
Server
Using WebLogic Events

W e b L o g i c S e r v e r V e r s i o n 6 . 0
D o c u m e n t E d i t i o n 6 . 0

D e c e m b e r 2 0 0 0

BEA WebLogic

(Deprecated)

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only
pursuant to the terms of the BEA Systems License Agreement and may be used
or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This
document may not, in whole or in part, be copied photocopied, reproduced,
translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions
set forth in the BEA Systems License Agreement and in subparagraph (c)(1)
of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not
represent a commitment on the part of BEA Systems. THE SOFTWARE AND
DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems,
Inc. How Business Becomes E-Business, BEA WebLogic E-Business
Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic
Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise,
and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with
which they are associated.

BEA WebLogic Server Administration Guide

Document Edition Date Software Version

6.0 December 2000 BEA WebLogic Server 6.0

Using WebLogic Events (Deprecated) iii

Contents

1. Overview of WebLogic Events
WebLogic Event architecture ..6

The Topic Tree..6

Structure of the Topic Tree ...6

An example of a structured tree ..7

Registering interest in an event ..8

How the Topic Tree is populated..8

How a client registers interest in an Event Topic8

How a client unregisters interest in an Event..8

Processing an event ..9

How the Topic Tree is traversed ...9

How each EventRegistration is processed ..9

How events are evaluated by an EventRegistration..............................10

How the action process works ..11

More about parameters..11

2. WebLogic Events Objects and Their Classes
Evaluate and Action objects ..34

The EvaluateDef and ActionDef interfaces ...35

Methods you will implement..35

EventTopic objects ..36

EventRegistration objects..38

EventMessage objects ..41

ParamSet and ParamValue objects..41

Using ParamSets Efficiently ..43

Implementing with WebLogic Events...45

Writing the Evaluate class ...46

iv Using WebLogic Events (Deprecated)

Step 1. Importing packages ... 46

Step 2. The registerInit() method... 47

Step 3. The evaluate() method... 48

Code for the EvaluateStocks (evaluate) class.. 48

Writing the Action class ... 50

Step 1. Importing packages ... 50

Step 2. The registerInit() method... 50

Step 3. The action() method .. 51

Code for the MailStockInfo (action) class... 52

Registering interest in an event .. 53

Step 1. Importing packages ... 53

Step 2. Checking the command-line arguments .. 53

Step 3. Processing the command-line arguments .. 54

Step 4. Obtaining the EventServices factory... 54

Step 5. Creating and submitting the registration ... 55

Code for the Register class .. 57

Sending events to the WebLogic Server... 59

Step 1. Importing packages ... 59

Step 2. Checking the command-line arguments .. 59

Step 3. Processing the command-line arguments .. 59

Step 4. Submitting events .. 60

Code for the SendEvents class .. 61

Using client-side notification.. 63

Setting up ACLs for WebLogic Events in the WebLogic Realm....................... 64

Using WebLogic Events (Deprecated) 1-5

CHAPTER

1 Overview of WebLogic
Events

WebLogic Event API provides a lightweight event management system using a
publish/subscribe paradigm. For example, a WebLogic/JDBC client can submit
(publish) events to a WebLogic Server. Other clients of the WebLogic Server can
register interest in (subscribe) to those events. The WebLogic Server informs
subscribers of new events when they occur.

A client can specify conditions, called an evaluator, that must be satisfied for an event
to be delivered to them. Evaluators can prevent unnecessary network traffic.
Evaluators are executed on the WebLogic Server.

The client also specifies what happens when the event occurs. The Action resulting
from an event can be implemented either on the server or the client side. See
Registering interest in an event later in this document.

As a service, WebLogic Events has access to all of WebLogic’s other services, like
JDBC, RMI, logging, instrumentation, Workspaces, etc. All of these services are
integrated in WebLogic. Their APIs share many common aspects that make building
a complex networked application easier; your application can use several services, all
of which can share access to objects and client resources.

Several WebLogic Servers can operate together as a WebLogic Cluster to manage
notifications and registrations, since any WebLogic Server can publish and subscribe
to events on other servers simultaneously.

WebLogic Server implements JavaSoft’s Java Messaging Service (JMS) specification.
You can use WebLogic JMS in any application where you can use WebLogic Events.
WebLogic JMS offers features not found in WebLogic Events, such as message
persistence, point-to-point messaging, and guaranteed message delivery sequence.
Since WebLogic JMS is an industry-standard interface, we recommend that you

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-6

implement new event-based applications using WebLogic JMS. You may still choose
to use WebLogic Events in applications that do not require the more sophisticated
features JMS offers. The WebLogic Events service is small and fast, but limited
compared to JMS. Read more about WebLogic JMS in Using WebLogic JMS.

WebLogic Event architecture

The Topic Tree

The Topic Tree is the chief architectural feature of WebLogic Events. The Topic Tree
lives on the WebLogic Server and is populated by all of the Event Topics that clients
have subscribed to. It is the data structure used to remember and process WebLogic
Events as they are subscribed to and published by WebLogic Clients.

Structure of the Topic Tree

The tree structure allows event types to be grouped into categories and further
sub-categories, where each branch in the tree represents a sub-category of the event it
branches from. In a well organized Topic Tree, as we move from the root towards the
leaf nodes, the Event Topics become more specific.

The notation used to describe events in the tree is similar to the dot-notation of domain
addresses. Each word represents an event at a particular branch in the tree. For example
comms.devices.telephone.ring or comms.devices.telephone.page. This allows clients
to subscribe to a specific Event Topic, using the full event qualifier. This model also
allows a client to subscribe to a general category of Event Topics, by only specifying
interest to a branch level. E.g. comms.devices.telephone would listen for any events
pertaining to a telephone.

However, the organization of the tree is the responsibility of the client applications that
make up the WebLogic framework. It is your responsibility to program your system so
that it organizes the events sensibly, to make the most of this structure.

http://e-docs.bea.com/wls/docs61/jms/index.html

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-7

An example of a structured tree

At the top (or root) of every Topic Tree is a wildcard topic that essentially denotes
“every kind of event,” which is notated with an asterisk (*). All other topics are
considered to be more specific than the root topic. An application that registers interest
in the root topic is able evaluate every event that occurs on the WebLogic Server, in
the Topic Tree.

Figure 1-1 WebLogic’s Topic Tree

In the example shown above, there are two major branches of topics that descend from
the root, stocks and weather. We build a typical Topic Tree here for registrations of
interest in weather in two California cities, Los Angeles and San Francisco. These
topics would be notated as:

weather.northamerica.us.california.la

and

weather.northamerica.us.california.sf

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-8

Registering interest in an event

How the Topic Tree is populated

The Topic Tree is dynamically built inside the WebLogic Server as clients subscribe
to Event Topics. If a client subscribes to an Event Topic that does not exist in the Topic
Tree, a new node, and the new branches required to reach that node, are created
automatically. The subscribing client will now receive notice of the new Event
whenever it is published.

How a client registers interest in an Event Topic

A WebLogic Client must register interest in a topic with the WebLogic Server in order
to evaluate, and act upon events when they are published. Any WebLogic Client
application on the network can register interest in any number of Event Topics via the
WebLogic EventRegistration services.

A registration is submitted to the WebLogic Server usually with the following pieces
of information:

Which event to subscribe to, described by Registration Parameters

� How to Evaluate the event when it occurs, specified via an EvaluateDef
object.

� What happens when the event evaluates true, specified via an ActionDef
object.

This is described later in more detail with code examples. See Registering interest in
an event.

How a client unregisters interest in an Event

A client application can unregister interest in one of two ways:

Use the count property to control when interest is unregistered. There are several
ways that you can control the length of your event registration.

� Call the EventRegistration.unregister() method.

