
BEAWebLogic
Server® and
WebLogic
Express®

Programming WebLogic
JDBC

Version 8.1
Revised: June 28, 2006

Copyright
Copyright © 2003-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Programming WebLogic JDBC iii

Contents

About This Document
Audience . xviii

e-docs Web Site . xviii

How to Print the Document . xviii

Related Information . xviii

Contact Us! . xviii

Documentation Conventions . xix

1. Introduction to WebLogic JDBC
Overview of JDBC. 1-1

Using JDBC Drivers with WebLogic Server . 1-2

Types of JDBC Drivers. 1-2

Table of WebLogic Server JDBC Drivers. 1-2

Selecting a JDBC Driver. 1-3

WebLogic Server JDBC Drivers. 1-3

WebLogic jDriver for Oracle (Deprecated) . 1-4

BEA WebLogic Type 4 JDBC Driver for Microsoft SQL Servers 1-4

WebLogic jDriver for Microsoft SQL Server (Deprecated) 1-4

WebLogic Server Wrapper Drivers. 1-4

WebLogic RMI Driver. 1-4

WebLogic Pool Driver . 1-5

WebLogic JTS Driver . 1-5

iv Programming WebLogic JDBC

Third-Party JDBC Drivers . 1-5

Oracle Thin Driver . 1-6

Overview of Connection Pools . 1-6

Using Connection Pools with Server-side Applications . 1-7

Using Connection Pools with Client-side Applications. 1-8

Overview of MultiPools . 1-8

Overview of Clustered JDBC . 1-8

Overview of DataSources . 1-9

JDBC API . 1-9

JDBC 2.0 . 1-9

Platforms . 1-9

2. Configuring and Using WebLogic JDBC
Configuring and Using Connection Pools. 2-2

Advantages to Using Connection Pools. 2-2

Creating a Connection Pool at Startup . 2-2

Avoiding Server Lockup with the Correct Number of Connections. 2-3

Database Passwords in Connection Pool Configuration. 2-3

SQL Statement Timeout Enhancements for Pooled JDBC Connections 2-5

JDBC Connection Pool Testing Enhancements . 2-5

Minimizing Connection Test Delay After Database Connectivity Loss. 2-6

Minimizing Connection Request Delay After Connection Test Failures 2-7

Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection. 2-8

Creating a Connection Pool Dynamically . 2-9

Dynamic Connection Pool Sample Code. 2-10

Import Packages . 2-10

Look Up the Administration MBeanHome . 2-10

Programming WebLogic JDBC v

Get the Server MBean . 2-11

Create the Connection Pool MBean . 2-11

Set the Connection Pool Properties . 2-11

Add the Target . 2-11

Create a DataSource . 2-11

Removing a Dynamic Connection Pool and DataSource 2-12

Configuring and Using DataSources . 2-13

Importing Packages to Access DataSource Objects. 2-14

Obtaining a Client Connection Using a DataSource . 2-15

Possible Exceptions When a Connection Request Fails. 2-16

Connection Pool Limitation . 2-17

Managing Connection Pools . 2-17

Getting Status and Statistics for a Connection Pool . 2-18

Enabling Connection Creation Retries . 2-19

Initializing Connections with a SQL Query . 2-20

Testing Connection Pools and Database Connections . 2-21

Enabling Connection Requests to Wait for a Connection . 2-22

Connection Reserve Timeout . 2-22

Limiting the Number of Waiting Connection Requests 2-23

Configuring and Managing the Statement Cache for a Connection Pool 2-23

Configuring the Statement Cache . 2-23

Deprecated Statement Cache Configuration Options . 2-24

Clearing the Statement Cache for a Connection Pool . 2-25

Clearing the Statement Cache for a Single Connection 2-25

Shrinking a Connection Pool . 2-26

Resetting a Connection Pool . 2-26

Suspending a Connection Pool. 2-26

Resuming a Connection Pool . 2-27

vi Programming WebLogic JDBC

Configuring and Using Application-Scoped JDBC Connection Pools 2-27

Configuring Application-Scoped Connection Pools . 2-28

Required Elements Within the jdbc-connection-pool Element. 2-30

Encrypting the Database Password in weblogic-application.xml. 2-31

Deprecated Statement Cache Configuration Options for Application-Scoped
Connection Pools . 2-33

Getting a Connection from an Application-Scoped Connection Pool 2-35

Configuring and Using MultiPools . 2-35

Configuring MultiPools . 2-35

Choosing the MultiPool Algorithm . 2-36

High Availability . 2-36

Load Balancing . 2-36

Transaction Support in JDBC MultiPools . 2-36

Transaction Failover Processing for MultiPools. 2-37

MultiPool Failover Enhancements. 2-37

Connection Request Routing Enhancements When a Connection Pool Fails . 2-38

Automatic Re-enablement on Recovery of a Failed Connection Pool within a
MultiPool . 2-38

Enabling Failover for Busy Connection Pools in a MultiPool 2-39

Controlling MultiPool Failover with a Callback . 2-40

Controlling MultiPool Failback with a Callback . 2-42

MultiPool Fail-Over Limitations and Requirements . 2-44

Test Connections on Reserve to Enable Fail-Over . 2-44

By Default, No Fail-Over When All Connections are In Use 2-45

Do Not Enable Connection Creation Retries . 2-45

No Fail-Over for In-Use Connections . 2-45

Programming WebLogic JDBC vii

3. Performance Tuning Your JDBC Application
WebLogic Performance-Enhancing Features . 3-1

How Connection Pools Enhance Performance. 3-1

Caching Statements and Data . 3-2

Designing Your Application for Best Performance. 3-2

1. Process as Much Data as Possible Inside the Database . 3-2

2. Use Built-in DBMS Set-based Processing . 3-3

3. Make Your Queries Smart . 3-3

4. Make Transactions Single-batch . 3-5

5. Never Have a DBMS Transaction Span User Input . 3-6

6. Use In-place Updates . 3-6

7. Keep Operational Data Sets Small . 3-6

8. Use Pipelining and Parallelism. 3-7

4. Using WebLogic Wrapper Drivers
Using the WebLogic RMI Driver . 4-1

Setting Up WebLogic Server to Use the WebLogic RMI Driver 4-2

Sample Client Code for Using the RMI Driver . 4-2

Import the Required Packages. 4-2

Get the Database Connection . 4-2

Using a JNDI Lookup to Obtain the Connection . 4-2

Using Only the WebLogic RMI Driver to Obtain a Database Connection 4-4

Row Caching with the WebLogic RMI Driver. 4-5

Important Limitations for Row Caching with the WebLogic RMI Driver 4-5

Using the WebLogic JTS Driver . 4-7

Sample Client Code for Using the JTS Driver . 4-8

 Using the WebLogic Pool Driver . 4-9

viii Programming WebLogic JDBC

5. Using Third-Party Drivers with WebLogic Server
Overview of Third-Party JDBC Drivers . 5-1

Using Third-Party JDBC Drivers Installed with WebLogic Server. 5-2

Using Third-Party JDBC Drivers not Installed with WebLogic Server. 5-2

Using the Oracle Thin Driver . 5-3

Updating the Oracle 10g Driver. 5-3

Using the Oracle 9.2 Driver . 5-3

Package Change for Oracle Thin Driver 9.x and 10g . 5-4

Character Set Support with nls_charset12.zip . 5-4

Using the Oracle Thin Driver in Debug Mode . 5-5

Updating the Sybase jConnect Driver . 5-5

Installing and Using the IBM DB2 Type 2 JDBC Driver . 5-6

Connection Pool Attributes when using the IBM DB2 Type 2 JDBC Driver 5-7

Installing and Using the SQL Server 2000 Driver for JDBC from Microsoft 5-9

Installing the MS SQL Server JDBC Driver on a Windows System. 5-9

Installing the MS SQL Server JDBC Driver on a Unix System 5-9

Connection Pool Attributes when using the Microsoft SQL Server Driver for JDBC . .
5-10

Installing and Using the IBM Informix JDBC Driver. 5-11

Connection Pool Attributes when using the IBM Informix JDBC Driver. 5-12

Programming Notes for the IBM Informix JDBC Driver . 5-15

Getting a Connection with Your Third-Party Driver . 5-15

Using Connection Pools with a Third-Party Driver. 5-15

Creating the Connection Pool and DataSource. 5-15

Using a JNDI Lookup to Obtain the Connection . 5-15

Getting a Physical Connection from a Connection Pool . 5-17

Opening a Connection . 5-18

Programming WebLogic JDBC ix

Closing a Connection . 5-19

Limitations for Using a Physical Connection . 5-21

Using Vendor Extensions to JDBC Interfaces. 5-21

Sample Code for Accessing Vendor Extensions to JDBC Interfaces. 5-22

Import Packages to Access Vendor Extensions. 5-23

Get a Connection. 5-23

Cast the Connection as a Vendor Connection . 5-23

Use Vendor Extensions . 5-23

Using Oracle Extensions with the Oracle Thin Driver . 5-25

Limitations When Using Oracle JDBC Extensions . 5-25

Sample Code for Accessing Oracle Extensions to JDBC Interfaces 5-26

Programming with ARRAYs . 5-26

Import Packages to Access Oracle Extensions . 5-27

Establish the Connection. 5-27

Getting an ARRAY . 5-27

Updating ARRAYs in the Database . 5-28

Using Oracle Array Extension Methods . 5-29

Programming with STRUCTs . 5-29

Getting a STRUCT . 5-30

Using OracleStruct Extension Methods . 5-30

Getting STRUCT Attributes . 5-31

Using STRUCTs to Update Objects in the Database . 5-32

Creating Objects in the Database . 5-32

Automatic Buffering for STRUCT Attributes. 5-33

Programming with REFs . 5-33

Getting a REF . 5-34

Using OracleRef Extension Methods . 5-35

Getting a Value . 5-35

x Programming WebLogic JDBC

Updating REF Values . 5-36

Creating a REF in the Database . 5-37

Programming with BLOBs and CLOBs . 5-38

Query to Select BLOB Locator from the DBMS . 5-38

Declare the WebLogic Server java.sql Objects. 5-38

Begin SQL Exception Block. 5-39

Updating a CLOB Value Using a Prepared Statement 5-39

Programming with Oracle Virtual Private Databases . 5-40

Oracle VPD with WebLogic Server 8.1SP2 . 5-41

Support for Vendor Extensions Between Versions of WebLogic Server Clients and Servers
5-41

Tables of Oracle Extension Interfaces and Supported Methods 5-42

6. Using RowSets with WebLogic Server
About RowSets . 6-1

Creating RowSets . 6-2

Working with Data in a RowSet . 6-2

Populating a RowSet . 6-3

Populating a RowSet from an Existing ResultSet . 6-3

Populating a RowSet from a DataSource and Query . 6-3

Retrieving Data from a RowSet . 6-4

Updating Data in a RowSet . 6-4

Deleting Data from a RowSet . 6-5

Inserting Data into a RowSet . 6-5

Flushing Changes to the Database . 6-6

RowSet Meta Data . 6-6

Optimistic Concurrency Policies. 6-6

VERIFY_READ_COLUMNS. 6-8

Programming WebLogic JDBC xi

VERIFY_MODIFIED_COLUMNS. 6-8

VERIFY_SELECTED_COLUMNS . 6-8

VERIFY_NONE. 6-9

VERIFY_AUTO_VERSION_COLUMNS . 6-9

VERIFY_VERSION_COLUMNS. 6-9

Optimistic Concurrency Control Limitations. 6-10

Choosing an Optimistic Policy. 6-10

MetaData Settings for RowSet Updates . 6-11

executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys 6-11

Setting Table and Primary Key Information Using the MetaData Interface 6-12

Setting the Write Table . 6-12

RowSets and Transactions. 6-12

Integrating with JTA Global Transactions . 6-13

Behavior of Rowsets Using Global Transactions . 6-13

Using Local Transactions . 6-13

Behavior of Rowsets Using Local Transactions . 6-13

Performance Options . 6-14

JDBC Batching. 6-14

Oracle Batching Limitations . 6-14

Group Deletes. 6-15

RowSets and XML . 6-15

Writing a RowSet Instance as XML. 6-16

Populating a RowSet from an XML Document . 6-16

JDBC Type to XML Schema Type Mapping . 6-17

XML Schema Type to JDBC Type Mapping . 6-18

Multi-table RowSet Mapping . 6-19

Multi-Table RowSet Example . 6-20

xii Programming WebLogic JDBC

7. Testing JDBC Connections and Troubleshooting
Monitoring JDBC Connectivity . 7-1

Validating a DBMS Connection from the Command Line . 7-2

Syntax . 7-2

Arguments. 7-2

Examples. 7-3

Troubleshooting JDBC . 7-3

JDBC Connections . 7-4

Windows . 7-4

UNIX . 7-4

Codeset Support . 7-4

Other Problems with Oracle on UNIX . 7-4

Thread-related Problems on UNIX . 7-5

Closing JDBC Objects . 7-5

Abandoning JDBC Objects. 7-6

Troubleshooting Problems with Shared Libraries on UNIX . 7-6

WebLogic jDriver for Oracle . 7-7

Solaris . 7-7

HP-UX . 7-7

Incorrectly Set File Permissions . 7-7

Incorrect SHLIB_PATH . 7-8

Using Microsoft SQL with Nested Triggers . 7-8

Exceeding the Nesting Level . 7-9

Using Triggers and EJBs . 7-10

A. Using WebLogic Server with Oracle RAC
Overview of Oracle Real Application Clusters. A-2

Oracle RAC Scalability with WebLogic Server. A-3

Programming WebLogic JDBC xiii

Oracle RAC Availability with WebLogic Server .A-3

Oracle RAC Load Balancing with WebLogic Server. .A-3

Oracle RAC Failover with WebLogic Server. .A-4

Environment .A-4

Hardware Requirements .A-4

WebLogic Server Cluster .A-4

Oracle RAC Cluster .A-4

Shared Storage. .A-5

Software Requirements .A-5

Configuration Considerations for Oracle. .A-5

Configuring the Listener Process for Each Oracle RAC InstanceA-6

Disabling Remote Listeners .A-7

Configuration Options in WebLogic Server with Oracle RAC .A-7

Choosing a WebLogic Server Configuration for Use with Oracle RACA-8

Required JDBC Drivers .A-9

Configuration Considerations for Failover. .A-9

MultiPool-Managed Failover .A-9

Connect-Time Failover .A-10

Delays During Failover .A-10

Failure Handling Walkthrough for Global Transactions A-11

Using MultiPools with Oracle RAC. .A-12

Attributes of a MultiPool. .A-14

Using MultiPools with Global Transactions .A-14

Rules for Connection Pools within a MultiPool Using Global Transactions . .A-14

Required Attributes of Connection Pools within a MultiPool Using Global
Transactions .A-15

Sample config.xml Code .A-16

Using MultiPools without Global Transactions .A-18

xiv Programming WebLogic JDBC

Attributes of Connection Pools within a MultiPool Not Using Global Transactions
A-18

Sample config.xml Code. A-18

Using Connect-Time Failover with Oracle RAC. A-20

Using Connect-Time Failover without Global Transactions A-21

Attributes of a Connect-Time Failover Configuration without Global Transactions
A-21

Sample config.xml Code. A-22

Using Connect-Time Failover with Global Transactions. A-23

Attributes of a Connect-Time Failover Configuration with Global Transactions . .
A-23

Sample config.xml Code. A-24

XA Considerations and Limitations with Oracle 9i RAC. A-25

Required JDBC Driver Configuration for Use with XA . A-26

Oracle 9i RAC XA Requirements . A-26

A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same
Instance of the RAC Cluster . A-26

Transaction IDs Must Be Unique Within the RAC Cluster A-26

Known Limitations When Using Oracle RAC with WebLogic Server A-27

Potential for Inconsistent Transaction Completion (Data Loss) in Some Failure
Conditions . A-27

Potential for Data Deadlocks in Some Failure Scenarios A-28

Potential for Transactions Completed Out of Sequence A-28

Known Issue Occurring After Database Server Crash. A-29

JMS Store Recovery with Oracle RAC. A-29

Configuring a JMS JDBC Store for Use with Oracle RAC A-29

Automatic Retry . A-29

Manual Retry . A-30

Programming WebLogic JDBC xv

Alternative: JMS File Store .A-32

xvi Programming WebLogic JDBC

Programming WebLogic JDBC xvii

About This Document

This document describes how to use JDBC with WebLogic Server™.

The document is organized as follows:

Chapter 1, “Introduction to WebLogic JDBC,” introduces the JDBC components and JDBC
API.

Chapter 2, “Configuring and Using WebLogic JDBC,” describes how to configure JDBC
components for use with WebLogic Server Java applications.

Chapter 3, “Performance Tuning Your JDBC Application,” describes how to obtain the best
performance from JDBC applications.

Chapter 4, “Using WebLogic Wrapper Drivers,” describes how to set up your WebLogic
RMI driver and JDBC clients to use with WebLogic Server.

Chapter 5, “Using Third-Party Drivers with WebLogic Server,” describes how to set up and
use third-party drivers with WebLogic Server.

Chapter 6, “Using RowSets with WebLogic Server,” describes how to use WebLogic
Server RowSets.

Chapter 7, “Testing JDBC Connections and Troubleshooting,” describes troubleshooting
tips when using JDBC with WebLogic Server.

Appendix A, “Using WebLogic Server with Oracle RAC,” provides high level information
for configuring WebLogic server when used with Oracle RAC to provide a more scalable
and more available back-end system.

About Th is Document

xviii Programming WebLogic JDBC

Audience
This document is written for application developers who want to build e-commerce applications
using the Java 2 Platform, Enterprise Edition (J2EE). It is assumed that readers know Web
technologies, object-oriented programming techniques, and the Java programming language.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information
The BEA corporate Web site provides all documentation for WebLogic Server. For more
information about JDBC, see the JDBC section on the Sun Microsystems JavaSoft Web site at
http://java.sun.com/products/jdbc/index.html.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You

http://www.adobe.com
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jdbc/index.html
mailto:docsupport@bea.com
http://www.bea.com

Programming WebLogic JDBC xix

can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

About Th is Document

xx Programming WebLogic JDBC

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Programming WebLogic JDBC 1-1

C H A P T E R 1

Introduction to WebLogic JDBC

The following sections provide an overview of the JDBC components and JDBC API:

“Overview of JDBC” on page 1-1

“Using JDBC Drivers with WebLogic Server” on page 1-2

“Overview of Connection Pools” on page 1-6

“Overview of MultiPools” on page 1-8

“Overview of Clustered JDBC” on page 1-8

“Overview of DataSources” on page 1-9

“JDBC API” on page 1-9

“JDBC 2.0” on page 1-9

“Platforms” on page 1-9

Overview of JDBC
Java Database Connectivity (JDBC) is a standard Java API that consists of a set of classes and
interfaces written in the Java programming language. Application, tool, and database developers
use JDBC to write database applications and execute SQL statements.

JDBC is a low-level interface, which means that you use it to invoke (or call) SQL commands
directly. In addition, JDBC is a base upon which to build higher-level interfaces and tools, such
as Java Message Service (JMS) and Enterprise Java Beans (EJBs).

In t roduct ion to WebLog ic JDBC

1-2 Programming WebLogic JDBC

Using JDBC Drivers with WebLogic Server
JDBC drivers implement the interfaces and classes of the JDBC API. The following sections
describe the JDBC driver options that you can use with WebLogic Server.

Types of JDBC Drivers
WebLogic Server uses the following types of JDBC drivers that work in conjunction with each
other to provide database access:

Standard JDBC drivers that provide database access directly between a WebLogic Server
connection pool and the database. WebLogic Server uses a DBMS vendor-specific JDBC
driver, such as the WebLogic jDrivers for Oracle and Microsoft SQL Server, to connect to
a back-end database.

Wrapper drivers that provide vendor-neutral database access. A Java client application can
use a wrapper driver to access any database configured in WebLogic server (via a
connection pool). BEA offers three wrapper drivers—RMI, Pool, and JTS. The WebLogic
Server system uses these drivers behind the scenes when you use a JNDI look-up to get a
connection from a connection pool through a data source. A client application can also use
these drivers directly to get a connection from a connection pool (You can use RMI from
external clients and the pool and JTS from server-side clients only). However, BEA
recommends that you use a data source to get a connection from a connection pool, rather
than using these drivers directly. (See “Obtaining a Client Connection Using a DataSource”
on page 2-15.)

The middle tier architecture of WebLogic Server, including data sources and connection pools,
allows you to manage database resources centrally in WebLogic Server. The vendor-neutral
wrapper drivers makes it easier to adapt purchased components to your DBMS environment and
to write more portable code.

Table of WebLogic Server JDBC Drivers
The following table summarizes the drivers that WebLogic Server uses.

Us ing JDBC Dr ive rs w i th WebLog ic Se rve r

Programming WebLogic JDBC 1-3

Selecting a JDBC Driver
When deciding which JDBC driver to use to connect to a database, you should try drivers from
various vendors in your environment. In general, JDBC driver performance is dependent on many
factors, especially the SQL code used in applications and the JDBC driver implementation.

For information about supported JDBC drivers, see “Supported Database Configurations” in
Supported Configurations for WebLogic Platform 8.1.

WebLogic Server JDBC Drivers
The following sections describe Type 2 and Type 4 JDBC drivers from BEA used with WebLogic
Server to connect to the vendor-specific DBMS.

Table 1-1 JDBC Drivers

Type and
Name of Driver

Database
Connectivity

Documentation Sources

Type 2 (requires native libraries):
• WebLogic jDriver for Oracle
• WebLogic jDriver for Oracle

XA
• Third-party drivers, such as

the Oracle OCI driver and the
IBM DB2 driver

Between WebLogic Server
and DBMS in local and
distributed transactions.

Programming WebLogic JDBC (this
document)

Programming WebLogic JTA

Administration Console Online Help,
“Configuring JDBC Connection
Pools”

Using WebLogic jDriver for Oracle

Type 4 (pure Java)
• WebLogic jDrivers for

Microsoft SQL Server
• Third-party drivers,

including:
Oracle Thin and Oracle Thin
XA drivers

Between WebLogic Server
and DBMS in local and
distributed transactions.

Note: The WebLogic
jDrivers for
Microsoft SQL
Server supports
local transactions
only.

Programming WebLogic JDBC (this
document)

Programming WebLogic JTA

Administration Console Online Help,
“Configuring JDBC Connection
Pools”

Using WebLogic jDriver for
Microsoft SQL Server

Type 3
• WebLogic RMI Driver

Between an external client
and WebLogic Server
(connection pool).

Programming WebLogic JDBC (this
document)

http://e-docs.bea.com/wls/docs81/jdbc/index.html
http://e-docs.bea.com/wls/docs81/jta/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/oracle/index.html
http://e-docs.bea.com/wls/docs81/jdbc/index.html
http://e-docs.bea.com/wls/docs81/jta/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs81/jdbc/index.html
http://e-docs.bea.com/platform/suppconfigs/configs81/81_over/supported_db.html

In t roduct ion to WebLog ic JDBC

1-4 Programming WebLogic JDBC

WebLogic jDriver for Oracle (Deprecated)
BEA’s WebLogic jDriver for Oracle is included with the WebLogic Server distribution. This
driver requires an Oracle client installation. The WebLogic jDriver for Oracle XA driver extends
the WebLogic jDriver for Oracle for distributed transactions. For additional information, see
Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs81oracle/index.html.

BEA WebLogic Type 4 JDBC Driver for Microsoft SQL Servers
WebLogic Server 8.1 SP1 includes a new JDBC driver from BEA for connecting to a Microsoft
SQL Server database. The BEA WebLogic Type 4 JDBC MS SQL Server driver replaces the
WebLogic jDriver for Microsoft SQL Server, which is deprecated. The new driver offers JDBC
3.0 compliance, support for some JDBC 2.0 extensions, and better performance. BEA
recommends that you use the new BEA WebLogic Type 4 JDBC MS SQL Server driver in place
of the WebLogic jDriver for Microsoft SQL Server.

For more information, see BEA WebLogic Type 4 JDBC Drivers.

WebLogic jDriver for Microsoft SQL Server (Deprecated)
BEA’s WebLogic jDriver for Microsoft SQL Server, included in the WebLogic Server
distribution, is a pure-Java, Type 4 JDBC driver that provides connectivity to Microsoft SQL
Server. For more information, see Configuring and Using WebLogic jDriver for MS SQL Server
at http://e-docs.bea.com/wls/docs81/mssqlserver4/index.html.

WebLogic Server Wrapper Drivers
The following sections briefly describe the WebLogic wrapper drivers that provide database
access to applications. You can use these drivers in server-side applications (also in client
applications for the RMI driver), however BEA recommends that you look up a data source from
the JNDI tree to get a database connection.

For more details about using these drivers, see Chapter 4, “Using WebLogic Wrapper Drivers.”

WebLogic RMI Driver
The WebLogic RMI driver is a Type 3 JDBC driver that runs in WebLogic Server. You can use
the WebLogic RMI driver in a remote client application to connect to a database through a
WebLogic Server connection pool, however, this is not the recommended method. BEA
recommends that you look up a data source on the JNDI tree to get a database connection from a

http://e-docs.bea.com/wls/docs81/oracle/index.html
http://e-docs.bea.com/wls/docs81/jdbc_drivers/index.html
http://e-docs.bea.com/wls/docs81/mssqlserver4/index.html

Us ing JDBC Dr ive rs w i th WebLog ic Se rve r

Programming WebLogic JDBC 1-5

connection pool. For requests from external clients, the data source then internally uses the RMI
driver, if necessary.

You can use the WebLogic RMI driver with server-side or client applications.

For more details about using the WebLogic RMI driver, see “Using the WebLogic RMI Driver”
on page 4-1.

WebLogic Pool Driver
The WebLogic Pool driver enables utilization of connection pools from server-side applications
such as HTTP servlets or EJBs. You can use it directly in server-side applications, but BEA
recommends that you use a data source through a JNDI look-up to get a connection from a
connection pool. Data sources in WebLogic Server use the WebLogic Pool driver internally to
get connections from a connection pool.

For information about using the Pool driver, see Accessing Databases in Programming Tasks in
Programming WebLogic HTTP Servlets.

WebLogic JTS Driver
The WebLogic JTS driver is a wrapper driver that is similar to the WebLogic Pool Driver, but is
used in distributed transactions across multiple servers with one database instance. The JTS
driver is more efficient than the WebLogic jDriver for Oracle XA driver when working with only
one database instance because calls from the transaction manager to start and end work with this
branch of the transaction (XAResource.start() and XAResource.end()) do not require
communication with the database (they are no-ops).

This driver is for use with server-side applications only.

For more details about using the WebLogic JTS driver, see “Using the WebLogic JTS Driver” on
page 4-7.

Third-Party JDBC Drivers
WebLogic Server works with third-party JDBC drivers that meet the following requirements:

Are thread-safe.

Support the JDBC API. Drivers can support extensions to the API, but they must support
the JDBC API as a minimum.

Implement EJB transaction calls in JDBC.

http://e-docs.bea.com/wls/docs81/servlet/progtasks.html

In t roduct ion to WebLog ic JDBC

1-6 Programming WebLogic JDBC

You typically use these drivers when configuring WebLogic Server to create physical database
connections in a connection pool.

Oracle Thin Driver
The Oracle Thin Type 4 driver bundled with WebLogic Server provides connectivity from
WebLogic Server to an Oracle DBMS. You may want to use the latest version of the Oracle Thin
driver, which is available from the Oracle Web site. For information on using this driver with
WebLogic Server, see “Using Third-Party Drivers with WebLogic Server” on page 5-1.

Overview of Connection Pools
In WebLogic Server, you can configure connection pools that provide ready-to-use pools of
connections to your DBMS. Client and server-side applications can utilize connections from a
connection pool through a DataSource on the JNDI tree (the preferred method) or by using a
WebLogic wrapper driver. When finished with a connection, applications return the connection
to the connection pool.

Figure 1-1 WebLogic Server Connection Pool Architecture

When the connection pool starts up, it creates a specified number of physical database
connections. By establishing connections at start-up, the connection pool eliminates the overhead
of creating a database connection for each application.

Overv iew o f Connec t ion Poo ls

Programming WebLogic JDBC 1-7

Connection pools require a JDBC driver to make the physical database connections from
WebLogic Server to the DBMS. The JDBC driver can be one of the WebLogic jDrivers or a
third-party JDBC driver, such as the Oracle Thin Driver. The following table summarizes the
advantages to using connection pools.

This section is an overview of connection pools. For more detailed information, see “Configuring
and Using Connection Pools” on page 2-2.

Using Connection Pools with Server-side Applications
For database access from server-side applications, such as HTTP servlets, use a DataSource from
the Java Naming and Directory Interface (JNDI) tree or use the WebLogic Pool driver. For
distributed transactions, use a TxDataSource from the JNDI tree. For transactions distributed
across multiple servers within a single WebLogic domain with one database instance, use a
TxDataSource from the JNDI tree or use the JTS driver. Note that BEA recommends that you

Table 1-2 Advantages to Using Connection Pools

Connection Pools Provide These
Advantages. . .

With This Functionality . . .

Save time, low overhead Creating a DBMS connection is a slow operation.
With connection pools, connections are already
established and available to users. The alternative is
for applications to make their own JDBC
connections as needed. A DBMS runs faster with
dedicated connections than if it has to handle
incoming connection attempts at run time.

Manage DBMS users Allows you to manage the number of concurrent
DBMS connections on your system. This is
important if you have a licensing limitation for
DBMS connections, or a resource concern.

Your application does not need to know of or
transmit the DBMS username, password, and DBMS
location.

Allow use of the DBMS
persistence option

If you use the DBMS persistence option with some
APIs, such as EJBs, pools are mandatory so that
WebLogic Server can control the JDBC connection.
This ensures your EJB transactions are committed or
rolled back correctly and completely.

In t roduct ion to WebLog ic JDBC

1-8 Programming WebLogic JDBC

access connection pools using the JNDI tree and a DataSource object rather than using WebLogic
wrapper drivers.

Using Connection Pools with Client-side Applications
Note: For new deployments, BEA recommends that you use a DataSource from the JNDI tree

to access database connections rather than the RMI driver.

BEA offers the RMI driver for client-side JDBC. The RMI driver provides a standards-based
approach using the Java 2 Enterprise Edition (J2EE) specifications.

The WebLogic RMI driver is a Type 3 JDBC driver that uses RMI and a DataSource object to
create database connections. This driver also provides for clustered JDBC, leveraging the load
balancing and failover features of WebLogic Server clusters. You can define DataSource objects
to enable transactional support or not.

Overview of MultiPools
JDBC MultiPools are “pools of connection pools” that you can set up according to either a high
availability or load balancing algorithm. You use a MultiPool in the same manner that you use a
connection pool. When an application requests a connection, the MultiPool determines which
connection pool will provide a connection, based on the selected algorithm.

You can choose one of the following algorithm options for each MultiPool in your WebLogic
Server configuration:

High availability, in which the connection pools are set up as an ordered list and used
sequentially.

Load balancing, in which all listed pools are accessed using a round-robin scheme.

For more information, see “Configuring and Using MultiPools” on page 2-35.

Overview of Clustered JDBC
WebLogic Server allows you to cluster JDBC objects, including data sources, connection pools
and MultiPools, to improve the availability of cluster-hosted applications. Each JDBC object you
configure for your cluster must exist on each managed server in the cluster—when you configure
the JDBC objects, target them to the cluster.

For information about JDBC objects in a clustered environment, see “JDBC Connections” in
Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs81/cluster/overview.html#JDBC.

http://e-docs.bea.com/wls/docs81/cluster/overview.html#JDBC

Overv iew o f DataSources

Programming WebLogic JDBC 1-9

Overview of DataSources
Client– and server-side JDBC applications can obtain a DBMS connection using a DataSource.
A DataSource is an interface between an application and the connection pool. Each data source
(such as a DBMS instance) requires a separate DataSource object, which may be implemented as
a DataSource class that supports distributed transactions. For more information, see “Configuring
and Using DataSources” on page 2-13.

JDBC API
To create a JDBC application, use the java.sql API to create the class objects necessary to
establish a connection with a data source, to send queries and update statements to the data
source, and to process the results. For a complete description of all JDBC interfaces, see the
standard JDBC interfaces at java.sql Javadoc. See “Configuring and Using Connection Pools”
on page 2-2. Also see the following WebLogic Javadocs:

weblogic.management.configuration (MBeans for creating DataSources, connection
pools, and MultiPools)

weblogic.management.runtime.JDBCConnectionPoolRuntimeMBean (MBean for
runtime operations on a connection pool)

JDBC 2.0
WebLogic Server uses a Java 2 SDK 1.4.1, which supports JDBC 2.0.

Platforms
Supported platforms vary by vendor-specific DBMSs and drivers. For current information, see
BEA WebLogic Supported Configurations at
http://e-docs.bea.com/platform/suppconfigs/index.html.

http://java.sun.com/products//jdk/1.2/docs/api/java/sql/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/JDBCConnectionPoolRuntimeMBean.html
http://e-docs.bea.com/platform/suppconfigs/index.html

In t roduct ion to WebLog ic JDBC

1-10 Programming WebLogic JDBC

Programming WebLogic JDBC 2-1

C H A P T E R 2

Configuring and Using WebLogic JDBC

You use the WebLogic Server Administration Console to enable, configure, and monitor features
of WebLogic Server, including JDBC connection pools, data sources, and MultiPools. You can
do the same tasks programmatically using the JMX API and the weblogic.Admin command line
utility. After configuring JDBC connectivity components, you can use them in your applications.

The following sections describe how to program the JDBC connectivity components:

“Configuring and Using Connection Pools” on page 2-2

“Configuring and Using DataSources” on page 2-13

“Managing Connection Pools” on page 2-17

“Configuring and Using Application-Scoped JDBC Connection Pools” on page 2-27

“Configuring and Using MultiPools” on page 2-35

For additional information, see

Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc.html.

WebLogic Server Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/index.html for the following
interfaces and packages:

– weblogic.management.configuration.JDBCConnectionPoolMBean

– weblogic.management.configuration.JDBCDataSourceFactoryMBean

http://e-docs.bea.com/wls/docs81/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Conf igur ing and Us ing WebLog ic JDBC

2-2 Programming WebLogic JDBC

– weblogic.management.configuration.JDBCDataSourceMBean

– weblogic.management.configuration.JDBCMultiPoolMBean

– weblogic.management.configuration.JDBCTxDataSourceMBean

– weblogic.management.runtime.JDBCConnectionPoolRuntimeMBean

– weblogic.jdbc.extensions

Configuring and Using Connection Pools
A connection pool is a named group of identical JDBC connections to a database that are created
when the connection pool is deployed, either at WebLogic Server startup or dynamically during
run time. Your application “borrows” a connection from the pool, uses it, then returns it to the
pool by closing it. Also see “Overview of Connection Pools” on page 1-6.

Advantages to Using Connection Pools
Connection pools provide numerous performance and application design advantages:

Using connection pools is far more efficient than creating a new connection for each client
each time they need to access the database.

You do not need to hard-code details such as the DBMS username and password in your
application.

You can limit the number of connections to your DBMS. This can be useful for managing
licensing restrictions on the number of connections to your DBMS.

You can change the DBMS you are using without changing your application code.

The attributes for a configuring a connection pool are defined in the Administration Console
Online Help. There is also an API that you can use to programmatically create connection pools
in a running WebLogic Server; see “Creating a Connection Pool Dynamically” on page 2-9. You
can also use the command line; see the Web Logic Server Command-Line Interface Reference at
http://e-docs.bea.com/wls/docs81/admin_ref/cli.html.

Creating a Connection Pool at Startup
To create a startup (static) connection pool, you define attributes and permissions in the
Administration Console. WebLogic Server opens JDBC connections to the database during the
startup process and adds the connections to the pool.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc.html
http://e-docs.bea.com/wls/docs81/admin_ref/cli.html

Conf igur ing and Us ing Connect ion Poo ls

Programming WebLogic JDBC 2-3

To configure a connection pool in the Administration Console, in the navigation tree in the left
pane, expand the Services and JDBC nodes, then select Connection Pool. The right pane displays
a list of existing connection pools. Click the Configure a new JDBC Connection Pool text link to
create a connection pool.

For step-by-step instructions and a description of connection pool attributes, see the
Administration Console Online Help, available when you click the question mark in the
upper-right corner of the Administration Console or at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html.

Avoiding Server Lockup with the Correct Number of Connections
When your applications attempt to get a connection from a connection pool in which there are no
available connections, the connection pool throws an exception stating that a connection is not
available in the connection pool. To avoid this error, make sure your connection pool can expand
to the size required to accommodate your peak load of connection requests.

To set the maximum number of connections for a connection pool in the Administration Console,
expand the navigation tree in the left pane to show the Services→JDBC→Connection Pools nodes
and select a connection pool. Then, in the right pane, select the Configuration→Connections tab
and specify a value for Maximum Capacity.

Database Passwords in Connection Pool Configuration
When you create a connection pool, you typically include at least one password to connect to the
database. If you use an open string to enable XA, you may use two passwords. You can enter the
passwords as a name-value pair in the Properties field or you can enter them in their respective
fields:

Password. Use this field to set the database password. This value overrides any password
value defined in the Properties passed to the tier-2 JDBC Driver when creating physical
database connections. BEA recommends that you use the Password attribute in place of the
password property in the properties string because the value is encrypted in the
config.xml file (stored as the Password attribute in the JDBCConnectionPool tag) and
is hidden on the administration console.

Open String Password. Use this field to set the password in the open string that the
transaction manager in WebLogic Server uses to open a database connection. This value
overrides any password defined as part of the open string in the Properties field. The
value is encrypted in the config.xml file (stored as the XAPassword attribute in the
JDBCConnectionPool tag) and is hidden on the Administration Console. At runtime,

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html

Conf igur ing and Us ing WebLog ic JDBC

2-4 Programming WebLogic JDBC

WebLogic Server reconstructs the open string with the password you specify in this field.
The open string in the Properties field should follow this format:

openString=Oracle_XA+Acc=P/userName/+SesTm=177+DB=demoPool+Threads=true
=Sqlnet=dvi0+logDir=.

Note that after the userName there is no password.

If you specify a password in the Properties field when you first configure the connection pool,
WebLogic Server removes the password from the Properties string and sets the value as the
Password value in an encrypted form the next time you start WebLogic Server. If there is already
a value for the Password attribute for the connection pool, WebLogic Server does not change any
values. However, the value for the Password attribute overrides the password value in the
Properties string. The same behavior applies to any password that you define as part of an open
string. For example, if you include the following properties when you first configure a connection
pool:

user=scott;

password=tiger;

openString=Oracle_XA+Acc=p/scott/tiger+SesTm=177+db=jtaXaPool+Threads=true

+Sqlnet=lcs817+logDir=.+dbgFl=0x15;server=lcs817

The next time you start WebLogic Server, it moves the database password and the password
included in the open string to the Password and Open String Password attributes, respectively,
and the following value remains for the Properties field:

user=scott;

openString=Oracle_XA+Acc=p/scott/+SesTm=177+db=jtaXaPool+Threads=true+Sqln

et=lcs817+logDir=.+dbgFl=0x15;server=lcs817

After a value is established for the Password or Open String Password attributes, the values
in these attributes override the respective values in the Properties attribute. That is, continuing
with the previous example, if you specify tiger2 as the database password in the Properties
attribute, WebLogic Server ignores the value and continues to use tiger as the database
password, which is the current encrypted value of the Password attribute. To change the database
password, you must change the Password attribute.

