
Using WAP with WebLogic Server

W e b L o g i c S e r v e r 6 . 0
D o c u m e n t E d i t i o n 1 . 0

D e c e m b e r 2 0 0 0

BEA WebLogic
Server

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Using WAP with WebLogic Server

Document Edition Date Software Version

6.0 December 2000 BEA WebLogic Server 6.0 Beta

Contents

Preface

1. Using Wireless Application Protocol (WAP) with WebLogic
Server

Overview ... 1-1

Wireless Application Environment (WAE)... 1-2

Wireless Markup Language (WML) .. 1-2

WMLScript (WMLS)... 1-3

The WAP Gateway.. 1-3

Additional Resources... 1-4

2. Programming WAP Applications
Generating WML... 2-1

Specifying MIME Types ... 2-4

Application Design Considerations... 2-4

Simple User Interfaces ... 2-5

Limited Memory .. 2-5

Supporting Multiple Client Types.. 2-5

Session Tracking .. 2-6
Using WAP with WebLogic Server iii

iv Using WAP with WebLogic Server

Preface

This document explains how to use the wireless application protocol in the BEA
WebLogic Server™ environment.

This document discusses the following topics:

� Chapter 1, “Using Wireless Application Protocol (WAP) with WebLogic
Server,” discusses how to provide content that is suitable for WAE and how to
configure and use WebLogic Server with a WAP Gateway.

� Chapter 2, “Programming WAP Applications,” discusses how to generate WML,
how to specify MIME types, and provides application design considerations.

What You Need to Know

This document is intended primarily for application developers who are interested in
building transactional Java applications that run in the WebLogic Server environment.
It assumes a familiarity with the WebLogic Server platform and J2EE (Java™ 2,
Enterprise Edition) programming, and wireless application protocol concepts.

e-docs Web Site

The BEA WebLogic Server product documentation is available on the BEA Systems,
Inc. corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.
Using WAP with WebLogic Server v

http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Server and include the release number.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSUPPORT at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes
vi Using WAP with WebLogic Server

http://www.adobe.com/
www.bea.com

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

import java.io.Serializable;

public String getName();

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
Using WAP with WebLogic Server vii

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
viii Using WAP with WebLogic Server

CHAPTER
1 Using Wireless
Application Protocol
(WAP) with WebLogic
Server

This section includes the following topics:

� Overview

� Wireless Application Environment (WAE)

� The WAP Gateway

� Additional Resources

Overview

Wireless Application Protocol (WAP) is a set of protocols that allow for the
development of Internet and Web-based services for mobile phones and other mobile
devices. The WAP standard was developed by the WAP Forum whose founding
members include Ericsson, Motorola, Nokia, and Phone.com and addresses the
limitations of mobile networks (low bandwidth, high latency, and unpredictable
availability and stability) and mobile devices (limited CPU, memory, and battery life,
Using WAP with WebLogic Server 1-1

1 Using Wireless Application Protocol (WAP) with WebLogic Server
and a simple user interface). The WAP Forum has developed their standards in such a
way that they leverage and compliment existing industry standards as much as
possible. The WAP standard specifies two essential elements of wireless
communication: an end-to-end application protocol and an application environment,
the Wireless Application Environment (WAE), based on a browser.

There are a number of products currently available that implement the end-to-end
application protocol for WAP. These products, called WAP Gateways, form the
connection between clients on the mobile network and applications hosted on
application servers on the Internet. The WAP Gateway builds a bridge between the
telecommunication and computer networks by routing requests from mobile clients to
the application servers. It can be physically located in either network, though it is
needed in only one of them.

This document discusses how to provide content that is suitable for WAE and how to
configure and use WebLogic Server with a WAP Gateway. For general information on
WAP technologies, see the Additional Resources section.

Wireless Application Environment (WAE)

WAE defines the framework for network-neutral, wireless applications for
narrow-band devices. Two of the main components of WAE are Wireless Markup
Language (WML) and WMLScript (WMLS).

Wireless Markup Language (WML)

WML is analogous to HTML for HTTP applications. It is an XML-based language that
is specifically designed to interface with the micro-browsers that exist in
WAP-enabled devices. The Wireless Markup Language Specification defines the tags
and structure of a WML document.

