BEA WebLogic
Server

Programming WebLogic
Web Services

BEA WebLogic Server Version 6.1
Document Date;: November 1, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic Web Services

Part Number Document Date Software Version

N/A November 1, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document

N 0 [1= 0 TS X
E-UOCSWED SHB....eieee et e e et beeaeenns X
HOW t0 Print the DOCUMENL.........cueiiieee et seesieseeeere et ens X
(0o g1 r=ox AU 1S Xi
Documentation CONVENLIONScccueiieiieieeriese e ceesre e e seesessee e e tesreenre e Xii

1. Overview of WebLogic Web Services

What Are WED SEIVICES?.....ccocuirieiiiieceieesieese sttt 1-1
Why USE WED SEIVICES? ...ttt sttt ettt 1-2
WeD Service COMPONENESc.eereeeeeerieeeseeseseseesieseeseeseeseseeseeseesesseeessessessessens 1-3
SOAP 1.1 with AttaChMENES ..o 1-4
WWSDL L Lttt sttt st st et sae b e sa e sae s e enene e 1-5
WebL0ogic WeD SErvice FEAIUIES........ovveieeeecee et e 1-6
Web Services Programming Modelcccoovveveneereieenenecse s sene s 1-6
RPC-Style WED SErVICES ...c.veieeeeeeee e 1-7
Message-Style WED SErVICeS. ..o 1-7

SOAP 1.1 Implementationccceeuerreerererrereseseseseeseseeseessesesseesessenees 1-8
Web Services Run-time COmMPONENtcooerereneiereeseie e 1-8
Standardized J2EE Web Services Assembly and Deployment................... 1-8
Generation of the WSDL File.....ccoooiviinrireeeese e 1-9
Java Client to Invoke a WebL ogic Web Service........cooevoevevecieneneenennenne. 1-9
Examples of Creating and Invoking Web Services........ccooovveevveeevenenene. 1-9
WebL ogic Web Services ArchiteCture.........ooeveeeievcevisese e 1-10
RPC-Style WebL ogic Web Services Architecture..........ccccccveecnencnnne 1-11
Message-Style WebL ogic Web Services Architecture............ccocvvvvveeeee. 1-12
SOAP and WSDL Features Not Supported by WebL ogic Web Services....... 1-14

Programming WebL ogic Web Services i

Editing XML FIlES.....ciriieiiiresrrecerer et 1-15

Developing WebLogic Web Services

Developing WebL ogic Web Services: Main StEPScoeveeieverieeieneneneseenienes 2-1
Designing aWebLogic WED SENVICE.......ccovevciie e 2-3
Choosing Between an RPC-Style and a Message-Style Web Service....... 2-3
When to Use RPC-Style Webh SErViCeS......covveveereeeseseseereeieeeeens 2-4

When to Use Message-Style Web Servicesoovvvveevevevvveseeneeenne, 2-4

EJB That Implements an RPC-Style Web Service........cooeeevveeenenccneen. 2-5
Converting an Existing EJB Application into an RPC-Style Web Service 2-5
Avoiding Overloaded Methods in Stateless Session EJBS..........ccccvveeeeeee. 2-6
Message-Style Web Services and IMS........oooiiiiiiiinineeeeeee e 2-6
Choosing @ QUEUE OF TOPIC.....ccueiverrerereesieriesieseeseeeeseeeeseeeeseesessessenes 2-6
Retrieving and Processing DOCUMENES..........cocvvereeriereenieseeressesreesennes 2-7
Example of Message-Style Web Services.......cooeinncnencneieien, 2-7
Converting an Existing IMS Application Into a Web Service................... 2-8
Supported Data Types for Parameters and Return Values of WebL ogic Web
SEIVICES ..ottt bbbttt 2-9
XML-Java Conversionin WebLogic Web Services.......cocovvneveniennne 2-11
SECUNLY ISSUBS......eeiveeeieeesieneesereesestesestestesteseeeesaesee e esessessesresseseeseesennens 2-13
Securing Message-Style Web Services......oovvvvvverceveveevececese e 2-13
Securing an RPC-Style Web SErViCe........coeeeneeeineeeeerese e 2-15

Using 2-Way SSL When Invoking a WebL ogic Web Service......... 2-15
Implementing a WebLogic Web SErViCe.......ccoovvevveiie v 2-17
Implementing an RPC-Style Web Service........ooveieneieeincceeeees 2-17
Implementing Message-Style Web ServiCes........ccoovvevereeernceciesieniennens 2-17
Configuring IMS Components for Message-Style Web Services............ 2-18
Assembling aWebLogic WED SErVICe........oovevirire i 2-19
Assembling a WebL ogic Web Service Using Java Ant Tasks................. 2-20
Example of an Ant build.xml File.......cccovveveeececece e, 2-21
Creating the build.xml Ant Build File.........ccooooiniiiic 2-23
Dynamic Or Static WSDL?2......cvcveieerecere e se e 2-25
Deploying a WebLogic WED SErVICe......oocvvvvre e 2-25
Developing a WebL ogic Web Service: A Simple Example.........ccccceorennene. 2-26
Writing the Java Code for the EJB.........covveevieeereeereeeseecese e 2-27

Programming WebL ogic Web Services

3.

Creating EJB Deployment DESCIIPLOrSccvvvreresereeseeeseereeesesesnens 2-31
ASSEMDBIING thE BJB ..ot 2-32
Creating the build.Xml Fil€.......ccooeoiereeeeec e 2-33

Invoking WebLogic Web Services

Overview of Invoking WebL ogic Web ServiCes.........ooovvereneneneeneneeieeceeene 32
WebLogic Web Services Client APcooceeeeeeecece e 32
Client Modes Supported by the WebL ogic Web Services Client API....... 3-3
Examples of Clients That Invoke WebL ogic Web Services...........ccce...... 34

Invoking the WebL ogic Web Services Home Page.........ccovveeevevnevcenesennnnnns 34
Getting the WSDL from the Web ServicesHome Page...........cccccevvveneeee. 35
Downloading the Java Client JAR File from the Web Services Home Page...

3-6

URLsto Invoke WebL ogic Web Services and Get the WSDL........cccccveevvienene 37

Creating a Client to Invoke an RPC-Style WebL ogic Web Service................. 3-8
WIiting @ JaVa CHENE ..o 3-8

Writing aStatic Java Clientccovvveieveerece e 39
Writing aDynamic Java Clientccccveeevenenesese e 311
Writing a Microsoft SOAP ToolKit Clientcccocevierieniieneneieeieeens 3-13

Creating a Java Client to Invoke a Message-Style WebL ogic Web Service... 3-15
Sending Datato a Message-Style Web Service......ooovvvvcevvvccvveveeneennns 3-16
Receiving Data From a Message-Style Web Service........cooeeeveneeiieenne. 3-18

Handling Exceptions from WebL ogic Web Services.........ccoovvevvveneceevcennne, 321

Initial Context Factory Properties for Invoking Web Services.........ccocvevenee. 3-22

Additional Classes Needed by Clients Invoking WebL ogic Web Services.... 3-23

Administering WebLogic Web Services

Overview of Administering WebLogic Web Services......ccoovvvvvverieveeneereennne. 4-1
Invoking the Administration CONSOIe........c.ccooierererinene e 4-1
Viewing the Web Services Deployed on WebL ogic Serverccooeeeieenene 4-3
Troubleshooting
TUurning 0N VerboSE MOE..........cveiveeirice e 51
java.i0.FileNOtFOUNAEXCEPLION.ccciueieiieie e 5-2
Unable t0 Parse EXCEPLION.......ccvieeeiiceesieeseeeeeete et s e e eesne s 5-4
java.lang.NUll PO NtErEXCEPLION.ccviererreericeeeete s enens 5-6

Programming WebL ogic Web Services v

Vi

java.net.CONNECLEXCEPLIONcveeeeeee e 5-7

Interoperability
.NET Client Interoperating With a 6.1 WeblL ogic Web Service..........ccccceuc.e. 6-1
7.X WebLogic Client Interoperating with a 6.1 WebL ogic Web Service......... 6-2

. Specifications Supported by WebLogic Web Services

SOAP 1.1 SPECIHTICATON.....ceiieieirieresie et e e A-1
SOAP Messages With Attachments Specificationccccvevvivvivvervcecceciennens A-2
Web Services Description Language (WSDL) 1.1 Specification..................... A-2

build.xml Elements and Attributes

Example of abuild.Xml Fil€.......ccerririiecie e B-2
build.xml Hierarchy Diagram.........cccceceeieeeiinenie e B-3
Description of Elements and AttribUtes..........coooeiiiniieeeee B-3
LA o[o O RS USRS PPPUPROPRTR B-4
FPCSEIVICES ...eveeveeteseeseestestestesesteeesseseesesseesessessesaessesseseessessenseseensnsensensensens B-5
FPCSEIVICE. vttt sttt ettt e ettt et eb e ae et sbe b e seeseena et e se e e ebeeneeneenens B-6
IMESSAYESENVICES. . .e.veverrereeseeeesteseesseseeesseesessessessessesseseessessesseseesseseesenseesens B-7
IMESSAGESENVICEvevveeetereeseeeeseeseeseeseesesseesessessessessesseseessessesseseessnsessessensens B-7
(o L= 0= USROS B-8
MNBNITESE ...t s B-9
=11 Y2 T B-9

Manually Assembling the Web Services Archive File

BEfOre YOU BEOIN ..ottt st s e C-1
Description of the Web Services Archive File ... Cc-2
Assembling an RPC-Style Web Service Archive File Manually C-3
Updating the web.xml File for RPC-Style Web Services.........ccoeeevenneee C-6
Updating the weblogic.xml File for RPC-Style Web Services............... C-10
Updating the application.xml File for RPC-Style Web Services............ C-10
Assembling a Message-Style Web Service Archive File Manualy............... c-11
Creating the Message-Style Web Service WSDL File.......cccocevevveeenene C-14
Updating the web.xml File for Message-Style Web Services................. C-16
Updating the weblogic.xml File for Message-Style Web Services......... C-20
Updating the application.xml File for Message-Style Web Services...... C-21

Programming WebL ogic Web Services

Creating the client.jar File Manuallycccccoveeeeenenie v
D. Invoking Web Services Without Using the WSDL File

Glossary

Index

Programming WebL ogic Web Services

Vi

viii Programming WebL ogic Web Services

About This Document

This document describes BEA WebL ogic® Web Services and describes how to
develop them and invoke them from a client application.

The document is organized as follows:

Chapter 1, “Overview of WebL ogic Web Services,” provides conceptual
information about Web Services, the features of WebL ogic Web services, and
their architecture.

Chapter 2, “Developing WebL ogic Web Services,” describes how to develop
WebL ogic Web Services.

Chapter 3, “Invoking WebL ogic Web Services,” describes how to access
WebL ogic Web Services from client applications.

Chapter 4, “Administering WebL ogic Web Services,” describes how to
administer Web Services using the Administration Console.

Chapter 5, “Troubleshooting,” describes how to troubleshoot problems that
might occur when creating client applications that invoke Web services.

Appendix A, “ Specifications Supported by WebL ogic Web Services,” provides

links to the specifications supported by WebL ogic Web Services.

Appendix B, “build.xml Elements and Attributes,” provides information about
thebui | d. xm Javabuild file that you use to assemble Web servicesinto
Enterprise Application archive (*. ear) files.

Appendix C, “Manually Assembling the Web Services Archive File,” describes

how to create a Web services archive file manually without using the wsgen Ant

task.

Programming WebL ogic Web Services

iX

m Appendix D, “Invoking Web Services Without Using the WSDL File,” describes
how to create a client application that invokes a Web service without using its
WSDL.

A glossary of relevant terms and an index follows the chapters.

Audience

This document is written for application devel opers who want to make EJBs that are
currently running in WebL ogic Server availableto third-party clientsasWeb Services.

It is assumed that readers know Web technologies, XML, and the Java programming
language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

X Programming WebL ogic Web Services

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at

docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,

aswell asthetitle and document date of your documentation. If you have any questions

about this version of BEA WebL ogic Server, or if you have problemsinstalling and

running BEA WebL ogic Server, contact BEA Customer Support through BEA

WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming WebL ogic Web Services

Xi

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Usage
Ctrl+Tab Keysyou press simultaneously.
italics Emphasis and book titles.
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cati ons
.java
config. xm
fl oat
nonospace Variablesin code.
italic Example:
t ext .
String Customer Nane;
UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Programming WebL ogic Web Services

Convention Usage

| Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic Web Services Xiii

Xiv Programming WebL ogic Web Services

CHAPTER

1 Overview of WebLogic
Web Services

The following sections provide an overview of Web services, and how they are
implemented in WebL ogic Server:

m “What Are Web Services?’ on page 1-1
m “Why Use Web Services?’ on page 1-2
m “Web Service Components’ on page 1-3

“WebL ogic Web Service Features’ on page 1-6

“WebL ogic Web Services Architecture” on page 1-10

m “SOAP and WSDL Features Not Supported by WebL ogic Web Services’ on
page 1-14

What Are Web Services?

Web services are atype of servicethat can be shared by and used as components of
distributed Web-based applications. They commonly interface with existing back-end
applications, such as customer relationship management systems, order-processing
systems, and so on.

Programming WebL ogic Web Services 11

1 overview of WebLogic Web Services

Traditionally, software application architecture tended to fall into two categories: huge
monoalithic systems running on mainframes or client-server applications running on
desktops. Although these architectureswork well for the purpose the applicationswere
built to address, they are relatively closed to the outside world and can not be easily
accessed by the diverse users of the Web.

Thus the software industry is evolving toward loosely coupled service-oriented
applications that dynamically interact over the Web. The applications break down the
larger software system into smaller modular components, or shared services. These
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

The concept of servicesisnot new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technol ogies require them to be
written using that particular technology, often from a particular vendor. This
requirement typically hinderswidespread acceptance of an application ontheWeb. To
solve this problem, Web services are defined to share the following properties that
make them easily accessible from heterogeneous environments:

m Web services are accessed over the Web.
m Web services describe themselves using an XM L-based description language.

m Web services communicate with clients (both end-user applications or other Web
services) through XML messages that are transmitted by standard Internet
protocols, such asHTTP.

Why Use Web Services?

1-2

The major reasons for using Web services are to gain:

m interoperability among distributed applications that span diverse hardware and
software platforms.

m accessihility of applications through firewalls using Web protocoals.

m across-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications.

Programming WebL ogic Web Services

Web Service Components

Because Web services are accessed using standard Web protocols, such as XML and
HTTP, the diverse and heterogeneous applications on the Web (which typically
already understand XML and HTTP) can automatically access Web services, solving
the ever-present problem of how different systems communicate with each other.

These different systems might be Microsoft SOAP ToolKit clients, J2EE applications,
legacy applications, and so on. These systems might be written in avariety of
programming languages, such as Java, C++, or Perl. Aslong as the application that
provides the functionality is packaged as a Web service each of these systems can
communicate with any other.

Web Service Components

A Web service consists of the following components:

m Animplementation hosted by a server on the Web.

WebL ogic Web Services are hosted by WebL ogic Server, are implemented using
standard J2EE components (such as Enterprise Java Beans and IMS), and are
packaged as standard J2EE Enterprise Applications.

m A standardized way to transmit data and Web service invocation calls between
the Web service and the user of the Web service.

WebL ogic Web Services use Simple Object Access Protocol (SOAP) 1.1 asthe
message format and HTTP as the connection protocol. For a description of
SOAP, see “ SOAP 1.1 with Attachments” on page 1-4.

m A standard way to describe the Web service to clients so they can invokeit.

WebL ogic Web Services use Web Services Description Language (WSDL) 1.1,
an XML -based specification, to describe themselves. For more information on
WSDL, see “WSDL 1.1" on page 1-5.

Programming WebL ogic Web Services 1-3

1 overview of WebLogic Web Services

SOAP 1.1 with Attachments

SOAP (Simple Object Access Pratocal) is alightweight XM L-based protocol used to
exchange information in a decentralized, distributed environment. The protocol
consists of:

m An envelope that describes the SOAP message. In particular, the envelope
contains the body of the message, identifies who should process it, and describes
how to processiit.

m A set of encoding rules for expressing instances of application-specific data
types.

m A convention for representing remote procedure calls and responses.

Thisinformation is embedded in a Multipurpose Internet Mail Extensions
(MIME)-encoded package that can be transmitted over HTTP or other Web protocols.
MIME is a specification for formatting non-ASCI1 messages so that they can be sent
over the Internet.

The following example shows a SOAP request for stock trading information
embedded inside an HT TP request:

POST / St ockQuote HTTP/ 1.1

Host: ww. sanpl e. com

Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

SOAPAct i on: "Sone- URl "

<SQAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xnml soap. or g/ soap/ envel ope/"
SQAP- ENV: encodi ngStyl e="htt p://schenmas. xm soap. or g/ soap/ encodi ng/ " >
<SQAP- ENV: Body>
<m Get Last St ockQuot e xm ns: m=" Sone- URI " >
<synbol >BEAS</ synbol >
</ m Get Last St ockQuot e>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

1-4 Programming WebL ogic Web Services

Web Service Components

WSDL 1.1

Web Services Description Language (WSDL) is an XML -based specification used to
describe aWeb service. A WSDL document describes the methods provided by aWeb
service, the input and output parameters, and how to connect to it.

Developers of WebL ogic Web Services do not need to create the WSDL files; these
files can be generated automatically as part of the WebL ogic Web Services
development process.

The following example, for informational purposes only, shows aWSDL file that
describes the stock trading Web service StockQuoteService that contains the method
GetL astStockQuote:

<?xm version="1.0"?>
<defini tions nanme="St ockQuote"
t ar get Nanespace="http://sanpl e. coni st ockquot e. wsdl "
xm ns: tns="http://sanpl e. conf st ockquot e. wsdl "
xm ns: xsd="ht t p: // www. w3. or g/ 2000/ 10/ XM_Schenma"
xm ns: xsd1="http://sanpl e. conf st ockquot e. xsd"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xn soap. org/ wsdl /">
<message nanme="GCet St ockPri cel nput">
<part name="synbol " el ement ="xsd: string"/>
</ nessage>
<message nanme="CGet St ockPri ceQut put ">
<part name="result" type="xsd:float"/>
</ nessage>
<port Type name="St ockQuot ePort Type">
<operation name="Cet Last St ockQuot e" >
<i nput message="tns: Get St ockPri cel nput"/>
<out put nessage="tns: Get St ockPri ceQut put"/>
</ operati on>
</ port Type>
<bi ndi ng name=" St ockQuot eSoapBi ndi ng" type="tns: St ockQuot ePort Type" >
<soap: bi ndi ng styl e="rpc"
transport="http://schemas. xnm soap. org/ soap/ http"/>
<operati on name="Get Last St ockQuot e" >
<soap: operati on soapActi on="http://sanpl e. conl Get Last St ockQuot e"/ >
<i nput >
<soap: body use="encoded" namespace="http://sanpl e. com st ockquot e"
encodi ngStyl e="http://schemas. xrm soap. or g/ soap/ encodi ng/ "/ >
</ i nput >
<out put >
<soap: body use="encoded" nanespace="http://sanple.coni stockquote"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >

Programming WebL ogic Web Services 1-5

1 overview of WebLogic Web Services

</ out put >
</ oper ati on>>

</ bi ndi ng>

<servi ce nane="St ockQuot eServi ce">
<docunentation>My first service</docunentation>
<port nane="StockQuotePort" bindi ng="t ns: St ockQuot eSoapBi ndi ng" >
<soap: address | ocati on="http://sanpl e.conl st ockquote"/>
</ port >

</ servi ce>
</ definitions>

WebLogic Web Service Features

This section discusses the features of the WebL ogic Web Services subsystem:

Web Services Programming Model

SOAP 1.1 Implementation

Web Services Run-time Component

Standardized J2EE Web Services Assembly and Deployment
Generation of the WSDL File

Java Client to Invoke a WebL ogic Web Service

Examples of Creating and Invoking Web Services

Web Services Programming Model

The programming model describes how to implement, assemble, deploy, and invoke
Web servicesthat are hosted by aWebL ogic Server. Apart from writing the Enterprise
JavaBeans code that performs the actual work of the Web service, you develop most
of the Web serviceitself by using a Java Ant task, called wsgen, that generates and
packages the components of the Web service.

1-6 Programming WebL ogic Web Services

WebLogic Web Service Features

WebL ogic Server supports two types of Web services: remote procedure call
(RPC)-style and message-style.

RPC-Style Web Services

A remote procedure call (RPC)-style Web service isimplemented using a statel ess
session EJB. It appears as a remote object to the client application.

The interaction between a client and an RPC-style Web service centers around a
service-specific interface. When clients invoke the Web service, they send parameter
values to the Web service, which executes the required methods, and then sends back
the return values. Because of this back and forth conversation between the client and
the Web service, RPC-style Web services are tightly coupled and resembl e traditional
distributed object paradigms, such as RMI or DCOM.

RPC-style Web services are synchronous, meaning that when a client sends arequest,
it waits for aresponse before doing anything el se.

Message-Style Web Services

A message-style Web serviceisimplemented using a IM S message listener, such asa
message-driven bean, and must be associated with a JM S destination.

M essage-style Web services are loosely coupled and document-driven rather than
being associated with a service-specific interface. When aclient invokes a
message-style Web service, the client typically sends it an entire document, such as a
purchase order, rather than a discrete set of parameters. The Web service accepts the
entire document, processesit, and may or may not return aresult message. Because no
tightly-coupled request-response between the client and Web service occurs,
message-style Web services promote alooser coupling between client and server.

Message-style Web services are asynchronous. A client that invokes the Web service
does not wait for a response before it can do something else. The response from the
Web service, if any, can appear hours or days later.

A client can either send or receive adocument to or from amessage-style Web service;
the client can not do both using the same Web service.

Programming WebL ogic Web Services 1-7

1 overview of WebLogic Web Services

SOAP 1.1 Implementation

WebL ogic Server includesits own implementation of both the SOAP 1.1 and SOAP
1.1 With Attachments specifications that developers can use to create clients that
invoke Web services.

RPC-style Web services use the SOAP 1.1 message format and message-style Web
services use the SOAP 1.1 With Attachments message format.

Note: WebL ogic Web Services currently ignore the actual attachment of a SOAP
with attachments message.

Web Services Run-time Component

The WebL ogic Web Services run-time component is a set of servlets and associated
infrastructure needed to create a Web service. One element of the run-timeis a set of
servlets that handle SOAP reguests from a client. Y ou do not need to write these
servlets; they are automatically included inthe WebL ogic Server distribution. Another
element of the run-timeisan Ant task that generates and assembles all the components
of aWebL ogic Web Service.

Standardized J2EE Web Services Assembly and
Deployment

1-8

Web services developers use an Ant task, called wsgen, and the Administration
Console to assemble and deploy Web services as standard J2EE Enterprise
applicationsinan*. ear file. The*. ear filecontainsall the components of the Web
service: for example, the EJBS, referencesto the SOAP servlets, theweb. xm file, the
webl ogi c. xm file, and so on.

Programming WebL ogic Web Services

WebLogic Web Service Features

Generation of the WSDL File

Developers that create clients that invoke a WebL ogic Web Service need the WSDL
that describes the Web service. WebL ogic Server automatically generates the WSDL

of adeployed Web service. Y ou accessthe WSDL of aWeb service through a special
URL.

Java Client to Invoke a WebLogic Web Service

WebL ogic Server can automatically generate athin Java client that devel opers use to
develop Javaclientsthat invoke Web services. The Javaclient JAR fileincludesall the
classes you need to invoke a Web service. These classes include the Java client API
classes and interfaces, a parser to parse the SOAP requests and responses, the Java
interface to the EJB, and so on. Client applicationsthat use this Java client JAR file to
invoke Web services do not need to include the full WebL ogic Server JAR file on the
client computer.

Y ou download the Java client JAR file from the WebL ogic Web Services Home Page.
For detailed information on thisWeb page, see* Invoking the WebL ogic Web Services
Home Page” on page 3-4 in Chapter 3, “Invoking WebL ogic Web Services.”

Note: BEA does not currently license client functionality separately from the server
functionality, so, if needed, you can redistribute this Javaclient JAR fileto
your own customers.

Examples of Creating and Invoking Web Services

WebL ogic Server includes examples of creating both RPC-style and message-style
Web services and examples of both Javaand Microsoft Visual Basic client applications
that invoke the Web services.

The examples are located in the BEA_HOME/samples/examples/webser vices
directory, where BEA_HOME refers to the main WebL ogic Server installation
directory. The RPC-style Web service exampleisin the rpc directory and the
message-style Web service exampleisin the message directory.

Programming WebL ogic Web Services 1-9

1 overview of WebLogic Web Services

For detailed instructions on how to build and run the examples, invoke the Web page
BEA HOVE/ sanpl es/ exanpl es/ webser vi ces/ package- sunmmary. ht m inyour
browser.

WebLogic Web Services Architecture

1-10

When you develop a WebL ogic Web Service, you use standard J2EE components,
such as statel ess session EJBs, message-driven beans, and JM S destinations. Because
WebL ogic Web Services are based entirely on the J2EE platform, they automatically
inherit al the standard J2EE benefits, such as a simple and familiar component-based
development model, easy scalability, support for transactions, automatic life-cycle
management, easy access to existing enterprise systems through the use of 2EE APIs
(such as JDBC and JTA), and a simple and unified security model.

WebL ogic Server Web services are packaged as standard J2EE Enterprise applications
that consist of the following specific components:

m A Web application that contains, at a minimum, a servlet that sends and receives
SOAP messages to and from the client.

Developers do not write this servlet themselves; rather, it is automatically
included as part of the Web services development process.

m A stateless session EJB that implements an RPC-style Web serviceor aJMS
listener (such as a message-driven bean) for a message-style Web service.

In RPC-style Web service, the stateless session EJBs might do all the actual
work of the Web service, or they may parcel out the work to other EJBs. The
implementer of the Web service decides which EJBs do the real work. In
message-style Web services, a J2EE object (typically a message-driven bean)
gets the messages from the IM S destination and processes them.

WebL ogic Web Servicesare packaged as Enterprisearchive (*. ear) filesthat contain
the Web archive (*. war) files of the Web application and EJB archive (*. j ar) files.

The following two sections describe the architecture of RPC-style and message-style
Web services.

Programming WebL ogic Web Services

WebLogic Web Services Architecture

RPC-Style WebLogic Web Services Architecture

Figure 1-1 illustrates the architecture of RPC-style WebL ogic Web Services.

Figure1-1 RPC-Style WebL ogic Web Services Architecture

-

WebL ogic Server N

EJB Container

Stateless
Session EJB

®

Y @ @

RPC So -
(Serv|etapw< HTTPHTTPS o Client

Web Container @

Here' s what happens when a client invokes an RPC-style WebL ogic Web Service:

1. A client sends a SOAP message to WebL ogic Server over HTTP/HTTPS. The
SOAP message containsinstructions, conforming to the WSDL of the Web service,
to invoke an RPC-style Web service.

2. The SOAP servlet designed to handle RPC SOAP requests (which is part of the
Web application invoked by the client) unwraps the SOAP message envelope and
uses the unwrapped information to identify the appropriate stateless session EJB
target. This servlet then unmarshal s the parameters, binds them into the
appropriate Java objects, invokes the target stateless session EJB, and passes it
the parameters.

Programming WebL ogic Web Services 1-11

1 overview of WebLogic Web Services

The stateless session EJB might perform all the work of the Web service, or it
might parcel out some or all of the work to other EJBs.

3. Theinvoked stateless session EJB sends return values, if any, back to the RPC
SOAP servlet.

4, The RPC SOAP servlet marshals the return values from the statel ess session EJB
into a SOAP message, and sends it back to the client over HTTP/HTTPS.

If errors have occurred, the RPC SOAP servlet also sends a SOAP error message
(called a SOAP fault) back to the client.

