
BEAWebLogic
Server™

Developing WebLogic
Server Applications

Version 8.1
Revised: September 23, 2005

Copyright
Copyright © 2003-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developing WebLogic Server Applications v

Contents

About This Document
Audience .xii

e-docs Web Site .xii

How to Print the Document .xii

Related Information .xii

Contact Us! . xiii

Documentation Conventions . xiii

1. Understanding WebLogic Server Applications and Basic
Concepts

J2EE Platform and WebLogic Server . 1-2

What Are WebLogic Server J2EE Applications and Modules? . 1-2

Web Application Modules . 1-3

Servlets . 1-3

JavaServer Pages. 1-3

More Information on Web Application Modules . 1-3

Enterprise JavaBean Modules . 1-4

EJB Overview . 1-4

EJBs and WebLogic Server . 1-4

Connector Modules . 1-5

Enterprise Applications . 1-6

WebLogic Web Services . 1-7

vi Developing WebLogic Server Applications

Client Applications . 1-8

XML Deployment Descriptors . 1-8

Automatically Generating Deployment Descriptors . 1-10

WebLogic Builder . 1-10

EJBGen . 1-10

Java-based Command-line Utilities . 1-11

Editing Deployment Descriptors . 1-11

Development Software . 1-12

Source Code Editor or IDE. 1-12

Database System and JDBC Driver . 1-12

Web Browser. 1-12

Third-Party Software . 1-13

2. Creating WebLogic Server Applications
Overview of the Split Development Directory Environment . 2-2

Source and Build Directories . 2-2

Deploying from a Split Development Directory . 2-3

Split Development Directory Ant Tasks . 2-4

Using the Split Development Directory Structure: Main Steps . 2-5

Organizing J2EE Components in a Split Development Directory 2-6

Source Directory Overview . 2-7

Enterprise Application Configuration . 2-9

Web Applications . 2-9

EJBs . 2-11

Important Notes Regarding EJB Descriptors . 2-11

Organizing Shared Classes in a Split Development Directory . 2-12

Shared Utility Classes . 2-12

Third-Party Libraries . 2-13

Developing WebLogic Server Applications vii

Class Loading for Shared Classes . 2-13

Generating a Basic build.xml File Using weblogic.BuildXMLGen 2-13

Generating Deployment Descriptors Using wlddcreate . 2-16

Compiling Applications Using wlcompile . 2-16

Using includes and excludes Properties . 2-16

wlcompile Ant Task Options . 2-17

Nested javac Options . 2-17

Deploying Applications Using wldeploy. 2-17

Packaging Applications Using wlpackage. 2-18

Archive versus Exploded Archive Directory . 2-18

wlpackage Ant Task . 2-19

Developing Multiple-EAR Projects Using the Split Development Directory. 2-19

Organizing Libraries and Classes Shared by Multiple EARs 2-19

Linking Multiple build.xml Files . 2-20

Best Practices for Developing WebLogic Server Applications. 2-22

3. Programming Topics
Compiling Java Code. 3-2

javac Compiler . 3-2

appc Compiler . 3-2

Using Ant Tasks to Create Compile Scripts . 3-4

wlcompile Ant Task . 3-5

wlappc Ant Task . 3-5

Setting the Classpath for Compiling Code . 3-7

Using Threads in WebLogic Server . 3-8

Using JavaMail with WebLogic Server Applications . 3-9

About JavaMail Configuration Files . 3-10

Configuring JavaMail for WebLogic Server . 3-10

viii Developing WebLogic Server Applications

Sending Messages with JavaMail . 3-12

Reading Messages with JavaMail . 3-13

Programming Applications for WebLogic Server Clusters . 3-15

4. WebLogic Server Application Classloading
Java Classloader Overview . 4-2

Java Classloader Hierarchy . 4-2

Loading a Class . 4-2

prefer-web-inf-classes Element . 4-3

Changing Classes in a Running Program. 4-4

WebLogic Server Application Classloader Overview . 4-4

Application Classloading . 4-4

Application Classloader Hierarchy . 4-5

Custom Module Classloader Hierarchies. 4-7

Declaring the Classloader Hierarchy . 4-8

User-Defined Classloader Restrictions . 4-10

Individual EJB Classloader for Implementation Classes . 4-12

Application Classloading and Pass-by-Value or Reference 4-14

Resolving Class References Between Modules and Applications 4-14

About Resource Adapter Classes . 4-15

Packaging Shared Utility Classes . 4-15

Manifest Class-Path . 4-15

A. Enterprise Application Deployment Descriptor Elements
application.xml Deployment Descriptor Elements . A-2

application . A-2

icon . A-3

module . A-4

Developing WebLogic Server Applications ix

security-role. .A-6

weblogic-application.xml Deployment Descriptor Elements .A-6

weblogic-application .A-7

ejb .A-10

xml. .A-13

jdbc-connection-pool. .A-15

security .A-27

application-param .A-28

classloader-structure .A-28

listener .A-28

startup .A-29

shutdown .A-29

B. Client Application Deployment Descriptor Elements
application-client.xml Deployment Descriptor Elements . B-2

application-client . B-2

WebLogic Run-time Client Application Deployment Descriptor B-5

application-client . B-6

x Developing WebLogic Server Applications

Developing WebLogic Server Applications xi

About This Document

This document introduces the BEA WebLogic Server™ application development environment.
It describes how to establish a development environment and how to package applications for
deployment on the WebLogic Server platform.

The document is organized as follows:

Chapter 1, “Understanding WebLogic Server Applications and Basic Concepts,” describes
modules of WebLogic Server applications.

Chapter 2, “Creating WebLogic Server Applications,” introduces the split development
directory structure and outlines the steps involved in creating Enterprise applications.

Chapter 3, “Programming Topics,” covers general WebLogic Server application
programming issues, such as logging messages and using threads.

Chapter 4, “WebLogic Server Application Classloading,” provides an overview of Java
classloaders, followed by details about WebLogic Server application classloading.

Appendix A, “Enterprise Application Deployment Descriptor Elements,” is a reference for
the standard J2EE Enterprise application deployment descriptor, application.xml and
the WebLogic-specific application deployment descriptor weblogic-application.xml.

Appendix B, “Client Application Deployment Descriptor Elements,” is a reference for the
standard J2EE Client application deployment descriptor, application-client.xml, and
the WebLogic-specific client application deployment descriptor.

About Th is Document

xii Developing WebLogic Server Applications

Audience
This document is written for application developers who want to build WebLogic Server
e-commerce applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented programming
techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and application
assemblers. Programmers and designers create modules that implement the business and
presentation logic for the application. Application assemblers assemble the modules into
applications that are ready to deploy on WebLogic Server.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information
The BEA corporate Web site provides all documentation for WebLogic Server. The following
WebLogic Server documents contain information that is relevant to creating WebLogic Server
application modules:

Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81/ejb/index.html

Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs81/servlet/index.html

http://www.adobe.com
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/servlet/index.html

Developing WebLogic Server Applications xiii

Programming WebLogic JSP at http://e-docs.bea.com/wls/docs81/jsp/index.html

Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81/webapp/index.html

Programming WebLogic JDBC at http://e-docs.bea.com/wls/docs81/jdbc/index.html

Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81/webServices/index.html

Programming WebLogic J2EE Connectors at
http://e-docs.bea.com/wls/docs81/jconnector/index.html

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at http://java.sun.com/products/j2ee/.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

http://e-docs.bea.com/wls/docs81/jsp/index.html
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/jdbc/index.html
http://e-docs.bea.com/wls/docs81/webServices/index.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com
http://www.bea.com

About Th is Document

xiv Developing WebLogic Server Applications

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

samples/domains/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.Deployer [list|deploy|undeploy|update]
 password {application} {source}

Developing WebLogic Server Applications xv

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

About Th is Document

xvi Developing WebLogic Server Applications

Developing WebLogic Server Applications 1-1

C H A P T E R 1

Understanding WebLogic Server
Applications and Basic Concepts

The following sections provide an overview of WebLogic Server applications and basic concepts.

“J2EE Platform and WebLogic Server” on page 1-2

“What Are WebLogic Server J2EE Applications and Modules?” on page 1-2

“Web Application Modules” on page 1-3

“Enterprise JavaBean Modules” on page 1-4

“Connector Modules” on page 1-5

“Enterprise Applications” on page 1-6

“WebLogic Web Services” on page 1-7

“Client Applications” on page 1-8

“XML Deployment Descriptors” on page 1-8

“Development Software” on page 1-12

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-2 Developing WebLogic Server Applications

J2EE Platform and WebLogic Server
WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.3
technologies (http://java.sun.com/j2ee/sdk_1.3/index.html). J2EE is the standard
platform for developing multi-tier Enterprise applications based on the Java programming
language. The technologies that make up J2EE were developed collaboratively by Sun
Microsystems and other software vendors, including BEA Systems.

WebLogic Server J2EE applications are based on standardized, modular components. WebLogic
Server provides a complete set of services for those modules and handles many details of
application behavior automatically, without requiring programming.

J2EE defines module behaviors and packaging in a generic, portable way, postponing run-time
configuration until the module is actually deployed on an application server.

J2EE includes deployment specifications for Web applications, EJB modules, Enterprise
applications, client applications, and connectors. J2EE does not specify how an application is
deployed on the target server—only how a standard module or application is packaged.

For each module type, the specifications define the files required and their location in the
directory structure.

Note: Because J2EE is backward compatible, you can still run J2EE 1.3 applications on
WebLogic Server versions 7.x and later.

Java is platform independent, so you can edit and compile code on any platform, and test your
applications on development WebLogic Servers running on other platforms. For example, it is
common to develop WebLogic Server applications on a PC running Windows or Linux,
regardless of the platform where the application is ultimately deployed.

For more information, refer to the J2EE 1.3 specification at:
http://java.sun.com/j2ee/download.html#platformspec

What Are WebLogic Server J2EE Applications and Modules?
A BEA WebLogic Server™ J2EE application consists of one of the following modules or
applications running on WebLogic Server:

Web application modules—HTML pages, servlets, JavaServer Pages, and related files. See
“Web Application Modules” on page 1-3.

Enterprise Java Beans (EJB) modules—entity beans, session beans, and message-driven
beans. See “Enterprise JavaBean Modules” on page 1-4.

http://java.sun.com/j2ee/download.html#platformspec

Web Appl i ca t ion Modules

Developing WebLogic Server Applications 1-3

Connector modules—resource adapters. See “Connector Modules” on page 1-5.

Enterprise applications—Web application modules, EJB modules, and resource adapters
packaged into an application. See “Enterprise Applications” on page 1-6.

Web Application Modules
A Web application on WebLogic Server includes the following files:

At least one servlet or JSP, along with any helper classes.

A web.xml deployment descriptor, a J2EE standard XML document that describes the
contents of a WAR file.

Optionally, a weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web application can also include HTML and XML pages with supporting files such as
images and multimedia files.

Servlets
Servlets are Java classes that execute in WebLogic Server, accept a request from a client, process
it, and optionally return a response to the client. An HttpServlet is most often used to generate
dynamic Web pages in response to Web browser requests.

JavaServer Pages
JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSPs can call custom Java classes, known as tag libraries, using
HTML-like tags. The appc compiler compiles JSPs and translates them into servlets. WebLogic
Server automatically compiles JSPs if the servlet class file is not present or is older than the JSP
source file. See “Using Ant Tasks to Create Compile Scripts” on page 3-4.

You can also precompile JSPs and package the servlet class in a Web archive (WAR) file to avoid
compiling in the server. Servlets and JSPs may require additional helper classes that must also be
deployed with the Web application.

More Information on Web Application Modules
See:

“Best Practices for Developing WebLogic Server Applications” on page 2-22.

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-4 Developing WebLogic Server Applications

“Split Development Directory Ant Tasks” on page 2-4.

Developing Web Applications for WebLogic Server

Programming WebLogic Server HTTP Servlets

Programming WebLogic JSP

Programming JSP Tag Extensions

Enterprise JavaBean Modules
Enterprise JavaBeans (EJBs) beans are server-side Java modules that implement a business task
or entity and are written according to the EJB specification. There are three types of EJBs: session
beans, entity beans, and message-driven beans.

EJB Overview
Session beans execute a particular business task on behalf of a single client during a single
session. Session beans can be stateful or stateless, but are not persistent; when a client finishes
with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database system.
Persistence—loading and saving data—can be bean-managed or container-managed. More than
just an in-memory representation of a data object, entity beans have methods that model the
behaviors of the business objects they represent. Entity beans can be accessed concurrently by
multiple clients and they are persistent by definition.

The container creates an instance of the message-driven bean or it assigns one from a pool to
process the message. When the message is received in the JMS Destination, the message-driven
bean assigns an instance of itself from a pool to process the message. Message-driven beans are
not associated with any client. They simply handle messages as they arrive.

EJBs and WebLogic Server
J2EE cleanly separates the development and deployment roles to ensure that modules are portable
between EJB servers that support the EJB specification. Deploying an EJB in WebLogic Server
requires running the WebLogic Server appc compiler to generate classes that enforce the EJB
security, transaction, and life cycle policies. See “Compiling Java Code” on page 3-2.

The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise beans
packaged in an EJB application. It defines the beans’ types, names, and the names of their home

http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/servlet/index.html
http://e-docs.bea.com/wls/docs81/jsp/index.html
http://e-docs.bea.com/wls/docs81/taglib/index.html

Connec to r Modules

Developing WebLogic Server Applications 1-5

and remote interfaces and implementation classes. The ejb-jar.xml deployment descriptor
defines security roles for the beans, and transactional behaviors for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment information. A
weblogic-cmp-rdbms-jar.xml deployment descriptor unique to container-managed entity
beans maps a bean to tables in a database. The weblogic-ejb-jar.xml deployment descriptor
supplies additional information specific to the WebLogic Server environment, such as JNDI bind
names, clustering, and cache configuration.

For more information on Enterprise JavaBeans, see Programming WebLogic Enterprise
JavaBeans.

Connector Modules
Connectors (also known as resource adapters) contain the Java, and if necessary, the native
modules required to interact with an Enterprise Information System (EIS). A resource adapter
deployed to the WebLogic Server environment enables J2EE applications to access a remote EIS.
WebLogic Server application developers can use HTTP servlets, JavaServer Pages (JSPs),
Enterprise Java Beans (EJBs), and other APIs to develop integrated applications that use the EIS
data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure WebLogic
Server-specific deployment descriptor, weblogic-ra.xml file, and add this to the deployment
directory. Resource adapters can be deployed to WebLogic Server as stand-alone modules or as
part of an Enterprise application. See “Enterprise Applications” on page 1-6.

For more information on connectors, see Programming WebLogic J2EE Connectors.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-6 Developing WebLogic Server Applications

Enterprise Applications
An Enterprise application consists of one or more Web application modules, EJB modules, and
resource adapters. It might also include a client application. An Enterprise application is defined
by an application.xml file, which is the standard J2EE deployment descriptor for Enterprise
applications. If the application includes WebLogic Server-specific extensions, the application is
further defined by a weblogic-application.xml file. Enterprise Applications that include a
client module will also have a client-application.xml deployment descriptor and a
WebLogic run-time client application deployment descriptor. See Appendix A, “Enterprise
Application Deployment Descriptor Elements,” and Appendix B, “Client Application
Deployment Descriptor Elements.”

For both production and development purposes, BEA recommends that you package and deploy
even stand-alone Web applicatons, EJBs, and resource adapters as part of an Enterprise
application. Doing so allows you to take advantage of BEA's new split development directory
structure, which greatly faciliates application development. See “Overview of the Split
Development Directory Environment” on page 2-2.

An Enterprise application consists of Web application modules, EJB modules, and resource
adapters. It can be packaged as follows:

For development purposes, BEA recommends the WebLogic split development directory
structure. Rather than having a single archived EAR file or an exploded EAR directory
structure, the split development directory has two parallel directories that separate source
files and output files. This directory structure is optimized for development on a single
WebLogic Server instance. See “Overview of the Split Development Directory
Environment” on page 2-2. BEA provides the wlpackage Ant task, which allows you to
create an EAR without having to use the JAR utility; this is exclusively for the split
development directory structure. See “Packaging Applications Using wlpackage” on
page 2-18.

For development purposes, BEA further recommends that you package stand-alone Web
applications and Enterprise JavaBeans (EJBs) as part of an Enterprise application, so that
you can take advantage of the split development directory structure. See “Organizing J2EE
Components in a Split Development Directory” on page 2-6.

For production purposes, BEA recommends the exploded (unarchived) directory format.
This format enables you to update files without having to redeploy the application. To
update an archived file, you must unarchive the file, update it, then rearchive and redeploy
it.

