
BEA
 WebLogic
Server™

Programming WebLogic
jCOM
Release 7.0
Document Date: June 2002
Revised: June 28, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic jCOM

Part Number Date Software Version

N/A June 28, 2002 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience.. viii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... ix
Contact Us!.. ix
Documentation Conventions ... ix

1. Overview of WebLogic jCOM
What Is WebLogic jCOM?.. 1-1

An Important Note on Terminology... 1-2
jCOM Architecture... 1-3

Why Use WebLogic jCOM? ... 1-3
WebLogic jCOM Features .. 1-4
WebLogic jCOM Examples .. 1-5
Planning Your WebLogic jCOM Application... 1-5

Zero-Client Deployment .. 1-6
Advantages and Disadvantages of Zero-Client Deployment 1-6
The Zero-Client Example.. 1-7

Early Versus Late Binding ... 1-7
Advantages and Disadvantages of Each Binding Model 1-8
The Early Binding and Late Binding Examples 1-9

DCOM Versus Native Mode.. 1-9
Advantages and Disadvantages of Native Mode 1-10

2. Calling into WebLogic Server from a COM Client Application
Special Requirement for Native Mode .. 2-1
 Programming WebLogic jCOM iii

Calling WebLogic Server from a COM Client: Main Steps 2-2
Preparing WebLogic Server .. 2-3

Generate Java Wrappers and the IDL File—Early Binding Only.............. 2-3
Start the Server ... 2-5
Enable COM Calls on the Server Listen Port... 2-5
Configure Access Control .. 2-6

Granting Access to java.util.Collection and java.util.Iterator 2-6
Granting Access to ejb20.basic.beanManaged.................................... 2-7

Configure Other Console Properties .. 2-7
Preparing the COM Client ... 2-7

Install Necessary Files.. 2-8
jCOM Tools Files.. 2-8
WebLogic Server Class Files—Native Mode Only 2-8

Obtain an Object Reference Moniker from the WebLogic Server Servlet—
Zero Client Only.. 2-9

Generate Java Wrappers and the IDL File—Early Binding Only.............. 2-9
Some Notes about Wrapper Files.. 2-10

Register the WebLogic Server JVM in the Client Machine Registry 2-11
Unregistering JVMs .. 2-12
Select Native Mode, If Applicable.. 2-13

Code the COM Client Application ... 2-13
Late Bound Applications... 2-14
Early Bound Applications ... 2-14

Start the COM Client.. 2-15
Running COM-to-WLS Applications in Native Mode.................................... 2-15

Native Mode with the JVM Running Out-of-Process 2-16
Native Mode with the JVM Running In-Process 2-18

3. Calling into a COM Application from WebLogic Server
Special Requirements for Native Mode... 3-1
Calling a COM Application from WebLogic Server: Main Steps 3-2
Preparing the COM Application.. 3-2

Code the COM Application.. 3-3
Generate Java Classes with the com2java GUI Tool 3-3
Package the Java Classes for WebLogic Server... 3-4
iv Programming WebLogic jCOM

Start the COM Application .. 3-4
Preparing WebLogic Server .. 3-4

Start the Server ... 3-4
Enable COM Calls on the Server Listen Port .. 3-5
Enable Native Mode, If Desired... 3-5
Configure Other Relevant Console Properties ... 3-6
Prepare Your Server Code to Call the COM Objects................................. 3-6

Using Java Classes Generated by com2java ... 3-6
Using Java Interfaces Generated from COM interfaces by com2java 3-7

4. A Closer Look at the jCOM Tools
com2java.. 4-1

Using com2java.. 4-2
Selecting the Type Library.. 4-2
Specifying the Java Package Name .. 4-2
Options .. 4-3
Generate the Proxies ... 4-5

Files Generated by com2java ... 4-5
Enumerations .. 4-6
COM Interfaces... 4-6
COM Classes... 4-7

java2com.. 4-8
regjvm.. 4-11

JVM Modes .. 4-12
DCOM mode... 4-12
Native Mode Out of Process ... 4-13
Native Mode in Process .. 4-14

The User Interface of the regjvm GUI Tool... 4-14
DCOM Mode Options for the regjvm GUI Tool 4-16
Native Mode Options for the regjvm GUI Tool 4-18
Native Mode in Process Options for the regjvm GUI Tool 4-19

regjvmcmd... 4-21
regtlb.. 4-21
 Programming WebLogic jCOM v

5. Upgrading Considerations
Advantages of Implementing jCOM 7.0 ... 5-1
Changes to Your COM Code... 5-2
Security Changes ... 5-2
Configuration Changes .. 5-3
vi Programming WebLogic jCOM

About This Document

This document describes how to use jCOM, a WebLogic Server™ feature that lets
you write Common Object Model (COM) client applications that create and invoke
methods on Java objects located in WebLogic Server, and WebLogic Server
applications that create and invoke methods on COM objects located outside of
WebLogic Server.

The document is organized as follows:

Chapter 1, “Overview of WebLogic jCOM,” takes a look at WebLogic jCOM’s
features and architecture and helps you plan the development of your
application.

Chapter 2, “Calling into WebLogic Server from a COM Client Application,”
describes how to use WebLogic jCOM to call methods on a WebLogic Server
object from a COM client.

Chapter 3, “Calling into a COM Application from WebLogic Server,” describes
how to use WebLogic jCOM to call methods on a COM object from WebLogic
Server.

Chapter 4, “A Closer Look at the jCOM Tools,” examines in more detail the
tools used by jCOM applications.

Chapter 5, “Upgrading Considerations,” explains how to upgrade from
WebLogic jCOM 6.1 to WebLogic jCOM 7.0.
 Programming WebLogic jCOM vii

Audience

This document is written for application developers who want to build COM
applications that interoperate with WebLogic Server. It is assumed that readers know
Web technologies, Common Object Model, Distributed Common Object Model,
object-oriented programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Programming WebLogic jCOM

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.
 Programming WebLogic jCOM ix

mailto:docsupport@bea.com
http://www.bea.com

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}
x Programming WebLogic jCOM

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
 Programming WebLogic jCOM xi

xii Programming WebLogic jCOM

CHAPTER
1 Overview of
WebLogic jCOM

The following sections provide an overview of WebLogic jCOM:

“What Is WebLogic jCOM?” on page 1-1

“Why Use WebLogic jCOM?” on page 1-3

“WebLogic jCOM Features” on page 1-4

“WebLogic jCOM Examples” on page 1-5

“Planning Your WebLogic jCOM Application” on page 1-5

What Is WebLogic jCOM?

WebLogic jCOM is a software bridge that allows bidirectional access between
Java/J2EE objects deployed in WebLogic Server, and Microsoft ActiveX components
available within Microsoft Office family of products, Visual Basic and C++ objects,
and other Component Object Model/Distributed Component Object Model
(COM/DCOM) environments.

In general, BEA Systems believes that Web services are the preferred way to
communicate with Microsoft applications. We suggest that customers plan to migrate
legacy COM applications to .NET in order to leverage this type of communication.
jCOM is provided as a migration path for interim solutions that require Java-to-COM
integration. It is suitable for small projects or bridge solutions.
 Programming WebLogic jCOM 1-1

1 Overview of WebLogic jCOM
Unlike other Java-to-COM bridges available on the market, jCOM is specifically
designed to work with WebLogic Server on the Java side. You cannot use jCOM to
make COM objects communicate with any arbitrary Java Virtual Machine (JVM). In
addition, jCOM makes direct use of WebLogic Server threads, providing a very robust
way to expose services to COM objects.

Note: WebLogic jCOM 7.0 runs as part of WebLogic Server. In previous versions,
it ran as a standalone software bridge. Do not attempt to run WebLogic jCOM
standalone.

WebLogic jCOM makes the differences between the object types transparent: to a
COM client, WebLogic Server objects appear to be COM objects and to a WebLogic
Server application, COM components appear to be Java objects.

WebLogic jCOM is bidirectional because it allows:

Microsoft COM clients to access objects in WebLogic Server as though they
were COM components.

and

Applications within WebLogic Server to access COM components as though
they were Java objects.

An Important Note on Terminology

Throughout the remainder of this programming guide, we refer to the two types of
applications by their directions of access. Thus:

An application in which a COM client accesses WebLogic Server objects is a
“COM-to-WLS” application.

An application in which WebLogic Server accesses COM objects is a
“WLS-to-COM” application.
1-2 Programming WebLogic jCOM

Why Use WebLogic jCOM?
jCOM Architecture

WebLogic jCOM provides a runtime component that implements both COM/DCOM
over Distributed Computing Environment Remote Procedure Call, and Remote
Method Invocation (RMI) over Java Remote Method protocol/Internet Inter-ORB
Protocol distributed components infrastructures. This makes the objects on the other
side look like native objects for each environment.

WebLogic jCOM also provides automated tools to convert between both types of
interfaces: it automatically builds COM/DCOM proxies and RMI stubs necessary for
each side to be able to communicate via the above mentioned protocols.

WebLogic jCOM does all the necessary translation between DCOM and RMI
technologies, and connects to WebLogic Server as an RMI client. It then
communicates requests to Enterprise Java Beans (EJBs) deployed in the WebLogic
Server as if the request comes from a regular EJB client.

In a similar manner, when a component deployed in WebLogic Server requests
services provided by a DCOM object, the request is translated by the jCOM
component from a regular RMI client request issued by the WebLogic Server into
DCOM compliant request, and communicated to the DCOM environment to the
appropriate object.

In addition to the runtime file, WebLogic jCOM also provides a number of tools and
components which are used for configuring the client and server environments.

Why Use WebLogic jCOM?

