
BEAWebLogic
Server™

Programming WebLogic
Web Services

Version 8.1
Revised: June 28, 2006

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Web Services iii

Contents

About This Document
Audience . xxi

e-docs Web Site . xxi

How to Print the Document . xxi

Contact Us! .xxii

Documentation Conventions .xxii

1. Introduction to WebLogic Web Services
Overview of Web Services . 1-1

Why Use Web Services? . 1-2

Web Service Standards . 1-3

BEA Implementation of Web Service Specifications . 1-4

SOAP . 1-4

WSDL 1.1 . 1-5

JAX-RPC 1.0 . 1-6

Web Services Security (WS-Security) . 1-7

UDDI 2.0 . 1-8

Additional Specifications Supported by WebLogic Web Services 1-8

WebLogic Web Service Features. 1-8

Unsupported Features . 1-11

Examples of Creating and Invoking a Web Service . 1-12

Creating WebLogic Web Services: Main Steps. 1-13

iv Programming WebLogic Web Services

Roadmap to Common Tasks for Creating Web Services . 1-14

Editing XML Files . 1-17

2. Architectural Overview
Overview of WebLogic Web Services Architecture. 2-1

Back-end Component Operation. 2-2

Back-end Component and SOAP Message Handler Chain Operation 2-3

SOAP Message Handler Chain Operation . 2-4

3. Creating a WebLogic Web Service: A Simple Example
Overview of the Web Service Example . 3-1

Building and Running the Trader WebLogic Web Service Example 3-2

Anatomy of the Example. 3-4

The EJB Java Interfaces and Implementation Class . 3-4

Remote Interface (Trader.java) . 3-4

Session Bean Implementation Class (TraderBean.java) 3-5

Home Interface (TraderHome.java) . 3-8

The Non-Built-In Data Type TraderResult . 3-8

The EJB Deployment Descriptors . 3-9

ejb-jar.xml . 3-9

weblogic-ejb-jar.xml . 3-10

The servicegen Ant Task That Assembles the Web Service 3-11

The Client Application to Invoke The Web Service . 3-11

4. Designing WebLogic Web Services
Choosing the Back-end Components of Your Web Service . 4-1

EJB Back-end Component . 4-2

Java Class Back-end Component . 4-2

Choosing Between Synchronous or Asynchronous Operations . 4-2

Programming WebLogic Web Services v

Choosing RPC-Oriented or Document-Oriented Web Services . 4-3

Using Built-In and Non-Built-In Data Types . 4-4

Using SOAP Message Handlers to Intercept the SOAP Message. 4-5

Mimicking a Conversational (Stateful) WebLogic Web Service 4-5

5. Implementing WebLogic Web Services
Overview of Implementing a WebLogic Web Service . 5-1

Examples of Implementing WebLogic Web Services. 5-2

Implementing a WebLogic Web Service: Main Steps . 5-2

Writing the Java Code for the Components. 5-3

Implementing a Web Service By Writing a Stateless Session EJB 5-4

Implementing a Web Service By Writing a Java Class . 5-4

Implementing Non-Built-In Data Types. 5-5

Implementing a Document-Oriented Web Service. 5-6

Generating a Partial Implementation From a WSDL File . 5-6

Running the wsdl2Service Ant Task . 5-7

Sample build.xml Files for the wsdl2Service Ant Task 5-8

Using SOAP Attachments . 5-9

java.lang.String . 5-10

javax.activation.DataHandler . 5-10

Implementing Multiple Return Values . 5-10

Using Out and In-Out Parameters . 5-11

Using Holder Classes to Implement Multiple Return Values 5-12

Throwing SOAP Fault Exceptions . 5-14

Supported Built-In Data Types . 5-15

XML Schema-to-Java Mapping for Built-In Data Types. 5-16

Java-to-XML Mapping for Built-In Data Types . 5-18

vi Programming WebLogic Web Services

6. Assembling WebLogic Web Services Using Ant Tasks
Overview of Assembling WebLogic Web Services Using Ant Tasks 6-1

Examples of Assembling WebLogic Web Services . 6-2

Assembling WebLogic Web Services Using the servicegen Ant Task 6-3

What the servicegen Ant Task Does . 6-3

Assembling WebLogic Web Services Automatically: Main Steps 6-3

Creating the Build File That Specifies the servicegen Ant Task 6-5

Assembling WebLogic Web Services Using Individual Ant Tasks 6-6

Assembling a Web Service Starting with Java. 6-6

Assembling a Web Service Starting with an XML Schema. 6-7

Running the source2wsdd Ant Task. 6-8

Running the autotype Ant Task . 6-10

Running the clientgen Ant Task. 6-13

Running the wspackage Ant task . 6-14

The Web Service EAR File Package. 6-17

Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks 6-18

Supported XML Non-Built-In Data Types . 6-19

Supported Java Non-Built-In Data Types . 6-20

Data Type Non-Compliance with JAX-RPC . 6-21

Non-Roundtripping of Generated Data Type Components. 6-22

Deploying and Testing WebLogic Web Services . 6-23

WebLogic Web Services Home Page and WSDL URLs . 6-23

Denying Access to the WSDL and Home Page of a WebLogic Web Service 6-25

7. Invoking Web Services from Client Applications and WebLogic
Server

Overview of Invoking Web Services . 7-2

JAX-RPC API 1.0 . 7-2

Programming WebLogic Web Services vii

The Runtime Client JAR Files . 7-3

Examples of Clients That Invoke Web Services . 7-4

Creating Java Client Applications to Invoke Web Services: Main Steps 7-4

Generating the Client JAR File by Running the clientgen Ant Task 7-5

Getting Information About a Web Service . 7-7

Writing the Java Client Application to Invoke a Web Service 7-8

Writing a Simple Client Application. 7-8

Writing a Client That Uses Out or In-Out Parameters 7-10

Writing an Asynchronous Client Application . 7-11

Description of the Generated Asynchronous Web Service Client Stub 7-12

Writing the Asynchronous Client Java Code . 7-13

Using Web Services System Properties. 7-14

Invoking Web Services from WebLogic Server . 7-22

Creating and Using Portable Stubs. 7-22

 Using the VersionMaker Utility to Update Client JAR Files 7-23

Using a Proxy Server with the WebLogic Web Services Client 7-24

Writing Advanced Java Client Applications . 7-25

Writing a Dynamic Client That Uses WSDL . 7-25

Writing a Dynamic Client That Does Not Use WSDL . 7-27

Writing a Dynamic Client That Uses Non-Built-In Data Types. 7-29

Writing a J2ME Client . 7-31

Writing a J2ME Client That Uses SSL. 7-32

8. Using the WebLogic Web Services APIs
Overview of the WebLogic Web Service APIs. 8-1

Registering Data Type Mapping Information in a Dynamic Client 8-2

Accessing HttpSession Information from a Web Service Component 8-5

Introspecting the WSDL from a Client Application . 8-6

viii Programming WebLogic Web Services

9. Using JMS Transport to Invoke a WebLogic Web Service
Overview of Using JMS Transport . 9-1

Specifying JMS Transport for a WebLogic Web Service: Main Steps. 9-2

Updating the web-services.xml File to Specify JMS Transport . 9-3

Invoking a Web Service Using JMS Transport. 9-3

10.Using Reliable SOAP Messaging
Overview of Reliable SOAP Messaging. 10-1

Reliable SOAP Messaging Architecture . 10-2

Receiver Transactional Context . 10-4

Guidelines For Programming the EJB That Implements a Reliable Web Service
Operation . 10-5

Guidelines for Programming the Java Class That Implements a Reliable Web
Service Operation . 10-6

Configuring the Transaction . 10-6

Limitations of Reliable SOAP Messaging . 10-6

Using Reliable SOAP Messaging: Main Steps . 10-6

Configuring the Sender WebLogic Server . 10-8

Configuring the Receiver WebLogic Server . 10-10

Writing the Java Code to Invoke an Operation Reliably . 10-11

Handling Sender Server Failures . 10-14

Updating the web-services.xml File Manually for Reliable SOAP Messaging. . . 10-15

11.Using Non-Built-In Data Types
Overview of Using Non-Built-In Data Types . 11-1

Creating Non-Built-In Data Types Manually: Main Steps . 11-2

Writing the XML Schema Data Type Representation . 11-3

Writing the Java Data Type Representation. 11-4

Programming WebLogic Web Services ix

Writing the Serialization Class . 11-5

Creating the Data Type Mapping File . 11-10

Updating the web-services.xml File With XML Schema Information 11-11

12.Creating SOAP Message Handlers to Intercept the SOAP
Message

Overview of SOAP Message Handlers and Handler Chains. 12-1

Creating SOAP Message Handlers: Main Steps . 12-2

Designing the SOAP Message Handlers and Handler Chains. 12-4

Implementing the Handler Interface . 12-6

Implementing the Handler.init() Method . 12-8

Implementing the Handler.destroy() Method . 12-8

Implementing the Handler.getHeaders() Method . 12-9

Implementing the Handler.handleRequest() Method . 12-9

Implementing the Handler.handleResponse() Method . 12-10

Implementing the Handler.handleFault() Method . 12-11

Directly Manipulating the SOAP Request and Response Message Using SAAJ . 12-12

The SOAPPart Object . 12-13

The AttachmentPart Object . 12-13

Manipulating Image Attachments in a SOAP Message Handler 12-15

Extending the GenericHandler Abstract Class . 12-17

Updating the web-services.xml File with SOAP Message Handler Information 12-19

Using SOAP Message Handlers and Handler Chains in a Client Application 12-21

Accessing the MessageContext of a Handler From the Backend Component 12-23

13.Configuring Security
Overview of Web Services Security . 13-1

What Type of Security Should You Configure? . 13-2

x Programming WebLogic Web Services

Configuring Message-Level Security (Digital Signatures and Encryption) 13-3

Main Use Cases . 13-3

Unimplemented Features of the Web Services Security Core Specification 13-4

Terminology . 13-5

Architectural Overview of Message-Level Security . 13-5

Configuring Message-Level Security: Main Steps . 13-9

Configuring The Identity Asserter Provider for the myrealm Security Realm 13-12

Updating the servicegen build.xml File . 13-12

Updating Security Information in the web-services.xml File. 13-14

Encrypting Passwords in the web-services.xml File 13-21

Updating a Java Client to Invoke a Data-Secured Web Service 13-23

Configuring Transport-Level Security (SSL): Main Steps . 13-31

Implications of Using SSL With Web Services . 13-32

Configuring SSL for a Client Application . 13-33

Using the WebLogic Server-Provided SSL Implementation 13-33

Configuring the WebLogic SSL Implementation Programatically. 13-35

Using SSL Socket Sharing When Using the WebLogic SSL Implementation 13-36

Using a Third-Party SSL Implementation . 13-38

Extending the SSLAdapterFactory Class. 13-40

Configuring Two-Way SSL For a Client Application . 13-40

Using a Proxy Server . 13-41

Configuring Access Control Security: Main Steps . 13-41

Controlling Access to WebLogic Web Services . 13-42

Securing the Entire Web Service and Its Operations 13-42

Securing the Web Service URL . 13-43

Securing the Stateless Session EJB and Its Methods 13-43

Securing the WSDL and Home Page of the Web Service 13-44

Specifying the HTTPS Protocol. 13-44

Programming WebLogic Web Services xi

Coding a Client Application to Authenticate Itself to a Web Service 13-45

Testing a Secure WebLogic Web Service From Its Home Page 13-46

14.Internationalization
Overview of Internationalization. 14-1

Internationalizing a WebLogic Web Service. 14-2

Specifying the Character Set for a WebLogic Web Service 14-2

Updating the web-services.xml File . 14-2

Setting a WebLogic Server System Property . 14-3

Order of Precedence of Character Set Configuration Used By WebLogic Server. . 14-3

Invoking a Web Service Using a Specific Character Set . 14-4

Setting the Character Set When Invoking a Web Service . 14-4

Character Set Settings in HTTP Request Headers Honored by WebLogic Web Services
14-5

15.Using SOAP 1.2
Overview of Using SOAP 1.2 . 15-1

Specifying SOAP 1.2 for a WebLogic Web Service: Main Steps. 15-2

Updating the web-services.xml File Manually . 15-3

Invoking a Web Service Using SOAP 1.2. 15-3

16.Creating JMS-Implemented WebLogic Web Services
Overview of JMS-Implemented WebLogic Web Services . 16-1

Designing JMS-Implemented WebLogic Web Services . 16-2

Retrieving and Processing Messages . 16-2

Example of Using JMS Components . 16-3

Creating JMS-Implemented WebLogic Web Services . 16-3

Configuring JMS Components for Message-Style Web Services. 16-4

Assembling JMS-Implemented WebLogic Web Services Using servicegen 16-5

xii Programming WebLogic Web Services

Assembling JMS-Implemented WebLogic Web Services Manually 16-8

Packaging the JMS Message Consumers and Producers . 16-8

Updating the web-services.xml File With Component Information 16-8

Sample web-services.xml File for JMS Component Web Service 16-9

Deploying JMS-Implemented WebLogic Web Services . 16-10

Invoking JMS-Implemented WebLogic Web Services. 16-10

Invoking an Asynchronous Web Service Operation to Send Data 16-11

Invoking a Synchronous Web Service Operation to Send Data 16-13

17.Administering WebLogic Web Services
Overview of Administering WebLogic Web Services . 17-1

Using the Administration Console to Administer Web Services 17-2

18.Publishing and Finding Web Services Using UDDI
Overview of UDDI . 18-1

UDDI and Web Services . 18-2

UDDI and Business Registry . 18-2

UDDI Data Structure . 18-3

WebLogic Server UDDI Features . 18-4

UDDI 2.0 Server . 18-5

Configuring the UDDI 2.0 Server . 18-5

Configuring an External LDAP Server . 18-6

51acumen.ldif File Contents . 18-6

Description of Properties in the uddi.properties File . 18-12

UDDI Directory Explorer . 18-21

UDDI Client API. 18-22

Pluggable tModel . 18-22

XML Elements and Permissible Values. 18-23

Programming WebLogic Web Services xiii

XML Schema for Pluggable tModels. 18-24

Sample XML for a Pluggable tModel . 18-26

19.Interoperability
Overview of Interoperability . 19-1

Avoid Using Vendor-Specific Extensions. 19-2

Stay Current With the Latest Interoperability Tests . 19-2

Understand the Data Models of Your Applications . 19-3

Understand the Interoperability of Various Data Types . 19-3

Results of SOAPBuilders Interoperability Lab Round 3 Tests . 19-5

Interoperating With .NET . 19-5

20.Troubleshooting
Using the Web Service Home Page to Test Your Web Service 20-2

URL Used to Invoke the Web Service Home Page . 20-2

Testing the Web Service . 20-4

Viewing SOAP Messages . 20-4

Setting Verbose Mode with Ant . 20-4

Setting Verbose Mode Programatically . 20-5

Posting the HTTP SOAP Message . 20-5

Composing the SOAP Request. 20-7

Debugging Problems with WSDL. 20-8

Verifying a WSDL File . 20-9

Verifying an XML Schema . 20-10

Debugging Data Type Generation (Autotyping) Problems . 20-10

Common XML Schema Problems . 20-10

Common Java Problems . 20-11

Debugging Performance Problems . 20-11

xiv Programming WebLogic Web Services

Performance Hints. 20-12

Re-Resolving IP Addresses in the Event of a Failure . 20-12

BindingException When Running clientgen or autotype Ant Task 20-13

Client Error When Using the WebLogic Web Service Client to Connect to a Third-Party SSL
Server . 20-13

Client Error When Invoking Operation That Returns an Abstract Type 20-14

Including Nillable, Optional, and Empty XML Elements in SOAP Messages. 20-15

SSLKeyException When Trying to Invoke a Web Service Using HTTPS 20-17

Autotype Ant Task Not Generating Serialization Classes for All Specified Java Types20-17

Client Gets HTTP 401 Error When Invoking a Non-Secure Web Service 20-18

Asynchronous Web Service Client Using JMS Transport Not Receiving Response Messages
From WebLogic Server . 20-19

Running autotype Ant Task on a Large WSDL File Returns java.lang.OutOfMemoryError
20-20

Error When Trying to Log Onto the UDDI Explorer . 20-20

Data Type Non-Compliance with JAX-RPC . 20-21

21.Upgrading WebLogic Web Services
Overview of Upgrading WebLogic Web Services . 21-1

Upgrading a 7.0 WebLogic Web Service to 8.1 . 21-1

Upgrading a 6.1 WebLogic Web Service to 8.1 . 21-2

Converting a 6.1 build.xml file to 8.1 . 21-3

Updating the URL Used to Access the Web Service . 21-5

22.Using WebLogic Workshop With WebLogic Web Services
Overview of WebLogic Workshop and WebLogic Web Services 22-1

WebLogic Workshop and WebLogic Web Services. 22-1

EJBGen . 22-2

Using Meta-Data Tags When Creating EJBs and Web Services 22-3

Programming WebLogic Web Services xv

Using WebLogic Workshop To Create a WebLogic Web Service: A Simple Example. 22-4

Using WebLogic Workshop To Create a WebLogic Web Service: A More Complex
Example . 22-7

Description of the Example . 22-7

Assumptions . 22-7

The Example. 22-8

Sample build.xml File . 22-13

Source Code for Supporting Java Objects . 22-16

Item.java . 22-17

PurchaseOrder.java . 22-18

PurchasingManagerBean.java . 22-20

PurchaseOrderFactory.java . 22-20

A. WebLogic Web Service Deployment Descriptor Elements
Overview of web-services.xml .A-1

Graphical Representation. .A-1

Element Reference. .A-4

clock-precision .A-5

clocks-synchronized .A-5

components. .A-5

ejb-link .A-6

encryptionKey .A-6

enforce-precision .A-7

fault. .A-7

generate-signature-timestamp. .A-7

handler .A-8

handler-chain .A-8

handler-chains. .A-8

xvi Programming WebLogic Web Services

inbound-expiry . A-9

init-param . A-9

init-params . A-9

java-class . A-10

jms-receive-queue . A-10

jms-send-destination . A-11

jndi-name . A-11

name . A-11

operation. A-12

operations . A-15

outbound-expiry . A-15

param . A-16

params . A-18

password. A-19

reliable-delivery . A-19

require-signature-timestamp . A-20

return-param. A-21

security . A-23

signatureKey . A-23

spec:BinarySecurityTokenSpec . A-24

spec:ElementIdentifier . A-24

spec:EncryptionSpec . A-25

spec:SecuritySpec . A-27

spec:SignatureSpec . A-28

spec:UsernameTokenSpec . A-29

stateless-ejb . A-30

timestamp . A-30

type-mapping . A-31

Programming WebLogic Web Services xvii

type-mapping-entry .A-31

types .A-33

user .A-33

web-service. .A-34

web-services .A-38

B. Web Service Ant Tasks and Command-Line Utilities
Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities B-1

List of Web Services Ant Tasks and Command-Line Utilities. B-2

Using the Web Services Ant Tasks. B-3

Differences in Operating System Case Sensitivity When Manipulating WSDL and XML
Schema Files . B-4

Setting the Classpath for the WebLogic Ant Tasks . B-5

Using the Web Services Command-Line Utilities . B-7

autotype . B-7

clientgen. B-14

servicegen . B-25

servicegen . B-27

service . B-29

client . B-36

handlerChain . B-38

reliability . B-39

security . B-40

source2wsdd . B-41

wsdl2Service . B-46

wsdlgen . B-50

wspackage . B-52

xviii Programming WebLogic Web Services

C. source2wsdd Tag Reference
Overview of Using source2wsdd Tags . C-1

@wlws:webservice . C-2

@wlws:operation. C-5

@wlws:part partname . C-7

@wlws:exclude . C-11

D. Customizing WebLogic Web Services
Publishing a Static WSDL File . D-1

Creating a Custom WebLogic Web Service Home Page . D-2

Configuring Basic Microsoft MIME Types in the Generated web.xml D-3

E. Assembling a WebLogic Web Service Manually
Overview of Assembling a WebLogic Web Service Manually . E-1

Assembling a WebLogic Web Service Manually: Main Steps . E-2

Understanding the web-services.xml File . E-2

Creating the web-services.xml File Manually: Main Steps . E-3

Creating the <components> Element. E-5

Creating <operation> Elements . E-6

Specifying the Type of Operation . E-6

Specifying the Parameters and Return Value of the Operation E-8

Examining Different Types of web-services.xml Files. E-9

EJB Component Web Service with Built-In Data Types . E-9

EJB Component Web Service with Non-Built-In Data Types E-10

EJB Component and SOAP Message Handler Chain Web Service. E-13

SOAP Message Handler Chain Web Service. E-14

Programming WebLogic Web Services xix

About This Document

This document describes BEA WebLogic® Web Services and describes how to develop them
and invoke them from a client application.

The document is organized as follows:

Chapter 1, “Introduction to WebLogic Web Services,” provides conceptual information
about Web Services in general and the features of WebLogic Web Services.

Chapter 2, “Architectural Overview,” provides an architectural overview of WebLogic Web
Services.

Chapter 3, “Creating a WebLogic Web Service: A Simple Example,” describes the
end-to-end process of creating a simple WebLogic Web Service based on a stateless session
EJB.

Chapter 4, “Designing WebLogic Web Services,” describes the design issues you should
consider before developing a WebLogic Web Service.

Chapter 5, “Implementing WebLogic Web Services,” describes how to create the back-end
components that implement a Web Service.

Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks,” describes how to use
the WebLogic Web Services Ant tasks to automatically generate the final parts of a Web
Service (such as the serialization information for non-built-in data types and client JAR
file), package them all together into a deployable EAR file, and deploy the EAR file on
WebLogic Server.

About Th is Document

xx Programming WebLogic Web Services

Chapter 7, “Invoking Web Services from Client Applications and WebLogic Server,”
describes how to write a client application that invokes WebLogic Web Services.

Chapter 8, “Using the WebLogic Web Services APIs,” describes how to use the WebLogic
Web Services APIs in your client applications.

Chapter 9, “Using JMS Transport to Invoke a WebLogic Web Service,” describes how to
configure your Web Service so that client applications can use JMS, rather than the default
HTTP/S, as the transport when invoking a Web Service.

Chapter 10, “Using Reliable SOAP Messaging,” describes how you can asynchronously
and reliably invoke a Web Service running on another WebLogic Server instance.

Chapter 11, “Using Non-Built-In Data Types,” describes how to create the serializers and
deserializers that convert user-defined data types between their XML and Java
representations.

Chapter 12, “Creating SOAP Message Handlers to Intercept the SOAP Message,”
describes how to create handlers that intercept a SOAP message for further processing.

Chapter 13, “Configuring Security,” describes how to configure security for WebLogic
Web Services.

Chapter 14, “Internationalization,” describes how to specify the character set for a
WebLogic Web Service and in a client application that invokes a Web Service.

Chapter 15, “Using SOAP 1.2,” describes how you can use SOAP 1.2, rather than the
default SOAP 1.1. as the message format when invoking a WebLogic Web Service.

Chapter 16, “Creating JMS-Implemented WebLogic Web Services,” describes how to
create a WebLogic Web Service that is implemented with a JMS message consumer or
producer.

Chapter 17, “Administering WebLogic Web Services,” describes how to use the
Administration Console to administer WebLogic Web Services.

Chapter 18, “Publishing and Finding Web Services Using UDDI,” describes how to use the
UDDI features included in WebLogic Server.

Chapter 19, “Interoperability,” describes what it means for Web Services to interoperate
with each other and provides tips for creating highly interoperable Web Services.

Chapter 20, “Troubleshooting,” describes how to troubleshoot problems with programming
or invoking Web Services.

Programming WebLogic Web Services xxi

Chapter 21, “Upgrading WebLogic Web Services,” describes how to upgrade Web Services
created in Version 6.1 or 7.0 of WebLogic Server to Version 8.1.

Chapter 22, “Using WebLogic Workshop With WebLogic Web Services,” describes how to
use WebLogic Workshop with WebLogic Web Services.

Appendix A, “WebLogic Web Service Deployment Descriptor Elements,” describes the
elements in the Web Services deployment descriptor file, web-services.xml.

Appendix B, “Web Service Ant Tasks and Command-Line Utilities,” describes the Ant
tasks, along with their equivalent command-line utilities, used to assemble WebLogic Web
Services.

Appendix C, “source2wsdd Tag Reference,” describes the WebLogic Web Service
metadata tags you can include in the Java code that implements a Web Service. The
source2wsdd Ant task uses these tags when generating the Web Service deployment
descriptor file (web-services.xml).

Appendix D, “Customizing WebLogic Web Services,” describes how to customize
WebLogic Web Services by updating the Web Application’s web.xml deployment
descriptor file.

Appendix E, “Assembling a WebLogic Web Service Manually,” describes how assemble a
WebLogic Web Service manually without using the WebLogic Web Services Ant tasks.

Audience
This document is written for Java developers who want to create a Web Service that runs on
WebLogic Server.

It is assumed that readers know Web technologies, XML, and the Java programming language.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

About Th is Document

xxii Programming WebLogic Web Services

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Programming WebLogic Web Services xxiii

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

About Th is Document

xxiv Programming WebLogic Web Services

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Programming WebLogic Web Services 1-1

C H A P T E R 1

Introduction to WebLogic Web Services

The following sections provide an overview of Web Services, and briefly describe how they are
implemented in WebLogic Server:

“Overview of Web Services” on page 1-1

“Why Use Web Services?” on page 1-2

“Web Service Standards” on page 1-3

“WebLogic Web Service Features” on page 1-8

“Unsupported Features” on page 1-11

“Examples of Creating and Invoking a Web Service” on page 1-12

“Creating WebLogic Web Services: Main Steps” on page 1-13

“Roadmap to Common Tasks for Creating Web Services” on page 1-14

“Editing XML Files” on page 1-17

Overview of Web Services
Web Services are a special type of service that can be shared by and used as components of
distributed Web-based applications. They commonly interface with existing back-end
applications, such as customer relationship management systems, order-processing systems, and
so on.

In t roduct ion to WebLog ic Web Serv ices

1-2 Programming WebLogic Web Services

Traditionally, software application architecture tended to fall into two categories: huge
monolithic systems running on mainframes or client-server applications running on desktops.
Although these architectures work well for the purpose the applications were built to address,
they are closed and can not be easily accessed by the diverse users of the Web.

Thus the software industry has evolved toward loosely coupled service-oriented applications that
interact dynamically over the Web. The applications break down the larger software system into
smaller modular components, or shared services. These services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
transported using standard Web protocols, such as XML and HTTP, thus making them easily
accessible by any user on the Web.

This concept of services is not new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technologies require them to be written using
that particular technology, often from a particular vendor. This requirement typically hinders
widespread acceptance of an application on the Web. To solve this problem, Web Services are
defined to share the following properties that make them easily accessible from heterogeneous
environments:

Web Services are accessed over the Web.

