
WebLogic Server
Programming

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 0

WebLogic Security

BEA

D o c u m e n t D a t e : M a r c h 3 , 2 0 0 1

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic Security

Document Edition Date Software Version

N/A March 3, 2001 BEA WebLogic Server Version 6.0

Programming WebLogic Security iii

Contents

About This Document
What You Need to Know ... vii

e-docs Web Site... viii

How to Print the Document... viii

Contact Us! .. viii

Documentation Conventions ... ix

1. Introduction to WebLogic Security
WebLogic Security Features ... 1-1

WebLogic Security Architecture... 1-3

Connections with Web Browsers ... 1-5

Connections with Servlets, JSPs, EJBs, RMI Objects and Java Applications .
1-7

Connections with Administration Servers.. 1-9

Using WebLogic Server as a Client to WebLogic Enterprise 1-11

2. Security Fundamentals
Resources... 2-2

Security Realms... 2-2

Users .. 2-7

Groups ... 2-7

ACLs and Permissions .. 2-8

SSL Protocol.. 2-9

Authentication Mechanisms .. 2-11

Digital Certificates... 2-12

Certificate Authority.. 2-13

Supported Public Key Algorithms... 2-14

iv Programming WebLogic Security

Supported Symmetric Key Algorithms ... 2-14

Supported Message Digest Algorithms ... 2-15

Supported Cipher Suites .. 2-16

3. Securing a WebLogic Server Deployment
Why is Security Important for WebLogic Server? .. 3-2

Determine the Security Needs of Your WebLogic Server Deployment............ 3-2

Secure the Machine on Which WebLogic Server Runs 3-3

Design Network Connections Carefully.. 3-4

Manage the WebLogic Server Development and Deployment Environments.. 3-7

Use Encryption .. 3-7

Use the SSL Protocol... 3-9

Prevent Denial of Service Attacks... 3-9

Use Protected EJBs to Limit Access to Business Logic.................................. 3-10

Use ACLs .. 3-11

Use the Appropriate Security Realm ... 3-12

Secure Your Database.. 3-12

Use Auditing.. 3-13

4. Programming with the WebLogic Security SPI
Before You Begin .. 4-1

WebLogic Security SPI ... 4-2

Using JAAS Authentication .. 4-3

Using JNDI Authentication ... 4-14

Using Mutual Authentication .. 4-16

Mapping a Digital Certificate to a WebLogic Server User 4-20

Using Mutual Authentication with Other WebLogic Servers 4-23

Using Mutual Authentication with Applets.. 4-24

Using Mutual Authentication with Servlets ... 4-25

Using Custom ACLs.. 4-27

Writing a Custom Security Realm... 4-29

Define a Class for Users ... 4-32

Define a Class for Groups .. 4-33

Define Enumeration Classes for Users and Groups 4-35

Define a Class for the Custom Security Realm .. 4-37

Programming WebLogic Security v

Using Authorization in a Custom Security Realm 4-43

Auditing Security Events... 4-44

Filtering Network Connections ... 4-45

vi Programming WebLogic Security

Programming WebLogic Security vii

About This Document

This document introduces concepts associated with the BEA WebLogic Server™
security features, explains how to use those features to make your WebLogic Server
deployment secure, and provides a guide to application programming interfaces (APIs)
in the WebLogic Security Service Provider Interface (SPI).

This document covers the following topics:

� Chapter 1, “Introduction to WebLogic Security,” presents an overview of the
features in WebLogic Security.

� Chapter 2, “Security Fundamentals,” presents a detailed discussion of the
concepts associated with the security features in WebLogic Server.

� Chapter 3, “Securing a WebLogic Server Deployment,” describes how to secure
your WebLogic Server deployment and how to thwart common security attacks.

� Chapter 4, “Programming with the WebLogic Security SPI,” describes how to
define a security policy for WebLogic Server and how to connect to WebLogic
Server in a secure manner.

What You Need to Know

This document is intended for programmers who want to incorporate security into their
WebLogic Server deployment.

viii Programming WebLogic Security

e-docs Web Site

The BEA WebLogic Server product documentation is available on the BEA Systems,
Inc. corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Server and include the release number.

http://e-docs.bea.com
http://www.adobe.com/

Programming WebLogic Security ix

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSUPPORT at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

www.bea.com

x Programming WebLogic Security

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

import java.io.Serializable;

public String getName();

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

Programming WebLogic Security xi

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii Programming WebLogic Security

Programming WebLogic Security 1-1

CHAPTER

1 Introduction to
WebLogic Security

This section describes the following topics:

� WebLogic Security Features

� WebLogic Security Architecture

� Using WebLogic Server as a Client to WebLogic Enterprise

WebLogic Security Features

Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised. Most security measures involve proof
material and data encryption. Proof material is typically a secret word or phrase that
gives a user access to a particular application or system. Data encryption is the
translation of data into a form that cannot be interpreted.

Distributed applications, such as those used for electronic commerce (e-commerce),
offer many access points at which malicious people can intercept data, disrupt
operations, or generate fraudulent input. As a business becomes more distributed there
is an increased probability that security attacks can be perpetrated. Accordingly, as a
business distributes its applications, it becomes increasingly important for the
distributed computing software upon which such applications are built to provide
security.

1 Introduction to WebLogic Security

1-2 Programming WebLogic Security

The security features provided WebLogic Server let you establish secure connections
from Web browsers, Java clients, and other WebLogic Servers to WebLogic Server. In
addition, WebLogic Server can be used as a client to WebLogic Enterprise over a
secure connection.

Specifically, WebLogic Server provides the following security features:

� Security realms which represent a logical grouping of Users, Groups, and ACLs
for the purpose of protecting WebLogic Server resources. You can use the
default security realm or one of a set of alternative security realms that allow
you to use Windows NT, UNIX, and LDAP security stores. In addition, custom
developed security realms are supported.

� Authentication of clients requesting access to WebLogic Server resources.
Authentication can be accomplished using a username password combination or
digital certificates where a client is authenticated using the identity inside of the
X.509 digital certificate provided to WebLogic Server as part of a Secure
Sockets Layer (SSL) connection.

� Authorization of Users and Groups through access control lists (ACLs).

� The Java Authentication and Authorization Service (JAAS) application
programming interface (API) for authentication. The JAAS implementation in
WebLogic Server provides LoginContext authentication and Subject
authorization. Support for JAAS authorization is not provided.

� Data integrity and confidentiality through the SSL protocol. Clients can establish
SSL sessions with WebLogic Server using the Hypertext Transfer Protocol
(HTTP), the BEA proprietary T3 protocol, or the Remote Method Invocation
(RMI) over Internet Inter-ORB (IIOP) protocol.

� Auditing of events such as failed login attempts, authentication requests, rejected
digital certificates and invalid ACLs.

� Filtering of client connections for the purpose of accepting or rejecting the client
request based the origin (host name or network address) or protocol of the client.

� Propagation of the security context from WebLogic Server security realms to
WebLogic Enterprise domains using WebLogic Enterprise Connectivity
(WLEC). This feature allows the propagation of security information about the
requesting WebLogic Server User to the WebLogic Enterprise domain over
network connections that are part of a trusted CORBA connection pool.

WebLogic Security Architecture

Programming WebLogic Security 1-3

For information about security in WebLogic EJBs, see Programming WebLogic
Enterprise JavaBeans.

For information about security in Web applications, see Deploying and Configuring
Web Applications.

WebLogic Security Architecture

The security architecture in WebLogic Server is based on the authorization and
authentication of Users. Figure 1-1 illustrates the security architecture in WebLogic
Server.

Figure 1-1 WebLogic Server Security Architecture

http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

1 Introduction to WebLogic Security

1-4 Programming WebLogic Security

Authentication is the first layer of security in the WebLogic Server environment.
Authentication is the process of verifying an entity’s identity before completing a
connection. Authentication protects who gets access to the WebLogic Server
environment.

The default authentication scheme for WebLogic Server is one-way authentication.
One-way authentication is common on the Internet where customers want to create
secure connections before they share personal data. When WebLogic Server receives
a client request, WebLogic Server authenticates the client by comparing the supplied
username and password against the usernames and passwords defined in the
WebLogic Server security realm. If the username and password can be validated, the
client is granted access to the WebLogic Server environment.

If the SSL protocol is used, the establishment of the secure connection requires
WebLogic Server to present its digital certificate chain to the client to prove its
identity. The client uses a set of digital certificates for certificate authorities it trusts to
verify the authenticity of the digital certificate presented by WebLogic Server. When
the SSL protocol on a WebLogic Server is configured for mutual authentication, the
client is also required to pass a chain of digital certificates that validates its identity.

Once in the WebLogic Server environment, authorization protects who has access to
the available resources. Authorization is based on the definition of Users and Groups
and the permissions assigned to the resources in WebLogic Server. A resource can be
an HTML file, a CGI program, an Enterprise JavaBean (EJB), a servlet, or a Java
Server Page (JSP). WebLogic Server uses security realms to logically organize Users,
Groups, and the ACLs for the resources. A WebLogic Server resource is protected
under only one security realm by an ACL in that security realm. A User must be
defined in a security realm in order to access any resources belonging to that security
realm.

When a User attempts to execute a method on a resource, the following steps are taken
to determine whether access is permitted:

1. If the resource is protected and the User has not previously been authenticated, the
User is requested to authenticate. If the authentication fails, the request is rejected.

2. WebLogic Server identifies the User invoking the method. If the user cannot be
determined, the request is rejected.

3. WebLogic Server determines the set of required permissions to invoke the
method on the WebLogic Server resource.

WebLogic Security Architecture

Programming WebLogic Security 1-5

4. If the invoking User has at least one of the required permission, WebLogic Server
allows the method to be invoked.

The following sections describe how WebLogic Server provides security for different
types of connections.

Connections with Web Browsers

Web browsers interact securely with WebLogic Server in the following manner:

1. A user invokes a resource in WebLogic Server by entering the URL for that
resource in a Web browser.

2. The Web server in WebLogic Server receives the request. WebLogic Server
provides its own Web server but also supports the use of Apache Server,
Microsoft Internet Information Server, and Netscape Enterprise Server as Web
servers.

3. The Web server checks whether the WebLogic Server resource is protected by an
ACL. If the WebLogic Server resource is protected, the Web server uses the
established HTTP connection to request a user ID and password from the user.

4. When the user’s Web browser receives the request from WebLogic Server, it
prompts the user for a user ID and password.

5. The Web browser sends the request again, along with the user ID and password.

6. The Web server forwards the request to the Web server plug-in. WebLogic Server
provides the following plug-ins for Web servers:

� Apache-Weblogic Server plug-in

� Netscape Server Application Programming Interface (NSAPI)

� Internet Information Server Application Programming Interface (ISAPI)

The Web server plug-in performs authentication by sending the request, via the
HTTP protocol, to the resource in WebLogic Server, along with the
authentication data (user ID and password) received from the user.

7. Upon successful authentication, WebLogic Server determines whether the user
has the permissions necessary to access the resource.

1 Introduction to WebLogic Security

1-6 Programming WebLogic Security

8. If authorization succeeds, the servlet engine fulfills the request. The servlet
engine resides within WebLogic Server.

9. Before invoking a method on the servlet, the servlet engine performs a security
check. During this check, the servlet engine extracts the User’s credentials from
the security context and verifies that the User is authorized to invoke the method
on the servlet.

Figure 1-2 illustrates the secure login process for Web browsers.

Figure 1-2 Secure Login for Web Browsers

The HTTPS protocol provides an additional level of security to this usage scenario.
Because the SSL protocol encrypts the data transmitted between the Web browser and
WebLogic Server, the user ID and password do not flow in the clear. Therefore,
WebLogic Server can authenticate a user while protecting that User’s password by
using the SSL protocol.

For more information, see the following sections:

WebLogic Security Architecture

Programming WebLogic Security 1-7

� Managing Security

� Configuring the Apache Server Plug-In

� Configuring the Microsoft-IIS Plug-In

� Configuring the Netscape Plug-In

Connections with Servlets, JSPs, EJBs, RMI Objects and
Java Applications

Servlets, JSPs, EJBs, RMI objects, and Java applications use the Java Authentication
and Authorization Service (JAAS) to authenticate WebLogic Server. JAAS is a
standard extension to the Java 2 Software Development Kit. The authentication
component of JAAS provides the ability to reliably and securely maintain client
identity, regardless of whether the code is running as a Java application, a JSP, an EJB,
an RMI object or a servlet. In WebLogic Server, JAAS is layered over the existing
Security Service Provider Interface (SPI) allowing the continued use of realm-based
authorization. This is necessary because WebLogic Server does not provide the
authorization component of JAAS. All authorization checking is done through the
underlying security realm.

When using JAAS authentication, Java clients enable the authentication process by
instantiating a LoginContext object which in turns references a Configuration object.
The Configuration object specifies the configured LoginModules to be used for client
authentication. The LoginModule object prompts for and verifies the client credentials.
It is important to understand that you need to write a LoginModule object for each type
of authentication mechanism you want to use with WebLogic Server. For example, if
you want to use mutual authentication, you need to provide a LoginModule object that
both requests and provides credentials.WebLogic Server does not supply any
LoginModule objects.

Cients (servlets, JSPs, EJBs, RMI objects, and Java applications) interact securely with
WebLogic Server in the following manner:

1. The client creates a LoginContext which instantiates a LoginModule object and a
CallbackHandler object.

� The LoginContext references a Configuration object which specifies the
LoginModules and their order of execution.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/adminguide/apache.html
http://e-docs.bea.com/wls/docs60/adminguide/isapi.html
http://e-docs.bea.com/wls/docs60/adminguide/nsapi.html

1 Introduction to WebLogic Security

1-8 Programming WebLogic Security

� The CallbackHandler object gathers input from users (such as a password or
the name of a digital certificate file) and passes it in turn to the
LoginModules.

2. The client invokes the login() method of the LoginContext object. The
login() method than invokes the specified LoginModules.

3. The LoginModule prompts for and verifies the client credentials.

4. Upon successful authentication, WebLogic Server determines whether the client
has the permission required to access the requested resource. The permission is
determined by the ACL for the resource as defined in the WebLogic Server
security realm.

5. Upon successful ACL authorization, the client request from the client is fulfilled
by WebLogic Server.

When using a LoginModule that implements password authentication, you can
configure WebLogic Server to use the SSL protocol. The SSL protocol encrypts the
data transmitted between the client and WebLogic Server so that the username and
password do not flow in the clear.

Figure 1-3 illustrates the secure login process for servlets, JSPs, EJBs, RMI objects,
and Java applications.

WebLogic Security Architecture

Programming WebLogic Security 1-9

Figure 1-3 Secure Login for Java Clients

WebLogic Server can function as a client to another WebLogic Server. In this scenario,
WebLogic Server has the same authentication options as a client.

Note: WebLogic Server still supports the JNDI method of passing authentication.
However, this functionality is being replaced with JAAS authentication.

