
BEAWebLogic
Server™

Programming WebLogic
Server J2EE Connectors

Version 8.1
Revised: July 1, 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Server J2EE Connectors v

Contents

About This Document
Audience .x

e-docs Web Site .x

How to Print the Document .x

Related Information .x

Contact Us! . xi

Documentation Conventions . xi

1. Overview of WebLogic J2EE Connectors
WebLogic J2EE Connector Terminology . 1-1

Overview of the BEA WebLogic J2EE Connector Implementation 1-4

J2EE Connector Architecture Components . 1-5

System-level Contracts . 1-6

Common Client Interface (CCI) . 1-7

Packaging and Deployment . 1-8

2. Security
Container-Managed and Application-Managed Sign-on . 2-2

Application-Managed Sign-on . 2-2

Container-Managed Sign-on. 2-2

Password Credential Mapping Mechanism . 2-3

Authentication Mechanisms . 2-3

Configuring Credential Mappings Using the Console . 2-3

vi Programming WebLogic Server J2EE Connectors

Defining Users and Groups . 2-4

Defining Users . 2-4

Defining Groups . 2-5

Default Resource Principal . 2-5

Security Policy Processing . 2-5

3. Transaction Management
Supported Transaction Levels . 3-2

Specifying the Transaction Levels in the RAR Configuration . 3-3

Transaction Management Contract . 3-3

4. Connection Management
Configuring Connection Properties. 4-2

BEA WebLogic Server Extended Connection Management Features 4-2

Minimizing the Run-Time Performance Cost Associated with Creating
ManagedConnections . 4-2

Controlling Connection Pool Growth . 4-3

Reserving Connections . 4-4

Controlling System Resource Usage . 4-4

Detecting Connection Leaks . 4-5

Garbage Collector Method . 4-5

Connection Inactivity Detector Method . 4-5

Connection Proxy Wrapper . 4-6

Monitoring Connections Using the Console . 4-7

Getting Started . 4-7

Viewing Leaked Connections . 4-8

Viewing Idle Connections . 4-9

Error Logging and Tracing Facility . 4-10

Programming WebLogic Server J2EE Connectors vii

5. Packaging and Deploying Connectors
Packaging Connectors . 5-2

Packaging Directory Structure . 5-2

Packaging Considerations . 5-3

Packaging Limitations . 5-3

Packaging Connector Archives (RARs). 5-4

Deploying Connectors . 5-5

Deployment Options. 5-5

Deployment Descriptor . 5-6

Connector Deployment Names. 5-6

6. Configuration
Resource Adapter Developer Tools. 6-2

ANT Tasks to Create Skeleton Deployment Descriptors . 6-2

WebLogic Builder. 6-2

XML Editors. 6-2

Configuring Resource Adapters . 6-2

Resource Adapter Overview. 6-3

Creating and Modifying Resource Adapters: Main Steps . 6-3

Creating a New Resource Adapter Archive (RAR) . 6-3

Modifying an Existing Resource Adapter (RAR) . 6-5

Configuring the ra.xml File . 6-6

Configuring the weblogic-ra.xml File . 6-6

Automatic Generation of the weblogic-ra.xml File . 6-8

Configuring the ra-link-ref Element. 6-9

Configuring the Transaction Level Type. 6-9

viii Programming WebLogic Server J2EE Connectors

7. Client Considerations
Common Client Interface (CCI) . 7-2

ConnectionFactory and Connection . 7-2

Obtaining the ConnectionFactory (Client-JNDI Interaction) . 7-2

Obtaining a Connection in a Managed Application. 7-3

Obtaining a Connection in a Non-Managed Application. 7-4

A. weblogic-ra.xml Deployment Descriptor Elements
Manually Editing XML Deployment Files . A-2

Basic Conventions . A-2

DOCTYPE Header Information. A-2

Document Type Definitions (DTDs) for Validation. A-3

Using WebLogic Builder to Edit Deployment Descriptors . A-4

Dynamic Descriptor Updates . A-4

weblogic-ra.xml Element Descriptions . A-5

weblogic-connection-factory-dd . A-5

pool-params . A-10

map-config-property . A-14

security-principal-map . A-15

B. Troubleshooting
Cannot Map a ManagedConnectionFactory . B-1

Causes and Workarounds . B-1

Remote JVM . B-1

Improper Implementation of ManagedConnectionFactory B-2

Programming WebLogic Server J2EE Connectors ix

About This Document

This document introduces the WebLogic J2EE connectors (also referred to in this document as
"resource adapters") and describes how to configure and deploy connectors to WebLogic Server.
The document is organized as follows:

Chapter 1, “Overview of WebLogic J2EE Connectors,” provides an overview of WebLogic
J2EE connectors.

Chapter 2, “Security,” discusses WebLogic J2EE connector security considerations.

Chapter 3, “Transaction Management,” introduces the various types of transaction levels
supported by WebLogic J2EE connectors and explains how to specify the transaction levels
in the resource adapter .rar archive.

Chapter 4, “Connection Management,” introduces you to various connection management
tasks.

Chapter 6, “Configuration,” outlines the configuration tasks that you perform to deploy
connectors to WebLogic Server.

Chapter 5, “Packaging and Deploying Connectors,” explains how to package and deploy
connectors to WebLogic Server.

Chapter 7, “Client Considerations,” discusses client considerations for WebLogic J2EE
connectors.

Appendix A, “weblogic-ra.xml Deployment Descriptor Elements,” provides descriptions of
the elements in the weblogic-ra.xml DTD.

About Th is Document

x Programming WebLogic Server J2EE Connectors

Appendix B, “Troubleshooting,” provides a solution for a common exception.

Audience
This document is written for application developers who want to build e-commerce applications
using the Java 2 Platform, Enterprise Edition (J2EE) from Sun Microsystems. It is assumed that
readers know Web technologies, object-oriented programming techniques, and the Java
programming language.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information
The BEA corporate Web site provides all documentation for WebLogic Server. In particular,
refer to the following:

Javadoc for WebLogic J2EE connectors. (See the product distribution CD.)

Weblogic-specific connector DTD (document type definition). (see Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”)

BEA WebLogic Application Integration. (See Developing Adapters.) This document
describes how to build a WebLogic J2EE connector.

Also refer to the following documentation from Sun Microsystems:

http://www.adobe.com
http://edocs.bea.com/wli/docs70/devadapt/index.htm

Programming WebLogic Server J2EE Connectors xi

J2EE Connector Architecture—http://java.sun.com/j2ee/connector/index.html

J2EE Connector Specification, Version 1.0 Final Release—
http://java.sun.com/j2ee/download.html#connectorspec

J2EE Platform Specification, Version 1.3 Final Release—http://java.sun.com/j2ee

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee
mailto:docsupport@bea.com
http://www.bea.com

About Th is Document

xii Programming WebLogic Server J2EE Connectors

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

samples/domains/examples/applications
.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

Convention Usage

Programming WebLogic Server J2EE Connectors xiii

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

About Th is Document

xiv Programming WebLogic Server J2EE Connectors

Programming WebLogic Server J2EE Connectors 1-1

C H A P T E R 1

Overview of WebLogic J2EE Connectors

The following sections provide an overview of WebLogic J2EE connectors (also referred to as
resource adapters):

“WebLogic J2EE Connector Terminology” on page 1-1

“Overview of the BEA WebLogic J2EE Connector Implementation” on page 1-4

“J2EE Connector Architecture Components” on page 1-5

WebLogic J2EE Connector Terminology
Key terms and concepts that you will encounter throughout this documentation include the
following:

Application Component—can be a server-side component, such as an EJB, JSP, or servlet,
that is deployed, managed, and executed on an application server. It can also be a
component executed on the Web-client tier but made available to the Web-client by an
application server. Examples of the latter type of application component include a Java
applet and a DHTML page.

Caller Principal—a principal that is associated with an application component instance
during a method invocation. For example, an EJB instance can call the
getCallerPrincipal method to get the principal associated with the current security
context.

Common Client Interface (CCI)—defines a standard client API for application components
and enables application components and Enterprise Application Integration (EAI)

Overv iew o f WebLog ic J2EE Connec to rs

1-2 Programming WebLogic Server J2EE Connectors

frameworks to drive interactions across heterogeneous EISes using a common client API.
BEA defines a CCI for EIS access.

Connection—provides connectivity to a resource manager and enables an application client
to connect to a resource manager, perform transactions, and access services provided by
that resource manager. A connection can be either transactional or non-transactional.
Examples include a database connection and an SAP R/3 connection.

Container—part of an application server—such as WebLogic Server—that provides
deployment and run-time support for application components. A container allows you to
monitor and manage supported components as well as the service(s) that monitor and
manage the components. Containers can be one of the following:

– Connector containers that host resource adapters

– Web containers that host JSP, servlets, and static HTML pages

– EJB containers that host EJB components

– Application client containers that host standalone application clients

For more details on different types of standard containers, refer to Enterprise JavaBeans
(EJBs), Java Server Pages (JSPs), and Servlets specifications.

Credential—contains or references security information that can authenticate a principal to
additional services. A principal acquires a credential upon authentication or from another
principal that allows its credential to be used: the latter is termed principal delegation.

Enterprise Information System (EIS)—provides the information infrastructure for an
enterprise. An EIS offers a set of services to its clients. These services are exposed to
clients as local and/or remote interfaces. Examples of an EIS include:

– ERP system

– Mainframe transaction processing system

– Legacy database system

Enterprise Information System (EIS) resource—provides EIS-specific functionality to its
clients. Examples of an EIS resource include:

– Record or set of records in a database system

– Business object in an Enterprise Resource Planning (ERP) system

– Transaction program in a transaction processing system

WebLog ic J2EE Connecto r Te rmino logy

Programming WebLogic Server J2EE Connectors 1-3

Initiating Principal—the security principal representing the end-user that interacts directly
with the application. An end-user can authenticate using either a Web client or an
application client.

J2EE Connector—a system-level software driver used by an application server such as
WebLogic Server to connect to an EIS. BEA supports connectors developed by Enterprise
Information Systems (EISes) vendors and third-party application developers that can be
deployed in any application server supporting the Sun Microsystems J2EE Platform
Specification, Version 1.3. Resource adapters contain the Java, and if necessary, the native
components required to interact with the EIS.

J2EE Connector Architecture—an architecture for integration of J2EE-compliant
application servers with enterprise information systems (EISes). There are two parts to this
architecture: an EIS vendor-provided resource adapter and an application server—such as
WebLogic Server— to which the resource adapter plugs in. This architecture defines a set
of contracts—such as transactions, security, and connection management—that a resource
adapter has to support to plug in to an application server. BEA also defines a Common
Client Interface (CCI) for EIS access. The CCI defines a client API for interacting with
heterogeneous EISes.

Managed Environment—defines an operational environment for a J2EE-based, multi-tier,
Web-enabled application that accesses EISes. The application consists of one or more
application components—EJBs, JSPs, servlets—which are deployed on containers. These
containers can be one of the following:

– Web containers that host JSP, servlets, and static HTML pages

– EJB containers that host EJB components

– Application client containers that host standalone application clients

Non-managed Environment—defines an operational environment for a two-tier application.
An application client directly uses a resource adapter to access the EIS; the EIS defines the
second tier for a two-tier application.

Principal—an entity that can be authenticated by an authentication mechanism deployed in
an enterprise. A principal is identified using a principal name and authenticated using
authentication data. The content and format of the principal name and the authentication
data depend upon the authentication mechanism.

RAR—resource adapter archive. A compressed (.zip) file used to load classes and other
files required to run a resource adapter.

ra.xml—describes the resource adapter-related attributes type and its deployment
properties using a standard DTD from Sun Microsystems.

Overv iew o f WebLog ic J2EE Connec to rs

1-4 Programming WebLogic Server J2EE Connectors

Resource Adapter—see J2EE Connector.

Resource Manager—part of an EIS that manages a set of shared EIS resources. Examples
of resource managers are a database system, a mainframe TP system, and an ERP system.
A client requests access to a resource manager to use its managed resources. A
transactional resource manager can participate in transactions that are externally controlled
and coordinated by a transaction manager. In the context of the WebLogic J2EE
connectors, clients of a resource manager can include middle-tier application servers and
client-tier applications. A resource manager is typically a different address space or on a
different machine from the client that accesses it.

Resource Principal—a security principal under whose security context a connection to an
EIS instance is established.

Security Attributes—a principal has a set of security attributes associated with it. These are
related to the authentication and authorization mechanisms. Examples are security
permissions and credentials for a principal.

Service Provider Interface (SPI)—contains the objects that provide and manage
connectivity to the EIS, establish transaction demarcation, and provide a framework for
event listening and request transmission. All J2EE Connector Architecture-compliant
resource adapters must provide an implementation for these interfaces in the
javax.resource.spi package.

System Contract—a mechanism by which connection requests are passed between entities.
To achieve a standard system-level pluggability between application servers such as
WebLogic Server and EISes, the J2EE Connector architecture defines a standard set of
system-level contracts between an Application server and an EIS. The EIS side of these
system-level contracts is implemented in a resource adapter.

weblogic-ra.xml—adds additional WebLogic Server-specific deployment information
to the ra.xml file.