Web Services describe themselves using an XML-based description language.

Web Services communicate with clients (both end-user applications or other Web Services)
through XML messages that are transmitted by standard Internet protocols, such as HTTP.

Why Use Web Services?
Major benefits of Web Services include:

Interoperability among distributed applications that span diverse hardware and software
platforms

Easy, widespread access to applications through firewalls using Web protocols

A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications

Because you access Web Services using standard Web protocols such as XML and HTTP, the
diverse and heterogeneous applications on the Web (which typically already understand XML
and HTTP) can automatically access Web Services, and thus communicate with each other.

Web Serv i ce S tandards

Programming WebLogic Web Services 1-3

These different systems can be Microsoft SOAP ToolKit clients, J2EE applications, legacy
applications, and so on. They are written in Java, C++, Perl, and other programming languages.
Application interoperability is the goal of Web Services and depends upon the service provider's
adherence to published industry standards.

Web Service Standards
A Web Service requires the following standard implementations:

An implementation hosted by a server on the Web.

WebLogic Web Services are hosted by WebLogic Server; are implemented using standard
J2EE components (such as Enterprise Java Beans) and Java classes; and are packaged as
standard J2EE Enterprise Applications.

A standard for transmitting data and Web Service invocation calls between the Web
Service and the user of the Web Service.

WebLogic Web Services use Simple Object Access Protocol (SOAP) 1.1 and 1.2 as the
message format and HTTP and JMS as the connection protocol. See “SOAP” on page 1-4.

A standard for describing the Web Service to clients so they can invoke it.

WebLogic Web Services use Web Services Description Language (WSDL) 1.1, an
XML-based specification, to describe themselves. See “WSDL 1.1” on page 1-5.

A standard for client applications to invoke a Web Service.

WebLogic Web Services implement the Java API for XML-based RPC (JAX-RPC) 1.0 as
part of a client JAR that client applications can use to invoke WebLogic and
non-WebLogic Web Services. See “JAX-RPC 1.0” on page 1-6.

A standard for digitally signing and encrypting the SOAP request and response messages
between a client application and the Web Service it is invoking.

WebLogic Web Services implement the following OASIS Standard 1.0 Web Services
Security specifications, dated April 6 2004:

– Web Services Security: SOAP Message Security

– Web Services Security: Username Token Profile

– Web Services Security: X.509 Token Profile

For more information, see “Web Services Security (WS-Security)” on page 1-7.

In t roduct ion to WebLog ic Web Serv ices

1-4 Programming WebLogic Web Services

A standard for client applications to find a registered Web Service and to register a Web
Service.

WebLogic Web Services implement the Universal Description, Discovery, and Integration
(UDDI) specification. See “UDDI 2.0” on page 1-8.

BEA Implementation of Web Service Specifications
Many of the specifications that define Web Service standards have been written in an
intentionally vague way to allow for broad use of the specification throughout the industry.
Because of this vagueness, BEA's implementation of a particular specification might not cover
all possible usage scenarios covered by the specification.

BEA considers interoperability of Web Services platforms to be more important than providing
support for all possible edge cases of the Web Services specifications. For this reason, BEA fully
supports the Basic Profile 1.0 specification from the Web Services Interoperability Organization
and considers it to be the baseline for Web Services interoperability. BEA implements all
requirements of the Basic Profile 1.0, although this guide does not necessarily document all of
these requirements. This guide does, however, document features that are beyond the
requirements of the Basic Profile 1.0."

SOAP
SOAP (Simple Object Access Protocol) is a lightweight XML-based protocol used to exchange
information in a decentralized, distributed environment. WebLogic Server includes its own
implementation of SOAP 1.1, SOAP 1.2, and SOAP With Attachments (SAAJ) specifications.
The protocol consists of:

An envelope that describes the SOAP message. The envelope contains the body of the
message, identifies who should process it, and describes how to process it.

A set of encoding rules for expressing instances of application-specific data types.

A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions (MIME)-encoded
package that can be transmitted over HTTP or other Web protocols. MIME is a specification for
formatting non-ASCII messages so that they can be sent over the Internet.

The following example shows a SOAP request for stock trading information embedded inside an
HTTP request:

http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0.htm
http://www.ws-i.org/

Web Serv i ce S tandards

Programming WebLogic Web Services 1-5

POST /StockQuote HTTP/1.1
Host: www.sample.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastStockQuote xmlns:m="Some-URI">
 <symbol>BEAS</symbol>
 </m:GetLastStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For more information, see SOAP 1.1 at http://www.w3.org/TR/SOAP and SOAP With
Attachments API for Java (SAAJ) 1.1 at http://java.sun.com/xml/saaj/index.html.

WSDL 1.1
Web Services Description Language (WSDL) is an XML-based specification that describes a
Web Service. A WSDL document describes Web Service operations, input and output
parameters, and how a client application connects to the Web Service.

Developers of WebLogic Web Services do not need to create the WSDL files; you generate these
files automatically as part of the WebLogic Web Services development process.

The following example, for informational purposes only, shows a WSDL file that describes the
stock trading Web Service StockQuoteService that contains the method GetLastStockQuote:

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://sample.com/stockquote.wsdl"
 xmlns:tns="http://sample.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://sample.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetStockPriceInput">
 <part name="symbol" element="xsd:string"/>
 </message>
 <message name="GetStockPriceOutput">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="GetLastStockQuote">
 <input message="tns:GetStockPriceInput"/>

http://www.w3.org/TR/SOAP
http://java.sun.com/xml/saaj/index.html
http://java.sun.com/xml/saaj/index.html

In t roduct ion to WebLog ic Web Serv ices

1-6 Programming WebLogic Web Services

 <output message="tns:GetStockPriceOutput"/>
 </operation>
 </portType>
 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastStockQuote">
 <soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
 <input>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://sample.com/stockquote"/>
 </port>
 </service>
 </definitions>

For more information, see Web Services Description Language (WSDL) 1.1 at
http://www.w3.org/TR/wsdl.

JAX-RPC 1.0
The Java API for XML-based RPC (JAX-RPC) 1.0is a Sun Microsystems specification that
defines the Web Services APIs.

WebLogic Server implements all required features of the JAX-RPC Version 1.0 specification.
Additionally, WebLogic Server implements optional data type support, as specified in:

“Supported Built-In Data Types” on page 5-15

“Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on page 6-18

WebLogic Server does not implement optional features of the JAX-RPC specification, other than
what is described in these sections.

The following table briefly describes the core JAX-RPC interfaces and classes.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

Web Serv i ce S tandards

Programming WebLogic Web Services 1-7

For detailed information on JAX-RPC, see http://java.sun.com/xml/jaxrpc/index.html.

For a tutorial that describes how to use JAX-RPC to invoke Web Services, see
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html.

Web Services Security (WS-Security)
The following description of Web Services Security is taken directly from the OASIS standard
1.0 specification, titled Web Services Security: SOAP Message Security, dated April 6, 2004:

This specification proposes a standard set of SOAP extensions that can be used when
building secure Web services to implement integrity and confidentiality. We refer to this set
of extensions as the Web Services Security Language or WS-Security.

WS-Security is flexible and is designed to be used as the basis for the construction of a
wide variety of security models including PKI, Kerberos, and SSL. Specifically
WS-Security provides support for multiple security tokens, multiple trust domains,
multiple signature formats, and multiple encryption technologies.

This specification provides three main mechanisms: security token propagation, message
integrity, and message confidentiality. These mechanisms by themselves do not provide a
complete security solution. Instead, WS-Security is a building block that can be used in
conjunction with other Web service extensions and higher-level application-specific
protocols to accommodate a wide variety of security models and encryption technologies.

Table 1-1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface
or Class

Description

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory class for creating Service instances.

Stub Represents the client proxy for invoking the operations of a Web
Service. Typically used for static invocation of a Web Service.

Call Used to invoke a Web Service dynamically.

JAXRPCException Exception thrown if an error occurs while invoking a Web
Service.

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html

In t roduct ion to WebLog ic Web Serv ices

1-8 Programming WebLogic Web Services

These mechanisms can be used independently (for example, to pass a security token) or in
a tightly integrated manner (for example, signing and encrypting a message and providing
a security token hierarchy associated with the keys used for signing and encryption).

For more information, see the OASIS Web Service Security Web page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

UDDI 2.0
The Universal Description, Discovery and Integration (UDDI) specification defines a standard
for describing a Web Service; registering a Web Service in a well-known registry; and
discovering other registered Web Services.

For more information, see http://www.uddi.org.

Additional Specifications Supported by WebLogic Web
Services

XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Data Types at http://www.w3.org/TR/xmlschema-2/

JSSE (part of JDK 1.4) at http://java.sun.com/products/jsse

WebLogic Web Service Features
The WebLogic Web Services subsystem has the following features (new features in Version 8.1
of WebLogic Server are listed first):

Digital Signatures and Encryption - New 8.1 Feature

New elements in the web-services.xml deployment descriptor enable you to configure
message-level security for Web Services and Web Service clients. See “Configuring
Message-Level Security: Main Steps” on page 13-9.

Reliable SOAP Messaging - New 8.1 Feature

Reliable SOAP messaging is a framework whereby an application running in one
WebLogic Server instance can asynchronously and reliably invoke a Web Service running
on another WebLogic Server instance. See Chapter 10, “Using Reliable SOAP Messaging.”

Asynchronous Client Invocation of WebLogic Web Services - New 8.1 Feature

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.uddi.org
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://java.sun.com/products/jsse

WebLog ic Web Se rv ice Features

Programming WebLogic Web Services 1-9

The clientgen Ant task can now generate stubs for invoking a Web Service operation
asynchronously. The stub contains two methods: the first invokes the operation with the
required parameters but does not wait for the result to return; later, the second method
returns the actual results. You use this asynchronous client when using reliable SOAP
messaging. See “Writing an Asynchronous Client Application” on page 7-11.

JMS Transport Protocol - New 8.1 Feature

You can configure a Web Service to use JMS as the transport protocol (as opposed to
HTTP/S, the default protocol) when a client accesses the service. See Chapter 9, “Using
JMS Transport to Invoke a WebLogic Web Service.”

Portable Stubs - New 8.1 Feature

You can now use portable stubs (versioned client JAR files used to invoke WebLogic Web
Services) to avoid class clashes when invoking a Web Service from within WebLogic
Server. See “Creating and Using Portable Stubs” on page 7-22.

Implementation of the SOAP with Attachments API For Java (SAAJ) 1.1 - New 8.1
Feature

SAAJ enables developers to produce and consume messages conforming to the SOAP 1.1
specification and SOAP with Attachments note. This specification is derived from the
javax.xml.soap package originally defined in the JAXM 1.0 specification.

See “Directly Manipulating the SOAP Request and Response Message Using SAAJ” on
page 12-12 for information about using SAAJ in a SOAP message handler to view and
manipulate a SOAP attachment.

SOAP 1.2 Support - New 8.1 Feature

WebLogic Server provides support for using SOAP 1.2 as the message format when a
client invokes a Web Service operation. See Chapter 15, “Using SOAP 1.2.”

Standard Specifications

See “Web Service Standards” on page 1-3.

Support for Exposing Standard J2EE Components

WebLogic Web Services support exposing standard J2EE components, such as stateless
session EJBs.

Ant Tasks and Command Line Utilities

Ant tasks facilitate the implementation and packaging of Web Services. See Appendix B,
“Web Service Ant Tasks and Command-Line Utilities.”

In t roduct ion to WebLog ic Web Serv ices

1-10 Programming WebLogic Web Services

UDDI Registry, Directory Explorer, and Client API

WebLogic Server includes a UDDI registry, a UDDI Directory Explorer, and an
implementation of the UDDI client API. See Chapter 18, “Publishing and Finding Web
Services Using UDDI.”

Support for Both RPC-Oriented and Document-Oriented Operations

WebLogic Web Service operations can be either RPC-oriented (SOAP messages contain
parameters and return values) or document-oriented (SOAP messages contain documents.)
For details, see “Choosing RPC-Oriented or Document-Oriented Web Services” on
page 4-3.

Support for User-Defined Data Types

You can create a WebLogic Web Service that uses non-built-in data types as its parameters
and returns values. Non-built-in data types are defined as data types other than the
supported built-in data types; examples of built-in data types include int and String.
WebLogic Server Ant tasks can generate the components needed to use non-built-in data
types; this feature is referred to as autotyping. You can also create these components
manually. See Appendix B, “Web Service Ant Tasks and Command-Line Utilities,” and
Chapter 11, “Using Non-Built-In Data Types.”

SOAP Message Handlers to Access SOAP Messages

A SOAP message handler accesses the SOAP message and its attachment in both the
request and response of the Web Service. You can create handlers in both the Web
Service itself and the client applications that invoke the Web Service. See Chapter 12,
“Creating SOAP Message Handlers to Intercept the SOAP Message.”

Java Client to Invoke a Web Service

Developers can use an automatically generated thin Java client to create Java client
applications that invoke WebLogic and non-WebLogic Web Services. See Chapter 7,
“Invoking Web Services from Client Applications and WebLogic Server.”

Note: For information about BEA’s current licensing of client functionality, see the BEA
eLicense Web Site at http://elicense.bea.com/elicense_webapp/index.jsp.

The Web Services Home Web Page

All deployed WebLogic Web Services automatically have a Home Web Page that includes
links to the WSDL of the Web Service, the client JAR file that you can download for
invoking the Web Service, and a mechanism for testing the Web Service to ensure that it is
working as expected. See “WebLogic Web Services Home Page and WSDL URLs” on
page 6-23.

http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Unsuppor ted Featu res

Programming WebLogic Web Services 1-11

Point-to-Point Security

WebLogic Server supports connection oriented point-to-point security for WebLogic Web
Service operations, as well as authorization and authentication of Web Service operations.
See “Configuring Transport-Level Security (SSL): Main Steps” on page 13-31.

Interoperability

WebLogic Web Services interoperate with major Web Service platforms such as Microsoft
.NET.

Java 2 Platform Micro Edition (J2ME) Clients

The WebLogic Server the clientgen Ant task can create a client JAR file that runs on
J2ME. See Chapter 7, “Invoking Web Services from Client Applications and WebLogic
Server.”

Unsupported Features
The following list describes the features that are not supported in this release of WebLogic Web
Services:

WebLogic Server does not support the XMLBeans data type as an input parameter or
return value of a Web Service operation.

WebLogic Server does not support the following XML Schema features:

– Complex data type inheritance by restriction

– Union simple data types

– References to named model groups

– Nested content models in a single complex type

– Redefinition of declarations

– Identity constraints (key, keyref, unique)

– Nested XSD model groups with other content models at the same level.

There cannot be a modelgroup (say sequence) that contains another nested modelgroup
(say choice), and a content element (say element). So, if a nested modelgroup is
required, make sure that it contains only another model group and no other content
element.

– Wildcards

http://dev2dev.bea.com/xml/xmlbeans.html

In t roduct ion to WebLog ic Web Serv ices

1-12 Programming WebLogic Web Services

– Substitution groups

Note: If you use the autotype, servicegen, or clientgen Ant tasks to generate the
serialization components for any non-built-in XML Schema data type that uses one
of the preceding constructs (either directly or by containing a type that uses them),
the Ant tasks map that data type to javax.xml.soap.SOAPElement. This gives you
access to the full XML via a DOM-like API.

Additionally, the autotype Ant task does not comply with the JAX-RPC
specification if the XML Schema data type (for which it is generating the Java
representation) has certain characteristics; see “Data Type Non-Compliance with
JAX-RPC” on page 6-21 for details.

WebLogic Server does not support the following WSDL features:

– Overloading operations in WSDL, due to a SOAP limitation

– HTTP GET and POST bindings

– Faults with complex types

– RPC literal style

– Document encoded style

– solicit-response and notification transmission primitives

Examples of Creating and Invoking a Web Service
WebLogic Server includes the following examples of creating and invoking WebLogic Web
Services in the WL_HOME/samples/server/examples/src/examples/webservices
directory, where WL_HOME refers to the main WebLogic Platform directory:

basic.statelessSession: Uses a stateless session EJB back-end component with
built-in data types as its parameters and return value.

basic.javaclass: Uses a Java class back-end component with built-in data types as its
parameters and return value.

complex.statelessSession: Uses a stateless session EJB back-end component with
non-built-in data types as its parameters and return value.

handler.log: Uses both a handler chain and a stateless session EJB.

handler.nocomponent: Uses only a handler chain with no back-end component.

Creat ing WebLogic Web Serv ices : Main S teps

Programming WebLogic Web Services 1-13

client.static_no_out: Shows how to create a static client application that invokes a
non-WebLogic Web Service.

client.dynamic_wsdl: Shows how to create a dynamic client application that uses
WSDL to invoke a non-WebLogic Web Service.

client.dynamic_no_wsdl: Shows how to create a dynamic client application that does
not use WSDL to invoke a non-WebLogic Web Service.

For detailed instructions on how to build and run the examples, open the following Web page in
your browser:

WL_HOME/samples/server/examples/src/examples/webservices/package-summary.html

Creating WebLogic Web Services: Main Steps
The following procedure describes the high-level steps to create a WebLogic Web Service. Most
steps are described in detail in later chapters. Chapter 3, “Creating a WebLogic Web Service: A
Simple Example,” briefly describes an example of creating a Web Service.

1. Design the WebLogic Web Service.

Decide on an RPC- or document-oriented Web Service; a synchronous or asynchronous
Web Service; the type of back-end components that implement the service; whether your
service uses only built-in data types or custom data types; whether you need to intercept
the incoming or outgoing SOAP message; and so on.

See Chapter 4, “Designing WebLogic Web Services.”

2. Implement the basic WebLogic Web Service.

Write and compile the Java code of the back-end components that make up the Web
Service; optionally create SOAP message handlers that intercept the SOAP messages;
optionally create your own serialization class to convert data between XML and Java; and
so on.

See Chapter 5, “Implementing WebLogic Web Services.”

3. Assemble and package the WebLogic Web Service.

Gather all the implementation class files into an appropriate directory structure; create the
Web Service deployment descriptor file; create the supporting parts of the service (such as
client JAR file); and package everything into a deployable unit (either an EAR file or in
exploded directory format).

In t roduct ion to WebLog ic Web Serv ices

1-14 Programming WebLogic Web Services

If your Web Service is fairly simple, use the servicegen Ant task, which performs all the
assembly steps for you. If your Web Service is more complicated, use individual Ant tasks.

See Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks.”

4. Deploy the basic WebLogic Web Service for testing purposes.

Make the service available to remote clients. Because WebLogic Web Services are
packaged as standard J2EE Enterprise Applications, deploying a Web Service is the same
as deploying an Enterprise Application.

See Deploying WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/deployment/index.html.

5. Create a client that accesses the Web Service to test that your Web Service is working as
you expect. You can also use the Web Service Home Page to test your Web Service.

 See Chapter 7, “Invoking Web Services from Client Applications and WebLogic Server.”

6. Configure additional WebLogic Web Service features, such as security, reliable SOAP
messaging, JMS transport, internationalization, and so on. See:

– Chapter 13, “Configuring Security”

– Chapter 10, “Using Reliable SOAP Messaging”

– Chapter 9, “Using JMS Transport to Invoke a WebLogic Web Service”

– Chapter 14, “Internationalization”

7. Test the WebLogic Web Service after you add features.

See “Deploying and Testing WebLogic Web Services” on page 6-23.

8. Deploy the WebLogic Web Service for production.

See Deploying WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/deployment/index.html.

9. Optionally publish your Web Service in a UDDI registry. See Chapter 18, “Publishing and
Finding Web Services Using UDDI.”

Roadmap to Common Tasks for Creating Web Services
The following table provides a roadmap of common tasks for creating, deploying, and invoking
WebLogic Web Services

http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html

Roadmap to Common Tasks fo r Creat ing Web Serv ices

Programming WebLogic Web Services 1-15

.

Table 1-2 Web Services Tasks

Major Task Subtasks and Additional Information

Create (implement) the Web Service
back-end components.

“Overview of Implementing a WebLogic Web Service” on page 5-1

“Writing the Java Code for the Components” on page 5-3

“Generating a Partial Implementation From a WSDL File” on
page 5-6

“Creating SOAP Message Handlers to Intercept the SOAP Message”
on page 12-1

“Using SOAP Attachments” on page 5-9

“Using Built-In and Non-Built-In Data Types” on page 4-4

“Implementing Non-Built-In Data Types” on page 5-5

“Supported Built-In Data Types” on page 5-15

“Non-Built-In Data Types Supported by servicegen and autotype Ant
Tasks” on page 6-18

“Throwing SOAP Fault Exceptions” on page 5-14

“Using the WebLogic Web Services APIs” on page 8-1

Assemble the Web Service into a
deployable unit.

“Overview of Assembling WebLogic Web Services Using Ant Tasks”
on page 6-1

“Assembling WebLogic Web Services Using the servicegen Ant
Task” on page 6-3

“Assembling WebLogic Web Services Using Individual Ant Tasks”
on page 6-6

“Assembling a Web Service Starting with Java” on page 6-6

“Assembling a Web Service Starting with an XML Schema” on
page 6-7

In t roduct ion to WebLog ic Web Serv ices

1-16 Programming WebLogic Web Services

Deploy and test the Web Service. “Deploying and Testing WebLogic Web Services” on page 6-23

“WebLogic Web Services Home Page and WSDL URLs” on
page 6-23

Invoke the Web Service. “Overview of Invoking Web Services” on page 7-2

“Creating Java Client Applications to Invoke Web Services: Main
Steps” on page 7-4

“Writing an Asynchronous Client Application” on page 7-11

“Invoking Web Services from WebLogic Server” on page 7-22

Secure the Web Service. “Overview of Web Services Security” on page 13-1

“Configuring Message-Level Security: Main Steps” on page 13-9

“Configuring Transport-Level Security (SSL): Main Steps” on
page 13-31

“Configuring Access Control Security: Main Steps” on page 13-41

Add advanced features. “Using Reliable SOAP Messaging” on page 10-1

“Internationalization” on page 14-1

Upgrade a 6.1 or 7.0 WebLogic Web
Service.

“Upgrading a 7.0 WebLogic Web Service to 8.1” on page 21-1

“Upgrading a 6.1 WebLogic Web Service to 8.1” on page 21-2

Table 1-2 Web Services Tasks

Major Task Subtasks and Additional Information

Edi t ing XML F i l es

Programming WebLogic Web Services 1-17

Editing XML Files
When creating or invoking WebLogic Web Services, you might need to edit XML files, such as
the web-services.xml Web Services deployment descriptor file, the EJB deployment
descriptors, the Java Ant build files, and so on. You edit these files with the BEA XML Editor.

Note: This guide describes how to create or update the web-services.xml deployment
descriptor manually so that programmers get a better understanding of the file and how
the elements describe a Web Service. You can also use the BEA XML Editor to update
the file.

The BEA XML Editor is a simple, user-friendly Java-based tool for creating and editing XML
files. It displays XML file contents both as a hierarchical XML tree structure and as raw XML
code. This dual presentation of the document gives you two options for editing the XML
document:

The hierarchical tree view allows structured, constrained editing, with a set of allowable
functions at each point in the hierarchical XML tree structure. The allowable functions are
syntactically dictated and in accordance with the XML document's DTD or schema, if one
is specified.

The raw XML code view allows free-form editing of the data.

The BEA XML Editor can validate XML code according to a specified DTD or XML schema.

Troubleshoot problems. “Using the Web Service Home Page to Test Your Web Service” on
page 20-2

“Viewing SOAP Messages” on page 20-4

“Posting the HTTP SOAP Message” on page 20-5

“Debugging Problems with WSDL” on page 20-8

“Verifying a WSDL File” on page 20-9

“Verifying an XML Schema” on page 20-10

“Debugging Data Type Generation (Autotyping) Problems” on
page 20-10

Table 1-2 Web Services Tasks

Major Task Subtasks and Additional Information

In t roduct ion to WebLog ic Web Serv ices

1-18 Programming WebLogic Web Services

For detailed information about using the BEA XML Editor, see its online help.

You can download the BEA XML Editor from dev2dev Online at
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp.

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp

Programming WebLogic Web Services 2-1

C H A P T E R 2

Architectural Overview

The following sections provide an overview of WebLogic Web Services architecture and three
types of WebLogic Web Service operations:

“Overview of WebLogic Web Services Architecture” on page 2-1

“Back-end Component Operation” on page 2-2

“Back-end Component and SOAP Message Handler Chain Operation” on page 2-3

“SOAP Message Handler Chain Operation” on page 2-4

Overview of WebLogic Web Services Architecture
You develop a WebLogic Web Service, by using standard J2EE components, such as stateless
session EJBs, and Java classes. Because WebLogic Web Services are based on the J2EE
platform, they automatically inherit all the standard J2EE benefits, such as a simple and familiar
component-based development model, scalability, support for transactions, life-cycle
management, easy access to existing enterprise systems through the use of J2EE APIs (such as
JDBC and JTA), and a simple and unified security model.

A single WebLogic Web Service consists of one or more operations; you can implement each
operation using different back-end components and SOAP message handlers. For example, an
operation might be implemented with a single method of a stateless session EJB or with a
combination of SOAP message handlers and a method of a stateless session EJB.

Arch i tec tura l Overv i ew

2-2 Programming WebLogic Web Services

Back-end Component Operation
The following figure describes the architecture of a WebLogic Web Service operation that is
implemented with only a back-end component, such as a method of a stateless session EJB.

Figure 2-1 WebLogic Web Service with Back-end Component

Here is what happens when a client application invokes this type of WebLogic Web Service
operation:

1. The client application sends a SOAP message request to WebLogic Server over HTTP. Based
on the URI in the request, WebLogic Server identifies the Web Service being invoked.

2. The Web Service reads the SOAP message request and identifies the operation that it needs
to run. The operation corresponds to a method of a stateless session EJB or a Java class, to
be invoked in a later step.

3. The Web Service converts the operation’s parameters in the SOAP message from their
XML representation to their Java representation using the appropriate deserializer class.
The deserializer class is either one provided by WebLogic Server for built-in data types or a
user-created one for non-built-in data types.

4. The Web Service invokes the appropriate back-end component method, passing it the Java
parameters.

Identify
Operation

SOAP request
over HTTP Deserialize

XML to

SOAP
request

back-end
component

Serialize Java
to XML

Java
parameters

Java
return value

SOAP response
over HTTP

Invoke target

1 2
3

4

56

WebLogic Server

C
lie

nt
 A

pp
lic

at
io

n

Java

Back-end Component and SOAP Message Handle r Cha in Operat i on

Programming WebLogic Web Services 2-3

5. The Web Service converts the method’s return value from Java to XML using the
appropriate serializer class, and packages it into a SOAP message response.

