BEA WebLogic

Server
and BEA WebLogic Express”

Programming WebLogic JTA

BEA WebLogic Server Version 6.1
Document Date: June 24, 2002



Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

Programming WebL ogic JTA

Part Number Document Date  Software Version

N/A June 24, 2002 BEA WebL ogic Server 6.1




Contents

About This Document

YU o [1= 3 T viii
E-AOCSWED SIE....ceeeee ettt e r e b viii
HOow to Print the DOCUMENE .........cccvieveireeeeceeee e snen viii
(@01 r=ox AU LS PSSP iX
Documentation CONVENLIONS ...........cceecueieerieneeeeseeee et ste e eree e ae e resreas iX

1. Introducing Transactions

ACID Properties of TranSaCtionS .........ccoceveeeereeeeiesesesesie e seeseeeseseesesessens 1-1
Supported Programming MOGE] ..o 1-2
SUPPOEd APl MOGEIS ......ceeceiicecieie et s 1-2
Distributed Transactions and the Two-Phase Commit Protocol ............ccee..... 1-3
Support for BUSINESS TraNSACtIONS.......ccoivereririesiesie e 1-4
When to USE TranSaCliONS........cocverieieririeriee sttt sesne e 1-5
When NOt t0 USe TranSaCliONS.........cvvueeerieereresiensieresie sttt sesre e 1-6
What Happens During @ TranSaCtion .........cccccveeoenennnenese e 1-7
Introducing Transactions in WebL ogic Server EJB Applications............. 1-7
Container-managed TranSaCtioNS.........c.vuvveverereserreeseseesesessesseenens 1-8
Bean-managed TranSaCtions...........ccoo e e sieneese s 1-9
Introducing Transactions in WebLogic Server RMI Applications.......... 1-10
Transactions SaMPlE COUE.........covvreereece e 1-11
Transactions Sample EJB COde .......cccooerrerirerenere e 1-12
IMPOrting PaCKagES.........cvueeeireee st eeene s 1-12

Using JNDI to Return an Object Reference..........cccvevvvveevecveveennne, 1-13

Starting @ TranSaCtiON .......ccooeeviriere e 1-14
Completing @ TranSaCtioN .......cccceveveereeeeesiere e 1-14
Transactions Sample RMI Code .......cccoveeererenese e seese e 1-15

Programming WebL ogic JTA iii



IMPOrting PaCKagES.......ccveeieeisieresesteseie st sese e se e 1-15
Using JNDI to Return an Object Reference to the UserTransaction

(@] 1= v TR TTSTRRTN 1-16
Starting @ TranSACtiON......ccveeeireeereee e e ere s 1-17
Completing @ TranSaCtioN ........cccccveverereresereereeee e seenes 1-17

2. Configuring and Managing Transactions

Configuring TraNSACtIONS ......c.eevvieeererie e ee st see e aese e e aese e sre e seesrens 2-1
MONItOriNg TraNSACHiONS.......ccveveeeieeeireeeeste e se e e et e e resreeresre s 2-2
(0o o |1 oo TR SRR 2-2
SEALISHICS. vttt bbbt 2-2
Y7o a1 (] 1 o 2-2
Adding a Transactional Resource Manager...........cceereeeeeererienenienesesiese e 2-3

3. Transaction Service

About the TranSaCtioN SEMVICE ..o 31
Capabilities and Limitations..........ccocoiireieinienenine s 32
Lightweight Clients with Delegated Commit ..........ccccoceieniieiennicnccnen, 32
Client-initiated TranSaCtiONS ........covvererirerrreirerereree e 3-2
TranSaCtion INEEGIILY ..cccooeiiriree e e 33
Transaction TEMMINGLON ......cccoiiiiiiiiiere e 33
Flat TranSaCtioNS .......ccvvveriercirenee e 33
Relationship of the Transaction Serviceto Transaction Processing ......... 33
Multithreaded Transaction Client SUPPOIt ........ccoceoereierrieeie s 34
GENEral CONSITAINES .....eeueeeereeres s 34
TraNSACHION SCOPE.....ueverteteriereesteiereeee st et et st sbe et st beseeseeseeeeneeseebesaeseesbenbeseens 34
Transaction Servicein EJB AppliCations.........cccooerererenenenieieeieee s 35
Transaction Service in RMI AppliCationS........cccoovevievesenesieeeeeescese e 35

4. Java Transaction APl and BEA WebLogic Extensions
JTA APl OVEIVIBIW ...ttt sttt st sbe s sae e 4-1
BEA WebLogiC EXtENSIONSTO JTA ....ocviieieceeeie e et 4-2

5. Transactions in EJB Applications

GENEral GUITEIINES ... .ottt et st e e st e e s sane e sbaeeas 5-2
TranSaCtioN ALIIDULES ..........eeiiie et ae s e e 5-3

Programming WebL ogic JTA



About Transaction AttribUtES fOr EIBS.....ccocvvivveeieeceee e 53

Transaction Attributes for Container-Managed Transactions.................... 5-4
Transaction Attributes for Bean-Managed Transactions ...........cccccveveeuenee. 5-5
Participating in @ TranSaCliON..........cccvcvierieeeeeeeese e teee e eeseens 55
TranSaCtion SEMEANLICS.......cccuireriiiee ettt e r e 5-6
Transaction Semantics for Container-Managed Transactions.................... 5-6
Transaction Semantics for Stateful Session Beans............ccoccveeeeeeee. 5-6
Transaction Semantics for Stateless Session Beans...........ccoceveeeeneee. 5-7
Transaction Semantics for Entity Beans..........ccccvevveevvvvnceveesecrecnennn, 5-8
Transaction Semantics for Bean-Managed Transactions...........c.ccceeeeuenee. 59
Transaction Semantics for Stateful Session Beans..........c.ccoccveeeeneee. 5-9
Transaction Semantics for Stateless Session Beans..........ccoceeveeenee 5-10

SESSION SYNCHIONIZALTON.......coueriiitirieie et 5-10
Synchronization During TranSaCtioNS. .........ceoeeerreeienenie e 511
Setting Transaction TIMEOULS........cceevereeereeerie e see s se e ere e ere e erenees 5-11
Handling Exceptions in EJB TranSaCtions..........cccoeerererenenie e 5-12

Transactions in RMI Applications

BEfOre YOU BEJIN....c..ceeeeeceeeee ettt e nne e e ene s 6-1

General GUITEIINES........c.cireiieire e 6-1
Using Third-Party JDBC XA Drivers with WebLogic Server

Overview of Third-Party XA DIVErS........occveerireeie et 7-3

Table of Third-Party XA DIVEIS......cccceeveeeire e seeseeeseeseesessee e snenes 7-3

Third-Party Driver Configuration and Performance Requirements.................. 7-4

Using Oracle Thin 8.1.7/XA DIIVES ... 7-5

Software Requirements for the Oracle Thin 8.1.7/XA Driver............. 7-5

Known Oracle Thin 8.1.7/XA ISSUES.......ccccverererieneerieee e 7-5

Oracle Thin 8.1.7/X A Driver Configuration Properties.............c.cc..... 7-7

Using Sybase JConnect 5.2.1/XA DIIVES ......ccovverereresineseseeseeeseneenens 7-8

Known Sybase jConnect 5.2.1/XA ISSUES ......cccoveverriereniine e 7-8

Set the Environment for the Sybase jConnect/XA Driver .................. 7-8

Connection Pools for the Sybase jConnect 5.2.1/XA Driver.............. 7-9

Configuration Properties for Java Client ..........cccooeveveienenneeinene 7-10

Using Cloudscape 3.5.1/XA DIIVEN ....cccovirerieeereeereeesiese e 7-11

Programming WebL ogic JTA v



Software Requirements for the Cloudscape 3.5.1/XA Driver........... 7-11

Known Cloudscape 3.5.1/XA Driver ISSUES .......cccerrereerenenenieieens 7-11
Set the Environment for the Cloudscape 3.5.1/XA Driver ............... 7-12
Cloudscape 3.5.1/XA Driver Configuration Properties...........c........ 7-12
USING DB2 7.2/XA DIIVES ..ottt 7-13
Set the Environment for the DB2 7.2/XA DIiVEr........ccccovveeevrennnns 7-13
Limitation and Restrictions using DB2 as an XAResource.............. 7-13
DB2 7.2/XA Driver Configuration Properties..........cccceveeerriennennens 7-14
Other Third-Party XA DIiVES.......cccoevreeeisese s seseese s e eseese e eseses 7-15

8. WebLogic Server XA Resource Provider Requirements

Overview of XA Resource Provider Requirements..........ccoceceeerenienenenennnens 8-2
Registering with the Transaction Manager ..........ccccvvvvevereeeeresieeiesese s 8-2
XAResource Enlistment and Delistment ..........coooeeverrernennenneeseeseeeenes 8-3
Static Enlistment and Delistment ..........cccovernine e 8-4
Dynamic Enlistment and Delistment..........cccovvveriesenereeerese e 8-4
Optional weblogic.transaction. X AResource Interface.........covvveevevercencvnennnnnns 85

9. Troubleshooting Transactions

Overview of Troubleshooting TranSaCtioNS ..........ccccoereiererieeieeinerere e 9-1
Troubleshooting TOOIS........ccciiiiiierer e e e 9-2
EXCEPLIONS ...ttt bbb e e 9-2
Transaction [deNtifier ... ..o 9-3
Transaction Name and Properties........cccovvvvvvvereseseiesesseeeesseseseseeseens 9-3
TraNSACHION SEAEUS ......eeveie ettt st st e e na 9-4
TranSaCtiON StaliSHCS....ccveceeereerie et 9-4
TransaCtion MONITOMNG .....ccceovereeerieieeesese e s esie s eseere e e sre e e sreneeseens 9-4

Bl = 0152 ot (o 1 o o O OO 9-5
HeUristic LOg FIlES......co.iieieeeec e 9-6

(D= o100 o1 1o T N o1 9-6
Handling Heuristic COMPIEtionS ............coiireriieiesee e 9-7
Transaction SYStEM RECOVENY ........ccriroieriinierie et sreseesnens 9-8

A. Glossary of Terms

Index

Programming WebL ogic JTA



About This Document

This document explains how to use transactionsin EJB and RM1 applications that run
in the BEA WebL ogic Server™ environment.

This document is organized as follows:

m  Chapter 1, “Introducing Transactions,” introduces transactionsin EJB and RM|
applications running in the WebL ogic Server environment. This chapter also
describes distributed transactions and the two-phase commit protocol for
enterprise applications.

m Chapter 2, “Configuring and Managing Transactions,” describes how to
administer transactions in the WebL ogic Server environment.

m  Chapter 3, “Transaction Service,” describes the WebL ogic Server Transaction
Service.

m Chapter 4, “Java Transaction APl and BEA WebL ogic Extensions,” provides a
brief overview of the Java Transaction APl (JTA).

m  Chapter 5, “Transactionsin EJB Applications,” describes how to implement
transactions in EJB applications.

m Chapter 6, “Transactionsin RMI Applications,” describes how to implement
transactionsin RMI applications.

m  Chapter 7, “Using Third-Party JDBC XA Drivers with WebL ogic Server,”
describes how to configure and use third-party XA driversin transactions.

m  Chapter 8, “WebL ogic Server XA Resource Provider Requirements,” describes
the requirements for XA resources that participate in distributed transactionsin
WebL ogic Server.

m  Chapter 9, “Troubleshooting Transactions,” describes how to perform
troubleshooting tasks for applications using JTA.

Programming WebL ogic JTA vii



Audience

This document is written for application developers who are interested in building
transactional Java applications that run in the WebL ogic Server environment. It is
assumed that readers are familiar with the WebL ogic Server platform, Java™ 2,
Enterprise Edition (J2EE) programming, and transaction processing concepts.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebL ogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

viii Programming WebL ogic JTA


http://www.adobe.com

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m  Your company name and company address

®m Your machine type and authorization codes

m  The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Programming WebL ogic JTA iX


mailto:docsupport@bea.com
http://www.bea.com

Convention  Usage

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace Variablesin code.

italic Example:
t ext .
String Custoner Nane;

UPPERCASE Device names, environment variables, and logical operators.

TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.
[ 1] Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m  Anargument can be repeated several times in the command line.
m  The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Programming WebL ogic JTA



Convention

Usage

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic JTA Xi



Xii Programming WebL ogic JTA



CHAPTER

1 Introducing
Transactions

The following sections provide an overview of WebL ogic transactions in WebL ogic
Server applications:

ACID Properties of Transactions

Supported Programming Model

Supported APl Models

Distributed Transactions and the Two-Phase Commit Protocol
Support for Business Transactions

When to Use Transactions

When Not to Use Transactions

What Happens During a Transaction

Transactions Sample Code

ACID Properties of Transactions

One of the most fundamental features of the WebL ogic Server system is transaction
management. Transactions are a means to guarantee that database transactions are
completed accurately and that they take on all the ACID propertiesof a
high-performance transaction, including:

Programming WebL ogic JTA 11



1 introduc ng Transactions

m  Atomicity—all changes that atransaction makes to a database are made
permanent; otherwise, all changes are rolled back.

m  Consistency—a successful transaction transforms a database from a previous
valid state to anew valid state.

m |solation—changes that a transaction makes to a database are not visible to other
operations until the transaction completes its work.

m Durability—changes that a transaction makes to a database survive future system
or mediafailures.