Note: The value for Password and Open String Password do not need to be the same.

Conf igur ing and Us ing Connect ion Poo ls

Programming WebLogic JDBC 2-5

SQL Statement Timeout Enhancements for Pooled JDBC
Connections
In WebLogic Server 8.1SP3, the following attributes were added to JDBC connection pools to
enable you to limit the amount of time that a statement can execute on a database connection from
a JDBC connection pool:

StatementTimeout—The time in seconds after which a statement executing on a pooled
JDBC connection times out. When set to -1, (the default) statements do not timeout.

TestStatementTimeout—The time in seconds after which a statement executing on a
pooled JDBC connection for connection initialization or testing times out. When set to -1,
(the default) statements do not timeout. See “Initializing Connections with a SQL Query”
on page 2-20 and “Testing Connection Pools and Database Connections” on page 2-21 for
more information about SQL statements used for initializing and testing connections.

These attributes rely on underlying JDBC driver support. WebLogic Server passes the time
specified to the JDBC driver using the java.sql.Statement.setQueryTimeout() method. If
your JDBC driver does not support this method, it may throw an exception and the timeout value
is ignored.

Note: Using these features may cause a performance degradation. You should test these
features in a staging or testing environment before using them in production.

Also, these attributes are not available in the Administration Console. You must
manually edit the config.xml file to enable these features.

JDBC Connection Pool Testing Enhancements
In WebLogic Server 8.1SP3, the following attributes were added to JDBC connection pools to
improve the functionality of database connection testing for pooled connections:

CountOfTestFailuresTillFlush—Closes all connections in the connection pool after
the number of test failures that you specify to minimize the delay caused by further
database testing. See “Minimizing Connection Test Delay After Database Connectivity
Loss.”

CountOfRefreshFailuresTillDisable—Disables the connection pool after the number
of test failures that you specify to minimize the delay in handling the connection request
after a database failure. See “Minimizing Connection Request Delay After Connection Test
Failures.”

Conf igur ing and Us ing WebLog ic JDBC

2-6 Programming WebLogic JDBC

SecondsToTrustAnIdlePoolConnection—Skips the connection test if the connection was
used or tested successfully within the time specified. See “Minimizing Connection Request
Delay with Seconds to Trust an Idle Pool Connection” on page 2-8.

Minimizing Connection Test Delay After Database Connectivity Loss
When connectivity to the DBMS is lost, even if only momentarily, some or all of the JDBC
connections in the connection pool typically become defunct. If the connection pool is configured
to test connections on reserve (recommended), when an application requests a database
connection, WebLogic Server tests the connection, discovers that the connection is dead, and tries
to replace it with a new connection to satisfy the request. Ordinarily, when the DBMS comes back
online, the refresh process succeeds. However, in some cases and for some modes of failure,
testing a dead connection can impose a long delay. This delay occurs for each dead connection in
the connection pool until all connections are replaced.

To minimize the delay that occurs during the test of dead database connections, you can set the
CountOfTestFailuresTillFlush attribute on the connection pool. With this attribute set,
WebLogic Server considers all connections in the connection pool as dead after the number of
consecutive test failures that you specify, and closes all connections in the connection pool.

When an application requests a connection, the connection pool creates a connection without first
having to test a dead connection. This behavior minimizes the delay for connection requests
following the connection pool flush.

You specify the CountOfTestFailuresTillFlush attribute in the JDBCConnectionPool entry
in the config.xml file. TestConnectionsOnReserve must also be set to true. For example:

<JDBCConnectionPool

 CapacityIncrement="1"

 DriverName="com.pointbase.xa.xaDataSource"

 InitialCapacity="2" MaxCapacity="10"

 Name="demoXAPool" Password="password"

 Properties="user=examples;

 DatabaseName=jdbc:pointbase:server://localhost/demo"

 Targets="examplesServer"

 TestConnectionsOnReserve="true"

 CountOfTestFailuresTillFlush="1"

 TestTableName="SYSTABLES"

 URL="jdbc:pointbase:server://localhost/demo"

/>

Conf igur ing and Us ing Connect ion Poo ls

Programming WebLogic JDBC 2-7

Note: The CountOfTestFailuresTillFlush attribute is not available in the Administration
Console.

If you tend to see small network glitches or have a firewall that may occasionally kill only one
socket or connection, you may want to set the number of test failures to 2 or 3, but a value of 1
will provide the best performance after database availability issues have been resolved.

Minimizing Connection Request Delay After Connection Test Failures
If your DBMS becomes and remains unavailable, the connection pool will persistently test and
try to replace dead connections while trying to satisfy connection requests. This behavior is
beneficial because it enables the connection pool to react immediately when the database
becomes available. However, testing a dead database connection can take as long as the network
timeout, and can cause a long delay for clients.

To minimize the delay that occurs for client applications while a database is unavailable, you can
set the CountOfRefreshFailuresTillDisable attribute on the connection pool. With this
attribute set, WebLogic Server disables the connection pool after the number of consecutive
failures to replace a dead connection. When an application requests a connection from a disabled
connection pool, WebLogic Server throws a ConnectDisabledException immediately to
notify the client that a connection is not available.

For connection pools that are disabled in this manner, WebLogic Server periodically run the
refresh process. When the refresh process succeeds in creating a new database connection,
WebLogic Server re-enables the connection pool. You can also manually re-enable the
connection pool using the administration console or the weblogic.Admin ENABLE_POOL
command.

You specify the CountOfRefreshFailuresTillDisable attribute in the
JDBCConnectionPool entry in the config.xml file. TestConnectionsOnReserve must also be
set to true. For example:

<JDBCConnectionPool

 CapacityIncrement="1"

 DriverName="com.pointbase.xa.xaDataSource"

 InitialCapacity="2" MaxCapacity="10"

 Name="demoXAPool" Password="password"

 Properties="user=examples;

 DatabaseName=jdbc:pointbase:server://localhost/demo"

 Targets="examplesServer"

 TestConnectionsOnReserve="true"

 CountOfRefreshFailuresTillDisable="1"

Conf igur ing and Us ing WebLog ic JDBC

2-8 Programming WebLogic JDBC

 TestTableName="SYSTABLES"

 URL="jdbc:pointbase:server://localhost/demo"

/>

Note: The CountOfRefreshFailuresTillDisable attribute is not available in the
Administration Console.

If you tend to see small network glitches or have a firewall that may occasionally kill only one
socket or connection, you may want to set the number of refresh failures to 2 or 3, but a value of
1 will usually provide the best performance.

Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection
Database connection testing during heavy traffic can reduce application performance. To
minimize the impact of connection testing, you can set the
SecondsToTrustAnIdlePoolConnection attribute in the JDBC connection pool configuration to
trust recently-used or recently-tested database connections as viable and skip the connection test.

If your connection pool is configured to test connections on reserve (recommended), when an
application requests a database connection, WebLogic Server tests the database connection
before giving it to the application. If the request is made within the time specified for
SecondsToTrustAnIdlePoolConnection since the connection was tested or successfully used and
returned to the connection pool, WebLogic Server skips the connection test before delivering it
to the application.

If your connection pool is configured to periodically test available connections in the connection
pool (TestFrequencySeconds is specified), WebLogic Server also skips the connection test if the
connection was successfully used and returned to the connection pool within the time specified
for SecondsToTrustAnIdlePoolConnection.

To set SecondsToTrustAnIdlePoolConnection, you can specify the value on the JDBC
Connection Pool → Configuration → Connections tab in the Administration Console. See "JDBC
Connection Pool --> Configuration --> Connections" in the Administration Console Online Help.
You can also set it directly in the config.xml file. For example:

<JDBCConnectionPool

 CapacityIncrement="1"

 DriverName="com.pointbase.xa.xaDataSource"

 InitialCapacity="2" MaxCapacity="10"

 Name="demoXAPool" Password="password"

 Properties="user=examples;

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html

Conf igur ing and Us ing Connect ion Poo ls

Programming WebLogic JDBC 2-9

 DatabaseName=jdbc:pointbase:server://localhost/demo"

 Targets="examplesServer"

 SecondsToTrustAnIdlePoolConnection="15"

 TestConnectionsOnreserve="true"

 TestTableName="SYSTABLES"

 URL="jdbc:pointbase:server://localhost/demo"

/>

SecondsToTrustAnIdlePoolConnection is a tuning feature that can improve application
performance by minimizing the delay caused by database connection testing, especially during
heavy traffic. However, it can reduce the effectiveness of connection testing, especially if the
value is set too high. The appropriate value depends on your environment and the likelihood that
a connection will become defunct.

Creating a Connection Pool Dynamically
The JDBCConnectionPool administration MBean as part of the WebLogic Server management
architecture (JMX). You can use the JMX API to create and configure a connection pool
dynamically from within a Java application. That is, from your client or server application code,
you can create a connection pool in a WebLogic Server instance that is already running.

You can also use the CREATE_POOL command in the WebLogic Server command line interface
to dynamically create a connection pool. See CREATE_POOL at
http://e-docs.bea.com/wls/docs81/admin_ref/cli.html#cli_create_pool.

To dynamically create a connection pool using the JMX API, follow these main steps:

1. Import required packages.

2. Look up the administration MBeanHome in the JNDI tree.

3. Get the server MBean.

4. Create the connection pool MBean.

5. Set the properties for the connection pool.

6. Add the target.

7. Create a DataSource object.

Note: Dynamically created connection pools must use dynamically created DataSource objects.
For a DataSource to exist, it must be associated with a connection pool. Also, a
one-to-one relationship exists between DataSource objects and connection pools in

http://e-docs.bea.com/wls/docs81/admin_ref/cli.html#cli_create_pool

Conf igur ing and Us ing WebLog ic JDBC

2-10 Programming WebLogic JDBC

WebLogic Server. Therefore, you must create a DataSource to use with a connection
pool.

When you create a connection pool using the JMX API, the connection pool is added to the server
configuration and will be available even if you stop and restart the server. If you do not want the
connection pool to be persistent, you must remove it programmatically.

For more information about using MBeans to manage WebLogic Server, see Programming
WebLogic Management Services with JMX at
http://e-docs.bea.com/wls/docs81/jmx/index.html. For more information about the
JDBCConnectionPool MBean, see the Javadoc at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuratio

n/JDBCConnectionPoolMBean.html.

Dynamic Connection Pool Sample Code
The following sections show code samples for performing the main steps to create a connection
pool dynamically.

Import Packages
import java.sql.*;

import java.util.*;

import javax.naming.Context;

import javax.sql.DataSource;

import weblogic.jndi.Environment;

import weblogic.management.configuration.JDBCConnectionPoolMBean;

import weblogic.management.runtime.JDBCConnectionPoolRuntimeMBean;

import weblogic.management.configuration.JDBCTxDataSourceMBean;

import weblogic.management.configuration.ServerMBean;

import weblogic.management.MBeanHome;

import weblogic.management.WebLogicObjectName;

String cpName = null;

String cpJNDIName = null;

Look Up the Administration MBeanHome
mbeanHome = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

http://e-docs.bea.com/wls/docs81/jmx/index.html
http://e-docs.bea.com/wls/docs81/jmx/index.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html

Conf igur ing and Us ing Connect ion Poo ls

Programming WebLogic JDBC 2-11

Get the Server MBean
svrAdminMBean = (ServerMBean)mbeanHome.getAdminMBean("myserver",

 "Server");

Create the Connection Pool MBean
 // Create ConnectionPool MBean

 cpMBean = (JDBCConnectionPoolMBean)mbeanHome.createAdminMBean(

 cpName, "JDBCConnectionPool",

 mbeanHome.getDomainName());

Set the Connection Pool Properties
 Properties pros = new Properties();

 pros.put("user", "scott");

 pros.put("server", "dbserver1t1");

 // Set DataSource attributes

 cpMBean.setURL("jdbc:weblogic:oracle");

 cpMBean.setDriverName("weblogic.jdbc.oci.xa.XADataSource");

 cpMBean.setProperties(pros);

 cpMBean.setPassword("tiger");

Note: In this example, the database password is set using the setPassword(String) method
instead of including it with the user and server names in Properties. When you use the
setPassword(String) method, WebLogic Server encrypts the password in the
config.xml file and when displayed on the administration console. BEA recommends
that you use this method to avoid storing database passwords in clear text in the
config.xml file.

Add the Target
When you add a deployment target, the connection pool is deployed and database connections in
the connection pool are created.

 cpMBean.addTarget(serverMBean);

Create a DataSource
public void createDataSource() throws SQLException {

 try {

 // Get context

Conf igur ing and Us ing WebLog ic JDBC

2-12 Programming WebLogic JDBC

 Environment env = new Environment();

 env.setProviderUrl(url);

 env.setSecurityPrincipal(userName);

 env.setSecurityCredentials(password);

 ctx = env.getInitialContext();

 // Create TxDataSource MBean

 dsMBean = (JDBCTxDataSourceMBean)mbeanHome.createAdminMBean(

 cpName, "JDBCTxDataSource",

 mbeanHome.getDomainName());

 // Set TxDataSource attributes

 dsMBean.setJNDIName(cpJNDIName);

 dsMBean.setPoolName(cpName);

 // Startup datasource

 dsMBean.addTarget(serverMBean);

 } catch (Exception ex) {

 ex.printStackTrace();

 throw new SQLException(ex.toString());

 }

 }

Note: The JDBCDataSourceMBean is deprecated in WebLogic server 8.1. Use the
JDBCTxDataSourceMBean instead. The attributes that are not available in the
JDBCTxDataSourceMBean (WaitForConnectionEnabled and
ConnectionWaitPeriod) have been deprecated and are replaced with the
ConnectionReserveTimeoutSeconds attribute in the JDBCConnectionPoolMBean.
See “Enabling Connection Requests to Wait for a Connection” on page 2-22.

Removing a Dynamic Connection Pool and DataSource
The following code sample shows how to remove a dynamically created connection pool. If you
do not remove dynamically created connection pools, they will remain available even after the
server is stopped and restarted.

public void deleteConnectionPool() throws SQLException {

 try {

 // Remove dynamically created connection pool from the server

 cpMBean.removeTarget(serverMBean);

 // Remove dynamically created connection pool from the configuration

Conf igur ing and Us ing DataSources

Programming WebLogic JDBC 2-13

 mbeanHome.deleteMBean(cpMBean);

 } catch (Exception ex) {

 throw new SQLException(ex.toString());

 }

}

public void deleteDataSource() throws SQLException {

 try {

 // Remove dynamically created TxDataSource from the server

 dsMBean.removeTarget(serverMBean);

 // Remove dynamically created TxDataSource from the configuration

 mbeanHome.deleteMBean(dsMBean);

 } catch (Exception ex) {

 throw new SQLException(ex.toString());

 }

 }

Configuring and Using DataSources
As with Connection Pools and MultiPools, you can create DataSource objects in the
Administration Console or using the WebLogic Management API. DataSource objects can be
defined with or without transaction services. You configure connection pools and MultiPools
before you define the pool name attribute for a DataSource.

DataSource objects, along with the JNDI, provide access to connection pools for database
connectivity. Each DataSource can refer to one connection pool or MultiPool. However, you can
define multiple DataSources that use a single connection pool. This allows you to define both
transaction and non-transaction-enabled DataSource objects that share the same database.

WebLogic Server supports two types of DataSource objects:

DataSources (for local transactions only)

TxDataSources (for distributed transactions)

Note: In the Administration Console, Data Sources and Tx Data Sources are distinguished by
the Honor Global Transactions setting that you select when you create the datasource:

Conf igur ing and Us ing WebLog ic JDBC

2-14 Programming WebLogic JDBC

true for Tx Data Sources

false for Data Sources (non-Tx)

Tx Data Sources are created by default when you create the data source in the
Administration Console.

If your application meets any of the following criteria, you should use a TxDataSource in
WebLogic Server:

Uses the Java Transaction API (JTA)

Uses the WebLogic Server EJB container to manage transactions

Includes updates to multiple databases during a single transaction.

The only time you should use a non-Tx Data Source is when you want to do some work on the
database that you do not want to include in the current transaction.

If you want applications to use a DataSource (Tx or non-Tx) to get a database connection from a
connection pool (the preferred method), you should define the DataSource in the Administration
Console before running your application. For more information about how to configure a
DataSource and when to use a TxDataSource, see JDBC DataSources in the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html.

Note: The JDBCDataSourceMBean is deprecated in WebLogic server 8.1. Use the
JDBCTxDataSourceMBean instead. The attributes that are not available in the
JDBCTxDataSourceMBean (WaitForConnectionEnabled and
ConnectionWaitPeriod) have been deprecated and are replaced with the
ConnectionReserveTimeoutSeconds attribute in the JDBCConnectionPoolMBean.
See “Enabling Connection Requests to Wait for a Connection” on page 2-22.

Importing Packages to Access DataSource Objects
To use the DataSource objects in your applications, import the following classes in your client
code:

import java.sql.*;

import java.util.*;

import javax.naming.*;

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html

Conf igur ing and Us ing DataSources

Programming WebLogic JDBC 2-15

Obtaining a Client Connection Using a DataSource
To obtain a connection for a JDBC client, use a Java Naming and Directory Interface (JDNI)
lookup to locate the DataSource object, as shown in the following code fragment.

Note: When using a JDBC connection in a client-side application, the exact same JDBC driver
classes must be in the CLASSPATH on both the server and the client. If the driver classes
do not match, you may see java.rmi.UnmarshalException exceptions.

Context ctx = null;

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL,

 "t3://hostname:port");

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 ctx = new InitialContext(ht);

 javax.sql.DataSource ds

 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

 conn = ds.getConnection();

 // You can now use the conn object to create

 // Statements and retrieve result sets:

 stmt = conn.createStatement();

 stmt.execute("select * from someTable");

 rs = stmt.getResultSet();

...

//Close JDBC objects as soon as possible

 stmt.close();

 stmt=null;

 conn.close();

 conn=null;

 }

 catch (Exception e) {

Conf igur ing and Us ing WebLog ic JDBC

2-16 Programming WebLogic JDBC

 // a failure occurred

 log message;

 }

finally {

 try {

 ctx.close();

 } catch (Exception e) {

 log message; }

 try {

 if (rs != null) rs.close();

 } catch (Exception e) {

 log message; }

 try {

 if (stmt != null) stmt.close();

 } catch (Exception e) {

 log message; }

 try {

 if (conn != null) conn.close();

 } catch (Exception e) {

 log message; }

}

(Substitute the correct hostname and port number for your WebLogic Server.)

Note: The code above uses one of several available procedures for obtaining a JNDI context.
For more information on JNDI, see Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs81/jndi/index.html.

Possible Exceptions When a Connection Request Fails
The weblogic.jdbc.extensions package includes the following exceptions that can be thrown
when an application request fails. Each exception extends java.sql.SQLException.

ConnectionDeadSQLException—generated when an application request to get a
connection fails because the connection test on the reserved connection failed. This
typically happens when the database server is unavailable. See “Testing Connection Pools
and Database Connections” on page 2-21.

ConnectionUnavailableSQLException—generated when an application request to get a
connection fails because there are currently no connections available in the pool to be
allocated. This is a transient failure, and is generated if all connections in the pool are

http://e-docs.bea.com/wls/docs81/jndi/index.html

Managing Connec t ion Poo ls

Programming WebLogic JDBC 2-17

currently in use. It can also be thrown when connections are unavailable because they are
being tested. See “Testing Connection Pools and Database Connections” on page 2-21.

PoolDisabledSQLException—generated when an application request to get a connection
fails because the JDBC Connection Pool has been administratively disabled. See
“Suspending a Connection Pool” on page 2-26.

PoolLimitSQLException—generated when an application request to get a connection
fails due to a configured threshold of the connection pool, such as HighestNumWaiters,
ConnectionReserveTimeoutSeconds, and so forth. See “Enabling Connection Requests
to Wait for a Connection” on page 2-22.

PoolPermissionsSQLException—generated when an application request to get a
connection fails a (security) authentication or authorization check.

Connection Pool Limitation
When using connection pools, it is possible to execute DBMS-specific SQL code that will alter
the database connection properties and that WebLogic Server and the JDBC driver will be
unaware of. When the connection is returned to the connection pool, the characteristics of the
connection may not be set back to a valid state. For example, with a Sybase DBMS, if you use a
statement such as "set rowcount 3 select * from y", the connection will only ever return
a maximum of 3 rows from any subsequent query on this connection. When the connection is
returned to the connection pool and then reused, the next user of the connection will still only get
3 rows returned, even if the table being selected from has 500 rows.

In most cases, there is standard JDBC code that can accomplish the same result. In this example,
you could use setMaxRows() instead of set rowcount. BEA recommends that you use the
standard JDBC code instead of the DBMS-specific SQL code. When you use standard JDBC
calls to alter the connection, Weblogic Server returns the connection to a standard state when the
connection is returned to the connection pool.

If you use DBMS-specific SQL code that alters the connection, you must set the connection back
to an acceptable state before returning the connection to the connection pool.

Managing Connection Pools
The JDBCConnectionPool and JDBCConnectionPoolRuntime MBeans provide methods to
manage connection pools and obtain information about them. All of these management options
are available in the Administration Console. However, you can also use the methods provided to

Conf igur ing and Us ing WebLog ic JDBC

2-18 Programming WebLogic JDBC

manage connection pools using the JMX API. Methods are provided for these and other
operations:

“Getting Status and Statistics for a Connection Pool” on page 2-18

“Enabling Connection Creation Retries” on page 2-19

“Initializing Connections with a SQL Query” on page 2-20

“Testing Connection Pools and Database Connections” on page 2-21

“Enabling Connection Requests to Wait for a Connection” on page 2-22

“Configuring and Managing the Statement Cache for a Connection Pool” on page 2-23

“Shrinking a Connection Pool” on page 2-26

“Resetting a Connection Pool” on page 2-26

“Suspending a Connection Pool” on page 2-26

“Resuming a Connection Pool” on page 2-27

To see all of the methods available and for more information about the methods described in this
section, see the Javadocs for the following MBeans:

JDBCConnectionPoolMBean at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/con
figuration/JDBCConnectionPoolMBean.html

JDBCConnectionPoolRuntimeMBean at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/run
time/JDBCConnectionPoolRuntimeMBean.html

Getting Status and Statistics for a Connection Pool
JDBCConnectionPoolRuntimeMBean.getState()

JDBCConnectionPoolRuntimeMBean.getActiveConnectionsAverageCount()

JDBCConnectionPoolRuntimeMBean.getActiveConnectionsCurrentCount()

JDBCConnectionPoolRuntimeMBean.getActiveConnectionsHighCount()

JDBCConnectionPoolRuntimeMBean.getConnectionLeakProfileCount()

JDBCConnectionPoolRuntimeMBean.getConnectionsTotalCount()

JDBCConnectionPoolRuntimeMBean.getCurrCapacity()

JDBCConnectionPoolRuntimeMBean.getFailuresToReconnectCount()

JDBCConnectionPoolRuntimeMBean.getHighestNumAvailable()

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/JDBCConnectionPoolRuntimeMBean.html

Managing Connec t ion Poo ls

Programming WebLogic JDBC 2-19

JDBCConnectionPoolRuntimeMBean.getHighestNumUnavailable()

JDBCConnectionPoolRuntimeMBean.getLeakedConnectionCount()

JDBCConnectionPoolRuntimeMBean.getMaxCapacity()

JDBCConnectionPoolRuntimeMBean.getNumAvailable()

JDBCConnectionPoolRuntimeMBean.getNumUnavailable()

JDBCConnectionPoolRuntimeMBean.getStatementProfileCount()

JDBCConnectionPoolRuntimeMBean.getVersionJDBCDriver()

JDBCConnectionPoolRuntimeMBean.getWaitingForConnectionCurrentCount()

JDBCConnectionPoolRuntimeMBean.getWaitingForConnectionHighCount()

JDBCConnectionPoolRuntimeMBean.getWaitSecondsHighCount()

The JDBCConnectionPoolRuntimeMBean provides methods for getting the current state of the
connection pool and for getting statistics about the connection pool, such as the average number
of active connections, the current number of active connections, the highest number of active
connections, and so forth.

The getState() method returns the current state of the connection pool. The current state can
be:

Running if the pool is enabled (deployed and not suspended). This is the normal state of
the connection pool.

Suspended if the pool is disabled.

Shutdown if the pool is shutdown and all database connections have been closed.

Unknown if the pool state is unknown.

Unhealthy if all connections are unavailable (not because they are in use). This state
occurs if the database server is unavailable when the connection pool is created (creation
retry must be enabled) or if all connections have failed connection tests (on creation, on
reserve, on release, or periodic testing).

For more information about methods for getting connection pool statistics, see the Javadoc for
the JDBCConnectionPoolRuntimeMBean at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/JDBC

ConnectionPoolRuntimeMBean.html. Also see “Testing Connection Pools and Database
Connections” on page 2-21.

Enabling Connection Creation Retries
JDBCConnectionPoolMBean.setConnectionCreationRetryFrequencySeconds(int

seconds)

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/JDBCConnectionPoolRuntimeMBean.html

Conf igur ing and Us ing WebLog ic JDBC

2-20 Programming WebLogic JDBC

The setConnectionCreationRetryFrequencySeconds() method sets the number of
seconds between attempts to create database connections when the connection pool is created. If
you do not set this value, connection pool creation fails if the database is unavailable. If set and
if the database is unavailable when the connection pool is created, WebLogic Server will attempt
to create connections in the pool again after the number of seconds you specify, and will continue
to attempt to create the connections until it succeeds.

By default, this attribute is set to 0, which disables connection creation retries.

Note: Do not use connection creation retries with connection pools in a High Availability
MultiPool. Connection requests to the MultiPool will fail (not fail-over) when a
connection pool in the list is dead and the number of connection requests equals the
number of connections in the first connection pool, even if connections are available in
subsequent connection pools in the MultiPool.

Initializing Connections with a SQL Query
JDBCConnectionPoolMBean.setInitSQL(java.lang.String string)

With the setInitSQL() method, you set a value for the initSQL MBean attribute. WebLogic
Server runs this SQL code whenever it creates a database connection for the connection pool,
which includes at server startup, when expanding the connection pool, when deploying the
connection pool on a server, and when refreshing a connection. In essence, WebLogic Server
"primes" the connection with this SQL code before applications can use the connection. You can
use this feature to set DBMS-specific operational settings that are connection-specific or to
ensure that a connection has memory or permissions to perform required actions.

Start the code with SQL followed by a space. For example:

SQL alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'

or

SQL SET LOCK MODE TO WAIT

Options that you can set using InitSQL vary by DBMS.

For information about setting this attribute with the Administration Console, see "Initializing
Database Connections with SQL Code" and "Init SQL" in the Administration Console Online
Help.

Note: InitSQL is not a dynamic attribute. When you change the value for InitSQL, you must
either undeploy and redeploy the connection pool or restart the server.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#initSQL
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#initSQL
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#InitTableName

Managing Connec t ion Poo ls

Programming WebLogic JDBC 2-21

Testing Connection Pools and Database Connections
JDBCConnectionPoolRuntimeMBean.testPool()

JDBCConnectionPoolMBean.setTestConnectionsOnCreate(boolean enable)

JDBCConnectionPoolMBean.setTestConnectionsOnRelease(boolean enable)

JDBCConnectionPoolMBean.setTestConnectionsOnReserve(boolean enable)

JDBCConnectionPoolMBean.setTestFrequencySeconds(int seconds)

JDBCConnectionPoolMBean.setTestTableName(java.lang.String table)

JDBCConnectionPoolMBean.setHighestNumUnavailable(int count)

To make sure that the database connections in a connection pool remain healthy, you should
periodically test the connections. WebLogic Server includes two basic types of testing: automatic
testing that you configure with attributes on the JDBCConnectionPoolMBean (the configuration
MBean) and manual testing that you can do to trouble-shoot a connection pool with the
testPool() method on the JDBCConnectionPoolRuntimeMBean (the runtime MBean).

Allowing WebLogic Server to automatically maintain the integrity of pool connections should
prevent most DBMS connection problems. You use the following methods on the
JDBCConnectionPoolMBean to configure automatic connection testing:

setTestFrequencySeconds(int seconds)—Use this method to enable periodic
connection testing and to specify the number of seconds between tests of unused
connections. The server tests unused connections and reopens any faulty connections. If
you do not set TestFrequencySeconds, periodic connection testing is not enabled. You
must also set the HighestNumUnavailable and TestTableName.

setTestConnectionsOnCreate(boolean enable)—Use this method to enable testing
on each database connection after it is created. This applies to connections created at server
startup, when the connection pool is expanded, and when a connection is recreated after
failing a test. You must also set a TestTableName.

setTestConnectionsOnReserve(boolean enable)—Use this method to enable testing
on each connection before it is given to a client. This may add a slight delay to the
connection request, but it guarantees that the connection is healthy. You must also set a
TestTableName.

setTestConnectionsOnRelease(boolean enable)—Use this method to enable testing
on database connections when they are returned to the connection pool. You must also set a
TestTableName.

setHighestNumUnavailable(int count)—Use this method to limit the number of idle
connections that the server will test. For example, if you have 10 connections in your

Conf igur ing and Us ing WebLog ic JDBC

2-22 Programming WebLogic JDBC

connection pool and 5 are in use, if the server were to begin testing all 5 connections that
are not in use, there would be no connections available to fill a connection request from an
application. If you set the HighestNumUnavailable attribute to 3, the connection pool
maintenance thread would take 3 connections from the connection pool for testing, and
there would still be 2 connections available to fill a connection request.

setTestTableName(java.lang.String table)—Use this method to specify a table
name to use for connection testing. You can also specify SQL code to run in place of the
standard test by entering SQL followed by a space and the SQL code you want to run as a
test. TestTableName is required to enable any automatic database connection testing.

For information about setting these attributes in the Administration Console, see "Connection
Testing Options" and "JDBC Connection Pool --> Configuration --> Connections" in the
Administration Console Online Help.

Enabling Connection Requests to Wait for a Connection
The JDBCConnectionPoolMBean has two attributes that you can set to enable connection
requests to wait for a connection from a connection pool:
ConnectionReserveTimeoutSeconds and HighestNumWaiters. You use these two attributes
together to enable connection requests to wait for a connection without disabling your system by
blocking too many threads.

Connection Reserve Timeout
JDBCConnectionPoolMBean.setConnectionReserveTimeoutSeconds(int seconds)

When an application requests a connection from a connection pool, if all connections in the
connection pool are in use and if the connection pool has expanded to its maximum capacity, the
application will get a Connection Unavailable SQL Exception. To avoid this, you can configure
a Connection Reserve Timeout value (in seconds) so that connection requests will wait for a
connection to become available. After the Connection Reserve Timeout has expired, if no
connection becomes available, the request will fail and the application will get a
PoolLimitSQLException exception.

If you set Connection Reserve Timeout to 0, a connection request will wait indefinitely.
Setting Connection Reserve Timeout to -1 will cause the connection to timeout
immediately.

The default value is 10 seconds.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#test_opt
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#test_opt
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#InitTableName

Managing Connec t ion Poo ls

Programming WebLogic JDBC 2-23

If you use global transactions, the Connection Reserve Timeout value is ignored. In this
situation, a connection request automatically waits for a connection if one is not available.
The amount of time available for an application to wait for a connection (if necessary),
connect, and complete the transaction is determined by the transaction time out value.

Limiting the Number of Waiting Connection Requests
JDBCConnectionPoolMBean.setHighestNumWaiters(int count)

Connection requests that wait for a connection block a thread. If too many connection requests
concurrently wait for a connection and block threads, your system performance can degrade. To
avoid this, you can set the HighestNumWaiters attribute, which limits the number connection
requests that can concurrently wait for a connection.

If you set HighestNumWaiters to MAX-INT (the default), there is effectively no bound on how
many connection requests can wait for a connection. If you set HighestNumWaiters to 0,
connection requests cannot wait for a connection.

Configuring and Managing the Statement Cache for a
Connection Pool
For each connection in a connection pool in your system, WebLogic Server creates a statement
cache. When a prepared statement or callable statement is used on a connection, WebLogic
Server caches the statement so that it can be reused. Statement caching is controlled by the
StatementCacheSize and the StatementCacheType. For more information about how the
statement cache works and configuration options, see “Increasing Performance with the
Statement Cache” in the WebLogic Server Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#st

atementcache.

Each connection in the connection pool has its own statement cache, but configuration settings
are made for all connections in the connection pool.

Configuring the Statement Cache
JDBCConnectionPoolMBean.setStatementCacheSize(int cacheSize)

JDBCConnectionPoolMBean.setStatementCacheType(java.lang.String type)

WebLogic Server provides methods to set the size (StatementCacheSize) and algorithm
(StatementCacheType) of the statement cache for each connection pool.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#statementcache
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#statementcache

Conf igur ing and Us ing WebLog ic JDBC

2-24 Programming WebLogic JDBC

When you set the StatementCacheSize, that number of statements (prepared and callable) are
cached for each connection in the connection pool.

By default, the StatementCacheType is set to LRU for Least Recently Used. With this algorithm,
the connection pool replaces the least recently used statement in the cache when a new prepared
or callable statement is used. In most cases, this option provides the best performance. You can
also set the StatementCacheType to Fixed. With the fixed algorithm, prepared and callable
statements are cached until the StatementCacheSize value is met. Statements remain in the
cache until the cache is cleared manually or the connection is closed.

Note: StatementCacheType is not a dynamic attribute. When you change the value for
StatementCacheType, you must either undeploy and redeploy the connection pool or
restart the server.

Deprecated Statement Cache Configuration Options
In releases before WebLogic Server 8.1, there were separate statement cache implementations for
XA and non-XA JDBC connection pools (connection pools that use an XA JDBC driver and
connection pools that use a non-XA JDBC driver to create database connections). In WebLogic
Server 8.1, the statement cache was rewritten. There is now one statement cache implementation
for both XA and non-XA connection pools. With the statement cache revision, there are
connection pool attributes in the JDBCConnectionPoolMBean for configuring the statement
cache that are now deprecated. Table 2-1 lists the deprecated MBean attributes from previous
releases and the equivalent option in WebLogic Server 8.1.

To enable migration of a WebLogic Server configuration from an earlier release to version 8.1,
Weblogic Server enforces the following order of precedence for these MBean attributes:

1. PreparedStatementCacheSize

2. XAPreparedStatementCacheSize

3. StatementCacheSize

Table 2-1 Deprecated Statement Cache Attributes and Equivalents

Deprecated MBean Attribute Equivalent in WebLogic Server 8.1

PreparedStatementCacheSize StatementCacheSize

XAPreparedStatementCacheSize StatementCacheSize

Managing Connec t ion Poo ls

Programming WebLogic JDBC 2-25

For example, if the PreparedStatementCacheSize for a JDBC connection pool is set to 5 and
the StatementCacheSize is set to 10, the actual statement cache size for each connection in the
connection pool will be 5 because PreparedStatementCacheSize takes precedence over
StatementCacheSize.

Clearing the Statement Cache for a Connection Pool
JDBCConnectionPoolRuntimeMBean.clearStatementCache()

You can manually clear the statement cache for all connections in a connection pool with the
clearStatementCache() method.

Clearing the Statement Cache for a Single Connection
weblogic.jdbc.extensions.WLConnection.clearStatementCache()

weblogic.jdbc.extensions.WLConnection.clearCallableStatement(java.lang.

String sql)

weblogic.jdbc.extensions.WLConnection.clearCallableStatement(java.lang.

String sql,int resSetType,int resSetConcurrency)

weblogic.jdbc.extensions.WLConnection.clearPreparedStatement(java.lang.

String sql)

weblogic.jdbc.extensions.WLConnection.clearPreparedStatement(java.lang.

String sql,int resSetType,int resSetConcurrency)

You can use methods in the weblogic.jdbc.extensions.WLConnection interface to clear the
statement cache for a single connection or to clear an individual statement from the cache. These
methods return true if the operation was successful and false if the operation fails because the
statement was not found.

When prepared and callable statements are stored in the cache, they are stored (keyed) based on
the exact SQL statement and result set parameters (type and concurrency options), if any. When
clearing an individual prepared or callable statement, you must use the method that takes the
proper result set parameters. For example, if you have callable statement in the cache with
resSetType of ResultSet.TYPE_SCROLL_INSENSITIVE and a resSetConcurrency of
ResultSet.CONCUR_READ_ONLY, you must use the method that takes the result set parameters:

clearCallableStatement(java.lang.String sql,int resSetType,int

resSetConcurrency)

If you use the method that only takes the SQL string as a parameter, the method will not find the
statement, nothing will be cleared from the cache, and the method will return false.

Conf igur ing and Us ing WebLog ic JDBC

2-26 Programming WebLogic JDBC

When you clear a statement that is currently in use by an application, WebLogic Server removes
the statement from the cache, but does not close it. When you clear a statement that is not
currently in use, WebLogic Server removes the statement from the cache and closes it.

For more details about these methods, see the Javadoc for WLConnection at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jdbc/extensions/WLConne

ction.html.

Shrinking a Connection Pool
JDBCConnectionPoolRuntimeMBean.shrink()

A connection pool has a set of properties that define the initial and maximum number of
connections in the pool (initialCapacity and maxCapacity), and the number of connections
added to the pool when all connections are in use (capacityIncrement). When the pool reaches
its maximum capacity, the maximum number of connections are opened, and they remain opened
unless you enable automatic shrinking on the connection pool or manually shrink the connection
pool with the shrink() method.

You may want to drop some connections from the connection pool when a peak usage period has
ended, freeing up WebLogic Server and DBMS resources.

Resetting a Connection Pool
JDBCConnectionPoolRuntimeMBean.reset()

The JDBCConnectionPoolRuntimeMBean.reset() method closes and reopens all connections
in a connection pool. This may be necessary after the DBMS has been restarted, for example.
Often when one connection in a connection pool has failed, all of the connections in the pool are
bad.

Suspending a Connection Pool
JDBCConnectionPoolRuntimeMBean.suspend()

JDBCConnectionPoolRuntimeMBean.forceSuspend()

WebLogic server includes two methods in the JDBCConnectionPoolRuntimeMbean to suspend
a connection pool: suspend() and forceSuspend(). You can use these methods to temporarily
disable a connection pool, preventing any clients from obtaining or using a connection from the
pool. Only users with the proper permissions can suspend a connection pool.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jdbc/extensions/WLConnection.html

Conf igur ing and Us ing App l icat ion-Scoped JDBC Connect ion Poo ls

Programming WebLogic JDBC 2-27

When you suspend a connection pool with the suspend() method, the connection pool is marked
as disabled and applications cannot use connections from the pool. Applications that already have
a reserved connection from the connection pool when it is suspended will get an exception when
trying to use the connection. WebLogic Server preserves all connections in the connection pool
exactly as they were before the connection pool was suspended.

When you suspend a connection pool with the forceSuspend() method, WebLogic Server
marks the connection pool as disabled, forcibly disconnects applications that are currently using
a connection, and recreates (closes and reopens) connections that were in use when the
connection pool was suspended. Any transaction on the connections that are closed are rolled
back. WebLogic Server preserves all other connections exactly as they were before the
connection pool was suspended.