Overview of the BEA WebLogic J2EE Connector Implementation
BEA WebLogic Server continues to build upon the implementation of the Sun Microsystems
J2EE Platform Specification, Version 1.3. The J2EE Connector Architecture adds simplified
Enterprise Information System (EIS) integration to the J2EE platform. The goal is to leverage the
strengths of the J2EE platform—including component models, transaction and security
infrastructures—to address the challenges of EIS integration.

The J2EE Connector Architecture provides a Java solution to the problem of connectivity
between the multitude of application servers and EISes. By using the Connector Architecture, it

J2EE Connec to r A rch i tec tu re Components

Programming WebLogic Server J2EE Connectors 1-5

is no longer necessary for EIS vendors to customize their product for each application server. By
conforming to the J2EE Connector Architecture, BEA WebLogic Server does not require added
custom code in order to extend its support connectivity to a new EIS.

The J2EE Connector Architecture enables an EIS vendor to provide a standard resource adapter
for its EIS. This resource adapter plugs into WebLogic Server and provides the underlying
infrastructure for the integration between an EIS and WebLogic Server.

By supporting the J2EE Connector Architecture, BEA WebLogic Server is assured of
connectivity to multiple EISes. In turn, EIS vendors must provide only one standard Connector
Architecture-compliant resource adapter that has the capability to plug into BEA WebLogic
Server.

Note: This version of BEA WebLogic Server is completely compliant with J2EE 1.3.

J2EE Connector Architecture Components
The J2EE Connector Architecture is implemented in an application server such as WebLogic
Server and an EIS-specific resource adapter. A resource adapter is a system library specific to an
EIS and provides connectivity to the EIS. A resource adapter is analogous to a JDBC driver. The
interface between a resource adapter and the EIS is specific to the underlying EIS; it can be a
native interface.

The J2EE Connector Architecture has three main components:

System-level Contracts—between the resource adapter and the application server
(WebLogic Server)

Common Client Interface (CCI)—provides a client API for Java applications and
development tools to access the resource adapter

Packaging and Deployment Interfaces—provides ability for various resource adapters to
plug into J2EE applications in a modular manner

The following diagram illustrates the J2EE Connector Architecture:

Overv iew o f WebLog ic J2EE Connec to rs

1-6 Programming WebLogic Server J2EE Connectors

Figure 1-1 J2EE Connector Architecture

A resource adapter serves as the “J2EE connector.” WebLogic Server supports resource adapters
developed by Enterprise Information Systems (EISes) vendors and third-party application
developers that can be deployed in any application server supporting the Sun Microsystems J2EE
Platform Specification, Version 1.3. Resource adapters contain the Java, and if necessary, the
native components required to interact with the EIS.

System-level Contracts
The J2EE Connector Architecture specification defines a set of system-level contracts between
the J2EE-compliant application server (WebLogic Server) and an EIS-specific resource adapter.
WebLogic Server, in compliance with this specification, has implemented a set of defined
standard contracts for:

Connection management—a contract that gives an application server pool connections to
underlying EISes. It also allows application components to connect to an EIS. This results
in a scalable application environment that supports a large number of clients requiring
access to EISes.

J2EE Connec to r A rch i tec tu re Components

Programming WebLogic Server J2EE Connectors 1-7

Note: For more information on connection management, refer to Chapter 4, “Connection
Management.”

Transaction management—a contract between the transaction manager and an EIS
supporting transaction access to EIS resource managers. This contract allows an
application server to use a transaction manager to manage transactions across multiple
resource managers.

Note: For more information on transaction management, refer to Chapter 3, “Transaction
Management.”

Security management—a contract that provides secure access to an EIS and provides
support for a secure application environment. This reduces threats to the EIS and protects
information resources that the EIS manages.

Note: For more information on security management, refer to Chapter 2, “Security.”

Common Client Interface (CCI)
The Common Client Interface (CCI) defines a standard client API for application components.
The CCI enables application components and Enterprise Application Integration (EAI)
frameworks to drive interactions across heterogeneous EISes using a common client API.

The target users of the CCI are enterprise tool vendors and EAI vendors. Application components
themselves may also write to the API, but the CCI is a low-level API. The specification
recommends that the CCI be the basis for richer functionality provided by the tool vendors, rather
than being an application-level programming interface used by most application developers.

Further, the CCI defines a remote function-call interface that focuses on executing functions on
an EIS and retrieving the results. The CCI is independent of a specific EIS; for example: data
types specific to an EIS. However, the CCI is capable of being driven by EIS-specific metadata
from a repository.

The CCI enables WebLogic Server applications to create and manage connections to an EIS,
execute an interaction, and manage data records as input, output or return values. The CCI is
designed to leverage the JavaBeans architecture and Java Collection framework.

The J2EE Connector Architecture recommends that a resource adapter support CCI as its client
API, while it requires that the resource adapter implement the system contracts. A resource
adapter may choose to have a client API different from CCI, such as the client API based on the
Java Database Connectivity (JDBC) API.

Note: For more information relating to the Common Client Interface, refer to Chapter 7, “Client
Considerations.”

Overv iew o f WebLog ic J2EE Connec to rs

1-8 Programming WebLogic Server J2EE Connectors

Packaging and Deployment
The J2EE Connector Architecture provides packaging and deployment interfaces, so that various
resources adapters can easily plug into compliant J2EE application servers such as WebLogic
Server in a modular manner.

Figure 1-2 Packaging and Deployment

A resource adapter provider develops a set of Java interfaces and classes as part of its
implementation of a resource adapter. These Java classes implement J2EE Connector
Architecture-specified contracts and EIS-specific functionality provided by the resource adapter.
The development of a resource adapter can also require use of native libraries specific to the
underlying EIS.

The Java interfaces and classes are packaged together (with required native libraries, help files,
documentation, and other resources) with a deployment descriptor to create a Resource Adapter
Module. A deployment descriptor defines the contract between a resource adapter provider and
a deployer for the deployment of a resource adapter.

You can deploy resource adapter module as a shared, stand-alone module or packaged as part of
an application. During deployment, you install a resource adapter module on an application
server such as WebLogic Server and then configure it into the target operational environment.
The configuration of a resource adapter is based on the properties defined in the deployment
descriptor as part of the resource adapter module.

J2EE Connec to r A rch i tec tu re Components

Programming WebLogic Server J2EE Connectors 1-9

Note: For more information on packaging and deployment, refer to Chapter 5, “Packaging and
Deploying Connectors.”

Overv iew o f WebLog ic J2EE Connec to rs

1-10 Programming WebLogic Server J2EE Connectors

Programming WebLogic Server J2EE Connectors 2-1

C H A P T E R 2

Security

The following sections discuss WebLogic J2EE Connector security:

“Container-Managed and Application-Managed Sign-on” on page 2-2

“Password Credential Mapping Mechanism” on page 2-3

“Default Resource Principal” on page 2-5

“Security Policy Processing” on page 2-5

Secur i t y

2-2 Programming WebLogic Server J2EE Connectors

Container-Managed and Application-Managed Sign-on
As specified in the J2EE Connector Specification, Version 1.0 Final Release, the WebLogic
Server connector implementation supports both container-managed and application-managed
sign-on. At runtime, the WebLogic Server connector implementation determines—based upon
the specified information in the invoking client component’s deployment descriptor—the chosen
sign-on mechanism. The res-auth element of the calling component is where the sign-on
mechanism is specified. For more information on this element, see “web.xml Deployment
Descriptor Elements” in Developing Web Applications for WebLogic Server.

If the Weblogic Server J2EE Connector Architecture implementation is unable to determine what
sign-on mechanism is being requested by the client component—typically due to an improper
JNDI lookup of the resource adapter Connection Factory—the Connector Architecture attempts
container-managed sign-on.

Note: Note that even in this case, if the client component has specified explicit security
information, this information is also presented on the call to obtain the connection.

For related information, see “Obtaining the ConnectionFactory (Client-JNDI
Interaction)” in Chapter 7, “Client Considerations.”

Application-Managed Sign-on
With application-managed sign-on, the client component provides the necessary security
information (typically a username and password) when making the call to obtain a connection to
an Enterprise Information System (EIS). In this scenario, the application server provides no
additional security processing other than to pass this information along on the request for the
connection. The provided resource adapter uses the client component provided security
information to perform the EIS sign-on in a resource adapter implementation specific manner.

Container-Managed Sign-on
To use container-managed sign-on, WebLogic Server must identify a resource principal and then
request the connection on behalf of the resource principal. In order to make this identification,
WebLogic Server looks for a configured mapping in the embedded LDAP storage. For any
deployed resource adapter, you can configure credential mappings for applicable users. For more
information, see “Configuring Credential Mappings Using the Console” on page 2-3.

You map a user in WebLogic Server to an appropriate set of credentials for a given resource
adapter. For old-style resource adapters that still use the deprecated

http://e-docs.bea.com/wls/docs81/webapp/web_xml.html
http://e-docs.bea.com/wls/docs81/webapp/web_xml.html
http://e-docs.bea.com/wls/docs81/webapp/index.html

Password Credent ia l Mapp ing Mechan ism

Programming WebLogic Server J2EE Connectors 2-3

security-principal-map element (configured in the weblogic-ra.xml deployment
descriptor), this information is imported into the embedded LDAP storage at deployment time.

Password Credential Mapping Mechanism
The J2EE Connector specification, Version 1.0 Final Release requires storage of credentials in a
javax.security.auth.Subject; the credentials are passed to either the
createManagedConnection() or matchManagedConnection() methods of the
ManagedConnectionFactory object.

Prior to version 7.0 of WebLogic Server, credential mapping information was stored in the
weblogic-ra.xml deployment descriptor in the security-principal-map element. In subsequent
versions of WebLogic Server, the credential mapping information is stored in the WebLogic
Server Embedded LDAP storage.

Authentication Mechanisms
WebLogic Server users must be authenticated whenever they request access to a protected
WebLogic Server resource. For this reason, each user is required to provide a credential (a
username/password pair or a digital certificate) to WebLogic Server.

Password authentication is the only authentication mechanism supported by WebLogic Server
out of the box. Password authentication consists of a user ID and password. Based on the
configured mappings, when a user requests connection to a resource adapter, the appropriate
credentials for that user are supplied to the resource adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to password
authentication. Because the SSL protocol encrypts the data transferred between the client and
WebLogic Server, the user ID and password of the user do not flow in clear text. Therefore,
WebLogic Server can authenticate the user without compromising the confidentiality of the
user’s ID and password.

For more information, see “Configuring SSL” in Managing WebLogic Security:

Configuring Credential Mappings Using the Console
You configure credential mappings using the WebLogic Server Administration Console. Before
you can configure the credential mappings for a resource adapter using the Console, however,
you must successfully deploy the resource adapter. Note that the first time you deploy a resource
adapter, it has no credential mappings configured.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html

Secur i t y

2-4 Programming WebLogic Server J2EE Connectors

If the resource adapter requires you to provide credentials and is configured to create connections
at deployment time (meaning the initial-capacity element in the weblogic-ra.xml is set
to greater than 0), this may cause the initial connection to fail. In this case, BEA recommends
that—for the initial installation and deployment of this resource adapter—you set the
initial-capacity to 0 for its connection pool. Once you have configured the appropriate
credentials and after the initial deployment of the resource adapter, you can change the
initial-capacity element. For more information on weblogic-ra.xml deployment
descriptors, see Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”

To create credential mappings, see “Single Sign-on with Enterprise Information Systems” in
Managing WebLogic Security.

Defining Users and Groups
The following sections discuss the definition of users and groups. For more information on how
to create users and groups, see Managing WebLogic Security.

Defining Users
Users are entities that can be authenticated in a WebLogic Server security realm. A user can be a
person or a software entity, such as a Java client. Each user is given a unique identity within a
WebLogic Server security realm. As a system administrator you must guarantee that no two users
in the same security realm are identical.

Defining users in a security realm involves specifying a unique name and password for each user
that will access resources in the WebLogic Server security realm in the users window of the
Administration Console.

Three special users are provided for use by resource adapters. They are as follows:

weblogic_ra_initial—If you define a mapping for this user, the specified credentials
are used for the initial connections created when starting the connection pool for this
resource adapter. The InitialCapacity parameter on the pool specifies the number of
initial connections. If you do not define a mapping for this user the default mapping
weblogic_ra_default (if provided) is used. Otherwise, no credentials are provided for
the initial connections.

weblogic_ra_anonymous—If you define a mapping for this user, the specified
credentials are used when no user is authenticated for the connection request on the
resource adapter.

http://e-docs.bea.com/wls/docs81/secmanage/credential_maps.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html

Defau l t Resource P r inc ipa l

Programming WebLogic Server J2EE Connectors 2-5

weblogic_ra_default—If you define a mapping for this user, the specified credentials
are used when no other mapping applies for the current user or when no anonymous
mapping is provided in the case where there is no authenticated user.