Message-Style WebLogic Web Services Architecture

M essage-style Web services support a one-way communication; the client application
either sends or receives a document to or from the Web service, but asingle
message-style Web service does not allow the client to do both. When you develop a
message-style Web service, you specify whether the client sends or receives messages
toor fromthe Web service. Y ou can combine two message-style Web services, onefor
sending and onefor receiving, in order to support round-trip communication. The same
client can use both types, or either type, of service.

Figure 1-2 describesapossible architecture for both styles of message-style WebL ogic
Web Services working together.

Note: The dotted lines encapsul ate two different message-style Web services. You

do not have to use message-driven beans to take messages off the IMS
destinations, although thisistypically the best way to go.

1-12 Programming WebL ogic Web Services

WebLogic Web Services Architecture

Figure1-2 Message-Style WebL ogic Web Services Architecture

/

WebL ogic Server \

EJB Container

M essage-
Driven Bean

/7 IMS N JMS \"
. \ Destination - Destination

NG . .

: Receive . Send. ' @
(i) S) -

© \SoapServiet/ | K

N Wb Containg T — HTTP/HTTPS Client
@

J

Here' s what happens when a client invokes message-style WebL ogic Web Services:

1. A client sends a SOAP message to WebL ogic Server over HTTP/HTTPS. The
SOAP message containsinstructions, conforming to the WSDL of the Web service,
to invoke a message-style Web service.

2. The messaging SOAP servlet that is part of the Web application invoked by the
client unwraps the SOAP envelope, decodes the body of the message, and puts
the resulting object on the appropriate IM S destination.

Note: InWebLogic Server 6.1 thereis no support for accessing the contents of
the attachments to the SOAP 1.1 With Attachments message.

3. The message sitsin the IMS destination until the appropriate IMS listener
(typically a message-driven bean) picksit up.

Programming WebL ogic Web Services ~ 1-13

1 overview of WebLogic Web Services

4. The message-driven bean picks up the message from the IMS destination. The
message-driven bean might do all the work of the Web service, or it might parcel
out some or all of the work to other EJBs.

5. The message-driven bean sends the resulting document to another IMS
destination that is associated with a separate message-style Web service that is
configured to allow clients to receive messages.

6. The messaging SOAP servlet associated with the second Web service picks up
the message from the JIM S destination.

7. The messaging SOAP servlet sends the document back to the client when the
client invokes the second receive Web service.

This sample architecture shows two message-style Web services working together to
get and send back information to the client. Note that the client has to invoke two
message-style Web services.

SOAP and WSDL Features Not Supported by
WebLogic Web Services

The following SOAP features are not supported by WebL ogic Web Services:

m theHeader element - this means that you cannot set or get SOAP Header
elements using the WebL ogic Web Services client API. Additionally, the
internal WebL ogic Web services runtime ignores the SOAP Header; it only
handles the SOAP Body.

m the SOAP attachment
The following WSDL features are not supported by WebL ogic Web Services.
m theinport element

m theel enent attribute of thepart element

1-14 Programming WebL ogic Web Services

Editing XML Files

Editing XML Files

When creating or invoking WebL ogic Web services, you might need to edit XML files,
such as the EJB deployment descriptors, the Java Ant build files, and so on. To edit
these files, BEA provides the BEA XML Editor, an entirely Java-based XML
stand-alone editor.

The BEA XML Editor isasimple, user-friendly tool for creating and editing XML
files. It displays XML file contents both as a hierarchical XML tree structure and as
raw XML code. Thisdual presentation of the document provides you with the
following two methods of editing the XML document:

m The hierarchical tree view alows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
XML tree structure. The alowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if oneis specified.

m Theraw XML code view alows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its on-line help.

Y ou can download the BEA XML Editor from the BEA dev2dev at
http://dev2dev.bea.com/resourcelibrary/utilitiestool s/xml.jsp?highlight=utilitiestools.

Programming WebL ogic Web Services ~ 1-15

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools

1 overview of WebLogic Web Services

1-16 Programming WebL ogic Web Services

CHAPTER

2 Developing WebLogic
Web Services

The following sections describe how to develop WebL ogic Web Services:
m “Developing WebL ogic Web Services: Main Steps’ on page 2-1

m “Designing a WebL ogic Web Service” on page 2-3

= “Implementing a WebL ogic Web Service’ on page 2-17

m “Assembling a WebL ogic Web Service’ on page 2-19

“Deploying a WebL ogic Web Service”’ on page 2-25

“Developing a WebL ogic Web Service: A Simple Example” on page 2-26

Developing WebLogic Web Services: Main
Steps

Most of the following steps are described in detail in later sections:

1. Design the WebL ogic Web Service.

Decide whether the Web service will be RPC-style or message-style, which EJB
should implement the service, and so on. The section “Designing a WebL ogic
Web Service” on page 2-3 discusses design considerations.

2. Implement the WebL ogic Web Service.

Programming WebL ogic Web Services 2-1

2 Developing WebLogic Web Services

2-2

Write the business logic Java code for the EJBs that make up most of the
WebL ogic Web Service. For detailed information, see “ Implementing a
WebL ogic Web Service” on page 2-17.

3. Package the EJBsthat implement the Web service (statel ess session EJB for
RPC-style Web services and a message-driven bean for message-style Web
services), along with any supporting EJBs, into an EJB archivefile (*. j ar).

For detailed information on this step, refer to Devel oping WebL ogic Server
Applications at http://e-docs.bea.com/wls/docs61/programming/packaging.html.

4. Assemble the WebL ogic Web Service.

Package all the components that make up the service (such as stateless session
EJBs, the Web application that contains a reference to the SOAP servlet, and so
on) into a J2EE Enterprise Application archive (*. ear) file so that it can be
deployed on WebL ogic Server. You use Java Ant to assemble WebL ogic Web
Services. Assembling also refers to setting up other J2EE components, such as
JMS destinations for message-style Web services.

For detailed information, see “ Assembling a WebL ogic Web Service” on page
2-19.

5. Deploy the WebL ogic Web Service.

Make the service available to remote clients. For more information, see
“Deploying a WebL ogic Web Service” on page 2-25.

6. Createaclient that accesses the Web service to test that your Web serviceis
working as you expect. For detailed information, see Chapter 3, “Invoking
WebL ogic Web Services.”

WebL ogic Server includes examples of creating both RPC-style and message-style
Web servicesand exampl es of both Javaand Microsoft VisualBasic client applications
that invoke the Web services.

The examples are located in the BEA_ HOVE/ sanpl es/ exanpl es/ webser vi ces
directory, where BEA_HOME refersto the main WebL ogic Server installation directory.
The RPC-style Web serviceexampleisinther pc directory and the message-styleWeb
service exampleisin the message directory.

For detailed instructions on how to build and run the examples, invoke the Web page
BEA HOVE/ sanpl es/ exanpl es/ webser vi ces/ package- summary. ht ni in your
browser.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html

Designing a WebLogic Web Service

Designing a WebLogic Web Service

The bulk of WebL ogic Web Services are the EJBs that do the work in the background
after the SOAP request has been received and processed.

Thefirst design issueiswhether you should create an RPC-style or message-style Web
service. Thistopic is discussed in “ Choosing Between an RPC-Style and a
Message-Style Web Service” on page 2-3.

The following sections discuss RPC-style design issues:

m EJB That Implements an RPC-Style Web Service

m Converting an Existing EJB Application into an RPC-Style Web Service
m Avoiding Overloaded Methods in Stateless Session EJBs

The following sections discuss message-style design issues:

m Message-Style Web Servicesand IMS

m Converting an Existing IMS Application Into a Web Service

The following sections discuss issues common to both types of Web services:

m Supported Data Types for Parameters and Return Values of WebL ogic Web
Services

m XML-Java Conversion in WebL ogic Web Services

m Security Issues

Choosing Between an RPC-Style and a Message-Style
Web Service

This section describes when to use an RPC-style or message-style Web service.

Programming WebL ogic Web Services 2-3

2 Developing WebLogic Web Services

When to Use RPC-Style Web Services

RPC-style Web services are interface driven, which means that the business methods
of the underlying statel ess session EJB determine how the Web service works. When
clientsinvoke the Web service, they send parameter valuesto the Web service, which
executesthe corresponding methods and sends back the return values. Therelationship
is synchronous, which means that the client waits for aresponse from the Web service
before it continues with the remainder of its application.

Create an RPC-style Web serviceif your application has the following characteristics:
m The client invoking the Web service needs an immediate response.

m The client and Web service work in a back-and-forth, conversational way.

m The behavior of the Web service can be expressed as an interface.

m The Web serviceis process-oriented rather than data-oriented.

Examples of RPC-style Web servicesinclude providing the current weather conditions
in a particular location; returning the current price for a given stock; or checking the
credit rating of a potential trading partner prior to the completion of a business
transaction. In each case the information is returned immediately, implying a
synchronous relationship between the client and the Web service.

When to Use Message-Style Web Services

2-4

Y ou should create a message-style Web service if your application has the following
characteristics:

m theclient has an asynchronous relationship with the Web service, or in other
words, the client does not expect an immediate response.

m the Web service is data-oriented rather than process-oriented.

Examples of message-style Web services include processing a purchase order;
accepting arequest for new DSL home service; or responding to a request for quote
order from a customer. In each case, the client sends an entire document, such as
purchase order, to the Web service and assumes that the Web service is processing it
in some way, but the client does not require an answer right away or even at all. If your
Web service will work in this asynchronous, document-driven manner, then you
should consider designing it as a message-style Web service.

Programming WebL ogic Web Services

Designing a WebLogic Web Service

EJB That Implements an RPC-Style Web Service

Y ou implement an RPC-style Web service using a single statel ess session EJB that
either does all the actual work of the Web service or it parcels out some or all of the
work to other EJBs. This EJB isthe one that defines the methods that a client executes
when it invokes a WebL ogic Web Service.

Design your EJB to minimize the data that travels between the client and the Web
service. This conversation is synchronous and over the Web, thus the fewer the
reguests and responses, the faster the entire transaction.

The datatypes of the parameters and return values of the EJB arerestricted to alist of
supported Web service datatypes, described in “ Supported Data Typesfor Parameters
and Return Vaues of WebL ogic Web Services’ on page 2-9. Thisdatatyperestriction
facilitates interoperability with other Web service implementation, both Java and
non-Java, such as Microsoft SOAP ToolKit.

Converting an Existing EJB Application into an RPC-Style
Web Service

Y ou might be ableto convert an existing stateless session EJB into an RPC-style Web
service, aslong asthe datatypes of its parameters and return values areincluded in the
list of supported Web services data types, listed in “ Supported Data Types for
Parameters and Return Values of WebL ogic Web Services’ on page 2-9.

If you cannot convert an existing EJB, then you must create a new stateless session
EJB that implementsthe Web service, sends and receives parameters and return values
from the client using the supported data types, then converts these values into the
correct data types and passes the values to the existing statel ess session EJB.

Alternatively, you can reprogram the existing statel ess session EJB to accept as
parameters and return values only the supported data types.

Programming WebL ogic Web Services 2-5

2 Developing WebLogic Web Services

Avoiding Overloaded Methods in Stateless Session EJBs

Due to limitations in the SOAP specification, SOAP messages are unable to
differentiate unambiguously between methods of the same name that have different
signatures (overloaded methods). For this reason, WebL ogic Server does not support
overloaded methods in the EJBs that make up RPC-style Web services. Rather, each
method should have its own unique name.

For example, assume your statel ess session EJB definesamethod called my Met hod() ,
which can take as a parameter either a String or an integer. Because the SOAP
specification does not force you to declare the data types of parametersin a SOAP
message, the WebL ogic Web Service might not know whether to execute

myMet hod(St ri ng) or nyMet hod(i nt) when aclient invokesit. To clear up the
confusion, rename one of the overloaded methods.

Message-Style Web Services and JMS

M essage-style Web services use IM S listeners (such as message-driven beans) rather
than statel ess session EJBs astheir entry points. This section describesthe relationship
between JM S and WebL ogic Web Services and design considerations for developing
message-style Web services.

Choosing a Queue or Topic

2-6

JM S queues implement a point-to-point messaging model whereby a message is
delivered to exactly one recipient. IM S topics implement a publish/subscribe
messaging model whereby a message is delivered to multiple recipients.

When you implement a message-style Web service you must make the following two
decisions:

m Whether you want to use a JM S queue or topic.

m Whether the client application that invokes the Web service sends or receives the
document to or from the service. The same service cannot support both sending
and receiving.

Programming WebL ogic Web Services

Designing a WebLogic Web Service

Retrieving and Processing Documents

After you decide what type of IM S destination you are going to use, you must decide
what type of J2EE component will retrieve the document from the JIM S destination and
processit. Typically thiswill be amessage-driven bean. This message-driven bean can
do all the document-processing work, or it can parcel out some or all of the work to
other EJBs. Once the message-driven bean finishes processing the document, the
execution of the Web service is complete.

This meansthat if you want the client that invokes the Web service by sending
documents to receive some sort of response or data, you must create a second
message-style Web service that the client subsequently invokes to retrieve aresponse.
The second Web service isrelated to the original Web service because the original
message-driven bean that processed the document puts the resulting information or
response on the JM S destination corresponding to the second Web service. Again, you
must decide whether the second JM S destination is a topic or a queue.

Example of Message-Style Web Services

Asasimple example, Figure 2-1 shows two separate Web services, one for receiving
adocument from aclient and one for sending a document back to the client. The two
Web services have their own JM S destinations. The message-driven bean gets
messages from the first IM S destination, processes the information, then puts a
message back onto the second JM S destination. The client invokes the first Web
service to send the document to WebL ogic Server and then invokes the second Web
service to receive a document back from WebL ogic Server.

Programming WebL ogic Web Services 2-7

2 Developing WebLogic Web Services

Figure2-1 Data Flow Between M essage-Style Web Servicesand IMS

4 WebL ogic Server N

—_—— — — — — — — — — — — — —

Receive Web Service IMS

Destination

_ — — — SN — 2

JMS
Destination

Send Web Service

Converting an Existing JMS Application Into a Web
Service

Y ou might be able to convert an existing JIMS application into a message-style Web
service, as long as the message-driven bean that gets messages from the IMS
destination can handle the Java objects that end up on the IMS destination. For
example, WebL ogic Web Services convert standard XML documents from a client
into or g. w3c. dom Docunent objects, as described in “XML-Java Conversionin
WebL ogic Web Services’ on page 2-11.

If the message-driven bean in your existing JM S application expects some other type
of document object, then you can do one of two things: either reprogram the
message-driven bean to accept or g. w3c. dom Document objects, or create a new

2-8 Programming WebL ogic Web Services

Designing a WebLogic Web Service

message-driven bean that accepts or g. wdc. dom Docunent objects; converts them
into the data type accepted by the original message-driven bean; and puts the new
object on a JM S destination for the original message-driven bean to pick up.

Supported Data Types for Parameters and Return Values
of WebLogic Web Services

To facilitate interoperability with other Web service implementations, both Java and
non-Java, WebL ogic limits the data types that can be used as parameters and return

values to the Web service.

Thefollowing table lists the mapping between the supported Java data types and their

XML equivalent.

Table 2-1 Javato XML Mapping

Java Data Type Corresponding XML Data
Type
int int
boolean boolean
float float
long long
short short
double double
javalang.Integer int
javalang.Boolean boolean
javalang.Float float
javalang.Long long
javalang.Short short
javalang.Double double

Programming WebL ogic Web Services 29

2 Developing WebLogic Web Services

Table 2-1 Javato XML Mapping

Java Data Type Corresponding XML Data
Type

javalang.String string

java.math.BigDecima decimal

javautil.Date dateTime

byte]] base64Binary

javalang.Object anyType

JavaBeans whose properties are of
the supported Javadatatypeslistedin
this table or another JavaBean.

Compound struct whose membersare
of the supported XML data types
listed in this table or another
compound struct.

Arrays of supported Java data types
listed in this table (except for the
reference equivalents of primitive
types, such asjavalang.Integer).

Single-dimensional arrays only.

SOAP array of supported XML data
types listed in thistable.

Single-dimensional arrays only.

org.w3c.dom.Document

No XML equivaent.

org.w3c.dom.DocumentFragment

No XML equivaent.

org.w3c.dom.Element

No XML equivalent.

Thefollowing tableliststhe mapping between the supported XML datatypes and their

Java equivalent.

Table 2-2 XML to Java Mapping

XML Data Type

Corresponding Java Data Type

int

javalang.Integer

boolean javalang.Boolean
float javalang.Float
long javalang.Long

Programming WebL ogic Web Services

Designing a WebLogic Web Service

Table 2-2 XML to Java Mapping

XML Data Type

Corresponding Java Data Type

short javalang.Short
double javalang.Double
decima java.math.BigDecimal
dateTime javauutil.Date
timelnstant javautil.Date

byte javalang.Byte
base64Binary bytef]

hexBinary bytel]

Compound struct whose membersare
of the supported XML data types
listed in this table or another
compound struct.

JavaBeans whose properties are of
the supported Javadatatypeslistedin
this table or another JavaBean.

SOAP array of supported XML data
types listed in thistable.

Single-dimensional arrays only.

Arrays of supported Java data types
listed in this table (except for the
reference equivalents of primitive
types, such as java.lang.Integer).

Single-dimensional arrays only.

XML-Java Conversion in WebLogic Web Services

WebL ogic Web Services support the following two encoding styles:

m http://schemas.xmlsoap.org/soap/encoding/

m http://xml.apache.org/xml-soap/literal xml

Note: The preceding URIsare not “rea” in the sense that you can actualy invoke
them in abrowser. Rather, it isastandard convention to name encoding styles

using URIs.

Programming WebL ogic Web Services ~ 2-11

2 Developing WebLogic Web Services

2-12

When aWebL ogic Web Service receives datafrom aclient, it uses the encoding style
specified in the SOAP message to identify the data type of the parameter or message
so that it can be converted to the correct Java object.

Note: If you create a Java client using WebL ogic's generated Java client JAR file,
you do not need to know about specific encoding styles, because the Java
client JAR file contains code that handles it for you. This sectionisincluded
for programmers who create non-Java clients that invoke WebL ogic Web
Services and need to know how they handle encoding styles.

If the SOAP packet specifies the SOAP encoding style, then the Web servicetriesto

convert the XML datainside the body of the SOAP message into one of the Java data
typeslisted in “ Supported Data Types for Parameters and Return V alues of WebL ogic
Web Services’ on page 2-9.

If the conversion is unsuccessful (for example, if thereis no corresponding Java data
type defined for one of the parameters), then the Web service returns a SOAP fault to
the client that invoked the Web service.

If the conversion from XML to Javais successful, then the different styles of Web
services do different things:

m RPC-style Web services pass the resulting Java objects to the appropriate
statel ess session EJBs.

m Message-style Web services wrap the Java object into aJMS
j avax. j ms. bj ect Message datatype and put the message on the appropriate
JM S destination.

If the SOAP packet specifiesthe Literal XML encoding style, the Web service
convertsthe XML datainside the body of the XML messageinto a

org. wdc. dom El ement datatype, and then either sends the document to a stateless
session EJB or wraps the document in aj avax. j ms. Obj ect Message datatype and
puts the message on the appropriate JM S destination, depending on whether the Web
service is RPC-style or message-style, respectively.

The reverse happens when WebL ogic Web Services send data back to the client:
org. w3dc. dom El ement return values are encoded using the Literal XML encoding
style before being sent back to the client, and other Java data types are encoded using
the SOAP encoding style.

Programming WebL ogic Web Services

Designing a WebLogic Web Service

Security Issues

As previously discussed, WebL ogic Web Services are packaged as standard J2EE
Enterprise applications. Consequently, to secure accessto the Web service, you secure
accessto someor al of thefollowing standard J2EE componentsthat make up the Web
service:

m The SOAP serviets
m The stateless session EJB upon which an RPC-style Web serviceis based

Y ou can use basic HTTP authentication or SSL to authenticate aclient that is
attempting to accessaWebL ogic Web Service. Because the preceding components are
standard J2EE components, you secure them in using standard J2EE security
procedures. For general information about basic HTTP authentication and SSL, see
Programming WebL ogic Security at
http://e-docs.bea.com/wls/docs61/security/index.html.

For information about implementing 2-way SSL so that a client invoking aWebL ogic
Web Serviceisrequired to present its digital cerficate, see “Using 2-Way SSL When
Invoking a WebL ogic Web Service” on page 2-15.

Securing Message-Style Web Services

Y ou secure a message-style Web service by securing the SOAP servlet that handlesthe
SOAP messages between the client and the service.

Note: You can also use this method to secure an RPC-style Web service, although
BEA recommends instead that you secure the EJB, as described in “ Securing
an RPC-Style Web service” on page 2-15.

When you assemble a WebL ogic Web Service, either using thewsgen Ant task or
manually, you reference SOAP servietsin theweb. xm file of the Web application.
These SOA P servl ets handle the SOA P messages between WebL ogic Server and client
applications. They are always deployed on WebL ogic Server, and are shared by all
deployed WebL ogic Web Services.

The particular SOAP servlet referenced by a Web service depends on itstype
(RPC-style or message-style). The following list describes each SOAP servlet:

Programming WebL ogic Web Services ~ 2-13

http://e-docs.bea.com/wls/docs61/security/index.html

2 Developing WebLogic Web Services

<servl et>

webl ogi c. soap. server. servl et. Desti nat i onSendAdapt er —handles
SOAP messages in a message-style Web service that receives data from aclient
application to a JM S destination.

webl ogi c. soap. server. servl et . QueueRecei veAdapt er —handles SOAP
messages in a message-style Web service that sends data from aJMS Queueto a
client application.

webl ogi c. soap. server. servl et . Topi cRecei veAdapt er —handles SOAP
messages in a message-style Web service that sends datafrom aJMS Topic to a
client application.

webl ogi c. soap. server. servl et. St at el essBeanAdapt er —handles SOAP
messages between an RPC-style Web service and a client application.

For exampl e, assume you have created a message-style Web service in which client
applications send data to a IM S destination; the SOAP servlet that handles the SOAP
messages iswebl ogi c. soap. server. servl et. Desti nati onSendAdapt er . The
wsgen Ant task used to assemble the Web service adds the following elements to the
web. xm deployment descriptor of the Web application:

<servl et - nane>sender </ ser vl et - nanme>
<servl et-class>

webl ogi c. soap. server. servl et. Desti nati onSendAdapt er
</ servl et-class>

<i nit-paranpr

<par am nane>t opi c- r esour ce- r ef </ par am nane>
<par am val ue>sender Dest i nati on</ par am val ue>

</init-paran>
<i nit-parane

<par am nane>connecti on-factory-resource-ref </ param nanme>
<par am val ue>sender Fact or y</ par am val ue>

</init-paranr
</servlet>

<servl et - mappi ng>
<servl et - name>sender </ ser vl et - nane>
<url - pattern>/sendMsg</url -pattern>
</ servl et - mappi ng>

2-14 Programming WebL ogic Web Services

Designing a WebLogic Web Service

Torestrict accessto the Dest i nat i onSendAdapt er SOAP servlet, you first definea
role that is mapped to one or more principalsin a security realm, then specify that the
security constraint appliesto this SOAP servlet by adding thefollowingur | - pattern
element inside the web- r esour ces- col | ect i on element to the web. xm
deployment descriptor of the Web application:

<url - pattern>/sendMsg</ url - pattern>

See Appendix C, “Manually Assembling the Web Services Archive File,” for
information on the structure of the Enterprise Application archive created by the
wsgen Ant task.

For detailed procedural information about restricting access to servlets, see
Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/security.html.

Securing an RPC-Style Web service

Restrict access to an RPC-style Web service by restricting access to the stateless
session EJB that implements the Web service.

Thus client applications that invoke the RPC-style Web service always have access to
the Web application and SOAP servlets, but might not be ableto invokethe EJB. This
type of security isuseful if youwant to closely monitor who has access to the business
logic of the EJB but do not want to block access to the entire Web service.

For information about restricting access to EJBs, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.

Using 2-Way SSL When Invoking a WebLogic Web Service

In2-way SSL, client applicationsthat invoke a WebL ogic Web Service arerequired to
present their digital certificates to WebL ogic Server, which validates digital
certificates against alist of trusted certificate authorities.

To use 2-way SSL when writing a Java client to invoke a WebL ogic Web Service,
follow these steps:

1. Configure WebL ogic Server for 2-way SSL protocol (also called mutual
authentication) and certificate authentication.

For details, see Configuring the SS_ Protocol at
http://e-docs.bea.com/wls/docs61/admi ngui de/cnfgsec. html#cnfgsec015 and

Programming WebL ogic Web Services ~ 2-15

http://e-docs.bea.com/wls/docs61/webapp/security.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec015

2 Developing WebLogic Web Services

Configuring Mutual Authentication at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec. html#cenfgsec020.

2. Add the following lines of Java code to your client application before you obtain
the context you are using the ook up your Web service::

Systemout. println("*x****xxxxkkxxxkkrxxx*x | ggding client certs");

I nput Stream certs[] = new I nputStreani 3];

certs[0] =new PEM nput St rean(new Fi | el nput Strean("sanpl e_key. peni));
certs[1] =new PEM nput St rean{new Fi | el nput Strean("sanpl e_cert.pent));
certs[2] =new PEM nput St rean(new Fi | el nput Strean("sanpl e_ca. pent'));

h. put (SoapCont ext . SSL_CLI ENT_CERTI FI CATE, certs);
String prov = "webl ogic.net";

String s = System get Property("java. protocol . handl er. pkgs");
if (s ==null) {

S = prov;
} else if (s.indexOf(prov) == -1) {
s +="|" + prov,

}

System set Property("]j ava. protocol . handl er. pkgs", s);

In the preceding code excerpt:

e sanpl e_key. pemisthe name of the file that contains the client’s private key
associated with the certificate.

e sanpl e_cert. pemisthe name of thefile that containsthe client’s
certificate.

e sanpl e_ca. pemisthe name of the file that contains the certificate of the
Certificate Authority that issued the client’s certificate.

Note: When establishing an SSL connection, the subject DN of the digital certificate
must match the host name of the server initiating the SSL connection.
Otherwise, the SSL connection is dropped. If you use the demonstration
certificates provided by WebL ogic Server, the host names will not match.

To avoid this situation, use the

- Daebl ogi c. security. SSL. i gnor eHost naneVer i fi cati on=tr ue flag
when running your client application, or even when starting WebL ogic Server
if you want thisto be true all the time. This flag disables the Host Name

2-16 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec020

Implementing a WebLogic Web Service

Verifier which compares the subject DNs and host names. This solution is
recommended in development environments only. A more secure solution is
to obtain anew digital certificate for the server making outbound SSL
connections.

Implementing a WebLogic Web Service

Implementing aWebL ogic Web Servicereferstowriting the Javacodefor the statel ess
session EJB (for RPC-style Web services) or a M S listener (for message-style Web
services) that is defined to be the entry point to the Web service. IMS listeners are
typically message-driven beans. The statel ess session EJB or IM Slistener may contain
all the Web service functionality, or it may call other EJBsto parcel out the work.

It is assumed that you have read and understood the design issues discussed in
“Designing aWebL ogic Web Service” on page 2-3, that you have designed your Web
service, and that you essentially know the types of components you need to code.

Implementing an RPC-Style Web Service

To implement an RPC-style Web service, write the Java code for the statel ess session
EJB. Remember to use only the supported Java datatypes asthe parameters and return
value of the EJB, listed in “ Supported Data Types for Parameters and Return Values
of WebL ogic Web Services’ on page 2-9.

For detailed information about programming statel ess session EJBs, see Programming
WebL ogic Enterprise JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.

Implementing Message-Style Web Services

There are two types of message-style Web services, as described in “Message-Style
Web Servicesand IMS’ on page 2-6: those that receive XML data from aclient that
invokes the Web service and those that send XML data to a client.

To implement a message-style Web service, follow these steps:

Programming WebL ogic Web Services ~ 2-17

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

2 Developing WebLogic Web Services

1. Usethe Administration Console to configure the following JM S components of
WebL ogic Server:

e The JMS destination (queue or topic) that will either receive the XML data
from aclient or send XML datato aclient. Later, when you assemble the
Web service as described in “ Assembling a WebL ogic Web Service” on page
2-19, you will use the name of this IM S destination.

e The JMS Connection factory that the WebL ogic Web Service uses to create
JMSS connections.