The suspend() and forceSuspend() methods replace the disableFreezingUsers() and
disableDroppingUsers() methods, which are deprecated.

Resuming a Connection Pool
JDBCConnectionPoolRuntimeMBean.resume()

To re-enable a connection pool that you disabled with the suspend() or forceSuspend()
method, you can use the resume() method, which marks the connection pool as enabled and
allows applications to use connections from the connection pool. If you suspended the connection
pool with the suspend() method, all connections are preserved exactly as they were before the
connection pool was suspended. Clients that had reserved a connection before the connection
pool was suspended can continue JDBC operations exactly where they left off. If you suspended
the connection pool with the forceSuspend() method, connections that were not in use when
the connection pool was suspended are preserved exactly as they were before the suspension.
Connections that were in use were closed and reopened. Clients that had reserved a connection
no longer have a valid JDBC context.

The resume() method replaces the enable() method, which is deprecated.

Note: You cannot use the resume() method to start a connection pool that did not start
correctly, for example, if the database server is unavailable.

Configuring and Using Application-Scoped JDBC Connection
Pools

When you package your enterprise applications, you can include the
weblogic-application.xml supplemental deployment descriptor, which you use to configure

Conf igur ing and Us ing WebLog ic JDBC

2-28 Programming WebLogic JDBC

application scoping. Within the weblogic-application.xml file, you can configure JDBC
connection pools that are created when you deploy the enterprise application.

An instance of the connection pool is created with each instance of your application. This means
an instance of the pool is created with the application on each node that the application is targeted
to. It is important to keep this in mind when considering pool sizing.

Connection pools created in this manner are known as application-scoped connection pools, app
scoped pools, application local pools, app local pools, or local pools, and are scoped for the
enterprise application only. That is, they are isolated for use by the enterprise application.

For more information about application scoping and application scoped resources, see:

XML Application Scoping in Programming WebLogic XML at
http://e-docs.bea.com/wls/docs81/xml/xml_appscop.html.

Two-Phase Deployment Protocol in Deploying WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/deployment/concepts.html#two_phase.

Configuring Application-Scoped Connection Pools
To configure an application-scoped connection pool, you add a jdbc-connection-pool element
with connection pool configuration parameters to the weblogic-application.xml file for your
enterprise application. For example:

<jdbc-connection-pool>

 <data-source-name>XA_LocalDS1</data-source-name>

 <connection-factory>

 <factory-name>XA_LocalCF1</factory-name>

 <connection-properties>

 <user-name>SCOTT</user-name>

 <password>tiger</password>

 <url>jdbc:oracle:thin:@dbserver:1521:sid</url>

 <driver-class-name>oracle.jdbc.xa.client.OracleXADataSource

 </driver-class-name>

 <connection-params>

 <parameter>

 <param-name>foo</param-name>

 <param-value>xyz</param-value>

 </parameter>

 <parameter>

 <param-name>bar</param-name>

http://e-docs.bea.com/wls/docs81/xml/xml_appscop.html
http://e-docs.bea.com/wls/docs81/deployment/concepts.html#two_phase

Conf igur ing and Us ing App l icat ion-Scoped JDBC Connect ion Poo ls

Programming WebLogic JDBC 2-29

 <param-value>abc</param-value>

 </parameter>

 </connection-params>

 </connection-properties>

 </connection-factory>

 <pool-params>

 <size-params>

 <initial-capacity>5</initial-capacity>

 <max-capacity>10</max-capacity>

 <capacity-increment>2</capacity-increment>

 <shrinking-enabled>true</shrinking-enabled>

 <shrink-frequency-seconds>300</shrink-frequency-seconds>

 <highest-num-waiters>100</highest-num-waiters>

 <highest-num-unavailable>4</highest-num-unavailable>

 </size-params>

 <xa-params>

 <debug-level>3</debug-level>

 <local-transaction-supported>true</local-transaction-supported>

 <xa-set-transaction-timeout>true</xa-set-transaction-timeout>

 <xa-transaction-timeout>30</xa-transaction-timeout>

 </xa-params>

 <login-delay-seconds>1</login-delay-seconds>

 <leak-profiling-enabled>false</leak-profiling-enabled>

 <connection-check-params>

 <table-name>check_table</table-name>

 <check-on-create-enabled>true</check-on-create-enabled>

 <check-on-reserve-enabled>true</check-on-reserve-enabled>

 <check-on-release-enabled>false</check-on-release-enabled>

 <connection-reserve-timeout-seconds>30

 </connection-reserve-timeout-seconds>

 <test-frequency-seconds>600</test-frequency-seconds>

 <connection-creation-retry-frequency-seconds>360

 </connection-creation-retry-frequency-seconds>

 <inactive-connection-timeout-seconds>360

 </inactive-connection-timeout-seconds>

 <init-sql>SQL SET LOCK MODE TO WAIT</init-sql>

 </connection-check-params>

Conf igur ing and Us ing WebLog ic JDBC

2-30 Programming WebLogic JDBC

 </pool-params>

 <driver-params>

 <prepared-statement>

 <cache-size>10</cache-size>

 <cache-type>LRU</cache-type>

 </prepared-statement>

 <row-prefetch-enabled>true</row-prefetch-enabled>

 <row-prefetch-size>500</row-prefetch-size>

 <stream-chunk-size>1024</stream-chunk-size>

 </driver-params>

 </jdbc-connection-pool>

For more details about JDBC connection pool element entries, see weblogic-application.xml
Deployment Descriptor Elements in Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/app_xml.html#app-scoped-pool.

If you deploy your enterprise application as an exploded archive, you can also change
configuration options using the Administration Console. See “Application-Scoped JDBC Data
Sources and Connection Pools” in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#app_scoped_pool
s.

Required Elements Within the jdbc-connection-pool Element
When configuring and application-scoped connection pool within the
weblogic-application.xml file, you must include the following sub-elements:

data-source-name, which defines a name for the application-scoped data source created
(always a TxDataSource) with the application-scoped connection pool when you deploy
your application. The application uses this name to look up the data source on the local
JNDI tree to get a connection from the connection pool.

<data-source-name>XA_LocalDS1</data-source-name>

See “Getting a Connection from an Application-Scoped Connection Pool” on page 2-35 for
more information.

connection-factory, which is a reference to the data source factory in your WebLogic
domain to use to create the application-scoped data source and connection pool when you
deploy your application. The data source factory also supplies some default values for

http://e-docs.bea.com/wls/docs81/programming/app_xml.html#app-scoped-pool
http://e-docs.bea.com/wls/docs81/programming/app_xml.html#app-scoped-pool
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#app_scoped_pools
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#app_scoped_pools

Conf igur ing and Us ing App l icat ion-Scoped JDBC Connect ion Poo ls

Programming WebLogic JDBC 2-31

connections in the application-scoped connection pool. You can over-ride these values. For
example:

<connection-factory>
 <factory-name>XA_LocalCF1</factory-name>
 <connection-properties>
 <user-name>SCOTT</user-name>
 <password>tiger</password>
 <url>jdbc:oracle:thin:@dbserver:1521:sid</url>
 <driver-class-name>oracle.jdbc.xa.client.OracleXADataSource
 </driver-class-name>
 <connection-params>
 <parameter>
 <param-name>foo</param-name>
 <param-value>xyz</param-value>
 </parameter>
 <parameter>
 <param-name>bar</param-name>
 <param-value>abc</param-value>
 </parameter>
 </connection-params>
 </connection-properties>
</connection-factory>

If you do not specify a data source factory name, you must provide all parameters
necessary to create the connection pool, including the user name, password, URL, driver
class name, and connection parameters in the connection-properties tag.

For more information about configuring a data source factory in your WebLogic domain,
see “JDBC Data Source Factories” in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html#dsfa

ct.

Encrypting the Database Password in weblogic-application.xml
To avoid storing or transmitting database passwords in clear text, you can encrypt database
passwords in the weblogic-application.xml file with the
weblogic.j2ee.PasswordEncrypt utility. This utility searches for database passwords in the
following places:

In the password tag:

<connection properties>
 <password>tiger</password>
</connection properties>

 In the connection-params tag:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html#dsfact

Conf igur ing and Us ing WebLog ic JDBC

2-32 Programming WebLogic JDBC

<connection properties>
 <parameter>
 <param-name>password</param-name>
 <param-value>tiger</param-value>
 </parameter>
</connection properties>

The utility hashes the passwords, replaces the passwords in the weblogic-application.xml
file with a hashed version, and stores the hashed values in the SerializedSystemIni.dat in
your WebLogic domain.

Note: Password encryption is domain specific. That is, when you run the encryption utility, you
must specify the domain in which you will deploy your application. If you try to deploy
the application in another domain, WebLogic Server will not be able to decrypt the
passwords for use at runtime. For more information about encrypting passwords, see
“Protecting Passwords” in Managing WebLogic Security at
http://e-docs.bea.com/wls/docs81/secmanage/passwords.html#protect_p

asswords.

You run this utility before your application archive is created. You cannot run it on a file that is
already archived.

Before you run this utility, you should have WebLogic Server installed and your environment
configured (so that the utility can find required classes). The server does not have to running when
you run the password encryption utility.

To run the password encryption utility, enter the following command:

java weblogic.j2ee.PasswordEncrypt <descriptor file> <domain config dir>

Where:

descriptor file is the weblogic-application.xml for the application.

domain config dir is the root directory of the WebLogic domain (which contains the
config.xml file).

After you run the password encryption utility, passwords may look like:

In the password tag:

<connection properties>
 <password>{3DES}iaHh5dH7clU=</password>
</connection properties>

 In the connection-params tag:

http://e-docs.bea.com/wls/docs81/secmanage/passwords.html#protect_passwords

Conf igur ing and Us ing App l icat ion-Scoped JDBC Connect ion Poo ls

Programming WebLogic JDBC 2-33

<connection properties>
 <parameter>
 <param-name>password</param-name>
 <param-value>{3DES}iaHh5dH7clU=</param-value>
 </parameter>
</connection properties>

Notes: If you need to change a password, you can change it in the weblogic-application.xml file
and then re-run the password encryption utility. The utility will not re-encrypt passwords
that are already encrypted.

You must re-encrypt passwords in the descriptor file if:

You move the application from one installation of WebLogic Server to another.

You delete the domain directory referenced when encrypting passwords, even if the
directory is recreated.

Deprecated Statement Cache Configuration Options for Application-Scoped
Connection Pools
In releases before WebLogic Server 8.1, there were separate statement cache implementations for
XA and non-XA JDBC connection pools. In WebLogic Server 8.1, the statement cache was
rewritten. There is now one statement cache implementation for both XA and non-XA connection
pools. With the statement cache revision, there is one tag available in the
weblogic-application.xml descriptor file that is deprecated. Table 2-2 lists the deprecated
descriptor tag, its replacement, and the related MBean attributes created when the
application-scoped connection pool is deployed.

Conf igur ing and Us ing WebLog ic JDBC

2-34 Programming WebLogic JDBC

To enable migration of a WebLogic Server configuration or enterprise application from an earlier
release to version 8.1, Weblogic Server enforces the following order of precedence for these
MBean attributes:

1. PreparedStatementMBean.CacheSize

2. XAParamsMBean.PreparedStatementCacheSize

For example, if the <cache-size> for a JDBC connection pool is set to 5 in the
weblogic-application.xml file and the <prepared-statement-cache-size> is set to 10,
the actual statement cache size for each connection in the connection pool will be 5 because
PreparedStatementMBean.CacheSize takes precedence over
XaParamsMBean.PreparedStatementCacheSize.

Note: When migrating an application from WebLogic Server 7.0 SP3 or later, to disable XA
statement caching, you must set the <cache-size> for the JDBC connection pool in the
weblogic-application.xml file to 0.

Table 2-2 Deprecated Statement Cache Descriptor Tags and Related MBeans Attributes

Deprecated Equivalent in WebLogic Server 8.1

Deprecated descriptor tag:

<pool-params>
<xa-params>

<prepared-statement-cache-size>10
</prepared-statement-cache-size>

</xa-params>
</pool-params>

Note: Only the tag in bold is deprecated. The other tags are
listed for contextual purposes only.

Use this tag instead:

<driver-params>
<prepared-statement>

<cache-size>10
</cache-size>

</prepared-statement>
</driver-params>

MBean attribute set from tag above:
XaParamsMBean.PreparedStatementCacheSize

MBean attribute set from tag above:
PreparedStatementMBean.CacheSize

Conf igur ing and Us ing Mul t iPoo ls

Programming WebLogic JDBC 2-35

Getting a Connection from an Application-Scoped Connection
Pool
To get a connection from an application-scoped connection pool, you look up the data source
defined in the weblogic-application.xml descriptor file in the local environment
(java:comp/env) and then request a connection from the data source. For example:

javax.sql.DataSource ds =

 (javax.sql.DataSource) ctx.lookup("java:app/jdbc/myDataSource");

java.sql.Connection conn = ds.getConnection();

When you are finished using the connection, make sure you close the connection to return it to
the connection pool:

conn.close();

Configuring and Using MultiPools
A MultiPool is a pool of connection pools. All the connections in a particular connection pool are
created identically with a single database, single user, and the same connection attributes; that is,
they are attached to a single database. However, the connection pools within a MultiPool may be
associated with different users or DBMSs.

Configuring MultiPools
MultiPools contain a configurable algorithm for choosing which connection pool will return a
connection to the client.

Create a MultiPool using the following steps:

1. Create necessary connection pools.

2. Determine if the primary purpose of the MultiPool is high availability or load balancing.
See “Choosing the MultiPool Algorithm” on page 2-36.

3. Create the MultiPool using the Administration Console or WebLogic Management API and
assign the connection pools to the MultiPool.

For more information about MultiPools, see the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_multipools.html. For
information about the JDBCMultiPoolMBean, see the WebLogic Server Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuratio

n/JDBCMultiPoolMBean.html.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_multipools.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCMultiPoolMBean.html

Conf igur ing and Us ing WebLog ic JDBC

2-36 Programming WebLogic JDBC

Choosing the MultiPool Algorithm
Before you set up a MultiPool, you need to determine the primary purpose of the MultiPool—
high availability or load balancing. You can choose the algorithm that corresponds with your
requirements.

High Availability
The High Availability algorithm provides an ordered list of connection pools. Normally, every
connection request to this kind of MultiPool is served by the first pool in the list. If a database
connection test fails and the connection cannot be replaced, or if the connection pool is
suspended, a connection is sought sequentially from the next pool on the list.

Note: This algorithm relies on TestConnectionsOnReserve to test to see if a connection in
the first connection pool is healthy. If the connection fails the test, the MultiPool uses a
connection from the next connection pool in the MultiPool. See “Testing Connection
Pools and Database Connections” on page 2-21 for information about configuring
TestConnectionsOnReserve.

Load Balancing
Connection requests to a load balancing MultiPool are served from any connection pool in the
list. Pools are accessed using a round-robin scheme. When the MultiPool provides a connection,
it selects a connection from the connection pool listed just after the last pool that was used to
provide a connection. MultiPools that use the Load Balancing algorithm also fail over to the next
connection pool in the list if a database connection test fails and the connection cannot be
replaced, or if the connection pool is suspended.

Transaction Support in JDBC MultiPools
In WebLogic Server 8.1SP5, MultiPools were enhanced to provide support for global
transactions.

Note: WebLogic Server 8.1 SP5 is certified to support Multipools with XA only on Oracle
RAC. For information on supported versions of Oracle RAC, see Supported Database
Configurations.

For an example of a MultiPool configuration that supports global transactions, see “Using
MultiPools with Global Transactions”.

http://e-docs.bea.com/platform/suppconfigs/configs81/81_over/supported_db.html
http://e-docs.bea.com/platform/suppconfigs/configs81/81_over/supported_db.html

Conf igur ing and Us ing Mul t iPoo ls

Programming WebLogic JDBC 2-37

Transaction Failover Processing for MultiPools
If a connection from a MultiPool fails while a global transaction is in progress, the result of the
transaction depends on the stage of the transaction at the time of the connection failure.

The first stage at which a failure may occur is before the application calls for the transaction to
be committed. If a database connection fails at this stage, the application gets an exception and
must get a new connection and make a new attempt at processing the transaction. WebLogic
Server does not support transparent failover.

If a failure occurs after the application has called for the transaction to be committed, the handling
of any in-flight transaction depends upon whether the PREPARE operation is complete. If the
PREPARE operation is not complete, the transaction manager rolls back the transaction and sends
the application an exception for the failed transaction. If the PREPARE operation is complete, the
transaction manager attempts to drive the in-flight transaction to completion using another
connection.

If a failure occurs during the COMMIT operation, the transaction manager attempts to retry the
COMMIT operation several times, depending on the XARetryDurationSeconds setting. Note that
the connection is blocked during these attempts. If the COMMIT operation is not successful during
the first set of retry attempts, the application gets an exception. The transaction manager then
continues to retry the COMMIT operation periodically until it is successful or until it reaches the
JTA Abandon Timeout period defined in the configuration file and abandons the transaction.

MultiPool Failover Enhancements
In WebLogic Server 8.1SP3, the following enhancements were made to MultiPools:

Connection request routing enhancements to avoid requesting a connection from an
automatically disabled (dead) connection pool within a MultiPool. See “Connection
Request Routing Enhancements When a Connection Pool Fails.”

Automatic failback on recovery of a failed connection pool within a MultiPool. See
“Automatic Re-enablement on Recovery of a Failed Connection Pool within a MultiPool.”

Failover for busy connection pools within a MultiPools. See “Enabling Failover for Busy
Connection Pools in a MultiPool.”

Failover callbacks for MultiPools with the High Availability algorithm. See “Controlling
MultiPool Failover with a Callback.”

Failback callbacks for MultiPools with either algorithm. See “Controlling MultiPool
Failback with a Callback.”

http://e-docs.bea.com/wls/docs81//ConsoleHelp/domain_domain_config_jta.html

Conf igur ing and Us ing WebLog ic JDBC

2-38 Programming WebLogic JDBC

Connection Request Routing Enhancements When a Connection Pool Fails
To improve performance when a connection pool within a MultiPool fails, WebLogic Server
automatically disables the connection pool when a pooled connection fails a connection test.
After a connection pool is disabled, WebLogic Server does not route connection requests from
applications to the connection pool. Instead, it routes connection requests to the next available
connection pool listed in the MultiPool.

This feature requires that connection pool testing options are configured for all connection pools
in a MultiPool, specifically TestTableName and TestConnectionsOnReserve.

If a callback handler is registered for the MultiPool, WebLogic Server calls the callback handler
before failing over to the next connection pool in the list. See “Controlling MultiPool Failover
with a Callback” on page 2-40 for more details.

Automatic Re-enablement on Recovery of a Failed Connection Pool within a
MultiPool
After a connection pool is automatically disabled because a connection failed a connection test,
WebLogic Server periodically tests a connection from the disabled connection pool to determine
when the connection pool (or underlying database) is available again. When the connection pool
becomes available, WebLogic Server automatically re-enables the connection pool and resumes
routing connection requests to the connection pool, depending on the MultiPool algorithm and
the position of the connection pool in the list of included connection pools.

To control how often WebLogic Server checks automatically disabled connection pools in a
MultiPool, you add a value for the HealthCheckFrequencySeconds attribute to the MultiPool
configuration in the config.xml file. For example:

<JDBCMultiPool

AlgorithmType="High-Availability"

Name="demoMultiPool"

PoolList="demoPool2,demoPool"

HealthCheckFrequencySeconds="240"

Targets="examplesServer" />

Note: This attribute is not available in the administration console. To implement this
functionality, you must manually add the attribute to the MultiPool configuration in the
config.xml file.

WebLogic Server waits for the period you specify between connection tests for each disabled
connection pool. The default value is 300 seconds. If you do not specify a value, WebLogic
Server will test automatically disabled connection pools every 300 seconds.

Conf igur ing and Us ing Mul t iPoo ls

Programming WebLogic JDBC 2-39

This feature requires that connection pool testing options are configured for all connection pools
in a MultiPool, specifically TestTableName and TestConnectionsOnReserve.

WebLogic Server does not test and automatically re-enable connection pools that you manually
disable. It only tests connection pools that it automatically disables.

If a callback handler is registered for the MultiPool, WebLogic Server calls the callback handler
before re-enabling the connection pool. See “Controlling MultiPool Failback with a Callback” on
page 2-42 for more details.

Enabling Failover for Busy Connection Pools in a MultiPool
By default, for MultiPools with the High Availability algorithm, when the number of requests for
a database connection exceeds the number of available connections in the current connection pool
in the MultiPool, subsequent connection requests fail.

To enable the MultiPool to failover when all connections in the current connection pool are in
use, you must set a value for the FailoverRequestIfBusy attribute in the MultiPool
configuration in the config.xml file. If set to true, when all connections in the current
connection pool are in use, application requests for connections will be routed to the next
available connection pool within the MultiPool. When set to false (the default), connection
requests do not failover. Weblogic Server throws a
weblogic.jdbc.extensions.PoolUnavailableSQLException.

After you add the FailoverRequestIfBusy attribute to the config.xml file, the MultiPool
entry may look like the following:

<JDBCMultiPool

AlgorithmType="High-Availability"

Name="demoMultiPool"

PoolList="demoPool2,demoPool"

FailoverRequestIfBusy="true"

Targets="examplesServer" />

Note: The FailoverRequestIfBusy attributes is not available in the administration console.
To implement this functionality, you must manually add this attribute to the MultiPool
configuration in the config.xml file.

If a ConnectionPoolFailoverCallbackHandler is included in the MultiPool configuration,
WebLogic Server calls the callback handler before failing over. See “Controlling MultiPool
Failover with a Callback” on page 2-40 for more details.

Conf igur ing and Us ing WebLog ic JDBC

2-40 Programming WebLogic JDBC

Controlling MultiPool Failover with a Callback
You can register a callback handler with WebLogic Server that controls when a MultiPool with
the High-Availability algorithm fails over connection requests from one JDBC connection pool
in the MultiPool to the next connection pool in the list.

You can use callback handlers to control if or when the failover occurs so that you can make any
other system preparations before the failover, such as priming a database or communicating with
a high-availability framework.

Callback handlers are registered via an attribute of the MultiPool in the config.xml file and are
registered per MultiPool. Therefore, you must register a callback handler for each MultiPool to
which you want the callback to apply. And you can register different callback handlers for each
MultiPool.

Callback Handler Requirements
A callback handler used to control the failover and failback within a MultiPool must include an
implementation of the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback
interface. When the MultiPool needs to failover to the next connection pool in the list or when a
previously disabled connection pool becomes available, WebLogic Server calls the
allowPoolFailover()method in the ConnectionPoolFailoverCallback interface, and
passes a value for the three parameters, currPool, nextPool, and opcode, as defined below.
WebLogic Server then waits for the return from the callback handler before completing the task.

Your application must return OK, RETRY_CURRENT, or DONOT_FAILOVER as defined
below.The application should handle failover and failback cases.

See the Javadoc for the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback
interface for more details.

Note: Failover callback handlers are optional.If no callback handler is specified in the
MultiPool configuration, WebLogic Server proceeds with the operation (failing over or
re-enabling the disabled connection pool).

Callback Handler Configuration
There are two MultiPool configuration attributes associated with the failover and failback
functionality:

ConnectionPoolFailoverCallbackHandler—To register a failover callback handler for
a MultiPool, you add a value for this attribute to the MultiPool configuration in the
config.xml file. The value must be an absolute name, such as
com.bea.samples.wls.jdbc.MultiPoolFailoverCallbackApplication.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jdbc/extensions/ConnectionPoolFailoverCallback.html

Conf igur ing and Us ing Mul t iPoo ls

Programming WebLogic JDBC 2-41

HealthCheckFrequencySeconds—To control how often WebLogic Server checks
disabled (dead) connection pools in a MultiPool to see if they are now available, you can
add a value for this attribute to the MultiPool configuration in the config.xml file.

The maximum value that can be passed to the method is MAXINT while the minimum
value is 0. Setting the value to zero disables the attribute.See “Automatic Re-enablement
on Recovery of a Failed Connection Pool within a MultiPool” on page 2-38 for more
details.

After you add the attributes to the config.xml file, the MultiPool entry may look like the
following:

<JDBCMultiPool

AlgorithmType="High-Availability"

Name="demoMultiPool"

ConnectionPoolFailoverCallbackHandler="com.bea.samples.wls.jdbc.MultiPoolF

ailoverCallbackApplication"

PoolList="demoPool2,demoPool"

HealthCheckFrequencySeconds="120"

Targets="examplesServer" />

Note: These attributes are not available in the administration console. To implement this
functionality, you must manually add these attributes to the MultiPool configuration in
the config.xml file.

How It Works—Failover
WebLogic Server attempts to failover connection requests to the next connection pool in the list
when the current connection pool fails a connection test or, if you enabled
FailoverRequestIfBusy, when all connections in the current connection pool are busy.

To enable the callback feature, you register the callback handler with Weblogic Server using the
ConnectionPoolFailoverCallbackHandler attribute in the MultiPool configuration in the
config.xml file.

With the High Availability algorithm, connection requests are served from the first connection
pool in the list. If a connection from that connection pool fails a connection test, WebLogic Server
marks the connection pool as dead and disables it. If a callback handler is registered, WebLogic
Server calls the callback handler, passing the following information, and waits for a return:

currPool—For failover, this is the name of connection pool currently being used to
supply database connections. This is the “failover from” connection pool.

Conf igur ing and Us ing WebLog ic JDBC

2-42 Programming WebLogic JDBC

nextPool—The name of next available connection pool listed in the MultiPool. For
failover, this is the “failover to” connection pool.

opcode—A code that indicates the reason for the call:

– OPCODE_CURR_POOL_DEAD—WebLogic Server determined that the current connection
pool is dead and has disabled it.

– OPCODE_CURR_POOL_BUSY—All database connections in the connection pool are in
use. (Requires FailoverIfBusy=true in the MultiPool configuration. See “Enabling
Failover for Busy Connection Pools in a MultiPool” on page 2-39.)

Failover is synchronous with the connection request: Failover occurs only when WebLogic
Server is attempting to satisfy a connection request.

The return from the callback handler can indicate one of three options:

OK—proceed with the operation. In this case, that means to failover to the next connection
pool in the list.

RETRY_CURRENT—Retry the connection request with the current connection pool.

DONOT_FAILOVER—Do not retry the current connection request and do not failover.
WebLogic Server will throw a
weblogic.jdbc.extensions.PoolUnavailableSQLException.

WebLogic Server acts according to the value returned by the callback handler.

If the secondary connection pools fails, WebLogic Server calls the callback handler again, as in
the previous failover, in an attempt to failover to the next available connection pool in the
MultiPool, if there is one.

Note: WebLogic Server does not call the callback handler when you manually disable a
connection pool.

For MultiPools with the Load-Balancing algorithm, WebLogic Server does not call the callback
handler when a connection pool is disabled. However, it does call the callback handler when
attempting to re-enable a disabled connection pool. See the following section for more details.

Controlling MultiPool Failback with a Callback
If you register a failover callback handler for a MultiPool, WebLogic Server calls the same
callback handler when re-enabling a connection pool that was automatically disabled. You can
use the callback to control if or when the disabled connection pool is re-enabled so that you can
make any other system preparations before the connection pool is re-enabled, such as priming a
database or communicating with a high-availability framework.

Conf igur ing and Us ing Mul t iPoo ls

Programming WebLogic JDBC 2-43

Callback handlers are registered via an attribute of the MultiPool in the config.xml file and are
registered per MultiPool. Therefore, you must register a callback handler for each MultiPool to
which you want the callback to apply. And you can register different callback handlers for each
MultiPool.

See the following sections for more details about the callback handler:

“Callback Handler Requirements” on page 2-40

“Callback Handler Configuration” on page 2-40

How It Works—Failback
WebLogic Server periodically checks the status of connection pools in a MultiPool that were
automatically disabled. (See “Automatic Re-enablement on Recovery of a Failed Connection
Pool within a MultiPool” on page 2-38.) If a disabled connection pool becomes available and if
a failover callback handler is registered, WebLogic Server calls the callback handler with the
following information and waits for a return:

currPool—For failback, this is the name of the connection pool that was previously
disabled and is now available to be re-enabled.

nextPool—For failback, this is null.

opcode—A code that indicates the reason for the call. For failback, the code is always
OPCODE_REENABLE_CURR_POOL, which indicates that the connection pool named in
currPool is now available.

Failback, or automatically re-enabling a disabled connection pool, differs from failover in that
failover is synchronous with the connection request, but failback is asynchronous with the
connection request.

The callback handler can return one of the following values:

OK—proceed with the operation. In this case, that means to re-enable the indicated
connection pool. WebLogic Server resumes routing connection requests to the connection
pool, depending on the MultiPool algorithm and the position of the connection pool in the
list of included connection pools.

DONOT_FAILOVER—Do not re-enable the currPool connection pool. Continue to serve
connection requests from the connection pool(s) in use.

WebLogic Server acts according to the value returned by the callback handler.

Conf igur ing and Us ing WebLog ic JDBC

2-44 Programming WebLogic JDBC

If the callback handler returns DONOT_FAILOVER, WebLogic Server will attempt to re-enable
the connection pool during the next testing cycle as determined by the
HealthCheckFrequencySeconds attribute in the MultiPool configuration, and will call the
callback handler as part of that process.

The order in which connection pools are listed in a MultiPool is very important. A MultiPool with
the High Availability algorithm will always attempt to serve connection requests from the first
available connection pool in the list of connection pools in the MultiPool. Consider the following
scenario:

MultiPool_1 uses the High Availability algorithm, has a registered
ConnectionPoolFailoverCallbackHandler, and includes three connection pools: CP1, CP2,
and CP3, listed in that order.

CP1 becomes disabled, so MultiPool_1 fails over connection requests to CP2.

CP2 then becomes disabled, so MultiPool_1 fails over connection requests to CP3.

After some time, CP1 becomes available again and the callback handler allows WebLogic Server
to re-enable the connection pool. Future connection requests will be served by CP1 because CP1
is the first connection pool listed in the MultiPool.

If CP2 subsequently becomes available and the callback handler allows WebLogic Server to
re-enable the connection pool, connection requests will continue to be served by CP1 because CP1
is listed before CP2 in the list of connection pools.

MultiPool Fail-Over Limitations and Requirements
WebLogic Server provides the High Availability algorithm for MultiPools so that if a connection
pool fails (for example, if the database management system crashes), your system can continue
to operate. However, you must consider the following limitations and requirements when
configuring your system.

Test Connections on Reserve to Enable Fail-Over
Connection pools rely on the TestConnectionsOnReserve feature to know when database
connectivity is lost. Connections are not automatically tested before being reserved by an
application. You must set TestConnectionsOnReserve=true for the connection pools within
the MultiPool. After turning on this feature, WebLogic Server will test each connection before
returning it to an application, which is crucial to the High Availability algorithm operation. With
the High Availability algorithm, the MultiPool uses the results from testing connections on
reserve to determine when to fail over to the next connection pool in the MultiPool. After a test

Conf igur ing and Us ing Mul t iPoo ls

Programming WebLogic JDBC 2-45

failure, the connection pool attempts to recreate the connection. If that attempt fails, the
MultiPool fails over to the next connection pool.

By Default, No Fail-Over When All Connections are In Use
By default, if all connections in the primary connection pool are being used, a MultiPool with the
High Availability algorithm will not attempt to provide a connection from the next pool in the
list. MultiPool failover takes effect only if loss of database connectivity has occurred (or the
connection pool has been disabled). See “Enabling Failover for Busy Connection Pools in a
MultiPool” on page 2-39 for information about enabling failover in a MultiPool when all
connections in a connection pool are in use.

Do Not Enable Connection Creation Retries
Do not enable connection creation retries with connection pools in a High Availability MultiPool.
Connection requests to the MultiPool will fail (not fail-over) when a connection pool in the list
is dead and the number of connection requests equals the number of connections in the first
connection pool, even if connections are available in subsequent connection pools in the
MultiPool.

MultiPools and the connection creation retries feature both attempt to solve the same problem—
to gracefully handle database connections when a database is unavailable. If you use these two
features together, their functionality will interfere with each other.

No Fail-Over for In-Use Connections
It is possible for a connection to fail after being reserved, in which case your application must
handle the failure. WebLogic Server cannot provide fail-over for connections that fail while being
used by an application. Any failure while using a connection requires that you restart the
transaction and provide code to handle such a failure.

Conf igur ing and Us ing WebLog ic JDBC

2-46 Programming WebLogic JDBC

Programming WebLogic JDBC 3-1

C H A P T E R 3

Performance Tuning Your JDBC
Application

The following sections explain how to get the best performance from JDBC applications:

“WebLogic Performance-Enhancing Features” on page 3-1

“Designing Your Application for Best Performance” on page 3-2

WebLogic Performance-Enhancing Features
WebLogic has several features that enhance performance for JDBC applications.

How Connection Pools Enhance Performance
Establishing a JDBC connection with a DBMS can be very slow. If your application requires
database connections that are repeatedly opened and closed, this can become a significant
performance issue. WebLogic connection pools offer an efficient solution to this problem.

When WebLogic Server starts, connections from the connection pools are opened and are
available to all clients. When a client closes a connection from a connection pool, the connection
is returned to the pool and becomes available for other clients; the connection itself is not closed.
There is little cost to opening and closing pool connections.

How many connections should you create in the pool? For a typical application that will use one
connection from each involved connection pool per transaction or invoke, each connection pool
will need one connection for each transaction that can be running simultaneously, which is the
number of execute threads the server is running. As soon as a thread is finished, it will free its
connections to reuse when the thread starts the next transaction. Therefore, the pool size should

Per fo rmance Tun ing Your JDBC App l i cat ion

3-2 Programming WebLogic JDBC

usually equal the number of execute threads. Add more if the connection pool is configured to
periodically test database connections.

Caching Statements and Data
DBMS access uses considerable resources. If your program reuses prepared or callable
statements or accesses frequently used data that can be shared among applications or can persist
between connections, you can cache prepared statements or data by using the following:

Statement Cache for a connection pool
(http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.htm
l#statementcache)

Read-Only Entity Beans (http://e-docs.bea.com/wls/docs81/ejb/entity.html)

JNDI in a Clustered Environment
(http://e-docs.bea.com/wls/docs81/jndi/jndi.html)

Designing Your Application for Best Performance
Most performance gains or losses in a database application is not determined by the application
language, but by how the application is designed. The number and location of clients, size and
structure of DBMS tables and indexes, and the number and types of queries all affect application
performance.

The following are general hints that apply to all DBMSs. It is also important to be familiar with
the performance documentation of the specific DBMS that you use in your application.

1. Process as Much Data as Possible Inside the Database
Most serious performance problems in DBMS applications come from moving raw data around
needlessly, whether it is across the network or just in and out of cache in the DBMS. A good
method for minimizing this waste is to put your logic where the data is—in the DBMS, not in the
client —even if the client is running on the same box as the DBMS. In fact, for some DBMSs a
fat client and a fat DBMS sharing one CPU is a performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where your data is.
There is a significant difference in performance between a client that calls a stored procedure to
update 10 rows, and another client that fetches those rows, alters them, and sends update
statements to save the changes to the DBMS.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#statementcache
http://e-docs.bea.com/wls/docs81/ejb/entity.html
http://e-docs.bea.com/wls/docs81/jndi/jndi.html

Des ign ing Your App l ica t ion fo r Bes t Per fo rmance

Programming WebLogic JDBC 3-3

Also review the DBMS documentation on managing cache memory in the DBMS. Some DBMSs
(Sybase, for example) provide the means to partition the virtual memory allotted to the DBMS,
and to guarantee certain objects exclusive use of some fixed areas of cache. This means that an
important table or index can be read once from disk and remain available to all clients without
having to access the disk again.

2. Use Built-in DBMS Set-based Processing
SQL is a set processing language. DBMSs are designed from the ground up to do set-based
processing. Accessing a database one row at a time is, without exception, slower than set-based
processing and, on some DBMSs is poorly implemented. For example, it will always be faster to
update each of four tables one at a time for all the 100 employees represented in the tables than
to alter each table 100 times, once for each employee.

Many complicated processes that were originally thought too complex to do any other way but
row-at-a-time have been rewritten using set-based processing, resulting in improved
performance. For example, a major payroll application was converted from a huge slow COBOL
application to four stored procedures running in series, and what took hours on a multi-CPU
machine now takes fifteen minutes with many fewer resources used.

3. Make Your Queries Smart
Frequently customers ask how to tell how many rows will be coming back in a given result set.
The only way to find out without fetching all the rows is by issuing the same query using the count
keyword:

 SELECT count(*) from myTable, yourTable where ...

This returns the number of rows the original query would have returned, assuming no change in
relevant data. The actual count may change when the query is issued if other DBMS activity has
occurred that alters the relevant data.

Be aware, however, that this is a resource-intensive operation. Depending on the original query,
the DBMS may perform nearly as much work to count the rows as it will to send them.

Make your application queries as specific as possible about what data it actually wants. For
example, tailor your application to select into temporary tables, returning only the count, and then
sending a refined second query to return only a subset of the rows in the temporary table.

Learning to select only the data you really want at the client is crucial. Some applications ported
from ISAM (a pre-relational database architecture) will unnecessarily send a query selecting all
the rows in a table when only the first few rows are required. Some applications use a 'sort by'

Per fo rmance Tun ing Your JDBC App l i cat ion

3-4 Programming WebLogic JDBC

clause to get the rows they want to come back first. Database queries like this cause unnecessary
degradation of performance.

Proper use of SQL can avoid these performance problems. For example, if you only want data
about the top three earners on the payroll, the proper way to make this query is with a correlated
subquery. Table 3-1 shows the entire table returned by the SQL statement

select * from payroll

A correlated subquery

select p.name, p.salary from payroll p

where 3 >= (select count(*) from payroll pp

where pp.salary >= p.salary);

returns a much smaller result, shown in Table 3-2.

Table 3-1 Full Results Returned

Name Salary

Joe 10

Mike 20

Sam 30

Tom 40

Jan 50

Ann 60

Sue 70

Hal 80

May 80

Des ign ing Your App l ica t ion fo r Bes t Per fo rmance

Programming WebLogic JDBC 3-5

This query returns only three rows, with the name and salary of the top three earners. It scans
through the payroll table, and for every row, it goes through the whole payroll table again in an
inner loop to see how many salaries are higher than the current row of the outer scan. This may
look complicated, but DBMSs are designed to use SQL efficiently for this type of operation.

4. Make Transactions Single-batch
Whenever possible, collect a set of data operations and submit an update transaction in one
statement in the form:
 BEGIN TRANSACTION

 UPDATE TABLE1...

 INSERT INTO TABLE2

 DELETE TABLE3

 COMMIT

This approach results in better performance than using separate statements and commits. Even
with conditional logic and temporary tables in the batch, it is preferable because the DBMS
obtains all the locks necessary on the various rows and tables, and uses and releases them in one
step. Using separate statements and commits results in many more client-to-DBMS transmissions
and holds the locks in the DBMS for much longer. These locks will block out other clients from
accessing this data, and, depending on whether different updates can alter tables in different
orders, may cause deadlocks.