The major reasons for using WebLogic jCOM are:

To gain interoperability among distributed applications that span diverse
hardware and software platforms

To aid those with a significant investment in Microsoft development tools and
trained development staff who don’t want to write Java client software in order
for their client applications to access business logic on WebLogic Server.
 Programming WebLogic jCOM 1-3

1 Overview of WebLogic jCOM
To address the needs of e-business application builders seeking to leverage the
skills available for both COM/DCOM, and Java environments to build fully
integrated applications and reuse existing components. The specifics of each
environment can be completely hidden for developers used to another
environment.

WebLogic jCOM follows a software industry trend of making heterogeneous
environments and applications interoperate transparently.

WebLogic jCOM Features

The key features of the WebLogic jCOM subsystem are:

WebLogic jCOM hides the existence of the data types accessed by the client,
dynamically mapping between the most appropriate Java objects and COM
components.

WebLogic jCOM supports both late and early binding of object types.

No native code is required on the machine hosting the COM component.
Internally, WebLogic jCOM uses the Windows DCOM network protocol to
provide communication between both local and remote COM components and a
pure Java environment.

WebLogic jCOM supports an optional “native mode” which maximizes
performance when running on a Windows platform. See “DCOM Versus Native
Mode” on page 1-9.

WebLogic jCOM supports event handling. For example, Java events are
accessible from Visual Basic using the standard COM event mechanism and
Java objects can subscribe to COM component events.
1-4 Programming WebLogic jCOM

WebLogic jCOM Examples
WebLogic jCOM Examples

WebLogic Server includes examples of creating both RPC-style and message-style
Web services and examples of both Java and Microsoft VisualBasic client applications
that invoke the Web services.

WebLogic Server ships with a number of jCOM examples:

An example demonstrating how to access an EJB deployed on WebLogic Server
from an Excel Visual Basic Application (VBA) client using the zero client
installation.

In a zero client installation, no WebLogic jCOM software is needed on the
Windows client machine. However, in order to achieve this, you must retrieve an
“object reference moniker” from a servlet and place it in the COM client code.

An example demonstrating how to access an EJB deployed WebLogic Server
from an Excel VBA client using early binding.

An example demonstrating how to access an EJB deployed WebLogic Server
from an Excel VBA client using late binding.

The examples are located in the WL_HOME\samples\server\src\examples\jcom
directory, where WL_HOME refers to the top-level installation directory for the
WebLogic Platform.

For detailed instructions on how to build and run the examples, invoke the Web page
WL_HOME\samples\server\src\examples\jcom\package_summary.html.

Planning Your WebLogic jCOM Application

Before designing and building your jCOM application, you must make a few key
decisions. Specifically, you must decide:

Whether to employ a zero-client architecture for your application (COM-to-WLS
only)

Whether to employ an early or late binding model (COM-to-WLS only)
 Programming WebLogic jCOM 1-5

1 Overview of WebLogic jCOM
Whether to run your jCOM application in native or DCOM mode (both
COM-to-WLS and WLS-to-COM)

This section provides information to help you make these decisions.

Zero-Client Deployment

A jCOM zero client deployment is easy to implement. No WebLogic-jCOM-specific
software is required on the client machine.

The WebLogic Server location is coded into the COM client using an object reference
moniker (objref) moniker string. The objref moniker is generated by the user and
it encodes the IP address and port of the WebLogic Server. You can obtain the moniker
string for the COM client code programmatically—or by copying and pasting—from
a WebLogic Server servlet. Once the server connection is established, the COM client
can link a COM object to an interface in the Java component.

Advantages and Disadvantages of Zero-Client Deployment

The following table summarizes the advantages and disadvantages of a zero-client
implementation.

Advantages Disadvantages

 No WebLogic-specific software need be
loaded into the client machine registry.

A few jCOM-specific tools must be copied
from the WL_HOME\bin directory on the
WebLogic Server machine

Offers the benefits of the late binding model
(see “Early Versus Late Binding” on page
1-7) and therefore provides the same
flexibility in terms of changes made to the
Java component.

Requires that the WebLogic Server location
and port number be coded into the COM
client, which means that if the server location
is changed, this reference has to be
regenerated and changed in the source code.

Deprives your application of the advantages
of early binding. (See “Early Versus Late
Binding” on page 1-7)
1-6 Programming WebLogic jCOM

Planning Your WebLogic jCOM Application
The zero-client model programming model is probably a good choice if your
WebLogic jCOM deployment requires a large number of COM client machines.

The Zero-Client Example

For an example of zero client implementation see
WL_HOME\samples\server\src\examples\jcom\zeroclient in your WebLogic
Server installation.

Early Versus Late Binding

Binding substitutes the symbolic addresses of routines or modules with physical
addresses. Early binding and late binding both provide access to another application's
objects.

Early bound access gives you information about the object you are accessing while you
are compiling your program; all objects accessed are evaluated at compile time. This
requires that the server application provide a type library and that the client application
identify the library for loading onto the client system.

In late bound access, no information about the object being accessed is available at
compile time; the objects being accessed are dynamically evaluated at runtime. This
means that it is not until you run the program that you find out if the methods and
properties you are accessing actually exist.
 Programming WebLogic jCOM 1-7

1 Overview of WebLogic jCOM
Advantages and Disadvantages of Each Binding Model

The following tables summarize the pros and cons of the early binding model:

The following tables summarize the pros and cons of the late binding model:

Early Binding Pros Early Binding Cons

More reliable than late bound
implementation.
Compile-time type checking
makes debugging easy
The application’s end user can
browse the type library.
Improved runtime transaction
performance relative to a late
bound implementation.

Complex to implement, as it
requires the generation of a type
library and wrappers.
The type library is required on the
client side; the wrappers are
required on the server side. If the
client and server are running on
separate machines the type library
and wrappers have to be generated
on the same machine and then
copied to the systems where they
are required.
Lacks the flexibility of late bound
access, in that any changes made to
the Java component require
regeneration of the wrappers and
the library.
Slower initialization at runtime
than a late bound implementation.

Late Binding Advantages Late Binding Disadvantages

Easy to implement
Flexible implementation, since
objects referenced are only
evaluated at runtime
Faster runtime initialization than
for an early bound implementation

Error prone, as no type checking
can be done at compile time
It is not until you run the program
that you find out if the methods and
properties you are accessing
actually exist.
Runtime transaction performance
inferior to early bound
implementation
1-8 Programming WebLogic jCOM

Planning Your WebLogic jCOM Application
The Early Binding and Late Binding Examples

For an example of an early binding implementation, see
WL_HOME\samples\server\src\examples\jcom\earlybound in your WebLogic
Server installation.

For an example of late binding implementation, see
WL_HOME\samples\server\src\examples\jcom\latebound in your WebLogic
Server installation.

DCOM Versus Native Mode

The DCOM (Distributed Component Object Model) mode uses the Component Object
Model (COM) to support communication among objects on different computers. In a
WebLogic jCOM application running in DCOM mode, the COM client communicates
with WebLogic Server in DCOM protocol.

In native mode, COM clients make native calls to WebLogic Servers (COM-to-WLS)
and WebLogic Servers make native calls to COM applications.

For both COM-to-WLS and WLS-to-COM applications, because native mode uses
native code dynamically loaded libraries (DLLs)—which are compiled and optimized
specifically for the local operating system and CPU—using native mode results in
better performance.

Moreover, COM-to-WLS applications operating in native mode use WebLogic’s
T3/IIOP protocols for communication between the COM client and WebLogic Server.
This brings the advantages of:

Superior performance as compared to using DCOM calls because it results in
fewer network calls

For example, suppose your COM application creates a vector containing 100
data elements whose values are returned by a call to WebLogic Server. In
DCOM mode, this would require 100 roundtrip network calls to the server. In
native mode, this would require one roundtrip call.

Access to WebLogic Server’s failover and load balancing features
 Programming WebLogic jCOM 1-9

1 Overview of WebLogic jCOM
However, for both types of applications, because native libraries have only been
created for Windows, implementing native late bound access requires that the
WebLogic Server be installed all COM client machines. However, this does not mean
you need a distinct WebLogic Server license for each machine running a COM
application.

Moreover, for WLS-to-COM applications, WebLogic Server must be running on a
Windows machine to run in native mode.

Advantages and Disadvantages of Native Mode

The following table summarizes the pros and cons of a native mode implementation.

Advantages Disadvantages

For COM-to-WLS applications, superior
performance to that of DCOM mode,
because calls aren’t made over the network.

For both COM-to-WLS and WLS-to-COM
applications, since native libraries have only
been created for Windows, implementing
native mode requires that the WebLogic
Server be installed on all COM machines.

For COM-to-WLS applications, access to
WebLogic Server’s load balancing and
failover features.

In the case of WLS-to-COM applications,
WebLogic Server must be running on a
Windows machine to run in native mode.

For WLS-to-COM applications,
performance benefits because, if the COM
object is installed on the same machine as
WebLogic Server, WebLogic Server will not
make network calls to it.
1-10 Programming WebLogic jCOM

CHAPTER
2 Calling into WebLogic
Server from a COM
Client Application

This chapter describes how to use WebLogic jCOM to call methods on a WebLogic
Server object from a COM client.

“Special Requirement for Native Mode” on page 2-1

“Calling WebLogic Server from a COM Client: Main Steps” on page 2-2

“Preparing WebLogic Server” on page 2-3

“Preparing the COM Client” on page 2-7

“Running COM-to-WLS Applications in Native Mode” on page 2-15

Special Requirement for Native Mode

Note that WebLogic Server must be installed on COM client machines in order for
your COM-to-WLS application to run in native mode. However, this does not mean
you need a distinct WebLogic Server license for each machine running a COM client.