For more information, see the following sections:

� Programming with the WebLogic Security SPI

� Managing Security

Connections with Administration Servers

In WebLogic Server, an Administration Server is a WebLogic Server that functions as
the central source of all configuration information. An Administration Server may
contain configuration information for one WebLogic Server or a cluster of WebLogic

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

1 Introduction to WebLogic Security

1-10 Programming WebLogic Security

Servers. It is important to protect the connection between the Administration Server
and the other WebLogic Servers in your environment from eavesdropping, tampering,
replay, and impersonation attacks.

When the SSL protocol and certificate authentication are used, the Administration
Server presents its digital certificate to the managed WebLogic Server whenever the
managed WebLogic Server is started. The managed WebLogic Server then
authenticates the Administration Server, using the information in the digital certificate.

Digital certificates for Administration Servers are provided by BEA. They are installed
during the installation of WebLogic Server in \wlserver6.0\config\mydomain.

By default the connection between the Administration Server and other WebLogic
Servers is not secure. The file containing usernames and passwords is not encrypted.
Usernames and passwords are sent in clear text over the connection, leaving
configuration information unprotected. For this reason, we recommend using the SSL
protocol and certificate authentication to protect the configuration information in the
Administration Server.

Figure 1-4 illustrates the secure login process between Administration Servers and
managed WebLogic Servers.

Figure 1-4 Secure Login for Managed and Administration Servers

Using WebLogic Server as a Client to WebLogic Enterprise

Programming WebLogic Security 1-11

For more information, see Managing Security.

Using WebLogic Server as a Client to
WebLogic Enterprise

The scope of security in a WebLogic Server security realm differs from that in a
WebLogic Enterprise domain. Each contains it own security store of Users and its own
access control. However, by using WebLogic Enterprise Connectivity, the identity of
a User authenticated in a WebLogic Server security realm can be used to form the
identity of an authenticated principal in a WebLogic Enterprise domain over a
connection that is part of a trusted CORBA connection pool. This functionality is
referred to as security context propagation.

Note: The propagation of security context in the WebLogic Server product is
unidirectional. It allows you to propagate a User’s identity in only one
direction: from a WebLogic Server security realm to a WebLogic Enterprise
domain.

Figure 1-5 illustrates how the propagation of the security context between the
WebLogic Server and the WebLogic Enterprise environments works.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

1 Introduction to WebLogic Security

1-12 Programming WebLogic Security

Figure 1-5 Propagation of the Security Context Between WebLogic Server and
WebLogic Enterprise

When propagating the security context, the security identity of a WebLogic Server
User is included as part of the service context of an IIOP request. This request is sent
to a WebLogic Enterprise domain over a network connection that is part of a pool of
WLEC connections. Each network connection in a WLEC connection pool is
authenticated using a defined User identity. Both password and certificate
authentication can be used to establish a WLEC connection pool.

The propagated security identity is used by the IIOP Listener/Handler to impersonate
a User identity in the WebLogic Enterprise domain. The impersonated identity is
represented as a pair of tokens: one for authorization and one for auditing. These
tokens are propagated to the target server application in the WebLogic Enterprise
domain, where they are used for authorization and auditing.

To facilitate the mapping of User identities, the IIOP Listener/Handler in WebLogic
Enterprise uses an authentication plug-in. This plug-in is responsible maps the User
identity into the authorization and auditing tokens. These tokens are propagated, in
turn, as part of the request being forwarded to the target CORBA or EJB object. The
target CORBA or EJB object can then use the tokens to determine information about
the initiator of the request, including the identity of the User and the Role or Group
name with which the User is associated.

Using WebLogic Server as a Client to WebLogic Enterprise

Programming WebLogic Security 1-13

The SSL protocol is used to protect the confidentiality and integrity of the request sent
from the WebLogic Server security realm. SSL encryption is provided both for IIOP
requests sent to CORBA objects in the WebLogic Enterprise domain, and for RMI on
IIOP requests sent to EJBs and RMI objects in the WebLogic Enterprise domain. To
protect a request, both WebLogic Connectivity and the WebLogic Enterprise
application must be configured to use the SSL protocol.

For more information, see the following sections:

� “Configuring Security Context Propagation” in Managing Security

� Using WebLogic Connectivity

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/wlec/index.html

1 Introduction to WebLogic Security

1-14 Programming WebLogic Security

Programming WebLogic Security 2-1

CHAPTER

2 Security Fundamentals

This section describes the following concepts behind WebLogic Server security:

� Resources

� Security Realms

� Users

� Groups

� ACLs and Permissions

� SSL Protocol

� Authentication Mechanisms

� Digital Certificates

� Certificate Authority

� Supported Public Key Algorithms

� Supported Symmetric Key Algorithms

� Supported Message Digest Algorithms

� Supported Cipher Suites

2 Security Fundamentals

2-2 Programming WebLogic Security

Resources

Resources are entities that are accessible from WebLogic Server, such as Enterprise
JavaBeans (EJBs), servlets, Java Server Pages (JSPs), connections, sockets, files, and
enterprise applications and resources, such as databases.

For each resource you want to protect in WebLogic Server, you must specify the
following:

� An ACL defining who may the resource

� The security realm to which the resource belongs

� An authentication mechanism that can verify users who request access to the
resource.

For more information, see Managing Security.

Security Realms

A security realm is a logical grouping of Users, Groups, and ACLs. A WebLogic
Server resource is protected under only one security realm and by a single ACL in that
security realm. A User must be defined in a security realm in order to access any
resources belonging to that realm. When a User attempts to access a particular
WebLogic Server resource, WebLogic Server tries to authenticate and authorize the
User by checking the ACL and permissions assigned the User in the relevant realm.
Figure 2-1 illustrates how realms work in WebLogic Server.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Security Realms

Programming WebLogic Security 2-3

Figure 2-1 Users, Groups, and ACLs in a WebLogic Server Realm

The default security realm in WebLogic Server is the File realm. When WebLogic
Server is started, the File realm creates User, Group, and ACL objects from properties
defined through the Administration Console in WebLogic Server and stored in the
fileRealm.properties file.

Note: The File realm is designed for use with 1,000 or fewer users. If you have more
that 1,000 users, we recommend using an alternate security realm.

WebLogic Server also provides support for developers who want must accommodate
special security situations. WebLogic Server allows you to use a security realm other
than the File realm by installing an alternate security realm or by writing your own
customized security realm. Alternate security realms can support some or all of the
authentication and authorization operations WebLogic Server requires of a realm.

WebLogic Server provides two realms: a primary realm and the backup realm. The
primary realm is always the Caching realm. The backup realm may be any of the
following: the File realm, an alternate security realm, or a custom security realm. The
primary and backup realms in WebLogic Server work together to fulfill client requests
with the proper authentication and authorization.

2 Security Fundamentals

2-4 Programming WebLogic Security

In the default scenario, a client request arrives at the WebLogic Server through the
Caching realm. The Caching realm forwards the request to the File realm for
authorization and authentication. When it receives the results of the realm lookups
(whether successful or unsuccessful), the Caching realm stores these results. It
maintains separate caches for User, Group, Permission, ACL, and authentication look
ups. You can selectively enable each type of cache, set the number of objects cached,
and specify the number of seconds a cached object is valid. Effectively, the Caching
realm makes the authentication and authorization process faster and more efficient.

If you use an alternate security realm or a custom security realm, the Caching realm
evaluates the client request, delegates it to the appropriate security realm, and caches
the results to make the next lookup faster. For example, you may be using an alternate
security realm that supports only authentication operations. When a client request is
received by WebLogic Server, the Caching realm contacts the alternate security realm
for authentication, and then the File realm for authorization.

Figure 2-2 illustrates how alternate security realms, the Caching realm, and the File
realm work together to authenticate and authorize users in a WebLogic Server
environment.

Security Realms

Programming WebLogic Security 2-5

Figure 2-2 Alternate Security Realms, the Caching Realm, and the File Realm
in WebLogic Server

WebLogic Server provides the following alternate security realms:

� LDAP Security Realm

Provides authentication through a Lightweight Directory Access Protocol
(LDAP) server which allows you to manage Users in one place, the LDAP
directory. When the LDAP security realm is used, the LDAP server authenticates
Users and Groups. If you are using the SSL protocol with WebLogic Server, the
LDAP Security Realm retrieves a User’s common name from its digital
certificate and searches the LDAP directory for that name. The LDAP Security
Realm does not verify the digital certificate, that verification is performed by the
SSL protocol.

The LDAP Security Realm currently supports Netscape Directory Server,
Microsoft Site Server, and Novell NDS.

Note: The LDAP security realm has been rewritten to provide improved
performance and configurability. BEA recommends upgrading your
WebLogic Server 6.0 installation to Service Pack 1.0 to take advantage of

2 Security Fundamentals

2-6 Programming WebLogic Security

this functionality. The rewritten LDAP security realm is available from the
BEA downloads page.

� Windows NT Security Realm

Uses Windows NT account information to authenticate Users. Users and Groups
defined through Windows NT can be used by WebLogic Server. You can use the
Administration Console to view this realm, but you must use the facilities
provided by Windows NT to defines Users and Groups.

� UNIX Security Realm

Executes a native program, wlauth, to authenticate Users and Groups using
UNIX login IDs and passwords. On some UNIX platforms, wlauth uses a
pluggable authentication module (PAM) that allows you to configure
authentication services in a UNIX platform without altering applications that use
those services. On UNIX platforms for which PAM is not available, wlauth uses
the standard login mechanism, including shadow passwords when they are
supported. You can use the Administration Console to view this realm, but you
must use the facilities provided by the UNIX platform to define Users and
Groups.

� RDBMS Security Realm

Reads Users, Groups, and ACLs from a database. The RDBMS Security realm is
provided as an example of a custom realm implementation that provides
authentication and authorization services for WebLogic Server.

For more information, see the following sections in Managing Security.

� “Specifying a Security Realm”

� “Configuring the Caching Realm”

� “Configuring the LDAP Security Realm”

� “Configuring the Windows NT Security Realm”

� “Configuring the UNIX Security Realm”

� “Configuring the RDBMS Security Realm”

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Users

Programming WebLogic Security 2-7

Users

Users are entities that use WebLogic Server, such as application end users, client
applications, and even other WebLogic Servers.

When a user wants to access WebLogic Server, it presents a username and a credential
(either a password or a digital certificate) through programmatic means to WebLogic
Server. If WebLogic Server can prove the identity of the User based on that username
and credential, WebLogic Server associates the User with a thread that executes code
on behalf of the User. Before the thread begins executing code, however, WebLogic
Server checks pertinent ACLs to make sure the User has the required permissions to
continue.

When defining a User in a WebLogic Server realm, you also define a password for that
User.In the past, usernames and passwords were stored in clear text in a WebLogic
Server security realm. Now WebLogic Server hashes all passwords. When WebLogic
Server receives a client request, the password presented by the client is hashed and
WebLogic Server compares it to the already hashed password for matching.

For more information, see the following sections in Managing Security.

� “Defining Users”

� “Protecting Passwords”

Groups

Groups are logically ordered sets of Users. Managing Groups is more efficient than
managing large numbers of Users individually. For example, an administrator may
specify permissions for 50 users at one time of those 50 users belong to the same
Group. Usually, Group members have something in common. For example, a company
may separate their sales staff into two Groups, Sales Representatives and Sales
Managers, because staff members have different levels of access to WebLogic Server
resources depending on their job descriptions.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

2 Security Fundamentals

2-8 Programming WebLogic Security

WebLogic Server can be configured to assign Users to Groups. Each Group shares a
common set of permissions that govern its member users’ access to resources. You can
mix Group names and User names whenever a list of Users is permitted.

A person can be defined as both an individual User and a Group member. Individual
access permissions override any Group member access permissions. WebLogic Server
evaluates each user by first looking for a Group, and testing whether the user is a
member of the Group, and then looking for the User in the list of defined Users.

For more information, see the “Defining Groups” topic in Managing Security.

ACLs and Permissions

Permissions represent privileges requires to access resources. A system administrator
protects resources by creating lists of Users and Groups that have the permissions
required to access those resources. Such lists are called access control lists (ACLs).
ACLs and the functions for which they grant permission are resource-specific. For
example, Users with the proper permissions may read, write, send, and/or receive files,
load servlets, and link to libraries.

An ACL file is composed of AclEntries, each of which contains a set of permissions
for a particular User or Group.

WebLogic Server uses the JavaSoft ACL standard, distributed with the Java
Development Kit (JDK) 1.1, to extend the security framework of Java and make it
practical for use at the enterprise level. The WebLogic Server implementation of ACLs
is based on the java.security.acl package. Because ACLs in WebLogic Server are
based on an open-standard, you are not tied to a proprietary solution.

You can set permissions on the following WebLogic Server resources:

� WebLogic Servers

� WebLogic Enterprise JavaBeans (EJBs)

� WebLogic events

� WebLogic HTTP servlets/JSPs

� WebLogic JDBC connection pools

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

SSL Protocol

Programming WebLogic Security 2-9

� WebLogic JMS destinations

� WebLogic JNDI contexts

ACLs and permissions for EJBs differ from ACLs and permissions for other kinds of
WebLogic Server resources in the following ways:

� EJB ACLs are configured in the access control properties of the EJB’s
deployment descriptor.

� Permissions are granted on individual methods of a bean; there are no predefined
permissions.

� Permissions on EJBs are granted to Roles, which map to groups in WebLogic
Server.

For more information, see the “Defining ACLs” section in Managing Security.

For information about assigned ACLs in WebLogic Web applications, see
Programming WebLogic Enterprise JavaBeans.

SSL Protocol

The SSL protocol offers security to two application connected through a network.
Specifically, the SSL protocol provides the following:

� A mechanism that the applications can use to authenticate each other’s identity.

� Encryption of the data exchanged by the applications.

When the SSL protocol is used, the target always authenticates itself to the initiator.
Optionally, if the target requests it, the initiator can authenticate itself to the target.
Encryption makes data transmitted over the network intelligible only to the intended
recipient. An SSL connection begins with a handshake during which the applications
exchange digital certificates, agree on the encryption algorithms to be used, and
generate the encryption keys to be used for the remainder of the session.

The SSL protocol provides the following security features:

� Server authentication—WebLogic Server uses its digital certificate, issued by a
trusted certificate authority, to authenticate to clients.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/ejb/index.html

2 Security Fundamentals

2-10 Programming WebLogic Security

� Client authentication—Optionally, clients might be required to authenticate
themselves to WebLogic Server by providing their own digital certificates. This
type of authentication is also referred to as mutual authentication.

� Confidentiality—All client requests and server responses are encrypted to
maintain the confidentiality of data exchanged over the network.

� Data Integrity—Data that flows between a client and WebLogic Server is
protected from tampering by a third party.