Warning: If any individual statement in the preceding transaction fails, due, for instance, to
violating a unique key constraint, you should put in conditional SQL logic to detect statement
failure and to roll back the transaction rather than commit. If, in the preceding example, the insert
failed, most DBMSs return an error message about the failed insert, but behave as if you got the
message between the second and third statement, and decided to commit anyway! Microsoft SQL

Table 3-2 Results from Subquery

Name Salary

Sue 70

Hal 80

May 80

Per fo rmance Tun ing Your JDBC App l i cat ion

3-6 Programming WebLogic JDBC

Server offers a connection option enabled by executing the SQL set xact_abort on, which
automatically rolls back the transaction if any statement fails.

5. Never Have a DBMS Transaction Span User Input
If an application sends a 'BEGIN TRAN' and some SQL that locks rows or tables for an update,
do not write your application so that it must wait on the user to press a key before committing the
transaction. That user may go to lunch first and lock up a whole DBMS table until the user
returns.

If you require user input to form or complete a transaction, use optimistic locking. Briefly,
optimistic locking employs timestamps and triggers in queries and updates. Queries select data
with timestamp values and prepare a transaction based on that data, without locking the data in a
transaction.

When an update transaction is finally defined by the user input, it is sent as a single submission
that includes timestamped safeguards to make sure the data is the same as originally fetched. A
successful transaction automatically updates the relevant timestamps for changed data. If an
interceding update from another client has altered data on which the current transaction is based,
the timestamps change, and the current transaction is rejected. Most of the time, no relevant data
has been changed so transactions usually succeed. When a transaction fails, the application can
refetch the updated data to present to the user to reform the transaction if desired.

6. Use In-place Updates
Changing a data row in place is much faster than moving a row, which may be required if the
update requires more space than the table design can accommodate. If you design your rows to
have the space they need initially, updates will be faster, although the table may require more disk
space. Because disk space is cheap, using a little more of it can be a worthwhile investment to
improve performance.

7. Keep Operational Data Sets Small
Some applications store operational data in the same table as historical data. Over time and with
accumulation of this historical data, all operational queries have to read through lots of useless
(on a day-to-day basis) data to get to the more current data. Move non-current data to other tables
and do joins to these tables for the rarer historical queries. If this can't be done, index and cluster
your table so that the most frequently used data is logically and physically localized.

Des ign ing Your App l ica t ion fo r Bes t Per fo rmance

Programming WebLogic JDBC 3-7

8. Use Pipelining and Parallelism
DBMSs are designed to work best when very busy with lots of different things to do. The worst
way to use a DBMS is as dumb file storage for one big single-threaded application. If you can
design your application and data to support lots of parallel processes working on easily
distinguished subsets of the work, your application will be much faster. If there are multiple steps
to processing, try to design your application so that subsequent steps can start working on the
portion of data that any prior process has finished, instead of having to wait until the prior process
is complete. This may not always be possible, but you can dramatically improve performance by
designing your program with this in mind.

Per fo rmance Tun ing Your JDBC App l i cat ion

3-8 Programming WebLogic JDBC

Programming WebLogic JDBC 4-1

C H A P T E R 4

Using WebLogic Wrapper Drivers

BEA recommends that you use DataSource objects to get database connections in new
applications. DataSource objects, along with the JNDI tree, provide access to connection pools
for database connectivity. For existing or legacy applications that use the JDBC 1.x API, you can
use the WebLogic wrapper drivers to get database connectivity.

The following sections describe how to use WebLogic wrapper drivers with WebLogic Server:

“Using the WebLogic RMI Driver” on page 4-1

“Using the WebLogic JTS Driver” on page 4-7

“Using the WebLogic Pool Driver” on page 4-9

Using the WebLogic RMI Driver
RMI driver clients make their connection to the DBMS by looking up the DataSource object. This
lookup is accomplished by using a Java Naming and Directory Service (JNDI) lookup, or by
directly calling WebLogic Server which performs the JNDI lookup on behalf of the client.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated) and the
Pool driver, and uses the Java standard Remote Method Invocation (RMI) to connect to
WebLogic Server rather than the proprietary t3 protocol.

Because the details of the RMI implementation are taken care of automatically by the driver, a
knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

Using WebLog ic Wrappe r Dr ive rs

4-2 Programming WebLogic JDBC

Setting Up WebLogic Server to Use the WebLogic RMI Driver
The RMI driver is accessible through DataSource objects, which are created in the
Administration Console. You should create DataSource objects in your WebLogic Server
configuration before you use the RMI driver in your applications. For instructions to create a
DataSource, see the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html#data_so

urce_create.

Sample Client Code for Using the RMI Driver
The following code samples show how to use the RMI driver to get and use a database connection
from a WebLogic Server connection pool.

Import the Required Packages
Before you can use the RMI driver to get and use a database connection, you must import the
following packages:

javax.sql.DataSource
java.sql.*
java.util.*
javax.naming.*

Get the Database Connection
The WebLogic JDBC/RMI client obtains its connection to a DBMS from the DataSource object
that you defined in the Administration Console. There are two ways the client can obtain a
DataSource object:

Using a JNDI lookup. This is the preferred and most direct procedure.

Passing the DataSource name to the RMI driver with the Driver.connect()method. In
this case, WebLogic Server performs the JNDI look up on behalf of the client.

Using a JNDI Lookup to Obtain the Connection
To access the WebLogic RMI driver using JNDI, obtain a context from the JNDI tree by looking
up the name of your DataSource object. For example, to access a DataSource called
“myDataSource” that is defined in Administration Console:

Context ctx = null;

 Hashtable ht = new Hashtable();

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html#data_source_create

Using the WebLog ic RMI Dr ive r

Programming WebLogic JDBC 4-3

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL,

 "t3://hostname:port");

 try {

 ctx = new InitialContext(ht);

 javax.sql.DataSource ds

 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

 java.sql.Connection conn = ds.getConnection();

 // You can now use the conn object to create

 // a Statement object to execute

 // SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

 // Do not forget to close the statement and connection objects

 // when you are finished:

 }

 catch (Exception e) {

 // a failure occurred

 log message;

 }

} finally {

 try {

 ctx.close();

 } catch (Exception e) {

 log message; }

 try {

 if (rs != null) rs.close();

 } catch (Exception e) {

 log message; }

 try {

 if (stmt != null) stmt.close();

 } catch (Exception e) {

 log message; }

 try {

 if (conn != null) conn.close();

Using WebLog ic Wrappe r Dr ive rs

4-4 Programming WebLogic JDBC

 } catch (Exception e) {

 log message; }

}

(Where hostname is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI lookup.
There are other ways to perform a JNDI lookup. For more information, see Programming
WebLogic JNDI at http://e-docs.bea.com/wls/docs81/jndi/index.html.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed look up
and also that the context is closed in a finally block.

Using Only the WebLogic RMI Driver to Obtain a Database Connection
Instead of looking up a DataSource object to get a database connection, you can access WebLogic
Server using the Driver.connect() method, in which case the JDBC/RMI driver performs the
JNDI lookup. To access the WebLogic Server, pass the parameters defining the URL of your
WebLogic Server and the name of the DataSource object to the Driver.connect() method. For
example, to access a DataSource called “myDataSource” as defined in the Administration
Console:

java.sql.Driver myDriver = (java.sql.Driver)

 Class.forName("weblogic.jdbc.rmi.Driver").newInstance();

String url ="jdbc:weblogic:rmi";

java.util.Properties props = new java.util.Properties();

props.put("weblogic.server.url", "t3://hostname:port");

props.put("weblogic.jdbc.datasource", "myDataSource");

java.sql.Connection conn = myDriver.connect(url, props);

(Where hostname is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

You can also define the following properties which will be used to set the JNDI user information:

weblogic.user—specifies a username

weblogic.credential—specifies the password for the weblogic.user.

http://e-docs.bea.com/wls/docs81/jndi/index.html
http://e-docs.bea.com/wls/docs81/jndi/index.html

Using the WebLog ic RMI Dr ive r

Programming WebLogic JDBC 4-5

Row Caching with the WebLogic RMI Driver
Row caching is a WebLogic Server JDBC feature that improves the performance of your
application. Normally, when a client calls ResultSet.next(), WebLogic Server fetches a
single row from the DBMS and transmits it to the client JVM. With row caching enabled, a single
call to ResultSet.next() retrieves multiple DBMS rows, and caches them in client memory.
By reducing the number of trips across the wire to retrieve data, row caching improves
performance.

Note: WebLogic Server will not perform row caching when the client and WebLogic Server
are in the same JVM.

You can enable and disable row caching and set the number of rows fetched per
ResultSet.next() call with the Data Source attributes Row Prefetch Enabled and Row
Prefetch Size, respectively. You set Data Source attributes via the Administration Console. To
enable row caching and to set the row prefetch size attribute for a DataSource or TxDataSource,
follow these steps:

1. In the left pane of the Administration Console, navigate to Services→JDBC→Data Sources or
Tx Data Sources, then select the DataSource or TxDataSource for which you want to enable
row caching.

2. In the right pane of the Administration Console, select the Configuration tab if it is not
already selected.

3. Select the Row Prefetch Enabled check box.

4. In Row Prefetch Size, type the number of rows you want to cache for each
ResultSet.next() call.

Important Limitations for Row Caching with the WebLogic RMI Driver
Keep the following limitations in mind if you intend to implement row caching with the RMI
driver:

WebLogic Server only performs row caching if the result set type is both
TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

Certain data types in a result set may disable caching for that result set. These include the
following:

– LONGVARCHAR/LONGVARBINARY

– NULL

Using WebLog ic Wrappe r Dr ive rs

4-6 Programming WebLogic JDBC

– BLOB/CLOB

– ARRAY

– REF

– STRUCT

– JAVA_OBJECT

Certain ResultSet methods are not supported if row caching is enabled and active for that
result set. Most pertain to streaming data, scrollable result sets or data types not supported
for row caching. These include the following:
– getAsciiStream()

– getUnicodeStream()

– getBinaryStream()

– getCharacterStream()

– isBeforeLast()

– isAfterLast()

– isFirst()

– isLast()

– getRow()

– getObject (Map)

– getRef()

– getBlob()/getClob()

– getArray()

– getDate()

– getTime()

– getTimestamp()

Using the WebLog ic JTS Dr ive r

Programming WebLogic JDBC 4-7

Using the WebLogic JTS Driver
The Java Transaction Services or JTS driver is a server-side Java Database Connectivity (JDBC)
driver that provides access to both connection pools and global transactions from applications
running in WebLogic Server. Connections to a database are made from a connection pool and use
a two-tier JDBC driver running in WebLogic Server to connect to the Database Management
System (DBMS) on behalf of your application. Your application uses the JTS driver to access a
connection from the connection pool.

WebLogic Server also uses the JTS driver internally when a connection from a connection pool
that uses a non-XA JDBC driver participates in a global transaction. This behavior enables a
non-XA resource to emulate XA and participate in a two-phase commit transaction. See
“Configuring Non-XA JDBC Drivers for Distributed Transactions” in the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#co

nfignonXA.

Once a transaction begins, all database operations in an execute thread that get their connection
from the same connection pool share the same connection from that pool. These operations can
be made through services such as Enterprise JavaBeans (EJB) or Java Messaging Service (JMS),
or by directly sending SQL statements using standard JDBC calls. All of these operations will,
by default, share the same connection and participate in the same transaction.When the
transaction is committed or rolled back, the connection is returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate in
transactions via Remote Method Invocation (RMI). You can begin a transaction in a thread on a
client and then have the client call a remote RMI object. The database operations executed by the
remote object become part of the transaction that was begun on the client. When the remote object
is returned back to the calling client, you can then commit or roll back the transaction. The
database operations executed by the remote objects must all use the same connection pool to be
part of the same transaction.

For the JTS driver and your application to participate in a global transaction, the application must
call conn = myDriver.connect("jdbc:weblogic:jts", props); within a global
transaction. After the transaction completes (gets committed or rolled back), WebLogic Server
puts the connection back in the connection pool. If you want to use a connection for another
global transaction, the application must call conn =
myDriver.connect("jdbc:weblogic:jts", props); again within a new global transaction.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#confignonXA

Using WebLog ic Wrappe r Dr ive rs

4-8 Programming WebLogic JDBC

Sample Client Code for Using the JTS Driver
To use the JTS driver, you must first use the Administration Console to create a connection pool
in WebLogic Server. For more information, see “Configuring and Using Connection Pools” on
page 2-2.

This explanation demonstrates creating and using a JTS transaction from a server-side
application and uses a connection pool named “myConnectionPool.”

1. Import the following classes:

import javax.transaction.UserTransaction;
import java.sql.*;
import javax.naming.*;
import java.util.*;
import weblogic.jndi.*;

2. Establish the transaction by using the UserTransaction class. You can look up this class
on the JNDI tree. The UserTransaction class controls the transaction on the current
execute thread. Note that this class does not represent the transaction itself. The actual
context for the transaction is associated with the current execute thread.

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, “Fred”);
env.put(Context.SECURITY_CREDENTIALS, “secret”);

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

3. Start a transaction on the current thread:

// Start the global transaction before getting a connection
tx.begin();

4. Load the JTS driver:

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.jts.Driver").newInstance();

Using the WebLog ic Poo l Dr ive r

Programming WebLogic JDBC 4-9

5. Get a connection from the connection pool:

Properties props = new Properties();
props.put("connectionPoolID", "myConnectionPool");

conn = myDriver.connect("jdbc:weblogic:jts", props);

6. Execute your database operations. These operations may be made by any service that uses a
database connection, including EJB, JMS, and standard JDBC statements. These operations
must use the JTS driver to access the same connection pool as the transaction begun in step
3 in order to participate in that transaction.

If the additional database operations using the JTS driver use a different connection pool
than the one specified in step 5, an exception will be thrown when you try to commit or
roll back the transaction.

7. Close your connection objects. Note that closing the connections does not commit the
transaction nor return the connection to the pool:

conn.close();

8. Complete the transaction by either committing the transaction or rolling it back. In the case
of a commit, the JTS driver commits all the transactions on all connection objects in the
current thread and returns the connection to the pool.

tx.commit();

// or:

tx.rollback();

 Using the WebLogic Pool Driver
The WebLogic Pool driver enables utilization of connection pools from server-side applications
such as HTTP servlets or EJBs. For information about using the Pool driver, see “Accessing
Databases” in Programming Tasks in Programming WebLogic HTTP Servlets.

http://e-docs.bea.com/wls/docs81/servlet/progtasks.html

Using WebLog ic Wrappe r Dr ive rs

4-10 Programming WebLogic JDBC

Programming WebLogic JDBC 5-1

C H A P T E R 5

Using Third-Party Drivers with
WebLogic Server

The following sections describe how to set up and use third-party JDBC drivers:

“Overview of Third-Party JDBC Drivers” on page 5-1

“Using the Oracle Thin Driver” on page 5-3

“Updating the Sybase jConnect Driver” on page 5-5

“Installing and Using the IBM DB2 Type 2 JDBC Driver” on page 5-6

“Installing and Using the SQL Server 2000 Driver for JDBC from Microsoft” on page 5-9

“Installing and Using the IBM Informix JDBC Driver” on page 5-11

“Getting a Connection with Your Third-Party Driver” on page 5-15

“Using Vendor Extensions to JDBC Interfaces” on page 5-21

“Using Oracle Extensions with the Oracle Thin Driver” on page 5-25

“Programming with Oracle Virtual Private Databases” on page 5-40

“Support for Vendor Extensions Between Versions of WebLogic Server Clients and
Servers” on page 5-41

“Tables of Oracle Extension Interfaces and Supported Methods” on page 5-42

Overview of Third-Party JDBC Drivers
WebLogic Server works with third-party JDBC drivers that offer the following functionality:

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-2 Programming WebLogic JDBC

Are thread-safe

Can implement transactions using standard JDBC statements

Third-party JDBC drivers that do not implement Serializable or Remote interfaces cannot
pass objects to a remote client application.

For more information, see "Supported Database Configurations" in Supported Configurations for
WebLogic Platform 8.1.

The following sections describe how to set up and use third-party JDBC drivers with WebLogic
Server:

“Using Third-Party JDBC Drivers Installed with WebLogic Server” on page 5-2

“Using Third-Party JDBC Drivers not Installed with WebLogic Server” on page 5-2

Using Third-Party JDBC Drivers Installed with WebLogic Server
The following third-party drivers are installed with WebLogic Server:

Oracle Thin Driver 10g and 9.2.0

Sybase jConnect 4.5 (jConnect.jar), 5.5 (jconn2.jar), and 6.0 (jconn3.jar)

Note: JDBC Driver support changed in the following releases:

In WebLogic Server 8.1SP3, the default version of the Oracle Thin driver was
changed to the 10g driver (the version in WL_HOME\server\lib). In previous
releases of WebLogic Server 8.1, the 9.2.0 version of the Oracle Thin driver was
the default version of the driver.

In WebLogic Server 8.1SP6, support was added for the Sybase JConnect 6.0
(JDBC 2.0) driver.

Drivers installed with Weblogic server are located in the WL_HOME\server\lib folder (where
WL_HOME is the folder where WebLogic Platform is installed) with weblogic.jar. The manifest
in weblogic.jar lists these files so that they are loaded when weblogic.jar is loaded (when
the server starts). Therefore, you do not need to add these JDBC drivers to your CLASSPATH.

Using Third-Party JDBC Drivers not Installed with WebLogic
Server
If you plan to use a third-party JDBC driver that is not installed with WebLogic Server, you need
to update the WebLogic Server’s classpath to include the location of the JDBC driver classes.

http://e-docs.bea.com/platform/suppconfigs/configs81/81_over/supported_db.html

Using the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-3

Edit the commEnv.cmd/sh script in WL_HOME/common/bin and prepend your classes as
described in "Modifying the Classpath" in WebLogic Server Command Reference.

Using the Oracle Thin Driver
The following secions provide information on using the Oracle Thin Driver:

“Updating the Oracle 10g Driver” on page 5-3

“Using the Oracle 9.2 Driver” on page 5-3

“Package Change for Oracle Thin Driver 9.x and 10g” on page 5-4

“Character Set Support with nls_charset12.zip” on page 5-4

“Using the Oracle Thin Driver in Debug Mode” on page 5-5

Updating the Oracle 10g Driver
If you plan to use a different version of the driver, you must replace the ojdbc14.jar file in
WL_HOME\server\lib with an updated version of the file from Oracle or add the new file to the
front of your CLASSPATH. You can download driver updates from the Oracle Web site at
http://otn.oracle.com/software/content.html.

Note: The ojdbc14.jar file replaces classes12.zip as the source for Oracle Thin driver
classes. This version of the driver is for use with a Java 2 SDK version 1.4.

Using the Oracle 9.2 Driver
The WL_HOME\server\ext\jdbc\oracle folder (where WL_HOME is the folder where
WebLogic Platform is installed) of your WebLogic Server installation includes subfolders for the
9.2.0 and 10g versions of the Oracle Thin driver.

To use the 9.2.0 version of the driver:

1. In Windows Explorer or a command shell, navigate to the
WL_HOME\server\ext\jdbc\oracle\920 folder.

2. Copy ojdbc14.jar.

3. In Windows Explorer or a command shell, navigate to WL_HOME\server\lib and replace
the existing version of ojdbc14.jar with the version you copied.

http://e-docs.bea.com/wls/docs81/admin_ref/weblogicServer.html#ModifyingClasspath

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-4 Programming WebLogic JDBC

To revert to version 10g (the default), follow the instructions above, but copy from the following
folder: WL_HOME\server\ext\jdbc\oracle\10g.

Package Change for Oracle Thin Driver 9.x and 10g
For Oracle 8.x and previous releases, the package that contained the Oracle Thin driver was
oracle.jdbc.driver. When configuring a JDBC connection pool that uses the Oracle 8.1.7
Thin driver, you specify the DriverName (Driver Classname) as
oracle.jdbc.driver.OracleDriver. For Oracle 9.x and 10g, the package that contains the
Oracle Thin driver is oracle.jdbc. When configuring a JDBC connection pool that uses the
Oracle 9.x or 10g Thin driver, you specify the DriverName (Driver Classname) as
oracle.jdbc.OracleDriver. You can use the oracle.jdbc.driver.OracleDriver class
with the 9.x and 10g drivers, but Oracle may not make future feature enhancements to that class.

See the Oracle documentation for more details about the Oracle Thin driver.

Note: The package change does not apply to the XA version of the driver. For the XA version
of the Oracle Thin driver, use oracle.jdbc.xa.client.OracleXADataSource as the
DriverName (Driver Classname) in a JDBC connection pool.

Character Set Support with nls_charset12.zip
The Oracle Thin driver includes Globalization Support for all Oracle character sets for CHAR
and NCHAR datatypes not retrieved or inserted as part of an Oracle object or collection type.

However, in the case of the CHAR and VARCHAR data portion of Oracle objects and
collections, the Oracle Thin driver includes Globalization Support support for only the following
character sets:

US7ASCII

WE8DEC

ISO-LATIN-1

UTF-8

If you use other character sets with CHAR and NCHAR data in Oracle object types and
collections, you must include nls_charset.zip in your CLASSPATH. If this file is not in your
CLASSPATH, you will see the following exception:

java.sql.SQLException: Non supported character set:

oracle-character-set-178

Updat ing the Sybase jConnect D r i ve r

Programming WebLogic JDBC 5-5

The nls_charset12.zip file is installed with WebLogic Server in the
WL_HOME\server\ext\jdbc\oracle\920 and WL_HOME\server\ext\jdbc\oracle\10g
folders (where WL_HOME is the folder where WebLogic Server is installed). See “Using
Third-Party JDBC Drivers not Installed with WebLogic Server” on page 5-2 for instructions to
set your CLASSPATH.

Note: For Globalization Support with the 10g version of the driver, Oracle supplies the
orai18n.jar file, which replaces nls_charset.zip. If you use character sets other
than US7ASCII, WE8DEC, WE8ISO8859P1 and UTF8 with CHAR and NCHAR data
in Oracle object types and collections, you must include orai18n.jar in your
CLASSPATH. orai18n.jar is not installed with WebLogic Server. You can download it
from the Oracle Web site.

Using the Oracle Thin Driver in Debug Mode
The WL_HOME\server\ext\jdbc\oracle\ (where WL_HOME is the folder where WebLogic
Server is installed) includes subfolders for the 9.2.0 and 10g versions of the Oracle Thin driver.
Each subfolder contains a ojdbc14_g.jar file, which contains the necessary classes to support
debug and trace.

To use the Oracle Thin driver in debug mode:

1. Prepend the path of the ojdbc14_g.jar file to the WebLogic Server classpath as described
in "Modifying the Classpath" in WebLogic Server Command Reference.

2. Turn on JDBC logging (see “Enabling JDBC Logging” in the WebLogic Server
Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/logging.html#jdbc_log).

Updating the Sybase jConnect Driver
WebLogic Server ships with Sybase jConnect 4.5 (jConnect.jar), 5.5 (jconn2.jar), and 6.0
(jconn3.jar) preconfigured and ready to use. To use a different version, replace the Sybase.jar
file located at WL_HOME\server\lib with the updated version of the file from the DBMS
vendor.

To revert to versions installed with WebLogic Server, copy the following files and place them in
the WL_HOME\server\lib folder:

WL_HOME\server\ext\jdbc\sybase\jConnect.jar

WL_HOME\server\ext\jdbc\sybase\jConnect-5_5\classes\jconn2.jar

WL_HOME\server\ext\jdbc\sybase\jConnect-6_0\classes\jconn3.jar

http://e-docs.bea.com/wls/docs81//admin_ref/weblogicServer.html#ModifyingClasspath
http://e-docs.bea.com/wls/docs81/ConsoleHelp/logging.html#jdbc_log

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-6 Programming WebLogic JDBC

Installing and Using the IBM DB2 Type 2 JDBC Driver
The IBM DB2 client installation includes a type 2 JDBC driver that you can use to create
connections to a DB2 database in a connection pool. By default, the DB2 client uses a JDBC 1.x
version of the driver. To use the JDBC 2.0-compliant version of the driver, follow the steps
below.

Note: You must install the DB2 client on each machine that you want to use the DB2 type 2
JDBC driver to connect to the database. As with all type 2 drivers, the DB2 driver relies
on libraries in the database client to access the database.

1. Stop the DB2 JDBC Applet Server Windows Service.

2. In the db2_install_path\java12 directory, where db2_install_path is the directory
in which you installed the DB2 client, run the usejdbc2.bat batch file.

This batch file creates a folder for the JDBC 1.2 version of JDBC driver and then replaces
files in the db2_install_path\java folder with the JDBC 2.0 version of the driver.

3. Start the DB2 JDBC Applet Server Windows service.

4. Check the contents of the db2_install_path\java12\inuse file. If JDBC 2.0 is being
used, the file will contain JDBC 2.0.

Before you can use the DB2 type 2 JDBC driver in a connection pool, you must add the driver
classes to your CLASSPATH and the DB2 client libraries to your PATH. You may want to do
this in the start scripts for your domain. For example:

set CLASSPATH=db2_install_path\java\db2java.zip;%CLASSPATH%

set PATH=db2_install_path\bin;%PATH%

Where db2_install_path is the directory in which you installed the DB2 client.

If you plan to use the XA version of the IBM DB2 driver, see "Using the IBM DB2 Type 2 JDBC
Driver" in Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs81/jta/thirdpartytx.html#db2 for configuration
instructions.

To create a connection pool with connections that use the DB2 type 2 driver, you can use the
JDBC Connection Pool Assistant in the Administration Console (see “JDBC Connection Pools”
in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html) or
the JMX API (see “Creating a Connection Pool Dynamically” on page 2-9).

http://e-docs.bea.com/wls/docs81/jta/thirdpartytx.html#db2
http://e-docs.bea.com/wls/docs81/jta/thirdpartytx.html#db2
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html

Ins ta l l ing and Us ing the IBM DB2 Type 2 JDBC Dr ive r

Programming WebLogic JDBC 5-7

Connection Pool Attributes when using the IBM DB2 Type 2
JDBC Driver
Use the attributes as described in Table 5-1 and Table 5-2 when creating a connection pool that
uses the IBM DB2 Type 2 JDBC Driver.

The database name in the URL and in the Properties string must be a database configured for use
in the DB2 client, such as a database listed in the Client Configuration Assistant. Also, the
database user must be able to select from the table specified in TestTableName.

An entry in the config.xml file may look like the following:

 <JDBCConnectionPool DriverName="COM.ibm.db2.jdbc.app.DB2Driver"

 Name="MyJDBC Connection Pool"

 Password="{3DES}Pd8QwSJ5FtLEfuiA/vcy3g=="

 Properties="user=dbuser;DatabaseName=db1"

 Targets="myserver"

 TestConnectionsOnCreate="true"

 TestConnectionsOnReserve="true"

 TestTableName="SYSIBM.SYSTABLES"

 URL="jdbc:db2:db1"/>

Table 5-1 Non-XA Connection Pool Attributes Using the DB2 Type 2 JDBC Driver

Attribute Value

URL jdbc:db2:dbname

Driver Class Name COM.ibm.db2.jdbc.app.DB2Driver

Properties user=username
DatabaseName=dbname

Password password

TestConnectionsOnCreate true

TestConnectionsOnReserve true

TestTableName SYSIBM.SYSTABLES

Target serverName

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-8 Programming WebLogic JDBC

The database name in the URL and in the Properties string must be a database configured for use
in the DB2 client, such as a database listed in the Client Configuration Assistant.

DB2 requires that all processing for a global transaction occurs on a single database connection,
so you must set KeepXAConnTillTxComplete to true.

An entry in the config.xml file may look like the following:

 <JDBCConnectionPool DriverName="COM.ibm.db2.jdbc.DB2XADataSource"

 KeepXAConnTillTxComplete="true"

 Name="My XA JDBC Connection Pool"

 Password="{3DES}Pd8QwSJ5FtLEfuiA/vcy3g=="

 Properties="user=dbuser;DatabaseName=db1"

 Targets="myserver"

 TestConnectionsOnCreate="true"

 TestConnectionsOnReserve="true"

 TestTableName="SYSIBM.SYSTABLES"

 URL="jdbc:db2:db1"/>

Table 5-2 XA Connection Pool Attributes Using the DB2 Type 2 JDBC Driver

Attribute Value

URL jdbc:db2:dbname

Driver Class Name COM.ibm.db2.jdbc.DB2XADataSource

Properties user=username
DatabaseName=dbname

Password password

TestConnectionsOnCreate true

TestConnectionsOnReserve true

TestTableName SYSIBM.SYSTABLES

KeepXAConnTillTxComplete true

Target serverName

I ns ta l l ing and Us ing the SQL Se rve r 2000 Dr i ve r fo r JDBC f rom Mic roso f t

Programming WebLogic JDBC 5-9

Installing and Using the SQL Server 2000 Driver for JDBC from
Microsoft

The Microsoft SQL Server 2000 Driver for JDBC is available for download to all licensed SQL
Server 2000 customers at no charge. The driver is a Type 4 JDBC driver that supports a subset of
the JDBC 2.0 Optional Package. When you install the Microsoft SQL Server 2000 Driver for
JDBC, the supporting documentation is optionally installed with it. You should refer to that
documentation for the most comprehensive information about the driver. Also, see the release
manifest at
http://msdn.microsoft.com/MSDN-FILES/027/001/779/JDBCRTMReleaseManifest.ht

m for known issues.

The following sections describe how to install and configure the Microsoft SQL Server 2000
Driver for JDBC.

Installing the MS SQL Server JDBC Driver on a Windows System
Follow these instructions to install the SQL Server 2000 Driver for JDBC on a Windows server:

1. Download the Microsoft SQL Server 2000 Driver for JDBC (setup.exe file) from the
Microsoft MSDN Web site at
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.a

sp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml. Save the file in a
temporary directory on your local computer.

2. Run setup.exe from the temporary directory and follow the instructions on the screen.

3. Add the path to the following files to your CLASSPATH:

– install_dir/lib/msbase.jar

– install_dir/lib/msutil.jar

– install_dir/lib/mssqlserver.jar

Where install_dir is the folder in which you installed the driver. For example:

set CLASSPATH=install_dir\lib\msbase.jar;
install_dir\lib\msutil.jar;install_dir\lib\mssqlserver.jar;
%CLASSPATH%

Installing the MS SQL Server JDBC Driver on a Unix System
Follow these instructions to install the SQL Server 2000 Driver for JDBC on a UNIX server:

http://msdn.microsoft.com/MSDN-FILES/027/001/779/JDBCRTMReleaseManifest.htm
http://msdn.microsoft.com/MSDN-FILES/027/001/779/JDBCRTMReleaseManifest.htm
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-10 Programming WebLogic JDBC

1. Download the Microsoft SQL Server 2000 Driver for JDBC (mssqlserver.tar file) from
the Microsoft MSDN Web site at
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.a

sp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml. Save the file in a
temporary directory on your local computer.

2. Change to the temporary directory and untar the contents of the file using the following
command:

tar -xvf mssqlserver.tar

3. Execute the following command to run the installation script:

install.ksh

4. Follow the instructions on the screen. When prompted to enter an installation directory,
make sure you enter the full path to the directory.

5. Add the path to the following files to your CLASSPATH:

– install_dir/lib/msbase.jar

– install_dir/lib/msutil.jar

– install_dir/lib/mssqlserver.jar

Where install_dir is the folder in which you installed the driver. For example:

export CLASSPATH=install_dir/lib/msbase.jar:
install_dir/lib/msutil.jar:install_dir/lib/mssqlserver.jar:
$CLASSPATH

Connection Pool Attributes when using the Microsoft SQL
Server Driver for JDBC
Use the attributes in Table 5-3 when creating a connection pool that uses the Microsoft SQL
Server Driver for JDBC.

Table 5-3 Connection Pool Attributes Using the Microsoft SQL Server Driver for JDBC

Attribute Value

URL jdbc:microsoft:sqlserver://server_name:port

Driver Class Name com.microsoft.jdbc.sqlserver.SQLServerDriver

http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml

Ins ta l l ing and Us ing the IBM In fo rmix JDBC Dr ive r

Programming WebLogic JDBC 5-11

An entry in the config.xml file may look like the following:

 <JDBCConnectionPool

 Name="mssqlPool"

 DriverName="com.microsoft.jdbc.sqlserver.SQLServerDriver"

 URL="jdbc:microsoft:sqlserver://db4:1433"

 Properties="databasename=db4;user=sa;

 selectMethod=cursor"

 Password="{3DES}vlsUYhxlJ/I="

 InitialCapacity="4"

 CapacityIncrement="2"

 MaxCapacity="10"

 Targets="examplesServer"

 />

Note: You must add selectMethod=cursor to the list of connection properties in order to use
connections in a transactional mode. This enables your applications to have multiple
concurrent statements open from a given connection, which is required for pooled
connections.

Without setting selectMethod=cursor, this JDBC driver creates an internal cloned
connection for each concurrent statement, each as a different DBMS user. This makes it
impossible to concurrently commit transactions and may cause deadlocks.

Installing and Using the IBM Informix JDBC Driver
If you want to use WebLogic Server with an Informix database, BEA recommends that you use
the IBM Informix JDBC driver, available from the IBM Web site at
http://www-3.ibm.com/software/data/informix/tools/jdbc/. The IBM Informix
JDBC driver is available to use for free without support. You may have to register with IBM to

Properties user=username
DatabaseName=dbname
selectMethod=cursor

Password password

Target serverName

Table 5-3 Connection Pool Attributes Using the Microsoft SQL Server Driver for JDBC

Attribute Value

http://www-3.ibm.com/software/data/informix/tools/jdbc/

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-12 Programming WebLogic JDBC

download the product. Download the driver from the JDBC/EMBEDDED SQLJ section, and
follow the instructions in the install.txt file included in the downloaded zip file to install the
driver.

After you download and install the driver, follow these steps to prepare to use the driver with
WebLogic Server:

1. Copy ifxjdbc.jar and ifxjdbcx.jar files from INFORMIX_INSTALL\lib and paste it in
WL_HOME\server\lib folder, where:

INFORMIX_INSTALL is the root directory where you installed the Informix JDBC driver,
and

WL_HOME is the folder where you installed WebLogic Platform, typically
c:\bea\weblogic81.

2. Add the path to ifxjdbc.jar and ifxjdbcx.jar to your CLASSPATH. For example:

set
CLASSPATH=%WL_HOME%\server\lib\ifxjdbc.jar;%WL_HOME%\server\lib\ifxjdbc
x.jar;%CLASSPATH%

You can also add the path for the driver files to the set CLASSPATH statement in your start
script for WebLogic Server.

Connection Pool Attributes when using the IBM Informix JDBC
Driver
Use the attributes as described in Table 5-4 and Table 5-5 when creating a connection pool that
uses the IBM Informix JDBC driver.

Table 5-4 Non-XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

URL jdbc:informix-sqli:dbserver_name_or_ip:port/
dbname:informixserver=ifx_server_name

Driver Class Name com.informix.jdbc.IfxDriver

Ins ta l l ing and Us ing the IBM In fo rmix JDBC Dr ive r

Programming WebLogic JDBC 5-13

An entry in the config.xml file may look like the following:

 <JDBCConnectionPool

 DriverName="com.informix.jdbc.IfxDriver"

 InitialCapacity="3"

 LoginDelaySeconds="1"

 MaxCapacity="10"

 Name="ifxPool"

 Password="xxxxxxx"

 Properties="informixserver=ifxserver;user=informix"

 Targets="examplesServer"

 URL="jdbc:informix-sqli:ifxserver:1543"

 />

Properties user=username

url=jdbc:informix-sqli:dbserver_name_or_ip:po

rt/dbname:informixserver=ifx_server_name

portNumber=1543

databaseName=dbname

ifxIFXHOST=ifx_server_name

serverName=dbserver_name_or_ip

Password password

Login Delay Seconds 1

Target serverName

Table 5-5 XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

URL leave blank

Driver Class Name com.informix.jdbcx.IfxXADataSource

Table 5-4 Non-XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-14 Programming WebLogic JDBC

Note: In the Properties string, there is a space between portNumber and =.

An entry in the config.xml file may look like the following:

 <JDBCConnectionPool CapacityIncrement="2"

 DriverName="com.informix.jdbcx.IfxXADataSource"

 InitialCapacity="2" MaxCapacity="10"

 Name="informixXAPool"

 Properties="user=informix;url=jdbc:informix-sqli:

 //111.11.11.11:1543/db1:informixserver=lcsol15;

 password=informix;portNumber =1543;databaseName=db1;

 serverName=dbserver1;ifxIFXHOST=111.11.11.11"

 SupportsLocalTransaction="true" Targets="examplesServer"

 TestConnectionsOnReserve="true" TestTableName="emp"/>

Note: If you create the connection pool using the Administration Console, you may need to stop
and restart the server before the connection pool will deploy properly on the target server.
This is a known issue.

Properties user=username

url=jdbc:informix-sqli://dbserver_name_or_ip:

port_num/dbname:informixserver=dbserver_name_

or_ip

password=password

portNumber =port_num;

databaseName=dbname

serverName=dbserver_name

ifxIFXHOST=dbserver_name_or_ip

Password leave blank

Supports Local
Transaction

true

Target serverName

Table 5-5 XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

Get t ing a Connect ion w i th Your Th i rd-Par t y D r i ve r

Programming WebLogic JDBC 5-15

Programming Notes for the IBM Informix JDBC Driver
Consider the following limitations when using the IBM Informix JDBC driver:

Batch updates fail if you attempt to insert rows with TEXT or BYTE columns unless the
IFX_USEPUT environment variable is set to 1.

If the Java program sets autocommit mode to true during a transaction, IBM Informix
JDBC Driver commits the current transaction if the JDK is version 1.4 and later, otherwise
the driver rolls back the current transaction before enabling autocommit.

Getting a Connection with Your Third-Party Driver
The following sections describe how to get a database connection using a third-party, Type 4
driver, such as the Oracle Thin Driver. BEA recommends you use connection pools, data sources,
and a JNDI lookup to establish your connection.

Using Connection Pools with a Third-Party Driver
First, you create the connection pool and data source using the Administration Console, then
establish a connection using a JNDI Lookup.

Creating the Connection Pool and DataSource
See “Configuring and Using Connection Pools” on page 2-2 and “Configuring and Using
DataSources” on page 2-13 for instructions to create a JDBC connection pool and a JDBC
DataSource.

Using a JNDI Lookup to Obtain the Connection
To access the driver using JNDI, obtain a Context from the JNDI tree by providing the URL of
your server, and then use that context object to perform a lookup using the DataSource Name.

For example, to access a DataSource called “myDataSource” that is defined in the
Administration Console:

Context ctx = null;

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL,

 "t3://hostname:port");

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-16 Programming WebLogic JDBC

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 ctx = new InitialContext(ht);

 javax.sql.DataSource ds

 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

 conn = ds.getConnection();

 // You can now use the conn object to create

 // Statements and retrieve result sets:

 stmt = conn.createStatement();

 stmt.execute("select * from someTable");

 rs = stmt.getResultSet();

...