6. The Web Service sends the SOAP message response back to the client application that
invoked the Web Service.

Back-end Component and SOAP Message Handler Chain
Operation

The following figure describes a WebLogic Web Service operation that is implemented with both
a SOAP message handler chain and a back-end component.

Figure 2-2 WebLogic Web Service Operation with Back-end Component and SOAP Message Handler Chain

Here is what happens when a client application invokes this type of WebLogic Web Service
operation:

1. The client application sends a SOAP message request to WebLogic Server over HTTP. Based
on the URI in the request, WebLogic Server identifies the Web Service being invoked.

Identify
Operation

SOAP
request

back-end
component

Java
parameters

Java
return value

Invoke target

1

2 3 4

5

6

WebLogic Server

C
lie

nt
 A

pp
lic

at
io

n

SOAP
request
over HTTP

Modified
SOAP response
over HTTP

Invoke
Handler

Serialize Java
to XML

Chain

Invoke
Handler
Chain

78 SOAP
response

Deserialize
XML to
Java

Possibly
modified
SOAP
request

Arch i tec tura l Overv i ew

2-4 Programming WebLogic Web Services

2. The Web Service reads the SOAP message request and identifies the operation that it needs
to run. The operation in this case corresponds to a SOAP message handler chain followed
by a method of a stateless session EJB or a Java class, to be invoked in later steps.

3. The Web Service invokes the appropriate handler chain. The handler chain accesses the
contents of the SOAP message request, possibly changing it in some way.

4. The Web Service converts the operation’s parameters in the [possibly modified] SOAP
message from their XML representation to their Java representation using the appropriate
deserializer class. The deserializer class is either one provided by WebLogic Server for
built-in data types or a user-created one for non-built-in data types.

5. The Web Service invokes the appropriate back-end component method, passing it the Java
parameters.

6. The Web Service converts the method’s return value from Java to XML using the
appropriate serializer class, and packages it into a SOAP message response.

7. The Web Service invokes the appropriate SOAP message handler chain. The handler chain
accesses the contents of the SOAP message response, possibly changing it in some way.

8. The Web Service sends the [possibly modified] SOAP message response back to the client
application that invoked the Web Service.

SOAP Message Handler Chain Operation
The following figure describes the architecture of a WebLogic Web Service operation that is
implemented with only a SOAP message handler chain.

SOAP Message Handle r Cha in Operat ion

Programming WebLogic Web Services 2-5

Figure 2-3 WebLogic Web Service Operation with SOAP Message Handler Chain Only

Here is what happens when a client application invokes this type of WebLogic Web Service
operation:

1. The client application sends a SOAP message request to WebLogic Server over HTTP. Based
on the URI in the request, WebLogic Server identifies the Web Service being invoked.

2. The Web Service reads the SOAP message request and identifies the operation that it needs
to run. The operation in this case corresponds to an invoke of a SOAP message handler
chain, to be invoked in the next step.

3. The Web Service invokes the appropriate handler chain. The handler chain accesses the
contents of the SOAP message request, possibly changing it in some way.

4. The Web Service invokes the appropriate handler chain. The handler chain creates the
SOAP message response.

5. The Web Service sends the SOAP message response back to the client application that
invoked the Web Service.

Identify
Operation

SOAP request
over HTTP Invoke

Handler

SOAP
request

SOAP response
over HTTP

1 2
3

45

WebLogic Server

C
lie

nt
 A

pp
lic

at
io

n

Chain

Invoke
Handler
Chain

Modified

Arch i tec tura l Overv i ew

2-6 Programming WebLogic Web Services

Programming WebLogic Web Services 3-1

C H A P T E R 3

Creating a WebLogic Web Service: A
Simple Example

The following sections describe how to create a simple WebLogic Web Service:

“Overview of the Web Service Example” on page 3-1

“Building and Running the Trader WebLogic Web Service Example” on page 3-2

“Anatomy of the Example” on page 3-4

Overview of the Web Service Example
This example describes the start-to-finish process of implementing, assembling, and deploying
the WebLogic Web Service provided as a product example in the directory
WL_HOME/samples/server/examples/src/examples/webservices/complex/stateless

Session, where WL_HOME refers to the main WebLogic Platform directory, such as
d:\beahome\weblogic81.

The example shows how to create a WebLogic Web Service based on a stateless session EJB. The
example uses the Trader EJB, one of the EJB 2.0 examples located in the
WL_HOME/samples/server/examples/src/examples/ejb20/basic/statelessSession
directory.

The Trader EJB defines two methods, buy() and sell(), that take as input a String stock
symbol and an int number of shares to buy or sell. Both methods return a non-built-in data type
called TradeResult.

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-2 Programming WebLogic Web Services

When the Trader EJB is converted into a Web Service, the two methods become public
operations defined in the WSDL of the Web Service. The Client.java application uses a
JAX-RPC style client API to create SOAP messages that invoke the operations.

Building and Running the Trader WebLogic Web Service
Example

The procedure below describes how to build and run the
WL_HOME/samples/server/examples/src/examples/webservices/complex/stateless

Session example, using the build.xml Ant build file in the example directory to perform all
the main steps, such as compiling the EJB Java source code into class files, executing the
servicegen WebLogic Web Service Ant task, and deploying the Web Service to WebLogic
Server. The section “Anatomy of the Example” on page 3-4 describes the main components (such
as the stateless session EJB and the non-built-in data type) that make up the example.

Note: It is assumed in this section that you have started the examples WebLogic Server domain
that is installed by default with WebLogic Server. The domain directory of the examples
server is WL_HOME\samples\domains\examples.

To build and run the sample Trader WebLogic Web Service:

1. Open a command window.

2. Set up your environment.

On Windows NT, execute the setExamplesEnv.cmd command, located in the directory
WL_HOME\samples\domains\examples, where WL_HOME is the main directory of your
WebLogic Platform installation, such as d:\beahome\weblogic81.

On UNIX, execute the setEnv.sh command, located in the directory
WL_HOME/samples/domains/examples, where WL_HOME is the main directory of your
WebLogic Platform installation, such as /beahome/weblogic81.

3. Change to the
WL_HOME\samples\server\examples\src\examples\webservices\complex\statel

essSession directory.

4. Assemble and compile the example by executing the Java ant utility at the command line:

prompt> ant

The ant utility uses the build.xml build script to perform the following tasks:

– Create an EJB JAR file from the EJB *.java files.

Bui ld ing and Running the T rader WebLogic Web Se rv ice Example

Programming WebLogic Web Services 3-3

– Execute the servicegen Ant task which automatically generates the serialization class
for the TradeResult non-built-in data type, creates the web-services.xml file, and
packages all these components into a deployable EAR file.

– Deploy the EAR file on WebLogic Server.

– Execute the clientgen Ant task to create a local client JAR file that contains all the
needed classes and interfaces to invoke the Web Service.

– Compile the Client.java client application used to invoke the Web Service.

5. In your development shell, run the Client Java application using the following command:

prompt> ant run

If the example runs successfully, you should see the following output in both the window
from which you ran the client application and the WebLogic Server console window:

[java] Buying 100 shares of BEAS.
[java] Result traded 100 shares of BEAS
[java] Buying 200 shares of MSFT.
[java] Result traded 200 shares of MSFT
[java] Buying 300 shares of AMZN.
[java] Result traded 300 shares of AMZN
[java] Buying 400 shares of HWP.
[java] Result traded 400 shares of HWP
[java] Selling 100 shares of BEAS.
[java] Result traded 100 shares of BEAS
[java] Selling 200 shares of MSFT.
[java] Result traded 200 shares of MSFT
[java] Selling 300 shares of AMZN.
[java] Result traded 300 shares of AMZN
[java] Selling 400 shares of HWP.
[java] Result traded 400 shares of HWP

6. Optionally view the Web Service Home Page by entering the following URL in your
browser:

http://localhost:port/webservice/TraderService

where

– localhost refers to the machine on which WebLogic Server is running.

– port refers to port on which WebLogic Server is listening.

From the Web Service Home Page you can view the generated WSDL, and test the Web
service to make sure it is working correctly.

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-4 Programming WebLogic Web Services

Anatomy of the Example
This section describes the following main components of the example you built and ran in
“Building and Running the Trader WebLogic Web Service Example” on page 3-2:

“The EJB Java Interfaces and Implementation Class” on page 3-4

“The Non-Built-In Data Type TraderResult” on page 3-8

“The EJB Deployment Descriptors” on page 3-9

“The servicegen Ant Task That Assembles the Web Service” on page 3-11

“The Client Application to Invoke The Web Service” on page 3-11

The EJB Java Interfaces and Implementation Class
The Web Service example is based on a stateless session EJB. This Trader EJB defines two
methods, buy() and sell(), that take as input a String stock symbol and an int number of
shares to buy or sell. Both methods return a non-built-in data type called TraderResult.

The following Java interfaces and implementation class define the Trader EJB:

“Remote Interface (Trader.java)” on page 3-4

“Session Bean Implementation Class (TraderBean.java)” on page 3-5

“Home Interface (TraderHome.java)” on page 3-8

Remote Interface (Trader.java)
package examples.webservices.complex.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/**
 * The methods in this interface are the public face of TraderBean.
 * The signatures of the methods are identical to those of the EJBean, except
 * that these methods throw a java.rmi.RemoteException.
 * Note that the EJBean does not implement this interface. The corresponding
 * code-generated EJBObject, TraderBeanE, implements this interface and
 * delegates to the bean.
 *
 * @author Copyright (c) 1999-2003 by BEA Systems, Inc. All Rights Reserved.
 */
public interface Trader extends EJBObject {

Anatomy o f the Example

Programming WebLogic Web Services 3-5

 /**
 * Buys shares of a stock.
 *
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to buy
 * @return TradeResult Trade Result
 * @exception RemoteException if there is
 * a communications or systems failure
 */
 public TradeResult buy (String stockSymbol, int shares)
 throws RemoteException;

 /**
 * Sells shares of a stock.
 *
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to sell
 * @return TradeResult Trade Result
 * @exception RemoteException if there is
 * a communications or systems failure
 */
 public TradeResult sell (String stockSymbol, int shares)
 throws RemoteException;
}

Session Bean Implementation Class (TraderBean.java)
package examples.webservices.complex.statelessSession;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * TraderBean is a stateless Session Bean. This bean illustrates:
 *
 * No persistence of state between calls to the Session Bean
 * Looking up values from the Environment
 *
 *
 * @author Copyright (c) 1999-2003 by BEA Systems, Inc. All Rights Reserved.
 */
public class TraderBean implements SessionBean {

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-6 Programming WebLogic Web Services

 private static final boolean VERBOSE = true;
 private SessionContext ctx;
 private int tradeLimit;

 // You might also consider using WebLogic's log service
 private void log(String s) {
 if (VERBOSE) System.out.println(s);
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbActivate() {
 log("ejbActivate called");
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbRemove() {
 log("ejbRemove called");
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbPassivate() {
 log("ejbPassivate called");
 }

 /**
 * Sets the session context.
 *
 * @param ctx SessionContext Context for session
 */
 public void setSessionContext(SessionContext ctx) {
 log("setSessionContext called");
 this.ctx = ctx;
 }

 /**
 * This method corresponds to the create method in the home interface
 * "TraderHome.java".
 * The parameter sets of the two methods are identical. When the client calls

Anatomy o f the Example

Programming WebLogic Web Services 3-7

 * <code>TraderHome.create()</code>, the container allocates an instance of
 * the EJBean and calls <code>ejbCreate()</code>.
 *
 * @exception javax.ejb.CreateException if there is
 * a communications or systems failure
 * @see examples.ejb11.basic.statelessSession.Trader
 */
 public void ejbCreate () throws CreateException {
 log("ejbCreate called");
 try {
 InitialContext ic = new InitialContext();
 Integer tl = (Integer) ic.lookup("java:/comp/env/tradeLimit");
 tradeLimit = tl.intValue();
 } catch (NamingException ne) {
 throw new CreateException("Failed to find environment value "+ne);
 }
 }

 /**
 * Buys shares of a stock for a named customer.
 *
 * @param customerName String Customer name
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to buy
 * @return TradeResult Trade Result
 * if there is an error while buying the shares
 */
 public TradeResult buy(String stockSymbol, int shares) {
 if (shares > tradeLimit) {
 log("Attempt to buy "+shares+" is greater than limit of "+tradeLimit);
 shares = tradeLimit;
 }
 log("Buying "+shares+" shares of "+stockSymbol);
 return new TradeResult(shares, stockSymbol);
 }

 /**
 * Sells shares of a stock for a named customer.
 *
 * @param customerName String Customer name
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to buy
 * @return TradeResult Trade Result
 * if there is an error while selling the shares
 */
 public TradeResult sell(String stockSymbol, int shares) {
 if (shares > tradeLimit) {
 log("Attempt to sell "+shares+" is greater than limit of "+tradeLimit);
 shares = tradeLimit;

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-8 Programming WebLogic Web Services

 }
 log("Selling "+shares+" shares of "+stockSymbol);
 return new TradeResult(shares, stockSymbol);
 }
}

Home Interface (TraderHome.java)
package examples.webservices.complex.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
 * This interface is the home interface for the TraderBean.java,
 * which in WebLogic is implemented by the code-generated container
 * class TraderBeanC. A home interface may support one or more create
 * methods, which must correspond to methods named "ejbCreate" in the EJBean.
 *
 * @author Copyright (c) 1998-2003 by BEA Systems, Inc. All Rights Reserved.
 */
public interface TraderHome extends EJBHome {
 /**
 * This method corresponds to the ejbCreate method in the bean
 * "TraderBean.java".
 * The parameter sets of the two methods are identical. When the client calls
 * <code>TraderHome.create()</code>, the container
 * allocates an instance of the EJBean and calls <code>ejbCreate()</code>.
 *
 * @return Trader
 * @exception RemoteException if there is
 * a communications or systems failure
 * @exception CreateException
 * if there is a problem creating the bean
 * @see examples.ejb11.basic.statelessSession.TraderBean
 */
 Trader create() throws CreateException, RemoteException;
}

The Non-Built-In Data Type TraderResult
The two methods of the EJB return a non-built-in data type called TraderResult. The following
Java code describes this data type:

package examples.webservices.complex.statelessSession;

Anatomy o f the Example

Programming WebLogic Web Services 3-9

import java.io.Serializable;

/**
 * This class reflects the results of a buy/sell transaction.
 *
 * @author Copyright (c) 1999-2003 by BEA Systems, Inc. All Rights Reserved.
 */
public final class TradeResult implements Serializable {

 // Number of shares really bought or sold.
 private int numberTraded;

 private String stockSymbol;

 public TradeResult() {}

 public TradeResult(int nt, String ss) {
 numberTraded = nt;
 stockSymbol = ss;
 }

 public int getNumberTraded() { return numberTraded; }

 public void setNumberTraded(int numberTraded) {
 this.numberTraded = numberTraded;
 }

 public String getStockSymbol() { return stockSymbol; }

 public void setStockSymbol(String stockSymbol) {
 this.stockSymbol = stockSymbol;
 }
}

The EJB Deployment Descriptors
The Trader EJB defines the following two deployment descriptor files to describe itself:

“ejb-jar.xml” on page 3-9

“weblogic-ejb-jar.xml” on page 3-10

ejb-jar.xml
<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-10 Programming WebLogic Web Services

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TraderService</ejb-name>
 <home>examples.webservices.complex.statelessSession.TraderHome</home>
 <remote>examples.webservices.complex.statelessSession.Trader</remote>

<ejb-class>examples.webservices.complex.statelessSession.TraderBean</ejb-class
>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>WEBL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>10.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>INTL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>15.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>tradeLimit</env-entry-name>
 <env-entry-type>java.lang.Integer </env-entry-type>
 <env-entry-value>500</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>TraderService</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

weblogic-ejb-jar.xml
<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN'
'http://www.bea.com/servers/wls700/dtd/weblogic700-ejb-jar.dtd'>

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>

Anatomy o f the Example

Programming WebLogic Web Services 3-11

 <ejb-name>TraderService</ejb-name>
 <jndi-name>webservices-complex-statelessession</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

The servicegen Ant Task That Assembles the Web Service
The Ant build file, build.xml,contains a call to the servicegen Ant task that introspects the
trader.jar EJB file and:

Generates all data type components (such as the serialization class).

Creates the web-services.xml deployment descriptor file.

Packages all components into a deployable trader.ear file.

The following snippet from the sample build.xml file contains instructions that will build the
EAR file into a temporary build_dir directory:

<target name="build" >
 <delete dir="build_dir" />
 <mkdir dir="build_dir" />
 <copy todir="build_dir" file="trader.jar"/>
 <servicegen
 destEar="build_dir/trader.ear"
 warName="trader.war"
 contextURI="webservice">
 <service
 ejbJar="build_dir/trader.jar"
 targetNamespace="http://www.bea.com/examples/Trader"
 serviceName="TraderService"
 serviceURI="/TraderService"
 generateTypes="True"
 expandMethods="True" >
 </service>
 </servicegen>
 </target>

The Client Application to Invoke The Web Service
The following Java client application shows how to use the JAX-RPC API to invoke the buy and
sell operations of the deployed Trader Web Service:

package examples.webservices.complex.statelessSession;

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-12 Programming WebLogic Web Services

/**
 * This class illustrates how to use the JAX-RPC API to invoke the TraderService

 * Web service to perform the following tasks:
 *
 * Buy 100 shares of some stocks
 * Sell 100 shares of some stocks
 *
 *
 * The TraderService Web service is implemented using the Trader
 * stateless session EJB.
 * * @author Copyright (c) 1998-2003 by BEA Systems, Inc. All Rights Reserved.
 */

public class Client {

 public static void main(String[] args) throws Exception {

 // Setup the global JAXM message factory
 System.setProperty("javax.xml.soap.MessageFactory",
 "weblogic.webservice.core.soap.MessageFactoryImpl");
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 // Parse the argument list
 Client client = new Client();
 String wsdl = (args.length > 0? args[0] : null);
 client.example(wsdl);
 }

 public void example(String wsdlURI) throws Exception {

 TraderServicePort trader = null;
 if (wsdlURI == null) {
 trader = new TraderService_Impl().getTraderServicePort();
 } else {
 trader = new TraderService_Impl(wsdlURI).getTraderServicePort();
 }
 String [] stocks = {"BEAS", "MSFT", "AMZN", "HWP" };

 // execute some buys
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 log("Buying "+shares+" shares of "+stocks[i]+".");
 TradeResult result = trader.buy(stocks[i], shares);
 log("Result traded "+result.getNumberTraded()
 +" shares of "+result.getStockSymbol());
 }

Anatomy o f the Example

Programming WebLogic Web Services 3-13

 // execute some sells
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 log("Selling "+shares+" shares of "+stocks[i]+".");
 TradeResult result = trader.sell(stocks[i], shares);
 log("Result traded "+result.getNumberTraded()
 +" shares of "+result.getStockSymbol());

 }

 }

 private static void log(String s) {
 System.out.println(s);
 }

}

Creat ing a WebLog ic Web Serv i ce : A S imp le Example

3-14 Programming WebLogic Web Services

Programming WebLogic Web Services 4-1

C H A P T E R 4

Designing WebLogic Web Services

The following sections discuss design considerations for implementing WebLogic Web Services:

“Choosing the Back-end Components of Your Web Service” on page 4-1

“Choosing Between Synchronous or Asynchronous Operations” on page 4-2

“Choosing RPC-Oriented or Document-Oriented Web Services” on page 4-3

“Using Built-In and Non-Built-In Data Types” on page 4-4

“Using SOAP Message Handlers to Intercept the SOAP Message” on page 4-5

“Mimicking a Conversational (Stateful) WebLogic Web Service” on page 4-5

Choosing the Back-end Components of Your Web Service
You implement a WebLogic Web Service operation with one of the following types of back-end
component:

A method of a stateless session EJB

A method of a Java class

A JMS message consumer or producer.

Note: BEA recommends that you implement your Web Service operation with only a
stateless session EJB or a Java class, and not with a JMS consumer or producer. In
most of the book, it is assumed that your Web Service is implemented with either an

Des ign ing WebLog ic Web Serv i ces

4-2 Programming WebLogic Web Services

EJB or a Java class. All JMS-specific information is in its own chapter: Chapter 16,
“Creating JMS-Implemented WebLogic Web Services.”

EJB Back-end Component
Web Service operations implemented with a method of a stateless session EJB are interface
driven, which means that the business methods of the underlying stateless session EJB determine
how the Web Service operation works. When clients invoke the Web Service operation, they send
parameter values to the method, which executes and sends back the return value.

Use a stateless session EJB back-end component if your Web Service will have the following
characteristics:

The behavior of the Web Service can be expressed as an interface.

The Web Service is process-oriented rather than data-oriented.

The Web Service can benefit from EJB facilities, such as persistence, security, transactions,
and concurrency.

Examples of this Web Service operation implementation include providing the current weather
conditions in a particular location; returning the current price for a given stock; or checking the
credit rating of a potential trading partner prior to the completion of a business transaction.

Java Class Back-end Component
Web Service operations implemented with Java classes are similar to those implemented with an
EJB method. Creating a Java class, however, is often simpler and faster than creating an EJB.
Use a Java class as a back-end component when you do not need the overhead of EJB facilities
such as persistence, security, transactions, and concurrency.

There are limitations and restrictions to using a Java class as a back-end component, however.
For details, see “Implementing a Web Service By Writing a Java Class” on page 5-4.

Choosing Between Synchronous or Asynchronous Operations

WebLogic Web Service operations can be either synchronous request-response or asynchronous
one-way.

Synchronous request-response (the default behavior) means that every time a client application
invokes a Web Service operation, it receives a SOAP response, even if the method that

Choos ing RPC-Or iented o r Document-Or iented Web Se rv ices

Programming WebLogic Web Services 4-3

implements the operation returns void. Asynchronous one-way means that the client never
receives a SOAP response, even a fault or exception.

You specify this type of behavior with the invocation-style attribute of the <operation>
element in the web-services.xml file.

Web Service operations are typically synchronous request-response, mirroring typical RPC-style
behavior. Sometimes, however, you might want to implement asynchronous behavior if your
client application has no need for a response, even in the case of an error. When designing
asynchronous one-way Web Service operations, keep the following issues in mind:

The back-end component that implements the operation must explicitly return void.

You cannot specify out or in-out parameters to the operation, you can only specify in
parameters.

Choosing RPC-Oriented or Document-Oriented Web Services
The operations of a WebLogic Web Service can be either RPC-oriented or document-oriented.
As described in the WSDL 1.1 specification, an RPC-oriented operation is one in which the
SOAP messages contain parameters and return values, and a document-oriented operation is one
in which the SOAP messages contain XML documents.

WebLogic Server supports two types of document-oriented Web Service operations: standard
document and document-wrapped.

Standard document-oriented Web Service operations take only one parameter, typically an XML
document. This means that the methods that implement the operations must also have only one
parameter. Document-wrapped Web Service operations, however, can take any number of
parameters, although the parameter values will be wrapped into one complex data type in the
SOAP messages. If two or more methods of your stateless session EJB or Java class that
implement the Web Service have the same number and data type of parameters, and you want the
operations to be document-oriented, you must specify that they be document-wrapped.

There are no restrictions on the number of parameters of an RPC-oriented operation.

RPC-oriented WebLogic Web Service operations use SOAP encoding. Document-oriented
WebLogic Web Service operations use literal encoding.

All operations in a single WebLogic Web Service must be either RPC-oriented or
documented-oriented; WebLogic Server does not support mixing the two styles within the same
Web Service.

Des ign ing WebLog ic Web Serv i ces

4-4 Programming WebLogic Web Services

By default, the operations of a WebLogic Web Service are RPC-oriented. If you want to specify
that the operations are document-oriented, use the style="document" or
style="documentwrapped" attribute of the <service> element when assembling a Web
Service using the servicegen Ant task. The generated web-services.xml deployment
descriptor will contain a corresponding style="document" or style="documentwrapped"
attribute for the appropriate <web-service> element.

For information on implementing document-oriented WebLogic Web Services, see
“Implementing a Document-Oriented Web Service” on page 5-6. For details on using the
servicegen Ant task to assemble a document-oriented Web Service, see “Assembling
WebLogic Web Services Using the servicegen Ant Task” on page 6-3 and “servicegen” on
page B-25.

Using Built-In and Non-Built-In Data Types
WebLogic Web Services support both built-in and non-built-in data types as parameters and
return values to Web Services operations. This means that WebLogic Web Services can handle
any type of data that can be represented using XML Schema.

Built-in data types are those specified by the JAX-RPC specification. If your Web Service uses
only built-in data types, the conversion of the data between its XML and Java representation is
handled automatically by WebLogic Server. For the full list of built-in data types, see
“Supported Built-In Data Types” on page 5-15.

If, however, your Web Service operation is more complex and uses a non-built-in data type as a
parameter or return value, you must:

a. Create the serialization class that convert the data between its XML and Java
representation

b. Describe the XML representation of the data type (using XML Schema notation) in the
web-services.xml file

c. Create the Java class file of the data type

d. Describe the data type mapping in the web-services.xml file

WebLogic Server includes Ant tasks that you use to perform these tasks for many common XML
and Java data types; this feature is called autotyping. For the list of supported non-built-in data
types, see “Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on
page 6-18. For information on running these Ant tasks, see Chapter 6, “Assembling WebLogic
Web Services Using Ant Tasks.”

Us ing SOAP Message Hand le rs to In te rcept the SOAP Message

Programming WebLogic Web Services 4-5

Note: If you are using the autotyping Ant tasks to generate data type information for a Java
class, your class must conform to the guidelines described in “Implementing
Non-Built-In Data Types” on page 5-5.

If your data type is not either built-in or one of the supported non-built-in data types, then you
must create the serialization class, and so on, manually. For details, see Chapter 11, “Using
Non-Built-In Data Types.”

Using SOAP Message Handlers to Intercept the SOAP Message
Some Web Services need access to the SOAP message, for which you can create SOAP message
handlers.

A SOAP message handler provides a mechanism for intercepting the SOAP message in both the
request and response of the Web Service. You can create handlers in both the Web Service itself
and the client applications that invoke the Web Service.

A simple example of using handlers is to encrypt and decrypt secure data in the body of a SOAP
message. A client application uses a handler to encrypt the data before it sends the SOAP message
request to the Web Service. The Web Service receives the request and uses a handler to decrypt
the data before it sends the data to the back-end component that implements the Web Service. The
same steps happen in reverse for the response SOAP message.

Another example is accessing information in the header part of the SOAP message. You can use
the SOAP header to store Web Service specific information and then use handlers to manipulate
it.

You can also use SOAP message handlers to improve the performance of your Web Service.
After your Web Service has been deployed for a while, you might discover that many consumers
invoke it with the same parameters. You could improve the performance of your Web Service by
caching the results of popular invokes of the Web Service (assuming the results are static) and
immediately returning these results when appropriate, without ever invoking the back-end
components that implement the Web Service. You implement this performance improvement by
using handlers to check the request SOAP message to see if it contains the popular parameters.