For more information on native mode, see “Running COM-to-WLS Applications in
Native Mode” on page 2-15
 Programming WebLogic jCOM 2-1

2 Calling into WebLogic Server from a COM Client Application
Calling WebLogic Server from a COM Client:
Main Steps

This section summarizes the main steps to call into WebLogic Server from a COM
client. Most are described in detail in later sections.

On the WebLogic Server side:

1. If you are using early binding, run the java2com tool to generate Java wrapper
classes and an Interface Definition Libarry (IDL) file and compile the files. See
“Generate Java Wrappers and the IDL File—Early Binding Only” on page 2-3.

2. Start the server. See “Start the Server” on page 2-5.

3. Enable COM calls on the server listen port. See “Enable COM Calls on the
Server Listen Port” on page 2-5.

4. Grant access to server classes to COM clients. See “Configure Access Control”
on page 2-6.

5. Configure any other relevant console properties. See “Configure Other Console
Properties” on page 2-7.

6. Restart the server if you have changed the value of any static console properties,
in order for the new values to take effect.

On the COM client side:

1. Install the jCOM tools files and, for native mode only, Weblogic Server class files.
See “Install Necessary Files” on page 2-8.

2. If this is a zero-client installation:

Obtain an object reference moniker (ORM) from the WebLogic Server ORM
servlet, either progammatically or by pasting into your application. See
“Obtain an Object Reference Moniker from the WebLogic Server Servlet—
Zero Client Only” on page 2-9.

3. If you are using early binding:

Obtain the IDL file generated on the WebLogic Server machine and compile
it into a type library.
2-2 Programming WebLogic jCOM

Preparing WebLogic Server
Register the type library and the WebLogic Server it will service.

For both of these steps, see “Generate Java Wrappers and the IDL File—Early
Binding Only” on page 2-9.

4. Register the WebLogic Server JVM in the registry. If want to communicate with
the WebLogic Server in native mode, set that in this step. See “Register the
WebLogic Server JVM in the Client Machine Registry” on page 2-11.

5. Code the COM client application. See “Code the COM Client Application” on
page 2-13.

6. Start the COM client. See “Start the COM Client” on page 2-15.

Preparing WebLogic Server

The following sections discuss how to prepare WebLogic Server so that COM clients
can call methods on WebLogic Server objects:

Generate Java Wrappers and the IDL File—Early Binding
Only

1. Add the path to JDK libraries and weblogic.jar to your CLASSPATH. For
example:

set CLASSPATH=%JAVA_HOME%\lib\tools.jar;
%WL_HOME%\server\lib\weblogic.jar;%CLASSPATH%

Where JAVA_HOME is the root folder where the JDK is installed (typically
c:\bea\jdk131) and WL_HOME is the root directory where WebLogic Platform
software is installed (typically c:\bea\weblogic700).

2. Generate java wrappers and an IDL file with the java2com tool:

java com.bea.java2com.Main

The java2com GUI is displayed:
 Programming WebLogic jCOM 2-3

2 Calling into WebLogic Server from a COM Client Application
3. Input the following:

Java Classes & Interfaces: jCOMHelper
examples.ejb20.basic.containerManaged.AccountHome [list the wrapper
classes to be converted here]
Name of generated IDL File: name of the IDL file
Output Directory: drive letter and root directory\TLB

where TLB signifies OLE Type Library.

The java2com tool looks at the class specified, and at all other classes that it
uses in the method parameters. It does this recursively. You can specify more
than one class or interface here, separated by spaces.

All Java classes that are public, not abstract, and have a no-parameter
constructor are rendered accessible as COM Classes. Other public classes, and
all public interfaces are rendered accessible as COM interfaces.

If you click the “Generate” button and produce wrappers and the IDL at this
point, you will encounter errors when you attempted to compile the generated
wrappers and IDL. This is because certain classes are omitted by default in the
java2com tool. By looking at the errors generated during compilation, you
would be able to determine which classes were causing problems.

To fix the problem, click on the “Names” button in the java2com tool and
remove any references to the class files you require. In this example we must
remove the following references:

*.toString->''''
class java.lang.Class->''''
2-4 Programming WebLogic jCOM

Preparing WebLogic Server
4. Once these references have been removed, you can generate your wrappers and
IDL. Click Generate in the java2com GUI.

The java2com tool generates Java classes containing DCOM marshalling code used
to access Java objects. These generated classes are used behind the scenes by the
WebLogic jCOM runtime. You simply need to compile them, and make sure that they
are in your CLASSPATH.

Start the Server

Start WebLogic Server. See “Starting and Stopping WebLogic Servers” in the
Weblogic Server Administration Guide.

Enable COM Calls on the Server Listen Port

While jCOM is installed automatically when you install WebLogic Server, you must
enable it, which tells the server to listen for COM calls on its listen port:

1. Bring up the WebLogic Server Administration Console.

2. In the lefthand pane, click the name of the server
 Programming WebLogic jCOM 2-5

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#1043169

2 Calling into WebLogic Server from a COM Client Application
3. Display the jCOM properties screen by clicking the Connections tab and then the
jCOM tab—both in the righthand pane.

4. Check the “COM Enabled” box.

5. Restart the server to make the setting take effect. If you are planning to set any
jCOM properties via the Console, do so before restarting the server. (See
“Configure Other Console Properties” on page 2-7.)

Configure Access Control

Grant the COM client user access to the classes that the COM client application needs
to access. Your particular application will dictate which classes to expose.

See the Zero Client example shipped with this release at
WL_HOME/samples/server/src/examples/jcom/zeroclient.

In the Zero Client example, the COM client needs access to the following three classes:

java.util.Collection

java.util.Iterator

ejb20.basic.beanManaged

Granting Access to java.util.Collection and java.util.Iterator

1. In the lefthand pane of the WebLogic Server Administration Console, click the
Services node and then click the JCOM node underneath it.

2. In the righthand pane, enter:
java.util.*

3. Click Define Policy.

4. In the Policy Condition box, double-click “Caller is a member of the group”.

5. In the “Enter group name:” field, enter the name of the group of users to whom
you’re granting access.

Note: The zeroclient example gives access to “everyone”; however, it is preferable
to be as restrictive as possible when granting access.
2-6 Programming WebLogic jCOM

Preparing the COM Client
6. Click Add.

7. Click OK.

8. In the bottom righthand corner of the window, click Apply.

Granting Access to ejb20.basic.beanManaged

The zeroclient example also requires access to the ejb20.basic.beanManaged class.

To accomplish this, repeat the steps in “Granting Access to java.util.Collection and
java.util.Iterator,”replacing “java.util.*” with “ejb20.basic.beanManaged.*” in step 3.

Note that because of the final asterisk, you’re actually granting access to the entire
ejb20.basic.beanManaged package.

For more information on granting and revoking access to classes, point your web
browser to the 7.x Security section of the Console online help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html.

Configure Other Console Properties

Configure any other jCOM console properties that you require. For details, see the
Console online help for the jCOM properties at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_serverconnect
ions_connections_jcom.html.

If any of these properties require a server restart to take effect restart the server now.

Preparing the COM Client

The following sections describe how to prepare a COM client to call methods on
WebLogic Server objects:
 Programming WebLogic jCOM 2-7

http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_connections_jcom.html

2 Calling into WebLogic Server from a COM Client Application
Install Necessary Files

There are a number of files that must be installed on your client machine in order to
call methods on WebLogic Server objects. As noted below, some of these are only
necessary if you are making method calls in native mode.

jCOM Tools Files

There are five files and three folders (including all subfolders and files) necessary for
running the jCOM tools. You will find them in the WL_HOME\server\bin directory
on the machine where you installed WebLogic Server. They are:

JintMk.dll

ntvinv.dll

regjvm.exe

regjvmcmd.exe

regtlb.exe

regjvm (including all subfolders and files)

regjvmcmd (including all subfolders and files)

regtlb (including all subfolders and files)

For more information on the jCOM tools, see Chapter 4, “A Closer Look at the jCOM
Tools.”

WebLogic Server Class Files—Native Mode Only

In order to run a COM-to-WLS application in native mode, a COM client machine
must have access to certain WebLogic Server class files. To obtain these files, install
WebLogic Server on each COM client machine. However, this does not mean you
need a distinct WebLogic Server license for each client machine.
2-8 Programming WebLogic jCOM

Preparing the COM Client
Obtain an Object Reference Moniker from the WebLogic
Server Servlet—Zero Client Only

You can obtain an object reference moniker (ORM) from WebLogic Server. The
moniker can be used from the COM client application, obviating the need to run
regjvmcmd. The moniker will remain valid for new incarnations of the server as long
as the host and port of the server remain the same.

There are two ways to obtain an ORM for your COM client code:

Obtain it via a servlet running on WebLogic Server. Open a Web browser on
WebLogic Server to http://[wlshost]:[wlsport]/bea_wls_internal/com

where wlshost is the WebLogic Server machine and wlsport is the server’s port
number.

Run the com.bea.jcom.GetJvmMoniker Java class, specifying as parameters
the full name or TCP/IP address of the WebLogic Server machine and port
number:

java com.bea.jcom.GetJvmMoniker [wlshost] [wlsport]

A long message is displayed which shows the objref moniker and explains how
to use it. The text displayed is also automatically copied to the clipboard, so it
can be pasted directly into your source. The objref moniker returned can be used
to access WebLogic Server on the machine and port you have specified.

Generate Java Wrappers and the IDL File—Early Binding
Only

Perform the client-side portion of the wrapper and Interface Definition Language
(IDL) file generation:

1. Copy the IDL to the client machine:

If the java2com tool successfully executes on the WebLogic Server machine
(see “Preparing WebLogic Server” on page 2-3), an IDL file is produced on the
 Programming WebLogic jCOM 2-9

2 Calling into WebLogic Server from a COM Client Application
server machine. Copy this IDL file to the client machine, and place it in this
COM application’s \TLB subdirectory.

