
Server
Using the

W e b L o g i c S e r v e r V e r s i o n 6 . 0
D o c u m e n t E d i t i o n 1 . 0

M a r c h 2 0 0 1

BEA WebLogic

Zero Administration Client (ZAC)
(Deprecated)

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Using the Zero Administration Client

Document Edition Date Software Version

6.0 March 2001 BEA WebLogic Server 6.0

Using the Zero Administration Client iii

Contents

1. Publishing with WebLogic ZAC
Introduction ...5

Trying Out the ZAC Demos ..6

 How ZAC Works..7

How you Publish a ZAC Package on the Server8

How ZAC Installs a Published Application on the User’s Machine.......8

How a Published Application Runs on the User’s Machine...................9

Setting up WebLogic for Publishing with ZAC ..10

2. Using the Publish Wizard
Starting the Publish Wizard...14

Creating a ZAC Package ...15

Publishing a ZAC Package ..27

Reverting a ZAC Package ..29

Using the command line Publish Utility ...29

Connecting the Publish Wizard to Other Servers..31

Updating a Published ZAC Package ...31

Importing a Published ZAC Package from Another Server32

Removing a Published ZAC Package..34

Creating an Installer/Bootstrap Application..35

Packaging a JRE..50

Before You Begin...51

Creating and Publishing a ZAC JRE Package. ..51

Specifying a Published JRE Package for an Application.............................52

Debugging and Testing a Published Application...54

iv Using the Zero Administration Client

3. Developing with WebLogic ZAC
Introduction .. 57

When to use the ZAC API... 58

How ZAC deploys applications... 58

The WebLogic ZAC API.. 59

Implementing with WebLogic ZAC... 60

Importing Packages ... 60

Updating ZAC Applications.. 60

Using ZACLog to Query the Latest Updates .. 62

Restarting a ZAC Client Application .. 64

Using WebLogic Events with ZAC... 64

Packaging Libraries with Your ZAC Application....................................... 66

Including Libraries within a ZAC Package.. 67

Making a ZAC Package Depend upon Another ZAC Package 67

Using the Zero Administration Client 1-5

CHAPTER

1 Publishing with
WebLogic ZAC

This section provides an overview of using the WebLogic Zero Administration Client
(ZAC), including the following topics:

n Introduction

n Trying Out the ZAC Demos

n How ZAC Works

n Setting up WebLogic for Publishing with ZAC

Introduction

Note: The WebLogic Zero Administration Client is a deprecated product. BEA
recommends that you use the Sun Microsystems Java Web Start product. Java
Web Start is a Java 2-compliant product that enables users to download Java
applications.

WebLogic ZAC, the Zero Administration Client utility, lets you publish and republish
applications, applets, and libraries with ZAC, so that they are transparently and
automatically updated to the latest version on the end user client machine. With ZAC,
you no longer need to manually distribute applications, applets, or libraries to your
clients; you can depend on ZAC’s automatic services to do so.

http://java.sun.com/products/javawebstart/

Trying Out the ZAC Demos

Using the Zero Administration Client 1-6

ZAC is extremely efficient. When a ZAC application is republished, only the minimal
amount of data is sent over the network to each client, to bring the applications on your
clients up-to-date. In a typical scenario where little or nothing has changed, the
overhead for checking for new files at startup is not noticeable to a user.

ZAC is highly configurable, so that you can design how your application should be
published, installed, and updated. You can check for updates to the application and to
its dependent libraries each time the application starts or stops; on a scheduled basis,
or you can disable the check for new ZAC updates altogether. Although this would
disable ZAC’s most powerful feature, it may be desirable for packages that you intend
to distribute once only as a static version.

ZAC uses a protocol called the HTTP Distribution and Replication Protocol (DRP), a
specification submitted to the W3C in August 1997 for the efficient replication of data
over HTTP.

 This document includes instructions on how to use the ZAC Publish Wizard to publish
applications on a WebLogic Server for distribution to your users.

Trying Out the ZAC Demos

When you install on Windows with the install shield (.exe) version, WebLogic
comes out-of-the-box with two ZAC packages, ZSimple and ZUpdate, that you can try
out immediately to see how WebLogic ZAC works. (This pre-installed demo does not
function correctly if you have installed WebLogic Server from the .zip file
distribution.)

1. Start WebLogic. (You will need to know the system password to publish.)

2. Start the ZAC Publish Wizard. Win32 users can use the shortcut for ZAC
Publisher available in the WebLogic directory in the Start menu.

Non-Windows users can start the Publish Wizard from the command line (after setting
your CLASSPATH with this command:

 $ java weblogic.PublishWizard

http://www.w3.org/TR/NOTE-drp-19970825.html
http://www.w3.org/TR/NOTE-drp-19970825.html

How ZAC Works

Using the Zero Administration Client 1-7

3. From the Publish Wizard window, double-click the ZSimple or ZUpdate
selection. You can walk through all the steps to see a demonstration of how to
publish a package, or you can just press the Finish button to skip to the review
phase.

4. Press the “Done” button.

5. To publish the application, select it in the list and select Publish... from the
Package menu. Select the appropriate Host and press the Publish button. If you
are only connected to one host, this will be selected automatically for you. A
“Publishing...” dialog will display the status of the publish operation and, if
successful, the package will appear in the lower-left window of the Publish
Wizard, under the selected WebLogic Server host. You may need to expand the
“+” symbol to see the published package.

6. You can test the published package by selecting the package under a WebLogic
Server host in the published window (lower-left), then select Test run from the
Server menu.

You can open the package again after the test run starts, change a few parameters, and
republish the application to see how the client responds.

 The rest of this document describes how to create and publish a package, and how to
create a bootstrap executable — which is the standard way to install and run an
application from a ZAC package.

 How ZAC Works

Any Java application, applet, or library can be published as a ZAC package. You do
not need to add anything special to the Java source code to publish your program with
ZAC. (However, ZAC does include a Java API that you can use in writing your
application to add interactive control over when ZAC updates should occur or whether
the application should respond immediately to ZAC updates. Developing with the
ZAC API is discussed in Developing with WebLogic ZAC.)

ZAC works very simply from your user’s perspective.

1. You publish an application to a WebLogic Server with the ZAC Publish Wizard.

How ZAC Works

Using the Zero Administration Client 1-8

2. Your user downloads a small native-OS installer, and simply double-clicks to
install and start.

3. The installer creates your application and installs all necessary libraries to
support it on the user’s machine, as well as a small bootstrap that monitors for
new published versions of your application and carries out updates.

How you Publish a ZAC Package on the Server

The ZAC Publish Wizard makes publishing your application easy. You use the ZAC
Publish Wizard to:

n Create new ZAC packages

n Publish ZAC packages on a WebLogic Server

n Import ZAC packages from other WebLogic Servers

n Update published ZAC packages on a WebLogic Server

The ZAC Publish Wizard guides you through the process of creating and publishing a
package with ZAC on a WebLogic Server. During the publish process, you set up the
parameters necessary to run your application or ZAC package on the client machine,
such as identifying:

n Which directories contain the files that comprise your application

n Other ZAC packages that your application depends upon

n Which Java runtime environment must be present on the client machine

n Other necessary information to allow your application to work correctly

An application is published to a WebLogic Server and is made available to your users
via HTTP. You can republish the package each time you change your application or
any of the libraries on which it depends.