See “Configuring IMS Components for Message-Style Web Services’” on page
2-18 for details on this step. For general information about IMS, see the
WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jms.html.

2. Write the Java code for the J2EE component (typically a message-driven bean)
that will take messages off the IMS destination for message-style Web services
that receive XML datafrom aclient or will put messages on a JM S destination
for message-style Web services that send XML datato aclient.

For detailed information about programming message-driven beans, see
Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs6l/ejb/index.html.

Configuring JMS Components for Message-Style Web
Services

2-18

This section assumes that you have already configured a JM S server. For information
about configuring IM S servers, and general information about IM S, see the WebL ogic
Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jms.html and Programming WebLogic
JMS at http://e-docs.bea.com/wls/docs61/jms/index.html.

To configure aJM S destination (either queue or topic) and JIM S Connection Factory,
follow these steps:

1. Invokethe Administration Consolein your browser. For details, see“Invoking the
Administration Console”’ on page 4-1.

2. Click to expand the Services hode in the left pane and expand the IM S node.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/jms/index.html
http://e-docs.bea.com/wls/docs61/jms/index.html

Assembling a WebLogic Web Service

9.

o N o o b»

Right-click the Connection Factories node and choose Configure a new
JM SConnectionFactory from the drop-down list.

Enter a name for the Connection Factory in the Name field.

Enter the INDI name of the Connection Factory in the INDINamefield.
Click Create.

Click the Targets tab.

Move the name of the WebL ogic Server hosting the service to the Chosen list
box, if not already there.

Click Apply.

10. Click to expand the Servers node under the IM S node in the left pane.

11. Click to expand your JM S server node.

12. Right-click the Destinations node and choose either:

e Configure anew JM STopic from the drop-down list if you want to create a
topic

e Configure anew JM SQueue if you want to create a queue.

13. Enter the name of the IM S destination in the Name text field.

14. Enter the INDI name of the destination in the INDIName text field.

15. Click Create.

Assembling a WebLogic Web Service

This section describes how to assemble all the components of aWeb service so it can
be deployed on WebL ogic Server and accessed by remote clients.

Programming WebL ogic Web Services 2-19

2 Developing WebLogic Web Services

Assembling a WebLogic Web Service Using Java Ant
Tasks

Assembling a WebL ogic Web Service refers to packaging all the components of the
Web service, such as the EJB that implements an RPC-style Web service, supporting
EJBs, the Web application that containsthe SOAP servlet, and so on, into an Enterprise
Application archive (*. ear) so it can be deployed on WebL ogic Server.

Developers use a Java Ant task, called wsgen, to assemble WebL ogic Web Services.
Thewsgen Ant task generates most of the WebL ogic Web Service components, such
asthe Web application that containsthe SOAP servlet and theappl i cati on. xni file
that describes the Enterprise Application archive. The only components you need to
have previoudly created are the EJB or message-driven beans that implement the Web
service.

For general information about Ant, see http://jakarta.apache.org/ant/index.html.

Note: The Java Ant utility included in WebL ogic Server usesthe ant (UNIX) or
ant . bat (Windows) configuration filesinthe BEA_HOVE\ bi n directory when
setting the ANTCLASSPATH variable, where BEA HOVE is the directory in
which WebL ogic Server isinstalled. If you need to update the
ANTCLASSPATH variable, make the appropriate changes to these files.

For detailed procedures for assembling WebL ogic Web Services manually, see
Appendix C, “Manually Assembling the Web Services Archive File.”

To assemble a WebL ogic Web Service, follow these steps:
1. Create atemporary staging directory.

2. If you are assembling an RPC-style Web service, copy the EJB *. j ar filethat
contains the EJB that implements the service, along with any supporting EJBs, to
the staging directory.

3. Set up your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA_HOMVE\ conf i g\ domai n, where BEA_ HOME is the directory in which
WebL ogic Server isinstalled and domai n refersto the name of your domain.

2-20 Programming WebL ogic Web Services

http://jakarta.apache.org/ant/index.html

Assembling a WebLogic Web Service

On UNIX, execute the set Env. sh command, located in the directory
BEA HOVE/ confi g/ domai n, where BEA_HOME is the directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

4. Createafilecalled bui | d. xml inthe staging directory that contains the Ant task
elements for assembling a WebL ogic Web Service.

For details on creating the bui | d. xni file, refer to “Example of an Ant
build.xml File” on page 2-21.

5. Change location to the staging directory and execute the Ant utility:
$ ant

Thewsgen Ant task creates an *. ear file containing the service componentsin
the staging directory. You are now ready to deploy this*. ear file on WebLogic
Server.

Example of an Ant build.xml File

WebL ogic Server includes the wsgen Ant task to help you quickly assemble the
components of a WebL ogic Web Service into an Enterprise archive file.

The following example shows abui | d. xnl file that assembles three Web services:
one RPC-style and two message-style (one for sending messages and onefor receiving
messages). Table 2-3 describes the file elements.

Listing 2-1 Example build.xml File for Assembling WebL ogic Web Services

<proj ect name="nyProject" defaul t="wsgen">
<t arget nane="wsgen">
<wsgen
dest pat h="nyWebServi ce. ear"
cont ext ="/ myCont ext "
protocol ="http">
<rpcservices path="nyEJB.jar">
<rpcservice
bean="st at el essSessi on"
uri="/rpc_URI"/>
</rpcservices>
<messageservi ces>
<messageservi ce
name="sendMsgWs"
action="send"

Programming WebL ogic Web Services 2-21

2 Developing WebLogic Web Services

desti nati on="exanpl es. soap. nsgSer vi ce. MsgSend"
destinati ontype="topic"
uri="/sendMsg"
connect i onf act or y="exanpl es. soap. nsgSer vi ce. MsgConnect i onFactory"/ >
<messageservi ce

name="r ecei veMsgW\s"
action="recei ve"
desti nati on="exanpl es. soap. nsgSer vi ce. MsgRecei ve"
destinati ontype="topic"
uri="/recei veMsg"
connecti onf act or y="exanpl es. soap. nsgSer vi ce. MsgConnecti onFactory"/ >

</ messageservi ces>

</ wsgen>

</target>
</ proj ect >

Table 2-3 Description of build.xml Example

Element or Attribute Description

wsgen element Specifiesthe wsgen Ant task used to assemble the Web service.

dest pat h attribute Specifies that the resulting Enterprise archive will be called
nyWebServi ce. ear.

cont ext attribute Specifiesthat the context root of the Web serviceiscalled/ myCont ext . You
will later use this context root in the URL used to view the generated WSDL
for the Web service and to download the Java client JAR file.

prot ocol attribute Specifies that clients use HTTP to invoke the service.

rpcservi ces element Contains the single RPC-style Web service that is associated with the
/ nyCont ext context.

pat h attribute Specifiesthat the EJBs are archived in a JAR file called nyEJB. j ar .
rpcservi ce element Specifies the properties of the RPC-style Web service.
bean attribute Specifies that the name of the stateless session EJB that implements the

RPC-style Web serviceisst at el essSessi on.

This name corresponds to the ej b- nanme elementintheej b-j ar. xm file
of the EJB archivein which the EJB is contained. The path to the EJB archive
isspecified in the parent r pcser vi ces element using the pat h attribute.

uri attribute Specifies that the URI of the serviceis/rpc_URI . ThisURI isused in
the URL to access the WSDL of the Web service.

2-22 Programming WebL ogic Web Services

Assembling a WebLogic Web Service

Element or Attribute

Description

nessageser vi ces
element

Contains two message-style Web services that are associated with the
/myContext context.

nmessageservice
element

Specifies the properties of each message-style Web service.

nane attribute

Assigns a unique name to each service: sendMsgWs and r ecei veMsgW\B.

act i on attribute

Specifies whether a client that invokes the Web service sends or receives
messages from the service. The first service specifies send, the second
receive.

dest i nati on attribute

Specifies the INDI name of the JM S destination that sends or receives
messages. The first service specifies

exanpl es. soap. msgSer vi ce. MsgSend, the second specifies
exanpl es. soap. msgSer vi ce. MsgRecei ve.

destinationtype
attribute

Specifies whether the IM S destination is atopic or aqueue. Both services
specify t opi c.

uri attribute

Specifies that the URIs of the servicesare/ sendMsg and /r ecei veMsg,
respectively. The URIs are combined to create the complete URL to the
WSDL of the Web service

connecti onfactory
attribute

Specifies the INDI name of the Connection Factory used to create aJMS
connection. Both services use the same Factory:
exanpl es. soap. msgSer vi ce. MsgConnect i onFact ory.

For adetailed description of the elements and attributes of thebui | d. xm file, referto
Appendix B, “build.xml Elements and Attributes.”

Creating the build.xml Ant Build File

The following procedure describes the Ant task elements you must include in your
bui I d. xm fileto correctly assemble a WebL ogic Web Service; use the examplein
the preceding section as aguide.

For detailed description of the elements and attributes of the bui | d. xm file
mentioned in the following procedure, aswell as additional elementsyou can specify,
refer to Appendix B, “build.xml Elements and Attributes.”

Programming WebL ogic Web Services ~ 2-23

2 Developing WebLogic Web Services

2-24

See“Editing XML Files’ on page 1-15 for information on using the BEA XML Editor
to create and edit the bui | d. xn file.

To createabui | d. xm Ant build file for assembling WebL ogic Web Services:

1
2.

Create an empty file called bui | d. xm using your favorite text editor.

Add one <pr oj ect > element with the following two attributes:
e nane - the name of your project.

e default - setthisattributetowsgen.

Within the <pr oj ect > element, add a <t ar get > element with one attribute,
nane; set the nane attribute towsgen.

Within the <t ar get > element, add a <wsgen> element with the following
attributes:

e destpath

e cont ext

e protocol

If you are assembling one or more RPC-style Web services, add asingle

<r pcser vi ces> element within the <wsgen> element with the following
attributes:

e path

Within the <r pcser vi ces> element, add an <r pcser vi ce> element for each
RPC-style Web service you are assembling, with the following attributes:

e bean

® uri

If you are assembling one or more message-style Web services, add asingle
<messageser vi ces> element within the <wsgen> element.

Within the <nessageser vi ces> element, add a<messageser vi ce> element for
each message-style Web service you are assembling, with the following attributes
that describe the IM S destination and Connection factory that you previously set
up for the message-style Web service:

e nane
e action

e destination

Programming WebL ogic Web Services

Deploying a WebLogic Web Service

e destinationtype
e uri

e connectionfactory

Dynamic or Static WSDL?

WebL ogic Web Services publish their WSDL filesas JSPs. The WSDL JSP can either
hard-code the host and port of a specific WebL ogic Server, or it can dynamically
generate the host and port based on the WebL ogic Server that is hosting the service.

Typically, you want the WSDL of aWebL ogic Web Service to dynamically generate
the host and port, and you do thisby not specifying thehost and por t attributes of the
wsgen element inthebui | d. xm Ant file used to assemble the Web service. If,
however, you want the host and port to be hard-coded in the WSDL JSP, explicitly
specify the host and port attributes.

Deploying a WebLogic Web Service

Deploying a WebL ogic Web Service refers to making it available to remote clients.
Because WebL ogic Web Services are packaged as standard J2EE Enterprise
applications, deploying a Web service is the same as deploying an Enterprise
application.

For detailed information on deploying Enterprise applications, see BEA WebLogic
Server Administration Guide at
http://e-docs.bea.com/wl s/docs61/adminguide/appman.html.

Programming WebL ogic Web Services 2-25

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Web Services

Developing a WebLogic Web Service: A
Simple Example

This section describes the start-to-finish process of developing, assembling, and
deploying the sample RPC-style WebL ogic Web Service provided as a product
example in the directory BEA HOVE/ sanpl es/ exanpl es/ r pc.

To develop the sample Weather RPC-style WebL ogic Web Service, follow these basic
steps:

1. Set up your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA_HOMVE\ conf i g\ domai n, where BEA_ HOME is the directory in which
WebL ogic Server isinstalled and domai n refersto the name of your domain.

On UNIX, execute the set Env. sh command, located in the directory
BEA HOVE/ conf i g/ domai n, where BEA HOME isthe directory in which
WebL ogic Server isinstalled and domai n refersto the name of your domain.

2. Write the Javainterfaces and classes for the Weather statel ess session EJB.
See “Writing the Java Code for the EJB” on page 2-27 for details.

3. Compilethe EJB Java code into classfiles.

4. Create the EJB deployment descriptors.
See “Creating EJB Deployment Descriptors’ on page 2-31 for details.

5. Assemble the EJB class files and deployment descriptorsinto aweat her . j ar
archivefile.

See “Assembling the EJB” on page 2-32 for details.

6. Createthebuil d. xm Java Ant build file used to assemble the WebL ogic Web
Service.

See “Creating the build.xml File” on page 2-33 for details.
7. Create astaging directory.

2-26 Programming WebL ogic Web Services

Developing a WebLogic Web Service: A Simple Example

8. Copy the EJB weat her . j ar fileand thebui | d. xn fileinto the staging
directory.

9. Execute the Java Ant utility to assemble the Weather Web service into a
weat her . ear archivefile:

$ ant

10. Auto-deploy the Weather Web service for testing purposes by copying the
weat her . ear archivefiletothe BEA HOVE/ confi g/ domai n/ appl i cati ons
directory, where BEA_ HOVE refers to the main WebL ogic Server installation
directory and donmai n refersto the name of your domain.

To invoke the Weather Web service from both a Java and a Visual Basic client
application, see the examplesin

BEA HOVE/ sanpl es/ exanpl es/ webser vi ces/ rpc/ javad i ent and

BEA HOVE/ sanpl es/ exanpl es/ webservi ces/rpc/vbdient.

For instructions for building and running the client applications, invoke the
BEA HOVE/ sanpl es/ exanpl es/ webser vi ces/ r pc/ package- sumary. ht m
Web page in your browser.

Writing the Java Code for the EJB

The sample Weather stateless session EJB contains one public method: get Tenp() .
The method takes a single argument, a zip code, and returns afloat value of 77 if the
Zip code is 90210 and -273.15 otherwise.

Note: This method obviously simulates a real-world Web service that returns the
actual temperature at a given zip code.

The following Java code is the public interface of the Weather EJB:

package exanpl es.webservi ces. rpc. weat her EJB;

i mport java.rm .Renot eException;
i nport javax.ej b. EJBObj ect ;

* The methods in this interface are the public face of \WatherBean.

* The signatures of the nmethods are identical to those of the EJBean, except
* that these methods throw a java.rm . RenoteException.

* Note that the EJBean does not inplenent this interface. The corresponding

Programming WebL ogic Web Services ~ 2-27

2 Developing WebLogic Web Services

code- gener at ed EIJBChj ect, \WatherBean, inplenents this interface and
del egates to the bean.

@ut hor Copyright (c) 1998 by WebLogic, Inc. Al Ri ghts Reserved.
@ut hor Copyright (c) 2001 by BEA Systens, Inc. Al Rights Reserved.
/

*
*
*
*
*
*

public interface Wat her extends EJBObject {

/**

* Gets the tenperature of a given Zi pCode.

*

* @ar am Zi pCode String Stock synbol

* @eturn doubl e Tenperature

* @xception Renot eException if there is

* a conmuni cations or systens failure
*

/

public float getTenp(String Zi pCode) throws RenpteException;
}

The following Java code is the actual stateless session EJB class:

package exanpl es.webservi ces.rpc. weat her EJB;

i mport javax. ej b. Creat eExcepti on;

i mport javax. ej b. Sessi onBean;

i mport javax. ej b. Sessi onCont ext;

i mport javax.nam ng. | nitial Context;
i mport j avax. nam ng. Nam ngExcepti on;

/**

* \WeatherBean is a statel ess Session Bean. This bean illustrates:

*

* <|i> No persistence of state between calls to the Session Bean

* Looking up values fromthe Environment

* <ful>

*

* @uthor Copyright (c) 1998 by WebLogic, Inc. Al Rights Reserved.

* @uthor Copyright (c) 2001 by BEA Systems, Inc. Al Rights Reserved.
*

~

public class Weat herBean i npl enents Sessi onBean {
private static final boolean VERBOSE = true;
private SessionContext ctx;
private int tradeLimt;
/1 You m ght al so consider using WebLogic's |og service

private void log(String s) {
if (VERBOSE) Systemout.println(s);
}

2-28 Programming WebL ogic Web Services

Developing a WebLogic Web Service: A Simple Example

/**

* This nethod is required by the EJB Specification,
* but is not used by this exanple.
*
*/
public void ejbActivate() {
| og("ej bActivate called");

/**

* This nethod is required by the EIJB Specification,
* but is not used by this exanple.
*/
public void ejbRenove() {
| og("ej bRemove call ed");

/**

* This nethod is required by the EJB Specification,
* but is not used by this exanple.
*/
public void ejbPassivate() {
| og("ej bPassivate called");

/**

* Sets the session context.
*
* @aram ct x Sessi onCont ext Context for session
*/
public voi d set Sessi onCont ext (Sessi onCont ext ctx) {
| og("set Sessi onCont ext called");
this.ctx = ctx;

}

/**

* This nethod corresponds to the create nmethod in the hone interface

* "\Weat her Hone. j ava".

* The paraneter sets of the two methods are identical. Wen the client calls
* <code>Weat her Hone. creat e() </ code>, the container allocates an instance of
* the EJBean and calls <code>ej bCreate() </ code>.

*

* @xception javax.ejb. CreateException if there is

* a conmuni cations or systenms failure

* @ee exanpl es. ej b. basi c. st at el essSessi on. \Wat her

*/

public void ejbCreate () throws CreateException {
| og("ejbCreate called");
try {
Initial Context ic = new Initial Context();
} catch (Nam ngException ne) {

Programming WebL ogic Web Services 2-29

2

Developing WebLogic Web Services

t hrow new Creat eException("Failed to find environnent val ue "+ne);

}

}
/**
* Gets the tenperature of a given Zi pCode.
*
* @ar am Zi pCode String Zi pCode
* @eturn fl oat Tenperature
* @xception Renot eException if there is
* a conmuni cations or systens failure
*

~

public float getTenp(String Zi pCode) {

| og("get Temp cal | ed");

Fl oat result;

i f (Zi pCode. equal s("90210")) {
result = new Float(77.0);

} else {
result = new Fl oat (-273.15);

}

return result.floatVal ue();

The following Java code is the Home interface of the Weather EJB:

package exanpl es.webservi ces.rpc. weat her EJB;

i mport java.rm .Renpt eException;
i mport javax. ej b. Creat eExcepti on;
i mport javax. ej b. EJBHone;

~
E R . R S R

~

*

This interface is the hone interface for the WatherBean.java,

whi ch in WebLogic is inplenmented by the code-generated container

cl ass Weat herBeanC. A hone interface may support one or nore create

met hods, which nmust correspond to nethods named "ej bCreate" in the EJBean.

@ut hor Copyright (c) 1998 by WebLogic, Inc. Al Rights Reserved.
@ut hor Copyright (c) 2001 by BEA Systens, Inc. Al Rights Reserved.

public interface Wat her Home extends EJBHonme {

/**

* This nethod corresponds to the ejbCreate nethod in the bean

"\\eat her Bean. j ava".

The paraneter sets of the two nmethods are identical. Wen the client calls
<code>Weat her Hone. creat e() </ code>, the contai ner

all ocates an instance of the EJBean and calls <code>ej bCreat e() </ code>.

* X X X F

2-30 Programming WebL ogic Web Services

Developing a WebLogic Web Service: A Simple Example

* @eturn Weat her

* @xception Renot eException if there is

* a communi cations or systenms failure

* @xception Cr eat eExcepti on

* if there is a problemcreating the bean

* @Gee exanpl es. ej b. basi c. st at el essSessi on. \Wat her Bean
*

/
Weat her create() throws CreateException, RenpteException

}

Creating EJB Deployment Descriptors

See“Editing XML Files’ on page 1-15 for information on using the BEA XML Editor
to create and edit the ej b-j ar. xnl and webl ogi c-ej b-j ar. xni files,

Thefollowing example showstheej b-j ar . xmi deployment descriptor that describes
the Weather EJB:

<?xm version="1.0"?>

<! DOCTYPE e€j b-j ar
PUBLIC '-//Sun M crosystens, Inc.//DID Enterprise JavaBeans 1.1//EN
"http://java.sun.confj2ee/dtds/ejb-jar_1_1.dtd"' >
<ej b-jar>
<enterpri se-beans>
<sessi on>
<ej b- name>st at el essSessi on</ ej b- nane>
<hone>
exanpl es. webservi ces. r pc. weat her EJB. \Wat her Honme
</ home>
<r enot e>
exanpl es. webservi ces. r pc. weat her EJB. WWat her
</ renot e>
<ej b-cl ass>
exanpl es. webservi ces. r pc. weat her EJB. \Wat her Bean
</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transacti on-type>
</ sessi on>
</ enterprise-beans>
<assenbl y-descri pt or>
<cont ai ner-transacti on>
<nmet hod>
<ej b- nane>st at el essSessi on</ ej b- nane>
<met hod- i nt f >Renot e</ met hod-i nt f >
<met hod- nanme>* </ met hod- nane>

Programming WebL ogic Web Services 2-31

2 Developing WebLogic Web Services

</ met hod>
<trans-attribute>Required</trans-attribute>
</ contai ner-transacti on>
</ assenbl y-descri pt or>
</ejb-jar>

The following example shows the webl ogi c- ej b-j ar. xm deployment descriptor
that describes the Weather EJB:
<?xm version="1.0"7?>
<! DOCTYPE webl ogi c-€j b-j ar
PUBLIC '-//BEA Systens, Inc.//DTD WblLogic 5.1.0 EJB//EN
"http://ww. bea. conf servers/w s510/ dt d/ webl ogi c-ej b-jar.dtd"' >
<webl ogi c- ej b-j ar>
<webl ogi c-ent erpri se- bean>
<ej b- name>st at el essSessi on</ ej b- nane>
<cachi ng- descri pt or >
<mex- beans-i n-free-pool >100</ max- beans-i n-free- pool >
</ cachi ng- descri pt or >
<j ndi - name>st at el essSessi on. Wat her Hore</ j ndi - nanme>
</ webl ogi c-ent erpri se-bean>
</ webl ogi c-ej b-jar>

Assembling the EJB

To assemble the EJB class files and deployment descriptorsinto aweat her . j ar
archivefile, follow these steps:

1. Create atemporary staging directory.

2. Copy the compiled Java EJB classfiles into the staging directory.
3. Create aMETA- | NF subdirectory in the staging directory.
4

. Copy theej b-j ar. xm andwebl ogi c-ej b-j ar. xm deployment descriptors
into the META- | NF subdirectory.

5. Createtheweat her . j ar archivefile using the jar utility:

jar cvf weather.jar -C staging_dir

2-32 Programming WebL ogic Web Services

Developing a WebLogic Web Service: A Simple Example

Creating the build.xml File

See“Editing XML Files’ on page 1-15 for information on using the BEA XML Editor
to create and edit the bui | d. xni file.

Thefollowing bui I d. xml file references the wsgen Java ant task that assembles the
weat her . j ar archive fileinto aWebL ogic Web Service weat her . ear enterprise
application archive file:

<proj ect name="weat her-webservi ce" default="wsgen">
<target name="wsgen">
<wsgen
dest pat h="weat her. ear"
cont ext ="/ weat her ">
<rpcservices path="weather.jar">
<rpcservi ce bean="st at el essSessi on" uri="/weatheruri"/>
</ rpcservices>
</ wsgen>
</target>
</ proj ect >

Programming WebL ogic Web Services ~ 2-33

2 Developing WebLogic Web Services

2-34 Programming WebL ogic Web Services

CHAPTER

3 Invoking WebLogic
Web Services

The following sections describe how to invoke WebL ogic Web Services from client
applications:

m “Overview of Invoking WebL ogic Web Services’ on page 3-2

“Invoking the WebL ogic Web Services Home Page” on page 3-4
m “URLsto Invoke WeblL ogic Web Services and Get the WSDL” on page 3-7
m “Creating a Client to Invoke an RPC-Style WebL ogic Web Service” on page 3-8

m “Creating a Java Client to Invoke a Message-Style WebL ogic Web Service” on
page 3-15

m “Handling Exceptions from WebL ogic Web Services’ on page 3-21
m “Initial Context Factory Properties for Invoking Web Services’ on page 3-22

m “Additional Classes Needed by Clients Invoking WebL ogic Web Services’ on
page 3-23

Programming WebL ogic Web Services 31

3 Invoking WebLogic Web Services

Overview of Invoking WebLogic Web
Services

Invoking a WebL ogic Web Service refers to the actions that a client application
performs to use the Web service. Client applications that invoke WebL ogic Web
Services can be written using any technology: Java, Microsoft SOAP Toolkit, and so
on.

The client application assembles a SOAP message that describes the Web service it
wantsto invoke and includes all the necessary datain the body of the SOAP message.
The client then sends the SOAP message over HTTP/HTTPS to WebL ogic Server,
which executes the Web service and sends a SOA P message back to the client over
HTTP/HTTPS.

Note: If you write your client application in Java, WebL ogic Server provides an
optional Javaclient JAR file that includes, for your convenience, everything
you need to invoke a WebL ogic Web Service, such as the WebL ogic Web
Services Client APl and WebL ogic FastParser. Unlike other Java WebL ogic
Server clients, you do not need toinclude thewebl ogi c. j ar file, thusmaking
for avery thin client. For details on downloading this JAR file, see
“Downloading the Java Client JAR File from the Web Services Home Page”
on page 3-6.

Each Web service has its own Home Page; Web services that share the same servlet
context share this Web page. Y ou use this Web page to get the WSDL and Javaclient
JAR file for aWeb service. See “Invoking the WebL ogic Web Services Home Page”
on page 3-4 for details on this Web page and how to invoke it in your browser.

WebLogic Web Services Client API

32

WebL ogic Server includes a client-side Java SOAP API in aJavaclient JAR file that
you can download from a deployed WebL ogic Web Service. Use this API to create
Java client applications that invoke WebL ogic Web Services. The examplesin this
book, as well as the examples on the product, use this API.

Programming WebL ogic Web Services

Overview of Invoking WebLogic Web Services

Warning: A standard client-side Web Service API specification from the W3C or
JavaSoftisnot yet available. Becausethe WebL ogic Web Servicesclient
API has not yet been standardized in the Java community process, BEA
Systems reserves the right to change how it works from one release to
another, and may not be able to make it backward compatible.

The examplesin thischapter briefly describe the main classes, interfaces, and methods
of the WebL ogic Web Servicesclient API. For detailed documentation onthe API, see
the WebLogic Server API Reference and search for the webl ogi c. soap package.

Client Modes Supported by the WebLogic Web Services
Client API

The WebL ogic Web Services client APl supports the following two modes of Java
client applications that invoke WebL ogic Web Services:

m Satic: Static client applications explicitly use the EJB and JavaBean interfaces
and classes that make up the Web service. These types of client applications are
the most type-safe of the two modes supported by WebL ogic Server, and are
thus the type recommended by BEA. Additionally, static client applications do
not contain any WebL ogi c-specific Java code. For an example of a static Java
client application, see “Writing a Static Java Client” on page 3-9.

m Dynamic: Dynamic client applications do not explicitly reference the EJB
interface of the Web service. For an example of adynamic client application, see
“Writing a Dynamic Java Client” on page 3-11.

Both the static and dynamic client applications described in this chapter usethe WSDL
of the Web service. See Appendix D, “Invoking Web Services Without Using the
WSDL File,” for information on creating a client application that does not use the
WSDL.

Y ou can use both static and dynamic client applications to invoke either RPC-style or
message-style Web services.

