
WebLogic Server
Using the WebLogic

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a r c h 2 0 , 2 0 0 1

BEA

JDBC t3 Driver
(Deprecated)

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Using the WebLogic T3 Driver (Deprecated)

Part Number Document Date Software Version

N/A March 20, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience..v

e-docs Web Site...v

How to Print the Document... vi

Contact Us! .. vi

Documentation Conventions .. vii

1. Using the WebLogic JDBC t3 Driver (Deprecated)
T3 Driver Deprecated ..2

Overview of JDBC ..3

WebLogic JDBC Architecture ...3

Using Third-Party JDBC 2.0 Drivers in a Multitier Configuration4

The WebLogic JDBC API...5

API Reference ..5

WebLogic JDBC Objects and Their Classes..5

Other Classes...6

Upgrading to JDK 1.3 ..6

How to upgrade ...7

Implementing WebLogic JDBC ..7

Step 1. Importing packages ...9

Step 2. Creating the T3Client..9

Step 3. Setting properties for connecting ..12

Step 4. Connecting to the DBMS..20

Cached Connections and Connection Pools..20

Using Connection Pools..24

Creating a Startup Connection Pool..25

Creating a Dynamic Connection Pool...29
Using the WebLogic T3 Driver (Deprecated) iii

Obtaining a Connection from a Connection Pool 31

Managing Connection Pools .. 33

Inserting, Updating, and Deleting Records .. 40

Creating and Using Stored Procedures and Functions 41

Final Step. Closing the Connection and Disconnecting the T3Client.. 44

Code Summary... 45

Other WebLogic JDBC Features .. 48

Waiting on Oracle Resources... 48

Extended SQL .. 49

Oracle Array Fetches.. 49

Multibyte Character Set Support.. 50

About WebLogic JDBC and Oracle NUMBER Columns 50

Implementing with WebLogic JDBC and the JDBC-ODBC Bridge 51

Step 1. Importing packages .. 52

Step 2. Creating the T3Client ... 52

Step 3. Connecting ... 52

Accessing Data... 53

Exception Handling.. 55

Final Step. Disconnecting and Closing Objects 55

Code Summary... 55

Using URLs to Set Properties For a JDBC Connection Using the T3 Driver.... 59

Where URLs are Used... 59

How WebLogic URLs are Structured ... 59

Specifying a Connection with a Properties Object and a URL............ 59

Specifying a WebLogic JDBC Connection with a Single URL........... 61

Shortcuts... 62

Quoting Metacharacters in a URL... 63

Using IDEs and Wizards ... 64
iv Using the WebLogic T3 Driver (Deprecated)

About This Document

This document describes how use the deprecated JDBC T3 Driver.

� Chapter 1, “Using the WebLogic JDBC t3 Driver (Deprecated).”

Audience

This document is written for application developers who are interested in building
applications requiring database access. It is assumed that readers are familiar with
SQL, general database concepts, and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.
Using the WebLogic T3 Driver (Deprecated) v

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using
vi Using the WebLogic T3 Driver (Deprecated)

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.
Using the WebLogic T3 Driver (Deprecated) vii

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
viii Using the WebLogic T3 Driver (Deprecated)

1 Using the WebLogic
JDBC t3 Driver
(Deprecated)

This section discusses the deprecated WebLogic JDBC t3 driver in the following
topics:

� T3 Driver Deprecated

� Overview of JDBC

� The WebLogic JDBC API

� Implementing WebLogic JDBC

� Other WebLogic JDBC Features

� Implementing with WebLogic JDBC and the JDBC-ODBC Bridge

� Using URLs to Set Properties For a JDBC Connection Using the T3 Driver
Using the WebLogic T3 Driver (Deprecated) 11

T3 Driver Deprecated
T3 Driver Deprecated

The t3 driver is deprecated in WebLogic Server Version 6.0. BEA recommends you
use the RMI driver in place of the t3 driver. Refer to Migrating WebLogic Server 4.5
and 5.1 Applications to Version 6.x in the
http://e-docs.bea.com/wls/docs60/notes/migrate.html.

Although this document is not being updated, major differences between this release
and WebLogic Server Version 5.1 are noted in the following table:

Table 1-1 Resources for Depreciated t3 Driver

Use this feature . . . To replace . . . As described here . . .

RMI Driver t3 Driver Whenever possible, use the RMI driver in place of
the t3 driver. For information on the RMI driver, see
Using the WebLogic RMI Driver in Programming
WebLogic JDBC.

myDriver.connect() DriverManager.getConnect
ion()

DriverManager.getConnection() is a
synchronized method, which can cause your
application to hang in certain situations. For this
reason, BEA recommends that you substitute
the Driver.connect() method for
DriverManager.getConnection().

Administration Console weblogic.properties file Use the Administration Console to set
attributes. This replaces the
weblogic.properties file. For more information,
see Managing JDBC Connectivity in the
Administration Guide.

Attributes weblogic.properties file To view the list of JDBC attributes, see JDBC
Connection Pool in the online help at
(DOCROOT}/ConsoleHelp/jdbcconnectionpo
ol.html..
Using the WebLogic T3 Driver (Deprecated) 12

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/notes/migrate.html
http://e-docs.bea.com/wls/docs60/notes/migrate.html

Overview of JDBC
Overview of JDBC

WebLogic JDBC, WebLogic’s multitier JDBC implementation (based on JavaSoft’s
JDBC specification), gives applications database access from within WebLogic.
WebLogic supports multiple multitier server products that provide various services,
one of which is database access with WebLogic JDBC. Java client applications built
with WebLogic JDBC require no client-side database libraries.

WebLogic JDBC requires a JDBC driver between the WebLogic Server and the
database server. You can use the WebLogic two-tier driver, WebLogic jDriver for
Oracle. You may also elect to use any other JDBC driver, including a JDBC driver for
ODBC access. If you choose to use a non-WebLogic JDBC driver between the
WebLogic Server and the DBMS, we can only offer you support in deploying
WebLogic JDBC after you have demonstrated that your two-tier non-WebLogic JDBC
driver works satisfactorily in a two-tier environment.

WebLogic JDBC Architecture

WebLogic JDBC’s architecture is defined by its place in the WebLogic framework as
part of WebLogic’s multitier environment. The WebLogic JDBC Server sits between
the WebLogic JDBC application and the remote DBMSes that it accesses. The
WebLogic JDBC application is a client of the WebLogic Server, and the WebLogic
Server becomes a client of the DBMS. There are two sides to this relationship that are
important to understand:

Between the WebLogic Server and its WebLogic JDBC clients. Each WebLogic JDBC
client has its own context, or Workspace, within WebLogic. The protocol between the
WebLogic Server and its clients is a multiplexed, bidirectional, asynchronous
connection. The connection between any T3Client and the WebLogic Server is a
“rich-socket connection;” that means that the connection carries much more
information than a TCP socket connection does. Internally, the WebLogic Server uses
an efficient packet-based queuing protocol. For more information about the
relationship between T3Clients and the WebLogic Server, see the Developers Guide
(deprecated),Writing a T3Client application at
http://www.weblogic.com/docs45/classdocs/API_t3.html.
Using the WebLogic T3 Driver (Deprecated) 13

Overview of JDBC
Between the WebLogic Server and the DBMS. Using a JDBC driver and vendor
libraries, the WebLogic Server maintains a connection to one or more databases on
behalf of the T3Client. The WebLogic Server communicates with remote DBMS via
JDBC drivers and, depending upon the JDBC driver, a vendor-specific library or
ODBC. We talk about this connection between the WebLogic Server and the DBMS
as the “two-tier connection.” The WebLogic Server may be connected to more than
one database for requests from a single client; and the WebLogic Server may be
connected to only one database for requests from multiple clients.

There is also a fundamental relationship between a WebLogic JDBC client and the
databases that it accesses, with the WebLogic Server in the middle. This relationship
is defined by a JDBC Connection object. There are several ways to create and use
JDBC Connections; a WebLogic JDBC client can create a JDBC Connection by
setting up certain properties, identifying the right JDBC drivers, and making a
connection. A JDBC Connection object can be cached (saved) in the T3Client’s
Workspace on the WebLogic Server. JDBC Connections can also be created when the
WebLogic Server starts up, as a pool of connections available to one or more clients.

The WebLogic Server has many features that can enhance a JDBC application, but all
that is required of a WebLogic JDBC application is to connect to a WebLogic Server
at the beginning of the session and disconnect at the end. The connection between the
WebLogic Server and the DBMS is handled transparently.

Using Third-Party JDBC 2.0 Drivers in a Multitier
Configuration

Note: WebLogic Server Version 6.0 requires JDK 1.3

You may use third-party JDBC 2.0 drivers with WebLogic JDBC and WebLogic
Server. Such use requires that you run WebLogic Server or WebLogic JDBC under
Java 2 (JDK 1.2.x). There are currently limitations regarding the use of Java 2 that you
should consider when using JDBC 2.0 drivers. These limitations are discussed on the
WebLogic platforms page.

When you use a third-party JDBC 2.0 driver in a multitier configuration, all of the
driver’s calls and the returned data are transparently passed through the WebLogic
multitier driver. This allows you to use any functionality available in that driver in a
WebLogic multitier configuration.
Using the WebLogic T3 Driver (Deprecated) 14

The WebLogic JDBC API
To use a JDBC 2.0 driver in a multitier configuration, make the following changes in
your code:

1. Change the portion of your Java code where you register the JDBC driver:

2. Change the portion of your Java code that contains the JDBC driver URL:

3. If you are using the CLOB or BLOB datatypes, row caching is not supported. To
turn off row caching, set the following connection property in your code:

weblogic.t3.cacheRows=0

4. Re-compile your code.

The WebLogic JDBC API

API Reference

Package java.sql

Package java.math

Package weblogic.jdbc.common

WebLogic provides extensions to JDBC for certain WebLogic JDBC enhancements
(some support WebLogic jDriver JDBC extensions in a multitier environment). See
the API Reference for links to the API (Javadoc) documentation for these extensions.

WebLogic JDBC Objects and Their Classes

Note: For WebLogic Server Version 6.0, JDBC 2.0 is implemented.

The JDBC implementation is not covered in this developer guide. However, we do
provide JavaSoft’s classdocs (API reference materials) along with our other online
reference. Anyone can freely download the JDBC classes and API documentation; go
to JavaSoft. Documented here are those objects and classes specific to WebLogic
JDBC’s use in the WebLogic framework.
Using the WebLogic T3 Driver (Deprecated) 15

The WebLogic JDBC API
The classes that you import in WebLogic JDBC applications include:

� java.sql.* for use with the driver weblogic.jdbc.t3.Driver

� weblogic.common.T3Client

� java.util.Properties

Other Classes

weblogic.common.T3Client

weblogic.common.T3User

weblogic.common.T3Exception

The weblogic.common.* package contains the T3Client class, which
instantiates a T3Client, the T3-specific object that WebLogic JDBC uses to
function within the WebLogic framework. Also included in this package is
the T3User class. A T3User object is used to pass username and password
information to a secure WebLogic Server, that is, one that requires
authentication for access.

weblogic.jdbc.t3.Connection

WebLogic has extended JDBC for the T3Client to be able to reset the
cacheRows property on the connection. Only the extensions are covered in
WebLogic’s API reference and documentation; other information about
JDBC is available at the sun site.

java.util.Properties

The java.util.Properties object is used as an argument to construct the JDBC
Connection object.

Upgrading to JDK 1.3

With WebLogic release 3.0, you should have upgraded your use of WebLogic JDBC
to the latest release of the 1.1 version of the Java Developers Kit WebLogic no longer
supports JDK 1.0.2. Running the WebLogic Server against the 1.0.2 JVM is no longer
supported, and running or compiling your WebLogic applications against 1.0.2 is also
no longer supported.
Using the WebLogic T3 Driver (Deprecated) 16

Implementing WebLogic JDBC
A significant change between the 1.0.2 and 1.1 versions of the JDK is that the JDBC
classes (java.sql.*) are included in the JDK 1.1. The temporary set of JDBC classes
that WebLogic provided—xjava.sql.* and weblogic.db.xjdbc.*—are no longer
necessary for use with JDK 1.1.

How to upgrade

1. Change the import statements that reference xjava.sql.* and
weblogic.db.xjdbc.* to java.sql.* and weblogic.db.jdbc.*. Here is an
example:

import java.sql.*;
import weblogic.db.jdbc.*;

Details. Change all references in your code from xjava.sql.* to java.sql.* when
you begin using JDK 1.1. (If you are using dbKona, you will also need to change
references to weblogic.db.xjdbc.* to weblogic.db.jdbc.*. This may mean just
changing the import statements. You should also check your code for explicit
references to xjava.sql.* and weblogic.db.xjdbc.* classes.

There are implementation examples in the next section.

2. Change the references to the WebLogic JDBC driver class name to
weblogic.jdbc.t3.Driver; change the reference to the WebLogic JDBC URL
to jdbc:weblogic:t3.

Details. One change we have made is the introduction of a new naming convention to
make the change to JDK 1.1 more consistent. We have introduced a new class,
weblogic.jdbc.t3.Driver, which is identical to
weblogic.jdbc.t3client.Driver, but it uses java.sql.* instead of
xjava.sql.*. You should change references to the WebLogic JDBC driver URL to
jdbc:weblogic:t3 and to the WebLogic JDBC driver class name to
weblogic.jdbc.t3.Driver.

Implementing WebLogic JDBC

Steps to building a WebLogic JDBC application are covered here. The simple
application that is used in the full code example makes a connection to an Oracle
database via a WebLogic Server, inserts, updates, and deletes a series of records, and
Using the WebLogic T3 Driver (Deprecated) 17

javascript:openit(../techdoc/glossary/url.html')'
javascript:openit(../techdoc/glossary/url.html')'

Implementing WebLogic JDBC
creates and uses stored procedures and functions. Other examples included in the
step-by-step discussion show similar code for use with a Sybase database, particularly
in the section on stored procedures and functions.