How ZAC Installs a Published Application on the User’s Machine

 When you complete the publishing phase, your application is published on the
WebLogic Server. The ZAC Publish Wizard generates a small installation program in
native format for each machine type supported by ZAC. Your users download and run

How ZAC Works

Using the Zero Administration Client 1-9

this program to install the published application or package. We shall refer to this
installation program as the ’installer’, in the rest of this document. The installer is a
very small executable, and so is quick to download.

To make the published application available to users, just attach the installer to an
email or embed an FTP link to it in an HTML page. The user downloads and runs the
installer. Since the installation program is a native executable, a user doesn’t need to
pre-install a Java Runtime Environment (either a JRE or some Java development
environment like the JDK).

The installer performs some or all of the following tasks, depending on how you have
configured it from the ZAC Publish Wizard:

n (Optional) Checks that a specific JRE that will be needed by the published
application is pre-installed on the client machine; the ZAC installer can
automatically install a JRE that you provide (as another ZAC package) if
necessary.

n (Optional) Queries the user for HTTP proxy information to connect to the
publishing WebLogic Server.

n (Always) Downloads and installs the ZAC application.

n (Optional) Downloads and installs any other ZAC packages that the published
application is dependent upon.

n (Always) Installs a bootstrapper executable that is used to start a published
application, to monitor the publishing WebLogic Server for new versions, and to
download new versions when appropriate.

n (Optional) Creates a desktop icon or Start menu item that links to the
bootstrapper.

n (Optional) Launches the ZAC application.

After the initial installation, the installer may be deleted from the client’s machine.

How a Published Application Runs on the User’s Machine

The installer installs your user application, as well as a native bootstrap file. Once the
application is installed, your user will use the native-OS bootstrap to invoke the
application. Part of the ZAC Publish Wizard process involves creating the bootstrap
program.

javascript:openit(../techdoc/glossary/jdk.html')'

Setting up WebLogic for Publishing with ZAC

Using the Zero Administration Client 1-10

Each time the client runs the bootstrapper, it first checks for new versions of the
published application on the WebLogic Server. If a new version of your application —
or any other ZAC packages that the ZAC application depends upon — has been
published, the bootstrapper automatically updates the ZAC packages on the client
machine with the new versions. The bootstrapper then starts the published application.

Setting up WebLogic for Publishing with ZAC

ZAC must be deployed as a Web application on the WebLogic Server for users to have
access to it. Servlets included within the ZAC Web application handle requests from
clients. ZAC is deployed on the server as a WAR file, zac.war. To prepare the ZAC
package for deployment, do the following:

1. Edit the file web.xml (part of the ZAC Web application) to set a publish root for
locating published packages. If the publish root is set to a relative path, the
directory will be located in the WebLogic home directory (parallel to the
myserver\ directory). If unset, the publish root defaults to the exports\ directory
in WebLogic home). The following is an example of an entry in web.xml that sets
the publish root:

<context-param>
 <param-name>weblogic.zac.publishRoot</param-name>
 <param-value>C:/weblogic/publish</param-value>
</context-param>

2. Optionally, set an ACL for each published package to limit access. If unset, the
write permission defaults to system, and the read permission defaults to
everyone. Setting an Access Control List is also accomplished by editing the
web.xml file that is included with the zac.war application. The following is an
example of an entry in the web.xml file that sets an ACL for myApp that limits
access to three users, Peter, Paul and Mary:

<context-param>
<param-name>weblogic.allow.read.weblogic.zac.myApp</param-name>
 <param-value>Peter,Paul,Mary</param-value>
</context-param>

To deploy the ZAC Web application, do the following:

Setting up WebLogic for Publishing with ZAC

Using the Zero Administration Client 1-11

1. Start the WebLogic Server as usual. The WebLogic Server must be running when
you can actually publish your ZAC packages, though it need not be running when
you are creating the ZAC packages.

2. Invoke the WebLogic Administration Console.

3. To make published packages available, deploy the ZAC Web application archive
file zac.war as a Web application. For information on deploying Web
applications, see Deploying and Configuring Web Applications in the WebLogic
Server Administration Guide.

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

1 Publishing with WebLogic ZAC

1-12 Using the Zero Administration Client

Using the Zero Administration Client 2-13

CHAPTER

2 Using the Publish
Wizard

This section discusses how to use the Publish Wizard, including the following topics:

n Starting the Publish Wizard

n Creating a ZAC Package

n Publishing a ZAC Package

n Using the command line Publish Utility

n Connecting the Publish Wizard to Other Servers

n Updating a Published ZAC Package

n Importing a Published ZAC Package from Another Server

n Removing a Published ZAC Package

n Creating an Installer/Bootstrap Application

n Packaging a JRE

Starting the Publish Wizard

Using the Zero Administration Client 2-14

Starting the Publish Wizard

If you wish to publish to a WebLogic Server, that server must be running, and you will
need to know a user and password that has permission to publish. For more details, see
Publishing a ZAC package. However, you can create and inspect existing ZAC
packages without any Servers running.

Users can start the Publish Wizard from the command line (after setting your
CLASSPATH with this command:

 $ java weblogic.drp.admin.PublishWizard

The ZAC Publish Wizard splash screen will appear while ZAC starts up, then the main
dialog for the Publish Wizard will appear:

Creating a ZAC Package

Using the Zero Administration Client 2-15

Figure 2-1 The ZAC Publish Wizard Main Window

Creating a ZAC Package

You use the ZAC Publish Wizard to create new ZAC packages, import existing
packages from other servers, or update previously published packages. A ZAC
package may be an application, applet, or library.

The Publish Wizard will guide you through the process of creating a new package or
republishing an existing. You can also use ZAC’s “test run” option, which allows you
to try running your ZAC application to check that it will run as configured.

Creating a ZAC Package

Using the Zero Administration Client 2-16

1. From the Package menu, select New to create a new package, or Open to view or
edit an existing package. Alternatively, you can double-click on an existing
package. This will open the Package panel.

2. On the Package panel, select a package type. You may publish an applet, a Java
application, or a class library as a ZAC package. Typically, you publish libraries
as a component that other published applications depend upon.

Figure 2-2 Publishing a New Library Package

3. Name the package. This will not be a public display name; it will be used for
filename purposes, so make it short and easy to identify. Note: You may not use
spaces in the package name.

Creating a ZAC Package

Using the Zero Administration Client 2-17

Figure 2-3 Naming the Package

4. Supply a title for the package and a short prose description of it. Both will be
used for display purposes.

Creating a ZAC Package

Using the Zero Administration Client 2-18

Figure 2-4 Supplying a Title and Description

5. Set the version number.

Creating a ZAC Package

Using the Zero Administration Client 2-19

Figure 2-5 Setting the Version Number

6. Browse to the directory that contains the files for the ZAC package. Everything
in the directory you choose, plus everything in all its subdirectories, will be
published.