WebL ogic Server protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a
variety of resource managers. If any one of the operations fails, the entire set of
operations isrolled back.

Supported Programming Model

WebL ogic Server supports transactionsin the Sun Microsystems, Inc., Java™ 2,
Enterprise Edition (J2EE) programming model. WebL ogic Server provides full
support for transactions in Java applications that use Enterprise JavaBeans, in
compliance with the Enterprise JavaBeans Specification 2.0, published by Sun
Microsystems, Inc. WebL ogic Server also supports the Java Transaction APl (JTA)
Specification 1.0.1, also published by Sun Microsystems, Inc.

Supported APl Models

WebL ogic Server supports the Sun Microsystems, Inc. Java Transaction APl (JTA),
which isused by:

e Enterprise JavaBean (EJB) applications within the WebL ogic Server EJB
container.

1-2 Programming WebL ogic JTA


http://java.sun.com/products/ejb/2.0.html
http://www.javasoft.com/products/jta/index.html
http://www.javasoft.com/products/jta/index.html

Distributed Transactions and the Two-Phase Commit Protocol

e Remote Method Invacation (RMI) applications within the WebL ogic Server
infrastructure.

For information about JTA, see the following sources:
e Thejavax.transactionandjavax. transacti on. xa package APIs.

e The Java Transaction API specification, published by Sun Microsystems, Inc.

Distributed Transactions and the Two-Phase
Commit Protocol

WebL ogic Server supportsdistributed transactions and the two-phase commit protocol
for enterprise applications. A distributed transaction is atransaction that updates
multiple resource managers (such as databases) in a coordinated manner. In contrast,
alocal transaction begins and commits the transaction to a single resource manager
that internally coordinates API calls; thereis no transaction manager. The two-phase
commit protocol isamethod of coordinating a single transaction across two or more
resource managers. It guarantees data integrity by ensuring that transactional updates
are committed in all of the participating databases, or are fully rolled back out of all
the databases, reverting to the state prior to the start of the transaction. In other words,
either all the participating databases are updated, or none of them are updated.

Distributed transactionsinvolve the following participants:

m  Transaction originator—initiates the transaction. The transaction originator can
be a user application, an Enterprise JavaBean, or a JM S client.

m  Transaction manager—manages transactions on behalf of application programs.
A transaction manager coordinates commands from application programsto start
and compl ete transactions by communicating with all resource managers that are
participating in those transactions. When resource managers fail during
transactions, transaction managers help resource managers decide whether to
commit or roll back pending transactions.

m  Recoverable resource—provides persistent storage for data. The resource is most
often a database.

Programming WebL ogic JTA 1-3


http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://www.javasoft.com/products/jta/index.html

1

Introducing Transactions

Resource manager—provides access to a collection of information and
processes. Transaction-aware JDBC drivers are common resource managers.
Resource managers provide transaction capabilities and permanence of actions;
they are entities accessed and controlled within a distributed transaction. The
communication between a resource manager and a specific resourceis called a
transaction branch.

Thefirst phase of the two-phase commit protocol is called the prepare phase. The
required updates are recorded in atransaction log file, and the resource must indicate,
through aresource manager, that it is ready to make the changes. Resources can either
vote to commit the updates or to roll back to the previous state. What happens in the
second phase depends on how the resources vote. If al resources vote to commit, al
the resources participating in the transaction are updated. If one or more of the
resources vote to roll back, then all the resources participating in the transaction are
rolled back to their previous state.

Support for Business Transactions

1-4

WebLogic JTA provides the following support for your business transactions:

Creates a unique transaction identifier when a client application initiates a
transaction.

Supports an optional transaction name describing the business process that the
transaction represents. The transaction name makes statistics and error messages
more meaningful.

Works with the WebL ogic Server infrastructure to track objects that are involved
in atransaction and, therefore, need to be coordinated when the transaction is
ready to commit.

Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of atransaction. Resource managers then lock the
accessed records until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participantsin the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being

Programming WebL ogic JTA



When to Use Transactions

updated using Open Group’s XA protocol. Many popular relational databases
support this standard.

m  Executesthe rollback procedure when the transaction must be stopped.

m Executes arecovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

m  Manages transaction timeouts. If a business operation takes too much time or is
only partially completed due to failures, the system takes action to automatically
issue atimeout for the transaction and free resources, such as database locks.

When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each

situation describes a transaction model supported by the WebL ogic Server system.
Keep in mind that distributed transactions should not span more than a single user
input screen; more complex, higher level transactions are best implemented with a
series of distributed transactions.

For example, consider an I nternet-based online shopping cart application. Users of the
client application browse through an online catalog and make multiple purchase
selections. When the users are done choosing all the items they want to buy, they
proceed to check out and enter their credit card information to make the purchase. If
the credit card check fails, the shopping application needs away to cancel all the
pending purchase selections in the shopping cart, or roll back any purchase
transactions made during the conversation.

m  Within the scope of asingle client invocation on an object, the object performs
multiple editsto datain a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily EJB or RMI invocations. A client, such as an applet,
can obtain areference to the Tr ansact i on and Tr ansact i onManager objects,
using JNDI, and start atransaction.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

Programming WebL ogic JTA 1-5



1

Introducing Transactions

e Invoking the debit method on one account.
e Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

m  The client application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

e Dataiscached in memory or written to a database during or after each
successive invocation.

e Dataiswritten to a database at the end of the conversation.

e The client application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

e At the end of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

When Not to Use Transactions

1-6

Transactions are not always appropriate. For example, if aseriesof transactionstakea
long time, implement them with aseries of distributed transactions. Hereisan example
of an incorrect use of transactions.

m  The client application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typicaly, to a
database) must be rolled back.

For example, consider atravel agent application. The client application needs to
arrange for ajourney to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such ajourney would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to

Programming WebL ogic JTA



What Happens During a Transaction

Paris, Paristo New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs away to cancel
all the flight reservations made up to that point.

What Happens During a Transaction

This topic includes the following sections:
m Introducing Transactionsin WebL ogic Server EJB Applications

m Introducing Transactions in WebL ogic Server RMI Applications

Introducing Transactions in WebLogic Server EJB
Applications

Figure 1-1 illustrates how transactions work in a WebL ogic Server EJB application.

Figure1-1 How TransactionsWork in a WebL ogic Server EJB Application

EJB Client

Application . .
. . 7Y
A Part of a Transaction v A

Database

A 4

Server Application

Programming WebL ogic JTA 1-7



1

Introducing Transactions

WebL ogic Server supports two types of transactionsin WebL ogic Server EJB
applications:

In container-managed transactions, the WebL ogic Server EJB container
manages the transaction demarcation. Transaction attributesin the EJB
deployment descriptor determine how the WebL ogic Server EJB container
handles transactions with each method invocation. For more information about
the deployment descriptor, see Programming WWebL ogic EJB.

In bean-managed transactions, the EJB manages the transaction demarcation.
The EJB makes explicit method invocations on the User Tr ansact i on object to
begin, commit, and roll back transactions. For more information about the

User Tr ansact i on object, see the WebL ogic Javadoc.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Container-managed Transactions

1-8

For EJB applications with container-managed transactions, a basic transaction works
in the following way:

1

In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type (t r ansact i on-t ype element) for
container-managed demarcation (Cont ai ner ).

In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the default transaction attribute (t r ans- at t r i but e element) for the
EJB, which is one of the following settings: Not Suppor t ed, Requi r ed,
Support s, Requi r esNew, Mandat ory, or Never . For a detailed description of
these settings, see Section 16.7.2 in the Enterprise JavaBeans Specification 2.0,
published by Sun Microsystems, Inc.

Optionally, in the EJB’s deployment descriptor, the Bean Provider or Application
Assembler specifiesthet rans- at t ri but e for one or more methods.

When a client application invokes a method in the EJB, the EJB container checks
thetrans-attri but e setting in the deployment descriptor for that method. If no
setting is specified for the method, the EJB usesthe default t rans-attri but e
setting for that EJB.

The EJB container takes the appropriate action depending on the applicable
trans-attribut e setting.

Programming WebL ogic JTA



What Happens During a Transaction

e For example, if thetrans-attri but e setting is Requi r ed, the EJB
container invokes the method within the existing transaction context or, if the
client called without a transaction context, the EJB container begins a new
transaction before executing the method.

e Inanother example, if thetrans-attri but e setting is Mandat ory, the EJB
container invokes the method within the existing transaction context. If the
client called without a transaction context, the EJB container throws the
j avax.transacti on. Transact i onRequi r edExcept i on exception.

During invocation of the business method, if it is determined that a rollback is
required, the business method callsthe EJBCont ext . set Rol | backOnl y method,
which notifies the EJB container that the transaction isto be rolled back at the
end of the method invocation.

Note: Calling the EJBCont ext . set Rol | backOnl y method is allowed only for

7.

methods that have a meaningful transaction context.

At the end of the method execution and before the result is sent to the client, the
EJB container completes the transaction, either by committing the transaction or
rolling it back (if the EJBCont ext . set Rol | backOnl y method was called).

Y ou can control transaction timeouts by setting thet r ans- t i meout - seconds
element using the Administration Console.

Bean-managed Transactions

For EJB applicationswith bean-managed transaction demarcations, abasic transaction
works in the following way:

1

In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type (t r ansact i on-t ype element) for
container-managed demarcation (Bean).

The client application uses INDI to obtain an object reference to the
User Transact i on object for the WebL ogic Server domain.

The client application begins a transaction using the User Tr ansact i on. begi n
method, and issues arequest to the EJB through the EJB container. All operations
on the EJB execute within the scope of atransaction.

e |f acall to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught and the

Programming WebL ogic JTA 1-9



1 introduc ng Transactions

transaction can be rolled back using the User Tr ansact i on. r ol | back
method.

e |f no exceptions occur, the client application commits the current transaction
using the User Tr ansact i on. conmi t method. This method ends the
transaction and starts the processing of the operation. The transactionis
committed only if all of the participants in the transaction agree to commit.

4. TheUser Transacti on. commi t method causes the EJB container to call the
transaction manager to complete the transaction.

5. Thetransaction manager is responsible for coordinating with the resource
managers to update any databases.

Introducing Transactions in WebLogic Server RMI
Applications

Figure 1-2 illustrates how transactions work in aWebL ogic Server RMI application.

Figure1-2 How TransactionsWork in a WebL ogic Server RM1 Application

RMI Client

Application .
A
. A

\ 4
A Part of a Transaction

Database

y

Server Application

For RMI client and server applications, abasic transaction worksin the following way:

1-10  Programming WebL ogic JTA



Transactions Sample Code

1. The application uses INDI to return an object reference to the User Tr ansact i on
object for the WebL ogic Server domain.

Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during server
shutdown). For the duration of the transaction, the WebL ogic Server
infrastructure does not perform any deactivation or activation.

2. Theclient application begins a transaction using the User Tr ansact i on. begi n
method, and issues arequest to the server application. All operations on the
server application execute within the scope of atransaction.

e |If acall to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught and the
transaction can be rolled back using the User Tr ansact i on. r ol | back
method.

e |If no exceptions occur, the client application commits the current transaction
using the User Tr ansact i on. conmi t method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participantsin the transaction agree to commit.

3. TheUser Transacti on. commi t method causes WebL ogic Server to call the
transaction manager to compl ete the transaction.

4. Thetransaction manager is responsible for coordinating with the resource
managers to update any databases.

For more information, see Chapter 6, “Transactionsin RMI Applications.”

Transactions Sample Code

This topic includes the following sections:
m  Transactions Sample EJB Code

m  Transactions Sample RMI Code

Programming WebL ogic JTA 1-11



1

Introducing Transactions

Transactions Sample EJB Code

This topic provides a walkthrough of sample code fragmentsfrom aclassin an EJB
application. This topic includes the following sections:

m Importing Packages

m Using INDI to Return an Object Reference
m  Starting a Transaction

m  Completing a Transaction

The code fragments demonstrate using the User Tr ansact i on object for
bean-managed transaction demarcation. The deployment descriptor for this bean
specifies the transaction type (t r ansact i on-t ype element) for transaction
demarcation (Bean).

Notes: These code fragments do not derive from any of the sample applications that
ship with WebL ogic Server. They merely illustrate the use of the
User Tr ansact i on object within an EJB application.

In aglobal transaction, use a database connection from alocal
TxDataSource—on the WebL ogic Server instance on which the EJB is
running. Do not use aconnection from a TxDataSource on aremote WebL ogic
Server instance.

Importing Packages

1-12

Listing 1-1 shows importing the necessary packages for transactions, including:

m javax.transaction. User Transacti on. For alist of methods associated with
this object, see the online Javadoc.

m  System exceptions. For alist of exceptions, see the online Javadoc.

Listing 1-1 Importing Packages

i mport javax.nam ng.*;
i mport javax.transaction. User Transacti on;
i mport javax.transaction. SystenExcepti on;

Programming WebL ogic JTA



Transactions Sample Code

i mport javax.transaction. HeuristicM xedException

i mport javax.transaction. HeuristicRol | backExcepti on
i mport javax.transacti on. Not SupportedExcepti on

i mport javax.transaction. Rol | backExcepti on

i mport javax.transaction. ||| egal StateException

i mport javax.transaction. SecurityException

i mport java.sql.*;

import java.util.*;

After importing these classes, initialize an instance of the User Tr ansact i on object to
null.

Using JNDI to Return an Object Reference

Listing 1-2 shows using JNDI to look up an object reference.