Note: If you are running the client and the server on the same machine this step is not
necessary, since the java2com tool should already output to the sample's
\TLB subdirectory.

2. Compile the IDL file into a type library:
midl containerManagedTLB.idl

This command calls the Microsoft IDL compiler MIDL.EXE to carry out the
compilation. The result of the compilation is a type library called
containerManagedTLB.tlb.

3. Register the type library and set the JVM it will service:
regtlb /unregisterall
regtlb containerManagedTLB.tlb registered_jvm

The first line above calls the regtlb.exe in order to un-register any
previously registered type library versions. The second line then registers the
newly compiled type library.

The second parameter registered_jvm passed to regtlb is important. It
specifies the name of the JVM that will be linked with the type library. The
WebLogic jCOM runtime requires this information for linking type library
defined object calls to the appropriate wrapper classes.

The WebLogic Server JVM is registered in the client machine registry via the regjvm
tool. For details, see “Register the WebLogic Server JVM in the Client Machine
Registry” on page 2-11.

Some Notes about Wrapper Files

In general, wrapper files must be placed on the server and compiled. The IDL
file must be placed on the client and compiled. If you are running the server and
client on separate machines, and you created the wrappers and IDL on the client
side, you will have to distribute the wrapper files you have just compiled to the
server. If you created the wrappers and IDL on the server side, then you must
move the IDL file to the client, where it can be compiled to a type library.

The wrapper files and IDL file must be created by a single execution of the
java2com tool. If you attempt to run the java2com tool separately on both
2-10 Programming WebLogic jCOM

Preparing the COM Client
the server and the client, the wrappers and IDL file you create will not be able to
communicate. The IDL and wrappers have unique stamps on them for
identification; wrappers can only communicate with IDL files created by a
common invocation of the java2com tool, and vice versa. As a result, the
java2com tool must be run once, and the files it creates distributed afterward.
If you make a mistake or a change in your Java source code and you need to run
the java2com tool again, you must delete all of your wrapper files, your IDL
file, and your TLB file, and redo all the steps.

When you use the java2com tool to create wrappers for classes that contain (or
reference) deprecated methods, you see deprecation warnings at compile time.
disregard these warnings; WebLogic jCOM renders the methods accessible from
COM.

The generated wrapper classes must be in your CLASSPATH. They cannot be
just located in your EJB jar.

Register the WebLogic Server JVM in the Client Machine
Registry

Register with the local Java Virtual Machine by adding the server name to the
Windows registry and associating it with the TCP/IP address and client-to-server
communications port where WebLogic will listen for incoming COM requests. By
default, this is localhost:7001.

1. Invoke the regjvm GUI tool, which displays this screen.
 Programming WebLogic jCOM 2-11

2 Calling into WebLogic Server from a COM Client Application
2. If WebLogic Server is running on something other than localhost and listening on
a port other than 7001, then fill in the hostname (or IP address) and port number

If you prefer, use the command-line version of regjvm:
regjvmcmd servername localhost[7001]

Unregistering JVMs

The regjvm (or regjvmcmd) tool does not overwrite old entries when new entries with
identical names are entered. This means that if you ever need to change the hostname
or port of the machine with which you wish to communicate, you have to unregister
the old entry, and then create a new one.
2-12 Programming WebLogic jCOM

Preparing the COM Client
To unregister a JVM in the regjvm tool window, select the JVM you wish to unregister
and click Delete.

Alternatively, unregister the JVM with the command line tool regjvmcmd:

regjvmcmd /unregister servername

Select Native Mode, If Applicable

If your COM client is running in native mode, check the “Native Mode” or “Native
Mode Out-of-Process” radio button in the regjvm window or invoke regjvmcmd with
the /native parameter. For details on this step, see “Running COM-to-WLS
Applications in Native Mode” on page 2-15.

Code the COM Client Application

You can now invoke methods on the WebLogic Server objects. How you code this
naturally depends on whether you chose late binding or early binding.

The code snippets in this section are taken from the Early Bound and Late Bound
examples shipped with this product and available in
SAMPLES_HOME\server\src\examples\jcom.
 Programming WebLogic jCOM 2-13

2 Calling into WebLogic Server from a COM Client Application
Late Bound Applications

In this extract from the Late Bound example, a Visual Basic Application, notice the
declaration of the COM version of the Account EJB's home interface mobjHome. This
COM object is linked to an instance of the AccountHome interface on the server side.

Dim mobjHome As Object

Private Sub Form_Load()

'Handle errors

On Error GoTo ErrOut '

Bind the EJB AccountHome object via JNDI

Set mobjHome =
CreateObject("examplesServer:jndi:ejb20-containerManaged-AccountH
ome")

Known Problem and Workaround for Late Bound Clients

WebLogic jCOM has problems handling methods that are overloaded but have the
same number of parameters. There is no such problem if the number of parameters in
the overloaded methods are different.

When they're the same, calls fail.

Unfortunately, the method InitialContext.lookup is overloaded:

public Object lookup(String)

public Object lookup(javax.naming.Name)

To perform a lookup, you must use the special JNDI moniker to create an object:

Set o = CreateObject("servername:jndi:objectname")

Early Bound Applications

The most obvious distinguishing feature of early bound code is that fewer variables are
declared As Object. Objects can now be declared by using the type library you
generated previously:
2-14 Programming WebLogic jCOM

Running COM-to-WLS Applications in Native Mode
Declare objects using the type library generated in Generate Java Wrappers and the
IDL File—Early Binding Only. In this Visual Basic code fragment, the IDL file is
called containerManagedTLB and the EJB is called
ExamplesEjb20BasicContainerManagedAccountHome:

Dim objNarrow As New containerManagedTLB.JCOMHelper

Now, you can call a method on the object:

Set mobjHome = objNarrow.narrow(objTemp,
"examples.ejb20.basic.containerManaged.AccountHome")

Start the COM Client

Start up the COM client application.

Running COM-to-WLS Applications in Native
Mode

For COM-to-WLS applications, there’s a distinction in native mode between
“in-process” and “out-of-process”:

Out-of-process: The JVM is created in its own process; interprocess
communication occurs between the COM process and the WebLogic Server
JVM process.

In-process: The entire WebLogic Server JVM is brought into the COM process;
in effect, it’s loaded into the address space of the COM client. The WebLogic
Server client-side classes reside inside this JVM.

You determine which process your application uses by selecting the
native-mode-in-process or native mode radio button in the regjvm GUI tool interface.
 Programming WebLogic jCOM 2-15

2 Calling into WebLogic Server from a COM Client Application
Native Mode with the JVM Running Out-of-Process

If you want your JVM to run out of process (but allow COM client access to the Java
objects contained therein using native code), follow these steps:

1. Invoke the regjvm GUI tools to register your JVM as being native. The regjvm
sets up various registry entries to facilitate WebLogic jCOM's COM-to-WLS
mechanism.

Note: When you register the JVM you must provide the name of the server in the
JVM id field. For example, if you enabled JCOM native mode on
exampleServer then when you register with regjvm enter exampleServer
in the JVM id box.

2. If your JVM is not already running, click the Advanced radio button and type its
path in the “Launch Command” field.
2-16 Programming WebLogic jCOM

Running COM-to-WLS Applications in Native Mode
For detailed information on the regjvm tool, see Chapter 4, “A Closer Look at
the jCOM Tools.”

3. Insert the following code into the main section of your application code, to tell
the WebLogic jCOM runtime that the JVM is ready to receive calls:

com.bea.jcom.Jvm.register("MyJvm"):
public class MyJvm {

public static void main(String[] args) throws Exception {

// Register the JVM with the name "firstjvm"

com.bea.jcom.Jvm.register("firstjvm");

Thread.sleep(6000000); // Sleep for an hour

}

4. From Visual Basic you can now use late binding to instantiate instances of any
Java class that can be loaded in that JVM:
Set acctEJB =
CreateObject("firstjvm.jndi.ejb20.beanManaged.AccountHome")
 Programming WebLogic jCOM 2-17

2 Calling into WebLogic Server from a COM Client Application
5. Having registered the JVM, use the standard WebLogic jCOM regtlb command
to allow early bound access to Java objects (regtlb takes as parameters the
name of a type library, and a JVM name, and registers all the COM objects
defined in that type library as being located in that JVM).

You can also control the instantiation of Java objects on behalf of COM clients
by associating your own instantiator with a JVM (additional parameter to
com.bea.jcom.Jvm.register(...))—a kind of object factory.

Native Mode with the JVM Running In-Process

Use this technique to actually load the JVM into the COM client's address space.

Again, use the regjvm command, but this time specify additional parameters.

Note: When you register the JVM you must provide the name of the server in the
JVM id field. For example, if you enabled JCOM native mode on
exampleServer then when you register with regjvm enter exampleServer
in the JV id box.

The simplest example would be to use Visual Basic to perform late bound access to
Java objects. First register the JVM. If you are using Sun's JDK 1.3.1, which is
installed under c:\bea\jdk131 and WebLogic Server is installed in
c:\bea\weblogic700\server\lib\weblogic.jar and your Java classes are in
c:\pure, you would complete the regjvm tools screen as follows:
2-18 Programming WebLogic jCOM

Running COM-to-WLS Applications in Native Mode
As you can see, you specify the JVM name, the CLASSPATH, and the JVM bin
directory path.

From Visual Basic, you should now be able to call the GetObject method:

MessageBox GetObject("MyJVM.jndi.ejb20.beanManaged.AccountHome")

For detailed information on the regjvm tool, see Chapter 4, “A Closer Look at the
jCOM Tools.”
 Programming WebLogic jCOM 2-19

2 Calling into WebLogic Server from a COM Client Application
2-20 Programming WebLogic jCOM

CHAPTER
3 Calling into a COM
Application from
WebLogic Server

The following sections describe how to prepare and deploy a WLS-to-COM
application: an application that uses WebLogic jCOM to call methods on a COM
object from WebLogic Server.