WebLog ic Web Serv ices

Developing WebLogic Server Applications 1-7

You can choose to package your application as a JAR archived file using the jar utility
with an .ear extension. Archived files are easier to distribute and take up less space. An
EAR file contains all of the JAR, WAR, and RAR module archive files for an application
and an XML descriptor that describes the bundled modules. See “Organizing J2EE
Components in a Split Development Directory” on page 2-6.

The META-INF/application.xml deployment descriptor contains an element for each Web
application, EJB, and connector module, as well as additional elements to describe security roles
and application resources such as databases. See Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

WebLogic Web Services
Web services can be shared by and used as modules of distributed Web-based applications. They
commonly interface with existing back-end applications, such as customer relationship
management systems, order-processing systems, and so on. Web services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
transported using standard Web protocols, such as HTTP, thus making them easily accessible by
any user on the Web. See Programming WebLogic Web Services.

A Web service consists of the following modules:

A Web Service implementation hosted by a server on the Web. WebLogic Web Services
are hosted by WebLogic Server. They are implemented using standard J2EE modules, such
as Enterprise Java Beans, or with a Java class. They are packaged as standard J2EE
Enterprise applications that contain a Web Application (which contains the Web Service
deployment descriptor file and the class files for Java class-implemented Web Services)
and the EJB JAR file for EJB-implemented Web Services.

A standard for transmitting data and Web service invocation calls between the Web service
and the user of the Web service. WebLogic Web Services use Simple Object Access
Protocol (SOAP) 1.1 as the message format and HTTP as the connection protocol.

A standard for describing the Web service to clients so they can invoke it. WebLogic Web
Services use Web Services Description Language (WSDL) 1.1, an XML-based
specification, to describe themselves.

A standard for clients to invoke Web services (JAX-RPC).

A standard for finding and registering the Web service (UDDI).

http://e-docs.bea.com/wls/docs81/webserv/index.html

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-8 Developing WebLogic Server Applications

Client Applications
Java clients that access WebLogic Server application modules range from simple command line
utilities that use standard I/O to highly interactive GUI applications built using the Java
Swing/AWT classes. Java clients access WebLogic Server modules indirectly through HTTP
requests or RMI requests. The modules execute requests in WebLogic Server, not in the client.

In previous versions of WebLogic Server, a Java client required the full WebLogic Server JAR
on the client machine. WebLogic Server 8.1 supports a true J2EE application client, referred to
as the thin client. A small footprint standard JAR and a JMS JAR—wlclient.jar and
wljmsclient.jar respectively—are provided in the /server/lib subdirectory of the
WebLogic Server installation directory. Each JAR file is about 400 KB.

A J2EE application client runs on a client machine and can provide a richer user interface than
can be provided by a markup language. Application clients directly access Enterprise JavaBeans
running in the business tier, and may, as appropriate communicate through HTTP with servlets
running in the Web tier. Although a J2EE application client is a Java application, it differs from
a stand-alone Java application client because it is a J2EE module, hence it offers the advantages
of portability to other J2EE-compliant servers, and can access J2EE services. For more
information about the thin client, see “Developing a J2EE Application Client (Thin Client)” in
Programming WebLogic RMI over IIOP.

For more information about all client types supported by WebLogic Server, see “Overview of
RMI-IIOP Programming Models” in Programming WebLogic RMI over IIOP.

XML Deployment Descriptors
Modules and applications have deployment descriptors—XML documents—that describe the
contents of the directory or JAR file. Deployment descriptors are text documents formatted with
XML tags. The J2EE specifications define standard, portable deployment descriptors for J2EE
modules and applications. BEA defines additional WebLogic-specific deployment descriptors
for deploying a module or application in the WebLogic Server environment.

http://e-docs.bea.com/wls/docs81/rmi_iiop/rmiiiop2.html#DevelopingThinClient
http://e-docs.bea.com/wls/docs81/rmi_iiop/index.html
http://e-docs.bea.com/wls/docs81/rmi_iiop/rmiiiop2.html#ProgrammingModels
http://e-docs.bea.com/wls/docs81/rmi_iiop/rmiiiop2.html#ProgrammingModels
http://e-docs.bea.com/wls/docs81/rmi_iiop/index.html

XML Deplo yment Descr ip to rs

Developing WebLogic Server Applications 1-9

Table 1-1 lists the types of modules and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or
Application

Scope Deployment Descriptors

Web Application J2EE web.xml

See “web.xml Deployment Descriptor Elements” in
Developing Web Applications for WebLogic Server.

WebLogic weblogic.xml

See “weblogic.xml Deployment Descriptor Elements” in
Developing Web Applications for WebLogic Server.

Enterprise Bean J2EE ejb-jar.xml

See the Sun Microsystems EJB 2.0 DTD.

WebLogic weblogic-ejb-jar.xml

See “The weblogic-ejb-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.
weblogic-cmp-rdbms-jar.xml

See “The weblogic-cmp-rdbms-jar.xml Deployment
Descriptor” in Programming WebLogic Enterprise JavaBeans.

Resource Adapter J2EE ra.xml

See the Sun Microsystems Connector 1.0 DTD.

WebLogic weblogic-ra.xml

See “weblogic-ra.xml Deployment Descriptor Elements” in
Programming WebLogic Server J2EE Connectors.

Enterprise Application J2EE application.xml

See “application.xml Deployment Descriptor Elements” on
page A-2.

WebLogic weblogic-application.xml

See “weblogic-application.xml Deployment Descriptor
Elements” on page A-6.

http://e-docs.bea.com/wls/docs81/webapp/web_xml.html
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://java.sun.com/products/ejb/docs.html
http://e-docs.bea.com/wls/docs81/ejb/DDreference-ejb-jar.html
http://e-docs.bea.com/wls/docs81/ejb/DDreference-ejb-jar.html
http://e-docs.bea.com/wls/docs81/ejb/DDreference-cmp-jar.html
http://e-docs.bea.com/wls/docs81/ejb/DDreference-cmp-jar.html
http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs81/jconnector/dtdappen.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-10 Developing WebLogic Server Applications

When you package a module or application, you create a directory to hold the deployment
descriptors—WEB-INF or META-INF—and then create the XML deployment descriptors in that
directory. You can use a variety of tools to do this. See “Editing Deployment Descriptors” on
page 1-11.

Automatically Generating Deployment Descriptors
WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

WebLogic Builder
WebLogic Builder is a WebLogic Server tool for generating and editing deployment descriptors
for WebLogic Server applications. It can also deploy WebLogic Server applications to single
servers. See “Deployment Tools Reference” in Deploying WebLogic Server Applications.

EJBGen
EJBGen is an Enterprise JavaBeans 2.0 code generator or command-line tool that uses Javadoc
markup to generate EJB deployment descriptor files. You annotate your Bean class file with
Javadoc tags and then use EJBGen to generate the Remote and Home classes and the deployment
descriptor files for an EJB application, reducing to a single file you need to edit and maintain your
EJB .java and descriptor files. See “EJBGen Reference” in Programming WebLogic Enterprise
JavaBeans.

Client Application J2EE application-client.xml

See “application-client.xml Deployment Descriptor Elements”
on page B-2.

WebLogic client-application.runtime.xml

See “WebLogic Run-time Client Application Deployment
Descriptor” on page B-5.

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or
Application

Scope Deployment Descriptors

http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html

XML Deplo yment Descr ip to rs

Developing WebLogic Server Applications 1-11

Java-based Command-line Utilities
WebLogic Server includes a set of Java-based command-line utilities that automatically generate
both standard J2EE and WebLogic-specific deployment descriptors for Web applications and
Enterprise JavaBeans (version 2.0).

These command-line utilities examine the classes you have assembled in a staging directory and
build the appropriate deployment descriptors based on the servlet classes, EJB classes, and so on.
These utilities include:

java weblogic.marathon.ddinit.EarInit—automatically generates the
deployment descriptors for Enterprise applications.

java weblogic.marathon.ddinit.WebInit—automatically generates the
deployment descriptors for Web applications.

java weblogic.marathon.ddinit.EJBInit—automatically generates the
deployment descriptors for Enterprise JavaBeans 2.0. If ejb-jar.xml exists, DDInit uses
its deployment information to generate weblogic-ejb-jar.xml.

For an example of DDInit, assume that you have created a directory called c:\stage that
contains the WEB-INF directory, the JSP files, and other objects that make up a Web application
but you have not yet created the web.xml and weblogic.xml deployment descriptors. To
automatically generate them, execute the following command:

java weblogic.marathon.ddInit.WebInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and places them
in the WEB-INF directory, which DDInit will create if it does not already exist.

Editing Deployment Descriptors
BEA offers a variety of tools for editing the deployment descriptors of WebLogic Server
applications and modules. Using these tools, you can update existing elements in, add new
elements to, and delete existing elements from deployment descriptors. These tools include:

WebLogic Builder—WebLogic Server tool for generating and editing deployment
descriptors for WebLogic Server applications. It can also deploy WebLogic Server
applications to single servers. See “Deployment Tools Reference” in Deploying WebLogic
Server Applications.

XML Editor with DTD validation—Such as BEA XML Editor on dev2dev or XMLSpy.
(An evaluation copy of XMLSpy is bundled with this version of WebLogic Server.) See
BEA dev2dev Online at http://dev2dev.bea.com/index.jsp.

http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://dev2dev.bea.com/index.jsp
http://dev2dev.bea.com/index.jsp

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-12 Developing WebLogic Server Applications

Administration Console Descriptor tab—This release of WebLogic Server has deprecated
the Deployment Descriptor Editor. A new Administration Console Descriptor tab in the has
replaced it. Use the Descriptor tab to view, modify, and persist deployment descriptor
elements to the descriptor file within WebLogic Server applications in the same manner
that they were persisted using the Deployment Descriptor Editor. However, these descriptor
element changes take place dynamically at runtime without requiring the resource adapter
to be redeployed. The descriptor elements in the Descriptor tab include only those
descriptor elements that can be dynamically changed at runtime. See the Administration
Console Online Help.

Development Software
This section reviews required and optional tools for developing WebLogic Server applications.

Source Code Editor or IDE
You need a text editor to edit Java source files, configuration files, HTML or XML pages, and
JavaServer Pages. An editor that gracefully handles Windows and UNIX line-ending differences
is preferred, but there are no other special requirements for your editor. You can edit HTML or
XML pages and JavaServer Pages with a plain text editor, or use a Web page editor such as
DreamWeaver. For XML pages, you can also use BEA XML Editor or XMLSpy (bundled as part
of the WebLogic Server package). See BEA dev2dev Online at http://dev2dev.bea.com/index.jsp.

Database System and JDBC Driver
Nearly all WebLogic Server applications require a database system. You can use any DBMS that
you can access with a standard JDBC driver, but services such as WebLogic Java Message
Service (JMS) require a supported JDBC driver for Oracle, Sybase, Informix, Microsoft SQL
Server, IBM DB2, or PointBase. Refer to Platform Support to find out about supported database
systems and JDBC drivers.

Web Browser
Most J2EE applications are designed to be executed by Web browser clients. WebLogic Server
supports the HTTP 1.1 specification and is tested with current versions of the Netscape
Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions you will
support. In your test plans, include testing plans for each supported version. Be explicit about
version numbers and browser configurations. Will your application support Secure Socket Layers

http://e-docs.bea.com/wls/docs81/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/index.html
http://dev2dev.bea.com/index.jsp
http://dev2dev.bea.com/index.jsp
http://e-docs.bea.com/platform/suppconfigs/index.html

Deve lopment So f tware

Developing WebLogic Server Applications 1-13

(SSL) protocol? Test alternative security settings in the browser so that you can tell your users
what choices you support.

If your application uses applets, it is especially important to test browser configurations you want
to support because of differences in the JVMs embedded in various browsers. One solution is to
require users to install the Java plug-in from Sun so that everyone has the same Java run-time
version.

Third-Party Software
You can use third-party software products to enhance your WebLogic Server development
environment. See BEA WebLogic Developer Tools Resources, which provides developer tools
information for products that support the BEA application servers.

To download some of these tools, see BEA WebLogic Server Downloads at
http://commerce.bea.com/downloads/weblogic_server_tools.jsp.

Note: Check with the software vendor to verify software compatibility with your platform and
WebLogic Server version.

http://www.bea.com/products/weblogic/tools.shtml
http://commerce.bea.com/downloads/weblogic_server_tools.jsp

Unders tanding WebLog ic Serve r App l i cat ions and Bas ic Concepts

1-14 Developing WebLogic Server Applications

Developing WebLogic Server Applications 2-1

C H A P T E R 2

Creating WebLogic Server Applications

The following sections describe the steps for creating WebLogic Server J2EE applications using
the WebLogic split development directory environment:

“Overview of the Split Development Directory Environment” on page 2-2

“Using the Split Development Directory Structure: Main Steps” on page 2-5

“Organizing J2EE Components in a Split Development Directory” on page 2-6

“Organizing Shared Classes in a Split Development Directory” on page 2-12

“Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 2-13

“Generating Deployment Descriptors Using wlddcreate” on page 2-16

“Compiling Applications Using wlcompile” on page 2-16

“Deploying Applications Using wldeploy” on page 2-17

“Packaging Applications Using wlpackage” on page 2-18

“Developing Multiple-EAR Projects Using the Split Development Directory” on page 2-19

“Best Practices for Developing WebLogic Server Applications” on page 2-22

Creat ing WebLog ic Se rve r App l i cat ions

2-2 Developing WebLogic Server Applications

Overview of the Split Development Directory Environment
The WebLogic split development directory environment consists of a directory layout and
associated Ant tasks that help you repeatedly build, change, and deploy J2EE applications.
Compared to other development frameworks, the WebLogic split development directory
provides these benefits:

Fast development and deployment. By minimizing unnecessary file copying, the split
development directory Ant tasks help you recompile and redeploy applications quickly
without first generating a deployable archive file or exploded archive directory.

Simplified build scripts. The BEA-provided Ant tasks automatically determine which
J2EE modules and classes you are creating, and build components in the correct order to
support common classpath dependencies. In many cases, your project build script can
simply identify the source and build directories and allow Ant tasks to perform their
default behaviors.

Easy integration with source control systems. The split development directory provides a
clean separation between source files and generated files. This helps you maintain only
editable files in your source control system. You can also clean the build by deleting the
entire build directory; build files are easily replaced by rebuilding the project.

Source and Build Directories
The source and build directories form the basis of the split development directory environment.
The source directory contains all editable files for your project—Java source files, editable
descriptor files, JSPs, static content, and so forth. You create the source directory for an
application by following the directory structure guidelines described in “Organizing J2EE
Components in a Split Development Directory” on page 2-6.

The top level of the source directory always represents an Enterprise Application (.ear file),
even if you are developing only a single J2EE module. Subdirectories beneath the top level source
directory contain:

Enterprise Application Modules (EJBs and Web Applications)

Note: The split development directory structure does not provide support for developing
new Resource Adapter components.

Descriptor files for the Enterprise Application (application.xml and
weblogic-application.xml)

Utility classes shared by modules of the application (for example, exceptions, constants)

Overv iew o f the Sp l i t Deve lopment D i rec to r y Env i ronment

Developing WebLogic Server Applications 2-3

Libraries (compiled.jar files, including third-party libraries) used by modules of the
application

The build directory contents are generated automatically when you run the wlcompile ant task
against a valid source directory. The wlcompile task recognizes EJB, Web Application, and
shared library and class directories in the source directory, and builds those components in an
order that supports common class path requirements. Additional Ant tasks can be used to build
Web Services or generate deployment descriptor files from annotated EJB code.

Figure 2-1 Source and Build Directories

The build directory contains only those files generated during the build process. The combination
of files in the source and build directories form a deployable J2EE application.

The build and source directory contents can be place in any directory of your choice. However,
for ease of use, the directories are commonly placed in directories named source and build,
within a single project directory (for example, \myproject\build and \myproject\source).

Deploying from a Split Development Directory
All WebLogic Server deployment tools (weblogic.Deployer, wldeploy, and the
Administration Console) support direct deployment from a split development directory. You
specify only the build directory when deploying the application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source directory for
deploying the application. If a required resource is not available in the source directory,

Creat ing WebLog ic Se rve r App l i cat ions

2-4 Developing WebLogic Server Applications

WebLogic Server then looks in the application’s build directory for that resource. For example,
if a deployment descriptor is generated during the build process, rather than stored with source
code as an editable file, WebLogic Server obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining the
.beabuild.txt file that resides in the top level of the application’s build directory. If you ever
move or modify the source directory location, edit the .beabuild.txt file to identify the new
source directory name.

“Deploying Applications Using wldeploy” on page 2-17 describes the wldeploy Ant task that
you can use to automate deployment from the split directory environment.