The first five steps are covered in the order in which they should appear in an
application, and are numbered accordingly.

� Step 1. Importing packages

� Step 2. Creating the T3Client

� Using an explicit or an embedded T3Client

� Step 3. Setting properties for connecting

� Properties to be set for the two-tier connection

� Properties to be set for the multitier connection

� Using a URL to set WebLogic JDBC properties

� Setting up an embedded T3Client

� Step 4. Connecting to the DBMS

� Using a named, cached JDBC Connection

� Creating a startup connection pool

� Creating a dynamic connection pool

� Managing connection pools

� Inserting, updating, and deleting records

� Creating and using stored procedures and functions

� Final Step. Disconnecting the T3Client

� Code summary

� Other WebLogic JDBC features

� Waiting on Oracle resources

� Extended SQL

� Oracle array fetches

� Multibyte character set support
Using the WebLogic T3 Driver (Deprecated) 18

Implementing WebLogic JDBC
A full code example for using an Oracle database with WebLogic JDBC is reproduced
at the end of this document. It incorporates many of the code examples used in the
step-by-step instructions.

If you are using a WebLogic jDriver two-tier driver between the WebLogic Server and
the DBMS, you should also check the Developers Guides for the particular two-tier
driver you are using.

Step 1. Importing packages

Import the following into your WebLogic JDBC application:

� java.sql.*

� weblogic.common.*

� java.util.Properties

You import java.util.Properties so that you can create a Properties object to set
parameters for accessing the DBMS. The weblogic.common.* package contains
classes that are shared by all applications that function within the WebLogic
framework. For more information on these classes, see WebLogic JDBC and their
classes.

Declare the Connection object at the top of your method, since it is used in the try and
the finally blocks.

Also, declare the T3Client object before the try block unless you will be using an
embedded T3Client. Added as a feature in release 2.3.2, an embedded T3Client is set
up by adding another property to the java.util.Properties object. An embedded
T3Client is constructed and connected automatically, and can be used in any
WebLogic JDBC class where you do not need an explicit T3Client object for other
operations.

Step 2. Creating the T3Client

Using an explicit or an embedded T3Client

Note: Workspaces are no longer part of WebLogic Server.

In general, each WebLogic JDBC application begins with the creation of a T3Client
object. (A T3Client may be created automatically for you, if you use the embedded
T3Client feature available in release 2.3.2 and after.) The T3Client becomes the client
Using the WebLogic T3 Driver (Deprecated) 19

Implementing WebLogic JDBC
context for this client within a WebLogic Server and uniquely identifies the client and
its requests. A T3Client also owns its Workspace inside the WebLogic Server which
persists and allows a T3Client to reconstitute itself for successive WebLogic Server
sessions. For WebLogic JDBC applications, the T3Client is also one of the properties
passed to the constructor for the JDBC Connection.

The T3Client class, weblogic.common.T3Client, contains constructors and several
methods that we use in WebLogic JDBC. You can create a new T3Client, or you can
reconstitute a previously created Workspace and return the T3client to the state in
which you left it. A client’s Workspace includes access to a set of cached JDBC
connections that are set aside in the WebLogic Server for a group of WebLogic JDBC
Clients.

All T3Client constructors require at least one argument, which is the URL of the
WebLogic Server and (optionally, if the port is not 80) the TCP port at which the
WebLogic Server is listening for T3Client connection requests. The URL is expressed
after the format:

accessProtocol://WebLogicServerURL:port

The accessProtocol may be any of the protocols described in Writing a T3Client
application, including t3 (standard T3Client access over a high-performance,
multiplexed, asynchronous, bidirectional connection), t3s (T3Client access
authenticated and/or encrypted with SSL), or http (T3Client access over HTTP
tunneling, for transfirewall access).

The WebLogicServerURL is determined by whatever method is appropriate on that
machine. The port is the port at which the WebLogic Server is listening for T3Client
login requests.

Here is an example of constructing a T3Client:

T3Client t3 = null;
try {

t3 = new T3Client("t3://bigbox:7001");

Each T3Client has a Workspace inside the WebLogic Server into which it can save its
context and revisit at a later time. You can even name the T3Client’s Workspace at the
time you create the T3Client, which offers an easy way to revisit the Workspace; or
you can get the default T3Client’s Workspace after the T3Client connects. Workspaces
are powerful models for creating integrated business applications; read more about
Workspaces in Using the T3Client Workspace.
Using the WebLogic T3 Driver (Deprecated) 110

Implementing WebLogic JDBC
For WebLogic JDBC clients, a named Workspace area includes access to any cached
JDBC connections to the database (the connectionID), as well as the values set for
hard, soft, and idle disconnects. A T3Client can also save arbitrary objects, identified
by a String key, into its Workspace for later retrieval.

One way to create a revisitable Workspace is by naming it. You name the Workspace
when the T3Client is constructed by providing a String name as an argument to the
constructor. For example:

t3 = new T3Client("t3://bigbox:7001", "mike");

Another way of creating a reenterable Workspace is by saving the String ID of the
T3Client’s default Workspace, which can be used to reenter it. The ID of the
Workspace is available after the T3Client has connected to the WebLogic Server. Here
is an example:

t3 = new T3Client("t3://bigbox:7001");
t3.connect();
String wsid = t3.services.workspace().getWorkspace().getID();

You can then use the Workspace ID (or a T3Client’s name) to create a new T3Client,
as follows:

t3.disconnect();
t3 = null;

// Reconnect using the "wsid"
System.out.println("Reconnecting client " + wsid);
t3 = new T3Client("t3://bigbox:7001", wsid);
t3.connect();

If you supply a string that does not match any Workspace IDs or T3Client names
currently known to the WebLogic Server, it will assume that you want to create a new
Workspace and will name it with the supplied string.

When you have completed work with the WebLogic Server, you should dispose of the
client’s resources by calling the disconnect() method in a finally block (covered in
the Final Step below).

You can set several disconnect timeouts for a T3Client, after you have a T3Client
object. WebLogic supports timeouts for hard disconnects (where the socket between
the WebLogic Server and its client goes away) and soft disconnects (where the
T3Client requests a disconnect by calling its disconnect() method). You can set
timeouts for these (in minutes) to delay cleanup of the T3Client object in the
WebLogic Server, as follows:
Using the WebLogic T3 Driver (Deprecated) 111

Implementing WebLogic JDBC
t3.setSoftDisconnectTimeoutMins(5);

The default for both hard and soft disconnects is an immediate cleanup of the T3Client
resources in the WebLogic Server. You can also set these values to
T3Client.DISCONNECT_TIMEOUT_NEVER to set the timeout to unlimited.

Setting the disconnect timeout determines how long the WebLogic Server will wait
after a particular type of disconnect to clean up (destroy) a T3Client’s resources—
specifically, its Workspace. Setting a T3Client’s soft disconnect timeout to
DISCONNECT_TIMEOUT_NEVER essentially extends the lifetime of the T3Client for as
long as the WebLogic Server runs.

Step 3. Setting properties for connecting

After you have established a WebLogic Server session, you can begin the process of
connecting to the DBMS through the WebLogic Server. You will use JDBC Properties
objects for setting connection parameters.

The Properties objects contain all the information necessary for making a JDBC
Connection. A set of Connections can be cached inside a T3Client’s Workspace for
that T3Client’s use, and the T3Client can request one of its cached connections when
it executes the getConnection() method with a connection ID. Connection IDs are
created very simply: by setting a Property. If the connection ID exists, then it is used;
otherwise, a new connection ID is created, and with it is saved all of the other Property
information for the JDBC Connection. When you used the cached Connection again,
all you will need is the connection ID; the Properties objects are ignored if a connection
ID exists.

Properties contain the details about how a WebLogic JDBC client should access both
the database and the WebLogic Server. After a Properties object is constructed, you
can set any number of properties with the put()method, by supplying two arguments:
the name of the property and its String value. The properties that we set here in the
examples are used by the WebLogic JDBC drivers. You may include any other
properties that your particular JDBC driver requires.

We use two Properties objects. The first, dbprops in the example below, set parameters
for the connection between the WebLogic Server and the DBMS, which you can think
of as the two-tier connection.

The second Properties object, t3props in the example below, sets parameters for the
connection between the WebLogic JDBC Client and the DBMS, with the WebLogic
Server between them; we also refer to this as the multitier connection. The WebLogic
Using the WebLogic T3 Driver (Deprecated) 112

Implementing WebLogic JDBC
Server-DBMS Properties object (dbprops) will itself be set as a property of the
WebLogic JDBCClient-WebLogic Server-DBMS Properties object (t3props), which
will then be used as an argument for the JDBC Connection constructor.

We use a java.util.Properties object to set parameters for the connection
between the WebLogic Server and the DBMS (the two-tier connection) and the
connection between the WebLogic JDBCClient and the DBMS, with the WebLogic
Server between them (the multitier connection). The Properties object is then used as
an argument for the getConnection() method.

For clarity, we have divided the list of Properties into those that apply to the two-tier
connection and those that apply to the multitier connection.

Properties to be set for the two-tier connection

user
Username for accessing the DBMS.

password
Password for accessing the DBMS.

server
Name of the DBMS. The server property may also be set as part of the URL
in the multitier property weblogic.t3.driverURL, added after the URL for the
driver, as in “weblogic:jdbc:oracle:DEMO” for an Oracle DBMS with the V2
alias "DEMO".

db or database
Name of the database. Required by some JDBC drivers.

There are additional optional properties that you may set for the two-tier
connection, including:

weblogic.oci.cacheRows
(Oracle only) Support for Oracle array fetches. Calling ResultSet.next()

the first time will get an array of rows and store it in memory, rather than
retrieving a single row. Each subsequent call to next() will read a row from
the rows in memory until they are exhausted, and only then will next() go
back to the database.

Note that there is a different property, weblogic.t3.cacheRows, which adjusts
the size of the multitier cache for buffering records on the WebLogic Server.
These properties are not related although they may be used together.
Using the WebLogic T3 Driver (Deprecated) 113

Implementing WebLogic JDBC
Properties to be set for the multitier connection

weblogic.t3 or weblogic.t3.serverURL
Set weblogic.t3 to the T3Client object. The T3Client has a unique context
within the WebLogic Server that is defined and maintained by this object. If
you have need for an explicit T3Client object in your program, you will set
this property.

If you are using an embedded T3Client, you will not set this property, but will
set instead the property weblogic.t3.serverURL, which identifies the
WebLogic Server to which the embedded client will connect.

weblogic.t3.dbprops
The properties object for the two-tier connection itself becomes a property for
the multitier connection.

weblogic.t3.driverClassName
Classname of the JDBC driver between the WebLogic Server and the DBMS.
This may be the class name of any JDBC driver. The string set by this
property is used as an argument for the
Class.forName().newInstance() method on the WebLogic Server. The
driver used in this example is the WebLogic jDriver for Oracle native JDBC
driver. Note that evaluation of the class name of the driver is case-sensitive.
As with all classnames, this class name is in dot-notation.

weblogic.t3.driverURL
URL of the two-tier JDBC driver between the WebLogic Server and the
DBMS (and optionally, the database server name, if not set as the server
property). This URL is for the driver whose class name is specified in the
weblogic.t3.driverClassName property. (More info on this is available in
Using URLs with WebLogic products.) The string set by this property is used
as the first argument for the DriverManager.getConnection() method
on the WebLogic Server. In this example, we are accessing a Oracle database
“DEMO” with the WebLogic jDriver for Oracle. If you do not supply a server
name, the system will look for an environment variable (ORACLE_SID in
the case of Oracle). Evaluation of the URL is not case-sensitive. The URL is
delimited by colons.

URLs for the WebLogic 2-tier native drivers are:

� jdbc:weblogic:informix4

� jdbc:weblogic:oracle
Using the WebLogic T3 Driver (Deprecated) 114

Implementing WebLogic JDBC
� jdbc:weblogic.mssqlserver4

weblogic.t3.connectionID (optional)
A named, cached JDBC Connection. You can create a Hashtable of
Connection objects inside the Workspace of a T3Client that are available for
that T3Client’s use and persist in the T3Client’s Workspace as long as the
T3Client is connected to the WebLogic Server. These cached connections
allow the T3Client to resume a JDBC Connection over several sessions. A
cached connection ID includes all of the properties initially used to establish
the JDBC Connection; consequently, if a connection ID is supplied as an
argument to the getConnection() method, other properties supplied with
java.util.Properties objects are used only if the connection ID doesn’t already
exist on the WebLogic Server.

weblogic.t3.cacheRows (optional)
Number of rows to be cached. This optional property sets the number of rows
cached at the client for each roundtrip between the T3Client and the database.
Caching rows can improve performance on the client. This property allows
you to fine-tune caching for your application.

When a client calls ResultSet.next() for the first time, WebLogic fetches
a batch of rows from the DBMS and transmits them to the client JVM in a
single response. Subsequent calls to ResultSet.next(), retrieve the rows
cached in client memory, without calling WebLogic. When the client’s cache
of rows is exhausted, the next call to ResultSet.next() is passed to
WebLogic, which again retrieves a batch of rows to send to the client cache.

The number of rows fetched in a batch is configurable via the property
weblogic.t3.cacheRows. The default for this property was originally 10 rows;
with release version 2.5, the default has been increased to 25. You can set it
to a larger or smaller size by specifying this property. To turn off caching, set
the property to zero. Then each next() or getXXX()method call will require
a single roundtrip between the database and the T3Client.

There are some combinations of applications and DBMSs that require
WebLogic to pass records straight through to the client. For example, when
an application is processing a cursor, pre-fetching row data causes a skew
between the client’s sense of cursor position and that of the DBMS driver. For
these applications, setting the weblogic.t3.cacheRows property to zero (’0’)
provides the needed behavior.