Special Requirements for Native Mode

Calling a COM Application from WebLogic Server: Main Steps

Preparing the COM Application

Preparing WebLogic Server

Special Requirements for Native Mode

Note these two special requirements for WLS-to-COM applications that use native
mode:

In order for a COM application to run in native mode, WebLogic Server must be
installed on the COM application machine. However, this does not mean you
need a distinct WebLogic Server license for each COM application machine.
 Programming WebLogic jCOM 3-1

3 Calling into a COM Application from WebLogic Server
In order to run in native mode, WebLogic Server must be running on a Windows
machine.

Calling a COM Application from WebLogic
Server: Main Steps

This section summarizes the main steps to call into a COM application from a
WebLogic Server. Most are described in detail in later sections.

On the COM side:

1. Code the COM application. See “Code the COM Application” on page 3-3.

2. Generate Java classes from the COM objects with the com2java tool. See
“Generate Java Classes with the com2java GUI Tool” on page 3-3.

3. Package the classes for use by WebLogic Server. See “Package the Java Classes
for WebLogic Server” on page 3-4.

4. Start the COM application. See “Start the COM Application” on page 3-4.

On the WebLogic Server side:

1. Start the server. See “Start the Server” on page 3-4.

2. Through the WebLogic Server Administration Console, enable and configure
COM as desired. See “Enable COM Calls on the Server Listen Port” on page 3-5.

3. Use the COM objects as you would any other Java object.

Preparing the COM Application

The following sections describe how to prepare a COM client so that WebLogic Server
can call methods on its objects:
3-2 Programming WebLogic jCOM

Preparing the COM Application
Code the COM Application

Code your COM application as desired.

Generate Java Classes with the com2java GUI Tool

Running the com2java GUI tool against a COM type library generates a collection of
Java class files corresponding to the classes and interfaces in the COM type library.

Here we demonstrate Java class generation with the GUI tool. To read more about the
WebLogic jCOM tools in general see Chapter 4, “A Closer Look at the jCOM Tools.”.

1. To run the com2java GUI tool, perform the following steps:

a. Change to the WEBLOGIC_HOME/server/bin directory (or add this directory to
your CLASSPATH)

b. Open a command shell on the COM machine and invoke the com2java.exe
file:

> com2java

2. Select the appropriate type library in the top field, and fill in the Java package
text box with the name of the package to contain the generated files. The
com2java tool will remember the last package name you specified for a
particular type library.
 Programming WebLogic jCOM 3-3

3 Calling into a COM Application from WebLogic Server
3. Click Generate Proxies to generate Java class files.

Package the Java Classes for WebLogic Server

If you call a COM object from an EJB, you must package the class files generated by
com2java into your EJB .jar in order for WebLogic Server to find them. You will
probably want to have the generated files in a specific package. For example you may
want to put all the files for the Excel type library in a Java package called excel.

For more information on packaging EJB .jar files, see the chapter “Packaging EJBs
for the WebLogic Server Container” in Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs70/ejb/EJB_deployover.html.

Start the COM Application

Once you have generated the Java class files and packaged them appropriately, simply
start your COM application, so that the COM objects you want to expose to WebLogic
Server are instanciated and running.

Preparing WebLogic Server

The following sections describe how to prepare a WebLogic Server so it can call
methods on a COM application’s objects.

Start the Server

Start WebLogic Server. See “Starting and Stopping WebLogic Servers” in the
Weblogic Server Administration Guide.
3-4 Programming WebLogic jCOM

http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#1043169

Preparing WebLogic Server
Enable COM Calls on the Server Listen Port

While jCOM is installed automatically when you install WebLogic Server, you must
enable it, which tells the server to listen for COM calls on its listen port:

1. Bring up the Administration Console.

2. In the lefthand pane, click the name of the server.

3. Display the jCOM properties screen by clicking the Connections tab and then the
jCOM tab—both in the righthand pane.

4. Check the “COM Enabled” box.

5. Restart the server to make the setting take effect. If you are planning to set
“Native Mode Enabled” or any other jCOM properties via the Console, do so
before restarting the server.

Enable Native Mode, If Desired

If you have chosen to have WebLogic Server and the COM application communicate
in native mode, enable it now, through the WebLogic Server console. See the “DCOM
Versus Native Mode” in Chapter 1, “Overview of WebLogic jCOM,”for help deciding
whether to use native mode.

To enable native mode:

1. Bring up the Administration Console

2. In the lefthand pane, click the name of the server

3. Display the jCOM properties screen by clicking the Connections Tab and then the
jCOM tab—both in the righthand pane.

4. Check the “Native Mode Enabled” box.
 Programming WebLogic jCOM 3-5

3 Calling into a COM Application from WebLogic Server
Configure Other Relevant Console Properties

Configure any other jCOM console properties that you require. For details, see the
Console online help for the jCOM properties at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_serverconnections_connecti
ons_jcom.html.

You will have to restart the server if you make jCOM configuration changes. The
Administration Console will also indicate the server should be restarted to activate
your changes.

Prepare Your Server Code to Call the COM Objects

Prepare your server code to call the COM objects.

Using Java Classes Generated by com2java

For each COM class that the com2java tool finds in a type library, it generates a Java
class which you use to access the COM class. These generated Java classes have
several constructors:

The default constructor, which creates an instance of the COM class on the local
host, with no authentication

A second constructor, which creates an instance of the COM class on a specific
host, with no authentication

A third constructor, which creates an instance of the COM class on the local
host, with specific authentication

A fourth constructor, which creates an instance of the COM class on a specified
host, with specific authentication

A final constructor, which can be used to wrap a returned object reference which
is known to reference an instance of the COM class
3-6 Programming WebLogic jCOM

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_connections_jcom.html

Using Java Interfaces Generated from COM interfaces by com2java
Here are sample constructors generated from the DataLabelProxy class:

public DataLabelProxy() {}

public DataLabelProxy(Object obj) throws java.io.IOException
{

super(obj, DataLabel.IID);

}

protected DataLabelProxy(Object obj, String iid) throws
java.io.IOException

{

super(obj, iid);

}

public DataLabelProxy(String CLSID, String host, boolean
deferred) throws java.net.UnknownHostException,
java.io.IOException{ super(CLSID, DataLabel.IID, host,

null);

}

protected DataLabelProxy(String CLSID, String iid, String
host,

AuthInfo authInfo) throws java.io.IOException { super(CLSID,
iid, host, authInfo);

}

Using Java Interfaces Generated from COM
interfaces by com2java

A method in a COM interface may return a reference to an object through a specific
interface.

For example the Excel type library (Excel8.olb) defines the _Application COM
Interface, with the method Add which is defined like this in COM IDL:
 Programming WebLogic jCOM 3-7

3 Calling into a COM Application from WebLogic Server
[id(0x0000023c), propget, helpcontext(0x0001023c)]

HRESULT Workbooks([out, retval] Workbooks** RHS);

The method returns a reference to an object that implements the Workbooks COM
interface. Because the Workbooks interface is defined in the same type library as the
_Application interface, the com2java tool generates the following method in the
_Application Java interface it creates:

/** * getWorkbooks.

*

* @return return value. An reference to a Workbooks

* @exception java.io.IOException If there are communications
problems.

* @exception com.bea.jcom.AutomationException If the remote server
throws an exception. */

public Workbooks getWorkbooks () throws java.io.IOException,
com.bea.jcom.AutomationException;

It is revealing to look at the implementation of the method in the generated
_ApplicationProxy Java class:

/**

* getWorkbooks.

*

* @return return value. An reference to a Workbooks

* @exception java.io.IOException If there are communications

problems.

* @exception com.bea.jcom.AutomationException If the remote

server throws an exception.

*/

public Workbooks getWorkbooks () throws java.io.IOException,

com.bea.jcom.AutomationException{ com.bea.jcom.MarshalStream

marshalStream = newMarshalStream("getWorkbooks");
3-8 Programming WebLogic jCOM

Using Java Interfaces Generated from COM interfaces by com2java
marshalStream = invoke("getWorkbooks", 52, marshalStream);

Object res = marshalStream.readDISPATCH("return value");

Workbooks returnValue = res == null ? null : new

WorkbooksProxy(res);

checkException(marshalStream,

marshalStream.readERROR("HRESULT"));

return returnValue;

}

As you can see, the getWorkbooks method internally makes use of the generated
WorkbooksProxy Java class. As mentioned above, the com2java tool generates the
method with the Workbooks return type because the Workbooks interface is defined
in the same type library as _Application.

If the Workbooks interface were defined in a different type library, WebLogic jCOM
would have generated the following code:

/**

* getWorkbooks.

*

* @return return value. An reference to a Workbooks

* @exception java.io.IOException If there are communications

problems.

* @exception com.bea.jcom.AutomationException If the remote server

throws an exception.

*/

public Object getWorkbooks () throws java.io.IOException,

com.bea.jcom.AutomationException;

In this case, you would have to explicitly use the generated proxy class to access the
returned Workbooks:
 Programming WebLogic jCOM 3-9

3 Calling into a COM Application from WebLogic Server
Object wbksObj = app.getWorkbooks();

Workbooks workbooks = new WorkbooksProxy(wbObj);
3-10 Programming WebLogic jCOM

CHAPTER
4 A Closer Look at the
jCOM Tools

The following sections examines in detail the tools used by jCOM applications:

com2java

java2com

regjvm

regjvmcmd

regtlb

com2java

WebLogic jCOM's com2java tool reads information from a type library, and generates
Java files that you use to access the COM classes and interfaces defined in that type
library.