You can exclude files from the published package by adding to the list of file
types to be ignored. This allows you to locate files that may be used to generate
the package in the same directory, without publishing them. In general, you will
always want to ignore index.xml and index.osd files, which are specific to each
client. A list of suggested files to exclude is supplied; you can add to or delete
from this list for your published package.

Creating a ZAC Package

Using the Zero Administration Client 2-20

Figure 2-6 Choosing the Top-Level Directory of the Package

Find a GIF image to use as a thumbnail for the package. The image should be 32x32 pixels with a transparent background for best results.

7. Find a GIF image to use as a thumbnail for the package. The image should be
32x32 pixels with a transparent background for best results.

Creating a ZAC Package

Using the Zero Administration Client 2-21

Figure 2-7 Supplying a Thumbnail Image

8. If you are publishing an applet, you will be asked to enter the applet’s main class,
the CODEBASE, and a list of applet parameters that would customarily be listed
in PARAM tags. If the applet is online, you can enter a URL that ZAC will use to
find the applet and complete the list of parameters automatically. To identify the
applet, supply:

The main classname
If you enter a URL for an online location of the applet (along with
the document base), ZAC will find the applet and supply its
parameter list automatically.

The document base
This is the URL of the webserver that is hosting the applet.
Supplying the document base and the name of the class is enough
information for ZAC to find an online running version of the applet
and load the parameter list automatically.

Creating a ZAC Package

Using the Zero Administration Client 2-22

The CODEBASE attribute
 This is a URL where the applet may retrieve additional class files as
required. It is a common practice to set this to
http://yourserver:port/classes where yourserver is your
WebLogic Server and you have registered the ClasspathServlet
against the virtual name classes. For more details see the
Administrators Guide on Registering the WebLogic servlets.

The applet parameters
Applet parameters are a list of name=value pairs that supply
initialization and runtime variables to the applet, analogous to those
supplied between the <APPLET> tags in an HTML file.

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#configuring-servlets

Creating a ZAC Package

Using the Zero Administration Client 2-23

Figure 2-8 Specifying Applet Parameters

9. Enter the path to the appropriate class for the published package. If you are
publishing an application, you will be asked to enter the full path to the Java class
that contains the main() method that starts the application. You may also enter
any initialization arguments, required by the main() method, in the Parameters
text area.

Creating a ZAC Package

Using the Zero Administration Client 2-24

Figure 2-9 Locating the Class to Start the Application

Specify the CLASSPATH for your package (Required). If all of the necessary
classes are contained in the published package itself, you can simply specify a
dot “.” for the current directory. The CLASSPATH is always relative to the
top-level directory for the application. If you are publishing an application, the
class that contains the main() method to run your application must be in the
CLASSPATH of the package.

When publishing any type of package, CLASSPATH entries are always relative
to the top of the local directory being published. For example, when publishing
the local directory c:\myapps—which contains the following—

Creating a ZAC Package

Using the Zero Administration Client 2-25

 c:\myapps\classes\foo\Main.class
 c:\myapps\bundle1.jar
 c:\myapps\lib\bundle2.jar

where the class foo.Main is contained in the package foo—you would set the
CLASSPATH for the package as:

 classes;bundle1.jar;lib\bundle2.jar

Figure 2-10 Specifying the Package CLASSPATH

10. Here, you may specify Java system properties that your application requires. List
one name=value pair per line.

Creating a ZAC Package

Using the Zero Administration Client 2-26

Figure 2-11 Specifying Java System Properties

11. Next, you may set up dependencies for your package upon other packages. ZAC
will ensure those packages are installed and up-to-date on the client machine
also. You must make ZAC packages of shared libraries or other applications that
your package depends upon, and specify the dependencies using package names.

Using dependencies with ZAC allows several different applications to share
common code on the client machine. When common code is updated, it is
consequently updated for all dependent ZAC applications.

For example, if you were developing applications that depend upon the
WebLogic and the Swing classes as libraries, you could list these as

Publishing a ZAC Package

Using the Zero Administration Client 2-27

dependencies for each application, and there need only be a single copy of those
libraries on the client machine.

Figure 2-12 Setting up Dependencies

Locate a published package from an available WebLogic Server in the left
hand window and click ’Add’. Details about the depended-upon package are
displayed in the right hand window. To remove a depended-upon package,
select it in the right hand window, and click on ’Remove’.

Publishing a ZAC Package

Once you have created a new package or updated details for a package that you have
published previously, you are ready to publish the package to a WebLogic Server.

2 Using the Publish Wizard

2-28 Using the Zero Administration Client

1. Select the package you wish to publish in the ZAC Publish Wizard main window.
In the "Package" menu, select "Publish" if it is enabled. If you have multiple
WebLogic Servers listed in the ’WebLogic Servers’ panel, the second option
"Publish to" will be enabled, which allows you to select the WebLogic Server to
publish to.

If you select "Publish" the WebLogic Server is automatically chosen for you.
This will be either the only server listed, or the last server that you published to
or reverted from.

If you select "Publish to", you will need to select the address/port of the
WebLogic Server to which you want to publish this package.

2. The first time you publish to a WebLogic Server, and each time you publish after
you have restarted ZAC, you will be asked to supply a name and password. To
publish, you must supply a username and password for a user that has “write”
permission for ZAC. If you specified an ACL in the web.xml file included in the
zac.war file (as described in Publishing with WebLogic ZAC), then the user
name must be one of those specified in the ACL. The password will be the
password for the specified user in the security realm currently being used by the
WebLogic Server. If no ACL is specifed, then only the “system” user has write
(publish) privileges.

Figure 2-13 Supplying Authorization for Publishing

3. The progress of the publishing operation is shown in the “Publishing...” window.
When complete, press "Close", or "Details >>" to review the details of the
published package.

Using the command line Publish Utility

Using the Zero Administration Client 2-29

Figure 2-14 The Publishing Progress Dialog

Reverting a ZAC Package

 If you make changes to a local ZAC package before publishing it, you may revert the
package to a version previously published on a WebLogic Server. Select the local
package, and choose "Revert", or "Revert from" in the "Package" menu. If you are
running more than one server you will need to select the later option in order to choose
the server to revert from. If you choose "Revert", the server is chosen for you as either
the only server that is listed, or the last server that you published to or reverted from.

Using the command line Publish Utility

 You can use the command line Publish Utility to publish a ZAC package on the
WebLogic Server, as an alternative to using the ZAC Publish Wizard. The Publish
Utility is a stand alone java application that you may run from the command line, or
invoke from a shell script. You configure the actions of the Publish Utility by
supplying command line options. These options closely follow the parameters that you
define in the ZAC Publish Wizard. Use the Publish Utility on the command line as
follows:

 $ java weblogic.drp.admin.Publish [options]

2 Using the Publish Wizard

2-30 Using the Zero Administration Client

-name zacPackage
(Required) The name for the ZAC package you are publishing, as it shall
appear on the WebLogic Server. Note that the name should not contain any
spaces.