Mimicking a Conversational (Stateful) WebLogic Web Service
You implement a WebLogic Web Service operation using stateless session EJBs or Java classes,
and thus a WebLogic Web Service operation is not stateful, or one that can conduct a back and
forth conversation beyond the standard request/response model.

Des ign ing WebLog ic Web Serv i ces

4-6 Programming WebLogic Web Services

You can, however, mimic a conversational Web Service by using JDBC or entity beans. For
example, you could design a Web Service so that client applications that invoke it pass a unique
ID to identify themselves to the stateless session EJB entry point. This EJB uses the ID to persist
the conversation in persistent storage, using either entity beans or JDBC. The next time the same
client application invokes the Web Service, the stateless session EJB can recover the previous
state of the conversation by selecting the persisted data using the unique ID.

For information on programming entity beans, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs81/ejb/index.html. For information on JDBC, see
WebLogic jDrivers at http://e-docs.bea.com/wls/docs81/jdrivers.html.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/jdrivers.html

Programming WebLogic Web Services 5-1

C H A P T E R 5

Implementing WebLogic Web Services

The following sections describe how to implement WebLogic Web Services:

“Overview of Implementing a WebLogic Web Service” on page 5-1

“Examples of Implementing WebLogic Web Services” on page 5-2

“Implementing a WebLogic Web Service: Main Steps” on page 5-2

“Writing the Java Code for the Components” on page 5-3

“Supported Built-In Data Types” on page 5-15

Overview of Implementing a WebLogic Web Service
Implementing a WebLogic Web Service refers to writing and compiling the Java code for the
back-end components that make up the Web Service and, if necessary, creating SOAP message
handlers and Java code for the non-built-in data types. Back-end components include stateless
session EJBs and Java classes. A Web Service can be implemented with multiple combinations
of these components.

A single WebLogic Web Service consists of one or more operations; you can implement each
operation using methods of different back-end components and SOAP message handlers. For
example, an operation might be implemented with a single method of a stateless session EJB or
with a combination of SOAP message handlers and a method of a stateless session EJB.

If you are implementing a WebLogic Web Service from an existing WSDL file, you can use the
WebLogic Server wsdl2Service Ant task to automatically generate the Java interface that
represents your Web Service, optionally generate an empty implementation Java class file, then

Implement ing WebLogic Web Serv ices

5-2 Programming WebLogic Web Services

write the business-logic code for the Java implementation class to make the Web Service behave
as you want.

It is assumed that you have read and understood the design issues discussed in Chapter 4,
“Designing WebLogic Web Services,” designed your Web Service and that you know the types
of components you need to create.

Note: BEA recommends that you implement your Web Service operation with only a stateless
session EJB or a Java class, and not with a JMS consumer or producer. In most of the
book, it is assumed that your Web Service is implemented with either an EJB or a Java
class. All JMS-specific information is in its own chapter: Chapter 16, “Creating
JMS-Implemented WebLogic Web Services.”

Examples of Implementing WebLogic Web Services
WebLogic Server includes examples of implementing WebLogic Web Services in the
WL_HOME/samples/server/examples/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Platform directory. For detailed instructions on how to
build and run the examples, open the following Web page in your browser:

WL_HOME/samples/server/examples/src/examples/webservices/package-summary.html

Implementing a WebLogic Web Service: Main Steps
The following procedure describes the high-level steps to implement a WebLogic Web Service.
Later parts of this document describe the steps in more detail. Although some of the steps are
mandatory, others are optional, depending on the type of Web Service you are implementing.

1. Write the Java code for the back-end components that make up the Web Service.

See “Writing the Java Code for the Components” on page 5-3.

2. If you need to process information in the SOAP request or response or directly access the
SOAP attachments, create SOAP message handlers and handler chains.

See Chapter 12, “Creating SOAP Message Handlers to Intercept the SOAP Message.”

3. If your back-end components use non-built-in data types as parameters or return values,
generate or create the Java code for the data type as well as the serialization class that
converts the data between XML and Java.

See “Implementing Non-Built-In Data Types” on page 5-5.

Wr i t ing the Java Code fo r the Components

Programming WebLogic Web Services 5-3

4. Compile the Java code into class files. For details, see Compiling Java Code at
http://e-docs.bea.com/wls/docs81/programming/topics.html#Compiling.

Writing the Java Code for the Components
When you implement a WebLogic Web Service, you write Java code for one of these back-end
components:

A stateless session EJB.

See “Implementing a Web Service By Writing a Stateless Session EJB” on page 5-4 for
information on writing the Java code. For an example, see “The EJB Java Interfaces and
Implementation Class” on page 3-4.

A Java class.

See “Implementing a Web Service By Writing a Java Class” on page 5-4 for information
on writing the Java code. For an example, see the
WL_HOME/samples/server/examples/src/examples/webservices/basic/javaclas
s directory, where WL_HOME refers to the main WebLogic Platform installation directory:

If your Web Service operations use non-built-in data types as parameters or return values, see
“Implementing Non-Built-In Data Types” on page 5-5.

If you are implementing a Web Service that uses document-oriented operations, rather than the
default RPC-oriented, see “Implementing a Document-Oriented Web Service” on page 5-6.

If you are implementing a WebLogic Web Service based on an existing WSDL file, and you want
to implement the Web Service with a Java class, use the WebLogic Server wsdl2Service Ant
task to generate the Web Service interface, and optional implementation, class to use as a starting
point. For details about using this Ant task, see “Generating a Partial Implementation From a
WSDL File” on page 5-6.

For information about using SOAP Attachments, see “Using SOAP Attachments” on page 5-9.

For information on throwing exceptions from your Web Service implementation, see “Throwing
SOAP Fault Exceptions” on page 5-14.

If you want your Web Service operation to return multiple values, see “Implementing Multiple
Return Values” on page 5-10.

http://e-docs.bea.com/wls/docs81/programming/topics.html#Compiling

Implement ing WebLogic Web Serv ices

5-4 Programming WebLogic Web Services

Implementing a Web Service By Writing a Stateless Session
EJB
Writing the Java code for the stateless session EJB for a Web Service is no different from writing
a stand-alone EJB, with these exceptions:

You can specify in the web-services.xml deployment descriptor that a Web Service
operation is one-way, which means that the client application that invokes the Web Service
does not wait for a response. When you write the Java code for the EJB method that
implements this type of operation, you must specify that it return void.

For more information on specifying in the web-services.xml file that a Web Service
operation is one-way, see operation.

If the data type of the parameters or return value of an EJB method are not part of the set
of built-in data types, then you must generate or create the serialization class that converts
these data types between their XML and Java representations. For the list of built-in data
types, see “Supported Built-In Data Types” on page 5-15.

See “Implementing Non-Built-In Data Types” on page 5-5.

For an example of how to write a stateless session EJB, see “The EJB Java Interfaces and
Implementation Class” on page 3-4. For general information, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs81/ejb/index.html.

Implementing a Web Service By Writing a Java Class
You can implement a Web Service operation using a Java class as long as you follow these rules:

Do not start any threads. This rule applies to all Java code that runs on WebLogic Server.

Define a default no-argument constructor.

Define as public the methods of the Java class that are going to be exposed as Web Service
operations.

Write thread-safe Java code, because WebLogic Server maintains only a single instance of
a Java class that implements a Web Service operation, and each invoke of the Web Service
uses this same instance.

Although it is not required, your Java class can extend the JAX-RPC
javax.xml.rpc.server.ServiceLifecycle interface, which defines the life cycle for the
Web Service endpoint. However, because this version of WebLogic Server does not support
servlets as back-end components of WebLogic Web Services, BEA does not provide an

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/server/ServiceLifecycle.html

Wr i t ing the Java Code fo r the Components

Programming WebLogic Web Services 5-5

implementation of the javax.xml.rpc.server.ServletEndpointContext interface. This
means that if your Java class extends the ServiceLifecycle interface, its init() method is
passed null rather than an instance of ServletEndpointContext.

For an example of implementing a WebLogic Web Service operation with a Java class, go to the
WL_HOME/samples/server/examples/src/examples/webservices/basic/javaclass
directory, where WL_HOME refers to the main directory of your WebLogic Server installation.

Implementing Non-Built-In Data Types
Stateless session EJBs and Java classes do not necessarily take built-in data types as parameters
and return values, but rather, might use a Java data type that you create yourself. An example of
a non-built-in data type is TradeResult, which has two fields: a String stock symbol and an
integer number of shares traded. For the list of built-in data types, see “Supported Built-In Data
Types” on page 5-15.

If your back-end components use non-built-in data types as parameters or return values, you must
create the Java code of the data type and then create or generate the serialization class that
converts the data between XML and Java.You can do this in one of two ways:

Use WebLogic Server servicegen or autotype Ant tasks to introspect your EJB and
automatically generate the serialization class. These Ant tasks also create the
corresponding XML Schema to represent your data in XML format and update your
web-services.xml deployment descriptor file with the relevant data type mapping
information. You will run these Ant tasks as part of assembling the Web Service, described
in “Creating the Build File That Specifies the servicegen Ant Task” on page 6-5 and
“Running the autotype Ant Task” on page 6-10.

Warning: The serialization class and Java and XML representations generated by the
autotype and servicegen Ant tasks cannot be round-tripped. For more
information, see “Non-Roundtripping of Generated Data Type Components” on
page 6-22.

Create the serialization class and XML and Java representations of your data type
manually. This method is more complex and time-consuming than generating them using
the Ant task. For details on handling non-built-in data types manually, see Chapter 11,
“Using Non-Built-In Data Types.”

If you are going to create the XML representation of your Java data type manually, along with
the serialization class, you can code the Java class any way you want, because you will be writing
all the conversion code yourself.

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/server/ServletEndpointContext.html

Implement ing WebLogic Web Serv ices

5-6 Programming WebLogic Web Services

If you are going to use the servicegen or autotype Ant tasks to generate the data type
components automatically, follow these requirements when writing the Java class for your data
type:

Define a default constructor, which is a constructor that takes no parameters.

Define both getXXX() and setXXX() methods for each member variable that you want to
expose.

Make the data type of each exposed member variable one of the built-in data types, or a
non-built-in data type that consists of built-in data types and has the corresponding
serialization class and XML Schema representation.

The servicegen and autotype Ant tasks can generate data type components for most common
XML and Java data types. For the list of supported non-built-in data types, see “Non-Built-In
Data Types Supported by servicegen and autotype Ant Tasks” on page 6-18.

Implementing a Document-Oriented Web Service
WebLogic Web Services can be either document-oriented (the SOAP message contains a
document) or RPC-oriented (the SOAP message contains parameters and return values). By
default, WebLogic Web Services are RPC-oriented. You specify that a Web Service is
document-oriented when you assemble it using the servicegen Ant task.

The procedures in this chapter assume that you are creating an RPC-oriented Web Service. If,
however, you are creating a document-oriented Web Service, follow these additional guidelines
when implementing the back-end component:

The methods that implement each operation of the Web Service can have only one
parameter. This single parameter can be of any supported data type; see “Using Built-In
and Non-Built-In Data Types” on page 4-4 for more information.

The methods that implement each operation cannot use out and in-out parameters.

Generating a Partial Implementation From a WSDL File
It is assumed in most of this chapter that you are implementing a Web Service by writing the
back-end component first. Sometimes, however, you might need to start with an existing WSDL
from which you create the implementation. For example, your company might include a
corporate architecture group that defines common service descriptions, specifically WSDL files,
that must be implemented by different departments. In this case you can use the wsdl2Service
Ant task to generate a partial implementation.

Wr i t ing the Java Code fo r the Components

Programming WebLogic Web Services 5-7

The wsdl2Service Ant task takes as input an existing WSDL file and generates:

the Java interface that represents the implementation of your Web Service

optionally, an empty Java implementation class

the web-services.xml file that describes the Web Service

The generated Java interface file describes the template for the full Java class-implemented
WebLogic Web Service. The template includes full method signatures that correspond to the
operations in the WSDL file. You must then write a Java class that implements this interface so
that the methods function as you want, following the guidelines in “Implementing a Web Service
By Writing a Java Class” on page 5-4. You can generate a skeleton of the implementation class
by specifying the generateImpl="True" attribute; add the business logic Java code to this class
to complete the implementation.

The wsdl2Service Ant task generates a Java interface for only one Web Service in a WSDL file
(specified by the <service> element.) Use the serviceName attribute to specify a particular
service; if you do not specify this attribute, the wsdl2Service Ant task generates a Java interface
for the first <service> element in the WSDL.

Warning: The wsdl2Service Ant task, when generating the web-services.xml file for
your Web Service, assumes you use the following convention when naming the
Java class that implements the generated Java interface:

 packageName.serviceNameImpl

where packageName and serviceName are the values of the similarly-named
attributes of the wsdl2Service Ant task. The Ant task puts this information in the
class-name attribute of the <java-class> element of the web-services.xml file.

If you name your Java implementation class differently, you must manually update
the generated web-services.xml file accordingly.

Running the wsdl2Service Ant Task
To run the wsdl2Service Ant task, follow these steps:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Implement ing WebLogic Web Serv ices

5-8 Programming WebLogic Web Services

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a file called build.xml that contains a call to the wsdl2Service Ant task. For
details, see “Sample build.xml Files for the wsdl2Service Ant Task” on page 5-8.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

4. Create a Java class implementation for the interface generated in the
myService/implementation directory. For details, see “Implementing a Web Service By
Writing a Java Class” on page 5-4.

For reference information about the wsdl2Service Ant task, see “wsdl2Service” on page B-46.

Sample build.xml Files for the wsdl2Service Ant Task
The following example shows a simple build.xml file:

<project name="buildWebservice" default="generate-from-WSDL">

 <target name="generate-from-WSDL">

 <wsdl2service

 wsdl="wsdls/myService.wsdl"

 destDir="myService/implementation"

 typeMappingFile="autotype/types.xml"

 packageName="example.ws2j.service" />

 </target>

</project>

In the example, the wsdl2Service Ant task generates a Java interface file for the first
<service> element it finds in the WSDL file wsdls/myService.wsdl. It uses data type
mapping information for any non-built-in data types from the autotype/types.xml file;
typically you have previously run the autotype Ant task to generate this file. The Java interface
file and web-services.xml file are generated into the directory myService/implementation.

Assume that value of the name attribute of the first <service> element in the WSDL file is
SuperDooperService. The wsdl2Service generates a Java interface called
example.ws2j.service.SuperDooperService and assumes that your Java implementation
class will be example.ws2j.service.SuperDooperServiceImpl.

Wr i t ing the Java Code fo r the Components

Programming WebLogic Web Services 5-9

Using SOAP Attachments
Certain Java data types, if used as parameters or return values of a method that implements a Web
Service operation, are automatically transported as SOAP Attachments (rather than elements in
the SOAP body) when going over the wire. The following table lists the Java data types and their
corresponding MIME type in the SOAP Attachment.

If you code the method of the Java class or EJB to use one of the preceding Java data types as a
parameter or return value and then use servicegen to assemble the Web Service, the generated
web-services.xml deployment descriptor file automatically specifies that the actual data of the
parameter or return value is in the SOAP attachment. In particular, the location attribute of the
<param> or <return-param> is set equal to attachment. When a client application invokes the
Web Service, the WebLogic Web Services runtime automatically looks for the parameter data in
the attachment to the SOAP request, or adds the return value data to the attachment in the SOAP
response, depending on whether it is the parameter or return value or both that is one of the Java
data types listed in the preceding table.

If you want to access and manipulate the SOAP attachment directly, you must create a SOAP
message handler and use the SOAP with Attachments API for Java 1.1 (SAAJ). For details, see
Chapter 12, “Creating SOAP Message Handlers to Intercept the SOAP Message.”

Table 5-1 Mapping Java Data Types to MIME Types

Java Data Type MIME Type

java.awt.Image image/gif or
image/jpeg

java.lang.String text/plain

javax.mail.internet.MimeMultipart multipart/*

javax.xml.transform.Source text/xml or
application/xml

javax.activation.DataHandler Depends on the data
represented in specific
instance of the
DataHandler.

Implement ing WebLogic Web Serv ices

5-10 Programming WebLogic Web Services

java.lang.String
The Java data type java.lang.String works a little differently than what is described in the
preceding section. By default, if you use java.lang.String in the method that implements a
Web Service operation, the servicegen Ant tasks and the WebLogic Web Services runtime treat
it as a built-in data type. This means that the data will be part of the SOAP body as an XML
Schema string type rather than a text/plain MIME type in a SOAP attachment.

If, however, you want the java.lang.String parameter or return value to be transported as a
text/plain MIME encoded SOAP attachment, you must manually update the
web-services.xml deployment descriptor file and change the value of the location attribute
of the corresponding <param> or <return-value> element from the default Body to
attachment.

For more information on the attributes and elements of the web-services.xml file, see
Appendix A, “WebLogic Web Service Deployment Descriptor Elements.”

javax.activation.DataHandler
You use the javax.activation.DataHandler data type to represent data in a SOAP
attachment that is not listed in the table in “Using SOAP Attachments” on page 5-9.

The DataHandler class provides a consistent interface to data available in many different
sources and formats. It manages simple stream to string conversions and related operations using
javax.activation.DataContentHandlers. The DataHandler class also provides access to
commands that can operate on the data. The commands are found using a
javax.activation.CommandMap class.

DataHandlers are part of the J2EE JavaBeans Activation Framework standard extension. It is
assumed that if you use a DataHandler as a parameter or return type of a WebLogic Web Service
operation, you have implemented all the needed components, such as the DataContentHandler.

For general information about DataHandlers and how to implement them, see JavaBeans
Activation Framework at http://java.sun.com/products/javabeans/glasgow/jaf.html. See the
Javadoc at http://java.sun.com/products/javabeans/glasgow/javadocs/index.html for a
description of the JavaBeans Activation Framework APIs.

Implementing Multiple Return Values
WebLogic Web Service operations typically return a single value: the return value of the EJB or
Java class method that implements the Web Service operation. If you want a Web Service
operation to return multiple values, you can either:

http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javabeans/glasgow/javadocs/index.html

Wr i t ing the Java Code fo r the Components

Programming WebLogic Web Services 5-11

Define the data type of the return value to be a complex non-built-in type, such as an
object with multiple parts or an array. For details about implementing these data types, see
“Implementing Non-Built-In Data Types” on page 5-5.

Specify that one or more of the parameters of the Web Service operation be out or in-out
parameters. This section describes how to create these types of parameters.

Using Out and In-Out Parameters
Out and in-out parameters are a mechanism whereby parameters to an operation can act as both
standard in parameters and return values. Out parameters are undefined when the operation is
invoked, but are defined by the method that implements the operation when the operation
completes. In-out parameters are defined when invoked and when completed. For example,
assume a Web Service operation contains one out parameter, and the operation is implemented
with an EJB method. The EJB method sets the value of the out parameter and sends this value
back to the client application that invoked it. The client application can then access the value of
this out parameter as if it were a return value. An in-out parameter is one that acts as both a
standard input parameter for sending information to the method and an out parameter. This
section discusses how to implement a Web Service operation with an EJB or Java class method
that uses out or in-out parameters.

The following example shows a method whose second parameter is an in-out parameter:

public String myMethod(String param1,
 javax.xml.rpc.holders.IntHolder intHolder) {

System.out.println ("The input value is: " + intHolder.value);
intHolder.value = 20; // the new value of the out parameter

return param1;
}

You invoke the method with two parameters, a String and an integer. The method returns two
values: a String (the standard return value) and an integer (via the IntHolder holder parameter).

Out and in-out parameters must implement the javax.xml.rpc.holders.Holder interface.
Use the Holder.value field to first access the input value of an in-out parameter and then set the
value of out and in-out parameters. In the preceding example, assume the method was invoked
with a value of 40 as the second parameter; when the method completes, the value of intHolder
is now 20.

Implement ing WebLogic Web Serv ices

5-12 Programming WebLogic Web Services

Using Holder Classes to Implement Multiple Return Values
If the out or in-out parameter is a standard data type, use one of the JAX-RPC Holder classes,
listed in the following table.

If, however, the data type of the parameter is not provided, you must create your own
implementation.

To create your own implementation of the javax.xml.rpc.holders.Holder interface, follow
these guidelines:

Name your implementation class TypeHolder, where Type is the name of the complex
type. For example, if your complex type is called Person, then your implementation class
is called PersonHolder.

Table 5-2 Built-In Holder Classes Provided by WebLogic Server

Built-In Holder Class Java Data Type That It Holds

javax.xml.rpc.holders.BooleanHolder boolean

javax.xml.rpc.holders.ByteHolder byte

javax.xml.rpc.holders.ShortHolder short

javax.xml.rpc.holders.IntHolder int

javax.xml.rpc.holders.LongHolder long

javax.xml.rpc.holders.FloatHolder float

javax.xml.rpc.holders.DoubleHolder double

javax.xml.rpc.holders.BigDecimalHolder java.math.BigDecimal

javax.xml.rpc.holders.BigIntegerHolder java.math.BigInteger

javax.xml.rpc.holders.ByteArrayHolder byte[]

javax.xml.rpc.holders.CalendarHolder java.util.Calendar

javax.xml.rpc.holders.QnameHolder javax.xml.namespace.QName

javax.xml.rpc.holders.StringHolder java.lang.String

Wr i t ing the Java Code fo r the Components

Programming WebLogic Web Services 5-13

The Holder implementation class should be packaged in a holders sub-package below
the package of the class it is holding.

For example, if your complex type Person is in the examples.webservices package,
then the PersonHolder implementation class should be in the
examples.webservices.holders package.

Create a public field called value, whose data type is the same as that of the parameter.

Create a default constructor that initializes the value field to a default value.

Create a constructor that sets the value field to the value of the passed parameter.

The following example shows the outline of a PersonHolder implementation class:

package examples.webservices.holders;

public final class PersonHolder implements
 javax.xml.rpc.holders.Holder {

 public Person value;

 public PersonHolder() {

 // set the value variable to a default value
 }

 public PersonHolder (Person value) {

 // set the value variable to the passed in value
 }

}

After you have created the Holder implementation class for your out or in-out parameter, update
the Java code for the method that implements your Web Service operation to use this Holder
class. When you later use the servicegen Ant task to assemble your Web Service, the generated
web-services.xml file will automatically specify that the parameter is an in-out parameter, as
shown in the following excerpt:

<param name="inoutparam" style="inout"
 type="xsd:Person" />

 If you want the parameter to be an out, rather than in-out, parameter, you must update the
generated web-services.xml file manually.

For details about writing a client application that invokes a Web Services that uses out or in-out
parameters, see “Writing a Client That Uses Out or In-Out Parameters” on page 7-10.

Implement ing WebLogic Web Serv ices

5-14 Programming WebLogic Web Services

Throwing SOAP Fault Exceptions
When you write the error-handling Java code for the EJB or Java class that implements your
WebLogic Web Service, you can either throw your own exceptions or throw a
javax.xml.rpc.soap.SOAPFaultException exception. If you throw a
SOAPFaultException, WebLogic Server maps it to a SOAP fault and sends it to the client
application that invokes the operation.

If your EJB or Java class throws any other type of Java exception, WebLogic Server tries to map
it to a SOAP fault as best it can. However, if you want to control what the client application
receives and send it the best possible exception information, you should explicitly throw a
SOAPFaultException exception or one that extends the exception.

The following excerpt describes the SOAPFaultException class:

public class SOAPFaultException extends java.lang.RuntimeException {
 public SOAPFaultException (QName faultcode,
 String faultstring,
 String faultactor,
 javax.xml.soap.Detail detail) {...}
 public Qname getFaultCode() {...}
 public String getFaultString() {...}
 public String getFaultActor() {...}
 public javax.xml.soap.Detail getDetail() {...}
}

Use the SOAP with Attachments API for Java 1.1 (SAAJ)
javax.xml.soap.SOAPFactory.createDetail() method to create the Detail object, which
is a container for DetailEntry objects that provide detailed application-specific information
about the error.

The following class shows an example of creating and throwing a SOAPFaultException from
within the implementation of your Web Service:

import javax.xml.soap.SOAPFactory;
import javax.xml.soap.Detail;
import javax.xml.soap.SOAPException;

import javax.xml.namespace.QName;
import javax.xml.rpc.soap.SOAPFaultException;

public class HelloWorldService{

 public void helloSOAPFault(){

 Detail detail = null;

Suppor ted Bu i l t - In Data Types

Programming WebLogic Web Services 5-15

 try{
 detail = SOAPFactory.newInstance().createDetail();
 detail.addChildElement("MyDetails").addTextNode("failed");
 }catch(SOAPException e){
 e.printStackTrace();
 }

 throw new SOAPFaultException(
 new QName("http://tutorial/sample9/fault", "ServerFailed"),
 "helloSOAPFault method failed",
 "http://foo/bar/baz/",
 detail);
 }

 public void helloCustomFault() throws HelloWorldException{
 throw new HelloWorldException("This is my error message, " +
 "client should get this");
 }
}

Warning: If you create and throw your own exception (rather than use SOAPFaultException)
and two or more of the properties of your exception class are of the same data type,
then you must also create setter methods for these properties, even though the
JAX-RPC specification does not require it. This is because when a WebLogic Web
Service receives the exception in a SOAP message and converts the XML into the
Java exception class, there is no way of knowing which XML element maps to which
class property without the corresponding setter methods.

Supported Built-In Data Types
The following sections describe the built-in data types supported by WebLogic Web Services and
the mapping between their XML and Java representations. As long as the data types of the
parameters and return values of the back-end components that implement your Web Service are
in the set of built-in data types, WebLogic Server automatically converts the data between XML
and Java.

If, however, you use non-built-in data types, then you must create the serialization class to
convert the data between XML and Java. WebLogic Server includes the servicegen and
autotype Ant tasks that can generate the serialization class for most non-built-in data types. See
“Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on page 6-18 for a
list of supported XML and Java data types. For more information about using servicegen and
autotype, see Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks.”

If your data type is not supported, then you must create your serialization class manually. For
details, see Chapter 11, “Using Non-Built-In Data Types.”

Implement ing WebLogic Web Serv ices

5-16 Programming WebLogic Web Services

XML Schema-to-Java Mapping for Built-In Data Types
The following table lists the defined mappings for all built-in data types defined by XML Schema
(target namespace http://www.w3.org/2001/XMLSchema) and the corresponding SOAP data
types (target namespace http://schemas.xmlsoap.org/soap/encoding/).

For a list of the supported non-built-in XML data types, see “Supported XML Non-Built-In Data
Types” on page 6-19.

