
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Programming WebLogic JTA

and BEA WebLogic Express™

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

Programming WebLogic JTA

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server 6.1

Contents

About This Document
Audience.. viii

e-docs Web Site... viii

How to Print the Document... viii

Contact Us! .. ix

Documentation Conventions ... ix

1. Introducing Transactions
ACID Properties of Transactions ... 1-1

Supported Programming Model .. 1-2

Supported API Models .. 1-2

Distributed Transactions and the Two-Phase Commit Protocol 1-3

Support for Business Transactions .. 1-4

When to Use Transactions... 1-5

When Not to Use Transactions.. 1-6

What Happens During a Transaction ... 1-7

Introducing Transactions in WebLogic Server EJB Applications 1-7

Container-managed Transactions.. 1-8

Bean-managed Transactions ... 1-9

Introducing Transactions in WebLogic Server RMI Applications 1-10

Transactions Sample Code .. 1-11

Transactions Sample EJB Code .. 1-12

Importing Packages... 1-12

Using JNDI to Return an Object Reference...................................... 1-13

Starting a Transaction ... 1-14

Completing a Transaction .. 1-14

Transactions Sample RMI Code .. 1-15
Programming WebLogic JTA iii

Importing Packages ... 1-15

Using JNDI to Return an Object Reference to the UserTransaction
Object ... 1-16

Starting a Transaction.. 1-17

Completing a Transaction .. 1-17

2. Configuring and Managing Transactions
Configuring Transactions .. 2-1

Monitoring Transactions.. 2-2

Logging... 2-2

Statistics.. 2-2

Monitoring.. 2-2

Adding a Transactional Resource Manager... 2-3

3. Transaction Service
About the Transaction Service .. 3-1

Capabilities and Limitations .. 3-2

Lightweight Clients with Delegated Commit .. 3-2

Client-initiated Transactions .. 3-2

Transaction Integrity .. 3-3

Transaction Termination ... 3-3

Flat Transactions ... 3-3

Relationship of the Transaction Service to Transaction Processing 3-3

Multithreaded Transaction Client Support .. 3-4

General Constraints .. 3-4

Transaction Scope.. 3-4

Transaction Service in EJB Applications .. 3-5

Transaction Service in RMI Applications ... 3-5

4. Java Transaction API and BEA WebLogic Extensions
JTA API Overview .. 4-1

BEA WebLogic Extensions to JTA... 4-2

5. Transactions in EJB Applications
General Guidelines .. 5-2

Transaction Attributes ... 5-3
iv Programming WebLogic JTA

About Transaction Attributes for EJBs .. 5-3

Transaction Attributes for Container-Managed Transactions 5-4

Transaction Attributes for Bean-Managed Transactions 5-5

Participating in a Transaction.. 5-5

Transaction Semantics... 5-6

Transaction Semantics for Container-Managed Transactions 5-6

Transaction Semantics for Stateful Session Beans 5-6

Transaction Semantics for Stateless Session Beans............................ 5-7

Transaction Semantics for Entity Beans ... 5-8

Transaction Semantics for Bean-Managed Transactions 5-9

Transaction Semantics for Stateful Session Beans 5-9

Transaction Semantics for Stateless Session Beans.......................... 5-10

Session Synchronization.. 5-10

Synchronization During Transactions ... 5-11

Setting Transaction Timeouts.. 5-11

Handling Exceptions in EJB Transactions .. 5-12

6. Transactions in RMI Applications
Before You Begin.. 6-1

General Guidelines .. 6-1

7. Using Third-Party JDBC XA Drivers with WebLogic Server
Overview of Third-Party XA Drivers.. 7-3

Table of Third-Party XA Drivers ... 7-3

Third-Party Driver Configuration and Performance Requirements 7-4

Using Oracle Thin 8.1.7/XA Driver... 7-5

Software Requirements for the Oracle Thin 8.1.7/XA Driver 7-5

Known Oracle Thin 8.1.7/XA Issues .. 7-5

Oracle Thin 8.1.7/XA Driver Configuration Properties 7-7

Using Sybase jConnect 5.2.1/XA Driver ... 7-8

Known Sybase jConnect 5.2.1/XA Issues .. 7-8

Set the Environment for the Sybase jConnect/XA Driver 7-8

Connection Pools for the Sybase jConnect 5.2.1/XA Driver.............. 7-9

Configuration Properties for Java Client .. 7-10

Using Cloudscape 3.5.1/XA Driver ... 7-11
Programming WebLogic JTA v

Software Requirements for the Cloudscape 3.5.1/XA Driver........... 7-11

Known Cloudscape 3.5.1/XA Driver Issues 7-11

Set the Environment for the Cloudscape 3.5.1/XA Driver 7-12

Cloudscape 3.5.1/XA Driver Configuration Properties 7-12

Using DB2 7.2/XA Driver.. 7-13

Set the Environment for the DB2 7.2/XA Driver.............................. 7-13

Limitation and Restrictions using DB2 as an XAResource 7-13

DB2 7.2/XA Driver Configuration Properties 7-14

Other Third-Party XA Drivers.. 7-15

8. WebLogic Server XA Resource Provider Requirements
Overview of XA Resource Provider Requirements... 8-2

Registering with the Transaction Manager.. 8-2

XAResource Enlistment and Delistment ... 8-3

Static Enlistment and Delistment ... 8-4

Dynamic Enlistment and Delistment.. 8-4

Optional weblogic.transaction.XAResource Interface 8-5

9. Troubleshooting Transactions
Overview of Troubleshooting Transactions .. 9-1

Troubleshooting Tools... 9-2

Exceptions .. 9-2

Transaction Identifier ... 9-3

Transaction Name and Properties... 9-3

Transaction Status .. 9-4

Transaction Statistics.. 9-4

Transaction Monitoring .. 9-4

Transaction Log.. 9-5

Heuristic Log Files .. 9-6

Debugging Tips ... 9-6

Handling Heuristic Completions ... 9-7

Transaction System Recovery ... 9-8

A. Glossary of Terms

Index
vi Programming WebLogic JTA

About This Document

This document explains how to use transactions in EJB and RMI applications that run
in the BEA WebLogic Server™ environment.

This document is organized as follows:

� Chapter 1, “Introducing Transactions,” introduces transactions in EJB and RMI
applications running in the WebLogic Server environment. This chapter also
describes distributed transactions and the two-phase commit protocol for
enterprise applications.

� Chapter 2, “Configuring and Managing Transactions,” describes how to
administer transactions in the WebLogic Server environment.

� Chapter 3, “Transaction Service,” describes the WebLogic Server Transaction
Service.

� Chapter 4, “Java Transaction API and BEA WebLogic Extensions,” provides a
brief overview of the Java Transaction API (JTA).

� Chapter 5, “Transactions in EJB Applications,” describes how to implement
transactions in EJB applications.

� Chapter 6, “Transactions in RMI Applications,” describes how to implement
transactions in RMI applications.

� Chapter 7, “Using Third-Party JDBC XA Drivers with WebLogic Server,”
describes how to configure and use third-party XA drivers in transactions.

� Chapter 8, “WebLogic Server XA Resource Provider Requirements,” describes
the requirements for XA resources that participate in distributed transactions in
WebLogic Server.

� Chapter 9, “Troubleshooting Transactions,” describes how to perform
troubleshooting tasks for applications using JTA.
Programming WebLogic JTA vii

Audience

This document is written for application developers who are interested in building
transactional Java applications that run in the WebLogic Server environment. It is
assumed that readers are familiar with the WebLogic Server platform, Java™ 2,
Enterprise Edition (J2EE) programming, and transaction processing concepts.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Programming WebLogic JTA

http://www.adobe.com

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic JTA ix

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
x Programming WebLogic JTA

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JTA xi

xii Programming WebLogic JTA

CHAPTER
1 Introducing
Transactions

The following sections provide an overview of WebLogic transactions in WebLogic
Server applications:

� ACID Properties of Transactions

� Supported Programming Model

� Supported API Models

� Distributed Transactions and the Two-Phase Commit Protocol

� Support for Business Transactions

� When to Use Transactions

� When Not to Use Transactions

� What Happens During a Transaction

� Transactions Sample Code

ACID Properties of Transactions

One of the most fundamental features of the WebLogic Server system is transaction
management. Transactions are a means to guarantee that database transactions are
completed accurately and that they take on all the ACID properties of a
high-performance transaction, including:
Programming WebLogic JTA 1-1

1 Introducing Transactions
� Atomicity—all changes that a transaction makes to a database are made
permanent; otherwise, all changes are rolled back.

� Consistency—a successful transaction transforms a database from a previous
valid state to a new valid state.

� Isolation—changes that a transaction makes to a database are not visible to other
operations until the transaction completes its work.

� Durability—changes that a transaction makes to a database survive future system
or media failures.

WebLogic Server protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a
variety of resource managers. If any one of the operations fails, the entire set of
operations is rolled back.

Supported Programming Model

WebLogic Server supports transactions in the Sun Microsystems, Inc., Java™ 2,
Enterprise Edition (J2EE) programming model. WebLogic Server provides full
support for transactions in Java applications that use Enterprise JavaBeans, in
compliance with the Enterprise JavaBeans Specification 2.0, published by Sun
Microsystems, Inc. WebLogic Server also supports the Java Transaction API (JTA)
Specification 1.0.1, also published by Sun Microsystems, Inc.

Supported API Models

WebLogic Server supports the Sun Microsystems, Inc. Java Transaction API (JTA),
which is used by:

� Enterprise JavaBean (EJB) applications within the WebLogic Server EJB
container.
1-2 Programming WebLogic JTA

http://java.sun.com/products/ejb/2.0.html
http://www.javasoft.com/products/jta/index.html
http://www.javasoft.com/products/jta/index.html

Distributed Transactions and the Two-Phase Commit Protocol
� Remote Method Invocation (RMI) applications within the WebLogic Server
infrastructure.

For information about JTA, see the following sources:

� The javax.transaction and javax.transaction.xa package APIs.

� The Java Transaction API specification, published by Sun Microsystems, Inc.

Distributed Transactions and the Two-Phase
Commit Protocol

WebLogic Server supports distributed transactions and the two-phase commit protocol
for enterprise applications. A distributed transaction is a transaction that updates
multiple resource managers (such as databases) in a coordinated manner. In contrast,
a local transaction begins and commits the transaction to a single resource manager
that internally coordinates API calls; there is no transaction manager. The two-phase
commit protocol is a method of coordinating a single transaction across two or more
resource managers. It guarantees data integrity by ensuring that transactional updates
are committed in all of the participating databases, or are fully rolled back out of all
the databases, reverting to the state prior to the start of the transaction. In other words,
either all the participating databases are updated, or none of them are updated.

Distributed transactions involve the following participants:

� Transaction originator—initiates the transaction. The transaction originator can
be a user application, an Enterprise JavaBean, or a JMS client.

� Transaction manager—manages transactions on behalf of application programs.
A transaction manager coordinates commands from application programs to start
and complete transactions by communicating with all resource managers that are
participating in those transactions. When resource managers fail during
transactions, transaction managers help resource managers decide whether to
commit or roll back pending transactions.

� Recoverable resource—provides persistent storage for data. The resource is most
often a database.
Programming WebLogic JTA 1-3

http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://www.javasoft.com/products/jta/index.html

1 Introducing Transactions
� Resource manager—provides access to a collection of information and
processes. Transaction-aware JDBC drivers are common resource managers.
Resource managers provide transaction capabilities and permanence of actions;
they are entities accessed and controlled within a distributed transaction. The
communication between a resource manager and a specific resource is called a
transaction branch.

The first phase of the two-phase commit protocol is called the prepare phase. The
required updates are recorded in a transaction log file, and the resource must indicate,
through a resource manager, that it is ready to make the changes. Resources can either
vote to commit the updates or to roll back to the previous state. What happens in the
second phase depends on how the resources vote. If all resources vote to commit, all
the resources participating in the transaction are updated. If one or more of the
resources vote to roll back, then all the resources participating in the transaction are
rolled back to their previous state.