Defining Groups
A group represents a set of users who usually have something in common, such as working in the
same department in a company. Groups are a means of managing a number of users in an efficient
manner. You grant users and groups security roles. These security roles are used to create a
security policy, which restricts access to server resources. For more information, see Managing
WebLogic Security.

Default Resource Principal
You create default mappings using the special name: weblogic_ra_default. This is an
optional mapping. However, you must specify it in some form if container-managed sign-on is
supported by the resource adapter and used by any client.

In addition, deployment-time population of the connection pool with managedconnections is
attempted using the mapping defined for the weblogic_ra_initial resource principal, if one
is specified.

When importing a security principal map from an old-style resource adapter that has a deprecated
security-principal-map element configured in its weblogic-ra.xml file, elements with
an initiating principal of * are imported to the special mappings for both
weblogic_ra_initial and wl_ra_default. This allows these mappings to be used for both
initial connections created at deployment time and default connections (to be used when there is
no matching mapping for the current user).

These topics are discussed further in “Defining Users and Groups” on page 2-4.

Security Policy Processing
The J2EE Connector Specification, Version 1.0 Final Release defines default security policies for
any resource adapters running in an application server. It also defines a way for a resource adapter
to provide its own specific security policies overriding the default.

In compliance with this specification, WebLogic Server dynamically modifies the runtime
environment for resource adapters. If the resource adapter has not defined specific security
policies, WebLogic Server overrides the runtime environment for the resource adapter with the
default security policies specified in the J2EE Connector Architecture Specification. If the
resource adapter has defined specific security policies, WebLogic Server first overrides the

http://e-docs.bea.com/wls/docs81/secmanage/index.html
http://e-docs.bea.com/wls/docs81/secmanage/index.html

Secur i t y

2-6 Programming WebLogic Server J2EE Connectors

runtime environment for the resource adapter first with a combination of the default security
policies for resource adapters and the specific policies defined for the resource adapter. Resource
adapters define specific security policies using the security-permission-spec element in
the ra.xml deployment descriptor file.

For more information on security policy processing requirements, see the “Security Permissions”
section of the “Runtime Environment” chapter in the J2EE Connector Specification, Version 1.0
Final Release (http://java.sun.com/j2ee/download.html#connectorspec).

http://java.sun.com/j2ee/download.html#connectorspec

Programming WebLogic Server J2EE Connectors 3-1

C H A P T E R 3

Transaction Management

The following sections describe the various types of transaction levels supported by the
WebLogic implementation of the J2EE Connector Architecture and explain how to specify the
transaction levels in the resource adapter RAR archive.

“Supported Transaction Levels” on page 3-2

“Specifying the Transaction Levels in the RAR Configuration” on page 3-3

“Transaction Management Contract” on page 3-3

Transac t i on Management

3-2 Programming WebLogic Server J2EE Connectors

Supported Transaction Levels
Transactional access to EISes is an important requirement for business applications. The J2EE
Connector Architecture supports the concept of transactions—a number of operations that must
be committed together or not at all for the data to remain consistent and to maintain data integrity.

The WebLogic Server J2EE Connector Architecture implementation utilizes the WebLogic
Server Transaction Manager implementation and supports resource adapters having the
following transaction support levels (as described in the J2EE Connector Specification, Version
1.0 Final Release):

XA Transaction support—allows a transaction to be managed by a transaction manager
external to a resource adapter (and therefore external to an EIS). A resource adapter
defines the type of transaction support by specifying the transaction-support element in the
ra.xml file; a resource adapter can only support one type. When an application
component demarcates an EIS connection request as part of a transaction, the application
server is responsible for enlisting the XA resource with the transaction manager. When the
application component closes that connection, the application server cleans up the EIS
connection once the transaction has completed.

Local Transaction support—allows an application server to manage resources, which are
local to the resource adapter. Unlike XA transaction, it cannot participate in a two-phase
commit protocol (2PC). A resource adapter defines the type of transaction support by
specifying the transaction-support element in the resource adapter ra.xml file; a resource
adapter can only support one type.

A local transaction is normally started by using the API that is specific to that resource
adapter, or the CCI interface if it is supported for that adapter. When a resource adapter
connection, which is configured to use Local Transaction Suport, is made and used within
the context of an XA transaction, WebLogic Server automatically starts a Local
Transaction to be used for this connection. When the XA transaction completes and is
ready to commit, prepare is first called on the XA resources that are part of the XA
transaction. Next, the Local Transaction is committed.

If the commit fails on the Local Transaction, the XA transaction and all the XA resources
are rolled back. If the commit succeeds, all the XA resources for the XA transaction are
committed. When an application component closes the connection, WebLogic Server
cleans up the connection once the transaction has completed.

Note: Refer to the following Sun Microsystems documentation for information on the
ra.xml document type definition: http://java.sun.com/dtd/connector_1_0.dtd

http://java.sun.com/dtd/connector_1_0.dtd

Spec i f y ing the T ransac t i on Leve ls i n the RAR Conf igurat ion

Programming WebLogic Server J2EE Connectors 3-3

No Transaction support—if a resource adapter is configured to use No Transaction support,
the resource adapter may still be used in the context of a transaction. However, in this case,
the connections used for that resource adapter are never enlisted in a transaction and
behave as if no transaction was present. In other words, operations performed using these
connections are made to the underlying EIS immediately, and if the transaction is rolled
back, the changes are not undone for these connections.

For more information on supported transaction levels, see the “Transaction Management”
chapter in the J2EE Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

Specifying the Transaction Levels in the RAR Configuration
The resource adapter specifies which kind of transaction it supports in the ra.xml deployment
descriptor file provided by Sun Microsystems. For instructions on specifying the transaction level
type in the RAR, refer to “Configuring the Transaction Level Type” in Chapter 6,
“Configuration.”

Note: Refer to the following Sun Microsystems documentation for information on the ra.xml
document type definition: http://java.sun.com/dtd/connector_1_0.dtd

Transaction Management Contract
In many cases, a transaction (termed local transaction) is limited in scope to a single EIS system,
and the EIS resource manager itself manages such a transaction. While an XA transaction (or
global transaction) can span multiple resource managers. This form of transaction requires
transaction coordination by an external transaction manager, typically bundled with an
application server. A transaction manager uses a two-phase commit protocol (2PC) to manage a
transaction that spans multiple resource managers (EISes). It uses one-phase commit
optimization if only one resource manager is participating in an XA transaction.

The J2EE Connector Architecture defines a transaction management contract between an
application server and a resource adapter (and its underlying resource manager). The transaction
management contract extends the connection management contract and provides support for
management of both local and XA transactions. The transaction management contract has two
parts, depending on the type of transaction.

JTA XAResource based contract between a transaction manager and an EIS resource
manager

Local transaction management contract

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/dtd/connector_1_0.dtd

Transac t i on Management

3-4 Programming WebLogic Server J2EE Connectors

These contracts enable an application server such as WebLogic Server to provide the
infrastructure and runtime environment for transaction management. Application components
rely on this transaction infrastructure to support the component-level transaction model.

Because EIS implementations are so varied, the transactional support must be very flexible. The
J2EE Connector Architecture imposes no requirements on the EIS for transaction management.
Depending on the implementation of transactions within the EIS, a resource adapter may provide:

No transaction support at all—this is typical of legacy applications and many back-end
systems.

Support for only local transactions

Support for both local and XA transactions

WebLogic Server supports all three levels of transactions, ensuring its support of EISes at
different transaction levels.

Programming WebLogic Server J2EE Connectors 4-1

C H A P T E R 4

Connection Management

The following sections introduce you to the various connection management tasks relating to
WebLogic J2EE connectors.

“Configuring Connection Properties” on page 4-2

“BEA WebLogic Server Extended Connection Management Features” on page 4-2

“Monitoring Connections Using the Console” on page 4-7

“Error Logging and Tracing Facility” on page 4-10

Connect ion Management

4-2 Programming WebLogic Server J2EE Connectors

Configuring Connection Properties
The ra.xml deployment descriptor file contains a config-property element to declare a
single configuration setting for a ManagedConnectionFactory instance. The resource adapter
provider typically sets these configuration properties. However, if a configuration property is not
set, the person deploying the resource adapter is responsible for providing a value for the
property.

WebLogic Server allows you to set configuration properties through the use of the
map-config-property element in the weblogic-ra.xml deployment descriptor file. To
configure a set of configuration properties for a resource adapter, you specify a
map-config-property-name and map-config-property-value pair for each
configuration property to declare.

You can also use the map-config-property element to override the values specified in the
ra.xml deployment descriptor file. At startup, WebLogic Server compares the values of
map-config-property against the values of config-property in the ra.xml file. If the
configuration property names match, WebLogic Server uses the
map-config-property-value for the corresponding configuration property name.

BEA WebLogic Server Extended Connection Management
Features

In addition to the connection management requirements stated in the J2EE Connector
Specification, Version 1.0 Final Release, BEA WebLogic Server provides optional settings and
services to configure and automatically maintain the size of the connection pool.

Minimizing the Run-Time Performance Cost Associated with
Creating ManagedConnections
Creating ManagedConnections can be expensive depending on the complexity of the Enterprise
Information System (EIS) that the ManagedConnection is representing. As a result, you may
decide to populate the connection pool with an initial number of ManagedConnections upon
startup of WebLogic Server and therefore avoid creating them at run time. You can configure this
setting using the initial-capacity element in the weblogic-ra.xml descriptor file. The
default value for this element is 1 ManagedConnection.

As stated in the J2EE Connector Specification, Version 1.0 Final Release, when an application
component requests a connection to an EIS through the resource adapter, WebLogic Server first
tries to match the type of connection being requested with any existing and available

BEA WebLog ic Se rve r Ex tended Connect i on Management Featu res

Programming WebLogic Server J2EE Connectors 4-3

ManagedConnection in the connection pool. However, if a match is not found, a new
ManagedConnection may be created to satisfy the connection request.

WebLogic Server provides a setting to allow a number of additional ManagedConnections to be
created automatically when a match is not found. This feature provides you with the flexibility to
control connection pool growth over time and the performance hit on the server each time this
growth occurs. You can configure this setting using the capacity-increment element in the
weblogic-ra.xml descriptor file. The default value is 1 ManagedConnection.

Since no initiating security principal or request context information is known at WebLogic Server
startup, the initial ManagedConnections, configured with initial-capacity, are created with
a default security context containing a default subject and a client request information of null.

Additional ManagedConnections, configured with the capacity-increment element, are
created using the known initiating principal and client request information provided by the
connection request.

If the connection fails while creating additional ManagedConnections, you can configure
Weblogic Server to attempt to recreate it using the
connection-creation-retry-frequency-seconds elements. By default, this feature is
disabled.

For more information about these elements, see Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

Controlling Connection Pool Growth
As more ManagedConnections are created over time, the amount of system resources—such as
memory and disk space—that each ManagedConnection consumes increases. Depending on the
Enterprise Information System (EIS), this amount may affect the performance of the overall
system. To control the effects of ManagedConnections on system resources, WebLogic Server
allows you to configure a setting for the allowed maximum number of allocated
ManagedConnections.

You configure this setting using the max-capacity element in the weblogic-ra.xml
descriptor file. If a new ManagedConnection (or more than one ManagedConnection in the case
of capacity-increment being greater than one) needs to be created during a connection
request, WebLogic Server ensures that no more than the maximum number of allowed
ManagedConnections are created. Requests for newly allocated managed connections beyond
this limit results in a ResourceAllocationException being returned to the caller.

Connect ion Management

4-4 Programming WebLogic Server J2EE Connectors

For more information about these elements, see Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

Reserving Connections
The connection-reserve-timeout-seconds element of the weblogic-ra.xml
deployment descriptor specifies the amount of time to wait for a reserved connection call. If the
time has been exceeded, the caller encounters an exception. By default, the value of this element
is -1, which means that by default this element is set to not wait for a reserved connection.

When a call to reserve a connection is made, WebLogic Server attempts to obtain a connection
from the pool of available connections. If none are available, it tries to create new connections
using the capacity-increment element and then attempts to obtain a connection from the pool
of newly created connections.

If the maximum number has been reached and there are no available connections, WebLogic
Server retries until the call times out. The highest-num-waiters element controls the number
of clients that can be waiting at any given time for a connection.

The weblogic-ra.xml deployment descriptor also provides a max-num-retries element. If
both the connection-reserve-timeout-seconds and max-num-retries element are set,
whichever of the two completes first will terminate the reserve call.

For more information about these elements, see Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

Controlling System Resource Usage
Although setting the maximum number of ManagedConnections prevents the server from
becoming overloaded by more allocated ManagedConnections than it can handle, it does not
control the efficient amount of system resources needed at any given time. WebLogic Server
provides a service that monitors the activity of ManagedConnections in the connection pool of a
resource adapter. If the usage decreases and remains at this level over a period of time, the size
of the connection pool is reduced to an efficient amount necessary to adequately satisfy ongoing
connection requests.