Figure 2-2, “Split Directory Deployment,” on page 2-4 shows a typical deployment process. The
process is initiated by specifying the build directory with a WebLogic Server tool. In the figure,
all compiled classes and generated deployment descriptors are discovered in the build directory,
but other application resources (such as static files and editable deployment descriptors) are
missing. WebLogic Server uses the hidden .beabuild.txt file to locate the application’s source
directory, where it finds the required resources.

Figure 2-2 Split Directory Deployment

Split Development Directory Ant Tasks
BEA provides a collection of Ant tasks designed to help you develop applications using the split
development directory environment. Each Ant task uses the source, build, or both directories to
perform common development tasks:

Us ing the Sp l i t Deve lopment D i re c to r y S t ruc ture : Ma in S teps

Developing WebLogic Server Applications 2-5

wlddcreate—Generates basic deployment descriptor files for J2EE components in the
source directory. See “Generating Deployment Descriptors Using wlddcreate” on
page 2-16.

wlcompile—This Ant task compiles the contents of the source directory into
subdirectories of the build directory. wlcompile compiles Java classes and also processes
annotated .ejb files into deployment descriptors, as described in “Compiling Applications
Using wlcompile” on page 2-16.

wlappc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See “appc Compiler” on page 3-2.

wldeploy—This Ant task deploys any format of J2EE applications (exploded or archived)
to WebLogic Server. To deploy directly from the split development directory environment,
you specify the build directory of your application. See “Deployment Tools Reference” in
Deploying WebLogic Server Applications.

wlpackage—This Ant task uses the contents of both the source and build directories to
generate an EAR file or exploded EAR directory that you can give to others for
deployment.

Using the Split Development Directory Structure: Main Steps
The following steps illustrate how you use the split development directory structure to build and
deploy a WebLogic Server application.

1. Create the main EAR source directory for your project. When using the split development
directory environment, you must develop Web Applications and EJBs as part of an Enterprise
Application, even if you do not intend to develop multiple J2EE modules. See “Organizing
J2EE Components in a Split Development Directory” on page 2-6.

2. Add one or more subdirectories to the EAR directory for storing the source for Web
Applications, EJB components, or shared utility classes. See “Organizing J2EE
Components in a Split Development Directory” on page 2-6 and “Organizing Shared
Classes in a Split Development Directory” on page 2-12.

3. Store all of your editable files (source code, static content, editable deployment descriptors)
for modules in subdirectories of the EAR directory. Add the entire contents of the source
directory to your source control system, if applicable.

http://e-docs.bea.com/wls/docs81/deployment/tools.html
http://e-docs.bea.com/wls/docs81/deployment/index.html

Creat ing WebLog ic Se rve r App l i cat ions

2-6 Developing WebLogic Server Applications

4. Set your WebLogic Server environment by executing either the setWLSEnv.cmd
(Windows) or setWLSEnv.sh (UNIX) script. The scripts are located in the
WL_HOME\server\bin\ directory, where WL_HOME is the top-level directory in which
WebLogic Server is installed.

5. Use the weblogic.BuildXMLGen utility to generate a default build.xml file for use with
your project. Edit the default property values as needed for your environment. See
“Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 2-13.

6. Use the default targets in the build.xml file to build, deploy, and package your application.
See “Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 2-13 for a
list of default targets.

Organizing J2EE Components in a Split Development Directory
The split development directory structure requires each project to be staged as a J2EE Enterprise
Application. BEA therefore recommends that you stage even stand-alone Web applications and
EJBs as modules of an Enterprise application, to benefit from the split directory Ant tasks. This
practice also allows you to easily add or remove modules at a later date, because the application
is already organized as an EAR.

Note: If your project requires multiple EARs, see also “Developing Multiple-EAR Projects
Using the Split Development Directory” on page 2-19.

The following sections describe the basic conventions for staging the following module types in
the split development directory structure:

“Enterprise Application Configuration” on page 2-9

“Web Applications” on page 2-9

“EJBs” on page 2-11

“Shared Utility Classes” on page 2-12

“Third-Party Libraries” on page 2-13

Note: WebLogic Server does not provide additional support for developing J2EE Connectors
using the split development directory.

The directory examples are taken from the splitdir sample application installed in
WL_HOME\samples\server\examples\src\examples\splitdir, where WL_HOME is your
WebLogic Server installation directory.

Organi z ing J2EE Components in a Sp l i t Deve lopment D i rec to ry

Developing WebLogic Server Applications 2-7

Source Directory Overview
The following figure summarizes the source directory contents of an Enterprise Application
having a Web Application, EJB, shared utility classes, and third-party libraries. The sections that
follow provide more details about how individual parts of the enterprise source directory are
organized.

Creat ing WebLog ic Se rve r App l i cat ions

2-8 Developing WebLogic Server Applications

Figure 2-3 Overview of Enterprise Application Source Directory

Organi z ing J2EE Components in a Sp l i t Deve lopment D i rec to ry

Developing WebLogic Server Applications 2-9

Enterprise Application Configuration
The top level source directory for a split development directory project represents an Enterprise
Application. The following figure shows the minimal files and directories required in this
directory.

Figure 2-4 Enterprise Application Source Directory

The Enterprise Application directory will also have one or more subdirectories to hold a Web
Application, EJB, utility class, and/or third-party Jar file, as described in the following sections.

Notes: You can automatically generate Enterprise Application descriptors using the ddinit
Java utility or wlddcreate Ant task. After adding J2EE module subdirectories to the
EAR directory, execute the command:

java weblogic.marathon.ddinit.EarInit \myEAR

For more information on ddinit, see “Using the WebLogic Server Java Utilities.”

Web Applications
Web Applications use the basic source directory layout shown in the figure below.

http://e-docs.bea.com/wls/docs81/admin_ref/utils.html#1170077

Creat ing WebLog ic Se rve r App l i cat ions

2-10 Developing WebLogic Server Applications

Figure 2-5 Web Application Source and Build Directories

The key directories and files for the Web Application are:

helloWebApp\ —The top level of the Web Application module can contain JSP files and
static content such as HTML files and graphics used in the application. You can also store
static files in any named subdirectory of the Web Application (for example,
helloWebApp\graphics or helloWebApp\static.)

helloWebApp\WEB-INF\ —Store the Web Application’s editable deployment descriptor
files (web.xml and weblogic.xml) in the WEB-INF subdirectory.

helloWebApp\WEB-INF\src —Store Java source files for Servlets in package
subdirectories under WEB-INF\src.

When you build a Web Application, the appc Ant task and jspc compiler compile JSPs into
package subdirectories under helloWebApp\WEB-INF\classes\jsp_servlet in the build
directory. Editable deployment descriptors are not copied during the build process.

Organi z ing J2EE Components in a Sp l i t Deve lopment D i rec to ry

Developing WebLogic Server Applications 2-11

EJBs
EJBs use the source directory layout shown in the figure below.

Figure 2-6 EJB Source and Build Directories

The key directories and files for an EJB are:

helloEJB\ —Store all EJB source files under package directories of the EJB module
directory. The source files can be either .java source files, or annotated .ejb files.

helloEJB\META-INF\ —Store editable EJB deployment descriptors (ejb-jar.xml and
weblogic-ejb-jar.xml) in the META-INF subdirectory of the EJB module directory. The
helloWorldEar sample does not include a helloEJB\META-INF subdirectory, because its
deployment descriptors files are generated from annotations in the .ejb source files. See
“Important Notes Regarding EJB Descriptors” on page 2-11.

During the build process, EJB classes are compiled into package subdirectories of the helloEJB
module in the build directory. If you use annotated .ejb source files, the build process also
generates the EJB deployment descriptors and stores them in the helloEJB\META-INF
subdirectory of the build directory.

Important Notes Regarding EJB Descriptors
EJB deployment descriptors should be included in the source META-INF directory and treated as
source code only if those descriptor files are created from scratch or are edited manually.

Creat ing WebLog ic Se rve r App l i cat ions

2-12 Developing WebLogic Server Applications

Descriptor files that are generated from annotated .ejb files should appear only in the build
directory, and they can be deleted and regenerated by building the application.

For a given EJB component, the EJB source directory should contain either:

EJB source code in .java source files and editable deployment descriptors in META-INF

or:

EJB source code with descriptor annotations in .ejb source files, and no editable
descriptors in META-INF.

In other words, do not provide both annotated .ejb source files and editable descriptor files for
the same EJB component.

Organizing Shared Classes in a Split Development Directory
The WebLogic split development directory also helps you store shared utility classes and libraries
that are required by modules in your Enterprise Application. The following sections describe the
directory layout and classloading behavior for shared utility classes and third-party JAR files.

Shared Utility Classes
Enterprise Applications frequently use Java utility classes that are shared among application
modules. Java utility classes differ from third-party JARs in that the source files are part of the
application and must be compiled. Java utility classes are typically libraries used by application
modules such as EJBs or Web applications.

Figure 2-7 Java Utility Class Directory

Place the source for Java utility classes in a named subdirectory of the top-level Enterprise
Application directory. Beneath the named subdirectory, use standard package subdirectory
conventions.

Gene ra t ing a Bas ic bu i ld . xml F i l e Us ing web log ic .Bu i ldXMLGen

Developing WebLogic Server Applications 2-13

During the build process, the wlcompile Ant task invokes the javac compiler and compiles
Java classes into the APP-INF/classes/ directory under the build directory. This ensures that
the classes are available to other modules in the deployed application.

Third-Party Libraries
You can extend an Enterprise Application to use third-party .jar files by placing the files in the
APP-INF\lib\ directory, as shown below:

Figure 2-8 Third-party Library Directory

Third-party JARs are generally not compiled, but may be versioned using the source control
system for your application code. For example, XML parsers, logging implementations, and Web
Application framework JAR files are commonly used in applications and maintained along with
editable source code.

During the build process, third-party JAR files are not copied to the build directory, but remain
in the source directory for deployment.

Class Loading for Shared Classes
The classes and libraries stored under APP-INF/classes and APP-INF/lib are available to all
modules in the Enterprise Application. The application classloader always attempts to resolve
class requests by first looking in APP-INF/classes, then APP-INF/lib.

Generating a Basic build.xml File Using weblogic.BuildXMLGen
After you set up your source directory structure, use the weblogic.BuildXMLGen utility to
create a basic build.xml file. weblogic.BuildXMLGen is a convenient utility that
generates an Ant build.xml file for Enterprise applications that are organized in the split

Creat ing WebLog ic Se rve r App l i cat ions

2-14 Developing WebLogic Server Applications

development directory structure. The utility analyzes the source directory and creates build and
deploy targets for the Enterprise application as well as individual modules. It also creates targets
to clean the build and generate new deployment descriptors.

The syntax for weblogic.BuildXMLGen is as follows:

java weblogic.BuildXMLGen [options] <source directory>

where options include:

-help—print standard usage message

-version—print version information

-projectName <project name>—name of the Ant project

-d <directory>—directory where build.xml is created. The default is the current
directory.

-file <build.xml>—name of the generated build file

-username <username>—user name for deploy commands

-password <password>—user password

After running weblogic.BuildXMLGen, edit the generated build.xml file to specify
properties for your development environment. The list of properties you need to edit are shown
in the listing below.

Listing 2-1 build.xml Editable Properties

<!-- BUILD PROPERTIES ADJUST THESE FOR YOUR ENVIRONMENT -->

<property name="tmp.dir" value="/tmp" />

<property name="dist.dir" value="${tmp.dir}/dist"/>

<property name="app.name" value="helloWorldEar" />

<property name="ear" value="${dist.dir}/${app.name}.ear"/>

<property name="ear.exploded" value="${dist.dir}/${app.name}_exploded"/>

<property name="verbose" value="true" />

<property name="user" value="USERNAME" />

<property name="password" value="PASSWORD" />

<property name="servername" value="myserver" />

<property name="adminurl" value="iiop://localhost:7001" />

Gene ra t ing a Bas ic bu i ld . xml F i l e Us ing web log ic .Bu i ldXMLGen

Developing WebLogic Server Applications 2-15

In particular, make sure you edit the tmp.dir property to point to the build directory you want
to use. By default, the build.xml file builds projects into a subdirectory tmp.dir named after
the application (/tmp/helloWorldEar in the above listing).

The following listing shows the default main targets created in the build.xml file. You can view
these targets at the command prompt by entering the ant -projecthelp command in the EAR
source directory.

Listing 2-2 Default build.xml Targets

appc Runs weblogic.appc on your application

build Compiles helloWorldEar application and runs appc

clean Deletes the build and distribution directories

compile Only compiles helloWorldEar application, no appc

compile.appStartup Compiles just the appStartup module of the application

compile.appUtils Compiles just the appUtils module of the application

compile.build.orig Compiles just the build.orig module of the application

compile.helloEJB Compiles just the helloEJB module of the application

compile.helloWebApp Compiles just the helloWebApp module of the

application

compile.javadoc Compiles just the javadoc module of the application

deploy Deploys (and redeploys) the entire helloWorldEar

application

descriptors Generates application and module descriptors

ear Package a standard J2EE EAR for distribution

ear.exploded Package a standard exploded J2EE EAR

redeploy.appStartup Redeploys just the appStartup module of the

application

redeploy.appUtils Redeploys just the appUtils module of the application

redeploy.build.orig Redeploys just the build.orig module of the

application

redeploy.helloEJB Redeploys just the helloEJB module of the application

redeploy.helloWebApp Redeploys just the helloWebApp module of the

application

redeploy.javadoc Redeploys just the javadoc module of the application

undeploy UnDeploys the entire helloWorldEar application

Creat ing WebLog ic Se rve r App l i cat ions

2-16 Developing WebLogic Server Applications

Generating Deployment Descriptors Using wlddcreate
The wlddcreate ant task is provided as a method for generating deployment descriptors for
applications and application modules. It is an ant target provided as part of the generated
build.xml file. It is an alternative to the weblogic.marathon.ddinit commands. The
following is the wlddcreate target output:

<target name="descriptors" depends="compile" description="Generates
application

and module descriptors">

<ddcreate dir="${dest.dir}" />

</target>

Compiling Applications Using wlcompile
You use the wlcompile Ant task to invoke the javac compiler to compile your application’s
Java components in a split development directory structure. The basic syntax of wlcompile
identifies the source and build directories, as in this command from the helloWorldEar sample:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"/>

The following is the order in which events occur using this task:

1. wlcompile compiles the Java components into an output directory:
WL_HOME\samples\server\examples\build\helloWorldEar\APP-INF\classes\

where WL_HOME is the WebLogic Server installation directory.

2. wlcompile builds the EJBs and automatically includes the previously built Java modules
in the compiler's classpath. This allows the EJBs to call the Java modules without requiring
you to manually edit their classpath.

3. Finally, wlcompile compiles the Java components in the Web application with the EJB and
Java modules in the compiler's classpath. This allows the Web applications to refer to the
EJB and application Java classes without requiring you to manually edit the classpath.

Using includes and excludes Properties
More complex Enterprise applications may have compilation dependencies that are not
automatically handled by the wlcompile task. However, you can use the include and exclude
options to wlcompile to enforce your own dependencies. The includes and excludes

Deploy ing App l i ca t i ons Us ing wldep loy

Developing WebLogic Server Applications 2-17

properties accept the names of Enterprise Application modules—the names of subdirectories in
the Enterprise application source directory—to include or exclude them from the compile stage.

The following line from the helloWorldEar sample shows the appStartup module being
excluded from compilation:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"

excludes="appStartup"/>

wlcompile Ant Task Options
Table 2-1 contains Ant task options specific to wlcompile.

Table 2-1 wlcompile Ant Task Options

Nested javac Options
The wlcompile Ant task can accept nested javac options to change the compile-time behavior.
For example, the following wlcompile command ignores deprecation warnings and enables
debugging:

<wlcompile srcdir=”${mysrcdir}” destdir=”${mybuilddir}”>

<javac deprecation=”false” debug=”true”

debuglevel=”lines,vars,source”/>

</wlcompile>

Deploying Applications Using wldeploy
The wldeploy task provides an easy way to deploy directly from the split development directory.
wlcompile provides most of the same arguments as the weblogic.Deployer directory. To

Option Description

srcdir The source directory.

destdir The build/output directory.

classpath Allows you to change the classpath used by wlcompile.

includes Allows you to include specific directories from the build.

excludes Allows you to exclude specific directories from the build.

Creat ing WebLog ic Se rve r App l i cat ions

2-18 Developing WebLogic Server Applications

deploy from a split development directory, you simply identify the build directory location as the
deployable files, as in:

<wldeploy user="${user}" password="${password}"

action="deploy" source="${dest.dir}"

name="helloWorldEar" />

The above task is automatically created when you use weblogic.BuildXMLGen to create the
build.xml file.