Support for Business Transactions

WebLogic JTA provides the following support for your business transactions:

� Creates a unique transaction identifier when a client application initiates a
transaction.

� Supports an optional transaction name describing the business process that the
transaction represents. The transaction name makes statistics and error messages
more meaningful.

� Works with the WebLogic Server infrastructure to track objects that are involved
in a transaction and, therefore, need to be coordinated when the transaction is
ready to commit.

� Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

� Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
1-4 Programming WebLogic JTA

When to Use Transactions
updated using Open Group’s XA protocol. Many popular relational databases
support this standard.

� Executes the rollback procedure when the transaction must be stopped.

� Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

� Manages transaction timeouts. If a business operation takes too much time or is
only partially completed due to failures, the system takes action to automatically
issue a timeout for the transaction and free resources, such as database locks.

When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by the WebLogic Server system.
Keep in mind that distributed transactions should not span more than a single user
input screen; more complex, higher level transactions are best implemented with a
series of distributed transactions.

For example, consider an Internet-based online shopping cart application. Users of the
client application browse through an online catalog and make multiple purchase
selections. When the users are done choosing all the items they want to buy, they
proceed to check out and enter their credit card information to make the purchase. If
the credit card check fails, the shopping application needs a way to cancel all the
pending purchase selections in the shopping cart, or roll back any purchase
transactions made during the conversation.

� Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily EJB or RMI invocations. A client, such as an applet,
can obtain a reference to the Transaction and TransactionManager objects,
using JNDI, and start a transaction.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:
Programming WebLogic JTA 1-5

1 Introducing Transactions
� Invoking the debit method on one account.

� Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs
a way to roll back the previous debit invocation.

� The client application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

� Data is cached in memory or written to a database during or after each
successive invocation.

� Data is written to a database at the end of the conversation.

� The client application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

� At the end of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

When Not to Use Transactions

Transactions are not always appropriate. For example, if a series of transactions take a
long time, implement them with a series of distributed transactions. Here is an example
of an incorrect use of transactions.

� The client application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typically, to a
database) must be rolled back.

For example, consider a travel agent application. The client application needs to
arrange for a journey to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such a journey would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
1-6 Programming WebLogic JTA

What Happens During a Transaction
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel
all the flight reservations made up to that point.

What Happens During a Transaction

This topic includes the following sections:

� Introducing Transactions in WebLogic Server EJB Applications

� Introducing Transactions in WebLogic Server RMI Applications

Introducing Transactions in WebLogic Server EJB
Applications

Figure 1-1 illustrates how transactions work in a WebLogic Server EJB application.

Figure 1-1 How Transactions Work in a WebLogic Server EJB Application

T EJB

T Part of a Transaction

 Server Application

T

EJB Client
Application

BusinessMethod1

BusinessMethod2

Database
Programming WebLogic JTA 1-7

1 Introducing Transactions
WebLogic Server supports two types of transactions in WebLogic Server EJB
applications:

� In container-managed transactions, the WebLogic Server EJB container
manages the transaction demarcation. Transaction attributes in the EJB
deployment descriptor determine how the WebLogic Server EJB container
handles transactions with each method invocation. For more information about
the deployment descriptor, see Programming WebLogic EJB.

� In bean-managed transactions, the EJB manages the transaction demarcation.
The EJB makes explicit method invocations on the UserTransaction object to
begin, commit, and roll back transactions. For more information about the
UserTransaction object, see the WebLogic Javadoc.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Container-managed Transactions

For EJB applications with container-managed transactions, a basic transaction works
in the following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type (transaction-type element) for
container-managed demarcation (Container).

2. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the default transaction attribute (trans-attribute element) for the
EJB, which is one of the following settings: NotSupported, Required,
Supports, RequiresNew, Mandatory, or Never. For a detailed description of
these settings, see Section 16.7.2 in the Enterprise JavaBeans Specification 2.0,
published by Sun Microsystems, Inc.

3. Optionally, in the EJB’s deployment descriptor, the Bean Provider or Application
Assembler specifies the trans-attribute for one or more methods.

4. When a client application invokes a method in the EJB, the EJB container checks
the trans-attribute setting in the deployment descriptor for that method. If no
setting is specified for the method, the EJB uses the default trans-attribute
setting for that EJB.

5. The EJB container takes the appropriate action depending on the applicable
trans-attribute setting.
1-8 Programming WebLogic JTA

What Happens During a Transaction
� For example, if the trans-attribute setting is Required, the EJB
container invokes the method within the existing transaction context or, if the
client called without a transaction context, the EJB container begins a new
transaction before executing the method.

� In another example, if the trans-attribute setting is Mandatory, the EJB
container invokes the method within the existing transaction context. If the
client called without a transaction context, the EJB container throws the
javax.transaction.TransactionRequiredException exception.

6. During invocation of the business method, if it is determined that a rollback is
required, the business method calls the EJBContext.setRollbackOnly method,
which notifies the EJB container that the transaction is to be rolled back at the
end of the method invocation.

Note: Calling the EJBContext.setRollbackOnly method is allowed only for
methods that have a meaningful transaction context.

7. At the end of the method execution and before the result is sent to the client, the
EJB container completes the transaction, either by committing the transaction or
rolling it back (if the EJBContext.setRollbackOnly method was called).

You can control transaction timeouts by setting the trans-timeout-seconds
element using the Administration Console.

Bean-managed Transactions

For EJB applications with bean-managed transaction demarcations, a basic transaction
works in the following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler
specifies the transaction type (transaction-type element) for
container-managed demarcation (Bean).

2. The client application uses JNDI to obtain an object reference to the
UserTransaction object for the WebLogic Server domain.

3. The client application begins a transaction using the UserTransaction.begin
method, and issues a request to the EJB through the EJB container. All operations
on the EJB execute within the scope of a transaction.

� If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
Programming WebLogic JTA 1-9

1 Introducing Transactions
transaction can be rolled back using the UserTransaction.rollback
method.

� If no exceptions occur, the client application commits the current transaction
using the UserTransaction.commit method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit.

4. The UserTransaction.commit method causes the EJB container to call the
transaction manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

Introducing Transactions in WebLogic Server RMI
Applications

Figure 1-2 illustrates how transactions work in a WebLogic Server RMI application.

Figure 1-2 How Transactions Work in a WebLogic Server RMI Application

For RMI client and server applications, a basic transaction works in the following way:

T RMI

T Part of a Transaction

 Server Application

T

RMI Client
Application

BusinessMethod1

BusinessMethod2

Database
1-10 Programming WebLogic JTA

Transactions Sample Code
1. The application uses JNDI to return an object reference to the UserTransaction
object for the WebLogic Server domain.

Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during server
shutdown). For the duration of the transaction, the WebLogic Server
infrastructure does not perform any deactivation or activation.

2. The client application begins a transaction using the UserTransaction.begin
method, and issues a request to the server application. All operations on the
server application execute within the scope of a transaction.

� If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
transaction can be rolled back using the UserTransaction.rollback
method.

� If no exceptions occur, the client application commits the current transaction
using the UserTransaction.commit method. This method ends the
transaction and starts the processing of the operation. The transaction is
committed only if all of the participants in the transaction agree to commit.

3. The UserTransaction.commit method causes WebLogic Server to call the
transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

For more information, see Chapter 6, “Transactions in RMI Applications.”

Transactions Sample Code

This topic includes the following sections:

� Transactions Sample EJB Code

� Transactions Sample RMI Code
Programming WebLogic JTA 1-11

1 Introducing Transactions
Transactions Sample EJB Code

This topic provides a walkthrough of sample code fragments from a class in an EJB
application. This topic includes the following sections:

� Importing Packages

� Using JNDI to Return an Object Reference

� Starting a Transaction

� Completing a Transaction

The code fragments demonstrate using the UserTransaction object for
bean-managed transaction demarcation. The deployment descriptor for this bean
specifies the transaction type (transaction-type element) for transaction
demarcation (Bean).

Notes: These code fragments do not derive from any of the sample applications that
ship with WebLogic Server. They merely illustrate the use of the
UserTransaction object within an EJB application.

In a global transaction, use a database connection from a local
TxDataSource—on the WebLogic Server instance on which the EJB is
running. Do not use a connection from a TxDataSource on a remote WebLogic
Server instance.

Importing Packages

Listing 1-1 shows importing the necessary packages for transactions, including:

� javax.transaction.UserTransaction. For a list of methods associated with
this object, see the online Javadoc.

� System exceptions. For a list of exceptions, see the online Javadoc.

Listing 1-1 Importing Packages

import javax.naming.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
1-12 Programming WebLogic JTA

Transactions Sample Code
import javax.transaction.HeuristicMixedException
import javax.transaction.HeuristicRollbackException
import javax.transaction.NotSupportedException
import javax.transaction.RollbackException
import javax.transaction.IllegalStateException
import javax.transaction.SecurityException
import java.sql.*;
import java.util.*;

After importing these classes, initialize an instance of the UserTransaction object to
null.

Using JNDI to Return an Object Reference

Listing 1-2 shows using JNDI to look up an object reference.

Listing 1-2 Performing a JNDI Lookup

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the corect hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");
Programming WebLogic JTA 1-13

1 Introducing Transactions
Starting a Transaction

Listing 1-3 shows starting a transaction by getting a UserTransaction object and
calling the javax.transaction.UserTransaction.begin() method. Database
operations that occur after this method invocation and prior to completing the
transaction exist within the scope of this transaction.

Listing 1-3 Starting a Transaction

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");
tx.begin();

Completing a Transaction

Listing 1-4 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:

� If an exception was thrown during any of the database operations, the
application calls the javax.transaction.UserTransaction.rollback()
method.

� If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to
commit the transaction after all database operations completed successfully.
Calling this method ends the transaction and starts the processing of the
operation, causing the WebLogic Server EJB container to call the transaction
manager to complete the transaction. The transaction is committed only if all of
the participants in the transaction agree to commit.

Listing 1-4 Completing a Transaction

tx.commit();

// or:

tx.rollback();
1-14 Programming WebLogic JTA

Transactions Sample Code
Transactions Sample RMI Code

This topic provides a walkthrough of sample code fragments from a class in an RMI
application. This topic includes the following sections:

� Importing Packages

� Using JNDI to Return an Object Reference to the UserTransaction Object

� Starting a Transaction

� Completing a Transaction

The code fragments demonstrate using the UserTransaction object for RMI
transactions. For guidelines on using transactions in RMI applications, see Chapter 6,
“Transactions in RMI Applications.”

Note: These code fragments do not derive from any of the sample applications that
ship with WebLogic Server. They merely illustrate the use of the
UserTransaction object within an RMI application.

Importing Packages

Listing 1-5 shows importing the necessary packages, including the following packages
used to handle transactions:

� javax.transaction.UserTransaction. For a list of methods associated with
this object, see the online Javadoc.

� System exceptions. For a list of exceptions, see the online Javadoc.

Listing 1-5 Importing Packages

import javax.naming.*;
import java.rmi.*;
import javax.transaction.UserTransaction;
import javax.transaction.SystemException;
import javax.transaction.HeuristicMixedException
Programming WebLogic JTA 1-15

1 Introducing Transactions
import javax.transaction.HeuristicRollbackException
import javax.transaction.NotSupportedException
import javax.transaction.RollbackException
import javax.transaction.IllegalStateException
import javax.transaction.SecurityException
import java.sql.*;
import java.util.*;
\

After importing these classes, initialize an instance of the UserTransaction object to
null.

Using JNDI to Return an Object Reference to the UserTransaction Object

Listing 1-6 shows searching the JNDI tree to return an object reference to the
UserTransaction object for the appropriate WebLogic Server domain.

Note: Obtaining the object reference begins a conversational state between the
application and that object. The conversational state continues until the
transaction is completed (committed or rolled back). Once instantiated, RMI
objects remain active in memory until they are released (typically during
server shutdown). For the duration of the transaction, the WebLogic Server
infrastructure does not perform any deactivation or activation.