Programming WebL ogic Web Services 33

http://e-docs.bea.com/wls/docs61/javadocs/index.html

3

Invoking WebLogic Web Services

Examples of Clients That Invoke WebLogic Web Services

WebL ogic Server includes examples of creating both RPC-style and message-style
Web servicesand exampl es of both Javaand Microsoft VisualBasic client applications
that invoke the Web services.

The examples are located in the BEA_HOVE/ sanpl es/ exanpl es/ webser vi ces
directory, where BEA_HOME refersto the main WebL ogic Server installation directory.
The RPC-style Web serviceexampleisinther pc directory and the message-styleWeb
service exampleisin the message directory.

For detailed instructions on how to build and run the examples, invoke the Web page
BEA HOVE/ sanpl es/ exanpl es/ webser vi ces/ package- sunmmary. ht m in your
browser.

Invoking the WebLogic Web Services Home

Page

34

The WebL ogic Web Services Home Page lists the Web services defined for a
particular servlet context along with the WSDL files and Javaclient JAR file
associated with each Web service.

Use the following template URL to invoke the WebL ogic Web Services Home Page
in your browser:

[protocol]://[host]:[port]/[context]/index.htm

where

m protocol referstotheprotocol attribute of the <wsgen> element of the
bui | d. xm Ant file used to build the Web service. The two valid values are
ht t p (default) and ht t ps.

m host refersto the hostname of the computer which hosts the Web service.

m port refersto the port number of the WebL ogic Server instance that hosts the
Web service.

Programming WebL ogic Web Services

Invoking the WebLogic Web Services Home Page

m cont ext referstothecont ext attribute of the <wsgen> element of the
bui | d. xnl Ant file used to build the Web service.

For example, assumethat you built aWeb service using the following bui | d. xmi file:

<proj ect name="nyProject" defaul t="wsgen">
<t arget name="wsgen">
<wsgen
dest pat h="nyWebServi ce. ear"
cont ext ="/ nmyCont ext "
protocol ="http">
<rpcservices path="nyEJB.jar">
<rpcservice
bean="st at el essSessi on"
uri="/rpc_URI"/>
</rpcservices>
<nmessageservi ces>
<messageservi ce
name="sendMvsgWs"
action="send"
desti nati on="exanpl es. soap. negSer vi ce. MsgSend"
destinationtype="t opic"
uri="/sendMsg"
connecti onf act or y="exanpl es. soap. nsgSer vi ce. MsgConnecti onFactory"/ >
<messageservice
name="r ecei veMsgW5"
action="recei ve"
desti nati on="exanpl es. soap. nsgSer vi ce. MsgRecei ve"
destinationtype="t opi c"
uri="/recei veMsg"
connecti onf act or y="exanpl es. soap. nsgSer vi ce. MsgConnecti onFactory"/ >
</ messageservi ces>
</ wsgen>
</target>
</ proj ect >

The URL to invoke the WebL ogic Web Services Home Page for the / myCont ext
context on the myHost host at the default port of 7001 is:

http://ww. nyHost . com 7001/ myCont ext /i ndex. ht m

Getting the WSDL from the Web Services Home Page

To get the WSDL of a Web service from the Web Services Home Page:

Programming WebL ogic Web Services 35

Invoking WebLogic Web Services

1. InvoketheWeb ServicesHome Pagefor your context in your browser, asdescribed
in “Invoking the WebL ogic Web Services Home Page” on page 3-4.

2. Click the name of the Web service.

3. ClicktheWSDL Filelink. The WSDL file for the specified Web service appears
in your browser in plain text.

Downloading the Java Client JAR File from the Web
Services Home Page

36

WebL ogic Server provides a Java client JAR file that contains most of the Java code
you need to create a Java client application that invokes a WebL ogic Web Service. In
particular, the JAR file includes the WebL ogic implementation of a client-side SOAP
API, which means that you do not have to write the low-level Java code to create and
process SOAP messages.

The Java client JAR file contains the following objects:
m Webl ogic FastParser (high-performance XML parser)
m Webl ogic Web Services Client API

m Remote interface of the statel ess session EJB that implements the RPC-style
Web service

m Classfilesfor any JavaBeans that are used as EJB parameters or return values

m Additiona classfiles specified by thecl i ent j ar element of the bui | d. xm
Java Ant build file used to assemble the Web service

Note: BEA does not currently license client functionality separately from the server
functionality, so, if needed, you can redistribute this Java client JAR file to
your own customers.

To download the Java client JAR file to your computer:

1. Invoke the Web Services Home Page for a given context in your browser, as
described in “Invoking the WebL ogic Web Services Home Page” on page 3-4.

1. Click the name of the Web service.

Programming WebL ogic Web Services

URLs to Invoke WebLogic Web Services and Get the WSDL

Click the Client JAR Filelink.

Specify adirectory on your local computer in which to store the Java client JAR
file.

Save the JAR file to the specified directory.
Update your CLASSPATH to include the Javaclient JAR file.

URLs to Invoke WebLogic Web Services and
Get the WSDL

WSDL isused by client applications to describe the Web services they invoke.

The full URL to directly accessthe WSDL of aWebL ogic Web Serviceis:

[protocol]://[host]:[port]/[context]/[Wsnanme]/[Wsnane] . wsdl

where

pr ot ocol referstothe prot ocol attribute of the <wsgen> element of the
bui | d. xmi Ant file used to build the Web service. By default thisvalueisht t p.

host refersto the hosthame of the computer which hosts the Web service.

port refersto the port number of the WebL ogic Server instance that hosts the
Web service.

cont ext referstothecont ext attribute of the <wsgen> element of the
bui | d. xnl Ant file used to build the Web service.

Wsnane is the name of the Web service:

e For RPC-style Web services, the INDI name of the stateless session EJB that
implements the Web service.

For example, if the bean attributein the bui I d. xm file specifies
st at el essSessi on, and thewebl ogi c- ej b-j ar. xm containsthe
following entry:

Programming WebL ogic Web Services 3-7

3 Invoking WebLogic Web Services

<webl ogi c-enterpri se- bean>

<ej b- name>st at el essSessi on</ ej b- nane>

<j ndi - nane>st at el essSessi on. Weat her Horme</ j ndi - nanme>
</ webl ogi c-ent erpri se-bean>

then the Wename valueis st at el essSessi on. Weat her Hone.

e For message-style Web services, the name of the Web service is specified by
the narre attribute of the nessageser vi ce element that defines the Web
serviceinthebui | d. xni file.

For example, using the samplebui | d. xm filelisted in “Invoking the WebL ogic Web
Services Home Page” on page 3-4, the URL to access the WSDL for the RPC-style
Web serviceis:

http://ww. nyHost . com 7001/ myCont ext / st at el essSessi on. Weat her Horre/ st at el essSess
i on. Weat her Hone. wsdl

Similarly, the URL s to access the WSDL for the two message-style Web services are:

http://ww. nyHost . com 7001/ myCont ext / sendMsgW5/ sendMsgWs. wsdl
http://ww. nyHost . com 7001/ nyCont ext / r ecei veMsgW5/ r ecei veMsgW5. wsdl

Creating a Client to Invoke an RPC-Style
WebLogic Web Service

This section describes how to invoke an RPC-style Web service from two types of
clients: Java and Microsoft SOAP ToolKit.

The examples in this section invoke an RPC-style Web service that is based on the
Trader statel ess session EJB described in the
exanpl es. ej b. basi c. st at el essSessi on WebL ogic Server example.

Writing a Java Client

Creating a Java client application to invoke a WebL ogic Web Serviceissimple
because almost all of the Java code you need is provided by WebL ogic Server and
packaged in a Java client JAR file that you can download onto your client computer.

3-8 Programming WebL ogic Web Services

Creating a Client to Invoke an RPC-Style WebLogic Web Service

This section describes two modes of client applications: static and dynamic. Usea
static client if you have the Javainterfaces of the EJB and JavaBean parameters and
return types, and want to use them directly in your client Java code. Use adynamic
client if you do not have the interfaces.

Writing a Static Java Client

The following example shows a simple static Java client that invokes an RPC-style
Web service based on theexanpl es. ej b. basi c. st at el essSessi on EJB example
in WebL ogic Server.

The example uses the URL

http://mww.myhost.com: 7001/myContext/statel essSessi on/statel essSession.wsdl to
get the WSDL of the Web Service. For details on how to construct this URL and an
example of the bui | d. xn file used to create the RPC-style Web service, refer to
“URLsto Invoke WebL ogic Web Services and Get the WSDL"” on page 3-7.

The procedure after the exampl e discusses relevant sections of the example as part of
the basic steps you must follow to create thisclient.

inmport java.util.Properties;
i nport j avax. nam ng. Cont ext ;
i mport javax.nam ng. | nitial Context;

i mport exanpl es. ej b. basi c. st at el essSessi on. Trader;
i mport exanpl es. ej b. basi c. st at el essSessi on. TradeResul t;

public class Cdient{
public static void main(String[] arg) throws Exception
Properties h = new Properties();

h. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c. soap. htt p. Soapl ni ti al Cont ext Factory");

h. put ("webl ogi c. soap. wsdl . i nterface",
Trader. cl ass. get Nane());

Cont ext context = new Initial Context(h);

Trader service = (Trader)context.| ookup(
"http://ww. myHost.com 7001/ nmyCont ext / st at el essSessi on/ st at el essSessi on. wsdl "

)
TradeResult result = (TradeResult)service. buy("BEAS', 100);

Programming WebL ogic Web Services 39

3

Invoking WebLogic Web Services

}
}

3-10

System out. print(resul t.get StockSymbol ());
Systemout.print(');
System out. printl n(resul t. get Nunber Traded());

The Java code to statically invoke a WebL ogic Web Serviceis similar to remote
method invocation (RM1) client code that invokes EJBs. The main differences are;

You do not need to look up and invoke the Home interface of the service.
The Web service client uses a SOAP-specific INITIAL_CONTEXT_FACTORY.

The Web service client specifies the interface in the parameters to the
INITIAL_CONTEXT_FACTORY.

Follow these steps to create a static Java client that invokes an RPC-style WebL ogic
Web Service:

1. GettheJavaclient JAR file from the WebL ogic Server hosting the WebL ogic Web

Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Addthe Javaclient JAR file to your CLASSPATH on your client computer.

3.

Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:

a. Withinthemai n method of your client application, add the following Javacode

to initialize the client so it can interact with the Web service:

Properties h = new Properties();

h. put (Cont ext. | Nl TI AL_CONTEXT_FACTCRY,
"webl ogi c. soap. http. Soapl ni ti al Cont ext Factory");

h. put ("webl ogi c. soap. wsdl . i nterface",
Trader. cl ass. get Nane());

Cont ext context = new Initial Context(h);

Trader service = (Trader)context.| ookup(
"http://ww. myHost. com 7001/ nyCont ext / st at el essSessi on/ st at e
| essSessi on. wsdl ");

Programming WebL ogic Web Services

Creating a Client to Invoke an RPC-Style WebLogic Web Service

In the example, Tr ader isthe public interface to the EJB. Refer to “URLSsto
Invoke WebL ogic Web Services and Get the WSDL"” on page 3-7 for details
on how to construct the URL used in the cont ext . | ookup() method.

b. Invoke a Web service operation by executing a public method of the EJB, as
shown in the following example:

TradeResult result = (TradeResul t)service. buy("BEAS", 100);

The client executes the buy() method of the Tr ader EJB. The returned
valueisaTr ader Resul t JavaBean object. To find out the public methods of
the Tr ader EJB, either examine the returned WSDL of the Web service, or
un-JAR the downloaded Java client JAR file and use the javap utility to list
the methods of the Tr ader interface.

c. Usetheget methods of the returned Tr ader Resul t JavaBean to get the
returned results. To find out the methods of the Tr ader Resul t class, unJAR
the Java client jar file and use the javap utility to list the methods of the
Tr ader Resul t class.

System out . print(result get St ockSynbol ());
Systemout.print('
System out . printl n(result get Nunber Traded());

4. Compile and run the client Java program as usual.

Writing a Dynamic Java Client

Thefollowing example shows asimple dynamic Javaclient that invokes an RPC-style
Web service based on theexanpl es. ej b. basi c. st at el essSessi on EJB example
in WebL ogic Server.

The example uses the URL

http://www.myhost.com: 7001/myContext/statel essSessi on/statel essSession.wsdl to
get the WSDL of the Web Service. For details on how to construct this URL and an
example of the bui | d. xm file used to create the RPC-style Web service, refer to
“URLsto Invoke WebL ogic Web Services and Get the WSDL"” on page 3-7.

The procedure after the exampl e discusses relevant sections of the example as part of
the basic steps you must follow to create this client.

inmport java.util.Properties;

i mport javax. nam ng. Cont ext ;
i mport javax.nam ng. | nitial Context;

Programming WebL ogic Web Services ~ 3-11

3 Invoking WebLogic Web Services

i mport exanpl es. ej b. basi c. st at el essSessi on. TradeResul t;

i mport webl ogi c. soap. WbSer vi cePr oxy;
i mport webl ogi c. soap. SoapMet hod;

public class Dynam cClient{
public static void main(String[] arg) throws Exception{
Properties h = new Properties();

h. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c. soap. http. Soapl ni ti al Cont ext Factory");

Cont ext context = new Initial Context(h);
WebSer vi ceProxy proxy = (WebServi ceProxy) cont ext. | ookup(
"http://ww. myHost. com 7001/ nyCont ext / st at el essSessi on/ st at el essSessi on. wsdl ") ;
SoapMet hod nethod = proxy. get Met hod("buy");

TradeResult result = (TradeResul t)method. i nvoke(
new Object[]{ "BEAS', new Integer(100) });

System out. print(result get St ockSynbol ());
Systemout.print('
System out. printl n(result get Nunber Tr aded());

Follow these steps to create a dynamic Java client that invokes an RPC-style
WebL ogic Web Service:

1. GettheJavaclient JAR file from the WebL ogic Server hosting the WebL ogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Addthe Javaclient JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:

a. Withinthemai n method of your client application, add the following Javacode
toinitialize the client so it can interact with the Web service:

Properties h = new Properties();

312 Programming WebL ogic Web Services

Creating a Client to Invoke an RPC-Style WebLogic Web Service

h. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c. soap. htt p. Soapl ni ti al Cont ext Factory");

Cont ext context = new Initial Context(h);

WWebSer vi cePr oxy proxy = (WebSer vi ceProxy) cont ext . | ookup(
"http://ww. myHost . com 7001/ nyCont ext / st at el essSessi on/ st at e
| essSessi on. wsdl ");

In the example, the cont ext . | ookup() method returns ageneric

WebSer vi cePr oxy object rather than a specific Tr ader object; this makes
the example more dynamic because WebSer vi cePr oxy can represent any
EJB object. Refer to “URLs to Invoke WebL ogic Web Services and Get the
WSDL” on page 3-7 for details on how to construct the URL used in the
cont ext . | ookup() method.

b. Invoke the Web service operation by executing a public method of the EJB, as
shown in the following example:

SoapMet hod nethod = proxy. get Met hod("buy");

TradeResult result = (TradeResult)met hod. i nvoke(
new Cbject[]{ "BEAS", new Integer(100) });

The client indirectly executes the buy() method of the Tr ader EJB using
thei nvoke() method. The returned valueisaTr ader Resul t JavaBean
object. To find out the public methods of the Tr ader EJB, either examine the
returned WSDL of the Web service or unJAR the downloaded Java client jar
and use the javap utility to list the methods of the Tr ader interface.

c. Usetheget methods of the returned Tr ader Resul t JavaBean to get the
returned results. To find out the methods of the Tr ader Resul t class, unJAR
the Javaclient jar file and use the javap utility to list the methods of the
Tr ader Resul t class.

Systemout.print(result.getStockSynbol ());
Systemout.print(":");
System out.println(result.getNunberTraded());

4. Compile and run the client Java program as usual.

Writing a Microsoft SOAP Toolkit Client

Y ou can invoke WebL ogic Web Servicesfrom Microsoft Visual Basic applications by
using the client-side components provided by the Microsoft SOAP ToolKit.

Programming WebL ogic Web Services ~ 3-13

3 Invoking WebLogic Web Services

Note: WebLogic Server 6.1 supports only version 2.0sp2 of Microsoft SOAP
ToolKit

The following sample Visua Basic code shows a simple example of invoking the
WebL ogic Web Service described by the exanpl es. webser vi ces. r pc example:

SET soapclient = CreateQbject (" MSSOAP. SoapC ient")
Cal | soapclient.nssoapinit(

"http://nyhost: 7001/ weat her/ st at el essSessi on. Weat her Honre/ st at el essSessi on. WWeat h
er Home. wsdl ", "Weather", "WatherPort")

wscript.echo soapclient. get Tenp(94117)

To invoke aWebL ogic Web Service from aVisua Basic application using the
Microsoft SOAP ToolKit, follow these main steps:

1. Instantiate a Soapd i ent object in your Visual Basic application.

2. Initializethe Soapd i ent object by executing the SoapCl i ent . nssoapi ni t ()
method, passing it the following parameters:

e URL of the WSDL of the WebL ogic Web Service. See “URLsto Invoke
WebL ogic Web Services and Get the WSDL"” on page 3-7 for details on
constructing this URL .

e Name of the Web service, identified by the name attribute of theser vi ce
element in the WSDL file.

e Port of the Web service, identified by the nane attribute of the port element
inthe WSDL file.

After the Soapd i ent object isinitialized, all the methods defined in the WSDL
are dynamically bound to the Soapd i ent object.

3. Execute the WebL ogic Web Service method.

3-14 Programming WebL ogic Web Services

Creating a Java Client to Invoke a Message-Style WebLogic Web Service

Creating a Java Client to Invoke a
Message-Style WebLogic Web Service

This section describes how to invoke message-style Web services from a Java client
application.

Creating aJavaclient application to invoke amessage-style WebL ogic Web Serviceis
simple because almost all of the Java code you need is provided by WebL ogic Server
and packaged in a Javaclient JAR file that you can download onto your client
computer.

This section describestwo types of Java clients: onethat invokes amessage-style Web
service that sends datato WebL ogic Server and one that invokes a message-style Web
service that receives data. Both examples show how to create a dynamic Java client.

Note: The send and receive actions are from the perspective of the client application.

It isassumed that the two message-style Web servicesin the exampleswere assembled
using the following bui I d. xni file:

<proj ect name="nyProject" defaul t="wsgen">
<target name="wsgen">
<wsgen
dest pat h="nessageExanpl e. ear"
cont ext ="/ nsg"
protocol ="http" >
<nessageservi ces>
<messageservi ce
action="send"
name=" Sender"
desti nati on="exanpl es. soap. nsgSer vi ce. MsgSend"
destinationtype="t opi c"
uri="/sendMsg"
connecti onfact ory="exanpl es. soap. nsgSer vi ce. MsgConnecti onFactory"/ >
<messageservi ce
action="receive"
name="Recei ver"
desti nati on="exanpl es. soap. negSer vi ce. MsgRecei ve"
destinationtype="t opic"
uri="/recei veMsg"
connecti onf act ory="exanpl es. soap. nsgSer vi ce. MsgConnecti onFactory"/>

Programming WebL ogic Web Services ~ 3-15

3 Invoking WebLogic Web Services

</ nmes
</ wsgen>
</target>
</ proj ect>

sageservi ces>

Thebui | d. xm file shows two message-style Web services: one named Sender that
client applications use to send data to a JIM S topic with the INDI name

exanpl es. soap. msgSer vi ce. MsgSend and one named Recei ver that client
applications use to receive data from a IM S topic with the INDI name

exanpl es. soap. negSer vi ce. MsgRecei ve. Both message-style Web services use
the same ConnectionFactory to create the IM S connection:

exanpl es. soap. msgSer vi ce. MsgConnect i onFact ory.

Sending Data to a Message-Style Web Service

package exanpl

i mport java. ut

This section describes how to create a dynamic Java client application that invokes a
Web serviceto send datato WebL ogic Server. For the sake of simplicity, the example
sends a St ri ng datatype that will contain the data.

Note: For amore complex example that shows how to send a
or g. w3c. dom Docunent , or g. w3c. dom Docunent Fr agnent , or
org. w3c. dom El ement datatype to the send method, see Appendix D,
“Invoking Web Services Without Using the WSDL File.”

M essage-style Web servicesthat send datato WebL ogic Server define asingle method
called send; thisisthe only method you need to invoke from your Java client
application. The send method takes a single parameter: the actual data. The datatype
can be anything you want: a st ri ng (used in the example), aDOM tree, an

I nput St r eam etc. The datawill eventually end up on the IM S destination you specify
inthebui | d. xm file used to assemble the Web service.

The example usesthe URL htt p: / /1 ocal host: 7001/ msg/ Sender / Sender . wsdl
to get the WSDL of the Web Service. For details on how to construct this URL, refer
to “URLsto Invoke WebL ogic Web Services and Get the WSDL” on page 3-7.

The procedure after the exampl e discusses relevant sections of the example as part of
the basic steps you follow to create this client.

€S. soap;

il.Properties;

i mport java.net. URL;

316 Programming WebL ogic Web Services

Creating a Java Client to Invoke a Message-Style WebLogic Web Service

i mport javax. nam ng. Cont ext ;
i nport javax.nam ng. | nitial Context;

i nport webl ogi c. soap. WebSer vi cePr oxy;

i nport webl ogi c. soap. SoapMet hod;

i mport webl ogi c. soap. SoapType;

i nport webl ogi c. soap. codec. CodecFact ory;

i nport webl ogi c. soap. codec. SoapEncodi ngCodec;

public class Producerdient{
public static void main(String[] arg) throws Exception{
Properties h = new Properties();

h. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c. soap. htt p. Soapl ni ti al Cont ext Factory");
h. put ("webl ogi c. soap. verbose", "true");

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
h. put ("webl ogi c. soap. encodi ng. factory", factory);

Cont ext context = new Initial Context(h);

WebSer vi ceProxy proxy = (WebServi ceProxy) cont ext. | ookup(
“http://1ocal host: 7001/ msg/ Sender/ Sender . wsdl ");
SoapMet hod met hod = proxy. get Met hod("send");

String toSend
bj ect result

arg.length == 0 ? "No arg to send" : arg[O0];
met hod. i nvoke(new oject[]{ toSend });

Follow these stepsto create a dynamic Java client that invokes a message-style
WebL ogic Web Service that sends data to WebL ogic Server:

1. GettheJavaclient JAR file from the WebL ogic Server hosting the WebL ogic Web
Service.

For detailed information on this step, refer to “ Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Addthe Javaclient JAR file to your CLASSPATH on your client computer.

3. Createthe client Java program. The following steps point out the Web
service-specific parts of the Java code:

Programming WebL ogic Web Services ~ 3-17

3 Invoking WebLogic Web Services

a. Inthemai n method of your client application, createaPr operti es object and
set some of theinitial context properties:

Properties h = new Properties();

h. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c. soap. http. Soapl ni ti al Cont ext Factory");
h. put ("webl ogi c. soap. ver bose", "true");

b. Create afactory of encoding styles and register the SOAP encoding style:

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
h. put ("webl ogi c. soap. encodi ng. factory", factory);

c. Createtheinitial context, use the WSDL to look up the Web service, then get
the send method:

Context context = new Initial Context(h);

WebSer vi ceProxy proxy = (WebServi ceProxy) cont ext. | ookup(
"http://1ocal host: 7001/ nsg/ Sender/ Sender. wsdl ");
SoapMet hod nmet hod = proxy. get Met hod("send");

d. Invokethe send method and send data to the Web service. In the example, the
client application simply takesitsfirst argument and sendsitasast ri ng; if the
user does not specify an argument specified, then the client application sends
thestringNo arg to send:

String toSend = arg.length == 0 ? "No arg to send" : arg[O0];
Qoj ect result = nethod.invoke(new Object[]{ toSend });

4. Compile and run the client Java program as usual.

Receiving Data From a Message-Style Web Service

This section describes how to create a dynamic Java client application that invokes a
Web service to receive data from WebL ogic Server.

Message-style Web services that receive data from WebL ogic Server define asingle
method called r ecei ve; thisis the only method you need to invoke from your Java
client application. Ther ecei ve method takesno input parameters. It returnsageneric
Java object that contains the data that the Web service got from the IM S destination
you specify inthebui | d. xm file used to assemble the Web service.

3-18 Programming WebL ogic Web Services

Creating a Java Client to Invoke a Message-Style WebLogic Web Service

The example in this section uses the URL

http://1ocal host: 7001/ msg/ Recei ver/ Recei ver. wsdl togettheWSDL of the
Web Service. For details on how to construct this URL, refer to “URLs to Invoke
WebL ogic Web Services and Get the WSDL” on page 3-7.

The procedure after the exampl e discusses relevant sections of the example as part of
the basic steps you follow to create this client.

package exanpl es. soap;

inmport java.util.Properties;

i mport java. net. URL;

i mport javax. nam ng. Cont ext ;

i nport javax.nam ng. | nitial Context;

i nport webl ogi c. soap. WebSer vi cePr oxy;

i nport webl ogi c. soap. SoapMet hod;

i mport webl ogi c. soap. SoapType;

i nport webl ogi c. soap. codec. CodecFact ory;

i nport webl ogi c. soap. codec. SoapEncodi ngCodec;

public class Consunerdient{

}

public static void main(String[] arg) throws Exception{

}

Properties h = new Properties();
h. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,

"webl ogi c. soap. htt p. Soapl ni ti al Cont ext Factory");
h. put ("webl ogi c. soap. verbose", "true");

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
h. put ("webl ogi c. soap. encodi ng. factory", factory);

Cont ext context = new Initial Context(h);

WebSer vi ceProxy proxy = (WebServi ceProxy) cont ext. | ookup(
"http://local host: 7001/ nsg/ Recei ver/ Recei ver.wsdl ");
SoapMet hod nmet hod = proxy. get Met hod("receive");

while(true){
bj ect result = nmethod.invoke(null);
Systemout.printin(result);

}

Follow these stepsto create a dynamic Java client that invokes a message-style
WebL ogic Web Service that receives data from WebL ogic Server:

Programming WebL ogic Web Services ~ 3-19

3 Invoking WebLogic Web Services

1. GettheJavaclient JAR file from the WebL ogic Server hosting the WebL ogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page’ on page 3-6.

2. Addthe Javaclient JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:

a

Inthe mai n method of your client application, createaPr operti es object and
set some of the initial context properties:

Properties h = new Properties();
h. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,

"webl ogi c. soap. http. Soapl nitial Cont ext Factory");
h. put ("webl ogi c. soap. ver bose", "true");

Create a factory of encoding styles and register the SOAP encoding style:

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
h. put ("webl ogi c. soap. encodi ng. factory", factory);

Create the initial context, use the WSDL to look up the Web service , then get
ther ecei ve method:

Context context = new Initial Context(h);

WebSer vi ceProxy proxy = (WebServi ceProxy) cont ext. | ookup(
"http://1ocal host: 7001/ nsg/ Recei ver/ Recei ver.wsdl ");
SoapMet hod nmet hod = proxy. get Met hod("receive");

Invoke ther ecei ve method to receive data from the Web service. In the
example, the client application uses an infinite whi | e loop to continuously
invokether ecei ve method, in essence polling the IM S destination for
messages. When ther ecei ve method returns data, the client application prints
the result to the standard output:

while(true){
Ohj ect result = nethod.invoke(null);
Systemout.printin(result);

4. Compile and run the client Java program as usual.

320 Programming WebL ogic Web Services

Handling Exceptions from WebLogic Web Services

Handling Exceptions from WebLogic Web
Services

If an exception occurs while WebLogic Server is executing a Web service, the client
application that invoked the Web service receives arun-time
webl ogi c. soap. SoapFaul t exception that describes a standard SOAP fault.

The following types of exceptionsin WebLogic Server could produce arun-time
SoapFaul t exception in the client application:

m An exception from the stateless session EJB that implements an RPC-style Web
service

m An exception from the SOAP servlets that handle the SOAP messages between
the client application and WebL ogic Web Services

m A JMSexception

If your client application receives aSoapFaul t exception, use the following methods
of webl ogi c. soap. SoapFaul t to examineit:

m get Faul t Code() —returns the SOAP faultcode.

m get Faul t St ri ng() —returns the name of the class or interface that raised the
exception in WebL ogic Server. For example, if the stateless session EJB that
comprises an RPC-style Web service raised an exception, the
get Faul t St ri ng() method returns the interface of this EJB.

m printStackTrace()—returnsthe stack trace of the exception.