A WML document is a collection of one or more cards. Each card is considered a well
defined unit of interaction. The general rule of thumb is that a card carries enough
information to fit in one screen of a mobile device. One or more cards can be logically
1-2 Using WAP with WebLogic Server

http://www.wapforum.org/what/technical.htm

The WAP Gateway
grouped into a deck of cards. See The WAP Gateway section for information on ways
to serve WML documents to mobile clients. For general information on WML, see the
Additional Resources section.

WMLScript (WMLS)

WMLScript provides general scripting capability to the WAP architecture. It is
designed to overcome the limitations of narrowband communication and mobile
clients. While many of the services that can be used with small mobile clients can be
implemented with WML, the human behavioral compatibility of scripting improves
the standard browsing and presentation facilities of WML. WMLScript resides in
.wmls files that can be made available to mobile clients by placing them into the
document root. The document root is the root directory for files that are publicly
available on WebLogic Server. For more information, see the information on directory
structures in Deploying and Configuring Web Applications. For general information
on WMLScript, refer to Additional Resources.

The WAP Gateway

The WAP Gateway acts as the bridge between the mobile network containing mobile
clients and the computer network containing application servers as shown below.

Figure 1-1 WAP Application Architecture
Using WAP with WebLogic Server 1-3

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

1 Using Wireless Application Protocol (WAP) with WebLogic Server
A WAP Gateway typically includes the following functionality:

� Protocol Gateway—the protocol gateway translates requests from the WAP
protocol stack to the WWW protocol stack (HTTP and TCP/IP).

� Content Encoders and Decoders—the content encoders translate Web content
into compact encoded formats to reduce the number of packets traveling over the
wireless data network.

When a mobile client sends a request to your WAP application running on WebLogic
Server, the request is first routed through the WAP Gateway where it is decoded,
translated to HTTP, then forwarded to the appropriate URL. The response is then
re-routed back through the gateway, translated to WAP, encoded, and forward to the
mobile client. This proxy architecture allows application developers to build services
that are network and terminal independent.

There is a growing number of vendors that provide WAP Gateways. WebLogic Server
should work with any WAP-compliant Gateway. For a current list of WAP-compliant
Gateways and other WAP products, refer to the WAP Deployment Fact Sheet
compiled by the WAP Forum.

Additional Resources

Related WebLogic technologies
Programming WebLogic JSP
Programming WebLogic HTTP Servlets
Programming WebLogic XML
Deploying and Configuring Web Applications

General WAP information
Ericsson: WAP Developers’ Zone
MobilServer.com
Motorola
Nokia: WAP Solutions for Mobile Business
Phone.com
WAP Forum
WAP Hole Sun
1-4 Using WAP with WebLogic Server

http://www.wapforum.org/new/index.htm
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/xml/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://www.ericsson.com/developerszone/" target="wap
http://www.mobilserver.com/" target="wap
http://www.motorola.com/MIMS/MSPG/spin/mix/mix.html" target="wap
http://www.nokia.com/corporate/wap/index.html" target="wap
http://www.phone.com/index.html
http://www.wapforum.org" target="wap
http://www.wapholesun.com/" target="wap

Additional Resources
Wireless Application Protocol Specifications

White papers

WAP Toolkits
Nokia WAP Toolkit
Visual Pulp - WAP content creator
WAPtop - WML editing tool
WMLTools

WAP message boards
WAP Freaks
Using WAP with WebLogic Server 1-5

http://www.wapholesun.com/" target="wap
http://www.wapforum.org/what/technical.htm" target="wap
http://www.wapforum.org/what/whitepapers.htm" target="wap
http://www.nokia.com/corporate/wap/sdk.html" target="wap
http://www.wapholesun.com/visualpulp_wml_editor.htm" target="wap
http://www.waptop.net/waptor/" target="wap
http://pwot.co.uk/wml/" target="wap
http://boardserver.mycomputer.com/list.html?u=wapfreaks&f=1" target="wap

1 Using Wireless Application Protocol (WAP) with WebLogic Server
1-6 Using WAP with WebLogic Server

CHAPTER
2 Programming WAP
Applications

This section includes the following topics:

� Generating WML

� Specifying MIME Types

� Application Design Considerations

Generating WML

Requests from mobile clients are routed through the WAP Gateway to WebLogic
Server in the form of HTTP requests. WebLogic server can respond to HTTP request
by serving static files or HTTP Servlets written as Java Servlets or JavaServer Pages
(JSP). For WAP applications, static files will typically be WML files while servlets
and JSPs will be used to generate WML dynamically.