//Close JDBC objects as soon as possible

 stmt.close();

 stmt=null;

 conn.close();

 conn=null;

 }

 catch (Exception e) {

 // a failure occurred

 log message;

 }

finally {

 try {

 ctx.close();

 } catch (Exception e) {

 log message; }

 try {

 if (rs != null) rs.close();

 } catch (Exception e) {

 log message; }

 try {

 if (stmt != null) stmt.close();

Get t ing a Connect ion w i th Your Th i rd-Par t y D r i ve r

Programming WebLogic JDBC 5-17

 } catch (Exception e) {

 log message; }

 try {

 if (conn != null) conn.close();

 } catch (Exception e) {

 log message; }

}

(Where hostname is the name of the machine running your WebLogic Server and port is the
port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI lookup.
There are other ways to perform a JNDI lookup. For more information, see Programming
WebLogic JNDI at http://e-docs.bea.com/wls/docs81/jndi/index.html.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed look up
and also that the context is closed in a finally block.

Getting a Physical Connection from a Connection Pool
Note: BEA strongly discourages directly accessing a physical JDBC connection except for

when it is absolutely required. See “Limitations for Using a Physical Connection” on
page 5-21.

Standard practice is to cast a connection to the generic JDBC connection (a wrapped physical
connection) provided by WebLogic Server. This allows the server instance to manage the
connection for the connection pool, enable connection pool features, and maintain the quality of
connections provided to applications. Occasionally, a DBMS vendor may provide extra
non-standard JDBC-related classes that require direct access of the physical connection (the
actual vendor JDBC connection). To directly access a physical connection in a connection pool,
you must cast the connection using getVendorConnection at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jdbc/extensions/WLConne

ction.html.

The following sections provide information on getting a physical connection:

“Opening a Connection” on page 5-18

“Closing a Connection” on page 5-19

“Limitations for Using a Physical Connection” on page 5-21

http://e-docs.bea.com/wls/docs81/jndi/index.html
http://e-docs.bea.com/wls/docs81/jndi/index.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jdbc/extensions/WLConnection.html

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-18 Programming WebLogic JDBC

Opening a Connection
To get a physical database connection, you first get a connection from a connection pool as
described in “Using a JNDI Lookup to Obtain the Connection” on page 5-15, then do one of the
following:

Implicitly pass the physical connection (using getVendorConnection) within a method
that requires the physical connection.

Cast the connection as a WLConnection and call getVendorConnection.

Always limit direct access of physical database connections to vendor-specific calls. For all other
situations, use the generic JDBC connection provided by WebLogic Server. Sample code to open
a connection for vendor-specific calls is provided in Listing 5-1.

Listing 5-1 Code Sample to Open a Connection for Vendor-specific Calls

//Import this additional class and any vendor packages

//you may need.

import weblogic.jdbc.extensions.WLConnection

.

.

.

myJdbcMethod()

{

 // Connections from a connection pool should always be

 // method-level variables, never class or instance methods.

 Connection conn = null;

 try {

 ctx = new InitialContext(ht);

 // Look up the data source on the JNDI tree and request

 // a connection.

 javax.sql.DataSource ds

 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

 // Always get a pooled connection in a try block where it is

 // used completely and is closed if necessary in the finally

 // block.

 conn = ds.getConnection();

Get t ing a Connect ion w i th Your Th i rd-Par t y D r i ve r

Programming WebLogic JDBC 5-19

 // You can now cast the conn object to a WLConnection

 // interface and then get the underlying physical connection.

 java.sql.Connection vendorConn =

 ((WLConnection)conn).getVendorConnection();

 // do not close vendorConn

 // You could also cast the vendorConn object to a vendor

 // interface, such as:

 // oracle.jdbc.OracleConnection vendorConn = (OracleConnection)

 // ((WLConnection)conn).getVendorConnection()

 // If you have a vendor-specific method that requires the

 // physical connection, it is best not to obtain or retain

 // the physical connection, but simply pass it implicitly

 // where needed, eg:

//vendor.special.methodNeedingConnection(((WLConnection)conn)).getVendorCo

nnection());

Closing a Connection
When you are finished with your JDBC work, you should close the logical connection to get it
back into the pool. When you are done with the physical connection:

Close any objects you have obtained from the connection.

Do not close the physical connection. Set the physical connection to null.

You determine how a connection closes by setting the value of the Remove Infected
Connections Enabled property in the administration console. See JDBC Connection Pool -->
Configuration --> Connections in the Administration Console Help. Sample code to close a
vendor-specific connection is shown in Listing 5-2.

Note: The Remove Infected Connections Enabled property applies only to applications
that explicitly call getVendorConnection.

Listing 5-2 Sample Code to Close a Connection for Vendor-specific Calls

 // As soon as you are finished with vendor-specific calls,

 // nullify the reference to the connection.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#RemoveInfectedConnectionsEnabled
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#RemoveInfectedConnectionsEnabled

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-20 Programming WebLogic JDBC

 // Do not keep it or close it.

 // Never use the vendor connection for generic JDBC.

 // Use the logical (pooled) connection for standard JDBC.

 vendorConn = null;

 ... do all the JDBC needed for the whole method...

 // close the logical (pooled) connection to return it to

 // the connection pool, and nullify the reference.

 conn.close();

 conn = null;

 }

 catch (Exception e)

 {

 // Handle the exception.

 }

 finally

{

 // For safety, check whether the logical (pooled) connection

 // was closed.

 // Always close the logical (pooled) connection as the

 // first step in the finally block.

 if (conn != null) try {conn.close();} catch (Exception ignore){}
 }
}

Remove Infected Connections Enabled is True
When Remove infected Connections Enabled=false (default value) and you close the
logical connection, the server instance discards the underlying physical connection and creates a
new connection to replace it. This action ensures that the pool can guarantee to the next user that
they are the sole user of the pool connection. This configuration provides a simple and safe way
to close a connection. However, there is a performance loss because:

The physical connection is replaced with a new database connection in the connection
pool, which uses resources on both the application server and the database server.

The statement cache for the original connection is closed and a new cache is opened for the
new connection. Therefore, the performance gains from using the statement cache are lost.

Using Vendor Ex tens ions to JDBC In te r faces

Programming WebLogic JDBC 5-21

Remove Infected Connections Enabled is False
Note: Use Remove infected Connections Enabled=false only if you are sure that the

exposed physical connection will never be retained or reused after the logical connection
is closed.

When Remove infected Connections Enabled=false and you close the logical connection,
the server instance simply returns the physical connection to the connection pool for reuse.
Although this configuration minimizes performance losses, the server instance does not
guarantee the quality of the connection or to effectively manage the connection after the logical
connection is closed. You must make sure that the connection is suitable for reuse by other
applications before it is returned to the connection pool.

Limitations for Using a Physical Connection
BEA strongly discourages using a physical connection instead of a logical connection from a
connection pool. However, if you must use a physical connection, for example, to create a
STRUCT, consider the following costs and limitations:

The physical connection can only be used in server-side code.

When you use a physical connection, you lose all of the connection management benefits
that WebLogic Server offer, such as error handling and statement caching.

You should use the physical connection only for the vendor-specific methods or classes
that require it. Do not use the physical connection for generic JDBC, such as creating
statements or transactional calls.

Using Vendor Extensions to JDBC Interfaces
Some database vendors provide additional proprietary methods for working with data from a
database that uses their DBMS. These methods extend the standard JDBC interfaces. In previous
releases of WebLogic Server, only specific JDBC extensions for a few vendors were supported.
The current release of WebLogic Server supports all extension methods exposed as a public
interface in the vendor’s JDBC driver.

If the driver vendor does not expose the methods you need in a public interface, you should
submit a request to the vendor to expose the methods in a public interface. WebLogic Server does
provide support for extension methods in the Oracle Thin Driver for ARRAYs, STRUCTs, and
REFs, even though the extension methods are not exposed in a public interface. See “Using
Oracle Extensions with the Oracle Thin Driver” on page 5-25.

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-22 Programming WebLogic JDBC

In general, WebLogic Server supports using vendor extensions in server-side code. To use vendor
extensions in client-side code, the object type or data type must be serializable. Exceptions to this
are the following object types:

CLOB

BLOB

InputStream

OutputStream

WebLogic Server handles de-serialization for these object types so they can be used in client-side
code.

Note: There are interoperability limitations when using different versions of WebLogic Server
clients and servers. See “Support for Vendor Extensions Between Versions of WebLogic
Server Clients and Servers” on page 5-41.

To use the extension methods exposed in the JDBC driver, you must include these steps in your
application code:

Import the driver interfaces from the JDBC driver used to create connections in the
connection pool.

Get a connection from the connection pool.

Cast the connection object as the vendor’s connection interface.

Use the vendor extensions as described in the vendor’s documentation.

The following sections provide details in code examples. For information about specific
extension methods for a particular JDBC driver, refer to the documentation from the JDBC driver
vendor.

Sample Code for Accessing Vendor Extensions to JDBC
Interfaces
The following code examples use extension methods available in the Oracle Thin driver to
illustrate how to use vendor extensions to JDBC. You can adapt these examples to fit methods
exposed in your JDBC driver.

Using Vendor Ex tens ions to JDBC In te r faces

Programming WebLogic JDBC 5-23

Import Packages to Access Vendor Extensions
Import the interfaces from the JDBC driver used to create the connection in the connection pool.
This example uses interfaces from the Oracle Thin Driver.

import java.sql.*;

import java.util.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.sql.DataSource;

import oracle.jdbc.*;

// Import driver interfaces. The driver must be the same driver

// used to create the database connection in the connection pool.

Get a Connection
Establish the database connection using JNDI, DataSource and connection pool objects. For
information, see “Using a JNDI Lookup to Obtain the Connection” on page 5-15.

// Get a valid DataSource object for a connection pool.

// Here we assume that getDataSource() takes

// care of those details.

javax.sql.DataSource ds = getDataSource(args);

// get a java.sql.Connection object from the DataSource

java.sql.Connection conn = ds.getConnection();

Cast the Connection as a Vendor Connection
Now that you have the connection, you can cast it as a vendor connection. This example uses the
OracleConnection interface from the Oracle Thin Driver.

orConn = (oracle.jdbc.OracleConnection)conn;

// This replaces the deprecated process of casting the connection

// to a weblogic.jdbc.vendor.oracle.OracleConnection. For example:

// orConn = (weblogic.jdbc.vendor.oracle.OracleConnection)conn;

Use Vendor Extensions
The following code fragment shows how to use the Oracle Row Prefetch method available from
the Oracle Thin driver.

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-24 Programming WebLogic JDBC

// Cast to OracleConnection and retrieve the

// default row prefetch value for this connection.

int default_prefetch =

 ((oracle.jdbc.OracleConnection)conn).getDefaultRowPrefetch();

// This replaces the deprecated process of casting the connection

// to a weblogic.jdbc.vendor.oracle.OracleConnection. For example:

// ((weblogic.jdbc.vendor.oracle.OracleConnection)conn).

// getDefaultRowPrefetch();

System.out.println("Default row prefetch

 is " + default_prefetch);

java.sql.Statement stmt = conn.createStatement();

// Cast to OracleStatement and set the row prefetch

// value for this statement. Note that this

// prefetch value applies to the connection between

// WebLogic Server and the database.

 ((oracle.jdbc.OracleStatement)stmt).setRowPrefetch(20);

 // This replaces the deprecated process of casting the

 // statement to a weblogic.jdbc.vendor.oracle.OracleStatement.

 // For example:

 // ((weblogic.jdbc.vendor.oracle.OracleStatement)stmt).

 // setRowPrefetch(20);

 // Perform a normal sql query and process the results...

 String query = "select empno,ename from emp";

 java.sql.ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) {

 java.math.BigDecimal empno = rs.getBigDecimal(1);

 String ename = rs.getString(2);

 System.out.println(empno + "\t" + ename);

 }

 rs.close();

 stmt.close();

 conn.close();

 conn = null;

 }

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-25

Using Oracle Extensions with the Oracle Thin Driver
For most extensions that Oracle provides, you can use the standard technique as described in
“Using Vendor Extensions to JDBC Interfaces” on page 5-21. However, the Oracle Thin driver
does not provide public interfaces for its extension methods in the following classes:

oracle.sql.ARRAY

oracle.sql.STRUCT

oracle.sql.REF

oracle.sql.BLOB

oracle.sql.CLOB

WebLogic Server provides its own interfaces to access the extension methods for those classes:

weblogic.jdbc.vendor.oracle.OracleArray

weblogic.jdbc.vendor.oracle.OracleStruct

weblogic.jdbc.vendor.oracle.OracleRef

weblogic.jdbc.vendor.oracle.OracleThinBlob

weblogic.jdbc.vendor.oracle.OracleThinClob

The following sections provide code samples for using the WebLogic Server interfaces for Oracle
extensions. For a list of supported methods, see “Tables of Oracle Extension Interfaces and
Supported Methods” on page 5-42. For more information, please refer to the Oracle
documentation.

Note: You can use this process to use any of the WebLogic Server interfaces for Oracle
extensions listed in the “Tables of Oracle Extension Interfaces and Supported Methods”
on page 5-42. However, all but the interfaces listed above are deprecated and will be
removed in a future release of WebLogic Server.

Limitations When Using Oracle JDBC Extensions
Please note the following limitations when using Oracle extensions to JDBC interfaces:

You can use Oracle extensions for ARRAYs, REFs, and STRUCTs in server-side
applications that use the same JVM as the server only. You cannot use Oracle extensions
for ARRAYs, REFs, and STRUCTs in remote client applications.

You cannot create ARRAYs, REFs, and STRUCTs in your applications. You can only
retrieve existing ARRAY, REF, and STRUCT objects from a database. To create these

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-26 Programming WebLogic JDBC

objects in your applications, you must use a non-standard Oracle descriptor object, which
is not supported in WebLogic Server.

There are interoperability limitations when using different versions of WebLogic Server
clients and servers. See “Support for Vendor Extensions Between Versions of WebLogic
Server Clients and Servers” on page 5-41.

Sample Code for Accessing Oracle Extensions to JDBC
Interfaces
The following code examples show how to access the WebLogic Server interfaces for Oracle
extensions that are not available as public interfaces, including interfaces for:

ARRAYs—See “Programming with ARRAYs” on page 5-26.

STRUCTS—See “Programming with STRUCTs” on page 5-29.

REFs—See “Programming with REFs” on page 5-33.

BLOBs and CLOBs—See “Programming with BLOBs and CLOBs” on page 5-38.

If you selected the option to install server examples with WebLogic Server, see the JDBC
examples for more code examples, typically at
WL_HOME\samples\server\src\examples\jdbc, where WL_HOME is the folder where you
installed WebLogic Server.

Programming with ARRAYs
In your WebLogic Server server-side applications, you can materialize an Oracle Collection (a
SQL ARRAY) in a result set or from a callable statement as a Java array.

To use ARRAYs in WebLogic Server applications:

1. Import the required classes.

2. Get a connection and then create a statement for the connection.

3. Get the ARRAY using a result set or a callable statement.

4. Use the ARRAY as either a java.sql.Array or a
weblogic.jdbc.vendor.oracle.OracleArray.

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-27

5. Use the standard Java methods (when used as a java.sql.Array) or Oracle extension
methods (when cast as a weblogic.jdbc.vendor.oracle.OracleArray) to work with
the data.

The following sections provide more details for these actions.

Note: You can use ARRAYs in server-side applications only. You cannot use ARRAYs in
remote client applications.

Import Packages to Access Oracle Extensions
Import the Oracle interfaces used in this example. The OracleArray interface is counterpart to
oracle.sql.ARRAY and can be used in the same way as the Oracle interface when using the
methods supported by WebLogic Server.

import java.sql.*;

import java.util.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.sql.DataSource;

import weblogic.jdbc.vendor.oracle.*;

Establish the Connection
Establish the database connection using JNDI, DataSource and connection pool objects. For
information, see “Using a JNDI Lookup to Obtain the Connection” on page 5-15.

// Get a valid DataSource object for a connection pool.

// Here we assume that getDataSource() takes

// care of those details.

javax.sql.DataSource ds = getDataSource(args);

// get a java.sql.Connection object from the DataSource

java.sql.Connection conn = ds.getConnection();

Getting an ARRAY
You can use the getArray() methods for a callable statement or a result set to get a Java array.
You can then use the array as a java.sql.array to use standard java.sql.array methods, or
you can cast the array as a weblogic.jdbc.vendor.oracle.OracleArray to use the Oracle
extension methods for an array.

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-28 Programming WebLogic JDBC

The following example shows how to get a java.sql.array from a result set that contains an
ARRAY. In the example, the query returns a result set that contains an object column—an
ARRAY of test scores for a student.

try {

 conn = getConnection(url);

 stmt = conn.createStatement();

 String sql = "select * from students";

//Get the result set

 rs = stmt.executeQuery(sql);

 while(rs.next()) {

 BigDecimal id = rs.getBigDecimal("student_id");

 String name = rs.getString("name");

 log("ArraysDAO.getStudents() -- Id = "+id.toString()+", Student =

"+name);

//Get the array from the result set

 Array scoreArray = rs.getArray("test_scores");

 String[] scores = (String[])scoreArray.getArray();

 for (int i = 0; i < scores.length; i++) {

 log(" Test"+(i+1)+" = "+scores[i]);

 }

 }

Updating ARRAYs in the Database
To update an ARRAY in a database, you can Follow these steps:

1. Create an array in the database using PL/SQL, if the array you want to update does not already
exist in the database.

2. Get the ARRAY using a result set or a callable statement.

3. Work with the array in your Java application as either a java.sql.Array or a
weblogic.jdbc.vendor.oracle.OracleArray.

4. Update the array in the database using the setArray() method for a prepared statement or
a callable statement. For example:

String sqlUpdate = "UPDATE SCOTT." + tableName + " SET col1 = ?";
conn = ds.getConnection();
pstmt = conn.prepareStatement(sqlUpdate);

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-29

pstmt.setArray(1, array);
pstmt.executeUpdate();

Using Oracle Array Extension Methods
To use the Oracle extension methods for an ARRAY, you must first cast the array as a
weblogic.jdbc.vendor.oracle.OracleArray. You can then make calls to the Oracle
extension methods for ARRAYs. For example:

oracle.sql.Datum[] oracleArray = null;
oracleArray =
((weblogic.jdbc.vendor.oracle.OracleArray)scoreArray).getOracleArray();
String sqltype = null
sqltype = oracleArray.getSQLTypeName()

Programming with STRUCTs
In your WebLogic Server applications, you can access and manipulate objects from an Oracle
database. When you retrieve objects from an Oracle database, you can cast them as either custom
Java objects or as STRUCTs (java.sql.struct or
weblogic.jdbc.vendor.oracle.OracleStruct). A STRUCT is a loosely typed data type for
structured data which takes the place of custom classes in your applications. The STRUCT
interface in the JDBC API includes several methods for manipulating the attribute values in a
STRUCT. Oracle extends the STRUCT interface with several additional methods. WebLogic
Server implements all of the standard methods and most of the Oracle extensions.

Note: Please note the following limitations when using STRUCTs:

STRUCTs are supported for use with Oracle only. To use STRUCTs in your
applications, you must use the Oracle Thin Driver to communicate with the
database, typically through a connection pool. The WebLogic jDriver for Oracle
does not support the STRUCT data type.

You can use STRUCTs in server-side applications only. You cannot use STRUCTs
in client applications.

To use STRUCTs in WebLogic Server applications:

1. Import the required classes. (See “Import Packages to Access Oracle Extensions” on
page 5-27.)

2. Get a connection. (See “Establish the Connection” on page 5-27.)

3. Use getObject to get the STRUCT.

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-30 Programming WebLogic JDBC

4. Cast the STRUCT as a STRUCT, either java.sql.Struct (to use standard methods) or
weblogic.jdbc.vendor.oracle.OracleStruct (to use standard and Oracle extension
methods).

5. Use the standard or Oracle extension methods to work with the data.

The following sections provide more details for steps 3 through 5.

Getting a STRUCT
To get a database object as a STRUCT, you can use a query to create a result set and then use the
getObject method to get the STRUCT from the result set. You then cast the STRUCT as a
java.sql.Struct so you can use the standard Java methods. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("select * from people");

struct = (java.sql.Struct)(rs.getObject(2));

Object[] attrs = ((java.sql.Struct)struct).getAttributes();

WebLogic Server supports all of the JDBC API methods for STRUCTs:

getAttributes()

getAttributes(java.util.Dictionary map)

getSQLTypeName()

Oracle supports the standard methods as well as the Oracle extensions. Therefore, when you cast
a STRUCT as a weblogic.jdbc.vendor.oracle.OracleStruct, you can use both the
standard and extension methods.

Using OracleStruct Extension Methods
To use the Oracle extension methods for a STRUCT, you must cast the java.sql.Struct (or
the original getObject result) as a weblogic.jdbc.vendor.oracle.OracleStruct. For
example:

java.sql.Struct struct =

(weblogic.jdbc.vendor.oracle.OracleStruct)(rs.getObject(2));

WebLogic Server supports the following Oracle extensions:

getDescriptor()

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-31

getOracleAttributes()

getAutoBuffering()

setAutoBuffering(boolean)

Getting STRUCT Attributes
To get the value for an individual attribute in a STRUCT, you can use the standard JDBC API
methods getAttributes() and getAttributes(java.util.Dictionary map), or you can
use the Oracle extension method getOracleAttributes().

To use the standard method, you can create a result set, get a STRUCT from the result set, and
then use the getAttributes() method. The method returns an array of ordered attributes. You
can assign the attributes from the STRUCT (object in the database) to an object in the application,
including Java language types. You can then manipulate the attributes individually. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("select * from people");

//The third column uses an object data type.

//Use getObject() to assign the object to an array of values.

struct = (java.sql.Struct)(rs.getObject(2));

Object[] attrs = ((java.sql.Struct)struct).getAttributes();

String address = attrs[1];

In the preceding example, the third column in the people table uses an object data type. The
example shows how to assign the results from the getObject method to a Java object that
contains an array of values, and then use individual values in the array as necessary.

You can also use the getAttributes(java.util.Dictionary map) method to get the
attributes from a STRUCT. When you use this method, you must provide a hash table to map the
data types in the Oracle object to Java language data types. For example:

java.util.Hashtable map = new java.util.Hashtable();

map.put("NUMBER", Class.forName("java.lang.Integer"));

map.put("VARCHAR", Class.forName("java.lang.String"));

Object[] attrs = ((java.sql.Struct)struct).getAttributes(map);

String address = attrs[1];

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-32 Programming WebLogic JDBC

You can also use the Oracle extension method getOracleAttributes() to get the attributes for
a STRUCT. You must first cast the STRUCT as a
weblogic.jdbc.vendor.oracle.OracleStruct. This method returns a datum array of
oracle.sql.Datum objects. For example:

oracle.sql.Datum[] attrs =
 ((weblogic.jdbc.vendor.oracle.OracleStruct)struct).getOracleAttributes();

 oracle.sql.STRUCT address = (oracle.sql.STRUCT) attrs[1];

 Object address_attrs[] = address.getAttributes();

The preceding example includes a nested STRUCT. That is, the second attribute in the datum
array returned is another STRUCT.

Using STRUCTs to Update Objects in the Database
To update an object in the database using a STRUCT, you can use the setObject method in a
prepared statement. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

ps = conn.prepareStatement ("UPDATE SCHEMA.people SET EMPLNAME = ?,

 EMPID = ? where EMPID = 101");

ps.setString (1, "Smith");

ps.setObject (2, struct);

ps.executeUpdate();

WebLogic Server supports all three versions of the setObject method.

Creating Objects in the Database
STRUCTs are typically used to materialize database objects in your Java application in place of
custom Java classes that map to the database objects. In WebLogic Server applications, you
cannot create STRUCTs that transfer to the database. However, you can use statements to create
objects in the database that you can then retrieve and manipulate in your application. For
example:

conn = ds.getConnection();

stmt = conn.createStatement();

cmd = "create type ob as object (ob1 int, ob2 int)"

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-33

stmt.execute(cmd);

cmd = "create table t1 of type ob";

stmt.execute(cmd);

cmd = "insert into t1 values (5, 5)"

stmt.execute(cmd);

Note: You cannot create STRUCTs in your applications. You can only retrieve existing objects
from a database and cast them as STRUCTs. To create STRUCT objects in your
applications, you must use a non-standard Oracle STRUCT descriptor object, which is
not supported in WebLogic Server.

Automatic Buffering for STRUCT Attributes
To enhance the performance of your WebLogic Server applications that use STRUCTs, you can
toggle automatic buffering with the setAutoBuffering(boolean) method. When automatic
buffering is set to true, the weblogic.jdbc.vendor.oracle.OracleStruct object keeps a
local copy of all the attributes in the STRUCT in their converted form (materialized from SQL to
Java language objects). When your application accesses the STRUCT again, the system does not
have to convert the data again.

Note: Buffering the converted attributes my cause your application to use an excessive amount
of memory. Consider potential memory usage when deciding to enable or disable
automatic buffering.

The following example shows how to activate automatic buffering:

 ((weblogic.jdbc.vendor.oracle.OracleStruct)struct).setAutoBuffering(true);

You can also use the getAutoBuffering() method to determine the automatic buffering mode.

Programming with REFs
A REF is a logical pointer to a row object. When you retrieve a REF, you are actually getting a
pointer to a value in another table. The REF target must be a row in an object table. You can use
a REF to examine or update the object it refers to. You can also change a REF so that it points to
a different object of the same object type or assign it a null value.

Note: Please note the following limitations when using REFs:

REFs are supported for use with Oracle only. To use REFs in your applications,
you must use the Oracle Thin Driver to communicate with the database, typically

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-34 Programming WebLogic JDBC

through a connection pool. The WebLogic jDriver for Oracle does not support the
REF data type.

You can use REFs in server-side applications only.

To use REFs in WebLogic Server applications, follow these steps:

1. Import the required classes. (See “Import Packages to Access Oracle Extensions” on
page 5-27.)

2. Get a database connection. (See “Establish the Connection” on page 5-27.)

3. Get the REF using a result set or a callable statement.

4. Cast the result as a STRUCT or as a Java object. You can then manipulate data using
STRUCT methods or methods for the Java object.

You can also create and update a REF in the database.

The following sections describe these steps 3 and 4 in greater detail.

Getting a REF
To get a REF in an application, you can use a query to create a result set and then use the getRef
method to get the REF from the result set. You then cast the REF as a java.sql.Ref so you can
use the built-in Java method. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("SELECT ref (s) FROM t1 s where s.ob1=5");

rs.next();

//Cast as a java.sql.Ref and get REF

ref = (java.sql.Ref) rs.getRef(1);

Note that the WHERE clause in the preceding example uses dot notation to specify the attribute
in the referenced object.

After you cast the REF as a java.sql.Ref, you can use the Java API method
getBaseTypeName, the only JDBC 2.0 standard method for REFs.

When you get a REF, you actually get a pointer to a value in an object table. To get or manipulate
REF values, you must use the Oracle extensions, which are only available when you cast the
sql.java.Ref as a weblogic.jdbc.vendor.oracle.OracleRef.

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-35

Using OracleRef Extension Methods
In order to use the Oracle extension methods for REFs, you must cast the REF as an Oracle REF.
For example:

oracle.sql.StructDescriptor desc =

((weblogic.jdbc.vendor.oracle.OracleRef)ref).getDescriptor();

WebLogic Server supports the following Oracle extensions:

getDescriptor()

getSTRUCT()

getValue()

getValue(dictionary)

setValue(object)

Getting a Value
Oracle provides two versions of the getValue() method—one that takes no parameters and one
that requires a hash table for mapping return types. When you use either version of the
getValue() method to get the value of an attribute in a REF, the method returns a either a
STRUCT or a Java object.

The example below shows how to use the getValue() method without parameters. In this
example, the REF is cast as an oracle.sql.STRUCT. You can then use the STRUCT methods to
manipulate the value, as illustrated with the getAttributes() method.

oracle.sql.STRUCT student1 =
(oracle.sql.STRUCT)((weblogic.jdbc.vendor.oracle.OracleRef)ref).getValue ();

Object attributes[] = student1.getAttributes();

You can also use the getValue(dictionary) method to get the value for a REF. You must
provide a hash table to map data types in each attribute of the REF to Java language data types.
For example:

java.util.Hashtable map = new java.util.Hashtable();

map.put("VARCHAR", Class.forName("java.lang.String"));

map.put("NUMBER", Class.forName("java.lang.Integer"));

oracle.sql.STRUCT result = (oracle.sql.STRUCT)

 ((weblogic.jdbc.vendor.oracle.OracleRef)ref).getValue (map);

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-36 Programming WebLogic JDBC

Updating REF Values
When you update a REF, you can do any of the following:

Change the value in the underlying table with the setValue(object) method.

Change the location to which the REF points with a prepared statement or a callable
statement.

Set the value of the REF to null.

To use the setValue(object) method to update a REF value, you create an object with the new
values for the REF, and then pass the object as a parameter of the setValue method. For
example:

STUDENT s1 = new STUDENT();

s1.setName("Terry Green");

s1.setAge(20);

((weblogic.jdbc.vendor.oracle.OracleRef)ref).setValue(s1);

When you update the value for a REF with the setValue(object) method, you actually update
the value in the table to which the REF points.

To update the location to which a REF points using a prepared statement, you can follow these
basic steps:

1. Get a REF that points to the new location. You use this REF to replace the value of another
REF.

2. Create a string for the SQL command to replace the location of an existing REF with the
value of the new REF.

3. Create and execute a prepared statement.

For example:

try {

conn = ds.getConnection();

stmt = conn.createStatement();

//Get the REF.

rs = stmt.executeQuery("SELECT ref (s) FROM t1 s where s.ob1=5");

rs.next();

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-37

ref = (java.sql.Ref) rs.getRef(1); //cast the REF as a java.sql.Ref

}

//Create and execute the prepared statement.

String sqlUpdate = "update t3 s2 set col = ? where s2.col.ob1=20";

pstmt = conn.prepareStatement(sqlUpdate);

pstmt.setRef(1, ref);

pstmt.executeUpdate();

To use a callable statement to update the location to which a REF points, you prepare the stored
procedure, set any IN parameters and register any OUT parameters, and then execute the
statement. The stored procedure updates the REF value, which is actually a location. For
example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("SELECT ref (s) FROM t1 s where s.ob1=5");

rs.next();

ref1 = (java.sql.Ref) rs.getRef(1);

// Prepare the stored procedure

sql = "{call SP1 (?, ?)}";

cstmt = conn.prepareCall(sql);

// Set IN and register OUT params

cstmt.setRef(1, ref1);

cstmt.registerOutParameter(2, getRefType(), "USER.OB");

// Execute

cstmt.execute();

Creating a REF in the Database
You cannot create REF objects in your JDBC application—you can only retrieve existing REF
objects from the database. However, you can create a REF in the database using statements or
prepared statements. For example:

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-38 Programming WebLogic JDBC

conn = ds.getConnection();

stmt = conn.createStatement();

cmd = "create type ob as object (ob1 int, ob2 int)"

stmt.execute(cmd);

cmd = "create table t1 of type ob";

stmt.execute(cmd);

cmd = "insert into t1 values (5, 5)"

stmt.execute(cmd);

cmd = "create table t2 (col ref ob)";

stmt.execute(cmd);

cmd = "insert into t2 select ref(p) from t1 where p.ob1=5";

stmt.execute(cmd);

The preceding example creates an object type (ob), a table (t1) of that object type, a table (t2)
with a REF column that can point to instances of ob objects, and inserts a REF into the REF
column. The REF points to a row in t1 where the value in the first column is 5.

Programming with BLOBs and CLOBs
This section contains sample code that demonstrates how to access the OracleBlob interface. You
can use the syntax of this example for the OracleBlob interface, when using methods supported
by WebLogic Server. See “Tables of Oracle Extension Interfaces and Supported Methods” on
page 5-42.

Note: When working with BLOBs and CLOBs (referred to as “LOBs”), you must take
transaction boundaries into account; for example, direct all read/writes to a particular
LOB within a transaction. For additional information, refer to Oracle documentation
about “LOB Locators and Transaction Boundaries” at the Oracle Web site at
http://www.oracle.com.

Query to Select BLOB Locator from the DBMS
The BLOB Locator, or handle, is a reference to an Oracle Thin Driver BLOB:

String selectBlob = "select blobCol from myTable where blobKey = 666"

Declare the WebLogic Server java.sql Objects
The following code presumes the Connection is already established:

ResultSet rs = null;

Statement myStatement = null;

http://www.oracle.com

Using Orac le Ex tens ions w i th the Orac le Th in Dr ive r

Programming WebLogic JDBC 5-39

java.sql.Blob myRegularBlob = null;

java.io.OutputStream os = null;

Begin SQL Exception Block
In this try catch block, you get the BLOB locator and access the Oracle BLOB extension.

try {

 // get our BLOB locator..

 myStatement = myConnect.createStatement();

 rs = myStatement.executeQuery(selectBlob);

 while (rs.next()) {

 myRegularBlob = rs.getBlob("blobCol");

}

 // Access the underlying Oracle extension functionality for

 // writing. Cast to the OracleThinBlob interface to access

 // the Oracle method.

 os = ((OracleThinBlob)myRegularBlob).getBinaryOutputStream();

 ...

 } catch (SQLException sqe) {

 System.out.println("ERROR(general SQE): " +

 sqe.getMessage());

 }

Once you cast to the Oracle.ThinBlob interface, you can access the BEA supported methods.

Updating a CLOB Value Using a Prepared Statement
If you use a prepared statement to update a CLOB and the new value is shorter than the previous
value, the CLOB will retain the characters that were not specifically replaced during the update.
For example, if the current value of a CLOB is abcdefghij and you update the CLOB using a
prepared statement with zxyw, the value in the CLOB is updated to zxywefghij. To correct
values updated with a prepared statement, you should use the dbms_lob.trim procedure to
remove the excess characters left after the update. See the Oracle documentation for more
information about the dbms_lob.trim procedure.

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-40 Programming WebLogic JDBC

Programming with Oracle Virtual Private Databases
An Oracle Virtual Private Database (VPD) is an aggregation of server-enforced,
application-defined fine-grained access control, combined with a secure application context in
the Oracle 9i database server. To use VPDs in your WebLogic Server application, you would
typically do the following:

1. Create a JDBC connection pool in your WebLogic Server configuration that uses either the
Oracle Thin driver or the Oracle OCI driver. See “Configuring and Using WebLogic JDBC”
on page 2-1 or “Creating and Configuring a JDBC Connection Pool” in the Administration
Console Online Help.

Note: If you are using an XA-enabled version of the JDBC driver, you must set
KeepXAConnTillTxComplete=true. See “Additional XA Connection Pool
Properties” in the Administration Console Online Help.

The WebLogic jDriver for Oracle cannot propagate the ClientIdentifier, so it is
ineffective to use the driver with VPDs.

2. Create a data source in your WebLogic Server configuration that points to the connection
pool. See “Configuring and Using DataSources” on page 2-13 or “Creating and Configuring
a JDBC Data Source” in the Administration Console Online Help.

3. Do the following in your application:
import weblogic.jdbc.extensions.WLConnection

// get a connection from a WLS JDBC connection pool

Connection conn = ds.getConnection();

// Get the underlying vendor connection object

oracle.jdbc.OracleConnection orConn = (oracle.jdbc.OracleConnection)

 (((WLConnection)conn).getVendorConnection());

// Set CLIENT_IDENTIFIER (which will be accessible from

// USERENV naming context on the database server side)

orConn.setClientIdentifier(clientId);

/* perform application specific work, preferably using conn instead of

orConn */

// clean up connection before returning to WLS JDBC connection pool

orConn.clearClientIdentifier(clientId);

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#create_pool
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#addxaprops
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#addxaprops
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html#data_source_create
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_datasources.html#data_source_create

Suppor t fo r Vendo r Ex tens ions Between Vers i ons o f WebLog ic Server C l ients and Servers

Programming WebLogic JDBC 5-41

// As soon as you are finished with vendor-specific calls,

// nullify the reference to the physical connection.

orConn = null;

// close the pooled connection

conn.close();

Note: This code uses an underlying physical connection from a pooled (logical) connection.
See “Getting a Physical Connection from a Connection Pool” on page 5-17 for usage
guidelines.

Oracle VPD with WebLogic Server 8.1SP2
Starting with WebLogic Server 8.1 SP2, WebLogic Server provides support for the
oracle.jdbc.OracleConnection.setClientIdentitfier and
oracle.jdbc.OracleConnection.clearClientIndentifier methods without using the
underlying physical connection from a pooled connection. To use VPDs in your WebLogic
Server application, you would typically do the following:

import weblogic.jdbc.vendor.oracle.OracleConnection;

// get a connection from a WLS JDBC connection pool

Connection conn = ds.getConnection();

// cast to the Oracle extension and set CLIENT_IDENTIFIER

// (which will be accessible from USERENV naming context on

// the database server side)

((weblogic.jdbc.vendor.oracle.OracleConnection)conn).setClientIdentifier(c

lientId);

/* perform application specific work */

// clean up connection before returning to WLS JDBC connection pool

((OracleConnection)conn).clearClientIdentifier(clientId);

// close the connection

conn.close();

Support for Vendor Extensions Between Versions of WebLogic
Server Clients and Servers

Because the way WebLogic Server supports vendor JDBC extensions was changed in WebLogic
Server 8.1, interoperability between versions of client and servers is affected.

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-42 Programming WebLogic JDBC

When a WebLogic Server 8.1 client interacts with a WebLogic Server 7.0 or earlier server, Oracle
extensions are not supported. When the client application tries to cast the JDBC objects to the
Oracle extension interfaces, it will get a ClassCastException. However, when a WebLogic
Server 7.0 or earlier client interacts with a WebLogic Server 8.1 server, Oracle extensions are
supported.

This applies to the following Oracle extension interfaces:

weblogic.jdbc.vendor.oracle.OracleConnection

weblogic.jdbc.vendor.oracle.OracleStatement

weblogic.jdbc.vendor.oracle.OraclePreparedStatement

weblogic.jdbc.vendor.oracle.OracleCallableStatement

weblogic.jdbc.vendor.oracle.OracleResultSet

weblogic.jdbc.vendor.oracle.OracleThinBlob

weblogic.jdbc.vendor.oracle.OracleThinClob

weblogic.jdbc.vendor.oracle.OracleArray

weblogic.jdbc.vendor.oracle.OracleRef

weblogic.jdbc.vendor.oracle.OracleStruct

Note: Standard JDBC interfaces are supported regardless of the client or server version.

Tables of Oracle Extension Interfaces and Supported Methods
In previous releases of WebLogic Server, only the JDBC extensions listed in the following tables
were supported. The current release of WebLogic Server supports most extension methods
exposed as a public interface in the vendor’s JDBC driver. See “Using Vendor Extensions to
JDBC Interfaces” on page 5-21 for instructions for using vendor extensions. Because the new
internal mechanism for supporting vendor extensions does not rely on the previous
implementation, several interfaces are no longer needed and are deprecated. These interfaces will
be removed in a future release of WebLogic Server. See Table 5-6. BEA encourages you to use
the alternative interface listed in the table.

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-43

The interfaces listed in Table 5-7 are still valid because Oracle does not provide interfaces to
access these extension methods.