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-9

NOTE: For event registrations where both the evaluate() and the action()
methods live in the WebLogic Server, it is the responsibility of the client to unregister
interest. If the action() method lives in the client, then deregistration takes place
automatically when the WebLogic client disconnects.

Processing an event

This section describes how event propagation works. Understanding this will help in
understanding how to use WebLogic Events in your network applications.

How the Topic Tree is traversed

Any application can submit an event to the WebLogic Server. An event is submitted
with a set of event parameters that qualify its scope. Once it is submitted, the
WebLogic Server tries to find an exact match for the specific event in the Topic Tree.
If found, the EventRegistration(s) for that EventTopic are processed (described next).
If no exact match is found, or no clients have registered interest in that EventTopic,
then the event is considered as not delivered at this point. Next, the Topic Tree is
ascended to the next less-specific EventTopic, and the EventRegistrations there are
processed, and so on, until the top of the topic tree is reached.

How each EventRegistration is processed

Each client that has an interest in a particular EventTopic should have registered an
EventRegistration with that topic. So, each EventTopic in the Topic Tree has a list of
EventRegistrations, which describes how each client is interested in the EventTopic.
When an EventTopic is matched to an Event, it processes each EventRegistration in
the following way:

� If the EventTopic is an exact match to the Event, the Event is evaluated by the
EventRegistration. (i.e. the following conditions are skipped)

� However, If this is a less specific Event Topic than the actual published event.
i.e. it is an Event Topic that is higher up the Topic Tree, then the following
considerations are made.

� If the event was not delivered to a more specific EventTopic successfully, it is
evaluated by the EventRegistration.

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-10

� If the event was delivered to a more specific Event Topic, then the sink flag
of the EventRegistration is considered.

sink

A registration can be flagged as a sink, which means that it is guaranteed to
receive a chance to evaluate all events in which it has registered an interest,
as well as all events associated with more specific topics below its
registration in the Topic Tree. (Registering for the root topic (*) with the sink
flag set to true guarantees a chance to evaluate every event submitted to the
WebLogic Server. If your evaluate method for such a registration does
nothing but return true, you effectively act upon every event submitted to the
WebLogic Server.)

If you set a registration’s sink flag to false (the default), your client only
receives notification when that exact event occurs and not when more specific
events below that branch occur. However, there is an exception to this rule:

Even with the sink flag set to false, the EventRegistration evaluates a more
specific event if that event was not delivered successfully to a more specific
Event Topic. This would happen if no client had registered interest in the
more specific Event Topic at that time. Because a topic does not exist in the
tree until a client has registered interest in it, you should be careful when
evaluating events. Do not assume that setting sink to false ensures your
client only receives events exactly related to that topic.

Because events are evaluated this way, you can establish EventRegistrations
to catch events that no clients have registered to receive.

How events are evaluated by an EventRegistration

When a client registers interest in an event via an EventRegistration, it must specify an
Evaluate object, that is associated with the EventRegistration. Once an event reaches
a matching registration, the WebLogic Server calls the Evaluate object’s evaluate()
method. The Evaluate class, which implements the interface
weblogic.event.evaluators.EvaluateDef, is guaranteed to implement this
method, and is usually a user written class, or one of the default weblogic evaluators.
The Evaluate class must be installed on the server, and must lie in the server’s
CLASSPATH.

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-11

The evaluate() method is passed the parameters that accompany the event. The
custom method may analyze the event parameters, and return either true or false. When
true, the WebLogic Server, invokes the Action object’s action() method, unless
phase is set to false.

phase

 When a client registers interest in an topic, it may set the phase, which
negates the logic that triggers the Action. For example, if an application is
interested in when the weather is sunny in San Francisco, the registration will
be as follows:

�Topic is weather.northamerica.california.sf

�Evaluate parameters are SKYINDICATOR="fogginess",
INDICATORLEVEL="over", and INDICATORVALUE="40%"

�Phase is false

Now that the logic is reversed, the client will be notified when it is not foggy
in San Francisco. One would hope this means it is sunny!

How the action process works

If the evaluation process succeeds, the action class for that registration is called.

The Action class is a user-written class, which implements the interface
weblogic.event.actions.ActionDef. Your action class can perform any action
that can be written in Java. Examples of action classes are the ActionEmail,
ActionUDP, and ActionNull included in the weblogic.event.actions package.

An Action class may notify the WebLogic client that issued the registration of interest
that the evaluator returned true. See below for an example of client-side notification.

More about parameters

Parameters are used by several objects in the WebLogic Server, including:

� Registration management. Administrative parameters, used for registration
management, set limits on how many times the evaluator will be called and other
administrative details.

� Registration of interest. Registration parameters are a set of name=value pairs
that together define the scope of the interest in an event. With these parameters,
the WebLogic Server can filter events to further qualify whether or not an event

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-12

should be evaluated. A registration is always submitted to the WebLogic Server
with a set of registration parameters (that is itself a subset of the registration’s
administrative parameters).

� Event parameters. Event parameters, like Registration parameters, are a set of
name=value pairs that further qualify the event. An event is always submitted to
the WebLogic Server with a set of event parameters.

A parameter is constructed as a ParamSet object, which may itself be an array of
ParamSets. The value associated with each parameter of a ParamSet is a ParamValue
object, which may itself be an array of ParamValues.

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-13

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-14

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-15

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-16

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-17

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-18

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-19

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-20

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-21

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-22

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-23

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-24

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-25

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-26

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-27

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-28

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-29

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-30

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-31

WebLogic Event architecture

Using WebLogic Events (Deprecated) 1-32

Using WebLogic Events (Deprecated) 2-33

CHAPTER

2 WebLogic Events
Objects and Their
Classes

The WebLogic Events API includes the following packages:

Package weblogic.event.actions
 Package weblogic.event.common
 Package weblogic.event.evaluators

There are five basic types of objects in WebLogic Events:

� Evaluate and Action objects. Constructed in the WebLogic Server at the time of
registration; they store information about how events should be evaluated and
acted upon. These objects are arguments for the registration.

� EventTopic objects. An EventTopic is a object that represents a node in the
Topic Tree. It has methods for submitting events to the topic and registering an
interest in the topic. It also allows the user to control the lifetime of the topic.

� EventRegistration objects. Store information about the registration; this includes
the identity of the registeree, the time of registration, and class information about
Evaluation and Action objects, and are submitted to the WebLogic Server at
registration time.

� EventMessage objects. Encapsulate Events as they are filtered up through the
Topic Tree and are evaluated and acted upon based upon current
EventRegistration(s) at each EventTopic.

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/actions/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/evaluators/package-summary.html

Evaluate and Action objects

Using WebLogic Events (Deprecated) 2-34

� Parameter objects. Store specific details about the scope of events, evaluators,
and actions.

Evaluate and Action objects

The packages for weblogic.event.evaluators.* and
weblogic.event.actions.* contain classes and interfaces that are used to:

� Write user-defined evaluator and action classes (implementing the EvaluateDef
and ActionDef interfaces)

� Submit objects that instantiate these classes, along with registration parameters
and other settings, to the WebLogic Server at registration time (the Evaluate and
Action classes)

When you register interest in an event, you must also submitthe classnames of an
evaluate object, and an action object as two of thearguments for the
weblogic.common.EventServices.getEventRegistration()

method. The evaluate class that you write must implement the interface
EvaluateDefThe action class that you write must implement the interface
ActionDefYou can write a single class that implements both interfaces.

The constructors for these objects take the full package name of the user-written class
and a set of parameters (a ParamSet) as arguments. The evaluate and action classes are
instantiated inside the WebLogic Server at registration. Since the Java class loader
does not permit the passing of arguments to the constructors of dynamically loaded
classes, the constructors for these classes must be a default constructor—that is, one
with no arguments. For this reason, the registerInit() method is used to supply the
registration parameters to the newly constructed evaluate or action objects. This gives
these objects an opportunity to inspect and act upon the evaluate parameters and action
parameters that were submitted with the registration.