Listing 1-6 Performing a JNDI Lookup

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the corect hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, "Fred");
env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

1-16 Programming WebLogic JTA

Transactions Sample Code
UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

Starting a Transaction

Listing 1-7 shows starting a transaction by calling the
javax.transaction.UserTransaction.begin() method. Database operations
that occur after this method invocation and prior to completing the transaction exist
within the scope of this transaction.

Listing 1-7 Starting a Transaction

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");
tx.begin();

Completing a Transaction

Listing 1-8 shows completing the transaction depending on whether an exception was
thrown during any of the database operations that were attempted within the scope of
this transaction:

� If an exception was thrown, the application calls the
javax.transaction.UserTransaction.rollback() method if an exception
was thrown during any of the database operations.

� If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to
commit the transaction after all database operations completed successfully.
Calling this method ends the transaction and starts the processing of the
operation, causing WebLogic Server to call the transaction manager to complete
the transaction. The transaction is committed only if all of the participants in the
transaction agree to commit.
Programming WebLogic JTA 1-17

1 Introducing Transactions
Listing 1-8 Completing a Transaction

tx.commit();

// or:

tx.rollback();
1-18 Programming WebLogic JTA

CHAPTER
2 Configuring and
Managing Transactions

The following sections provides an overview of commonly performed administration
tasks related to transactions. For general information on JTA configuration tasks, see
Managing Transactions in the Administration Guide. For information on specific
configuration attributes and procedures, see the JTA topic in the Administration
Console Online Help.

� Configuring Transactions

� Monitoring Transactions

� Adding a Transactional Resource Manager

Configuring Transactions

The Administration Console provides the interface used to configure features of
WebLogic Server, including WebLogic JTA. To invoke the Administration Console,
refer to the procedures described in Configuring WebLogic Servers and Clusters. The
configuration process involves specifying values for attributes. These attributes define
the transaction environment, including the following:

� Transaction timeouts and limits

� Transaction manager behavior

You should also be familiar with the administration of J2EE components that can
participate in transactions, such as EJBs, JDBC, and JMS.
Programming WebLogic JTA 2-1

http://e-docs.bea.com/wls/docs61/adminguide/managetx.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs61/adminguide/config.html

2 Configuring and Managing Transactions
Monitoring Transactions

You can monitor transactions on a server using the logging, statistics, and monitoring
facilities. Use the Administration Console to configure these features and to display the
resulting output.

Logging

The transaction log consists of multiple files. Each file is named using a prefix
indicating the location in the file system, as defined by the
TransactionLogFilePrefix attribute, the server name, a unique numeric suffix,
and a file extension. The TransactionLogFilePrefix attribute is set for each server
in a domain. The overall amount of space consumed by the transaction log is limited
only by the file system’s available disk space. For more information on setting server
logging attributes, see the Server topic in the Administration Console Online Help. For
information on using logging in troubleshooting and debugging, see “Transaction
Log” in Chapter 9, “Troubleshooting Transactions.”

Statistics

WebLogic Server keeps statistics on transactions organized by server, resource, and
transaction name. For more information on viewing statistics, see the JTA topic in the
Administration Console Online Help. For information on using statistics in
troubleshooting and debugging, see “Transaction Statistics” in Chapter 9,
“Troubleshooting Transactions.”

Monitoring

You can monitor transactions in progress using the Administration Console. You can
display information for transactions by name, transactions by resource, or all active
transactions. For more information on monitoring transactions, see the Server topic in
2-2 Programming WebLogic JTA

http://e-docs.bea.com/wls/docs61/ConsoleHelp/server.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/server.html

Adding a Transactional Resource Manager
the Administration Console Online Help. For more information on using monitoring
data in troubleshooting, see “Transaction Monitoring,” in Chapter 9, “Troubleshooting
Transactions.”

Adding a Transactional Resource Manager

A transactional resource manager provides access to a collection of information and
processes. Transaction-aware JDBC drivers are common resource managers. When
adding a JDBC driver, you must configure driver properties for proper operation with
JTA. See Managing Transactions in the Administration Guide for JDBC configuration
guidelines.
Programming WebLogic JTA 2-3

http://e-docs.bea.com/wls/docs61/adminguide/managetx.html

2 Configuring and Managing Transactions
2-4 Programming WebLogic JTA

CHAPTER
3 Transaction Service

The following sections provide information that programmers need to write
transactional applications for the WebLogic Server system:

� About the Transaction Service

� Capabilities and Limitations

� Transaction Service in EJB Applications

� Transaction Service in RMI Applications

About the Transaction Service

WebLogic Server provides a Transaction Service that supports transactions in EJB and
RMI applications. In the WebLogic Server EJB container, the Transaction Service
provides an implementation of the transaction services described in the Enterprise
JavaBeans Specification 2.0, published by Sun Microsystems, Inc.

For EJB and RMI applications, WebLogic Server also provides the
javax.transaction and javax.transaction.xa packages, from Sun
Microsystems, Inc., which implements the Java Transaction API (JTA) for Java
applications. For more information about the JTA, see the Java Transaction API (JTA)
Specification 1.0.1, published by Sun Microsystems, Inc. For more information about
the UserTransaction object that applications use to demarcate transaction
boundaries, see the WebLogic Server Javadoc.
Programming WebLogic JTA 3-1

3 Transaction Service
Capabilities and Limitations

The following sections describe the capabilities and limitations of the Transaction
Service that supports EJB and RMI applications.

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability. Owners may turn their desktop systems off when they are not in
use. These single-user, unmanaged desktop systems should not be required to perform
network functions such as transaction coordination. In particular, unmanaged systems
should not be responsible for ensuring atomicity, consistency, isolation, and durability
(ACID) properties across failures for transactions involving server resources.
WebLogic Server remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which
means that the Transaction Service allows lightweight clients to begin and terminate
transactions while the responsibility for transaction coordination is delegated to a
transaction manager running on a server machine. Client applications do not require a
local transaction server. The remote implementation of UserTransaction that EJB or
RMI clients use delegates the actual responsibility of transaction coordination to the
transaction manager on the server.

Client-initiated Transactions

A client, such as an applet, can obtain a reference to the UserTransaction and
TransactionManager objects using JNDI. A client can begin a transaction using
either object reference. To get the Transaction object for the current thread, the
client program must invoke the ((TransactionManager)tm).getTransaction()
method. The Transaction object returned from JNDI supports both the
UserTransaction and the TransactionManager interfaces.
3-2 Programming WebLogic JTA

Capabilities and Limitations
Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a
commit will not succeed unless all transactional objects involved in the transaction
have completed the processing of their transactional requests. The Transaction Service
provides checked transaction behavior that is equivalent to that provided by the
request/response interprocess communication models defined by The Open Group.

Transaction Termination

WebLogic Server allows transactions to be terminated only by the client that created
the transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions

WebLogic Server implements the flat transaction model. Nested transactions are not
supported.

Relationship of the Transaction Service to Transaction
Processing

The Transaction Service relates to various transaction processing servers, interfaces,
protocols, and standards in the following ways:

� Support for The Open Group XA interface.The Open Group Resource
Managers are resource managers that can be involved in a distributed transaction
by allowing their two-phase commit protocol to be controlled via The Open
Group XA interface. WebLogic Server supports interaction with The Open
Group Resource Managers.

� Support for the OSI TP protocol. Open Systems Interconnect Transaction
Processing (OSI TP) is the transactional protocol defined by the International
Programming WebLogic JTA 3-3

3 Transaction Service
Organization for Standardization (ISO). WebLogic Server does not support
interactions with OSI TP transactions.

� Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2
is a transactional protocol defined by IBM. WebLogic Server does not support
interactions with LU 6.2 transactions.

� Support for the ODMG standard. ODMG-93 is a standard defined by the
Object Database Management Group (ODMG) that describes a portable interface
to access Object Database Management Systems. WebLogic Server does not
support interactions with ODMG transactions.

Multithreaded Transaction Client Support

WebLogic Server supports multithreaded transactional clients. Clients can make
transaction requests concurrently in multiple threads.

General Constraints

The following constraints apply to the Transaction Service:

� In WebLogic Server, a client or a server object cannot invoke methods on an
object that is infected with (or participating in) another transaction. The method
invocation issued by the client or the server will return an exception.

� In WebLogic Server, clients using third-party implementations of the Java
Transaction API (for Java applications) are not supported.

Transaction Scope

The scope of a transaction refers to the environment in which the transaction is
performed. WebLogic Server supports transactions on standalone servers, between
non-clustered servers, and between clustered servers within a domain. Transactions
between multiple domains are not supported.
3-4 Programming WebLogic JTA

Transaction Service in EJB Applications
Transaction Service in EJB Applications

The WebLogic Server EJB container provides a Transaction Service that supports the
two types of transactions in WebLogic Server EJB applications:

� Container-managed transactions. In container-managed transactions, the
WebLogic Server EJB container manages the transaction demarcation.
Transaction attributes in the EJB deployment descriptor determine how the
WebLogic Server EJB container handles transactions with each method
invocation.

� Bean-managed transactions. In bean-managed transactions, the EJB manages
the transaction demarcation. The EJB makes explicit method invocations on the
UserTransaction object to begin, commit, and roll back transactions. For more
information about UserTransaction methods, see the online Javadoc.

For an introduction to transaction management in EJB applications, see “Introducing
Transactions in WebLogic Server EJB Applications,” and “Transactions Sample EJB
Code” in the “Introducing Transactions” section.

Transaction Service in RMI Applications

WebLogic Server provides a Transaction Service that supports transactions in
WebLogic Server RMI applications. In RMI applications, the client or server
application makes explicit method invocations on the UserTransaction object to
begin, commit, and roll back transactions.

For more information about UserTransaction methods, see the online javadoc. For
an introduction to transaction management in RMI applications, see “Introducing
Transactions in WebLogic Server RMI Applications,” and “Transactions Sample RMI
Code” in the “Introducing Transactions” section.
Programming WebLogic JTA 3-5

3 Transaction Service
3-6 Programming WebLogic JTA

CHAPTER
4 Java Transaction API
and BEA WebLogic
Extensions

The following sections provide a brief overview of the Java Transaction API (JTA) and
extensions to the API provided by BEA Systems.

� JTA API Overview

� BEA WebLogic Extensions to JTA

JTA API Overview

WebLogic Server supports the javax.transaction package and the
javax.transaction.xa package, from Sun Microsystems, Inc., which implement
the Java Transaction API (JTA) for Java applications. For more information about
JTA, see the Java Transaction API (JTA) Specification (version 1.0.1) published by
Sun Microsystems, Inc. For a detailed description of the javax.transaction and
javax.transaction.xa interfaces, see the JTA Javadoc:

JTA includes the following components:

� An interface for demarcating and controlling transactions from an application,
javax.transaction.UserTransaction. You use this interface as part of a
Java client program or within an EJB as part of a bean-managed transaction.
Programming WebLogic JTA 4-1

4 Java Transaction API and BEA WebLogic Extensions
� An interface for allowing a transaction manager to demarcate and control
transactions for an application, javax.transaction.TransactionManager.
This interface is used by an EJB container as part of a container-managed
transaction and uses the javax.transaction.Transaction interface to
perform operations on a specific transaction.

� Interfaces that allow the transaction manager to provide status and
synchronization information to an applications server,
javax.transaction.Status and javax.transaction.Synchronization.
These interfaces are accessed only by the transaction manager and cannot be
used as part of an applications program.

� Interfaces for allowing a transaction manager to work with resource managers
for XA-compliant resources (javax.transaction.xa.XAResource) and to
retrieve transaction identifiers (javax.transaction.xa.Xid). These interfaces
are accessed only by the transaction manager and cannot be used as part of an
applications program.