Table 5-3 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

boolean boolean

byte byte

short short

int int

long long

float float

double double

integer java.math.BigInteger

decimal java.math.BigDecimal

string java.lang.String

dateTime java.util.Calendar

base64Binary byte[]

hexBinary byte[]

duration weblogic.xml.schema.binding.util.Duration

time java.util.Calendar

date java.util.Calendar

Suppor ted Bu i l t - In Data Types

Programming WebLogic Web Services 5-17

gYearMonth java.util.Calendar

The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gYear java.util.Calendar

The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gMonthDay java.util.Calendar

The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gDay java.util.Calendar

The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gMonth java.util.Calendar

The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

anyURI java.lang.String

NOTATION java.lang.String

token java.lang.String

normalizedString java.lang.String

language java.lang.String

Table 5-3 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

Implement ing WebLogic Web Serv ices

5-18 Programming WebLogic Web Services

Java-to-XML Mapping for Built-In Data Types
For a list of the supported non-built-in Java data types, see “Supported Java Non-Built-In Data
Types” on page 6-20.

Name java.lang.String

NMTOKEN java.lang.String

NCName java.lang.String

NMTOKENS java.lang.String[]

ID java.lang.String

IDREF java.lang.String

ENTITY java.lang.String

IDREFS java.lang.String[]

ENTITIES java.lang.String[]

nonPositiveInteger java.math.BigInteger

nonNegativeInteger java.math.BigInteger

negativeInteger java.math.BigInteger

unsignedLong java.math.BigInteger

positiveInteger java.math.BigInteger

unsignedInt long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Table 5-3 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

Suppor ted Bu i l t - In Data Types

Programming WebLogic Web Services 5-19

Table 5-4 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates a
primitive data type)

Equivalent XML Schema Data Type

int int

short short

long long

float float

double double

byte byte

boolean boolean

char string (with facet of length=1)

java.lang.Integer int

java.lang.Short short

java.lang.Long long

java.lang.Float float

java.lang.Double double

java.lang.Byte byte

java.lang.Boolean boolean

java.lang.Character string (with facet of length=1)

java.lang.String string

java.math.BigInteger integer

java.math.BigDecimal decimal

java.lang.String string

java.util.Calendar dateTime

Implement ing WebLogic Web Serv ices

5-20 Programming WebLogic Web Services

java.util.Date dateTime

byte[] base64Binary

weblogic.xml.schema.binding.util.Duration duration

javax.xml.namespace.QName Qname

Table 5-4 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates a
primitive data type)

Equivalent XML Schema Data Type

Programming WebLogic Web Services 6-1

C H A P T E R 6

Assembling WebLogic Web Services
Using Ant Tasks

The following sections describe how to assemble and deploy WebLogic Web Services using a
variety of Ant tasks:

“Overview of Assembling WebLogic Web Services Using Ant Tasks” on page 6-1

“Assembling WebLogic Web Services Using the servicegen Ant Task” on page 6-3

“Assembling WebLogic Web Services Using Individual Ant Tasks” on page 6-6

“The Web Service EAR File Package” on page 6-17

“Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on page 6-18

“Non-Roundtripping of Generated Data Type Components” on page 6-22

“Deploying and Testing WebLogic Web Services” on page 6-23

Overview of Assembling WebLogic Web Services Using Ant
Tasks

Assembling a WebLogic Web Service refers to gathering all the components of the service (such
as the EJB JAR file, the SOAP message handler classes, and so on), generating the
web-services.xml deployment descriptor file, and packaging everything into an Enterprise
Application Archive (EAR) file that can be deployed on WebLogic Server.

There are two ways to assemble a WebLogic Web Service using Ant tasks:

Using the servicegen Ant task, which performs all assembly steps for you.

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-2 Programming WebLogic Web Services

The servicegen Ant takes as input an EJB JAR file (for EJB-implemented Web Services)
or a list of Java classes (for Java class-implemented Web Services), and based on
information after introspecting the Java code and the attributes of the Ant task, it
automatically generates all the components that make up a WebLogic Web Service and
packages them into an EAR file.

For detailed information, see “Assembling WebLogic Web Services Using the servicegen
Ant Task” on page 6-3.

Using a variety of narrowly-focused Ant tasks, such as autotype, source2wsdd, and so
on.

Typically, the servicegen Ant task is adequate for assembling most WebLogic Web
Services. If, however, you want more control over how your Web Service is assembled,
you can use a set of narrowly-focused Ant tasks instead. For example, you can use the
source2wsdd to generate the web-services.xml file, and then you can update this file
manually if you want to add more information.

For detailed information, see “Assembling WebLogic Web Services Using Individual Ant
Tasks” on page 6-6.

For detailed reference information on the Web Services Ant tasks, see Appendix B, “Web Service
Ant Tasks and Command-Line Utilities.”

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or ant.bat
(Windows) configuration files in the WL_HOME\server\bin directory to set various
Ant-specific variables, where WL_HOME is the top-level directory of your WebLogic
Platform installation If you need to update these Ant variables, make the relevant
changes to the appropriate file for your operating system.

Examples of Assembling WebLogic Web Services
WebLogic Server includes examples of assembling WebLogic Web Services in the
WL_HOME/samples/server/examples/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Platform directory. For detailed instructions on how to
build and run the examples, open the following Web page in your browser:

WL_HOME/samples/server/examples/src/examples/webservices/package-summary.html

Assembl ing WebLog ic Web Serv i ces Us ing the se rv i cegen Ant Task

Programming WebLogic Web Services 6-3

Assembling WebLogic Web Services Using the servicegen Ant
Task

The servicegen Ant task takes as input an EJB JAR file or list of Java classes, creates all the
needed Web Service components, and packages them into a deployable EAR file.

What the servicegen Ant Task Does
In particular, the servicegen Ant task:

Introspects the Java code, looking for public methods to convert into Web Service
operations and non-built-in data types used as parameters or return values of the methods.

Creates a web-services.xml deployment descriptor file, based on the attributes of the
servicegen Ant task and introspected EJB or Java class information.

Optionally creates the serialization class that convert the non-built-in data between its
XML and Java representations. It also creates XML Schema representations of the Java
objects and updates the web-services.xml file accordingly. For the list of supported
non-built-in data types, see “Non-Built-In Data Types Supported by servicegen and
autotype Ant Tasks” on page 6-18.

Packages all the Web Service components into a Web application WAR file, then packages
the WAR and EJB JAR files into a deployable EAR file.

Assembling WebLogic Web Services Automatically: Main Steps
To assemble a Web Service automatically using the servicegen Ant task:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a staging directory to hold the components of your Web Service.

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-4 Programming WebLogic Web Services

3. If the Web Service operations are implemented with EJBs, package them, along with any
supporting EJBs, into an EJB JAR file. If the operations are implemented with Java classes,
compile them into class files.

For detailed information, refer to Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/environment.html.

4. Copy the EJB JAR file and/or Java class files to the staging directory.

5. In the staging directory, create the Ant build file (called build.xml by default) that
contains a call to the servicegen Ant task.

For details about specifying the servicegen Ant task, see “Creating the Build File That
Specifies the servicegen Ant Task” on page 6-5.

For general information about creating Ant build files, see
http://jakarta.apache.org/ant/manual/.

Note: The Apache Jakarta Web site publishes online documentation for only the most
current version of Ant, which might be different from the version of Ant that is
bundled with WebLogic Server. To determine the version of Ant that is bundled with
WebLogic Server, run the following command after setting your WebLogic
environment:

prompt> ant -version

To view the documentation for a specific version of Ant, download the Ant zip file
from http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

6. If you previously used the autotype Ant task to generate non-built-in data type
information from an existing XML Schema file, and then used the typeMappingFile
attribute of the servicegen Ant task to specify the types.xml file generated by autotype
and merge it with any servicegen-generated information, and the original XML Schema
file uses the <include> element to include additional XML Schema files, you must copy
these XML Schema files to the root directory of the Web Service Web application WAR file
of the generated EAR file. You can use the wspackage Ant task do perform this step.

If you are using the servicegen Ant task exclusively to generate non-built-in data type
components, then you do not need to perform this step.

For details, see “Running the wspackage Ant task” on page 6-14.

7. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument (if you have created the
build.xml file to take arguments):

prompt> ant

http://e-docs.bea.com/wls/docs81/programming/environment.html
http://jakarta.apache.org/ant/manual/
http://archive.apache.org/dist/ant/binaries/

Assembl ing WebLog ic Web Serv i ces Us ing the se rv i cegen Ant Task

Programming WebLogic Web Services 6-5

The Ant task generates the Web Services EAR file in the staging directory which you can
then deploy on WebLogic Server.

Creating the Build File That Specifies the servicegen Ant Task
The following sample build.xml, file taken from the
examples.webservices.basic.statelessession product example, specifies that you will
run the servicegen Ant task:

<project name="buildWebservice" default="ear">
 <target name="ear">
 <servicegen
 destEar="ws_basic_statelessSession.ear"
 contextURI="WebServices" >
 <service
 ejbJar="HelloWorldEJB.jar"
 targetNamespace="http://www.bea.com/webservices/basic/statelesSession"
 serviceName="HelloWorldEJB"
 serviceURI="/HelloWorldEJB"
 generateTypes="True"
 expandMethods="True"
 style="rpc" >
 </service>
 </servicegen>
 </target>
</project>

In the example, the servicegen Ant task creates one Web Service called HelloWorldEJB. The
URI to identify this Web Service is /HelloWorldEJB; the full URL to access the Web Service is

http://host:port/WebServices/HelloWorldEJB

The servicegen Ant task packages the Web Service in an EAR file called
ws_basic_statelessSession.ear, as specified by the destEar attribute. The EAR file
contains a WAR file called web-services.war (default name) that contains all the Web Service
components, such as the web-services.xml deployment descriptor file.

Because the generateTypes attribute is set to True, the WAR file also contains the serialization
class for any non-built-in data types used as parameters or return values to the EJB methods. The
Ant task introspects the EJBs contained in the HelloWorldEJB.jar file, looking for public
operations and non-built-in data types, and updates the web-services.xml operation and data
type mapping sections accordingly. Because the expandMethods attribute is also set to True, the
Ant task lists each public EJB method as a separate operation in the web-services.xml file.

The style="rpc" attribute specifies that the operations in the Web Service are all RPC-oriented.
If the operations in your Web Service are document-oriented, specify style="document".

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-6 Programming WebLogic Web Services

Note: BEA recommends that you create an exploded directory, rather than an EAR file, by
specifying a value for the destEar attribute of servicegen that does not have an .ear
suffix. You can later package the exploded directory into an EAR file when you are ready
to deploy the Web Service.

Assembling WebLogic Web Services Using Individual Ant Tasks
Typically, the servicegen Ant task is adequate for assembling most WebLogic Web Services.
If, however, you want more control over how your Web Service is assembled, you can use a set
of narrowly-focused Ant tasks instead. For example, you can use the source2wsdd to generate
the web-services.xml file, and then you can update this file manually if you want to add more
information.

The following sections describe two ways to assemble a Web Service, based on whether you
started with Java or with an XML Schema:

“Assembling a Web Service Starting with Java” on page 6-6

“Assembling a Web Service Starting with an XML Schema” on page 6-7

Assembling a Web Service Starting with Java
In the following procedure, it is assumed that you have already implemented your Web Service
by writing the Java code of the back-end components and non-built-in data types, and you want
to use individual Ant tasks to generate the XML Schema that represents the non-built-in data
types, as well as the other Web Service components such as the web-services.xml deployment
descriptor file.

1. Package or compile the Java back-end components that implement the Web Service into their
respective packages. For example, package stateless session EJBs into an EJB JAR file and
Java classes into class files.

For detailed instructions, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/environment.html.

2. Create the Web Service deployment descriptor file (web-services.xml).

If you implemented your Web Service with a stateless session EJB or a Java class, you can
use the source2wsdd Ant task to generate a web-services.xml file. For details, see
“Running the source2wsdd Ant Task” on page 6-8.

If you used the wsdl2Service Ant task to generate a partial implementation of a Web
Service from an existing WSDL file, then the Ant task already generated a

http://e-docs.bea.com/wls/docs81/programming/environment.html

Assembl ing WebLog ic Web Se rv i ces Us ing Ind iv idual An t Tasks

Programming WebLogic Web Services 6-7

web-services.xml file for you. For details, see “Generating a Partial Implementation
From a WSDL File” on page 5-6.

3. If your Web Service uses non-built-in data types, create all the needed components, such as
the serialization class and the XML Schema, by using the autotype Ant task to generate
these components automatically, as described in “Running the autotype Ant Task” on
page 6-10.

4. Optionally create a client JAR file using the clientgen Ant task.

See “Running the clientgen Ant Task” on page 6-13.

5. Package all components into a deployable EAR file by using the wspackage Ant task, as
described in “Running the wspackage Ant task” on page 6-14.

Assembling a Web Service Starting with an XML Schema
In the following procedure, it is assumed that you are starting with an XML Schema that
describes the non-built-in data types of your Web Service, and you want to use the individual Ant
tasks to generate the equivalent Java representation of the data types. You then use these
generated Java classes to write the back-end component that implements your Web Service, then
use Ant tasks to generate the remaining components, such as the web-services.xml file. It is
assumed that you want to preserve the original XML Schema all the way through the
development process, so that at the end, when you deploy the Web Service, the published WSDL
contains the exact same XML Schema with which you stared.

1. Run the autotype Ant task to generate the Java representations of the non-built-in data types
in the XML Schema file. The Ant task also generates the serialization class used to convert
the data between XML and Java and the data type mapping file. Use the schemaFile attribute
of the autotype Ant task to specify the name of the file that contains your XML Schema.

For details, see “Running the autotype Ant Task” on page 6-10.

2. Write the Java code for the stateless session EJB or Java class back-end component that
implements your Web Service. Use the Java classes generated by the autotype Ant task in
the preceding step for the non-built-in data types (originally described in the XML Schema
file from which you started) used as parameters or return values of the methods.

For details, see “Writing the Java Code for the Components” on page 5-3.

3. If necessary, re-run the autotype Ant task against your EJB or Java class to generate the
non-built-in data type components for any new data types you might have created that are
not included in the original XML Schema file. Use the javaComponents attribute of the
autotype Ant task to specify the back-end component you wrote in Step 2.

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-8 Programming WebLogic Web Services

Be sure you also use the typeMappingFile attribute to specify the existing data type
mapping file, generated from the first execution of the autotype Ant task in Step 1. The
autotype Ant task merges the existing XML Schema with any generated one, thus
preserving the original XML Schema.

For details, see “Running the autotype Ant Task” on page 6-10.

4. Run the source2wsdd Ant task to generate the web-services.xml deployment descriptor.
If you re-ran the autotype Ant task to create a merged data type mapping file, be sure you
specify this final file with the typesInfo attribute.

For details, see “Running the source2wsdd Ant Task” on page 6-8.

5. Optionally create a client JAR file by running the clientgen Ant task.

For details, see “Running the clientgen Ant Task” on page 6-13.

6. Package all components into a deployable EAR file by using the wspackage Ant task.

If the original XML Schema file from which you originally started uses one or more
<include> elements to include additional XML Schema files, be sure you explicitly copy
these files to the root directory of the Web Service Web application WAR file, located by
default in the root directory of the EAR file and called web-services.war.

For details and examples of a variety of ways to use the wspackage Ant task, see
“Running the wspackage Ant task” on page 6-14.

Running the source2wsdd Ant Task
Use the source2wsdd Ant task to generate a web-services.xml deployment descriptor file
from the stateless session EJB or Java source file that implements a Web Service.

To run the source2wsdd Ant task:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Assembl ing WebLog ic Web Se rv i ces Us ing Ind iv idual An t Tasks

Programming WebLogic Web Services 6-9

2. Create a file called build.xml that contains a call to the source2wsdd Ant task. For
details, see the examples later in this section.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

For reference information about the source2wsdd Ant task, see “source2wsdd” on page B-41.

The following example shows a simple build.xml file.

Listing 6-1 Simple Source2wsdd build.xml File For a Java Source File

<project name="buildWebservice" default="generate-typeinfo">

 <target name="generate-typeinfot">

 <source2wsdd

 javaSource="source/MyService.java"

 typesInfo="autotype/types.xml"

 ddFile="ddfiles/web-services.xml"

 serviceURI="/MyService" />

</project>

When you run the source2wsdd Ant task using the preceding build.xml file, the Ant task
generates a web-services.xml file from the Java source file source/MyService.java. It
uses non-built-in data type information from the autotype/types.xml file; this information
includes the XML Schema representation of non-built-in data types used as parameters or return
values in your Web Service, as well as data type mapping information that specifies the location
of the serialization class, and so on. You typically generate the types.xml file using the
autotype Ant task.

The source2wsdd Ant task outputs the generated deployment descriptor information into the file
ddfiles/web-services.xml. The URI of the Web Service is /MyService, used in the full
URL that invokes the Web Service once it is deployed.

The following example shows how to generate both a web-services.xml file and the WSDL
file (called wsdFiles/Temperature.wsdl) that describes a stateless session EJB-implemented
Web Service. Because the ejbLink attribute is specified, the javaSource attribute must point
to the EJB source file. The source2wsdd Ant task uses the value of the ejbLink attribute as the

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-10 Programming WebLogic Web Services

value of the <ejb-link> child element of the <stateless-ejb> element in the generated
web-services.xml file.

Listing 6-2 Source2wsdd build.xml File for an EJB

<source2wsdd

javaSource="source/TemperatureService.java"

ejbLink="TemperatureService.jar#TemperatureServiceEJB"

ddFile="ddfiles/web-services.xml"

typesInfo="autotype/types.xml"

serviceURI="/TemperatureService"

wsdlFile="wsdlFiles/Temperature.wsdl"

/>

Running the autotype Ant Task
Use the autotype Ant task to generate non-built-in data type components, such as the
serialization class. For the list of supported non-built-in data types, see “Non-Built-In Data Types
Supported by servicegen and autotype Ant Tasks” on page 6-18.

To run the autotype Ant task:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a file called build.xml that contains a call to the autotype Ant task. For details,
see the examples later in this section.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

Assembl ing WebLog ic Web Se rv i ces Us ing Ind iv idual An t Tasks

Programming WebLogic Web Services 6-11

prompt> ant

For reference information about the autotype Ant task, see “autotype” on page B-7.

The following example shows a simple build.xml file.

Listing 6-3 Autotype build.xml File For a Java Class

<project name="buildWebservice" default="generate-typeinfo">

 <target name="generate-typeinfot">

 <autotype javatypes="mypackage.MyType"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output" />

 </target>

</project>

When you run the autotype Ant task using the preceding build.xml file, the Ant task creates
the non-built-in data type components for a Java class called mypackage.MyType. The package
name used in the generated serialization class is a.package.name. The serialization Java class
and XML schema information is generated and placed in the output directory. The generated
XML Schema and type-mapping information are in a file called types.xml in this output
directory.

The following excerpt from a sample build.xml file shows another way to use the autotype
task

Listing 6-4 Autotype build.xml File For Starting with WSDL

<autotype wsdl="file:/wsdls/myWSDL"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output" />

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-12 Programming WebLogic Web Services

The preceding example is similar to the first, except that instead of starting with a Java
representation of a data type, the example starts with an XML Schema representation embedded
within the WSDL of a Web Service. In this case, the task generates the corresponding Java
representation.

Similarly, if you want to start from an XML Schema file and generate the corresponding Java
components, use the schemaFile attribute, as shown in the following example.

Listing 6-5 Autotype build.xml File for Starting with XML Schema

<autotype schemaFile="file:/schemas/mySchema.xsd"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output" />

In the preceding example, the XML Schema in the mySchema.xsd file is copied, without any
changes, to the output/types.xml file that contains the data type mapping information.

The following example shows how to both generate non-built-in data type components for newly
implemented Java data types, and carry forward already generated components.

Listing 6-6 Autotype build.xml File That Carries Forward Existing Components

<autotype javaComponents="my.superService"

 typeMappingFile="file:/mapfiles/types.xml"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output" />

In the preceding example, it is assumed that you have previously run the autotype Ant task
against an XML Schema file and generated the corresponding Java data types and data type
mapping file. It is further assumed that you then used these data types to implement a stateless
session EJB back-end component, and during that process, you created additional Java data types
and want to use the autotype Ant task to generate the corresponding XML Schema. However,

Assembl ing WebLog ic Web Se rv i ces Us ing Ind iv idual An t Tasks

Programming WebLogic Web Services 6-13

you want to preserve the original XML Schema from which you started, and carry it forward into
the newly generated types.xml file. The example uses the javaComponents attribute to specify
the EJB which has the new Java data types and the typeMappingFile attribute to specify the
existing file that contains the XML Schema for data types that you do not want regenerated. The
Ant task merges the existing data type mapping information in the
file:/mapfiles/types.xml file with the generated information, and writes the result to the
output/types.xml file.

Running the clientgen Ant Task
To run the clientgen Ant task and automatically generate a client JAR file:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a file called build.xml that contains a call to the clientgen Ant task. For details,
see the examples later in this section.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

For reference information about the clientgen Ant task, see “clientgen” on page B-14.

The following example shows a simple build.xml file.

Listing 6-7 Clientgen build.xml File For Generating Client From EAR File

<project name="buildWebservice" default="generate-client">

 <target name="generate-client">

 <clientgen ear="myapps/myapp.ear"

 serviceName="myService"

 packageName="myapp.myservice.client"

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-14 Programming WebLogic Web Services

 useServerTypes="True"

 clientJar="myapps/myService_client.jar" />

 </target>

</project>

When you run the clientgen Ant task using the preceding build.xml file, the Ant task creates
the myapps/myService_client.jar client JAR file that contains the service-specific client
interfaces and stubs and the serialization class used to invoke the WebLogic Web Service called
myService contained in the EAR file myapps/myapp.ear. It packages the client interface and
stub files into a package called myapp.myservice.client. The useServerTypes attribute
specifies that the clientgen Ant task should get the Java implementation of all non-built-in data
types used in the Web Service from the myapps/myapp.ear file rather than generating Java code
to implement the data types.

The following excerpt from a sample build.xml file shows another way to use the clientgen
task.

Listing 6-8 Clientgen build.xml File For Generating Client From a WSDL File

<clientgen wsdl="http://example.com/myapp/myservice.wsdl"

 packageName="myapp.myservice.client"

 clientJar="myapps/myService_client.jar"

/>

In the example, the clientgen task creates a client JAR file (called
myapps/myService_client.jar) to invoke the Web Service described in the
http://example.com/myapp/myservice.wsdl WSDL file. It packages the interface and stub
files in the myapp.myservice.client package.

Running the wspackage Ant task
Use the wspackage Ant task to package the various components of a Web Service into a new
deployable EAR file or to add additional components to an existing EAR file.

To run the wspackage Ant task, follow these steps:

Assembl ing WebLog ic Web Se rv i ces Us ing Ind iv idual An t Tasks

Programming WebLogic Web Services 6-15

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a file called build.xml that contains a call to the wspackage Ant task. For details,
see the examples later in this section.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

For reference information about the wspackage Ant task, see “wspackage” on page B-52.

The following example shows a simple build.xml file for creating a new deployable EAR file
for a Java class-implemented Web Service.

Listing 6-9 Wspackage build.xml File for a Java Class

<project name="buildWebservice" default="package-up">

 <target name="package-up">

 <wspackage

 output="ears/myWebService.ear"

 contextURI="web_services"

 codecDir="autotype"

 webAppClasses="example.ws2j.service.SimpleTest"

 ddFile="ddfiles/web-services.xml" />

</project>

When you run the wspackage Ant task using the preceding build.xml file, the Ant task creates
an EAR file called ears/myWebService.ear. The context URI of the Web Service, used in the
full URL that invokes it, is web_services. The class file that contains the serialization class for

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-16 Programming WebLogic Web Services

the non-built-in data types is located in the autotype directory. The Java class that implements
the Web Service is called example.ws2j.service.SimpleTest and will be packaged in the
WEB-INF/classes directory of the Web application. Finally, the existing deployment descriptor
file is ddfiles/web-services.xml.

The following example shows another build.xml file for adding additional components to an
existing EAR file.

Listing 6-10 Wspackage build.xml File For Adding Additional Components to EAR File

<project name="buildWebservice" default="package-up">

 <target name="package-up">

 <wspackage

 output="ears/myWebService.ear"

 overwrite="false"

 filesToEar="myEJB2.jar"

 />

</project>

In the example, the wspackage Ant task adds the file myEJB2.jar to the root directory of the
existing EAR file called ears/myWebService.ear. The overwrite attribute is set to false to
ensure that none of the existing components in the ears/myWebService.ear file are
overwritten; be sure you always do this when using the wspackage Ant task to add additional
files to an EAR file.

The following example is similar to the preceding one in that it adds additional components to an
existing EAR, but in this case it adds XML Schema files to the root directory of the existing WAR
file. You must use the following syntax if you originally used the autotype Ant task to generate
non-built-in data type components from an XML Schema file, and this Schema file contains one
or more <include> elements to include additional XML Schema files. When you package the
final Web Service into an archive, you must manually add both the original and included XML
Schema files to the WAR file.

The Web Serv ice EAR F i l e Package

Programming WebLogic Web Services 6-17

Listing 6-11 Wspackage build.xml File For Adding Schema Files to the WAR File of an EAR

<project name="buildWebservice" default="package-up">

 <target name="package-up">

 <wspackage

 output="ears/myWebService.ear"

 overwrite="false"

 warName="myservice.war"

 filesToWar="original_schema.xsd,included_schema.xsd"

 />

</project>

In the example, the wspackage Ant task adds the XML Schema files original_schema.xsd
and included_schema.xsd to the root directory of the existing WAR file called
myservice.war, located in the root directory of the EAR file called ears/myWebService.ear.

The Web Service EAR File Package
Web Services are packaged into standard Enterprise Application EAR files that contain a Web
application WAR file along with the EJB JAR files.

The following graphic shows the hierarchy of a typical WebLogic Web Services EAR file.

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-18 Programming WebLogic Web Services

Figure 6-1 Hierarchy of WebLogic Web Services EAR File

Non-Built-In Data Types Supported by servicegen and autotype
Ant Tasks

The tables in the following sections list the non-built-in XML and Java data types for which the
servicegen and autotype Ant tasks can generate data type components, such as the
serialization class, the Java or XML representation, and so on.

If your XML or Java data type is not listed in these tables, and it is not one of the built-in data
types listed in “Supported Built-In Data Types” on page 5-15, then you must create the
non-built-in data type components manually. For details, see Chapter 11, “Using Non-Built-In
Data Types.”

Warning: The serialization class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be round-tripped. For
more information, see “Non-Roundtripping of Generated Data Type Components”
on page 6-22.

EAR file

WAR file

EJB JAR file

META-INF

WEB-INF

web-services.xml

client.jar

(Directory that contains standard application.xml file)

(Web Services deployment descriptor file)

(Downloadable client JAR file, one per Web Service)

classes (Directory that contains the serialization class,
handler implementations, Java class components, and all

(JAR file containing the EJBs that implement the Web Service.)

lib (Directory that contains JAR files of Java classes.)

other supporting classes.)