You can control the cacheRows property for each query by resetting this
property on the Connection object before retrieving the results of a query into
Using the WebLogic T3 Driver (Deprecated) 115

Implementing WebLogic JDBC
a ResultSet. Use the WebLogic extensions to JDBC found in
weblogic.jdbc.t3.Connection.cacheRows() to get the current value and set a
new value. Results will continue to be cached according to the current
cacheRow setting until it is reset.

Note that if you are using WebLogic jDriver for Oracle, you also have access
to Oracle’s array fetch functionality through the two-tier property
weblogic.oci.cacheRows. (Read more about this feature in the Developers
Guide for WebLogic jDriver for Oracle.) This property is independent of
weblogic.t3.cacheRows, but both may be used together to offset the effects of
latency and database load on performance.

weblogic.t3.blobChunkSize (optional, for use with WebLogic jDriver for Oracle)
Defines the buffer size used for streaming blobs between WebLogic and the
WebLogic client. This property is used in conjunction with the two-tier
Oracle driver properties.

weblogic.t3.name (optional)
The name property allows you to set the name of the connection, which will
appear in the Console as the name in the connection’s ManagedObject
display.

weblogic.t3.description (optional)
The description property allows you to set a short description of the
connection, which will appear in the Console as the description in the
connection’s ManagedObject display.

For example, for a connection that is being used to access customer
information, you might add these two properties, as shown here:

Properties t3props = new Properties();
t3props.put("weblogic.t3.name", "CustInfo");
t3props.put("weblogic.t3.description",

"customer info connection");

Setting this information will make the display in the WebLogic Console both
more informative and easier to use.

There is one additional property listed here for reference. It is not likely to be used with
most of the other properties here, since this property accesses a JDBC Connection from
a connection pool. When you set this property, you do not need to set any other
properties, since the other attributes for the connection are set when the connection
pool is created. This property is usually used in the absence of other properties. It is:
Using the WebLogic T3 Driver (Deprecated) 116

Implementing WebLogic JDBC
weblogic.t3.connectionPoolID (used with the weblogic.t3 property only)
Identifies a pool of JDBC Connections that is created for access by certain
T3Users. Check Using Connection Pools for more information and a code
example. Using a connection from a pool requires that the connection pool
was created (by an entry in the weblogic.properties file) when the
WebLogic Server was started.

It is important to understand that you will set parameters for two connections:

� a two-tier connection between the WebLogic Server and the DBMS

� a multitier connection between the WebLogic JDBC client, the WebLogic
Server, and the DBMS

In this example, we first set two-tier connection properties to connect to an Oracle
database ("mydb") on the database server ("DEMO") with the WebLogic native JDBC
driver for Oracle, WebLogic jDriver for Oracle.

Properties dbprops = new Properties();
dbprops.put("user", "sa");
dbprops.put("password", "");
dbprops.put("server", "DEMO");
dbprops.put("database", "mydb");

Then we set the multitier properties. Note that one of the multitier properties is the
two-tier Properties object. Also note that we supply a connection ID as part of the
multitier properties; if this connection ID identifies a Connection (and its set of
Properties) that already exists, then the other properties are ignored, since they have
been saved with the connection ID.

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.dbprops", dbprops);
t3props.put("weblogic.t3.driverClassName",

"weblogic.jdbc.oci.Driver");
t3props.put("weblogic.t3.driverURL",

"jdbc:weblogic:oracle");
t3props.put("weblogic.t3.connectionID",

dbconnid);
t3props.put("weblogic.t3.cacheRows", "100");
t3props.put("weblogic.t3.name", "CustInfo");
t3props.put("weblogic.t3.description",

"customer info connection");

Note that the formats of the class name of the driver and the URL are different; the
class name uses dot-notation, and the URL uses separating colons.
Using the WebLogic T3 Driver (Deprecated) 117

Implementing WebLogic JDBC
Using a URL to set WebLogic JDBC properties

Some development environments set restrictions on the use of a
java.util.Properties object for setting multiple database properties. For example,
Powersoft’s PowerJ uses the Properties object exclusively for setting the username and
password for the DBMS. WebLogic has developed a URL scheme to supply all of the
other information needed for a WebLogic JDBC connection. For more information on
setting WebLogic JDBC properties for connection with a URL, Using URLs to Set
Properties For a JDBC Connection Using the T3 Driver.

Setting up an embedded T3Client

If you do not need an explicit T3Client object for other purposes in your WebLogic
JDBC program, you can use an embedded T3Client. An embedded T3Client is created,
connected, and disconnected automatically for you underneath. All you must do is set
another property in your java.util.Properties object that supplies the URL of the
WebLogic Server.

Here is a simple example of using an embedded T3Client; this example uses the
weblogic.jdbc.t3.Driver for use with JDK 1.1, which contains all of the
java.sql JDBC classes. Note that there is no declaration nor construction of a
T3Client object in this example.

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
// Set up properties for connecting to the DBMS
Properties dbprops = new Properties();
dbprops.put("user", "scott");
dbprops.put("password", "tiger");
dbprops.put("server", "DEMO20");

Properties t3props = new Properties();
t3props.put("weblogic.t3.dbprops", dbprops);
// Set the URL of WebLogic to create an embedded T3Client
t3props.put("weblogic.t3.serverURL", "t3://localhost:7001");
t3props.put("weblogic.t3.driverClassName",

"weblogic.jdbc.oci.Driver");
t3props.put("weblogic.t3.driverURL",

"jdbc:weblogic:oracle");
t3props.put("weblogic.t3.cacheRows", "10");

Connection conn =
DriverManager.getConnection("jdbc:weblogic:t3", t3props);

Statement stmt = conn.createStatement();
stmt.execute("select * from empdemo");
Using the WebLogic T3 Driver (Deprecated) 118

Implementing WebLogic JDBC
ResultSet rs = stmt.getResultSet();

while (rs.next()) {
System.out.println(rs.getString("empid") + " - " +

rs.getString("name") + " - " +
rs.getString("dept"));

}

ResultSetMetaData rsmd = rs.getMetaData();

stmt.close();
conn.close();

}

You can also set up an embedded T3Client to use a JDBC Connection from a
WebLogic JDBC connection pool, by setting the property
weblogic.t3.connectionPoolID. If you are using a JDBC Connection from a connection
pool, you will need only the properties that are required for requesting a connection
from the pool, as well as the property weblogic.t3.serverURL property. For more
information on pools, read Using connection pools in this document.

You can also use an embedded T3Client even if you need to set a username and
password for a T3User for T3Client-to-WebLogic security. Here is an example. This
sets up access to a connection pool “eng” for which the T3User “development” has
been added to the weblogic.properties file, as well as a Permission to “reserve" a
connection from this pool, with these properties:

weblogic.password.development=3Y(sf40!VmoN

weblogic.allow.reserve.weblogic.jdbc.connectionPool.eng=developme
nt

Here is how you would use a connection from this connection pool with an embedded
T3Client:

Properties t3props = new Properties();
t3props.put("weblogic.t3.serverURL",

"t3://localhost:7001");
t3props.put("weblogic.t3.connectionPoolID", "eng");
t3props.put("weblogic.t3.user", "development");
t3props.put("weblogic.t3.password", "3Y(sf40!VmoN");

Note that all of the other properties for connecting, like the location of the database
server, are set by the configuration entry in the weblogic.properties file that creates the
connection pool at startup. You can find an example entry for a connection pool
(commented-out) in the properties file that is shipped with the distribution.
Using the WebLogic T3 Driver (Deprecated) 119

Implementing WebLogic JDBC
Step 4. Connecting to the DBMS

The WebLogic JDBC client never connects directly to the database, but connects to the
WebLogic Server, which accesses the database on behalf of the T3Client. You must
supply JDBC drivers for both the two-tier connection (between the WebLogic Server
and the DBMS) and the multitier connection (between the WebLogic JDBC client, the
WebLogic Server, and the DBMS). The class name and the URL of the two-tier
connection is set with a Properties object, as described above.

For the connection between the WebLogic JDBC client, the WebLogic Server, and the
DBMS, you will supply the class name and URL for the WebLogic JDBC driver, which
manages the multitier connection.

The WebLogic JDBC driver class name is supplied by calling the
Class.forName().newInstance() method with the class name
weblogic.jdbc.t3.Driver. Calling Class.forName().newInstance() properly
loads and registers the driver class.

You supply the URL jdbc:weblogic:t3 for this driver as an argument to the
DriverManager.getConnection() method.

In this example, we use the Class.forName().newInstance() method to identify
and load the WebLogic JDBC driver. Then we create the JDBC Connection with the
URL of the WebLogic JDBC driver and a Properties object:

// Class name for the WebLogic JDBC
Class.forName("weblogic.jdbc.t3.Driver").newInstance();
Connection conn =
DriverManager.getConnection("jdbc:weblogic:t3",

t3props);

Once you have established a Connection (that is, constructed a JDBCConnection
object), you use WebLogic JDBC methods just as you would anyother implementation
of JDBC.

Cached Connections and Connection Pools

WebLogic provides ways to supply your T3Clients with reusable JDBC Connections.
Logging into a DBMS can be an expensive and time-consuming operation. With a
reusable connection, the overhead of connecting to the DBMS is incurred just once,
when the connection is created. The WebLogic Server holds the connection open until
it is needed again.
Using the WebLogic T3 Driver (Deprecated) 120

Implementing WebLogic JDBC
One type of reusable connection is a named, cached JDBC Connection. Another type
is a connection pool.

A cached JDBC Connection is created, probably used, and then saved in the T3Client’s
Workspace for later use. Caching a JDBC Connection saves overhead in having to
create a Connection over and over again, but a cached Connection also ties up database
resources on a long-term basis. When you cache a JDBC Connection, you save its
entire state with it.

A pool of JDBC Connections can be created when the WebLogic Server starts up,
before there are any requests for JDBC Connections, or dynamically by a T3Client.
You can also create a connection pool dynamically using the weblogic.Admin class
create_pool command.

As T3Clients connect to the WebLogic Server, they can obtain a connection from the
pool, and then return it to the pool when finished. Creating a pool of connections is a
good way to allocate scarce resources (like database connections) among multiple
clients. You can set the pool to grow incrementally when all of the connections have
been allocated, up to a maximum number of connections. You can also assign sets of
users to named pools. A connection pool saves WebLogic Server and DBMS overhead
in creating connections, since the connections are created once, and then reused over
and over again.

Connection pools and cached connections are different. A cached JDBC Connection is
created by a particular T3Client, and the details about that JDBC Connection are stored
in that T3Client’s Workspace. The cached connection lasts only the lifetime of the
T3Client. As soon as the WebLogic Server cleans up the resources for that T3Client,
the cached connection is destroyed.

Connection pools, on the other hand, are available to any T3Client. The lifetime of a
connection from a connection pool is not tied in any way to the lifetime of a T3Client.
When a T3Client closes a connection from a connection pool, the connection is
returned to the pool and becomes available again for other T3Clients, but the
connection itself is not closed.

Following are more details on how to create and use cached JDBC Connections and
connection pools. These are specifically “client-side” Connections and connection
pools. You can also take advantage of another WebLogic enhancement to JDBC for
server-side connection pools, for use in HTTP servlets and other applications that do
not use a T3Client. For more information on using server-side connection pools, read
the pertinent section in the Developers Guide, Using WebLogic HTTP servlets.
Using the WebLogic T3 Driver (Deprecated) 121

Implementing WebLogic JDBC
Using a Named, Cached JDBC Connection

You can create and name a JDBC Connection and cache the Connection on the
WebLogic Server in the T3Client’s Workspace so that you can reuse the same JDBC
Connection again and again. A T3Client’s cached JDBC Connection will last the
lifetime of the T3Client’s persistence on the WebLogic Server. You can make this
lifetime indefinite—thus giving the T3Client a permanent preserved Workspace on the
WebLogic Server that will last the lifetime of the WebLogic Server—by setting the
T3Client’s soft disconnect timeout to DISCONNECT_TIMEOUT_NEVER. Once
you have set the soft disconnect timeout to never, disconnecting the T3Client by
calling the T3Client.disconnect() method will not cause the WebLogic Server to
reclaim the T3Client’s resources.

In this class, we create a named JDBC Connection that we reuse several times. We
identify the named JDBC Connection with the java.util.PropertyconnectionID.

This class has two methods, a static getConnection() method to create and then
reuse the JDBC Connection, and a main(). First, let’s examine the code for the
getConnection() method in this class.

This method returns a JDBC Connection object; if we supply a property
"connectionID” that already exists on the WebLogic Server, all of the other properties
for login access, etc., are ignored, and the cached JDBC Connection, which contains
all the information necessary to resume connection to the database, is used instead.

static Connection getConnection(T3Client t3, String dbconnid)
throws Exception

{

// If a connectionID is given, the other properties are used
// only if the connectionID doesn't exist on the WebLogic Server.
// Other values are ignored if the connectionID exists.
Properties dbprops = new Properties();

// Set the two-tier props
dbprops.put("user", "scott");
dbprops.put("password", "tiger");
dbprops.put("server", "DEMO");

Properties t3props = new Properties();
// Set the multitier props, including the connectionID
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.dbprops", dbprops);
t3props.put("weblogic.t3.driverClassName",

"weblogic.jdbc.oci.Driver");
t3props.put("weblogic.t3.driverURL",
Using the WebLogic T3 Driver (Deprecated) 122

Implementing WebLogic JDBC
"jdbc:weblogic:oracle");
// If dbconnid has been cached, all the preceding properties
// are ignored. The connection is instant
t3props.put("weblogic.t3.connectionID", dbconnid);

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
return DriverManager.getConnection("jdbc:weblogic:t3",

t3props);
}

In the next code example, we carry out the following steps:

1. Create a T3Client.

2. Connect to the WebLogic Server.

3. Set the soft disconnect timeout for this client to be indefinite.

4. Save the ID of the Workspace so that the T3Client can come back to this
Workspace at a later time. You can also supply a name (like "mike") for a client
as an argument when you new the T3Client object.