-dir packageDir
(Required) The pathname of the top-level local directory that contains the
entire contents for the ZAC package that you are creating and publishing. The
contents of the directory, and all subdirectories are included in the new
package.

-host hostname
(Optional) The host name of the WebLogic Server you are publishing to. This
defaults to "localhost".

-port portnumber
(Optional) The port number of the WebLogic Server you are publishing to.
This defaults to "7001".

-login username -password passwd
(Optional) You must specify a username and password to publish a package
on a WebLogic Server that uses security controls for publish authentication.
By default, this is set to the system user and password by the WebLogic
Server. You may grant publish (write) privileges to a user or group by
specifying an ACL in the web.xml file included in the zac.war application.
See Setting up WebLogic for Publishing with ZAC (step 2) for details.

By default, the Publish Utility will attempt to publish the package without
using a username and password. This will fail unless ZAC publish write
privileges have been granted to everyone.

-verbose | -v
Causes the Publish Utility to print verbose messages about its operation.

-help
Prints a short summary of usage for the Publish Utility.

Connecting the Publish Wizard to Other Servers

Using the Zero Administration Client 2-31

Connecting the Publish Wizard to Other
Servers

 When you start the Publish Wizard, it will connect automatically to the WebLogic
Server running at the default location, and display it in the lower window pane. To
discover other WebLogic Servers, select "Add" from the "server" menu to access the
following dialog.

Figure 2-15 The Add Server dialog

Updating a Published ZAC Package

Updating a previously published application is simple.

1. Start the Publish Wizard.

2. Select the package you want to update

3. Select "Open" from the "Package" menu.

2 Using the Publish Wizard

2-32 Using the Zero Administration Client

4. Carry out the same steps as for creating and publishing a new package.

Importing a Published ZAC Package from
Another Server

You can import a published package from one WebLogic Server and publish it on
another WebLogic Server. At that point, the package becomes a separate copy at will
not be updated if the original package is updated.

To import a published package:

1. Add the WebLogic Server host you wish to import from to the Publish Wizard’s
host list. See “Connecting the Publish Wizard to Other Servers” on page 2-31.

2. Select the published package in the other WebLogic Server host.

3. Select "import" from the "Package" menu.

4. You will be asked where you wish to store the imported ZAC package files.
Select an appropriate directory, and enter a directory name in the text box. A new
directory will be created under that name in the current directory you have
browsed to. If you do not specify a name, the operation will not be successful.

Importing a Published ZAC Package from Another Server

Using the Zero Administration Client 2-33

Figure 2-16 Storing the ZAC Packaged Files

5. Next, you are prompted for a name to save the ZAC package definition under.
This should be saved in the default directory where you keep your ZAC package
definitions. This is usually saved under the directory /weblogic_publish.

2 Using the Publish Wizard

2-34 Using the Zero Administration Client

Figure 2-17 Saving the ZAC Package Definition

6. The imported package will apper under the “local package” list, under the name it
was published with on the originating server.

7. You may now publish the package, as described under Publishing a ZAC
Package.

Removing a Published ZAC Package

The remove operation only removes the published application files themselves,
including directory for the package that is stored in a package directory in the ZAC
publish root.

Removing a package does not affect the WebLogic Server or the original files from
which the package was published, nor will it remove local files from a ZAC client.

1. From the Server menu, choose Remove package.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-35

2. Browse the WebLogic Server from which the package is to be removed.

3. Select the package and press the Choose button.

Creating an Installer/Bootstrap Application

You can also use the ZAC Publish Wizard to create a set of native programs — an
installer and a bootstrap — for various operating systems that become part of a
published Java application.

The installer program is a native executable that installs your published Java program
on the local machine; it may also install a JRE. It doesn’t require a Java environment
itself, so it can run out-of-the-box in the native OS. It’s a little like an InstallShield for
Java.

The bootstrap is also a native program; the user runs the bootstrap to invoke the
published application. The bootstrap takes care of monitoring for updates,
downloading and updating the user’s application, and other administrative ZAC
functions.

Installer/bootstrap programs can be created for the following OS types:

n Win32 (Windows95/98 and Windows NT)

n Solaris/SPARC

n Linux/x86

n DECUnix/Alpha

n HPUX (HPUX 11)

Both the installer and the bootstrapper are small native, applications. You will need to
create these for each type of operating system and CPU type that you expect your
clients will use.

To create the installer/bootstrap executables in the Publish Wizard:

1. Start the Publish Wizard, and highlight the ZAC package for which you wish to
create a bootstrapper installation program. You must have previously created a
ZAC package for your application and published it on the WebLogic Server.

2 Using the Publish Wizard

2-36 Using the Zero Administration Client

2. Select Create bootstrap app... from the Package menu.

3. Set the appropriate operating system and CPU type for this application. Choosing
an OS and CPU will set some default values that you can adjust as necessary.

Figure 2-18 Setting OS Details for the Bootstrap

4. Enter the host and port of the publishing WebLogic Server. If you are preparing a
bootstrapper application for a package installed on another server, you can find
the available servers by pressing the Browse button.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-37

Figure 2-19 Identifying the Publishing WebLogic Server

5. Assign a name for the native bootstrapper executable. The bootstrapping process
creates two applications: the installer package (usually very small) that the client
downloads and runs initially, and the bootstrap that the user uses to invoke the
published application each time he runs it. What you name in this step is the
bootstrapper executable.

2 Using the Publish Wizard

2-38 Using the Zero Administration Client

Figure 2-20 Assigning a Name

6. Select one or more methods for finding and choosing a Java environment. You
may depend on a locally available copy of the Microsoft or JavaSoft JVM, or you
can load a JRE (Java Runtime Environment) that has been published as a ZAC
package. Check the options that you want to be available to the client, and then
order how those options should be processed by using the up-and-down arrows to
the right.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-39

Figure 2-21 Making the JRE Available to the Client Application

7. If you selected Load own JRE, you will be prompted to locate the publishing
WebLogic Server where the installer can find a published package of the JRE.
For details on packaging your own JRE with ZAC, see the section Packaging a
JRE later in this document.

2 Using the Publish Wizard

2-40 Using the Zero Administration Client

8. Specify options for the Sun VM memory flags when if is initiated by the
bootstrap application. The default values are specified here. You should set them
accordingly if you application has special needs.

Figure 2-22 Setting Memory Options for the Sun VM

9. Enter the local directory on the client machine into which the bootstrap
application should be installed when the user double-clicks the .exe file. The
directory will be absolute if you begin the path with a slash (forward or backward
depending upon the operating system for which you are publishing this
bootstrap). If you choose the Start app in install directory option, the directory
selected here is where the application will start from.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-41

Figure 2-23 Setting a Local Client Directory

10. Set the client permissions for the files associated with this package.

2 Using the Publish Wizard

2-42 Using the Zero Administration Client

Figure 2-24 Setting Access Permissions for Client Files

11. If you are publishing for Windows, you will be asked to choose some special
settings for Windows. You can install shortcuts for the Windows Start menu or
desktop and you can set an icon for the bootstrapper package.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-43

Figure 2-25 Setting Windows-Specific Options

12. Specify the behavior of the ZAC installation-bootstrap and the post-installation
bootstrap. These options are defined as follows:

Update application
If this option is checked, the bootstrap executable will check for newly
published versions of the ZAC application and update it if necessary. You
may wish to disable this feature if one of these conditions is true:

n You wish the client to run the application offline

n You have embedded ZAC update functionality directly into the application using
the ZAC API

n You plan to generate another bootstrap executable for the purpose of updating
the ZAC application (See Launch application option below)

2 Using the Publish Wizard

2-44 Using the Zero Administration Client

Check all dependencies
If this option is checked, the bootstrap executable will check for newly
published versions of the ZAC packages that this application depends upon.
You may wish to disable this feature for similar reasons to those listed above.