Listing 1-2 Performing a JNDI L ookup

Context ctx = null;
Hasht abl e env = new Hasht abl e();

env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c. j ndi . W.I ni ti al Cont ext Factory");

/1 Paraneters for the WbLogi c Server.

/1 Substitute the corect hostnane, port nunber

/1 user name, and password for your environnent:

env. put (Cont ext . PROVI DER_URL, "t3://1| ocal host: 7001");
env. put ( Cont ext . SECURI TY_PRI NCl PAL, "Fred");

env. put (Cont ext . SECURI TY_CREDENTI ALS, "secret");

ctx = new Initial Context(env);

User Transaction tx = (User Transaction)
ct x. | ookup("javax.transacti on. User Transacti on");

Programming WebL ogic JTA 1-13



1

Introducing Transactions

Starting a Transaction

Listing 1-3 shows starting a transaction by getting aUser Tr ansact i on object and
calling thej avax. transact i on. User Transact i on. begi n() method. Database
operations that occur after this method invocation and prior to completing the
transaction exist within the scope of this transaction.

Listing 1-3 Starting a Transaction

User Transaction tx = (UserTransaction)
ct x. | ookup("javax. transaction. User Transacti on");
tx. begi n();

Completing a Transaction

1-14

Listing 1-4 shows compl eting the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:

m If an exception was thrown during any of the database operations, the
application callsthej avax. t ransacti on. User Transacti on. rol | back()
method.

m If no exception was thrown, the application calls the
j avax. transacti on. User Transact i on. conmi t () method to attempt to
commit the transaction after all database operations completed successfully.
Calling this method ends the transaction and starts the processing of the
operation, causing the WebL ogic Server EJB container to call the transaction
manager to complete the transaction. The transaction is committed only if all of
the participantsin the transaction agree to commit.

Listing 1-4 Completing a Transaction

tx.commit();
Il or:

tx. rol |l back();

Programming WebL ogic JTA



Transactions Sample Code

Transactions Sample RMI Code

This topic provides a walkthrough of sample code fragments from a classin an RMI
application. Thistopic includes the following sections:

m Importing Packages

m Using JNDI to Return an Object Reference to the UserTransaction Object
m  Starting a Transaction

m Completing a Transaction

The code fragments demonstrate using the User Tr ansact i on object for RMI
transactions. For guidelines on using transactionsin RMI applications, see Chapter 6,
“Transactionsin RMI Applications.”

Note: These code fragments do not derive from any of the sample applications that
ship with WebL ogic Server. They merely illustrate the use of the
User Transact i on object within an RMI application.

Importing Packages

Listing 1-5 showsimporting the necessary packages, including thefollowing packages
used to handle transactions:

m javax.transaction. User Transacti on. For alist of methods associated with
this object, see the online Javadoc.

m  System exceptions. For alist of exceptions, see the online Javadoc.

Listing 1-5 Importing Packages

i mport javax.nam ng.*;

inmport java.rm.*;

i mport javax.transaction. UserTransaction;

i nport javax.transaction. SystenException;

i mport javax.transaction. HeuristicM xedException

Programming WebL ogic JTA 1-15



1

Introducing Transactions

i mport javax.transaction. HeuristicRol | backExcepti on
i mport javax.transaction. Not SupportedException

i mport javax.transaction. Rol | backExcepti on

i mport javax.transaction. ||| egal StateException

i mport javax.transaction. SecurityException

i mport java.sql.*;

import java.util.*;

After importing these classes, initialize an instance of the User Tr ansact i on object to
null.

Using JNDI to Return an Object Reference to the UserTransaction Object

1-16

Listing 1-6 shows searching the JNDI tree to return an object reference to the
User Tr ansact i on object for the appropriate WebL ogic Server domain.

Note: Obtaining the object reference begins a conversational state between the
application and that abject. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during
server shutdown). For the duration of the transaction, the WebL ogic Server
infrastructure does not perform any deactivation or activation.

Listing 1-6 Performing a JNDI L ookup

Context ctx = null;
Hasht abl e env = new Hasht abl e();

env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c. j ndi.W.Initial Cont ext Factory");

/1 Paraneters for the WebLogi c Server.

/] Substitute the corect hostnane, port nunber

/1 user nane, and password for your environnent:

env. put (Cont ext . PROVI DER_URL, "t3://1 ocal host: 7001");
env. put (Cont ext . SECURI TY_PRI NCl PAL, "Fred");

env. put (Cont ext . SECURI TY_CREDENTI ALS, "secret");

ctx = new Initial Context(env);

Programming WebL ogic JTA



Transactions Sample Code

User Transaction tx = (User Transaction)
ct x. | ookup("j avax.transacti on. User Transacti on");

Starting a Transaction

Listing 1-7 shows starting a transaction by calling the

j avax.transacti on. User Transact i on. begi n() method. Database operations
that occur after this method invocation and prior to completing the transaction exist
within the scope of this transaction.

Listing 1-7 Starting a Transaction

User Transaction tx = (User Transaction)
ct x. | ookup("javax.transaction. User Transacti on");
t x. begi n();

Completing a Transaction

Listing 1-8 shows compl eting the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:

m |f an exception was thrown, the application calls the
j avax.transaction. User Transacti on. rol | back() method if an exception
was thrown during any of the database operations.

m |f no exception was thrown, the application calls the
j avax.transacti on. User Transact i on. conmi t () method to attempt to
commit the transaction after all database operations completed successfully.
Calling this method ends the transaction and starts the processing of the
operation, causing WebL ogic Server to call the transaction manager to complete
the transaction. The transaction is committed only if all of the participants in the
transaction agree to commit.

Programming WebL ogic JTA 1-17



1 introduc ng Transactions

Listing 1-8 Completing a Transaction

tx.commit();
Il or:

tx.rol |l back();

1-18  Programming WebL ogic JTA



CHAPTER

2 Configuring and
Managing Transactions

The following sections provides an overview of commonly performed administration
tasks related to transactions. For general information on JTA configuration tasks, see
Managing Transactions in the Administration Guide. For information on specific
configuration attributes and procedures, see the JTA topic in the Administration
Console Online Help.

m  Configuring Transactions
m  Monitoring Transactions

m  Adding a Transactional Resource Manager

Configuring Transactions

The Administration Console provides the interface used to configure features of
WebL ogic Server, including WebL ogic JTA. To invoke the Administration Console,
refer to the procedures described in Configuring WebL ogic Servers and Clusters. The
configuration processinvolves specifying valuesfor attributes. These attributes define
the transaction environment, including the following:

m  Transaction timeouts and limits
m  Transaction manager behavior

Y ou should also be familiar with the administration of J2EE components that can
participate in transactions, such as EJBs, JDBC, and IMS.

Programming WebL ogic JTA 2-1


http://e-docs.bea.com/wls/docs61/adminguide/managetx.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs61/adminguide/config.html

2  Confi guring and Managing Transactions

Monitoring Transactions

Logging

Statistics

Y ou can monitor transactions on a server using the logging, statistics, and monitoring
facilities. Usethe Administration Consol eto configurethese featuresand to display the
resulting output.

The transaction log consists of multiple files. Each file is named using a prefix
indicating the location in the file system, as defined by the

Transact i onLogFi | ePrefi x attribute, the server name, a unique numeric suffix,
and afileextension. TheTr ansact i onLogFi | ePr ef i x attributeis set for each server
in adomain. The overall amount of space consumed by the transaction log is limited
only by thefile system’s available disk space. For more information on setting server
logging attributes, seethe Server topicin the Administration Console Online Help. For
information on using logging in troubleshooting and debugging, see “ Transaction
Log” in Chapter 9, “Troubleshooting Transactions.”

WebL ogic Server keeps statistics on transactions organized by server, resource, and
transaction name. For more information on viewing statistics, seethe JTA topic in the
Administration Console Online Help. For information on using statisticsin
troubleshooting and debugging, see “ Transaction Statistics’ in Chapter 9,
“Troubleshooting Transactions.”

Monitoring

Y ou can monitor transactions in progress using the Administration Console. Y ou can
display information for transactions by name, transactions by resource, or al active
transactions. For more information on monitoring transactions, see the Server topicin

2-2 Programming WebL ogic JTA


http://e-docs.bea.com/wls/docs61/ConsoleHelp/server.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/server.html

Adding a Transactional Resource Manager

the Administration Console Online Help. For more information on using monitoring
datain troubleshooting, see“ Transaction Monitoring,” in Chapter 9, “ Troubleshooting
Transactions.”

Adding a Transactional Resource Manager

A transactional resource manager provides access to a collection of information and
processes. Transaction-aware JDBC drivers are common resource managers. When
adding a JDBC driver, you must configure driver properties for proper operation with
JTA. See Managing Transactionsinthe Administration Guide for JDBC configuration
guidelines.

Programming WebL ogic JTA 2-3


http://e-docs.bea.com/wls/docs61/adminguide/managetx.html

2 Configuring and Managing Transactions

2-4 Programming WebL ogic JTA



CHAPTER

3 Transaction Service

The following sections provide information that programmers need to write
transactional applications for the WebL ogic Server system:

m  About the Transaction Service
m Capabilities and Limitations
m  Transaction Service in EJB Applications

m  Transaction Servicein RMI Applications

About the Transaction Service

WebL ogic Server providesaTransaction Servicethat supportstransactionsin EJB and
RMI applications. In the WebL ogic Server EJB container, the Transaction Service
provides an implementation of the transaction services described in the Enterprise
JavaBeans Specification 2.0, published by Sun Microsystems, Inc.

For EJB and RMI applications, WebL ogic Server also provides the

j avax.transaction andj avax. transacti on.xa packages, from Sun
Microsystems, Inc., which implements the Java Transaction API (JTA) for Java
applications. For moreinformation about the JTA, seethe Java Transaction API (JTA)
Specification 1.0.1, published by Sun Microsystems, Inc. For more information about
the User Tr ansact i on object that applications use to demarcate transaction
boundaries, see the WebL ogic Server Javadoc.

Programming WebL ogic JTA 31



3 Transaction Service

Capabilities and Limitations

The following sections describe the capabilities and limitations of the Transaction
Service that supports EJB and RMI applications.

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability. Owners may turn their desktop systems off when they arenotin
use. These single-user, unmanaged desktop systems should not be required to perform
network functions such as transaction coordination. In particular, unmanaged systems
should not be responsiblefor ensuring atomicity, consistency, isolation, and durability
(ACID) properties across failures for transactions involving server resources.

WebL ogic Server remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which
means that the Transaction Service allows lightweight clients to begin and terminate
transactions while the responsibility for transaction coordination is delegated to a
transaction manager running on a server machine. Client applications do not require a
local transaction server. Theremoteimplementation of User Tr ansact i on that EJB or
RMI clients use delegates the actual responsibility of transaction coordination to the
transaction manager on the server.

Client-initiated Transactions

32

A client, such as an applet, can obtain areference to the User Tr ansact i on and
Transact i onManager objects using JNDI. A client can begin a transaction using
either object reference. To get the Tr ansact i on object for the current thread, the
client program must invoke the ( ( Tr ansact i onManager )t n) . get Tr ansact i on()
method. The Tr ansact i on object returned from JNDI supports both the

User Transact i on and the Tr ansact i onManager interfaces.

Programming WebL ogic JTA



Capabilities and Limitations

Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a
conmi t will not succeed unless al transactional objects involved in the transaction
have compl eted the processing of their transactional requests. The Transaction Service
provides checked transaction behavior that is equivalent to that provided by the
reguest/response interprocess communication models defined by The Open Group.

Transaction Termination

WebL ogic Server allows transactions to be terminated only by the client that created
the transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions

WebL ogic Server implements the flat transaction model. Nested transactions are not
supported.

Relationship of the Transaction Service to Transaction
Processing

The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standards in the following ways:

m Support for The Open Group XA interface. The Open Group Resource
Managers are resource managers that can be involved in a distributed transaction
by allowing their two-phase commit protocol to be controlled via The Open
Group XA interface. WebL ogic Server supports interaction with The Open
Group Resource Managers.

m  Support for the OSI TP protocol. Open Systems Interconnect Transaction
Processing (OSI TP) isthe transactional protocol defined by the International

Programming WebL ogic JTA 33



3 Transaction Service

Organization for Standardization (1SO). WebL ogic Server does not support
interactions with OSI TP transactions.

m  Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2
isatransactional protocol defined by IBM. WebL ogic Server does not support
interactions with LU 6.2 transactions.

m  Support for the ODMG standard. ODMG-93 is a standard defined by the
Object Database Management Group (ODMG) that describes a portable interface
to access Object Database Management Systems. WebL ogic Server does not
support interactions with ODMG transactions.

Multithreaded Transaction Client Support

WebL ogic Server supports multithreaded transactional clients. Clients can make
transaction requests concurrently in multiple threads.

General Constraints

The following constraints apply to the Transaction Service:

m InWebLogic Server, aclient or a server object cannot invoke methods on an
object that is infected with (or participating in) another transaction. The method
invocation issued by the client or the server will return an exception.

m InWebLogic Server, clients using third-party implementations of the Java
Transaction APl (for Java applications) are not supported.

Transaction Scope

The scope of atransaction refers to the environment in which the transaction is
performed. WebL ogic Server supports transactions on standal one servers, between
non-clustered servers, and between clustered servers within a domain. Transactions
between multiple domains are not supported.

