.5 and 7.0
	WebLogic jDriver for Microsoft SQL Server Version 7.0 and 2000

	Evaluation Licenses

	Installation Procedure
	Using Connection Pools
	Configuring a Connection Pool with WebLogic Server
	Using the Connection Pool in Your Application
	Client-Side Applications
	Server-Side Applications

	Verifying Your SQL Server Installation
	Setting a Port for SQL Server Connections
	Verifying the JDBC Driver With dbping
	For More Information
	Documentation
	Code Examples

	2 Using WebLogic jDriver for Microsoft SQL Server
	What Is the WebLogic jDriver for Microsoft SQL Server?
	Connecting to an SQL Server DBMS
	Using A Language Other Than English for Connection
	Connection Procedure
	Connection Example
	Adding Connection Options

	Manipulating Data with JDBC
	Making Simple SQL Queries
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects

	Codeset Support
	JDBC Extensions
	Support for JDBC Extended SQL
	Querying Metadata
	Sharing a Connection Object in Multithreaded Applications
	Execute Keyword with Stored Procedures

	JDBC Limitations
	cursorName() Method Not Supported
	java.sql.TimeStamp Limitations
	Changing autoCommit Mode
	Statement.executeWriteText() Methods Not Supported

	References
	Related Documentation
	Code Examples