Type libraries contain information on COM classes, interfaces, and other constructs.
They are typically generated by development tools such as Visual C++ and Visual
BASIC.

Some type libraries are readily identifiable as such. Files that end with the extension
olb or tlb are definitely type libraries. What can be a little confusing is that type
libraries can also be stored inside other files, such as executables. Visual BASIC puts
a type library in the executable that it generates.
 Programming WebLogic jCOM 4-1

4 A Closer Look at the jCOM Tools
Using com2java

Start com2java by typing it in a command shell or double clicking its icon.

When you start com2java, this is the dialog that is displayed:

Selecting the Type Library

Click the Select button to select the type library that the tool should process.

Remember that type libraries can sometimes be hidden inside executable files, such as
the executable or dynamic link library (DLL) containing your COM component.

The com2java tool will remember a list of the last type libraries you successfully
opened and generated proxies for.

Specifying the Java Package Name

The com2java tool generates a set of Java source files corresponding to the COM
classes and interfaces in the type library. You will probably want to have the generated
files in a specific package. For example you may want to put all the files for the Excel
type library in a Java package called excel.

In the Java package text box, specify the name of the package to which the generated
files to belong.
4-2 Programming WebLogic jCOM

com2java
The com2java tool remembers the last package name you specified for a particular
type library.

Options

Click the Options button to display a dialog box with com2java options described
below. Note that these options are saved automatically between sessions of com2java.
If you only require an option for one particular generation of proxies, then reset the
option after generating the proxies.

Option Description

Clash Prefix If methods in the COM interfaces defined in the type library
clash with methods that are already used by Java (for example
the getClass() method), com2java prefixes the generated
method name with a string, which is zz_ by default.

Lower case method
names

The convention for Java method names is that they start with a
lower-case letter. By default the com2java tool enforces this
convention, changing method names accordingly. To have
com2java ignore the convention, uncheck the Lowercase
method names checkbox in the Options dialog box.

Only generate IDispatch WebLogic jCOM supports calling COM objects using IDispatch
and vtable access. Selecting this option ensures that all calls are
made using the IDispatch interface.

Generate retry code on
'0x80010001 - Call was
rejected by callee'

If a COM server is busy, you may receive an error code.
Selecting this option ensures that the generated code retries each
time this error code is received.
 Programming WebLogic jCOM 4-3

4 A Closer Look at the jCOM Tools
Generate Arrays as
Objects

Parameters that are SAFEARRAYS have a corresponding Java
parameter of type java.lang.Object generated. This is required if
you are passing two dimensional arrays outside of Variants
to/from COM objects from Java.
This option doesn't change what is actually passed over the wire
—it is still arrays—it is just that in the generated Java interface,
rather than having the generated method prototype specify the
type of the array, it specifies “Object”. This is useful in
situations where you want to pass a 2D array —in the COM IDL
the number of dimensions is not specified for SAFEARRAYS,
and if you don't check the “generate arrays as objects” option,
WebLogic jCOM assumes you are passing a single element
array and generate a corresponding prototype.
By setting the option, and having com2java generate “Object”
instead of “String[]”, for example, you are free to actually pass
a 2D string array.

Prompt for names for
imported tlbs

Sometimes a type library will import another type library. If you
are also generating proxies for imported type libraries, using this
option will prompt you for the package name of the those
proxies.

Don't generate
dispinterfaces

Selecting this option disables the generation of proxies for
interfaces defined as dispinterfaces.

Generate deprecated
constructors

Generated proxies contain some constructors which are now
deprecated. If you do wish to generate these deprecated
constructors select this option.

Don't rename methods
with same names

If a name conflict is detected in a COM class, com2java
automatically renames one of the methods. Selecting this option
overrides this automatic renaming.

Option Description
4-4 Programming WebLogic jCOM

com2java
Generate the Proxies

Click the Generate Proxies button to select the directory in which the com2java
tool should generate the Java files.

Once you select the directory, com2java analyzes.the type library and output the
corresponding files in the directory you specify. If the directory already contains Java
source files, WebLogic jCOM issues a warning and allows you to cancel the operation.

Files Generated by com2java

The com2java tool processes three kinds of constructs in a type library:

Enumerations

COM Interfaces

COM Classes

These are explored in this section.

Refer to documentation about the COM objects that you are accessing to understand
how to use generated Java files to manipulate the COM objects.

Ignore conflicting
interfaces

If a COM class implements multiple interfaces which define
methods with the same names, selecting this option prevents the
corresponding generated Java classes from implementing the
additional interfaces. You can still access the interfaces using
the getAsXXX method that is generated. See the generated
comments.

Generate Java Abstract
Window Toolkit (AWT)
classes

Generates Java Classes as GUI classes. To be used for
embedding ActiveX controls in Java Frames.

Option Description
 Programming WebLogic jCOM 4-5

4 A Closer Look at the jCOM Tools
For example when you run com2java on the Excel type library the generated Java files
you are seeing correspond to the Microsoft Excel COM API, and you should refer to
the Microsoft Excel programming documentation for more information, such as the
Excel 2000 COM API:

http://msdn.microsoft.com/library/default.asp?URL=/library/officedev/off2000/xltoc
objectmodelapplication.htm

Enumerations

An enumeration is a list; in Java it is represented by java.util.Enumeration. If a
type library contains an enumeration, WebLogic jCOM generates a Java interface
containing constant definitions for each element in the enumeration.

COM Interfaces

WebLogic jCOM handles two types of interfaces. It handles Dispatch interfaces,
whose methods can only be accessed using the COM IDispatch mechanism, and dual
interfaces, whose methods can be invoked directly (vtbl access).

For each COM interface defined in a type library, the com2java tool generates two
Java files: a Java interface, and a Java class.

The name of the generated Java interface is the same as the name of the COM interface.
For example if the COM interface is called IMyInterface, the com2java tool
generates a Java interface called IMyInterface in the file IMyInterface.java.

The second file that com2java generates is a Java class, which contains code used to
access COM objects that implement the interface, and also code to allow COM objects
to invoke methods in Java classes that implement the interface. The name of the
generated Java class is the name of the interface with 'Proxy' appended to it. Using the
example from the previous paragraph, WebLogic jCOM would generate a Java class
called IMyInterfaceProxy in the file IMyInterfaceProxy.java.

For each method in the COM interface, WebLogic jCOM generates a corresponding
method in the Java interface. In addition it generates some constants in the interface
which, as the generated comments indicate, you can safely ignore—you will never
need to know anything about them, or use them.

Once again, WebLogic jCOM picks up comments from the type library describing the
interface and its methods, and uses them in the generated javadoc comments.
4-6 Programming WebLogic jCOM

http://msdn.microsoft.com/library/default.asp?URL=/library/officedev/off2000/xltocobjectmodelapplication.htm

com2java
COM Classes

A COM class implements one or more COM interfaces, in the same way that a Java
class can implement one or more Java interfaces.

For each COM class in a type library, the com2java tool generates a corresponding
Java class, with the same name as the COM class. WebLogic jCOM also supports a
class implementing multiple interfaces.

The Java class which WebLogic jCOM generates can be used to access the
corresponding COM class.

Special Case—Source Interfaces (Events)

A COM class can specify that an interface is a source interface. This means that it
allows instances of COM classes that implement the interface to subscribe to the events
defined in the interface. It invokes the methods defined in the interface on the objects
that have subscribed.

Note: In order for the com2java tool to treat an interface in a type library as an Event
interface, there must be at least one COM class in the type library that uses the
interface as a source interface.

Although COM events work using connection points, and source interfaces, Java has
a different event mechanism. The com2java tool hides the COM mechanism from the
Java programmer, and presents the events using the standard Java techniques.

What this means in real terms is that com2java adds two methods to the Java class that
it generates for accessing the COM Class.

When the com2java tool detects that a class uses an interface as a source interface, it
generates special code for that interface. It derives the interface from the
java.util.EventListener Java interface, as is the convention for Java events.

Another Java event convention is that each of the methods in the interface should have
a single parameter, which is an instance of a class derived from
java.util.EventObject Java class.

One final Java event related convention is the use of an Adapter class, which
implements the event interface, and provides empty default implementations for the
methods in the interface. That way, developers that wish to create a class which will
be subscribed to the event need not implement all of the methods in the interface,
which can be especially painful with large interfaces.
 Programming WebLogic jCOM 4-7

4 A Closer Look at the jCOM Tools
For each event interface, WebLogic jCOM generates an adapter class.

java2com

You can run java2com on any platform. Make sure that the WebLogic jCOM runtime
weblogic.jar is in your CLASSPATH environment variable.

The java2com tool analyzes Java classes (using the Java reflection mechanism), and
outputs:

A COM Interface Definition Language (IDL) file

Pure Java DCOM marshalling code (wrappers) used by the WebLogic jCOM
runtime to facilitate access to the Java objects from COM using vtable (late
binding) access.

After you generate these files, you will compile the IDL file using Microsoft's MIDL
tool.

To generate the IDL file and the wrappers, first start the java2com tool using the
command:

java com.bea.java2com.Main

The java2com tool displays the following dialog box:

The dialog box has the following fields (any changes to the configuration are
automatically saved when you exit the dialog box).
4-8 Programming WebLogic jCOM

java2com
Field Description

Java Classes and
Interfaces

These are the 'root' Java classes and interfaces that you want
java2com to analyze. They must be accessible in your
CLASSPATH. WebLogic jCOM analyzes these classes, and
generates COM IDL definitions and Java DCOM marshalling
code which can be used to access the Java class from COM. It
then performs the same analysis on any classes or interfaces
used in parameters or fields in that class, recursively, until all
Java classes and interfaces accessible in this manner have been
analyzed.
Separate the names with spaces. Click on the ... button to display
a dialog that lists the classes and lets you add/remove from the
list.