T3Client t3 = new T3Client("t3://localhost:7001");
t3.connect();

t3.setSoftDisconnectTimeoutMins(T3Client.DISCONNECT_TIMEOUT_NEVER
);
String wsid = t3.services.workspace().getWorkspace().getID();

Then we create a named JDBC Connection to an Oracle database by calling the
getConnection() method with the name “myconn.”

System.out.println("Logging into database and " +
"saving session as myconn");

Connection conn = getConnection(t3, "myconn");

Now we can disconnect the T3Client and set it to null. Since the soft disconnect
timeout is never, the WebLogic Server will preserve this client’s resources, including
its Workspace and its named JDBC Connections.

t3.disconnect();
t3 = null;

Next we reconnect to the WebLogic Server by creating a new T3Client named with the
Workspace ID of the first client. This relinks the T3Client to the Workspace that we
created with the first client; in that Workspace is stored the JDBC Connection that we
cached under the name "myconn.”
Using the WebLogic T3 Driver (Deprecated) 123

Implementing WebLogic JDBC
Then we resume the connection to the Oracle database by calling the
getConnection() method with the name “myconn.” All of the parameters for
connecting already exist. We do some arbitrary database work and then close the
JDBC Connection object.

t3 = new T3Client("t3://localhost:7001", wsid);
t3.connect();

for (int j = 0; j < 5; j++) {
System.out.println("Reestablishing database connection");
conn = getConnection(t3, "myconn");

System.out.println("Performing query");
QueryDataSet qds = new QueryDataSet(conn, "select * from emp");
qds.fetchRecords();
System.out.println("Record count = " + qds.size());
qds.close();

}
conn.close();

Once you have finished with a T3Client’s resources, you can instruct the WebLogic
Server to reclaim those resources by setting the T3Client’s soft disconnect timeout to
zero, which effects a cleanup as soon as the T3Client calls the disconnect()method,
as shown here:

t3.setSoftDisconnectTimeoutMins(0);
t3.disconnect();

Using Connection Pools

Another method of connecting is by creating a pool of JDBC Connections from which
a T3User can request a connection. You can define a connection pool in the
weblogic.properties file, called a “startup” connection pool, or you can create a
“dynamic” connection pool in a running WebLogic Server from within a T3Client
application.

Creating a pool of JDBC Connections gives T3Clients ready access to connections that
are already open. It removes the overhead of opening a new connection for each
DBMS user, since the connections in the pool are shared among the members of the
group.
Using the WebLogic T3 Driver (Deprecated) 124

Implementing WebLogic JDBC
Creating a Startup Connection Pool

A startup connection pool is declared in the weblogic.properties file. The
WebLogic Server opens JDBC connections to the database during the WebLogic
startup process and adds the connections to the pool.

You define a startup connection pool with an entry after the following pattern in your
weblogic.properties file. An example is commented out in the properties file that
is shipped with the distribution, under the heading “JDBC Connection Pool
Management:”

weblogic.jdbc.connectionPool.VirtualName=\
url=JDBC driver URL,\
driver=full package name for JDBC driver,\
loginDelaySecs=seconds between each login attempt,\

initialCapacity=initial number of connections in the pool,\
maxCapacity=max number of connections in the pool,\
capacityIncrement=number of connections to add at a time,\
allowShrinking=true to allow shrinking,\
shrinkPeriodMins=interval before shrinking,\
testTable=name of table for connection test,\
refreshTestMinutes=interval for connection test,\
testConnsOnReserve=true to test connection at reserve,\

testConnsOnRelease=true to test connection at release,\
props=DBMS connection properties

weblogic.allow.reserve.weblogic.jdbc.connectionPool.name=\
T3Users who can use this pool

weblogic.allow.reset.weblogic.jdbc.connectionPool.name=\
T3Users who can reset this pool

weblogic.allow.shrink.weblogic.jdbc.connectionPool.name=\
T3Users who can shrink this pool

The information that you supply is shown above in red. Required information is noted.
If you do not supply a value that is required, an exception is thrown when you start the
WebLogic Server.

Here is a short description of the arguments for this property:

name
(Required) Name of the connection pool. You will use the name to access a
JDBC Connection from this pool when you write your T3Client class.

url
(Required) URL of the JDBC 2-tier driver for the connection between the
WebLogic Server and the DBMS. You can use one of the WebLogic jDrivers
Using the WebLogic T3 Driver (Deprecated) 125

Implementing WebLogic JDBC
or another JDBC driver that you have tested in a 2-tier environment. Check
the documentation for the JDBC driver you choose to find the URL.

driver
(Required) Full pathname of the JDBC 2-tier driver class for the connection
between the WebLogic Server and the DBMS. Check the documentation for
the JDBC driver to find the full pathname.

loginDelaySecs
(Optional) Number of seconds to wait between each attempt to open a
connection to the database. Some database servers can’t handle multiple
requests for connections in rapid succession. This property allows you to
build in a small delay to let the database server catch up.

initialCapacity
(Optional) The initial size of the pool. If this value is unset, the default is the
value you set for capacityIncrement.

maxCapacity
(Required) The maximum size of the pool.

capacityIncrement
(Required) The size by which the pool’s capacity is enlarged. initialCapacity
and capacityIncrement work somewhat like a Java Vector, which has an
initial allocation (its “capacity") and is increased in increments as necessary
(capacityIncrement), up to the pool maxCapacity.

allowShrinking
(Optional. Introduced in 3.1) Whether this connection pool should be allowed
to shrink back to its initial capacity, after expanding to meet increased
demand. Set shrinkPeriodMins if this property is set to true, or it will default
to 15 minutes. Note that allowShrinking is set by default to false, for
backwards compatibility.

shrinkPeriodMins
(Optional. Introduced in 3.1) The number of minutes to wait before shrinking
a connection pool that has incrementally increased to meet demand. You must
set allowShrinking to true to use this property. The default shrink period is 15
minutes and the minimum is 1 minute.

testTable
(Required only if you set refreshTestMinutes, testConnsOnReserve, or
testConnsOnRelease. Introduced in 4.0) The name of a table in the database
Using the WebLogic T3 Driver (Deprecated) 126

Implementing WebLogic JDBC
that is used to test the viability of connections in the connection pool. The
query select count(*) from testTable is used to test a connection. The
testTable must exist and be accessible to the database user for the connection.
Most database servers optimize this SQL to avoid a table scan, but it is still a
good idea to set testTable to the name of a table that is known to have few
rows, or even no rows.

refreshTestMinutes
(Optional, introduced in 4.0) This property, together with the testTable
property, enables autorefresh of connections in the pools. At a specified
interval, each unused connection in the connection pool is tested by executing
a simple SQL query on the connection. If the test fails, the connection’s
resources are dropped and a new connection is created to replace the failed
connection.

To enable autorefresh, set refreshTestMinutes to the number of minutes
between connection test cycles—a value greater than or equal to 1. If you set
an invalid refreshTestMinutes value, the value defaults to 5 minutes. Set
testTable to the name of an existing database table to use for the test. Both
properties must be set to enable the autorefresh feature.

testConnsOnReserve
(Optional, introduced in 4.0.1) When set to true, the WebLogic Server tests a
connection after removing it from the pool and before giving it to the client.
The test adds a small delay in serving the client’s request for a connection
from the pool, but ensures that the client receives a working connection. The
testTable parameter must be set to use this feature.

testConnsOnRelease
(Optional, introduced in 4.0.1) When set to true, the WebLogic Server tests a
connection before returning it to the connection pool. If all connections in the
pool are already in use and a client is waiting for a connection, the client’s
wait will be slightly longer while the connection is tested. The testTable
parameter must be set to use this feature.

props
(Required) The properties for connecting to the database, such as username,
password, and server. The properties are defined by, and processed by, the
2-tier JDBC driver that you use. Check the documentation for the JDBC
driver to find the properties required to connect to your DBMS.
Using the WebLogic T3 Driver (Deprecated) 127

Implementing WebLogic JDBC
allow
This attribute was deprecated in 3.0. Set up access to a connection pool using
“reserve” and “reset” Permissions as shown above.

This example, taken from the weblogic.properties file that is shipped with the
WebLogic distribution, creates a connection pool named “eng,” which is accessible to
3 T3Users (Guest, Joe, and Jill). It allocates a minimum of 4 and a maximum of 10
JDBC connections for an Oracle database with a username of “SCOTT,” password
“tiger,” and server name “DEMO.” The WebLogic Server sleeps for 1 second between
each connection attempt to prevent refused logins from a DBMS that may be under
load or on a saturated network. The connection pool shrinks back to 4 connections
when connections in the pool are unused for 15 minutes or more. Every 10 minutes,
unused connections are tested and refreshed if they have have gone stale.

weblogic.jdbc.connectionPool.eng=\
url=jdbc:weblogic:oracle,\
driver=weblogic.jdbc.oci.Driver,\
loginDelaySecs=1,\
initialCapacity=4,\
maxCapacity=10,\
capacityIncrement=2,\
allowShrinking=true,\
shrinkPeriodMins=15,\
refreshTestMinutes=10,\
testTable=dual,\
props=user=SCOTT;password=tiger;server=DEMO

weblogic.allow.reserve.weblogic.jdbc.connectionPool.eng=\
guest,joe,jill

weblogic.allow.reset.weblogic.jdbc.connectionPool.eng=\
joe,jill

weblogic.allow.shrink.weblogic.jdbc.connectionPool.eng=\
joe,jill

Note that if you have a username with a null password, you shouldn’t enter an empty
string for the password in the connection pool registration; rather you should simply
leave it blank. Here is an example taken from the WebLogic Administrators Guide
document on properties:

weblogic.jdbc.connectionPool.eng=\
url=jdbc:weblogic:oracle,\
driver=weblogic.jdbc.oci.Driver,\
loginDelaySecs=1,\
initialCapacity=4,\
capacityIncrement=2,\
maxCapacity=10,\
Using the WebLogic T3 Driver (Deprecated) 128

Implementing WebLogic JDBC
props=user=sa;password=;server=demo
weblogic.allow.reserve.weblogic.jdbc.connectionPool.eng=guest,joe
,jill

Creating a Dynamic Connection Pool

A JNDI-based API introduced in WebLogic release 4.0 allows you to create a
connection pool from within a T3Client application. With this API, you can create a
connection pool in a WebLogic Server that is already running.

Dynamic pools can be temporarily disabled, which suspends communication with the
database server through any connection in the pool. When a disabled pool is enabled,
the state of each connection is the same as when the pool was disabled; clients can
continue their database operations right where they left off.

A property in the weblogic.properties file,
weblogic.allow.admin.weblogic.jdbc.connectionPoolcreate, determines
who can create dynamic connection pools. If the property is not set, then only the
“system” user can create a dynamic connection pool.

For example, the following property allows users “joe” and “jane” to create dynamic
connection pools:

weblogic.allow.admin.weblogic.jdbc.connectionPoolcreate=joe,jane

You can also create ACLs for dynamic connection pools by adding
weblogic.allow.reserve.ACLname and weblogic.allow.admin.ACLname
entries to the weblogic.properties file. For example, the following two properties
define an ACL named “dynapool” that allows anyone (the "everyone” group) to use a
connection pool, and users “joe” and “jane” to administer a connection pool:

weblogic.allow.admin.dynapool=joe,jane
weblogic.allow.reserve.dynapool=everyone

You associate an ACL with a dynamic connection pool when you create the connection
pool. The ACL and connection pool are not required to have the same name, and more
than one connection pool can make use of a single ACL. If you do not specify an ACL,
the “system” user is the default administrative user for the pool and any user can use a
connection from the pool.

To create a dynamic connection pool in a T3 application, you get an initial JNDI
context to the WebLogic JNDI provider, and then look up
"weblogic.jdbc.common.JdbcServices.” This example shows how this is done:
Using the WebLogic T3 Driver (Deprecated) 129

Implementing WebLogic JDBC
Hashtable env = new Hashtable();

env.put(java.naming.factory.initial,
"weblogic.jndi.WLInitialContextFactory");

// URL for the WebLogic Server
env.put(java.naming.provider.url, "t3://localhost:7001");
env.put(java.naming.security.credentials,

new T3User("joe", "joez_secret_wrdz"));

Context ctx = new InitialContext(env);

// Look up weblogic.jdbc.JdbcServices
weblogic.jdbc.common.JdbcServices jdbc =

(weblogic.jdbc.common.JdbcServices)
ctx.lookup("weblogic.jdbc.JdbcServices");

Once you have loaded weblogic.jdbc.JdbcServices, you pass the
weblogic.jdbc.common.JdbcServices.createPool() method a Properties
object that describes the pool. The Properties object contains the same properties you
use to create a connection pool in the weblogic.properties file, except that the
"aclName” property is specific to dynamic connection pools.

The following example creates a connection pool named “eng2” for the DEMO Oracle
database. The connections log into the database as user "SCOTT” with password
“tiger.” When the pool is created, one database connection is opened. A maximum of
ten connections can be created on this pool. The “aclName” property specifies that the
connection pool will use the “dynapool” ACL in the weblogic.properties file.

weblogic.jdbc.common.Pool pool = null;

try {
// Set properties for the Connection Pool.
// The properties are the same as those used to define a startup
// connection pool in the weblogic.properties file.
Properties poolProps = new Properties();

poolProps.put("poolName", "eng2");
poolProps.put("url", "jdbc:weblogic:oracle");
poolProps.put("driver", "weblogic.jdbc.oci.Driver");
poolProps.put("initialCapacity", "1");
poolProps.put("maxCapacity", "10");
poolProps.put("props", "user=SCOTT;

password=tiger;server=DEMO");
poolProps.put("aclName", "dynapool"); // the ACL to use

// Creation fails if there is an existing pool with the same
Using the WebLogic T3 Driver (Deprecated) 130

Implementing WebLogic JDBC
name.
jdbc.createPool(poolProps);

}
catch (Exception e) {

system.out.Println("Error creating connection pool eng2.");
}
finally { // close the JNDI context

ctx.close();
}

Obtaining a Connection from a Connection Pool

Using a connection from a connection pool is nearly the same as opening a JDBC
connection. The JDBC driver class is weblogic.jdbc.t3Client.Driver and the
connection URL is “jdbc:weblogic:t3". To identify the connection pool you want to
use, you create a java.util.Properties object and set a property called
weblogic.t3.connectionPoolID to the name of the connection pool.