The following excerpt from a Java client application shows an example of using
webl ogi c. soap. SoapFaul t to examine any errors that occurred on WebL ogic
Server:

i mport webl ogi c. soap. SoapFaul t;

try {
TradeResult result = (TradeResult) nmet hod. i nvoke(

new Cbject[]{ "BEAS", new I nteger(100) });

Programming WebL ogic Web Services ~ 3-21

3 Invoking WebLogic Web Services

System out. print(result get St ockSymbol ());
Systemout.print(');
System out. printl n(resul t. get Nunber Traded());

} catch (SoapFault fault){
System out. println("Ooops, got a fault: " + fault);
fault. print StackTrace();

}

Initial Context Factory Properties for
Invoking Web Services

The following table lists the Java properties you can set with the Pr oper t i es object
when you use the WebL ogic-generated Java client JAR file in your Java client
applications to invoke a WebL ogic Web Service.

Note: The properties are passed to the initial context factory; these are not Java
system properties.

Table 3-1 Initial Context Factory Propertiesfor Invoking Web Services

Property Description

webl ogi c. soap. wsdl . interface Specifiestheinterface of the statel ess session EJB upon which
the Web serviceis based.

webl ogi c. soap. ver bose When set tot r ue, the SOAP packet generated by the Java
client to invoke a WebL ogic Web Serviceis output to the
client.

Validvaluesaret r ue and f al se (default).

webl ogi c. soap. encodi ng. factory Specifies the CodecFactory that contains the encoders and
decodersto convert between XML and Java data.

Valid values are instances of
webl ogi c. soap. codec. CodecFact ory.

java.namng.factory.initial Specifies the initial SOAP context factory.

Valid values are instances of
webl ogi c. soap. http. Soapl ni ti al Cont ext Facto

ry

3-22 Programming WebL ogic Web Services

Additional Classes Needed by Clients Invoking WebLogic Web Services

Table 3-1 Initial Context Factory Propertiesfor Invoking Web Services

Property Description

java. nam ng. security. princi pal Specifies the user name when setting HT TP security.

java.nam ng. security.credentials Specifiesthe user password when setting HT TP security.

Additional Classes Needed by Clients
Invoking WebLogic Web Services

WebL ogic Web Services support the following two encoding styles:
m http://schemas.xmlsoap.org/soap/encoding/
m http://xml.apache.org/xml-soap/literalxml

If your Javaclient application uses the SOAP encoding, then the Java client JAR file
that you download from WebL ogic Server includes all the classes you need to invoke
aWebL ogic Web Service.

However, if your client application usesthe Literal XML encoding from Apache, then
the Java client JAR file does not include al the files you need. The client JAR fileis
meant to be small, and adding all these classesto the JAR filewould makeit very large.

The following list shows some of the additional classes you might need to include;
® webl ogi c. apache. Xerces. *

® webl ogi c. xnl . jaxp.*

® org.w3c.dom*

m org.w3c.sax.*

m javax.xnl.parsers.*
Y ou can include these classes by either setting your CLASSPATH environment
variable to their location when you run the client application or by using the

clientjar elementinthebui | d. xm filewhen assembling the Web serviceusing the
wsgen Java Ant task.

Programming WebL ogic Web Services ~ 3-23

3 Invoking WebLogic Web Services

To get the complete list of classes your client application needs, compile the
application and then execute it with the - ver bose flag, which will list al the classes
it needs.

324 Programming WebL ogic Web Services

CHAPTER

4 Administering
WebLogic Web Services

The following sections describe tasks for administering WebL ogic Web Services:
m “Overview of Administering WebL ogic Web Services’ on page 4-1
m “Viewing the Web Services Deployed on WebL ogic Server” on page 4-3

Overview of Administering WebLogic Web
Services

Once you have devel oped, assembled, and deployed a WebL ogic Web Service, you
can use the Administration Console to perform the following administrative task:

m View the Web services currently deployed on WebL ogic Server.

Invoking the Administration Console

To invoke the Administration Consolein your browser, enter the following URL :
http://host: port/console

where

Programming WebL ogic Web Services 4-1

4 Administering WebLogic Web Services

m host refersto the computer on which WebL ogic Administration server is
running.

m port refersto the port number where WebL ogic Administration server is
listening for connection requests. The default port number for WebL ogic
Administration server is 7001.

The following figure shows the main Administration Console window.

Weblogic Server Console - Netscape

fle Edit Wiew Go Communicator Help
<« » A 4 o S & B @ E
Back Fopward Reload Home Search Metzcape Erirat: Security Shop Stop
W'thookmarks J‘ Location:I&MBean=examples°/°?ANameXSDexamplesXITypeXSDDomain&bodyFrameId=wl_c:ons0Ie_frame_993883339994 j @v\w’hat's Felated
ﬁlnstantMessage wi'ebbd ail Radio Feople ‘rellow Pages Download Calendar Ci Channels

@ console —{| Welcome to BEA WebLogic 9 2
- o
’ Q%mmes Server #e % bea
Senvers -

Clustars Connected to local l : Domain mples Jun 011 & PM PDT
ﬁjr\dachines
B Elpeployments Getting Started XML

= QApplications
B EEmessageExrample
Byyeh-zenices
B EEmessageReceive

Convert weblogic properties Install Feqistries
applications Documentation

Eeb-senices WebLogic JMS
B Eyeather Dormain Configurations Servers Clusters Servers Templates Stores
Eyeather Machines Connection Factories
Byyeh-zenices
&Eem
lwen applications Deployments JTA 2
& connectars Applications EJE Web Applications Configuration
Qstanup & Shutdown Connectors Startup & Shutdown
=] IerErvices
=y Security JDBC
ETspL Fealms Users Groups ACLs Connection Pools MultiPools Data
@ 7a Sources Tx Data Sources
o B s
? ’@ | |Applet navapplet stopped

4-2 Programming WebL ogic Web Services

Viewing the Web Services Deployed on WebLogic Server

Viewing the Web Services Deployed on
WebLogic Server

Toview all the Web servicesthat are deployed on WebL ogic Server, and then view the
properties of a particular Web service, follow these steps:

1. Start the WebL ogic Administration server and invoke the Administration Console
in your browser. See “Invoking the Administration Console” on page 4-1 for
detailed information.

2. Intheleft pane, click to expand the Deployments node.

3. Click to expand the Applications node. A list of Enterprise applications appears
bel ow the node.

4. To determine which of the listed Enterprise applicationsis deployed as a Web
service, follow these steps for each Enterprise application:

a. Click to expand the Enterprise application. The list of components that make
up the application, including Web applications and EJBs, appears below the
name of the application.

b. Look for aWeb application component called web- ser vi ces, which isthe
default name of the Web application that contains the SOAP servlets for Web
services.

The following figure shows three Enterprise applications. nessageExanpl e,
messageRecei ve, and weat her, each of which include aweb- ser vi ces
Web application. Thisindicates that the three applications are deployed as
Web services. The right pane displays information about the weather Web
service.

Programming WebL ogic Web Services 4-3

4 Administering WebLogic Web Services

Weblogic Server Console - Netscape

fle Edit Wiew Go Communicator Help
< » A N} 2 w3 &£ O @ iN
Back Fieload Home Search Metzcape Frint Security Shop

Mthookmarks)f, Location: |http:.-".-"|0c:alhost:?DD1.-"c:onsole.-"ac:tions.-"mbean.-"MBeanFramesebﬂction?isNew=false&sidebarFrameId=w|_c:0nso|e_fraﬂ @v\w’hat's Felated

ﬁlnstantMessage wi'ebbd ail Radio People| ‘rellow Pages Download Calendar Ci Channels

@ Console = [People] L 2 L%
1 @ examples examples> Applications> weather ﬂ = § hea
@Ser\rers £
Clustars Connected to loc 7) g
B wachi
o DD:;;:;SMS Configuration Motes
= QApplications
B EEmessageExrample
Byyeh-zenvices
Bl ®messageReceive % Name: weather
Byyeh-zenvices g
Bl Eweather Ay
B yaathar P Path: J4\BEA HOWE NEWwlserverf. lconfiglexamplestapplications\weather ear
o Byyeh-zenvices °
EJB
v
Elwen applications @ Drefplizyze
Connectors
5 ??’tan”p & Shutdawn B/ Confiqure Components in this Application
envices —
Epse 2nnl
oo _Anply |
T
@ta
Elgnmp
—]
P i=k= http: #2home. netscape. com/bookmark./4_7/ptpeople. kil B X A = I vy I

c. If youfind aWeb application called web- ser vi ces, right-click onit in the left
pane and chose Edit Descriptor from the drop-down menu. The Deployment
Descriptor Editor for the web- ser vi ces Web application deployment
descriptors appearsin a new browser window.

d. Intheleft pane of the Deployment Descriptor Editor, see if the RPC Services
node under the Web Services node contains an entry. If it does, then the
Enterprise application is deployed as an RPC-style Web service. Similarly, if
the Message Services node contains an entry, then the Enterprise applicationis
deployed as a message-style Web service.

e. Click onthe entry in either the Message Service or RPC Service node to view
the properties of the Web service.

4-4 Programming WebL ogic Web Services

Viewing the Web Services Deployed on WebLogic Server

f. If you do not find a Web application called web- ser vi ces, it is till possible
that the Enterprise application is deployed as a Web service, but the Web
application that contains the SOAP servlet has been named something other
than the default web- ser vi ces. In this case, you must check the deployment
descriptors of each Web application contained in the Enterprise application to
seeif there are any entries under the Web services node, as described in Steps
¢ through e of this procedure.

Programming WebL ogic Web Services 4-5

4 Administering WebLogic Web Services

4-6 Programming WebL ogic Web Services

CHAPTER

5 Troubleshooting

The following sections describe troubleshooting topics related to WebL ogic Web
Services;

m “Turning on Verbose Mode”’ on page 5-1
m “javaio.FileNotFoundException” on page 5-2
m “Unableto Parse Exception” on page 5-4
m “javalang.NullPointerException” on page 5-6

m “java.net.ConnectException” on page 5-7

Turning on Verbose Mode

Use the webl ogi c. soap. ver bose initial context factory property in your client
application to print out the SOA P messages that pass between WebL ogic Server and
the client application, aswell as any errors produced by WebL ogic Server.

In the following example, a client application that invokes a WebL ogic Web Service
hasthewebl ogi c. soap. ver bose initial context factory property set to trueto enable
verbose mode:

Properties h = new Properties();
h. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,

"webl ogi c. soap. http. Soapl ni ti al Cont ext Fact ory");
h. put ("webl ogi c. soap. ver bose", "true");

The output is printed to the shell from which you execute the client application. Use
this output to troubleshoot problems you encounter while invoking a Web service.

Programming WebL ogic Web Services 51

5 Troubleshooting

java.io.FileNotFoundException

Problem

Y our client application, while attempting to invoke a WebL ogic Web Service, throws
thej ava. i o. Fi | eNot FoundExcept i on exception.

Explanation

The problem could be caused by the following:
m The WebLogic Web Serviceis not currently deployed on WebL ogic Server.

m The Web application that contains the SOAP servletsis not targeted for the
correct instance of WebL ogic Server.

m If you areinvoking an RPC-style Web service, the statel ess session EJB that
implements the Web service is not targeted for the correct instance of WebL ogic
Server.

m If you are invoking a message-style Web service, the IMS Server or Connection
Factory is not targeted for the correct instance of WebL ogic Server.

The output from aj ava. i o. Fi | eNot FoundExcept i on error might look like the
following:

Exception in thread "main" javax.nam ng. Nam ngException: i/o failed
java.io. Fi |l eNot FoundExcepti on:
http://1 ocal host: 7001/ weat her/ st at el essSessi on. Weat her Horre/ st at el essSessi on. Wea
t her Hone. wsdl .
Root exception is java.io.FileNotFoundExcepti on:
http://1 ocal host: 7001/ weat her/ st at el essSessi on. Weat her Horre/ st at el essSessi on. Wea
t her Hone. wsdl
at
sun. net. ww. prot ocol . http. H t pURLConnect i on. get | nput St r ean(Ht t pURLConnection.j a
va: 574)
at webl ogi c. soap. WebSer vi cePr oxy. get XMLSt r ean{ WebSer vi cePr oxy. j ava: 553)
at webl ogi c. soap. WebSer vi cePr oxy. get Servi ceAt (WebSer vi ceProxy. j ava: 172)
at webl ogi c. soap. htt p. SoapCont ext . | ookup(SoapCont ext . j ava: 64)

5-2 Programming WebL ogic Web Services

java.io.FileNotFoundException

at javax.nam ng.|nitial Context.|ookup(lnitial Context.java: 350)
at exanpl es. webservices.rpc.javadient.Client.main(Cient.java: 34)

Suggested Solution

If thiserror occurs when you attempt to invoke a WebL ogic Web Service, follow these
steps to ensure that the Web service and its components are correctly deployed and
targeted:

1

Invoke the Administration Console in your browser. See “Invoking the
Administration Console” on page 4-1 for details.

In the left pane, click to expand the Applications node under the Deployments
node.

Click on the Enterprise Application that corresponds to the WebL ogic Web
Service that you are attempting to invoke.

In the right pane, if the Deployed check box is not selected, select it and click the
Apply button.

In the left pane, under the Enterprise application that corresponds to your Web
service, click the Web application that contains the SOAP servlets. The default
name of this Web application isweb- ser vi ces.

In the right pane, select the Targets tab.

If it is not already there, move the name of the WebL ogic Server instance on
which the Web application should be running from the Available to the Chosen
list box. Click Apply.

If you are attempting to invoke an RPC-style Webl ogic WWeb Service, follow these
steps:

a. Intheleft pane, under the Enterprise application that corresponds to your Web
service, click on the name of the EJB jar file.

b. Intheright pane, select the Targets tab.

c. If itisnot already there, move the name of the WebL ogic Server instance on
which the EJB should be running from the Availabl e to the Chosen list box and
click Apply.

Programming WebL ogic Web Services 5-3

5 Troubleshooting

If you are attempting to invoke a message-style Web service, follow these steps:
a. Intheleft pane, click to expand the IM S node under the Services node.
b. Click to expand the Connection Factories node.

c. Intheright pane, click the name of the IMS Connection Factory that you
configured for the message-style Web service that you are trying to invoke.

d. Select the Targetstab.

e. Ifitisnot already there, move the name of the WebL ogic Server instance for
which the Connection Factory should be targeted from the Available to the
Chosen list box. Click Apply.

f. Intheright pane, click to expand the Servers node under the IMS node.

g. Click the name of the IMS server which your message-style Web serviceis
using.

h. Intheright pane, select the Targets tab.

i. Ifitisnot already there, move the name of the WebL ogic Server for which the
JMS Server istargeted from the Available to the Chosen list box and click

Apply.
Unable to Parse Exception

Problem

The client application receives an “Unable to Parse” exception.

54 Programming WebL ogic Web Services

Unable to Parse Exception

Explanation

Theclient API used to invoke Web Services usesthe WebL ogic FastParser to parse the
WSDL and SOAP messages from the invoked Web service. If the WSDL or SOAP
message from the Web serviceis not well-formed, the client application might receive
an Unable to Parse error.

For example, if aWeb service’'sWSDL fileis not well-formed because of an element
specifying two attributes with the same name, the client application produces the
following error:

Exception in thread "main" javax.nam ng. Nanmi ngException: unable to parse
org. xm . sax. SAXException: Attributes may not have the same nane, nore than
one xm ns:tns.
Root exception is org.xm .sax. SAXException: Attributes may not have the same nane,
nore than one xmns:tns
at
webl ogi c. xml . babel . basepar ser. SAXEl enent Fact ory. creat eAttri but es(SAXEl ene
nt Factory. j ava: 42)
at
webl ogi c. xml . babel . basepar ser. St reanEl enent Fact ory. creat eSt art El enent Even
t (Streantl ement Factory. java: 39)
at
webl ogi c. xm . babel . parsers. StreanPar ser. streanPar seSone(St reanPar ser. j ava: 113)
at
webl ogi c. xm . babel . par sers. Babel XM_LEvent St ream par seSone(Babel XM_LEvent Str
eam j ava: 46)
at
webl ogi cx. xml . stream XMLEvent St r eanBase. hasNext (XMLEvent St r eanBase. j ava: 135)
at
webl ogi cx. xml . stream XMLEvent StreanBase. hasSt art El ement (XM_Event StreanBase. j ava
1 241)
at
webl ogi cx. xnml . stream XMLEvent St r eanBase. st art El enent (XMLEvent St r eanBase. j ava: 23
4)

at webl ogi c. soap. wsdl . bi ndi ng. Definition. parse(Definition.java: 121)

at webl ogi c. soap. WebSer vi cePr oxy. get Servi ceAt (WebSer vi ceProxy. java: 171)
at webl ogi c. soap. htt p. SoapCont ext . | ookup(SoapCont ext . j ava: 64)

at javax.nam ng.|nitial Context.|ookup(lnitial Context.java: 350)

at exanpl es. webservices.rpc.javadient.Client.main(Cient.java: 34)

Programming WebL ogic Web Services 5-5

5 Troubleshooting

Suggested Solution

Contact the Web service provider to ensure that the Web service produceswell-formed
WSDL and SOAP messages.

java.lang.NullPointerException

Problem
Your client application getsaj ava. | ang. Nul | Poi nt er Except i on error in the
methodsin the webl ogi c. soap. wsdl . bi ndi ng. * classes.
Explanation

One possible explanation is that the Web service' sWSDL or SOAP messages,
athough possibly well-formed, are not valid.

For example, if the Web service' sWSDL referencesani nput s element rather than
the correct i nput , then the client application produces the following error:

was expecting 'input|output' but got:inputs

was expecting 'operation|input|output' but got:inputs

Exception in thread "nmain" java.lang. Nul | Poi nt er Excepti on
at webl ogi c. soap. wsdl . bi ndi ng. Oper ati on. get | nput Nane(Oper ati on. j ava: 35)
at

webl ogi c. soap. wsdl . bi ndi ng. Bi ndi ngQper ati on. popul at e(Bi ndi ngOper ati on. j av

a: 49)
at webl ogi c. soap. wsdl . bi ndi ng. Bi ndi ng. popul at e(Bi ndi ng. j ava: 48)
at webl ogi c. soap. wsdl . bi ndi ng. Defini ti on. popul ate(Definition.java: 116)
at webl ogi c. soap. WebSer vi cePr oxy. get Servi ceAt (WebSer vi ceProxy. j ava: 174)
at webl ogi c. soap. htt p. SoapCont ext . | ookup(SoapCont ext . j ava: 64)
at javax.nam ng.lnitial Context.|ookup(lnitial Context.java: 350)
at exanpl es. webservices.rpc.javaCient.Client.main(dient.java: 34)

5-6 Programming WebL ogic Web Services

java.net.ConnectException

Suggested Solution

Contact the Web service host and ensure that the Web service produces valid WSDL
and SOAP messages.

java.net.ConnectException

Problem

Your client application getsaj ava. net . Connect Except i on.

Explanation

One possible explanation is that the Web service is unreachable. In particular:

m |f the client application is attempting to invoke a WebL ogic Web Service, the
application receives aConnect i on ref used error if WebLogic Server is not
currently running.

m |f the client application is attempting to invoke a non-WebL ogic Web Service,
the application receives an Oper ation tinmed out error after afew minutes if
the host is unreachable for any reason.

For example, if the client application attempts to invoke a WebL ogic Web Service
fromaWebL ogic Server instancethat iscurrently not running, the application receives
the following error:

Exception in thread "main" javax. nani ng. Nami ngException: i/o failed

j ava. net. Connect Excepti on: Connection refused: connect.

Root exception is java.net.Connect Exception: Connection refused: connect
at java. net. Pl ai nSocket | mpl . socket Connect (Native Met hod)
at java. net. Pl ai nSocket | npl . doConnect (FancyJul i et | npl . j ava: 320)
at java. net. Pl ai nSocket | mpl . connect ToAddr ess(Pl ai nSocket | npl . j ava: 133)
at java. net. Pl ai nSocket | mpl . connect (FancySchmancyBever| eyl npl . j ava: 120)
at java. net. Socket. <init>(Socket.java:273)
at java. net. Socket . <init>(Socket.java: 100)

Programming WebL ogic Web Services 5-7

5 Troubleshooting

at
at
at
at
at
at
at

sun. net. Networ kCl i ent . doConnect (Net wor kCl i ent . j ava: 50)

sun. net. ww. http. Ht pCient.openServer(Htpdient.java: 331)
sun. net. ww. http. Ht pCient.openServer(Htpdient.java: 517)
sun. net.ww. http. HHtpCient.<init>(HtpCient.java: 267)
sun. net.ww. http. Htpdient.<init>(HtpCdient.java:277)
sun. net. ww. http. HHtpCient. New(H t pClient.java: 289)

sun. net. ww. protocol . http. H t pURLConnect i on. connect (Ht t pURLConnecti on. j ava: 408)

at

sun. net. ww. prot ocol . http. H t pURLConnect i on. get | nput St r ean(Ht t pURLConnection.j a

va: 501)
at
at
at
at
at

webl ogi c. soap. WebSer vi cePr oxy. get XMLSt r ean{ WebSer vi cePr oxy. j ava: 553)
webl ogi c. soap. WebSer vi cePr oxy. get Servi ceAt (WebSer vi ceProxy. j ava: 172)
webl ogi c. soap. htt p. SoapCont ext . | ookup(SoapCont ext . j ava: 64)

j avax. nam ng. | ni tial Cont ext. | ookup(lnitial Context.java: 350)

exanpl es. webservices.rpc.javaClient.Client.main(Cdient.java: 34)

Suggested Solution

Either restart WebL ogic Server, or contact the Web service host and ensure that the
Web service isreachable.

For information about starting WebL ogic Server, see WebLogic Server Administration
Guide at http://e-docs.bea.com/wls/docs61/adminguide/startstop.html.

5-8 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html

CHAPTER

O Interoperability

The following sections describe interoperability issues that surfaced when testing

WebL ogic Web serviceswith other clients during the Round 2 SOAP Interoperability
Tests:

m “.NET Client Interoperating With a 6.1 WebL ogic Web Service” on page 6-1

m “7.X WebLogic Client Interoperating with a 6.1 WebL ogic Web Service” on
page 6-2

NET Client Interoperating With a 6.1
WebLogic Web Service

When a.NET client invokes the array-based methods of the Round 2 SOAP
Interoperability Tests on a 6.1 WebL ogic Web service, the returned data does not
contain any of the array elements.

The array-based methods are:
m echoStringArray

m echol ntegerArray

m echoFl oat Arr ay

m echoStruct Array

Programming WebL ogic Web Services 6-1

6 Interoperability

7.X WebLogic Client Interoperating with a
6.1 WebLogic Web Service

When aclient application that uses the stubs created by the 7.0 cl i ent gen Ant task
invokesthe echoSt r uct Ar r ay method of the Round 2 SOAP Interoperability Tests

running on a6.1 WebL ogic Web service, the returned data does not contain the correct
array elements.

6-2 Programming WebL ogic Web Services

APPENDIX

A Specifications

Supported by
WebLogic Web Services

The following sections describe the specifications supported by Webl ogic Web
Services:

m SOAP 1.1 Specification
m SOAP Messages With Attachments Specification
m Web Services Description Language (WSDL) 1.1 Specification

SOAP 1.1 Specification

Simple Object Access Protocol (SOAP) is alightweight XML -based protocol for
exchanging information in a decentralized, distributed environment. The protocol
consists of three parts: an envelope that contains a message, a description of the
message, and how to processit; a set of encoding rules for expressing instances of
application-defined data types; and a convention for representing remote procedure
calls and responses.

The SOAP 1.1 specification is available at http://www.w3.0rg/TR/SOAP.

Programming WebL ogic Web Services A-1

http://www.w3.org/TR/SOAP

A Specifications Supported by WebLogic Web Services

SOAP Messages With Attachments
Specification

A SOAP message may need to reference an attached file, often in binary format, such
as an image or spreadsheet file. The SOAP Messages with Attachments specification
describes a standard way to associate a SOAP message with one or more attachments
in their native format in a multipart MIME structure for transport.

Note: WebL ogic Web Services currently ignore the actual attachment of a SOAP
with attachments message.

The SOAP Messages with Attachment specification is available at
http://www.w3.0rg/TR/SOA P-attachments.

Web Services Description Language (WSDL)
1.1 Specification

A-2

WSDL isan XML-based language that describes Web services. WSDL defines Web
services as a set of endpoints operating on messages; these message contain either
message-style or RPC-style information. The operations and messages are described
abstractly in WSDL, and then bound to a concrete network protocol and message
format to define an endpoint. Related concrete endpoints are combined into abstract
endpoints (services). WSDL is extensible to allow the description of endpoints and
their associ ated messages regardl ess of what message formats or network protocolsare
used to communicate, however, the only bindings described in the specification
describe how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and
MIME.

Note: WebLogic Server supports only SOAP 1.1 bindings.

The WSDL 1.1 Specification is available at http://www.w3.org/TR/wsdl.

Programming WebL ogic Web Services

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/wsdl

APPENDIX

B

build.xml Elements
and Attributes

Thebui I d. xm file containsinformation that the wsgen Java Ant task uses to
assemble Web servicesinto Enterprise Application archive (*. ear) files.

The following sections provide an example bui | d. xm file and describe its elements
and attributes:

m “Example of abuild.xml File" on page B-2
m “build.xml Hierarchy Diagram” on page B-3
m “Description of Elements and Attributes’ on page B-3

Thebui I d. xmi file consists of aseries of XML elements. Java Ant defines avariety
of elementsyou canincludeinthisfile, such asproj ect andt ar get . ThisAppendix,
however, describes only those elements that are part of the WebL ogic-specific wsgen
Java Ant task. For general information about Java Ant, see
http://jakarta.apache.org/ant/index.html.

Note: The Java Ant utility included in WebL ogic Server usesthe ant (UNIX) or
ant . bat (Windows) configurationfilesinthe BEA_HOVE\ bi n directory when
setting the ANTCLASSPATH variable, where BEA_ HOVE isthe directory in
which WebL ogic Server isinstalled. If you need to update the
ANTCLASSPATH variable, make the appropriate changes to these files.

Programming WebL ogic Web Services B-1

http://jakarta.apache.org/ant/index.html

B build.xml Elements and Attributes

Example of a build.xml File

The following example showsasimplebui | d. xml file used to assemble one
RPC-style Web service and two message-style Web services:

<proj ect name="nyProject" defaul t="wsgen">
<target name="wsgen">
<wsgen
dest pat h="nyWebSer vi ce. ear"
cont ext ="/ nyCont ext "
protocol ="http">
<rpcservices path="nyEJB.jar">
<rpcservice
bean="st at el essSessi on"
uri="/rpc_URI"/>
</rpcservices>
<nessageservi ces>
<messageservice
name="sendMsgW5"
action="send"
desti nati on="exanpl es. soap. nsgSer vi ce. MsgSend"
destinati ontype="t opic"
uri="/sendMsg"
connect i onf act or y="exanpl es. soap. nsgSer vi ce. MsgConnect i onFactory"/ >
<messageservi ce
nanme="r ecei veMsgW\5"
action="receive"
desti nati on="exanpl es. soap. nsgSer vi ce. MsgRecei ve"
destinati ontype="t opic"
uri="/recei veMsg"
connect i onf act or y="exanpl es. soap. nsgSer vi ce. MsgConnect i onFactory"/ >
</ messageservi ces>
</ wsgen>
</target>
</ proj ect >

B-2 Programming WebL ogic Web Services

build.xml Hierarchy Diagram

build.xml Hierarchy Diagram

The following diagram shows all the possible sub-elements of the wsgen element in
thebui | d. xm file, along with the element hierarchy. An asterisk (*) indicatesthat the
element can be specified zero or more times.

wsgen

— rpcservices *

L rpcservice *

— messageservices *

L messageservice *

— clientjar

L manifest

L entry *

Description of Elements and Attributes

The following sections describe bui | d. xnm elements and attributes.