Name of Generated IDL
File

This is the name of the COM Interface Definition Language
(IDL) file which will be generated. If you specify myjvm, then
myjvm.idl will be generated. This name is also used for the
name of the type library generated when you compile
myjvm.idl using Microsoft's MIDL compiler.

Output Directory The directory to which java2com should output the files it
generates. The default is the current directory (“.”).

Dump Analysis Displays the classes that the java2com discovers, as it
discovers them.

Save Settings/Load
Settings

Click on the Save Settings button to save the current java2com
settings. Do this before you click Generate.
When java2com starts, it checks to see if there is a
java2com.ser setting file in the current directory. If present,
it loads the settings from that file automatically.
 Programming WebLogic jCOM 4-9

4 A Closer Look at the jCOM Tools
Names Clicking the Names button displays the following dialog box:
When '*' is selected from the class/interfaces names drop-down
list, a text box is displayed into which you can type the name of
a member (field or class) name. You may specify a
corresponding COM name to be used whenever that member
name is encountered in any class or interface being generated. If
you leave the name blank then that Java member will not have a
corresponding member generated in any COM interface.
When a specific COM class name or interface is selected from
the class/interfaces names drop-down list, the set of members in
that class or interface is listed below it. You may specify a COM
name to be used, and by clicking on Add this Class Name map
you map the selected class/interface to the specified COM name.
By clicking on Add this Member Name map you may map the
selected member to the specified COM name.

Field Description
4-10 Programming WebLogic jCOM

regjvm
regjvm

In order for WebLogic jCOM to allow languages supporting COM to access Java
objects as though they were COM objects, you must register (on the COM client
machine) a reference to the JVM in which the Java objects run. The regjvm tool
enables you to create and manage all the JVM references on a machine.

Generate button Click this button to generate the wrappers and IDL file.
For each public Java interface that java2com discovers, it
creates a corresponding COM interface definition. If the Java
interface name were: com.bea.finance.Bankable, then
the generated COM interface would be named
ComBeaFinanceBankable, unless you specify a different
name using the “Names” dialog.
For each public Java class that java2com discovers, it creates
a corresponding COM interface definition. If the Java class
name were: com.bea.finance.Account, then the
generated COM interface would be named
IComBeaFinanceAccount, unless you specify a different
name using the “Names” dialog. In addition if the Java class has
a public default constructor, then java2com generates a COM
class ComBeaFinanceAccount, unless you specify a
different name using the “Names” dialog.
If a Java class can generate Java events, then the generated COM
class will have source interfaces (COM events) corresponding to
the events supported by the Java class.
Compile the generated IDL file using Microsoft's MIDL tool.
This ships with Visual C++, and can be downloaded from the
Microsoft web site. The command
midl procdServ.idl
produces a type library called prodServ.tlb, which you
must register, as described in “regtlb” on page 4-21.

Field Description
 Programming WebLogic jCOM 4-11

4 A Closer Look at the jCOM Tools
Note: The regjvm tool does not overwrite old entries when new entries with
identical names are entered. This means that if you ever need to change the
hostname or port of the machine with which you wish to communicate, you
have to unregister the old entry and then reregister the entry. You can do this
using the command line tool regjvmcmd.exe, or by using the GUI tool
regjvm.exe (both can be found in the WL_HOME\server\bin directory).

JVM Modes

You can access a JVM from COM clients in one of three different modes:

DCOM mode

Native mode (out of process)

Native mode in process

DCOM mode

DCOM mode does not require any native code on the Java server side, which means
your Java code may be located on a Unix machine or any machine with a Java Virtual
Machine installed. When you register the JVM on the Windows client machine you
define the name of the server host machine (it may be localhost for local components)
and a port number.
4-12 Programming WebLogic jCOM

regjvm
The Java code in the JVM must call com.bea.jcom.Jvm.register(<jvm id>),
where <jvm id> is the id of the JVM as defined in regjvm.

Native Mode Out of Process

Native mode currently only works on the local machine. Other than the JVM name no
additional parameters are necessary.
 Programming WebLogic jCOM 4-13

4 A Closer Look at the jCOM Tools
The JVM must call com.bea.jcom.Jvm.register(<jvm id>), where <jvm id> is
the id of the JVM as defined in regjvm.

Native Mode in Process

Using native mode in process allows the user to actually load the Java object into the
same process as the COM client. Both objects must of course be located on the same
machine.

The JVM need not call com.bea.jcom.Jvm.register() or be started as an extra process
to the client.

The User Interface of the regjvm GUI Tool

Run the regjvm tool to display the following dialog box.
4-14 Programming WebLogic jCOM

regjvm
The top part is for selection and management of all JVMs on the current
machine. You can change, add or delete JVMs. Before switching to a different
JVM, you must save changes made to the currently selected JVM. The JVM
mode you select dictates the information required in the lower half of the screen.

The lower half of the windows contains the details required for each JVM,
according to the mode of the JVM. In addition to the JVM details there is an
advanced checkbox which when selected displays advanced options for each
JVM mode.

These options are discussed in the following sections.
 Programming WebLogic jCOM 4-15

4 A Closer Look at the jCOM Tools
DCOM Mode Options for the regjvm GUI Tool

Standard Options

JVM id (required)—The JVM must be specified. Clicking the browse button
allows you to select your own JVM, clicking the Scan button scans your local
machine for JVMs (this may take a few minutes) and inserts them in the listbox
for your selection.

Hostname—The hostname or IP address where the JVM is located.

Port—The port number used to initiate contact with the JVM.
4-16 Programming WebLogic jCOM

regjvm
Advanced Options

Launch command (required)—The command to be used if the JVM is to be
automatically launched. Typically this would be something like:
c:\bea\jdk131\bin\java -classpath
c:\bea\weblogic700\server\lib\weblogic.jar;c:\pure MyMainClass

The important thing is that weblogic.jar and the appropriate jdk files be in
your CLASSPATH.

Generate Script (optional) —Allows the user to generate a registry script
selecting the settings of the JVM.
 Programming WebLogic jCOM 4-17

4 A Closer Look at the jCOM Tools
Native Mode Options for the regjvm GUI Tool

Standard Options

JVM id (required)—The JVM must be specified. Clicking the browse button
allows you to select your own JVM, clicking the Scan button scans your local
machine for JVMs (this may take a few minutes) and inserts them in the listbox
for your selection.

Advanced Options

The advanced options are identical to those of DCOM mode. See “DCOM Mode
Options for the regjvm GUI Tool” on page 4-16.
4-18 Programming WebLogic jCOM

regjvm
Native Mode in Process Options for the regjvm GUI Tool

Standard Options

JVM id (required)—The JVM must be specified. Clicking the browse button
allows you to select your own JVM, clicking the Scan button scans your local
machine for JVMs (this may take a few minutes) and inserts them in the listbox
for your selection.
 Programming WebLogic jCOM 4-19

4 A Closer Look at the jCOM Tools
Advanced Options

Classpath (optional) - The CLASSPATH for the JVM. If this is left blank the
CLASSPATH environment variable at runtime is used. Otherwise the contents
are added to the CLASSPATH environment variable.

Main class (optional)—The name of the class containing a Main method which
you wish to be called.

Properties (optional)—Any properties which you require to be set. Must have the
following syntax: prop1=value1 prop2=value2...

Java 2 (optional)—When setting properties this must be set when using Java 2
(JDK 1.2.x, 1.3.x) and cleared when using 1.1.x.

Generate Script (optional)—Identical to that of DCOM mode. See “DCOM
Mode Options for the regjvm GUI Tool” on page 4-16.
4-20 Programming WebLogic jCOM

regjvmcmd
regjvmcmd

regjvmcmd is the command line version of the GUI tool, regjvm, discussed in
“regjvm” on page 4-11. To get a summary of its parameters, run it without parameters:

regjvmcmd

In regjvmcmd’s simplest form, you specify the following:

A jvm ID (corresponding to the name used in
com.bea.jcom.Jvm.register(“JvmId”)),

The binding that can be used to access the JVM, in the form hostname[port],
where hostname is the name of the machine running the JVM, and port is the
TCP/IP port specified when starting WebLogic Server.

If you no longer need to have the JVM registered, or if you wish to change its
registration, you must first un-register it with this command:

regjvmcmd /unregister JvmId

regtlb

WebLogic jCOM's regtlb tool registers a type library on a COM Windows client that
needs to access Java objects using COM's early binding mechanism. regtlb takes two
parameters. The first is the name of the type library file to be registered. The second is
the ID of the JVM in which the COM classes described in the type library are to be
found.
 Programming WebLogic jCOM 4-21

4 A Closer Look at the jCOM Tools
If the type library was generated from an IDL file that was in turn generated by the
WebLogic jCOM java2com tool, then the regtlb command can automatically
determine the Java class name corresponding to each COM class in the type library
(the COM class descriptions in the type library are of the form:

Java class java.util.Observable (via jCOM))

If the type library was not generated from a java2com generated IDL file, you will be
prompted to give the name of the Java class which is to be instantiated for each COM
class:

This means that when someone attempts to create an instance of Atldll.Apple,
WebLogic jCOM will instantiate com.bea.MyAppleClass in the JVM MyJvm.
The MyAppleClass class should implement the Java interfaces generated by
WebLogic jCOM's java2com tool from atldll.tlb that are implemented by the
COM class Atldll.Apple.
4-22 Programming WebLogic jCOM

CHAPTER
5 Upgrading
Considerations

The following sections describe upgrading from WebLogic jCOM 6.1 to WebLogic
jCOM 7.0.