See wldeploy Ant Task in Deploying WebLogic Server Applications for a complete command
reference.

Packaging Applications Using wlpackage
The wlpackage Ant task uses the contents of both the source and build directories to create either
a deployable archive file (.EAR file), or an exploded archive directory representing the Enterprise
Application (exploded .EAR directory). Use wlpackage when you want to deliver your
application to another group or individual for evaluation, testing, performance profiling, or
production deployment.

Archive versus Exploded Archive Directory
For production purposes, it is convenient to deploy Enterprise applications in exploded
(unarchived) directory format. This applies also to stand-alone Web applications, EJBs, and
connectors packaged as part of an Enterprise application. Using this format allows you to update
files directly in the exploded directory rather than having to unarchive, edit, and rearchive the
whole application. Using exploded archive directories also has other benefits, as described in
Exploded Archive Directories in Deploying WebLogic Server Applications.

You can also package applications in a single archived file, which is convenient for packaging
modules and applications for distribution. Archive files are easier to copy, they use up fewer file
handles than an exploded directory, and they can save disk space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file the same
way that it searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy J2EE modules on WebLogic Server in either a JAR (archived) file or
an exploded (unarchived) directory. See “Archive versus Exploded Archive Directory” on
page 2-18.

http://e-docs.bea.com/wls/docs81/deployment/tools.html#wldeploy
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/overview.html#explodedar
http://e-docs.bea.com/wls/docs81/deployment/index.html

Deve lop ing Mul t ip le -EAR Pro jec ts Us ing the Sp l i t Deve lopment D i rec to ry

Developing WebLogic Server Applications 2-19

wlpackage Ant Task
In a production environment, use the wlpackage Ant task to package your split development
directory application as a traditional EAR file that can be deployed to WebLogic Server.
Continuing with the MedRec example, you would package your application as follows:

<wlpackage toFile="\physicianEAR\physicianEAR.ear" srcdir="\physicianEAR"

destdir="\build\physicianEAR"/>

<wlpackage toDir="\physicianEAR\explodedphysicianEar"

srcdir="\src\physicianEAR"

destdir="\build\physicianEAR" />

Developing Multiple-EAR Projects Using the Split Development
Directory

The split development directory examples and procedures described previously have dealt with
projects consisting of a single Enterprise Application. Projects that require building multiple
Enterprise Applications simultaneously require slightly different conventions and procedures, as
described in the following sections.

Note: The following sections refer to the MedRec sample application, which consists of three
separate Enterprise Applications as well as shared utility classes, third-party JAR files,
and dedicated client applications. The MedRec source and build directories are installed
under WL_HOME/samples/server/medrec, where WL_HOME is the WebLogic Server
installation directory. See also the Avitek Medical Records Development Tutorials for
information about the MedREc directory layout and build process.

Organizing Libraries and Classes Shared by Multiple EARs
For single EAR projects, the split development directory conventions suggest keeping third-party
JAR files in the APP-INF/lib directory of the EAR source directory. However, a multiple-EAR
project would require you to maintain a copy of the same third-party JAR files in the
APP-INF/lib directory of each EAR source directory. This introduces multiple copies of the
source JAR files, increases the possibility of some JAR files being at different versions, and
requires additional space in your source control system.

To address these problems, consider editing your build script to copy third-party JAR files into
the APP-INF/lib directory of the build directory for each EAR that requires the libraries. This

http://e-docs.bea.com/wls/docs81/medrec_tutorials/index.html

Creat ing WebLog ic Se rve r App l i cat ions

2-20 Developing WebLogic Server Applications

allows you to maintain a single copy and version of the JAR files in your source control system,
yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as shown in
the following figure.

Figure 2-9 Shared JAR Files in MedRec

MedRec takes a similar approach to utility classes that are shared by multiple EARs in the project.
Instead of including the source for utility classes within the scope of each ear that needs them,
MedRec keeps the utility class source independent of all EARs. After compiling the utility
classes, the build script archives them and copies the JARs into the build directory under the
APP-INF/LIB subdirectory of each EAR that uses the classes, as shown in figure Figure 2-9.

Linking Multiple build.xml Files
When developing multiple EARs using the split development directory, each EAR project
generally uses its own build.xml file (perhaps generated by multiple runs of
weblogic.BuildXMLGen.). Applications like MedRec also use a master build.xml file that
calls the subordinate build.xml files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build files within
a master build.xml file. The following line from the MedRec master build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xml"/>

The above task instructs Ant to execute the file named build.xml in the /startupEar
subdirectory. The inheritAll parameter instructs Ant to pass only user properties from the
master build file tot the build.xml file in /startupEar.

Deve lop ing Mul t ip le -EAR Pro jec ts Us ing the Sp l i t Deve lopment D i rec to ry

Developing WebLogic Server Applications 2-21

MedRec uses multiple tasks similar to the above to build the startupEar, medrecEar, and
physicianEar applications, as well as building common utility classes and client applications.

Creat ing WebLog ic Se rve r App l i cat ions

2-22 Developing WebLogic Server Applications

Best Practices for Developing WebLogic Server Applications
BEA recommends the following “best practices” for application development. Also, see the
various “Best Practices” sections in the MedRec Tutorials.

Package applications as part of an Enterprise application. See “Packaging Applications
Using wlpackage” on page 2-18.

Use the split development directory structure. See “Organizing J2EE Components in a
Split Development Directory” on page 2-6.

For distribution purposes, package and deploy in archived format. See “Packaging
Applications Using wlpackage” on page 2-18.

In most other cases, it is more convenient to deploy in exploded format. See “Archive
versus Exploded Archive Directory” on page 2-18.

Never deploy untested code on a WebLogic Server instance that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server development
location elsewhere on the network.

Even if you do not run a development WebLogic Server instance on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler needs
access to the weblogic.jar file and other JAR files in the distribution directory. Install
WebLogic Server on your development computer to make WebLogic distribution files
available locally.

http://e-docs.bea.com/wls/docs81/medrec_tutorials/index.html

Developing WebLogic Server Applications 3-1

C H A P T E R 3

Programming Topics

The following sections contains information on additional WebLogic Server programming
topics:

“Compiling Java Code” on page 3-2

“Using Threads in WebLogic Server” on page 3-8

“Using JavaMail with WebLogic Server Applications” on page 3-9

“Programming Applications for WebLogic Server Clusters” on page 3-15

Programming Top ics

3-2 Developing WebLogic Server Applications

Compiling Java Code
In general, compilers convert information from one form to another. Traditionally, this involves
converting information from user readable source to machine readable form. For example, the
javac compiler converts .java files to .class files while the appc compiler generates EJBs
and JSPs for deployment.

You can also use Ant tasks, which automate the various compile operations that must be
performed to build an application, making it simpler to compile (or build) WebLogic
Server-specific applications, especially in a development environment. See “Using Ant Tasks to
Create Compile Scripts” on page 3-4.

javac Compiler
The Sun Microsystems javac compiler reads class and interface definitions, written in the Java
programming language and compiles them into the bytecode class files. See “javac - Java
Programming Language Compiler.”

BEA provides the wlcompile Ant task to invoke the javac compiler. See “wlcompile Ant
Task” on page 3-5.

appc Compiler
To generate JSPs and container-specific EJB classes for deployment, you use the
weblogic.appc compiler. The appc compiler also validates the descriptors for compliance
with the current specifications at both the individual module level and the application level. The
application-level checks include checks between the application-level deployment descriptors
and the individual modules as well as validation checks across the modules.

The appc compiler reports any warnings or errors encountered in the descriptors and compiles
all of the relevant modules into an EAR file, which can be deployed to WebLogic Server.

appc Syntax
Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

appc Options
The following are the available appc options:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/javac.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/javac.html

Compi l ing Java Code

Developing WebLogic Server Applications 3-3

Table 3-1 appc Options:

Option Description

-print Prints the standard usage message.

-version Prints appc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes will not be regenerated unless a checksum indicates that
it is necessary.

-lineNumbers Adds line numbers to generated class files to aid in debugging.

-basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.

-idl Generates IDL for EJB remote interfaces.

-idlOverwrite Always overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL generation.

-idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

-idlNoAbstractInte
rfaces

Does not generate abstract interfaces and methods/attributes
that contain them.

-idlFactories Generates factory methods for valuetypes.

-idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

-idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

-idlDirectory
<dir>

Specifies the directory where IDL files will be created (default:
target directory or JAR)

-idlMethodSignatur
es <>

Specifies the method signatures used to trigger IDL code
generation.

-iiop Generates CORBA stubs for EJBs.

Programming Top ics

3-4 Developing WebLogic Server Applications

Using Ant Tasks to Create Compile Scripts
The preferred BEA method for compiling is Apache Ant. Ant is a Java-based build tool. One of
the benefits of Ant is that is it is extended with Java classes, rather than shell-based commands.
Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in
eXtensible Markup Language (XML). XML tags define the targets to build, dependencies among
targets, and tasks to execute in order to build the targets. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

To use Ant, you must first set your environment by executing either the setExamplesEnv.cmd
(Windows) or setExamplesEnv.sh (UNIX) commands located in the
samples\domains\examples directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

For more information on using Ant to compile your cross-platform scripts or using cross-platform
scripts to create XML scripts that can be processed by Ant, refer to any of the WebLogic Server
examples, such as:

-iiopDirectory
<dir>

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

-keepgenerated Keeps the generated .java files.

-compiler <javac> Selects the Java compiler to use.

-g Compiles debugging information into a class file.

-O Compiles with optimization on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

-deprecation Warns about deprecated calls.

-normi Passes flags through to Symantec's sj.

-J<option> Passes flags through to Java runtime.

-classpath <path> Selects the classpath to use during compilation.

-advanced Prints advanced usage options.

http://jakarta.apache.org/ant/manual/index.html

Compi l ing Java Code

Developing WebLogic Server Applications 3-5

samples\domains\examples\ejb20\basic\beanManaged\build.xml

Also refer to the following WebLogic Server documentation on building examples using Ant
samples\server\examples\src\examples\examples.html

wlcompile Ant Task
You use the wlcompile Ant task to call the javac compiler to compile your Enterprise
application’s Java files in a split development directory structure. For more information, refer to
“Compiling Applications Using wlcompile” on page 2-16 in Chapter 2, “Creating WebLogic
Server Applications.”

wlappc Ant Task
Use the wlappc Ant task to invoke the appc compiler, which generates JSPs and
container-specific EJB classes for deployment.

wlappc Ant Task Options
Table 3-2 contains Ant task options specific to wlappc. For the most part, these options are the
same as weblogic.appc options. However, there are a few differences.

Note: See “appc Compiler” on page 3-2 for a list of weblogic.appc options.

Table 3-2 wlappc Ant Task Options

Option Description

print Prints the standard usage message.

version Prints appc version information.

output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes will not be regenerated unless a checksum indicates that
it is necessary.

lineNumbers Adds line numbers to generated class files to aid in debugging.

basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.

Programming Top ics

3-6 Developing WebLogic Server Applications

idl Generates IDL for EJB remote interfaces.

idlOverwrite Always overwrites existing IDL files.

idlVerbose Displays verbose information for IDL generation.

idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

idlNoAbstractInter
faces

Does not generate abstract interfaces and methods/attributes
that contain them.

idlFactories Generates factory methods for valuetypes.

idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

idlDirectory <dir> Specifies the directory where IDL files will be created (default:
target directory or JAR)

idlMethodSignature
s <>

Specifies the method signatures used to trigger IDL code
generation.

iiop Generates CORBA stubs for EJBs.

iiopDirectory
<dir>

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

keepgenerated Keeps the generated .java files.

compiler <javac> Selects the Java compiler to use.

debug Compiles debugging information into a class file.

optimize Compiles with optimization on.

nowarn Compiles without warnings.

verbose Compiles with verbose output.

deprecation Warns about deprecated calls.

normi Passes flags through to Symantec's sj.

runtimeflags Passes flags through to Java runtime

Compi l ing Java Code

Developing WebLogic Server Applications 3-7

wlappc Ant Task Syntax
The basic syntax for using the wlappc Ant task determines the destination source directory
location. This directory contains the files to be compiled by wlappc.
<wlappc source=”${dest.dir}” />

The following is an example of a wlappc Ant task command that invokes two options (idl and
idlOrverWrite) from Table 3-2.

<wlappc source="${dest.dir}"idl="true" idlOrverWrite="true" />

Syntax Differences between appc and wlappc
There are some syntax differences between appc and wlappc. For appc, the presence of a flag in
the command is a boolean. For wlappc, the presence of a flag in the command means that the
argument is required.

To illustrate, the following are examples of the same command, the first being an appc command
and the second being a wlappc command:

java weblogic.appc -idl foo.ear

<wlappc source="${dest.dir}" idl="true"/>

Setting the Classpath for Compiling Code
Most WebLogic services are based on J2EE standards and are accessed through standard J2EE
packages. The Sun, WebLogic, and other Java classes required to compile programs that use
WebLogic services are packaged in the weblogic.jar file in the lib directory of your
WebLogic Server installation. In addition to weblogic.jar, include the following in your
compiler’s CLASSPATH:

The lib\tools.jar file in the JDK directory, or other standard Java classes required by
the Java Development Kit you use.

The examples.property file for Apache Ant (for examples environment). This file is
discussed in the WebLogic Server documentation on building examples using Ant located
at: samples\server\examples\src\examples\examples.html

classpath <path> Selects the classpath to use during compilation.

advanced Prints advanced usage options.

Programming Top ics

3-8 Developing WebLogic Server Applications

Classes for third-party Java tools or services your programs import.

Other application classes referenced by the programs you are compiling.

Using Threads in WebLogic Server
WebLogic Server is a sophisticated, multi-threaded application server and it carefully manages
resource allocation, concurrency, and thread synchronization for the modules it hosts. To obtain
the greatest advantage from WebLogic Server’s architecture, construct your application modules
created according to the standard J2EE APIs.

In most cases, avoid application designs that require creating new threads in server-side modules:

Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or cause
WebLogic Server to thrash when the server load increases. Problems such as deadlocks and
thread starvation may not appear until the application is under a heavy load.

Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For example,
an application that searches several repositories and returns a combined result set can return
results sooner if the searches are done asynchronously using a new thread for each repository
instead of synchronously using the main client thread.

If you must use threads in your application code, create a pool of threads so that you can control
the number of threads your application creates. Like a JDBC connection pool, you allocate a
given number of threads to a pool, and then obtain an available thread from the pool for your
runnable class. If all threads in the pool are in use, wait until one is returned. A thread pool helps
avoid performance issues and allows you to optimize the allocation of threads between WebLogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks when they
occur. Review your design carefully to ensure that your threads do not compromise the security
system.

To avoid undesirable interactions with WebLogic Server threads, do not let your threads call into
WebLogic Server modules. For example, do not use enterprise beans or servlets from threads that
you create. Application threads are best used for independent, isolated tasks, such as conversing
with an external service with a TCP/IP connection or, with proper locking, reading or writing to

Using JavaMai l w i th WebLog ic Se rve r App l i cat ions

Developing WebLogic Server Applications 3-9

files. A short-lived thread that accomplishes a single purpose and ends (or returns to the thread
pool) is less likely to interfere with other threads.

Avoid creating daemon threads in modules that are packaged in applications deployed on
WebLogic Server. When you create a daemon thread in an application module such as a Servlet,
you will not be able to redeploy the application because the daemon thread created in the original
deployment will remain running.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even to the point
of failure. Observe the application performance and WebLogic Server behavior and then add
checks to prevent failures from occurring in production.

If you create an InitialContext in the threads, ensure that you explicitly close InitialContext
to release resources immediately and avoid any potential memory leaks. See Closing the Context
in Programming WebLogic JNDI for more information.

Using JavaMail with WebLogic Server Applications
WebLogic Server includes the JavaMail API version 1.1.3 reference implementation from Sun
Microsystems. Using the JavaMail API, you can add email capabilities to your WebLogic Server
applications. JavaMail provides access from Java applications to Internet Message Access
Protocol (IMAP)- and Simple Mail Transfer Protocol (SMTP)-capable mail servers on your
network or the Internet. It does not provide mail server functionality; you must have access to a
mail server to use JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page on the Sun
Web site at http://java.sun.com/products/javamail/index.html. This section describes how you
can use JavaMail in the WebLogic Server environment.