Show progress window
If this option is checked, the bootstrap executable will display a meter
indicating the progress of the download when the application updates. If you
wish the update to be silent, you can uncheck this option.

Launch application
This option is usually checked. If this option is not checked, then the
bootstrap executable will not launch the application. You might uncheck this
option to create a bootstrap that will only update the application on the client
machine. You could use such a bootstrap in conjunction with a bootstrap that
only starts the application and does not update it.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-45

Figure 2-26 Setting up Bootstrapper Options

13. Set a WebLogic username and password for access to this package. This should
correspond to a WebLogic user that is on the access control list (ACL) for read
permission to this application on the publishing WebLogic Server. Note that if
you do not set an ACL for a published package, the permission to read defaults to
the special group everyone and the permission to write (publish) the package
defaults to the special administrative user system. That means that anyone can
download your published package, but only a system-level user can publish or
republish packages.

2 Using the Publish Wizard

2-46 Using the Zero Administration Client

Figure 2-27 Setting the User and Password for Secure ZAC Packages

14. If you expect your users to access the internet from behind a firewall, you should
configure the bootstrap to ask for an HTTP proxy server through which it may
access the WebLogic Server. It is a good idea to always leave this option
checked, unless you know that your clients are not behind a firewall.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-47

Figure 2-28 Configuring the Bootstrapper to Prompt for HTTP Proxy Details

15. Set the debug mode and verbosity of the application. This is useful while you are
testing the deployment of your ZAC application from a client machine.

2 Using the Publish Wizard

2-48 Using the Zero Administration Client

Figure 2-29 Setting Debug Mode

16. Review the bootstrap settings. Press the Generate button when completed.

Creating an Installer/Bootstrap Application

Using the Zero Administration Client 2-49

Figure 2-30 Confirming Your Choices

17. From the Save As... window, select the location and name of the installation
executable. The default name is based on the ZAC package name and the target
OS; but you may call this executable file anything you like. You will deploy this
executable to clients to install your application.

2 Using the Publish Wizard

2-50 Using the Zero Administration Client

Figure 2-31 Saving the Generated ZAC Installation Program

Packaging a JRE

You can wrap the entire JRE in a ZAC package and include it with your ZAC
application. Including the JRE means that you do not need to make any assumptions
about the end user’s machine and you are assured that everything necessary for your
application is provided, including the correct version of Java. The downside is that the
initial download package is larger, and it may install the JRE even though there being
another JRE present. This small initial inconvenience may be more desirable than
causing installation problems for the user.

Packaging a JRE

Using the Zero Administration Client 2-51

Before You Begin

The following steps describe how you should make a ZAC package of theJRE. You
can then include this ZAC package as a dependency of yourapplication. Before you
start the Publish Wizard, you should do thefollowing:

1. Download the JRE install-shield. The JRE from JavaSoft can be downloaded from
JavaSoft.

2. Install it on your development machine. In these instructions, we’ll assume you
have installed it in the directory c:\jre117.

Now start the Publish Wizard and continue the process.

Creating and Publishing a ZAC JRE Package.

1. Create the package type as “Library” and give it CLASSPATH “.” (CLASSPATH
doesn’t matter in this case). Give it no dependencies.

2. Create a new package for the JRE. We recommend that you choose a name that
reflects the OS and CPU type; for example, “JRE_117_win32_x86".

3. Enter a title and description for the JRE package. You can enter any title you
wish.

4. Enter the package version as closely to the JRE version as possible. For example,
For JRE 1.1.7 enter ’1’ ’1’ ’7’
For JRE 1.2.0 enter ’1’ ’2’ ’0’

Entering the correct JRE version is important since the version string is used to
determine the default local installation directory for the JRE. Using the same version
number as the JRE version will minimize the chance that two separate ZAC packages
will overwrite each other’s JREs with incompatible versions. Of course, this is only
used to determine the default install directory; the user ultimately decides where the
JRE shall be installed.

5. You may optionally select a thumbnail image for the package.

6. Specify the top-level directory where you have previously installed the JRE. (In
this example, we’re using c:\jre117.)

http://java.sun.com/products/jdk/1.1/jre/index.html

2 Using the Publish Wizard

2-52 Using the Zero Administration Client

7. Specify simply . (dot) as the CLASSPATH for your library.

8. Skip the other dialog screens and publish the package. Make sure that the
publishing server is running before you try to publish.

After the publishing step is complete, you should see the new ZAC JRE package
appear in the ’ZAC Publish Wizard’ window.

Specifying a Published JRE Package for an Application

Now that you have created your own JRE ZAC package (see section above), you need
to add a dependency between it and your ZAC application. Here is how:

1. In the Publish Wizard, create an installer/bootstrap executable for your application,
using the instructions in this document in the section Creating an
Installer/Bootstrap Application.

2. During the create process, when you make choices on how to configure the Java
Environment, you will see three choices that show the preference for choosing a
JRE on the client user’s host. You can order, select, or deselect these choices as
illustrated on the right. Select Load own JRE as one of your VM choices and
adjust its position in the preference list using the arrow buttons; then press the
Next button.

3. When the bootstrap wizard asks where the JRE is published, provide the
following:

l The hostname and port for the WebLogic Server where you published the
ZAC JRE

l The ZAC name (e.g., “JRE_117_win32_x86") under which the JRE
distribution is published

Packaging a JRE

Using the Zero Administration Client 2-53

You can type in the path or Browse for the published package on the appropriate
server in your server list.

Figure 2-32 Locating a Published JRE

4. Press the Generate button, or proceed to the end of the bootstrap wizard.

5. Finally, choose a file name and path to save the installation executable on the
publishing server. For example, \weblogic\public_html\MyAppInstall.exe
saves the installer/bootstrapper into the default document root of a WebLogic
Server host, where you can publish access to it from an HTML page.

The native installer will be small, probably about 250 KB for a Windows
architecture. You can distribute it to clients however you like; for example, put a
link to it on a web page, or attach it to an email.

2 Using the Publish Wizard

2-54 Using the Zero Administration Client

Debugging and Testing a Published Application

 The WebLogic distribution contains native executables for running the ZAC bootstrap
from the command line for Win32, Solaris, Linux, and DECUnix. The Windows
version (zac.exe) is located in the bin/ directory; the non-Windows versions are
located in the lib/{arch}/zac_{arch}/ directories. Each executable also has an _g
version that can be used for verbose debugging.