Advantages of Implementing jCOM 7.0

Changes to Your COM Code

Security Changes

Configuration Changes

Advantages of Implementing jCOM 7.0

WebLogic jCOM 7.0 is dramatically simpler to implement than WebLogic jCOM 6.1,
for the following reasons:

You no longer need to write and install a bridge. The jCOM runtime is now
included in WebLogic Server. In fact, when you install WebLogic Server, the
jCOM functionality is installed automatically.

You obtain the software you need on the COM machine by copying .dll and
.exe files from your WebLogic Server installation directory.

jCOM is automatically enabled. This means that the WebLogic Server is
automatically configured to listen for COM calls on its listen port.
 Programming WebLogic jCOM 5-1

5 Upgrading Considerations
jCOM properties are now configurable through WebLogic Server’s
Administration Console only.

Changes to Your COM Code

The upgrade to 7.0 may affect your COM application code in the following ways:

If you are running a zero client application you can now obtain an object
reference moniker (ORM) programmatically from a servlet running on
WebLogic Server. You also have the option of obtaining it the old way—by
running com.bea.jcom.GetJvmMoniker.

To obtain the ORM from the servlet, open a Web browser on WebLogic Server
to http://[wlshost]:[wlsport]/bea_wls_internal/com.

Purge from your COM code any references to a separate jCOM bridge.

Security Changes

Previously handled through jCOM-specific software, security is now implemented
through WebLogic Server’s security mechanism of roles and policies. Specifically, to
allow COM clients access to WebLogic Server objects, you must export those objects
for use by the COM client. You do this through the WebLogic Server Administration
Console.

For details, see “Configure Access Control,” in Chapter 2, “Calling into WebLogic
Server from a COM Client Application.”
5-2 Programming WebLogic jCOM

Configuration Changes
Configuration Changes

You now configure properties through console rather than at command-line and many
of the properties have gone away. The following table maps 6.1 properties to 7.0
properties:

This 6.1 property: Is handled this way in 7.0:

ENABLE_TCP_NODELAY No longer needed.

JCOM_DCOM_PORT No longer needed. The new port defaults to
the port WebLogic Server is listening on,
typically 7001.

JCOM_COINIT_VALUE Configure via the Apartment Threaded
property in the WebLogic Server Console

JCOM_INCOMING_CONNECTION_TI
MEOUT

Configure via the COM Message Timeout
property in the WebLogic Server
Administration Console.

JCOM_OUTGOING_CONNECTION_TI
MEOUT

Causes outgoing connections (connections
initiated by the WebLogic jCOM runtime)
which have not been used for specified
number of milliseconds to disconnect.
Configure by adding the
'JCOM_OUTGOING_CONNECTION_TIM
EOUT = [number of milliseconds]' parameter
on the command-line (for example, to the
Java option of your WebLogic Server start
script).

com.bea.jcom.server WebLogic Server’s listen port is used.

JCOM_MAX_REQUEST_HANDLERS jCOM threading has been integrated with the
WebLogic Server thread pool so this setting
now corresponds to the number of threads
configured for the WebLogic Server.

JCOM_NATIVE_MODE Configure via the Native Mode Enabled
property in the WebLogic Server
Administration Console.
 Programming WebLogic jCOM 5-3

5 Upgrading Considerations
JCOM_NOGIT No longer needed.

JCOM_NTAUTH_HOST Configure via the NTAuth Host property in
the WebLogic Server Administration
Console.

JCOM_LOCAL_PORT_START No longer needed. WebLogic Server listen
port is used for this range.

JCOM_LOCAL_PORT_END No longer needed. WebLogic Server listen
port is used for this range.

JCOM_PROXY_PACKAGE No longer needed.

JCOM_SKIP_CLOSE No longer needed. WebLogic Server closes
connections based on the value of the COM
Message Timeout property.

JCOM_WS_NAME No longer needed. WebLogic jCOM uses the
name of the server instance you invoke in a
CreateObject statement.

This 6.1 property: Is handled this way in 7.0:
5-4 Programming WebLogic jCOM

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic�jCOM
	What Is WebLogic jCOM?
	An Important Note on Terminology
	jCOM Architecture

	Why Use WebLogic jCOM?
	WebLogic jCOM Features
	WebLogic jCOM Examples
	Planning Your WebLogic jCOM Application
	Zero-Client Deployment
	Advantages and Disadvantages of Zero-Client Deployment
	The Zero-Client Example

	Early Versus Late Binding
	Advantages and Disadvantages of Each Binding Model
	The Early Binding and Late Binding Examples

	DCOM Versus Native Mode
	Advantages and Disadvantages of Native Mode

	2 Calling into WebLogic Server from a COM Client Application
	Special Requirement for Native Mode
	Calling WebLogic Server from a COM Client: Main Steps
	1. If you are using early binding, run the java2com tool to generate Java wrapper classes and an ...
	2. Start the server. See “Start the Server” on page 2�5.
	3. Enable COM calls on the server listen port. See “Enable COM Calls on the Server Listen Port” o...
	4. Grant access to server classes to COM clients. See “Configure Access Control” on page 2�6.
	5. Configure any other relevant console properties. See “Configure Other Console Properties” on p...
	6. Restart the server if you have changed the value of any static console properties, in order fo...
	1. Install the jCOM tools files and, for native mode only, Weblogic Server class files. See “Inst...
	2. If this is a zero-client installation:
	3. If you are using early binding:
	4. Register the WebLogic Server JVM in the registry. If want to communicate with the WebLogic Ser...
	5. Code the COM client application. See “Code the COM Client Application” on page 2�13.
	6. Start the COM client. See “Start the COM Client” on page 2�15.

	Preparing WebLogic Server
	Generate Java Wrappers and the IDL File—Early Binding Only
	1. Add the path to JDK libraries and weblogic.jar to your CLASSPATH. For example:
	2. Generate java wrappers and an IDL file with the java2com tool:
	3. Input the following:
	4. Once these references have been removed, you can generate your wrappers and IDL. Click Generat...

	Start the Server
	Enable COM Calls on the Server Listen Port
	1. Bring up the WebLogic Server Administration Console.
	2. In the lefthand pane, click the name of the server
	3. Display the jCOM properties screen by clicking the Connections tab and then the jCOM tab—both ...
	4. Check the “COM Enabled” box.
	5. Restart the server to make the setting take effect. If you are planning to set any jCOM proper...

	Configure Access Control
	Granting Access to java.util.Collection and java.util.Iterator
	1. In the lefthand pane of the WebLogic Server Administration Console, click the Services node an...
	2. In the righthand pane, enter:
	3. Click Define Policy.
	4. In the Policy Condition box, double-click “Caller is a member of the group”.
	5. In the “Enter group name:” field, enter the name of the group of users to whom you’re granting...
	6. Click Add.
	7. Click OK.
	8. In the bottom righthand corner of the window, click Apply.

	Granting Access to ejb20.basic.beanManaged

	Configure Other Console Properties

	Preparing the COM Client
	Install Necessary Files
	jCOM Tools Files
	WebLogic Server Class Files—Native Mode Only

	Obtain an Object Reference Moniker from the WebLogic Server Servlet—Zero Client Only
	Generate Java Wrappers and the IDL File—Early Binding Only
	1. Copy the IDL to the client machine:
	2. Compile the IDL file into a type library:
	3. Register the type library and set the JVM it will service:
	Some Notes about Wrapper Files

	Register the WebLogic Server JVM in the Client Machine Registry
	1. Invoke the regjvm GUI tool, which displays this screen.
	2. If WebLogic Server is running on something other than localhost and listening on a port other ...
	Unregistering JVMs
	Select Native Mode, If Applicable

	Code the COM Client Application
	Late Bound Applications
	Known Problem and Workaround for Late Bound Clients

	Early Bound Applications

	Start the COM Client

	Running COM-to-WLS Applications in Native Mode
	Native Mode with the JVM Running Out-of-Process
	1. Invoke the regjvm GUI tools to register your JVM as being native. The regjvm sets up various r...
	2. If your JVM is not already running, click the Advanced radio button and type its path in the “...
	3. Insert the following code into the main section of your application code, to tell the WebLogic...
	4. From Visual Basic you can now use late binding to instantiate instances of any Java class that...
	5. Having registered the JVM, use the standard WebLogic jCOM regtlb command to allow early bound ...

	Native Mode with the JVM Running In-Process

	3 Calling into a COM Application from WebLogic Server
	Special Requirements for Native Mode
	Calling a COM Application from WebLogic Server: Main Steps
	Preparing the COM Application
	Code the COM Application
	Generate Java Classes with the com2java GUI Tool
	Package the Java Classes for WebLogic Server
	Start the COM Application

	Preparing WebLogic Server
	Start the Server
	Enable COM Calls on the Server Listen Port
	Enable Native Mode, If Desired
	Configure Other Relevant Console Properties
	Prepare Your Server Code to Call the COM Objects

	Using Java Classes Generated by com2java
	Using Java Interfaces Generated from COM interfaces by com2java

	4 A Closer Look at the jCOM Tools
	com2java
	Using com2java
	Selecting the Type Library
	Specifying the Java Package Name
	Options
	Generate the Proxies

	Files Generated by com2java
	Enumerations
	COM Interfaces
	COM Classes

	java2com
	regjvm
	JVM Modes
	DCOM mode
	Native Mode Out of Process
	Native Mode in Process

	The User Interface of the regjvm GUI Tool
	DCOM Mode Options for the regjvm GUI Tool
	Native Mode Options for the regjvm GUI Tool
	Native Mode in Process Options for the regjvm GUI Tool

	regjvmcmd
	regtlb

	5 Upgrading Considerations
	Advantages of Implementing jCOM 7.0
	Changes to Your COM Code
	Security Changes
	Configuration Changes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