If you are using a Web browser to communicate with WebLogic Server, you can use
the Hypertext Transfer Protocol with SSL (HTTPS) to secure network
communications.

The SSL protocol is tunneled over an IP-based protocol. Tunneling means that each
SSL record is encapsulated and packaged with the headers needed to send the record
over another protocol. The use of SSL is signified in the protocol scheme of the URL
used to specify the location of WebLogic Server.

� SSL communications between Web browsers and WebLogic Server are
encapsulated in HTTPS packets for transport. For example:

https://myserver.com/mypage.html

WebLogic Server supports HTTPS with Web browsers that support SSL3. The
Java Virtual Machine (JVM) in WebLogic Server does not currently support the
HTTPS protocol adapter. Consequently, WebLogic Server depends on the
implementation of the SSL protocol in the Web browser.

� Java clients connecting to WebLogic Server with the SSL protocol tunnel over
BEA’s multiplexed T3 protocol. For example:

t3s://myserver.com:7002/mypage.html

Java clients running in WebLogic Server can establish either T3S connections to
other WebLogic Servers, or HTTPS connections to other servers that support the
SSL protocol, such as Web servers or secure proxy servers.

WebLogic Server is available with exportable- or domestic-strength SSL.

� Exportable SSL supports 512-bit certificates and 40-bit bulk data encryption.

� Domestic SSL also supports 768-bit and 1024-bit certificates, and 56-bit and
128-bit bulk data encryption.

Authentication Mechanisms

Programming WebLogic Security 2-11

The standard WebLogic Server distribution supports exportable-strength SSL only.
The domestic version is available, by request only from your BEA sales representative.
Since the United States Government relaxed restrictions on exporting encryption
software in early 2000, the domestic version of WebLogic Server can be used in most
countries.

During installation, you are prompted to choose which strength of the SSL protocol
you want to use.We recommend the domestic WebLogic Server distribution because
it allows stronger encryption. If you generate a Certificate Signature Request (CSR)
using the exportable WebLogic Server distribution, you cannot support high-strength
connections and you cannot authenticate clients that present domestic-strength
certificates.

The implementation of the SSL protocol provided by WebLogic Server is a pure-Java
implementation. A native library provides faster performance for some SSL operations
on the Solaris, Windows NT, and IBM AIX platforms. You can request the use of these
native Java libraries for the SSL protocol through the Administration Console.

For more information, see the “Configuring the SSL Protocol” section in Managing
Security.

Authentication Mechanisms

WebLogic Server users must be authenticated whenever they request access to a
protected WebLogic Server resource. For this reason, each user is required to provide
a credential (a username/password pair or a digital certificate) to WebLogic Server.
Two types of authentication mechanisms are supported by WebLogic Server:

� Password authentication—A user ID and password are requested from the user
and sent to WebLogic Server in clear text. WebLogic Server checks the
information and if it is trustworthy, grants access to the protected resource.

The SSL (or HTTPS) protocol can be used to provide an additional level of
security to password authentication. Because the SSL protocol encrypts the data
transferred between the client and WebLogic Server, the user ID and password
of the user do not flow in the clear. Therefore, WebLogic Server can authenticate
the user without compromising the confidentiality of the user’s ID and password.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

2 Security Fundamentals

2-12 Programming WebLogic Security

� Certificate authentication—When an SSL or HTTPS client request is initiated,
WebLogic Server responds by presenting its digital certificate to the client. The
client then verifies the digital certificate. If authentication is successful, the
client can access the protected resource over the encrypted SSL connection.

You can also use mutual authentication. In this case, WebLogic Server not only
authenticates itself, it also requires authentication from the requesting client.
Clients are required to submit digital certificates issued by a trusted certificate
authority. Mutual authentication is useful when you must restrict access to
trusted clients only. For example, you might restrict access by accepting only
clients with digital certificates provided by you.

For more information, see the following sections in Managing Security:

� “Configuring the SSL Protocol”

� “Configuring Mutual Authentication”

Digital Certificates

Digital certificates are electronic documents used to verify the unique identities of
principals and entities over networks such as the Internet. A digital certificate securely
binds the identity of a user or entity, as verified by a trusted third party known as a
certificate authority, to a particular public key. The combination of the public key and
the private key provides a unique identity to the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact
belong to a specific user or entity. A recipient of a digital certificate can use the public
key in a digital certificate to verify that a digital signature was created with the
corresponding private key. If such verification is successful, this chain of reasoning
provides assurance that the corresponding private key is held by the subject named in
the digital certificate, and that the digital signature was created by that subject.

A digital certificate typically includes a variety of information, such as the following:

� The name of the subject (holder, owner) and other information required to
confirm the unique identity the subject, such as the URL of the Web server using
the digital certificate, or an individual’s e-mail address

� The subject’s public key

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Certificate Authority

Programming WebLogic Security 2-13

� The name of the certificate authority that issued the digital certificate

� A serial number

� The validity period (or lifetime) of the digital certificate (defined by a start date
and an end date)

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Digital certificates can be read or written by any application
complying with the X.509 standard. The public key infrastructure (PKI) in WebLogic
Server recognizes digital certificates that comply with X.509 version 3, or X.509v3.
We recommend obtaining digital certificates from a certificate authority such as
Verisign or Entrust.

For more information, see the “Configuring the SSL Protocol” section in Managing
Security.

Certificate Authority

Digital certificates are issued by a certificate authority. Any trusted third-party
organization or company that is willing to vouch for the identities of those to whom it
issues digital certificates and public keys can be a certificate authority. When a
certificate authority creates a digital certificate, the certificate authority signs it with its
private key, to ensure that any tampering will be detected. The certificate authority
then returns the signed digital certificate to the requesting subject.

The subject can verify the signature of the issuing certificate authority by using the
public key of the certificate authority. The certificate authority makes its public key
available by providing a digital certificate issued from a higher-level certificate
authority attesting to the validity of the public key of the lower-level certificate
authority. This scheme gives rise to hierarchies of certificate authorities. This
hierarchy is terminated by a self-signed digital certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of a
certificate authority recursively, if the recipient has a digital certificate containing the
public key of the certificate authority signed by a superior certificate authority who the
recipient already trusts. In this sense, a digital certificate is a stepping stone in digital

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

2 Security Fundamentals

2-14 Programming WebLogic Security

trust. Ultimately, it is necessary to trust only the public keys of a small number of
top-level certificate authorities. Through a chain of digital certificates, trust in a large
number of users’ digital signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a digital
signature can be trusted only to the extent that the public key for verifying it can be
trusted.

For more information, see the “Configuring the SSL Protocol” section in Managing
Security.

Supported Public Key Algorithms

Public key (or asymmetric key) algorithms are implemented through a pair of different
but mathematically related keys:

� A public key (which is distributed widely) for verifying a digital signature or
transforming data into a seemingly unintelligible form

� A private key (which is always kept secret) for creating a digital signature or
returning the data to its original form

The PKI in WebLogic Server also supports digital signature algorithms. Digital
signature algorithms are simply public key algorithms used to generate digital
signatures.

WebLogic Server supports the Rivest, Shamir, and Adelman (RSA) algorithm.

Supported Symmetric Key Algorithms

In symmetric key algorithms, the same key is used to encrypt and decrypt a message.
The public key encryption system uses a symmetric key algorithm to encrypt a
message sent between two communicating entities. Symmetric key encryption
operates at least 1000 times faster than public key cryptography.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Supported Message Digest Algorithms

Programming WebLogic Security 2-15

A block cipher is a type of symmetric key algorithm that transforms a fixed-length
block of plain text (unencrypted text) data into a block of cipher text (encrypted text)
data of the same length. This transformation takes place in accordance with the value
of a randomly generated session key. The fixed length is called the block size.

The PKI in WebLogic Server supports the following symmetric key algorithms:

� DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys. (8 parity bits are stripped from the full 64-bit key.)

� Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit
key).

For some time it has been common practice to protect and transport a key for
DES encryption with triple-DES, which means that the input data (in this case
the single-DES key) is encrypted, decrypted, and then encrypted again (an
encrypt-decrypt-encrypt process). The same key is used for the two encryption
operations.

� RC4 (Rivest’s Cipher 4)

RC4 is a variable key-size block cipher with a key size range of 40 to 128 bits. It
is faster than DES and can be exported with a key size of 40 bits. A 56-bit key
size is allowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC4 can be used with keys of virtually
unlimited length, although the WebLogic Server PKI restricts the key length to
128 bits.

WebLogic Server users cannot expand or modify this list of algorithms.

Supported Message Digest Algorithms

WebLogic Server supports the MD5 and SHA (Secure Hash Algorithm) message
digest algorithms. Both MD5 and SHA are well known, one-way hash algorithms. A
one-way hash algorithm takes a message and converts it into a fixed string of digits,
which is referred to as a message digest or hash value.

2 Security Fundamentals

2-16 Programming WebLogic Security

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA
offers more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites

A cipher suite is an SSL encryption method that includes the key exchange algorithm,
the symmetric encryption algorithm, and the secure hash algorithm used to protect the
integrity of a communication. For example, the cipher suite called
RSA_WITH_RC4_128_MD5 uses RSA for key exchange, RC4 with a 128-bit key for
bulk encryption, and MD5 for message digest.

WebLogic Server supports the cipher suites described in Table 2-1.

The license for WebLogic Server determines what strength (either domestic or export)
of cipher suite is used to protect communications. However, the cipher suite strength
defined in the config.xml file overrides the license. For example, if you have an
export license but define the use of a domestic cipher suite in the config.xml file, the
domestic strength cipher suite will be used.

Table 2-1 SSL Cipher Suites Supported by WebLogic Server

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128

SSL_RSA_WITH_DES_CDC_SHA RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA 40

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112

SSL_NULL_WITH_NULL_NULL

SSL_RSA_WITH_NULL_SHA RSA 0

SSL_RSA_WITH_NULL_MD5 RSA 0

Supported Cipher Suites

Programming WebLogic Security 2-17

2 Security Fundamentals

2-18 Programming WebLogic Security

Programming WebLogic Security 3-1

CHAPTER

3 Securing a WebLogic
Server Deployment

This section explains how to use the security features of WebLogic Server to protect
your deployment. Specifically, it discusses the following topics:

� Why is Security Important for WebLogic Server?

� Determine the Security Needs of Your WebLogic Server Deployment

� Secure the Machine on Which WebLogic Server Runs

� Design Network Connections Carefully

� Manage the WebLogic Server Development and Deployment Environments

� Use Encryption

� Use the SSL Protocol

� Prevent Denial of Service Attacks

� Use Protected EJBs to Limit Access to Business Logic

� Use ACLs

� Use the Appropriate Security Realm

� Secure Your Database

� Use Auditing

Why is Security Important for WebLogic Server?

Programming WebLogic Security 3-2

Why is Security Important for WebLogic
Server?

An application server resides in the sensitive layer between end users and your
valuable data and resources. WebLogic Server provides authentication, authorization,
and encryption services with which you can guard your resources. These services
cannot provide protection, however, from an intruder who gains access by discovering
and exploiting a weakness in your deployment environment.

Whether you deploy WebLogic Server on the Internet or on an intranet, it is a good
idea to hire an independent security expert to go over your security plan and
procedures, audit your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues. For the
latest information about securing Web servers, BEA recommends reading the Security
Improvement Modules, Security Practices, and Technical Implementations
information available from the CERT™ Coordination Center operated by Carnegie
Mellon University.

This section makes some specific and general recommendations related to WebLogic
Server.

Determine the Security Needs of Your
WebLogic Server Deployment

Before securing your WebLogic Server deployment, it is important to understand the
security needs of your WebLogic Server environment. To better understand the
security needs, ask yourself the following questions:

� What WebLogic Server resources am I protecting?

There are many resources in the WebLogic Server environment that can be
protected including information in the database accessed by WebLogic Server,
the availability of the Web site, the performance of the Web site, and the

http://www.cert.org/
http://www.cert.org/

Secure the Machine on Which WebLogic Server Runs

Programming WebLogic Security 3-3

integrity of the Web site. Consider the resources you want to protect when
deciding the level of security you must provide.

� From whom am I protecting the WebLogic Server resources?

For most Web sites resources must be protected from everyone on the Internet.
But should the Web site be protected from the employees on the intranet in your
enterprise? Should your employees have access to all WebLogic Server
resources? Should the system administrators have access to all WebLogic Server
resources? Should the system administrators be able to access all data? You
might consider giving access to highly confidential data or strategic resources to
only a few well trusted system administrators. Perhaps it would be best to allow
no system administrators access to the data or resources.

� What will happen if the protections on strategic resources fail?

In some cases, a fault in your security scheme is easily detected and considered
nothing more than an inconvenience. In other cases, a fault might cause great
damage to companies or individual clients that use the Web site. Understanding
the security ramification of each resource will help you to properly protect it.

As you read the following suggestions for securing your site, keep the answers to these
questions in mind.

Secure the Machine on Which WebLogic
Server Runs

A WebLogic Server deployment is only as secure as the security of the machine on
which it is running. Therefore, it is important that you secure the physical machine, the
operating system, and all other software that is installed on the host machine. The
following are suggestions for securing the deployment machine, however, you should
check with the manufacturer of the machine, operating system, and installed software
for additional suggestions:

� Keep your hardware in a secured area to prevent unauthorized users from
tampering with the deployment machine or its network connections.

Design Network Connections Carefully

Programming WebLogic Security 3-4

� Have an expert review network services such as the email program or directory
service to ensure that there are no weaknesses that would permit a malicious
attacker from accessing the operating system or system-level commands.

� Secure the file systems on the deployment machine, limiting directory and file
access to a few, well-monitored user accounts. Some WebLogic Server
configuration data (and some of your applications, including Java Server Pages
(JSPs) and HTML pages guarded with access control lists (ACLs)) are stored in
clear text on the file system. A user or intruder with read access to files and
directories can easily defeat any security mechanisms you establish with
WebLogic Server authentication and authorization schemes.

� Avoid creating multiple user accounts on deployment machines and avoid
sharing file systems with other machines in the enterprise network.

� Create a weblogic user in the operating system and use the security controls of
the operating system to give this user ownership and exclusive access to all files
and directories in the WebLogic Server deployment. No other user needs write
access to any files in the WebLogic Server deployment.

� Review active user accounts regularly and when personnel leave. Set a policy to
expire passwords periodically. Never code passwords in client applications.

Design Network Connections Carefully

When designing network connections, you want to use the easiest to manage solution.
This choice must be weighed against the need to protect strategic WebLogic Server
resources. Placing WebLogic Server resources further from potential intruders reduces
the risk of a security breach. Inserting firewalls carefully in your enterprise increases
security and can prevent a small security fault from turning into a security crisis. For
example, it is a good idea to protect a database that contains critical data behind a
firewall. In addition, protect the host machine for the database as well as the usernames
and passwords for the database. Still, if someone acquires the username and passwords
for the database, it is not nearly as damaging if the database is protected by a firewall
and cannot receive connections from computers on the Internet.