Using a connection from a connection pool. You use a connection from a connection
pool in your client application by creating a java.util.Properties object, and setting a
property called weblogic.t3.connectionPoolID to the name of the connection
pool you created in the WebLogic Server’s weblogic.properties file.

In this simple example, we create a T3Client, set up a Properties object, and then open
a connection from the connection pool "eng,” for which the weblogic.properties
file entry is shown above.

T3Client t3 = new T3Client("t3://bigbox:7001");
t3.connect();

// Note that we only need to set two properties,
// the T3Client and the connectionPoolID
Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.connectionPoolID", "eng");

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
Connection conn =
DriverManager.getConnection("jdbc:weblogic:t3",

t3props);
// Do any arbitrary database work
QueryDataSet qds = new QueryDataSet(conn, "select * from emp");
qds.fetchRecords();
System.out.println("Record count = " + qds.size());
qds.close();
Using the WebLogic T3 Driver (Deprecated) 131

Implementing WebLogic JDBC
// Release the connection
conn.close();
// Disconnect the client
t3.disconnect();

}

Note that the JDBC Connection is released by this client and returned to the pool
before the client disconnects. At the time when the JDBC connection is returned to the
connection pool, any outstanding JDBC transactions are rolled back and closed.

Waiting on a pool connection to become available. If all of the connections in a pool
are in use, the client will, by default, wait until a connection becomes available. You
can change this behavior for a client in two ways:

� Disable the wait. If no connection is available,
DriverManager.getConnection() gets an immediate exception.

� Specify the number of seconds to wait for a connection. If no connection is
available within the number of seconds you specify,
DriverManager.getConnection() gets an exception.

To disable the wait, set the weblogic.t3.waitForConnection property to "false” in
the Properties object you pass to DriverManager.getConnection():

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.connectionPoolID", "eng");
t3props.put("weblogic.t3.waitForConnection", "false");

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
Connection conn =

DriverManager.getConnection("jdbc:weblogic:t3",
t3props);

With the wait disabled, the DriverManager.getConnection() call throws an
exception immediately if no connection is available.

To specify a period of time to wait for a connection to become available, set the
weblogic.t3.waitSecondsForConnection property to the number of seconds you
want to wait. This example waits for up to 15 seconds:

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.connectionPoolID", "eng");
t3props.put("weblogic.t3.waitSecondsForConnection", "15");
Using the WebLogic T3 Driver (Deprecated) 132

Implementing WebLogic JDBC
Class.forName("weblogic.jdbc.t3.Driver").newInstance();
Connection conn =

DriverManager.getConnection("jdbc:weblogic:t3",
t3props);

Managing Connection Pools

The weblogic.jdbc.common.Pool and weblogic.jdbc.common.JdbcServices interfaces
provide methods to manage connection pools and obtain information about them.
Methods are provided for:

� Retrieving information about a pool

� Disabling a connection pool, which prevents clients from obtaining a connection
from it

� Enabling a disabled pool

� Shrinking a pool, which releases unused connections until the pool has reached
the minimum specified pool size

� Refreshing a pool, which closes and reopens its connections

� Shutting down a pool

Retrieving Information About a Pooll

weblogic.jdbc.common.JdbcServices.poolExists

weblogic.jdbc.common.Pool.getProperties

The poolExists() method tests whether a connection pool with a specified name
exists in the WebLogic Server. You can use this method to determine whether a
dynamic connection pool has already been created or to ensure that you select a unique
name for a dynamic connection pool you want to create.

The getProperties() method retrieves the properties for a connection pool.
Using the WebLogic T3 Driver (Deprecated) 133

Implementing WebLogic JDBC
Disabling a Connection Pool

weblogic.jdbc.common.Pool.disableDroppingUsers

weblogic.jdbc.common.Pool.disableFreezingUsers

weblogic.jdbc.common.pool.enable

You can temporarily disable a connection pool, preventing any clients from obtaining
a connection from the pool. Only the “system” user or users granted “admin”
permission by an ACL associated with a connection pool can disable or enable the
pool.

After you call disableFreezingUsers(), clients that currently have a connection
from the pool are suspended. Attempts to communicate with the database server throw
an exception. Clients can, however, close their connections while the connection pool
is disabled; the connections are then returned to the pool and cannot be reserved by
another client until the pool is enabled.

Use disableDroppingUsers() to not only disable the connection pool, but to
destroy the client’s JDBC connection to the pool. Any transaction on the connection is
rolled back and the connection is returned to the connection pool. The client’s JDBC
connection context is no longer valid.

When a pool is enabled after it has been disabled with disableFreezingUsers(),
the JDBC connection states for each in-use connection are exactly as they were when
the connection pool was disabled; clients can continue JDBC operations exactly where
they left off.

You can also use the disable_pool and enable_pool commands of the
weblogic.Admin class to disable and enable a pool

Shrinking a Connection Pool

weblogic.jdbc.common.Pool.shrinking

A connection pool has a set of properties that define the initial and maximum number
of connections in the pool (initialCapacity and maxCapacity), and the number of
connections added to the pool when all connections are in use (capacityIncrement).
When the pool reaches its maximum capacity, the maximum number of connections
are opened, and they remain opened unless you shrink the pool.

You may want to drop some connections from the connection pool when a peak usage
period has ended, freeing up resources on the WebLogic Server and DBMS.
Using the WebLogic T3 Driver (Deprecated) 134

Implementing WebLogic JDBC
Shutting Down a Connection Pool

weblogic.jdbc.common.Pool.shutdownSoft

weblogic.jdbc.common.Pool.shutdownHard

These methods destroy a connection pool. Connections are closed and removed from
the pool and the pool dies when it has no remaining connections. Only the “system”
user or users granted “admin” permission by an ACL associated with a connection pool
can destroy the pool.

The shutdownSoft() method waits for connections to be returned to the pool before
closing them.

The shutdownHard() method kills all connections immediately. Clients using
connections from the pool get exceptions if they attempt to use a connection after
shutdownHard() is called.

You can also use the destroy_pool command of the weblogic.Admin class to
destroy a pool.

Resetting a Pool

weblogic.jdbc.common.Pool.reset

weblogic.jdbc.t3.Connection

You can configure a connection pool to test its connections either periodically, or
every time a connection is reserved or released. Allowing the WebLogic Server to
automatically maintain the integrity of pool connections should prevent most DBMS
connection problems. In addition, WebLogic provides methods you can call from an
application to refresh all connections in the pool or a single connection you have
reserved from the pool.

The weblogic.jdbc.common.Pool.reset() method closes and reopens all
allocated connections in a connection pool. This may be necessary after the DBMS has
been restarted, for example. Often when one connection in a connection pool has
failed, all of the connections in the pool are bad.

To refresh a single connection, use the refresh() method in the
weblogic.jdbc.t3.Connection class. When you call this method, you lose any
Statements and Resultsets you had on the connection, plus your application incurs the
Using the WebLogic T3 Driver (Deprecated) 135

Implementing WebLogic JDBC
relatively high cost of opening the connection. Therefore, we recommend that you only
refresh a single connection when you get an error that implies that the connection has
gone bad.

You will need to explicitly cast the JDBC Connection as a
(weblogic.jdbc.t3.Connection). Other than that, the refresh() method in the
Connection class is used in the same way the reset() method is used for a connection
pool. First try an execute action on the Connection that is guaranteed to succeed if the
Connection itself is viable. Catch the exception and call the refresh() method.

Here is an example. Notice that we cast the JDBC Connection as a
weblogic.jdbc.t3.Connection in the last line of this example, in order to take
advantage of the WebLogic extension to JDBC.

T3Client t3 = new T3Client("t3://localhost:7001");
t3.connect();

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.connectionPoolID", "eng");

Class.forName("weblogic.jdbc.t3c.Driver").newInstance();
Connection conn =

DriverManager.getConnection("jdbc:weblogic:t3client",
t3props);

try {
Statement stmt = conn.createStatement();

// This SQL is guaranteed to succeed over a good connection
// to an Oracle DBMS
ResultSet rs = stmt.executeQuery("select 1 from dual");

if (rs != null) {
while (rs.next()) {;}

}

rs.close();
stmt.close();
conn.close();

}

catch(SQLException e) {

// We cast the JDBC Connection as a
// weblogic.jdbc.t3.Connection
Using the WebLogic T3 Driver (Deprecated) 136

Implementing WebLogic JDBC
// and call the refresh() method on it
((weblogic.jdbc.t3.Connection)conn).refresh();

}

Refreshing a Single Pool Connection

weblogic.jdbc.common.JdbcServicesDef

You can refresh a single connection from a connection pool, or reset the entire
connection pool, if one or more connections in the pool go stale. For example, if the
DBMS is taken down while the WebLogic Server is actively supporting a pool of
connections. A connection pool autorefresh feature, introduced with WebLogic Server
4.0, can also be enabled to periodically test and refresh connections.

There are only certain instances when resetting a pool is appropriate. You should never
use this feature as a routine part of a user program. Usually, what makes resetting a
connection pool necessary is that the DBMS has gone down and the connections in the
pool are no longer viable. Attempting to reset the pool before you are certain that the
DBMS is up and available again will cause an Exception to be thrown. Resetting a pool
should always be a special operation that is carried out by a user with administrative
privileges.

There are several ways to reset connections pools:

� You can use the weblogic.Admin command (as a user with administrative
privileges) to reset a connection pool, as an administrator. Here is the pattern:

$ java weblogic.Admin WebLogicURL RESET_POOL poolName system
passwd

You might use this method from the command line on an infrequent basis. There are
more efficient programmatic ways that are also discussed here. For more on the Admin
commands, read the WebLogic Administrators Guide, Running and maintaining the
WebLogic Server.

� You can use an WebLogic Events class, ActionRefreshPool, to periodically
check the viability of your connection pool and automatically refresh it when
needed. The ActionRefreshPool is part of WebLogic’s public API. Running this
class also requires administrative privileges for the WebLogic Server. You can
even register this class as a startup class. You will probably find it easiest to
use this method to ensure the viability of connections in your connection
pools.
Using the WebLogic T3 Driver (Deprecated) 137

Implementing WebLogic JDBC
� You can use the reset() method from the jdbcServicesDef interface in your
client application.

The last case requires the most work for you, but also gives you more flexibility than
the first two. We have provided some sample code here to show you how to use the
reset() method.

Here is an example of resetting a pool using the reset() method.

1. In a try block, test a connection from the connection pool with a SQL statement that
is guaranteed to succeed under any circumstances so long as there is a working
connection to the DBMS. An example is the SQL statement “select 1 from dual”
which is guaranteed to succeed for an Oracle DBMS.

2. Catch the SQLException.

3. Call the reset() method in the catch block.

This simple code example that tests the demo JDBC connection pool "eng,” which is
a pool of 5 connections to an Oracle DBMS:

String poolID = "eng";

T3Client t3 = new T3Client("t3://localhost:7001");
t3.connect();

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.connectionPoolID", poolID);

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
Connection conn =

DriverManager.getConnection("jdbc:weblogic:t3client",
t3props);

try {

// If the connection isn't operable, you will get an SQLException
if

// you attempt to execute anything over it
Statement stmt = conn.createStatement();

// This SQL is guaranteed to succeed over a good connection
// to an Oracle DBMS
ResultSet rs = stmt.executeQuery("select 1 from dual");
Using the WebLogic T3 Driver (Deprecated) 138

Implementing WebLogic JDBC
// Do some arbitrary database work
if (rs != null) {
while (rs.next()) {;}

}

rs.close();
stmt.close();

// Release the connection and return it to the pool
conn.close();

}

// If the try block fails, reset the pool. Note that a program
// that calls this method should have administrator privileges.
// You should not try to reset the pool until you are certain
// that the database is available again.

catch(SQLException e) {
t3.services.jdbc().resetPool(poolID);

}

Setting up ACLs for Connection Pools in the WebLogic Realm

weblogic.jdbc.connectionPool

weblogic.jdbc.connectionPool.poolID

WebLogic controls access to internal resources like JDBC connection pools through
ACLs set up in the WebLogic Realm. Entries for ACLs in the WebLogic Realm are
listed as properties in the weblogic.properties file.

You can set the Permissions “reserve,” “reset,” and “shrink” for JDBC connections in
a connection pool by entering a property in the properties file. Setting a Permission for
the ACL "weblogic.jdbc.connectionPool” limits access to all connection pools. Add
Permissions for other users by adding an entry for the ACL name
“weblogic.jdbc.connectionPool.<i>poolID</i>,” which controls access to the
connection pool poolID. The special user system always has Permissions “reserve,”
“reset,” and “shrink” for every ACL, no matter what other Permissions have been set.

Example:
weblogic.allow.reserve.weblogic.jdbc.connectionPool.\
eng=margaret,joe,maryweblogic.allow.reset.weblogic.jdbc.\
connectionPool.eng=sysMonitorweblogic.allow.shrink.\
weblogic.jdbc.connectionPool.eng=sysMonitor
Using the WebLogic T3 Driver (Deprecated) 139

Implementing WebLogic JDBC
For backwards compatibility, you can also use the old-style property syntax to grant
permission for “reserve” by setting a userlist for the property
weblogic.jdbc.connectionPool.poolID=allow=. It is recommended that you upgrade
your properties file as soon as possible to reflect the new usage, since WebLogic
cannot guarantee how long it will support old-style properties.

Inserting, Updating, and Deleting Records

You use a JDBC Statement or one of its subclasses, created in the context of the JDBC
Connection, to execute queries on the database. The results of the query are contained
in a JDBC ResultSet. Use the next() and getXXX() methods in the ResultSet class to
access rows in the database.