This system resource usage service is turned on by default. However, to turn off this service, you
can set the shrinking-enabled element in the weblogic-ra.xml descriptor file to false.
Use the shrink-frequency-seconds element in the weblogic-ra.xml descriptor file to
identify the amount of time (in seconds) the Connection Pool Management will wait between

BEA WebLog ic Se rve r Ex tended Connect i on Management Featu res

Programming WebLogic Server J2EE Connectors 4-5

attempts to reclaim unused Managed Connections. The default value of this element is 900
seconds.

For more information about these elements, see Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

Detecting Connection Leaks
Connection leaks result from faulty application components, such as an Enterprise Javabean
(EJB), not doing their job to close a connection after using them. As stated in the J2EE Connector
Specification, Version 1.0 Final Release, once the application component has completed its use
of the EIS connection, it sends a close connection request. At this point, WebLogic Server is
responsible for any necessary cleanup and making the connection available for a future
connection request. However, if the application component fails to close the connection, the
connection pool can be exhausted of its available connections, and future connection requests can
therefore fail.

WebLogic Server provides two mechanisms for preventing this scenario:

Leveraging a garbage collector

Tracking the usage of connection objects and detecting when the usage has become
inactive

Garbage Collector Method
WebLogic Server automatically detects connection leaks by leveraging its Java Virtual Machine
(JVM) garbage collector mechanism. When an application component terminates and the
connections it uses become dereferenced, the garbage collector calls the connection object’s
finalize() method.

When the garbage collector calls the finalize() method, if WebLogic Server determines the
application component has not closed the connection, the server automatically closes the
connection by calling the resource adapter’s ManagedConnection.cleanup() method;
WebLogic Server behaves as it would had it received a CONNECTION_CLOSED event upon proper
closure of the application component connection.

Connection Inactivity Detector Method
Because the garbage collector does not behave in a predictable manner and may in fact never be
called, WebLogic Server provides a connection inactivity detector method. You configure this in
the inactive-connection-timeout-seconds element of the weblogic-ra.xml deployment

Connect ion Management

4-6 Programming WebLogic Server J2EE Connectors

descriptor. This element identifies the amount of time (in seconds) that a connection handle can
remain inactive. This element prevents leaks when an application may have not closed a
connection after completing usage. Inactive connections are terminated, without hesitation, as
soon as they are detected.

WebLogic Server monitors the usage of connection objects. Periodically, connection objects are
tested for inactivity. If their amount of inactivity time exceeds the value specified by the
inactive-connection-timeout-seconds element, these inactive connections are
immediately terminated.

If the ManagedConnection associated with the connection object has no other active connection
objects, WebLogic Server automatically makes the ManagedConnection available for a
connection request.

For more information about these elements, see Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

Connection Proxy Wrapper
When a connection request is made, WebLogic Server returns to the client (by way of the
resource adapter) a proxy object that wraps the connection object. WebLogic Server uses this
proxy to provide features that assist applications using the WebLogic Server implementation of
the J2EE Connector Architecture. These features include:

Connection leak detection capabilities.

Late XAResource enlistment when a connection request is made before starting a global
transaction that uses that connection.

If the connection object returned from a connection request is cast as a Connection class, a
ClassCastException can occur. This exception is caused by one of the following:

The resource adapter performing the cast.

The client performing the cast during a connection request.

An attempt is made by WebLogic Server to detect the ClassCastException caused by the resource
adapter. If the server detects that this cast is failing, it turns off the proxy wrapper feature and
proceeds by returning the connection object during a connection request (unwrapped). The server
logs a warning message to indicate that the proxy wrapper has been turned off.

When this occurs, connection leak detection and late XAResource enlistment features are also
turned off . However, currently no indication of this is given in the Administration Console
monitoring features.

Moni to r ing Connec t i ons Us ing the Conso le

Programming WebLogic Server J2EE Connectors 4-7

WebLogic Server attempts to detect the ClassCastException by acting as a client using
container-managed security. This requires the resource adapter to be deployed with security
credentials defined.

If the client is performing the cast and receiving a ClassCastException, the customer (client) code
can be modified in the following example:

Assume the client is casting the connection object to MyConnection.

1. Rather than having the MyConnection be a class that implements the resource adapter’s
Connection interface, modify MyConnection to be an interface that extends the Connection.

2. Implement a MyConnectionImpl class that implements the MyConnection interface.

Monitoring Connections Using the Console
BEA WebLogic Server implementation of the J2EE Connector Architecture provides you with
monitoring capabilities in the WebLogic Server Console that show detected leaks and provides a
method for looking up stacks to determine which application(s) is causing the leak. Delete
buttons in the Console allow you to dynamically close leaked connections that are identified; the
option to delete connections is only available for connections that have exceeded their specified
idle time and are safe to delete (in other words, the connection is not involved in a transaction).

The connection-profiling-enabled element of the weblogic-ra.xml file indicates
whether or not the connection pool should store the call stacks of where each connection is
allocated. If you set this element value to true, you can view this information on active
connections through the Console. Also, you can view the stacks for leaked and idle connections,
and you can debug components that fail to close connections.

Getting Started
There are two methods for accessing monitoring tools using the Console.

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list of
connectors.

2. Right-click a connector, and select Monitor all Connector Connection Pool Runtimes from
the pop-up menu.

Connection pool run-time information is provided in the right pane for the selected
connector.

Connect ion Management

4-8 Programming WebLogic Server J2EE Connectors

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

A connector table is displayed.

2. Under the Name column, click the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information is provided in the right pane for the selected
connector.

Viewing Leaked Connections
A Connection Leak Profiles column in the Console allows you to view profile information
pertaining to leaked connections. This column is not to be confused with the Leaked Connections
Detected column, which simply displays the number of leaked connections.

A key difference between these two columns is the Connection Leak Profiles column is
controlled by use of the connection-profiling-enabled setting in the weblogic-ra.xml
file. By default, this setting is false, so normally the Connection Leak Profiles column will be
zero (disabled). However, the Leaked Connections Detected column is always enabled and will
always display the number of leaked connections.

There are two methods for viewing leaked connections using the Console.

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list of
connectors.

2. Right-click a connector, and select View Leaked Connections from the pop-up menu.

Connection pool run-time information for the selected connector is provided in the right
pane.

3. Under the Connection Leak Profiles column, click the number of leaked connections
pertaining to the selected connector.

Leaked connection information is displayed in the right pane.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

Moni to r ing Connec t i ons Us ing the Conso le

Programming WebLogic Server J2EE Connectors 4-9

A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information for the selected connector is provided in the right
pane.

4. Under the Connection Leak Profiles column, click the number of leaked connections
pertaining to the selected connector.

Leaked connection information is displayed in the right pane.

Viewing Idle Connections
A Connection Idle Profiles column in the Console allows you to view profile information
pertaining to idle connections. This column is not to be confused with the Idle Connections
Detected column, which simply displays the number of idle connections.

A key difference between these two columns is the Connection Idle Profiles column is controlled
by use of the connection-profiling-enabled setting in the weblogic-ra.xml file. By
default, this setting is false, so normally the Connection Idle Profiles column will be zero
(disabled). However, the Idle Connections Detected column is always enabled and will always
display the number of idle connections.

There are two methods for idle connections using the Console.

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list of
connectors.

2. Right-click a connector, and select View Idle Connections from the pop-up menu.

Connection pool run-time information for the selected connector is provided in the right
pane.

3. Under the Connection Idle Profiles column, click the number of idle connections pertaining
to the selected connector.

Idle connection information is displayed in the right pane.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

Connect ion Management

4-10 Programming WebLogic Server J2EE Connectors

A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information for the selected connector is provided in the right
pane.

4. Under the Connection Idle Profiles column, click the number of idle connections pertaining
to the selected connector.

Idle connection information is displayed in the right pane.

Error Logging and Tracing Facility
As stated in the J2EE Connector Specification, Version 1.0 Final Release, one of the requirements
for application servers is use of ManagedConnectionFactory.set/getLogWriter to
provide an error logging and tracing facility for the resource adapter.

The weblogic-ra.xml file descriptor file supports two elements that allow configuration of
logging and tracing for resource adapters deployed in WebLogic Server. These elements are as
follows:

The logging-enabled element indicates whether logging is enabled or disabled for a
specific ManagedConnectionFactory at deployment time. The default value for this
element is false.

The log-filename element specifies the filename in which to write the logging
information that the ManagedConnectionFactory produces.

For more information, see Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”

Programming WebLogic Server J2EE Connectors 5-1

C H A P T E R 5

Packaging and Deploying Connectors

This chapter discusses packaging and deploying requirements for connectors and provides
instructions for performing these tasks.

“Packaging Connectors” on page 5-2

“Deploying Connectors” on page 5-5

WebLogic Server application deployment is covered in more detail in Deploying WebLogic
Server Applications. WebLogic Server application packaging is covered in more detail in
"Creating WebLogic Server Applications" in Developing WebLogic Server Applications. This
topics covered in this section discuss packaging and deployment procedures that are specific to
connectors.

http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/index.html

Packaging and Dep loy ing Connecto rs

5-2 Programming WebLogic Server J2EE Connectors

Packaging Connectors
For production and development purposes, BEA recommends packaging your assembled
resource adapter (RAR) as part of an enterprise application (EAR). If you are packaging an
existing resource adapter, you can take advantage of the split directory structure. This structure
offers many benefits, which are discussed in in "Creating WebLogic Server Applications" in
Developing WebLogic Server Applications. If you are building a resource adapter from scratch,
you should still package your resource adapter in an EAR, but the split development directory
structure is not currently supported in this case.

Packaging Directory Structure
A resource adapter is a WebLogic Server component contained in a resource adapter archive
(RAR) within the applications/ directory. The deployment process begins with the RAR or a
deployment directory, both of which contain the compiled resource adapter interfaces and
implementation classes created by the resource adapter provider. Regardless of whether the
compiled classes are stored in a RAR or a deployment directory, they must reside in
subdirectories that match their Java package structures.

Resource adapters use a common directory format. This same format is used when a resource
adapter is packaged in an exploded directory format as a RAR. A resource adapter is structured
as in the following example:

Listing 5-1 Resource Adapter Directory Structure

/META-INF/ra.xml

/META-INF/weblogic-ra.xml

/META-INF/MANIFEST.MF (optional)

/images/ra.jpg

/readme.html

/eis.jar

/utilities.jar

/windows.dll

/unix.so

http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/index.html

Packag ing Connecto rs

Programming WebLogic Server J2EE Connectors 5-3

Packaging Considerations
The following are packaging requirements for resource adapters:

Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a subdirectory called
META-INF.

An optional MANIFEST.MF also resides in META-INF. A manifest file is automatically
generated by the JAR tool and is always the first entry in the JAR file. By default, it is
named META-INF/MANIFEST.MF. The manifest file is the place where any
meta-information about the archive is stored. For more information, see
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jar.html.

The resource adapter can contain multiple JARs that contain the Java classes and interfaces
used by the resource adapter. (For example, eis.jar and utilities.jar)

The resource adapter can contain native libraries required by the resource adapter for
interacting with the EIS. (For example, windows.dll and unix.so)

The resource adapter can include documentation and related files not directly used by the
resource adapter. (For example, readme.html and /images/ra.jpg)

Ensure that any dependencies of a resource adapter on platform-specific native libraries are
resolved.

When a standalone resource adapter RAR is deployed, the resource adapter must be made
available to all J2EE applications in the application server.

When a resource adapter RAR packaged within a J2EE application EAR is deployed, the
resource adapter must be made available only to the J2EE application with which it is
packaged.

A resource adapter deployed in WebLogic Server supports the CLASSPATH entry in
MANIFEST.MF to reference a class or resource such as a property.

For more information on packaging requirements, refer to chapter 10 of the J2EE Connector
Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

Packaging Limitations
The following are WebLogic Server packaging limitations on resource adapters:

http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jar.html
http://java.sun.com/j2ee/download.html#connectorspec

Packaging and Dep loy ing Connecto rs

5-4 Programming WebLogic Server J2EE Connectors

The WebLogic J2EE Connector Architecture does not support the
javax.resource.spi.security.GenericCredential credential-interface or the
Kerbv5 authentication-mechanism-type. Specification of either of these values for
the <authentication-mechanism> in the ra.xml file for the resource adapter being
deployed will result in a failed deployment.

The WebLogic J2EE Connector Architecture does not allow you to reload a standalone
resource adapter without reloading the client that is using it. (This limitation is due to the
J2EE Connector Specification, Version 1.0 limitation of not providing a remotable
interface.)

The ConnectionPoolManager’s getConnection(ManagedConnectionFactory mcf,
ConnectionRequestInfo cxInfo) method throws an exception internal to WebLogic
Server when it is unable to find a ConnectionPool associated with a given
ManagedConnectionFactory. For more information, see Appendix B, “Troubleshooting.”

Packaging Connector Archives (RARs)
After you stage one or more resource adapters in a directory, you package them in a Java Archive
(JAR). Before you package your resource adapters, be sure you read and understand the chapter
entitled “WebLogic Server Application Classloading” in Developing WebLogic Server
Applications, which describes how WebLogic Server loads classes.