There are many ways to combine firewalls, WebLogic Server, and other network
servers. Figure 3-1 illustrates a typical setup with a firewall that filters traffic destined
for a WebLogic Server cluster.

Design Network Connections Carefully

Programming WebLogic Security 3-5

Figure 3-1 Typical Firewall Setup

Another common firewall configuration restricts access to only HTTP or HTTPS Web
connections. The firewall permits clients to connect only to a Web server which
usually runs at the standard HTTP port 80 or HTTPs port 443. The Web server may be
a WebLogic Server or a third-party Web server set up to proxy requests to a WebLogic
Server. For example, Netscape Enterprise Server, Microsoft Internet Server, and
Apache Server can be set up to serve static Web pages and proxy servlet and JSP
requests to WebLogic Server. Figure 3-2 illustrates this configuration.

In Figure 3-2, the Web server is a gateway operating in a demilitarized zone (DMZ).
In computer networks, a DMZ is a computer host or small network inserted as a neutral
zone between a company's private network and the outside public network. It prevents
outside users from getting direct access to a server on which company data resides. A
DMZ is an optional and more secure implementation of a firewall which can also act
as a proxy server. WebLogic Server connections come only from proxied Web server
requests, enhancing the security of your WebLogic Server applications and back-end

3 Securing a WebLogic Server Deployment

3-6 Programming WebLogic Security

resources. In the configuration shown in Figure 3-2, clients interact exclusively with
the Web server and WebLogic Server connections are made only by proxied Web
server requests. As a result, the security of WebLogic Server applications and
back-end resources that are configured in this way are enhanced.

Figure 3-2 Firewall with Web Server Gateway

In addition to setting up a firewall, you can restrict who connects to your WebLogic
Server deployment by implementing the
weblogic.security.net.ConnectionFilter interface. This interface allows you
to accept or reject a network connection based on the host name and network address
of the originating machine as well as the protocol used.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/net/package-summary.html

Manage the WebLogic Server Development and Deployment Environments

Programming WebLogic Security 3-7

Manage the WebLogic Server Development
and Deployment Environments

For many reasons, development and deployment are easier when you develop on
machines that closely mimic the deployment environment. However, security
concerns suggest the following differences in the deployment and development
environments:

� Do not develop on a deployment machine. Develop first on a development
machine and then move code to the deployment machine when it is completed
and tested. This process prevents bugs in the development environment from
affecting the security of the deployment environment.

� Do not put the development tools on the deployment machine. These tools
include development product components including the javac, rmic, and ejbc
compilers as well as other development tools you may use. Keeping the
development tools off the deployment machine, reduces the leverage an intruder
has should they get partial access to the WebLogic Server deployment machine.

� Protect your source code. Getting access to your source code allows an intruder
to find security holes. Always keep source code off of the deployment machine.
Comments in JSP files that are not meant for the end user should use the JSP
syntax of <%/* ... */%> rather than the HTML syntax of <!-- ... -->

because the JSP comments are deleted when the JSP is compiled and therefore
cannot be viewed. Also, disable the Case Sensitive Extensions field on the File
tab of the Administration console to further protect your JSP source.

Use Encryption

Encryption is the process of taking text or other data and scrambling it so that it cannot
be understood. Decryption reverses the process making the text or data
understandable. The decryption process always requires knowledge of a secret key or

3 Securing a WebLogic Server Deployment

3-8 Programming WebLogic Security

password. The secret key is a long string of bits that is required as an argument to the
decryption algorithm to make it work correctly. The strength of an encryption
algorithm is measured by the number of bits in its key.

There are many types of encryption and each type of encryption comes in many
strengths. The biggest differences between the algorithms is how much CPU time it
takes to decrypt the data and how many keys there are (symmetric key algorithms have
just one key that is used to both encryption and decrypt while public key algorithms
have two keys, one to encryption and one to decrypt).

Encryption is typically used in places where sensitive information is stored or
communicated. These places can include but are not limited to information on network
machines, on disk, in a database, in memory, and in legacy systems.

There are drawbacks to using encryption:

� Encryption and decryption are computationally expensive algorithms that take
CPU time to perform.

� Encryption can make debugging harder as you cannot review encrypted data to
verify that it is correct.

� The loss of a secret key can render all encrypted data useless.Even the temporary
loss of a secret key (for example, all the people who know the secret key are on
vacation) can render a Web site useless until the secret key can be retrieved.

� Key management is an awkward problem.Who should know the secret key,
where the secret key is stored, and whether the secret key itself should be
encrypted are just some of the issues that must be addressed.

The questions to ask when designing the encryption for a WebLogic Server
deployment are:

� What needs to be encrypted?

� What algorithm and strength should be used to encrypt data?

� Where will the keys be stored?

Use the SSL Protocol

Programming WebLogic Security 3-9

Use the SSL Protocol

Data that is sent over the network (either the Internet or an intranet) can be viewed by
other parties on the network. This is unavoidable because of the design of networks.
To prevent sensitive data from being compromised, the data should be encrypted.

To send encrypted data over the Internet you should use the HTTPS protocol (HTTP
over the Secure Sockets Layer (SSL)) rather than the HTTP protocol. To configure
your Web application for the SSL protocol you must use the
user-data-constraint tag in the web.xml file and set the transport-guarantee to
CONFIDENTIAL.

The demonstration digital certificates provided with WebLogic Server are for testing
only. Everyone who downloads WebLogic Server has the private keys for these digital
certificates. Do not use these digital certificates in a deployed WebLogic Server.
Check the filerealm.properties file to make sure that the demonstration digital
certificates have been removed from the deployed WebLogic Server.

Use the strongest encryption WebLogic Server supports: 1024-bit keys, 128-bulk data
encryption on your data. The WebLogic Server version you download allows just
512-bit keys and 40-bit bulk encryption. Contact your BEA sales representative to
request the stronger version.

Prevent Denial of Service Attacks

A denial of service attack leaves a Web site running but unusable. Hackers accomplish
this by depleting one or more critical resources of the Web site. While a denial of
service attack can happen if a hacker gets administrative privileges to your Weblogic
Server, it usually occurs when an unprivileged user removes a required resource from
a WebLogic Server deployment.

To perpetrate a Denial of Service attack on a WebLogic Server, an intruder bombards
with many requests that are either very large in size, are slow to complete, or never
complete so that the client stops sending data before completing the request. To
prevent Denial of Service attacks, WebLogic Server allows you to restrict the size of
a message as well as the maximum time it takes a message to arrive. You can set this

3 Securing a WebLogic Server Deployment

3-10 Programming WebLogic Security

information individually for each of the three protocols used by WebLogic Server: T3,
HTTP and IIOP. See the online help for the Administration Console for information
on setting the MaxT3MessageSize, CompleteT3MessageTimeout,
MaxHTTPMessageSize, CompleteHTTPMessageTimeout, MaxIIOPMessageSize,
and CompleteIIOPMessageTimeout fields. These fields have a default of 2 gigabytes
for the maximum message size and 480 seconds for the complete message timeout. A
value of 0 for any of the fields disables bound checking.

Use Protected EJBs to Limit Access to
Business Logic

Some parts of your Web application are more sensitive than other parts. For example,
the part of your application that renders HTML is less sensitive than the part of the
application that accesses a key database table. More effort should be placed on
protecting the sensitive parts of your Web application. One way to protect the sensitive
parts of your Web application is to wrap them in Enterprise JavaBeans (EJBs) and use
ACLs to protect the EJBs. This security technique ensures that only properly
authenticated and authorized users can execute the EJBs.

The following is an example of how to use EJBs and ACLs to protect sensitive parts
of your Web application:

� Code that allows a user to place an order on your Web site might be in an ACL
protected EJB that is only accessible to registered users of your Web site.

� Code that searches and displays the catalog of products on your Web site could
be in an EJB that is accessible to all users

� Code that authorizes a return of merchandise may be in an ACL protected EJB
that is only accessible to customer service personnel.

The exact choice of what to protect and to whom to grant access to specific operations
must be considered on a per-application basis.

Remember your Web application is going to evolve over time. This makes
hard-to-understand schemes even harder to manage. One way to help prevent future
mistakes is to organize security by package. For example, you could have one package
where all methods on all classes are available to registered users and another package

Use ACLs

Programming WebLogic Security 3-11

where all methods on all classes are available only to customer service personnel. The
final decision as to whom has what access is up to the EJB deployer but a security
scheme based on package is an easy mechanism for the deployer to implement.

Use ACLs

ACLs are data structures with multiple entries that guard access to WebLogic Server
resources. WebLogic Server provides ACLs that protect the following WebLogic
Server resources:

� WebLogic Servers

� WebLogic Enterprise JavaBeans (EJBs)

� WebLogic Events

� WebLogic HTTP servlets/JSPs/HTML pages

� WebLogic JDBC connection pools

� WebLogic JMS destinations

� WebLogic JNDI contexts

Use the provided ACLs to protect the resources in your WebLogic Server deployment.

For more information, see the following sections:

� ACLs and Permissions

� “Defining ACLs” in Managing Security

� Programming WebLogic Enterprise JavaBeans for information about assigning
ACLs to WebLogic EJBs.

� Deploying and Configuring Web Applications for information about assigning
security roles in Weblogic Web applications.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

3 Securing a WebLogic Server Deployment

3-12 Programming WebLogic Security

Use the Appropriate Security Realm

Security in WebLogic Server is based on the concept of a security realm. A security
realm in WebLogic Server is a collection of Users and Groups, data about the Users
and Groups, and permissions for WebLogic Server resources assigned to the Users and
Groups. WebLogic Server offers many different types of security realms.

The default security realm, the File realm, is the least secure of security realms. Do not
use the File realm for deployed WebLogic Servers. WebLogic Server provides a set
alternate security realms that offer authorization and authentication through the
facilities of the security realm. For more information about the available security
realms, see the Security Realms section of the Concepts chapter.

Secure Your Database

Most Web applications use a database to store their data. Common databases used with
WebLogic Server are Oracle, MicroSoft’s SQLServer, and Informix. The databases
frequently hold the Web application’s sensitive data including customer lists, customer
contact information, credit card information, and other proprietary data. When creating
your Web application you must consider what data is going to be in the database and
how secure you need to make that data. You also need to understand the security
mechanisms provided by the manufacturer of the database and decide whether they are
sufficient for your needs. If the mechanisms are not sufficient, you can use other
security techniques to improve the security of the database. One common technique is
to encrypt sensitive data before writing it to the database. For example, you might
leave all customer data in the database in plain text except for the credit card
information which is encrypted.

Use Auditing

Programming WebLogic Security 3-13

Use Auditing

Auditing is the process of recording key security events in your WebLogic Server
environment. The audit record is usually kept separate from the WebLogic Server log
file. Reviewing the auditing records can help you determine whether there has been a
security breach or an attempted breach. Noting things such as repeated failed logon
attempts or a surprising pattern of security events may be the key to preventing serious
problems. To use auditing, implement the weblogic.security.audit package. For
more information, see the “Auditing Security Events” section in Managing Security.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/audit/package-summary.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

3 Securing a WebLogic Server Deployment

3-14 Programming WebLogic Security

Programming WebLogic Security 4-1

CHAPTER

4 Programming with the
WebLogic Security SPI

This section presents the following topics:

� Before You Begin

� WebLogic Security SPI

� Using JAAS Authentication

� Using JNDI Authentication

� Using Mutual Authentication

� Using Custom ACLs

� Writing a Custom Security Realm

� Auditing Security Events

� Filtering Network Connections

Before You Begin

This section describes programming with application programming interfaces (APIs)
in the Security service provider interface (SPI) supplied by WebLogic Server. Before
you perform the programming tasks described in this section, the following
configuration tasks must be completed:

4 Programming with the WebLogic Security SPI

4-2 Programming WebLogic Security

1. Specify a security realm (the default, an alternate, or a custom security realm).

2. Add Users and Groups to the security realm.

3. Assign ACLs and permissions to the resources in the security realm.

4. Configure the SSL protocol (an optional step to provide additional protection for
network connections or when using certificate authentication).

5. Configure mutual authentication (optional).

For more information about these configuration tasks, see Managing Security in the
Administration Guide.

For information about security in WebLogic EJBs, see Programming WebLogic
Enterprise JavaBeans.

WebLogic Security SPI

The WebLogic Security SPI builds upon the Java Developer’s Kit (JDK) security SPI:
it provides implementations and extensions where needed and a realm interface that
collects the security APIs into an authentication and authorization service for
WebLogic Server. The authentication scheme in WebLogic Server is based on the Java
Authentication and Authorization Service (JAAS). This standard provides the support
needed to submit a username and credential (password or digital certificate) when
initiating a secure connection to WebLogic Server.

Table 4-1 lists the packages that are used when security is used in the WebLogic Server
environment.

Table 4-1 WebLogic Security Packages

This Package. . . Is Used for. . .

javax.security.auth Performing JAAS-style LoginContext and Subject
based authentication.

http://java.sun.com/products/jaas
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/ejb/index.html

Using JAAS Authentication

Programming WebLogic Security 4-3

Using JAAS Authentication

JAAS is a standard extension to the security in the Java Software Development Kit
version 1.3. JAAS provides the ability to enforce access controls based on who runs
the code. JAAS is provided in WebLogic Server as an alternative to the JNDI
authentication mechanism. It is the preferred method of authentication. In order to use
JAAS, you need to have the Java SDK version 1.3 installed.

Note: The authorization component of JAAS is not provided in WebLogic Server.

Table 4-2 lists the JAAS classes supported in WebLogic Server.

weblogic.security Mapping digital certificates sent from Web
browsers and Java clients to WebLogic Server.
This class makes it unnecessary for a user with a
valid digital certificate to enter a username and
password when accessing resources in WebLogic
Server.

weblogic.security.acl Creating custom security realms to access
WebLogic Server users, groups, or ACLs from an
external store. In addition, this package is used to
test custom ACLs in server-side programs.

weblogic.security.audit Auditing security events. WebLogic Server calls
the Audit class with information about
authentication and authorization requests. The
package can be used to filter the authorization and
authentication requests and direct them to a log file
or other administrative facility.

weblogic.security.net Examining connections to WebLogic Server and
allowing or denying the connections based on
attributes such as the IP address, domain, or
protocol of the initiator of the network connection.

Table 4-1 WebLogic Security Packages

This Package. . . Is Used for. . .