Use the appropriate version of the command line bootstrapper to install or run a ZAC
package. For example, you run the Windows version as shown here:

 $ zac.exe -name zacPackage options

The options are defined as follows:

-name zacPackage
Required. The name of the application to launch or download. For example:

 $ zac.exe -name ETrader

-host hostname
Hostname of the publishing WebLogic Server. This defaults to localhost.
For example:

 $ zac.exe -name ETrader -host zac.weblogic.com

-port port
Port at which the publishing WebLogic Server is listening for login requests.
Defaults to 7001. For example:

 $ zac.exe -name ETrader -host zac.weblogic.com -port 80

-proxy
Prompts for proxy information, according to the configuration set in the ZAC
bootstrap wizard when the package was published.

-dir localDir
The local (client) directory where the ZAC application files are located. This
defaults to the current working directory. The following example launches a
ZAC application called ETrader:

 $ zac.exe -name ETrader -dir /usr/local/zac/

For this example, all files for the ETrader application and all of its
dependencies will be stored in the subdirectories below /usr/local/zac/.

Packaging a JRE

Using the Zero Administration Client 2-55

The actual ZAC application ETrader is stored beneath this directory in
another directory with the same name as the package, that is
/usr/local/zac/ETrader/. The ZAC bootstrapper looks inside this
directory for the OSD application manifest (index.osd).

-root
Start the Java ZAC application in the ZAC root directory. The default it to
start the ZAC application in the current working directory.

-vm JVM type
Specifies the order of preference for locating a JVM on the client’s machine.
Specify any combination of the characters "S","M",or “O” where the highest
preference is on the left, and the characters represent:

l S (Sun Java VM)

l M (Microsoft VM)

l O (Own VM. You provide your own JVM as a published ZAC package.)

If you use “O” in this argument, you must specify a JRE with the -jre flag.

-jre zacPackage
Required if you use “O” as an option for the -vm flag. Specifies a
ZAC-published JRE.

-Dname=value
Specifies one or more Java system property to the Java VM when it is invoked
by the bootstrapper.

—option
Pass the flag “-option” (with a single hyphen) to the Java application as it
starts up.

-msnumber
Sets the JVM initial heap size for your client application (in megabytes).

-mxnumber
Sets the JVM maximum heap size for your client application (in megabytes).

-nolaunch
Updates a ZAC package without launching it.

2 Using the Publish Wizard

2-56 Using the Zero Administration Client

-noquery
Disables the dialog that prompts the user for an alternate installation directory
when the bootstrapper is run. By default this is enabled.

-noprogress
Disables the display of the download progress meter.

-noupdate
Launches a ZAC application without attempting to update it. Requires a
previously successful download.

-verbose
Enables verbosity for classloading in the Sun JVM. This can be useful for
tracking down problems with missing class dependencies on the client.

-help
View a list of the available options. Each option also has a shorthand version;
These are indicated in the output of the -help command.

Using the Zero Administration Client 3-57

CHAPTER

3 Developing with
WebLogic ZAC

This section describes the Application Programmatic Interface (API) for the Zero
Administration Client, including the following topics:

n Introduction

n The WebLogic ZAC API

n Implementing with WebLogic ZAC

Introduction

This document describes how to use the ZAC API to ZAC-enable your Java
applications. You should also be familiar writing a WebLogic client application, which
introduces all of the services and facilities within the WebLogic environment.

WebLogic ZAC (Zero Administration Client), lets you automate the distribution and
maintenance of your application software. ZAC removes the burden of manual
software distribution, installation, re-installation, upgrades, bug-fix patches, and data
distribution. It keeps your application software always up-to-date on your client
machines via the Internet or intranet. ZAC’s services can be made automatic and
transparent to the end-user. Updates are fast and efficient, since ZAC only transmits
the minimum changes required to bring each client up-to-date.

Introduction

Using the Zero Administration Client 3-58

ZAC is an implementation of the W3C specification, the HTTP Distribution and
Replication Protocol. In addition to a GUI wizard, the ZAC Publish Wizard, that
makes it easy to publish software on a ZAC-enabled WebLogic Server. ZAC also has
an API with which you can incorporate the same functionality directly into your Java
applications. Note that ZAC is not supported using the 1.3.0 JDK with or without Java
HotSpot TM.

When to use the ZAC API

ZAC can be used as a wrapper around your existing Java applets and applications, or
can be incorporated into your applications via the ZAC API. If you want to distribute
and automatically update your Java software with ZAC, you do not really need to use
the ZAC API; the ZAC Publish Wizard allows you to specify everything necessary to
publish your application, make it available to client machines, and set up an automatic
updating policy. For information on publishing applications with ZAC, see Publishing
with WebLogic ZAC.

You should consider building ZAC into your Java code if you need to closely control
the ZAC update services with your application. Your application can respond
automatically when new updates are published, or offer more control to the user over
when to accept new software updates. Another use of the ZAC API is to write
applications that administer updates for other applications, or non-executable data on
the client machine. For instance, maintaining a large dataset on each client machine,
such as a copy of a large corporate intranet that must be kept up-to-date on every Sales
person’s field laptop. Downloading the entire dataset every time a change is made
might take a long time over the network, but when a ZAC-enabled application finds
newly published versions, it downloads only the required changes.

How ZAC deploys applications

ZAC applications must be published on a ZAC-enabled WebLogic Server to be made
available to WebLogic clients. You do not have to use the ZAC Java API in your
application code in order to publish the application with ZAC; as part of the publishing
process, ZAC supplies a tiny bootstrap executable that your client can download, and
the bootstrapper will then handle initial download, subsequent updates (configurable),

http://www.w3.org/TR/NOTE-drp-19970825.html
http://www.w3.org/TR/NOTE-drp-19970825.html
http://e-docs.bea.com/wls/docs60/zac/wizard.html

The WebLogic ZAC API

Using the Zero Administration Client 3-59

and starting of the published application. This bootstrap executable is compiled for
each target platform’s operating system, so that Java need not be pre-installed on the
client.

You publish the bootstrap by posting a link for the executable from any web page; after
the user downloads and runs the bootstrapper, an icon is installed on the desktop that
the user can double-click to start the initial installation and subsequently to start the
application itself. Before starting the published application, the bootstrapper checks for
new updates on the server and upgrades the application as necessary. Subsequent
updates will be more efficient since only the changes are downloaded.

You can exercise more control over when an application is updated by using the ZAC
API to add code to your Java client. When the bootstrapper is generated by the ZAC
Publish Wizard (see Using the Publish Wizard), you may uncheck the option so that it
will not automatically update the client from a newly published ZAC package; rather,
you can add the ZAC update functionality to the application itself, enabling the user
can choose when to update from the application’s user interface.

The WebLogic ZAC API

Package-weblogic.zac

Class java.lang.Object
 Class weblogic.zac.ZAC
 (implements weblogic.drp.events.ProgressListener,
 weblogic.drp.common.DRPConstants)
 Class weblogic.zac.ZACLog

Use the ZAC class to manage ZAC packages on the client machine from within your
application. Most likely, you will use only a very small subset of the methods in this
class, such as the update() method to update the ZAC package on the client machine
from the publishing WebLogic Server.