BEA WebLogic Extensions to JTA

Extensions to the Java Transactions API are provided where the JTA specification
does not cover implementation details and where additional capabilities are required.

BEA WebLogic provides the following capabilities based on interpretations of the
JTA specification:

� Client-initiated transactions—the JTA transaction manager interface
(javax.transaction.TransactionManager) is made available to clients and
bean providers through JNDI. This allows clients and EJBs using bean-managed
transactions to suspend and resume transactions.

Note: A suspended transaction must be resumed in the same server process in
which it was suspended.

� Scope of transactions—transactions can operate both within and between
clusters.

BEA WebLogic provides the following classes and interfaces as extensions to JTA:
4-2 Programming WebLogic JTA

BEA WebLogic Extensions to JTA
� weblogic.transaction.RollbackException (extends
javax.transaction.RollbackException)

This class preserves the original reason for a rollback for use in more
comprehensive exception information.

� weblogic.transaction.TransactionManager (extends
javax.transaction.TransactionManager)

The WebLogic JTA transaction manager object supports this interface, which
allows XA resources to register and unregister themselves with the transaction
manager on startup. It also allows a transaction to be resumed after suspension.

This interface includes the following methods:

� registerStaticResource, registerDynamicResource, and
unregisterResource

� getTransaction

� forceResume and forceSuspend

� weblogic.transaction.Transaction (extends
javax.transaction.Transaction)

The WebLogic JTA transaction object supports this interface, which allows users
to get and set transaction properties.

This interface includes the following methods:

� setName and getName

� addProperties, setProperty, getProperty, and getProperties

� setRollbackReason and getRollbackReason

� getHeuristicErrorMessage

� getXID

� getStatusAsString

� getMillisSinceBegin

� getTimeToLiveMillis

� weblogic.transaction.TxHelper

This class allows you to obtain the current transaction manager and transaction.

This interface includes the following static methods:

� getTransaction, getUserTransaction, getTransactionManager
Programming WebLogic JTA 4-3

4 Java Transaction API and BEA WebLogic Extensions
� status2String

� weblogic.transaction.XAResource (extends
javax.transaction.xa.XAResource)

This class provides delistment capabilities for XA resources.

This interface includes the following method:

� getDelistFlag

For a detailed description of the WebLogic extensions to the javax.transaction
and javax.transaction.xa interfaces, see the weblogic.transaction package
description.
4-4 Programming WebLogic JTA

http://e-docs.bea.com/wls/docs61/javadocs/index.html

CHAPTER
5 Transactions in EJB
Applications

The following sections describe the behavior and use of transactions in EJB
applications:

� Before You Begin

� General Guidelines

� Transaction Attributes

� Participating in a Transaction

� Transaction Semantics

� Session Synchronization

� Synchronization During Transactions

� Setting Transaction Timeouts

� Handling Exceptions in EJB Transactions

This topic describes how to integrate transactions in Enterprise JavaBeans (EJBs)
applications that run under BEA WebLogic Server.
Programming WebLogic JTA 5-1

5 Transactions in EJB Applications
Before You Begin

Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly
the following topics:

� Introducing Transactions in WebLogic Server EJB Applications

� Transactions Sample EJB Code

This document describes the BEA WebLogic Server implementation of transactions in
Enterprise JavaBeans. The information in this document supplements the Enterprise
JavaBeans Specification 2.0, published by Sun Microsystems, Inc.

Note: Before proceeding with the rest of this chapter, you should be familiar with the
contents of the EJB Specification 2.0 document, particularly the concepts and
material presented in Chapter 16, “Support for Transactions.”

For information about implementing Enterprise JavaBeans in WebLogic Server
applications, see Programming WebLogic EJB.

General Guidelines

The following general guidelines apply when implementing transactions in EJB
applications for WebLogic Server:

� The EJB specification allows for flat transactions only. Transactions cannot be
nested.

� The EJB specification allows for distributed transactions that span multiple
resources (such as databases) and supports the two-phase commit protocol for
both EJB CMP 2.0 and EJB CMP 1.1.

� WebLogic Server supports any JTA-compliant XA resource. For information on
the XA resource driver supplied with WebLogic Server, see “Transactions and
the WebLogic jDriver for Oracle” in Installing and Using WebLogic jDriver for
Oracle at http://e-docs.bea.com/wls/docs61/oracle/trxjdbcx.html.
5-2 Programming WebLogic JTA

http://e-docs.bea.com/wls/docs61/oracle/trxjdbcx.html
http://e-docs.bea.com/wls/docs61/oracle/trxjdbcx.html

Transaction Attributes
� Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

� Use a database connection from a local TxDataSource—on the WebLogic Server
instance on which the EJB is running. Do not use a connection from a
TxDataSource on a remote WebLogic Server instance.

� Be sure to tune the EJB cache to ensure maximum performance in transactional
EJB applications. For more information, see “The WebLogic Server EJB
Container” in Programming WebLogic Server Enterprise Java Beans at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html.

For general guidelines about the WebLogic Server Transaction Service, see
“Capabilities and Limitations.”

Transaction Attributes

This topic includes the following sections:

� About Transaction Attributes for EJBs

� Transaction Attributes for Container-Managed Transactions

� Transaction Attributes for Bean-Managed Transactions

About Transaction Attributes for EJBs

Transaction attributes determine how transactions are managed in EJB applications.
For each EJB, the transaction attribute specifies whether transactions are demarcated
by the WebLogic Server EJB container (container-managed transactions) or by the
EJB itself (bean-managed transactions). The setting of the transaction-type
element in the deployment descriptor determines whether an EJB is
container-managed or bean-managed. See Chapter 16, “Support for Transactions,” and
Chapter 21, “Deployment Descriptor,” in the EJB Specification 2.0, for more
information about the transaction-type element.
Programming WebLogic JTA 5-3

http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html

5 Transactions in EJB Applications
In general, the use of container-managed transactions is preferred over bean-managed
transactions because application coding is simpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebLogic Server fully supports method-level transaction attributes as defined in
Section 16.4 in the EJB Specification 2.0.

Transaction Attributes for Container-Managed
Transactions

For container-managed transactions, the transaction attribute is specified in the
container-transaction element in the deployment descriptor. Container-managed
transactions include all entity beans and any stateful or stateless session beans with a
transaction-type set to Container. For more information about these elements,
see “WebLogic Server 6.1 Properties” in Programming WebLogic Server Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/reference.html.

The Application Assembler can specify the following transaction attributes for EJBs
and their business methods:

� NotSupported

� Supports

� Required

� RequiresNew

� Mandatory

� Never

For a detailed explanation about how the WebLogic Server EJB container responds to
the trans-attribute setting, see section 16.7.2 in the EJB Specification 2.0.

The transaction attribute, trans-timeout-seconds, is based on BEA WebLogic JTA
extensions. The WebLogic Server EJB container automatically sets the transaction
timeout if a timeout value is not defined in the deployment descriptor. The container
uses the value of the trans-timeout-seconds configuration parameter. The default
timeout value is 30 seconds.
5-4 Programming WebLogic JTA

http://e-docs.bea.com/wls/docs61/ejb/reference.html
http://e-docs.bea.com/wls/docs61/ejb/reference.html

Participating in a Transaction
For more information on transaction configuration parameters, see Chapter 2,
“Configuring and Managing Transactions,” in this guide and Managing Transactions
in the Administration Guide.

For EJBs with container-managed transactions, the EJBs have no access to the
javax.transaction.UserTransaction interface, and the entering and exiting
transaction contexts must match. In addition, EJBs with container-managed
transactions have limited support for the setRollbackOnly and getRollbackOnly
methods of the javax.ejb.EJBContext interface, where invocations are restricted
by rules specified in Sections 16.4.4.2 and 16.4.4.3 of the EJB Specification 2.0.

Transaction Attributes for Bean-Managed Transactions

For bean-managed transactions, the bean specifies transaction demarcations using
methods in the javax.transaction.UserTransaction interface. Bean-managed
transactions include any stateful or stateless session beans with a transaction-type
set to Bean. Entity beans cannot use bean-managed transactions.

For stateless session beans, the entering and exiting transaction contexts must match.
For stateful session beans, the entering and exiting transaction contexts may or may not
match. If they do not match, the WebLogic Server EJB container maintains
associations between the bean and the nonterminated transaction.

Session beans with bean-managed transactions cannot use the setRollbackOnly and
getRollbackOnly methods of the javax.ejb.EJBContext interface.

Participating in a Transaction

When the EJB Specification 2.0 uses the phrase “participating in a transaction,” BEA
interprets this to mean that the bean meets either of the following conditions:

� The bean is invoked in a transactional context (container-managed transaction).

� The bean begins a transaction using the UserTransaction API in a bean method
invoked by the client (bean-managed transaction), and it does not suspend or
terminate that transaction upon completion of the corresponding bean method
invoked by the client.
Programming WebLogic JTA 5-5

http://e-docs.bea.com/wls/docs61/adminguide/managetx.html

5 Transactions in EJB Applications
Transaction Semantics

This topic contains the following sections:

� Transaction Semantics for Container-Managed Transactions

� Transaction Semantics for Bean-Managed Transactions

The EJB Specification 2.0 describes semantics that govern transaction processing
behavior based on the EJB type (entity bean, stateless session bean, or stateful session
bean) and the transaction type (container-managed or bean-managed). These
semantics describe the transaction context at the time a method is invoked and define
whether the EJB can access methods in the javax.transaction.UserTransaction
interface. EJB applications must be designed with these semantics in mind.

Transaction Semantics for Container-Managed
Transactions

For container-managed transactions, transaction semantics vary for each bean type.

Transaction Semantics for Stateful Session Beans

Table 5-1 describes the transaction semantics for stateful session beans in
container-managed transactions.

Table 5-1 Transaction Semantics for Stateful Session Beans in
Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
 Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No
5-6 Programming WebLogic JTA

Transaction Semantics
Transaction Semantics for Stateless Session Beans

Table 5-2 describes the transaction semantics for stateless session beans in
container-managed transactions.

ejbRemove() Unspecified No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

Business method Yes or No based on transaction
attribute

No

afterBegin() Yes No

beforeCompletion() Yes No

afterCompletion() No No

Table 5-1 Transaction Semantics for Stateful Session Beans in
Container-Managed Transactions (Continued)

Method Transaction Context at the
Time the Method Was
 Invoked

Can Access
UserTransaction
Methods?

Table 5-2 Transaction Semantics for Stateless Session Beans in
Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

Business method Yes or No based on transaction
attribute

No
Programming WebLogic JTA 5-7

5 Transactions in EJB Applications
Transaction Semantics for Entity Beans

Table 5-3 describes the transaction semantics for entity beans in container-managed
transactions.

Table 5-3 Transaction Semantics for Entity Beans in Container-Managed
Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setEntityContext() Unspecified No

unsetEntityContext() Unspecified No

ejbCreate() Determined by transaction
attribute of matching create

No

ejbPostCreate() Determined by transaction
attribute of matching create

No

ejbRemove() Determined by transaction
attribute of matching remove

No

ejbFind() Determined by transaction
attribute of matching find

No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

ejbLoad() Determined by transaction
attribute of business method that
invoked ejbLoad()

No

ejbStore() Determined by transaction
attribute of business method that
invoked ejbStore()

No

Business method Yes or No based on transaction
attribute

No
5-8 Programming WebLogic JTA

Transaction Semantics
Transaction Semantics for Bean-Managed Transactions

For bean-managed transactions, the transaction semantics differ between stateful and
stateless session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans

Table 5-4 describes the transaction semantics for stateful session beans in
bean-managed transactions.

Table 5-4 Transaction Semantics for Stateful Session Beans in Bean-Managed
Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

ejbActivate() Unspecified Yes

ejbPassivate() Unspecified Yes

Business method Typically, no unless a previous
method execution on the bean
had completed while in a
transaction context

Yes

afterBegin() Not applicable Not applicable

beforeCompletion() Not applicable Not applicable

afterCompletion() Not applicable Not applicable
Programming WebLogic JTA 5-9

5 Transactions in EJB Applications
Transaction Semantics for Stateless Session Beans

Table 5-5 describes the transaction semantics for stateless session beans in
bean-managed transactions.