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/package-summary.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/package-summary.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/audit/package-summary.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/net/package-summary.html

4 Programming with the WebLogic Security SPI

4-4 Programming WebLogic Security

To use JAAS in a Java client to authenticate a Subject, complete the following
procedure:

Table 4-2 JAAS Classes

Class Description

javax.security.auth.Subject Represents the source of the request and can be any
entity (for example, a person or a client). A Subject
object is created at the completion of a successful
user authentication or login.

javax.security.auth.login.LoginContext Through the LoginContext object, an application
initiates login, logout, and acquires to the
authenticated Subject for the purpose of
authorization checking.

javax.security.auth.login.Configuration Provides the getConfiguration() method for
the purpose of obtaining a list of LoginModules
provided in a particular implementation of WebLogic
Server.

javax.security.auth.spi.LoginModule Provides the ability to implement different kinds of
authentication technologies into WebLogic Server.
For example, one LoginModule object may perform
password authentication while another LoginModule
object performs certificate authentication.

javax.security.auth.callback.Callback Gathers input from users (such as a password or the
name of a digital certificate file) and passes it to the
Java client.

javax.security.auth.callback.Callback.
CallbackHandler

Provides a way for the LoginModule to communicate
with a Subject to obtain authentication information.
Implement the CallbackHandler interface and pass it
LoginContext which forwards it directly to the
underlying LoginModules. The LoginModules use
the CallbackHandler both to gather input from users
(such as a password) or to supply information to users
(such as status information). By using
CallbackHandlers, LoginModules can remain
independent of the different ways WebLogic Server
communicates with users.

Using JAAS Authentication

Programming WebLogic Security 4-5

1. Implement a LoginModule class for the authentication mechanism you want to use
with WebLogic Server. You need a LoginModule class for each type of
authentication mechanism. You can have multiple LoginModule classes for a
single WebLogic Server deployment.

WebLogic Server provides a helper class
weblogic.security.auth.Authenticate that facilitates the writing of a
LoginModule class. The weblogic.security.auth.Authenticate class uses
a JNDI Environment object and returns an authenticated Subject. The JNDI
Environment object should include the properties listed in Table 4-3.

2. Implement a Configuration class that specifies which LoginModule classes
should be used for your WebLogic Server and in which order the LoginModule
classes should be invoked.

3. In the Java client, instantiate a LoginContext.

The LoginContext consults the Configuration to load all of the LoginModules
configured for WebLogic Server.

4. Invoke the login() method of LoginContext.

The login() method invokes all the loaded LoginModules. Each LoginModule
attempts to authenticate the Subject.

The LoginContext throws a LoginException if the configured login conditions
are not met.

5. Retrieve the authenticated Subject from the LoginContext.

6. Upon successful authentication of a Subject, access controls can be placed upon
that Subject by invoking the doAs() method of the
javax.security.auth.Subject class. The doAs() method associates the
specified Subject with the current thread’s ACL and then executes the action. If
the Subject has the necessary access controls the action is completed, if the
Subject does not have the necessary access controls, a security exception is
raised.

The examples.security.jaas example in the samples/examples/security

directory provided with WebLogic Server shows how to use JAAS authentication in a
Java client.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/auth/Authenticate.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jndi/Environment.html

4 Programming with the WebLogic Security SPI

4-6 Programming WebLogic Security

Listing 4-1 contains an implementation of the
javax.security.auth.spi.LoginModule class that performs password
authentication. The code in Listing 4-1 is excerpted from the SampleLoginModule in
the examples.security.jaas package.

Listing 4-1 Example of LoginModule for Password Authentication

...

//Import the relevant classes.//
import java.util.Map;
import java.io.IOException;
import java.net.MalformedURLException;
import java.rmi.RemoteException;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.spi.LoginModule;
import weblogic.security.auth.Authenticate;
import weblogic.jndi.Environment;

public class SampleLoginModule implements LoginModule
{

private Subject subject = null;
private CallbackHandler callbackHandler = null;
private Map sharedState = null;
private Map options = null;
private String url = null;

// Authentication status
private boolean succeeded = false;
private boolean commitSucceeded = false;

// Username and password
private String username = null;
private String password = null;

// Initialize

public void initialize(Subject subject,
CallbackHandler callbackHandler,

Using JAAS Authentication

Programming WebLogic Security 4-7

Map sharedState,
Map options)

{

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

// Retrieve WebLogic Server URL string

url = System.getProperty
("weblogic.security.jaas.ServerURL");

//Authenticate the user using the username and password passed in.
//Return true if successful.
//Raise FailedLoginException if the authentication fails.
//Raise LoginException if this LoginModule is unable to perform
//the authentication.

public boolean login() throws LoginException
{

// Verify that the client supplied a callback handler
if(callbackHandler == null)
throw new LoginException("No CallbackHandler Specified");

// Populate callback list//
Callback[] callbacks = new Callback[2];
callbacks[0] = new NameCallback("username: ");
callbacks[1] = new PasswordCallback("password: ", false);

// Prompt for username and password
callbackHandler.handle(callbacks);

// Retrieve username
username = ((NameCallback) callbacks[0]).getName();

// Retrieve password, converting from char[] to String
char[] charPassword = ((PasswordCallback)
callbacks[1]).getPassword();

if(charPassword == null)
{

// Treat a NULL password as an empty password, not NULL
charPassword = new char[0];
}

password = new String(charPassword);
}

4 Programming with the WebLogic Security SPI

4-8 Programming WebLogic Security

// Populate weblogic environment and authenticate
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);

// Authenticate user credentials, populating Subject
Authenticate.authenticate(env, subject);

// Successfully authenticated subject with supplied info
succeeded = true;
return succeeded;

...

WebLogic Server uses the default LoginModule
(weblogic.security.internal.ServerLoginModule) to gather authentication
information during server initialization. To replace the default Login module, edit the
Server.policy file and replace the name of the default Login module with the name
of a custom Login module.

Optionally, custom Login modules can be specified in the server.policy file ahead
of the default LoginModule. The JAAS implementation in WebLogic Server uses
Login modules in the order in which they are defined in the server.policy file. The
default Login module checks for existing system user authentication definitions prior
to execution and does nothing if they are already defined.

The default Login Module is required to define JVM properties for both the system
username and password. These properties are specified as
weblogic.management.username and weblogic.management.password

respectively. In order to use a custom Login modules, these properties must be set
accordingly.

Listing 4-2 contains an implementation of the
javax.security.auth.login.Configuration class. The code in Listing 4-2 is
excerpted from the SampleConfig in the examples.security.jaas package.

Listing 4-2 Example of a Configuration Implementation

...
import java.util.Hashtable;
import javax.security.auth.login.Configuration;

Using JAAS Authentication

Programming WebLogic Security 4-9

import javax.security.auth.login.AppConfigurationEntry;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class SampleConfig extends Configuration

{
String configFileName = null;

//Create a new Configuration object.
public SampleConfig()

//Retrieve an entry from the Configuration using an application name
//as an index. This code specified a single Login Module.

public AppConfigurationEntry[]
getAppConfigurationEntry(String applicationName)

{

AppConfigurationEntry[] list =
new AppConfigurationEntry[1];

AppConfigurationEntry entry = null;

// Get the specified configuration file
configFileName =

System.getProperty("weblogic.security.jaas.Policy");
System.out.println("Using Configuration File: " +

configFileName);

try
{

FileReader fr = new FileReader(configFileName);
BufferedReader reader = new BufferedReader(fr);
String line;

line = reader.readLine();
while(line != null)
{

// Skip lines until the line starting with a '{'
if(line.length() == 0 || line.charAt(0) != '{')

{
line = reader.readLine();
continue;

}

4 Programming with the WebLogic Security SPI

4-10 Programming WebLogic Security

// Read following line which contains the LoginModule configured
line = reader.readLine();

int i;
for(i = 0; i < line.length(); i++)
{

char c = line.charAt(i);
if(c != ' ')

break;
}

int sep = line.indexOf(' ', i);

String LMName = line.substring(0, sep).trim();
String LMFlag = line.substring(sep + 1)line.indexOf

(' ', sep + 1));

System.out.println("Login Module Name: " + LMName);
System.out.println("Login Module Flag: " + LMFlag);

if(LMFlag.equalsIgnoreCase("OPTIONAL"))
{

entry = new AppConfigurationEntry(LMName,
AppConfigurationEntry.LoginModuleControlFlag.
OPTIONAL,new Hashtable());

list[0] = entry;
}

else if(LMFlag.equalsIgnoreCase("REQUIRED"))
{

entry = new AppConfigurationEntry(LMName,
AppConfigurationEntry.LoginModuleControlFlag.
REQUIRED, new Hashtable());

list[0] = entry;
}

else if(LMFlag.equalsIgnoreCase("REQUISITE"))
{

entry = new AppConfigurationEntry(LMName,
AppConfigurationEntry.LoginModuleControlFlag.
REQUISITE, new Hashtable());

list[0] = entry;
}

else if(LMFlag.equalsIgnoreCase("SUFFICIENT"))

{
entry = new AppConfigurationEntry(LMName,

AppConfigurationEntry.LoginModuleControlFlag.

Using JAAS Authentication

Programming WebLogic Security 4-11

SUFFICIENT,new Hashtable());
list[0] = entry;

...
//Refresh and reload all of the Login configurations.

public void refresh()

...

Listing 4-3 contains an example of a Java client that uses JAAS authentication. The
code in Listing 4-3 is excerpted from the SampleClient in the
examples.security.jaas package. Note that the Java client includes an
implementation of the
javax.security.auth.callback.Callback.CallbackHandler class.

Listing 4-3 Example of Java Client that Uses JAAS Authentication

//Import the required classes.
import java.io.*;
import java.util.*;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.TextOutputCallback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.AccountExpiredException;
import javax.security.auth.login.CredentialExpiredException;

public class SampleClient
{

//Attempt to authenticate the user.
LoginContext loginContext = null;

//Set JAAS server url system property and create a LoginContext.
{

//Set Server url for SampleLoginModule, the LoginModule for
//the JAAS code example

4 Programming with the WebLogic Security SPI

4-12 Programming WebLogic Security

Properties property = new
Properties(System.getProperties());

property.put("weblogic.security.jaas.ServerURL", args[0]);
System.setProperties(property);

// Set configuration class name to load SampleConfiguration, the
//Configuration for the JAAS code example

property = new Properties(System.getProperties());
property.put("weblogic.security.jaas.Configuration",

"examples.security.jaas.SampleConfig");
System.setProperties(property);

// Set Configuration file name to load sample configuration policy
//file.

property = new Properties(System.getProperties());
property.put("weblogic.security.jaas.Policy",

"Sample.policy");
System.setProperties(property);

// Create LoginContext
loginContext = new LoginContext("SampleLoginModule", new

MyCallbackHandler());
}

//Attempt authentication
loginContext.login();

//Retrieve authenticated Subject and perform SampleAction as
//Subject.

Subject subject = loginContext.getSubject();
SampleAction sampleAction = new SampleAction();
Subject.doAs(subject, sampleAction);

//Implementation of the CallbackHandler Interface
class MyCallbackHandler implements CallbackHandler

{
public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException

{
for(int i = 0; i < callbacks.length; i++)

{
if(callbacks[i] instanceof TextOutputCallback)

{
//Display the message according to the specified type

TextOutputCallback toc = (TextOutputCallback) callbacks[i];
switch(toc.getMessageType())
{

case TextOutputCallback.INFORMATION:
System.out.println(toc.getMessage());

Using JAAS Authentication

Programming WebLogic Security 4-13

break;
case TextOutputCallback.ERROR:
System.out.println("ERROR: " + toc.getMessage());

break;
case TextOutputCallback.WARNING:
System.out.println("WARNING: " + toc.getMessage());

break;
default:
throw new IOException("Unsupported message type: " +
toc.getMessageType());
}

}
else if(callbacks[i] instanceof NameCallback)

{
// Prompt the user for the username

NameCallback nc = (NameCallback) callbacks[i];
System.err.print(nc.getPrompt());
System.err.flush();
nc.setName((new BufferedReader(new
InputStreamReader(System.in))).readLine());
}else if(callbacks[i] instanceof PasswordCallback)

{
// Prompt the user for the password

PasswordCallback pc = (PasswordCallback) callbacks[i];
System.err.print(pc.getPrompt());
System.err.flush();

//JAAS specifies that the password is a char[] rather than a String
String tmpPassword = (new BufferedReader(new
InputStreamReader(System.in))).readLine();

int passLen = tmpPassword.length();
char[] password = new char[passLen];
for(int passIdx = 0; passIdx < passLen; passIdx++)
password[passIdx] = tmpPassword.charAt(passIdx);
pc.setPassword(password);

}
else
{
throw new UnsupportedCallbackException(callbacks[i],
"Unrecognized Callback");
}

...

4 Programming with the WebLogic Security SPI

4-14 Programming WebLogic Security

For more information about using JAAS, see the Java Authentication and
Authorization Service Developer’s Guide.

Using JNDI Authentication

Java clients can also use JNDI to pass credentials. A Java client establishes a
connection with WebLogic Server by getting a JNDI InitialContext. The Java client
then uses the InitialContext to look up the resources it needs in the WebLogic Server
JNDI tree.

To specify a user and the user’s credentials set the JNDI properties listed in the
following table:

Table 4-3 JNDI Properties Used for Authentication

Property Meaning

INITIAL_CONTEXT_FACTORY Provides an entry point into the WebLogic Server
environment. The class
weblogic.jndi.WLInitialContextFactory
is the JNDI SPI for WebLogic Server.

PROVIDER_URL Specifies the host and port of the WebLogic Server. For
example: t3://weblogic.7001.

SECURITY_AUTHENTICATION Indicates the types of authentication to be used. The
following values are valid:

� None indicates that no authentication is performed.

� Simple indicates that password authentication is
performed.

� Strong indicates that certificate authentication is
performed.

SECURITY_PRINCIPAL Specifies the identity of the User when that User us
authenticate to the WebLogic Server security realm.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jndi/WLInitialContextFactory.html
http://java.sun.com/security/jaas/doc/api.html
http://java.sun.com/security/jaas/doc/api.html

Using JNDI Authentication

Programming WebLogic Security 4-15

These properties are stored in a hash table that is passed to the InitialContext
constructor.

Listing 4-4 demonstrates how to use password authentication in a Java client. The code
in Listing 4-4 is excerpted from the Client in the examples.security.acl example
provided with WebLogic Server in the samples/examples/security directory.

Listing 4-4 Example of Password Authentication

...
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

env.put(WLContext.PROVIDER_URL, “t3://weblogic:7001”);
env.put(WLContext.SECURITY_AUTHENTICATION “simple”);
env.put(Context.SECURITY_PRINCIPAL, “javaclient”);
env.put(Context.SECURITY_CREDENTIALS, “password”);

ctx = new InitialContext(env);

SECURITY_CREDENTIALS Specifies the credentials of the User when that User is
authenticate to the WebLogic Server security realm.

� For password authentication enabled via
SECURITY_AUTHENTICATION=”simple”, this
property specifies a string that is the either User’s
password or a User object used by WebLogic
Server to verify credentials.

� For certificate authentication enabled via
SECURITY_AUTHENTICATION=”strong”, this
property specifies the name of the X509 object that
contains the digital certificate and private key for
the WebLogic Server.