Table 5-6 Deprecated Interfaces for Oracle JDBC Extensions

Deprecated Interface (supported in WebLogic Server 7.0
and earlier)

Instead, use this interface from Oracle (supported
in WebLogic Server version 8.1 and later)

weblogic.jdbc.vendor.oracle.
OracleConnection

oracle.jdbc.OracleConnection

weblogic.jdbc.vendor.oracle.
OracleStatement

oracle.jdbc.OracleStatement

weblogic.jdbc.vendor.oracle.
OracleCallableStatement

oracle.jdbc.OracleCallableStatement

weblogic.jdbc.vendor.oracle.
OraclePreparedStatement

oracle.jdbc.OraclePreparedStatement

weblogic.jdbc.vendor.oracle.
OracleResultSet

oracle.jdbc.OracleResultSet

Table 5-7 Oracle Interfaces with Continued Support in WebLogic Server

Oracle Interface

weblogic.jdbc.vendor.oracle.OracleArray

weblogic.jdbc.vendor.oracle.OracleRef

weblogic.jdbc.vendor.oracle.OracleStruct

weblogic.jdbc.vendor.oracle.OracleThinClob

weblogic.jdbc.vendor.oracle.OracleThinBlob

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-44 Programming WebLogic JDBC

The following tables describe the Oracle interfaces and supported methods you use with the
Oracle Thin Driver (or another driver that supports these methods) to extend the standard JDBC
(java.sql.*) interfaces.

Table 5-8 OracleConnection Interface

Extends Method Signature

OracleConnection
extends
java.sql.Connection

(This interface is
deprecated. See
Table 5-6.)

void clearClientIdentifier(String s)

throws java.sql.SQLException;

boolean getAutoClose()

throws java.sql.SQLException;

String getDatabaseProductVersion()

throws java.sql.SQLException;

String getProtocolType() throws

java.sql.SQLException;

String getURL() throws java.sql.SQLException;

String getUserName()

throws java.sql.SQLException;

boolean getBigEndian()

throws java.sql.SQLException;

boolean getDefaultAutoRefetch() throws

java.sql.SQLException;

boolean getIncludeSynonyms()

throws java.sql.SQLException;

boolean getRemarksReporting()

throws java.sql.SQLException;

boolean getReportRemarks()

throws java.sql.SQLException;

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-45

OracleConnection
extends
java.sql.Connection

(continued)

(This interface is
deprecated. See
Table 5-6.)

boolean getRestrictGetTables()

throws java.sql.SQLException;

boolean getUsingXAFlag()

throws java.sql.SQLException;

boolean getXAErrorFlag()

throws java.sql.SQLException;

boolean isCompatibleTo816()

throws java.sql.SQLException;

(Deprecated)

byte[] getFDO(boolean b)

throws java.sql.SQLException;

int getDefaultExecuteBatch() throws

java.sql.SQLException;

int getDefaultRowPrefetch()

throws java.sql.SQLException;

int getStmtCacheSize()

throws java.sql.SQLException;

java.util.Properties getDBAccessProperties()

throws java.sql.SQLException;

short getDbCsId() throws java.sql.SQLException;

short getJdbcCsId() throws java.sql.SQLException;

short getStructAttrCsId()

throws java.sql.SQLException;

short getVersionNumber()

throws java.sql.SQLException;

void archive(int i, int j, String s)

throws java.sql.SQLException;

Table 5-8 OracleConnection Interface

Extends Method Signature

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-46 Programming WebLogic JDBC

OracleConnection
extends
java.sql.Connection

(continued)

(This interface is
deprecated. See
Table 5-6.)

void close_statements()

throws java.sql.SQLException;

void initUserName() throws java.sql.SQLException;

void logicalClose() throws java.sql.SQLException;

void needLine() throws java.sql.SQLException;

void printState() throws java.sql.SQLException;

void registerSQLType(String s, String t)

throws java.sql.SQLException;

void releaseLine() throws java.sql.SQLException;

void removeAllDescriptor()

throws java.sql.SQLException;

void removeDescriptor(String s)

throws java.sql.SQLException;

void setAutoClose(boolean on) throws

java.sql.SQLException;

void setClientIdentifier(String s)

throws java.sql.SQLException;

void clearClientIdentifier(String s) throws

java.sql.SQLException;

void setDefaultAutoRefetch(boolean b)

throws java.sql.SQLException;

void setDefaultExecuteBatch(int i)

throws java.sql.SQLException;

void setDefaultRowPrefetch(int i)

throws java.sql.SQLException;

void setFDO(byte[] b)

throws java.sql.SQLException;

void setIncludeSynonyms(boolean b)

throws java.sql.SQLException;

Table 5-8 OracleConnection Interface

Extends Method Signature

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-47

OracleConnection
extends
java.sql.Connection

(continued)

(This interface is
deprecated. See
Table 5-6.)

void setPhysicalStatus(boolean b)

throws java.sql.SQLException;

void setRemarksReporting(boolean b)

throws java.sql.SQLException;

void setRestrictGetTables(boolean b)

throws java.sql.SQLException;

void setStmtCacheSize(int i)

throws java.sql.SQLException;

void setStmtCacheSize(int i, boolean b)

throws java.sql.SQLException;

void setUsingXAFlag(boolean b)

throws java.sql.SQLException;

void setXAErrorFlag(boolean b)

throws java.sql.SQLException;

void shutdown(int i)

throws java.sql.SQLException;

void startup(String s, int i)

 throws java.sql.SQLException;

Table 5-8 OracleConnection Interface

Extends Method Signature

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-48 Programming WebLogic JDBC

Table 5-9 OracleStatement Interface

Extends Method Signature

OracleStatement
extends
java.sql.statement

(This interface is
deprecated. See
Table 5-6.)

String getOriginalSql()

throws java.sql.SQLException;

String getRevisedSql()

throws java.sql.SQLException;

(Deprecated in Oracle 8.1.7, removed in Oracle 9i.)

boolean getAutoRefetch()

throws java.sql.SQLException;

boolean is_value_null(boolean b, int i)

throws java.sql.SQLException;

byte getSqlKind()

throws java.sql.SQLException;

int creationState()

throws java.sql.SQLException;

int getAutoRollback()

throws java.sql.SQLException;

(Deprecated)

int getRowPrefetch()

throws java.sql.SQLException;

int getWaitOption()

throws java.sql.SQLException;

(Deprecated)

int sendBatch()

throws java.sql.SQLException;

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-49

OracleStatement
extends
java.sql.statement

(continued)

(This interface is
deprecated. See
Table 5-6.)

void clearDefines()

throws java.sql.SQLException;

void defineColumnType(int i, int j)

throws java.sql.SQLException;

void defineColumnType(int i, int j, String s)

throws java.sql.SQLException;

void defineColumnType(int i, int j, int k)

throws java.sql.SQLException;

void describe()

throws java.sql.SQLException;

void setAutoRefetch(boolean b)

throws java.sql.SQLException;

void setAutoRollback(int i)

throws java.sql.SQLException;

(Deprecated)

void setRowPrefetch(int i)

throws java.sql.SQLException;

void setWaitOption(int i)

throws java.sql.SQLException;

(Deprecated)

Table 5-9 OracleStatement Interface

Extends Method Signature

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-50 Programming WebLogic JDBC

Table 5-10 OracleResultSet Interface

Extends Method Signature

OracleResultSet
extends
java.sql.ResultSet

(This interface is
deprecated. See
Table 5-6.)

boolean getAutoRefetch() throws java.sql.SQLException;

int getFirstUserColumnIndex()

throws java.sql.SQLException;

void closeStatementOnClose()

throws java.sql.SQLException;

void setAutoRefetch(boolean b)

throws java.sql.SQLException;

java.sql.ResultSet getCursor(int n)

throws java.sql.SQLException;

java.sql.ResultSet getCURSOR(String s)

throws java.sql.SQLException;

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-51

.

Table 5-11 OracleCallableStatement Interface

Extends Method Signature

OracleCallableStatement
extends
java.sql.CallableStatement

(This interface is deprecated. See
Table 5-6.)

void clearParameters()

throws java.sql.SQLException;

void registerIndexTableOutParameter(int i,

 int j, int k, int l)

throws java.sql.SQLException;

void registerOutParameter

(int i, int j, int k, int l)

throws java.sql.SQLException;

java.sql.ResultSet getCursor(int i)

throws java.sql.SQLException;

java.io.InputStream getAsciiStream(int i)

throws java.sql.SQLException;

java.io.InputStream getBinaryStream(int i)

throws java.sql.SQLException;

java.io.InputStream getUnicodeStream(int i)

throws java.sql.SQLException;

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-52 Programming WebLogic JDBC

.

Table 5-12 OraclePreparedStatement Interface

Extends Method Signature

OraclePreparedStatement
extends
OracleStatement and
java.sql.
PreparedStatement

(This interface is deprecated. See
Table 5-6.)

int getExecuteBatch()

throws java.sql.SQLException;

void defineParameterType(int i, int j, int k)

throws java.sql.SQLException;

void setDisableStmtCaching(boolean b)

throws java.sql.SQLException;

void setExecuteBatch(int i)

throws java.sql.SQLException;

void setFixedCHAR(int i, String s)

throws java.sql.SQLException;

void setInternalBytes(int i, byte[] b, int j)

throws java.sql.SQLException;

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-53

Table 5-13 OracleArray Interface

Extends Method Signature

OracleArray
extends
java.sql.Array

public ArrayDescriptor getDescriptor()

throws java.sql.SQLException;

public Datum[] getOracleArray()

throws SQLException;

public Datum[] getOracleArray(long l, int i)

throws SQLException;

public String getSQLTypeName()

throws java.sql.SQLException;

public int length()

throws java.sql.SQLException;

public double[] getDoubleArray()

throws java.sql.SQLException;

public double[] getDoubleArray(long l, int i)

throws java.sql.SQLException;

public float[] getFloatArray()

throws java.sql.SQLException;

public float[] getFloatArray(long l, int i)

throws java.sql.SQLException;

public int[] getIntArray()

throws java.sql.SQLException;

public int[] getIntArray(long l, int i)

throws java.sql.SQLException;

public long[] getLongArray()

throws java.sql.SQLException;

public long[] getLongArray(long l, int i)

throws java.sql.SQLException;

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-54 Programming WebLogic JDBC

OracleArray
extends
java.sql.Array

(continued)

public short[] getShortArray()

throws java.sql.SQLException;

public short[] getShortArray(long l, int i)

throws java.sql.SQLException;

public void setAutoBuffering(boolean flag)

throws java.sql.SQLException;

public void setAutoIndexing(boolean flag)

throws java.sql.SQLException;

public boolean getAutoBuffering()

throws java.sql.SQLException;

public boolean getAutoIndexing()

throws java.sql.SQLException;

public void setAutoIndexing(boolean flag, int i)

throws java.sql.SQLException;

Table 5-13 OracleArray Interface

Extends Method Signature

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-55

Table 5-14 OracleStruct Interface

Extends Method Signature

OracleStruct
extends
java.sql.Struct

public Object[] getAttributes()

throws java.sql.SQLException;

public Object[] getAttributes(java.util.Dictionary map)

throws java.sql.SQLException;

public Datum[] getOracleAttributes()

throws java.sql.SQLException;

public oracle.sql.StructDescriptor getDescriptor()

throws java.sql.SQLException;

public String getSQLTypeName()

throws java.sql.SQLException;

public void setAutoBuffering(boolean flag)

throws java.sql.SQLException;

public boolean getAutoBuffering()

throws java.sql.SQLException;

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-56 Programming WebLogic JDBC

Table 5-15 OracleRef Interface

Extends Method Signature

OracleRef
extends java.sql.Ref

public String getBaseTypeName()

throws SQLException;

public oracle.sql.StructDescriptor getDescriptor()

throws SQLException;

public oracle.sql.STRUCT getSTRUCT()

throws SQLException;

public Object getValue()

throws SQLException;

public Object getValue(Map map)

throws SQLException;

public void setValue(Object obj)

throws SQLException;

Table 5-16 OracleThinBlob Interface

Extends Method Signature

OracleThinBlob
extends
java.sql.Blob

int getBufferSize()throws java.sql.Exception

int getChunkSize()throws java.sql.Exception

int putBytes(long, int, byte[])throws java.sql.Exception

int getBinaryOutputStream()throws java.sql.Exception

Tab les o f Orac le Ex tens ion In te r faces and Suppo r ted Methods

Programming WebLogic JDBC 5-57

Table 5-17 OracleThinClob Interface

Extends Method Signature

OracleThinClob
extends
java.sql.Clob

public OutputStream getAsciiOutputStream()

throws java.sql.Exception;

public Writer getCharacterOutputStream()

throws java.sql.Exception;

public int getBufferSize() throws java.sql.Exception;

public int getChunkSize() throws java.sql.Exception;

public char[] getChars(long l, int i)

throws java.sql.Exception;

public int putChars(long start, char myChars[])

throws java.sql.Exception;

public int putString(long l, String s)

 throws java.sql.Exception;

Using Th i rd-Par t y Dr ive rs w i th WebLog ic Se rve r

5-58 Programming WebLogic JDBC

Programming WebLogic JDBC 6-1

C H A P T E R 6

Using RowSets with WebLogic Server

This section includes the following information about using JDBC rowSets with WebLogic
Server:

“About RowSets” on page 6-1

“Creating RowSets” on page 6-2

“Populating a RowSet” on page 6-3

“Working with Data in a RowSet” on page 6-2

“RowSet Meta Data” on page 6-6

“Optimistic Concurrency Policies” on page 6-6

“MetaData Settings for RowSet Updates” on page 6-11

“RowSets and Transactions” on page 6-12

“Performance Options” on page 6-14

“RowSets and XML” on page 6-15

About RowSets
RowSets are a JDBC 2.0 extension to the java.sql.ResultSet interface. The WebLogic
Server implementation of RowSets provides a disconnected RowSet. In this model, a RowSet
object is populated from the database and then the database cursor and connection are
immediately released. The RowSet is disconnected from the database and provides a ResultSet

Using RowSets w i th WebLogic Se rver

6-2 Programming WebLogic JDBC

interface for the cached data. The user may read, modify, delete, or even insert new rows into the
RowSet in memory. When acceptChanges is called, the RowSet takes all of the in-memory
updates and writes them back to the database.

In most cases, populating a RowSet data and updating the database occur in separate transactions.
The RowSet implementation uses optimistic concurrency control to ensure data consistency.

WebLogic Server RowSets implementation implements and extends java.io.Serializable,
so the RowSet can be sent as an RMI parameter or return value. For example, an EJB method
could populate a RowSet from a database query and then return the RowSet to a client.

RowSets can also read and write their state and metadata to an XML format. The RowSet
metadata is written as an XML schema document and the RowSet data is written as an XML
document that conforms to the schema. You can also populate the metadata and cached data for
a RowSet from XML documents.

Note: When using a RowSet in a client-side application, the exact same JDBC driver classes
must be in the CLASSPATH on both the server and the client. If the driver classes do not
match, you may see java.rmi.UnmarshalException exceptions.

Creating RowSets
RowSets are created from a factory interface.

import weblogic.jdbc.rowset.RowSetFactory;

import weblogic.jdbc.rowset.WLCachedRowSet;

RowSetFactory factory = RowSetFactory.newInstance();

WLCachedRowSet rowSet = factory.newCachedRowSet();

Working with Data in a RowSet
The following sections describe how to populate a RowSet, manipulate the data in the RowSet,
and then flush the changes to the database.

Note: Delimiter identifiers may not be used for column or table names in RowSets. Delimiter
identifiers are identifiers that need to be enclosed in double quotation marks when
appearing in a SQL statement. They include identifiers that are SQL reserved words (e.g.,
USER, DATE, etc.) and names that are not identifiers. A valid identifier must start with a
letter and contain only letters, numbers, and underscores.

Work ing w i th Data in a RowSet

Programming WebLogic JDBC 6-3

Populating a RowSet
After the RowSet object is created, its cache can be filled with data. Once a RowSet has been
populated, it is disconnected from the database and acts as a memory cache. There are three
methods sources for populating the RowSet's cache with data:

An existing result set. See “Populating a RowSet from an Existing ResultSet” on page 6-3.

A Database Query. See “Populating a RowSet from a DataSource and Query” on page 6-3.

An XML Document. See “Populating a RowSet from an XML Document” on page 6-16.

Populating a RowSet from an Existing ResultSet
A RowSet can be populated from an existing JDBC ResultSet. This is a common case when data
is read from a stored procedure or JDBC code already exists to load the data. The RowSet can be
loaded by calling its populate method.

rowSet.populate(myResultSet);

Populating a RowSet from a DataSource and Query
A RowSet can be populated by providing database connection information and a SQL query.
First, you provide the CachedRowSet with information needed to get a JDBC connection. This
can be done by providing a javax.sql.DataSource object, a DataSource JNDI name, or a
JDBC Driver URL. The DataSource API is recommended since it is the standard JDBC 2.0
method for retrieving JDBC connections. Also, only connections retrieved via the DataSource
API can participate in XA/2PC transactions.

rowSet.setDataSourceName("myDataSource");

If necessary, the setUsername and setPassword methods can be used to set the credentials
necessary to access your DataSource in WebLogic Server.

rowSet.setUsername("weblogic");

rowSet.setPassword("weblogic");

Next, specify a SQL query to use to load the database. For instance, the following query populates
the RowSet with all employees with a salary greater than 50000:

rowSet.setCommand("select e_name, e_id from employees WHERE e_salary > ?");

rowSet.setInt(1, 50000);

Using RowSets w i th WebLogic Se rver

6-4 Programming WebLogic JDBC

Finally, run the execute method that runs the specified query and loads the RowSet with data. The
execute method closes the JDBC connection. The RowSet does not maintain open cursors or
connections to the database.

rowSet.execute();

Retrieving Data from a RowSet
Because the RowSet is an extension to the ResultSet interfaces, it inherits all of the ResultSet
methods for retrieving data. As with a ResultSet, you can iterate through a RowSet using the
next() method. The getXXX methods can be used to read data from the RowSet.

while(rowSet.next()) {

String name = rowSet.getString("e_name");

int id = rowSet.getInt("e_id");

System.out.println("Read name: "+name+ " id: "+id);

}

while(rowSet.next()) {

 String name = rowSet.getString("e_name");

 int id = rowSet.getInt("e_id");

 System.out.println("Read name: "+name+ " id: "+id);

}

Updating Data in a RowSet
RowSets use the ResultSet updateXXX methods for updating data.

It is important to understand that RowSet updates are kept in memory only. Updates are written
back to the database only when you call the acceptChanges method.

// move back to the beginning of the rowSet

rowSet.beforeFirst();

while(rowSet.next()) {

 String name = rowSet.getString("e_name");

 // convert to upper case

 name = name.toUpper();

 rowSet.updateString("e_name", name);

 rowSet.updateRow();

}

Work ing w i th Data in a RowSet

Programming WebLogic JDBC 6-5

// Call acceptChanges to write all of the in-memory updates to the database

rowSet.acceptChanges();

Note: You must call RowSet.updateRow or RowSet.cancelRowUpdates before moving the
RowSet's cursor with the next method.

Deleting Data from a RowSet
Deleting rows is very similar to updating rows. The deleteRow() method marks a row for
deletion. When you call the acceptChanges method, the RowSet issues the appropriate SQL to
delete the selected rows.

// move back to the beginning of the rowSet

rowSet.beforeFirst();

while(rowSet.next()) {

 String name = rowSet.getString("e_name");

 if ("Rob".equals(name)) {

 rowSet.deleteRow();

 }

}

// When acceptChanges all of the in-memory deletions are written to

// the database

rowSet.acceptChanges();

Inserting Data into a RowSet
Like ResultSets, RowSets have the concept of a special insert row. To insert data, call
moveToInsertRow and then update the values in the row. The insertRow method is called to
indicate that the updates are done. You can either insert another row, or call moveToCurrentRow
to return to the read data. When you call acceptChanges, all inserted rows are sent to the
database.

rowSet.moveToInsertRow();

rowSet.updateString("e_name", "Seth");

rowSet.updateInt("e_id", 2);

rowSet.insertRow();

Using RowSets w i th WebLogic Se rver

6-6 Programming WebLogic JDBC

rowSet.updateString("e_name", "Matt");

rowSet.updateInt("e_id", 3);

rowSet.insertRow();

rowSet.moveToCurrentRow();

// issues SQL INSERTs to database

rowSet.acceptChanges();

Flushing Changes to the Database
A RowSet acts like a database cache, and all updates to it occur in memory. To flush these
changes back to the database, call the acceptChanges method.

The RowSet's acceptChanges method uses the DataSource or connection information to acquire
a database connection. It then issues all of the INSERT, UPDATE, or DELETE statements that
have been made in memory to the database.

Since the RowSet was disconnected from the database and not holding any locks or database
resources, it is possible that the underlying data in the database has been changed since the
RowSet was populated. The RowSet implementation uses optimistic concurrency control on its
UPDATE and DELETE statements to check for stale data. See “Optimistic Concurrency
Policies” on page 6-6 for details.

RowSet Meta Data
The RowSet API provides a getMetaData method for access to the associated
javax.sql.RowSetMetaData object. The WLCachedRowSet implementation provides a
WLRowSetMetaData interface that extends the standard RowSetMetaData with additional
functionality.

The metadata can be accessed with:

WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();

Optimistic Concurrency Policies
In most cases, populating a RowSet with data and updating the database occur in separate
transactions. The underlying data in the database can change in the time between the two
transactions. The WebLogic Server RowSet implementation uses optimistic concurrency control
to ensure data consistency.

Opt imist ic Concur rency Po l i c i es

Programming WebLogic JDBC 6-7

With optimistic concurrency, RowSets work on the assumption that multiple users are unlikely
to change the same data at the same time. Therefore, as part of the disconnected RowSet model,
the RowSet does not lock database resources. However, before writing changes to the database,
the RowSet must check to make sure that the data to be changed in the database has not already
changed since the data was read into the RowSet.

The UPDATE and DELETE statements issued by the RowSet include WHERE clauses that are
used to verify the data in the database against what was read when the RowSet was populated. If
the RowSet detects that the underlying data in the database has changed, it issues an
OptimisticConflictException. The application can catch this exception and determine how
to proceed. Typically, applications will refresh the updated data and present it to the user again.

The WLCachedRowSet implementation offers several optimistic concurrency policies that
determine what SQL the RowSet issues to verify the underlying database data:

VERIFY_READ_COLUMNS

VERIFY_MODIFIED_COLUMNS

VERIFY_SELECTED_COLUMNS

VERIFY_NONE

VERIFY_AUTO_VERSION_COLUMNS

VERIFY_VERSION_COLUMNS

To illustrate the differences between these policies, we will use an example that uses the
following:

A very simple employees table with 3 columns:

CREATE TABLE employees (
 e_id integer primary key,
 e_salary integer,
 e_name varchar(25)
);

A single row in the table:

e_id = 1, e_salary = 10000, and e_name = 'John Smith'

In the example for each of the optimistic concurrency policies listed below, the RowSet will read
this row from the employees table and set John Smith's salary to 20000. The example will then
show how the optimistic concurrency policy affects the SQL code issued by the RowSet.

Using RowSets w i th WebLogic Se rver

6-8 Programming WebLogic JDBC

VERIFY_READ_COLUMNS
The default RowSet optimistic concurrency control policy is VERIFY_READ_COLUMNS.
When the RowSet issues an UPDATE or DELETE, it includes all columns that were read from
the database in the WHERE clause. This verifies that the value in all columns that were initially
read into the RowSet have not changed.

In our example update, the RowSet issues:

UPDATE employees SET e_salary = 20000

 WHERE e_id = 1 AND e_salary=10000 AND e_name = 'John Smith';

VERIFY_MODIFIED_COLUMNS
The VERIFY_MODIFIED_COLUMNS policy only includes the primary key columns and the
updated columns in the WHERE clause. It is useful if your application only cares if its updated
columns are consistent. It does allow your update to commit if columns that have not been
updated have changed since the data has been read.

In our example update, the RowSet issues:

UPDATE employees SET e_salary = 20000

 WHERE e_id = 1 AND e_salary=10000

The e_id column is included since it is a primary key column. The e_salary column is a
modified column so it is included as well. The e_name column was only read so it is not verified.

VERIFY_SELECTED_COLUMNS
The VERIFY_SELECTED_COLUMNS includes the primary key columns and columns you
specify in the WHERE clause.

WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();

metaData.setOptimisticPolicy(WLRowSetMetaData.VERIFY_SELECTED_COLUMNS);

// Only verify the e_salary column

metaData.setVerifySelectedColumn("e_salary", true);

metaData.acceptChanges();

In our example update, the RowSet issues:

UPDATE employees SET e_salary = 20000

 WHERE e_id = 1 AND e_salary=10000

Opt imist ic Concur rency Po l i c i es

Programming WebLogic JDBC 6-9

The e_id column is included since it is a primary key column. The e_salary column is a
selected column so it is included as well.

VERIFY_NONE
The VERIFY_NONE policy only includes the primary key columns in the WHERE clause. It
does not provide any additional verification on the database data.

In our example update, the RowSet issues:

UPDATE employees SET e_salary = 20000 WHERE e_id = 1

VERIFY_AUTO_VERSION_COLUMNS
The VERIFY_AUTO_VERSION_COLUMNS includes the primary key columns as well as a
separate version column that you specify in the WHERE clause. The RowSet will also
automatically increment the version column as part of the update. This version column must be
an integer type. The database schema must be updated to include a separate version column
(e_version). Assume for our example this column currently has a value of 1.

metaData.setOptimisticPolicy(WLRowSetMetaData.

 VERIFY_AUTO_VERSION_COLUMNS);

metaData.setAutoVersionColumn("e_version", true);

metaData.acceptChanges();

In our example update, the RowSet issues:

UPDATE employees SET e_salary = 20000, e_version = 2

WHERE e_id = 1 AND e_version = 1

The e_version column is automatically incremented in the SET clause. The WHERE clause
verified the primary key column and the version column.

VERIFY_VERSION_COLUMNS
The VERIFY_VERSION_COLUMNS has the RowSet check the primary key columns as well
as a separate version column. The RowSet does not increment the version column as part of the
update. The database schema must be updated to include a separate version column (e_version).
Assume for our example this column currently has a value of 1.

metaData.setOptimisticPolicy(WLRowSetMetaData.VERIFY_VERSION_COLUMNS);

metaData.setVersionColumn("e_version", true);

Using RowSets w i th WebLogic Se rver

6-10 Programming WebLogic JDBC

metaData.acceptChanges();

In our example update, the RowSet issues:

UPDATE employees SET e_salary = 20000

WHERE e_id = 1 AND e_version = 1

The WHERE clause verifies the primary key column and the version column. The RowSet does
not increment the version column so this must be handled by the database. Some databases
provide automatic version columns that increment when the row is updated. It is also possible to
use a database trigger to handle this type of update.

Optimistic Concurrency Control Limitations
The Optimistic policies only verify UPDATE and DELETE statements against the row they are
changing. Read-only rows are not verified against the database.

Most databases do not allow BLOB or CLOB columns in the WHERE clause so the RowSet
never verifies BLOB or CLOB columns.

When multiple tables are included in the RowSet, the RowSet only verifies tables that have been
updated.

Choosing an Optimistic Policy
The default VERIFY_READ_COLUMNS provides a strong-level of consistency at the expense
of some performance. Since all columns that were initially read must be sent to the database and
compared in the database, there is some additional overhead to this policy.
VERIFY_READ_COLUMNS is appropriate when strong levels of consistency are needed, and
the database tables cannot be modified to include a version column.

The VERIFY_SELECTED_COLUMNS is useful when the developer needs complete control
over the verification and wants to use application-specific knowledge to fine-tune the SQL.

The VERIFY_AUTO_VERSION_COLUMNS provides the same level of consistency as
VERIFY_READ_COLUMNS but only has to compare a single integer column. This policy also
handles incrementing the version column so it requires a minimal amount of database setup.

The VERIFY_VERSION_COLUMNS is recommended for production systems that want the
highest level of performance and consistency. Like VERIFY_AUTO_VERSION_COLUMNS,
it provides a high level of consistency while only incurring a single column comparison in the
database. VERIFY_VERSION_COLUMNS requires that the database handle incrementing the

MetaData Set t ings fo r RowSet Updates

Programming WebLogic JDBC 6-11

version column. Some databases provide a column type that automatically increments itself on
updates, but this behavior can also be implemented with a database trigger.

The VERIFY_MODIFIED_COLUMNS and VERIFY_NONE decrease the consistency
guarantees, but they also decrease the likelihood of an optimistic conflict. You should consider
these policies when performance and avoiding conflicts outweigh the need for higher level of data
consistency.

MetaData Settings for RowSet Updates
When data is read into a RowSet, the RowSet implementation uses the ResultSetMetaData
interface to automatically learn the table and column names of the read data. In many cases, this
is enough information for the RowSet to generate the required SQL for writing changes back to
the database. However, many JDBC drivers just return an empty string when asked for the table
name of a given column. Without the table name, the RowSet can be used for read-only
operations only. The RowSet cannot issue updates unless the table name is specified
programmatically.

The RowSet implementation provides an extended MetaData interface that allows you to specify
schema information that cannot be automatically determined via the JDBC Driver. The
WLRowSetMetaData interface can be used to set the schema information.

executeAndGuessTableName and
executeAndGuessTableNameAndPrimaryKeys
When a RowSet is populated via a SQL query, the execute() method is generally used to run
the query and read the data. The WLCachedRowSet implementation provides the
executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys methods
that extend the execute method to also determine the associated table metadata.

The executeAndGuessTableName method parses the associated SQL and sets the table name
for all columns as the first word following the SQL keyword FROM.

The executeAndGuessTableNameAndPrimaryKeys method parses the SQL command to read
the table name. It then uses the java.sql.DatabaseMetaData to determine the table's primary
keys.

Using RowSets w i th WebLogic Se rver

6-12 Programming WebLogic JDBC

Setting Table and Primary Key Information Using the
MetaData Interface
You can also choose to set the table and primary key information using the RowSetMetaData
interface.

WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();

// convenience method to set one table name for all columns

metaData.setTableName("employees");

or

metaData.setTableName("e_id", "employees");

metaData.setTableName("e_name", "employees");

You can also use the WLRowSetMetaData to identify primary key columns.

metaData.setPrimaryKeyColumn("e_id", true);

Setting the Write Table
The WLRowSetMetaData interface includes the setWriteTableName method to indicate the
only table that should be updated or deleted. This is typically used when a RowSet is populated
via a join from multiple tables, but the RowSet should only update one table. Any column that is
not from the write table is marked as read-only.

For instance, a RowSet might include a join of orders and customers. The write table could be set
to orders. If deleteRow were called, it would delete the order row, but not delete the customer
row.

RowSets and Transactions
Most database or JDBC applications use transactions, and RowSets support transactions,
including JTA transactions. The common use case is to populate the RowSet in Transaction 1.
Transaction 1 commits, and there are no database or application server locks on the underlying
data. The RowSet holds the data in-memory, and it can be modified or shipped over the network
to a client. When the application wishes to commit the changes to the database, it starts
Transaction 2 and calls the RowSet's acceptChanges method. It then commits Transaction 2.

RowSets and T ransact ions

Programming WebLogic JDBC 6-13

Integrating with JTA Global Transactions
The EJB container and the UserTransaction interface start transactions with the JTA transaction
manager. The RowSet operations can participate in this transaction. To participate in the JTA
transaction, the RowSet must use a transaction-aware DataSource (TxDataSource). The
DataSource can be configured in the WebLogic Server console.

If an Optimistic conflict or other exception occurs during acceptChanges, the RowSet aborts
the global JTA transaction. The application will typically re-read the data and process the update
again in a new transaction.

Behavior of Rowsets Using Global Transactions
In the case of a failure or rollback, the data is rolled back from the database, but is not rolled back
from the rowset. Before proceeding you should do one of the following:

Call rowset.refresh to update the rowset with data from the database.

Create a new rowset with current data.

Using Local Transactions
If a JTA global transaction is not being used, the RowSet uses a local transaction. It first calls
setAutoCommit(false) on the connection, then it issues all of the SQL statements, and finally
it calls connection.commit(). This attempts to commit the local transaction. This method
should not be used when trying to integrate with a JTA transaction that was started by the EJB or
JMS containers.

If an Optimistic conflict or other exception occurs during acceptChanges, the RowSet rolls back
the local transaction. In this case, none of the SQL issued in acceptChanges will commit to the
database.

Behavior of Rowsets Using Local Transactions
This section provides information on the behavior of rowsets in failed local transactions. The
behavior depends on the type of connection object:

Calling connection.commit
In this situation, the connection object is not created by the rowset and initiates a local transaction
by calling connection.commit. If the transaction fails or if the connection calls

Using RowSets w i th WebLogic Se rver

6-14 Programming WebLogic JDBC

connection.rollback, the data is rolled back from the database, but is not rolled back in the
rowset. Before proceeding, you must do one of the following:

Call rowset.refresh to update the rowset with data from the database.

Create a new rowset with current data.

Calling acceptChanges
In this situation, the rowset creates its own connection object and uses it to update the data in
rowset by calling acceptChanges. In the case of failure or if the rowset calls
connection.rollback, the data is be rolled back from the rowset and also from the database.

Performance Options
Consider the following performance options when using RowSets.

JDBC Batching
The RowSet implementation includes support for JDBC 2.0 batch operations. Instead of sending
each SQL statement individually to the JDBC driver, a batch sends a collection of statements in
one bulk operation to the JDBC driver. Batching is disabled by default, but it generally improves
performance when large numbers of updates occur in a single transaction. It is worthwhile to
benchmark with this option enabled and disabled for your application and database.

The WLCachedRowSet interface contains the methods setBatchInserts(boolean),
setBatchDeletes(boolean), and setBatchUpdates(boolean) to control batching of
INSERT, DELETE, and UPDATE statements.

Note: The setBatchInserts, setBatchDeletes, or setBatchUpdates methods must be
called before the acceptChanges method is called.

Oracle Batching Limitations
Since the WLCachedRowSet relies on optimistic concurrency control, it needs to determine
whether an update or delete command has succeeded or an optimistic conflict occurred. The
WLCachedRowSet implementation relies on the JDBC driver to report the number of rows
updated by a statement to determine whether a conflict occurred or not. In the case where 0 rows
were updated, the WLCachedRowSet knows that a conflict did occur.

RowSets and XML

Programming WebLogic JDBC 6-15

Oracle JDBC drivers return java.sql.Statement.SUCCESS_NO_INFO when batch updates are
executed, so the RowSet implementation cannot use the return value to determine whether a
conflict occurred.

When the RowSet detects that batching is used with an Oracle database, it automatically changes
its batching behavior:

Batched inserts perform as usual since they are not verified.

Batched updates run as normal, but the RowSet issues an extra SELECT query to check whether
the batched update encountered an optimistic conflict.

Batched deletes use group deletes since this is more efficient than executing a batched delete
followed by a SELECT verification query.

Group Deletes
When multiple rows are deleted, the RowSet would normally issue a DELETE statement for each
deleted row. When group deletes are enabled, the RowSet issues a single DELETE statement with
a WHERE clause that includes the deleted rows.

For instance, if we were deleting 3 employees from our table, the RowSet would normally issue:

DELETE FROM employees WHERE e_id = 3 AND e_version = 1;

DELETE FROM employees WHERE e_id = 4 AND e_version = 3;

DELETE FROM employees WHERE e_id = 5 AND e_version = 10;

When group deletes are enabled, the RowSet issues:

DELETE FROM employees

WHERE e_id = 3 AND e_version = 1 OR

 e_id = 4 AND e_version = 3 OR

 e_id = 5 AND e_version = 10;

The programmer can use the WLRowSetMetaData.setGroupDeleteSize to determine the
number of rows included in a single DELETE statement. The default value is 50.

RowSets and XML
The WLCachedRowSet implementation provides support for writing its metadata as an XML
schema document and its data as an XML document that conforms to the schema. The
WLCachedRowSet can also populate itself and its metadata from an existing XML schema and
XML document.

Using RowSets w i th WebLogic Se rver

6-16 Programming WebLogic JDBC

For instance, a RowSet can be converted to XML and sent as an XML message to another
process. The other process could rebuild the RowSet instance in memory, read and update data,
and send the response back as another XML message. Finally the original server could convert
the XML message back to a RowSet and update the database.

Writing a RowSet Instance as XML
The WLRowSetMetaData interface contains the method writeXMLSchema to write the
RowSetMetaData as an XML schema document. The WLRowSetMetaData interface has a
writeXML method for converting the RowSet's data into an XML instance document.

 XMLOutputStreamFactory xoFactory =

 XMLOutputStreamFactory.newInstance();

 WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();

 XMLOutputStream xos = null;

 // Write XSD Schema

 try {

 xos = xoFactory.newDebugOutputStream(new

 FileOutputStream("rowset.xsd");

 metaData.writeXMLSchema(xos);

 } finally {

 if (xos != null) xos.close();

 }

 // Write XML Instance data

 try {

 xos = xoFactory.newDebugOutputStream(new

 FileOutputStream("rowset.xml");

 rowSet.writeXML(xos);

 } finally {

 if (xos != null) xos.close();

 }

Populating a RowSet from an XML Document
The WLRowSetMetaData interface contains the method loadXMLSchema to load the
RowSetMetaData from an XML schema document. The WLRowSetMetaData interface has a
loadXML method for populating from an XML instance document.

RowSets and XML

Programming WebLogic JDBC 6-17

 XMLInputStreamFactory xiFactory =

 XMLInputStreamFactory.newInstance();

 XMLInputStream xis = null;

 WLCachedRowSet rowSet = factory.newCachedRowSet();

 WLRowSetMetaData metaData = (WLRowSetMetaData) rowSet.getMetaData();

 // Read XSD

 try {

 xis = xiFactory.newInputStream(new FileInputStream("rowset.xsd"));

 metaData.loadXMLSchema(xis);

 } finally {

 if (xis != null) xis.close();

 }

 // Read XML

 try {

 xis = xiFactory.newInputStream(new FileInputStream("rowset.xml"));

 rs.loadXML(xis);

 } finally {

 if (xis != null) xis.close();

 }

JDBC Type to XML Schema Type Mapping

Table 6-1 JDBC Type to XML Schema Type Mapping

JDBC Type XML Schema Type

BIGINT xsd:long

BINARY xsd:base64Binary

BIT xsd:boolean

BLOB xsd:base64Binary

BOOLEAN xsd:boolean

CHAR xsd:string

DATE xsd:dateTime

Using RowSets w i th WebLogic Se rver

6-18 Programming WebLogic JDBC

XML Schema Type to JDBC Type Mapping

DECIMAL xsd:decimal

DOUBLE xsd:decimal

FLOAT xsd:float

INTEGER xsd:int

LONGVARBINARY xsd:base64Binary

LONGVARCHAR xsd:string

NUMERIC xsd:integer

REAL xsd:double

SMALLINT xsd:short

TIME xsd:dateTime

TIMESTAMP xsd:dateTime

TINYINT xsd:byte

VARBINARY xsd:base64Binary

VARCHAR xsd:string

Table 6-2 XML Schema Type to JDBC Type Mapping

XML Schema Type JDBC Type

base64Binary BINARY

boolean BOOLEAN

byte SMALLINT

dateTime DATE

decimal DECIMAL

Table 6-1 JDBC Type to XML Schema Type Mapping

JDBC Type XML Schema Type

RowSets and XML

Programming WebLogic JDBC 6-19

Multi-table RowSet Mapping
RowSets can be populated from SQL queries that return columns from multiple tables. It is
important to understand the RowSet semantics when dealing with multiple tables and the SQL
issued by RowSets in multi-table scenarios.