34 Programming WebL ogic JTA



Transaction Service in EJB Applications

Transaction Service in EJB Applications

The WebL ogic Server EJB container provides a Transaction Service that supports the
two types of transactionsin WebL ogic Server EJB applications:

m Container-managed transactions. In container-managed transactions, the
WebL ogic Server EJB container manages the transaction demarcation.
Transaction attributes in the EJB deployment descriptor determine how the
WebL ogic Server EJB container handles transactions with each method
invocation.

m Bean-managed transactions. In bean-managed transactions, the EJB manages
the transaction demarcation. The EJB makes explicit method invocations on the
User Transact i on object to begin, commit, and roll back transactions. For more
information about User Tr ansact i on methods, see the online Javadoc.

For an introduction to transaction management in EJB applications, see “Introducing
Transactionsin WebL ogic Server EJB Applications,” and “ Transactions Sample EJB
Code” in the “Introducing Transactions” section.

Transaction Service in RMI Applications

WebL ogic Server provides a Transaction Service that supports transactions in
WebL ogic Server RMI applications. In RMI applications, the client or server
application makes explicit method invocations on the User Tr ansact i on object to
begin, commit, and roll back transactions.

For more information about User Tr ansact i on methods, see the online javadoc. For
an introduction to transaction management in RMI applications, see “Introducing
Transactionsin WebL ogic Server RMI Applications,” and “ Transactions Sample RM|
Code” in the “Introducing Transactions” section.

Programming WebL ogic JTA 35



3 Transaction Service

36 Programming WebL ogic JTA



CHAPTER

4 Java Transaction API

and BEA WebLogic
Extensions

Thefollowing sections provide abrief overview of the Java Transaction API (JTA) and
extensions to the APl provided by BEA Systems.

m JTA APl Overview
m BEA Webl ogic Extensionsto JTA

JTA APl Overview

WebL ogic Server supportsthej avax. t ransact i on package and the

j avax. transact i on. xa package, from Sun Microsystems, Inc., which implement
the Java Transaction APl (JTA) for Java applications. For more information about
JTA, see the Java Transaction APl (JTA) Specification (version 1.0.1) published by
Sun Microsystems, Inc. For adetailed description of thej avax. t ransacti on and
j avax. transacti on. xa interfaces, see the JTA Javadoc:

JTA includes the following components:

m  Aninterface for demarcating and controlling transactions from an application,
j avax. transacti on. User Tr ansact i on. You use thisinterface as part of a
Java client program or within an EJB as part of a bean-managed transaction.

Programming WebL ogic JTA 4-1



4

Java Transaction APl and BEA WebLogic Extensions

m  Aninterface for allowing atransaction manager to demarcate and control

transactions for an application, j avax. t ransact i on. Tr ansact i onManager .
Thisinterface is used by an EJB container as part of a container-managed
transaction and usesthej avax. t ransact i on. Transact i on interfaceto
perform operations on a specific transaction.

Interfaces that allow the transaction manager to provide status and
synchronization information to an applications server,

j avax. transaction. St at us andj avax. transacti on. Synchroni zat i on.
These interfaces are accessed only by the transaction manager and cannot be
used as part of an applications program.

Interfaces for allowing a transaction manager to work with resource managers
for XA-compliant resources (j avax. t ransact i on. xa. XAResour ce) and to
retrieve transaction identifiers (j avax. t ransact i on. xa. Xi d). These interfaces
are accessed only by the transaction manager and cannot be used as part of an
applications program.

BEA WebLogic Extensions to JTA

4-2

Extensions to the Java Transactions API are provided where the JTA specification
does not cover implementation details and where additional capabilities are required.

BEA WebL ogic provides the following capabilities based on interpretations of the
JTA specification:

Client-initiated transactions—the JTA transaction manager interface

(j avax. transacti on. Transact i onManager ) is made available to clients and
bean providers through JNDI. This allows clients and EJBs using bean-managed
transactions to suspend and resume transactions.

Note: A suspended transaction must be resumed in the same server processin
which it was suspended.

Scope of transactions—transactions can operate both within and between
clusters.

BEA WebL ogic provides the following classes and interfaces as extensions to JTA:

Programming WebL ogic JTA



BEA WebLogic Extensions to JTA

®m webl ogi c. transacti on. Rol | backExcept i on (extends
javax.transacti on. Rol | backExcept i on)

This class preserves the original reason for arollback for use in more
comprehensive exception information.

m webl ogi c. transaction. Transacti onManager (extends
javax.transacti on. Transact i onManager )

The WebL ogic JTA transaction manager object supports this interface, which
allows XA resources to register and unregister themselves with the transaction
manager on startup. It also allows a transaction to be resumed after suspension.

This interface includes the following methods:

e registerStaticResource,registerDynan cResour ce, and
unr egi st er Resour ce

e getTransaction

e forceResune andf or ceSuspend

®m webl ogi c. transaction. Transact i on (extends
j avax.transacti on. Transacti on)

The WebL ogic JTA transaction object supports this interface, which allows users
to get and set transaction properties.

This interface includes the following methods:
e set Narme and get Nane
e addProperties, set Property, get Property, and get Properti es

e setRol | backReason and get Rol | backReason
e getHeuristicErrorMessage
e getXID
e getStatusAsString
e getMIlisSinceBegin
e getTineToLiveMIlis
® webl ogi c. transacti on. TxHel per
This class allows you to obtain the current transaction manager and transaction.
This interface includes the following static methods:

e getTransaction, get User Transacti on, get Transact i onManager

Programming WebL ogic JTA 4-3



4 Java Transaction APl and BEA WebL ogic Extensions

e status2String

m webl ogi c. transacti on. XAResour ce (extends
j avax. transacti on. xa. XAResour ce)

This class provides delistment capabilities for XA resources.
This interface includes the following method:

e getDelistFlag

For a detailed description of the WebL ogic extensionsto thej avax. t ransacti on
andj avax. transacti on. xa interfaces, seethewebl ogi c. t r ansact i on package
description.

4-4 Programming WebL ogic JTA


http://e-docs.bea.com/wls/docs61/javadocs/index.html

CHAPTER

5

Transactions In EJB
Applications

The following sections describe the behavior and use of transactionsin EJB
applications:

Before You Begin

Genera Guidelines

Transaction Attributes

Participating in a Transaction
Transaction Semantics

Session Synchronization
Synchronization During Transactions
Setting Transaction Timeouts

Handling Exceptionsin EJB Transactions

This topic describes how to integrate transactions in Enterprise JavaBeans (EJBS)
applications that run under BEA WebL ogic Server.

Programming WebL ogic JTA

5-1



5 Transactionsin EJB Applications

Before You Begin

Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly
the following topics:

m Introducing Transactions in WebL ogic Server EJB Applications
m  Transactions Sample EJB Code

Thisdocument describesthe BEA WebL ogic Server implementation of transactionsin
Enterprise JavaBeans. The information in this document supplements the Enterprise
JavaBeans Specification 2.0, published by Sun Microsystems, Inc.

Note: Before proceeding with therest of thischapter, you should be familiar with the
contents of the EJB Specification 2.0 document, particularly the concepts and
material presented in Chapter 16, “ Support for Transactions.”

For information about implementing Enterprise JavaBeans in WebL ogic Server
applications, see Programming WebLogic EJB.

General Guidelines

5-2

The following general guidelines apply when implementing transactionsin EJB
applications for WebL ogic Server:

m  The EJB specification alows for flat transactions only. Transactions cannot be
nested.

m  The EJB specification allows for distributed transactions that span multiple
resources (such as databases) and supports the two-phase commit protocol for
both EJB CMP 2.0 and EJB CMP 1.1.

m  WebLogic Server supports any JTA-compliant XA resource. For information on
the XA resource driver supplied with WebL ogic Server, see “ Transactions and
the WebL ogic jDriver for Oracle” in Installing and Using WebLogic jDriver for
Oracle at http://e-docs.bea.com/wls/docs61/oracl eftrxjdbex.html.

Programming WebL ogic JTA


http://e-docs.bea.com/wls/docs61/oracle/trxjdbcx.html
http://e-docs.bea.com/wls/docs61/oracle/trxjdbcx.html

Transaction Attributes

m Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and compl ete transactions
quickly.

m  Use adatabase connection from alocal TxDataSource—on the WebL ogic Server
instance on which the EJB is running. Do not use a connection from a
TxDataSource on a remote WebL ogic Server instance.

m Besureto tune the EJB cache to ensure maximum performance in transactional
EJB applications. For more information, see “ The WebL ogic Server EJB
Container” in Programming WebLogic Server Enterprise Java Beans at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html.

For general guidelines about the WebL ogic Server Transaction Service, see
“Capabilities and Limitations.”

Transaction Attributes

This topic includes the following sections:
m  About Transaction Attributes for EJBs
m  Transaction Attributes for Container-Managed Transactions

m  Transaction Attributes for Bean-Managed Transactions

About Transaction Attributes for EJBs

Transaction attributes determine how transactions are managed in EJB applications.
For each EJB, the transaction attribute specifies whether transactions are demarcated
by the WebL ogic Server EJB container (container-managed transactions) or by the
EJB itself (bean-managed transactions). The setting of thet r ansacti on-t ype
element in the deployment descriptor determines whether an EJB is
container-managed or bean-managed. See Chapter 16, “ Support for Transactions,” and
Chapter 21, “Deployment Descriptor,” in the EJB Specification 2.0, for more
information about thet r ansact i on-t ype el ement.

Programming WebL ogic JTA 5-3


http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html

5 Transactionsin EJB Applications

In general, the use of container-managed transactionsis preferred over bean-managed
transactions because application codingissimpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebL ogic Server fully supports method-level transaction attributes as defined in
Section 16.4 in the EJB Specification 2.0.

Transaction Attributes for Container-Managed
Transactions

5-4

For container-managed transactions, the transaction attribute is specified in the

cont ai ner - t r ansact i on element in the deployment descriptor. Contai ner-managed
transactions include all entity beans and any stateful or stateless session beans with a
transaction-type Set to Cont ai ner . For more information about these elements,
see “WebL ogic Server 6.1 Properties’ in Programming WebLogic Server Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/reference.html.

The Application Assembler can specify the following transaction attributes for EJBs
and their business methods:

®  Not Support ed
®  Supports

® Required

B RequiresNew
®  Mandat ory

m  Never

For adetailed explanation about how the WebL ogic Server EJB container respondsto
thetrans-attri but e setting, see section 16.7.2 in the EJB Specification 2.0.

The transaction attribute, trans-timeout-seconds, is based on BEA WebLogic JTA
extensions. The WebL ogic Server EJB container automatically sets the transaction
timeout if atimeout value is not defined in the deployment descriptor. The container
uses the value of the trans-t i meout - seconds configuration parameter. The default
timeout value is 30 seconds.

Programming WebL ogic JTA


http://e-docs.bea.com/wls/docs61/ejb/reference.html
http://e-docs.bea.com/wls/docs61/ejb/reference.html

Participating in a Transaction

For more information on transaction configuration parameters, see Chapter 2,
“Configuring and Managing Transactions,” in this guide and Managing Transactions
in the Administration Guide.

For EJBs with container-managed transactions, the EJBs have no access to the

j avax.transacti on. User Tr ansact i on interface, and the entering and exiting
transaction contexts must match. In addition, EJBs with container-managed
transactions have limited support for the set Rol | backOnl y and get Rol | backOnl y
methods of thej avax. ej b. EJBCont ext interface, where invocations are restricted
by rules specified in Sections 16.4.4.2 and 16.4.4.3 of the EJB Specification 2.0.

Transaction Attributes for Bean-Managed Transactions

For bean-managed transactions, the bean specifies transaction demarcations using
methodsin thej avax. t r ansacti on. User Tr ansact i on interface. Bean-managed
transactionsinclude any stateful or statel ess session beanswith at r ansacti on-t ype
set to Bean. Entity beans cannot use bean-managed transactions.

For statel ess session beans, the entering and exiting transaction contexts must match.
For stateful session beans, the entering and exiting transaction contexts may or may not
match. If they do not match, the WebL ogic Server EJB container maintains
associations between the bean and the nonterminated transaction.

Session beans with bean-managed transactions cannot usethe set Rol | backOnl y and
get Rol | backOnl y methods of thej avax. ej b. EJBCont ext interface.

Participating in a Transaction

When the EJB Specification 2.0 uses the phrase “participating in atransaction,” BEA
interprets this to mean that the bean meets either of the following conditions:

m Thebeanisinvoked in atransactional context (container-managed transaction).

m  The bean begins atransaction using the UserTransaction API in a bean method
invoked by the client (bean-managed transaction), and it does not suspend or
terminate that transaction upon completion of the corresponding bean method
invoked by the client.

Programming WebL ogic JTA 5-5


http://e-docs.bea.com/wls/docs61/adminguide/managetx.html

5 Transactionsin EJB Applications

Transaction Semantics

This topic contains the following sections:
m  Transaction Semantics for Container-Managed Transactions
m  Transaction Semantics for Bean-Managed Transactions

The EJB Specification 2.0 describes semantics that govern transaction processing
behavior based on the EJB type (entity bean, statel ess session bean, or stateful session
bean) and the transaction type (container-managed or bean-managed). These
semantics describe the transaction context at the time a method isinvoked and define
whether the EJB can accessmethodsinthej avax. t ransact i on. User Tr ansact i on
interface. EJB applications must be designed with these semanticsin mind.