Table 4-3 JNDI Properties Used for Authentication

Property Meaning

4 Programming with the WebLogic Security SPI

4-16 Programming WebLogic Security

Listing 4-5 demonstrates how to use certificate authentication in a Java client. Notice
the use of the t3s protocol, which is a WebLogic Server proprietary protocol over the
SSL protocol. The SSL protocol protects the connection and communication between
WebLogic Server and the Java client.

Listing 4-5 Example of Certificate Authentication

...
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

env.put(WLContext.PROVIDER_URL, “t3s://weblogic:7001”);
env.put(WLContext.SECURITY_AUTHENTICATION “strong”);
env.put(Context.SECURITY_PRINCIPAL, “javaclient”);
env.put(Context.SECURITY_CREDENTIALS, “certforclient”);

ctx = new InitialContext(env);

The code in Listing 4-4 and Listing 4-5 generates a call to
weblogic.security.acl.Security.getUser() which returns a User object if the
username and password are correct or if the digital certificate is valid. WebLogic
Server stores this authenticated User object on the Java client’s thread in WebLogic
Server and uses it for subsequent authorization requests when the thread attempts to
use resources protected by ACLs.

Using Mutual Authentication

When using certificate authentication, WebLogic Server sends a digital certificate to
the requesting client. The client examines the digital certificate to ensure that it is
authentic, has not expired, and matches the WebLogic Server that presented it.

With mutual authentication, the requesting client also presents a digital certificate to
WebLogic Server. By setting fields in the Administration Console, you can configure
WebLogic Server to require requesting clients to present digital certificates from a
specified set of certificate authorities. WebLogic Server accepts only digital

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/Security.html

Using Mutual Authentication

Programming WebLogic Security 4-17

certificates that are signed by root certificates from the specified certificate authorities.
For more information, see the “Configuring the SSL Protocol” section in Managing
Security.

When using Web browsers, users must install their digital certificates in those
browsers. Then using the HTTP and SSL protocols, WebLogic Server and the Web
coordinates the digital certificate exchange with each Web browser.

When using JAAS for authentication in a Java client, you write a LoginModule class
that performs mutual authentication.

When using JNDI for authentication in a Java client, use the
setSSLClientCertificate() method of the WebLogic JNDI Environment class.
This method sets a private key and chain of X.509 digital certificates for client
authentication. To supply the Java client’s digital certificate and private key read the
Definite Encoding Rules (DER) files that contain the digital certificate and private key
into an X509 object, and then set the X509 object in a JNDI hash table. Use the JNDI
properties described in “Using JNDI Authentication” to specify the information
required for authentication.

To pass digital certificates to JNDI, create an array of InputStreams opened on files
containing DER-encoded digital certificates and set the array in the JNDI hash table.
The first element in the array must contain an InputStream opened on the Java
client’s private key file. The second element must contain an InputStream opened on
the Java client’s digital certificate file. (This file contains the public key for the Java
client.) Additional elements may contain the digital certificates of the root certificate
authority and the signer of any digital certificates in a certificate chain. A certificate
chain allows WebLogic Server to authenticate the digital certificate of the Java client
if that digital certificate was not directly issued by a certificate authority registered for
the Java client in the fileRealm.properties file.

You can use the weblogic.security.PEMInputStream class to read digital
certificates stored in Privacy Enhanced Mail (PEM) files. This class provides a filter
that decodes the base 64-encoded DER certificate into a PEM file.

Listing 4-6 demonstrates how to use mutual authentication in a Java client. The code
in Listing 4-6 is excerpted from the AltClient in the examples.security.acl
example in the samples/examples/security directory provided with WebLogic
Server.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/PEMInputStream.html

4 Programming with the WebLogic Security SPI

4-18 Programming WebLogic Security

Listing 4-6 Example of Mutual Authentication

package examples.security.acl;

import java.io.FileInputStream;
import java.io.InputStream;
import javax.naming.Context;
import weblogic.jndi.Environment;
import weblogic.security.PEMInputStream;

public class AltClient
{

public static void main(String[] args)
{

Context ctx = null;

String url = args[0];
try
{
Environment env = new Environment();

env.setProviderUrl(url);

// The second and third args are username and password
if (args.length >= 3)
{

env.setSecurityPrincipal(args[1]);
env.setSecurityCredentials(args[2]);

}

// Fourth and fifths arguments are private key and
// public key.
if (url.startsWith("t3s") && args.length >= 5)
{

InputStream[] certs = new InputStream[args.length - 3];
for (int q = 3; q < args.length; q++)
{
String file = args[q];
InputStream is = new FileInputStream(file);

if (file.toLowerCase().endsWith(".pem"))
{

is = new PEMInputStream(is);
}
certs[q - 3] = is;

}

Using Mutual Authentication

Programming WebLogic Security 4-19

env.setSSLClientCertificate(certs);
}
ctx = env.getInitialContext();
...

When the JNDI getInitialContext() method is called, the Java client and
WebLogic Server execute mutual authentication in the same way that a Web browser
performs mutual authentication to get a secure Web server connection. An exception
is thrown if the digital certificates cannot be validated or if the Java client’s digital
certificate cannot be authenticated in the security realm. The authenticated User object
is stored on the Java client’s server thread and is used for checking the permissions
governing the Java client’s access to any ACL-protected WebLogic Server resources.

When you use the WebLogic JNDI Environment class, you must create a new
Environment object for each call to the getInitialContext() method. Once you
specify a User and security credentials, both the user and their associated credentials
remain set in the Environment object. If you try to reset them and then call the JNDI
getInitialContext() method, the original User and credentials are used.

When you use mutual authentication from a Java client, WebLogic Server gets a
unique Java Virtual Machine (JVM) ID for each client JVM so that the connection
between the Java client and WebLogic Server is constant. Unless the connection times
out from lack of activity, it persists as long as the JVM for the Java client continues to
execute. The only way a Java client can negotiate a new SSL connection reliably is by
stopping its JVM and running another instance of the JVM.

A Java client running in a JVM with an SSL connection can change the WebLogic
Server User identity by creating a new JNDI InitialContext and supplying a new
username and password in the JNDI SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS properties. Any digital certificates passed by the Java client
after the SSL connection is made are not used. The new WebLogic Server User
continues to use the SSL connection negotiated with the initial User’s digital
certificate.

If you implement the CertAuthenticator interface, WebLogic Server passes the digital
certificate for the Java client to the implementation of the CertAuthenticator class. The
CertAuthenticator class maps the digital certificate to a WebLogic Server User.
Because the digital certificate is processed only at the time of the first connection
request from the JVM, it is not possible to set a new user identity when you use the
CertAuthenticator class.

4 Programming with the WebLogic Security SPI

4-20 Programming WebLogic Security

Mapping a Digital Certificate to a WebLogic Server User

When you perform mutual authentication, WebLogic Server authenticates the digital
certificate of the Web browser or Java client for in order to establish an SSL
connection. However, the digital certificate does not identify the Web browser or Java
client as a User in the WebLogic Server security realm. If the Web browser or Java
client requests a WebLogic Server resource protected by an ACL, WebLogic Server
requires the Web browser or Java client to provide a username and password.

To map a Web browser or Java client to a User in the WebLogic Server security realm,
implement the weblogic.security.acl.CertAuthenticator interface. The
CertAuthenticator class is called after an SSL connection has been established. The
class can extract data from a digital certificate to determine which User owns the
digital certificate. The CertAuthenticator class then calls the
weblogic.security.acl.getUser() method to retrieve the authenticated User
object from the WebLogic Server security realm.

When the CertAuthenticator class is installed, it is unnecessary for Web browsers to
prompt for WebLogic Server usernames and for Java applications to set a password in
the JNDI SECURITY_CREDENTIALS property. For more information, see the
“Configuring the SSL Protocol” section in Managing Security.

If you use the CertAuthenticator class with a Java client application, note that the Java
client cannot change the User identity once the SSL connection is established. To
supply a new digital certificate, you must stop the JVM for the Java client and restart
the client in a new JVM instance so that a new SSL connection can be negotiated.

You can use any of the several methods to map a digital certificate to a User. One
technique is to set the password of a User to the fingerprint of the User’s digital
certificate. Then you can extract the username from the digital certificate, calculate the
fingerprint, and call the weblogic.security.acl.getUser() method in the same
way WebLogic Server does when a User submits a username and a password to access
a resource.

Note: The fingerprint of a digital certificate is not part of the certificate but it can be
computed from the certificate. A fingerprint is the MD5 digest of the
DER-encoded CertificateInfo which is an ANS.1 type included in the
X.509 specification.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/CertAuthenticator.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Using Mutual Authentication

Programming WebLogic Security 4-21

The CertAuthenticator class has a public no-arg constructor and invokes the
authenticate() method. WebLogic Server calls the authenticate() method with
a username, which may be null, a Certificate array containing the digital certificate
of the Java client or a certificate chain, and a Boolean that is true if an SSL handshake
succeeds. You can call methods on the Certificate array to retrieve data from the
digital certificate.

Listing 4-7 shows how to implement the CertAuthenticator interface. It extracts the
username from the email address in the digital certificate and calls the
weblogic.security.acl.getUser() method to retrieve an authenticated User
object from the WebLogic Server security realm. Because the code example examines
only a portion of the email address, this example is not very secure. Digital certificates
with the same email address in different domains can be mapped to the same User and
no additional authentication is performed. If you want to implement this feature, you
may want to add code that fully establishes the identity of the client.

Listing 4-7 also shows how to map a digital certificate to a User in a WebLogic Server
security realm. The code in Listing 4-7 is excerpted from SimpleCertAuthenticator in
the examples.security.cert example in the samples/examples/security
directory provided with WebLogic Server.

Listing 4-7 Example of Mapping a Digital Certificate to a WebLogic Server User

package examples.security.cert;

import weblogic.security.Certificate;
import weblogic.security.Entity;
import weblogic.security.X500Name;
import weblogic.security.acl.CertAuthenticator;
import weblogic.security.acl.BasicRealm;
import weblogic.security.acl.Realm;
import weblogic.security.acl.User;

public class SimpleCertAuthenticator
implements CertAuthenticator

{
private BasicRealm realm;

public SimpleCertAuthenticator()
{

realm = Realm.getRealm("weblogic");
}

4 Programming with the WebLogic Security SPI

4-22 Programming WebLogic Security

/**
* Attempt to authenticate a remote user.
*
* @param userName ignored by this example
* @param certs used to attempt to map from email address to
* @a WebLogic user.
* @param ssl if false, this example returns null
* @return authenticated user, or null if authentication failed
*/
public User authenticate(String userName, Certificate[] certs,

boolean ssl)
{

// This implementation only trusts certificates that originate
// from a successful two-way SSL handshake.
if (ssl == false)
{
return null;

}

User result = null;
Certificate cert = certs[0];
Entity holder = cert.getHolder();

if (holder instanceof X500Name)
{
X500Name x500holder = (X500Name) holder;
String email = x500holder.getEmail();

if (email != null)
{

int at = email.indexOf("@");

if (at > 0)
{
String name = email.substring(0, at);

// Make sure that the user we've pulled out of the email
// address really exists.
result = realm.getUser(name);

}
}

}

return result;
}

}

Using Mutual Authentication

Programming WebLogic Security 4-23

The constructor in Listing 4-7 shows how to get access to the WebLogic Server
security realm in a server-side class. The getRealm("weblogic") method of the
weblogic.security.acl.realm class returns the realm being used by WebLogic
Server, whether it is the File realm or an alternative security realm, such as the LDAP
Security realm.

The weblogic.security.X500Name class includes accessor methods to retrieve
fields from the weblogic.security.Certificate class. Listing 4-7 casts the
Certificate object to an X500Name object, calls the getEmail() method of the
X500Name object, and takes the initial substring of the email address. The
getUser(String) method in the weblogic.security.acl.AbstractableRealm
class retrieves the WebLogic Server user with the computed username. If the user does
not exist, the authenticate() method of the
weblogic.security.acl.AbstractableRealm class returns null.

Using Mutual Authentication with Other WebLogic
Servers

You can use mutual authentication in server-to-server communication in which one
WebLogic Server is acting as the client of another WebLogic Server. Using mutual
authentication in server-to-server communication allows you to depend on
high-security connections, even without the more familiar client/server environment.

Listing 4-8 establishes a secure connection to a second WebLogic Server called
server2.weblogic.com from a servlet running in WebLogic Server.

Listing 4-8 Establishing a Secure Connection to Another WebLogic Server

Environment e = new Environment ();
e.setProviderURL(“t3s://server2.weblogic.com:443”);
e.setSSLClientCertificateFromServer();
e.setSSLServerName(“server2.weblogic.com”);
e.setSSLRootCAFingerprints(“ac45e2d1ce492252acc27ee5c345ef26”);

T3Client t3c = e.createProviderClient();
t3c.connect();

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/X500Name.html

4 Programming with the WebLogic Security SPI

4-24 Programming WebLogic Security

e.setInitialContextFactory
(“weblogic.jndi.WLInitialContextFactory”);

Context ctx = new InitialContext(e.getProperties())

In Listing 4-8, the WebLogic JNDI Environment class creates a hash table to store the
following parameters that are password with the
weblogic.jndi.InitialContextFactory:

� setProviderURL—The URL of the WebLogic Server functioning as a client.
The URL specifies the t3s protocol which is a WebLogic Server proprietary
protocol built on the SSL protocol. The SSL protocol protects the connection
and communication between two WebLogic Servers.

� setSSLClientCertificateFromServer—Enables the digital certificate of the
WebLogic Server functioning as a client to be used for client authentication. You
can substitute the setSSLClientCertificate() method here to specify a
certificate chain to use for the connection. A certificate chain is an array that
contains a private key, the matching public key, and a chain of digital certificates
for trusted certificate authorities, each of which is the issuer of the previous
digital certificate.

� setSSLServerName—Specifies the name of the WebLogic Server presenting the
digital certificate. The name is compared to the common name field in the digital
certificate of the WebLogic Server. This parameter is used to prevent
man-in-the-middle attacks.

� setSSLRootCAFingerprint—Specifies that the digital certificate must be
issued by a certificate authority with the specified fingerprint. This parameter is
used to prevent man-in-the-middle attacks.

Using Mutual Authentication with Applets

Mutual authentication originated by an applet is difficult because an applet cannot
access the digital certificate of the Web browser in which it is running. One solution is
to give an applet indirect access to the digital certificate of the Web browser via
WebLogic Server. A servlet can capture the digital certificate of a Web browser and
reveal it only when a specific 64-bit token is presented. The servlet can then create an
HTML page with an applet tag that passes the token as a parameter.