Evaluate and Action objects

Using WebLogic Events (Deprecated) 2-35

The EvaluateDef and ActionDef interfaces

weblogic.event.evaluators.EvaluateDef

weblogic.event.actions.ActionDef

Each of these packages has an interface: EvaluateDef and ActionDef. Other classes
in these packages, like EvaluateTrue and ActionEmail, implement the EvaluateDef
and ActionDef interfaces. You should inspect these as examples of how to write your
own Evaluate and Action classes.

You will use ParamSet objects to set parameters for evaluation of and action on events.
These parameters must be known to all the parties interested in them. There are no
fixed relationships between the parameters for events, registrations, evaluators, and
actions, but the developer may build in relationships, depending upon the application.

Here is a good example of how you might build relationships between parameters. In
this case, the parameters of the evaluate() method must match the parameters of
submitted events, and the parameters for the action() method must match the
parameters of a registration. The topic of interest in weather is San Francisco, and
parameters for the evaluation and the event must match in order for the evaluate()
method to return true. Likewise, in this example, the action to take when the fogginess
factor hits a certain low is to send email; consequently, the registration parameters
must supply all the information necessary for the action class to send email. The
ParamSets likely for this particular event, registration, evaluation, and action might be:

The EvaluateDef and ActionDef interfaces can be implemented by asingle class that
contains both an evaluate() and an action() method. Using a single class hasthe
advantage that both methods can have access to the same variables.

Methods you will implement

public boolean evaluate(EventMessageDef eventMsg)
 throws ParamSetException;

public void action(EventMessageDef eventMsg);

 Each of these methods is passed an Object that implements an
EventMessageDef interface. Referencing the Object by the Interface
abstracts us from the details of the implementation of this object. (The

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/evaluators/EvaluateDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/actions/ActionDef.html

EventTopic objects

Using WebLogic Events (Deprecated) 2-36

underlying object may been a client or server side implementation). The
EventMessageDef object contains information about the event and the event
parameters. You can access these via the methods defined in the interface.

registerInit()

 Because the Java class loader does not permit the passing of arguments to the
constructors of dynamically loaded classes, the constructor for any user-written class
that implements an interface must be a default constructor, that is, one that takes no
arguments. For this reason, the registerInit() method is used to supply the registration
parameters (a ParamSet object) to the the newly-constructed evaluate or action objects.
This gives these objects an opportunity to inspect and act upon the registration
parameters.

isLongRunning()

This method is deprecated in version 2.5. Users who implement the interfaces for
evaluators and actions no longer need to specify this method. Evaluate and action
methods now run by default in a separate thread that is selected from a pool of threads
in the WebLogic Server, for faster, more efficient operation.

EventTopic objects

weblogic.event.common.EventServicesDef

weblogic.event.common.EventTopicDef

As of Release 3.0, WebLogic Events now supports EventTopics as first-class objects
for use in applications that wish to send and receive event messages. This provides a
simple approach to event-based programming. With an EventTopic object, a
WebLogic client application can get a subtopic, send an EventMessage, or register an
interest in an event.

You request an EventTopic from the EventServices factory, by calling the
EventServicesDef.getEventTopic() method. You can create subtopics with the
EventTopicDef.getEventTopic() methods. Here is an example:

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventTopicDef.html

EventTopic objects

Using WebLogic Events (Deprecated) 2-37

EventTopicDef topic =
 t3services.events().getEventTopic("WEATHER.CA.SF");

where t3services is a remote interface obtained from a JNDI lookup.

You can also control the length of the lifetime of an EventTopic, by setting it to
EventTopicDef.EPHEMERAL or EventTopicDef.DURABLE in the
EventTopicDef.getEventTopic() methods. By requesting the EventTopic “root”
from the EventServices factory and creating subtopics that are DURABLE, you can
exercise more control over the size and shape of the Topic Tree. Here is an example:

EventTopicDef topic = t3services.events().
 getEventTopic("WEATHER.CA.SF",
 EventTopicDef.DURABLE);

You can use an EventTopic object to get or create subtopics in the Topic Tree. The
subtopic can represent more than a single node in the Topic Tree. Just call
getEventTopic() on the EventTopic itself, as shown here:

 EventTopicDef topic =
 t3services.events().getEventTopic("WEATHER");
 EventTopicDef weatherCA = topic.getEventTopic("CA");
 EventTopicDef weatherCASF = topic.getEventTopic("SF");
 EventTopicDef weatherNYNY = topic.getEventTopic("NY.NY");

Once you have an EventTopic, you can submit EventMessages or EventRegistrations
to the topic. There is more detail on this in the Implementing with WebLogic Events
section below. Here are two brief examples. The first registers interest in a weather
event:

 EventTopicDef topic =
 t3services.events().getEventTopic("WEATHER.CA.SF");
 Evaluate eval =
 new Evaluate("weblogic.event.evaluators.EvaluateTrue");
 Action action = new Action(this);
 EventRegistrationDef er = topic.register(eval, action);

The second example submits an EventMessage for the same topic in the Topic Tree:

 EventTopicDef topic =
 t3services.events().getEventTopic("WEATHER.CA.SF");
 ParamSet ps = new ParamSet();
 ps.setParam("TEMPERATURE", 23);
 topic.submit(ps);

EventRegistration objects

Using WebLogic Events (Deprecated) 2-38

You can also associate an access control list with an EventTopic and control which
users can either submit or receive events. For more on ACLs, read Setting up ACLs
for WebLogic Events in the WebLogic Realm.

EventRegistration objects

weblogic.event.common.EventServicesDef

weblogic.event.common.EventRegistrationDef

When a client registers interest in an event, it is notified when that event occurs. In
order to be able to evaluate and act upon events, you must register an interest in an
event.

You can use the EventTopic.register() method (with an Evaluate object and an
Action object) to get an EventRegistration. This is the easiest way to register interest
in an event.

You can obtain an interface to an EventRegistration object from the EventServices
factory with the method getEventRegistration(). Then, register interest in the
event as shown here:

 EventRegistrationDef erDef=
 t3services.events().
 getEventRegistration(String topicName,
 Evaluate evaluator,
 Action action,
 boolean sink,
 boolean phase,
 int count);

Where t3services is the remote services factory obtained from a

JNDI lookup, and the parameters above are:

EventRegistrationDef erDef
The method returns a EventRegistrationDef interface object. Again,
this interface provides your client access to all of the methods in the real
EventRegistration object, which may exist on the server.

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventRegistrationDef.html

EventRegistration objects

Using WebLogic Events (Deprecated) 2-39

String topicName
topicName specifies the EventTopic you are interested in as a dot-notation
formatted string that can be parsed (for example,
“weather.northamerica.us.california"). A topic can also be specified as an
array of strings, where each element in the array corresponds to a subtopic
(for example, “weather", “northamerica", "us", “california"). Each topic is
added to the Topic Tree in the WebLogic Server dynamically as new
registrations are received. Of course, it is necessary for applications that are
registering interest in events to know the topics for which applications will
submit events, and vice versa.

 Evaluate evaluator
An Evaluate object, which is used to instantiate the user-written evaluate
class for execution on the WebLogic Server. When constructing your
Evaluate object, you specify the full package name of your EvaluateDef class,
and a set of evaluation parameters, (ParamSet) that qualify the topic of
interest.

 Action action
 An Action object, which is used to instantiate the user-written action class,
to be invoked when the event is evaluated as true. You construct an Action
object by specifying either:

�The full package name of your ActionDef class, which will be instantiated and
executed on the server.

�A local instance of an ActionDef object itself, which will be invoked locally
on the client.