Session Synchronization

A stateful session bean using container-managed transactions can implement the
javax.ejb.SessionSynchronization interface to provide transaction
synchronization notifications. In addition, all methods on the stateful session bean
must support one of the following transaction attributes: REQUIRES_NEW, MANDATORY
or REQUIRED. For more information about the
javax.ejb.SessionSynchronization interface, see Section 6.5.3 in the EJB
Specification 2.0.

Table 5-5 Transaction Semantics for Stateless Session Beans in Bean-Managed
Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

Business method No Yes
5-10 Programming WebLogic JTA

Synchronization During Transactions
Synchronization During Transactions

If a bean implements SessionSynchronization, the WebLogic Server EJB
container will typically make the following callbacks to the bean during transaction
commit time:

� afterBegin()

� beforeCompletion()

� afterCompletion()

The EJB container can call other beans or involve additional XA resources in the
beforeCompletion method. The number of calls is limited by the
beforeCompletionIterationLimit attribute. This attribute specifies how many
cycles of callbacks are processed before the transaction is rolled back. A
synchronization cycle can occur when a registered object receives a
beforeCompletion callback and then enlists additional resources or causes a
previously synchronized object to be reregistered. The iteration limit ensures that
synchronization cycles do not run indefinitely.

Setting Transaction Timeouts

Bean providers can specify the timeout period for transactions in EJB applications. If
the duration of a transaction exceeds the specified timeout setting, then the Transaction
Service rolls back the transaction automatically.

Note: You must set the timout before you begin() the transaction. Setting a timeout
does not affect the current transaction. This is different from earlier versions
of WebLogic Server, in which timeouts affected the current transaction.

Timeouts are specified according to the transaction type:

� Container-managed transactions. The Bean Provider configures the
trans-timeout-seconds attribute in the weblogic-ejb-jar.xml deployment
descriptor. For more information, see the Administration Guide.
Programming WebLogic JTA 5-11

5 Transactions in EJB Applications
� The Bean Provider should configure the trans-timeout-seconds attribute in the
weblogic-ejb-jar.xml deplopyment descriptor.

� Bean-managed transactions. An application calls the
UserTransaction.setTransactionTimeout method.

Handling Exceptions in EJB Transactions

WebLogic Server EJB applications need to catch and handle specific exceptions
thrown during transactions. For detailed information about handling exceptions, see
Chapter 17, “Exception Handling,” in the EJB Specification 2.0 published by Sun
Microsystems, Inc.

For more information about how exceptions are thrown by business methods in EJB
transactions, see the following tables in Section 17.3: Table 12 (for
container-managed transactions) and Table 13 (for bean-managed transactions).

For a client’s view of exceptions, see Section 17.4, particularly Section 12.4.1
(application exceptions), Section 17.4.2 (java.rmi.RemoteException),
Section 17.4.2.1 (javax.transaction.TransactionRolledBackException), and
Section 17.4.2.2 (javax.transaction.TransactionRequiredException).
5-12 Programming WebLogic JTA

CHAPTER
6 Transactions in RMI
Applications

The following sections provide guidelines and additional references for using
transactions in RMI applications that run under BEA WebLogic Server:

� Before You Begin

� General Guidelines

Before You Begin

Before you begin, read Introducing Transactions, particularly the following topics:

� Introducing Transactions in WebLogic Server RMI Applications

� Transactions Sample RMI Code

For more information about RMI applications, see Programming WebLogic RMI and
RMI/IIOP.

General Guidelines

The following general guidelines apply when implementing transactions in RMI
applications for WebLogic Server:
Programming WebLogic JTA 6-1

6 Transactions in RMI Applications
� WebLogic Server allows for flat transactions only. Transactions cannot be
nested.

� Use standard programming techniques to optimize transaction processing. For
example, properly demarcate transaction boundaries and complete transactions
quickly.

� For RMI applications, callback objects are not recommended for use in
transactions because they are not subject to WebLogic Server administration. For
more information about callback objects, see Programming WebLogic RMI and
RMI/IIOP.

� In RMI applications, an RMI client can initiate a transaction, but all transaction
processing must occur on server objects or remote objects hosted by WebLogic
Server. Remote objects hosted on a client JVM cannot participate in the
transaction processing.

As a work-around, you can suspend the transaction before making a call to a
remote object on a client JVM, and then resume the transaction after the remote
operation returns.

For general guidelines about the WebLogic Server Transaction Service, see
“Capabilities and Limitations.”
6-2 Programming WebLogic JTA

CHAPTER
7 Using Third-Party JDBC
XA Drivers with
WebLogic Server

The following sections describe how to use JDBC XA drivers in WebLogic Server
transactions:

� Overview of Third-Party XA Drivers

� Third-Party Driver Configuration and Performance Requirements

Overview of Third-Party XA Drivers

This section provides an overview to using third-party JDBC two-tier drivers with
WebLogic Server in distributed transactions. These drivers provide connectivity
between WebLogic Server and the DBMS. Drivers used in distributed transactions are
designated by the driver name followed by /XA; for example, Oracle Thin/XA Driver.

Table of Third-Party XA Drivers

The following table summarizes known functionality of these third-party JDBC/XA
drivers when used with WebLogic Server 6.1:
Programming WebLogic JTA 7-3

7 Using Third-Party JDBC XA Drivers with WebLogic Server
Third-Party Driver Configuration and
Performance Requirements

Here are requirements and guidelines for using specific third-party X/A drivers with
with WebLogic Server.

Table 7-1 Two-Tier JDBC/XA Drivers

Driver/Database
Version

Comments

Type 2 XA Drivers (native .dll)

IBM DB2

� Version 7.2

� Platform: NT

See “Using DB2 7.2/XA Driver” on page
7-13.

Type 4 XA Drivers (all-Java)

Oracle Thin Driver XA

� Driver version 8.1.7

� Database version
8.1.7

See “Using Oracle Thin 8.1.7/XA Driver” on
page 7-5.

Sybase jConnect/XA

� Version 5.2.1

� Adaptive Server
Enterprise 12.0

See “Using Sybase jConnect 5.2.1/XA
Driver” on page 7-8.

Cloudscape

� Version 3.5.1

See “Software Requirements for the
Cloudscape 3.5.1/XA Driver” on page 7-11.
7-4 Programming WebLogic JTA

Third-Party Driver Configuration and Performance Requirements
Note: You may need to set additional connection pool properties when using
third-party drivers not listed here. See Additional XA Connection Pool
Properties in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxa

props.

Using Oracle Thin 8.1.7/XA Driver

The following sections provide information for using the Type 4 Oracle Thin 8.1.7/XA
Driver with WebLogic Server 6.1.

Software Requirements for the Oracle Thin 8.1.7/XA Driver

The Oracle Thin 8.1.7/XA Driver requires the following:

� JDK 1.2.x

� Oracle 8.1.7 server in order to have XA functionality (limitation does not apply
for non-XA usage)

Known Oracle Thin 8.1.7/XA Issues

These are the known issues and BEA workarounds::

Table 7-2 Oracle Thin Driver Known Issues and Workarounds

Description Oracle
Bug

Comments/Workarounds for
WebLogic Server 6.1

ORA-01002 - Fetch out of sequence exception.
Iterating result set after
XAResource.end(TMSUSPEND) and
XAResource.start(TMRESUME) results in
ORA-01002

— As a workaround, set the statement fetch size
to be at least the result set size. This implies
that the Oracle Thin 8.1.7 Driver cannot be
used on the client side or that the bean cannot
keep result sets open across method
invocations, unless this workaround is used.

XAResource.end(TMSUSPEND) followed by
XAResource.end(TMSUCCESS) gives
XAER_RMERR.

1527725 WebLogic Server has provided an
internal workaround for this bug.
Programming WebLogic JTA 7-5

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops

7 Using Third-Party JDBC XA Drivers with WebLogic Server
Set the Environment for the Oracle Thin 8.1.7/XA Driver

Set the environment as follows:

Enable the database server for XA

� Log on to sqlplus as system user, e.g. sqlplus
sys/CHANGE_ON_INSTALL@<DATABASE ALIAS NAME>

� Execute the sql: grant select on DBA_PENDING_TRANSACTIONS to public

Driver hangs or gives XAER_RMERR for
multi-threaded XA usage.

1569235 WebLogic Server has provided an
internal workaround for this bug.

Does not support update with no global transaction.
If there is no global transaction when an update is
attempted, Oracle will start a local transaction
implicitly to perform the update, and subsequent
reuse of the same XA connection for global
transaction will result in XAER_RMERR.

Moreover, if application attempts to commit the
local transaction via either setting auto commit to
true or calling Connection.commit() explicitly,
Oracle XA driver returns “SQLException: Use
explicit XA call.”

— Applications should always ensure that
there is a valid global transaction context
when using the XA driver for update.
That is, ensure that bean methods have
transaction attributes Required,
RequiresNew, or Mandatory.

XAResource.recover repeatedly returns the same
set of in-doubt Xids irrespective of the input flag.
According to the XA spec, the Transaction Manager
should initially call XAResource.recover with
TMSTARTRSCAN and then call
XAResource.recover with TMNOFLAGS
repeatedly until no Xids are returned. This Oracle
bug could lead to infinite recursion and subsequent
running out of Oracle cursors with error
“ORA-01000: maximum open cursors exceeded.”

— Weblogic Server provides an internal
workaround for this issue.

Table 7-2 Oracle Thin Driver Known Issues and Workarounds

Description Oracle
Bug

Comments/Workarounds for
WebLogic Server 6.1
7-6 Programming WebLogic JTA

Third-Party Driver Configuration and Performance Requirements
If the above steps are not performed on the database server, normal XA database
queries and updates may work fine. However, when the Weblogic Server Transaction
Manager performs recovery on a re-boot after crash, recover for the Oracle resource
will fail with XAER_RMERR.

Oracle Thin 8.1.7/XA Driver Configuration Properties

The following table contains sample code for configuring a Connection Pool:

The following table contains sample code for configuring a TxDataSource:

Oracle Thin 8.1.7/XA Driver: Connection Pool Configuration

Property Name Property Value

Name jtaXAPool

Targets myserver,server1

URL jdbc:oracle:thin:@baybridge:1521:bay817

DriverClassname oracle.jdbc.xa.client.OracleXADataSource

Initial Capacity 1

MaxCapacity 20

CapacityIncrement 2

Properties user=scott;password=tiger

Table 7-3 Oracle Thin 8.1.7/XA Driver: TxDataSource Configuration

Property Name Property Value

Name jtaXADS

Targets myserver,server1

JNDIName jtaXADS

PoolName jtaXAPool
Programming WebLogic JTA 7-7

7 Using Third-Party JDBC XA Drivers with WebLogic Server
Using Sybase jConnect 5.2.1/XA Driver

The following sections provide important configuration information and performance
issues when using the Sybase jConnect Driver 5.2.1/XA Driver.

Known Sybase jConnect 5.2.1/XA Issues

These are the known issues and BEA workarounds:

Set the Environment for the Sybase jConnect/XA Driver

Follow these instructions to setup your environment:

� set CLASSPATH=.;%SYBASE_INSTALL_DIR%
\jCONNECT-5_2\classes\jconn2.jar

where SYBASE_INSTALL_DIR is the directory where you installed the Sybase
driver.

� Install license for Distributed Transaction Management.

� Run sp_configure “enable DTM”,1 to enable transactions.

Table 7-4 Sybase jConnect 5.2.1 Known Issues and Workarounds

Description Sybase
Bug

Comments/Workarounds for WebLogic
Server 6.1

When calling setAutoCommit(true)the
following exception is thrown:

java.sql.SQLException: JZ0S3:

The inherited method setAuto-

Commit(true) cannot be used in

this subclass.