The weblogic.jar file contains the javax.mail and javax.mail.internet packages from
Sun. weblogic.jar also contains the Java Activation Framework (JAF) package, which
JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol (IMAP) and
Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate POP3 provider for
JavaMail, which is not included in weblogic.jar. You can download the POP3 provider from
Sun and add it to the WebLogic Server classpath if you want to use it.

http://e-docs.bea.com/wls/docs81/jndi/jndi.html#472853
http://e-docs.bea.com/wls/docs81/jndi/index.html
http://java.sun.com/products/javamail/index.html

Programming Top ics

3-10 Developing WebLogic Server Applications

About JavaMail Configuration Files
JavaMail depends on configuration files that define the mail transport capabilities of the system.
The weblogic.jar file contains the standard configuration files from Sun, which enable IMAP
and SMTP mail servers for JavaMail and define the default message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and message
types, you do not have to modify any JavaMail configuration files. If you do want to extend
JavaMail, download JavaMail from Sun and follow Sun’s instructions for adding your
extensions. Then add your extended JavaMail package in the WebLogic Server classpath in front
of weblogic.jar.

Configuring JavaMail for WebLogic Server
To configure JavaMail for use in WebLogic Server, you create a Mail Session in the WebLogic
Server Administration Console. This allows server-side modules and applications to access
JavaMail services with JNDI, using Session properties you preconfigure for them. For example,
by creating a Mail Session, you can designate the mail hosts, transport and store protocols, and
the default mail user in the Administration Console so that modules that use JavaMail do not have
to set these properties. Applications that are heavy email users benefit because WebLogic Server
creates a single Session object and makes it available via JNDI to any module that needs it.

1. In the Administration Console, click on the Mail node in the left pane of the Administration
Console.

2. Click Create a New Mail Session.

3. Complete the form in the right pane, as follows:

– In the Name field, enter a name for the new session.

– In the JNDIName field, enter a JNDI lookup name. Your code uses this string to look
up the javax.mail.Session object.

– In the Properties field, enter properties to configure the Session. The property names
are specified in the JavaMail API Design Specification. JavaMail provides default
values for each property, and you can override the values in the application code. The
following table lists the properties you can set in this field.

Using JavaMai l w i th WebLog ic Se rve r App l i cat ions

Developing WebLogic Server Applications 3-11

Property Description Default

mail.store.protocol Protocol for retrieving email.

Example:
mail.store.protocol=imap

The bundled JavaMail
library is IMAP.

mail.transport.protocol Protocol for sending email.

Example:

mail.transport.protocol=smtp

The bundled JavaMail
library has supports for
SMTP.

mail.host The name of the mail host machine.

Example:

mail.host=mailserver

Local machine.

mail.user Name of the default user for retrieving
email.

Example:

mail.user=postmaster

Value of the
user.name Java
system property.

mail.protocol.host Mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mail.smtp.host=mail.mydom.com

mail.imap.host=localhost

Value of the
mail.host property.

mail.protocol.user Protocol-specific default user name for
logging into a mailer server.

Examples:

mail.smtp.user=weblogic

mail.imap.user=appuser

Value of the
mail.user property.

Programming Top ics

3-12 Developing WebLogic Server Applications

You can override any properties set in the Mail Session in your code by creating a Properties
object containing the properties you want to override. See “Sending Messages with JavaMail” on
page 3-12. Then, after you look up the Mail Session object in JNDI, call the
Session.getInstance() method with your Properties object to get a customized Session.

Sending Messages with JavaMail
Here are the steps to send a message with JavaMail from within a WebLogic Server module:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need
to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the Administration Console,
create a Properties object and add the properties you want to override. Then call
getInstance() to get a new Session object with the new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

mail.from The default return address.

Examples:

mail.from=master@mydom.com

username@host

mail.debug Set to True to enable JavaMail debug
output.

False

Property Description Default

Using JavaMai l w i th WebLog ic Se rve r App l i cat ions

Developing WebLogic Server Applications 3-13

4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are
String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);

Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);

5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if communications with
the mail host fails. Be sure to put your code in a try block and catch these exceptions.

Reading Messages with JavaMail
The JavaMail API allows you to connect to a message store, which could be an IMAP server or
POP3 server. Messages are stored in folders. With IMAP, message folders are stored on the mail
server, including folders that contain incoming messages and folders that contain archived
messages. With POP3, the server provides a folder that stores messages as they arrive. When a
client connects to a POP3 server, it retrieves the messages and transfers them to a message store
on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain messages or
other folders. The default folder is at the top of the structure. The special folder name INBOX
refers to the primary folder for the user, and is within the default folder. To read incoming mail,
you get the default folder from the store, and then get the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified message
number or range of message numbers, or pre-fetching specific parts of messages into the folder’s
cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic Server
module:

Programming Top ics

3-14 Developing WebLogic Server Applications

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need
to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the Administration Console,
create a Properties object and add the properties you want to override. Then call
getInstance() to get a new Session object with the new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);

4. Get a Store object from the Session and call its connect() method to connect to the mail
server. To authenticate the connection, you need to supply the mailhost, username, and
password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that allow you
to access the different parts of a message, including headers, flags, and message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3 server. With
IMAP, however, the JavaMail API provides methods to create and manipulate folders and
transfer messages between them. If you use an IMAP server, you can implement a full-featured,
Web-based mail client with much less code than if you use a POP3 server. With POP3, you must
provide code to manage a message store via WebLogic Server, possibly using a database or file
system to represent folders.

Programming App l i cat ions fo r WebLog ic Se rve r C lus te rs

Developing WebLogic Server Applications 3-15

Programming Applications for WebLogic Server Clusters
JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe certain
requirements for preserving session data. See “Requirements for HTTP Session State
Replication” in Using WebLogic Server Clusters for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB type. See
“Increased Reliability and Availability for Clustered EJBs” in Programming WebLogic
Enterprise JavaBeans for information about the capabilities of different EJB types in a cluster.
EJBs can be deployed to a cluster by setting clustering properties in the EJB deployment
descriptor.

If you are developing either EJBs or custom RMI objects for deployment in a cluster, also refer
to "Using WebLogic JNDI in a Clustered Environment" in Programming WebLogic JNDI to
understand the implications of binding clustered objects in the JNDI tree.

http://e-docs.bea.com/wls/docs81/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs81/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs81/cluster/index.html
http://e-docs.bea.com/wls/docs81/ejb/understanding.html#IncreasedReliabilityandAvailabilityforClustered EJBs
http://e-docs.bea.com/wls/docs81/jndi/jndi.html#jndi012
http://e-docs.bea.com/wls/docs81/jndi/index.html

Programming Top ics

3-16 Developing WebLogic Server Applications

Developing WebLogic Server Applications 4-1

C H A P T E R 4

WebLogic Server Application
Classloading

The following sections provide an overview of Java classloaders, followed by details about
WebLogic Server J2EE application classloading.

“Java Classloader Overview” on page 4-2

“WebLogic Server Application Classloader Overview” on page 4-4

“Resolving Class References Between Modules and Applications” on page 4-14

WebLogic Se rver Appl ica t ion C lass load ing

4-2 Developing WebLogic Server Applications

Java Classloader Overview
Classloaders are a fundamental module of the Java language. A classloader is a part of the Java
virtual machine (JVM) that loads classes into memory; a classloader is responsible for finding
and loading class files at run time. Every successful Java programmer needs to understand
classloaders and their behavior. This section provides an overview of Java classloaders.

Java Classloader Hierarchy
Classloaders contain a hierarchy with parent classloaders and child classloaders. The relationship
between parent and child classloaders is analogous to the object relationship of super classes and
subclasses. The bootstrap classloader is the root of the Java classloader hierarchy. The Java
virtual machine (JVM) creates the bootstrap classloader, which loads the Java development kit
(JDK) internal classes and java.* packages included in the JVM. (For example, the bootstrap
classloader loads java.lang.String.)

The extensions classloader is a child of the bootstrap classloader. The extensions classloader
loads any JAR files placed in the extensions directory of the JDK. This is a convenient means to
extending the JDK without adding entries to the classpath. However, anything in the extensions
directory must be self-contained and can only refer to classes in the extensions directory or JDK
classes.

The system classpath classloader extends the JDK extensions classloader. The system classpath
classloader loads the classes from the classpath of the JVM. Application-specific classloaders
(including WebLogic Server classloaders) are children of the system classpath classloader.

Note: What BEA refers to as a “system classpath classloader” is often referred to as the
“application classloader” in contexts outside of WebLogic Server. When discussing
classloaders in WebLogic Server, BEA uses the term “system” to differentiate from
classloaders related to J2EE applications (which BEA refers to as “application
classloaders”).

Loading a Class
Classloaders use a delegation model when loading a class. The classloader implementation first
checks its cache to see if the requested class has already been loaded. This class verification
improves performance in that its cached memory copy is used instead of repeated loading of a
class from disk. If the class is not found in its cache, the current classloader asks its parent for the
class. Only if the parent cannot load the class does the classloader attempt to load the class. If a
class exists in both the parent and child classloaders, the parent version is loaded. This delegation

Java C lass loader Overv i ew

Developing WebLogic Server Applications 4-3

model is followed to avoid multiple copies of the same form being loaded. Multiple copies of the
same class can lead to a ClassCastException.

Classloaders ask their parent classloader to load a class before attempting to load the class
themselves. Classloaders in WebLogic Server that are associated with Web applications can be
configured to check locally first before asking their parent for the class. This allows Web
applications to use their own versions of third-party classes, which might also be used as part of
the WebLogic Server product. The “prefer-web-inf-classes Element” on page 4-3section
discusses this in more detail.

prefer-web-inf-classes Element
The weblogic.xml Web application deployment descriptor contains a
prefer-web-inf-classes element (a sub-element of the container-descriptor element). By
default, this element is set to False. Setting this element to True subverts the classloader
delegation model so that class definitions from the Web application are loaded in preference to
class definitions in higher-level classloaders. This allows a Web application to use its own
version of a third-party class, which might also be part of WebLogic Server. See “weblogic.xml
Deployment Descriptor Elements.”

When using this feature, you must be careful not to mix instances created from the Web
application’s class definition with issuances created from the server’s definition. If such instances
are mixed, a ClassCastException results.

Listing 4-1 illustrates the prefer-web-inf-classes element, its description and default
value.

Listing 4-1 prefer-web-inf-classes Element

/**

* If true, classes located in the WEB-INF directory of a web-app will be

loaded in preference to classes loaded in the application or system

classloader.

* @default false

*/

boolean isPreferWebInfClasses();

void setPreferWebInfClasses(boolean b);

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html

WebLogic Se rver Appl ica t ion C lass load ing

4-4 Developing WebLogic Server Applications

Changing Classes in a Running Program
WebLogic Server allows you to deploy newer versions of application modules such as EJBs
while the server is running. This process is known as hot-deploy or hot-redeploy and is closely
related to classloading.

Java classloaders do not have any standard mechanism to undeploy or unload a set of classes, nor
can they load new versions of classes. In order to make updates to classes in a running virtual
machine, the classloader that loaded the changed classes must be replaced with a new classloader.
When a classloader is replaced, all classes that were loaded from that classloader (or any
classloaders that are offspring of that classloader) must be reloaded. Any instances of these
classes must be re-instantiated.

In WebLogic Server, each application has a hierarchy of classloaders that are offspring of the
system classloader. These hierarchies allow applications or parts of applications to be
individually reloaded without affecting the rest of the system. “WebLogic Server Application
Classloader Overview” on page 4-4 discusses this topic.

WebLogic Server Application Classloader Overview
This section provides an overview of the WebLogic Server application classloaders.

Application Classloading
WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
Everything within an EAR file is considered part of the same application. The following may be
part of an EAR or can be loaded as standalone applications:

An Enterprise JavaBean (EJB) JAR file

A Web application WAR file

A resource adapter RAR file

Note: For information on Resource Adapters and classloading, see “About Resource Adapter
Classes” on page 4-15.

WebLog ic Se rve r App l i cat ion C lass loader Overv i ew

Developing WebLogic Server Applications 4-5

If you deploy an EJB and a Web application separately, they are considered two applications. If
they are deployed together within an EAR file, they are one application. You deploy modules
together in an EAR file for them to be considered part of the same application.

Every application receives its own classloader hierarchy; the parent of this hierarchy is the system
classpath classloader. This isolates applications so that application A cannot see the classloaders
or classes of application B. In hierarchy classloaders, no sibling or friend concepts exist.
Application code only has visibility to classes loaded by the classloader associated with the
application (or module) and classes that are loaded by classloaders that are ancestors of the
application (or module) classloader. This allows WebLogic Server to host multiple isolated
applications within the same JVM.

Application Classloader Hierarchy
WebLogic Server automatically creates a hierarchy of classloaders when an application is
deployed. The root classloader in this hierarchy loads any EJB JAR files in the application. A
child classloader is created for each Web application WAR file.

Because it is common for Web applications to call EJBs, the WebLogic Server application
classloader architecture allows JavaServer Page (JSP) files and servlets to see the EJB interfaces
in their parent classloader. This architecture also allows Web applications to be redeployed
without redeploying the EJB tier. In practice, it is more common to change JSP files and servlets
than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading concept.

WebLogic Se rver Appl ica t ion C lass load ing

4-6 Developing WebLogic Server Applications

Figure 4-1 WebLogic Server Classloading

If your application includes servlets and JSPs that use EJBs:

Package the servlets and JSPs in a WAR file

Package the Enterprise JavaBeans in an EJB JAR file

Package the WAR and JAR files in an EAR file

Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them together in an
EAR file produces a classloader arrangement that allows the servlets and JSPs to find the EJB
classes. If you deploy the WAR and JAR files separately, WebLogic Server creates sibling
classloaders for them. This means that you must include the EJB home and remote interfaces in
the WAR file, and WebLogic Server must use the RMI stub and skeleton classes for EJB calls,
just as it does when EJB clients and implementation classes are in different JVMs. This concept
is discussed in more detail in the next section “Application Classloading and Pass-by-Value or
Reference” on page 4-14.

WebApp 2

EJB 3

Application 2

WebApp 3

WebLogic Server

System Classpath Loader

WebApp 1

EJB 1

Application 1

EJB 2

WebLog ic Se rve r App l i cat ion C lass loader Overv i ew

Developing WebLogic Server Applications 4-7

Note: The Web application classloader contains all classes for the Web application except for
the JSP class. The JSP class obtains its own classloader, which is a child of the Web
application classloader. This allows JSPs to be individually reloaded.

Custom Module Classloader Hierarchies
You can create custom classloader hierarchies for an application allowing for better control over
class visibility and reloadability. You achieve this by defining a classloader-structure
element in the weblogic-application.xml deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for WebLogic
applications. An application level classloader exists where all EJB classes are loaded. For each
Web module, there is a separate child classloader for the classes of that module.

For simplicity, JSP classloaders are not described in the following diagram.

Figure 4-2 Standard Classloader Hierarchy

This hierarchy is optimal for most applications, because it allows call-by-reference semantics
when you invoke EJBs. It also allows Web modules to be independently reloaded without
affecting other modules. Further, it allows code running in one of the Web modules to load
classes from any of the EJB modules. This is convenient, as it can prevent a Web module from
including the interfaces for EJBs that is uses. Note that some of those benefits are not strictly
J2EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare alternate
classloader organizations that allow the following:

Reloading individual EJB modules independently

WebLogic Se rver Appl ica t ion C lass load ing

4-8 Developing WebLogic Server Applications

Reloading groups of modules to be reloaded together

Reversing the parent child relationship between specific Web modules and EJB modules

Namespace separation between EJB modules

Declaring the Classloader Hierarchy
You can declare the classloader hierarchy in the WebLogic-specific application deployment
descriptor weblogic-application.xml. For instructions on how to edit deployment
descriptors, refer to the “WebLogic Builder Online Help.”

The DTD for this declaration is as follows:

Listing 4-2 Declaring the Classloader Hierarchy

<!ELEMENT classloader-structure (module-ref*, classloader-structure*)>

<!ELEMENT module-ref (module-uri)>

<!ELEMENT module-uri (#PCDATA)>

The top-level element in weblogic-application.xml includes an optional
classloader-structure element. If you do not specify this element, then the standard
classloader is used. Also, if you do not include a particular module in the definition, it is assigned
a classloader, as in the standard hierarchy. That is, EJB modules are associated with the
application Root classloader, and Web application modules have their own classloaders.

The classloader-structure element allows for the nesting of classloader-structure
stanzas, so that you can describe an arbitrary hierarchy of classloaders. There is currently a
limitation of three levels. The outermost entry indicates the application classloader. For any
modules not listed, the standard hierarchy is assumed.

Note: JSP classloaders are not included in this definition scheme. JSPs are always loaded into
a classloader that is a child of the classloader associated with the Web module to which
it belongs.