In this example, we first insert ten records into the Employee table. We use a
PreparedStatement with the JDBC PreparedStatement “?” syntax. We can make
updates to the records using the setInt() and setString() methods from the
PreparedStatement class.

String inssql = "insert into emp (empno, empname) values (?, ?)";
PreparedStatement pstmt = conn.prepareStatement(inssql);
for (int j = 0; j < 10; j++) {
pstmt.setInt(1, i);
pstmt.setString(2, "John Smith");
pstmt.execute();

}
pstmt.close();

After inserting the values, we check what we inserted by executing a query on the
database and using the ResultsSet.next() method to examine the results. We close
the ResultSet and Statement objects in the reverse order in which they were
instantiated.

Statement stmt = conn.createStatement();
ResultSet rs = stmt.execute("select empno, empname from emp");

while (rs.next()) {
System.out.println("Value = " + rs.getString("empno"));
System.out.println("Value = " + rs.getString("empname"));

}
rs.close();
stmt.close();

Here we update the records we inserted, using another PreparedStatement.
Using the WebLogic T3 Driver (Deprecated) 140

Implementing WebLogic JDBC
String updsql = "update emp set empname = ? where empno = ?";
PreparedStatement pstmt1 = conn.prepareStatement(updsql);

for (int j = 0; j < 10; j++) {
pstmt1.setInt(2, j);
pstmt1.setString(1, "Person" + j);
pstmt1.executeUpdate();

}
pstmt1.close();

In this example, we delete the records that we inserted. Again, we use a
PreparedStatement and the setInt() method to select records for deletion.

String delsql = "delete from emp where empno = ?";
PreparedStatement pstmt2 = conn.prepareStatement(delsql);

for (int j = 0; j < 10; j++) {
pstmt2.setInt(1, j);
pstmt2.executeUpdate();

}
pstmt2.close();

Note that we close each Statement and PreparedStatement object when we are finished
using it.

Creating and Using Stored Procedures and Functions

You can create, use, and drop stored procedures and functions with WebLogic JDBC.
Use CallableStatement objects (subclass of PreparedStatement) with JDBC
PreparedStatement “?” syntax to set parameters.

In this example, we drop several stored procedures and functions from a database,
using a JDBC Statement that we close when we have finished:

Statement stmt = conn.createStatement();
try {stmt.execute("drop procedure proc_squareInt");
} catch (SQLException e) {;}

try {stmt.execute("drop procedure func_squareInt");
} catch (SQLException e) {;}

try {stmt.execute("drop procedure proc_getResults");
} catch (SQLException e) {;}

stmt.close();

Use the JDBC Statement class to create a stored procedure or function, and use the
JDBC CallableStatement class to execute them. Stored procedure input parameters are
mapped to JDBC IN parameters, using the CallableStatement.setXXX() methods
Using the WebLogic T3 Driver (Deprecated) 141

Implementing WebLogic JDBC
like setInt(), and JDBC PreparedStatement "?” syntax. Stored procedure output
parameters are mapped to JDBC OUT parameters, using the
CallableStatement.registerOutParameter() methods and JDBC
PreparedStatement “?” syntax. A parameter may be both IN and OUT, which requires
both a setXXX() and a registerOutParameter() call to be done on the same
parameter number. For the Sybase DBMS, the JDBC keyword CALL is used instead of
the SQL Server keyword EXECUTE. For details, consult your Sybase documentation.

Here we create a Sybase stored procedure, using a JDBC Statement, to square an
integer. Then we execute the stored procedure using a CallableStatement. We use the
registerOutParameter() method to set an output parameter.

Statement stmt1 = conn.createStatement();
stmt1.execute("create procedure proc_squareInt " +

"(@field1 int, @field2 int output) as " +
"begin select @field2 = @field1 * @field1 end");

stmt1.close();

CallableStatement cstmt1 =
conn.prepareCall("{call proc_squareInt(?, ?)}");

cstmt1.registerOutParameter(2, Types.INTEGER);
for (int i = 0; i < 10; i++) {
cstmt1.setInt(1, i);
cstmt1.execute();
System.out.println(i + " " + cstmt1.getInt(2));

}
cstmt1.close();

This example code shows how to create a Sybase stored function that returns the
square of an integer. We execute the stored function with a CallableStatement, and use
registerOutParameter() to register the return value.

Statement stmt2 = conn.createStatement();
stmt2.execute("create procedure func_squareInt (@field2 int) as

" +
"begin return @field1 * @field1 end");

stmt2.close();

CallableStatement cstmt2 =
conn.prepareCall("{? = call func_squareInt(?)}");

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int i = 0; i < 10; i++) {
cstmt2.setInt(2, i);
cstmt2.execute();
System.out.println(i + " " + cstmt2.getInt(1));
Using the WebLogic T3 Driver (Deprecated) 142

Implementing WebLogic JDBC
}
cstmt2.close();

This example code shows how to create a Sybase stored procedure that returns the
results of a SQL query. We execute the stored procedure with a CallableStatement and
put the results into a ResultSet.

You must process all ResultSets returned by a stored procedure using the
Statement.execute() and Statement.getResultSet() methods before OUT
parameters and return status are available.

Statement stmt3 = conn.createStatement();
stmt3.executeUpdate("create procedure proc_getResults as " +

"begin select name from sysusers \n" +
"select gid from sysusers end");

stmt3.close();

CallableStatement cstmt3 =
conn.prepareCall("{call proc_getResults()}");

boolean hasResultSet = cstmt3.execute();
while (hasResultSet) {
ResultSet rs = cstmt3.getResultSet();
while (rs.next())
System.out.println("Value: " + rs.getString(1));

rs.close();
hasResultSet = cstmt3.getMoreResults();

}
cstmt3.close();

Here is example code that shows how to create and call an Oracle stored procedure
with Statement and CallableStatement objects. The process is similar to the Sybase
procedure.

Statement stmt1 = conn.createStatement();
stmt1.execute("CREATE OR REPLACE PROCEDURE " +

"proc_squareInt (field1 IN OUT INTEGER, " +
"field2 OUT INTEGER) IS " +
"BEGIN field2 := field1 * field1; " +
"field1 := field1 * field1; " +
"END proc_squareInt");

stmt1.close();

CallableStatement cstmt1 =
conn.prepareCall("BEGIN proc_squareInt(?, ?); END;");

cstmt1.registerOutParameter(2, Types.INTEGER);
for (int k = 0; k < 100; k++) {
Using the WebLogic T3 Driver (Deprecated) 143

Implementing WebLogic JDBC
cstmt1.setInt(1, k);
cstmt1.execute();
System.out.println(k + " "

+ cstmt1.getInt(1)
+ " " + cstmt1.getInt(2));

}
cstmt1.close();

Finally, here is sample code for creating and using an Oracle stored function with
Statement and CallableStatement objects.

Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION " +

"func_squareInt " +
"(field1 IN INTEGER) RETURN INTEGER IS " +

"BEGIN return field1 * field1; " +
"END func_squareInt;");

stmt2.close();

// Use a stored function
CallableStatement cstmt2 =
conn.prepareCall("BEGIN ? := func_squareInt(?); END;");

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int k = 0; k < 100; k++) {
cstmt2.setInt(2, k);
cstmt2.execute();
System.out.println(k + " "

+ cstmt2.getInt(1)
+ " " + cstmt2.getInt(2));

}
cstmt2.close();

Final Step. Closing the Connection and Disconnecting the T3Client

As with all other JDBC objects, you should close() the Connection, even if your login
to the database fails; otherwise you risk exceeding the maximum number of logins.
You should also disconnect() the WebLogic JDBCClient from the WebLogic Server.

Call the close() and disconnect() methods in a try block inside your finally
block, and catch the appropriate Exceptions. Calling these methods within a finally
block guarantees that they will be executed even if the code in your main try block
throws an exception and does not complete. For example:

finally {
if (conn != null)
try { conn.close(); } catch (SQLException sqe) {}
Using the WebLogic T3 Driver (Deprecated) 144

Implementing WebLogic JDBC
if (t3 != null)
try { t3.disconnect();} catch (Exception e) {}

}

When a client disconnects with the disconnect() method, the WebLogic Server will
do a dump stack with an EOF exception. You should ignore EOF exceptions that
appear in your Netscape server log on disconnect().

Code Summary

package examples.jdbc;

import java.sql.*;
import weblogic.db.jdbc.*;
import weblogic.common.*;

import java.util.Properties;

public class t3client1 {

public static void main(String argv[]) {

T3Client t3 = null;
Connection conn = null;
try {
t3 = new T3Client("t3://bigbox:7001");
t3.connect();

Properties dbprops = new Properties();
dbprops.put("user", "scott");
dbprops.put("password", "tiger");
dbprops.put("server", getParameter("server"));

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.dbprops", dbprops);

// Note that the formats of the class name of the driver and the
// URL are different; the class name uses dot-notation, and the
// URL uses separating colons.
t3props.put("weblogic.t3.driverClassName",

"weblogic.jdbc.oci.Driver");
t3props.put("weblogic.t3.driverURL",

"jdbc:weblogic:oracle");
t3props.put("weblogic.t3.cacheRows",

getParameter("cacheRows"));
Using the WebLogic T3 Driver (Deprecated) 145

1 Using the WebLogic JDBC t3 Driver (Deprecated)
Class.forName("weblogic.jdbc.t3.Driver").newInstance();
conn = DriverManager.getConnection("jdbc:weblogic:t3client",

t3props);

// Insert a series of records
String inssql = "insert into emp (empno, empname) values (?,

?)";
PreparedStatement pstmt = conn.prepareStatement(inssql);
for (int j = 0; j < 10; j++)
pstmt.setInt(1, i);

pstmt.setString(2, "John Smith");
pstmt.execute();

}
pstmt.close();

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select empno, " +

"empname from emp");

while (rs.next()) {
System.out.println("Value = " + rs.getString("empno"));
System.out.println("Value = " + rs.getString("empname"));

}

rs.close();
stmt.close();

// Update a series of records
String updsql = "update emp set empname = ? where empno = ?";
PreparedStatement pstmt1 = conn.prepareStatement(updsql);

for (j = 0; j < 10; j++) {
pstmt1.setInt(2, j);
pstmt1.setString(1, "Person" + j);
pstmt1.executeUpdate();

}
pstmt1.close();

// Delete a series of records
String delsql = "delete from emp where empno = ?";
PreparedStatement pstmt2 = conn.prepareStatement(delsql);

for (int j = 0; j < 10; j++) {
pstmt2.setInt(1, j);
pstmt2.executeUpdate();

}
pstmt2.close();

// Create a stored procedures
146 Using the WebLogic T3 Driver (Deprecated)

Implementing WebLogic JDBC
Statement stmt1 = conn.createStatement();
stmt1.execute("CREATE OR REPLACE PROCEDURE " +

"proc_squareInt (field1 IN OUT INTEGER, " +
"field2 OUT INTEGER) IS " +

"BEGIN field2 := field1 * field1; " +
"field1 := field1 * field1; " +
"END proc_squareInt");
stmt1.close();

// Use a stored procedure
CallableStatement cstmt1 =
conn.prepareCall("BEGIN proc_squareInt(?, ?); END;");

cstmt1.registerOutParameter(2, Types.INTEGER);
for (int k = 0; k < 100; k++) {
cstmt1.setInt(1, k);
cstmt1.execute();
System.out.println(k + " "

+ cstmt1.getInt(1)
+ " " + cstmt1.getInt(2));

}
cstmt1.close();

// Create a stored function
Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION " +

"func_squareInt (field1 IN INTEGER) " +
"RETURN INTEGER IS " +
"BEGIN return field1 * field1; " +
"END func_squareInt;");

stmt2.close();

// Use a stored function
CallableStatement cstmt2 =
conn.prepareCall("BEGIN ? := func_squareInt(?); END;");

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int k = 0; k < 100; k++) {
cstmt2.setInt(2, k);
cstmt2.execute();
System.out.println(k + " "

+ cstmt2.getInt(1)
+ " " + cstmt2.getInt(2));

}
cstmt2.close();

}
finally {
if (conn != null)

try {conn.close();} catch (SQLException sqe) {}
Using the WebLogic T3 Driver (Deprecated) 147

1 Using the WebLogic JDBC t3 Driver (Deprecated)
if (t3 != null)
try {t3.disconnect();} catch (Exception e) {}

}
}

}

Other WebLogic JDBC Features

WebLogic provides several features in its WebLogic jDrivers and in WebLogic JDBC
to support database-specific strengths. All of the features supported in the two-tier
drivers, and other features specific to multitier use, are available in the multitier
environment in WebLogic JDBC.

Waiting on Oracle Resources

weblogic.jdbc.t3.Connection

With release 2.5, WebLogic supports Oracle’s oopt() C functionality, which allows
a client to wait until resources become available. The Oracle C function sets options in
cases where requested resources are not available; for example, whether to wait for
locks. This functionality is described in section 4-97 of The OCI Functions for C.

The developer can set whether a client will wait for DBMS resources, or will receive
an immediate exception. Here is an example, from the example
examples/jdbc/oracle/waiton.java:

t3 = new T3Client("t3://bigbox:7001");
t3.connect();

java.util.Properties dbprops = new java.util.Properties();
dbprops.put("user", "scott");
dbprops.put("password", "tiger");
dbprops.put("server", "bigbox");

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.dbprops", dbprops);
t3props.put("weblogic.t3.driverClassName",

"weblogic.jdbc.oci.Driver");
t3props.put("weblogic.t3.driverURL",
148 Using the WebLogic T3 Driver (Deprecated)

Other WebLogic JDBC Features
"jdbc:weblogic:oracle");
t3props.put("weblogic.t3.cacheRows",

getParameter("cacheRows"));

Class.forName("weblogic.jdbc.t3.Driver").newInstance();

// You must cast the Connection as a weblogic.jdbc.oci.Connection
// to take advantage of this extension.
Connection conn =

(weblogic.jdbc.oci.Connection)
DriverManager.getConnection("jdbc:weblogic:t3", t3props);

// After constructing the Connection object, immediately call
// the waitOnResources method
conn.waitOnResources(true);

Note that use of this method can cause several error return codes while waiting for
internal resources that are locked for short durations.