10726192 No workaround. Vendor fix required.

When driver used in distributed
transactions, calling
XAResource.end(TMSUSPEND)

followed by
XAResource.end(TMSUCCESS) results
in XAER_RMERR.

10727617 WebLogic Server has provided an internal
workaround for this bug:

Set the connection pool property
XAEndOnlyOnce=“true”.

Vendor fix has been requested.
7-8 Programming WebLogic JTA

Third-Party Driver Configuration and Performance Requirements
� Run sp_configure “enable xact coordination”,1.

� Run grant role dtm_role to <USER_NAME>.

� Copy the sample xa_config file from the
SYBASE_INSTALL\OCS-12_0\sample\xa-dtm subdirectory up three levels to
SYBASE_INSTALL,where SYBASE_INSTALL is the directory of your Sybase
server installation. For example:

 $ SYBASE_INSTALL\xa_config

� Edit the xa_config file. In the first [xa] section, modify the sample server
name to reflect the correct server name.

To prevent deadlocks when running transactions, enable row level lock by default:

� Run sp_configure “lock scheme”,0,datarows

Connection Pools for the Sybase jConnect 5.2.1/XA Driver

The following table contains sample code for configuring a Connection Pool:

Table 7-5 Sybase jConnect 5.2.1/XA Driver: Sample Connection Pool
Configuration

Property Name Property Value

Name jtaXAPool

Targets myserver,server1

DriverClassname com.sybase.jdbc2.jdbc.SybXADataSource

Properties User=dbuser;

DatabaseName=dbname;

ServerName=server_name_or_IP_address;

PortNumber=serverPortNumber;

NetworkProtocol=Tds;

resourceManagerName=Lrm_name_in_xa_config;

resourceManagerType=2

Password dbpassword

Initial Capacity 1
Programming WebLogic JTA 7-9

7 Using Third-Party JDBC XA Drivers with WebLogic Server
Where Lrm_name refers to the Logical Resource Manager name.

Note: You must also add KeepXAConnTillTxComplete="true" to the connection
pool tag in the config.xml file. See Additional XA Connection Pool
Properties in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxa

props.

The following table contains sample code for configuring a TxDataSource:

Configuration Properties for Java Client

Set the following configuration properties when running a Java client.

MaxCapacity 10

CapacityIncrement 1

Table 7-5 Sybase jConnect 5.2.1/XA Driver: Sample Connection Pool
Configuration

Property Name Property Value

Table 7-6 Sybase jConnect 5.2.1/XA Driver: TxDataSource Configuration

Property Name Property Value

Name jtaXADS

Targets server1

JNDIName jtaXADS

PoolName jtaXAPool

Table 7-7 Sybase jConnect 5.2.1/XA Driver: Java Client Connection Properties

Property Name Property Value

ds.setPassword <password>

ds.setUser <username>
7-10 Programming WebLogic JTA

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops

Third-Party Driver Configuration and Performance Requirements
Using Cloudscape 3.5.1/XA Driver

The following sections provide information for using the Type 2 Cloudscape 3.5.1/XA
Driver with WebLogic Server 6.1.

Software Requirements for the Cloudscape 3.5.1/XA Driver

The Cloudscape 3.5.1/XA Driver supports JDK 1.3 RC1. For more information, see
http://www.cloudscape.com/support/techinfo.jsp.

Known Cloudscape 3.5.1/XA Driver Issues

The following table contains known issues:

ds.setNetworkProtocol Tds

ds.setDatabaseName <database-name>

ds.setResourceManagerName <Lrm name in xa_config file>

ds.setResourceManagerType 2

ds.setServerName <machine host name>

ds.setPortNumber 4100

Table 7-7 Sybase jConnect 5.2.1/XA Driver: Java Client Connection Properties

Property Name Property Value

Table 7-8 Cloudscape 3.5.1/XA Driver Known Issues

Description Cloudscape
Enhancement
Request

Comments/Workarounds for WebLogic
Server 6.1

No known issues. .
Programming WebLogic JTA 7-11

7 Using Third-Party JDBC XA Drivers with WebLogic Server
Set the Environment for the Cloudscape 3.5.1/XA Driver

Set the following environment variables (assuming NT syntax):

� set CLOUDSCAPE_INSTALL=<directory where Cloudscape is installed>

� set CLASSPATH=.;%cloudscape_install%\lib\cloudscape.jar;
%cloudscape_install%\lib\cloudsync.jar;
%cloudscape_install%\lib\client.jar;%cloudscape_install%\lib\
tools.jar;c:\weblogic\dev\src\3rdparty\weblogicaux.jar

Note: Note that the weblogicaux.jar is for the javax classes only.

Cloudscape 3.5.1/XA Driver Configuration Properties

The following table contains sample code for configuring a Connection Pool:

Table 7-9 Cloudscape 3.5.1/XA Driver: Connection Pool Configuration

Property Name Property Value

Name jtaXAPool

Targets myserver,server1

DriverClassname COM.cloudscape.core.XaDataSource

Initial Capacity 1

Max Capacity 10

Capacity Increment 2

Properties databaseName=CloudscapeDB;
createDatabase=create

Supports Local
Transaction

True
7-12 Programming WebLogic JTA

Third-Party Driver Configuration and Performance Requirements
The following table contains sample code for configuring a TxDataSource:

Using DB2 7.2/XA Driver

The following sections describe how to set your environment to use the Type2 DB2
7.2/XA Driver with WebLogic Server 6.1.

Set the Environment for the DB2 7.2/XA Driver

Set your environment as follows:

� Execute the batch file usejdbc2.bat located in the <db2>/java12 directory to
extract the correct version of the db2java.zip file and move it to the proper
location. This enables the JDBC2.0 features of the driver. Make sure that no
DB2 processes are running before executing this batch file.

� Include <db2>/java/db2java.zip in the CLASSPATH environment variable.

� Include <db2>/bin in PATH environment variable.

Where <db2> represents the directory in which the DB2 server is installed.

Limitation and Restrictions using DB2 as an XAResource

A transaction cannot be initiated with a resource that is already associated with a
suspended transaction. In this case, a
javax.transaction.InvalidTransactionException (attempt to resume an
inactive transaction) is thrown. If in between suspend and resume, an intermediate

Table 7-10 Cloudscape 3.5.1/XA Driver: TxDataSource Configuration

Property Name Property Value

Name jtaXADS

Targets myserver,server1

JNDIName jtaXADS

PoolName jtaXAPool
Programming WebLogic JTA 7-13

7 Using Third-Party JDBC XA Drivers with WebLogic Server
transaction enlists the same resource as used in the suspended transaction, a
javax.transaction.invalidtransation exception is thrown. If a different
resource is used inside the intermediate transaction, it works fine.

DB2 7.2/XA Driver Configuration Properties

The following table contains sample code for configuring a Connection Pool:

Note: You must also add KeepXAConnTillTxComplete="true" to the connection
pool tag in the config.xml file. See Additional XA Connection Pool
Properties in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxa

props.

The following table contains sample code for configuring a TxDataSource:

Table 7-11 DB2 7.2/XA Driver: Connection Pool Configuration

Property Name Property Value

Name jtaXAPool

Targets server1

DriverClassname COM.ibm.db2.jdbc.DB2XADataSource

Initial Capacity 1

MaxCapacity 10

CapacityIncrement 2

Properties user=db2admin;
password=db2admin;
DatabaseName=NEWDEMO

Table 7-12 DB2 7.2/XA Driver: TxDataSource Configuration

Property Name Property Value

Name jtaXADS

Targets server1
7-14 Programming WebLogic JTA

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#addxaprops

Third-Party Driver Configuration and Performance Requirements
Other Third-Party XA Drivers

To use other third-party XA-compliant JDBC drivers, you must include the path to the
driver class libraries in your CLASSPATH.

JNDIName jtaXADS

PoolName jtaXAPool

Table 7-12 DB2 7.2/XA Driver: TxDataSource Configuration

Property Name Property Value
Programming WebLogic JTA 7-15

7 Using Third-Party JDBC XA Drivers with WebLogic Server
7-16 Programming WebLogic JTA

CHAPTER
8 WebLogic Server XA
Resource Provider
Requirements

BEA WebLogic Server supports the Java Transaction API (JTA) and includes a
Transaction Manager that coordinates distributed transactions with any XA-compliant
resource. The following sections describe the requirements for XA resources to be able
to participate in distributed transactions in WebLogic Server. This information is
written for third-party application integrators.

For information on JTA, see the Java Transaction API (JTA) Specification version
1.0.1, published by Sun Microsystems, Inc.

� Overview of XA Resource Provider Requirements

� Registering with the Transaction Manager

� XAResource Enlistment and Delistment

� Optional weblogic.transaction.XAResource Interface
XA Resource Provider Requirements 8-1

8 WebLogic Server XA Resource Provider Requirements
Overview of XA Resource Provider
Requirements

An XA resource provider must support the JTA XAResource interface with no thread
affinity limitations to be able to participate in distributed transactions in WebLogic
Server.

For non-JDBC resources, the resource provider also needs to do the following:

� Register the XA resource with the WebLogic Server transaction manager on
startup

� Optionally enlist and delist the XA resource with the WebLogic Server
transaction manager before and after resource usage

� Optionally implement the weblogic.transaction.XAResource interface

Registering with the Transaction Manager

The JTA specification does not define how to bootstrap an XA resource into a server’s
transaction manager. WebLogic Server defines a registration API for this purpose.

XA resource providers must perform the following steps to register their XAResource
implementation with the local transaction manager on startup:

1. Obtain the JTA transaction manager using JNDI or the TxHelper interface. The
following code shows how to use the TxHelper interface to obtain the current
transaction manager:

import javax.transaction.xa.XAResource;
import javax.transaction.TransactionManager;
import weblogic.transaction.TxHelper;

TransactionManager tm = TxHelper.getTransactionManager();

2. Register the XA resource with the JTA transaction manager

XAResource res = ... // Resource provider’s implementation of XAResource
8-2 XA Resource Provider Requirements

XAResource Enlistment and Delistment
tm.registerStaticResource(name, res); // Static enlistment resource
tm.registerDynamicResource(name, res2); // Dynamic enlistment resource

The resource provider supplies its name and implementation using either the
static or dynamic registration method. See “XAResource Enlistment and
Delistment” for information on static and dynamic enlistment.

The resource name determines the transaction branch. If the resource supports
different instances, each resource instance should use a different name. This
name is also the resource name that is used in administration.

Note that it is important that resource providers register the XA resource with
the transaction manager before enlisting the XA resource for any transactional
work.

3. Unregister the XA resource with the JTA transaction manager

XAResource res = … // Resource provider’s implementation of
XAResource

tm.unregisterResource(name);

The resource provider associated with this name on the current server is
unregistered. If there are any transactions outstanding for this resource,
unregistering a resource might result in rolled back transactions or transaction
branch abandonment.

XAResource Enlistment and Delistment

In the JTA architecture, the application server plays the role of transactional resource
manager, including enlisting and delisting resources implicitly with the transaction
manager when necessary.

WebLogic Server supports two modes of XA resources enlistment: static and dynamic.
XA Resource Provider Requirements 8-3

8 WebLogic Server XA Resource Provider Requirements
Static Enlistment and Delistment

If the XA resources are registered using static enlistment, WebLogic Server plays the
role of application server and performs enlistment and delistment implicitly for the XA
resource provider.

In particular, WebLogic Server enlists resources on transaction begin and resume.
Note that a transaction is implicitly resumed upon the start of method calls for
bean-managed transaction beans that have transactions previously associated with the
beans, and also when an outgoing call to another server returns.

Similarly, WebLogic Server delists resources on transaction suspend, commit and
rollback. Note that a transaction is implicitly suspended when making calls to another
server, and also when method calls return to the client. The delist flag used is either
obtained from the getDelistFlag() method if the resource provider supports it, or
is TMSUSPEND if the resource provider does not support the getDelistFlag()
method. Please refer to “Optional weblogic.transaction.XAResource Interface” for
more details about the getDelistFlag() method.