For more information on the DTD elements, refer to Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

http://e-docs.bea.com/wls/docs81/wlbuilder/index.html

WebLog ic Se rve r App l i cat ion C lass loader Overv i ew

Developing WebLogic Server Applications 4-9

The following is an example of a classloader declaration (defined in the
classloader-structure element in weblogic-application.xml):

Listing 4-3 Example Classloader Declaration

<classloader-structure>

<module-ref>

<module-uri>ejb1.jar</module-uri>

</module-ref>

<module-ref>

<module-uri>web3.war</module-uri>

</module-ref>

<classloader-structure>

<module-ref>

<module-uri>web1.war</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>

<module-uri>ejb3.jar</module-uri>

</module-ref>

<module-ref>

<module-uri>web2.war</module-uri>

</module-ref>

<classloader-structure>

<module-ref>

<module-uri>web4.war</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>

<module-uri>ejb2.jar</module-uri>

</module-ref>

</classloader-structure>

</classloader-structure>

</classloader-structure>

WebLogic Se rver Appl ica t ion C lass load ing

4-10 Developing WebLogic Server Applications

The organization of the nesting indicates the classloader hierarchy. The above stanza leads to a
hierarchy shown in the following diagram.

Figure 4-3 Example Classloader Hierarchy

User-Defined Classloader Restrictions
User-defined classloader restrictions give you better control over what is reloadable and provide
inter-module class visibility. This feature is primarily for developers. It is useful for iterative
development, but the reloading aspect of this feature is not recommended for production use,
because it is possible to corrupt a running application if an update includes invalid elements.
Custom classloader arrangements for namespace separation and class visibility are acceptable for
production use. However, programmers should be aware that the J2EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave more like
modules in two separate applications. For example, if you place an EJB in its own classloader so
that it can be reloaded individually, you receive call-by-value semantics rather than the
call-by-reference optimization BEA provides in our standard classloader hierarchy. Also note
that if you use a custom hierarchy, you might end up with stale references. Therefore, if you
reload an EJB module, you should also reload calling modules.

WebLog ic Se rve r App l i cat ion C lass loader Overv i ew

Developing WebLogic Server Applications 4-11

There are some restrictions to creating user-defined module classloader hierarchies; these are
discussed in the following sections.

Servlet Reloading Disabled
If you use a custom classloader hierarchy, servlet reloading is disabled for Web applications in
that particular application.

Web Applications prefer-web-inf-classes Flag Ignored
If you use a custom classloader hierarchy, the prefer-web-inf-classes flag will be ignored
for web applications within that hierarchy.

Custom Classloader Structure with Iterative Development
When a new classloader-structure element is added as a leaf node anywhere in the existing
class-loader hierarchy, then the module added to the new classloader-structure can be deployed
without redeploying the entire application. However, when deleting or rearranging the existing
classloader-structure element within the hierarchy, the entire application should be redeployed.

When you add new module-uri(s) to an existing classloader-stucture, ensure that it is added only
after the existing module-uri(s). New module(s) can be deployed without redeploying the entire
application. However, when moving or deleting module-uri(s) across classloader-stucture
elements, ensure that you redeploy the entire application.

Nesting Depth
Nesting is limited to three levels (including the application classloader). Deeper nestings lead to
a deployment exception.

Module Types
Custom classloader hierarchies are currently restricted to Web and EJB modules.

Duplicate Entries
Duplicate entries lead to a deployment exception.

Interfaces
The standard WebLogic Server classloader hierarchy makes EJB interfaces available to all
modules in the application. Thus other modules can invoke an EJB, even though they do not
include the interface classes in their own module. This is possible because EJBs are always

WebLogic Se rver Appl ica t ion C lass load ing

4-12 Developing WebLogic Server Applications

loaded into the root classloader and all other modules either share that classloader or have a
classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that a callee’s
classes are not visible to the caller. In this case, the calling module must include the interface
classes. This is the same requirement that exists when invoking on modules in a separate
application.

Call-by-Value Semantics
The standard classloader hierarchy provided with WebLogic Server allows for calls between
modules within an application to use call-by-reference semantics. This is because the caller is
always using the same classloader or a child classloader of the callee. With this feature, it is
possible to configure the classloader hierarchy so that two modules are in separate branches of
the classloader tree. In this case, call-by-value semantics are used.

In-Flight Work
Be aware that the classloader switch required for reloading is not atomic across modules. In fact,
updates to applications in general are not atomic. For this reason, it is possible that different
in-flight operations (operations that are occuring while a change is being made) might end up
accessing different versions of classes depending on timing.

Development Use Only
The development-use-only feature is intended for development use. Because updates are not
atomic, this feature is not suitable for production use.

Individual EJB Classloader for Implementation Classes
WebLogic Server allows you to reload individual EJB modules without requiring you to reload
other modules at the same time and having to redeploy the entire EJB module. This feature is
similar to how JSPs are currently reloaded in the WebLogic Server servlet container.

Because EJB classes are invoked through an interface, it is possible to load individual EJB
implementation classes in their own classloader. This way, these classes can be reloaded
individually without having to redeploy the entire EJB module. Below is a diagram of what the
classloader hierarchy for a single EJB module would look like. The module contains two EJBs
(Foo and Bar). This would be a sub-tree of the general application hierarchy described in the
previous section.

WebLog ic Se rve r App l i cat ion C lass loader Overv i ew

Developing WebLogic Server Applications 4-13

Figure 4-4 Example Classloader Hierarchy for a Single EJB Module

To perform a partial update of files relative to the root of the exploded application, use the
following command line:

Listing 4-4 Performing a Partial File Update

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy myejb/foo.class

After the -redeploy command, you provide a list of files relative to the root of the exploded
application that you want to update. This might be the path to a specific element (as above) or a
module (or any set of elements and modules). For example:

Listing 4-5 Providing a List of Relative Files for Update

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy mywar myejb/foo.class anotherejb

WebLogic Se rver Appl ica t ion C lass load ing

4-14 Developing WebLogic Server Applications

Given a set of files to be updated, the system tries to figure out the minimum set of things it needs
to redeploy. Redeploying only an EJB impl class causes only that class to be redeployed. If you
specify the whole EJB (in the above example, anotherejb) or if you change and update the EJB
home interface, the entire EJB module must be redeployed.

Depending on the classloader hierarchy, this redeployment may lead to other modules being
redeployed. Specifically, if other modules share the EJB classloader or are loaded into a
classloader that is a child to the EJB's classloader (as in the WebLogic Server standard classloader
module) then those modules are also reloaded.

Application Classloading and Pass-by-Value or Reference
Modern programming languages use two common parameter passing models: pass-by-value and
pass-by-reference. With pass-by-value, parameters and return values are copied for each method
call. With pass-by-reference, a pointer (or reference) to the actual object is passed to the method.
Pass by reference improves performance because it avoids copying objects, but it also allows a
method to modify the state of a passed parameter.

WebLogic Server includes an optimization to improve the performance of Remote Method
Interface (RMI) calls within the server. Rather than using pass by value and the RMI subsystem’s
marshalling and unmarshalling facilities, the server makes a direct Java method call using pass
by reference. This mechanism greatly improves performance and is also used for EJB 2.0 local
interfaces.

RMI call optimization and call by reference can only be used when the caller and callee are within
the same application. As usual, this is related to classloaders. Because applications have their own
classloader hierarchy, any application class has a definition in both classloaders and receives a
ClassCastException error if you try to assign between applications. To work around this,
WebLogic Server uses call-by-value between applications, even if they are within the same JVM.

Note: Calls between applications are slower than calls within the same application. Deploy
modules together as an EAR file to enable fast RMI calls and use of the EJB 2.0 local
interfaces.

Resolving Class References Between Modules and Applications
Your applications may use many different Java classes, including enterprise beans, servlets and
JavaServer Pages, utility classes, and third-party packages. WebLogic Server deploys
applications in separate classloaders to maintain independence and to facilitate dynamic
redeployment and undeployment. Because of this, you need to package your application classes
in such a way that each module has access to the classes it depends on. In some cases, you may

Reso lv ing C lass Refe rences Between Modules and App l icat ions

Developing WebLogic Server Applications 4-15

have to include a set of classes in more than one application or module. This section describes
how WebLogic Server uses multiple classloaders so that you can stage your applications
successfully.

About Resource Adapter Classes
With this release of WebLogic Server, each resource adapter now uses its own classloader to load
classes (similar to Web applications). As a result, modules like Web applications and EJBs that
are packaged along with a resource adapter in an application archive (EAR file) do not have
visibility into the resource adapter’s classes. If such visibility is required, you must place the
resource adapter classes in APP-INF/classes. You can also archive these classes (using the
JAR utility) and place them in the APP-INF/lib of the application archive.

Make sure that no resource-adapter specific classes exist in your WebLogic Server system
classpath. If you need to use resource adapter-specific classes with Web modules (for example,
an EJB or Web application), you must bundle these classes in the corresponding module’s archive
file (for example, the JAR file for EJBs or the WAR file for Web applications).

Packaging Shared Utility Classes
WebLogic Server provides a location within an EAR file where you can store shared utility
classes. Place utility JAR files in the APP-INF/lib directory and individual classes in the
APP-INF/classes directory. (Do not place JAR files in the /classes directory or classes in
the /lib directory.) These classes are loaded into the root classloader for the application.

This feature obviates the need to place utility classes in the system classpath or place classes in
an EJB JAR file (which depends on the standard WebLogic Server classloader hierarchy). Be
aware that using this feature is subtly different from using the manifest Class-Path described in
the following section. With this feature, class definitions are shared across the application. With
manifest Class-Path, the classpath of the referencing module is simply extended, which means
that separate copies of the classes exist for each module.

Manifest Class-Path
The J2EE specification provides the manifest Class-Path entry as a means for a module to
specify that it requires an auxiliary JAR of classes. You only need to use this manifest
Class-Path entry if you have additional supporting JAR files as part of your EJB JAR or WAR
file. In such cases, when you create the JAR or WAR file, you must include a manifest file with
a Class-Path element that references the required JAR files.

WebLogic Se rver Appl ica t ion C lass load ing

4-16 Developing WebLogic Server Applications

The following is a simple manifest file that references a utility.jar file:

Manifest-Version: 1.0 [CRLF]

Class-Path: utility.jar [CRLF]

In the first line of the manifest file, you must always include the Manifest-Version attribute,
followed by a new line (CR | LF |CRLF) and then the Class-Path attribute. More information
about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

The manifest Class-Path entries refer to other archives relative to the current archive in which
these entries are defined. This structure allows multiple WAR files and EJB JAR files to share a
common library JAR. For example, if a WAR file contains a manifest entry of y.jar, this entry
should be next to the WAR file (not within it) as follows:

/<directory>/x.war

/<directory>/y.jars

The manifest file itself should be located in the archive at META-INF/MANIFEST.MF.

For more information, see
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html.

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

Developing WebLogic Server Applications A-1

A P P E N D I X A

Enterprise Application Deployment
Descriptor Elements

The following sections describe Enterprise application deployment descriptors:
application.xml (a J2EE standard deployment descriptor) and
weblogic-application.xml (a WebLogic-specific application deployment descriptor).

The weblogic-application.xml file is optional if you are not using any WebLogic Server
extensions.

“application.xml Deployment Descriptor Elements” on page A-2

“weblogic-application.xml Deployment Descriptor Elements” on page A-6

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-2 Developing WebLogic Server Applications

application.xml Deployment Descriptor Elements
The following sections describe the application.xml file. The application.xml file is the
deployment descriptor for an Enterprise application. The file is located in the META-INF
subdirectory of the application archive. It must begin with the following DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems,

Inc.//DTD J2EE Application 1.3//EN"

"http://java.sun.com/dtd/application_1_3.dtd">

application
The application element is the root element of the application deployment descriptor. The
elements within the application element are described in the following sections.

The following table describes the elements you can define within the application element.

Element Required
Optional

Description

<icon> Optional Specifies the locations of small and large images that represent the
application in a GUI tool. This element is not currently used by
WebLogic Server.

For more information on the elements you can define within the
icon element, refer to “icon” on page A-3.

<display-name> Required Specifies the application display name, a short name that is intended
to be displayed by GUI tools.

<description> Optional Provides descriptive text about the application.

appl i ca t i on . xml Dep loyment Desc r ip to r E lements

Developing WebLogic Server Applications A-3

icon
The following table describes the elements you can define within an icon element.

<module> Required The application.xml deployment descriptor contains one
module element for each module within the Enterprise application.
Each module element contains an connector, ejb, java, or
web element that indicates the module type and location of the
module within the application. An optional alt-dd element
specifies an optional URI to the post-assembly version of the
deployment descriptor.

For more information on the elements you can define within the
module element, refer to “module” on page A-4.

<security-role> Required Contains the definition of a security role which is global to the
application. Each security-role element contains an optional
description element, and a role-name element.

For more information on the elements you can define within the
security-role element, refer to “security-role” on page A-6.

Element Required
Optional

Description

Element Required
Optional

Description

<small-icon> Optional Specifies the location for a small (16x16 pixel) .gif or .jpg image
used to represent the application in a GUI tool. Currently, this is not
used by WebLogic Server.

<large-icon> Optional Specifies the location for a large (32x32 pixel) .gif or .jpg image
used to represent the application in a GUI tool. Currently, this
element is not used by WebLogic Server.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-4 Developing WebLogic Server Applications

module
The following table describes the elements you can define within a module element.

Element Required
Optional

Description

<alt-dd> Optional Specifies an optional URI to the post-assembly version of the
deployment descriptor file for a particular J2EE module. The URI
must specify the full pathname of the deployment descriptor file
relative to the application’s root directory. If you do not specify
alt-dd, the deployer must read the deployment descriptor from
the default location and file name required by the respective module
specification. You can specify an alternate deployment
descriptor only for the J2EE deployment descriptors,
web.xml and ejb-jar.xml. You cannot specify alternate
descriptor files for the weblogic.xml or
weblogic-ejb-jar.xml.

<connector> Required Specifies the URI of a resource adapter (connector) archive file,
relative to the top level of the application package.

<ejb> Required Defines an EJB module in the application file. Contains the path to
an EJB JAR file in the application.

Example:

<ejb>petStore_EJB.jar</ejb>

appl i ca t i on . xml Dep loyment Desc r ip to r E lements

Developing WebLogic Server Applications A-5

<java> Required Defines a client application module in the application file.

Example:

<java>client_app.jar</java>

<web> Required Defines a Web application module in the application.xml
file. The web element contains a web-uri element and a
context-root element. If you do not declare a value for the
context-root, then the basename of the web-uri element is
used as the context path of the Web application. (Note that the
context path must be unique in a given Web server. More than one
Web application may be using the same Web server, so you must
avoid context path clashes across multiple applications.)

web-uri
Defines the location of a Web module in the application.xml
file. This is the name of the WAR file.

context-root
Specifies a context root for the Web application.

Example:

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>

Element Required
Optional

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-6 Developing WebLogic Server Applications

security-role
The following table describes the elements you can define within a security-role element.

weblogic-application.xml Deployment Descriptor Elements
The following sections describe the weblogic-application.xml file. The
weblogic-application.xml file is the BEA WebLogic Server-specific deployment
descriptor extension for the application.xml deployment descriptor from Sun Microsystems.
This is where you configure features such as application-scoped JDBC pools and EJB caching.

The file is located in the META-INF subdirectory of the application archive. It must begin with the
following DOCTYPE declaration:
<!DOCTYPE weblogic-application PUBLIC “-//BEA Systems, Inc.//DTD
WebLogic Application 8.1.0//EN”

"http://www.bea.com/servers/wls810/dtd/weblogic-application_2_0.dtd”>

The following sections describe each element that can appear in the file.

Element Required
Optional

Description

<description> Optional Text description of the security role.

<role-name> Optional Defines the name of a security role or principal that is used for
authorization within the application. Roles are mapped to WebLogic
Server users or groups in the weblogic-application.xml
deployment descriptor.

Example:
<security-role>

<description>the gold customer role</description>
<role-name>gold_customer</role-name>

</security-role>
<security-role>

<description>the customer role</description>
<role-name>customer</role-name>

</security-role>

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-7

weblogic-application
The weblogic-application element is the root element of the application deployment
descriptor.

The following table describes the elements you can define within a weblogic-application
element.

Element Required
Optional

Description

<ejb> Optional Contains information that is specific to the EJB modules that are part
of a WebLogic application. Currently, one can use the ejb element
to specify one or more application level caches that can be used by
the application’s entity beans.

For more information on the elements you can define within the ejb
element, refer to “ejb” on page A-10.

<xml> Optional Contains information about parsers and entity mappings for XML
processing that is specific to this application.

For more information on the elements you can define within the xml
element, refer to “xml” on page A-13.

<jdbc-connection
-pool>

Deprecated

Zero or more. Specifies an application-scoped JDBC connection
pool.