The phonebook example in the samples/examples/wap subdirectory of your
WebLogic distribution demonstrates serving up a static WML file by placing the file
into the document root and requesting the file’s URL from a mobile client. The WML
file presents options to the user for looking up phone numbers via the select element
as shown below.
Using WAP with WebLogic Server 2-1

2 Programming WAP Applications
Listing 2-1 phone.wml from samples/examples/wap/phoneBook

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright (c) 2000 by BEA Systems, Inc.

All Rights Reserved. -->

<wml>
<card id="card1" title="Phone Book" newcontext="true">

<p>
Name:
<select name="name" value="" title="Name">
<option value="">All</option>

<option value="John">John</option>
<option value="Paul">Paul</option>
<option value="George">George</option>
<option value="Ringo">Ringo</option>

</select>
</p>
<do type="accept" label="Get number">

<!-- Edit the URL below to point to the appropriate
hostname and listenport of your WebLogic Server -->

<go href="http://localhost:7001/phone?name=$(name:escape)"/>
</do>

</card>
</wml>

Based on the user’s input, an HTTP request is made to PhoneServlet and a query
parameter (name) is added to the servlet’s URL. In this example, PhoneServlet is an
existing servlet example that generates an HTML response. The HTML response is
then converted to WML by the WAP Gateway before forwarding the response to the
mobile client. Using the WAP Gateway to automatically translate HTML to WML is
fine for demonstration purposes, however it is strongly encouraged to generate WML
directly since WML is designed to address the display limitations of most WAP
devices. See the Application Design Considerations section for additional information.
2-2 Using WAP with WebLogic Server

Generating WML
The “date” example in the samples/examples/wap subdirectory of your WebLogic
distribution demonstrates generating a WML document from a JSP. When Date.jsp

is accessed by the mobile client, the page determines the current date and time and
returns the results in a WML document as shown below.

Listing 2-2 Date.jsp from samples/examples/wap/date

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright (c) 2000 by BEA Systems, Inc.
All Rights Reserved. -->

<!-- set document type to WML -->
<%@ page contentType="text/vnd.wap.wml" %>

<wml>
<template>

<do type="prev" label="back">
<prev/>

</do>
</template>

<card title="WML DATE EXAMPLE" id="frstcard">
<p>
<small>The current date is:

<%= new Date() %>

Copyright © 1999-2000 by BEA Systems, Inc.
All Rights Reserved.</small>

</p>
</card>

</wml>

As shown in the code above, the line that sets the page’s contentType to
text/vnd.wap.wml is required whenever you are generating WML directly from a
JSP or servlet. This line sets the MIME type of the generated document to the WML
MIME type. Without this line, the MIME type will default to the HTML MIME type
and the WAP Gateway will attempt to translate the document into WML with
unfavorable results.
Using WAP with WebLogic Server 2-3

2 Programming WAP Applications
WML is based on XML. Refer to Programming WebLogic XML for additional
examples of generating XML from within WebLogic Server.

Specifying MIME Types

To run a WAP application on WebLogic Server, you must specify the MIME types
associated with WAP in the web.xml file of the web application. The MIME type is
defined by the mime-mapping deployment descriptor element. For information on
creating and editing a web.xml file, see the Writing Web Application Deployment
Descriptors section. (In earlier versions of WebLogic Server, MIME types were
defined on each server, as server properties. The new method of defining MIME types
within the web application is consistent with the Java Servlet Specification 2.2
published by Sun Microsystems, Inc.)

Table 2-1 shows the MIME types required for WAP applications

Table 2-1 MIME Type Definitions for WAP Applications

Application Design Considerations

When developing a WAP application, you must consider the limitations of mobile
devices and determine the most efficient and flexible way to provide suitable content.
This section discusses some of these considerations.

Extension Mime Type Description

.wml text/vnd.wap.wml WML source files

.wmlc application/vnd.wap.wmlc WML compiled files

.wmls text/vnd.wap.wmlscript WMLScript source files

.wmlsc application/vnd.wap.wmlscriptc WMLScript compiled files

.wbmp image/vnd.wap.wbmp Wireless bitmaps
2-4 Using WAP with WebLogic Server

http://e-docs.bea.com/wls/docs60/xml/index.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

Application Design Considerations
Simple User Interfaces

Most mobile devices have extremely simple user interfaces. WML and WMLScript
were specifically designed to address these limitations. While some WAP Gateways
have the ability to automatically translate HTML to WML, in practice, it is encouraged
to generate WML directly and tailor the interface to the specific needs of the wireless
user. Developing a corresponding WML front-end leverages the previous engineering
effort to develop the business logic and content of your application, while providing
significant user interface benefits.