You also specify a set of parameters (ParamSet) that qualify how the action
should be carried out.

 boolean sink
 If sink is true, the registration will receive notification of every event in
which it has registered interest as well as notification for every event below
the registered topic in the Topic Tree. For example, setting sink to true for a
registration for the topic weather.northamerica.us.california would assure
that this registration gets a chance to evaluate events for topics
weather.northamerica.us.california, as well as
weather.northamerica.us.california.la and
weather.northamerica.us.california.sf. The default value of sink is true.

EventRegistration objects

Using WebLogic Events (Deprecated) 2-40

 When sink is false, the registration will still receive any event messages
directed at a more specific topic if there are not successfully delivered.

 boolean phase
 If phase is set to false the logic of the evaluation is reversed. The default
value is true. For example, if an evaluator for a weather topic returns true
when a “fogginess” parameter is reported as over a certain value, we can set
phase to false, and use the same evaluator to return true if the “fogginess”
is under a certain value.

 int count
count specifies the number of times a registration may evaluate an event.
After the count has expired, the registration will automatically be canceled.
If unset, the default is EventRegistrationDef.UNCOUNTED. Another
option added in Release 3.0 is EventRegistrationDef.ON_DISCONNECT,
which automatically cancels an event registration when its client
disconnects.

Once you have successfully obtained an interface to the EventRegistrationDef object,
you must register it with the WebLogic server using its register() method. This will
return a unique identifying number at instantiation time, whether or not the
register() method succeeds. If the register() method succeeds, the
EventRegistrationDef.isRegistered variable is set to true.

The EventRegistration class has accessors (like getEvaluator()) to return the
arguments supplied when an EventRegistration object was requested.

 You can unregister by calling the unregister() method on the
EventRegistrationDef object. If you do not have access to the EventRegistration object
you can use the unregister() method of the EventServicesDef interface,
accessible through:

t3client.event.services().unregister(int regID);

Where t3client is your T3Client object, and regId is the uniqueidentifier returned when
the EventRegistrationDef object was registered.

After a registration succeeds, there are internal parameters that are available for the
Action parameters and the Evaluate parameters. They include the following
(depending on the package):

� EVENT_SERVER_REGISTRATION_TIME

� EVENT_SERVER_REGISTRATION_THREAD

ParamSet and ParamValue objects

Using WebLogic Events (Deprecated) 2-41

� EVENT_CLIENT_REGISTER_TIME

� EVENT_CLIENT_REGISTER_THREAD

� EVENT_CLIENT_REGISTER_HOST

EventMessage objects

Events are submitted to the WebLogic Server as EventMessage objects. The easiest
way to submit an EventMessage is to request an EventTopic from the EventServices
factory with the EventServicesDef.getEventTopic() method. Then create a
ParamSet, and submit the EventMessage by calling the EventTopic.submit()
method, which takes a ParamSet as its argument.

You can also request an EventMessage object from the EventServices factory (rather
than constructing the object), with the EventServicesDef.getEventMessage()
method. EventMessages implement the interface EventMessageDef.

Although any application can submit events to the WebLogic Server, we restrict this
discussion to Java applications that can use Java objects.

The getEventMessage() factory method takes two arguments: the topic, and a set of
parameters (ParamSet) that qualify the event. To submit an event to the WebLogic
Server, you request it from the EventServices factory and then call the submit()
method on the object. Other methods in the class give you access to the event
parameters and allow you to display details about the event. The EventMessage object
is passed to the evaluate() method by the WebLogic Server, which makes the Event
parameters accessible for comparison by the evaluator.

ParamSet and ParamValue objects

Events, registrations, evaluations, and actions all use parameters to qualify scope.
Parameters are handled in the WebLogic Events by weblogic.common.ParamSet
objects, which contain weblogic.common.ParamValues. WebLogic uses ParamSets
and ParamValues to pass data between clients and servers.

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/ParamSet.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/ParamValue.html

ParamSet and ParamValue objects

Using WebLogic Events (Deprecated) 2-42

 A ParamSet parameter is a name=value pair, like SKYINDICATOR="fogginess". The
name of a parameter is its keyname, and all ParamSet contents are accessible by
keyname. For each keyname in a ParamSet, you set a corresponding ParamValue.
(Note that the variables in ParamTypes for mode, desc, type, and name are not used for
events.)

 Constructing a ParamSet of just name=value pairs is a simple operation, but powerful
enough to allow you to set up complex relationships between ParamSets and
ParamValues if necessary. For example, here is how you would create three
name=value pairs to set evaluation criteria for an registration of interest in the weather
in San Francisco:

 ParamSet evalRegParams = new ParamSet();
 evalRegParams.setParam("SKYINDICATOR", "fogginess");
 evalRegParams.setParam("INDICATORLEVEL", "over");
 evalRegParams.setParam("INDICATORVALUE", "40");

These parameters are used as a constructor for the Evaluate class, which is itself used
as an argument for the EventRegistration. We would also set similar parameters when
we submitted an Event to the WebLogic Server about the state of weather in San
Francisco, for example:

 ParamSet eventParams = new ParamSet();
 eventParams.setParam("SKYINDICATOR", "fogginess");
 eventParams.setParam("INDICATORLEVEL", "equals");
 eventParams.setParam("INDICATORVALUE", "35");

The event parameters are used as an argument for a getEventMessage() method.
When an event occurs, the event server passes the event to the Evaluate method, which
makes the Event parameters available to the Evaluate class. You use the
weblogic.event.evaluators.EvaluateDef.registerInit() method to recall
the registration:

 public void registerInit(ParamSet params) {
 weatherSymbol = params.getValue("SKYINDICATOR").asString();
 weatherLevel = params.getValue("INDICATORVALUE").asInt();
 }

And then we can compare the Event and Registration parameters like this:

public boolean evaluate(EventMessage ev) {
 ParamSet eventParams = ev.getParameters();
 if (eventParams.getValue("SKYINDICATOR").asString()
 .equalsIgnoreCase(weatherSymbol))
 {

ParamSet and ParamValue objects

Using WebLogic Events (Deprecated) 2-43

 int eventLevel =
 eventParams.getValue("INDICATORVALUE").asInt();
 if (eventLevel == weatherLevel)
 return true;
 }
 return false;
}

With this simple illustration of how ParamSets are set and retrieved, you also have a
basic outline of how the event registration, event submission, and evaluate processes
inter-operate.

Using ParamSets Efficiently

There are some efficiency considerations when using ParamSets and the objects that
they qualify. It is neither required nor desirable to create a new EventMessage and its
associated ParamSet each time you want to submit an event for a particular topic.

This code snippet, which creates a new ParamSet and EventMessage for each
submission, will generate 100 ParamSets, about 300 ParamValues (since two
ParamValues are added automatically by EventMessage.submit()), 100 events, and
will make 100 ParamValue lookups in the ParamSet:

 for (int i = 0; i < 100; i++) {
 ps = new ParamSet();
 EventMessageDef em = t3.services.events()
 .getEventMessage(topic, ps);
 ps.setParam("number", i);
 em.submit();
 }

It is more efficient to create a ParamSet and an EventMessage as instance variables in
the class, and then modify them and resubmit them as necessary. This example will
generate 1 ParamSet, 3 ParamValues, 1 Event, and will make 100 ParamValue lookups
in the ParamSet:

 ps = new ParamSet();
 EventMessageDef em = t3.services.events()
 .getEventMessage(topic, ps);

 for (int i = 0; i < 100; i++) {
 ps.setParam("number", i);
 String status = em.submit();
 }

ParamSet and ParamValue objects

Using WebLogic Events (Deprecated) 2-44

The most efficient approach is to make a reference to the underlying ParamValue and
set it repeatedly. This example shows how you can use this approach to prevent
multiple ParamValue lookups for the counter “number":

 ps = new ParamSet();
 ParamValue num = ps.getParam("number");
 EventMessageDef em = t3.services.events()
 .getEventMessage(topic, ps);

 for (int i = 0; i < 100; i++) {
 num.set(i);
 String status = em.submit();
 }

The last code snippet will generate 1 ParamSet, 3 ParamValues, 1 Event, and will make
1 ParamValue lookup in the ParamSet.