Note: Once you have assembled the resource adapter, BEA recommends that you package it as
part of an enterprise application. This allows you to take advantage of the split
development directory structure, which provides a number of benefits over the traditional
single directory structure. See "Creating WebLogic Server Applications" in Developing
WebLogic Server Applications.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the
staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for
the resource adapter.

http://e-docs.bea.com/wls/docs81/programming/classloading.html
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/index.html

Deploy ing Connecto rs

Programming WebLogic Server J2EE Connectors 5-5

Note: Refer to the following Sun Microsystems documentation for information on the
ra.xml document type definition at:
http://java.sun.com/dtd/connector_1_0.dtd

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to Appendix A, “weblogic-ra.xml Deployment Descriptor Elements,” for
information on the weblogic-ra.xml document type definition.

7. When the resource adapter classes and deployment descriptors are set up in the staging
directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or package in an
enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the staging-dir
directory so that the directory paths recorded in the JAR are relative to the directory where
you staged the resource adapters.

For more information on this topic, see “Creating and Modifying Resource Adapters: Main
Steps” on page 6-3.

Deploying Connectors
Deployment of a connector is similar to deployment of Web Applications, EJBs, and Enterprise
Applications. Like these deployment units, you can deploy a resource adapter in an exploded
directory format or as an archive file.

Deployment Options
You can deploy a stand-alone resource adapter (or a resource adapter packaged as part of an
enterprise application):

Using the WebLogic Server Administration Console.

Using the weblogic.Deployer Utility.

Using auto-deployment. This is useful for testing purposes. For more information,

For more information on these tools, see “Deployment Tools Reference” in Deploying WebLogic
Server Applications.

http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html

Packaging and Dep loy ing Connecto rs

5-6 Programming WebLogic Server J2EE Connectors

Deployment Descriptor
Also similar to Web Applications, EJBs, and Enterprise Applications, resource adapters use two
deployment descriptors to define their operational parameters. The deployment descriptor
ra.xml is defined by Sun Microsystems in the J2EE Connector Specification, Version 1.0 Final
Release. The weblogic-ra.xml deployment descriptor is specific to WebLogic Server and
defines operational parameters unique to WebLogic Server. For more information about the
weblogic-ra.xml deployment descriptor, refer to Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

You can modify deployment descriptors using the following tools:

WebLogic Builder. WebLogic Builder is a WebLogic Server tool for generating and editing
deployment descriptors for J2EE applications. It can also deploy applications to single
servers.For more information, see “Deployment Tools Reference” in Deploying WebLogic
Server Applications.

An XML Editor with DTD validation, such as BEA XML Editor on dev2dev or XMLSpy.
(An evaluation copy of XMLSpy is bundled with this version of WebLogic Server.) See
BEA dev2dev Online at http://dev2dev.bea.com/index.jsp.

Using the Administration Console Descriptor tab. The Descriptor tab has replaced the
deprecated Deployment Descriptor Editor in the Administration Console. For more
information on the Descriptor tab, see the WebLogic Server online help. Also refer to
“Dynamic Descriptor Updates” on page A-4.

Connector Deployment Names
When you deploy a connector archive (RAR) or deployment directory, you must specify a name
for the deployment unit, for example, myResourceAdapter. This name provides a shorthand
reference to the resource adapter deployment that you can later use to undeploy or update the
resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a deployment name
that matches the path and filename of the RAR or deployment directory. You can use this
assigned name to undeploy or update the resource adapter after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the server is
rebooted. Undeploying a resource adapter does not remove the associated deployment name; you
can use the same deployment name to redeploy the resource adapter at a later time.

http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://dev2dev.bea.com/index.jsp
http://dev2dev.bea.com/index.jsp

Programming WebLogic Server J2EE Connectors 6-1

C H A P T E R 6

Configuration

The following sections outline configuration requirements for the WebLogic J2EE Connector
Architecture implementation:

“Resource Adapter Developer Tools” on page 6-2

“Configuring Resource Adapters” on page 6-2

“Configuring the ra.xml File” on page 6-6

“Configuring the weblogic-ra.xml File” on page 6-6

“Configuring the Transaction Level Type” on page 6-9

Conf igura t ion

6-2 Programming WebLogic Server J2EE Connectors

Resource Adapter Developer Tools
BEA provides several tools you can use to help you create and configure resource adapters. These
tools are described in this section.

ANT Tasks to Create Skeleton Deployment Descriptors
You can use the WebLogic ANT utilities to create skeleton deployment descriptors. These
utilities are Java classes shipped with your WebLogic Server distribution. The ANT task looks at
a directory containing a resource adapter creates deployment descriptors based on the files it finds
in the resource adapter. Because the ANT utility does not have information about all of the
desired configurations and mappings for your resource adapter, the skeleton deployment
descriptors the utility creates are incomplete. After the utility creates the skeleton deployment
descriptors, you can use a text editor, an XML editor, or the Administration Console to edit the
deployment descriptors and complete the configuration of your resource adapter.

For more information on using ANT utilities to create deployment descriptors, see “Creating
WebLogic Server Applications” in Developing WebLogic Server Applications.

WebLogic Builder
WebLogic Builder is a visual environment for editing an application's deployment descriptor
XML files. You can view descriptor files while you visually edit them in WebLogic Builder, and
you won't need to make textual edits to the XML files. For more information, see the WebLogic
Builder Online Help.

XML Editors
You can use an XML Editor with DTD validation, such as BEA XML Editor on dev2dev or
XMLSpy. (An evaluation copy of XMLSpy is bundled with this version of WebLogic Server.)
See BEA dev2dev Online at http://dev2dev.bea.com/index.jsp.

Configuring Resource Adapters
This section introduces and discusses how to configure the resource adapter for deployment to
WebLogic Server.

http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81/wlbuilder/index.html
http://dev2dev.bea.com/index.jsp
http://dev2dev.bea.com/index.jsp

Conf igur ing Resource Adapte rs

Programming WebLogic Server J2EE Connectors 6-3

Resource Adapter Overview
The J2EE Connector Architecture enables both Enterprise Information System (EIS) vendors and
third-party application developers to develop resource adapters that can be deployed in any
application server supporting the Sun Microsystems J2EE Platform Specification, Version 1.3.

The resource adapter is the central piece of the WebLogic J2EE Connector Architecture; it serves
as the J2EE connector between the client component and the EIS. When a resource adapter is
deployed in the WebLogic Server environment, it enables the development of robust J2EE
Platform applications that can access remote EIS systems. Resource adapters contain the Java
components, and if necessary, the native components required to interact with the EIS.

For more information on creating resource adapters, see the Sun Microsystems J2EE Connector
Architecture page and the J2EE Connector Specification, Version 1.0 Final Release. These can
be found on the Sun Microsystems Web site at the following respective URLs:

http://java.sun.com/j2ee/connector/

http://java.sun.com/j2ee/download.html#connectorspec

Creating and Modifying Resource Adapters: Main Steps
Creating a resource adapter requires creating the classes for the particular resource adapter
(ConnectionFactory, Connection, and so on) and the connector-specific deployment descriptors,
and then packaging everything up into an jar file to be deployed to WebLogic Server.

Creating a New Resource Adapter Archive (RAR)
The following are the main steps for creating a resource adapter archive (RAR):

1. Write the Java code for the various classes required by resource adapter (ConnectionFactory,
Connection, and so on) in accordance with the J2EE Connector Specification, Version 1.0,
Final Release (http://java.sun.com/j2ee/download.html#connectorspec).

When implementing a resource adapter, you must specify classes in the ra.xml file. For
example:

– <managedconnectionfactory-class>com.sun.connector.blackbox.LocalTxManagedConne
ctionFactory</managedconnectionfactory-class>

– <connectionfactory-interface>javax.sql.DataSource</connectionfactory-interface>

– <connectionfactory-impl-class>com.sun.connector.blackbox.JdbcDataSource</connectio
nfactory-impl-class>

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/download.html#connectorspec

Conf igura t ion

6-4 Programming WebLogic Server J2EE Connectors

– <connection-interface>java.sql.Connection</connection-interface>

– <connection-impl-class>com.sun.connector.blackbox.JdbcConnection</connection-impl-
class>

2. Compile the Java code using a standard compiler for the interfaces and implementation into
class files.

For instructions on compiling, refer to “Compiling Java Code” in Developing WebLogic
Server J2EE Applications.

3. Create the resource connector-specific deployment descriptors:

– ra.xml describes the resource adapter-related attributes type and its deployment
properties using a standard DTD from Sun Microsystems.

– weblogic-ra.xml adds additional WebLogic Server-specific deployment information.

For detailed information about creating connector-specific deployment descriptors, refer to
Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”

4. Package the Java classes into a Java archive (JAR) file.

The first step in creating a JAR file is to create a connector staging directory anywhere on
your hard drive. Place the JAR file in the staging directory and the deployment descriptors
in a subdirectory called META-INF.

Then you create the resource adapter archive by executing a jar command similar to the
following in the staging directory:

jar cvf myRAR.rar *

5. Auto-deploy the RAR resource adapter archive file on WebLogic Server for testing
purposes.

For detailed information about auto-deploying components and applications, refer to
“Tools for Deploying” in Deploying WebLogic Server Applications.

While you are testing the resource adapter, you might need to edit the resource adapter
deployment descriptors. You can do this manually or use WebLogic Builder.

For detailed information, refer to WebLogic Builder Online Help. See Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements”for detailed information on the
elements in these deployment descriptors.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in an
enterprise archive (EAR) file to be deployed as part of an enterprise application.

http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html

Conf igur ing Resource Adapte rs

Programming WebLogic Server J2EE Connectors 6-5

Refer to Deploying WebLogic Server Applications for detailed information about deploying
components and applications.

Modifying an Existing Resource Adapter (RAR)
The following is an example of how to take an existing resource adapter (RAR) and modify it for
deployment to WebLogic Server. This involves adding the weblogic-ra.xml deployment
descriptor and repacking.

1. Create a temporary directory anywhere on your hard drive to stage the resource adapter:
mkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:
cp blackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:
cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:

A jar file containing Java classes that implement the resource adapter

A META-INF directory containing the files: Manifest.mf and ra.xml

Execute these commands to see these files:
c:/stagedir> ls

blackbox-notx.rar

META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment
descriptor for resource adapters. In this file, you specify parameters for connection
factories, connection pools, and security mappings.

Refer to Appendix A, “weblogic-ra.xml Deployment Descriptor Elements” for more
information on the weblogic-ra.xml DTD.

http://e-docs.bea.com/wls/docs81/deployment/index.html

Conf igura t ion

6-6 Programming WebLogic Server J2EE Connectors

5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory.
The META-INF directory is located in the temporary directory where you extracted the RAR
file or in the directory containing a resource adapter in exploded directory format. Use the
following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

weblogic-ra.xml

6. Create the resource adapter archive:
jar cvf blackbox-notx.rar -C c:/stagedir

7. Deploy the resource adapter to WebLogic Server. For detailed information about deploying
components and applications, refer to “Tools for Deploying” in Deploying WebLogic Server
Applications.

Configuring the ra.xml File
If you do not have an ra.xml file, you must manually create or edit an existing one to set the
necessary deployment properties for the resource adapter. You can use a text editor to edit the
properties. For information on creating an ra.xml file, refer to the J2EE Connector
Specification, Version 1.0 Final Release: http://java.sun.com/j2ee/download.html#connectorspec

Configuring the weblogic-ra.xml File
In addition to supporting features of the standard resource adapter configuration ra.xml file,
BEA WebLogic Server defines an additional deployment descriptor file, the
weblogic-ra.xml file. This file contains parameters that are specific to configuring and
deploying resource adapters in WebLogic Server. This functionality is consistent with the
equivalent .xml extensions for EJBs and Web applications in WebLogic Server, which also add
WebLogic-specific deployment descriptors to the deployable archive. As is, the basic RAR or
deployment directory cannot be deployed to WebLogic Server. You must first create and
configure WebLogic Server-specific deployment properties in the weblogic-ra.xml file and
add that file to the deployment.

In the weblogic-ra.xml file, you specify the following attributes:

http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://java.sun.com/j2ee/download.html#connectorspec

Conf igur ing the web log ic- ra . xml F i l e

Programming WebLogic Server J2EE Connectors 6-7

Name of the connection factory.

Descriptive text about the connection factory.

JNDI name bound to a connection factory.

Reference to a separately deployed connection factory that contains resource adapter
components that can be shared with the current resource adapter.

Directory where all shared libraries should be copied.

Connection pool parameters that set the following behavior:

– Initial number of managed connections WebLogic Server attempts to allocate at
deployment time.

– Maximum number of managed connections WebLogic Server allows to be allocated at
any one time.

– Number of managed connections WebLogic Server attempts to allocate when filling a
request for a new connection.

– Whether WebLogic Server attempts to reclaim unused managed connections to save
system resources.