Transaction Semantics for Container-Managed
Transactions

For container-managed transactions, transaction semantics vary for each bean type.

Transaction Semantics for Stateful Session Beans

Table 5-1 describes the transaction semantics for stateful session beansin
container-managed transactions.

Table5-1 Transaction Semanticsfor Sateful Session Beansin
Container-M anaged Transactions

M ethod Transaction Context at the  Can Access
Timethe Method Was User Transaction
Invoked M ethods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bCreate() Unspecified No

Programming WebL ogic JTA



Transaction Semantics

Table5-1 Transaction Semanticsfor Stateful Session Beansin

Container-M anaged Transactions (Continued)

Method Transaction Context at the  Can Access
Timethe Method Was User Transaction
Invoked Methods?

ej bRenove() Unspecified No

ej bActivate() Unspecified No

ej bPassi vat e() Unspecified No

Business method Y es or No based on transaction No
attribute

af t er Begi n() Yes No

bef oreConpl eti on() Yes No

af t er Conpl eti on() No No

Transaction Semantics for Stateless Session Beans

Table 5-2 describes the transaction semantics for stateless session beansin

container-managed transactions.

Table 5-2 Transaction Semanticsfor Stateless Session Beansin

Container-M anaged Transactions

Method Transaction Context at the  Can Access
Timethe Method Was User Transaction
Invoked Methods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bCreate() Unspecified No

ej bRenove() Unspecified No

Business method Y es or No based on transaction No
attribute

Programming WebL ogic JTA 5-7



5 Transactionsin EJB Applications

Transaction Semantics for Entity Beans

5-8

Table 5-3 describes the transaction semantics for entity beans in container-managed

transactions.

Table 5-3 Transaction Semanticsfor Entity Beansin Container-M anaged

Transactions

Method Transaction Context at the  Can Access
Timethe Method Was User Transaction
Invoked Methods?

Constructor Unspecified No

set Enti tyCont ext () Unspecified No

unset EntityContext() Unspecified No

ej bCreate() Determined by transaction No
attribute of matching create

ej bPost Creat e() Determined by transaction No
attribute of matching create

ej bRenmove() Determined by transaction No
attribute of matching remove

ej bFi nd() Determined by transaction No
attribute of matching find

ej bActivate() Unspecified No

ej bPassi vat e() Unspecified No

ej bLoad() Determined by transaction No
attribute of business method that
invoked ej bLoad()

ej bStore() Determined by transaction No
attribute of business method that
invoked ej bSt or e()

Business method Yes or No based on transaction No

attribute

Programming WebL ogic JTA



Transaction Semantics

Transaction Semantics for Bean-Managed Transactions

For bean-managed transactions, the transaction semantics differ between stateful and
statel ess session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans

Table 5-4 describes the transaction semantics for stateful session beansin
bean-managed transactions.

Table 5-4 Transaction Semanticsfor Stateful Session Beansin Bean-M anaged
Transactions

Method Transaction Context at the  Can Access
Timethe Method Was User Transaction
Invoked Methods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bCreate() Unspecified Yes

ej bRenove() Unspecified Yes

ej bActivate() Unspecified Yes

ej bPassi vat e() Unspecified Yes

Business method Typicaly, no unless aprevious Yes

method execution on the bean
had completed whilein a
transaction context

af t er Begi n() Not applicable Not applicable
bef or eConpl eti on() Not applicable Not applicable
af t er Conpl eti on() Not applicable Not applicable

Programming WebL ogic JTA 59



5 Transactionsin EJB Applications

Transaction Semantics for Stateless Session Beans

Table 5-5 describes the transaction semantics for statel ess session beansin

bean-managed transactions.

Table 5-5 Transaction Semanticsfor Stateless Session Beansin Bean-M anaged

Transactions

M ethod Transaction Context at the  Can Access
Timethe Method Was User Transaction
Invoked M ethods?

Constructor Unspecified No

set Sessi onCont ext () Unspecified No

ej bCreate() Unspecified Yes

ej bRenmove() Unspecified Yes

Business method No Yes

Session Synchronization

5-10

A stateful session bean using contai ner-managed transactions can implement the

j avax. ej b. Sessi onSynchr oni zat i on interface to provide transaction
synchronization notifications. In addition, all methods on the stateful session bean
must support one of the following transaction attributes: REQUI RES_NEW MANDATORY

or REQUI RED. For more information about the

j avax. ej b. Sessi onSynchr oni zat i on interface, see Section 6.5.3 in the EJB

Specification 2.0.

Programming WebL ogic JTA



Synchronization During Transactions

Synchronization During Transactions

Setting

If a bean implements Sessi onSynchr oni zat i on, the WebL ogic Server EJB
container will typically make the following callbacks to the bean during transaction
commit time:

m afterBegin()
m  bef oreConpl etion()
m afterConpl etion()

The EJB container can call other beans or involve additional XA resourcesin the
bef or eConpl et i on method. The number of callsislimited by the

bef or eConpl eti onl terati onLi mi t attribute. This attribute specifies how many
cycles of callbacks are processed before the transaction isrolled back. A
synchronization cycle can occur when aregistered object receives a

bef or eConpl et i on callback and then enlists additional resources or causes a
previously synchronized object to be reregistered. The iteration limit ensures that
synchronization cycles do not run indefinitely.

Transaction Timeouts

Bean providers can specify the timeout period for transactions in EJB applications. If
the duration of atransaction exceeds the specified timeout setting, then the Transaction
Servicerolls back the transaction automatically.

Note: Youmust set thetimout beforeyoubegi n() thetransaction. Setting atimeout
does not affect the current transaction. Thisis different from earlier versions
of WebL ogic Server, in which timeouts affected the current transaction.

Timeouts are specified according to the transaction type:

m Container-managed transactions. The Bean Provider configures the
trans-ti neout - seconds attributein thewebl ogi c-ej b-j ar. xn deployment
descriptor. For more information, see the Administration Guide.

Programming WebL ogic JTA 511



5 Transactionsin EJB Applications

m  The Bean Provider should configure the trans-timeout-seconds attribute in the
weblogic-ejb-jar.xml deplopyment descriptor.

m Bean-managed transactions. An application calls the
User Transact i on. set Tr ansact i onTi meout method.

Handling Exceptions in EJB Transactions

WebL ogic Server EJB applications need to catch and handle specific exceptions
thrown during transactions. For detailed information about handling exceptions, see
Chapter 17, “Exception Handling,” in the EJB Specification 2.0 published by Sun
Microsystems, Inc.

For more information about how exceptions are thrown by business methodsin EJB
transactions, see the following tablesin Section 17.3: Table 12 (for
container-managed transactions) and Table 13 (for bean-managed transactions).

For aclient’s view of exceptions, see Section 17.4, particularly Section 12.4.1
(application exceptions), Section 17.4.2 (j ava. r ni . Renot eExcept i on),

Section 17.4.2.1(j avax. t ransact i on. Transact i onRol | edBackExcepti on),and
Section 17.4.2.2 (j avax. t ransact i on. Tr ansact i onRequi r edExcept i on).

5-12  Programming WebL ogic JTA



CHAPTER

© Transactions in RM|
Applications

The following sections provide guidelines and additional references for using
transactions in RMI applications that run under BEA WebL ogic Server:

m Before You Begin
m General Guidelines

Before You Begin

Before you begin, read Introducing Transactions, particularly the following topics:
m Introducing Transactionsin WebL ogic Server RMI Applications
m  Transactions Sample RMI Code

For more information about RM1 applications, see Programming WeblL ogic RMI and
RMI/I1OP.

General Guidelines

The following general guidelines apply when implementing transactionsin RMI
applications for WebL ogic Server:

Programming WebL ogic JTA 6-1



© Transactionsin RMI Applications

6-2

m  WebLogic Server allows for flat transactions only. Transactions cannot be

nested.

Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

For RMI applications, callback objects are not recommended for usein
transactions because they are not subject to WebL ogic Server administration. For
more information about callback objects, see Programming WebLogic RMI and
RMI/I1OP.

In RMI applications, an RMI client can initiate a transaction, but all transaction
processing must occur on server objects or remote objects hosted by WebL ogic
Server. Remote objects hosted on aclient VM cannot participate in the
transaction processing.

Asawork-around, you can suspend the transaction before making acall to a
remote object on a client VM, and then resume the transaction after the remote
operation returns.

For general guidelines about the WebL ogic Server Transaction Service, see
“Capabilities and Limitations.”

Programming WebL ogic JTA



CHAPTER

{ Using Third-Party JDBC

XA Drivers with
WebLogic Server

The following sections describe how to use JDBC XA driversin WebL ogic Server
transactions:

m  Overview of Third-Party XA Drivers

m Third-Party Driver Configuration and Performance Requirements

Overview of Third-Party XA Drivers

This section provides an overview to using third-party JDBC two-tier drivers with
WebL ogic Server in distributed transactions. These drivers provide connectivity
between WebL ogic Server and the DBMS. Driversused in distributed transactions are
designated by the driver namefollowed by /XA; for example, Oracle Thin/XA Driver.

Table of Third-Party XA Drivers

The following table summarizes known functionality of these third-party JDBC/XA
drivers when used with WebL ogic Server 6.1:

Programming WebL ogic JTA 7-3



[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

Table 7-1 Two-Tier JDBC/XA Drivers

Driver/Database Comments
Version

Type 2 XA Drivers(native .dll)

IBM DB2 See“Using DB2 7.2/XA Driver” on page
m Veson7.2 13
m  Patform: NT

Type 4 XA Drivers (all-Java)

Oracle Thin Driver XA | See“Using Oracle Thin 8.1.7/XA Driver” on
m Driver version8.1.7 | Page7-5.
m Database version

8.1.7
Sybase jConnect/XA See “Using Sybase jConnect 5.2.1/XA
® Verson5.2.1 Driver” on page 7-8.
m  Adaptive Server
Enterprise 12.0
Cloudscape See “ Software Requirements for the
= Veson35.1 Cloudscape 3.5.1/XA Driver” on page 7-11.

Third-Party Driver Configuration and
Performance Requirements

Here are requirements and guidelines for using specific third-party X/A drivers with
with WebL ogic Server.

7-4 Programming WebL ogic JTA



Third-Party Driver Configuration and Performance Requirements

Note: You may need to set additional connection pool properties when using
third-party drivers not listed here. See Additional XA Connection Pool
Propertiesin the Administration Guide at
http://e-docs. bea. coml W s/ docs61/ adm ngui de/j dbc. ht m #addxa

props.

Using Oracle Thin 8.1.7/XA Driver

Thefollowing sections provideinformation for using the Type4 Oracle Thin 8.1.7/XA
Driver with WebL ogic Server 6.1.
Software Requirements for the Oracle Thin 8.1.7/XA Driver

The Oracle Thin 8.1.7/XA Driver requires the following:
m JDK 1.2.x

m Oracle 8.1.7 server in order to have XA functionality (limitation does not apply
for non-XA usage)

Known Oracle Thin 8.1.7/XA Issues

These are the known issues and BEA workarounds::

Table 7-2 Oracle Thin Driver Known |ssues and Wor karounds

Description Oracle = Comments/Workarounds for
Bug WebL ogic Server 6.1

ORA-01002 - Fetch out of sequence exception. — Asaworkaround, set the statement fetch size
Iterating result set after to be at least the result set size. Thisimplies
XAResource.end(TM SUSPEND) and that the Oracle Thin 8.1.7 Driver cannot be
XAResource.start(TMRESUME) resultsin used on the client side or that the bean cannot
ORA-01002 keep result sets open across method

invocations, unless this workaround is used.
XAResource.end(TM SUSPEND) followed by 1527725  WebL ogic Server has provided an
XAResource.end(TM SUCCESS) gives internal workaround for this bug.
XAER_RMERR.

Programming WebL ogic JTA 7-5


http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops

[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

Table 7-2 Oracle Thin Driver Known I ssues and Wor karounds

Description Oracle Comments/Wor kar ounds for
Bug WebL ogic Server 6.1
Driver hangs or gives XAER_RMERR for 1569235  WebL ogic Server has provided an

multi-threaded XA usage.

internal workaround for this bug.

Doesnot support update with no global transaction.
If thereis no global transaction when an update is
attempted, Oracle will start alocal transaction
implicitly to perform the update, and subsequent
reuse of the same XA connection for global
transaction will resultin XAER_RMERR.

Moreover, if application attempts to commit the
local transaction via either setting auto commit to
true or calling Connection.commit() explicitly,
Oracle XA driver returns “ SQL Exception: Use
explicit XA call.”

Applications should always ensure that
thereisavalid global transaction context
when using the XA driver for update.
That is, ensure that bean methods have
transaction attributes Required,
RequiresNew, or Mandatory.

XAResource.recover repeatedly returns the same
set of in-doubt Xids irrespective of the input flag.
Accordingtothe XA spec, the Transaction Manager
should initially call X AResource.recover with
TMSTARTRSCAN and then call
XAResource.recover with TMNOFLAGS
repeatedly until no Xids arereturned. This Oracle
bug could lead to infinite recursion and subsequent
running out of Oracle cursors with error
“ORA-01000: maximum open cursors exceeded.”

Weblogic Server provides an internal
workaround for thisissue.