Events and ParamSets are serially reusable, but they are not threadsafe, that is, you
can reuse them but not concurrently in multiple threads. To make the same code
snippet multi-thread safe, for example, we would wrap the Event submission in a
synchronized block:

 ps = new ParamSet();
 ParamValue num = ps.getParam("number");
 EventMessageDef em = t3.services.events()
 .getEventMessage(topic, ps);

 for (int i = 0; i < 100; i++) {
 synchronized (em) {
 num.set(i);
 em.submit();
 }
 }

Note that although you must create the new ParamSet before you request the new
EventMessage (since the ParamSet object is used in the getEventMessage()
method), it is not necessary to call the ParamSet.setValue() method until the
instant before the Event.submit() method is called (or register() method in the
case of Evaluate and Action constructors). It is only when submit() or register()
is called that the ParamSet is actually examined.

Implementing with WebLogic Events

Using WebLogic Events (Deprecated) 2-45

Implementing with WebLogic Events

There are two primary implementations of WebLogic Events: building WebLogic
Events applications that can register interest in events, which involves writing
evaluate() and action() methods and building ParamSets; and building event
generation into other applications. In these examples, we illustrate this process with
four classes:

1. A class to evaluate events

2. A class to act upon appropriate events

3. A class that will register interest in an event

4. A class that will send events to the WebLogic Server

In the example code below, the application allows you to register interest from the
command line in a stock and set the price at which you want to buy; then you can send
a series of events to the event server that puts stock up for bid. When a bid that matches
your offer to buy is evaluated in the WebLogic Server, the action—to send you email
notification—is invoked.

Note that you can implement the EvaluateDef and ActionDef interfaces with a single
class that has both evaluate() and action() methods.

� Writing the Evaluate class

�Step 1. Importing packages

�Step 2. The registerInit() method

�Step 3. The evaluate() method

�Code for the EvaluateStocks (evaluate) class

� Writing the Action class

�Step 1. Importing packages

�Step 2. The registerInit() method

�Step 3. The action() method

�Code for the MailStockInfo (action) class

Writing the Evaluate class

Using WebLogic Events (Deprecated) 2-46

� Registering interest in an event

�Step 1. Importing packages

�Step 2. Checking the command-line arguments

�Step 3. Processing the command-line arguments

�Step 4. Obtaining the EventServices factory

�Step 5. Creating and submitting the registration

� Sending events to the WebLogic Server

�Step 1. Importing packages

�Step 2. Checking the command-line arguments

�Step 3. Processing the command-line arguments

�Step 4. Submitting events

�Code for the SendEvents class

Following the stock example is an example that illustrates client-side notification.
Client-side notification allows the Action method to be executed on the T3Client rather
than in the WebLogic Server.

� Using client-side notification

Writing the Evaluate class

The example application evaluates an event—someone submitting an intent to sell
certain stocks at a particular price—against a registration of interest in buying certain
stocks at a particular price. The Evaluate class that we write implements the interface
weblogic.event.evaluators.EvaluateDef.

Step 1. Importing packages

We import the following packages for all WebLogic Events classes:

Writing the Evaluate class

Using WebLogic Events (Deprecated) 2-47

� weblogic.common.*; for access to ParamSets, ParamValues

� weblogic.event.common.*; for access to common WebLogic Events objects

For the Evaluate class, we also import
weblogic.event.evaluators.EvaluateDef, which is the interface this class
implements.

In this class, we also create a class variable “services” that defines the WebLogic
Server services that the application will use to access the EventServices object factory.
The setServices() method is called when the evaluator is executed at runtime.

Step 2. The registerInit() method

Since dynamically loaded classes—both the Evaluate and Action classes are loaded
dynamically into the WebLogic Server at registration time — cannot pass arguments
in a constructor, the registerInit() method is used to pass registration parameters
to the newly-constructed Evaluate object. The WebLogic Server passes the Evaluate
class the ParamSet params that was created for the Evaluate class during the
registration process.

In this case, we are interested in the “SYMBOL” and the “TRIGGERVALUE”
parameters that accompany the registration of interest. We will compare those
parameters to the parameters of the submitted event in the evaluate() method.

 public void registerInit(ParamSet params)
 throws ParamSetException
 {
 regSymbol = params.getValue("SYMBOL").asString();
 regTriggerValue = params.getValue("TRIGGERVALUE").asInt();
 System.out.println("Symbol/Trigger Value = " +
 regSymbol + "/" +
 regTriggerValue);
 }

We print a line to stdout to confirm the registration parameters that we found.

Writing the Evaluate class

Using WebLogic Events (Deprecated) 2-48

Step 3. The evaluate() method

The evaluate() method, put simply, compares the parameters set by the registration
of interest in an event to the parameters of the event itself. If it returns true, the
WebLogic Server invokes the action() method to take action on the event.

In this example, we compare the stock SYMBOL of interest with the stock SYMBOL
that is submitted as an event. If the SYMBOL of the event is the one this registration
is interested in, we go on to check the BID submitted by the event and see if it matches
the TRIGGERVALUE that was registered as interesting.

 public boolean evaluate(EventMessageDef ev)
 throws ParamSetException
 {
 // Get the event parameters
 ParamSet eventParams = ev.getParameters();

 // Compare the value of the event "SYMBOL" parameter
 // to the value set for "SYMBOL" at registration time
 if (eventParams.getValue("SYMBOL").asString()
 .equalsIgnoreCase(regSymbol)) {

 int eventValue = eventParams.getValue("BID").asInt();

 // Then determine whether the event value equals
 // the trigger value set at registration time
 if (eventValue == regTriggerValue)
return true;
 }
 return false;
 }

That completes the Evaluate class. The full code example follows.

Code for the EvaluateStocks (evaluate) class

package tutorial.event.stocks;

import weblogic.common.*;
import weblogic.event.common.*;
import weblogic.event.evaluators.EvaluateDef;

public class EvaluateStocks implements EvaluateDef {

Writing the Evaluate class

Using WebLogic Events (Deprecated) 2-49

 String regSymbol;
 int regTriggerValue;
 private boolean verbose = false;

 T3ServicesDef services=null;

 // Saves the services object
 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 // Gets the registration parameters we will use
 // to evaluate events
 public void registerInit(ParamSet params)
 throws ParamSetException
 {
 regSymbol = params.getValue("SYMBOL").asString();
 regTriggerValue = params.getValue("TRIGGERVALUE").asInt();
 System.out.println("Symbol/Trigger Value = " +
 regSymbol + "/" +
 regTriggerValue);
 }

 public boolean evaluate(EventMessageDef ev)
 throws ParamSetException
 {
 // Get the event parameters
 ParamSet eventParams = ev.getParameters();

 // Compare the value of the event "SYMBOL" parameter
 // to the value set for "SYMBOL" at registration time
 if (eventParams.getValue("SYMBOL").asString()
 .equalsIgnoreCase(regSymbol)) {

 int eventValue = eventParams.getValue("BID").asInt();

 // Then determine whether the event value equals
 // the trigger value set at registration time
 if (eventValue == regTriggerValue)
return true;
 }
 return false;
 }
}

Writing the Action class

Using WebLogic Events (Deprecated) 2-50

Writing the Action class

The action we take when our evaluate() method returns true is to send email to an
address that we provided during the registration of interest in the event. The Action
class implements the interface weblogic.event.actions.ActionDef.

Step 1. Importing packages

In addition to weblogic.common.* and weblogic.event.common.*, we import the
interface that we implement: weblogic.event.actions.ActionDef.

In this class, we also create a class variable “services” that defines the WebLogic
Server services that the application will use to access the EventServices object factory.
The setServices() method is called when the action is executed.