Using Mutual Authentication

Programming WebLogic Security 4-25

The CertAuthenticator servlet addresses the problem of how an applet can establish an
SSL connection using the same digital certificate as the Web browser that loaded the
applet. If your Web browser connects to WebLogic Server using the URL path
authenticated/directory, the digital certificate presented by the Web browser is
captured and stored in WebLogic Server as a randomly generated 64-bit token. The
CertAuthenticator servlet then creates an HTML page for the applet. The HTML page
contains the token, which the applet can redeem once. The applet presents the token to
WebLogic Server and WebLogic Server accepts the token and authenticates the applet
just as it would have done with a digital certificate. To use the CertAuthenticator
servlet, you need to specify the name of the class that implements the servlet. For more
information, see the “Configuring the SSL Protocol” section in Managing Security.

Using Mutual Authentication with Servlets

To authenticate Java clients in a servlet (or any other server-side Java class), you must
check whether the client presented a digital certificate and if so, whether the certificate
was issued by a trusted certificate authority. The servlet writer is responsible for asking
whether the Java client has a valid digital certificate. When writing servlets with the
WebLogic Servlet API, you must access information about the SSL connection
through the getAttribute() method of the HTTPServletRequest object.

The following attributes are supported in WebLogic Server servlets:

� javax.net.ssl.cipher_suite—Returns the cipher suite in use as a string.

� javax.net.ssl.session—Returns the SSL Session object that contains the
cipher suite and the dates on which the object was created and last used.

� javax.net.ssl.rootCA—Returns the digital certificate from the specified
certificate authority as a string.

� javax.net.ssl.rootCADigest—Returns the certificate digest from the
specified certificate authority as a string.

� javax.net.ssl.peer_certificates—Obtains information about the client’s
certificate chains and returns an array of digital certificate as objects. You can
then cast the array to weblogic.security.X509.

You have access to the user information defined in the digital certificates. A digital
certificate includes information, such as the following:

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/X509.html

4 Programming with the WebLogic Security SPI

4-26 Programming WebLogic Security

� The name of the subject (holder, owner) and other identification information
required to verify the unique identity of the subject, such as the uniform resource
locator (URL) of the Web server using the digital certificate, or an individual
user’s e-mail address

� The subject’s public key

� The name of the certificate authority that issued the digital certificate

� A serial number

� The validity period (or lifetime) of the digital certificate (as defined by a start
date and an end date)

You can see the available information in each digital certificate by calling the
to_string()method on the X509 object that represents the digital certificate.

You can create a weblogic.security.JDK11Certificate object for a digital
certificate by passing an X509 object to its constructor. The
weblogic.security.JDK11Certificate class implements the
java.security.Certificate interface.

Listing 4-9 converts the first X509 object in an array of X509 objects to a
JDK111Certificate object.

Listing 4-9 Converting an X509 Object to a JDK111Certificate Object

weblogic.security.JDK11Certificate jdk11cert =
new weblogic.security.JDK111Certificate(X509certs [0]);

print(out, “jdk11cert.getPrincipal().getName() -”,
jdk11cert.getPrincipal().getName());

print(out, “jdk11cert.getGuarantor().getName() -”,
jdk11cert.getGuarantor().getName());

The weblogic.security.JDK11Certificate class has the following member
functions that provide additional information about the digital certificate:

� getIssuerCertificate()—Returns the digital certificate of the issuer as a
java.security.Certificate object.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/JDK11Certificate.html

Using Custom ACLs

Programming WebLogic Security 4-27

� getFingerprint()—Returns the fingerprint of the digital certificate. The
fingerprint is the MD5 of the DER-encoded digital certificate. It is difficult to
construct a different digital certificate with the identical fingerprint.

� getSubjectOrgUnit()—Returns a string containing the Organizational unit of
the distinguished name in the digital certificate.

Using Custom ACLs

WebLogic Server defines a standard set of access control lists (ACL)s to protect
resources. If you create an ACL for a resource, WebLogic Server automatically checks
the permissions for that resource before allowing anyone to access it. Most resources
in WebLogic Server can be fully protected with these standard ACLs.

Some resources, however, require more protection than is offered by the standard set
of ACLs. WebLogic Server allows you to augment the security for such resources. You
may, for example, create a servlet that checks user permissions before writing certain
data to a Web page. The weblogic.security.acl.Security class provides access
to realm operations, such as checking an ACL. This class is available only to
server-side code.

The Security.hasPermission() and Security.checkPermission()methods in
the weblogic.security.acl.Security class test whether a user has the required
permission necessary to access a resource. The two methods are similar except that the
Security.hasPermission() method returns a Boolean (true if the user has the
relevant permission) and the Security.checkPermission()method throws
java.lang.SecurityException if the user does not have the permission.

The examples.security.acl example provided with WebLogic Server (in the
samples/examples/security directory) shows how to create your own ACLs and
test them in a server-side class. The custom ACL protects an RMI class, FrobImpl,
with a custom ACL named aclexample that has the permission of frob.

Note: Before a custom ACL can be used, the ACL must be installed in the security
realm being used by WebLogic Server.

To use the custom ACL, the Java client application must:

1. Get a JNDI InitialContext from WebLogic Server.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/Security.html

4 Programming with the WebLogic Security SPI

4-28 Programming WebLogic Security

2. Look up the protected resource in the WebLogic Server JNDI tree using the
permission name. For example, the Java client looks up FrobImpl using the
permission name, frob.

3. Execute the frob() method on the RMI stub.

The FrobImpl class contains the server-side code that tests the ACL. Listing 4-10
shows how to use the static checkPermission() method in the
weblogic.security.acl.realm class to test the custom ACL.

Listing 4-10 Testing Custom ACLs in the Default Security Realm

Security.checkPermission(Security.getCurrentUser(),
"aclexample",
Security.getRealm().getPermission("frob"),
'.');

You can also test custom ACLs in alternate security realms.

1. Use the getRealm(realm_name) method of the
weblogic.security.acl.realm class to get the alternate security realm.

2. Retrieve the custom ACL and permission using the getACL()and the
getPermission()methods of the weblogic.security.acl.realm class.

3. Test the permission by calling the acl.checkPermission()method.

Listing 4-11 illustrates this technique for testing custom ACLs.

Listing 4-11 Testing Custom ACLs in an Alternate Security Realm

User p = Security.getCurrentUser();
BasicRealm realm = Realm.getRealm(realm_name);
Acl acl = realm.getAcl(acl_name);
Permission perm = realm.getPermission(permission_name);
boolean result = acl == null || !acl.checkPermission(p, perm);

Writing a Custom Security Realm

Programming WebLogic Security 4-29

The last line in Listing 4-11 tests whether the custom ACL was found and whether the
user p has the frob permission. The sense of the test is reversed; if the ACL exists and
the user has frob permission, the result is false.

If you audit security events and you use the technique in Listing 4-12 for testing
permissions, you must explicitly call the static Audit class of the
weblogic.security.audit package if you want to audit your permission tests. The
call to the Audit class generates a notification of the permission-checking event to the
AuditProvider class in WebLogic Server.

Listing 4-12 Testing Permission

Audit.checkPermission("Frob", acl, p, perm, !result);

For a complete code example that uses custom ACLs, see the
examples.security.acl package in the samples/examples/security directory
provided by WebLogic Server.

Writing a Custom Security Realm

You may need to create your own security realm to draw from an existing security
store in your environment such as a directory server on the network. To write a custom
security realm that supports authentication you need to write code that:

1. Defines a User class for the custom security realm.

2. Defines a Group class for the custom security realm.

3. Defines an enumeration classes that return all Users and Groups in a security
store and release the resources of the security store when finished.

4. Defines a class for the custom security realm.

5. Obtains configuration data about the security store.

6. Authenticates a User.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/audit/package-summary.html

4 Programming with the WebLogic Security SPI

4-30 Programming WebLogic Security

7. Returns the members of a Group and creates a hash table that contains the
members of a Group.

8. Returns a User object given a User name.

9. Returns a Group object given a Group name.

10. Uses an enumeration for Users to return Users objects for all the Users in the
security store.

11. Uses an enumeration for Groups to return Group objects for all the Groups in the
security store.

You can also write a custom security realm that supports authorization. For more
information, see “Using Authorization in a Custom Security Realm”.

Note: WebLogic Server also provides the capability to create a custom security
realm that can be managed through the WebLogic Server Administration
Console. For more information, see the javadoc for the
weblogic.security.acl package or contact BEA Professional Services.

Table 4-4 lists the WebLogic classes used to create a custom security realm:

Table 4-4 WebLogic Classes Used to Create Custom Security Realms

Class Definition

weblogic.security.acl.User Defines a User that is retrieved from a local
security store.

weblogic.security.acl.
FlatGroup

Defines a Group whose membership is updated
when the local security store is updated.

weblogic.security.acl.
CloseableEnumeration

Defines an enumeration that can be closed thus
releasing resources.

weblogic.security.acl.
AbstractListableRealm

Allows you to create a security realm whose Users,
Groups, ACLs, and permissions can be viewed
through the Administration Console. However,
you need to use the facilities provided by the
security store you are using to add and delete
Users, Groups, and ACLs and assign permissions
to Users and Group.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/User.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/FlatGroup.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/ClosableEnumeration.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/AbstractListableRealm.html

Writing a Custom Security Realm

Programming WebLogic Security 4-31

Figure 4-1 illustrates how these classes work together to create a custom security
realm.

weblogic.security.acl.
RefreshableRealm

Synchronizes the information about Users,
Groups, ACLs, and permissions displayed in the
Administration Console with the information in
the local security store.

weblogic.management.
configuration.
CustomRealmMbean

Obtains configuration information about the
security store accessed from the custom security
realm.

Table 4-4 WebLogic Classes Used to Create Custom Security Realms

Class Definition

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/acl/RefreshableRealm.html

4 Programming with the WebLogic Security SPI

4-32 Programming WebLogic Security

Figure 4-1 WebLogic Classes Used to Create Custom Security Realms

The following sections describe the programming tasks required to write and custom
security realm and how the WebLogic classes are used to in a custom security realm.

Define a Class for Users

Extend the weblogic.security.acl.User class to create a User class for the
custom security realm.

Listing 4-13 contains code that defines a User class.

Writing a Custom Security Realm

Programming WebLogic Security 4-33

Listing 4-13 Defining a User Class

// Import the required classes
import weblogic.security.acl.user;
...

// Create a custom User class for the custom realm
/*package */class CustomRealmUser
extends User

{
// Keep track of the User’s custom realm
CustomRealm realm = null;

// Implement a constructor
/*package*/ CustomRealmUser(String name, CustomRealm realm);

{
// Call base constructor class passing in the name of the
// User
super(name);

// Keep track of this User’s realm
this.realm = realm;

}
// Return the User’s custom realm
public BasicRealm getRealm()
{

return realm;
}

}
...

Define a Class for Groups

Groups make it easier to manage security. Internally, a custom security realm
represents a Group as a hash table containing a list of members which can be Users or
Groups.

To implement a Group in a custom security realm, extend the
weblogic.security.acl.Flatgroup class to create a new Group with no
membership information. The constructor for the class takes as input the name of the
desired Group and the realm object corresponding to the custom security realm.

4 Programming with the WebLogic Security SPI

4-34 Programming WebLogic Security

The Flatgroup class is especially designed to work with custom security realms. A
custom security realm needs to periodically update Group membership. The FlatGroup
maintains its group membership in a cache instead of in a static set. When the cache
expires, the Group implementation queries the security store to obtain the most recent
membership information. The default time for the Group cache is five minutes which
means any changes you make in the underlying store will be recognized in the custom
security realm within five minutes. You can tune this value by setting the
GroupMembershipCacheTTL field in the Administration Console to the number of
seconds a cached group remains valid.

Listing 4-14 contains code that defines a Group class.

Listing 4-14 Defining a Group Class

// Import the required classes
import weblogic.security.acl.FlatGroup;
...

/*package*/ class CustomRealmGroup
extends FlatGroup
{

// Implement a constructor
/*package*/ CustomRealmGroup(String name,

CustomRealm realm);
{
// Call the base class constructor passing in the name
// of the Group and custom security realm
super(name, source);

}
// Implement a method that returns the user class for
// custom security realm
protected Class getUserClass()

{
return CustomRealmUser.class;

}
}
...

Writing a Custom Security Realm

Programming WebLogic Security 4-35

Define Enumeration Classes for Users and Groups

Write an enumeration classes for Users and Groups. If the enumeration holds resources
that must be released when the enumeration is done (for example, release a database
cursor), then implement the weblogic.security.acl.CloseableEnumeration
class. Otherwise, implement the java.util.Enumeration interface. In the
enumerator constructor pass arguments needs to access the security store.

Do not create a User or Group object for every User or Group in the custom security
realm and put them in a hash table that enumerates over them. A custom security realm
in a deployed WebLogic Server can have more Users and Groups than can fit into
memory. Instead, use a database cursor which can be used to incrementally create User
or Groups objects as they are needed.

Listing 4-15 contains code that defines enumeration classes for users and groups.

Listing 4-15 Defining Enumeration Classes for Users and Groups

// Import the required classes
import weblogic.security.acl.FlatGroup;
import weblogic.security.acl.ClosableEnumeration;

...
// Define an enumeration class for users.
/*package*/ class CustomRealmUsersEnumeration
implements CloseableEnumeration
{

// Keep data members here (for example, a database cursor)

// Keep track of the enumeration’s security realm (for
// use with the User constructor)
private CustomRealm realm = null;

// Implement a constructor
/*package */ CustomRealmUsersEnumeration(...,

CustomRealm realm)
{
this.realm = realm;

}

// Implement a method to determine if there are more Users.
public boolean hasMoreElements()
{
//For example, use a database cursor to see if there are

4 Programming with the WebLogic Security SPI

4-36 Programming WebLogic Security

// more users
return (there are more users ...) ? true : false;

}

// Implement a method to return the next user.
// The method must return users objects that use the
// User class for the custom security realm
public Object nextElement()
{

// For example, use the database cursor to get the name
// of the next user.
return new CustomRealmUser(next user name ..., realm);

}

// Implement a method to terminate the enumeration.
// This step is optional
public void close()

{
// If this enumeration is delegating to an iterator that
// needs to be closed (e.g., a database cursor), release
// the resources here.

}
}

// Create a Group class for the custom security realm
/*package*/class CustomRealmGroupsEnumeration

implements CloseableEnumeration
{

// Keep data members here (for example, a database cursor

// Keep track of the enumeration’s security realm (for
// use with the Groups constructor)
private CustomRealm realm = null;

// Implement a constructor
/*package */ CustomRealmUsersEnumeration(...,

CustomRealm realm)
{

this.realm = realm;
}

// Implement a method to determine if there are more Groups.
public boolean hasMoreElements()
{

// For example, use a database cursor to see if there are
// more groups
return (there are more groups ...) ? true : false;

}

Writing a Custom Security Realm

Programming WebLogic Security 4-37

// Implement a method to return the next group.
// The method must return group objects that use the
// Group class for the custom security realm
public Object nextElement()
{

// For example, use the database cursor to get the name
// of the next group.
return new CustomRealmGroup(next group name ..., realm);

}

// Implement a method to terminate the enumeration.
// This step is optional
public void close()

{
// If this enumeration is delegating to an iterator that
// needs to be closed (e.g., a database cursor), release
// the resources here.