Programming WebL ogic Web Services B-3

B build.xml Elements and Attributes

wsgen

This element contains the following attributes.

Table 6-1 wsgen Attributes

Thewsgen element isthe name of the Ant task inthebui | d. xmi file. Its attributes
specify information that is common to all Web services described in the file.

Attribute

Description

Required?

basepat h

Location of theinput Enterprise Application archivefile(*. ear) or
exploded directory that contains the EJB jar files for the EJB that
implements the RPC-style Web services, aswell as any supporting
EJBs.

Be sureto specify thefull pathname of thefileor directory if itisnot
located in the same directory asthe bui | d. xm file.

Default valueis null.

No.

dest path

Type and location of the output Enterprise Application archive. To
create an actual Enterprise Application archivefile (*. ear),
specify the. ear suffix; to create an exploded Enterprise
Application directory, specify a directory name.

Specify the full pathname of thefile or directory if you do not want
the Ant task to create the archive in the local directory.

Yes.

cont ext

Context root of the Web services.
Thisvalueis part of the URL used to access the Web service.

Yes.

pr ot ocol

Protocol by which clients access the Web service.
There are two possible values: htt p or ht t ps.
The default valueisht t p.

No.

host

Name of the host that is running the WebL ogic Server instance that
is hosting the Web service; for example, www. bea. com

If you do not specify this attribute, the host in the WSDL JSPis

generated from the hostname section of the URL used to retrieve the
WSDL.

B-4 Programming WebL ogic Web Services

No.

Description of Elements and Attributes

Table 6-1 wsgen Attributes (Continued)

port

Port number of WebL ogic Server. Default valueis 7001. No.

If you do not specify this attribute, the port in the WSDL JSP is
generated from the port section of the URL used to retrieve the
WSDL.

webapp

URI that specifies the path to a Web Application module used to No.
expose a Web service.

Default valueisweb- ser vi ces. war .

cl asspath

Semicolon-separated list of directoriesor JAR filesthat containJava No.
classes (such as utility classes) needed by the stateless session EJB
that implements an RPC-style Web service.

rpcservices

Ther pcser vi ces element specifies an EJB archive that contains the statel ess session
EJB that implements the RPC-style Web service, aswell as any supporting EJBs.

This element can have any number of r pcser vi ce sub-elements that describe each
individual RPC-style Web service.

This element contains the following attributes.

Table 6-2 rpcservices Attributes

Attribute Description Required?
nodul e If thebasepat h attribute of thewsgen element isset, thisattribute Only if the
specifies the URI of the Enterprise Application module that basepat h
corresponds to an EJB archive contained by the Enterprise attribute of the
Application archive. wsgen eement
isset.
pat h If the basepat h attribute of thewsgen element is not set, this Only if the

attribute specifies the location of an existing EJB archive that basepat h

contains the EJBs, either archiveasa*. j ar fileor asanexploded attribute of the

directory. wsgen element
isnot set.

Programming WebL ogic Web Services B-5

B build.xml Elements and Attributes

rpcservice

Ther pcser vi ce element specifies a specific RPC-style Web service.

This element does not have any sub-elements.

This element contains the following attributes.

Table 6-3 rpcservice Attributes

Attribute

Description

Required?

bean

Name of the statel ess session EJB that implements the RPC-style
Web service.

This name corresponds to the ej b- nanme element in the

ej b-j ar. xm fileof the EJB archiveinwhichthe EJB is
contained. The path to the EJB archive is specified in the parent
rpcservi ces element.

Yes.

Part of the URL used by clients to invoke the Web service.
The full URL to access the Web serviceis:
[protocol]://[host]:[port][context][uri]
where

m protocol referstotheprotocol attributeof thewsgen
element.

m host refersto the hostname of the computer upon which the
WebL ogic Server hosting the service is running.

m port refersto the port of WebLogic Server.

m cont ext referstothecont ext attribute of thewsgen
element.

m uri referstothisattribute.
For example, the URL that accesses the RPC-style Web servicein
the example in “Example of abuild.xml File” on page B-2 is:

http://ww. nyHost. com 7001/ myCont ext/ rpc_UR

Yes.

B-6 Programming WebL ogic Web Services

Description of Elements and Attributes

MesSagese rvices

Thenessageser vi ces element is acontainer for any number of nessageser vi ce
sub-elements.

This element does not have any attributes.

messageservice

Thenessageser vi ce element describes a specific message-style Web service by
specifying a IM S destination that will receive or send messages.

This element does not have any sub-elements.

This element contains the following attributes.

Table 6-4 messageservice Attributes

Attribute Description Required?
name Name of the message-style Web service. Yes.
destination JINDI name of a IM S topic or queue. Yes.
desti nationtype Type of IMS destination. Yes.
Values: t opi ¢ or queue.
action Specifieswhether theclient that invokesthismessage-styleWeb Yes.
service sends or receives messages to or from the IMS
destination.
Vaues: send orr ecei ve.
Specify send if the client sends messagesto the IMS
destination and r ecei ve if the client receives messages from
the IM S destination.
connectionfactory JNDI name of the ConnectionFactory used to create a Yes.

connection to the IM S destination.

Programming WebL ogic Web Services B-7

B build.xml Elements and Attributes

Table 6-4 messageservice Attributes (Continued)

uri Part of the URL used by clients to invoke the Web service. Yes.
The full URL to access the Web serviceis:
[protocol]://[host]:[port] [context] [uri]
where

m protocol refersto the pr ot ocol attribute of thewsgen
element.

m host referstothehostname of the computer uponwhichthe
WebL ogic Server hosting the service is running.

m port refersto the port of WebL ogic Server.

m context refersto thecont ext attribute of thewsgen
element.

m uri refersto this attribute.

For example, the URL that accessesthe first message-style Web
serviceintheexamplein “Example of abuild.xml File” on page
B-2is:

http://ww. nyHost. com 7001/ myCont ext / sendMsg

clientjar

Usethecl i entjar element to specify the name for the generated Javaclient jar file.
You can also use it specify other arbitrary files that you want to add to the generated
Javaclient jar file.

This element can have one sub-element: mani f est , aswell asmany fi | eset s and
zi pfil esets elements. Thefil esets andzi pfil esets elementsare generic Ant
elements, rather than ws gen-specific elements; use them to specify additional filesthat
should be included in the Java client JAR file.

This element contains the following attributes.

Table 6-5 clientjar Attributes

Attribute Description Required?

path URI for the generated Java client JAR file that contains all the Java No.
classes and interfaces needed to invoke the Web services.

Default valueiscl i ent . j ar.

B-8 Programming WebL ogic Web Services

Description of Elements and Attributes

manifest

entry

Themani f est element isa container for additional header entriesto the manifest file
(MANIFEST.MF) included in the generated Java client JAR file.

This element can have any number of ent r y sub-elements that describe the additional
headers to the manifest file.

This element does not have any attributes.

Theent ry element specifies the name and value of an additional header to the
manifest file (MANIFEST.MF) included in the generated Java client JAR file.

This element does not have any sub-elements.

This element contains the following attributes.

Table 6-6 entry Attributes

Attribute Description Required?

name Name of the additional header that will appear in the manifest file Yes.
(MANIFEST.MF) of the generated Java client JAR file.

val ue Value of the additional header that will appear in the manifest file Yes.

(MANIFEST.MF) of the generated Java client JAR file.

Programming WebL ogic Web Services B-9

B build.xml Elements and Attributes

B-10 Programming WebL ogic Web Services

APPENDIX

C Manually Assembling

the Web Services
Archive File

The following sections describe how to assemble a Web service manually into an
Enterprise Application *. ear archivefile:

Before You Begin

Description of the Web Services Archive File

Assembling an RPC-Style Web Service Archive File Manually
Assembling a Message-Style Web Service Archive File Manually
Creating the client.jar File Manually

Before You Begin

WebL ogic Web Servicesare packaged as standard J2EE Enterprise application archive
files (. ear). Assembling a WebL ogic Web Service archive file manually can be
complicated. For this reason, BEA highly recommends that you use the wsgen Java
Ant task to create an initia *. ear file. Then, if needed, you can customize the
components contained within the archive file for your specific application. For details
on using wsgen, see “Assembling a WebL ogic Web Service” on page 2-19.

Programming WebL ogic Web Services C-1

C Manually Assembling the Web Services Archive File

Y ou might need to manually create or edit the Enterprise application archivefile if:
m you want to integrate the archive with a J2EE deployment tool.

m you need to perform advanced configuration tasks on components of the archive
that are not available through the wsgen Ant task. These tasks include securing
the SOAP servlets, securing the EJB, and so on.

m you want to change the default naming conventions and directories that the
wsgen Ant task uses.

The following procedures shows how to create an Enterprise application archive
similar to the one that the wsgen Java Ant task creates. If you follow the naming
conventions exactly, the instructions in other chapters of this guide that describe how
to access the WSDL of aWeb service, the client.jar file, etc, will continue to work
correctly.

Description of the Web Services Archive File

The Enterprise application archive contains the following components:

m A Web application, packaged in a*. war filethat contains, among other items:

e AnHTML Web page that corresponds to the Web Services Home Page that
lists all the Web services packaged in this Enterprise application archive.

e For each Web service, an HTML Web page that includes links to the WSDL
and client JAR file of the Web service.

e For each Web service, aWSDL JSP that returns the WSDL.

e Theweb. xm and webl ogi c. xm deployment descriptor files that contain
Web services-specific information, such as references to the SOAP servlets
that process the SOAP requests from the client.

m The stateless session EJB *. j ar file (for RPC-style Web services).

m Other supporting EJB *. j ar files.

C-2 Programming WebL ogic Web Services

Assembling an RPC-Style Web Service Archive File Manually

Assembling an RPC-Style Web Service
Archive File Manually

This section describes how to assemble an RPC-style Web service manually into an
Enterprise application *. ear filethat can be deployed on WebL ogic Server.

Note: It isassumed that you have already created the stateless session EJB which

implements the RPC-style Web service and assembled it intoa*. j ar EJB
archivefile. For detailed information about programming and assembling
statel ess session EJBs, see Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html.

To assemble an RPC-style Web service archive file manually, follow these steps:

1

Create atemporary staging directory for assembling the Web application
component. You can name this directory anything you want.

Set up your shell environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA HOVE\ confi g\ domai n, where BEA_HOME is the directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

On UNIX, execute the set Env. sh command, located in the directory
BEA HOVE/ confi g/ domai n, where BEA_HOME is the directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

Execute the following command to automatically generate initial web. xmi and
webl ogi c. xm deployment descriptorsin the VEB- | NF subdirectory:
java webl ogi c. ant.taskdefs.war.DDInit staging-dir

where st agi ng- di r refersto the staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

Edit the WEB- | NF/ web. xm file, adding WebL ogic Web Services information,
such as references to the SOAP servlets. For details, see “Updating the web.xml
File for RPC-Style Web Services” in this appendix.

Programming WebL ogic Web Services C-3

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004

C Manually Assembling the Web Services Archive File

5.

7.

Edit the WEB- | NF/ webl ogi c. xm file, adding WebL ogic Web Services
information. For details, see “ Updating the weblogic.xml File for RPC-Style Web
Services’ in this appendix.

In the main staging directory, create a sub-directory with the same name as the
JINDI name of your stateless session EJB.

The INDI name of your EJB correspondsto thej ndi - nane element in the
webl ogi c- ej b-j ar. xm deployment descriptor file for your EJB.

Note: UsingtheJNDI nameisthewsgen Ant task naming convention, which you
do not have to follow.

Inthej ndi - nane subdirectory, create the WSDL JSP by running the following
utility and redirecting the output to afile:

java webl ogi c. soap. wsdl . Renot e2WSDL EJB_i nterface path -protocol protocol >

wsdl . jsp

C-4

where

e EJB interface referstothe fully qualified class name of the Remote
interface of your statel ess session EJB.

e pathiseither context or context/jndi-name, where context refersto the
cont ext - r oot element of the Web application inthe appl i cati on. xnl file
(to be created in alater step).

e protocol iseither http or htt ps.

Note: Thisgenerated WSDL JSP dynamically sets the host and port of the
WebL ogic Server upon which the Web serviceis currently running. This
istypically the type of WSDL file you want in your Web service. If,
however, you want to statically specify the host and port in the WSDL file,
edit thesoap: addr ess element in the WSDL JSP, replacing the text <%=
request. get Server Name() %: <% request. get ServerPort () %
with hard-coded host and port values.

Inthej ndi - nane subdirectory, create ani ndex. ht m file that contains links to
the WSDL JSP you created in the preceding step and the client JAR file that you
will createin alater step. The following example shows asimplei ndex. ht m
file

<htm >

<body>

<h3>j ndi - name</ h3>

Programming WebL ogic Web Services

Assembling an RPC-Style Web Service Archive File Manually

10.

11

12.

13.
14.

WsDL</ a></Ii>
client.jar</Ili>
</ ul >

</ body>

</htm >

Createaclient.jar fileinthe main staging directory. For details on creating
thisfile, refer to “ Creating the client.jar File Manually” in this appendix.

Note: Thisstepisoptional. Youonly needtocreateaclient. jar fileif youare
going to use a Java client application to invoke the Web service.

Create ani ndex. ht nl filein the main staging directory that lists the Web
service in this Enterprise application archive and linksto itsi ndex. ht i file that
you created in a previous step. The following example shows a simple

i ndex. htm file:

<htm >

<body>

<h3>RPC-Styl e Wb Services</h3>

j ndi-nane</1i>
</ ul >

</ body>

</htm >

In the example, cont ext refersto the cont ext - r oot element of the Web
application inthe appl i cati on. xml file (to be created in alater step) and

j ndi - nane refers to the name of sub-directory that contains the WSDL file you
created in the previous step.

Create the Web application archive (*. war file) using ajar command such as:
jar cvf web-app-nanme.war -C staging-dir

Note: Thewsgen Javaant task assignsthe default name web- ser vi ces. war to
the Web application *. war file. Y ou do not have to follow this naming
convention.

Create a second temporary staging directory for assembling the Enterprise
application. You can name this directory anything you want.

Copy your stateless session EJB *. j ar file into the second staging directory.

Copy the Web application archive *. war file you created in a previous step into
the second staging directory.

Programming WebL ogic Web Services C-5

C Manually Assembling the Web Services Archive File

15. Execute the following command to automatically generate an initial
appl i cation. xm deployment descriptor in the META- | NF subdirectory:

java webl ogic. ant.taskdefs.ear.DDInit staging-dir
where st agi ng- di r refersto the second staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

16. Edit the META- I NF/ appl i cati on. xnl file, adding WebL ogic Web Services
information. For details, see “Updating the application.xml File for RPC-Style
Web Services’ in this appendix.

17. Create the Enterprise Archive (. ear fil€) for the application, using aj ar
command such as:

jar cvf application.ear -C staging-dir .

Y ou can deploy theresulting . ear file asaWebL ogic Web Service through the
Administration Console or the webl ogi c. depl oy command-line utility.

Updating the web.xml File for RPC-Style Web Services

This section describes the elements you must update or add to the web. xni
deployment descriptor for the Web application that referencesthe SOAP servletsin an
RPC-style WebL ogic Web Services archive file. For the complete example of a

web. xm deployment descriptor, see the last examplein this section.

It is assumed that you have a basic understanding of Web applications and their
deployment descriptors. For more information, see Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs61/webapp/index.html.

To update aweb. xm file for RPC-style Web services, add the following elements:

m A <servl et > element that references the SOAP servlet that delegates RPC-style
SOAP requests to the EJB. Set the <ser vl et - cl ass> element to
webl ogi c. soap. server. servl et. St at el essBeanAdapt er. The servlet takes
one<i ni t - par ane: areference to the statel ess session EJB which comprises the
RPC-style Web service. The following example shows a<ser vl et > entry for
the SOAP servlet:

C-6 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

Assembling an RPC-Style Web Service Archive File Manually

<servlet>
<servl et - name>st at el essSessi on. Weat her Honme</ ser vl et - nanme>
<servl et -cl ass>
webl ogi c. soap. server. servl et. St at el essBeanAdapt er
</ servl et-cl ass>
<i nit-paranr
<par am nane>ej b-r ef </ par am nanme>
<par am val ue>st at el essSessi on. \\eat her Hone</ par am val ue>
</init-paranr
</servl et>

A <ser vl et > element that references the SOAP servlet that handles all SOAP
faults. Set the <ser vl et - cl ass> element to

webl ogi c. soap. server. servl et . Faul t Handl er, as shown in the following
example:

<servl et >
<servl et - name>
st at el essSessi on. Weat her HoneFaul t
</ servl et - nane>
<servl et-cl ass>
webl ogi c. soap. server. servl et. Faul t Handl er
</ servl et-cl ass>
</servl et>

A <servl et > element that references the WSDL JSP, as shown in the following
example;

<servl et >
<servl et - nane>
st at el essSessi on. Weat her HomeWSDL
</ servl et - nane>
<jsp-file>
/ st at el essSessi on. Weat her Home/ wsdl . j sp
</jsp-file>
</servl et>

The path to the JSPfile, <j sp-fi | e>, isthe path in your Web application

archive file to the WSDL JSP you created in “ Assembling an RPC-Style Web
Service Archive File Manually” in this appendix.

For each of the preceding <ser vl et > elements, create a<ser vl et - mappi ng>
element to map a URL to the servlet, as shown in the following example:

<ser vl et - mappi ng>
<servl et - nane>st at el essSessi on. Weat her Hone</ ser vl et - nane>
<url-pattern>/weatheruri</url-pattern>

</ servl et - mappi ng>

<ser vl et - mappi ng>

Programming WebL ogic Web Services C-7

C Manually Assembling the Web Services Archive File

<servl et - name>
st at el essSessi on. \Weat her HoneFaul t
</ servl et - nane>
<url - pattern>/webl ogi c/ webservi ce/faul t</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nanme>
st at el essSessi on. Weat her HoneWSDL
</ servl et - nane>
<url -pattern>
/ st at el essSessi on. WWeat her Hone/ st at el essSessi on. Weat her Horre. wsdl
</url-pattern>
</ servl et - mappi ng>

m Anc<error-page> element:

<error-page>
<exception-type>
webl ogi c. soap. Faul t Excepti on
</ exception-type>
<l ocat i on>/ webl ogi ¢/ webservi ce/ faul t</| ocati on>
</ error-page>

m An<ej b-ref > element which references the statel ess session EJB that
implements the Web service, as shown in the following example:

<ej b-ref>
<descri ption>Wb Service EJB</description>
<ej b-ref - name>st at el essSessi on. Weat her Hone</ ej b- r ef - nanme>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<hone>exanpl es. webser vi ces. r pc. weat her EJB. Weat her Hone</ hone>
<r enpt e>exanpl es. webser vi ces. r pc. weat her EJB. Wat her </ r enot e>
</ ejb-ref>

Thefollowing complete sampleweb. xm deployment descriptor containselementsfor
the RPC-style Web service example exanpl es. webser vi ces. r pc:

<! DOCTYPE web- app

PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN'
"http://java. sun. conlj 2ee/ dt ds/ web-app_2. 2. dtd">
<web- app>
<servl| et >
<servl et - name>st at el essSessi on. Weat her Hone</ ser vl et - name>
<servl et-cl ass>
webl ogi c. soap. server. servl et. St at el essBeanAdapt er

</servlet-class>
<init-paranpr

C-8 Programming WebL ogic Web Services

Assembling an RPC-Style Web Service Archive File Manually

<par am nane>ej b-r ef </ par am nanme>
<par am val ue>st at el essSessi on. W\eat her Hone</ par am val ue>
</init-paranmr
</servl et>
<servl et >
<servl et - name>st at el essSessi on. Weat her HoneFaul t </ ser vl et - name>
<servl et - cl ass>webl ogi c. soap. server. servl et. Faul t Handl er </ servl et - cl ass>
</servlet>
<servl et >
<servl et - nane>st at el essSessi on. Weat her HomeWsDL</ ser vl et - nane>
<jsp-file>
/ st at el essSessi on. Weat her Hone/ wsdl . j sp
</jsp-file>
</servlet>
<servl et - mappi ng>
<servl et - nane>st at el essSessi on. Weat her Hone</ ser vl et - nanme>
<url -pattern>/weatheruri</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>st at el essSessi on. Weat her HoneFaul t </ ser vl et - name>
<url - pattern>/ webl ogi c/ webservi ce/faul t</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>st at el essSessi on. Weat her HomeWSDL</ ser vl et - nane>
<url -pattern>
/ st at el essSessi on. Weat her Hone/ st at el essSessi on. Weat her Honre. wsdl
</url-pattern>
</ servl et - mappi ng>
<wel conme-file-list>
<wel cone-fil e>i ndex. ht ml </ wel cone-fil e>
</wel come-file-list>
<error-page>
<excepti on-type>webl ogi c. soap. Faul t Excepti on</ excepti on-type>
<l ocat i on>/ webl ogi c/ webservi ce/ faul t</| ocati on>
</ error-page>
<ej b-ref>
<description>This bean is exported as a WbServi ce</description>
<ej b-r ef - name>st at el essSessi on. \Weat her Home</ ej b-r ef - name>
<ej b-ref-type>Session</ejb-ref-type>
<hone>exanpl es. webser vi ces. r pc. weat her EJB. Weat her Hone</ hone>
<r enot e>exanpl es. webservi ces. r pc. weat her EJB. Weat her </ r enot e>
</ejb-ref>
</ web- app>

Programming WebL ogic Web Services C-9

C Manually Assembling the Web Services Archive File

Updating the weblogic.xml File for RPC-Style Web
Services

Thewebl ogi c. xm deployment descriptor for RPC-style Web services does not
contain any Web services-specific elements. It contains standard referencesto the
statel ess session EJB that implements the Web service.

Thefollowing samplewebl ogi ¢. xm deployment descriptor contains elementsfor the
RPC-style Web service example exanpl es. webser vi ces. r pc:

<! DOCTYPE webl ogi c- web- app
PUBLIC "-//BEA Systens, Inc.//DTD Wb Application 6.0//EN'
"http://ww. beasys. contj 2ee/ dt ds/ webl ogi c- web-j ar. dtd" >

<webl ogi c- web- app>
<reference-descriptor>
<ej b-ref erence-descri ption>
<ej b-ref - name>st at el essSessi on. Weat her Hone</ ej b-r ef - nanme>
<j ndi - name>st at el essSessi on. Wat her Horre</ j ndi - nanme>
</ ej b-reference-description>
</ reference-descriptor>
</ webl ogi c- web- app>

For more information on the elements of the webl ogi c. xm deployment descriptor,
see Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61l/webapp/index.html.

Updating the application.xml File for RPC-Style Web
Services

Theappl i cation. xm deployment descriptor for RPC-style Web service contains
standard references to the Web application that references the SOAP servlets and
statel ess session EJB that comprises the Web service.

The one Web services-related el ement is the <cont ext - r oot > sub-element of the
<web> element. The value of the <cont ext - r oot > element isused in all URLSs that
access either the WSDL, the Home Page, or the Web service itself.

The following sample appl i cati on. xm deployment descriptor contains elements
for the RPC-style Web service example exanpl es. webser vi ces. rpc:

C-10 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/webapp/index.html

Assembling a Message-Style Web Service Archive File Manually

<! DOCTYPE appl i cati on
PUBLIC '-//Sun M crosystens, Inc.//DTD J2EE Application 1.2//EN
"http://java. sun.com j 2ee/ dtds/application_1_2.dtd" >

<application>
<di spl ay- name>Web- ser vi ces</ di spl ay- nanme>
<nmodul e>
<web>
<web- uri >web- servi ces. war </ web-uri >
<cont ext - r oot >/ weat her </ cont ext - r oot >
</ web>
</ nodul e>
<nmodul e>
<ej b>weat her . j ar</ ej b>
</ nodul e>
</ appl i cation>

See Devel oping WebL ogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/app_xml.html for descriptions of the
elementsintheappl i cation. xm file.

Assembling a Message-Style Web Service
Archive File Manually

This section describes how to manually assemble amessage-style Web serviceinto an
Enterprise application *. ear filethat can be deployed on WebL ogic Server.

It is assumed that you have used the Administration Console to set up the following
JM'S components:

m The JMS destination (queue or topic) which will either receive the message from
aclient or from which the message is sent to aclient.

m The JMS Connection factory that the WebL ogic Web Service uses to create IMS
connections.

For detailed information about using the Administration Console to configure IMS
components, see the WebL ogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jms.html.

Programming WebL ogic Web Services C-11

http://e-docs.bea.com/wls/docs61/programming/app_xml.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

C Manually Assembling the Web Services Archive File

C-12

To assemble a message-style Web service archive file manually, follow these steps:

1

Create atemporary staging directory for assembling the Web application
component. You can name this directory anything you want.

Set up your shell environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA HOVE\ conf i g\ domai n, where BEA_HOME isthe directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

On UNIX, executethe set Env. sh command, located in the directory
BEA HOVE/ conf i g/ domai n, where BEA_HOME isthe directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

Execute the following command to automatically generate initial web. xm and
webl ogi c. xm deployment descriptorsin the WVEB- | NF subdirectory:

java webl ogi c. ant.taskdefs.war.DDInit staging-dir
where st agi ng- di r refersto the staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

Edit the WEB- | NF/ web. xni file, adding WebL ogic Web Servicesinformation,
such as references to the SOAP servlets. For details, see “ Creating the
Message-Style Web Service WSDL File” in this appendix.

Edit the WEB- | NF/ webl ogi c. xm file, adding WebL ogic Web Services
information. For details, see “ Updating the weblogic.xml File for Message-Style
Web Services’ in this appendix.

In the main staging directory, create a sub-directory that will hold the WSDL JSP
for the Web service. You can name this sub-directory anything you want. This
name will become part of the URL used to invoke the Web service.

For this procedure, assume the name of this directory iswsdl _di r.

Inthewsd! _di r subdirectory, create the WSDL JSP. Thewsgen Java utility
names this JSP wsdl . j sp when generating it automatically; you can follow this
naming convention, or follow a convention of your own.

For details on creating thisfile, see “ Creating the M essage-Style Web Service
WSDL File” in this appendix.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004

Assembling a Message-Style Web Service Archive File Manually

8.

Inthewsdl _di r subdirectory, create ani ndex. ht mi filethat containslinksto
the WSDL JSP you created in the preceding step and the client JAR file that you
will createin alater step. The following example shows asimplei ndex. ht m
file:

<htm >

<body>

<h3>Web Servi ce Name</h3>

WsDL</ a></|i >

client.jar</Ili>
</ ul >

</ body>

</htm >

Createaclient.jar fileinthe main staging directory. For details on creating
thisfile, refer to “ Creating the client.jar File Manually” in this appendix.

Note: Thisstepisoptional. Youonly needtocreateacl i ent. j ar fileif youare
going to use a Java client application to invoke the Web service.

10. Create ani ndex. ht i filein the main staging directory that lists the Web

service in this Enterprise application archive and linksto itsi ndex. ht m file that
you created in a previous step. The following example shows asimple
i ndex. htm file

<htm >

<body>

<h3>Message- Styl e Wb Servi ces</ h3>

wsdl _dir
</ ul >

</ body>

</htm >

In the example, context refersto the cont ext - r oot element of the Web
application inthe appl i cati on. xnl file (to be created in alater step) and

wsdl_dir refers to the name of sub-directory that contains the WSDL file you
created in the previous step.

11. Create the Web application archive (*. war file) using ajar command such as:

jar cvf web-app-nanme.war -C staging-dir

Note: Thewsgen Javaant task assignsthe default name web- ser vi ces. war to
the Web application *. war file. Y ou do not have to follow this naming
convention.