– The time WebLogic Server waits between attempts to reclaim unused managed
connections.

Values for configuration properties defined in a <config-entry> element of the J2EE
resource adapter deployment descriptor, ra.xml.

Flag to indicate whether logging is required for the ManagedConnectionFactory or
ManagedConnection.

File to store logging information for the ManagedConnectionFactory or
ManagedConnection.

The amount of time a connection can remain idle.

Whether to store call stacks of where each connection is allocated.

Note: Refer to the weblogic-ra.xml DTD in Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements,” for more information on setting the parameters in
weblogic-ra.xml. You can also look at the weblogic-ra.xml file in the included
Simple Black Box resource adapter example provided with the product download.

Note: For information on configuring connection properties in a resource adapter, refer to
Chapter 4, “Connection Management.”

Conf igura t ion

6-8 Programming WebLogic Server J2EE Connectors

Automatic Generation of the weblogic-ra.xml File
In WebLogic Server, a resource adapter archive (RAR) must include a weblogic-ra.xml
deployment descriptor file in addition to the ra.xml deployment descriptor file specified in the
J2EE Connector 1.0 specification. However, if a resource adapter is deployed in WebLogic
Server without a weblogic-ra.xml file, a template weblogic-ra.xml file populated with
default element values is automatically added to the resource adapter archive. This automatic
resource file generation simplifies the process of establishing the parameters necessary to deploy
the resource adapter in WebLogic Server.

If your RAR does not contain a weblogic-ra.xml file, WebLogic Server automatically
generates this file for you. This feature enables you to deploy third-party resource adapters to
WebLogic Server without worrying about modifying them for WebLogic Server. You need only
modify two default attribute values that WebLogic Server generates in the weblogic-ra.xml
file: <connection-factory-name> and <jndi-name>.

WebLogic Server prepends <connection-factory-name> with the default value of
__TMP_CFNAME_.

It prepends <jndi-name> with the default value of __TMP_JNDINAME_.

For instructions on how to change these default values, see Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”

The following is what the generated weblogic-ra.xml file looks like before you change the
default values:

Listing 6-1 weblogic-ra.xml Default Values

<weblogic-connection-factory-dd>

<connection-factory-name>__TMP_CFNAME_.\config\mydomain\applications\white

box-notx.rar</connection-factory-name>

<jndi-name>__TMP_JNDINAME_.\config\mydomain\applications\whitebox-notx.rar

</jndi-name>

<pool-params>

<initial-capacity>0</initial-capacity>

<max-capacity>1</max-capacity>

<capacity-increment>1</capacity-increment>

Conf igur ing the T ransac t i on Leve l T ype

Programming WebLogic Server J2EE Connectors 6-9

<shrinking-enabled>false</shrinking-enabled>

 <shrink-frequency-seconds>900</shrink-frequency-seconds>

</pool-params>

<security-principal-map>

</security-principal-map>

</weblogic-connection-factory-dd>

Configuring the ra-link-ref Element
The optional <ra-link-ref> element allows you to associate multiple deployed resource
adapters with a single deployed resource adapter. In other words, it allows you to link (reuse)
resources already configured in a base resource adapter to another resource adapter, modifying
only a subset of attributes. The <ra-link-ref> element enables you to avoid—where
possible—duplicating resources (such as classes, JARs, image files, and so on). Any values
defined in the base resource adapter deployment are inherited by the linked resource adapter,
unless otherwise specified in the <ra-link-ref> element.

If you use the optional <ra-link-ref> element, you must provide either all or none of the
values in the <pool-params> element. The <pool-params> element values are not partially
inherited by the linked resource adapter from the base resource adapter.

Do one of the following:

Assign the <max-capacity> element the value of 0 (zero). This allows the linked
resource adapter to inherit its <pool-params> element values from the base resource
adapter.

Assign the <max-capacity> element any value other than 0 (zero). The linked resource
adapter will inherit no values from the base resource adapter. If you choose this option, you
must specify all of the <pool-params> element values for the linked resource adapter.

For instructions on editing the weblogic-ra.xml file, see Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”

Configuring the Transaction Level Type
You must specify the transaction level type supported by the resource adapter in the ra.xml
deployment descriptor file. To specify the transaction support level:

Conf igura t ion

6-10 Programming WebLogic Server J2EE Connectors

For No Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>NoTransaction</transaction-support>

For XA Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>XATransaction</transaction-support>

For Local Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>LocalTransaction</transaction-support>

For instructions on editing an .xml file, see Appendix A, “weblogic-ra.xml Deployment
Descriptor Elements.”

For more information on specifying the transaction level in the RAR configuration, see
“Resource Adapter XML DTD” under “Packaging and Deployment” in the J2EE Connector
Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

http://java.sun.com/j2ee/download.html#connectorspec

Programming WebLogic Server J2EE Connectors 7-1

C H A P T E R 7

Client Considerations

The following sections discuss J2EE Connector Architecture client considerations:

“Common Client Interface (CCI)” on page -2

“ConnectionFactory and Connection” on page -2

“Obtaining the ConnectionFactory (Client-JNDI Interaction)” on page -2

Cl ient Cons ide rat ions

7-2 Programming WebLogic Server J2EE Connectors

Common Client Interface (CCI)
The client API used by application components for EIS access can be defined as follows:

The standard common client interface (CCI) discussed in chapter 9, “Common Client
Interface,” of the J2EE Connector Specification, Version 1.0 Final Release at:
http://java.sun.com/j2ee/download.html#connectorspec.

A client API specific to the type of a resource adapter and its underlying EIS. An example
of such EIS-specific client APIs is JDBC for relational databases.

The CCI is a common client API for accessing EISes. The CCI is targeted towards Enterprise
Application Integration (EAI) and enterprise tool vendors.

The J2EE Connector Architecture defines a Common Client Interface (CCI) for EIS access. The
CCI defines a standard client API for application components that enables application
components and EAI frameworks to drive interactions across heterogeneous EISes.

ConnectionFactory and Connection
A connection factory is a public interface that enables connection to an EIS instance; a
ConnectionFactory interface is provided by a resource adapter. An application looks up a
ConnectionFactory instance in the JNDI namespace and uses it to obtain EIS connections.

One goal of the J2EE Connector Architecture is to support a consistent application programming
model across both CCI and EIS-specific client APIs. This model is achieved through use of a
design pattern—specified as an interface template—for both the ConnectionFactory and
Connection interfaces.

For more information on this design pattern, see section 5.5.1, “ConnectionFactory and
Connection” of the J2EE Connector Specification, Version 1.0 Final Release at:
http://java.sun.com/j2ee/download.html#connectorspec

Obtaining the ConnectionFactory (Client-JNDI Interaction)
This section discusses how a connection to an EIS instance is obtained from a
ConnectionFactory. For further information, refer to section 5.4.1, “Managed Application
Scenario,” of the J2EE Connector Specification, Version 1.0 Final Release at:
http://java.sun.com/j2ee/download.html#connectorspec

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec

Obta in ing the Connect i onFacto ry (C l i ent - JNDI In te rac t i on)

Programming WebLogic Server J2EE Connectors 7-3

Obtaining a Connection in a Managed Application
The following tasks are performed when a managed application obtains a connection to an EIS
instance from a ConnectionFactory, as specified in the res-type variable:

1. The application assembler or component provider specifies the connection factory
requirements for an application component by using a deployment descriptor mechanism. For
example:

– res-ref-name: eis/myEIS

– res-type: javax.resource.cci.ConnectionFactory

– res-auth: Application or Container

2. The person deploying the resource adapter sets the configuration information for the
resource adapter.

3. The application server uses a configured resource adapter to create physical connections to
the underlying EIS. Refer to Chapter 10 of the J2EE Connector Specification, Version 1.0
Final Release for more information on packaging and deployment of resource adapters at:
http://java.sun.com/j2ee/download.html#connectorspec

4. The application component looks up a connection factory instance in the component’s
environment by using the JNDI interface.

Listing 7-1 JNDI Lookup

//obtain the initial JNDI Naming context

Context initctc = new InitialContext();

// perform JNDI lookup to obtain the connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)

initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that
specified in the res-ref-name element of the deployment descriptor. The JNDI lookup

Cl ient Cons ide rat ions

7-4 Programming WebLogic Server J2EE Connectors

results in a connection factory instance of type
java.resource.cci.ConnectionFactory as specified in the res-type element.

5. The application component invokes the getConnection method on the connection factory
to obtain an EIS connection. The returned connection instance represents an application
level handle to an underlying physical connection. An application component obtains
multiple connections by calling the method getConnection on the connection factory
multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

6. The application component uses the returned connection to access the underlying EIS.

7. After the component finishes with the connection, it closes the connection using the close
method on the Connection interface.

cx.close();

8. If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages the cleanup
of unused connections.

Obtaining a Connection in a Non-Managed Application
In a non-managed application scenario, the application developer must follow a similar
programming model to that of a managed application. Non-management involves lookup of a
connection factory instance, obtaining an EIS connection, using the connection for EIS access,
and finally closing the connection.

The following tasks are performed when a non-managed application obtains a connection to an
EIS instance from a ConnectionFactory:

1. The application client calls a method on the javax.resource.cci.ConnectionFactory
instance (returned from the JNDI lookup) to get a connection to the underlying EIS instance.

2. The ConnectionFactory instance delegates the connection request from the application to
the default ConnectionManager instance. The resource adapter provides the default
ConnectionManager implementation.

3. The ConnectionManager instance creates a new physical connection to the underlying EIS
instance by calling the ManagedConnectionFactory.createManagedConnection
method.

Obta in ing the Connect i onFacto ry (C l i ent - JNDI In te rac t i on)

Programming WebLogic Server J2EE Connectors 7-5

4. The ManagedConnectionFactory instance handles the createManagedConnection method
by creating a new physical connection to the underlying EIS, represented by a
ManagedConnection instance. The ManagedConnectionFactory uses the security
information (passed as a Subject instance), any ConnectionRequestInfo, and its
configured set of properties (such as port number, server name) to create a new
ManagedConnection instance.

5. The ConnectionManager instance calls the ManagedConnection.getConnection
method to get an application-level connection handle. Calling the getConnection method
does not necessarily create a new physical connection to the EIS instance. Calling
getConnection produces a temporary handle that is used by an application to access the
underlying physical connection. The actual underlying physical connection is represented
by a ManagedConnection instance.

6. The ConnectionManager instance returns the connection handle to the
ConnectionFactory instance, which then returns the connection to the application that
initiated the connection request.

Cl ient Cons ide rat ions

7-6 Programming WebLogic Server J2EE Connectors

Programming WebLogic J2EE Connectors A-1

A P P E N D I X A

weblogic-ra.xml Deployment Descriptor
Elements

The following sections provide a complete reference for the WebLogic Server-specific XML
deployment descriptor properties used in the WebLogic Server resource adapter archive and an
explanation of how to edit the XML deployment descriptor. Use these sections if you need to
refer to the deployment descriptor used for resource adapters.

If your resource adapter archive (RAR) does not contain a weblogic-ra.xml file, WebLogic
Server automatically generates this file for you.

“Manually Editing XML Deployment Files” on page A-2

“Using WebLogic Builder to Edit Deployment Descriptors” on page A-4

“Dynamic Descriptor Updates” on page A-4

“weblogic-ra.xml Element Descriptions” on page A-5

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-2 Programming WebLogic J2EE Connectors

Manually Editing XML Deployment Files
To define or make changes to the XML deployment descriptors used in the WebLogic Server
resource adapter archive, you must manually define or edit the XML elements in the
weblogic-ra.xml file.

Basic Conventions
To manually edit XML elements:

Make sure that you use an ASCII text editor that does not reformat the XML or insert
additional characters that could invalidate the file.

Use the correct case for file and directory names, even if your operating system ignores the
case.

To use the default value for an optional element, you can either omit the entire element
definition or specify a blank value. For example:

<max-config-property></max-config-property>

DOCTYPE Header Information
When editing or creating XML deployment files, it is critical to include the correct DOCTYPE
header for each deployment file. In particular, using an incorrect PUBLIC element within the
DOCTYPE header can result in parser errors that may be difficult to diagnose.

The header refers to the location and version of the Document Type Definition (DTD) file for the
deployment descriptor. Although this header references an external URL at java.sun.com,
WebLogic Server contains its own copy of the DTD file, so your host server need not have access
to the Internet. However, you must still include this <!DOCTYPE...> element in your ra.xml
file, and have it reference the external URL because the version of the DTD contained in this
element is used to identify the version of this deployment descriptor.

Manual l y Ed i t ing XML Dep loyment F i l es

Programming WebLogic J2EE Connectors A-3

The entire DOCTYPE headers for the ra.xml and weblogic-ra.xml files are as follows:

XML files with incorrect header information may yield error messages similar to the following,
when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation
The contents and arrangement of elements in your XML files must conform to the Document
Type Definition (DTD) for each file you use. WebLogic Server utilities ignore the DTDs
embedded within the DOCTYPE header of XML deployment files, and instead use the DTD
locations that were installed along with the server. However, the DOCTYPE header information
must include a valid URL syntax in order to avoid parser errors.