Dynamic Enlistment and Delistment

XA resource providers can also perform enlistment and delistment themselves by
registering as using dynamic enlistment. In this case, the XA resource provider itself
plays the role of JTA application server partially in performing enlistment and
delistment. The advantage of dynamic enlistment is that resource provider can
optionally perform lazy enlistment to avoid enlisting resources unnecessarily.

To dynamically enlist the XA resource, the XA resource provider does the following:

import javax.transaction.Transaction;
// Obtain the current transaction via JNDI or TxHelper
Transaction tx = TxHelper.getTransaction();
tx.enlistResource(res);

Resource enlistment and delistment are potentially expensive operations. As an
optimization, the WebLogic Server transaction manager ignores duplicate enlistments
of the same resource in the same thread.
8-4 XA Resource Provider Requirements

Optional weblogic.transaction.XAResource Interface
To dynamically delist the XA resource, the XA resource provider obtains the
transaction as above, and calls the delistResource method, supplying the delist flag as
well.

tx.delistResource(res, flag);

Note that for resources that are registered as dynamically enlisted, the enlistment step
is essential. However, the delistment step is optional.

WebLogic Server transaction manager performs delayed delistment. That is, the
transaction manager will actually call the end() method on XA resource on
transaction suspend and completion. The transaction manager obtains the delist flag in
the following order:

� If the resource provider has previously delisted the XA resource, then use the
delist flag that the resource provider previously supplied.

� If the resource provider supports getDelistFlag() method, then obtain the
delist flag by calling the method. See “Optional
weblogic.transaction.XAResource Interface” for details.

� If the resource provider supports neither of the above, conservatively use
TMSUSPEND.

Optional weblogic.transaction.XAResource
Interface

For the case of static delistment or omitted dynamic delistment, the WebLogic Server
JTA transaction manager conservatively delists the XA resources with TMSUSPEND
across method invocations to preserve potentially opened cursors. However, for some
resources, it may hold up more internal resources than delisting with TMSUCCESS. XA
resource provider can override the default delist flag used by WebLogic Server by
supporting the optional weblogic.transaction.XAResource interface.

The weblogic.transaction.XAResource interface supports the following
methods:

package weblogic.transaction;
XA Resource Provider Requirements 8-5

8 WebLogic Server XA Resource Provider Requirements
public interface XAResource extends
javax.transaction.xa.XAResource {
 int getDelistFlag();
}

If the resource provider supports it, the WebLogic Server transaction manager calls the
getDelistFlag() method to obtain the delist flag to be used to delist it at transaction
suspend and method end.
8-6 XA Resource Provider Requirements

CHAPTER
9 Troubleshooting
Transactions

The following sections describe troubleshooting tools and tasks for use in determining
why transactions fail and deciding what actions to take to correct the problem.

� Overview of Troubleshooting Transactions

� Troubleshooting Tools

� Debugging Tips

� Handling Heuristic Completions

� Transaction System Recovery

Overview of Troubleshooting Transactions

WebLogic Server includes the ability to monitor currently running transactions and
ensure that adequate information is captured in the case of heuristic completion. It also
provides the ability to monitor performance of database queries, transactional requests,
and bean methods.
Programming WebLogic JTA 9-1

9 Troubleshooting Transactions
Troubleshooting Tools

WebLogic Server provides the following aids to transaction troubleshooting:

� Exceptions

� Transaction identifier

� Transaction naming and properties

� Transaction status

� Transaction statistics

� Transaction monitoring

� Transaction logging

Exceptions

WebLogic JTA supports all standard JTA exceptions. For more information about
standard JTA exceptions, see the Javadoc for the javax.transaction and
javax.transaction.xa package APIs.

In addition to the standard JTA exceptions, WebLogic Server provides the class
weblogic.transaction.RollbackException. This class extends
javax.transaction.RollbackException and preserves the original reason for a
rollback. Before rolling a transaction back, or before setting it to rollbackonly, an
application can supply a reason for the rollback. All rollbacks triggered inside the
transaction service set the reason (for example, timeouts, XA errors, unchecked
exceptions in beforeCompletion, or inability to contact the transaction manager).
Once set, the reason cannot be overwritten.
9-2 Programming WebLogic JTA

http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html

Troubleshooting Tools
Transaction Identifier

The Transaction Service assigns a transaction identifier (Xid) to each transaction. This
ID can be used to isolate information about a specific transaction in a log file. You can
retrieve the transaction identifier using the getXID method in the
weblogic.transaction.Transaction interface. For detailed information on
methods for getting the transaction identifier, see the
weblogic.transaction.Transaction Javadoc.

Transaction Name and Properties

WebLogic JTA provides extensions to javax.transaction.Transaction that
support transaction naming and user-defined properties. These extensions are included
in the weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or
ticket purchase) and should not be confused with the transaction ID, which identifies
a unique transaction on a server. The transaction name makes it easier to identify a
transaction type in the context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the
property and the value is the current value assigned to the property. Transaction
property values must be objects that implement the Serializable interface. You
manage properties in your application using the set and get methods defined in the
weblogic.transaction.Transaction interface. Once set, properties stay with a
transaction during its entire lifetime and are passed between machines as the
transaction travels through the system. Properties are saved in the transaction log, and
are restored during crash recovery processing. If a transaction property is set more
than once, the latest value is retained.

For detailed information on methods for setting and getting the transaction name and
transaction properties, see the weblogic.transaction.Transaction Javadoc.
Programming WebLogic JTA 9-3

9 Troubleshooting Transactions
Transaction Status

The Java Transaction API provides transaction status codes using the
javax.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a
string. The string contains the major state as specified in
javax.transaction.Status with an additional minor state (such as logging or
pre-preparing).

Transaction Statistics

Transaction statistics are provided for all transactions handled by the transaction
manager on a server. These statistics include the number of total transactions,
transactions with a specific outcome (such as committed, rolled back, or heuristic
completion), rolled back transactions by reason, and the total time that transactions
were active. For detailed information on transaction statistics, see the Administration
Console Online Help.

Transaction Monitoring

You can monitor transactions in progress using the WebLogic Console. In addition to
displaying statistics, as described in “Transaction Statistics,” you can display the
following:

� transactions by name, including rollback and time active information

� transactions by resource, including statistics on total, committed, and rolled back
transactions

� all active transactions, including information on status, servers, resources,
properties, and the transaction identifier
9-4 Programming WebLogic JTA

Troubleshooting Tools
Transaction Log

Each server has a transaction log which records information about the propagation of
a transaction through the system. The transaction log is written to persistent storage
and assists the server in recovering from system crashes and network failures. You
cannot directly access the transaction log; the file is in a binary format.

The transaction log consists of multiple files. Each file is subject to garbage collection;
when none of the records in a transaction log file are needed, the system deletes the file
and returns the disk space to the file system. In addition, the system creates a new
transaction log file if the previous log file becomes too large.

Transaction log files are uniquely named using a pathname prefix, the server name, a
four-digit numeric suffix, and a file extension. Specify a value for the
TransactionLogFilePrefix server attribute using the WebLogic Console to set the
pathname prefix. The TransactionLogFilePrefix attribute should be set so that
transaction log files are created on a highly available file system, for example, on a
RAID device.

On a UNIX system with a server name of websvr, you might see the following log
files:

/usr7/applog1/websvr0000.tlog
/usr7/applog1/websvr0001.tlog
/usr7/applog1/websvr0002.tlog

Similarly, on a Windows NT system, you might see the following log files:

C:/weblogic/logA/websvr0000.tlog
C:/weblogic/logA/websvr0001.tlog
C:/weblogic/logA/websvr0002.tlog

If you notice a large number of transaction log files on your system, this may be an
indication of one or more long-running transactions that have not completed. This can
be caused by resource manager failures or transactions with especially large timeout
values.

If the file system containing the transaction log runs out of space, commit() throws
SystemException, and the transaction manager places a message in the system error
log. No transactions are committed until more space is available.

When migrating a server to another machine, move the transaction log files as well,
keeping all the log files for a server together.
Programming WebLogic JTA 9-5

9 Troubleshooting Transactions
Heuristic Log Files

When importing transactions from a foreign transaction manager into WebLogic
Server, the WebLogic Server transaction manager acts as an XA resource coordinated
by the foreign transaction manager. In rare catastrophic situations, such as after the
transaction abandon timeout expires or if the XA resources participating in the
WebLogic Server imported transaction throw heuristic exceptions, the WebLogic
Server transaction manager will make a heuristic decision. That is, the WebLogic
Server transaction manager will decide to commit or roll back the transaction without
input from the foreign transaction manager. If the WebLogic Server transaction
manager makes a heuristic decision, it stores the information of the heuristic decision
in the heuristic log files until the foreign transaction manager tells it to forget the
transaction.

Heuristic log files are stored with transaction log files and look similar to transaction
log files with .heur before the .tlog extension. They use the following format:

<TLOG_file_prefix>\<server_name><4-digit number>.heur.tlog

On a UNIX system with a server name of websvr, you might see the following
heuristic log files:

/usr7/applog1/websvr0000.heur.tlog
/usr7/applog1/websvr0001.heur.tlog
/usr7/applog1/websvr0002.heur.tlog

Similarly, on a Windows system, you might see the following heuristic log files:

C:\weblogic\logA\websvr0000.heur.tlog
C:\weblogic\logA\websvr0001.heur.tlog
C:\weblogic\logA\websvr0002.heur.tlog

Debugging Tips

Use the naming properties of transactions to isolate and identify problem transactions.

Debugging transactions may require fault isolation to be performed between
WebLogic JTA and the participating resources.
9-6 Programming WebLogic JTA

Handling Heuristic Completions
Handling Heuristic Completions

An heuristic completion (or heuristic decision) occurs when a resource makes a
unilateral decision during the completion stage of a distributed transaction to commit
or rollback updates. This can leave distributed data in an indeterminate state. Network
failures or transaction timeouts are possible causes for heuristic completion. In the
event of an heuristic completion, one of the following heuristic outcome exceptions
may be thrown:

� HeuristicRollback - one resource participating in a transaction decided to
autonomously rollback its work, even though it agreed to prepare itself and wait
for a commit decision. If the Transaction Manager decided to commit the
transaction, the resource's heuristic rollback decision was incorrect, and might
lead to an inconsistent outcome since other branches of the transaction were
committed.

� HeuristicCommit - one resource participating in a transaction decided to
autonomously commit its work, even though it agreed to prepare itself and wait
for a commit decision. If the Transaction Manager decided to rollback the
transaction, the resource's heuristic commit decision was incorrect, and might
lead to an inconsistent outcome since other branches of the transaction were
rolled back.

� HeuristicMixed - the Transaction Manager is aware that a transaction resulted
in a mixed outcome, where some participating resources committed and some
rolled back. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

� HeuristicHazard - the Transaction Manager is aware that a transaction might
have resulted in a mixed outcome, where some participating resources
committed and some rolled back. But system or resource failures make it
impossible to know for sure whether a Heuristic Mixed outcome definitely
occurred. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

When an heuristic completion occurs, a message is written to the server log. Refer to
your database vendor documentation for instructions on resolving heuristic
completions.
Programming WebLogic JTA 9-7

9 Troubleshooting Transactions
Some resource managers save context information for heuristic completions. This
information can be helpful in resolving resource manager data inconsistencies. If the
ForgetHeuristics attribute is selected (set to true) on the JTA panel of the
WebLogic Console, this information is removed after an heuristic completion. When
using a resource manager that saves context information, you may want to set the
ForgetHeuristics attribute to false.

Transaction System Recovery

The WebLogic Server transaction manager is designed to recover from system crashes
with minimal user intervention. A prepared transaction is not left unresolved in the
resource manager without either a commit or rollback action from the transaction
manager, even after multiple crashes.