The ZACLog class provides information about the published ZAC packages in use by
your client, and the most recent updates for each of these packages.

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-60

Implementing with WebLogic ZAC

This section discusses the following topics:

n Importing Packages

n Updating ZAC Applications

n Using ZACLog to Query the Latest Updates

n Restarting a ZAC Client Application

n Using WebLogic Events with ZAC

n Packaging Libraries with Your ZAC Application

Importing Packages

To use the ZAC class in your Java application or applet you must import the WebLogic
ZAC package, as well as the package that supports all WebLogic clients. For example:

import weblogic.zac.*;
import weblogic.common.*;

Updating ZAC Applications

Your application should create and use a ZAC object to reference and update a ZAC
package. The ZAC constructor requires that you specify the following details about the
ZAC package you want to administer:

n The address of the WebLogic Server where the ZAC package is published

n The name of the published ZAC package on the WebLogic Server

n The local installation directory of the ZAC package on the client machine

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-61

You can use the ZACLog class to obtain information about each ZAC package in use
by your client application, and then pass that information to the ZAC constructor. The
code below illustrates how you might do this:

 // Find the address of each publishing server
 // and connect to each in turn
 ZACLog zl;
 ZAC zac;
 // Obtain an enumeration of ZACLog(s) for each published
 // package this application is dependent upon
 Enumeration enum = ZACLog.getUpdateLogs();
 while (enum.hasMoreElements()) {
 zl = (ZACLog)enum.nextElement();
 // Construct a URL of the server address from each ZACLog
 t3url = "t3://" + zl.getZACHost() + ":" + zl.getZACPort() + ’/’;
 // Create a new ZAC object, and connect to the server.
 zac = new ZAC(zl.getZACHost(),
 zl.getZACPort(),
 zl.getZACName(),
 zl.getLocalDirectory());
 // Now perform the ZAC package update...
 zac.update();
 }

In the above example, we use the ZACLog.getUpdateLogs() method to examine an
enumeration of ZACLog instances. Each ZACLog instance refers to a separate ZAC
package that this application depends upon. We use the properties of each ZACLog to
create a ZAC object for each ZAC package. We then update each ZAC package using
the zac.update() method.

If your application administers another ZAC package that it is not dependent upon,
then the ZACLog.getUpdateLogs() method will be ineffective, since it only returns
a ZACLog for each package that the current ZAC application uses. In this case, your
application will need to pass explicit details about the publishing WebLogic Server and
the name of the package to the constructor.

Once you have created a ZAC object, you may call its update() method. This checks
for a newly published ZAC package, and updates the package on the client if
necessary.

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-62

Using ZACLog to Query the Latest Updates

The details of each ZAC update are recorded into a set of ZACLog objects. Updates
can occur when the application starts, or when the application initiates an update itself
(as above). You obtain an Enumeration of ZACLog object from the latest update using
the ZACLog.getUpdateLogs() static method. All previous ZACLog records are
discarded; it is the responsibility of the application to maintain a record of updates if
required.

The Enumeration returned by a call to the getUpdateLogs() method contains one
ZACLog for each package that the application is dependent upon. You might process
this Enumeration as shown in the following code:

 // Obtain Enumeration of ZACLog(s)
 Enumeration enum = ZACLog.getUpdateLogs();
 ZACLog zl;
 // Process each ZACLog...
 while(enum.hasMoreElements()) {
 zl = (ZACLog)enum.nextElement();
 // Print the ZAC package name
 System.out.println("ZAC log for package" + zl.getZACName());

 // Print the ZAC update status
 switch(zl.getUpdateStatus()) {
 case ZACLog.UPDATE_NONE:
 System.out.println("ZAC update status: No update was
necessary.");
 break;
 case ZACLog.UPDATE_FAILURE:
 System.out.println("ZAC update status: FAILED!");
 System.out.println("Details: " + zl.getUpdateFailureString());
 break;

 // This is where the real work starts
 case ZACLog.UPDATE_SUCCESS:
 System.out.println("ZAC update status: Completed
successfully");

 // Get info about the update
 int fileCnt = zl.getUpdateFileCount();
 long binarySize = zl.getUpdateByteCount();

 String details;

 if (fileCnt == 0) {
 details = "Update Success, 0 files updated, 0 bytes

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-63

transferred.";
 }
 else {
 if (fileCnt == 1) {
 details = "Update Success, 1 file updated, ";
 }
 else {
 details = "Update Success, " + fileCnt + " files updated, ";
 }

 if (binarySize > 1000) {
 details += (binarySize / 1000) + " KBytes transferred.";
 }
 else {
 details += (binarySize) + " bytes transferred.";
 }
 }
 System.out.println("Details: " + details);

 // Report which files were updated
 System.out.println("The following files were updated:");
 Enumeration fl = zl.getUpdateFileList();
 File zacroot = zl.getLocalDirectory();
 while (fl.hasMoreElements()) {
 String path = (String)fl.nextElement();
 File updated = new File(zacroot, path);
 System.out.println("Updated: " + updated.getAbsolutePath());
 }
 }
 }

The example above shows how to retrieve detailed information about the latest ZAC
update from the ZACLog. First, the name of the ZAC package to which the ZACLog
refers is obtained and printed out to the console. Next, the status of the ZAC update is
queried and a switch statement is used to act upon the possible outcomes. The
getUpdateStatus() method will return one of the following constants:

ZACLog.UPDATE_NONE

No update was necessary; the package was up-to-date.

ZACLog.UPDATE_FAILURE

The update failed in some way. More information can be obtained about the
failure by calling the getUpdateFailureString() and the
getUpdateFailure() methods. This returns a String containing a stack
trace and the Throwable exception that occurred respectively. An update
may fail due to a server error, a communications interruption, or a lack of disk
space on the client machine.

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-64

ZACLog.UPDATE_SUCCESS

Indicates that a successful update occurred. Several other pieces of
information about the ZACLog are available when an update is successful,
such as the size of the data transferred and the files that were updated.

The names of the updated files returned by the getUpdateFileList() method are
relative to the installation directory into which the ZAC package was installed. In the
above example, a FILE object is constructed from the relative pathname, appended to
the path returned by the getLocalDirectory() method, giving the full path name of
each file.

Changes that an update makes to an application will not be reflected until it is restarted.

Restarting a ZAC Client Application

If your client application was started using the ZAC bootstrapper, you may request it
to be restarted by sending a ZAC.ZAC_EXIT_RESTART flag to the System.exit()
method. Here is an example:

 System.exit(ZAC.ZAC_EXIT_RESTART);

Since, the ZAC bootstrapper was used to start the application, it can also catch the exit
status. When it receives the ZAC.ZAC_EXIT_RESTART status, it restarts the application.
Prior to restarting, the bootstrapper will also update the application and other ZAC
packages it is dependent upon if configured to do so. You usually configure this when
you publish the application with the ZAC Publish Wizard.