The following links provide the public DTD locations for XML deployment files used with
WebLogic Server:

connector_1_0.dtd contains the DTD for the standard ra.xml deployment file,
required for all resource adapters. This DTD is maintained as part of the J2EE Connector
Specification, Version 1.0; refer to this specification for information about the elements
used in the connector_1_0.dtd (http://java.sun.com/j2ee/download.html#connectorspec).

weblogic-ra.dtd contains the DTD used for creating weblogic-ra.xml, which defines
resource adapter properties used for deployment to WebLogic Server. This file is located at
http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd

Note: Most browsers do not display the contents of files having the .dtd extension. To view the
DTD file contents in your browser, save the links as text files and view them with a text
editor.

XML File DOCTYPE header

ra.xml <!DOCTYPE connector PUBLIC
 '-//Sun Microsystems, Inc.//DTD Connector 1.0//EN'
 'http://java.sun.com/dtd/connector_1_0.dtd'>

weblogic-ra.xml <!DOCTYPE weblogic-connection-factory-dd PUBLIC

"-//BEA Systems, Inc.//DTD WebLogic 8.1.0
Connector//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd">

http://java.sun.com/dtd/connector_1_0.dtd
http://java.sun.com/dtd/connector_1_0.dtd
http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd
http://java.sun.com/j2ee/download.html#connectorspec
http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-4 Programming WebLogic J2EE Connectors

Using WebLogic Builder to Edit Deployment Descriptors
WebLogic Builder provides a visual environment for editing an application’s deployment
descriptor XML files. You can view these XML files as you visually edit them in WebLogic
Builder, but you won’t need to make textual edits to the XML files.

Use WebLogic Builder for the following development tasks:

Generate deployment descriptor files for a J2EE module

Edit a module’s deployment descriptor files

View deployment descriptor files

Compile and validate deployment descriptor files

Deploy a module to a server

For instructions on using WebLogic Builder, refer to the WebLogic Builder documentation.

Dynamic Descriptor Updates
This release of WebLogic Server has deprecated the Administration Console Deployment
Descriptor Editor. A new Descriptor tab in the Administration Console has replaced it. Using the
Descriptor tab, you can view, modify, and persist deployment descriptor elements to the
descriptor file within the resource adapter in the same manner that they were persisted using the
Deployment Descriptor Editor.

However, these descriptor elements takes place dynamically at runtime without requiring the
resource adapter to be redeployed. The descriptor elelements contained in the Descriptor tab are
limited to only those descriptor elements that may be dynamically changed at runtime. These
include the following weblogic-ra.xml elements:

initial-capacity

max-capacity

capacity-increment

shrinking-enabled

shrink-frequency-seconds

highest-num-unavailable

http://e-docs.bea.com/wls/docs81/wlbuilder/index.html

weblog ic- ra . xml E lement Desc r ip t i ons

Programming WebLogic J2EE Connectors A-5

highest-num-waiters

inactive-connection-timeout-seconds

connection-reserve-timeout-seconds

test-frequency-seconds

connection-creation-retry-frequency-seconds

weblogic-ra.xml Element Descriptions
The following sections describe each of the elements that can be defined in the
weblogic-ra.xml file.

weblogic-connection-factory-dd
The weblogic-connection-factory-dd element is the root element of the WebLogic-specific
deployment descriptor for the deployed resource adapter.

The following table describes the elements you can define within a
weblogic-connection-factory-dd element.

Element Required
Optional

Description

<connection-fact
ory-name>

Required Defines the logical name that will be associated with this
specific deployment of the resource adapter and its
corresponding connection factory. The value of this element
can be used in other deployed resource adapters through the
ra-link-ref element, allowing multiple deployed Connection
Factories to utilize a common deployed resource adapter, as
well as share configuration specifications.

<description> Optional Provides text describing the parent element. This element should
include any information that the deployer wants to describe about the
deployed Connection Factory.

<jndi-name> Required Defines the name that will be used to bind the Connection Factory
Object into the WebLogic JNDI Namespace. Client EJBs and Servlets
use the same JNDI in their defined Reference Descriptor elements of
the WebLogic-specific deployment descriptors.

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-6 Programming WebLogic J2EE Connectors

<ra-link-ref> Optional Allows for the logical association of multiple deployed
connection factories with a single deployed resource adapter.
The specification of the optional ra-link-ref element with a
value identifying a separately deployed connection factory will
result in this newly deployed connection factory sharing the
resource adapter that has been deployed with the referenced
connection factory. In addition, any values defined in the
referred connection factories deployment will be inherited by
this newly deployed connection factory unless specified.

<native-libdir> Optional

Required if
native
libraries are
present.

Identifies the directory location to be used for all native libraries
present in this resource adapter deployment. As part of deployment
processing, all encountered native libraries will be copied to the
location specified. It is the responsibility of the administrator to
perform the necessary platform actions such that these libraries will be
found during WebLogic Server run time.

<pool-params> Optional The root element for providing connection pool-specific
parameters for this connection factory. WebLogic Server uses
these specifications in controlling the behavior of the maintained
pool of managed connections.

Failure to specify this element or any of its specific element items will
result in default values being assigned. Refer to the description of each
individual element for the designated default value.

For more information on the elements of <pool-params>, refer to
“pool-params” on page A-10

<logging-enabled
>

Optional Indicates whether or not the log writer is set for either the
ManagedConnectionFactory or ManagedConnection. If this
element is set to true, output generated from either the
ManagedConnectionFactory or ManagedConnection will be
sent to the file specified by the log-filename element.

Failure to specify this value will result in WebLogic Server
using its defined default value.

Value Range: true | false

Default Value: false

Element Required
Optional

Description

weblog ic- ra . xml E lement Desc r ip t i ons

Programming WebLogic J2EE Connectors A-7

<log-filename> Optional Specifies the name of the log file from which output generated
from the ManagedConnectionFactory or a
ManagedConnection is sent.

The full address of the filename is required.

Element Required
Optional

Description

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-8 Programming WebLogic J2EE Connectors

<map-config-prop
erty>

Optional,
Zero or
More

Identifies a configuration property name and value that
corresponds to an ra.xml config-entry element with the
corresponding config-property-name. At deployment time,
all values present in a map-config-property specification
will be set on the ManagedConnectionFactory. Values
specified via a map-config-property will supersede any default
value that may have been specified in the corresponding ra.xml
config-entry element.

For more information on the elements of
<map-config-property>, refer to “map-config-property” on
page A-14.

Element Required
Optional

Description

weblog ic- ra . xml E lement Desc r ip t i ons

Programming WebLogic J2EE Connectors A-9

<security-princi
pal-map>

Optional This is a deprecated element. Provides a mechanism to
define appropriate resource-principal values for resource
adapter and EIS authorization processing, based upon the known
WebLogic run time initiating-principal. This map allows
for the specification of a defined set of initiating principals and
the corresponding resource principal’s username and password
that should be used when allocating managed connections and
connection handles.

A default resource-principal can be defined for the
connection factory via the map. By specifying an
initiating-principal value of ‘*’ and a corresponding
resource-principal, the defined resource-principal will
be utilized whenever the current identity is not matched
elsewhere in the map.

This is an optional element, however, it must be specified in
some form if container managed sign-on is supported by the
resource adapter and used by any client.

In addition, the deployment-time population of the connection
pool with managed connections will be attempted using the
defined ‘default’ resource principal if one is specified.

For more information on the elements of
<security-principal-map>, refer to
“security-principal-map” on page A-15.

Element Required
Optional

Description

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-10 Programming WebLogic J2EE Connectors

pool-params
The following table describes the elements you can define within a pool-params element.

Element Required
Optional

Description

<initial-capacit
y>

Optional Identifies the initial number of managed connections, which
WebLogic Server attempts to obtain during deployment.

Failure to specify this value will result in WebLogic Server
using its defined default value.

Default Value: 1

<max-capacity> Optional Identifies the maximum number of managed connections, which
WebLogic Server will allow. Requests for newly allocated
managed connections beyond this limit results in a
ResourceAllocationException being returned to the caller.

Failure to specify this value will result in WebLogic Server
using its defined default value.

Default Value: 10

<capacity-increm
ent>

Optional Identifies the maximum number of additional managed
connections that WebLogic Server attempts to obtain during
resizing of the maintained connection pool.

Failure to specify this value will result in WebLogic Server
using its defined default value.

Default Value: 1

<shrinking-enabl
ed>

Optional Indicates whether or not the connection pool should have unused
managed connections reclaimed as a means to control system
resources.

Failure to specify this value will result in WebLogic Server
using its defined default value.

Value Range: true | false

Default Value: true

weblog ic- ra . xml E lement Desc r ip t i ons

Programming WebLogic J2EE Connectors A-11

<shrink-period-m
inutes>

Optional This is a deprecated element. It has been replaced by the
shrink-frequency-seconds element.

Identifies the amount of time the connection pool manager will
wait between attempts to reclaim unused managed connections.

Default Value: 15

<connection-clea
nup-frequency>

Optional This is a deprecated element. Identifies the amount of
time the connection pool management will wait between
attempts to destroy connection handles which have exceeded
their usage duration. This element, used in conjunction with
connection-duration-time, prevents connection leaks when an
application may have not closed a connection after completing
usage.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: -1

Note: The connection-cleanup-frequency element is a
deprecated element. If you currently have this parameter
in your configuration, you will still be able use
deployment functions. However, this element will have
no effect on the configuration.

Element Required
Optional

Description

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-12 Programming WebLogic J2EE Connectors

<connection-dura
tion-time>

Optional This is a deprecated element. Identifies the amount of
time a connection can be active. This element, used in
conjunction with connection-cleanup-frequency, prevents leaks
when an application may have not closed a connection after
completing usage.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: -1

Note: The connection-duration-time element is a
deprecated element. If you currently have this parameter in
your configuration, you will still be able use deployment
functions. However, this element will have no effect on the
configuration.

<connection-maxi
dle-time>

Optional This is a deprecated element. It has been replaced by the
inactive-connection-timeout-seconds element.

Identifies the amount of time (in seconds) a connection handle
can remain idle. This element prevents leaks when an
application may have not closed a connection after completing
usage. Idle connections will only be terminated in the case where
the connection pool becomes full, and a new connection request
is about to fail because of this.

Default Value: 0

<connection-prof
iling-enabled>

Optional Indicates whether or not the connection pool should store the call
stacks of where each connection is allocated. If enabled this
information can be viewed on active connections through the
Console. Also, the stacks for Leaked and Idle connections will
be available if this is enabled and can help debug components
that fail to close connections.

Failure to specify this value will result in Weblogic using its
defined default value.

Value Range: true | false

Default Value: false

Element Required
Optional

Description

weblog ic- ra . xml E lement Desc r ip t i ons

Programming WebLogic J2EE Connectors A-13

<shrink-frequenc
y-seconds>

Optional Indentifies the amount of time (in seconds) Connection Pool
Management will wait between attempts to reclaim unused
Managed Connections.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 900 seconds

<inactive-connec
tion-timeout-sec
onds>

Optional Identifies the amount of time (in seconds) a Connection handle
can remain inactive. This element prevents leaks when an
Application may have not closed a connection after completing
usage. Inactive connections will be terminated as soon as they
are detected.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 0

<highest-num-wai
ters>

Optional The maximum number of waiters that can concurrently block
waiting to reserve a connection from the pool.

Default Value: 0

<highest-num-una
vailable>

Optional The maximum number of physical connections (Managed
Connections) in the pool that can be made unavailable (to the
application) for purposes such as refreshing a connection. Note
that in cases such as the backend system being unavailable, the
specified value might be exceeded due to factors outside of the
control of the pool.

Default Value: 0

<connection-crea
tion-retry-frequ
ency-seconds>

Optional The periodicity of retry attempts by the pool to establish
connections.

Default Value: 0

Element Required
Optional

Description

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-14 Programming WebLogic J2EE Connectors

map-config-property
The following table describes the elements you can define within a map-config-property
element.

<connection-rese
rve-timeout-seco
nds>

Optional The number of seconds after which the call to reserve a
connection from the pool will timeout.

Default Value: -1 (do not block when reserving
resources)

<test-frequency-
settings>

Optional The periodicity at which connections in the pool are tested.

Default Value: 0

<match-connectio
ns-supported>

Optional Indicates whether or not the resource adapter supports the
ManagedConnectionFactory.matchManagedConnection
s() method. If the resource adapter does not support this
method (always returns null for this method), then WebLogic
Server bypasses this method call during a connection request.

Value Range: true|false

Default Value: true

Element Required
Optional

Description

Element Required
Optional

Description

<map-config-prope
rty-name>

Optional Identifies a name that corresponds to an ra.xml
config-entry element with the corresponding
config-property-name.

<map-config-prope
rty-value>

Optional Identifies a value that corresponds to an ra.xml
config-entry element with the corresponding
config-property-name.

weblog ic- ra . xml E lement Desc r ip t i ons

Programming WebLogic J2EE Connectors A-15

security-principal-map
The following table describes the elements you can define within a security-principal-map
element.