Set the Environment for the Oracle Thin 8.1.7/XA Driver

Set the environment as follows:

Enable the database server for XA

m Logon to sglplus as system user, e.g. sql pl us
sys/ CHANGE_ON_| NSTALL@DATABASE ALl AS NAMVE>

m Execute the sgl: grant select on DBA_PENDI NG_TRANSACTI ONS to publ i ¢

7-6 Programming WebL ogic JTA



Third-Party Driver Configuration and Performance Requirements

If the above steps are not performed on the database server, normal XA database
queries and updates may work fine. However, when the Weblogic Server Transaction
Manager performs recovery on are-boot after crash, recover for the Oracle resource
will fail with XAER_RVERR.

Oracle Thin 8.1.7/XA Driver Configuration Properties

The following table contains sample code for configuring a Connection Pool

Oracle Thin 8.1.7/XA Driver: Connection Pool Configuration

Property Name Property Value

Name j t aXAPool

Targets nyserver, serverl

URL jdbc: oracl e: thin: @aybridge: 1521: bay817
DriverClassname oracl e.jdbc. xa. client. O acl eXADat aSour ce
Initial Capacity 1

MaxCapacity 20

Capacitylncrement 2

Properties user =scot t; passwor d=t i ger

The following table contains sample code for configuring a TxDataSource:

Table 7-3 Oracle Thin 8.1.7/XA Driver: TxDataSource Configuration

Property Name Property Value
Name j t aXADS

Targets nyserver, serverl
JINDIName j t aXADS

PoolName j t aXAPool

Programming WebL ogic JTA 7-7



[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

Using Sybase jConnect 5.2.1/XA Driver

The following sections provide important configuration information and performance
issues when using the Sybase jConnect Driver 5.2.1/XA Driver.
Known Sybase jConnect 5.2.1/XA Issues

These are the known issues and BEA workarounds:

Table 7-4 SybasejConnect 5.2.1 Known Issuesand Wor karounds

Description Sybase Comments/Workarounds for WebL ogic
Bug Server 6.1
When calling setAutoCommit(true)the 10726192 No workaround. Vendor fix required.

following exception is thrown:

java. sql . SQLException: JZ0S3:
The inherited nethod set Auto-
Commit (true) cannot be used in
this subcl ass.

When driver used in distributed 10727617  WebLogic Server has provided an internal
transactions, calling workaround for this bug:
;(QIR(;%VS\/;J rbce. end( TMSUSPEND) Set the connection pool property
Y XAENdOnl yOnce="true”.
XAResour ce. end( TMBUCCESS) results

in XAER_RVERR. Vendor fix has been requested.

Set the Environment for the Sybase jConnect/XA Driver

Follow these instructions to setup your environment:

B set CLASSPATH=. ; “8YBASE_| NSTALL_DI R%
\ ] CONNECT- 5_2\cl asses\j conn2.jar

where SYBASE | NSTALL_DI Risthe directory where you installed the Sybase
driver.

m Install license for Distributed Transaction Management.

m Runsp_configure “enabl e DTM, 1 to enable transactions.

7-8 Programming WebL ogic JTA



Third-Party Driver Configuration and Performance Requirements

m Runsp_configure “enabl e xact coordination”, 1.

m Rungrant roledt m r ol e to <USER_NAME>.

m Copy the sample xa_confi g file from the
SYBASE_| NSTALL\ OCS- 12_0\ sanpl e\ xa- dt msubdirectory up three levelsto
SYBASE | NSTALL, where SYBASE | NSTALL is the directory of your Sybase
server installation. For example:

$ SYBASE_ | NSTALL\ xa_config

m Editthexa_config file.Inthefirst [xa] section, modify the sample server
name to reflect the correct server name.

To prevent deadlocks when running transactions, enable row level lock by default:

m Runsp_configure “lock schene”, 0, datarows

Connection Pools for the Sybase jConnect 5.2.1/XA Driver

The following table contains sample code for configuring a Connection Pool:

Table 7-5 SybasejConnect 5.2.1/XA Driver: Sample Connection Pool

Configuration

Property Name Property Value
Name j t aXAPool
Targets nyserver, server1l

DriverClassname

com sybase. j dbc2. j dbc. SybXADat aSour ce

Properties

User =dbuser;

Dat abaseNane=dbnane;

Server Nane=ser ver _nane_or _| P_addr ess;

Por t Nunber =ser ver Por t Nunber ;

Net wor kPr ot ocol =Tds;

resour ceManager Nane=Lrm nane_i n_xa_confi g;
resour ceManager Type=2

Password

dbpasswor d

Initial Capacity

1

Programming WebL ogic JTA 7-9



[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

Table 7-5 SybasejConnect 5.2.1/XA Driver: Sample Connection Pool
Configuration

Property Name Property Value
MaxCapacity 10
Capacitylncrement 1

Where Lr m nane refersto the Logical Resource Manager name.

Note:  You must also add KeepXAConnTi | | TxConpl et e="tr ue" to the connection
pool tag intheconfi g. xr file. See Additional XA Connection Pool
Propertiesin the Administration Guide at
http://e-docs. bea. comf wl s/ docs61/ adm ngui de/j dbc. ht m #addxa

pr ops.
The following table contains sample code for configuring a TxDataSource:

Table 7-6 Sybase jConnect 5.2.1/XA Driver: TxDataSource Configuration

Property Name Property Value
Name j t aXADS
Targets serverl
JINDIName j t aXADS
PoolName j t aXAPool

Configuration Properties for Java Client

7-10

Set the following configuration properties when running a Java client.

Table 7-7 Sybase jConnect 5.2.1/XA Driver: Java Client Connection Properties

Property Name Property Value
ds. set Passwor d <passwor d>
ds. set User <user nanme>

Programming WebL ogic JTA


http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops

Third-Party Driver Configuration and Performance Requirements

Table 7-7 SybasejConnect 5.2.1/XA Driver: Java Client Connection Properties

Property Name Property Value
ds. set Net wor kPr ot ocol Tds
ds. set Dat abaseNane <dat abase- nane>

ds. set Resour ceManager Name <Lrmname in xa_config file>

ds. set Resour ceManager Type 2

ds. set Ser ver Nane <machi ne host nane>

ds. set Port Nunber 4100

Using Cloudscape 3.5.1/XA Driver

Thefollowing sections provide information for using the Type 2 Cloudscape 3.5.1/XA
Driver with WebL ogic Server 6.1.

Software Requirements for the Cloudscape 3.5.1/XA Driver

The Cloudscape 3.5.1/XA Driver supports JDK 1.3 RC1. For more information, see
http://www.cloudscape.com/support/techinfo.jsp.

Known Cloudscape 3.5.1/XA Driver Issues

The following table contains known issues:

Table 7-8 Cloudscape 3.5.1/XA Driver Known |ssues

Description Cloudscape Comments/Workarounds for WebL ogic
Enhancement Server 6.1
Request

No known issues.

Programming WebL ogic JTA 7-11



[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

Set the Environment for the Cloudscape 3.5.1/XA Driver

Set the following environment variables (assuming NT syntax):

m  sSet CLOUDSCAPE_| NSTALL=<directory where Cl oudscape is installed>

B Set CLASSPATH=. ; %l oudscape_i nstal 1 %1 i b\ cl oudscape.j ar;
%l oudscape_install%1lib\cloudsync.jar;
%l oudscape_install % lib\client.jar; %l oudscape_install %1 i b\
tool s.jar; c:\webl ogi c\ dev\ src\ 3rdpart y\webl ogi caux. j ar

Note: Notethat thewebl ogi caux. j ar isfor the javax classes only.

Cloudscape 3.5.1/XA Driver Configuration Properties

7-12

The following table contains sample code for configuring a Connection Pool:

Table 7-9 Cloudscape 3.5.1/XA Driver: Connection Pool Configuration

Property Name Property Value
Name j t aXAPool
Targets nyserver, serverl

DriverClassname

COM cl oudscape. cor e. XaDat aSour ce

Initial Capacity 1
Max Capacity 10
Capacity Increment 2

Properties dat abaseName=Cl oudscapeDB;
cr eat eDat abase=create

Supports Local True

Transaction

Programming WebL ogic JTA



Third-Party Driver Configuration and Performance Requirements

The following table contains sample code for configuring a TxDataSource:

Table 7-10 Cloudscape 3.5.1/XA Driver: TxDataSource Configuration

Property Name Property Value
Name j t aXADS

Targets nyserver, serverl
INDIName j t axXADS

PoolName j t aXAPool

Using DB2 7.2/XA Driver

The following sections describe how to set your environment to use the Type2 DB2
7.2/XA Driver with WebL ogic Server 6.1.

Set the Environment for the DB2 7.2/XA Driver

Set your environment as follows:

m Execute the batch file usej dbc2. bat located inthe <db2>/j aval2 directory to
extract the correct version of the db2j ava. zi p fileand move it to the proper
location. This enables the JDBC2.0 features of the driver. Make sure that no
DB2 processes are running before executing this batch file.

®m Include <db2>/ j ava/ db2j ava. zi p inthe CLASSPATH environment variable.
m [nclude <db2>/ bi n in PATH environment variable.

Where <db2> represents the directory in which the DB2 server isinstalled.

Limitation and Restrictions using DB2 as an XAResource

A transaction cannot be initiated with a resource that is already associated with a
suspended transaction. In this case, a

javax.transaction. | nval i dTransacti onExcept i on (attempt to resume an
inactive transaction) is thrown. If in between suspend and r esune, an intermediate

Programming WebLogic JTA ~ 7-13



[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

transaction enlists the same resource as used in the suspended transaction, a
j avax. transaction.invalidtransation exceptionisthrown. If adifferent
resource is used inside the intermediate transaction, it works fine.

DB2 7.2/XA Driver Configuration Properties

The following table contains sample code for configuring a Connection Pool:

Table 7-11 DB2 7.2/XA Driver: Connection Pool Configuration

Property Name Property Value

Name j t aXAPool

Targets serverl

DriverClassname COM i bm db2. j dbc. DB2XADat aSour ce
Initial Capacity 1

MaxCapacity 10

Capacityl ncrement 2

Properties user =db2admi n;

passwor d=db2admi n;
Dat abaseNanme=NEWDEMO

Note:  You must also add KeepXAConnTi | | TxConpl et e="t r ue" to the connection
pool tag in theconfi g. xn file. See Additional XA Connection Pool
Propertiesin the Administration Guide at
http://e-docs. bea. comf wl s/ docs61/ adm ngui de/j dbc. ht m #addxa

props.
The following table contains sample code for configuring a TxDataSource:

Table 7-12 DB2 7.2/XA Driver: TxDataSource Configuration

Property Name Property Value
Name j t aXADS
Targets serverl

7-14  Programming WebL ogic JTA


http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops

Third-Party Driver Configuration and Performance Requirements

Table 7-12 DB2 7.2/XA Driver: TxDataSource Configuration

Property Name Property Value
IJNDIName j t axXADS
PoolName j t aXAPool

Other Third-Party XA Drivers

To use other third-party XA-compliant JDBC drivers, you must include the path to the
driver classlibrariesin your CLASSPATH.

Programming WebLogic JTA  7-15



[ uUs ng Third-Party JDBC XA Driverswith WebLogic Server

7-16  Programming WebL ogic JTA



CHAPTER

8

WebLogic Server XA

Resource Provider
Requirements

BEA WebL ogic Server supports the Java Transaction APl (JTA) and includes a
Transaction M anager that coordinates distributed transactionswith any X A-compliant
resource. Thefollowing sections describe the requirementsfor X A resourcesto beable
to participate in distributed transactionsin WebL ogic Server. Thisinformation is
written for third-party application integrators.

For information on JTA, see the Java Transaction APl (JTA) Specification version
1.0.1, published by Sun Microsystems, Inc.

m Overview of XA Resource Provider Requirements
m  Registering with the Transaction Manager
m XAResource Enlistment and Delistment

m Optiona weblogic.transaction.X AResource Interface

XA Resource Provider Requirements 8-1



8 WebLogic Server XA Resource Provider Requirements

Overview of XA Resource Provider
Requirements

An XA resource provider must support the JTA XAResour ce interface with no thread
affinity limitations to be able to participate in distributed transactions in WebLogic
Server.

For non-JDBC resources, the resource provider also needs to do the following:

m Register the XA resource with the WebL ogic Server transaction manager on
startup

m Optionally enlist and delist the XA resource with the WebL ogic Server
transaction manager before and after resource usage

m Optionally implement thewebl ogi c. t ransact i on. XAResour ce interface

Registering with the Transaction Manager

The JTA specification does not define how to bootstrap an X A resourceinto aserver's
transaction manager. WebL ogic Server defines aregistration API for this purpose.

XA resource providers must perform the following stepsto register their XAResour ce
implementation with the local transaction manager on startup:

1. Obtain the JTA transaction manager using JNDI or the TxHel per interface. The
following code shows how to use the TxHel per interface to obtain the current
transaction manager:

i mport javax.transaction. xa. XAResour ce;
i mport javax.transaction. Transacti onManager;
i mport webl ogi c.transacti on. TxHel per;

Transacti onManager tm = TxHel per. get Transacti onManager () ;
2. Register the XA resource with the JTA transaction manager

XAResource res = ... // Resource provider’'s inplenmentation of XAResource

8-2 XA Resource Provider Requirements



XAResource Enlistment and Delistment

tmregi sterStati cResource(nane, res); // Static enlistnent resource
tmregi sterDynam cResource(nane, res2); // Dynamic enlistment resource

The resource provider supplies its name and implementation using either the
static or dynamic registration method. See “ X AResource Enlistment and
Delistment” for information on static and dynamic enlistment.