Step 2. The registerInit() method

Like the Evaluate class, the Action class cannot be constructed with arguments to its
constructor since it is loaded dynamically into the WebLogic Server. Consequently,
the registerInit() method is used to pass Action registration parameters to the
newly-constructed Action object. The WebLogic Server passes the registration
ParamSet params to the Action class with this method, where we have access to the
parameters interesting for the action() method that we will write in the next step.

In this example, we are interested in information about how to send email to the person
who registered interest in an event. We retrieve just the parameters that we need to
send email in the action() method, the addressee and the SMTP hostname. Both of
these parameters were required for registration of interest.

 public void registerInit(ParamSet params) {
 smtphost = params.getValue("SMTPhost").toString();
 to = params.getValue("Addressee").toString();
 }

Writing the Action class

Using WebLogic Events (Deprecated) 2-51

Step 3. The action() method

In this example class, the action we take if our evaluator returns true is to notify the
person who registered interest in buying stock that the registered stock is being offered
at the price of interest. We have access to the event parameters, which we can include
in the email message. In this example we also print a line to stout in the WebLogic
Server that the action is taking place, and we include the addressee and the quoted price
of interest.

We use the sendMail() method, which takes 5 arguments: an SMTP hostname, the
email address of the sender, the email address of the message recipient, a subject, and
the body of the message. We call the dump() method on the event itself to produce a
display of the interesting event for inclusion in the email.

 public void action(EventMessageDef ev) {
 try {
 ParamSet eventParams = ev.getParameters();
 int eventValue = eventParams.getValue("BID").asInt();

 System.out.println("*** Mailing stock event to " + to +
 " at price: " + eventValue);
 Utilities.sendMail(smtphost,
 "events@weblogic.com",
 to,
 "Stock Event triggered!",
 ev.dump());
 }
 catch (ParamSetException e) {
 System.out.println("No BID price in ParamSet");
 }
 catch (java.io.IOException ioe) {
 System.out.println("Failed to connect: [" + ioe + "]");
 }
 }

Finally, we check for ParamSetExceptions if our try block fails. We also catch IO
exceptions, in case there is a problem with sending the email.

This completes the Action class. The full code example follows.

Writing the Action class

Using WebLogic Events (Deprecated) 2-52

Code for the MailStockInfo (action) class

package tutorial.event.stocks;

import weblogic.common.*;
import weblogic.event.actions.ActionDef;
import weblogic.event.common.*;

public class MailStockInfo implements ActionDef {

 String smtphost = "";
 String to = "";

 T3ServicesDef services = null;

 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 public void registerInit(ParamSet params) {
 smtphost = params.getValue("SMTPhost").toString();
 to = params.getValue("Addressee").toString();
 }

 public void action(EventMessageDef ev) {
 try {
 ParamSet eventParams = ev.getParameters();
 int eventValue = eventParams.getValue("BID").asInt();

 System.out.println("*** Mailing stock event to " + to +
 " at price: " + eventValue);
 Utilities.sendMail(smtphost,
 "errors@weblogic.com",
 to,
 "Stock Event triggered!",
 ev.dump());
 }
 catch (ParamSetException e) {
 System.out.println("No BID price in ParamSet");
 }
 catch (java.io.IOException ioe) {
 System.out.println("Failed to connect: [" + ioe + "]");
 }
 }
}

Registering interest in an event

Using WebLogic Events (Deprecated) 2-53

Registering interest in an event

The class we write for registration of interest takes arguments from the command line
that it uses to build a set of registration parameters. Then we construct an
EventRegistration using these parameters, as well as the Evaluate and Action objects
that instantiate the Evaluate and Action classes that we have just finished. Finally we
submit the registration.

Step 1. Importing packages

In addition to the packages weblogic.common.* and weblogic.event.common.*
that are imported for all WebLogic Events applications, we also import the following
packages for the register class:

� weblogic.event.actions.* for the Action object used as a constructor for
this registration

� weblogic.event.evaluators.* for the Evaluate object used as a constructor
for this registration

Step 2. Checking the command-line arguments

We pass this registration to the WebLogic Server via a single command-line, and we
retrieve the arguments for later use. The first step is to check that we have the correct
number of arguments, and, if not, to print out usage information.

 if (argv.length !=5> {
 System.out.println("Usage: "
 + "java tutorial.event.stocks.Register "
 + "WebLogicURL STOCKSYMBOL PRICE SMTPHOST EMAIL");
 System.out.println("Example: "
 + "java tutorial.event.stocks.Register "
 + "t3://localhost:7001 SUNW 75 "
 + "smtp.foo.com demos@foo.com");
 return;
 }

Registering interest in an event

Using WebLogic Events (Deprecated) 2-54

Step 3. Processing the command-line arguments

We use the first command-line argument (the URL of the WebLogic Server) to create
a T3Client and connect.

 T3Client t3 = null;
 try {
 t3 = new T3Client(argv[0]);
 t3.connect();

We use the second and third command-line arguments to build a ParamSet object that
we will use to supply registration parameters to the Evaluate class. These parameters
will be compared against similar parameters of events that are submitted to the
WebLogic Server.

 ParamSet evRegParams = new ParamSet();
 evRegParams.setParam("SYMBOL", argv[1]);
 evRegParams.setParam("TRIGGERVALUE", argv[2]);

Finally, we use the last two command-line arguments to build a second ParamSet
object that we will use to supply registration parameters to the Action class, in this
case, information for sending email.

 ParamSet acRegParams = new ParamSet();
 acRegParams.setParam("SMTPhost", argv[3]);
 acRegParams.setParam("Addressee", argv[4]);

Step 4. Obtaining the EventServices factory

 All even registration is achieved via the EventServicesDef interface, otherwise
known as the WebLogic EventServices factory. You obtain a remote interface to the
EventServices factory, via the T3ServicesDef interface, otherwise known as the
WebLogic T3Services factory. You look up the T3Services factory in the WebLogic
JNDI tree using the following code:

 T3ServicesDef t3services;
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, weblogic_url);
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 weblogic.jndi.WLInitialContextFactory.class.getName());
 Context ctx = new InitialContext(env);
 t3services = (T3ServicesDef)
ctx.lookup("weblogic.common.T3Services");

Registering interest in an event

Using WebLogic Events (Deprecated) 2-55

 ctx.close();

Where weblogic_url is the URL of your WebLogic Server. You access the
EventServices factory via the T3Services interface:

 EventServicesDef eventServices = t3services.event();

You application uses the EventServicesDef API to access the event functionality on
the WebLogic Server.

Step 5. Creating and submitting the registration

weblogic.event.common.EventTopicDef

weblogic.event.common.EventRegistrationDef

weblogic.event.actions.ActionDef

weblogic.event.evaluators.EvaluateDef

To register, you first get an EventTopic (the one in which you wish to register interest)
from the EventServices factory as shown here:

 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");

Then use the EventTopic to register, by calling EventTopicDef.register(). It
takes at least two arguments (see below for more arguments for the register()
method):

� An Evaluate object

� An Action object

The Evaluate and Action objects you pass to the register() method must each be
constructed with two arguments, the names of the classes we wrote above, and the
ParamSets that we constructed with the command-line arguments in this class.

 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");
 Evaluate eval =
 new Evaluate("tutorial.event.stocks.EvaluateStocks",
 evRegParams);
 Action action =
 new Action("tutorial.event.stocks.MailStockInfo",

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventTopicDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventRegistrationDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/actions/ActionDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/evaluators/EvaluateDef.html

Registering interest in an event

Using WebLogic Events (Deprecated) 2-56

 acRegParams);
 EventRegistrationDef er = topic.register(eval, action);

Note that you can also construct a new Action object with an Object as an argument—
not the name of a class. This allows a client-side program to pass in a local copy of an
Action, which means that when the Evaluate method returns true, the Action class will
be executed on the client, which allows for client-side notification, or callbacks. Here
is an example, although it doesn’t belong with the class we’re using in this explanation:

 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");
 Evaluate eval =
 new Evaluate("tutorial.event.stocks.EvaluateStocks",
 evRegParams);
 Action action = new Action(this);
 EventRegistrationDef er = topic.register(eval, action);

You cannot use an Object as an argument for the Evaluate constructor; the Evaluate
object is always executed on the Server.