Non-Bu i l t - In Data Types Suppor ted by se rv icegen and auto t ype Ant Tasks

Programming WebLogic Web Services 6-19

For information on the ways that WebLogic Web Services are non-compliant with the JAX-RPC
specification with respect to data types, see “Data Type Non-Compliance with JAX-RPC” on
page 6-21.

Supported XML Non-Built-In Data Types
The following table lists the supported XML Schema non-built-in data types. If your XML data
type is listed in the table, then the servicegen and autotype Ant tasks can generate the
serialization class to convert the data between its XML and Java representations, as well as the
Java representation and type mapping information for the web-services.xml deployment
descriptor.

For details and examples of the data types, see the JAX-RPC specification.

Table 6-1 Supported Non-Built-In XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping
Mechanism

Enumeration Typesafe enumeration pattern. For
details, see Section 4.2.4 of the JAX-RPC
specification.

<xsd:complexType> with elements of both
simple and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in
<xsd:complexType>

Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element.

Note: The base primitive type must be one of
the following: string, decimal,
float, or double. Pattern facet is
not enforced.

Restriction enforced during serialization
and deserialization.

<xsd:list> Array of the list data type.

http://java.sun.com/xml/jaxrpc/index.html

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-20 Programming WebLogic Web Services

Supported Java Non-Built-In Data Types
The following table lists the supported Java non-built-in data types. If your Java data type is listed
in the table, then the servicegen and autotype Ant tasks can generate the serialization class to
convert the data between its Java and XML representations.

Array derived from soapenc:Array by
restriction using the wsdl:arrayType
attribute.

Array of the Java equivalent of the
arrayType data type.

Array derived from soapenc:Array by
restriction.

Array of Java equivalent.

Derivation of a complex type from a simple
type.

JavaBean with a property called
simpleContent of type String.

<xsd:anyType> java.lang.Object.

<xsd:nil> and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and
usually maps to a Java primitive data type
(such as int or short), then the XML
data type is actually mapped to the
equivalent object wrapper type (such as
java.lang.Integer or
java.lang.Short).

Derivation of complex types by extension Mapped using Java inheritance.

Abstract types Abstract Java data type.

Table 6-1 Supported Non-Built-In XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping
Mechanism

Non-Bu i l t - In Data Types Suppor ted by se rv icegen and auto t ype Ant Tasks

Programming WebLogic Web Services 6-21

Data Type Non-Compliance with JAX-RPC
The autotype Ant task does not comply with the JAX-RPC specification if the XML Schema
data type (for which it is generating the Java representation) has all the following characteristics:

Table 6-2 Supported Non-Built-In Java Data Types

Java Data Type Equivalent XML Schema Data Type

Array of any supported data type. SOAP Array.

JavaBean whose properties are any supported
data type.

<xsd:sequence>

java.util.List SOAP Array.

java.util.ArrayList SOAP Array.

java.util.LinkedList SOAP Array.

java.util.Vector SOAP Array.

java.util.Stack SOAP Array.

java.util.Collection SOAP Array.

java.util.Set SOAP Array.

java.util.HashSet SOAP Array.

java.util.SortedSet SOAP Array.

java.util.TreeSet SOAP Array

java.lang.Object

Note: The data type of the runtime object
must be a known type: either a built-in
data type or one that has type mapping
information.

<xsd:anyType>

JAX-RPC-style enumeration class <xsd:simpleType> with enumeration
facets

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-22 Programming WebLogic Web Services

The data type is a complexType.

The complexType contains a single sequence.

The sequence contains a single element with maxOccurs greater than 1 or unbounded.

The following example shows such an XML Schema data type:

<xsd:complexType name="Response">

 <xsd:sequence >

 <xsd:element name="code" type="xsd:string" maxOccurs="10" />

 </xsd:sequence>

</xsd:complexType>

The autotype Ant task maps this type of XML Schema data type directly to a Java array of the
specified element. In the previous example, the autotype Ant task maps the Response XML
Schema data type to a java.lang.String[] Java type. This is similar to the type of mapping
that .NET does.

The JAX-RPC specification, in turn, states that this type of XML Schema data type should map
to a Java array with a pair of setter and getter methods in a JavaBean class. WebLogic Web
Services do not follow this last part of the specification.

Non-Roundtripping of Generated Data Type Components
When you use the servicegen or autotype Ant tasks to create the serialization class and Java
or XML representation of non-built-in data types, note that the process cannot be round-tripped.
This means that if, for example, you use the autotype Ant task to generate the Java
representation of an XML Schema data type, and then use autotype to create an XML Schema
data type from the generated Java type, the original and generated XML Schema data type will
not necessarily look the same, although they both describe the same XML data. This is also true
if you start from Java, generate an XML Schema, then generate a new Java data type from the
generated XML Schema: the original and generated Java type will not necessarily look exactly
the same. For example, the original and generated Java type might list the parameters of the
constructor in a different order.

This behavior has a variety of repercussions. For example, assume you are developing a Web
Service from an existing stateless session EJB that uses non-built-in data types. You use the
autotype Ant task to generate the serialization class and Java and XML representation of the
data types and you use this generated code in your server-side code that implements your Web
Service. Later you use the clientgen Ant task to generate the Web Service-specific client JAR
file, which also includes a serialization class and the Java representation of the non-built-in data

Deploy ing and Test ing WebLog ic Web Serv ices

Programming WebLogic Web Services 6-23

types. However, because clientgen by default generates these components from the WSDL of
the Web Service (and thus from an XML Schema), the clientgen-generated client-side Java
representation might look different from the autotype-generated server-side Java code. This
means that you might not necessarily be able to reuse any server-side code that handles the data
type in your client application. If you want the clientgen Ant task to always use the generated
serialization class and code from the WebLogic Web Service EAR file, specify the
useServerTypes attribute.

Deploying and Testing WebLogic Web Services
Deploying a WebLogic Web Service refers to making it available to remote clients. Because
WebLogic Web Services are packaged as standard J2EE Enterprise applications, deploying a
Web Service is the same as deploying an Enterprise application.

For detailed information on deploying Enterprise applications, see Deploying WebLogic Server
Applications at http://e-docs.bea.com/wls/docs81/deployment/index.html.

You can use the WebLogic Web Services Home Page to test your Web Services, as described in
“WebLogic Web Services Home Page and WSDL URLs” on page 6-23.

WebLogic Web Services Home Page and WSDL URLs
Every Web Service deployed on WebLogic Server has a Home Page. From the Home page you
can:

View the WSDL that describes the service.

Test each operation to ensure that it is working correctly.

View the SOAP request and response messages from a successful test of an operation.

Note: You cannot use two-way SSL when testing a Web Service from its Home Page.

The following URLs show first how to invoke the Web Service Home page and then the WSDL
in your browser:

[protocol]://[host]:[port]/[contextURI]/[serviceURI]

[protocol]://[host]:[port]/[contextURI]/[serviceURI]?WSDL

where:

protocol refers to the protocol over which the service is invoked, either HTTP or HTTPS.
This value corresponds to the protocol attribute of the <web-service> element that

http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-24 Programming WebLogic Web Services

describes the Web Service in the web-servicex.xml file. If you used the servicegen
Ant task to assemble your Web Service, this value corresponds to the protocol attribute.

host refers to the computer on which WebLogic Server is running.

port refers to the port number on which WebLogic Server is listening (default value is
7001).

contextURI refers to the context root of the Web application, corresponding to the
<context-root> element in the application.xml deployment descriptor of the EAR
file. If you used the servicegen Ant task to assemble your Web Service, this value
corresponds to the contextURI attribute.

If your application.xml file does not include the <context-root> element, then the
value of contextURI is the name of the Web application archive file or exploded directory.

serviceURI refers to the URI of the Web Service. This value corresponds to the uri
attribute of the <web-service> element in the web-services.xml file. If you used the
servicegen Ant task to assemble your Web Service, this value corresponds to the
serviceURI attribute.

For example, assume you used the following build.xml file to assemble a WebLogic Web
Service using the servicegen Ant task:

<project name="buildWebservice" default="build-ear">

 <target name="build-ear">

 <servicegen

 destEar="myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services">

 <service

 ejbJar="myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True" >

 </service>

 </servicegen>

 </target>

</project>

Deploy ing and Test ing WebLog ic Web Serv ices

Programming WebLogic Web Services 6-25

The URL to invoke the Web Service Home Page, assuming the service is running on a host called
ariel at the default port number, is:

http://ariel:7001/web_services/TraderService

The URL to get the automatically generated WSDL of the Web Service is:

http://ariel:7001/web_services/TraderService?WSDL

Denying Access to the WSDL and Home Page of a WebLogic
Web Service
Because the WSDL defines the public contract of a Web Service, you usually want to make it
readily available. By default, the WSDL that describes a WebLogic Web Service is always
publicly accessible. The WSDL is also accessible from the Web Service’s Home Page.

You might, however, sometimes want to turn off public access to the WSDL or the Home Page.
To do this, update the appropriate <web-service> element of the web-services.xml
deployment descriptor file that describes the WebLogic Web Service, adding the attribute
exposeWSDL="False" or exposeHomePage="False", as shown in the following excerpt:

<web-service targetNamespace="http://example.com"

 name="myorderproc"

 uri="myOrderProcessingService"

 exposeWSDL="False"

 exposeHomePage="False">

...

</web-service>

You must redeploy the Web Service after updating its deployment descriptor for the change to
take effect.

Assembl ing WebLog ic Web Se rv ices Us ing Ant Tasks

6-26 Programming WebLogic Web Services

Programming WebLogic Web Services 7-1

C H A P T E R 7

Invoking Web Services from Client
Applications and WebLogic Server

The following sections describe how to invoke Web Services, both WebLogic and
non-WebLogic, from client applications and from WebLogic Server:

“Overview of Invoking Web Services” on page 7-2

“Creating Java Client Applications to Invoke Web Services: Main Steps” on page 7-4

“Writing an Asynchronous Client Application” on page 7-11

“Using Web Services System Properties” on page 7-14

“Using a Proxy Server with the WebLogic Web Services Client” on page 7-24

“Invoking Web Services from WebLogic Server” on page 7-22

“Writing Advanced Java Client Applications” on page 7-25

For information about invoking a WebLogic Web Service using reliable SOAP messaging, see
Chapter 10, “Using Reliable SOAP Messaging.”

It is assumed in this chapter that the client applications use HTTP/S as the connection protocol
when invoking a WebLogic Web Service. You can, however, configure your Web Service so that
client applications can also use JMS as the transport when invoking the Web Service. For details,
see Chapter 9, “Using JMS Transport to Invoke a WebLogic Web Service.”

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-2 Programming WebLogic Web Services

Overview of Invoking Web Services
Invoking a Web Service refers to the actions that a client application performs to use the Web
Service. Client applications that invoke Web Services can be written using any technology: Java,
Microsoft SOAP Toolkit, Microsoft .NET, and so on.

Note: This chapter uses the term client application to refer to both a standalone client that uses
the WebLogic thin client to invoke a Web Service hosted on both WebLogic and
non-WebLogic Servers, and a client that runs inside of an EJB running on WebLogic
Server.

The sections that follow describe how to use BEA’s implementation of the JAX-RPC
specification (Version 1.0) to invoke a Web Service from a Java client application. You can use
this implementation to invoke Web Services running on any server, both WebLogic and
non-WebLogic. In addition, you can create a standalone client application or one that runs as part
of a WebLogic Server.

WebLogic Server provides optional runtime client JAR files that include, for your convenience
when developing a standalone client application, the classes you need to invoke a Web Service.
You can also use the clientgen Ant task to generate a Web Service-specific JAR file that
contains the stubs, defined by the JAX-RPC specification, that client applications use to statically
invoke a Web Service. These stubs implement JAX-RPC interfaces such as Stub and Service.

For information about troubleshooting problems when invoking a Web Service, see Chapter 20,
“Troubleshooting.”

JAX-RPC API 1.0
The Java API for XML based RPC (JAX-RPC) is a Sun Microsystems specification that defines
the Web Services APIs.

The following table briefly describes the core JAX-RPC interfaces and classes.

Table 7-1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface
or Class

Description

Service Main client interface.

ServiceFactory Factory class for creating Service instances.

http://java.sun.com/xml/jaxrpc/index.html

Ove rv i ew o f Invok ing Web Serv ices

Programming WebLogic Web Services 7-3

WebLogic Server implements the JAX-RPC 1.0 specification.

For detailed information on JAX-RPC, see http://java.sun.com/xml/jaxrpc/index.html.

For a tutorial that describes how to use JAX-RPC to invoke Web Services, see
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html.

The Runtime Client JAR Files
WebLogic Server provides the following runtime client JAR files for use with standalone client
applications (that is, client applications that do not run in a WebLogic Server instance). These
JAR files are located in the WL_HOME/server/lib directory, where WL_HOME refers to the
top-level directory of WebLogic Platform.

webserviceclient.jar: Contains the client runtime implementation of JAX-RPC.

webserviceclient+ssl.jar: Same as webserviceclient.jar, plus the runtime
implementation of SSL.

Use this runtime client JAR file if you are using SSL to secure your Web Service and you
want to use the WebLogic Server-provided implementation of the SSL client classes.

webserviceclient+ssl_pj.jar: Same as the webserviceclient_ssl.jar, but for the
CDC profile of J2ME.

Use this runtime client JAR file if you are writing a J2ME client that uses SSL.

Client applications that use the webserviceclient.jar file (or the SSL and J2ME variants)
should not have webservices.jar or weblogic.jar in their CLASSPATH. All classes needed
to run a client application that invokes a Web Service are typically available in
webserviceclient.jar. If, however, there are some other classes needed by your application

Stub Base class of the client proxy used to invoke the operations of a
Web Service.

Call Used to dynamically invoke a Web Service.

JAXRPCException Exception thrown if an error occurs while invoking a Web
Service.

Table 7-1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface
or Class

Description

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-4 Programming WebLogic Web Services

that are missing from webserviceclient.jar, but are included in webservices.jar or
weblogic.jar, then put these JAR files after webserviceclient.jar in your CLASSPATH.

Note: For information about BEA’s current licensing of client functionality, see the BEA
eLicense Web Site at http://elicense.bea.com/elicense_webapp/index.jsp.

Examples of Clients That Invoke Web Services
WebLogic Server includes the following examples of creating and invoking WebLogic Web
Services in the WL_HOME/samples/server/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Platform directory:

basic.statelessSession: Uses a stateless session EJB back-end component with
built-in data types as its parameters and return value.

basic.javaclass: Uses a Java class back-end component with built-in data types as its
parameters and return value.

complex.statelessSession: Uses a stateless session EJB back-end component with
non-built-in data types as its parameters and return value.

handler.log: Uses both a handler chain and a stateless session EJB.

handler.nocomponent: Uses only a handler chain with no back-end component.

client.static: Shows how to create a static client application that invokes a
non-WebLogic Web Service.

client.dynamic_wsdl: Shows how to create a dynamic client application that uses
WSDL to invoke a non-WebLogic Web Service.

client.dynamic_no_wsdl: Shows how to create a dynamic client application that does
not use WSDL to invoke a non-WebLogic Web Service.

For detailed instructions on how to build and run the examples, open the following Web page in
your browser:

WL_HOME/samples/server/src/examples/webservices/package-summary.html

Creating Java Client Applications to Invoke Web Services: Main
Steps

To create a Java client application that invokes a Web Service, follow these steps:

http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Creat ing Java C l ient App l i cat ions to Invoke Web Serv ices : Main S teps

Programming WebLogic Web Services 7-5

1. Generate the Web Service-specific client JAR file by running the clientgen Ant task.

Specify the wsdl attribute to create a client JAR file for a Web Service that is being hosted
by either a WebLogic or a non-WebLogic server, or specify the ear attribute for WebLogic
Web Services packaged in EAR files.

For details and examples of running the clientgen Ant task, see “Generating the Client
JAR File by Running the clientgen Ant Task” on page 7-5. For reference information, see
Appendix B, “Web Service Ant Tasks and Command-Line Utilities.”

2. Get information about the Web Service, such as its name and signature.

For details, see “Getting Information About a Web Service” on page 7-7.

3. Write the Java client application code that includes the invoke of the Web Service.

See “Writing the Java Client Application to Invoke a Web Service” on page 7-8 for an
example of writing a simple client application.

4. Compile and run your Java client application.

If you are creating a standalone client application, ensure that the
webserviceclient.jar runtime Java client JAR file provided by WebLogic Server is in
your CLASSPATH. For details, see “The Runtime Client JAR Files” on page 7-3.

If your client application is running on WebLogic Server, you do not need this runtime
client JAR file.

Generating the Client JAR File by Running the clientgen Ant
Task
The Web Service-specific JAR file contains the stubs, such as implementation of the Stub and
Service interfaces, which are defined by the JAX-RPC specification and are used by client
applications to invoke a Web Service (either WebLogic or non-WebLogic). Almost all the code
you need is automatically generated for you.

Note: For information about BEA’s current licensing of client functionality, see the BEA
eLicense Web Site at http://elicense.bea.com/elicense_webapp/index.jsp.

To run the clientgen Ant task and automatically generate the Web Service-specific client JAR
file:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is

http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-6 Programming WebLogic Web Services

BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a file called build.xml that contains a call to the clientgen Ant task. For details,
see the example later in this section.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

For reference information about the clientgen Ant task, see “clientgen” on page B-14.

The following example shows a simple build.xml file.

Listing 7-1 Sample build.xml File for the clientgen Ant Task

<project name="buildWebservice" default="generate-client">

 <target name="generate-client">

 <clientgen wsdl="http://example.com/myapp/myservice?WSDL"

 packageName="myapp.myservice.client"

 clientJar="myapps/myService_client.jar"

/>

 </target>

</project>

When you run the clientgen Ant task using the preceding build.xml file, the Ant task creates
a client JAR file (called myapps/myService_client.jar) that the client application will use to
invoke the Web Service described by the http://example.com/myapp/myservice?WSDL
WSDL. It packages the interface and stub files in the myapp.myservice.client package.

Creat ing Java C l ient App l i cat ions to Invoke Web Serv ices : Main S teps

Programming WebLogic Web Services 7-7

Getting Information About a Web Service
You need to know the name of the Web Service and the signature of its operations before you
write your client code. There are a variety of ways to find this information.

If you are invoking a WebLogic Web Service, you can use its Home Page to get the full signature
of each operation. For details, see “Using the Web Service Home Page to Test Your Web
Service” on page 20-2.

Another way to get the signature of a Web Service operation is to use the clientgen Ant task to
generate the Web Service-specific client JAR file, un-JAR the file, and look at the generated
*.java files. Typically, the file ServiceNamePort.java contains the interface definition of
your Web Service, where ServiceName refers to the name of the Web Service. For example, look
at the TraderServicePort.java file for the signature of the buy and sell operations.

Finally, you can examine the actual WSDL of the Web Service. The name of the Web Service
is contained in the <service> element, as shown in the following excerpt of the TraderService
WSDL:

 <service name="TraderService">

 <port name="TraderServicePort"

 binding="tns:TraderServiceSoapBinding">

 ...

 </port>

 </service>

The operations defined for this Web Service are listed under the corresponding <binding>
element. For example, the following WSDL excerpt shows that the TraderService Web
Service has two operations, buy and sell (for clarity, only relevant parts of the WSDL are
shown):

 <binding name="TraderServiceSoapBinding" ...>

 ...

 <operation name="sell">

 ...

 </operation>

 <operation name="buy">

 </operation>

 </binding>

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-8 Programming WebLogic Web Services

Writing the Java Client Application to Invoke a Web Service
The following sections describe how to write Java client applications to invoke a Web Service.
The example uses the JAX-RPC API and assumes that you have the necessary BEA-provided
JAR files in your CLASSPATH.

Writing a Simple Client Application
You use a strongly-typed Java interface when you use a static client application to invoke a Web
Service. The Web Services-specific JAR file includes the following classes and interfaces:

Implementation of the JAX-RPC Service interface for the Web Service you are invoking.

An implementation of the Stub interface for each SOAP port in the WSDL.

Serialization class for non-built-in data types and their Java representations.

The following code shows an example of writing a client application that invokes the sample
TraderService Web Service; in the example, TraderService is the stub factory and
TraderServicePort is the stub itself:

package examples.webservices.complex.statelessSession;

public class Client {

 public static void main(String[] args) throws Exception {

 // Setup the global JAXM message factory
 System.setProperty("javax.xml.soap.MessageFactory",
 "weblogic.webservice.core.soap.MessageFactoryImpl");
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 // Parse the argument list
 Client client = new Client();
 String wsdl = (args.length > 0? args[0] : null);
 client.example(wsdl);
 }

 public void example(String wsdlURI) throws Exception {

 TraderServicePort trader = null;
 if (wsdlURI == null) {
 trader = new TraderService_Impl().getTraderServicePort();
 } else {
 trader = new TraderService_Impl(wsdlURI).getTraderServicePort();

Creat ing Java C l ient App l i cat ions to Invoke Web Serv ices : Main S teps

Programming WebLogic Web Services 7-9

 }
 String [] stocks = {"BEAS", "MSFT", "AMZN", "HWP" };

 // execute some buys
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 log("Buying "+shares+" shares of "+stocks[i]+".");
 TradeResult result = trader.buy(stocks[i], shares);
 log("Result traded "+result.getNumberTraded()
 +" shares of "+result.getStockSymbol());
 }
 // execute some sells
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 log("Selling "+shares+" shares of "+stocks[i]+".");
 TradeResult result = trader.sell(stocks[i], shares);
 log("Result traded "+result.getNumberTraded()
 +" shares of "+result.getStockSymbol());

 }

 }

 private static void log(String s) {
 System.out.println(s);
 }

}

In the preceding example:

The following code shows how to create a TraderServicePort stub:

 trader = new TraderService_Impl(wsdlURI).getTraderServicePort();

The TraderService_Impl stub factory implements the JAX-RPC Service interface. The
constructor of TraderService_Impl creates a stub based on the provided WSDL URI.
The getTraderServicePort() method is used to return an instance of the
TraderService stub implementation.

The following code shows how to invoke the buy operation of the TraderService Web
Service:

 TradeResult result = trader.buy(stocks[i], shares);

The trader Web Service has two operations: buy() and sell(). Both operations return a
non-built-in data type called TradeResult.

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-10 Programming WebLogic Web Services

Writing a Client That Uses Out or In-Out Parameters
Web Services can use out or in-out parameters as a way of returning multiple values. For more
information on out and in-out parameters, see “Implementing Multiple Return Values” on
page 5-10.

When you write a client application that invokes a Web Service that uses out or in-out parameters,
the data type of the out or in-out parameter must implement the
javax.xml.rpc.holders.Holder interface. After the client application invokes the Web
Service, the client can query the out or in-out parameters in the Holder object and treat them as
if they were standard return values.

For example, the Web Service described by the following WSDL has an operation called
echoStructAsSimpleTypes() that takes one standard input parameter and three out
parameters:

http://soap.4s4c.com/ilab/soap.asp?WSDL

The following client application shows one way to invoke the echoStructAsSimpleTypes()
Web Service operation.

package websvc;

public class Main {

 public static void main(String[] args) throws Exception {
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 InteropLab_Impl test = new InteropLab_Impl();
 InteropTest2PortType soap = test.getinteropTest2PortType();

 org.tempuri.x4s4c.x1.x3.wsdl.types.SOAPStruct inputStruct =
 new org.tempuri.x4s4c.x1.x3.wsdl.types.SOAPStruct();

 inputStruct.setVarInt(10);
 inputStruct.setVarFloat(10.1f);
 inputStruct.setVarString("hi there");

 javax.xml.rpc.holders.StringHolder outputString =
 new javax.xml.rpc.holders.StringHolder();
 javax.xml.rpc.holders.IntHolder outputInteger =
 new javax.xml.rpc.holders.IntHolder();
 javax.xml.rpc.holders.FloatHolder outputFloat =
 new javax.xml.rpc.holders.FloatHolder();

Wr i t ing an Asynchronous C l ien t App l i cat ion

Programming WebLogic Web Services 7-11

 soap.echoStructAsSimpleTypes(inputStruct, outputString, outputInteger,
 outputFloat);

 System.out.println("This example shows how to create a static client
 application that invokes a non-WebLogic Web Service.");
 System.out.println("The webservice used was:
 http://soap.4s4c.com/ilab/soap.asp?WSDL");
 System.out.println("This webservice shows how to invoke an operation that
 uses out parameters. The set parameters are below:");
 System.out.println("outputString.value: " + outputString.value);
 System.out.println("outputInteger.value: " + outputInteger.value);
 System.out.println("outputFloat.value: " + outputFloat.value);
 }

}

Writing an Asynchronous Client Application
This section describes how to invoke an operation asynchronously. In this context,
asynchronously means you invoke an operation and then optionally get the results of the invoke
in a later step.

Warning: This section applies only to static client application that use the Web
Service-specific client JAR files generated by the clientgen Ant task. You cannot
use the procedure specified in this section in dynamic proxy and DII-based client
applications.

To write an asynchronous client, follow these steps:

1. Generate the Web Service-specific client JAR file by running the clientgen Ant task. Be
sure to specify the generateAsyncMethods="True" attribute, as shown in the following
example:

<clientgen
 wsdl="http://www.mssoapinterop.org/asmx/simple.asmx?WSDL"
 clientJar="echoservice.jar"
 packageName="examples.async"
 generateAsyncMethods="true" />

The clientgen Ant task generates special asynchronous methods in the JAX-RPC stubs to
invoke the operations of the Web Service. See “Description of the Generated
Asynchronous Web Service Client Stub” on page 7-12 for more details.

For general details and examples of running the clientgen Ant task, see “Generating the
Client JAR File by Running the clientgen Ant Task” on page 7-5. For reference
information, see Appendix B, “Web Service Ant Tasks and Command-Line Utilities.”

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-12 Programming WebLogic Web Services

2. Write the Java code using the special asynchronous methods. For examples, see “Writing
the Asynchronous Client Java Code” on page 7-13.

3. Compile and run your asynchronous Java client application.

If you are creating a standalone asynchronous client application, ensure that the
webserviceclient.jar runtime Java client JAR file provided by WebLogic Server is in
your CLASSPATH. If your client application is running on WebLogic Server (for example,
as part of the reliable SOAP messaging framework), you can omit this step.

For detail about the webserviceclient.jar file, as well as the other available runtime
client JAR files, see “The Runtime Client JAR Files” on page 7-3.

For detailed API reference information about writing asynchronous client applications, see the
weblogic.webservice.async Javadoc.

Description of the Generated Asynchronous Web Service Client
Stub
When you specify generateAsyncMethods="True" when executing the clientgen Ant task,
the task creates two special methods in the generated JAX-RPC stub to invoke each Web Service
operation asynchronously, in addition to the standard methods. The special methods take the
following form:

FutureResult startMethod (params, AsyncInfo asyncInfo);
result endMethod (FutureResult futureResult);

where:

Method is the name of the synchronous method used to invoke the Web Service operation.

params is the list of parameters of the operation.

result is the result of the operation.