To take advantage of this feature, you must first cast your Connection object as a
weblogic.jdbc.oci.Connection, and then call the waitOnResources() method.

Extended SQL

JavaSoft’s JDBC specification includes a feature called SQL Extensions, or SQL
Escape Syntax. All of the WebLogic jDriver JDBC drivers support Extended SQL. For
more information, see the Developers Guide for your driver. For a listing, see
WebLogic JDBC Options.

Oracle Array Fetches

WebLogic jDriver for Oracle offers support for Oracle array fetches by setting the
two-tier JDBC Connection property, weblogic.oci.cacheRows. If you are using
WebLogic jDriver for Oracle, this feature is also supported in WebLogic JDBC.

Take advantage of this feature in WebLogic JDBC by setting the two-tier property
weblogic.oci.cacheRows.
Using the WebLogic T3 Driver (Deprecated) 149

1 Using the WebLogic JDBC t3 Driver (Deprecated)
Multibyte Character Set Support

WebLogic jDriver for Oracle also offers internationalization support
(AL24UTFFSS/UTF-8), which is extended to WebLogic JDBC if you are using
WebLogic jDriver for Oracle with the WebLogic Server. Full documentation on this
feature is available in the Developers Guide for WebLogic jDriver for Oracle.

About WebLogic JDBC and Oracle NUMBER Columns

Oracle provides a column type called NUMBER, which can be optionally specified
with a precision and a scale, in the forms NUMBER(P) and NUMBER(P,S). Even in
the simple unqualified NUMBER form, this column can hold all number types from
small integer values to very large floating point numbers, with high precision.

WebLogic jDriver for Oracle reliably converts the values in a column to the Java type
requested when a WebLogic jDriver for Oracle application asks for a value from such
a column. Of course, if a value of 123.456 is asked for with getInt(), the value will
be rounded.

The method getObject(), however, poses some problems. WebLogic jDriver for
Oracle guarantees to return a Java object which will represent any value in a NUMBER
column with no loss in precision. This means that a value of 1 can be returned in an
Integer, but a value like 123434567890.123456789 can only be returned in a
BigDecimal.

There is no metadata from Oracle to report the maximum precision of the values in the
column, so WebLogic jDriver for Oracle must decide what sort of object to return
based on each value. This means that one ResultSet may return multiple Java types
from getObject() for a given NUMBER column. A table full of integer values may
all be returned as Integer from getObject(), whereas a table of floating point
measurements may be returned primarily as Double, with some Integer if any value
happens to be something like "123.00". Oracle does not provide any information to
distinguish between a NUMBER value of “1” and a NUMBER of “1.0000000000".

There is some more reliable behavior with qualified NUMBER columns, that is, those
defined with a specific precision. Oracle’s metadata provides these parameters to the
driver so WebLogic jDriver for Oracle will always return a Java object appropriate for
the given precision and scale, regardless of the values in the table.

The multitier driver add another layer of complexity to this issue. By default,
WebLogic fetches a configurable number of ResultSet rows of DBMS data before the
multitier JDBC application asks for it, which improves performance as perceived by
150 Using the WebLogic T3 Driver (Deprecated)

Implementing with WebLogic JDBC and the JDBC-ODBC Bridge
the client. But because WebLogic does not know in advance what form the client will
want the data, WebLogic prefetches rows generically, so that the data sent to a client
application is of the same type in any one column of a ResultSet. When using prefetch,
the getObject() method cannot be used for number types, because the WebLogic
jDriver for Oracle in use by the WebLogic Server might return different Java types in
a given column. Consequently, WebLogic prefetches all greater-than-integer
numerical data in String form, to guarantee that no precision will be lost.

This has no effect on data retrieval in a WebLogic JDBC client application if the data
is requested with getInt(), getFloat(), getBigDecimal(), etc. because
WebLogic JDBC converts the String to the correct type. But for calls to the
getObject() method, WebLogic JDBC returns the String it prefetched.

If you want getObject() to behave in the same way in your your multitier client
application as in a two-tier WebLogic jDriver for Oracle application—that is, without
prefetch, and potentially with mixed data types in the same column—turn off row
caching in WebLogic by setting the Connection property weblogic.t3.cacheRows to
zero (0).

Implementing with WebLogic JDBC and the
JDBC-ODBC Bridge

Note:

This notated example shows how to use WebLogic JDBC to connect to any vendor’s
database using the JDBC-ODBC bridge as the two-tier driver.

Note: Using the JDBC-ODBC bridge to access a Microsoft Access database with
Enterprise JavaBeans is not supported.

Step 1. Importing packages

� Step 2. Creating the T3Client

� Step 3. Connecting

� Accessing data

� Exception handling
Using the WebLogic T3 Driver (Deprecated) 151

1 Using the WebLogic JDBC t3 Driver (Deprecated)
� Final Step. Disconnecting and closing objects

� Code summary

Step 1. Importing packages

The same import packages are required for using the JDBC-ODBC bridge with
WebLogic JDBC as with any other WebLogic JDBC class. They are:

import java.util.*;
import java.sql.*;
import weblogic.common.*;

Step 2. Creating the T3Client

The constructor for a WebLogic JDBC client takes one argument, the URL of the
WebLogic Server, which includes the port on which it is listening for T3Client
requests. The example places all of the initial work of the program in a try block.

try {
t3 = new T3Client("t3://bigbox:7001");
t3.connect();

You should call the disconnect() method on the t3Client in your finally block, even
if the connection fails.

Step 3. Connecting

Use a java.util.Properties object to set parameters for connecting. We use one set of
Properties for the WebLogic Server-to-DBMS connection (the two-tier connection),
and another set of Properties for connection between the WebLogic JDBC client, the
WebLogic Server, and the DBMS (the multitier connection). The two-tier Properties
object itself is set as a multitier Property, and then the multitier Properties object is
used as an argument for the Connection constructor. (details on setting Properties)

Properties dbprops = new Properties();
dbprops.put("user", "scott");
dbprops.put("password", "tiger");

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.dbprops", dbprops);
t3props.put("weblogic.t3.driverClassName",
152 Using the WebLogic T3 Driver (Deprecated)

Implementing with WebLogic JDBC and the JDBC-ODBC Bridge
"sun.jdbc.odbc.JdbcOdbcDriver");
t3props.put("weblogic.t3.driverURL",

"jdbc:odbc:Oracle_on_SS2");
t3props.put("weblogic.t3.cacheRows", "10");

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
conn = DriverManager.getConnection("jdbc:weblogic:t3client",

t3props);

checkForWarning(conn.getWarnings());

In the last line in this example, we check for vendor-specific warnings after the
connection is established. Here is the code for the method checkForWarning. The
method takes as an argument a SQLWarning object and displays information about the
SQLState, the warning message, and the database vendor’s error code. Note that there
may be multiple warnings in a single SQLWarning object.

private static boolean checkForWarning (SQLWarning warn)
throws SQLException

{
boolean rc = false;
if (warn != null) {
System.out.println ("\n *** Warning ***\n");
rc = true;
while (warn != null) {

System.out.println ("SQLState: " +
warn.getSQLState ());

System.out.println ("Message: " +
warn.getMessage ());

System.out.println ("Vendor: " +
warn.getErrorCode ());

System.out.println ("");
warn = warn.getNextWarning ();

}
}
return rc;

}

Accessing Data

Use the getMetaData method (in the Connection class) to retrieve database metadata.
In this example, we display a few details about the database based on the metadata
retrieved.

DatabaseMetaData dma = conn.getMetaData();

System.out.println("Connected to " + dma.getURL());
Using the WebLogic T3 Driver (Deprecated) 153

1 Using the WebLogic JDBC t3 Driver (Deprecated)
System.out.println("Driver " + dma.getDriverName());
System.out.println("Version " + dma.getDriverVersion());
System.out.println("");

Use a Statement object to construct and execute a simple SQL select statement, and
then retrieve the data into a ResultSet. Close the Statement and ResultSet objects when
you have finished using them.

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
dispResultSet (rs);

rs.close();
stmt.close();

We display the results of the query with a private method that takes as its argument a
ResultSet. The dispResultSet() method prints the column headings for the table
using ResultSetMetaData and then displays the contents of the ResultSet in row major
order.

private static void dispResultSet (ResultSet rs)
throws SQLException

{
int i;

ResultSetMetaData rsmd = rs.getMetaData ();
int numCols = rsmd.getColumnCount();

for (i=1; i < = numCols; i++) {
if (i > 1) System.out.print(",");
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println("");

boolean more = rs.next ();
while (more) {
for (i=1; i<=numCols; i++) {

if (i > 1) System.out.print(",");
System.out.print(rs.getString(i));

}
System.out.println("");
more = rs.next ();

}
}

154 Using the WebLogic T3 Driver (Deprecated)

Implementing with WebLogic JDBC and the JDBC-ODBC Bridge
Exception Handling

The SQLException is most interesting; we display the same information about a SQL
error that we when we checked for SQLWarnings after instantiating a Connection.
Note that there may be several SQL errors contained in a single SQLException.

catch (SQLException ex) {
System.out.println ("\n*** SQLException caught ***\n");
ex.printStackTrace();

while (ex != null) {
System.out.println ("SQLState: " +

ex.getSQLState ());
System.out.println ("Message: " +

ex.getMessage ());
System.out.println ("Vendor: " +

ex.getErrorCode ());
ex = ex.getNextException ();
System.out.println ("");

}
}

For all other exceptions, we merely print out a stack trace for debugging purposes.

catch (java.lang.Exception ex) {
ex.printStackTrace ();

}

Final Step. Disconnecting and Closing Objects

Always close the Connection and disconnect the T3Client in a finally block to ensure
proper cleanup.

finally {
if (conn != null)

try {conn.close();} catch (Exception e) {;}
if (t3 != null)

try {t3.disconnect();} catch (Exception e) {;}
}

Code Summary

Here is a summary of the code discussed in this example.

package examples.jdbc.odbc;
Using the WebLogic T3 Driver (Deprecated) 155

1 Using the WebLogic JDBC t3 Driver (Deprecated)
import java.util.*;
import java.sql.*;
import weblogic.common.*;

class simpleselect {

public static void main (String args[]) {

String url = "jdbc:odbc:Oracle_on_SS2";
String query = "SELECT * FROM emp";

T3Client t3 = null;
Connection conn = null;
try {

t3 = new T3Client("t3://bigbox:7001");
t3.connect();

Properties dbprops = new Properties();
dbprops.put("user", "scott");
dbprops.put("password", "tiger");

Properties t3props = new Properties();
t3props.put("weblogic.t3", t3);
t3props.put("weblogic.t3.dbprops", dbprops);
t3props.put("weblogic.t3.driverClassName",

"sun.jdbc.odbc.JdbcOdbcDriver");
t3props.put("weblogic.t3.driverURL", url);
t3props.put("weblogic.t3.cacheRows", "10");

Class.forName("weblogic.jdbc.t3.Driver").newInstance();
conn = DriverManager.getConnection("jdbc:weblogic:t3client",

t3props);

checkForWarning(conn.getWarnings());

DatabaseMetaData dma = conn.getMetaData();

System.out.println("Connected to " + dma.getURL());
System.out.println("Driver " + dma.getDriverName());
System.out.println("Version " + dma.getDriverVersion());
System.out.println("");

// Create a Statement object so we can submit
// SQL statements to the driver
Statement stmt = conn.createStatement();

// Submit a query, creating a ResultSet object
ResultSet rs = stmt.executeQuery(query);
156 Using the WebLogic T3 Driver (Deprecated)

Implementing with WebLogic JDBC and the JDBC-ODBC Bridge
// Display all columns and rows from the result set
dispResultSet (rs);

// Close the result set and statement
rs.close();
stmt.close();

}
catch (SQLException ex) {

// Catch SQLExceptions and display specific error information.
System.out.println ("\n*** SQLException caught ***\n");
ex.printStackTrace();

while (ex != null) {
System.out.println ("SQLState: " + ex.getSQLState ());
System.out.println ("Message: " + ex.getMessage ());
System.out.println ("Vendor: " + ex.getErrorCode ());
ex = ex.getNextException ();
System.out.println ("");

}
}
catch (java.lang.Exception ex) {
// For any other exception, just print out the StackTrace
ex.printStackTrace();

}
finally {
if (conn != null)
try {conn.close();} catch (SQLException sqe) {}

if (t3 != null)
try {t3.disconnect();} catch (Exception e) {}

}
}

private static boolean checkForWarning (SQLWarning warn)
throws SQLException

{
boolean rc = false;

// Take an SQLWarning object and display its
// warning messages. Note that there could be
// multiple warnings chained together.

if (warn != null) {
System.out.println ("\n *** Warning ***\n");
rc = true;
while (warn != null) {

System.out.println ("SQLState: " + warn.getSQLState ());
Using the WebLogic T3 Driver (Deprecated) 157

1 Using the WebLogic JDBC t3 Driver (Deprecated)
System.out.println ("Message: " + warn.getMessage ());
System.out.println ("Vendor: " + warn.getErrorCode ());
System.out.println ("");
warn = warn.getNextWarning ();

}
}
return rc;

}

private static void dispResultSet (ResultSet rs)
throws SQLException

{
int i;
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();

for (i=1; i<=numCols; i++) {
if (i > 1) System.out.print(",");
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println("");

boolean more = rs.next();
while (more) {
for (i=1; i<=numCols; i++) {

if (i > 1) System.out.print(",");
System.out.print(rs.getString(i));

}
System.out.println("");
more = rs.next();

}
}

}

158 Using the WebLogic T3 Driver (Deprecated)

Using URLs to Set Properties For a JDBC Connection Using the T3 Driver
Using URLs to Set Properties For a JDBC
Connection Using the T3 Driver

Where URLs are Used

URLs -- uniform resource locators -- are tools for identifying and locating resources
over a network. The JDBC specification makes general recommendations for the use
of URLs within JDBC. We have implemented these recommendations in a way that is
used consistently throughout all of our products, and that abides by the current URL
guidelines (at www.w3.org).