The resource name determines the transaction branch. If the resource supports
different instances, each resource instance should use a different name. This
name is also the resource name that is used in administration.

Note that it isimportant that resource providers register the XA resource with
the transaction manager before enlisting the XA resource for any transactional
work.

3. Unregister the XA resource with the JTA transaction manager

XAResource res = ...// Resource provider’s inplenmentation of
XAResour ce

t m unr egi st er Resour ce( nane) ;

The resource provider associated with this name on the current server is
unregistered. If there are any transactions outstanding for this resource,
unregistering a resource might result in rolled back transactions or transaction
branch abandonment.

XAResource Enlistment and Delistment

In the JTA architecture, the application server plays the role of transactional resource
manager, including enlisting and delisting resources implicitly with the transaction
manager when necessary.

WebL ogic Server supportstwo modes of XA resources enlistment: static and dynamic.

XA Resource Provider Requirements 8-3



8 WebLogic Server XA Resource Provider Requirements

Static Enlistment and Delistment

If the XA resources are registered using static enlistment, WebL ogic Server playsthe
role of application server and performsenlistment and delistment implicitly for the XA
resource provider.

In particular, WebL ogic Server enlists resources on transaction begin and resume.
Note that a transaction isimplicitly resumed upon the start of method calls for
bean-managed transaction beans that have transactions previously associated with the
beans, and also when an outgoing call to another server returns.

Similarly, WebL ogic Server delists resources on transaction suspend, commit and
rollback. Note that a transaction isimplicitly suspended when making calls to another
server, and also when method calls return to the client. The delist flag used is either
obtained from the get Del i st Fl ag() method if the resource provider supportsit, or
is TMSUSPEND if the resource provider does not support the get Del i st Fl ag()
method. Please refer to “ Optional weblogic.transaction.X AResource Interface” for
more details about the get Del i st Fl ag() method.

Dynamic Enlistment and Delistment

8-4

XA resource providers can also perform enlistment and delistment themselves by
registering as using dynamic enlistment. In this case, the XA resource provider itself
playstherole of JTA application server partially in performing enlistment and
delistment. The advantage of dynamic enlistment is that resource provider can
optionally perform lazy enlistment to avoid enlisting resources unnecessarily.

To dynamically enlist the XA resource, the XA resource provider does the following:

i mport javax.transaction. Transacti on;

/] Obtain the current transaction via JNDI or TxHel per
Transaction tx = TxHel per. get Transaction();

tx. enlistResource(res);

Resource enlistment and delistment are potentially expensive operations. Asan
optimization, the WebL ogic Server transaction manager ignores duplicate enlistments
of the same resource in the same thread.

XA Resource Provider Requirements



Optional weblogic.transaction.XAResource Interface

To dynamically delist the XA resource, the XA resource provider obtains the
transaction as above, and calls the delistResource method, supplying the delist flag as
well.

t x. del i st Resource(res, flag);

Note that for resourcesthat are registered as dynamically enlisted, the enlistment step
is essential. However, the delistment step is optional.

WebL ogic Server transaction manager performs delayed delistment. That is, the
transaction manager will actually call theend() method on XA resource on
transaction suspend and compl etion. The transaction manager obtainsthedelist flagin
the following order:

m |f the resource provider has previoudly delisted the X A resource, then use the
delist flag that the resource provider previously supplied.

m |f the resource provider supports get Del i st Fl ag() method, then obtain the
delist flag by calling the method. See “ Optional
weblogic.transaction.X AResource Interface” for details.

m |f the resource provider supports neither of the above, conservatively use
TMBUSPEND.

Optional weblogic.transaction.XAResource
Interface

For the case of static delistment or omitted dynamic delistment, the WebL ogic Server
JTA transaction manager conservatively delists the XA resources with TMSUSPEND
across method invocations to preserve potentially opened cursors. However, for some
resources, it may hold up more internal resources than delisting with TMBUCCESS. XA
resource provider can override the default delist flag used by WebL ogic Server by
supporting the optional webl ogi c. t ransact i on. XAResour ce interface.

Thewebl ogi c. transacti on. XAResour ce interface supports the following
methods:

package webl ogi c.transacti on;

XA Resource Provider Requirements 8-5



8 WebLogic Server XA Resource Provider Requirements

public interface XAResource extends

j avax. transacti on. xa. XAResource {
int getDelistFlag();

}

If theresource provider supportsit, the WebL ogic Server transaction manager callsthe

get Del i st Fl ag() method to obtainthe delist flag to be used to delist it at transaction
suspend and method end.

8-6 XA Resource Provider Requirements



CHAPTER

O Troubleshooting
Transactions

Thefollowing sections describe troubl eshooting tools and tasks for use in determining
why transactions fail and deciding what actions to take to correct the problem.

m  Overview of Troubleshooting Transactions
m  Troubleshooting Tools

m  Debugging Tips

m Handling Heuristic Completions

m  Transaction System Recovery

Overview of Troubleshooting Transactions

WebL ogic Server includes the ability to monitor currently running transactions and
ensure that adequate information is captured in the case of heuristic completion. It also
providesthe ability to monitor performance of database queries, transactional requests,
and bean methods.

Programming WebL ogic JTA 9-1



9  Troubleshooti ng Transactions

Troubleshooting Tools

WebL ogic Server provides the following aids to transaction troubleshooting:
m Exceptions

m  Transaction identifier

m  Transaction naming and properties

m Transaction status

m  Transaction statistics

m  Transaction monitoring

m Transaction logging

Exceptions

9-2

WebL ogic JTA supports all standard JTA exceptions. For more information about
standard JTA exceptions, see the Javadoc for thej avax. t r ansact i on and
j avax. transacti on. xa package APIs.

In addition to the standard JTA exceptions, WebL ogic Server provides the class
webl ogi c. transacti on. Rol | backExcept i on. This class extends

j avax. transacti on. Rol | backExcept i on and preserves the original reason for a
rollback. Before ralling a transaction back, or before setting ittor ol | backonl y, an
application can supply areason for the rollback. All rollbacks triggered inside the
transaction service set the reason (for example, timeouts, XA errors, unchecked
exceptionsin bef or eConpl et i on, or inability to contact the transaction manager).
Once set, the reason cannot be overwritten.

Programming WebL ogic JTA


http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html

Troubleshooting Tools

Transaction Identifier

The Transaction Service assignsatransaction identifier (Xi d) to eachtransaction. This
ID can be used to isolate information about a specific transactioninalogfile. You can
retrieve the transaction identifier using the get XI D method in the

webl ogi c. transacti on. Transact i on interface. For detailed information on
methods for getting the transaction identifier, see the

webl ogi c. transacti on. Transact i on Javadoc.

Transaction Name and Properties

WebL ogic JTA provides extensionstoj avax. t ransacti on. Transact i on that
support transaction naming and user-defined properties. These extensionsareincluded
inthewebl ogi c. transacti on. Transact i on interface.

The transaction name indicates a type of transaction (for example, funds transfer or
ticket purchase) and should not be confused with the transaction 1D, which identifies
a unigue transaction on a server. The transaction name makes it easier to identify a
transaction typein the context of an exception or alog file.

User-defined properties are key/value pairs, where the key is a string identifying the
property and the value is the current value assigned to the property. Transaction
property values must be objects that implement the Ser i al i zabl e interface. You
manage properties in your application using the set and get methods defined in the
webl ogi c. transacti on. Transact i on interface. Once set, properties stay with a
transaction during its entire lifetime and are passed between machines as the
transaction travel sthrough the system. Properties are saved in the transaction log, and
arerestored during crash recovery processing. |f atransaction property is set more
than once, the latest value is retained.

For detailed information on methods for setting and getting the transaction name and
transaction properties, seethe webl ogi c. t ransact i on. Tr ansact i on Javadoc.

Programming WebL ogic JTA 9-3



9  Troubleshooti ng Transactions

Transaction Status

The Java Transaction API provides transaction status codes using the

j avax. transacti on. St at us class. Usetheget St at usAsSt ri ng method in
webl ogi c. transacti on. Transact i on to return the status of the transaction asa
string. The string contains the major state as specified in

j avax. transacti on. St at us with an additional minor state (such as! oggi ng or

pr e- prepari ng).

Transaction Statistics

Transaction statistics are provided for all transactions handled by the transaction
manager on a server. These statistics include the number of total transactions,
transactions with a specific outcome (such as committed, rolled back, or heuristic
completion), rolled back transactions by reason, and the total time that transactions
were active. For detailed information on transaction statistics, see the Administration
Console Online Help.

Transaction Monitoring

9-4

Y ou can monitor transactionsin progress using the WebL ogic Console. In addition to
displaying statistics, as described in “ Transaction Statistics,” you can display the
following:

m transactions by name, including rollback and time active information

m transactions by resource, including statistics on total, committed, and rolled back
transactions

m all active transactions, including information on status, servers, resources,
properties, and the transaction identifier

Programming WebL ogic JTA



Troubleshooting Tools

Transaction Log

Each server has atransaction log which records information about the propagation of
atransaction through the system. The transaction log is written to persistent storage
and assists the server in recovering from system crashes and network failures. Y ou
cannot directly access the transaction log; the fileisin abinary format.

Thetransaction log consists of multiplefiles. Each fileis subject to garbage collection;
when none of therecordsin atransaction log file are needed, the system deletesthefile
and returns the disk space to the file system. In addition, the system creates a new
transaction log file if the previous log file becomes too large.

Transaction log files are uniquely named using a pathname prefix, the server name, a
four-digit numeric suffix, and afile extension. Specify avalue for the

Transact i onLogFi | ePref i x server attribute using the WebL ogic Console to set the
pathname prefix. The Tr ansact i onLogFi | ePr ef i x attribute should be set so that
transaction log files are created on a highly available file system, for example, on a
RAID device.

On aUNIX system with a server name of websvr , you might see the following log
files:
[ usr 7/ appl ogl/ websvr0000. t 1 og

/usr 7/ appl ogl/ websvr0001.t1| og
[ usr 7/ appl ogl/ websvr0002.t1 og

Similarly, on aWindows NT system, you might see the following log files:

C. / webl ogi c/ | ogA/ websvr 0000.t| og
C. / webl ogi c/ | ogA/ websvr0001.t1 og
C. / webl ogi c/ | ogA/ websvr 0002. t 1 og

If you notice alarge number of transaction log files on your system, this may be an
indication of one or more long-running transactions that have not completed. Thiscan
be caused by resource manager failures or transactions with especially large timeout
values.

If the file system containing the transaction log runs out of space, conmi t () throws
Syst enExcept i on, and the transaction manager places amessage in the system error
log. No transactions are committed until more spaceis available.

When migrating a server to another machine, move the transaction log files as well,
keeping all the log files for a server together.

Programming WebL ogic JTA 9-5



9  Troubleshooti ng Transactions

Heuristic Log Files

When importing transactions from a foreign transaction manager into WebL ogic
Server, the WebL ogic Server transaction manager acts as an XA resource coordinated
by the foreign transaction manager. In rare catastrophic situations, such as after the
transaction abandon timeout expires or if the XA resources participating in the
WebL ogic Server imported transaction throw heuristic exceptions, the WebL ogic
Server transaction manager will make a heuristic decision. That is, the WebL ogic
Server transaction manager will decide to commit or roll back the transaction without
input from the foreign transaction manager. If the WebL ogic Server transaction
manager makes a heuristic decision, it stores the information of the heuristic decision
in the heuristic log files until the foreign transaction manager tells it to forget the
transaction.

Heuristic log files are stored with transaction log files and look similar to transaction
log fileswith . heur beforethe. t1 og extension. They use the following format:

<TLOG fil e_prefix>\ <server_name><4-di git nunber>. heur.tl og

On aUNIX system with a server name of websvr , you might see the following
heurigtic log files:

[ usr 7/ appl ogl/ websvr 0000. heur .t og
[ usr 7/ appl ogl/ websvr 0001. heur .t og
[ usr 7/ appl ogl/ websvr 0002. heur.t | og

Similarly, on a Windows system, you might see the following heuristic log files:

C: \ webl ogi c\ | ogA\ websvr 0000. heur.tl og
C: \ webl ogi c\ | ogA\ websvr0001. heur.tl og
C: \ webl ogi c\ | ogA\ websvr 0002. heur .t og

Debugging Tips

9-6

Use the naming properties of transactionsto isolate and identify problem transactions.

Debugging transactions may require fault isolation to be performed between
WebLogic JTA and the participating resources.

Programming WebL ogic JTA



Handling Heuristic Completions

Handling Heuristic Completions

An heuristic completion (or heuristic decision) occurs when aresource makes a
unilateral decision during the completion stage of a distributed transaction to commit
or rollback updates. This can leave distributed datain an indeterminate state. Network
failures or transaction timeouts are possible causes for heuristic completion. In the
event of an heuristic completion, one of the following heuristic outcome exceptions
may be thrown:;

Heur i sti cRol | back - one resource participating in a transaction decided to
autonomoudly rollback its work, even though it agreed to prepare itself and wait
for acommit decision. If the Transaction Manager decided to commit the
transaction, the resource's heuristic rollback decision was incorrect, and might
lead to an inconsistent outcome since other branches of the transaction were
committed.

Heur i sti cConmit - one resource participating in atransaction decided to
autonomously commit its work, even though it agreed to prepare itself and wait
for acommit decision. If the Transaction Manager decided to rollback the
transaction, the resource's heuristic commit decision was incorrect, and might
lead to an inconsistent outcome since other branches of the transaction were
rolled back.