In addition to the Evaluate and Action objects that are required for each registration,
you can supply other arguments to the register() method, including:

� Boolean to indicate whether the topic is a sink (default is false)

� Boolean to indicate the topic’s phase, that is, whether Evaluate methods that
return “true” or “false” should be evaluated (default is true)

� Constant to indicate the count, which is the maximum number of events this
registration should receive before automagically unregistering itself (default is
EventRegistrationDef.UNCOUNTED). New in Release 3.0 is the option
EventRegistrationDef.ON_DISCONNECT indicates that the registration should
be cancelled when the client with a registered interest is disconnected. (If you
are using a client-side object for the Action, this happens automatically; this
applies to an event registration for which the Action object is located on the
WebLogic Server, and the client is responsible for unregistering when its interest
is completed.)

Here is an example that illustrates setting the sink, phase, and count for an event
registration:

 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");
 Evaluate eval =
 new Evaluate("tutorial.event.stocks.EvaluateStocks",
 evRegParams);

Registering interest in an event

Using WebLogic Events (Deprecated) 2-57

 Action action =
 new Action("tutorial.event.stocks.MailStockInfo",
 acRegParams);
 EventRegistrationDef er =
 topic.register(eval, action, true, false,
 EventRegistrationDef.ON_DISCONNECT);

After we submit this registration to the WebLogic Server, we disconnect in a finally
block.

 int regid = er.getID();
 System.out.println("Registration ID is " + regid);
 }
 finally {
 try {t3.disconnect();} catch (Exception e) {;}
 }

That completes the register class. The full code example follows.

Code for the Register class

package tutorial.event.stocks;

import weblogic.common.*;
import weblogic.event.actions.*;
import weblogic.event.common.*;
import weblogic.event.evaluators.*;

public class Register {

 public static void main(String argv[]) throws Exception {

 // Get 5 command-line arguments that will be used for
 // setting registration parameters
 if (argv.length != 5)
 {
 System.out.println("Usage: "
 + "java tutorial.event.stocks.Register "
 + "WebLogicURL STOCKSYMBOL PRICE SMTPHOST EMAIL");
 System.out.println("Example: "
 + "java tutorial.event.stocks.Register "
 + "t3://localhost:7001 SUNW 75 smtp.best.com "
 + "demos@foo.com");
 return;
 }

Registering interest in an event

Using WebLogic Events (Deprecated) 2-58

 // Connect to the WebLogic Server using the URL supplied as the
first
 // command-line argument
 T3Client t3 = null;
 try {
 t3 = new T3Client(argv[0]);
 t3.connect();

 // Create a ParamSet to be used by the Evaluate method as each
 // Event is received to decide whether the Action method should
 // be called. We take the second and third command-line
 // arguments as values.
 ParamSet evRegParams = new ParamSet();
 evRegParams.setParam("SYMBOL", argv[1]);
 evRegParams.setParam("TRIGGERVALUE", argv[2]);

 // Create another ParamSet to be used by the Action method to
 // specify where to send the mail. We take the last two
 // command-line arguments as values.
 ParamSet acRegParams = new ParamSet();
 acRegParams.setParam("SMTPhost", argv[3]);
 acRegParams.setParam("Addressee", argv[4]);

 // Create an EventTopicDef for the topic "STOCKS", and register
 // an interest in it with the EvaluateStocks evaluate class and
 // the ActionEmail action class.
 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");
 Evaluate eval =
 new Evaluate("tutorial.event.stocks.EvaluateStocks",
 evRegParams);
 Action action =
 new Action("tutorial.event.stocks.MailStockInfo",
 acRegParams);

 // Submit the EventRegistration to the WebLogic Server
 EventRegistrationDef er = topic.register(eval, action);
 int regid = er.getID();
 System.out.println("Registration ID is " + regid);
 }
 finally {
 try {t3.disconnect();} catch (Exception e) {;}
 }
 }
}

Sending events to the WebLogic Server

Using WebLogic Events (Deprecated) 2-59

Sending events to the WebLogic Server

After we register our interest in an event, we need one more class to submit events to
the WebLogic Server for evaluation. This example shows a simple class that—like the
register class—takes a series of command-line arguments and uses them to set
parameters for submitting events to the WebLogic Server.

Step 1. Importing packages

In this class, we import the packages weblogic.common.* and
weblogic.event.common.*.

Step 2. Checking the command-line arguments

In this example, we ask the user to supply parameters that qualify the event. Here we
check the number of command-line arguments and supply a usage example if the
numbers do not match up.

 if (argv.length != 4) {
 System.out.println("Usage: "
 + "java tutorial.event.stocks.SendEvents "
 + "WebLogicURL STOCKSSYMBOL STARTPRICE ENDPRICE");
 System.out.println("Example: "
 + "java tutorial.event.stocks.SendEvents "
 + "t3://localhost:7001 SUNW 75 95");
 return;
 }

Step 3. Processing the command-line arguments

We use the first argument supplied by the user, the URL of the WebLogic Server, to
create a T3Client.

 T3Client t3 = null;
 try {

Sending events to the WebLogic Server

Using WebLogic Events (Deprecated) 2-60

 t3 = new T3Client(argv[0]);
 t3.connect();

We use the other command-line arguments as values for the ParamSet that we will use
in the constructor for the EventMessage. We supply the lower and upper bounds of a
range of prices at which the stock symbol for this event is selling, and each integer
within that range is then submitted as a separate event to the WebLogic Server. Instead
of requesting a new EventMessage and constructing a new ParamSet for each event,
we reuse the same objects and reset the parameter for each submission inside a loop.
For more information on increasing the efficiency of your WebLogic Events code,
check above.

 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");
 ParamSet eventParameters = new ParamSet();
 eventParameters.setParam("SYMBOL", argv[1]);
 int open = Integer.parseInt(argv[2]);
 int close = Integer.parseInt(argv[3]);

Step 4. Submitting events

We submit the a series of events with a range of prices inside a loop that does nothing
except iterate through the range of prices, reset a parameter, and then submit the event
to the EventTopic.

 for (int bid = open; bid < close; bid++) {
 eventParameters.setParam("BID", bid);
 System.out.println("Injecting price event with BID = " +
bid);
 String status = topic.submit(eventParameters);
 }
 }

Finally, we disconnect from the WebLogic Server.

 finally {
 try {t3.disconnect();} catch (Exception e) {;}
 }
 }

This completes the class for submitting events to the WebLogic Server. The full code
example follows.

Sending events to the WebLogic Server

Using WebLogic Events (Deprecated) 2-61

Code for the SendEvents class

package tutorial.event.stocks;

import weblogic.common.*;
import weblogic.event.common.*;

public class SendEvents {

 public static void main(String argv[]) throws Exception {

 // Check the number of command-line arguments
 if (argv.length != 4) {
 System.out.println("Usage: "
 + "java tutorial.event.stocks.SendEvents "
 + "WebLogicURL STOCKSSYMBOL STARTPRICE ENDPRICE");
 System.out.println("Example: "
 + "java tutorial.event.stocks.SendEvents "
 + "t3://localhost:7001 SUNW 75 95");
 return;
 }

 // Connect to the WebLogic Server with the URL supplied as the
 // first command-line argument.
 T3Client t3 = null;
 try {
 t3 = new T3Client(argv[0]);
 t3.connect();

 // Bid up the stock to the point where it will make our Evaluate
 // method return true and call our Action method. Note that in
 // order to change the event parameters, we do not need to
 // create a new event nor create a new ParamSet; just set the
 // values and submit the event. Also note that we use the
 // same topic "STOCKS" and the same parameter name "SYMBOL"
 // when we submit the event as when we registered an interest
 // in this event.
 ParamSet eventParameters = new ParamSet();
 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");

 // Use the second command-line arg for the value of the "STOCKS"
 // parameter.
 eventParameters.setParam("SYMBOL", argv[1]);

 // Use the last two command-line args for the begin and end
 // prices for the event.