The RowSet optimistic concurrency control policies only verify tables that have been updated. If
a RowSet is populated with columns from tables t1 and t2, and column C from table t1 is
updated, there will be no SQL UPDATE or SELECT that verifies the values read from table t2.

RowSets do not recognize foreign key or other constraints between tables, so when updating
multiple tables, it is possible that RowSet updates will fail because of integrity constraints
between tables.

Multi-table RowSets work well when a RowSet is a join from N tables with a single write table.
For instance, a query might join in several tables but only update the employees table. In this case,
the programmer should call setWriteTableName to ensure that updates and deletes only apply
to the write table.

Another common multi-table scenario is multiple tables that share the same primary key space.
This is one logical table that has been split over multiple physical tables in the database. In this
scenario, the RowSet will be able to update multiple tables.

Since multi-table RowSets can have complicated update semantics, it is recommended that users
set the write table name and only update a single table.

double DOUBLE

float FLOAT

hexBinary BINARY

int INTEGER

integer NUMERIC

long BIGINT

short SMALLINT

string VARCHAR

Table 6-2 XML Schema Type to JDBC Type Mapping

XML Schema Type JDBC Type

Using RowSets w i th WebLogic Se rver

6-20 Programming WebLogic JDBC

Multi-Table RowSet Example
Consider a simple order entry system that has customer and order tables.

CREATE TABLE customer (

 id integer primary key,

 name varchar(200),

 email varchar(200)

);

CREATE TABLE order (

 id integer primary key,

 sku integer,

 quantity integer,

 customer_id integer,

 foreign key customer_id references customer(id)

);

This example shows a 1 to many relationship where each customer may have many orders.

A customer portal application might issue a query that loads a customer's current orders and some
information about the customer with SQL like this:

SELECT o.id, o.sku, o.quantity, c.name, c.email

 FROM order o, customer c

 WHERE c.id = o.customer_id

This data will be read into the RowSet with one row containing the matching order and customer
columns from the SQL Join.

In cases like this, it is recommended that the many side (order) be set as the write table. This
ensures that the one side (customer) is read-only. This allows the user to update details in their
order, but will prevent changes to their customer record. This is especially useful for deletes since
calling deleteRow will delete the order record but will not delete the customer.

Programming WebLogic JDBC 7-1

C H A P T E R 7

Testing JDBC Connections and
Troubleshooting

The following sections describe how to test, monitor, and troubleshoot JDBC connections:

“Monitoring JDBC Connectivity” on page 7-1

“Validating a DBMS Connection from the Command Line” on page 7-2

“Troubleshooting JDBC” on page 7-3

“Troubleshooting Problems with Shared Libraries on UNIX” on page 7-6

“Using Microsoft SQL with Nested Triggers” on page 7-8

Monitoring JDBC Connectivity
The Administration Console provides tables and statistics to enable monitoring the connectivity
parameters for each of the subcomponents—Connection Pools, MultiPools and DataSources.

You can also access statistics for connection pools programmatically through the
JDBCConnectionPoolRuntimeMBean; see WebLogic Server Partner’s Guide at
http://e-docs.bea.com/wls/docs81/isv/index.html and the WebLogic Javadoc. This
MBean is the same API that populates the statistics in the Administration Console. Read more
about monitoring connectivity in JDBC Connection Pools at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html.

For information about using MBeans, see Programming WebLogic JMX Services at
http://e-docs.bea.com/wls/docs81/jmx/index.html.

http://e-docs.bea.com/wls/docs81/isv/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/jmx/index.html

Test ing JDBC Connect ions and T roub leshoot ing

7-2 Programming WebLogic JDBC

Validating a DBMS Connection from the Command Line
Use the utils.dbping BEA utility to test two-tier JDBC database connections after you install
WebLogic Server. To use the utils.dbping utility, you must complete the installation of your
JDBC driver. Make sure you have completed the following:

For Type 2 JDBC drivers, such as WebLogic jDriver for Oracle, set your PATH (Windows)
or shared/load library path (UNIX) to include both your DBMS-supplied client installation
and the BEA-supplied native libraries.

For all drivers, include the classes of your JDBC driver in your CLASSPATH.

Configuration instructions for the BEA WebLogic jDriver JDBC drivers are available at:

– Using WebLogic jDriver for Oracle

– Using WebLogic jDriver for Microsoft SQL Server

Use the utils.dbping utility to confirm that you can make a connection between Java and
your database. The dbping utility is only for testing a two-tier connection, using a WebLogic
two-tier JDBC driver like WebLogic jDriver for Oracle.

Syntax
 $ java utils.dbping DBMS user password DB

Arguments

DBMS
Use: ORACLE or MSSQLSERVER4

user
Valid username for database login. Use the same values and format that you use with isql for
SQL Server or sqlplus for Oracle.

password
Valid password for the user. Use the same values and format that you use with isql or sqlplus.

http://e-docs.bea.com/wls/docs81/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs81/mssqlserver4/install_jmsq4.html

Troub leshoo t ing JDBC

Programming WebLogic JDBC 7-3

DB
Name of the database. The format varies depending on the database and version. Use the same
values and format that you use with isql or sqlplus. Type 4 drivers, such as MSSQLServer4,
need additional information to locate the server since they cannot access the environment.

Examples

Oracle
Connect to Oracle from Java with WebLogic jDriver for Oracle using the same values that you
use with sqlplus.

If you are not using SQLNet (and you have ORACLE_HOME and ORACLE_SID defined), follow
this example:

 $ java utils.dbping ORACLE scott tiger

If you are using SQLNet V2, follow this example:

 $ java utils.dbping ORACLE scott tiger TNS_alias

where TNS_alias is an alias defined in your local tnsnames.ora file.

Microsoft SQL Server (Type 4 driver)
To connect to Microsoft SQL Server from Java with WebLogic jDriver for Microsoft SQL
Server, you use the same values for user and password that you use with isql. To specify the
SQL Server, however, you supply the name of the computer running the SQL Server and the
TCP/IP port the SQL Server is listening on. To log into a SQL Server running on a computer
named mars listening on port 1433, enter:

 $ java utils.dbping MSSQLSERVER4 sa secret mars:1433

You could omit ":1433" in this example since 1433 is the default port number for Microsoft SQL
Server. By default, a Microsoft SQL Server may not be listening for TCP/IP connections. Your
DBA can configure it to do so.

Troubleshooting JDBC
The following sections provide troubleshooting tips.

Test ing JDBC Connect ions and T roub leshoot ing

7-4 Programming WebLogic JDBC

JDBC Connections
If you are testing a connection to WebLogic, check the WebLogic Server log. By default, the log
is kept in a file with the following format:

domain\server\server.log

Where domain is the root folder of the domain and server is the name of the server. The server
name is used as a folder name and in the log file name.

Windows
If you get an error message that indicates that the .dll failed to load, make sure your PATH
includes the 32-bit database-related .dlls.

UNIX
If you get an error message that indicates that an .so or an .sl failed to load, make sure your
LD_LIBRARY_PATH or SHLIB_PATH includes the 32-bit database-related files.

Codeset Support
WebLogic supports Oracle codesets with the following consideration:

If your NLS_LANG environment variable is not set, or if it is set to either US7ASCII or
WE8ISO8859-1, the driver always operates in 8859-1.

If the NLS_LANG environment variable is set to a different value than the codeset used by
the database, the Oracle Thin driver and the WebLogic jDriver for Oracle use the client
codeset when writing to the database.

For more information, see Codeset Support in Using WebLogic jDriver for Oracle.

Other Problems with Oracle on UNIX
Check the threading model you are using. Green threads can conflict with the kernel threads used
by OCI. When using Oracle drivers, WebLogic recommends that you use native threads. You can
specify this by adding the -native flag when you start Java.

http://e-docs.bea.com/wls/docs81/oracle/API_joci.html

Troub leshoo t ing JDBC

Programming WebLogic JDBC 7-5

Thread-related Problems on UNIX
On UNIX, two threading models are available: green threads and native threads. For more
information, read about the JDK for the Solaris operating environment on the Sun Web site at
http://www.java.sun.com.

You can determine what type of threads you are using by checking the environment variable
called THREADS_TYPE. If this variable is not set, you can check the shell script in your Java
installation bin directory.

Some of the problems are related to the implementation of threads in the JVM for each operating
system. Not all JVMs handle operating-system specific threading issues equally well. Here are
some hints to avoid thread-related problems:

If you are using Oracle drivers, use native threads.

If you are using HP UNIX, upgrade to version 11.x, because there are compatibility issues
with the JVM in earlier versions, such as HP UX 10.20.

On HP UNIX, the new JDK does not append the green-threads library to the SHLIB_PATH.
The current JDK can not find the shared library (.sl) unless the library is in the path
defined by SHLIB_PATH. To check the current value of SHLIB_PATH, at the command line
type:

$ echo $SHLIB_PATH

Use the set or setenv command (depending on your shell) to append the WebLogic
shared library to the path defined by the symbol SHLIB_PATH. For the shared library to be
recognized in a location that is not part of your SHLIB_PATH, you will need to contact your
system administrator.

Closing JDBC Objects
BEA Systems recommends—and good programming practice dictates—that you always close
JDBC objects, such as Connections, Statements, and ResultSets, in a finally block to
make sure that your program executes efficiently. Here is a general example:

try {

Driver d =

(Driver)Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle:myserver",

 "scott", "tiger");

Test ing JDBC Connect ions and T roub leshoot ing

7-6 Programming WebLogic JDBC

 Statement stmt = conn.createStatement();

 stmt.execute("select * from emp");

 ResultSet rs = stmt.getResultSet();

 // do work

 }

 catch (Exception e) {

 // handle any exceptions as appropriate

 }

 finally {

 try {rs.close();}

 catch (Exception rse) {}

 try {stmt.close();}

 catch (Exception sse) {}

 try {conn.close();

 catch (Exception cse) {}

 }

Abandoning JDBC Objects
You should also avoid the following practice, which creates abandoned JDBC objects:

//Do not do this.

stmt.executeQuery();

rs = stmt.getResultSet();

//Do this instead

rs = stmt.executeQuery();

The first line in this example creates a result set that is lost and can be garbage collected
immediately.

Troubleshooting Problems with Shared Libraries on UNIX
When you install a native two-tier JDBC driver, configure WebLogic Server to use performance
packs, or set up BEA WebLogic Server as a Web server on UNIX, you install shared libraries or
shared objects (distributed with the WebLogic Server software) on your system. This document
describes problems you may encounter and suggests solutions for them.

T roub leshoot ing P rob lems w i th Shared L ib rar i es on UNIX

Programming WebLogic JDBC 7-7

The operating system loader looks for the libraries in different locations. How the loader works
differs across the different flavors of UNIX. The following sections describe Solaris and HP-UX.

WebLogic jDriver for Oracle
Use the procedures for setting your shared libraries as described in this document. The actual path
you specify will depend on your Oracle client version, your Oracle Server version and other
factors. For details, see Installing WebLogic jDriver for Oracle.

Solaris
To find out which dynamic libraries are being used by an executable you can run the ldd
command for the application. If the output of this command indicates that libraries are not found,
then add the location of the libraries to the LD_LIBRARY_PATH environment variable as follows
(for C or Bash shells):

setenv LD_LIBRARY_PATH weblogic_directory/lib/solaris/oci817_8

Once you do this, ldd should no longer complain about missing libraries.

HP-UX

Incorrectly Set File Permissions
The shared library problem you are most likely to encounter after installing WebLogic Server on
an HP-UX system is incorrectly set file permissions. After installing WebLogic Server, make
sure that the shared library permissions are set correctly with the chmod command. Here is an
example to set the correct permissions for HP-UX 11.0:

% cd WL_HOME/lib/hpux11/oci817_8

% chmod 755 *.sl

If you encounter problems loading shared libraries after you set the file permissions, there could
be a problem locating the libraries. First, make sure that the WL_HOME/server/lib/hpux11 is
in the SHLIB_PATH environment variable:

% echo $SHLIB_PATH

If the directory is not listed, add it:

setenv SHLIB_PATH WL_HOME/server/lib/hpux11:$SHLIB_PATH

http://e-docs.bea.com/wls/docs81/oracle/install_jdbc.html

Test ing JDBC Connect ions and T roub leshoot ing

7-8 Programming WebLogic JDBC

Alternatively, copy (or link) the .sl files from the WebLogic Server distribution to a directory that
is already in the SHLIB_PATH variable.

If you still have problems, use the chatr command to specify that the application should search
directories in the SHLIB_PATH environment variable. The +s enabled option sets an
application to search the SHLIB_PATH variable. Here is an example of this command, run on the
WebLogic jDriver for Oracle shared library for HP-UX 11.0:

cd weblogic_directory/lib/hpux11

chatr +s enable libweblogicoci38.sl

Check the chatr man page for more information on this command.

Incorrect SHLIB_PATH
You may also encounter a shared library problem if you do not include the proper paths in your
SHLIB_PATH when using Oracle 9. SHLIB_PATH should include the path to the driver
(oci901_8) and the path to the vendor-supplied libraries (lib32). For example, your path may
look like:

export SHLIB_PATH=

$WL_HOME/server/lib/hpux11/oci901_8:$ORACLE_HOME/lib32:$SHLIB_PATH

Note also that your path cannot include the path to the Oracle 8.1.7 libraries, or clashes will occur.
For more instructions, see Setting Up the Environment for Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs81/oracle/install_jdbc.html.

Using Microsoft SQL with Nested Triggers

The following section provides troubleshooting information when using nested triggers on some
Microsoft SQL databases:

 “Exceeding the Nesting Level” on page 7-9

“Using Triggers and EJBs” on page 7-10

For information on supported data bases and data base drivers, see Supported Configurations.

http://e-docs.bea.com/wls/docs81/oracle/install_jdbc.html
http://e-docs.bea.com/platform/suppconfigs/index.html

Using Mic rosof t SQL wi th Nested T r iggers

Programming WebLogic JDBC 7-9

Exceeding the Nesting Level

You may encounter a SQL Server error indicating that the nesting level has been exceeded on
some SQL Server databases.

For example:

CREATE TABLE EmployeeEJBTable (name varchar(50) not null,salary int, card
varchar(50), primary key (name))

CREATE TABLE CardEJBTable (cardno varchar(50) not null, employee
varchar(50), primary key (cardno), foreign key (employee) references
EmployeeEJB Table(name) on delete cascade)

CREATE TRIGGER card on EmployeeEJBTable for delete as delete
CardEJBTable where employee in (select name from deleted)

CREATE TRIGGER emp on CardEJBTable for delete as delete EmployeeEJBTable
where card in (select cardno from deleted)

insert into EmployeeEJBTable values ('1',1000,'1')

insert into CardEJBTable values ('1','1')

DELETE FROM CardEJBTable WHERE cardno = 1

Results in the following error message:

Maximum stored procedure, function, trigger, or view nesting level
exceeded (limit 32).

To work around this issue, do the following:

1. Run the following script to reset the nested trigger level to 0:

-- Start batch
exec sp_configure 'nested triggers', 0 -- This set's the new value.
reconfigure with override -- This makes the change permanent
-- End batch

2. Verify the current value the SQL server by running the following script:

exec sp_configure 'nested triggers'

Test ing JDBC Connect ions and T roub leshoot ing

7-10 Programming WebLogic JDBC

Using Triggers and EJBs

Applications using EJBs with a Microsoft driver may encounter situations when the return code
from the execute() method is 0, when the expected value is 1 (1 record deleted).

For example:

CREATE TABLE EmployeeEJBTable (name varchar(50) not null,salary int, card
varchar(50), primary key (name))

CREATE TABLE CardEJBTable (cardno varchar(50) not null, employee
varchar(50), primary key (cardno), foreign key (employee) references
EmployeeEJB Table(name) on delete cascade)

CREATE TRIGGER emp on CardEJBTable for delete as delete EmployeeEJBTable
where card in (select cardno from deleted)

insert into EmployeeEJBTable values ('1',1000,'1')

insert into CardEJBTable values ('1','1')

DELETE FROM CardEJBTable WHERE cardno = 1

The EJB code assumes that the record is not found and throws an appropriate error message.

To work around this issue, run the following script:

exec sp_configure 'show advanced options', 1
reconfigure with override
exec sp_configure 'disallow results from triggers',1
reconfigure with override

Programming WebLogic JDBC A-1

A P P E N D I X A

Using WebLogic Server with Oracle RAC

More and more customers are looking for solutions to make their back-end systems more scalable
and more available. In response to these requests, BEA supports Oracle Real Application Clusters
(RAC) for use with WebLogic Server.

The following sections describe the requirements and configuration tasks for using Oracle Real
Application Clusters with WebLogic Server:

Overview of Oracle Real Application Clusters

Environment

Configuration Considerations for Oracle

Configuration Options in WebLogic Server with Oracle RAC

XA Considerations and Limitations with Oracle 9i RAC

JMS Store Recovery with Oracle RAC

Both Oracle RAC and WebLogic Server are complex systems. To use them together requires
specific configuration on both systems, as well as clustering software and a shared storage
solution. This document describes the configuration required at a high level. For more details
about configuring Oracle RAC, your clustering software, your operating system, and your storage
solution, see the documentation from the respective vendors.

Using WebLog ic Se rve r w i th Orac le RAC

A-2 Programming WebLogic JDBC

Overview of Oracle Real Application Clusters
Oracle Real Application Clusters (RAC) is a software component you can add to a
high-availability solution that enables users on multiple machines to access a single database with
increased performance. RAC comprises two or more Oracle database instances running on two
or more clustered machines and accessing a shared storage device via cluster technology. To
support this architecture, the machines that host the database instances are linked by a high-speed
interconnect to form the cluster. The interconnect is a physical network used as a means of
communication between the nodes of the cluster. Cluster functionality is provided by the
operating system or compatible third party clustering software. Figure A-1 shows an Oracle RAC
configuration.

Figure A-1 Oracle Real Application Clusters Configuration

Oracle RAC offers features in the following areas:

Scalability

Availability

Load balancing

Failover

Overv iew o f Orac le Rea l App l i cat ion C luste rs

Programming WebLogic JDBC A-3

Oracle RAC Scalability with WebLogic Server
An Oracle RAC installation appears like a single standard Oracle database and is maintained
using the same tools and practices. All the nodes in the cluster execute transactions against the
same database and RAC coordinates each node's access to the shared data to maintain consistency
and ensure integrity. You can add nodes to the cluster easily and there is no need to partition data
when you add them. This means that you can horizontally scale the database tier as usage and
demand grows by adding RAC nodes, storage, or both. You can then scale WebLogic Server by
adding a connection pool that maps to the new node.

Oracle RAC Availability with WebLogic Server
Because every RAC node in the cluster has equal access and authority, the loss of a node may
impact performance but does not result in downtime. Depending upon your configuration, when
a RAC node fails, in-flight transactions are redirected to another node in the cluster either by
WebLogic Server or by the Oracle Thin driver. Note that Oracle RAC does not provide failover
for database connections; nor does WebLogic Server. But transactions are failed over in the sense
that they are heuristically driven to completion, based on the time of the failure.

Oracle RAC Load Balancing with WebLogic Server
If your application requires load balancing across RAC nodes when using global transactions
(XA), BEA supports this capability through use of JDBC MultiPools with Oracle RAC nodes.
The connection pools that form a Multipool are accessed using a round-robin scheme. When
switching connections, WebLogic Server selects a connection from the next connection pool in
the order listed. For information on which version(s) of WebLogic Server support JDBC
MultiPools, Weblogic Platform Supported Configurations. For more information about using
MultiPools with Oracle RAC, see Using MultiPools with Oracle RAC.

In a configuration without a MultiPool, WebLogic Server relies on the connect-time failover
feature provided by the Oracle Thin driver to work with Oracle RAC. As described in Oracle's
Technical Note 235118.1, the Oracle Thin driver cannot guarantee that a transaction is initiated
and concluded on the same Oracle RAC instance when the driver is configured for load
balancing. As Oracle RAC requires that all database operations inside a global transaction be
routed to the same Oracle instance, this known limitation means that you cannot use driver-level
load balancing when using XA with Oracle RAC and therefore you cannot use a primary/primary
RAC configuration.

http://e-docs.bea.com/platform/suppconfigs/index.html

Using WebLog ic Se rve r w i th Orac le RAC

A-4 Programming WebLogic JDBC

Oracle RAC Failover with WebLogic Server
Although Oracle RAC offers JDBC connect-time failover features, for most configurations, BEA
recommends using WebLogic JDBC MultiPools to handle failover instead.

Note: Transparent Application Failover (TAF) requires the use of the Oracle OCI driver.
Because BEA requires the use of the Oracle Thin driver, TAF is not supported.

Environment
When using WebLogic Server with Oracle RAC, consider the following requirements:

Hardware Requirements

Software Requirements

Note: See the WebLogic Platform Supported Configurations documentation at
http://e-docs.bea.com/platform/suppconfigs/index.html for the latest
WebLogic Server hardware platform and operating system support, and for the Oracle
RAC versions supported by WebLogic Server versions and service packs. See the Oracle
documentation for hardware and software requirements for running the Oracle RAC
software.

Hardware Requirements
A typical WebLogic Server/Oracle RAC system includes a WebLogic Server cluster, an Oracle
RAC cluster, and hardware for shared storage.

WebLogic Server Cluster
The WebLogic Server cluster can be configured in many ways and with various hardware
options. See Using WebLogic Server Clusters for more details about configuring a WebLogic
Server cluster.

Oracle RAC Cluster
For the latest hardware requirements for Oracle RAC, see the Oracle RAC documentation.
However, to use Oracle RAC with WebLogic Server, you must run Oracle RAC instances on
robust, production-quality hardware. The Oracle RAC configuration must deliver database
processing performance appropriate for reasonably-anticipated application load requirements.
Unusual database response delays can lead to unexpected behavior during database failover
scenarios.

http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/wls/docs81/index.html

Conf igurat ion Cons ide rat ions fo r O rac le

Programming WebLogic JDBC A-5

Shared Storage
In an Oracle RAC configuration, all data files, control files, and parameter files are shared for use
by all RAC instances. An high availability (HA) storage solution that uses one of the following
architectures is recommended:

– Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

– Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

Software Requirements
To use WebLogic Server with Oracle RAC, you must install the following software on each RAC
node:

Operating system patches required to support Oracle RAC. See the release notes from
Oracle for details.

Oracle 9i or Oracle 10g database management system

Clustering software for your operating system. See the Oracle documentation for supported
clustering software and cluster configurations.

Shared storage software, such as Veritas Cluster File System. Note that some clustering
software includes a file storage solution, in which case additional shared storage software
is not required.

Note: See the WebLogic Platform Supported Configurations documentation at
http://e-docs.bea.com/platform/suppconfigs/index.html for the latest
WebLogic Server hardware platform and operating system support, and for the Oracle
RAC versions supported by WebLogic Server versions and service packs. See the Oracle
documentation for hardware and software requirements required for running the Oracle
RAC software.

Configuration Considerations for Oracle
Once you have installed and configured Oracle RAC, you must configure the listener process for
each RAC instance as described in the sections that follow. For information about installing and
configuring your operating system and the Oracle software for Oracle RAC nodes see the Oracle
documentation.

http://e-docs.bea.com/platform/suppconfigs/index.html

Using WebLog ic Se rve r w i th Orac le RAC

A-6 Programming WebLogic JDBC

Configuring the Listener Process for Each Oracle RAC Instance
For Oracle RAC, the listener process establishes a communication pathway between a user
process and an Oracle instance. When you use Oracle RAC with WebLogic Server, the user
process is typically a JDBC connection pool.

When a connection pool is created, it attempts to create a pool of database connections for
applications to borrow. If a pooled database connection becomes inoperative or if the connection
pool is configured to grow in capacity, the connection pool attempts to create additional database
connections up to the maximum specified in the configuration file. In all of these instances, the
Oracle listener process handles the connection request on the Oracle RAC instance.

Figure A-2 shows the Oracle listener process functionality.

Figure A-2 Oracle Listener Process Functionality

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-7

To enable this functionality, you must configure the listener process for each RAC instance in the
Oracle cluster. BEA requires that you configure a local listener on each RAC instance. Each
database instance should be configured to register with its local listener only.

Oracle instances can be configured to register with the listener statically in the listener.ora
file or registered dynamically using the instance initialization parameter local_listener, or
both. BEA recommends using dynamic registration.

A listener can start either a shared dispatcher process or a dedicated process. When using with
WebLogic Server, BEA recommends using dedicated processes.

Disabling Remote Listeners
Although Oracle RAC allows you to configure remote listeners to handle connection failover,
remote listeners are typically too slow and BEA does not support their use. To disable remote
listeners, delete any listed remote listeners in spfile.ora on each RAC node. For example:

*.remote_listener=''

BEA recommends using one of the following methods of handling failover instead.

JDBC MultiPools (recommended)

Oracle Thin driver connect-time failover (supported for some configurations)

Configuration Options in WebLogic Server with Oracle RAC
When using WebLogic Server with Oracle 9i RAC or Oracle 10g RAC, you must configure your
WebLogic Domain so that it can interact with RAC instances and so that it performs as expected.
The following sections describe configuration options and requirements:

Choosing a WebLogic Server Configuration for Use with Oracle RAC

Required JDBC Drivers

Configuration Considerations for Failover

Using MultiPools with Oracle RAC

Using MultiPools with Global Transactions

Using MultiPools without Global Transactions

Using Connect-Time Failover with Oracle RAC

Using WebLog ic Se rve r w i th Orac le RAC

A-8 Programming WebLogic JDBC

Using Connect-Time Failover without Global Transactions

Using Connect-Time Failover with Global Transactions

Choosing a WebLogic Server Configuration for Use with Oracle
RAC
BEA supports several configuration options for using Oracle RAC with WebLogic Server:

To connect to multiple Oracle 9i RAC or Oracle 10g RAC instances when using global
transactions (XA), BEA recommends the use of transaction-aware WebLogic JDBC
MultiPools, which support failover and load balancing, to connect to the RAC nodes. For
more information see Using MultiPools with Global Transactions. You must either
Weblogic Server 8.1 SP5 or later or have WebLogic Server 8.1 SP4 with the Oracle 10g
RAC patch installed for this configuration. The WebLogic Server 8.1 SP4 Oracle 10g RAC
patch is available at
http://dev2dev.bea.com/wlserver/patch/wls81sp4_MP_OracleRAC_patch.html

To connect to multiple Oracle 9i RAC or Oracle10g RAC instances when not using XA,
BEA recommends the use of (non-transaction-aware) MultiPools to connect to the RAC
nodes. Use the standard MultiPool configuration, which supports failover and load
balancing. For more information see Using MultiPools without Global Transactions.

To connect to multiple Oracle RAC nodes when MultiPools are not an option and when not
using XA, use Oracle 9i RAC or Oracle 10g RAC with connect-time failover. Note that
load balancing is not supported in this configuration. For more information see Using
Connect-Time Failover without Global Transactions. You must have either Weblogic
Server 8.1 SP5 or later or WebLogic Server 8.1 SP4 with the Oracle 9i RAC patch
installed for this configuration. The WebLogic Server 8.1 SP4 Oracle 9i RAC patch is
available at http://commerce.bea.com/d2d/wlplat81sp4_Oracle9iRAC_patch.jsp.

To connect to multiple Oracle RAC nodes when MultiPools are not an option and when
using XA, use Oracle 9i RAC with connect-time failover. Note that load balancing is not
supported in this configuration due to known limitations of the Oracle Thin driver
described in Oracle's Technical Note 235118.1. For more information see Using
Connect-Time Failover with Global Transactions. You must have either Weblogic Server
8.1 SP5 or WebLogic Server 8.1 SP4 with the Oracle 9i RAC patch installed for this
configuration. The WebLogic Server 8.1 SP4 Oracle 9i RAC patch is available at
http://commerce.bea.com/d2d/wlplat81sp4_Oracle9iRAC_patch.jsp.

The following table may help you as you try to determine which configuration is right for your
particular application:

http://dev2dev.bea.com/wlserver/patch/wls81sp4_MP_OracleRAC_patch.html
http://commerce.bea.com/d2d/wlplat81sp4_Oracle9iRAC_patch.jsp
http://commerce.bea.com/d2d/wlplat81sp4_Oracle9iRAC_patch.jsp

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-9

Required JDBC Drivers
To use WebLogic Server with Oracle RAC, your WebLogic JDBC connection pools must use the
Oracle JDBC Thin driver 10g to create database connections.

Configuration Considerations for Failover
Consider the following information when configuring for failover.

MultiPool-Managed Failover
MultiPools offer failover for global transactions without the limitations and known issues
associated with a connection pool configuration with connect-time failover. For a description of
MultiPool failover features, see Configuring and Using MultiPools.

With this configuration, pictured in Figure A-3, “MultiPool Configuration,” on page A-13, you
get:

Faster failover controlled by the MultiPool

Automatic failback by the WebLogic Server health monitor

Does Your Application Require

Load
Balancing?

Failover? Global
Transactions
(XA)?

JMS JDBC
Store?

Y Y Y N See Using MultiPools with Global
Transactions.

Y Y N N See Using MultiPools without Global
Transactions.

N Y N Y See Using Connect-Time Failover
without Global Transactions

N Y Y N See Using Connect-Time Failover
with Global Transactions

Using WebLog ic Se rve r w i th Orac le RAC

A-10 Programming WebLogic JDBC

The MultiPool handles failover for database connections when a RAC node becomes unavailable.
When WebLogic Server tests a connection and the connection fails, it attempts to recreate the
connection. If that attempt fails, the server disables the connection pool and routes connection
requests to other connection pools (which correspond to other RAC nodes) in the MultiPool.
WebLogic Server periodically tries to recreate the database connections in the disabled
connection pool. When WebLogic Server is successful in recreating the connections, it next
re-enables the connection pool and begins routing connection requests to the connection pool
again. Because of the connection request routing and automatic health checking features, there is
minimal delay in satisfying connection requests after a failure compared to when relying on the
Oracle Thin driver connect-time failover configuration.

Connect-Time Failover
When MultiPools are not an option, WebLogic Server relies on the connect-time failover feature
of the Oracle Thin driver to handle connection failover when a RAC instance becomes
unavailable and a primary/primary configuration is not an option. When WebLogic Server tests
a connection and the connection fails, the server replaces it by getting a new connection, and the
driver again determines which RAC instance to use based on instance availability. The
CountOfTestFailuresTillFlush="1" attribute helps to minimize the delay in delivering a
connection to applications caused by the testing task. With this attribute setting, when a
connection fails a connection test the first time, WebLogic Server automatically closes all
connections in the connection pool. WebLogic Server replaces the connection with a new one,
relying on the driver to determine to which node it should connect. In this case, the primary RAC
node has failed, so the new connection is to the secondary RAC node. WebLogic Server tests the
new connection before satisfying the request.

Delays During Failover
Occasionally, when one RAC node fails over to another, there may be a delay before the data
associated with a transaction branch in progress on the now failed node is available throughout
the cluster. This prevents incomplete transactions from being properly completed, which could
further result in data locking in the database. To protect against the potential consequences of
such a delay, WebLogic Server provides two configuration attributes that enable XA call retry
for Oracle RAC: XARetryDurationSeconds and XARetryIntervalSeconds.

XARetryDurationSeconds controls the period of time during which WebLogic Server will
repeatedly retry XA operations such as recover, commit and rollback for pending transactions.
XARetryIntervalSeconds controls the frequency of the retry attempts within the established
time period.

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-11

To enable XA call retries, add a value for XARetryDurationSeconds to all JDBC connection
pools in your WebLogic domain that connect to an Oracle RAC instance. For example:

<JDBCConnectionPool

 Name="oracleRACPool"

 DriverName="oracle.jdbc.xa.client.OracleXADataSource"

 ...

 XARetryDurationSeconds=480

 />

Note: XARetryDurationSeconds is available in the Administration Console. To enable this
feature, you must manually edit your config.xml file or change the configuration using
the weblogic.Admin command line utility or a JMX program.

Use the following formula to determine the value for XARetryDurationSeconds:

XARetryDurationSeconds = (longest transaction timeout for transactions that use connections
from the connection pool) + (delay before XIDs are available on all RAC nodes, typically less
than 5 minutes)

For example, if your application sets the longest transaction timeout as 180 seconds, you should
set XARetryDurationSeconds to 180 seconds + 300 seconds, for a total of 480 seconds.

Note: It is generally better to set XARetryDurationSeconds higher than minimally necessary
to make sure that all transactions are completed properly. Setting the value higher than
minimally required should not affect application performance during normal operations.
The additional processing only affects transactions that have been prepared but have
failed to complete.

You can also optionally set a value for XARetryIntervalSeconds. This value determines the
time between XA retry calls. By default, the value is 60 seconds. Decreasing the value will
decrease the amount of time between XA retry attempts. The default value should suffice in most
cases.

Failure Handling Walkthrough for Global Transactions
What happens to inflight transactions to a database node if that node fails? When the primary
Oracle RAC node fails? Does WebLogic Server support transparent failover? To answer these
and other questions about how WebLogic Server handles failures, let’s walk through the
transaction processing steps and describe how a failure would be handled at each stage along the
way.

The first stage at which a failure may occur is before the application calls for the transaction to
be committed. If a database or RAC node fails at this stage, the application receives an exception

Using WebLog ic Se rve r w i th Orac le RAC

A-12 Programming WebLogic JDBC

and must get a new connection and make a new attempt at processing the transaction. WebLogic
Server does not support transparent failover.

If a failure occurs after the application has called for the transaction to be committed, the handling
of any in-flight transaction depends upon whether the PREPARE operation is complete. If the
PREPARE operation is not complete, the transaction manager rolls back the transaction and sends
the application an exception for the failed transaction. If the PREPARE operation is complete, the
transaction manager attempts to drive the in-flight transaction to completion using another node.

If a failure occurs during the COMMIT operation, the transaction manager attempts to retry the
COMMIT operation several times. Note that the connection is blocked during these attempts. If the
COMMIT operation is not successful during the first set of retry attempts, the application receives
an exception. The transaction manager then continues to retry the COMMIT operation periodically
until it is successful; if the transaction cannot be completed successfully within the abandon time
period, the transaction is driven to completion heuristically.

Using MultiPools with Oracle RAC
To connect WebLogic Server to multiple Oracle RAC nodes using MultiPools, first configure a
JDBC connection pool for each RAC instance in your RAC cluster with the Oracle Thin driver.
Then configure a MultiPool, using either the algorithm for load balancing or the algorithm for
high availability, and add the connection pools to it.

Note: WebLogic Server does not support the use of MultiPools with JMS JDBC Stores. If your
application makes use of JMS JDBC Stores, you must configure your JMS JDBC Store
to use Oracle RAC with connect-time failover. For more information see Using
Connect-Time Failover with Oracle RAC.

Figure A-3 shows a typical MultiPool configuration.

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-13

Figure A-3 MultiPool Configuration

You can use the Administration Console or any other means that you prefer to configure your
domain, such as the weblogic.Admin command line utility, the WebLogic Scripting Tool
(WLST), or a JMX program. For information about configuring a WebLogic JDBC MultiPool
see “Configuring Multipools” in the Administration Console Online Help.

To use a database connection in this configuration, your applications look up a data source on the
JNDI tree and then request a connection from the data source. The data source communicates
with the MultiPool and the MultiPool determines which connection pool to use to satisfy the
connection request based on the algorithm type specified in the configuration (that is, high
availability or load balancing).

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_multipools.html#config_multipool

Using WebLog ic Se rve r w i th Orac le RAC

A-14 Programming WebLogic JDBC

Attributes of a MultiPool
The MultiPool may have the following attributes, depending on the role of RAC in your system—
load balancing or failover:

AlgorithmType="Load-Balancing" or AlgorithmType="High-Availability"

– With the Load-Balancing option, connection requests are distributed among available
connection pools; with the High-Availability option, connection requests are served by
the first available pool in the list. When a connection pool becomes defunct, connection
requests are served by the next connection pool in the list.

FailoverRequestIfBusy="true"

– With the High-Availability algorithm, this attribute enables failover when all
connections in a connection pool are in use.

HealthCheckFrequencySeconds="240"

– Controls how often WebLogic Server checks automatically disabled connection pools
in a MultiPool to see if connections can be recreated and if the connection pool can be
re-enabled. The default is 300 seconds. See “MultiPool Failover Enhancements” in
Programming WebLogic JDBC for more details.

Using MultiPools with Global Transactions
In this configuration, a MultiPool “pins” a transaction to one and only one Oracle RAC instance
and failover is handled at the MultiPool level when a RAC instance becomes unavailable. If there
is a failure on a RAC instance before PREPARE, the operation is retried until the retry duration
has expired. If there is a failure after PREPARE the transaction is failed over to another instance.

Rules for Connection Pools within a MultiPool Using Global Transactions
The following rules apply to the XA connection pools within a MultiPool:

All the connection pools must be homogeneous. In other words, either all of them must be
XA connection pools or none of them can be XA connection pools.

If you choose to specify them, all XA-related attributes must be set to the same values for
each connection pool. The attributes include the following:

– XARetryDurationSeconds

– SupportsLocalTransaction

– KeepXAConnTillTxComplete

http://e-docs.bea.com/wls/docs81/jdbc/programming.html#multipool_failover_enhancements

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-15

– NeedTxCtxOnClose

– XAEndOnlyOnce

– NewXAConnForCommit

– RollbackLocalTxUponConnClose

– RecoverOnlyOnce

– KeepLogicalConnOpenOnRelease

Notes:

– WebLogic Server 8.1 SP5 is certified to support Multipools with XA only on Oracle
RAC. For information on supported versions of Oracle RAC, see Supported Database
Configurations.

– If you are not using XA, BEA recommends the use of MultiPools for failover and load
balancing across RAC instances, but the XA-specific configuration requirements above
do not apply. For more information about configuring WebLogic JDBC MultiPools, see
Configuring Multipools” in the Administration Console Online Help.

Required Attributes of Connection Pools within a MultiPool Using Global
Transactions
Each connection pool within the MultiPool should have the following attributes:

Oracle JDBC Thin driver 10g. For example:

DriverName="oracle.jdbc.xa.client.OracleXADataSource"
URL="jdbc:oracle:thin:@db_server1:1521:SNRAC1"

KeepXAConnTillTxComplete="true"

– Forces the connection pool to reserve a physical database connection and provide the
same connection to an application throughout transaction processing until the
distributed transaction is complete.

– Required for proper transaction processing with Oracle RAC.

XARetryDurationSeconds="300"

– Enables the WebLogic Server transaction manager to retry XA recover, commit, and
rollback calls for the specified amount of time.