Heuri sticM xed - the Transaction Manager is aware that a transaction resulted
in a mixed outcome, where some partici pating resources committed and some
rolled back. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

Heur i sti cHazar d - the Transaction Manager is aware that a transaction might
have resulted in a mixed outcome, where some participating resources
committed and some rolled back. But system or resource failures make it
impossible to know for sure whether a Heuristic Mixed outcome definitely
occurred. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

When an heuristic completion occurs, a message is written to the server log. Refer to
your database vendor documentation for instructions on resolving heuristic
completions.

Programming WebL ogic JTA 9-7



9  Troubleshooti ng Transactions

Some resource managers save context information for heuristic completions. This
information can be helpful in resolving resource manager datainconsistencies. If the
For get Heur i sti cs attributeis selected (set to true) on the JTA pand of the

WebL ogic Console, thisinformation is removed after an heuristic completion. When
using a resource manager that saves context information, you may want to set the
For get Heur i st i cs attribute to false.

Transaction System Recovery

9-8

The WebL ogic Server transaction manager isdesigned to recover from system crashes
with minimal user intervention. A prepared transaction is not |eft unresolved in the
resource manager without either acommit or rollback action from the transaction
manager, even after multiple crashes.

Y ou can choose to abandon transactions after a specified amount of time. Using the
AbandonTi meout Seconds attribute, you can set the maximum time, in seconds, that
atransaction coordinator will persist in attempting to complete a transaction. The
default value is 86400 seconds, or 24 hours. After the abandon transaction timer
expires, no further attempt is made to resolve the transaction with any resources that
are unavailable or unable to acknowledge the transaction outcome.

The transaction manager has the following responsibilities after a system crash:

m  Maintain consistency across resources

If atransaction is committed before a crash, and XAResour ce. recover ()
returns the transaction 1D, the transaction manager consistently calls

XAResour ce. conmi t () . If atransaction is not committed before a crash, and
XAResour ce. recover () returnsitstransaction ID, the transaction manager
consistently calls XAResour ce. rol | back() . In other words, a transaction
manager crash by itself cannot cause a mixed heuristic completion where some
branches are committed and some are rolled back.

m Resolve prepared transactions

Once the transaction manager has prepared any transaction with a resource
manager, it must call XAResour ce. recover () during crash recovery for that
resource manager and eventually resolve (by calling the commi t (),

rol | back(), or f or get () method) all transaction IDsreturned by r ecover ().

Programming WebL ogic JTA



Transaction System Recovery

m Persist in achieving transaction resolution

If aresource manager crashes, the transaction manager must eventually call
conmi t () orrollback() for each prepared transaction until it gets a successful
return from conmmi t () or rol | back() . The attempts to resolve the transaction
and can be limited by setting the AbandonTi neout Seconds configuration
attribute.

Programming WebL ogic JTA 9-9



9  Troubleshooti ng Transactions

m  Report heuristic completions

If the resource manager reports a heuristic commit or heuristic rollback, thisis
recorded in the server log by the transaction manager, and f or get () caled if
the Forget Heuri sti cs configuration attributeis enabled. If the For get
Heuri sti cs configuration attribute is not enabled, refer to your database
vendor’s documentation for information in resolving heuristic completions.

9-10  Programming WebL ogic JTA



CHAPTER

A Glossary of Terms

local transaction
Transactionsthat arelocal to asingleresource manager only; for exampleatransaction
that relates to only one database.

distributed transaction

Transactionsthat are demarcated and coordinated by an external Transaction Manager
viathe Two Phase Commit Protocol across multiple resource managers. Also known
as global transactions.

global transactions

See distributed transactions.

transaction branches

Each resource manager’ sinternal unit of work in support of aglobal transactionis part
of exactly onetransaction branch. Each Global Transaction Identifier (GTRID or XID)
that the transaction manager givesto the resource manager identifies both adistributed
transaction and a specific branch.

heuristic decision

An heuristic decision (or heuristic completion) occurs when a resource makes a
unilateral decision during the completion stage of a distributed transaction to commit
or rollback updates. This can leave distributed datain an indeterminate state. Network
failures or transaction timeouts are possible causes for a heuristic decision.

Programming WebLogic JTA  A-11



A Glossary of Terms

HeuristicRollback

Oneresource participating in atransaction decided to autonomously rollback itswork,
even though it agreed to prepare itself and wait for acommit decision. If the
Transaction Manager decided to commit the transaction, the resource's heuristic
rollback decision wasincorrect, and might lead to an inconsistent outcome since other
branches of the transaction were committed.

HeuristicCommit

One resource participating in atransaction decided to autonomously commit its work,
even though it agreed to prepare itself and wait for acommit decision. If the
Transaction Manager decided to rollback the transaction, the resource's heuristic
commit decision was incorrect, and might lead to an inconsistent outcome since other
branches of the transaction were rolled back.

HeuristicMixed

The Transaction Manager is aware that a transaction resulted in a mixed outcome,
where some participating resources committed and some rolled back. The underlying
cause was most likely heuristic rollback or heuristic commit decisions made by one or
more of the participating resources.

HeuristicHazard

The Transaction Manager is aware that a transaction might have resulted in a mixed
outcome, where some participating resources committed and some rolled back. But
system or resource failures make it impossible to know for sure whether a Heuristic
Mixed outcome definitely occurred. The underlying cause was most likely heuristic
rollback or heuristic commit decisions made by one or more of the participating
resources.

A-12  Programming WebL ogic JTA



Index

A

ACID properties 1-1, 3-2

API models, supported 1-2
atomicity (ACID properties) 1-1

B

bean-managed transactions 1-9
transaction attributes 5-5
transaction semantics

stateful session beans 5-9
statel ess session beans 5-10
business transactions, support 1-4

C

client applications
multithreading 3-4
code example
EJB applications 1-12
RMI applications 1-15
committing transactions
EJB applications 1-14
RMI applications 1-17
configuration 2-1
consistency (ACID properties) 1-1
container-managed transactions 1-8
transaction attributes 5-4
transaction semantics 5-6
entity beans 5-8
stateful session beans 5-6

statel ess session beans 5-7
customer support contact information ix

D

delegated commit 3-2
delistment
XAResource 8-3
distributed transactions 8-1
about distributed transactions 1-3
documentation, whereto find it viii
durability (ACID properties) 1-1
dynamic enlistment and delistment
XAResource 8-4

E

EJB applications
bean-managed transactions 1-9
committing transactions 1-14
container-managed transactions 1-8
exceptions 5-12
genera guidelines 5-2
importing packages 1-12
JNDI lookup 1-13
participating in atransaction 5-5
rolling back transactions 1-14
sample code 1-12
session synchronization 5-10
starting transactions 1-14
timeouts 5-11
transaction attributes 5-3

Programming WebL ogic JTA -1



transaction semantics 5-6

transactions overview 1-7
enlistment

XAResource 8-3
entity beans

container-managed transactions

transaction semantics
5-8

exceptions

EJB applications 5-12

F
flat transactions 3-3

G
getDelistFlag 8-5

H

handling exceptions
EJB applications 5-12

I
importing packages

EJB applications 1-12
isolation (ACID properties) 1-1

J

Java Naming Directory Interface (JNDI)
EJB applications 1-13
RMI applications 1-16
Java Transaction APl (JTA) 1-2, 3-1
INDI
registering XAResource 8-2

L
lightweight clients

-2 Programming WebL ogic JTA

about lightweight clients 3-2
logging 2-2

M

Mandatory transaction attribute 5-4
monitoring 2-2
multithreading

clients 3-4

N

nested transactions 3-3
Never transaction attribute 5-4
NotSupported transaction attribute 5-4

0

Open Group XA interface
support for 3-3

P

participating in atransaction 5-5
printing product documentation viii
programming models, supported 1-2

R

Required transaction attribute 5-4
RequiresNew transaction attribute 5-4
resource name 8-2
RMI applications
committing transactions 1-17
general guidelines 6-1
JNDI lookup 1-16
rolling back transactions 1-17
sample code 1-15
starting transactions 1-17
transactions overview 1-10
rolling back transactions
EJB applications 1-14



RMI applications 1-17

S

session synchronization 5-10
setTransactionTimeout method 5-11
starting transactions
EJB applications 1-14
RMI applications 1-17
stateful session beans
bean-managed transactions
transaction semantics
5-9
container-managed transactions
transaction semantics
5-6
statel ess session beans
bean-managed transactions
transaction semantics
5-10
container-managed transactions
transaction semantics
5-7
static enlistment and delistment
XAResource 8-4
statistics 2-2
support
technical ix
Supported transaction attribute 5-4

T

terminating transactions 3-3

TMSUCCESS 8-5

TMSUSPEND 8-5

transaction attributes
bean-managed transactions 5-5

container-managed transactions 5-4

described 5-3
transaction branch 8-2
Transaction Manager

about the Transaction Manager 8-1

registering with 8-2
transaction semantics 5-6
Transaction Service
about the Transaction Service 3-1
capabilities 3-2
clients supported 3-4
features 1-4
general congtraints 3-4
limitations 3-2
transactions
distributed 8-1
EJB applications 1-7
flat transactions 3-3
functional overview 1-7
integrity 3-3
nested transactions 3-3
participating in atransaction 5-5
RMI applications 1-10
termination 3-3
timeouts 5-11
transaction processing 3-3
transaction semantics 5-6
when to use transactions 1-5
trans-timeout-seconds el ement 5-11
two-phase commit protocol (2PC) 1-3
EJB CMP1.15-3
EJB CMP 2.05-3
TxHelper
registering XAResource 8-2

U

unmanaged desktops 3-2
UserTransaction
committing transactions
EJB applications 1-14
RMI applications 1-17
rolling back transactions
EJB applications 1-14
RMI applications 1-17

Programming WebL ogic JTA



sample code 1-12, 1-15
starting transactions
EJB applications 1-14
RMI applications 1-17

X

XA
register XAResource 8-2
resource requirements 8-1
XAResource
about XAResource interface 8-2, 8-5
dynamic enlistment and delistment 8-4
enlistment and delistment 8-3
static enlistment and delistment 8-4

-4 Programming WebL ogic JTA



	About This Document
	1 Introducing Transactions
	ACID Properties of Transactions
	Supported Programming Model
	Supported API Models
	Distributed Transactions and the Two-Phase Commit Protocol
	Support for Business Transactions
	When to Use Transactions
	When Not to Use Transactions
	What Happens During a Transaction
	Introducing Transactions in WebLogic Server EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Introducing Transactions in WebLogic Server RMI Applications

	Transactions Sample Code
	Transactions Sample EJB Code
	Importing Packages
	Using JNDI to Return an Object Reference
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction



	2 Configuring and Managing Transactions
	Configuring Transactions
	Monitoring Transactions
	Logging
	Statistics
	Monitoring

	Adding a Transactional Resource Manager

	3 Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Client-initiated Transactions
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Relationship of the Transaction Service to Transaction Processing
	Multithreaded Transaction Client Support
	General Constraints

	Transaction Scope
	Transaction Service in EJB Applications
	Transaction Service in RMI Applications

	4 Java Transaction API and BEA WebLogic Extensions
	JTA API Overview
	BEA WebLogic Extensions to JTA

	5 Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-Managed Transactions
	Transaction Attributes for Bean-Managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans


	Session Synchronization
	Synchronization During Transactions
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	6 Transactions in RMI Applications
	Before You Begin
	General Guidelines

	7 Using Third-Party JDBC XA Drivers with WebLogic Server
	Overview of Third-Party XA Drivers
	Table of Third-Party XA Drivers

	Third-Party Driver Configuration and Performance Requirements
	Using Oracle Thin 8.1.7/XA Driver
	Software Requirements for the Oracle Thin 8.1.7/XA Driver
	Known Oracle Thin 8.1.7/XA Issues
	Oracle Thin 8.1.7/XA Driver Configuration Properties

	Using Sybase jConnect 5.2.1/XA Driver
	Known Sybase jConnect 5.2.1/XA Issues
	Set the Environment for the Sybase jConnect/XA Driver
	Connection Pools for the Sybase jConnect 5.2.1/XA Driver
	Configuration Properties for Java Client

	Using Cloudscape 3.5.1/XA Driver
	Software Requirements for the Cloudscape 3.5.1/XA Driver
	Known Cloudscape 3.5.1/XA Driver Issues
	Set the Environment for the Cloudscape 3.5.1/XA Driver
	Cloudscape 3.5.1/XA Driver Configuration Properties

	Using DB2 7.2/XA Driver
	Set the Environment for the DB2 7.2/XA Driver
	Limitation and Restrictions using DB2 as an XAResource
	DB2 7.2/XA Driver Configuration Properties

	Other Third-Party XA Drivers


	8 WebLogic Server XA Resource Provider Requirements
	Overview of XA Resource Provider Requirements
	Registering with the Transaction Manager
	XAResource Enlistment and Delistment
	Static Enlistment and Delistment
	Dynamic Enlistment and Delistment

	Optional weblogic.transaction.XAResource Interface

	9 Troubleshooting Transactions
	Overview of Troubleshooting Transactions
	Troubleshooting Tools
	Exceptions
	Transaction Identifier
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	Transaction Monitoring
	Transaction Log
	Heuristic Log Files


	Debugging Tips
	Handling Heuristic Completions
	Transaction System Recovery

	Index