FutureResult is a WebLogic object used as a placeholder for the impending result.

AsyncInfo is a WebLogic object used to pass additional information to WebLogic Server.

Note: If the operations of the Web Service are document-oriented (rather than RPC-oriented),
the clientgen Ant task also generates the following end() method, in addition to the
methods listed above:

result endConvenienceMethod (FutureResult futureResult);

http://e-docs.bea.com/wls/docs81/javadocs/index.html

Wr i t ing an Asynchronous C l ien t App l i cat ion

Programming WebLogic Web Services 7-13

If you use convenience methods when invoking document-oriented Web Service
operations, then use this flavor of the end() method when invoking the operation
asynchronously.

For example, assume the standard generated stub contains the following method to invoke a Web
Service operation called echoString:

String echoString (String str);

The clientgen task generates the following additional asynchronous methods in the generated
stub:

FutureResult startEchoString (String str, AsyncInfo asyncInfo);
String endEchoString (FutureResult futureResult);

For detailed API reference information about the FutureResult interface and the AsyncInfo
class, see the weblogic.webservice.async Javadoc.

Writing the Asynchronous Client Java Code
When you write a Java client application that asynchronously invokes a Web Service operation,
you must first import the following classes:

import weblogic.webservice.async.FutureResult;

import weblogic.webservice.async.AsyncInfo;

import weblogic.webservice.async.ResultListener;

import weblogic.webservice.async.InvokeCompletedEvent;

There are two steps involved in invoking an asynchronous operation: the first starts the invocation
and the second optionally retrieves the results of the completed operation.

Assume that your client application uses the following Java code to get an instance of the
SimpleTest stub implementation:

 SimpleTest echoService = new SimpleTest_Impl();

 SimpleTestSoap echoPort = echoService.getSimpleTestSoap();

Further assume that you want to invoke the echoString operation of the Web Service. The
following paragraphs show a variety of ways you can invoke this operation asynchronously.

The simplest way is to simply execute the startEchoString() client method, do some other
task, then execute the endEchoString() client method:

 FutureResult futureResult = echoPort.startEchoString("94501", null);
 // do something
 String result = echoPort.endEchoString(futureResult);

http://e-docs.bea.com/wls/docs81/javadocs/index.html

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-14 Programming WebLogic Web Services

The endMethod() method, in this case endEchoString(), blocks until the result is ready.

You can also use the FutureResult.isCompleted() method to test whether the results have
returned from the Web Service, as shown in the following excerpt:

 FutureResult futureResult = echoPort.startEchoString("94501", null);

 while(!futureResult.isCompleted()){
 // do something ;
 }

 String result = echoPort.endEchoString(futureResult);

Alternatively, you can use the ResultListener and InvokeCompletedEvent classes to set up
a listener in your client application that listens for a callback indicating that the results of the
operation have returned, as shown in the following excerpt:

 AsyncInfo asyncInfo = new AsyncInfo();

 asyncInfo.setResultListener(new ResultListener(){
 public void onCompletion(InvokeCompletedEvent event){

 SimpleTestSoap source = (SimpleTestSoap)event.getSource();

 try{
 String result = source.endEchoString (event.getFutureResult());
 } catch (RemoteException e){
 e.printStackTrace (System.out);
 }
 }
 });

 echoPort.startEchoString("94501", asyncInfo);

Using Web Services System Properties
The following two tables list the WebLogic and standard JDK 1.4 system properties you can set
in client applications that invoke Web Services. Use the System.setProperty() method to set
the properties.

Us ing Web Se rv ices Sys tem Proper t i es

Programming WebLogic Web Services 7-15

Table 7-2 WebLogic Web Services System Properties

WebLogic Web Services System Property Description Data
Type

weblogic.webservice.transport.http.full-url Specifies that the full URL, rather than the
relative URL, of the Web Service that the
client application is invoking be specified in
the Request-URI field of HTTP request.
Valid values are True and False. Default
value is False.

Boolean.

weblogic.webservice.transport.https.proxy.host If you use a proxy server to make HTTPS
(HTTP over SSL) connections, use this
system property to specify the host name of
the proxy server in your client applications.

String.

weblogic.webservice.transport.https.proxy.port If you use a proxy server to make HTTPS
(HTTP over SSL) connections, use this
system property to specify the port of the
proxy server in your client applications.

String.

weblogic.webservice.verbose Enables verbose mode during Web Service
invocation The SOAP request and response
messages are printed to the standard out of the
client.

Valid values are True and False. Default
value is False.

For details, see “Viewing SOAP Messages”
on page 20-4.

Boolean

weblogic.webservice.client.ssl.strictcertchecking Enables or disables strict certificate
validation when using the
WebLogic-provided implementation of
SSL.
Set to True to enable strict certificate
validation, and False to disable. Default
value is True.

For an example, see “Using the WebLogic
Server-Provided SSL Implementation” on
page 13-33.

Boolean

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-16 Programming WebLogic Web Services

weblogic.webservice.client.ssl.trustedcertfile The name of the file (located on the client
application computer) that contains the
certificates of CA (certificate authority). The
CAs are trusted to issue WebLogic Server
certificates. The file can also contain
certificates that you trust directly.

String

weblogic.webservice.client.ssl.adapterclass Fully qualified name of an adapter class you
have implemented to use a third-party SSL
implementation.

For an example, see “Using a Third-Party
SSL Implementation” on page 13-38.

String.

Table 7-2 WebLogic Web Services System Properties

WebLogic Web Services System Property Description Data
Type

Us ing Web Se rv ices Sys tem Proper t i es

Programming WebLogic Web Services 7-17

weblogic.webservice.security.clock.precision Describes the accuracy of synchronization
between the clock of the client application
invoking a WebLogic Web Service and
WebLogic Server’s clock. The client
application uses this value to account for a
reasonable level of clock skew between two
clocks.

The value is expressed in milliseconds. This
means, for example, that if the clocks are
accurate within a one minute of each other,
the value of this element is 60000.

If the value of this element is greater than the
expiration period of the SOAP response, the
client application rejects the request because
it cannot accurately enforce the expiration.
For example, if the clock precision value is
60000 milliseconds, and the client application
receives a SOAP response that expires 30000
milliseconds after its creation time, it is
possible that the message has lived for longer
than 30000 seconds, due to the 60000
millisecond clock precision discrepancy, so
the client application has no option but to
reject the message. You can relax this strict
enforcement by setting the
weblogic.webservice.security.cl
ock.precision.lax property to false.

This property must be specified in
conjunction with
weblogic.webservice.security.cl
ock.synchronized.

The default value for this property is 60000.

Integer.

Table 7-2 WebLogic Web Services System Properties

WebLogic Web Services System Property Description Data
Type

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-18 Programming WebLogic Web Services

weblogic.webservice.security.clock.precision.lax Specifies whether to enforce the clock
precision time period.

If this element is set to true, the client
application does not reject SOAP responses
whose time expiration period is smaller than
the clock precision time, specified with the
weblogic.webservice.security.cl
ock.precision property. By default, the
client application rejects these SOAP
responses because it cannot accurately
determine whether the message has expired,
due to the discrepancy in clock precision
between the client application and WebLogic
Server.

Valid values for this property are true and
false. The default value is false.

Boolean.

weblogic.webservice.security.clock.synchronized Specifies whether the client application
assumes that the clocks of the client
application invoking a WebLogic Web
Service and WebLogic Server are
synchronized when dealing with timestamps
in SOAP messages.

If the value of this property is true, the client
application enforces, if it exists, the time
expiration of the SOAP response from
WebLogic Server. If the value of this element
is false, the client application rejects all
SOAP responses that contain a time
expiration.

Valid values for this property are true and
false. The default value is false.

Boolean.

Table 7-2 WebLogic Web Services System Properties

WebLogic Web Services System Property Description Data
Type

Us ing Web Se rv ices Sys tem Proper t i es

Programming WebLogic Web Services 7-19

weblogic.webservice.security.delay.max Specifies, in milliseconds, the client
application’s expiration period for a SOAP
response from WebLogic Server. The client
application adds the value of this property to
the creation date in the time stamp of the
SOAP response, accounts for clock precision,
then compares the result to the current time. If
the result is greater than the current time, the
client application rejects the response.

In addition to its own expiration period for
SOAP responses, the client application also
honors expirations in the SOAP response
message itself, specified by WebLogic Server

To specify no expiration, set this property to
-1.

The default value of this property is -1.

If you set this property to a value, be sure you
also specify that the clocks between
WebLogic Server and client applications are
synchronized by setting the
weblogic.webservice.security.cl
ock.synchronized property to true.

Integer.

weblogic.webservice.security.timestamp.include Specifies whether the client application
includes a timestamp in the SOAP request to
a WebLogic Web Service operation.

Valid values for this property are true and
false. The default value is true.

Boolean

Table 7-2 WebLogic Web Services System Properties

WebLogic Web Services System Property Description Data
Type

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-20 Programming WebLogic Web Services

The following table lists the standard JDK 1.4 system properties you can set in your client
applications.

For additional information about these properties, see Sun’s Network Properties at
http://java.sun.com/j2se/1.4/docs/guide/net/properties.html.

weblogic.webservice.security.timestamp.require Specifies whether the client application
requires that the SOAP response from
WebLogic Server include a timestamp. If this
element is set to true, and a SOAP response
does not contain a timestamp, the client
application rejects the request.

Valid values for this property are true and
false. The default value is true.

Boolean.

weblogic.webservice.security.validity Specifies, in milliseconds, the expiration
period that the client application adds to the
timestamp header of the SOAP request.

To specify no expiration, set this property to
-1.

The default value of this property is -1.

Integer.

Table 7-2 WebLogic Web Services System Properties

WebLogic Web Services System Property Description Data
Type

Table 7-3 Standard JDK 1.4 System Properties

Standard JDK 1.4 System Property Description

http.proxyHost If you use a proxy server to make HTTP connections, specifies the
host name of the proxy server in your client applications.

http.proxyPort If you use a proxy server to make HTTP connections, specifies the port
of the proxy server in your client applications.

http.nonProxyHosts If you use a proxy server to make HTTP connections, specifies the
hosts which should be connected to directly and not through the proxy
server.

http://java.sun.com/j2se/1.4/docs/guide/net/properties.html
http://java.sun.com/j2se/1.4/docs/guide/net/properties.html

Us ing Web Se rv ices Sys tem Proper t i es

Programming WebLogic Web Services 7-21

networkaddress.cache.ttl Used in java.security to specify the caching policy for
successful name lookups from the name service. The value is specified
as an integer to indicate the number of seconds to cache the successful
lookup.

networkaddress.cache.negative.ttl Used in java.security to specify the caching policy for
unsuccessful name lookups from the name service. The value is
specified as an integer to indicate the number of seconds to cache the
failure for unsuccessful lookups.

http.agent Specifies the User-Agent request header sent in HTTP requests.

http.auth.digest.validateServer Modifies the behavior of the HTTP digest authentication mechanism.
When set to True, this system property forces the server to
authenticate itself to the client application.

http.auth.digest.validateProxy Modifies the behavior of the HTTP digest authentication mechanism.
When set to True, this system property forces the proxy server to
authenticate itself to the client application.

http.auth.digest.cnonceRepeat Modifies the behavior of the HTTP digest authentication mechanism
by specifying how many times a cnonce value is reused.

http.keepAlive Specifies whether keep alive, or persistent, connections are supported.

http.maxConnections Specifies the number of idle connections that will be simultaneously
kept alive, per destination. This system property should be used
together with http.keepAlive.

https.sharedsocket Enables socket sharing in an SSL client application that connects to a
WebLogic Web Service using the WebLogic SSL implementation.
Valid values are True and False. Default value is False.
For details, see “Using SSL Socket Sharing When Using the
WebLogic SSL Implementation” on page 13-36.

https.sharedsocket.timeout Specifies the timeout value, in seconds, for shared sockets.
Default value is 15 seconds.
For details, see “Using SSL Socket Sharing When Using the
WebLogic SSL Implementation” on page 13-36.

Table 7-3 Standard JDK 1.4 System Properties

Standard JDK 1.4 System Property Description

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-22 Programming WebLogic Web Services

Invoking Web Services from WebLogic Server
Invoking a Web Service from a component deployed on WebLogic Server, such as from an EJB
or a servlet, is essentially the same as invoking a Web Service from a standalone client. You write
the same code as shown in the examples in this chapter and you generate a Web Service-specific
client JAR file using clientgen in the same way. The main differences are:

You do not need the runtime client JAR files, because all the needed classes are already
included in the WebLogic Server runtime.

You must add the Web Service-specific client JAR file to the appropriate directory of the
deployed component.

If you are invoking a Web Service deployed on WebLogic Server Version 8.1 from a
Version 7.0 instance of WebLogic Server, and it is necessary for the Version 7.0 WebLogic
Server instance to use a Web Service-specific client JAR file generated from the
clientgen Ant task included in Version 8.1 of WebLogic Server, then you must use
portable stubs. For details, see “Creating and Using Portable Stubs” on page 7-22.

The following table summarizes the location of the various client JAR files depending on the type
of client application from which you are invoking the Web Service.

Creating and Using Portable Stubs
If you use the Web Services client JAR files (both the ones distributed with the product and the
Web Service-specific one generated by the clientgen Ant task) as part of an application that

Table 7-4 Location of Client JAR Files For Various Client Applications

Type of Client
Application

Location of Runtime Client JAR Files Location of Web Service-Specific
Client JAR File

Standalone Client’s CLASSPATH. Client’s CLASSPATH

EJB Not needed, because the runtime
client classes are part of the
WebLogic Server runtime.

EJB JAR file.

Servlet or Java
class

Not needed, because the runtime
client classes are part of the
WebLogic Server runtime.

WEB-INF/lib directory of the
WAR file.

Invok ing Web Serv i ces f rom WebLog ic Se rve r

Programming WebLogic Web Services 7-23

runs in WebLogic Server, you might find that the Java classes in the JAR file collide with the
classes of WebLogic Server itself. This happens when the WebLogic Server instance in which
the client JAR file is deployed is a different version from that which the client JAR file was
generated. To solve this problem, use portable stubs.

Note: Always try to use the clientgen Ant task of the WebLogic Server instance that is
invoking the Web service to create the Web Service-specific client JAR file rather than
that of the WebLogic Server that is hosting the Web Service. If this is not possible, then
use portable stubs.

You need to use portable stubs only if your client application is deployed and running on
WebLogic Server, not if your client application is standalone.

To enable your client application to use portable stubs:

1. Use the WebLogic Server release-specific client JAR file called wsclient81.jar
(distributed with WebLogic Server in the WL_HOME/server/lib directory) with your client
application rather than the generic webserviceclient.jar client JAR file. The
wsclient81.jar file contains the same class files as the standard client JAR file, but they
are renamed weblogic81.*. Because these class files are version-specific, they will not
collide with any weblogic.* WebLogic Server classes.

2. Run the Web-service specific client JAR file you generated with the clientgen Ant task,
as well as any supporting client JAR files, through the VersionMaker utility. This utility
makes the following changes to the classes in these client JAR files:

– Renames all weblogic.* classes as weblogic81.*

– All references to weblogic.* classes are changed to reference weblogic81.* instead.

Use these new version-specific client JAR files with your client application.

For details on using VersionMaker, see “Using the VersionMaker Utility to Update Client
JAR Files” on page 7-23.

 Using the VersionMaker Utility to Update Client JAR Files
Follow these steps to update your client JAR files to use version-specific WebLogic Server
classes:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-24 Programming WebLogic Web Services

BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Execute the Java utility weblogic.webservice.tools.versioning.VersionMaker,
passing it the following parameters:

– destination_dir: the destination directory that will contain the new version-specific
client JAR files.

– client_jar_file: the client JAR file, generated by the clientgen Ant task, whose
class files are named weblogic.* and will be renamed weblogic81.*.

– other_jar_files: supporting JAR files

For example:

java weblogic.webservice.tools.versioning.VersionMaker \
 new_directory myclient.jar supporting.jar

In the example, the weblogic.* classes in the myclient.jar and supporting.jar
client JAR files are renamed weblogic81.*, and all references to these classes updated
accordingly. The new client JAR files are generated into the directory called
new_directory under the current directory.

Using a Proxy Server with the WebLogic Web Services Client
You can use a proxy server to proxy requests from a WebLogic Web Services client application
to a server (either WebLogic or non-WebLogic) that is hosting a Web Service. However, be sure
to set all the following system properties in your client application:

http.proxyHost

http.proxyPort

weblogic.webservice.transport.http.proxy.host

weblogic.webservice.transport.http.proxy.port

Note: If you are using HTTPS as the transport when invoking the Web Service, replace the
http in the preceding properties with https. For example, use https.proxyHost
instead of http.proxyHost.

Wri t ing Advanced Java C l i ent App l i cat ions

Programming WebLogic Web Services 7-25

For more information on these, and other, WebLogic system properties you can set in your client
application, see “Using Web Services System Properties” on page 7-14.

Additionally, if you have set up your proxy server to use proxy authentication, then you must also
set the property weblogic.net.proxyAuthenticatorClassName in your client application to
the name of the Java class that implements the weblogic.common.ProxyAuthentication
interface, as shown in the following excerpt from a client application:

 System.setProperty("weblogic.net.proxyAuthenticatorClassName",
"my.ProxyAuthenticator");

In the example, my.ProxyAuthenticator is a class in the client application’s CLASSPATH
that implements the weblogic.common.ProxyAuthentication interface.

The weblogic.common.ProxyAuthentication interface allows a client application to provide
user authentication information required when tunneling WebLogic HTTP and SSL protocols
through a proxy server that requires user authentication. For details on implementing this
interface, see the weblogic.common.ProxyAuthentication Javadocs.

Writing Advanced Java Client Applications
The following sections contain examples of how to write advanced client applications:

“Writing a Dynamic Client That Uses WSDL” on page 7-25

“Writing a Dynamic Client That Does Not Use WSDL” on page 7-27

“Writing a Dynamic Client That Uses Non-Built-In Data Types” on page 7-29

“Writing a J2ME Client” on page 7-31

Writing a Dynamic Client That Uses WSDL
Assume you want to create a dynamic client application that uses built-in data types and WSDL
to invoke the Web Service found at the following URL:
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

Follow these steps when writing the Java code:

1. Create a service factory using the ServiceFactory.newInstance() method.

2. Create a Service object from the factory and pass it the WSDL and the name of the Web
Service you are going to invoke.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/common/ProxyAuthenticator.html

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-26 Programming WebLogic Web Services

3. Create a Call object from the Service, passing it the name of the port and the operation
you want to execute

4. Use the Call.invoke() method to actually invoke the Web Service operation.

Note: If the Web Service you are invoking from your dynamic client application uses
non-built-in data types, see “Writing a Dynamic Client That Uses Non-Built-In Data
Types” on page 7-29.

The following Java code shows an example of writing a dynamic client application:

import java.net.URL;

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

public class Main {

 public static void main(String[] args) throws Exception {

 // Setup the global SAAJ message factory
 System.setProperty("javax.xml.soap.MessageFactory",
 "weblogic.webservice.core.soap.MessageFactoryImpl");
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 // create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 // define qnames
 String targetNamespace =
 "http://www.themindelectric.com/"
 + "wsdl/net.xmethods.services.stockquote.StockQuote/";

 QName serviceName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuoteService");

 QName portName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuotePort");

 QName operationName = new QName("urn:xmethods-delayed-quotes",
 "getQuote");

Wri t ing Advanced Java C l i ent App l i cat ions

Programming WebLogic Web Services 7-27

 URL wsdlLocation =
 new
URL("http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl");

 // create service
 Service service = factory.createService(wsdlLocation, serviceName);

 // create call
 Call call = service.createCall(portName, operationName);

 // invoke the remote web service
 Float result = (Float) call.invoke(new Object[] {
 "BEAS"
 });

 System.out.println("\n");
 System.out.println("This example shows how to create a dynamic client
 application that invokes a non-WebLogic Web Service.");
 System.out.println("The webservice used was:

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl");
 System.out.println("The quote for BEAS is: ");
 System.out.println(result);
 }

}

Note: When you use the javax.xml.rpc.Call API to create a dynamic client that uses
WSDL, you cannot use the following methods in your client application:

getParameterTypeByName()

getReturnType()

Additionally, if you want to execute the getTargetEndpointAddress() method, you
must have previously executed the setTargetEndpointAddress() method, even if the
targetEndPointAddress is available in the WSDL.

Writing a Dynamic Client That Does Not Use WSDL
Dynamic clients that do not use WSDL are similar to those that use WSDL except that when the
client does not use WSDL, you have to explicitly set information that would be found in the
WSDL, such as the parameters to the operation, the target endpoint address, and so on.

The following example shows how to create a client application that invokes a Web Service
without specifying the WSDL in the client application:

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-28 Programming WebLogic Web Services

import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

public class Main {

 public static void main(String[] args) throws Exception {
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 // create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 // define qnames
 String targetNamespace =
 "http://www.themindelectric.com/"
 + "wsdl/net.xmethods.services.stockquote.StockQuote/";

 QName serviceName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuoteService");

 QName portName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuotePort");

 QName operationName = new QName("urn:xmethods-delayed-quotes",
 "getQuote");

 // create service
 Service service = factory.createService(serviceName);

 // create call
 Call call = service.createCall();

 // set port and operation name
 call.setPortTypeName(portName);
 call.setOperationName(operationName);
 // add parameters
 call.addParameter("symbol",
 new QName("http://www.w3.org/2001/XMLSchema", "string"),
 ParameterMode.IN);

 call.setReturnType(new QName("http://www.w3.org/2001/XMLSchema","float"));

 // set end point address
 call.setTargetEndpointAddress("http://www.xmethods.com:9090/soap");

 // invoke the remote web service
 Float result = (Float) call.invoke(new Object[] {

Wri t ing Advanced Java C l i ent App l i cat ions

Programming WebLogic Web Services 7-29

 "BEAS"
 });

 System.out.println("\n");
 System.out.println("This example shows how to create a dynamic client
 application that invokes a non-WebLogic Web Service.");
 System.out.println("The webservice used was:

http://www.themindelectric.com/wsdl/net.xmethods.services.stockquote.StockQuot
e");
 System.out.println("The quote for BEAS is:");
 System.out.println(result);
 }

}

Note: In dynamic clients that do not use WSDL, the getPorts() method always returns null.
This behavior is different from dynamic clients that do use WSDL in which the method
actually returns the ports.

Writing a Dynamic Client That Uses Non-Built-In Data Types
When you write a dynamic client to invoke a Web Service that uses non-built-in data types as
parameters or return type, you must do the following:

Code the serialization class that converts the non-built-in data type between its Java and
XML Schema representations. To create the serialization class, use the autotype Ant task
(see “autotype” on page B-7) or create one manually (see “Writing the Serialization Class”
on page 11-5.)

In your client application code, use the JAX-RPC TypeMappingRegistry of the
ServiceFactory to register the serialization classes.

For detailed information about the TypeMappingRegistry, see the JAX-RPC 1.0 specification
at http://java.sun.com/xml/jaxrpc/index.html.

Note: Because the clientgen Ant task automatically generates all needed serialization classes
and creates stubs that correctly use the serialization classes, BEA recommends that you
use a static client application when using non-built-in data types.

The following example shows how to use the TypeMappingRegistry to register the serialization
class called SOAPStructCode in your client application; the relevant code is in bold.

import javax.xml.soap.SOAPConstants;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/xml/jaxrpc/index.html

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-30 Programming WebLogic Web Services

import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

import javax.xml.rpc.encoding.TypeMapping;
import javax.xml.rpc.encoding.TypeMappingRegistry;

import org.soapinterop.xsd.SOAPStructCodec;
import org.soapinterop.xsd.SOAPStruct;

public class MSInterop{

 public static void main(String[] args) throws Exception{

 //set weblogic ServiceFactory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 //create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 //define qnames
 String targetNamespace = "http://soapinterop.org/";

 QName serviceName = new QName(targetNamespace, "SimpleTest");
 QName portName = new QName(targetNamespace, "SimpleTestSoap");

 QName operationName = new QName("http://soapinterop.org/",
 "echoStruct");

 //create service
 Service service = factory.createService(serviceName);

 TypeMappingRegistry registry = service.getTypeMappingRegistry();

 TypeMapping mapping = registry.getTypeMapping(
 SOAPConstants.URI_NS_SOAP_ENCODING);

 mapping.register(SOAPStruct.class,
 new QName("http://soapinterop.org/xsd", "SOAPStruct"),
 new SOAPStructCodec(),
 new SOAPStructCodec());

 //create call
 Call call = service.createCall();

 //set port and operation name
 call.setPortTypeName(portName);
 call.setOperationName(operationName);

Wri t ing Advanced Java C l i ent App l i cat ions

Programming WebLogic Web Services 7-31

 call.addParameter("inputStruct",
 new QName("http://soapinterop.org/xsd", "SOAPStruct"),
 ParameterMode.IN);

 call.setReturnType(
 new QName("http://soapinterop.org/xsd", "SOAPStruct"));

 //set end point address
 call.setTargetEndpointAddress(
 "http://www.mssoapinterop.org/asmx/simple.asmx");

 SOAPStruct s = new SOAPStruct();
 s.setVarInt(2);
 s.setVarString("foo");
 s.setVarFloat(123123);
 System.out.println(s.toString());

 SOAPStruct res = (SOAPStruct) call.invoke(new Object[]{s});

 System.out.println(res);
 }
}

Writing a J2ME Client
You can create a Java 2 Platform, Micro Edition (J2ME) Web Service-specific client JAR file to
use with client applications that run on J2ME.

Note: BEA supports the CDC and Foundation profile J2ME environment.

Creating a J2ME client application that invokes a Web Service is similar to creating a non-J2ME
client. For example, you use the same runtime client JAR file as non-J2ME client applications
(WL_HOME/server/lib/webserviceclient.jar.)

To write a J2ME client application, follow the steps described in “Creating Java Client
Applications to Invoke Web Services: Main Steps” on page 7-4 but with the following changes:

When you run the clientgen Ant task to generate the Web Service-specific client JAR
file, be sure you specify the j2me="True" attribute, as shown in the following example:

<clientgen wsdl="http://example.com/myapp/myservice.wsdl"
 packageName="myapp.myservice.client"
 clientJar="myapps/myService_clients.jar"
 j2me="True"
/>

Note: The J2ME Web Service-specific client JAR file generated by clientgen is not
compliant with the JAX-RPC specification in the following ways:

Invok ing Web Serv ices f rom C l i ent App l icat ions and WebLog ic Se rve r

7-32 Programming WebLogic Web Services

The methods of the generated stubs do not throw java.rmi.RemoteException.