For more information on the elements you can define within the
jdbc-connection-pool element, refer to
“jdbc-connection-pool” on page A-15.

<security> Optional Specifies security information for the application.

For more information on the elements you can define within the
security element, refer to “security” on page A-27.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-8 Developing WebLogic Server Applications

<application-par
am>

Zero or more. Used to specify un-typed parameters that affect the
behavior of container instances related to the application. The
parameters listed here are currently supported. Also, these
parameters in weblogic-application.xml can determine
the default encoding to be used for requests and for responses.
• webapp.encoding.default—Can be set to a string

representing an encoding supported by the JDK. If set, this
defines the default encoding used to process servlet requests and
servlet responses. This setting is ignored if
webapp.encoding.usevmdefault is set to true. This
value is also overridden for request streams by the
input-charset element of weblogic.xml.

• webapp.encoding.usevmdefault—Can be set to true
or false. If true, the system property file.encoding is
used to define the default encoding.

The following parameter is used to affect the behavior of Web
applications that are contained in this application.
• webapp.getrealpath.accept_context_path—

This is a compatibility switch that may be set to true or
false. If set to true, the context path of Web applications is
allowed in calls to the servlet API getRealPath.

Example:

<application-param>

<param-name>

webapp.encoding.default

</param-name>

<param-value>UTF8</param-value>

</application-param>

For more information on the elements you can define within the
application-param element, refer to “application-param” on
page A-28.

Element Required
Optional

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-9

<classloader-str
ucture>

Optional A classloader-structure element allows you to define the
organization of classloaders for this application. The declaration
represents a tree structure that represents the classloader hierarchy
and associates specific modules with particular nodes. A module's
classes are loaded by the classloader that its associated with this
element.

Example:

<classloader-structure>

<module-ref>
<module-uri>ejb1.jar</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>
<module-uri>ejb2.jar</module-uri>

</module-ref>

</classloader-structure>

For more information on the elements you can define within the
classloader-structure element, refer to
“classloader-structure” on page A-28.

<listener> Zero or more. Used to register user defined application lifecycle
listeners. These are classes that extend the abstract base class
weblogic.application.ApplicationLifecycleList
ener.

For more information on the elements you can define within the
listener element, refer to “listener” on page A-28.

<startup> Zero or more. Used to register user-defined startup classes.

For more information on the elements you can define within the
startup element, refer to “startup” on page A-29.

<shutdown> Zero or more. Used to register user defined shutdown classes.

For more information on the elements you can define within the
shutdown element, refer to “shutdown” on page A-29.

Element Required
Optional

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-10 Developing WebLogic Server Applications

ejb
The following table describes the elements you can define within an ejb element.

Element Required
Optional

Description

<entity-cache> Zero or more. The entity-cache element is used to define a
named application level cache that is used to cache entity EJB
instances at runtime. Individual entity beans refer to the
application-level cache that they must use, referring to the cache
name. There is no restriction on the number of different entity beans
that may reference an individual cache.

Application-level caching is used by default whenever an entity
bean does not specify its own cache in the
weblogic-ejb-jar.xml descriptor. Two default caches
named ExclusiveCache and MultiVersionCache are used
for this purpose. An application may explicitly define these default
caches to specify non-default values for their settings. Note that the
caching-strategy cannot be changed for the default caches. By
default, a cache uses max-beans-in-cache with a value of
1000 to specify its maximum size.

Example:

<entity-cache>

<entity-cache-name>ExclusiveCache</entity-cach

e-name>

<max-cache-size>

<megabytes>50</megabytes>

</max-cache-size>

</entity-cache>

For more information on the elements you can define within the
entity-cache element, refer to “entity-cache” on page A-11.

<start-mbds-with-
application

Optional Allows you to configure the EJB container to start Message Driven
BeanS (MDBS) with the application. If set to true, the container
starts MDBS as part of the application. If set to false, the container
keeps MDBS in a queue and the server starts them as soon as it has
started listening on the ports.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-11

entity-cache
The following table describes the elements you can define within a entity-cache element.

Element Required
Optional

Description

<entity-cache-nam
e>

Specifies a unique name for an entity bean cache. The name must be
unique within an ear file and may not be the empty string.

Example:

<entity-cache-name>ExclusiveCache</entity-cache-name>

<max-beans-in-cac
he>

Optional Specifies the maximum number of entity beans that are allowed in
the cache. If the limit is reached, beans may be passivated. This
mechanism does not take into account the actual amount of memory
that different entity beans require. This element can be set to a
value of 1 or greater.
Default Value: 1000

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-12 Developing WebLogic Server Applications

<max-cache-size> Optional Used to specify a limit on the size of an entity cache in terms of
memory size—expressed either in terms of bytes or megabytes. A
bean provider should provide an estimate of the average size of a
bean in the weblogic-ejb-jar.xml descriptor if the bean uses
a cache that specifies its maximum size using the
max-cache-size element. By default, a bean is assumed to have
an average size of 100 bytes.

bytes | megabytes—The size of an entity cache in terms of
memory size, expressed in bytes or megabytes. Used in the
max-cache-size element.

<caching-strateg
y>

Optional Specifies the general strategy that the EJB container uses to manage
entity bean instances in a particular application level cache. A cache
buffers entity bean instances in memory and associates them with
their primary key value.

The caching-strategy element can only have one of the
following values:
• Exclusive—Caches a single bean instance in memory for

each primary key value. This unique instance is typically locked
using the EJB container’s exclusive locking when it is in use, so
that only one transaction can use the instance at a time.

• MultiVersion—Caches multiple bean instances in memory
for a given primary key value. Each instance can be used by a
different transaction concurrently.

Default Value: MultiVersion

Example:

<caching-strategy>Exclusive</caching-strategy>

Element Required
Optional

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-13

xml
The following table describes the elements you can define within an xml element.

parser-factory
The following table describes the elements you can define within a parser-factory element.

Element Required
Optional

Description

<parser-factory> Optional The parent element used to specify a particular XML parser or
transformer for an enterprise application.

For more information on the elements you can define within the
parser-factory element, refer to “parser-factory” on
page A-13.

<entity-mapping> Optional Zero or More. Specifies the entity mapping. This mapping
determines the alternative entity URI for a given public or system
ID. The default place to look for this entity URI is the
lib/xml/registry directory.

For more information on the elements you can define within the
entity-mapping element, refer to “entity-mapping” on
page A-14.

Element Required
Optional

Description

<saxparser-factor
y>

Optional Allows you to set the SAXParser Factory for the XML parsing
required in this application only. This element determines the
factory to be used for SAX style parsing. If you do not specify the
saxparser-factory element setting, the configured SAXParser
Factory style in the Server XML Registry is used.

Default Value: Server XML Registry setting

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-14 Developing WebLogic Server Applications

entity-mapping
The following table describes the elements you can define within an entity-mapping element.

<document-builder
-factory>

Optional Allows you to set the Document Builder Factory for the XML
parsing required in this application only. This element determines
the factory to be used for DOM style parsing. If you do not specify
the document-builder-factory element setting, the
configured DOM style in the Server XML Registry is used.

Default Value: Server XML Registry setting

<transformer-factory> Optional Allows you to set the Transformer Engine for the style sheet
processing required in this application only. If you do not specify a
value for this element, the value configured in the Server XML
Registry is used.

Default value: Server XML Registry setting.

Element Required
Optional

Description

Element Required
Optional

Description

<entity-mapping-n
ame>

Specifies the name for this entity mapping.

<public-id> Optional Specifies the public ID of the mapped entity.

<system-id> Optional Specifies the system ID of the mapped entity.

<entity-uri> Optional Specifies the entity URI for the mapped entity.

<when-to-cache> Optional Legal values are:

cache-on-reference

cache-at-initialization

cache-never
The default value is cache-on-reference.

<cache-timeout-i
nterval>

Optional Specifies the integer value in seconds.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-15

jdbc-connection-pool
The following table describes the elements you can define within a jdbc-connection-pool
element.

Element Required
Optional

Description

<data-source-name
>

Specifies the JNDI name in the application-specific JNDI tree.

<connection-facto
ry>

Specifies the connection parameters that define overrides for default
connection factory settings.
• user-name—Optional. The user-name element is used to

override UserName in the
JDBCDataSourceFactoryMBean.

• url—Optional. The url element is used to override URL in the
JDBCDataSourceFactoryMBean.

• driver-class-name—Optional. The
driver-class-name element is used to override
DriverName in the JDBCDataSourceFactoryMBean.

• connection-params—Zero or more.
• parameter+ (param-value, param-name)—One or

more

For more information on the elements you can define within the
connection-factory element, refer to “connection-factory” on
page A-16.

<pool-params> Optional Defines parameters that affect the behavior of the pool.

For more information on the elements you can define within the
pool-params element, refer to “pool-params” on page A-17.

<driver-params> Optional Sets behavior on WebLogic Server drivers.

For more information on the elements you can define within the
driver-params element, refer to “driver-params” on page A-24.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-16 Developing WebLogic Server Applications

connection-factory
The following table describes the elements you can define within a connection-factory
element.

Element Required
Optional

Description

<factory-name> Optional Specifies the name of a JDBCDataSourceFactoryMBean in
the config.xml file.

<connection-prope
rties>

Optional Specifies the connection properties for the connection factory.
Elements that can be defined for the connection-properties
element are:
• user-name—Optional. Used to override UserName in the

JDBCDataSourceFactoryMBean.
• password—Optional. Used to override Password in the

JDBCDataSourceFactoryMBean.
• url—Optional. Used to override URL in the

JDBCDataSourceFactoryMBean.
• driver-class-name—Optional. Used to override

DriverName in the JDBCDataSourceFactoryMBean
• connection-params—Zero or more. Used to set

parameters which will be passed to the driver when making a
connection. Example:

 <connection-params>

 <parameter>

 <param-name>foo</param-name>

 <param-value>xyz</param-value>

 </parameter>

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-17

pool-params
The following table describes the elements you can define within a pool-params element.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-18 Developing WebLogic Server Applications

Element Required
Optional

Description

<size-params> Optional Defines parameters that affect the number of connections in the pool.
• initial-capacity—Optional. The

initial-capacity element defines the number of physical
database connections to create when the pool is initialized. The
default value is 1.

• max-capacity—Optional. The max-capacity element
defines the maximum number of physical database connections
that this pool can contain. Note that the JDBC Driver may
impose further limits on this value. The default value is 1.

• capacity-increment—Optional. The
capacity-increment element defines the increment by
which the pool capacity is expanded. When there are no more
available physical connections to service requests, the pool
creates this number of additional physical database connections
and adds them to the pool. The pool ensures that it does not
exceed the maximum number of physical connections as set by
max-capacity. The default value is 1.

• shrinking-enabled—Optional. The
shrinking-enabled element indicates whether or not the
pool can shrink back to its initial-capacity when
connections are detected to not be in use.

• shrink-period-minutes—Optional. The
shrink-period-minutes element defines the number of
minutes to wait before shrinking a connection pool that has
incrementally increased to meet demand. The
shrinking-enabled element must be set to true for
shrinking to take place.

• shrink-frequency-seconds—Optional.
• highest-num-waiters—Optional.
• highest-num-unavailable—Optional.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-19

<xa-params> Optional Defines the parameters for the XA DataSources.
• debug-level—Optional. Integer. The debug-level

element defines the debugging level for XA operations. The
default value is 0.

• keep-conn-until-tx-complete-enabled—Optional.
Boolean. If you set the
keep-conn-until-tx-complete-enabled element to
true, the XA connection pool associates the same XA
connection with the distributed transaction until the transaction
completes.

• end-only-once-enabled—Optional. Boolean. If you set
the end-only-once-enabled element to true, the
XAResource.end() method is only called once for each
pending XAResource.start() method.

• recover-only-once-enabled—Optional. Boolean. If you set the
recover-only-once-enabled element to true, recover is only
called one time on a resource.

• tx-context-on-close-needed—Optional. Set the
tx-context-on-close-needed element to true if the
XA driver requires a distributed transaction context when
closing various JDBC objects (for example, result sets,
statements, connections, and so on). If set to true, the SQL
exceptions that are thrown while closing the JDBC objects in no
transaction context are swallowed.

• new-conn-for-commit-enabled—Optional. Boolean. If
you set the new-conn-for-commit-enabled element to
true, a dedicated XA connection is used for commit/rollback
processing of a particular distributed transaction.

• prepared-statement-cache-size—Deprecated.
Optional. Use the prepared-statement-cache-size element to set
the size of the prepared statement cache. The size of the cache is
a number of prepared statements created from a particular
connection and stored in the cache for further use. Setting the
size of the prepared statement cache to 0 turns it off.

Note: Prepared-statement-cache-size is deprecated.
Use cache-size in
driver-params/prepared-statement. See
“driver-params” for more information.

Element Required
Optional

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-20 Developing WebLogic Server Applications

<xa-params>
Continued...

Optional • keep-logical-conn-open-on-release—Optional.
Boolean. Set the
keep-logical-conn-open-on-release element to
true, to keep the logical JDBC connection open when the
physical XA connection is returned to the XA connection pool.
The default value is false.

• local-transaction-supported—Optional. Boolean.
Set the local-transaction-supported to true if the
XA driver supports SQL with no global transaction; otherwise,
set it to false. The default value is false.

• resource-health-monitoring-enabled—Optional.
Set the resource-health-monitoring-enabled
element to true to enable JTA resource health monitoring for
this connection pool.

• xa-set-transaction-timeout—Optional.
 Used in: xa-params
 Example:
 <xa-set-transaction-timeout>

 true

 </xa-set-transaction-timeout>

• xa-transaction-timeout—Optional.
When the xa-set-transaction-timeout value is set to
true, the transaction manager invokes setTransactionTimeout on
the resource before calling XAResource.start. The
Transaction Manager passes the global transaction timeout
value. If this attribute is set to a value greater than 0, then this
value is used in place of the global transaction timeout.
Default value: 0
Used in: xa-params
Example:
 <xa-transaction-timeout>
 30

 </xa-transaction-timeout>

Element Required
Optional

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-21

<login-delay-sec
onds>

Optional Sets the number of seconds to delay before creating each physical
database connection. Some database servers cannot handle multiple
requests for connections in rapid succession. This property allows
you to build in a small delay to let the database server catch up. This
delay occurs both during initial pool creation and during the lifetime
of the pool whenever a physical database connection is created.

<leak-profiling-
enabled>

Optional Enables JDBC connection leak profiling. A connection leak occurs
when a connection from the pool is not closed explicitly by calling
the close() method on that connection. When connection leak
profiling is active, the pool stores the stack trace at the time the
connection object is allocated from the pool and given to the client.
When a connection leak is detected (when the connection object is
garbage collected), this stack trace is reported.

This element uses extra resources and will likely slowdown
connection pool operations, so it is not recommended for production
use.

Element Required
Optional

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-22 Developing WebLogic Server Applications

<connection-chec
k-params>

Optional • Defines whether, when, and how connections in a pool is
checked to make sure they are still alive.

• table-name—Optional. The table-name element defines
a table in the schema that can be queried.

• check-on-reserve-enabled—Optional. If the
check-on-reserve-enabled element is set to true, then the
connection will be tested each time before it is handed out to a
user.

• check-on-release-enabled—Optional. If the
check-on-release-enabled element is set to true,
then the connection will be tested each time a user returns a
connection to the pool.

• refresh-minutes—Optional. If the refresh-minutes
element is defined, a trigger is fired periodically (based on the
number of minutes specified). This trigger checks each
connection in the pool to make sure it is still valid.

• check-on-create-enabled—Optional. If set to true,
then the connection will be tested when it is created.

• connection-reserve-timeout-seconds—Optional.
Number of seconds after which the call to reserve a connection
from the pool will timeout.

• connection-creation-retry-frequency-seconds
—Optional. The frequency of retry attempts by the pool to
establish connections to the database.

• inactive-connection-timeout-seconds—
Optional. The number of seconds of inactivity after which
reserved connections will forcibly be released back into the pool.

<connection-chec
k-params>

Continued...

Optional • test-frequency-seconds—Optional. The number of
seconds between database connection tests. After every
test-frequency-seconds interval, unused database connections
are tested using table-name. Connections that do not pass the
test will be closed and reopened to re-establish a valid physical
database connection. If table-name is not set, the test will not
be performed.

Element Required
Optional

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-23

<jdbcxa-debug-le
vel>

Optional This is an internal setting.

<remove-infected
-connections-ena
bled>

Optional Controls whether a connection is removed from the pool when the
application asks for the underlying vendor connection object.
Enabling this attribute has an impact on performance; it essentially
disables the pooling of connections (as connections are removed
from the pool and replaced with new connections).