Using WebLogic Events with ZAC

You can incorporate WebLogic Events into your client application to have it respond
instantly when a new version of a ZAC package is published on a WebLogic Server.

Note: WebLogic Events are deprecated with the 6.0 release of WebLogic Server.

 The WebLogic Server generates a new event for the
WEBLOGIC.ZAC.UPDATE.myPackage topic when a new update of the package named
myPackage is published on the WebLogic Server. When your application registers an

http://e-docs.bea.com/wls/docs60/event/event.html

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-65

interest in the event topic WEBLOGIC.ZAC.UPDATE and sets the sink flag to true, your
application is notified when a new package version is published. For information about
events, see Using WebLogic Events.

The following code shows how a client connects to the WebLogic Server and registers
interest in the publication of a ZAC package. In this example, the client registers
interest in the "WEBLOGIC.ZAC.UPDATE.myPackage" event topic.

 ZACLog zl;
 String t3url = null;
 while (enum.hasMoreElements()) {
 ZACLog zl = (ZACLog)enum.nextElement();
 // Test for a match to the package name
 if (zl.getZACName().equals("myPackage")) {
 t3url = "t3://" + zl.getZACHost() +
 ":" + zl.getZACPort() + ’/’;
 break;
 }
 }

 if (t3url != null) {
 // Now connect to the server.
 T3ServicesDef t3services = getT3Services(t3url);

 // Register interest in the update event...
 // Create an Evaluate object to be used in the registration
 Evaluate eval =
 new Evaluate("weblogic.event.evaluators.EvaluateTrue");

 // Create an Action object parameter for the registration
 // To have the notification returned to the client, the client
 // must implement ActionDef and the Action must be instantiated
 // with the client object, i.e. "this".
 Action act = new Action(this);
 // Create the EventRegistrationDef object
 EventRegistrationDef erd =
 t3services.events()
 .getEventRegistration("WEBLOGIC.ZAC.UPDATE.myPackage",
 eval, act, true, true, 1);

 // Finally, we register interest in the event
 int regid = erd.register();
 }

 The client must implement the action() method, part of the ActionDef interface. In
the action() method, you client may act upon notification of a published update, and
update itself. Here is an example:

http://e-docs.bea.com/wls/docs60/event/index.html

3 Developing with WebLogic ZAC

3-66 Using the Zero Administration Client

 public synchronized void action(EventMessageDef ev) {
 System.out.println("Notification of an " +
 ev.getTopic() +
 " Event received.");
 zacUpdate = true;
 notifyAll();
 }

 The action() method is usually synchronized to prevent multiple threads from
executing in it simultaneously. In this implementation, we simply print a message to
the console, set the private variable zacUpdate to true, and wake up other application
threads to handle the event by calling the notifyAll() method. The zacUpdate
variable indicates to the suspended application thread that is should perform a ZAC
update.

Note: It is not good practice to perform time-consuming operations in a callback
method such as this, since the event notification is called from another thread. Small
operations that return quickly are acceptible, but in our case, we may decide to perform
a ZAC update, which may take some time so is best handled from one of the client
application threads.

Packaging Libraries with Your ZAC Application

Your published ZAC application should be published with any required libraries that
it depends upon. The ZAC subset of the Weblogic classes is distributed with any ZAC
application by default and is necessary for its operation, regardless of whether the
application uses the ZAC API or not. These classes are downloaded to the client in the
zac.jar file and placed in a lib directory below the ZAC application installation
directory. For this reason, applications that use the ZAC API need not deploy the ZAC
classes, since they are supplied by default.

However, applications that use WebLogic resources that are not included in the zac.jar
file, or any other non-default libraries or packages, must be configured so that those
resources are also installed on the client machine. This can be achieved in two ways,
described below.

Implementing with WebLogic ZAC

Using the Zero Administration Client 3-67

Including Libraries within a ZAC Package

If you include the required classes, jars, libraries, or any other data under your ZAC
application’s publish directory, they will automatically be deployed with that package
and installed under the same relative package directory on the client machine.

If you application depends on classes outside of the application package, you must
make sure that they are in the CLASSPATH of the ZAC application. You can specify
a runtime CLASSPATH for your application in the ZAC Publish Wizard (see Using
the Publish Wizard); the CLASSPATH must be specified relative to the root
installation directory.

Making a ZAC Package Depend upon Another ZAC Package

If you intend to publish several ZAC applications that use the same libraries or classes,
you can save disc space on the client machine by publishing the shared components as
a separate package. You then make each ZAC package dependent upon the shared
package. The packages that your application depends upon, as well as your application
itself, will be included each time your client application is updated.

When ZAC installs a package on a client, everything is installed under a root directory.
The ZAC application you originally published will be installed in a subdirectory of the
same name under this root directory. Any other packages will also be stored in
subdirectories with the same name as the package under this root directory. ZAC only
has knowledge of the packages it has installed under the root directory. The location
of the install-root directory is either defined when the package is published, or the
package may be configured to allow the user to choose its location at install time.

In this example, the ZAC root directory is called ZacExamples, under which there are
two packages, ZSimple and WeblogicClasses. In this case, the ZSimple package might
depend upon WeblogicClasses.

For two ZAC packages to share a dependency on another package, both ZAC packages
must be installed under the same root directory.

3 Developing with WebLogic ZAC

3-68 Using the Zero Administration Client

This illustration shows the directory structure when another package (called
AnotherOne) has been installed under the same root directory. Both packages can
share dependency on the same WeblogicClasses package, and both will update it if
necessary.

Note: If not installed under the same root, each will maintain separate copies of the
same package under their corresponding root directories. This is the default behavior;
otherwise, a ZAC package might unintentionally update a package that another
package was dependent upon.

	Copyright
	1 Publishing with WebLogic ZAC
	Introduction
	Trying Out the ZAC Demos
	How ZAC Works
	How you Publish a ZAC Package on the Server
	How ZAC Installs a Published Application on the User’s Machine
	How a Published Application Runs on the User’s Machine

	Setting up WebLogic for Publishing with ZAC

	2 Using the Publish Wizard
	Starting the Publish Wizard
	Creating a ZAC Package
	Publishing a ZAC Package
	Reverting a ZAC Package

	Using the command line Publish Utility
	Connecting the Publish Wizard to Other Servers
	Updating a Published ZAC Package
	Importing a Published ZAC Package from Another Server
	Removing a Published ZAC Package
	Creating an Installer/Bootstrap Application
	Packaging a JRE
	Before You Begin
	Creating and Publishing a ZAC JRE Package.
	Specifying a Published JRE Package for an Application
	Debugging and Testing a Published Application

	3 Developing with WebLogic ZAC
	Introduction
	When to use the ZAC API
	How ZAC deploys applications

	The WebLogic ZAC API
	Implementing with WebLogic ZAC
	Importing Packages
	Updating ZAC Applications
	Using ZACLog to Query the Latest Updates
	Restarting a ZAC Client Application
	Using WebLogic Events with ZAC
	Packaging Libraries with Your ZAC Application
	Including Libraries within a ZAC Package
	Making a ZAC Package Depend upon Another ZAC Package