}
}
...

Define a Class for the Custom Security Realm

Extend the weblogic.security.acl.AbstractListableRealm class to define a
new class for the custom security realm and implement a constructor that creates the
custom security realm. This class needs to:

1. Obtain configuration data for the security store.

2. Authenticate Users.

3. Determine the members of a Group

4. Get Users and Groups from the security store.

Weblogic Server caches User and Group information in memory. Therefore, BEA
recommends having a custom security realm go to disk to whenever it needs User or
Group information. The WebLogic Server system administrator can only change Users
or Groups for a custom security realm by editing the information in the security store
with tools provided for the security store. After the system administrator changes User

4 Programming with the WebLogic Security SPI

4-38 Programming WebLogic Security

or Group information in the security store, the system administrator must update the
information in the Administration Console by clicking on the Reset button. This action
automatically flushes the User and Group information kept in memory.

If the custom security realm caches User or Group information in memory, implement
the weblogic.security.acl.RefreshableRealm class and the refresh()
method of the class. When the system administrator updates resets the realm, the
refresh() method is called. Use the refresh() method to discard any cached User
or Group information.

Listing 4-16 contains code that defines a class for a custom security realm.

Listing 4-16 Defining a Class for a Custom Security Realm

...
// Import the necessary classes
import weblogic.security.acl.AbstractListableRealm;
import weblogic.security.acl.BasicRealm;
import weblogic.security.acl.RefreshableRealm;
import weblogic.server.Server;

// Create a class for the custom security realm
public class CustomRealm

extends AbstractListableRealm // Required
implements Refreshable Realm // Optional

// Implement a constructor that creates the custom security realm
public CustomRealm()
{

super(“Custom Realm”);
...

public void refresh()
{

// Discard User and Group information in-memory
}

Obtain Configuration Data for the Security Store

In order to connect to the security store, configuration properties (for example, a
property that contains a URL or a property that specifies a directory path) that specify
how to access the security store used by the custom security realm must be defined.

Writing a Custom Security Realm

Programming WebLogic Security 4-39

Once these properties are defined, the system administrator for WebLogic Server must
set the properties in the Configuration Data section of the Custom Security Realm
Create window in the Administration Console. The properties for the security store
must be defined in the WebLogic Server administration environment before the
custom security realm can be used.

For example, define two properties userInfoFileName and groupInforFileName

that specify directory paths to files that contain User and Group information. The
system administrator enters those properties in the Configuration Data section of the
Custom Security Realm Create window in the Administration Console.

In the code for the custom security realm, use the
weblogic.management.configuration.CustomRealmMbean class to retrieve
configuration properties for the custom security and use those properties to connect to
the security store.

Listing 4-17 contains code that retrieves configuration properties for the security store
and then connects to the security store.

Listing 4-17 Accessing the Security Store

...
// Import the necessary classes
import weblogic.management.configuration.BasicRealmMBean;
import weblogic.management.configuration.CustonRealmMBean;

...
// Get the Custom Realm MBean
BasicRealmMBean basicRealmMBean =
Server.getSecurityConfig().getRealm().getCachingRealm.
getBasicRealm();

CustomRealmMBean customRealmMBean =
(CustomRealmMBean)basicRealmMBean;

// Get configuration data from the CustomRealmMBean
Properties configData = customRealmMBean.getConfigurationData();

// Get the properties for the custom security store.
String userInfoFileName =

configData.getProperty(“UserInfoFileName);
String groupInfoFileName =

configData.getProperty(“GroupInfoFileName);

4 Programming with the WebLogic Security SPI

4-40 Programming WebLogic Security

Authenticate Users

If the custom security realm uses passwords to authenticate Users, you must explicitly
implement the authUserPassword() method to authenticate Users. Write code that
checks the security store to ensure that the user specified by the authUserPassword()
method exists with the supplied password.

� If the user exists and the password is correct, return a User object. Use the User
class for the custom security realm.

� If the user does not exist or if the password is incorrect, the authentication fails.
In this case, return null to indicate the authentication failed.

Listing 4-18 contains code that authenticates a User.

Listing 4-18 Authenticating Users

...
//Implement a method which authenticates a user
protected User authUserPassword(String name, String password)
{

// Check the security store to see if there is a user
// named name with password password

if (...) {
return new CustomRealmUser(name, this);

} else {
return null;

}
}

Determine the Members of a Group

Use the getGroupMembersInternal() method of the
weblogic.security.acl.AbstractListableRealm class to get the members of a
group and build a hash table with the members of a group.

Writing a Custom Security Realm

Programming WebLogic Security 4-41

Listing 4-19 contains code that obtains the members of a Group.

Listing 4-19 Obtaining the Members of a Group

...
// Implement a method to return members of a group.
protected Hashtable getGroupMembersInternal(String name)
{

// Check the security store to see if there is a group with
// the specified name
if (!...) {

// If the group does not exist, throw an exception
throw new CustomRealmException(“No such group : “ + name);

}

// Create a hash table with is filled with group members
// and is then returned.
Hashtable members = new Hashtable();

// Get the group members from the security store
for (...) {// loop over the members

if (...) {
// If this member is a user, create a user object
// for this user and add it to the list of members.
// Use the User class created for the custom
// security realm.
members.put(memberName, new CustomRealmUser

(memberName, this));
} else if
// If this member is a group, create a group object
// for this group and add it to the list of members.
// Use the Group class created for the custom
// security realm.
members.put(memberName, new CustomRealmGroup

(memberName, this));
}

}
// Return the hash table contains the members of the group.
return members;

}
...

4 Programming with the WebLogic Security SPI

4-42 Programming WebLogic Security

Get Users and Groups from Security Store

Implement the getUser() and getGroup() methods of the
weblogic.security.acl.AbstractListableRealm class to retrieve Users and
Groups from the security store into the custom security realm. Use the getUsers()
and getGroups() methods of the
weblogic.security.acl.AbstractListableRealm class to return enumeration
objects that return User objects and Group objects for the User and Groups in the
security store. The Users and Groups in the security store can now be viewed through
the Administration Console.

Listing 4-20 contains code that retrieves Users and Groups from the security store.

Listing 4-20 Retrieving Users and Groups from the Security Store

...
// Implement a method to return a User object given the name of
// the user.
public User getUser(String name)
{
// Check the security store to see if there is a user with the
// the specified name.
if (...) {
// If the user exists, return a User object for the
// the user. Use the User class created for the custom
// security realm.
return new CustomRealmUser(name, this);
} else {
// Return a null if the user does not exist
return null;
}

}

// Implement a method to return a Group object given the name of
// the Group.
public Group getGroup(String name)
{
// Check the security store to see if there is a group with the
// the specified name.
if (...) {
// If the group exists, return a Group object for the
// the Group. Use the Group class created for the
// custom security realm
return new CustomRealmGroup(name, this
} else {

Writing a Custom Security Realm

Programming WebLogic Security 4-43

// Return a null if the group does not exist
return null;
}

}

// Implement a method to return an enumeration object that can
// can be used to iterate over all the users in the custom security
// realm.
public Enumeration getUsers()
{
// Return an enumeration object that returns User object for
// the users in the security store. Use the user enumeration
// class created for the custom security realm. Remember to
// give the enumeration access to the security store so that
// it can iterate over the users.
return new CustomRealmUsersEnumeration(..., this);

}

// Implement a method to return an enumeration object that can
// can be used to iterate over all the groups in the custom security
// realm.
public Enumeration getGroups()
{
// Return an enumeration object that returns Group object for
// the Groups in the security store. Use the group
// enumeration class created for the custom security realm.
// Remember to give the enumeration access to the security
// store so that it can iterate over the Groups.
return new CustomRealmGroupsEnumeration(..., this);

}
...

Using Authorization in a Custom Security Realm

To construct an ACL in a custom security realm, create a new AclImpl object, set its
name, and then add an AclEntryImpl objects for each User or Group. Each AclEntry
object contains a set of permissions associated with a particular principal which
represents a User or a Group.

The AclImpl interface imposes an ordering constraint on constructing ACLs. You
must add all permissions to an AclEntryImpl object before you add the AclEntryImpl
object to the AclImpl object.

4 Programming with the WebLogic Security SPI

4-44 Programming WebLogic Security

In the class for the custom security realm, use the getAcl() method to retrieve ACLs
from a security store. The getAclInternal() method steps through the result set
creating an AclImpl object, creating an AclEntryImpl object for each User or Group,
and then adding permissions to the AclEntryImpl object. When an AclEntryImpl
object is finished, it is added to the AclImpl object. When the AclImpl object is
finished, the getAclInternal() method returns the finished ACL.

Auditing Security Events

The weblogic.security.audit package allows you to use an audit SPI for events
that occur in the WebLogic Server security realm. The package includes an interface,
AuditProvider, and a static class, Audit, to which WebLogic Server sends auditable
security events.

To enable auditing, you create a class that implements the AuditProvider interface and
the methods that represent the security events you want to audit. WebLogic Server
calls the methods on your class when a user attempts to authenticate, when a
permission is tested, or when an invalid digital certificate or root digital certificate is
presented. Your AuditProvider class receives the information for each event type and
process the event in whatever way you choose. For example, it could log only
unsuccessful authentication requests in the WebLogic Server log file, or record all
auditable events in a database table.

Before you can use an AuditProvider class, you need to install the class through the
Administration Console. For more information, see “Installing an Audit Provider”
section in Managing Security.

The LogAuditProvider example is available in the examples.security.audit
package in the /samples/examples/security/audit directory provided by
WebLogic Server. The example writes all events it receives in the WebLogic Server
log file. It also defines filter methods for each event type, and calls those filters to
decide whether to log a particular event. In the example code, the filter methods always
return true so that all events are logged. If you extend this example, you can override
the filter methods with methods that select the events you want to log. If you want to
take some action other than logging, you can use the LogAuditProvider example as a
starting point for creating your own provider.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/audit/package-summary.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Filtering Network Connections

Programming WebLogic Security 4-45

Filtering Network Connections

Passwords, ACLs, and digital certificates allow you to secure WebLogic Server
resources using some characteristic of a user. You can add an additional layer of
security by filtering network connections. For example, you can deny any non-SSL
connections originating outside of your corporate network.

To filter network connections, create a class that implements the
weblogic.security.net.ConnectionFilter interface and install the class in
WebLogic Server so that you can examine requests as they occur and then accept or
deny them.

Before you can use a Connection Filter, you need to install the class through the
Administration Console. For more information, see the “Installing a Connection
Filter” section in Managing Security.

When a Java client or Web browser client tries to connect to WebLogic Server,
WebLogic Server constructs a ConnectionEvent object and passes it to the
accept() method of your ConnectionFilter class. The ConnectionEvent object
includes the remote IP address (in the form of java.net.InetAddress), the remote
port number, the port number of the local WebLogic Server, and a string specifying the
protocol (HTTP, HTTPS, T3, T3S, or IIOP).

Your ConnectionFilter class can examine the ConnectionEvent object and accept
the connection by returning, or deny the connection by throwing a FilterException.

The examples.security.net.SimpleConnectionFilter example provided in
the samples/examples/security/net directory provided by WebLogic Server
filters connections using a rules file. The SimpleConnectionFilter example parses
the rules file and sets up a rule-matching algorithm so that connection filtering adds
minimal overhead to a WebLogic Server connection. The SimpleConnectionFilter
example is an efficient, generalized connection filter. If necessary, you can modify this
code. You may, for example, want to accommodate the local or remote port number in
your filter or a more site-specific algorithm that will reduce filtering overhead.

In Listing 4-21, WebLogic Server calls the SimpleConnectionFilter.accept()
method with a ConnectionEvent. The SimpleConnectionFilter.accept()
method gets the remote address and protocol and converts the protocol to a bitmask to

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/security/net/ConnectionFilter.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

4 Programming with the WebLogic Security SPI

4-46 Programming WebLogic Security

avoid string comparisons in rule-matching. Then the
SimpleConnectionFilter.accept() method compares the remote address and
protocol against each rule until it finds a match.

Listing 4-21 Example of Filtering Network Connections

public void accept(ConnectionEvent evt)
throws FilterException

{
InetAddress remoteAddress = evt.getRemoteAddress();
String protocol = evt.getProtocol().toLowerCase();
int bit = protocolToMaskBit(protocol);

// this special bitmask indicates that the
// connection does not use one of the recognized
// protocols
if (bit == 0xdeadbeef)
{
bit = 0;

}

// Check rules in the order in which they were written.

for (int i = 0; i < rules.length; i++)
{
switch (rules[i].check(remoteAddress, bit))
{
case FilterEntry.ALLOW:

return;
case FilterEntry.DENY:

throw new FilterException("rule " + (i + 1));
case FilterEntry.IGNORE:

break;
default:

throw new RuntimeException("connection filter internal error!");
}

}

// If no rule matched, we allow the connection to succeed.

return;
}

	1 Introduction to WebLogic Security
	WebLogic Security Features
	WebLogic Security Architecture
	Connections with Web Browsers
	Connections with Servlets, JSPs, EJBs, RMI Objects and Java Applications
	Connections with Administration Servers

	Using WebLogic Server as a Client to WebLogic Enterprise

	2 Security Fundamentals
	Resources
	Security Realms
	Users
	Groups
	ACLs and Permissions
	SSL Protocol
	Authentication Mechanisms
	Digital Certificates
	Certificate Authority
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites

	3 Securing a WebLogic Server Deployment
	Why is Security Important for WebLogic Server?
	Determine the Security Needs of Your WebLogic Server Deployment
	Secure the Machine on Which WebLogic Server Runs
	Design Network Connections Carefully
	Manage the WebLogic Server Development and Deployment Environments
	Use Encryption
	Use the SSL Protocol
	Prevent Denial of Service Attacks
	Use Protected EJBs to Limit Access to Business Logic
	Use ACLs
	Use the Appropriate Security Realm
	Secure Your Database
	Use Auditing

	4 Programming with the WebLogic Security SPI
	Before You Begin
	WebLogic Security SPI
	Using JAAS Authentication
	Using JNDI Authentication
	Using Mutual Authentication
	Mapping a Digital Certificate to a WebLogic Server User
	Using Mutual Authentication with Other WebLogic Servers
	Using Mutual Authentication with Applets
	Using Mutual Authentication with Servlets

	Using Custom ACLs
	Writing a Custom Security Realm
	Define a Class for Users
	Define a Class for Groups
	Define Enumeration Classes for Users and Groups
	Define a Class for the Custom Security Realm
	Obtain Configuration Data for the Security Store
	Authenticate Users
	Determine the Members of a Group
	Get Users and Groups from Security Store

	Using Authorization in a Custom Security Realm

	Auditing Security Events
	Filtering Network Connections