Programming WebL ogic Web Services C-13

C Manually Assembling the Web Services Archive File

12. Create a second temporary staging directory for assembling the Enterprise
application. You can name this directory anything you want.

13. Copy the Web application archive *. war file you created in a previous step into
the staging directory you created in step 12.

14. Execute the following command to automatically generate an initial
appl i cation. xm deployment descriptor in the META- | NF subdirectory:
java webl ogic. ant.taskdefs.ear.DDInit staging-dir

where st agi ng- di r refersto the staging directory you created in step 12.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

15. Edit the META- | NF/ appl i cati on. xnl file, adding WebL ogic Web Services
information. For details, see “Updating the application.xml File for
Message-Style Web Services’ in this appendix.

16. Create the Enterprise Archive (. ear fil€) for the application, using aj ar
command such as:
jar cvf application.ear -C staging-dir .

Theresulting . ear file can be deployed as a WebL ogic Web Service using the
Administration Console or the webl ogi c. depl oy command-line utility.

Creating the Message-Style Web Service WSDL File

C-14

The WSDL JSP filesfor all message-style WebL ogic Web Services are very similar,
because there are only two operations that these types of Web services ever perform:
send or receive datato or from a client application.

To create the WSDL JSP for a message-style Web service, follow these steps:
1. Using your favorite text editor, create afile called wsdl . j sp.

2. Copy and paste the sample WSDL at the end of this section into thewsdl . j sp
file, and edit it according to the following steps.

In the sample WSDL, the sections that you must modify for your specific Web
service arein bold.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004

Assembling a Message-Style Web Service Archive File Manually

3. Globally replace referencesto mySer vi ce with the name of your Web service.

4. If your Web service isone in which client applications that invoke it receive
messages from the service, globally replace the word send with the word
receive.

5. Globally replaceur ! : | ocal with the unique namespace for your Web service.
6. Replace the URI used to invoke the Web service from / nsg/ sendMsg to the
following URI:
/context-root/url-pattern

where context-root refersto the <cont ext - r oot > element of the
appl i cati on. xm deployment descriptor and url-pattern refersto the
<url - pat t er n> for the SOAP servlet in theweb. xnm deployment descriptor.

7. If youwant the WSDL fileto statically specify the host and port of the WebL ogic
server hosting your Web service, edit the soap: addr ess element in the WSDL
JSP, replacing the text <%= r equest . get Ser ver Name() %: <%
request . get ServerPort () % with hard-coded host and port values.

Use the following sample WSDL JSP as a starting point for your WSDL JSP.

<?xm version="1.0"?>

<definitions
t ar get Nanespace="urn: | ocal "
xm ns="http://schenmas. xm soap. org/ wsdl /"
xm ns: tns="urn: | ocal "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_Schema- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schema"
xm ns: soap="http://schemas. xm soap. org/ wsdl / soap/" >
<types>
<schema t ar get Nanespace="urn: | ocal
xm ns="http://ww. w3. org/ 1999/ XM_Schema' >
</ schema>
</types>

<message name="sendRequest">

<part

name="nessage" type="xsd:anyType" />

</ message>
<message name="sendResponse">
</ message>

<portTy

pe name="nySer vi cePort Type">

<operati on nanme="send" >
<i nput message="tns: sendRequest"/>

Programming WebL ogic Web Services C-15

C Manually Assembling the Web Services Archive File

<out put nessage="tns: sendResponse"/ >
</ oper ati on>
</ port Type>

<bi ndi ng name="nyServi ceBi ndi ng" type="tns: nyServi cePort Type">
<soap: bi nding style="rpc" transport="http://schemas. xm soap. org/ soap/ http/"/>
<operation nanme="send">
<soap: operation soapAction="urn:send"/>
<i nput >
<soap: body use="encoded" nanespace='urn: nyService
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "/ >
</ i nput >
<out put >
<soap: body use="encoded" nanespace='urn: nyService
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "/ >
</ out put >
</ oper ati on>
</ bi ndi ng>

<servi ce name="nyService">
<docunent at i on>t odo</ docunent ati on>
<port name="nyServi cePort" bi ndi ng="tns: nyServi ceBi ndi ng">
<soap: address | ocati on="http:// <% request.get ServerNanme() %: <%
request. get ServerPort () %/ msg/sendMvsg"/ >
</ port>
</ service>

</definitions>

Updating the web.xml File for Message-Style Web
Services

This section describes the elements you must update or add to the web. xni
deployment descriptor for the Web application that references the SOAP servletsin a
message-style WebL ogic Web Services archive file. For the complete example of a
web. xm deployment descriptor, see the end of this section.

It is assumed that you have a basic understanding of Web applications and their
deployment descriptors. For more information, see Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs61/webapp/index.html.

Toupdateaweb. xni filefor message-style Web services, add the following elements:

C-16 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

Assembling a Message-Style Web Service Archive File Manually

m A <servl et > element that references the SOAP servlet that manages the SOAP
messages between the message-style Web service and the client application. Set
the <ser vl et - cl ass> sub-element to one of the following servlet classes,
depending on whether the IMS destination is a topic or queue and whether the
client invoking the service sends or receives messages.

e webl ogi c. soap. server. servl et. Desti nat i onSendAdapt er —handles
SOAP messages between the service and a client application that sends
messages to either a IM S topic or queue.

e webl ogi c. soap. server. servl et. QueueRecei veAdapt er —handles
SOAP messages between the service and a client application that receives
messages from a JM S queue.

e webl ogi c. soap. server. servl et. Topi cRecei veAdapt er —handles
SOAP messages between the service and a client application that receives
messages from a JM S topic.

This<ser vl et > element contains two <i ni t - par ans> elements: one that
references the IMS destination classes and another that references the IMS
connection factory classes.

The following example shows a<ser vl et > reference to a SOAP servlet:

<servl et >
<servl et - name>nySer vi ce</ servl et - name>
<servl et-cl ass>
webl ogi c. soap. server. servl et. Desti nati onSendAdapt er
</servlet-cl ass>
<i nit-paranpr
<par am nane>t opi c- r esour ce-r ef </ par am nanme>
<par am val ue>nySer vi ceDest i nati on</ param val ue>
</init-paranmr
<init-paranpr
<par am nane>connecti on-factory-resource-ref </ param nanme>
<par am val ue>nySer vi ceFact or y</ par am val ue>
</init-paran>
</ servlet>

m A <servl et > element that references the SOAP servlet that handles all SOAP
faults. Set the <ser vl et - cl ass> element to
webl ogi c. soap. server. servl et . Faul t Handl er, as shown in the following
example;

<servl et >
<servl et - name>nyServi ceFaul t </ servl et - name>
<servl et-cl ass>

Programming WebL ogic Web Services C-17

C Manually Assembling the Web Services Archive File

webl ogi c. soap. server. servl et. Faul t Handl er
</ servl et-cl ass>
</ servl et>

m A <servl et > element that references the WSDL JSP, as shown in the following
example:

<servl et >
<ser vl et - name>nySer vi ceWsDL</ ser vl et - nane>
<jsp-file>/nyServicel/wsdl.jsp</jsp-file>
</servl et>

The path to the JSPfile, <j sp-fi | e>, isthe path in your Web application
archive file to the WSDL JSP you created in “ Assembling a Message-Style Web
Service Archive File Manually” in this appendix.

m For each of the preceding <ser vl et > elements, create a<ser vl et - mappi ng>
element to map a URL to the servlet, as shown in the following example:

<servl et - mappi ng>

<ser vl et - name>nySer vi ceFaul t </ ser vl et - nane>

<url - pattern>/webl ogi c/ webservi ce/ faul t</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>

<servl et - name>nySer vi ceWsDL</ ser vl et - nane>

<url -pattern>/nmyServicel/ nyService.wsdl </url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>

<servl et - nanme>nySer vi ce</ servl et - nane>

<url - pattern>/sendMsg</url - pattern>
</ servl et - mappi ng>

m Anc<error-page> element, exactly as shown:

<error-page>
<exception-type>
webl ogi c. soap. Faul t Excepti on
</ excepti on-type>
<l ocat i on>/ webl ogi ¢/ webservi ce/ faul t</| ocati on>
</ error-page>

m Two <resour ce-r ef > elementsto link the IM S destination and connection
factory referencesin thefirst <ser vl et > element to a Java object in INDI, as
shown in the following example:

<resource-ref>
<res-ref-nanme>nmyServi ceDesti nati on</res-ref-nane>
<res-type>j avax.j ns. Desti nati on</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

C-18 Programming WebL ogic Web Services

Assembling a Message-Style Web Service Archive File Manually

</resource-ref>

<resource-ref>
<res-ref-name>nyServi ceFact ory</res-ref-name>
<res-type>j avax. j ms. Connecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

Thefollowing complete sampleweb. xm deployment descriptor containselementsfor
the message-style Web service example exanpl es. webser vi ces. nessage:

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN'
“http://java. sun. conij 2ee/ dt ds/ web-app_2. 2. dtd">

<web- app>
<servl et >
<servl et - name>nySer vi ce</ servl et - name>
<servl et-cl ass>
webl ogi c. soap. server. servl et. Desti nati onSendAdapt er
</servlet-cl ass>
<init-paranpr
<par am nane>t opi c- r esour ce-r ef </ par am nanme>
<par am val ue>nySer vi ceDest i nati on</ param val ue>
</init-paranm>
<init-paranr
<par am nane>connecti on-factory-resource-ref </ param nanme>
<par am val ue>nySer vi ceFact or y</ par am val ue>
</init-paranmr
</servlet>
<servl et >
<servl et - name>nyServi ceFaul t </ servl et - name>
<servl et -cl ass>webl ogi c. soap. server. servl et. Faul t Handl er </ servl et - cl ass>
</servlet>
<servl et >
<servl et - name>nySer vi ceWsDL</ ser vl et - nane>
<jsp-file>/nmyService/wsdl.jsp</jsp-file>
</servlet>
<servl et - mappi ng>
<servl et - name>nySer vi ceFaul t </ ser vl et - name>
<url - pattern>/ webl ogi c/ webservice/faul t</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>nySer vi ceWsDL</ ser vl et - nane>
<url -pattern>/nyService/ nyService.wsdl </url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>nySer vi ce</ servl et - name>
<url - pattern>/sendMsg</url - pattern>
</ servl et - mappi ng>

Programming WebL ogic Web Services C-19

C Manually Assembling the Web Services Archive File

<wel conme-file-list>
<wel cone-fil e>i ndex. ht M </ wel cone-fil e>

</wel conme-file-list>

<error-page>
<exception-type>webl ogi c. soap. Faul t Excepti on</ exception-type>
<l ocat i on>/ webl ogi ¢/ webservi ce/ faul t</| ocati on>

</ error-page>

<resource-ref>
<res-ref-nanme>nmyServi ceDesti nati on</res-ref-nane>
<res-type>j avax. | ms. Destination</res-type>
<r es-aut h>Cont ai ner </ r es- aut h>

</resource-ref>

<resource-ref>
<res-ref - name>nySer vi ceFact ory</res-r ef - nanme>
<res-type>j avax. j ns. Connecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

</ web- app>

Updating the weblogic.xml File for Message-Style Web
Services

Thewebl ogi c. xm deployment descriptor for message-style Web services does not
contain any Web services-specific elements, but rather, contains standard referencesto
the IMS Destination and JM S Connection Factories.

Thefollowing samplewebl ogi ¢. xm deployment descriptor contains elementsfor the
message-style Web service example exanpl es. webser vi ces. nessage:

<! DOCTYPE webl ogi c- web- app
PUBLI C "-//BEA Systens, Inc.//DTD Wb Application 6.0//EN'
"http://ww. beasys. contj 2ee/ dt ds/ webl ogi c- web-j ar. dtd" >

<webl ogi c- web- app>
<ref erence-descriptor>
<resour ce-descri pti on>
<res-ref-nanme>myServi ceDesti nati on</res-ref-nane>
<j ndi - name>exanpl es. soap. nsgSer vi ce. MsgSend</ j ndi - nanme>
</resource-descripti on>
<resour ce-descri pti on>
<res-ref-name>nmyServi ceFact ory</res-ref - nanme>
<j ndi - name>exanpl es. soap. nsgSer vi ce. MsgConnect i onFact ory</ j ndi - name>
</resource-descripti on>

C-20 Programming WebL ogic Web Services

Creating the client.jar File Manually

</reference-descriptor>
</ webl ogi c- web- app>

Updating the application.xml File for Message-Style Web

Services

Theappl i cati on. xnml deployment descriptor for message-style Web services
containsthe standard reference to the Web application that containsthe SOAP servlets.

The one Web services-related element is the <cont ext - r oot > sub-element of the
<web> element. The value of the <cont ext - r oot > element isused in all URLSs that
access either the WSDL, the Home Page, or the Web service itself.

The following sample appl i cati on. xm deployment descriptor contains elements

for the message-style Web service example exanpl es. webser vi ces. nessage:

<! DOCTYPE appl i cati on
PUBLIC '-//Sun M crosystens, Inc.//DTD J2EE Application 1.2//EN
"http://java.sun.com j2ee/ dtds/application_1_2.dtd' >

<application>
<di spl ay- name>Web- ser vi ces</ di spl ay- nanme>
<modul e>
<web>
<web- uri >web- servi ces. war </ web- uri >
<cont ext - r oot >/ neg</ cont ext - r oot >
</ web>
</ modul e>
</ appl i cation>

Creating the client.jar File Manually

The Javaclient.jar file contains the following objects:
m Webl ogic FastParser (high-performance XML parser).
m WebLogic Web Services Client API.

Programming WebL ogic Web Services

c-21

C Manually Assembling the Web Services Archive File

m Remote interface of the statel ess session EJB that implements an RPC-style Web
service. This object is optional and only needed if you are using a static client to
invoke the service.

m Classfilesfor JavaBeans that are used as EJB parameters or return values.

BEA recommends that you use the wsgen Java Ant task to create an initial *. ear file
and then extract the Java client.jar file contained within the *. ear file and modify it
for your specific Web service. For details on using wsgen, see “ Assembling a

WebL ogic Web Service” on page 2-19.

C-22 Programming WebL ogic Web Services

APPENDIX

D

Invoking Web Services

Without Using the
WSDL File

This Appendix shows an example of adynamic client application that does not usethe
WSDL file when it invokes a WebL ogic Web Service. In particular, the example
invokes a message-style Web service and sends data to WebL ogic Server.

Dynamic client applicationsthat do not usethe WSDL of the Web service are dynamic
in every way, because they can invoke a Web service without knowing either the
interface of the Web service, or the JavaBean interface of return values and parameters,
or even the number and signatures of the methods that make up the Web service.

The example usesthe URL ht t p: / / www. myHost . com 7001/ nsg/ sendMsg to
invoke the Web Service. Because the example shows a dynamic client application that
does not use the WSDL of the Web service, the preceding URL isfor the Web service
itself, rather than the URL for the WSDL of the Web service.

The procedure after the exampl e discusses relevant sections of the example as part of
the basic steps you follow to create this client.

inmport java.util.Properties;

i mport java. net. URL;

i mport javax. nam ng. Cont ext ;

i nport javax.nam ng. | nitial Context;

i nport webl ogi c. soap. WebSer vi cePr oxy;

i nport webl ogi c. soap. SoapMet hod;

i mport webl ogi c. soap. SoapType;

i nport webl ogi c. soap. codec. CodecFact ory;

Programming WebL ogic Web Services D-1

D

Invoking Web Services Without Using the WSDL File

i mport webl ogi c. soap. codec. SoapEncodi ngCodec;
i mport webl ogi c. soap. codec. Li t er al Codec;

public class Producerdient{

public static void main(String[] arg) throws Exception{

D-2

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
factory.register(new Literal Codec());

WebSer vi ceProxy proxy = WebServi ceProxy. createServi ce(
new URL("http://ww.nyHost.com 7001/ nsg/ sendMsg"));

proxy. set CodecFactory(factory);

proxy. set Verbose(true);

SoapType param = new SoapType("nessage", String.class);
proxy. addMet hod("send", null, new SoapType[]{ param});
SoapMet hod net hod = proxy. get Met hod("send");

String toSend
bj ect result

arg.length == 0 ? "No arg to send" : arg[O0];
nmet hod. i nvoke(new Object[]{ toSend });

Follow these steps to create a dynamic Java client that does not use WSDL to invoke
amessage-style WebL ogic Web Service that sends data to WebL ogic Server:

1. GettheJavaclient JAR file from the WebL ogic Server hosting the WebL ogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page’ on page 3-6.

2. Addthe Javaclient JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps describe the Web
services-specific Java code:

a. Inthemai n method of your client application, create afactory of encoding
styles and register the two that are supported by WebL ogic Server (the SOAP
encoding style and Apache's Literal XML encoding style):

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
factory.regi ster(new Literal Codec());

b. Addthefollowing Javacodeto create the connection to the Web service and set
the encoding style factory:

Programming WebL ogic Web Services

i mpor t

i mpor t
i nport

i nport
i nport
i mpor t
i nport

i nport
i nport

i nport
i mpor t

i mpor t
i mpor t

i nport
i nport

WebServi ceProxy proxy = WebServi ceProxy. createServi ce(

new URL("http://ww. nyHost.com 7001/ msg/ sendMsg"));
proxy. set CodecFactory(factory);
proxy. set Verbose(true);

Add the following Java code to dynamically get the send method of the Web
service:

SoapType param = new SoapType("nessage", String.class);
proxy. addMet hod("send", null, new SoapType[]{ param});
SoapMet hod nethod = proxy. get Met hod("send");

Invoke the send method and send data to the Web service. In the example, the
client application simply takesitsfirst argument and sendsit asast r i ng; if the
user does not specify an argument specified, then the client application sends
thestringNo arg to send:

String toSend
hj ect result

arg.length == 0 ? "No arg to send" : arg[O0];
met hod. i nvoke(new Object[]{ toSend });

4. Compile and run the client Java program as usual.

The following more complex example shows how to use asend method that accepts
aorg. w3c. dom Docunent, or g. w3c. dom Docurnent Fr agnent , or

org. w3c. dom El ement datatype asits parameter. The example shows how to set
literal encoding on this flavor of the send method.

java.util.Properties;

j ava. net . URL;
java.io. File;

j avax. nam ng. Cont ext ;

j avax. nam ng. | ni ti al Cont ext;

javax. xml . par sers. Docunent Bui | der;

javax. xm . parsers. Docunent Bui | der Fact ory;

or g. w3c. dom Docunent ;
org.w3c. dom El enent ;

webl ogi c.
webl ogi c.

webl ogi c.

webl ogi c.
webl ogi c.
webl ogi c.

apache. xni . seri al i ze. Qut put For mat ;
apache. xm . serial i ze. XM_Seri al i zer;

apache. xer ces. dom Docunent | npl ;

soap. WebSer vi cePr oxy;
soap. SoapMet hod;
soap. SoapType;

Programming WebL ogic Web Services D-3

D

Invoking Web Services Without Using the WSDL File

i mport webl ogi c. soap. codec. CodecFact ory;
i mport webl ogi c. soap. codec. SoapEncodi ngCodec;
i mport webl ogi c. soap. codec. Li t er al Codec;

public class Producerdient{
public static void main(String[] args) throws Exception{

String url = "http://local host: 7001";

/1 Parse the argunments |ist

if (args.length I'= 2) {

System out. println("Usage: java exanpl es. webservi ces. nessage. Producerd i ent

http://hostnane: port \"message\"");

D-4

return;

} else if (args.length == 2) {
url = args[0];

}

CodecFactory factory = CodecFactory. newl nstance();
factory.regi ster(new SoapEncodi ngCodec());
factory.regi ster(new Literal Codec());

URL newURL = new URL(url + "/nsg/sendMsg");

WebSer vi ceProxy proxy = WebServi ceProxy. createService(newUrL) ;
proxy. set CodecFactory(factory);

proxy. set Ver bose(true);

SoapType param = new SoapType("nmessage", Docunent.class);
proxy. addMet hod("send", null, new SoapType[]{ param});

SoapMet hod met hod = proxy. get Met hod("send");

/1 Print out proxy to make sure nethod signature | ooks good
System out. println("Proxy:"+proxy);

Docurnent Bui | der Factory dbf =
Docurnent Bui | der Fact ory. newl nst ance() ;
// Obtain an instance of a DocunentBuil der fromthe factory.
Docurent Bui | der db = dbf. newDocunent Bui | der () ;
/[Parse the docunent.
Docurment w3cDoc = db. parse(new File("/test/fdr_nodtd.xm "));

/1 Cl ass parserClass = O ass. forNanme("org.jdom adapt ers. Xer cesDOVAdapt er ") ;
/| DOVAdapt er da = (DOVAdapt er) par ser d ass. new nst ance() ;
// Docunent w3cDoc = da. get Docunent(new File("/test/fdr_nodtd.xm "), fal se);

/1 Print out XML just to nake sure the docunent was read successfully
Qut put Format of = new Qut put Format () ;

of . set Encodi ng(" UTF-8");

of . set Li neW dt h(40);

of . set | ndent (4);

XM_Seri alizer xs = new XM.Seri alizer(System out, of);
xs.serialize(w3cDoc);

Programming WebL ogic Web Services

System out. println("Before I nvoke");
bj ect result = nethod.invoke(new oject[]{w3cDoc});

System out . println("Done");

Programming WebL ogic Web Services D-5

D Invoking Web Services Without Using the WSDL File

D-6 Programming WebL ogic Web Services

Glossary

Assembling a Web service

Packaging all the components of the Web service into an Enterprise Application
archivefile (*.ear). Y ou use Java Ant tasks to assemble a WebL ogic Web Service.

Deploying a Web service

Making the Web service available to remote clients. Thisis analogous, although
not exactly the same, as deploying an EJB. Y ou deploy a Web service after you
have deployed the EJBs that make up the Web service. Y ou use the Administra-
tion Console to deploy a WebL ogic Web Service.

Implementing a Web service

Writing the Java code for the stateless session EJB (for RPC-style Web services)
or amessage-driven bean (for message-style Web services) that is defined to be
the entry point to the Web service. The statel ess session EJB or message-driven

bean may contain all the Web service functionality, or it may call other EJBsto

parcel out the work.

Invoking a Web service

The actions that a client application performs to use the Web service. The client
first assembles a SOA P message that describesthe Web serviceit wantstoinvoke
and includes all the necessary data, either in the SOAP body or in an attachment.
The client then sends the SOAP message over HTTP/HTTPS to the WebL ogic
Server, which executes the Web service and may or may not send a SOAP mes-
sage back to the client over HTTP/HTTPS.

Java Ant

The Java utility that you useto assemble WebL ogic Web Servicesinto Enterprise
Application archives.

Programming WebL ogic Web Services G-1

G-2

M essage-style Web services

A type of Web servicethat usesaJM S destination asits entry point. Message-style
Web services are loosely coupled document-driven services; this means that cli-
ents typically use thistype of Web service by sending entire documents that will
be processed by the Web service rather than sending parameters and receiving re-
turn values.

Publishing a Web service

Registering the Web servicein awell-known location so it can be found by anyone
whowantsto useit. This can be done by registering the Web servicein aUDDI

registry, emailing the URL that invokesthe Web service to whoever wantsit, and
SO on.

RPC-style Web service

A type of Web service that uses a statel ess session EJB as its entry point.
RPC-style Web services are tightly coupled interface-driven services; this means
that clients typically use the Web service by sending it parameters and receiving
return val ues rather than sending an entire document to be processed by the Web
service.

SOAP

Simple Object Access Protocol. A lightweight XM L-based protocol for exchang-
ing information in a decentralized, distributed environment.

SOAP with attachments

A specification that describes a standard way to associate a SOAP message with
one or more attachments in their native format in amultipart MIME structure for
transport.

Web service

A shared application accessed by heterogeneous users over the Web that encapsu-
late a specific functionality.

Web Services Home Page
A Web pagethat liststhe Web services defined for aparticular context along with
the WSDL files and Javaclient JAR file associated with each Web service.

WSDL

Web Services Description Language. An XM L-based language used to describe
Web services.

Programming WebL ogic Web Services

Index

A

Administration Console
configuring JM S components 2-18
invoking 4-1
viewing Web services 4-3

Ant 1-6, 2-20, B-1

assembling a WebL ogic Web service 2-20

B

BEA XML Editor 1-15

build.xml file
creating 2-23
elements and attributes of B-1
example of 2-21, 2-33, 3-15, B-2
hierarchy diagram of B-3

C

client JAR file
additional classes needed 3-23
contents 3-6

downloading 3-6
clientjar, element of build.xml file B-8
customer support contact information xi

D

DestinationSendAdapter serviet 2-14
documentation, where to find it x
dynamic client 3-3

EJB
archivefile (* jar) 1-10
assembling into archive file 2-32
deployment descriptors 2-31
example code 2-27
implementing an RPC-style Web service
1-10, 1-12, 2-5
securing in an RPC-style Web service 2-
15
gjb-jar.xml deployment descriptor 2-22, 2-
31, B-6
Elements of build.xml file
clientjar B-8
entry B-9
manifest B-9
messageservice B-7
messageservices B-7
rpcservice B-6
rpcservices B-5
wsgen B-4
encoding styles
literal XML 2-11
SOAP 2-11
Enterprise archivefile (*.ear) 1-10
entry, element of build.xml file B-9
Exceptions
java.io.FileNotFoundException 5-2
java.lang.NullPointerException 5-6
java.net.ConnectException 5-7
unable to parse 5-4

Programming WebL ogic Web Services -1

INITIAL_CONTEXT_FACTORY 3-10, 3-
13, 3-18, 3-20

J

javaio.FileNotFoundException 5-2
javalang.NullPointerException 5-6
java.net.ConnectException 5-7
javap utility 3-11, 3-13
JMS
choosing a queue or topic 2-6
configuring components 2-18
connection factory 2-18
destination 1-13, 2-18
listener 1-10
relationship to message-style Web
services 2-6

L
literal XML encoding style 2-12, 3-23

M

manifest, element of build.xml file B-9
message-driven bean 1-10, 1-14, 2-7, 2-18
messageservice, element of build.xml file B-
7
messageservices, element of build.xml file B-
7
message-style Web services
architecture 1-12
choosing a queue or topic 2-6
converting existing JM S application to
2-8
description 1-7
example of 2-7
implementing 2-17
invoking 3-15
relationship to IMS 2-6

-2 Programming WebL ogic Web Services

securing 2-13

when to use 2-4

writing client to receive data 3-18

writing client to send data 3-16
Microsoft SOAP Toolkit client 3-13

0
overloaded methods, avoiding 2-6

P

printing product documentation x

Q
queue, IMS 2-6
QueueReceiveAdapter serviet 2-14

R

rpcservice, element of build.xml file B-6
rpcservices, element of build.xml file B-5
RPC-style Web services

architecture 1-11

converting existing EJB into 2-5

description 1-7

designing the EJB 2-5

implementing 2-17

invoking 3-8

invoking from Microsoft Toolkit client

3-13

securing 2-15

when to use 2-4

writing dynamic client 3-11

writing static client 3-9

S

Servlets
DestinationSendAdapter 2-14
QueueReceiveAdapter 2-14

Statel essBeanAdapter 2-14
TopicReceiveAdapter 2-14
SOAP
definition 1-4
encoding 3-23
encoding style 2-12
example 1-4
faults 3-21
features not supported 1-14
specification A-1
SOAP servlet
description 1-10
role1-11, 1-13
securing 2-13
Specifications
SOAP1.1A-1
SOAP with Attachments 1.1 A-2
WSDL 1.1 A-2
Statel essBeanAdapter serviet 2-14
static client 3-3
support
technical xi

T
topic, IMS 2-6
TopicReceiveAdapter servlet 2-14
troubleshooting 5-1

U

unable to parse exception 5-4

\Y

verbose mode 5-1

w

Web archivefile (*.war) 1-10
Web services
components 1-3

definition 1-1
why use them 1-2

web.xml 1-8, 2-13, 2-14
WebL ogic FastParser 3-6
WebL ogic Web services

administering 4-1

architecture 1-10

assembling 2-19

deploying 2-25

designing 2-3

encoding styles 2-11, 3-23

example of developing 2-26

examples of 1-9

examples of clients that invoke 3-4

features 1-6

handling exceptions from 3-21

implementing 2-17

initial context factory properties of 3-22

invoking 3-2, D-1

invoking from Microsoft SOAP Toolkit
client 3-13

invoking using client APl 1-9

main steps to develop 2-1

programming model 1-6

run-time component 1-8

security 2-13

standard assembly and deployment of 1-
8

supported data types 2-9

supported specifications A-1

URLsto invoke 3-7

viewing with Administration Console 4-
3

WebL ogic Web services client API

description 3-2
supported modes 3-3

WebL ogic Web Services Home Page

getting client JAR file 3-6
getting WSDL 3-5
invoking 3-4

weblogic.xml 1-8

Programming WebL ogic Web Services 1-3

weblogic-ejb-jar.xml deployment descriptor
3-7,C4
WSDL
description 1-5
example 1-5
features not supported 1-14
getting from WebL ogic Web Services
Home Page 3-5
specification A-2
static or dynamic 2-25
URLsto get 3-7
wsgen Ant task
creating 2-33
description 2-20
elements of B-1
wsgen, element of build.xml file B-4

X
XML, editing 1-15

-4 Programming WebL ogic Web Services

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Web Services
	What Are Web Services?
	Why Use Web Services?
	Web Service Components
	SOAP 1.1 with Attachments
	POST /StockQuote HTTP/1.1 Host: www.sample.com Content-Type: text/xml; charset="utf-8" Content-Le...
	<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-ENV:encodingSt...