CountOfTestFailuresTillFlush="1"

http://e-docs.bea.com/platform/suppconfigs/configs81/81_over/supported_db.html
http://e-docs.bea.com/platform/suppconfigs/configs81/81_over/supported_db.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_multipools.html#config_multipool

Using WebLog ic Se rve r w i th Orac le RAC

A-16 Programming WebLogic JDBC

– Enables WebLogic Server to close all connections in the connection pool after the
number of test failures that you specify to minimize the delay caused by further
database testing. See “JDBC Connection Pool Testing Enhancements” in Programming
WebLogic JDBC for more details about this attribute.

– Minimizes the failover time when an Oracle RAC node fails.

TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a connection
from the connection pool. See “Testing Connection Pools and Database Connections”
in Programming WebLogic JDBC for more details about this attribute.

– Required to enable failover to another RAC node.

TestTableName="name_of_small_table" The name of the table used to test a physical
database connection. For more details about this attribute, see “JDBC Connection Pool →
Configuration → Connections” in the Administration Console Online Help.

Sample config.xml Code
An example of the connection pools, a WebLogic JDBC MultiPool, and an associated data source
in the config.xml file would be:

<JDBCConnectionPool

CapacityIncrement="1"

ConnLeakProfilingEnabled="true"

CountOfTestFailuresTillFlush="1"

DriverName="oracle.jdbc.xa.client.OracleXADataSource"

InitialCapacity="5"

KeepXAConnTillTxComplete="true"

MaxCapacity="100"

Name="jdbcXAPool1"

PasswordEncrypted="{3DES}lBifoTsg8fc="

Properties="user=wlsqa"

RefreshMinutes="1" SupportsLocalTransaction="true"

Targets="WLSCluster"

TestConnectionsOnReserve="true"

TestTableName="dual"

URL="jdbc:oracle:thin:@db_server1:1521:SNRAC1"

XAEndOnlyOnce="true"

XARetryDurationSeconds="300"

http://e-docs.bea.com/wls/docs81/jdbc/programming.html#jdbc_connection_pool_testing_enhancements
http://e-docs.bea.com/wls/docs81/jdbc/programming.html#testing_database_connections
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#TestTableName

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-17

XASetTransactionTimeout="true"/>

XATransactionTimeout="302"/>

<JDBCConnectionPool

CapacityIncrement="1"

ConnLeakProfilingEnabled="true"

CountOfTestFailuresTillFlush="1"

DriverName="oracle.jdbc.xa.client.OracleXADataSource"

InitialCapacity="5"

KeepXAConnTillTxComplete="true"

MaxCapacity="100"

Name="jdbcXAPool2"

PasswordEncrypted="{3DES}lBifoTsg8fc="

Properties="user=wlsqa"

RefreshMinutes="1"

SupportsLocalTransaction="true"

Targets="WLSCluster"

TestConnectionsOnReserve="true"

TestTableName="dual"

URL="jdbc:oracle:thin:@db_server2:1521:SNRAC2"

XAEndOnlyOnce="true"

XARetryDurationSeconds="300"

XASetTransactionTimeout="true"/>

XATransactionTimeout="302"/>

<JDBCMultiPool

Name="jdbcXAMultiPool1"

PoolList="jdbcXAPool1,jdbcXAPool2"

Targets="WLSCluster"

AlgorithmType="Load-Balancing"/>

<JDBCTxDataSource

JNDIName="jdbcXADataSource1"

Name="jdbcXADataSource1"

PoolName="jdbcXAMultiPool1"

Targets="WLSCluster"/>

Note: Line breaks added for readability.

Using WebLog ic Se rve r w i th Orac le RAC

A-18 Programming WebLogic JDBC

Using MultiPools without Global Transactions
The following sections describe a configuration that uses Oracle RAC with MultiPools in an
application that does not require global transactions.

Attributes of Connection Pools within a MultiPool Not Using Global
Transactions
Connection pools must have the following attributes:

Oracle JDBC Thin driver 10g. For example:

DriverName="oracle.jdbc.OracleDriver"
URL="jdbc:oracle:thin:@db_server1:1521:SNRAC1"

TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a connection
from the connection pool. See “Testing Connection Pools and Database Connections”
in Programming WebLogic JDBC for more details about this attribute.

– Required to enable failover and connection request routing within a MultiPool
(effectively, failover to another RAC node).

TestTableName="name_of_small_table"

– The name of the table used to test a physical database connection. For more details
about this attribute, see “JDBC Connection Pool → Configuration → Connections” in the
Administration Console Online Help.

Sample config.xml Code
An example of the connection pools, a WebLogic JDBC MultiPool, and an associated data source
in the config.xml file would be:

<JDBCConnectionPool

 Name="oracleRACPool_1"

 DriverName="oracle.jdbc.OracleDriver"

 InitialCapacity="5"

 MaxCapacity="100"

 Password="{3DES}I5fj3vh4+nI="

 Properties="user=SCOTT"

 RefreshMinutes="5"

 TestConnectionsOnReserve="true"

http://e-docs.bea.com/wls/docs81/jdbc/programming.html#testing_database_connections
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#TestTableName

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-19

 TestTableName="dual"

 Targets="myWebLogicCluster"

 URL="jdbc:oracle:thin:@dbhost1:1521:dbservice"

 />

<JDBCConnectionPool

 Name="oracleRACPool_2"

 DriverName="oracle.jdbc.OracleDriver"

 InitialCapacity="5"

 LoginDelaySeconds="1"

 MaxCapacity="5"

 Password="{3DES}I5fj3vh4+nI="

 Properties="user=SCOTT"

 RefreshMinutes="5"

 TestConnectionsOnReserve="true"

 TestTableName="dual"

 PreparedStatementCacheSize="15"

 Targets="myWebLogicCluster"

 URL="jdbc:oracle:thin:@dbhost2:1521:dbservice"

 />

<JDBCMultiPool

 AlgorithmType="Load-Balancing"

 Name="MyJDBCMultiPool"

 HealthCheckFrequencySeconds="300"

 PoolList="oracleRACPool_1,oracleRACPool_2"

 Targets="myWebLogicCluster"

 />

<JDBCDataSource

 JNDIName="oracleRACDataSource"

 Name="oracleRACDataSource"

 PoolName="MyJDBCMultiPool"

 Targets="myWebLogicCluster"

 />

Note: Line breaks added for readability.

Using WebLog ic Se rve r w i th Orac le RAC

A-20 Programming WebLogic JDBC

Using Connect-Time Failover with Oracle RAC
When MultiPools are not an option in your application (as when you are using a JMS JDBC Store,
which does not support the use of MultiPools) and if load balancing is not required, you can
configure your connection pools to use connect-time failover.

To connect WebLogic Server to multiple Oracle RAC nodes using connection pools configured
for connect-time failover, configure a JDBC connection pool for each RAC instance in your RAC
cluster with the Oracle Thin driver. Configure each connection pool to use connect-time failover,
as described in the sections that follow. Figure A-4 shows an overview of the system.

Figure A-4 Connection Pool Configuration with Oracle Thin Driver Connect-Time Failover

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-21

You can use the Administration Console or any other means that you prefer to configure your
domain, such as the weblogic.Admin command line utility, the Weblogic Scripting Tool
(WLST), or a JMX program.

When connections are created in the connection pool, the Oracle Thin driver determines which
Oracle RAC instance to use. When an application gets a connection, it looks up a data source on
the JNDI tree and requests a connection from the data source. The underlying connection pool
delivers one of the available connections from the pool.

The following sections describe configuration options and requirements:

Using Connect-Time Failover without Global Transactions

Using Connect-Time Failover with Global Transactions

XA Considerations and Limitations with Oracle 9i RAC

JMS Store Recovery with Oracle RAC

Using Connect-Time Failover without Global Transactions
The following sections describe a configuration which uses Oracle RAC’s connect-time failover
features to handle connection failures. With this configuration, in some failure cases, the failover
time is as long as the TCP timeout, which can be several minutes, depending on your
environment.

Attributes of a Connect-Time Failover Configuration without Global
Transactions
To use this configuration, create JDBC connection pools in your WebLogic domain with the
following attributes.

Oracle JDBC Thin driver 10g configured for connect-time failover. For example:

DriverName="oracle.jdbc.OracleDriver"

URL="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost1)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost2)(PORT=1521))
(FAILOVER=on)(LOAD_BALANCE=off))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=dbservice)))"

CountOfTestFailuresTillFlush="1"

– Enables WebLogic Server to close all connections in the connection pool after the
number of test failures that you specify to minimize the delay caused by further

Using WebLog ic Se rve r w i th Orac le RAC

A-22 Programming WebLogic JDBC

database testing. See “JDBC Connection Pool Testing Enhancements” in Programming
WebLogic JDBC for more details about this attribute.

– Minimizes the failover time when an Oracle RAC node fails.

TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a connection
from the connection pool. See “Testing Connection Pools and Database Connections”
in Programming WebLogic JDBC for more details about this attribute.

– Required to enable failover to another RAC node.

TestTableName="name_of_small_table" The name of the table used to test a physical
database connection. For more details about this attribute, see “JDBC Connection Pool \
Configuration \ Connections” in the Administration Console Online Help.

You can also optionally set a time-out value using the ConnectionReserveTimeoutSeconds
attribute. This value determines the maximum time an application will wait for a connection to
be made available. For example the following statement will set the time-out value to 120
seconds:

ConnectionReserveTimeoutSeconds="120"

Sample config.xml Code
<JDBCConnectionPool Name="jdbcPool2"

Targets="JdbcRacCluster"

DriverName="oracle.jdbc.OracleDriver"

URL="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST = (ADDRESS =

(PROTOCOL = TCP)(HOST=dbhost1)(PORT=1521))

(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost2)(PORT=1521))

(FAILOVER=on) (LOAD_BALANCE=off))

(CONNECT_DATA = (SERVER=DEDICATED) (SERVICE_NAME =dbservice)))"

InitialCapacity="10"

MaxCapacity="100"

CapacityIncrement="1"

Password="tiger"

Properties="user=scott"

PreparedStatementCacheSize="15"

ConnLeakProfilingEnabled="true"

TestTableName="dual"

http://e-docs.bea.com/wls/docs81/jdbc/programming.html#jdbc_connection_pool_testing_enhancements
http://e-docs.bea.com/wls/docs81/jdbc/programming.html#testing_database_connections
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#TestTableName
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#TestTableName

Conf igurat ion Opt ions in WebLogic Se rver w i th Orac le RAC

Programming WebLogic JDBC A-23

TestConnectionsOnReserve="true"

CountOfTestFailuresTillFlush="1" />

<JDBCDataSource Name="jdbcDataSource2"

Targets="JdbcRacCluster" ‘

JNDIName="jdbcDataSource2"

PoolName="jdbcPool2" />

Note: Line breaks added for readability.

Using Connect-Time Failover with Global Transactions
To use XA with a connect-time failover configuration, you must be using Oracle 9i RAC. When
connections are created in the connection pool, the Oracle Thin driver determines which Oracle
9i RAC instance to use. When an application gets a connection, it looks up a data source on the
JNDI tree and requests a connection from the data source. The underlying connection pool
delivers one of the available connections from the pool.

With this configuration, in some failure cases, the failover time is as long as the TCP timeout,
which can be several minutes, depending on your environment.

Attributes of a Connect-Time Failover Configuration with Global Transactions
To use this configuration, create JDBC connection pools in your WebLogic domain with the
following attributes.

Oracle JDBC Thin driver 10g configured for connect-time failover. For example:

DriverName="oracle.jdbc.xa.client.OracleXADataSource"

URL="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost1)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost2)(PORT=1521))
(FAILOVER=on)(LOAD_BALANCE=off))(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=dbservice)))"

KeepXAConnTillTxComplete="true"

– Forces the connection pool to reserve a physical database connection and provide the
same connection to an application throughout transaction processing until the
distributed transaction is complete.

– Required for proper transaction processing with Oracle RAC.

XARetryDurationSeconds="300"

Using WebLog ic Se rve r w i th Orac le RAC

A-24 Programming WebLogic JDBC

– Enables the WebLogic Server transaction manager to retry XA recover, commit, and
rollback calls for the specified amount of time.

Note: This attribute is not yet available in the Administration Console and must be set
using a method such as the weblogic.Admin command line utility, the Weblogic
Scripting Tool (WLST), or a JMX program

– Resolves issues described in Oracle's bugs 3428146 and 395790. In some failure
conditions, there is a window of time in which transaction IDs are not available across
the RAC cluster, which prevents incomplete transactions from being properly
completed, which further results in data locking in the database.

CountOfTestFailuresTillFlush="1"

– Enables WebLogic Server to close all connections in the connection pool after the
number of test failures that you specify to minimize the delay caused by further
database testing. See “JDBC Connection Pool Testing Enhancements” in Programming
WebLogic JDBC for more details about this attribute.

– Minimizes the failover time when an Oracle RAC node fails.

TestConnectionsOnReserve="true"

– Enables testing of a database connection when an application reserves a connection
from the connection pool. See “Testing Connection Pools and Database Connections”
in Programming WebLogic JDBC for more details about this attribute.

– Required to enable failover to another RAC node.

TestTableName="name_of_small_table" The name of the table used to test a physical
database connection. For more details about this attribute, see “JDBC Connection Pool \
Configuration \ Connections” in the Administration Console Online Help.

You can also optionally set a time-out value using the ConnectionReserveTimeoutSeconds
attribute. This value determines the maximum time an application will wait for a connection to
be made available. For example the following statement will set the time-out value to 120
seconds:

ConnectionReserveTimeoutSeconds="120"

Sample config.xml Code
An example of the connection pool and associated data source in the config.xml file would be:

<JDBCConnectionPool

 Name="oracleRACPool"

http://e-docs.bea.com/wls/docs81/jdbc/programming.html#jdbc_connection_pool_testing_enhancements
http://e-docs.bea.com/wls/docs81/jdbc/programming.html#testing_database_connections
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#TestTableName
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html#TestTableName

XA Cons ide ra t i ons and L imi tat ions wi th Orac le 9 i RAC

Programming WebLogic JDBC A-25

 DriverName="oracle.jdbc.xa.client.OracleXADataSource"

 InitialCapacity="5"

 LoginDelaySeconds="1"

 MaxCapacity="5"

 Password="{3DES}I5fj3vh4+nI="

 Properties="user=SCOTT"

 CountOfTestFailuresTillFlush="1"

 KeepXAConnTillTxComplete="true"

 XARetryDurationSeconds="300"

 RefreshMinutes="5"

 TestConnectionsOnReserve="true"

 TestTableName="dual"

 XASetTransactionTimeout="true"

 StatementCacheSize="15"

 Targets="myWebLogicCluster"

 URL="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=

 (ADDRESS=(PROTOCOL=TCP)(HOST=dbhost1)(PORT=1521))

 (ADDRESS=(PROTOCOL=TCP)(HOST=dbhost2)(PORT=1521))

 (FAILOVER=on)(LOAD_BALANCE=off)(CONNECT_DATA=(SERVER=DEDICATED)

 (SERVICE_NAME=dbservice)))"

 />

<JDBCTxDataSource

 JNDIName="oracleRACDataSource"

 Name="oracleRACDataSource"

 PoolName="oracleRACPool"

 Targets="myWebLogicCluster"

 />

Note: Line breaks added for readability.

XA Considerations and Limitations with Oracle 9i RAC
When using XA (global transactions) with Oracle 9i RAC, consider the following requirements
and limitations:

Required JDBC Driver Configuration for Use with XA

Oracle 9i RAC XA Requirements

Using WebLog ic Se rve r w i th Orac le RAC

A-26 Programming WebLogic JDBC

Known Limitations When Using Oracle RAC with WebLogic Server

Known Issue Occurring After Database Server Crash

Required JDBC Driver Configuration for Use with XA
In this configuration, you must use the Oracle Thin driver connect-time failover to create
database connections as described in Using Connect-Time Failover without Global Transactions.

Oracle 9i RAC XA Requirements
Oracle 9i RAC has the following requirements when using XA.

A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same
Instance of the RAC Cluster
Global transactions must be initiated, prepared, and concluded in the same instance of the RAC
cluster. WebLogic Server connection pools manage this for you when you set
KeepXAConnTillTxComplete="true" in the JDBC connection pool configuration.

Note: WebLogic Server relies on the connect-time failover feature in the Oracle Thin driver to
work with Oracle RAC. As described in Oracle's Technical Note 235118.1, the Oracle
Thin driver cannot guarantee that a transaction is initiated and concluded on the same
RAC instance when the driver is configured for load balancing. As Oracle RAC requires
that all database operations inside a global transaction be routed to the same Oracle
instance, this known limitation means that you cannot use connect-time load balancing
when using XA with Oracle RAC and, therefore, you cannot use a primary/primary RAC
configuration.

Transaction IDs Must Be Unique Within the RAC Cluster
When using global transactions, transaction IDs (XIDs) must be unique within the RAC cluster.
However, neither the Oracle Thin driver nor an Oracle RAC instance can determine if an XID is
unique within the RAC cluster. Transactions with the same XID can execute SQL code on
different instances of the RAC cluster without any exception.

The WebLogic Server Transaction Manager generates unique transaction IDs. However, in some
failover scenarios, a transaction can continue on a RAC instance other than the originating
instance, which can cause data inconsistencies. See Potential for Inconsistent Transaction
Completion (Data Loss) in Some Failure Conditions.

XA Cons ide ra t i ons and L imi tat ions wi th Orac le 9 i RAC

Programming WebLogic JDBC A-27

Known Limitations When Using Oracle RAC with WebLogic
Server
The following sections describe known issues and limitations when using XA and WebLogic
Server with Oracle RAC:

Potential for Inconsistent Transaction Completion (Data Loss) in Some Failure Conditions

Potential for Data Deadlocks in Some Failure Scenarios

Potential for Transactions Completed Out of Sequence

Note: Some of these limitations are also described in Oracle’s bug numbers 3428146 and
395790. Contact Oracle for more information about these issues.

Potential for Inconsistent Transaction Completion (Data Loss) in Some
Failure Conditions
In some failure conditions, when MultiPools are not being used, transaction processing (data
changes) that occurred on a RAC instance other than the instance on which a transaction was
initiated will be lost without any notification or exception.

For example, consider the following WebLogic Server configuration:

A WebLogic cluster containing two servers: server1 and server2.

A JDBC data source ds1 targeted to the cluster. (Identical instances of the data source are
present on all instances in the cluster.)

A JDBC connection pool cp1 is configured to connect to an Oracle RAC cluster with
connect-time failover enabled. RAC1 is set as the primary RAC instance; RAC2 is set as the
secondary RAC instance. Cp1 is targeted to the cluster. (Identical instances of the
connection pool are present on all nodes in the WebLogic cluster.)

In the following scenario, some data changes will be lost:

1. Network connectivity between server2 and RAC1 is lost, which causes database connections
in cp1 on server2 to fail over to RAC2. The same connection pool on server1 still has
connections to RAC1.

2. On server1, an application starts a transaction and uses a database connection from cp1 (a
connection to RAC1) to make data changes.

3. The application invokes an EJB on server2, which uses a database connection from cp1
on server2 (a connection to RAC2) to make data changes.

Using WebLog ic Se rve r w i th Orac le RAC

A-28 Programming WebLogic JDBC

4. The application completes the transaction on server1.

Result: Data changes on RAC1 are committed. Data changes on RAC 2 are ignored. The
WebLogic Server transaction manager calls prepare and commit on the resource. In this case,
because the connection pools have the same name, they are considered to be the same resource,
so the calls are made on only one instance of the connection pool. Because the connection pools
contain connections to different RAC instances, the data changes are committed on one RAC
instance, but the changes on the other RAC instance are lost.

Workaround: Provide redundant network hardware between the WebLogic Server instance and
the Oracle RAC instance to avoid the network failure.

Potential for Data Deadlocks in Some Failure Scenarios
There is a window of time in which transaction IDs are not available across the RAC cluster.
Because of this known Oracle limitation, after some failure conditions, some incomplete
transactions cannot be properly completed, which can result in deadlocks in the database. BEA
has provided a patch to work around this known issue in 8.1 SP4, and recommends that customers
using WebLogic Server and XA with Oracle RAC migrate to WebLogic Server 8.1 SP4 and use
this patch.

For more details, see “Patch to Support Use with Oracle 9i RAC” in the WebLogic
Server8.1 Release Notes.

Potential for Transactions Completed Out of Sequence
When using the Oracle DataBase Control, the order of transaction processing is not guaranteed.
For example, if you implement a web service that uses DataBase Control do the following
transaction sequence:

1. Create a table

2. Insert record 1

3. Insert record 2

4. Insert record 3

5. Select records

If the primary node goes down momentarily after the table is created, it is possible that
transactions submitted to the database are performed out of sequence.

http://e-docs.bea.com/wls/docs81/notes/new.html#sp4_9i_rac_patch

JMS Sto re Recovery w i th Orac le RAC

Programming WebLogic JDBC A-29

Known Issue Occurring After Database Server Crash
If, while a transaction is being processed, the database server instance crashes after the PREPARE
operation is complete but before the results of that operation have been written to the transaction
log, a COMMIT call from a client for that transaction may hang for several minutes and possibly
until the TCP timeout period has expired. The window of time in which this might occur is small
and the problem occurs rarely. There is no workaround for the issue at this time.

JMS Store Recovery with Oracle RAC
If you are using a JMS JDBC Store with Oracle RAC, there are features and limitations to
consider that concern Oracle RAC node failover. See the following sections:

Configuring a JMS JDBC Store for Use with Oracle RAC

Automatic Retry

Manual Retry

Alternative: JMS File Store

Configuring a JMS JDBC Store for Use with Oracle RAC
The way that a JMS JDBC Store works limits the options you have for configuring one for use
with Oracle RAC. A JMS JDBC Store holds on to a connection until that connection fails, at
which point it grabs the next connection and repeats the process. Therefore you cannot implement
load balancing with a JMS JDBC Store. Also, JMS JDBC Stores do not support MultiPools. The
only remaining configuration option is to use connect-time failover without global transactions.
For more information about this configuration option, see Using Connect-Time Failover without
Global Transactions.

Automatic Retry
JMS has a limited connection retry mechanism which enables it to silently react to the failure of
the RAC node that hosts its database connection. If the database has experienced either a minor
network 'hiccup' or a RAC database has failed over to another node, the second connection
attempt (the retry) will succeed to the next RAC node.

The time within which this retry is attempted and the number of retries attempted are limited to
minimize the negative effects that an extended connection retry time could cause. If the database
connection remains unavailable for a long period of time, the delay can impede the ability of JMS

Using WebLog ic Se rve r w i th Orac le RAC

A-30 Programming WebLogic JDBC

to properly continue its processing (for example, to maintain proper message ordering). Also, the
transaction manager could declare the JMS resource of a transaction to be dead if there is not
enough processing progress made within this time period, or out-of memory conditions could
arise. There are system-level tuning guidelines that can help minimize the RAC failover time
frame which is critical to the success of the automatic retry.

The tight loop on the automatic retry is particularly important when JMS processing occurs with
transactions. If an I/O failure occurs in the JMS JDBC Store, the store record is in an unknown
state which will put the message itself in an unknown state. To prevent the message from being
committed in this unknown state, JMS will mark the transaction associated with the message as
a “failedTransaction”. Any future attempts by the transaction manager to finishing committing
the message will cause JMS to throw a javax.transaction.xa.XAException with an
errorCode set to XAException.XAER_RMERR. This exception is an indication to the transaction
manager that a transient error has occurred in the resource manager (JMS) and that the transaction
manager should retry commit processing. The retry logic provides a second attempt to establish
the connection before JMS communicates any failure to the upper layer which would translate
into an RMERR. If the RMERR is generated, then the only way to recover the message and
complete the transaction is to restart the JMS Server manually. See “Manual Retry”.

Note: In certain scenarios, it is not possible to restart JMS server during runtime so, you need
to restart WebLogic Server. If restarting WebLogic Server is not acceptable, you can
choose File Store instead of JDBCStore. For more information, see “JMS Store Tasks”
in JMS: Configuring in Administration Console Online Help.

The automatic retry logic is currently governed by an option on WebLogic Server as follows:

-Dweblogic.jms.store.JMSJDBCIORetryDelay=X

Where X is the number of seconds that should elapse before the connection to the database is
retried. The default is one second. This value is restricted to the range 0 to 15, and the retry will
only be attempted once. If a failure occurs on the second attempt, an exception will be propagated
up the call stack and a manual restart will be required to recover the messages associated with the
failed transaction.

Note: If you continue to encounter XAException.XAER_RMERR, try setting
JMSJDBCIORetryDelay to a higher number.

Manual Retry
In certain test scenarios, empirical data has shown that it can take an extended period of time for
everything to be completely transferred and operational (including transactional data) on a new
RAC node once a particular node fails. If this exceeds the maximum elapsed time for the JMS

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html

JMS Sto re Recovery w i th Orac le RAC

Programming WebLogic JDBC A-31

automatic retry logic, then the current design expects that some type of manual intervention will
occur to restart the JMS server so that it will begin processing again and deliver/recover messages
in accordance with its specification and configuration. Below are two methods in which a JMS
server can be manually restarted.

Restart the JMS Server via the Administration Console:

a. Click the affected JMS server in the left pane.

b. In the right pane, click the Targets tab.

c. Select None for the target of this server and click Apply.

d. Re-select the original targets and click Apply.

Restart the JMS Server via JMX:

a. Get the JMS server MBean name using

java weblogic.Admin -url t3://localhost:7001 -username weblogic
-password weblogic get -type JMSServer -property Name

b. Similarly, get the Server mbean name.

c. To removeDeployment or addDeployment, use the following commands:

java weblogic.Admin -url t3://localhost:7001 -username weblogic
-password weblogic invoke -mbean "Server mbean name from above
command" -method removeDeployment "jms server mbean name from above
command"

java weblogic.Admin -url t3://localhost:7001 -username weblogic
-password weblogic invoke -mbean "Server mbean name from above
command" -method addDeployment "jms server mbean name from above
command"

Successful execution returns the following message:

{MBeanName="your_domain_name:Name=your_target_server,Type=Server"{ad
dDeployment=true}} Ok

The application must then wait for the JMS server to complete its restart prior to any
client resuming its message processing requests.

Using WebLog ic Se rve r w i th Orac le RAC

A-32 Programming WebLogic JDBC

Alternative: JMS File Store
Generic file system anomalies can affect the availability of the file store (e.g., a disk crash, disk
full, etc.). To mitigate these issues, use a data redundancy scheme such as dual-ported SCSI disks,
a RAID array, or perhaps a SAN.

For more information, see the following documents:

“JMS Store Tasks” in the JMS: Configuring section of the Administration Console Online
Help

“File Store Tuning” in BEA WebLogic JMS Performance Guide

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#1105647
http://dev2dev.bea.com/pub/a/2004/01/WL_JMS_Perform_GD.html

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction to WebLogic JDBC
	Overview of JDBC
	Using JDBC Drivers with WebLogic Server
	Types of JDBC Drivers
	Table of WebLogic Server JDBC Drivers
	Selecting a JDBC Driver
	WebLogic Server JDBC Drivers
	WebLogic jDriver for Oracle (Deprecated)
	BEA WebLogic Type 4 JDBC Driver for Microsoft SQL Servers
	WebLogic jDriver for Microsoft SQL Server (Deprecated)

	WebLogic Server Wrapper Drivers
	WebLogic RMI Driver
	WebLogic Pool Driver
	WebLogic JTS Driver

	Third-Party JDBC Drivers
	Oracle Thin Driver

	Overview of Connection Pools
	Using Connection Pools with Server-side Applications
	Using Connection Pools with Client-side Applications

	Overview of MultiPools
	Overview of Clustered JDBC
	Overview of DataSources
	JDBC API
	JDBC 2.0
	Platforms

	Configuring and Using WebLogic JDBC
	Configuring and Using Connection Pools
	Advantages to Using Connection Pools
	Creating a Connection Pool at Startup
	Avoiding Server Lockup with the Correct Number of Connections
	Database Passwords in Connection Pool Configuration

	SQL Statement Timeout Enhancements for Pooled JDBC Connections
	JDBC Connection Pool Testing Enhancements
	Minimizing Connection Test Delay After Database Connectivity Loss
	Minimizing Connection Request Delay After Connection Test Failures
	Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

	Creating a Connection Pool Dynamically
	Dynamic Connection Pool Sample Code
	Import Packages
	Look Up the Administration MBeanHome
	Get the Server MBean
	Create the Connection Pool MBean
	Set the Connection Pool Properties
	Add the Target
	Create a DataSource
	Removing a Dynamic Connection Pool and DataSource

	Configuring and Using DataSources
	Importing Packages to Access DataSource Objects
	Obtaining a Client Connection Using a DataSource
	Possible Exceptions When a Connection Request Fails
	Connection Pool Limitation

	Managing Connection Pools
	Getting Status and Statistics for a Connection Pool
	Enabling Connection Creation Retries
	Initializing Connections with a SQL Query
	Testing Connection Pools and Database Connections
	Enabling Connection Requests to Wait for a Connection
	Connection Reserve Timeout
	Limiting the Number of Waiting Connection Requests

	Configuring and Managing the Statement Cache for a Connection Pool
	Configuring the Statement Cache
	Deprecated Statement Cache Configuration Options
	Clearing the Statement Cache for a Connection Pool
	Clearing the Statement Cache for a Single Connection

	Shrinking a Connection Pool
	Resetting a Connection Pool
	Suspending a Connection Pool
	Resuming a Connection Pool

	Configuring and Using Application-Scoped JDBC Connection Pools
	Configuring Application-Scoped Connection Pools
	Required Elements Within the jdbc-connection-pool Element
	Encrypting the Database Password in weblogic-application.xml
	Deprecated Statement Cache Configuration Options for Application-Scoped Connection Pools

	Getting a Connection from an Application-Scoped Connection Pool

	Configuring and Using MultiPools
	Configuring MultiPools
	Choosing the MultiPool Algorithm
	High Availability
	Load Balancing

	Transaction Support in JDBC MultiPools
	Transaction Failover Processing for MultiPools

	MultiPool Failover Enhancements
	Connection Request Routing Enhancements When a Connection Pool Fails
	Automatic Re-enablement on Recovery of a Failed Connection Pool within a MultiPool
	Enabling Failover for Busy Connection Pools in a MultiPool
	Controlling MultiPool Failover with a Callback
	Controlling MultiPool Failback with a Callback

	MultiPool Fail-Over Limitations and Requirements
	Test Connections on Reserve to Enable Fail-Over
	By Default, No Fail-Over When All Connections are In Use
	Do Not Enable Connection Creation Retries
	No Fail-Over for In-Use Connections

	Performance Tuning Your JDBC Application
	WebLogic Performance-Enhancing Features
	How Connection Pools Enhance Performance
	Caching Statements and Data

	Designing Your Application for Best Performance
	1. Process as Much Data as Possible Inside the Database
	2. Use Built-in DBMS Set-based Processing
	3. Make Your Queries Smart
	4. Make Transactions Single-batch
	5. Never Have a DBMS Transaction Span User Input
	6. Use In-place Updates
	7. Keep Operational Data Sets Small
	8. Use Pipelining and Parallelism

	Using WebLogic Wrapper Drivers
	Using the WebLogic RMI Driver
	Setting Up WebLogic Server to Use the WebLogic RMI Driver
	Sample Client Code for Using the RMI Driver
	Import the Required Packages
	Get the Database Connection
	Using a JNDI Lookup to Obtain the Connection
	Using Only the WebLogic RMI Driver to Obtain a Database Connection

	Row Caching with the WebLogic RMI Driver
	Important Limitations for Row Caching with the WebLogic RMI Driver

	Using the WebLogic JTS Driver
	Sample Client Code for Using the JTS Driver

	Using the WebLogic Pool Driver

	Using Third-Party Drivers with WebLogic Server
	Overview of Third-Party JDBC Drivers
	Using Third-Party JDBC Drivers Installed with WebLogic Server
	Using Third-Party JDBC Drivers not Installed with WebLogic Server

	Using the Oracle Thin Driver
	Updating the Oracle 10g Driver
	Using the Oracle 9.2 Driver
	Package Change for Oracle Thin Driver 9.x and 10g
	Character Set Support with nls_charset12.zip
	Using the Oracle Thin Driver in Debug Mode

	Updating the Sybase jConnect Driver
	Installing and Using the IBM DB2 Type 2 JDBC Driver
	Connection Pool Attributes when using the IBM DB2 Type 2 JDBC Driver

	Installing and Using the SQL Server 2000 Driver for JDBC from Microsoft
	Installing the MS SQL Server JDBC Driver on a Windows System
	Installing the MS SQL Server JDBC Driver on a Unix System
	Connection Pool Attributes when using the Microsoft SQL Server Driver for JDBC

	Installing and Using the IBM Informix JDBC Driver
	Connection Pool Attributes when using the IBM Informix JDBC Driver
	Programming Notes for the IBM Informix JDBC Driver

	Getting a Connection with Your Third-Party Driver
	Using Connection Pools with a Third-Party Driver
	Creating the Connection Pool and DataSource
	Using a JNDI Lookup to Obtain the Connection

	Getting a Physical Connection from a Connection Pool
	Opening a Connection
	Closing a Connection
	Limitations for Using a Physical Connection

	Using Vendor Extensions to JDBC Interfaces
	Sample Code for Accessing Vendor Extensions to JDBC Interfaces
	Import Packages to Access Vendor Extensions
	Get a Connection
	Cast the Connection as a Vendor Connection
	Use Vendor Extensions

	Using Oracle Extensions with the Oracle Thin Driver
	Limitations When Using Oracle JDBC Extensions
	Sample Code for Accessing Oracle Extensions to JDBC Interfaces
	Programming with ARRAYs
	Import Packages to Access Oracle Extensions
	Establish the Connection
	Getting an ARRAY
	Updating ARRAYs in the Database
	Using Oracle Array Extension Methods

	Programming with STRUCTs
	Getting a STRUCT
	Using OracleStruct Extension Methods
	Getting STRUCT Attributes
	Using STRUCTs to Update Objects in the Database
	Creating Objects in the Database
	Automatic Buffering for STRUCT Attributes

	Programming with REFs
	Getting a REF
	Using OracleRef Extension Methods
	Getting a Value
	Updating REF Values
	Creating a REF in the Database

	Programming with BLOBs and CLOBs
	Query to Select BLOB Locator from the DBMS
	Declare the WebLogic Server java.sql Objects
	Begin SQL Exception Block
	Updating a CLOB Value Using a Prepared Statement

	Programming with Oracle Virtual Private Databases
	Oracle VPD with WebLogic Server 8.1SP2

	Support for Vendor Extensions Between Versions of WebLogic Server Clients and Servers
	Tables of Oracle Extension Interfaces and Supported Methods

	Using RowSets with WebLogic Server
	About RowSets
	Creating RowSets
	Working with Data in a RowSet
	Populating a RowSet
	Populating a RowSet from an Existing ResultSet
	Populating a RowSet from a DataSource and Query

	Retrieving Data from a RowSet
	Updating Data in a RowSet
	Deleting Data from a RowSet
	Inserting Data into a RowSet
	Flushing Changes to the Database

	RowSet Meta Data
	Optimistic Concurrency Policies
	VERIFY_READ_COLUMNS
	VERIFY_MODIFIED_COLUMNS
	VERIFY_SELECTED_COLUMNS
	VERIFY_NONE
	VERIFY_AUTO_VERSION_COLUMNS
	VERIFY_VERSION_COLUMNS
	Optimistic Concurrency Control Limitations
	Choosing an Optimistic Policy

	MetaData Settings for RowSet Updates
	executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys
	Setting Table and Primary Key Information Using the MetaData Interface
	Setting the Write Table

	RowSets and Transactions
	Integrating with JTA Global Transactions
	Behavior of Rowsets Using Global Transactions

	Using Local Transactions
	Behavior of Rowsets Using Local Transactions

	Performance Options
	JDBC Batching
	Oracle Batching Limitations

	Group Deletes

	RowSets and XML
	Writing a RowSet Instance as XML
	Populating a RowSet from an XML Document
	JDBC Type to XML Schema Type Mapping
	XML Schema Type to JDBC Type Mapping
	Multi-table RowSet Mapping
	Multi-Table RowSet Example

	Testing JDBC Connections and Troubleshooting
	Monitoring JDBC Connectivity
	Validating a DBMS Connection from the Command Line
	Syntax
	Arguments
	Examples

	Troubleshooting JDBC
	JDBC Connections
	Windows
	UNIX

	Codeset Support
	Other Problems with Oracle on UNIX
	Thread-related Problems on UNIX
	Closing JDBC Objects
	Abandoning JDBC Objects

	Troubleshooting Problems with Shared Libraries on UNIX
	WebLogic jDriver for Oracle
	Solaris
	HP-UX
	Incorrectly Set File Permissions
	Incorrect SHLIB_PATH

	Using Microsoft SQL with Nested Triggers
	Exceeding the Nesting Level
	Using Triggers and EJBs

	Using WebLogic Server with Oracle RAC
	Overview of Oracle Real Application Clusters
	Oracle RAC Scalability with WebLogic Server
	Oracle RAC Availability with WebLogic Server
	Oracle RAC Load Balancing with WebLogic Server
	Oracle RAC Failover with WebLogic Server

	Environment
	Hardware Requirements
	WebLogic Server Cluster
	Oracle RAC Cluster
	Shared Storage

	Software Requirements

	Configuration Considerations for Oracle
	Configuring the Listener Process for Each Oracle RAC Instance
	Disabling Remote Listeners

	Configuration Options in WebLogic Server with Oracle RAC
	Choosing a WebLogic Server Configuration for Use with Oracle RAC
	Required JDBC Drivers
	Configuration Considerations for Failover
	MultiPool-Managed Failover
	Connect-Time Failover
	Delays During Failover
	Failure Handling Walkthrough for Global Transactions

	Using MultiPools with Oracle RAC
	Attributes of a MultiPool

	Using MultiPools with Global Transactions
	Rules for Connection Pools within a MultiPool Using Global Transactions
	Required Attributes of Connection Pools within a MultiPool Using Global Transactions
	Sample config.xml Code

	Using MultiPools without Global Transactions
	Attributes of Connection Pools within a MultiPool Not Using Global Transactions
	Sample config.xml Code

	Using Connect-Time Failover with Oracle RAC
	Using Connect-Time Failover without Global Transactions
	Attributes of a Connect-Time Failover Configuration without Global Transactions
	Sample config.xml Code

	Using Connect-Time Failover with Global Transactions
	Attributes of a Connect-Time Failover Configuration with Global Transactions
	Sample config.xml Code

	XA Considerations and Limitations with Oracle 9i RAC
	Required JDBC Driver Configuration for Use with XA
	Oracle 9i RAC XA Requirements
	A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same Instance of the RAC C...
	Transaction IDs Must Be Unique Within the RAC Cluster

	Known Limitations When Using Oracle RAC with WebLogic Server
	Potential for Inconsistent Transaction Completion (Data Loss) in Some Failure Conditions
	Potential for Data Deadlocks in Some Failure Scenarios
	Potential for Transactions Completed Out of Sequence

	Known Issue Occurring After Database Server Crash

	JMS Store Recovery with Oracle RAC
	Configuring a JMS JDBC Store for Use with Oracle RAC
	Automatic Retry
	Manual Retry
	Alternative: JMS File Store

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