Element Required
Optional

Description

<map-entry> Optional Identifies an entry in the security-principal-map.

initiating-principal (optional, zero or more)

resource-principal (optional)—can be defined for the
connection factory via the security-principal-map. By
specifying an initiating-principal value of ‘*’ and a
corresponding resource-principal, the defined
resource-principal will be utilized whenever the
current identity is not matched elsewhere in the map.

– resource-username (optional)—username identified
with the resource-principal. Used when allocating
managed connections and connection handles.

– resource-password (optional)—password identified
with the resource-principal. Used when allocating
managed connections and connection handles.

weblog ic- ra . xml Dep loyment Descr ip to r E lements

A-16 Programming WebLogic J2EE Connectors

Programming WebLogic J2EE Connectors B-1

A P P E N D I X B

Troubleshooting

Cannot Map a ManagedConnectionFactory
BEA WebLogic Server writes the following message to the server log file:

Listing B-1 Cannot Map a ManagedConnectionFactory...

Cannot map a ManagedConnectionFactory to a Connection pool. Ensure that the

MCF’s hashcode() and equals() methods are implemented properly.

Causes and Workarounds
This exception occurs during a getConnection() method call from an application component
to a resource adapter and can occur due to the following reasons:

Remote Java Virtual Machine (JVM). The application component is executing in a
different JVM than the one that is hosting the resource adapter.

Improper implementation of ManagedConnectionFactory

Remote JVM
As currently specified, the J2EE Connector Architecture does not provide for remote access.
None of the defined interfaces are remote, and the architected system contracts presume a local
relationship between a ManagedConnectionFactory and a Connection Manager.

Troub leshoot ing

B-2 Programming WebLogic J2EE Connectors

As a result, you must deploy your application so that the application components are hosted in
the same Java Virtual Machine as your resource adapters.

Improper Implementation of ManagedConnectionFactory
WebLogic Server depends on the hashCode() and equals() methods of the resource adapter's
ManagedConnectionFactory when WebLogic Server is managing the connections to the resource
adapter. The server uses both these methods to identify a unique instance of a
ManagedConnectionFactory. As a result, you need to be aware of a few things when
implementing these methods in your ManagedConnectionFactory.

For a given instance of a ManagedConnectionFactory, its hashCode() method must always
return the same value throughout the entire lifetime of that ManagedConnectionFactory. This
begins when the associated resource adapter is deployed and ends when it is undeployed.

You must carefully write the equals() method of a ManagedConnectionFactory to distinguish
between different instances of ManagedConnectionFactory. You are free to use class or instance
data that can change during the lifetime of the resource adapter in the equals() method. This
freedom to use modifiable data in the equals() method is new with WebLogic Server 7.0. Prior
to the 7.0 release, you were restricted from doing this. BEA has changed the way WebLogic
Server stores objects, such as ManagedConnectionFactory objects, in its JNDI tree.

Prior to the 7.0 release, WebLogic Server stored serialized copies of objects in the JNDI tree. For
example, when a resource adapter was deployed, an entire copy of its
ManagedConnectionFactory object was serialized and stored in the WebLogic Server JNDI tree.
The entire state of that object at that time, including the values of all its data members, was copied
and stored. Later, when a connection request was made to that resource adapter, WebLogic
Server would use the ManagedConnectionFactory passed along in the connection request to try
to locate the connection pool to which it had earlier assigned the deployed
ManagedConnectionFactory. If the state of the ManagedConnectionFactory object had changed
between deploy time and connection request time, and if this state was reflected in the behavior
of the equals() method, then the two objects (the one copied into the JNDI tree at deploy time
and the one presented with the connection request) were actually different objects, and WebLogic
disallowed the connection request.

This is no longer a problem because WebLogic Server stores references to objects in its JNDI tree
instead of copies of the objects. Now, when a resource adapter is deployed, only a reference to its
ManagedConnectionFactory object is stored into JNDI. Later, when the connection request is
made and WebLogic Server uses the stored reference to the deployed
ManagedConnectionFactory object, it finds the same object that is now being passed along in the

Causes and Workarounds

Programming WebLogic J2EE Connectors B-3

connection request. An invocation of the object's equals() method operates on the current state
of the object, and it does not matter if the state of the object has changed since deploy time.

Troub leshoot ing

B-4 Programming WebLogic J2EE Connectors

Programming WebLogic J2EE Connectors Index-1

Index

Symbols
.rar file 1-3

automatic generation of the weblogic-ra.xml
file 6-8

directory format 5-2
modifying an existing 6-5
packaging 5-4
specifying transaction levels 3-3

A
Administration Console

monitoring connection pools 4-7
application-managed sign-on 2-2
architecture 1-5

C
capacity-increment element 4-3
client considerations 7-1

connection and ConnectionFactory 7-2
obtaining a connection in a managed

application 7-3
obtaining a connection in a non-managed

application 7-4
obtaining the ConnectionFactory 7-2

client-JNDI interaction 7-2
common client interface (CCI) 1-1, 1-5, 1-7, 7-2
components

common client interface (CCI) 1-5, 1-7
packaging and deployment interface 1-8
packaging and deployment interfaces 1-5
system-level contracts 1-5, 1-6

WebLogic J2EE Connector Architecture 1-5
configuration 6-1

automatic generation of the weblogic-ra.xml
file 6-8

configuring the ra-link-ref element 6-9
modifying an existing resource adapter 6-5
packaging resource adapters 5-4
ra.xml file 6-6
transaction level type 6-9
weblogic-ra.xml file 6-6

connection
configuring properties 4-2
leak detection 4-5
obtaining in a non-managed application 7-4

connection management 1-6, 4-1, 7-2
configuring connection properties 4-2
controlling connection pool growth 4-3
controlling system resource usage 4-4
detecting connection leaks 4-5
error logging 4-10
extended features 4-2
tracing facility 4-10

connection pool
controlling growth 4-3
monitoring using the Console 4-7

connection-cleanup-frequency element 4-5
connection-duration-time element 4-5
ConnectionFactory 7-2

obtaining (client-JNDI interaction) 7-2
obtaining a connection in a managed

application 7-3
connection-factory-name element 6-8
ConnectionManager 7-5

Index-2 Programming WebLogic J2EE Connectors

container 1-2
container-managed sign-on 2-2
customer support contact information xi

D
default resource principal 2-5
deployment

options, for resource adapters 5-5
overview 5-5
resource adapter names 5-6

deployment descriptors 5-3
basic conventions for manually editing A-2
DOCTYPE header information A-2
weblogic-ra.xml elements A-1

diagram of WebLogic J2EE Connector
Architecture 1-5
document type definition (DTD)

validation A-3
documentation, where to find it x

E
EJBs

compiling Java code 6-4
deployment descriptor 6-4

enterprise information system (EIS) 1-2
Enterprise JavaBeans

compiling Java code 6-4
deployment descriptors 6-4

error logging 4-10
extended connection management

features 4-2

I
implementation overview

WebLogic J2EE Connector Architecture 1-4
initiating-principal element A-9, A-15

J
J2EE connector (see resource adapter) 1-3
jar file 5-3
jndi-name element A-5, A-10, A-14, A-15
JTA XAResource-based contract 3-3

L
local transaction

management contract 3-3
support 3-2, 3-4

log-filename element 4-10
logging-enabled element 4-10

M
managed environment 1-3
ManagedConnections

minimizing run-time performance costs 4-2
manually editing XML deployment files A-2
map-config-property element 4-2
map-config-property-name element 4-2
map-config-property-value element 4-2
max-capacity element 6-9
monitoring

connection pools 4-7

N
native libraries 5-3
no transaction support 3-4
non-managed environment 1-3

O
overview, WebLogic J2EE Connector
Architecture 1-1

P
packaging

and deployment interface 1-5, 1-8

Programming WebLogic J2EE Connectors Index-3

printing product documentation x

R
ra.xml file 1-3, 4-2

configuring 6-6
DOCTYPE header A-3
specifying the transaction level support 3-3

ra-link-ref element 6-9
resource adapters 1-4

creating, main steps 6-3
deployment descriptors 5-3
deployment names 5-6
deployment options 5-5
deployment overview 5-5
jar files 5-3
modifying an existing 6-5
modifying, main steps 6-3
native libraries 5-3
packaging 5-4
structure 5-2

resource manager 1-4
resource-password element A-15
resource-principal element A-9, A-15

default 2-5
resource-username element A-15

S
security 2-1

application-managed sign-on 2-2
container-managed sign-on 2-2
management 1-7

security principal map
default resource principal 2-5

security-principal-map element A-15
service provider interface (SPI) 1-4
Sun Microsystems J2EE Platform Specification,
Version 1.3 1-4
support

technical xi
system contract 1-4

system resource, controlling usage 4-4
system-level contracts 1-5, 1-6

security management 1-7
transaction management 1-6, 1-7

T
terminology 1-1
tracing facility 4-10
transaction levels

configuring 6-9
local transaction support 3-2
local transactions 3-4
no transaction support 3-3, 3-4
specifying in the .rar configuration 3-3
XA transaction support 3-2, 3-4

transaction management 1-7, 3-1
contract 3-3
supported transaction levels 3-2

W
WebLogic J2EE Connector Architecture 1-3

automatic generation of the weblogic-ra.xml
file 6-8

client considerations 7-1
common client interface (CCI) 7-2
components 1-5
configuration 6-1
connection management 4-1
ConnectionFactory 7-2
diagram 1-5
implementation overview 1-4
overview 1-1
security 2-1
terminology 1-1
transaction management 3-1

WebLogic Server
extended connection management features

4-2
weblogic-ra.xml file 1-4, 4-10, A-1

automatic generation of 6-8

Index-4 Programming WebLogic J2EE Connectors

configuring 6-6
default values 6-8
DOCTYPE header A-3
element descriptions A-5
manually editing XML deployment files A-2

X
XA transaction support 3-2, 3-4
XML deployment files, manually editing A-2

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Overview of WebLogic J2EE Connectors
	WebLogic J2EE Connector Terminology
	Overview of the BEA WebLogic J2EE Connector Implementation
	J2EE Connector Architecture Components
	System-level Contracts
	Common Client Interface (CCI)
	Packaging and Deployment

	Security
	Container-Managed and Application-Managed Sign-on
	Application-Managed Sign-on
	Container-Managed Sign-on

	Password Credential Mapping Mechanism
	Authentication Mechanisms
	Configuring Credential Mappings Using the Console
	Defining Users and Groups
	Defining Users
	Defining Groups

	Default Resource Principal
	Security Policy Processing

	Transaction Management
	Supported Transaction Levels
	Specifying the Transaction Levels in the RAR Configuration
	Transaction Management Contract

	Connection Management
	Configuring Connection Properties
	BEA WebLogic Server Extended Connection Management Features
	Minimizing the Run-Time Performance Cost Associated with Creating ManagedConnections
	Controlling Connection Pool Growth
	Reserving Connections
	Controlling System Resource Usage
	Detecting Connection Leaks
	Garbage Collector Method
	Connection Inactivity Detector Method

	Connection Proxy Wrapper

	Monitoring Connections Using the Console
	Getting Started
	Viewing Leaked Connections
	Viewing Idle Connections

	Error Logging and Tracing Facility

	Packaging and Deploying Connectors
	Packaging Connectors
	Packaging Directory Structure
	Packaging Considerations
	Packaging Limitations
	Packaging Connector Archives (RARs)

	Deploying Connectors
	Deployment Options
	Deployment Descriptor
	Connector Deployment Names

	Configuration
	Resource Adapter Developer Tools
	ANT Tasks to Create Skeleton Deployment Descriptors
	WebLogic Builder
	XML Editors

	Configuring Resource Adapters
	Resource Adapter Overview
	Creating and Modifying Resource Adapters: Main Steps
	Creating a New Resource Adapter Archive (RAR)
	Modifying an Existing Resource Adapter (RAR)

	Configuring the ra.xml File
	Configuring the weblogic-ra.xml File
	Automatic Generation of the weblogic-ra.xml File
	Configuring the ra-link-ref Element

	Configuring the Transaction Level Type

	Client Considerations
	Common Client Interface (CCI)
	ConnectionFactory and Connection
	Obtaining the ConnectionFactory (Client-JNDI Interaction)
	Obtaining a Connection in a Managed Application
	Obtaining a Connection in a Non-Managed Application

	weblogic-ra.xml Deployment Descriptor Elements
	Manually Editing XML Deployment Files
	Basic Conventions
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation

	Using WebLogic Builder to Edit Deployment Descriptors
	Dynamic Descriptor Updates
	weblogic-ra.xml Element Descriptions
	weblogic-connection-factory-dd
	pool-params
	map-config-property
	security-principal-map

	Troubleshooting
	Cannot Map a ManagedConnectionFactory
	Causes and Workarounds
	Remote JVM
	Improper Implementation of ManagedConnectionFactory

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