You can choose to abandon transactions after a specified amount of time. Using the
AbandonTimeoutSeconds attribute, you can set the maximum time, in seconds, that
a transaction coordinator will persist in attempting to complete a transaction. The
default value is 86400 seconds, or 24 hours. After the abandon transaction timer
expires, no further attempt is made to resolve the transaction with any resources that
are unavailable or unable to acknowledge the transaction outcome.

The transaction manager has the following responsibilities after a system crash:

� Maintain consistency across resources

If a transaction is committed before a crash, and XAResource.recover()
returns the transaction ID, the transaction manager consistently calls
XAResource.commit(). If a transaction is not committed before a crash, and
XAResource.recover() returns its transaction ID, the transaction manager
consistently calls XAResource.rollback(). In other words, a transaction
manager crash by itself cannot cause a mixed heuristic completion where some
branches are committed and some are rolled back.

� Resolve prepared transactions

Once the transaction manager has prepared any transaction with a resource
manager, it must call XAResource.recover() during crash recovery for that
resource manager and eventually resolve (by calling the commit(),
rollback(), or forget() method) all transaction IDs returned by recover().
9-8 Programming WebLogic JTA

Transaction System Recovery
� Persist in achieving transaction resolution

If a resource manager crashes, the transaction manager must eventually call
commit() or rollback() for each prepared transaction until it gets a successful
return from commit() or rollback(). The attempts to resolve the transaction
and can be limited by setting the AbandonTimeoutSeconds configuration
attribute.
Programming WebLogic JTA 9-9

9 Troubleshooting Transactions
� Report heuristic completions

If the resource manager reports a heuristic commit or heuristic rollback, this is
recorded in the server log by the transaction manager, and forget() called if
the Forget Heuristics configuration attribute is enabled. If the Forget
Heuristics configuration attribute is not enabled, refer to your database
vendor’s documentation for information in resolving heuristic completions.
9-10 Programming WebLogic JTA

CHAPTER
A Glossary of Terms

local transaction

Transactions that are local to a single resource manager only; for example a transaction
that relates to only one database.

distributed transaction

Transactions that are demarcated and coordinated by an external Transaction Manager
via the Two Phase Commit Protocol across multiple resource managers. Also known
as global transactions.

global transactions

See distributed transactions.

transaction branches

Each resource manager’s internal unit of work in support of a global transaction is part
of exactly one transaction branch. Each Global Transaction Identifier (GTRID or XID)
that the transaction manager gives to the resource manager identifies both a distributed
transaction and a specific branch.

heuristic decision

An heuristic decision (or heuristic completion) occurs when a resource makes a
unilateral decision during the completion stage of a distributed transaction to commit
or rollback updates. This can leave distributed data in an indeterminate state. Network
failures or transaction timeouts are possible causes for a heuristic decision.
Programming WebLogic JTA A-11

A Glossary of Terms
HeuristicRollback

One resource participating in a transaction decided to autonomously rollback its work,
even though it agreed to prepare itself and wait for a commit decision. If the
Transaction Manager decided to commit the transaction, the resource's heuristic
rollback decision was incorrect, and might lead to an inconsistent outcome since other
branches of the transaction were committed.

HeuristicCommit

One resource participating in a transaction decided to autonomously commit its work,
even though it agreed to prepare itself and wait for a commit decision. If the
Transaction Manager decided to rollback the transaction, the resource's heuristic
commit decision was incorrect, and might lead to an inconsistent outcome since other
branches of the transaction were rolled back.

HeuristicMixed

The Transaction Manager is aware that a transaction resulted in a mixed outcome,
where some participating resources committed and some rolled back. The underlying
cause was most likely heuristic rollback or heuristic commit decisions made by one or
more of the participating resources.

HeuristicHazard

The Transaction Manager is aware that a transaction might have resulted in a mixed
outcome, where some participating resources committed and some rolled back. But
system or resource failures make it impossible to know for sure whether a Heuristic
Mixed outcome definitely occurred. The underlying cause was most likely heuristic
rollback or heuristic commit decisions made by one or more of the participating
resources.
A-12 Programming WebLogic JTA

Index

A
ACID properties 1-1, 3-2
API models, supported 1-2
atomicity (ACID properties) 1-1

B
bean-managed transactions 1-9

transaction attributes 5-5
transaction semantics

stateful session beans 5-9
stateless session beans 5-10

business transactions, support 1-4

C
client applications

multithreading 3-4
code example

EJB applications 1-12
RMI applications 1-15

committing transactions
EJB applications 1-14
RMI applications 1-17

configuration 2-1
consistency (ACID properties) 1-1
container-managed transactions 1-8

transaction attributes 5-4
transaction semantics 5-6

entity beans 5-8
stateful session beans 5-6

stateless session beans 5-7
customer support contact information ix

D
delegated commit 3-2
delistment

XAResource 8-3
distributed transactions 8-1

about distributed transactions 1-3
documentation, where to find it viii
durability (ACID properties) 1-1
dynamic enlistment and delistment

XAResource 8-4

E
EJB applications

bean-managed transactions 1-9
committing transactions 1-14
container-managed transactions 1-8
exceptions 5-12
general guidelines 5-2
importing packages 1-12
JNDI lookup 1-13
participating in a transaction 5-5
rolling back transactions 1-14
sample code 1-12
session synchronization 5-10
starting transactions 1-14
timeouts 5-11
transaction attributes 5-3
Programming WebLogic JTA I-1

transaction semantics 5-6
transactions overview 1-7

enlistment
XAResource 8-3

entity beans
container-managed transactions

transaction semantics
 5-8

exceptions
EJB applications 5-12

F
flat transactions 3-3

G
getDelistFlag 8-5

H
handling exceptions

EJB applications 5-12

I
importing packages

EJB applications 1-12
isolation (ACID properties) 1-1

J
Java Naming Directory Interface (JNDI)

EJB applications 1-13
RMI applications 1-16

Java Transaction API (JTA) 1-2, 3-1
JNDI

registering XAResource 8-2

L
lightweight clients

about lightweight clients 3-2
logging 2-2

M
Mandatory transaction attribute 5-4
monitoring 2-2
multithreading

clients 3-4

N
nested transactions 3-3
Never transaction attribute 5-4
NotSupported transaction attribute 5-4

O
Open Group XA interface

support for 3-3

P
participating in a transaction 5-5
printing product documentation viii
programming models, supported 1-2

R
Required transaction attribute 5-4
RequiresNew transaction attribute 5-4
resource name 8-2
RMI applications

committing transactions 1-17
general guidelines 6-1
JNDI lookup 1-16
rolling back transactions 1-17
sample code 1-15
starting transactions 1-17
transactions overview 1-10

rolling back transactions
EJB applications 1-14
I-2 Programming WebLogic JTA

RMI applications 1-17

S
session synchronization 5-10
setTransactionTimeout method 5-11
starting transactions

EJB applications 1-14
RMI applications 1-17

stateful session beans
bean-managed transactions

transaction semantics
 5-9

container-managed transactions
transaction semantics

 5-6
stateless session beans

bean-managed transactions
transaction semantics

 5-10
container-managed transactions

transaction semantics
 5-7

static enlistment and delistment
XAResource 8-4

statistics 2-2
support

technical ix
Supported transaction attribute 5-4

T
terminating transactions 3-3
TMSUCCESS 8-5
TMSUSPEND 8-5
transaction attributes

bean-managed transactions 5-5
container-managed transactions 5-4
described 5-3

transaction branch 8-2
Transaction Manager

about the Transaction Manager 8-1
registering with 8-2

transaction semantics 5-6
Transaction Service

about the Transaction Service 3-1
capabilities 3-2
clients supported 3-4
features 1-4
general constraints 3-4
limitations 3-2

transactions
distributed 8-1
EJB applications 1-7
flat transactions 3-3
functional overview 1-7
integrity 3-3
nested transactions 3-3
participating in a transaction 5-5
RMI applications 1-10
termination 3-3
timeouts 5-11
transaction processing 3-3
transaction semantics 5-6
when to use transactions 1-5

trans-timeout-seconds element 5-11
two-phase commit protocol (2PC) 1-3

EJB CMP 1.1 5-3
EJB CMP 2.0 5-3

TxHelper
registering XAResource 8-2

U
unmanaged desktops 3-2
UserTransaction

committing transactions
EJB applications 1-14
RMI applications 1-17

rolling back transactions
EJB applications 1-14
RMI applications 1-17
Programming WebLogic JTA I-3

sample code 1-12, 1-15
starting transactions

EJB applications 1-14
RMI applications 1-17

X
XA

register XAResource 8-2
resource requirements 8-1

XAResource
about XAResource interface 8-2, 8-5
dynamic enlistment and delistment 8-4
enlistment and delistment 8-3
static enlistment and delistment 8-4
I-4 Programming WebLogic JTA

	About This Document
	1 Introducing Transactions
	ACID Properties of Transactions
	Supported Programming Model
	Supported API Models
	Distributed Transactions and the Two-Phase Commit Protocol
	Support for Business Transactions
	When to Use Transactions
	When Not to Use Transactions
	What Happens During a Transaction
	Introducing Transactions in WebLogic Server EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Introducing Transactions in WebLogic Server RMI Applications

	Transactions Sample Code
	Transactions Sample EJB Code
	Importing Packages
	Using JNDI to Return an Object Reference
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	2 Configuring and Managing Transactions
	Configuring Transactions
	Monitoring Transactions
	Logging
	Statistics
	Monitoring

	Adding a Transactional Resource Manager

	3 Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Client-initiated Transactions
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Relationship of the Transaction Service to Transaction Processing
	Multithreaded Transaction Client Support
	General Constraints

	Transaction Scope
	Transaction Service in EJB Applications
	Transaction Service in RMI Applications

	4 Java Transaction API and BEA WebLogic Extensions
	JTA API Overview
	BEA WebLogic Extensions to JTA

	5 Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-Managed Transactions
	Transaction Attributes for Bean-Managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans

	Session Synchronization
	Synchronization During Transactions
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	6 Transactions in RMI Applications
	Before You Begin
	General Guidelines

	7 Using Third-Party JDBC XA Drivers with WebLogic Server
	Overview of Third-Party XA Drivers
	Table of Third-Party XA Drivers

	Third-Party Driver Configuration and Performance Requirements
	Using Oracle Thin 8.1.7/XA Driver
	Software Requirements for the Oracle Thin 8.1.7/XA Driver
	Known Oracle Thin 8.1.7/XA Issues
	Oracle Thin 8.1.7/XA Driver Configuration Properties

	Using Sybase jConnect 5.2.1/XA Driver
	Known Sybase jConnect 5.2.1/XA Issues
	Set the Environment for the Sybase jConnect/XA Driver
	Connection Pools for the Sybase jConnect 5.2.1/XA Driver
	Configuration Properties for Java Client

	Using Cloudscape 3.5.1/XA Driver
	Software Requirements for the Cloudscape 3.5.1/XA Driver
	Known Cloudscape 3.5.1/XA Driver Issues
	Set the Environment for the Cloudscape 3.5.1/XA Driver
	Cloudscape 3.5.1/XA Driver Configuration Properties

	Using DB2 7.2/XA Driver
	Set the Environment for the DB2 7.2/XA Driver
	Limitation and Restrictions using DB2 as an XAResource
	DB2 7.2/XA Driver Configuration Properties

	Other Third-Party XA Drivers

	8 WebLogic Server XA Resource Provider Requirements
	Overview of XA Resource Provider Requirements
	Registering with the Transaction Manager
	XAResource Enlistment and Delistment
	Static Enlistment and Delistment
	Dynamic Enlistment and Delistment

	Optional weblogic.transaction.XAResource Interface

	9 Troubleshooting Transactions
	Overview of Troubleshooting Transactions
	Troubleshooting Tools
	Exceptions
	Transaction Identifier
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	Transaction Monitoring
	Transaction Log
	Heuristic Log Files

	Debugging Tips
	Handling Heuristic Completions
	Transaction System Recovery

	Index