Because of the limited real estate of graphical displays on most WAP-enabled devices,
it is often desirable to allow users to customize the application offering to allow them
to see only those services that they are interested in. Tools such as Personalization are
well suited for providing this sort of flexibility in your application.

Limited Memory

Most WAP devices have little memory. When grouping WML cards into WML decks,
you should be aware that a deck is the smallest download unit. In other words,
information is downloaded to a mobile client in decks, not cards. Because of the
memory limitations, it is highly recommended to avoid decks with large amounts of
cards.

Supporting Multiple Client Types

Typically, a WAP application is an extension of an existing HTML browser-based
application. The back-end functionality should not require modification in offering the
same services to mobile clients. Instead, a corresponding WML front-end can be
developed to leverage the same back-end functionality.

There are two strategies for handling both HTML and WML client types. There can be
separate URLs for HTML and WML entry points, or a single URL can be used which
will generate content according to the browser type of the requestor. The browser type
can be determined by examining the User-Agent request header of an HTTP request.
Using WAP with WebLogic Server 2-5

2 Programming WAP Applications
See the SnoopServlet example included in the examples/servlets subdirectory of
your WebLogic distribution for an example of accessing this type of header
information.

A similar strategy can be used, if the developer whishes to take advantage of the
different features and display sizes of the different WAP-enabled devices available on
the market. The display sizes of WAP-enabled devices currently ranges from four lines
of text to about eight lines of text (although this is likely to change dramatically in the
near future). By examining the browser type of the client, an application can use the
extra graphical real estate only when it is available. Obviously, the simplest method is
to create content suitable for the lowest common denominator (four lines).

The future direction is the usage of XSL (eXtensible Style Language). An application
can have JSPs and servlets generate XML. An XSL style sheet can then transform the
content to into HTML or WML depending on the browser. See Programming
WebLogic XML for additional information on XSL.

Session Tracking

Session tracking is useful to keep track of a user’s progress over multiple servlets or
pages. As described in Programming WebLogic HTTP Servlets, tracking is
accomplished by storing session data in a javax.servlet.http.HttpSession
object that can be retrieved given the session ID. The session ID is typically stored in
a cookie that is set in the client. However, WAP does not support cookies.

One alternative is to use URL rewriting which causes the session ID to be encoded into
hyperlinks on the page that your servlet sends back to the browser. The session ID is
then retrieved from the URL parameters when the link is activated. However, the
length of the session ID (to ensure secure sessions with a uniformly random
distribution, it is necessary for session IDs to contain a certain number of characters)
can cause problems for WAP-enabled devices because many devices limit URLs to
128 characters.

There are two ways to limit the length of the session ID:

� You can limit the length of the portion of the URL that contains the session ID
by setting the IDLength attribute in the Web Application deployment descriptor
weblogic.xml, in the <session-descriptor> element at
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-desc
riptor.
2-6 Using WAP with WebLogic Server

http://e-docs.bea.com/wls/docs60/xml/index.html
http://e-docs.bea.com/wls/docs60/xml/index.html
http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

Application Design Considerations
� If your application is not deployed on a cluster of WebLogic Servers, you can
specify that information on the primary and secondary servers not be included in
the session ID by setting the WAPEnabled attribute to true. Set the WAPEnabled
attribute in the <WebServer> element in the config.xml file for your domain.
For more information, see config.xml Elements and Attributes at
http://e-docs.bea.com/wls/docs60/config_xml/mbeans.html.
Using WAP with WebLogic Server 2-7

http://e-docs.bea.com/wls/docs60/config_xml/mbeans.html

2 Programming WAP Applications
2-8 Using WAP with WebLogic Server

	Preface
	1 Using Wireless Application Protocol (WAP) with WebLogic Server
	Overview
	Wireless Application Environment (WAE)
	Wireless Markup Language (WML)
	WMLScript (WMLS)

	The WAP Gateway
	Additional Resources

	2 Programming WAP Applications
	Generating WML
	Specifying MIME Types
	Application Design Considerations
	Simple User Interfaces
	Limited Memory
	Supporting Multiple Client Types
	Session Tracking