Element Required
Optional

Description

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-24 Developing WebLogic Server Applications

driver-params
The following table describes the elements you can define within a driver-params element.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-25

Element Required
Optional

Description

<statement> Optional Defines the driver-params statement. Contains the following
optional element: profiling-enabled.

Example:

 <statement>

<profiling-enabled>true</profiling-enabled>

 </statement>

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-26 Developing WebLogic Server Applications

<prepared-stateme
nt

Optional Enables the running of JDBC prepared statement cache profiling.
When enabled, prepared statement cache profiles are stored in
external storage for further analysis. This is a resource-consuming
feature, so it is recommended that you turn it off on a production
server. The default value is false.
• profiling-enabled—Optional.
• cache-profiling-threshold—Optional. The

cache-profiling-threshold element defines a number
of statement requests after which the state of the prepared
statement cache is logged. This element minimizes the output
volume. This is a resource-consuming feature, so it is
recommended that you turn it off on a production server.

• cache-size—Optional. The cache-size element returns
the size of the prepared statement cache. The size of the cache is
a number of prepared statements created from a particular
connection and stored in the cache for further use.

• parameter-logging-enabled—Optional. During SQL
roundtrip profiling it is possible to store values of prepared
statement parameters. The
parameter-logging-enabled element enables the
storing of statement parameters. This is a resource-consuming
feature, so it is recommended that you turn it off on a production
server.

• max-parameter-length—Optional. During SQL
roundtrip profiling it is possible to store values of prepared
statement parameters. The max-parameter-length
element defines maximum length of the string passed as a
parameter for JDBC SQL roundtrip profiling. This is a
resource-consuming feature, so you should limit the length of
data for a parameter to reduce the output volume.

• cache-type—Optional.

<row-prefetch-en
abled>

Optional

Element Required
Optional

Description

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-27

security
The following table describes the elements you can define within a security element.

<row-prefetch-si
ze>

Optional

<stream-chunk-si
ze>

Optional

Element Required
Optional

Description

Element Required
Optional

Description

<realm-name> Optional Names a security realm to be used by the application. If none is
specified, the system default realm is used

<security-role-as
signment>

Declares a mapping between an application-wide security role and
one or more WebLogic Server principals.

Example:

 <security-role-assignment>

 <role-name>

 PayrollAdmin

 </role-name>

 <principal-name>

 Tanya

 </principal-name>

 <principal-name>

 Fred

 </principal-name>

 <principal-name>

 system

 </principal-name>

 </security-role-assignment>

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-28 Developing WebLogic Server Applications

application-param
The following table describes the elements you can define within a application-param
element.

classloader-structure
The following table describes the elements you can define within a classloader-structure
element.

listener
The following table describes the elements you can define within a listener element.

Element Required
Optional

Description

<description> Optional Provides a description of the application parameter.

<param-name> Defines the name of the application parameter.

<param-value> Defines the value of the application parameter.

Element Required
Optional

Description

<module-ref> Zero or more. The following table describes the elements you can
define within a module-ref element.

module-uri—Zero or more. Defined within the module-ref
element.

Element Required
Optional

Description

<listener-class> Name of the user’s implementation of
ApplicationLifecycleListener.

<listener-uri> Optional A JAR file within the EAR that contains the implementation. If you
do not specify the listener-uri, it is assumed that the class is
visible to the application.

weblog ic-app l icat ion . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications A-29

startup
The following table describes the elements you can define within a startup element.

shutdown
The following table describes the elements you can define within a shutdown element.

Element Required
Optional

Description

<startup-class> Defines the name of the class to be run when the application is being
deployed.

<startup-uri> Optional Defines a JAR file within the EAR that contains the
startup-class. If startup-uri is not defined, then its
assumed that the class is visible to the application.

Element Required
Optional

Description

<shutdown-class> Defines the name of the class to be run when the application is
undeployed.

<shutdown-uri> Optional Defines a JAR file within the EAR that contains the
shutdown-class. If you do not define the shutdown-uri
element, it is assumed that the class is visible to the application.

Ente rp r ise App l i cat ion Dep loyment Desc r ip to r E l ements

A-30 Developing WebLogic Server Applications

Developing WebLogic Server Applications B-1

A P P E N D I X B

Client Application Deployment
Descriptor Elements

The following sections describe deployment descriptors for J2EE client applications on
WebLogic Server. Often, when it comes to J2EE applications, users are only concerned with the
server-side modules (Web applications, EJBs, connectors). You configure these server-side
modules using the application.xml deployment descriptor, discussed in Appendix A,
“Enterprise Application Deployment Descriptor Elements.”

However, it is also possible to include a client module (a JAR file) in an EAR file. This JAR file
is only used on the client side; you configure this client module using the
client-application.xml deployment descriptor. This scheme makes it possible to package
both client and server side modules together. The server looks only at the parts it is interested in
(based on the application.xml file) and the client looks only at the parts it is interested in
(based on the client-application.xml file).

For client-side modules, two deployment descriptors are required: a J2EE standard deployment
descriptor, application-client.xml, and a WebLogic-specific runtime deployment
descriptor with a name derived from the client application JAR file.

“application-client.xml Deployment Descriptor Elements” on page B-2

“WebLogic Run-time Client Application Deployment Descriptor” on page B-5

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

B-2 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
The application-client.xml file is the deployment descriptor for J2EE client applications.
It must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,

Inc.//DTD J2EE Application Client 1.2//EN"

"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

The following sections describe each of the elements that can appear in the file.

application-client
application-client is the root element of the application client deployment descriptor. The
application client deployment descriptor describes the EJB modules and other resources used by
the client application.

The following table describes the elements you can define within an application-client
element.

Element Required
Optional

Description

<icon> Optional Specifies the locations of small and large images that represent the
application in a GUI tool. This element is not currently used by
WebLogic Server.

<display-name> Specifies the application display name, a short name that is intended to
be displayed by GUI tools.

<description> Optional The description element provides a description of the client
application.

appl i ca t ion-c l i en t . xml Dep loyment Descr ip to r E lements

Developing WebLogic Server Applications B-3

<env-entry> Contains the declaration of a client application’s environment entries.

Elements that can be defined within the env-entry element are:
• description—Optional. The description element

contains a description of the particular environment entry.
• env-entry-name—The env-entry-name element

contains the name of a client application’s environment
entry.

• env-entry-type—The env-entry-type element
contains the fully-qualified Java type of the environment
entry. The possible values are: java.lang.Boolean,
java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Byte,
java.lang.Short, java.lang.Long, and
java.lang.Float.

• env-entry-value—Optional. The env-entry-value
element contains the value of a client application’s
environment entry. The value must be a String that is valid
for the constructor of the specified env-entry-type.

Element Required
Optional

Description

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

B-4 Developing WebLogic Server Applications

<ejb-ref> Used for the declaration of a reference to an EJB referenced in the
client application.

Elements that can be defined within the ejb-ref element are:
• description—Optional. The description element

provides a description of the referenced EJB.
• ejb-ref-name—Contains the name of the referenced EJB.

Typically the name is prefixed by ejb/, such as
ejb/Deposit.

• ejb-ref-type—Contains the expected type of the
referenced EJB, either Session or Entity.

• home—Contains the fully-qualified name of the referenced
EJB’s home interface.

• remote—Contains the fully-qualified name of the
referenced EJB’s remote interface.

• ejb-link—Specifies that an EJB reference is linked to an
enterprise JavaBean in the J2EE application package. The
value of the ejb-link element must be the name of the
ejb-name of an EJB in the same J2EE application.

Element Required
Optional

Description

WebLog ic Run-t ime C l i ent App l ica t i on Dep loyment Descr ip to r

Developing WebLogic Server Applications B-5

WebLogic Run-time Client Application Deployment Descriptor
This XML-formatted deployment descriptor is not stored inside of the client application JAR file
like other deployment descriptors, but must be in the same directory as the client application JAR
file.

The file name for the deployment descriptor is the base name of the JAR file, with the extension
.runtime.xml. For example, if the client application is packaged in a file named
c:/applications/ClientMain.jar, the run-time deployment descriptor is in the file named
c:/applications/ClientMain.runtime.xml.

<resource-ref> Contains a declaration of the client application’s reference to an
external resource.

Elements that can be defined within the resource-ref element are:
• description—Optional. The description element

contains a description of the referenced external resource.
• res-ref-name—Specifies the name of the resource

factory reference name. The resource factory reference
name is the name of the client application’s environment
entry whose value contains the JNDI name of the data
source.

• res-type—Specifies the type of the data source. The type
is specified by the Java interface or class expected to be
implemented by the data source.

• res-auth—Specifies whether the EJB code signs on
programmatically to the resource manager, or whether the
Container will sign on to the resource manager on behalf of
the EJB. In the latter case, the Container uses information
that is supplied by the Deployer. The res-auth element can
have one of two values: Application or Container.

Element Required
Optional

Description

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

B-6 Developing WebLogic Server Applications

application-client
The application-client element is the root element of a WebLogic-specific run-time client
deployment descriptor. The following table describes the elements you can define within an
application-client element.

Element Required
Optional

Description

<env-entry> Specifies values for environment entries declared in the deployment
descriptor.

Elements that can be defined within the env-entry element are:
• env-entry-name—Contains the name of an application

client's environment entry.
Example:
<env-entry-name>EmployeeAppDB</env-entry-name>

• env-entry-value—Contains the value of an application
client’s environment entry. The value must be a valid string
for the constructor of the specified type, which takes a single
string parameter.

WebLog ic Run-t ime C l i ent App l ica t i on Dep loyment Descr ip to r

Developing WebLogic Server Applications B-7

<ejb-ref> Specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

Elements that can be defined within the ejb-ref element are:
• ejb-ref-name—Contains the name of an EJB reference.

The EJB reference is an entry in the application client’s
environment. It is recommended that name is prefixed with
ejb/.
Example:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

• jndi-name—Specifies the JNDI name for the EJB.

<resource-ref> Declares an application client’s reference to an external resource. It
contains the resource factory reference name, an indication of the
resource factory type expected by the application client’s code, and the
type of authentication (bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi

-name>
</resource-ref>

Elements that can be defined within the resource-ref element are:
• res-ref-name—Specifies the name of the resource

factory reference name. The resource factory reference
name is the name of the application client’s environment
entry whose value contains the JNDI name of the data
source.

• jndi-name—Specifies the JNDI name for the resource.

Element Required
Optional

Description

Cl ien t App l ica t i on Dep loyment Descr ip to r E lements

B-8 Developing WebLogic Server Applications

Developing WebLogic Server Applications Index-1

Index

Symbols
.ear file 1-6

A
Administration Console

creating a Mail Session 3-10
editing deployment descriptors 1-11

application components 1-2
application.xml file

deployment descriptor elements A-1
icon element A-3
module element A-4
security-role A-6

application-client element B-2, B-6
application-client.xml

application-client element B-2
deployment descriptor elements B-1

applications 1-2
and threads 3-8

C
classes

resource adapter 4-15
classpath setting 3-7
client applications 1-8

deployment descriptor B-5
deployment descriptor elements B-1

ClientMain.runtime.xml file
application-client element B-6

common utilities in packaging 4-15
compiling

setting the classpath 3-7
components 1-2

Connector 1-2
connector 1-5
EJB 1-2, 1-4
Enterprise JavaBean 1-4
Web 1-2
Web application 1-3
WebLogic Server 1-2

configuration files, JavaMail 3-10
connector components 1-2, 1-5
connectors

XML deployment descriptors 1-9
customer support contact information xiii

D
database system 1-12
deployment descriptors

application.xml elements A-1
automatically generating 1-10
client application elements B-1
editing using the Administration Console

1-11
WebLogic run-time client application B-5

development environment
third-party software 1-13

documentation, where to find it xii

E
editing

deployment descriptors 1-11
EJB components 1-2

Index-2 Developing WebLogic Server Applications

EJBs 1-4
and WebLogic Server 1-4
deployment descriptor 1-4
overview 1-4
XML deployment descriptors 1-9

enterprise applications 1-6
archives A-1

Enterprise JavaBeans 1-4
and WebLogic Server 1-4
deployment descriptor 1-4
overview 1-4
XML deployment descriptors 1-9

entity beans 1-4

G
generating deployment descriptors automatically
1-10

I
icon element A-3

J
Java 2 Platform, Enterprise Edition (J2EE)

about 1-2
JavaMail

API version 1.1.3 3-9
configuration files 3-10
configuring for WebLogic Server 3-10
reading messages 3-13
sending messages 3-12
using with WebLogic Server applications

3-9
JavaServer pages 1-3
javax.mail package 3-9
JDBC driver 1-12
jndi-name element A-2, A-3, A-4, A-6, A-7,
A-10, A-11, A-13, B-2, B-6

M
Mail Session

creating in the Console 3-10
module element A-4
multithreaded components 3-8

P
packaging

automatically generating deployment
descriptors 1-10

printing product documentation xii
programming

JavaMail configuration files 3-10
reading messages with JavaMail 3-13
sending messages with JavaMail 3-12
topics 3-1
using JavaMail with WebLogic Server

applications 3-9

R
resource adapters 1-2, 1-5

classes 4-15
XML deployment descriptors 1-9

S
security-role element A-6
servlets 1-3
session beans 1-4
software tools

database system 1-12
JDBC driver 1-12
Web browser 1-12

Sun Microsystems 1-2
support

technical xiii

T
third-party software 1-13

Developing WebLogic Server Applications Index-3

threads
and applications 3-8
avoiding undesirable interactions with

WebLogic Server threads 3-8
multithreaded components 3-8
testing multithreaded code 3-9
using in WebLogic Server 3-8

W
Web application components 1-3

JavaServer pages 1-3
servlets 1-3

Web applications
XML deployment descriptors 1-9

Web browser 1-12
Web components 1-2
WebLogic run-time client application

deployment descriptor B-5
WebLogic Server

configuring JavaMail for 3-10
editing deployment descriptors using the

Console 1-11
EJBs 1-4
using threads in 3-8

WebLogic Server application
components 1-2

WebLogic Server applications 1-2
programming topics 3-1
using JavaMail with 3-9

	Contents
	1.
	2.
	3.
	4.
	A.
	B.

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Understanding WebLogic Server Applications and Basic Concepts
	J2EE Platform and WebLogic Server
	What Are WebLogic Server J2EE Applications and Modules?
	Web Application Modules
	Servlets
	JavaServer Pages
	More Information on Web Application Modules

	Enterprise JavaBean Modules
	EJB Overview
	EJBs and WebLogic Server

	Connector Modules
	Enterprise Applications
	WebLogic Web Services
	Client Applications
	XML Deployment Descriptors
	Automatically Generating Deployment Descriptors
	WebLogic Builder
	EJBGen
	Java-based Command-line Utilities

	Editing Deployment Descriptors

	Development Software
	Source Code Editor or IDE
	Database System and JDBC Driver
	Web Browser
	Third-Party Software

	Creating WebLogic Server Applications
	Overview of the Split Development Directory Environment
	Source and Build Directories
	Deploying from a Split Development Directory
	Split Development Directory Ant Tasks

	Using the Split Development Directory Structure: Main Steps
	Organizing J2EE Components in a Split Development Directory
	Source Directory Overview
	Enterprise Application Configuration
	Web Applications
	EJBs
	Important Notes Regarding EJB Descriptors

	Organizing Shared Classes in a Split Development Directory
	Shared Utility Classes
	Third-Party Libraries
	Class Loading for Shared Classes

	Generating a Basic build.xml File Using weblogic.BuildXMLGen
	Generating Deployment Descriptors Using wlddcreate
	Compiling Applications Using wlcompile
	Using includes and excludes Properties
	wlcompile Ant Task Options
	Nested javac Options

	Deploying Applications Using wldeploy
	Packaging Applications Using wlpackage
	Archive versus Exploded Archive Directory
	wlpackage Ant Task

	Developing Multiple-EAR Projects Using the Split Development Directory
	Organizing Libraries and Classes Shared by Multiple EARs
	Linking Multiple build.xml Files

	Best Practices for Developing WebLogic Server Applications

	Programming Topics
	Compiling Java Code
	javac Compiler
	appc Compiler
	Using Ant Tasks to Create Compile Scripts
	wlcompile Ant Task
	wlappc Ant Task

	Setting the Classpath for Compiling Code

	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	Sending Messages with JavaMail
	Reading Messages with JavaMail

	Programming Applications for WebLogic Server Clusters

	Enterprise Application Deployment Descriptor Elements
	application.xml Deployment Descriptor Elements
	application
	icon
	module
	security-role

	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	xml
	jdbc-connection-pool
	security
	application-param
	classloader-structure
	listener
	startup
	shutdown

	Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client

	WebLogic Run-time Client Application Deployment Descriptor
	application-client

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