	WSDL 1.1
	<?xml version="1.0"?> <definitions name="StockQuote" targetNamespace="http://sample.com/stockquot...

	WebLogic Web Service Features
	Web Services Programming Model
	RPC-Style Web Services
	Message-Style Web Services

	SOAP 1.1 Implementation
	Web Services Run-time Component
	Standardized J2EE Web Services Assembly and Deployment
	Generation of the WSDL File
	Java Client to Invoke a WebLogic Web Service
	Examples of Creating and Invoking Web Services

	WebLogic Web Services Architecture
	RPC-Style WebLogic Web Services Architecture
	Figure 1�1 RPC-Style WebLogic Web Services Architecture
	1. A client sends a SOAP message to WebLogic Server over HTTP/HTTPS. The SOAP message contains in...
	2. The SOAP servlet designed to handle RPC SOAP requests (which is part of the Web application in...
	3. The invoked stateless session EJB sends return values, if any, back to the RPC SOAP servlet.
	4. The RPC SOAP servlet marshals the return values from the stateless session EJB into a SOAP mes...

	Message-Style WebLogic Web Services Architecture
	Figure 1�2 Message-Style WebLogic Web Services Architecture
	1. A client sends a SOAP message to WebLogic Server over HTTP/HTTPS. The SOAP message contains in...
	2. The messaging SOAP servlet that is part of the Web application invoked by the client unwraps t...
	3. The message sits in the JMS destination until the appropriate JMS listener (typically a messag...
	4. The message-driven bean picks up the message from the JMS destination. The message-driven bean...
	5. The message-driven bean sends the resulting document to another JMS destination that is associ...
	6. The messaging SOAP servlet associated with the second Web service picks up the message from th...
	7. The messaging SOAP servlet sends the document back to the client when the client invokes the s...

	SOAP and WSDL Features Not Supported by WebLogic Web Services
	Editing XML Files

	2 Developing WebLogic Web Services
	Developing WebLogic Web Services: Main Steps
	1. Design the WebLogic Web Service.
	2. Implement the WebLogic Web Service.
	3. Package the EJBs that implement the Web service (stateless session EJB for RPC-style Web servi...
	4. Assemble the WebLogic Web Service.
	5. Deploy the WebLogic Web Service.
	6. Create a client that accesses the Web service to test that your Web service is working as you ...

	Designing a WebLogic Web Service
	Choosing Between an RPC-Style and a Message-Style Web Service
	When to Use RPC-Style Web Services
	When to Use Message-Style Web Services

	EJB That Implements an RPC-Style Web Service
	Converting an Existing EJB Application into an RPC-Style Web Service
	Avoiding Overloaded Methods in Stateless Session EJBs
	Message-Style Web Services and JMS
	Choosing a Queue or Topic
	Retrieving and Processing Documents
	Example of Message-Style Web Services
	Figure 2�1 Data Flow Between Message-Style Web Services and JMS

	Converting an Existing JMS Application Into a Web Service
	Supported Data Types for Parameters and Return Values of WebLogic Web Services
	Table 2�1 Java to XML Mapping
	Table 2�2 XML to Java Mapping

	XML-Java Conversion in WebLogic Web Services
	Security Issues
	Securing Message-Style Web Services
	<servlet> <servlet-name>sender</servlet-name> <servlet-class> weblogic.soap.server.servlet.Destin...
	<servlet-mapping> <servlet-name>sender</servlet-name> <url-pattern>/sendMsg</url-pattern> </servl...

	Securing an RPC-Style Web service
	Using 2-Way SSL When Invoking a WebLogic Web Service
	1. Configure WebLogic Server for 2-way SSL protocol (also called mutual authentication) and certi...
	2. Add the following lines of Java code to your client application before you obtain the context ...
	System.out.println("********************** loading client certs");
	InputStream certs[] = new InputStream[3]; certs[0]=new PEMInputStream(new FileInputStream("sample...
	h.put(SoapContext.SSL_CLIENT_CERTIFICATE, certs);
	String prov = "weblogic.net";
	String s = System.getProperty("java.protocol.handler.pkgs"); if (s == null) { s = prov; } else if...
	System.setProperty("java.protocol.handler.pkgs", s);

	Implementing a WebLogic Web Service
	Implementing an RPC-Style Web Service
	Implementing Message-Style Web Services
	1. Use the Administration Console to configure the following JMS components of WebLogic Server:
	2. Write the Java code for the J2EE component (typically a message-driven bean) that will take me...

	Configuring JMS Components for Message-Style Web Services
	1. Invoke the Administration Console in your browser. For details, see “Invoking the Administrati...
	2. Click to expand the Services node in the left pane and expand the JMS node.
	3. Right-click the Connection Factories node and choose Configure a new JMSConnectionFactory from...
	4. Enter a name for the Connection Factory in the Name field.
	5. Enter the JNDI name of the Connection Factory in the JNDIName field.
	6. Click Create.
	7. Click the Targets tab.
	8. Move the name of the WebLogic Server hosting the service to the Chosen list box, if not alread...
	9. Click Apply.
	10. Click to expand the Servers node under the JMS node in the left pane.
	11. Click to expand your JMS server node.
	12. Right-click the Destinations node and choose either:
	13. Enter the name of the JMS destination in the Name text field.
	14. Enter the JNDI name of the destination in the JNDIName text field.
	15. Click Create.

	Assembling a WebLogic Web Service
	Assembling a WebLogic Web Service Using Java Ant Tasks
	1. Create a temporary staging directory.
	2. If you are assembling an RPC-style Web service, copy the EJB *.jar file that contains the EJB ...
	3. Set up your environment.
	4. Create a file called build.xml in the staging directory that contains the Ant task elements fo...
	5. Change location to the staging directory and execute the Ant utility:
	Example of an Ant build.xml File
	Listing 2-1 Example build.xml File for Assembling WebLogic Web Services
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="myWebService.ea...
	Table 2�3 Description of build.xml Example

	Creating the build.xml Ant Build File
	1. Create an empty file called build.xml using your favorite text editor.
	2. Add one <project> element with the following two attributes:
	3. Within the <project> element, add a <target> element with one attribute, name; set the name at...
	4. Within the <target> element, add a <wsgen> element with the following attributes:
	5. If you are assembling one or more RPC-style Web services, add a single <rpcservices> element w...
	6. Within the <rpcservices> element, add an <rpcservice> element for each RPC-style Web service y...
	7. If you are assembling one or more message-style Web services, add a single <messageservices> e...
	8. Within the <messageservices> element, add a <messageservice> element for each message-style We...

	Dynamic or Static WSDL?

	Deploying a WebLogic Web Service
	Developing a WebLogic Web Service: A Simple Example
	1. Set up your environment.
	2. Write the Java interfaces and classes for the Weather stateless session EJB.
	3. Compile the EJB Java code into class files.
	4. Create the EJB deployment descriptors.
	5. Assemble the EJB class files and deployment descriptors into a weather.jar archive file.
	6. Create the build.xml Java Ant build file used to assemble the WebLogic Web Service.
	7. Create a staging directory.
	8. Copy the EJB weather.jar file and the build.xml file into the staging directory.
	9. Execute the Java Ant utility to assemble the Weather Web service into a weather.ear archive file:
	10. Auto-deploy the Weather Web service for testing purposes by copying the weather.ear archive f...
	Writing the Java Code for the EJB
	package examples.webservices.rpc.weatherEJB;
	import java.rmi.RemoteException; import javax.ejb.EJBObject;
	/** * The methods in this interface are the public face of WeatherBean. * The signatures of the m...
	public interface Weather extends EJBObject { /** * Gets the temperature of a given ZipCode. * * @...
	public float getTemp(String ZipCode) throws RemoteException; }
	package examples.webservices.rpc.weatherEJB;
	import javax.ejb.CreateException; import javax.ejb.SessionBean; import javax.ejb.SessionContext; ...
	/** * WeatherBean is a stateless Session Bean. This bean illustrates: * * No persistenc...
	public class WeatherBean implements SessionBean { private static final boolean VERBOSE = true; pr...
	private void log(String s) { if (VERBOSE) System.out.println(s); } /** * This method is required ...
	package examples.webservices.rpc.weatherEJB;
	import java.rmi.RemoteException; import javax.ejb.CreateException; import javax.ejb.EJBHome;
	/** * This interface is the home interface for the WeatherBean.java, * which in WebLogic is imple...

	Creating EJB Deployment Descriptors
	<?xml version="1.0"?>
	<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN' 'http://ja...
	<?xml version="1.0"?>
	<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN' 'http://www....
	<weblogic-ejb-jar> <weblogic-enterprise-bean> <ejb-name>statelessSession</ejb-name> <caching-desc...

	Assembling the EJB
	1. Create a temporary staging directory.
	2. Copy the compiled Java EJB class files into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Copy the ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptors into the META-INF subdire...
	5. Create the weather.jar archive file using the jar utility:

	Creating the build.xml File
	<project name="weather-webservice" default="wsgen"> <target name="wsgen"> <wsgen destpath="weathe...

	3 Invoking WebLogic Web Services
	Overview of Invoking WebLogic Web Services
	WebLogic Web Services Client API
	Client Modes Supported by the WebLogic Web Services Client API
	Examples of Clients That Invoke WebLogic Web Services

	Invoking the WebLogic Web Services Home Page
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="myWebService.ea...
	Getting the WSDL from the Web Services Home Page
	1. Invoke the Web Services Home Page for your context in your browser, as described in “Invoking ...
	2. Click the name of the Web service.
	3. Click the WSDL File link. The WSDL file for the specified Web service appears in your browser ...

	Downloading the Java Client JAR File from the Web Services Home Page
	1. Invoke the Web Services Home Page for a given context in your browser, as described in “Invoki...
	1. Click the name of the Web service.
	2. Click the Client JAR File link.
	3. Specify a directory on your local computer in which to store the Java client JAR file.
	4. Save the JAR file to the specified directory.
	5. Update your CLASSPATH to include the Java client JAR file.

	URLs to Invoke WebLogic Web Services and Get the WSDL
	http://www.myHost.com:7001/myContext/statelessSession.WeatherHome/statelessSess ion.WeatherHome.wsdl
	http://www.myHost.com:7001/myContext/sendMsgWS/sendMsgWS.wsdl http://www.myHost.com:7001/myContex...

	Creating a Client to Invoke an RPC-Style WebLogic Web Service
	Writing a Java Client
	Writing a Static Java Client
	import java.util.Properties; import javax.naming.Context; import javax.naming.InitialContext;
	import examples.ejb.basic.statelessSession.Trader; import examples.ejb.basic.statelessSession.Tra...
	public class Client{
	public static void main(String[] arg) throws Exception
	Properties h = new Properties();
	h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapInitialContextFactory");
	h.put("weblogic.soap.wsdl.interface", Trader.class.getName());
	Context context = new InitialContext(h);
	Trader service = (Trader)context.lookup("http://www.myHost.com:7001/myContext/statelessSession/s...
	TradeResult result = (TradeResult)service.buy("BEAS", 100);
	System.out.print(result.getStockSymbol()); System.out.print(":"); System.out.println(result....
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. Within the main method of your client application, add the following Java code to initialize t...
	b. Invoke a Web service operation by executing a public method of the EJB, as shown in the follow...
	c. Use the get methods of the returned TraderResult JavaBean to get the returned results. To find...

	4. Compile and run the client Java program as usual.

	Writing a Dynamic Java Client
	import java.util.Properties; import javax.naming.Context; import javax.naming.InitialContext;
	import examples.ejb.basic.statelessSession.TradeResult;
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod;
	public class DynamicClient{
	public static void main(String[] arg) throws Exception{
	Properties h = new Properties();
	h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapInitialContextFactory");
	Context context = new InitialContext(h);
	WebServiceProxy proxy = (WebServiceProxy)context.lookup("http://www.myHost.com:7001/myContext/st...
	SoapMethod method = proxy.getMethod("buy");
	TradeResult result = (TradeResult)method.invoke(new Object[]{ "BEAS", new Integer(100) });
	System.out.print(result.getStockSymbol()); System.out.print(":"); System.out.println(result....
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. Within the main method of your client application, add the following Java code to initialize t...
	b. Invoke the Web service operation by executing a public method of the EJB, as shown in the foll...
	c. Use the get methods of the returned TraderResult JavaBean to get the returned results. To find...

	4. Compile and run the client Java program as usual.

	Writing a Microsoft SOAP Toolkit Client
	SET soapclient = CreateObject("MSSOAP.SoapClient")
	Call soapclient.mssoapinit(
	"http://myhost:7001/weather/statelessSession.WeatherHome/statelessSession.Weath erHome.wsdl", "We...
	wscript.echo soapclient.getTemp(94117)
	1. Instantiate a SoapClient object in your Visual Basic application.
	2. Initialize the SoapClient object by executing the SoapClient.mssoapinit() method, passing it t...
	3. Execute the WebLogic Web Service method.

	Creating a Java Client to Invoke a Message-Style WebLogic Web Service
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="messageExample....
	</messageservices> </wsgen> </target> </project>
	Sending Data to a Message-Style Web Service
	package examples.soap;
	import java.util.Properties; import java.net.URL; import javax.naming.Context; import javax.namin...
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	public class ProducerClient{
	public static void main(String[] arg) throws Exception{
	Properties h = new Properties();
	h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapInitialContextFactory"); h.put("we...
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); h...
	Context context = new InitialContext(h); WebServiceProxy proxy = (WebServiceProxy)context.lookup(...
	String toSend = arg.length == 0 ? "No arg to send" : arg[0]; Object result = method.invoke(new O...
	}
	}
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. In the main method of your client application, create a Properties object and set some of the ...
	b. Create a factory of encoding styles and register the SOAP encoding style:
	c. Create the initial context, use the WSDL to look up the Web service, then get the send method:
	d. Invoke the send method and send data to the Web service. In the example, the client applicatio...

	4. Compile and run the client Java program as usual.

	Receiving Data From a Message-Style Web Service
	package examples.soap;
	import java.util.Properties; import java.net.URL; import javax.naming.Context; import javax.namin...
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	public class ConsumerClient{
	public static void main(String[] arg) throws Exception{
	Properties h = new Properties(); h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapI...
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); h...
	Context context = new InitialContext(h);
	WebServiceProxy proxy = (WebServiceProxy)context.lookup("http://localhost:7001/msg/Receiver/Rece...
	while(true){ Object result = method.invoke(null); System.out.println(result); } } }
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. In the main method of your client application, create a Properties object and set some of the ...
	b. Create a factory of encoding styles and register the SOAP encoding style:
	c. Create the initial context, use the WSDL to look up the Web service , then get the receive met...
	d. Invoke the receive method to receive data from the Web service. In the example, the client app...

	4. Compile and run the client Java program as usual.

	Handling Exceptions from WebLogic Web Services
	Initial Context Factory Properties for Invoking Web Services
	Table 3�1 Initial Context Factory Properties for Invoking Web Services

	Additional Classes Needed by Clients Invoking WebLogic Web Services

	4 Administering WebLogic Web Services
	Overview of Administering WebLogic Web Services
	Invoking the Administration Console

	Viewing the Web Services Deployed on WebLogic Server
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser...
	2. In the left pane, click to expand the Deployments node.
	3. Click to expand the Applications node. A list of Enterprise applications appears below the node.
	4. To determine which of the listed Enterprise applications is deployed as a Web service, follow ...
	a. Click to expand the Enterprise application. The list of components that make up the applicatio...
	b. Look for a Web application component called web-services, which is the default name of the Web...
	c. If you find a Web application called web-services, right-click on it in the left pane and chos...
	d. In the left pane of the Deployment Descriptor Editor, see if the RPC Services node under the W...
	e. Click on the entry in either the Message Service or RPC Service node to view the properties of...
	f. If you do not find a Web application called web-services, it is still possible that the Enterp...

	5 Troubleshooting
	Turning on Verbose Mode
	java.io.FileNotFoundException
	Problem
	Explanation
	Exception in thread "main" javax.naming.NamingException: i/o failed java.io.FileNotFoundException...

	Suggested Solution
	1. Invoke the Administration Console in your browser. See “Invoking the Administration Console” o...
	2. In the left pane, click to expand the Applications node under the Deployments node.
	3. Click on the Enterprise Application that corresponds to the WebLogic Web Service that you are ...
	4. In the right pane, if the Deployed check box is not selected, select it and click the Apply bu...
	5. In the left pane, under the Enterprise application that corresponds to your Web service, click...
	6. In the right pane, select the Targets tab.
	7. If it is not already there, move the name of the WebLogic Server instance on which the Web app...
	8. If you are attempting to invoke an RPC-style WebLogic Web Service, follow these steps:
	a. In the left pane, under the Enterprise application that corresponds to your Web service, click...
	b. In the right pane, select the Targets tab.
	c. If it is not already there, move the name of the WebLogic Server instance on which the EJB sho...
	a. In the left pane, click to expand the JMS node under the Services node.
	b. Click to expand the Connection Factories node.
	c. In the right pane, click the name of the JMS Connection Factory that you configured for the me...
	d. Select the Targets tab.
	e. If it is not already there, move the name of the WebLogic Server instance for which the Connec...
	f. In the right pane, click to expand the Servers node under the JMS node.
	g. Click the name of the JMS server which your message-style Web service is using.
	h. In the right pane, select the Targets tab.
	i. If it is not already there, move the name of the WebLogic Server for which the JMS Server is t...

	Unable to Parse Exception
	Problem
	Explanation
	Exception in thread "main" javax.naming.NamingException: unable to parse org.xml.sax.SAXException...
	at weblogic.soap.wsdl.binding.Definition.parse(Definition.java:121) at weblogic.soap.WebServicePr...

	Suggested Solution

	java.lang.NullPointerException
	Problem
	Explanation
	was expecting 'input|output' but got:inputs was expecting 'operation|input|output' but got:inputs...

	Suggested Solution

	java.net.ConnectException
	Problem
	Explanation
	Exception in thread "main" javax.naming.NamingException: i/o failed java.net.ConnectException: Co...

	Suggested Solution

	6 Interoperability
	.NET Client Interoperating With a 6.1 WebLogic Web Service
	7.X WebLogic Client Interoperating with a 6.1 WebLogic Web Service

	A Specifications Supported by WebLogic Web Services
	SOAP 1.1 Specification
	SOAP Messages With Attachments Specification
	Web Services Description Language (WSDL) 1.1 Specification

	B build.xml Elements and Attributes
	Example of a build.xml File
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="myWebService.ea...

	build.xml Hierarchy Diagram
	Description of Elements and Attributes
	wsgen
	Table 6�1 wsgen Attributes�

	rpcservices
	Table 6�2 rpcservices Attributes�

	rpcservice
	Table 6�3 rpcservice Attributes�

	messageservices
	messageservice
	Table 6�4 messageservice Attributes�

	clientjar
	Table 6�5 clientjar Attributes�

	manifest
	entry
	Table 6�6 entry Attributes�

	C Manually Assembling the Web Services Archive File
	Before You Begin
	Description of the Web Services Archive File
	Assembling an RPC-Style Web Service Archive File Manually
	1. Create a temporary staging directory for assembling the Web application component. You can nam...
	2. Set up your shell environment.
	3. Execute the following command to automatically generate initial web.xml and weblogic.xml deplo...
	4. Edit the WEB-INF/web.xml file, adding WebLogic Web Services information, such as references to...
	5. Edit the WEB-INF/weblogic.xml file, adding WebLogic Web Services information. For details, see...
	6. In the main staging directory, create a sub-directory with the same name as the JNDI name of y...
	7. In the jndi-name subdirectory, create the WSDL JSP by running the following utility and redire...
	java weblogic.soap.wsdl.Remote2WSDL EJB_interface path -protocol protocol > wsdl.jsp
	8. In the jndi-name subdirectory, create an index.html file that contains links to the WSDL JSP y...
	9. Create a client.jar file in the main staging directory. For details on creating this file, ref...
	10. Create an index.html file in the main staging directory that lists the Web service in this En...
	11. Create the Web application archive (*.war file) using a jar command such as:
	12. Create a second temporary staging directory for assembling the Enterprise application. You ca...
	13. Copy your stateless session EJB *.jar file into the second staging directory.
	14. Copy the Web application archive *.war file you created in a previous step into the second st...
	15. Execute the following command to automatically generate an initial application.xml deployment...
	16. Edit the META-INF/application.xml file, adding WebLogic Web Services information. For details...
	17. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:

	Updating the web.xml File for RPC-Style Web Services
	<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" "http://java.su...

	Updating the weblogic.xml File for RPC-Style Web Services
	<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 6.0//EN" "http://www...
	<weblogic-web-app> <reference-descriptor> <ejb-reference-description> <ejb-ref-name>statelessSess...

	Updating the application.xml File for RPC-Style Web Services
	<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN' 'http://ja...
	<application> <display-name>Web-services</display-name> <module> <web> <web-uri>web-services.war<...

	Assembling a Message-Style Web Service Archive File Manually
	1. Create a temporary staging directory for assembling the Web application component. You can nam...
	2. Set up your shell environment.
	3. Execute the following command to automatically generate initial web.xml and weblogic.xml deplo...
	4. Edit the WEB-INF/web.xml file, adding WebLogic Web Services information, such as references to...
	5. Edit the WEB-INF/weblogic.xml file, adding WebLogic Web Services information. For details, see...
	6. In the main staging directory, create a sub-directory that will hold the WSDL JSP for the Web ...
	7. In the wsdl_dir subdirectory, create the WSDL JSP. The wsgen Java utility names this JSP wsdl....
	8. In the wsdl_dir subdirectory, create an index.html file that contains links to the WSDL JSP yo...
	9. Create a client.jar file in the main staging directory. For details on creating this file, ref...
	10. Create an index.html file in the main staging directory that lists the Web service in this En...
	11. Create the Web application archive (*.war file) using a jar command such as:
	12. Create a second temporary staging directory for assembling the Enterprise application. You ca...
	13. Copy the Web application archive *.war file you created in a previous step into the staging d...
	14. Execute the following command to automatically generate an initial application.xml deployment...
	15. Edit the META-INF/application.xml file, adding WebLogic Web Services information. For details...
	16. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:
	Creating the Message-Style Web Service WSDL File
	1. Using your favorite text editor, create a file called wsdl.jsp.
	2. Copy and paste the sample WSDL at the end of this section into the wsdl.jsp file, and edit it ...
	3. Globally replace references to myService with the name of your Web service.
	4. If your Web service is one in which client applications that invoke it receive messages from t...
	5. Globally replace url:local with the unique namespace for your Web service.
	6. Replace the URI used to invoke the Web service from /msg/sendMsg to the following URI:
	7. If you want the WSDL file to statically specify the host and port of the WebLogic server hosti...
	<?xml version="1.0"?> <definitions targetNamespace="urn:local" xmlns="http://schemas.xmlsoap.org/...
	<types> <schema targetNamespace='urn:local' xmlns='http://www.w3.org/1999/XMLSchema'> </schema> <...
	<message name="sendRequest"> <part name="message" type="xsd:anyType" /> </message> <message name=...
	<portType name="myServicePortType"> <operation name="send"> <input message="tns:sendRequest"/> <o...
	<binding name="myServiceBinding" type="tns:myServicePortType"> <soap:binding style="rpc" transpor...
	<service name="myService"> <documentation>todo</documentation> <port name="myServicePort" binding...
	</definitions>

	Updating the web.xml File for Message-Style Web Services
	<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" "http://java.su...
	<web-app> <servlet> <servlet-name>myService</servlet-name> <servlet-class> weblogic.soap.server.s...

	Updating the weblogic.xml File for Message-Style Web Services
	<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 6.0//EN" "http://www...
	<weblogic-web-app> <reference-descriptor> <resource-description> <res-ref-name>myServiceDestinati...

	Updating the application.xml File for Message-Style Web Services
	<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN' 'http://ja...
	<application> <display-name>Web-services</display-name> <module> <web> <web-uri>web-services.war<...

	Creating the client.jar File Manually

	D Invoking Web Services Without Using the WSDL File
	import java.util.Properties; import java.net.URL; import javax.naming.Context; import javax.namin...
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	public class ProducerClient{
	public static void main(String[] arg) throws Exception{
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); f...
	WebServiceProxy proxy = WebServiceProxy.createService(new URL("http://www.myHost.com:7001/msg/s...
	SoapType param = new SoapType("message", String.class); proxy.addMethod("send", null, new Soap...
	String toSend = arg.length == 0 ? "No arg to send" : arg[0]; Object result = method.invoke(new O...
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps describe the Web services-specific Java code:
	a. In the main method of your client application, create a factory of encoding styles and registe...
	b. Add the following Java code to create the connection to the Web service and set the encoding s...
	c. Add the following Java code to dynamically get the send method of the Web service:
	d. Invoke the send method and send data to the Web service. In the example, the client applicatio...

	4. Compile and run the client Java program as usual.

	import java.util.Properties;
	import java.net.URL; import java.io.File;
	import javax.naming.Context; import javax.naming.InitialContext; import javax.xml.parsers.Documen...
	import org.w3c.dom.Document; import org.w3c.dom.Element;
	import weblogic.apache.xml.serialize.OutputFormat; import weblogic.apache.xml.serialize.XMLSerial...
	import weblogic.apache.xerces.dom.DocumentImpl;
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	import weblogic.soap.codec.CodecFactory; import weblogic.soap.codec.SoapEncodingCodec; import web...
	public class ProducerClient{ public static void main(String[] args) throws Exception{ String url ...
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); fac...
	URL newURL = new URL(url + "/msg/sendMsg");
	WebServiceProxy proxy = WebServiceProxy.createService(newURL); proxy.setCodecFactory(factory); pr...
	SoapMethod method = proxy.getMethod("send");
	// Print out proxy to make sure method signature looks good System.out.println("Proxy:"+proxy);
	DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); //Obtain an instance of a Docu...
	//Class parserClass = Class.forName("org.jdom.adapters.XercesDOMAdapter"); //DOMAdapter da = (DOM...
	// Print out XML just to make sure the document was read successfully OutputFormat of = new Outpu...
	System.out.println("Before Invoke"); Object result = method.invoke(new Object[]{w3cDoc}); Syste...

	Glossary
	Assembling a Web service
	Deploying a Web service
	Implementing a Web service
	Invoking a Web service
	Java Ant
	Message-style Web services
	Publishing a Web service
	RPC-style Web service
	SOAP
	SOAP with attachments
	Web service
	Web Services Home Page
	WSDL

	Index