With WebLogic products, you can use a URL to specify parameters needed to make a
WebLogic JDBC Connection.

How WebLogic URLs are Structured

Specifying a Connection with a Properties Object and a URL

The WebLogic JDBC drivers use a java.utils.Properties object to set properties
that are used to open a JDBC Connection between your client and the target database.
The WebLogic JDBC drivers also use a URL, as described in the JDBC specification,
to identify the JDBC driver. The Properties object and the URL are used as arguments
for the DriverManager.getConnection() method or the Driver.connect()
method.

Note: DriverManager.getConnection() is a synchronized method, which can
cause your application to hang in certain situations. For this reason, BEA recommends
that you use the Driver.connect method instead, as demonstrated in the code
fragments in this document.

The usual process follows this model:

Construct a java.util.Properties object for specifying certain information like
username and password.
Using the WebLogic T3 Driver (Deprecated) 159

http://www.w3.org
http://www.w3.org

1 Using the WebLogic JDBC t3 Driver (Deprecated)
Call the Class.forName().newInstance() method with the classname of the
JDBC driver to load it and cast it to a java.sql.Driver object.

Create a connection with the Driver.connect() method, which takes two
arguments, the URL of the JDBC driver and a set of properties.

Here is a working code snippet that illustrates creating the Properties object, calling the
Class.forName().newInstance() method, and creating a Connection object:

Properties dbprops = new Properties();

dbprops.put("user", "scott");

dbprops.put("password", "tiger");

dbprops.put("server", "DEMO");

The Properties object that contains the username, password, and servername for the
two-tier connection becomes part of another Properties object that we use to set
parameters for the multitier WebLogic JDBC connection.

Properties t3props = new Properties();

t3props.put("weblogic.t3", t3);

t3props.put("weblogic.t3.dbprops", dbprops);

t3props.put("weblogic.t3.driverClassName",
"weblogic.jdbc.oci.Driver");

t3props.put("weblogic.t3.driverURL",
"jdbc:weblogic:oracle");

All of the information for both the two-tier and multitier connections is then passed to
the Driver when the JDBC Connection is instantiated by calling the
Driver.connect() method. This method takes two arguments, a String URL and a
java.util.Properties object.

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.t3.Driver").newInstance();

Connection conn = Driver.connect("jdbc:weblogic:t3", t3props);
160 Using the WebLogic T3 Driver (Deprecated)

Using URLs to Set Properties For a JDBC Connection Using the T3 Driver
Specifying a WebLogic JDBC Connection with a Single URL

Some development environments (like Sybase's PowerJ) use the Properties object
exclusively for username and database. That restriction means that you must use the
URL passed as the first argument to the DriverManager.getConnection() method
to set all of the other parameters required for a WebLogic JDBC connection, including
the servername, as well as all of the weblogic.t3 properties.

For such environments, we allow you to supply all of the other information needed for
a WebLogic JDBC Connection by constructing a long URL that is patterned after an
RFC 1630-style query string.

Here is the syntax for WebLogic URLs. The property name is shown in bold, and a
sample value follows it.

jdbc:weblogic:t3 (with JDK 1.1)

First, set the URL for the WebLogic JDBC driver. (In technical terms, the URL of the
WebLogic JDBC driver is the scheme of the URL.)

Please note that WebLogic no longer supports JDK 1.0.2.

The WebLogic JDBC driver URL should be followed by a question mark (?), after
which follows a series of name-value pairs. Each name-value pair is separated by an
ampersand (&). (The example shows these delimiting characters in a different color.)
Arguments that come after the "?" are shown here in an arbitrary order, and can occur
in the URL in any order.

weblogic.t3.serverURL=t3://localhost:7001

Sets the URL of the WebLogic Server.

weblogic.t3.driverURL=jdbc:weblogic:oracle:DEMO

Sets the URL of the two-tier JDBC driver. The syntax should include the information
that you would set as the "server" property. For example,
jdbc:weblogic:oracle:DEMO indicates a WebLogic JDBC driver for an Oracle
database on the host "DEMO".

weblogic.t3.driverClassName=weblogic.jdbc.oci.Driver

Sets the class name of the two-tier JDBC driver. Note that class names are always
indicated as the full package name of the class, in dot-notation format.

weblogic.t3.cacheRows=10
Using the WebLogic T3 Driver (Deprecated) 161

1 Using the WebLogic JDBC t3 Driver (Deprecated)
Sets the rows to be cached on the WebLogic Server.

weblogic.t3.connectionPoolID=eng

Sets the connection pool ID. This ID must be registered in the weblogic.properties
file. If you use a JDBC connection from a connection pool, other information in the
URL is unnecessary. For more information, read up on connection pools in Using
WebLogic JDBC.

There are other optional properties that you may add to this list. For details on
properties, see Setting properties for connecting in the Developers Guide.

Here is an example of specifying a URL for a connection to an Oracle database named
DEMO, with a WebLogic Server running on port 7001 of a host
"toyboat.toybox.com," with the cacheRows property set to 25. This example assumes
that you have set "username" and "password" properties for access to the database with
a Properties object. The characters "?" and "&" have special meanings in a URL and
are set off here in red. For simplicity, the different parts of the URL are displayed in
different lines; in reality, this URL is one long string.

jdbc:weblogic:t3?

weblogic.t3.serverURL=t3://toyboat.bigbox.com:7001&

weblogic.t3.driverClassName=weblogic.jdbc.oci.Driver&

weblogic.t3.driverURL=jdbc:weblogic:oracle:DEMO&

weblogic.t3.cacheRows=25

Shortcuts

Given certain pieces of information, we can infer other details that allow you to
simplify the URL.

For example, you can supply more information first piece of the URL, the WebLogic
JDBC driver URL, like database vendor and DBMS host, that negates the need for the
weblogic.t3.driverURL, as shown here:

jdbc:weblogic:t3:oracle:DEMO

rather than:

jdbc:weblogic:t3?weblogic.t3.driverURL=jdbc:weblogic:oracle:DEMO
162 Using the WebLogic T3 Driver (Deprecated)

Using URLs to Set Properties For a JDBC Connection Using the T3 Driver
If you are using one of the drivers in WebLogic jDriver group, you can infer the class
name of the driver from the first piece of the URL that we shortened in the example
above, or from the property weblogic.t3.driverURL. We map the vendor name in
either URL to a driver in the WebLogic jDriver group, as shown in this table:

These shortcuts together reduce the URL used in the example to the following:

jdbc:weblogic:t3:oracle:DEMO?

weblogic.t3.serverURL=t3://toyboat.bigbox.com:7001&

weblogic.t3.cacheRows=25

Quoting Metacharacters in a URL

URL syntax allows only a subset of the graphic printable characters of the US-ASCII
coded character set, specifically the letters A-Z (both upper and lower case), the digits,
and the characters $-_.+!*'()" may be used in a URL. Any other characters should be
represented by a character triplet that is the character "%" followed by two
hexadecimal digits ("0123456789ABCDEF") which form the hexadecimal
representation of the character.

Some characters may be reserved by a URL scheme; those characters include ; / ? : @
= and &. These must always be encoded when used outside their reserved purpose in
a URL.

The following characters are reserved in the WebLogic URL scheme. You must use a
character triplet to represent these characters in a URL for anything other than a
reserved purpose:

%26 (&)

%3D (=)

%3F (?)

%2F (/)

URL Inferred driver
jdbc:weblogic:oracle weblogic.jdbc.oci.Driver
jdbc:weblogic:mssqlserver4 weblogic.jdbc.mssqlserver4.Driver
jdbc:weblogic:informix4 weblogic.jdbc.informix4.Driver
Using the WebLogic T3 Driver (Deprecated) 163

1 Using the WebLogic JDBC t3 Driver (Deprecated)
%3A (:)

Using IDEs and Wizards

You can also use URLs with IDEs -- integrated development environments or wizards
-- like Sybase's PowerJ. If an IDE requires the fully qualified classname and a URL,
here is how the classname for WebLogic's JDBC driver should be entered:

JDBC Driver:

weblogic.jdbc.t3.Driver

The characters "?" and "&" have special meanings in a URL and are set off here in red.
For simplicity, the different parts of the URL are displayed in different lines; in reality,
this URL is one long string. Following is the URL for the PowerJ database wizard.

Data Source URL:

jdbc:weblogic:t3?

weblogic.t3.serverURL=t3://toyboat.bigbox.com:7001&

weblogic.t3.driverClassName=weblogic.jdbc.oci.Driver&

weblogic.t3.driverURL=jdbc:weblogic:oracle:DEMO&

weblogic.t3.cacheRows=25
164 Using the WebLogic T3 Driver (Deprecated)

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Using the WebLogic JDBC t3 Driver (Deprecated)

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Using the WebLogic JDBC t3 Driver (Deprecated)
	T3 Driver Deprecated
	Table 1�1 Resources for Depreciated t3 Driver

	Overview of JDBC
	WebLogic JDBC Architecture
	Using Third-Party JDBC 2.0 Drivers in a Multitier Configuration
	1. Change the portion of your Java code where you register the JDBC driver:
	2. Change the portion of your Java code that contains the JDBC driver URL:
	3. If you are using the CLOB or BLOB datatypes, row caching is not supported. To turn off row cac...
	4. Re-compile your code.

	The WebLogic JDBC API
	API Reference
	Package java.sql
	Package java.math
	Package weblogic.jdbc.common

	WebLogic JDBC Objects and Their Classes
	Other Classes
	weblogic.common.T3Client
	weblogic.common.T3User
	weblogic.common.T3Exception
	weblogic.jdbc.t3.Connection
	java.util.Properties

	Upgrading to JDK 1.3
	How to upgrade
	1. Change the import statements that reference xjava.sql.* and weblogic.db.xjdbc.* to java.sql.* ...
	2. Change the references to the WebLogic JDBC driver class name to weblogic.jdbc.t3.Driver; chang...

	Implementing WebLogic JDBC
	Step 1. Importing packages
	Step 2. Creating the T3Client
	Using an explicit or an embedded T3Client

	Step 3. Setting properties for connecting
	Properties to be set for the two-tier connection
	user
	password
	server
	db or database
	weblogic.oci.cacheRows
	weblogic.t3 or weblogic.t3.serverURL
	weblogic.t3.dbprops
	weblogic.t3.driverClassName
	weblogic.t3.driverURL
	weblogic.t3.connectionID (optional)
	weblogic.t3.cacheRows (optional)
	weblogic.t3.blobChunkSize (optional, for use with WebLogic jDriver for Oracle)
	weblogic.t3.name (optional)
	weblogic.t3.description (optional)
	weblogic.t3.connectionPoolID (used with the weblogic.t3 property only)

	Using a URL to set WebLogic JDBC properties
	Setting up an embedded T3Client

	Step 4. Connecting to the DBMS
	Cached Connections and Connection Pools
	Using a Named, Cached JDBC Connection
	1. Create a T3Client.
	2. Connect to the WebLogic Server.
	3. Set the soft disconnect timeout for this client to be indefinite.
	4. Save the ID of the Workspace so that the T3Client can come back to this Workspace at a later t...

	Using Connection Pools
	Creating a Startup Connection Pool
	name
	url
	driver
	loginDelaySecs
	initialCapacity
	maxCapacity
	capacityIncrement
	allowShrinking
	shrinkPeriodMins
	testTable
	refreshTestMinutes
	testConnsOnReserve
	testConnsOnRelease
	props
	allow

	Creating a Dynamic Connection Pool
	Obtaining a Connection from a Connection Pool
	Managing Connection Pools
	Retrieving Information About a Pooll
	weblogic.jdbc.common.JdbcServices.poolExists
	weblogic.jdbc.common.Pool.getProperties

	Disabling a Connection Pool
	weblogic.jdbc.common.Pool.disableDroppingUsers
	weblogic.jdbc.common.Pool.disableFreezingUsers
	weblogic.jdbc.common.pool.enable

	Shrinking a Connection Pool
	weblogic.jdbc.common.Pool.shrinking

	Shutting Down a Connection Pool
	weblogic.jdbc.common.Pool.shutdownSoft
	weblogic.jdbc.common.Pool.shutdownHard

	Resetting a Pool
	weblogic.jdbc.common.Pool.reset
	weblogic.jdbc.t3.Connection

	Refreshing a Single Pool Connection
	weblogic.jdbc.common.JdbcServicesDef
	1. In a try block, test a connection from the connection pool with a SQL statement that is guaran...
	2. Catch the SQLException.
	3. Call the reset() method in the catch block.

	Setting up ACLs for Connection Pools in the WebLogic Realm
	weblogic.jdbc.connectionPool
	weblogic.jdbc.connectionPool.poolID

	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Final Step. Closing the Connection and Disconnecting the T3Client
	Code Summary

	Other WebLogic JDBC Features
	Waiting on Oracle Resources
	weblogic.jdbc.t3.Connection

	Extended SQL
	Oracle Array Fetches
	Multibyte Character Set Support
	About WebLogic JDBC and Oracle NUMBER Columns

	Implementing with WebLogic JDBC and the JDBC-ODBC Bridge
	Step 1. Importing packages
	Step 2. Creating the T3Client
	Step 3. Connecting
	Accessing Data
	Exception Handling
	Final Step. Disconnecting and Closing Objects
	Code Summary

	Using URLs to Set Properties For a JDBC Connection Using the T3 Driver
	Where URLs are Used
	How WebLogic URLs are Structured
	Specifying a Connection with a Properties Object and a URL
	Specifying a WebLogic JDBC Connection with a Single URL
	Shortcuts

	Quoting Metacharacters in a URL
	Using IDEs and Wizards