2 WebLogic Events Objects and Their Classes

2-62 Using WebLogic Events (Deprecated)

 int open = Integer.parseInt(argv[2]);
 int close = Integer.parseInt(argv[3]);

 for (int bid = open; bid < close; bid++) {
 eventParameters.setParam("BID", bid);
 System.out.println("Injecting price event with BID = " +
bid);
 String status = topic.submit(eventParameters);
 }
 }
 finally {
 try {t3.disconnect();} catch (Exception e) {;}
 }
 }
}

Here is a copy of the email message received when this example was run:

Topic: STOCKS
Registration:
Topic : STOCKS
ID :11
Flags :+Sink+Phase:true
Evaluate:tutorial.event.stocks.EvaluateStocks
Evaluate Params:
EVENT_CLIENT_REGISTER_TIME = Tue Sep 03 20:09:07 1996
SYMBOL = SUNW
TRIGGERVALUE = 75
EVENT_CLIENT_REGISTER_HOST = bigbox/107.4.192.255
EVENT_CLIENT_REGISTER_THREAD = main
EVENT_SERVER_REGISTRATION_THREAD = ExecuteThread
EVENT_SERVER_REGISTRATION_TIME = Tue Sep 03 20:09:10 1996

Action :tutorial.event.stocks.MailStockInfo
Action Params:
EVENT_CLIENT_REGISTER_TIME = Tue Sep 03 20:09:07 1996
SMTPhost = smtp.myhost.com
Addressee = abc@myhost.com
EVENT_CLIENT_REGISTER_HOST = bigbox/107.4.192.255
EVENT_CLIENT_REGISTER_THREAD = main
EVENT_SERVER_REGISTRATION_THREAD = ExecuteThread
EVENT_SERVER_REGISTRATION_TIME = Tue Sep 03 20:09:10 1996

Count :UNCOUNTED
EventMessage Parameters:
SYMBOL = SUNW
BID = 75
EVENT_SERVER_SUBMIT_THREAD = ExecuteThread

Using client-side notification

Using WebLogic Events (Deprecated) 2-63

EVENT_SERVER_SUBMIT_TIME = Tue Sep 03 20:09:28 1996
--

Using client-side notification

You may want the Action to be executed in the client rather than in the WebLogic
Server. Client-side notification allows a T3Client, when registering interest in an
event, to specify an Action object with its registration that is run in the local JVM.
Rather than constructing the Action object with a String that is the full package name
of a class on the WebLogic Server, the Action object is constructed with a reference to
a (local) object that implements weblogic.event.actions.ActionDef.

Here is an example of a T3Client’s registration of interest in an event that illustrates
how the Action object is constructed for client-side notification. The Action object for
this registration is a reference to an object “clientSideNotify” (which implements
weblogic.event.actions.ActionDef) that is instantiated in the client and whose
action() method is called each time the evaluate() method (always executed in the
WebLogic Server) of the Evaluate class succeeds.

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();

 Action action = new Action(new clientSideNotify());
 Evaluate eval =
 new Evaluate("weblogic.event.evaluators.EvaluateTrue");

 try {
 EventTopicDef topic =
 t3.services.events().getEventTopic("STOCKS");
 EventRegistrationDef er =
 topic.register(eval, action,
 true, // sink
 true, // phase
 EventRegistrationDef.UNCOUNTED);

 int localregID = er.getID();
 }

Note that you do not have to specify a different object; you can specify “this” as the
object to receive notification.

2 WebLogic Events Objects and Their Classes

2-64 Using WebLogic Events (Deprecated)

There is a simple example of client-side notification in
tutorial/event/clientside/client1.java.

Setting up ACLs for WebLogic Events in the
WebLogic Realm

WebLogic controls access to internal resources like events through ACLs set up in the
WebLogic Realm Entries for ACLs in the WebLogic Realm are listed as properties in
the weblogic.properties file.

You can set the Permissions "submit” and “receive” for events by entering a property
in the properties file. The receive permission has a dual purpose, since the ACL also
controls registration and filters events from subordinate topics.

The ACL name “weblogic.event” controls access to all event services. Setting the
Permissions “submit” and “receive” for the ACL name “weblogic.event” to
“everyone” allows anyone to submit and receive events, unless a more specific
Permission has been set.

Note that if you create an ACL for a particular object that has multiple permissions (in
this case “submit” and “receive"), you must create an ACL for each permission. Even
a more general ACL will not supply the permissions.

For example, if you create a general ACL to set the permissions for event receipt for
the high-level topic “weather.northamerica” that allows everyone to receive events for
that topic, and then you create an ACL that permits only joe and bill to submit events
for the topic “weather.northamerica.us", no one will be able to receive events for that
topic unless you create an ACL for it, in spite of the ACL that gives everyone
permission to receive event notification for a more general topic. If you create an ACL
for permissions on any action for the topic "weather.northamerica.us,” you must
specify users every permission for that topic.

If this ACL is not set, everyone is allowed to submit and received events.

Setting up ACLs for WebLogic Events in the WebLogic Realm

Using WebLogic Events (Deprecated) 2-65

Example:
weblogic.allow.receive.weblogic.event.weather.us=everyoneweblogic
.allow.submit.weblogic.event.weather.us=weatherWireweblogic.allow
.receive.weblogic.event.weather.us.ca.sf=billc,sam,donweblogic.al
low.submit.weblogic.event.weather.us.ca.sf=weatherWire

Note that both “submit” Permissions are required in this scenario. Because a specific
Permission has been set to allow event notification for the subtopic “weather.us.ca.sf”
to only 3 users, a specific Permission for “submit” for that topic must also be set, or no
one will be able to submit events for the subtopic.

	Copyright
	1 Overview of WebLogic Events
	WebLogic Event architecture
	The Topic Tree
	Structure of the Topic Tree
	An example of a structured tree
	Registering interest in an event
	How the Topic Tree is populated
	How a client registers interest in an Event Topic
	How a client unregisters interest in an Event

	Processing an event
	How the Topic Tree is traversed
	How each EventRegistration is processed
	How events are evaluated by an EventRegistration
	How the action process works
	More about parameters

	2 WebLogic Events Objects and Their Classes
	Evaluate and Action objects
	The EvaluateDef and ActionDef interfaces
	Methods you will implement

	EventTopic objects
	EventRegistration objects
	EventMessage objects

	ParamSet and ParamValue objects
	Using ParamSets Efficiently

	Implementing with WebLogic Events
	Writing the Evaluate class
	Step 1. Importing packages
	Step 2. The registerInit() method
	Step 3. The evaluate() method
	Code for the EvaluateStocks (evaluate) class

	Writing the Action class
	Step 1. Importing packages
	Step 2. The registerInit() method
	Step 3. The action() method
	Code for the MailStockInfo (action) class

	Registering interest in an event
	Step 1. Importing packages
	Step 2. Checking the command-line arguments
	Step 3. Processing the command-line arguments
	Step 4. Obtaining the EventServices factory
	Step 5. Creating and submitting the registration
	Code for the Register class

	Sending events to the WebLogic Server
	Step 1. Importing packages
	Step 2. Checking the command-line arguments
	Step 3. Processing the command-line arguments
	Step 4. Submitting events
	Code for the SendEvents class

	Using client-side notification
	Setting up ACLs for WebLogic Events in the WebLogic Realm