The generated stubs do not extend java.rmi.Remote.

When you write, compile, and run your Java client application, be sure you use the J2ME
virtual machine and APIs.

For more information about J2ME, see http://java.sun.com/j2me/.

Writing a J2ME Client That Uses SSL
WebLogic Server includes support for creating J2ME client applications that use SSL. If you are
writing a J2ME client that uses SSL, follow these guidelines in addition to the guidelines
specified in “Writing a J2ME Client” on page 7-31.

You must use the following additional class and package:

– java.math.BigInteger (class)

– java.util.* (entire package)

Ensure that the file WL_HOME/server/lib/webserviceclient+ssl_pj.jar is in your
CLASSPATH.

Warning: Do not include the weblogic.jar file in your CLASSPATH.

If your client application uses the WSDL file to invoke a Web Service, you must use a
local copy of the WSDL file stored on your client computer; you cannot access the WSDL
file using a URLConnection object.

http://java.sun.com/j2me/

Programming WebLogic Web Services 8-1

C H A P T E R 8

Using the WebLogic Web Services APIs

The following sections provide information about using the WebLogic Web Services APIs:

“Overview of the WebLogic Web Service APIs” on page 8-1

“Registering Data Type Mapping Information in a Dynamic Client” on page 8-2

“Accessing HttpSession Information from a Web Service Component” on page 8-5

“Introspecting the WSDL from a Client Application” on page 8-6

Overview of the WebLogic Web Service APIs
WebLogic Web Services provide APIs, in addition to the JAX-RPC and SAAJ APIs, that you can
use for a variety of tasks. These APIs are mostly for use in client applications, although in some
cases you can use the APIs in server-side components, such as EJBs.

The sections here discuss the main usage scenarios for WebLogic Web Services APIs; for full
reference information about the APIs, see the Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/index.html.

The following table lists all the WebLogic Web Services APIs and their main uses.

http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Using the WebLog ic Web Se rv ices AP Is

8-2 Programming WebLogic Web Services

Registering Data Type Mapping Information in a Dynamic Client
The stubs in the client JAR file generated by the clientgen Ant task include the Java code
needed by client applications to handle the data type mapping and registration for non-built-in
data types used as parameters or return values of Web Service operations. If, however, you are

Table 8-1 WebLogic Web Service APIs

Package Name Typical Use Cases

weblogic.webservice.async Used in a client application to invoke an operation asynchronously
by splitting the invocation into two methods: the first method
invokes the operation with the required parameters but does not
wait for the result; later, the second method returns the actual
results.

See “Writing an Asynchronous Client Application” on page 7-11.

weblogic.webservice.binding Used in a client application to set verbose mode and the character
set programmatically.

See “Setting Verbose Mode Programatically” on page 20-5 and
“Setting the Character Set When Invoking a Web Service” on
page 14-4.

weblogic.webservice.client Used in a client application to configure SSL. See “Configuring
SSL for a Client Application” on page 13-33.

weblogic.webservice.context Used to access the HttpSession information from within the
implementation of a WebLogic Web Service operation. See
“Accessing HttpSession Information from a Web Service
Component” on page 8-5.

weblogic.webservice.encoding Used in a dynamic client application to register data type mapping
information about any non-built-in data types used as a parameter
or return value in a Web Service operation invocation.

See “Registering Data Type Mapping Information in a Dynamic
Client” on page 8-2.

weblogic.webservice.extensions Used in a client application to introspect the WSDL of the invoked
Web Service.

See “Introspecting the WSDL from a Client Application” on
page 8-6.

Regis te r ing Data Type Mapp ing In fo rmat ion in a Dynamic C l i ent

Programming WebLogic Web Services 8-3

writing a dynamic client to invoke the Web Service, then you must handle the data type mapping
registration yourself because dynamic clients do not use the clientgen-generated stubs.

The standard way to register a data type mapping is to use the JAX-RPC TypeMappingRegistry
class. However, using this class can be cumbersome because you must register the serialization
classes manually, and some of these serialization classes might be internal WebLogic classes.
The following example shows how to use the TypeMappingRegistry class, with the relevant
code in bold:

package examples.jaxrpc.call3;

import javax.xml.soap.SOAPConstants;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

import javax.xml.rpc.encoding.TypeMapping;
import javax.xml.rpc.encoding.TypeMappingRegistry;

import org.soapinterop.xsd.SOAPStructCodec;
import org.soapinterop.xsd.SOAPStruct;

public class MSInterop{

public static void main(String[] args) throws Exception{

 //set weblogic ServiceFactory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 //create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 //define qnames
 String targetNamespace = "http://soapinterop.org/";

 QName serviceName = new QName(targetNamespace, "SimpleTest");
 QName portName = new QName(targetNamespace, "SimpleTestSoap");

 QName operationName = new QName("http://soapinterop.org/",
 "echoStruct");

 //create service
 Service service = factory.createService(serviceName);

 TypeMappingRegistry registry = service.getTypeMappingRegistry();

Using the WebLog ic Web Se rv ices AP Is

8-4 Programming WebLogic Web Services

 TypeMapping mapping = registry.getTypeMapping(
 SOAPConstants.URI_NS_SOAP_ENCODING);

 mapping.register(SOAPStruct.class,
 new QName("http://soapinterop.org/xsd", "SOAPStruct"),
 new SOAPStructCodec(),
 new SOAPStructCodec());

 //create call
 Call call = service.createCall();

 //set port and operation name
 call.setPortTypeName(portName);
 call.setOperationName(operationName);

 call.addParameter("inputStruct",
 new QName("http://soapinterop.org/xsd", "SOAPStruct"),
 ParameterMode.IN);

 call.setReturnType(
 new QName("http://soapinterop.org/xsd", "SOAPStruct"));

 //set end point address
 call.setTargetEndpointAddress(
 "http://www.mssoapinterop.org/asmx/simple.asmx");

 SOAPStruct s = new SOAPStruct();
 s.setVarInt(2);
 s.setVarString("foo");
 s.setVarFloat(123123);
 System.out.println(s.toString());

 SOAPStruct res = (SOAPStruct) call.invoke(new Object[]{s});

 System.out.println(res);
 }

}

The WebLogic Web Services weblogic.webservice.encoding package facilitates the
mapping registration of non-built-in data types in a dynamic client. The API defines the
following two main classes:

DefaultTypeMapping: Used to register XML data types and associate them with a
corresponding Java data type.

GenericTypeMapping: Used to associate all non-built-in XML data types to the generic
Java data type SOAPElement

http://e-docs.bea.com/wls/docs81/javadocs/index.html

Access ing Ht tpSess ion In fo rmat ion f rom a Web Serv ice Component

Programming WebLogic Web Services 8-5

The following procedure describes how to use the DefaultTypeMapping class in your dynamic
client application:

1. Execute the autotype Ant task to create the serialization class, Java class, XML Schema, and
types.xml file for the non-built-in data types used in your Web Service. Assume for this
example that the types.xml file is generated in the mydir directory.

For details, see “Running the autotype Ant Task” on page 6-10.

2. In your client application, import the needed WebLogic Web Service API packages:

import weblogic.webservice.encoding.GenericTypeMapping;
import weblogic.webservice.encoding.DefaultTypeMapping;

3. Create an instance of the JAX-RPC TypeMappingRegistry object:

TypeMappingRegistry registry = service.getTypeMappingRegistry();

4. Use the DefaultTypeMapping class to register the types.xml file generated by the
autotype Ant task, as shown in the following code excerpt:

 registry.registerDefault(
 new DefaultTypeMapping("mydir/types.xml"));

Accessing HttpSession Information from a Web Service
Component

Use the weblogic.webservice.context.WebServiceSession class to access the
infrastructure inside WebLogic Server that manages HTTP Sessions. Because WebLogic Web
Services are not implemented with servlets, but rather with Java classes and EJBs, the HTTP
session information is not directly available, so use the weblogic.webservice.context
package to access it. See the Javadoc for javax.servlet.http.HttpSession for information
on using WebServiceSession.

In your Web Service implementation, get a WebServiceSession object from a
WebServiceContext object, and then use the standard getAttribute() and setAttribute()
methods to get and set attributes of the session.

Note: In order for the session functionality to work, the client application must support HTTP
cookies.

The following example shows a method of the Java class that implements a Web Service that uses
the weblogic.webservice.context API. The method maintains session state between
multiple invokes of the Web Service operation.

http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/http/HttpSession.html

Using the WebLog ic Web Se rv ices AP Is

8-6 Programming WebLogic Web Services

import weblogic.webservice.context.WebServiceContext;
import weblogic.webservice.context.ContextNotFoundException;
import weblogic.webservice.context.WebServiceSession;

....

 /*
 * Shows how to use HTTP Session to maintain session state between
 * invokes
 */
 public int maintainSessionState(){
 try{
 WebServiceContext wsContext = WebServiceContext.currentContext();
 WebServiceSession session = (WebServiceSession)wsContext.getSession();

 Integer count = (Integer)session.getAttribute("count");

 count = (count==null) ?
 new Integer(0) : new Integer(count.intValue() + 1);

 session.setAttribute("count", count);
 return count.intValue();
 }catch(ContextNotFoundException e){
 e.printStackTrace();
 return -1;
 }
 }

Introspecting the WSDL from a Client Application
Use the weblogic.webservice.extensions package in a dynamic client application to
introspect the WSDL of the Web Service you are invoking. In particular, the WLCall interface
extends the javax.xml.rpc.Call interface, adding functionality to:

Get the names of all parameters of the operation you are invoking

Get the Java data type of a particular parameter

Get the mode of the parameter (in, out, in-out)

The following example shows how to use the weblogic.webservice.extensions.WLCall
interface to get more information about the parameters of the operation you are invoking in a
client application.

import java.io.IOException;

import java.net.URL;

import java.util.Iterator;

http://e-docs.bea.com/wls/docs81/javadocs/index.html

In t rospec t ing the WSDL f rom a C l ien t App l i cat ion

Programming WebLogic Web Services 8-7

import java.rmi.RemoteException;

import javax.xml.namespace.QName;

import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Call;

import javax.xml.rpc.encoding.TypeMapping;
import javax.xml.rpc.encoding.TypeMappingRegistry;

import weblogic.webservice.encoding.GenericTypeMapping;
import weblogic.webservice.extensions.WLCall;

public class BrowserClient{

 public void invoke() throws RemoteException, InvokeFailedException,
 ServiceException, IOException{

 String url = "http://localhost:7001/mega/TemperatureService?WSDL";

 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 System.setProperty("weblogic.webservice.servicenamechecking",
 "false");

 ServiceFactory factory = ServiceFactory.newInstance();

 QName serviceName = new QName("http://www.bea.com/mega-service/",
 "MegaWebService");

 Service service = factory.createService(new URL(url), serviceName);

 TypeMappingRegistry registry = service.getTypeMappingRegistry();
 registry.registerDefault(new GenericTypeMapping());

 System.out.println("+ Service: " + service.getServiceName());

 for(Iterator it = service.getPorts(); it.hasNext();){
 QName portName = (QName)it.next();
 System.out.println(" + Port: " + portName);
 Call[] calls = service.getCalls(portName);
 printCalls(calls);
 }
 }

 private void printCalls(Call[] calls){
 for(int i=0; i<calls.length; i++){
 Call call = calls[i];

Using the WebLog ic Web Se rv ices AP Is

8-8 Programming WebLogic Web Services

 System.out.println(" + Operation :" + call.getOperationName());
 printParameters((WLCall)call);

 if(call.getReturnType() != null){
 System.out.println(" + Return Type:" + call.getReturnType());
 }

 System.out.println("");
 }
 }

 private void printParameters(WLCall call){
 for(Iterator it = call.getParameterNames(); it.hasNext();){
 String name = (String)it.next();
 System.out.println(" + Part :" + name);

 System.out.println(" - Java Type :" +
 call.getParameterJavaType(name));

 System.out.println(" - Mode :" +
 call.getParameterMode(name));

 System.out.println(" - XML Type :" +
 call.getParameterTypeByName(name));
 }
 }
}

Programming WebLogic Web Services 9-1

C H A P T E R 9

Using JMS Transport to Invoke a
WebLogic Web Service

The following sections provide information about using JMS transport to invoke a WebLogic
Web Service:

“Overview of Using JMS Transport” on page 9-1

“Specifying JMS Transport for a WebLogic Web Service: Main Steps” on page 9-2

“Updating the web-services.xml File to Specify JMS Transport” on page 9-3

“Invoking a Web Service Using JMS Transport” on page 9-3

Overview of Using JMS Transport
By default, client applications use HTTP/S as the connection protocol when invoking a
WebLogic Web Service. You can, however, configure a WebLogic Web Service so that client
applications can also use JMS as the transport when invoking the Web Service.

When a WebLogic Web Service is configured to use JMS as the connection transport:

The generated WSDL of the Web Service contains two port definitions: one with an
HTTP/S binding and one with a JMS binding. When you invoke the Web Service in your
client application, you can choose which port, and thus which type of transport, you want
to use.

Warning: Non-WebLogic client applications, such as a .NET client, will not be able to
invoke the Web Service using the JMS binding.

Using JMS T ranspor t t o Invoke a WebLog ic Web Serv i ce

9-2 Programming WebLogic Web Services

The clientgen Ant task creates a Service implementation that contains two
getPortXXX() methods, one for HTTP/S and one for JMS.

Note: You can configure any WebLogic Web Service to include a JMS binding in its WSDL.
This feature is independent of JMS-implemented WebLogic Web Services.

Specifying JMS Transport for a WebLogic Web Service: Main
Steps

In the following procedure, it is assumed that you are familiar with the servicegen Ant task and
you want to update the Web Service to use JMS transport. For an example of using servicegen,
see Chapter 3, “Creating a WebLogic Web Service: A Simple Example.”

Some of the main steps include configuring JMS resources using the Administration Console.

1. Invoke the Administration Console to in your browser, as described in “Overview of
Administering WebLogic Web Services” on page 17-1.

2. Use the Administration Console to create (if they do not already exist) and configure the
following JMS components of WebLogic Server:

– JMS Template

– JMS Connection factory

– JMS Server

When creating the JMS Server, or configuring an existing one, be sure that you specify
the JMS Template you already created for the Temporary Template attribute.

Note: Do not target this JMS Server to a Migratable Target.

– JMS Queue (associated with the preceding JMS Server).

For details about creating all these components, see JMS: Configuring at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#jms_queue_create.

3. Update the web-services.xml file of your WebLogic Web Service to specify that the
generated WSDL include a port that uses a JMS binding.

See “Updating the web-services.xml File to Specify JMS Transport” on page 9-3.

4. Redeploy the Web Service.

See “Invoking a Web Service Using JMS Transport” on page 9-3 for details about writing a Java
client application that invokes your Web Service.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html

Updat ing the web-serv ices . xml F i l e to Spec i f y JMS T ranspor t

Programming WebLogic Web Services 9-3

Updating the web-services.xml File to Specify JMS Transport
The web-services.xml file is located in the WEB-INF directory of the Web application of the
Web Services EAR file. See “The Web Service EAR File Package” on page 6-17 for more
information on locating the file.

To update the web-services.xml file to specify JMS transport, follow these steps:

1. Open the file in your favorite editor.

2. Add the jmsUri attribute to the <web-service> element that describes your Web Service
and set the attribute to the following value:

connection-factory-name/queue-name

where connection-factory-name and queue-name are the JNDI names of the JMS
connection factory and JMS queues, respectively, that you previously created. For
example:

<web-service
 name="myJMSTransportWebService"
 jmsUri="JMSTransportFactory/JMSTransportQueue"
 ...>
...
</web-service>

Invoking a Web Service Using JMS Transport
Invoking a WebLogic Web Service using the JMS transport is very similar to using HTTP/S, as
described in Chapter 7, “Invoking Web Services from Client Applications and WebLogic
Server,” but with a few differences, as described in the following procedure.

1. Re-run the clientgen Ant task.

Because the WSDL of the Web Service has been updated to include an additional port with
a JMS binding, the clientgen Ant task automatically creates new stubs that contains
these JMS-specific getPortXXX() methods.

For details, see “Generating the Client JAR File by Running the clientgen Ant Task” on
page 7-5.

2. Update the CLASSPATH of your client application to include the standard JMS client JAR
files:

WL_HOME/server/lib/wlclient.jar
WL_HOME/server/lib/wljmsclient.jar

Using JMS T ranspor t t o Invoke a WebLog ic Web Serv i ce

9-4 Programming WebLogic Web Services

where WL_HOME refers to the main WebLogic Server installation directory.

For more information on JMS client JAR files, see Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs81/jms/index.html.

3. Update your client application to use the new getPortXXX() method of the JAX-RPC
Service class generated by the clientgen Ant task. The standard getPortXXX() method
for HTTP/S is called getServiceNamePort(); the new method to use the JMS transport is
called getServiceNamePortJMS(), where ServiceName refers to the name of your Web
Service. These two gerPortXXX() methods correspond to the two port definitions in the
generated WSDL of the Web Service, as described in “Overview of Using JMS Transport”
on page 9-1.

The following example of a simple client application shows how to invoke the postWorld
operation of the MyService Web Service using both the HTTP/S transport (via the
getMyservicePort() method) and the JMS transport (via the getMyServicePortJMS()
method):

package examples.jms.client;

import java.io.IOException;

public class Main{

 public static void main(String[] args) throws Exception{

 MyService service = new MyService_Impl();

 { //using HTTP transport
 MyServicePort port = service.getMyServicePort();
 port.postWorld("using HTTP");
 }

 { //using JMS transport
 MyServicePort port = service.getMyServicePortJMS();
 port.postWorld("using JMS");
 }
 }
}

http://e-docs.bea.com/wls/docs81/jms/index.html

Programming WebLogic Web Services 10-1

C H A P T E R 10

Using Reliable SOAP Messaging

The following sections describe how to use reliable SOAP messaging, both as a sender and a
receiver of a SOAP message, between WebLogic Server instances:

“Overview of Reliable SOAP Messaging” on page 10-1

“Using Reliable SOAP Messaging: Main Steps” on page 10-6

Warning: Reliable SOAP Messaging is not supported in a clustered environment.

Overview of Reliable SOAP Messaging
Reliable SOAP messaging is a framework whereby an application running in one WebLogic
Server instance can asynchronously and reliably invoke a Web Service running on another
WebLogic Server instance. Reliable is defined as the ability to guarantee message delivery
between the two Web Services.

Note: Reliable SOAP messaging works between two Web Services deployed on a single
WebLogic Server instance. Typically this setup is used for development. However, in
real-life, reliable SOAP messaging is meant to be used between two WebLogic Server
instances, both of which must be configured to use reliable SOAP messaging.

The sender WebLogic Server has an application that asynchronously invokes a reliable Web
Service operation running on the receiver WebLogic Server. The sender sends the receiver a
SOAP message that has reliable SOAP messaging information in its header. The Web Service
operation being invoked has been configured for reliable SOAP messaging. Due to the
asynchronous nature of the invoke, the sender does not immediately know whether the relevant

Using Re l iab le SOAP Messag ing

10-2 Programming WebLogic Web Services

operation has been invoked, but it has the guarantee that it will get one of two possible
notifications:

The message has been received by the receiver.

Note: This does not mean that the Web Service operation on the receiver WebLogic Server
was invoked successfully; the operation might fail due to an application exception.
The exception is included in the notification to the sender. For details about
transactions, see “Receiver Transactional Context” on page 10-4.

The sender was unable to deliver the message.

Using the Weblogic Web Services asynchronous API, the sender can either poll the receiver for
notification, or register a callback to be notified. Eventually, either the sender receives a
notification that the message was received, or it receives notification that the message was not
delivered.

Reliable SOAP messaging is transport-independent. By default, it uses HTTP/S. However, you
can also use JMS if you configure the receiving Web Service appropriately and use the JMS port
when the sender invokes the Web Service. For details on using JMS transport, see Chapter 9,
“Using JMS Transport to Invoke a WebLogic Web Service.”

Reliable SOAP Messaging Architecture
The following terms are used in this section:

sender: The WebLogic Server instance that sends the reliable SOAP message.

sender application: The user application running in the sender that reliably invokes a Web
Service operation running on the receiver.

sender runtime: The WebLogic Server code running on the sender that handles reliable
SOAP messaging.

receiver: The WebLogic Server instance that receives a reliable SOAP message.

receiver Web Service: The Web Service running on the receiver that contains the operation
configured to be invoked reliably.

receiver runtime: The WebLogic Server code running on the receiver that handles reliable
SOAP messaging.

The following diagram and corresponding steps describe the architecture of the reliable SOAP
messaging feature.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/async/package-summary.html

Overv iew o f Re l iab le SOAP Messag ing

Programming WebLogic Web Services 10-3

Figure 10-1 Reliable SOAP Messaging Architecture

1. The sender application invokes a reliable operation running on the receiver WebLogic Server.

2. The sender runtime saves the message in its persistent JMS store. The store can be either a
JMS File or JDBC store.

The sender runtime sends the SOAP message to the receiver WebLogic Server.

3. The receiver runtime receives the message, checks for duplicates in its persistent JMS store,
and if none are found, saves the message ID in its store. If it finds a duplicate, the receiver
runtime acknowledges the message, but does not deliver it to the receiver Web Service.

Note: Only the message ID, and not the entire message itself, is persisted in the receiver’s
store.

The actions performed by the receiver execute within the context of a transaction. See
“Receiver Transactional Context” on page 10-4.

4. The receiver runtime invokes the reliable operation and sends an acknowledgement back to
the sender in the SOAP header.

Because only void operations can be invoked reliably, the receiver does not return any
values to the sender. If the invoked operation throws an application exception, the
exception is, however, sent back to the sender. System exceptions (from EJBs, but not from
Java classes) roll back the transaction started by a receiver. For details, see “Receiver
Transactional Context” on page 10-4.

5. The sender runtime removes the message from its persistent store so that the message does
not get sent again.

Sender Weblogic Server

Sender
Application

Sender
Runtime

Receiver Weblogic Server

Receiver
Runtime

Receiver
Web
Service

1 2 3 4

56

Sender
Store

Receiver
Store

Using Re l iab le SOAP Messag ing

10-4 Programming WebLogic Web Services

The sender is configured to retry sending the message if it does not receive notification of
receipt. You configure the number of retries, and amount of time between retries, of the
sender using the Administration Console. Once sender runtime has resent the message the
maximum number of retries, it removes the message from its store.

6. The sender runtime sends notification to the sender application (either via callbacks or
polling) that either the message was received and the operation invoked or that it was never
successfully delivered.

Receiver Transactional Context
When the receiver runtime receives a message from a sender, it starts a transaction, and the
following subsequent receiver actions execute within the context of this transaction:

1. Receives a message from the sender.

2. Starts a transaction.

3. Checks for duplicates in its persistent store.

4. If duplicates are found, the receiver sends an acknowledgement back to the sender and rolls
back the transaction.

5. If no duplicates are found, saves the message ID in its store.

6. Invokes the operation.

7. Sends an acknowledgment back to the sender.

8. Commits the transaction.

The main reason the receiver executes all its actions within the context of a transaction is to
preserve the integrity of the message IDs in its persistent store. For example, suppose WebLogic
Server crashes right after the receiver saves a message ID in its store, but before it invokes the
operation; in this case, the transaction is rolled back and the saved message ID is removed from
the store. Later, when the sender resends the message (because it has not yet received an
acknowledgement that the operation was invoked), the receiver has no history of the message and
will correctly go through the whole process again. If the receiver had not executed within the
context of a transaction, it would never invoke the operation in this case because of the incorrect
presence of the message ID in its store.

The transaction started by the receiver is rolled back if any of the following events occurs during
the transaction:

Overv iew o f Re l iab le SOAP Messag ing

Programming WebLogic Web Services 10-5

WebLogic Server crashes.

The EJB container or EJB application method that implements the operation issues a
rollback.

The Java class method that implements the operation issues a rollback.

The EJB container or EJB application method throws a system exception, such as a
RemoteException.

The following events do not cause a rollback of the transaction:

The EJB application method throws an application exception. An example of an
application exception is WithdrawalErrorException, which is thrown by a method
when a user tries to withdraw too much money from their account.

The Java class method throws any exception.

Guidelines For Programming the EJB That Implements a Reliable Web
Service Operation
When creating a stateless session EJB-implemented Web Service whose operations can be
invoked reliably, follow these guidelines when programming the EJB:

The EJB must use only container-managed transactions; bean-managed transactions are not
supported.

The transactional attribute of the EJB method that implements the reliable operation must
be set to one of the following values:

– Required (recommended)
– Supports

– Mandatory

Set the transactional attribute of an EJB method with the <trans-attribute> element in
the ejb-jar.xml deployment descriptor.

If you want to explicitly roll back the transaction from the EJB application method, use the
EJBContext.setRollbackOnly() method.

Be aware that system exceptions (such as RemoteException) thrown by the EJB container
or the EJB application method will roll back the transaction. Application exceptions (such
as WithdrawalErrorException thrown by the EJB when a user tries to withdraw too
much money from an account) do not roll back the transaction.

Using Re l iab le SOAP Messag ing

10-6 Programming WebLogic Web Services

For more information, see Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81/ejb/index.html and Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs81/jta/index.html.

Guidelines for Programming the Java Class That Implements a Reliable Web
Service Operation
When creating a Java class-implemented Web Service whose operations can be invoked reliably,
follow these guidelines when programming the Java class:

If you want to roll back the transaction from the Java method, use the Java Transaction
API (JTA) to get the transaction object and then explicitly roll back the transaction.

Be aware exceptions thrown by the Java class never roll back the transaction.

For more information, see Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs81/jta/index.html.

Configuring the Transaction
Use the Administration Console to configure the following transaction attributes:

Transaction time-out and limits

Transaction manager behavior

Configuration settings for JTA transactions are applicable at the domain level. This means that
configuration attribute settings apply to all servers within a domain. For details, see Configuring
Transactions at http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html.

Limitations of Reliable SOAP Messaging
Only Web Service operations that return void can be configured to be invoked reliably.

One-way Web Service operations cannot be configured to be invoked reliably.

Using Reliable SOAP Messaging: Main Steps
The following procedure describes the main steps for configuring reliable SOAP messaging to
invoke a WebLogic Web Service operation. The procedure describes configuration and
code-writing tasks that take place in both the sender and receiver WebLogic Server instances.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/jta/index.html
http://e-docs.bea.com/wls/docs81/jta/index.html
http://e-docs.bea.com/wls/docs81/jta/index.html
http://e-docs.bea.com/wls/docs81/jta/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html

Using Re l iab le SOAP Messag ing : Main S teps

Programming WebLogic Web Services 10-7

Note: It is assumed that you have already implemented and assembled a WebLogic Web
Service and you want to enable one or more of its operations to be invoked reliably.
Additionally, it is assumed that you have already coded a server-side application (such
as a servlet in a Web application) that invokes the Web Service in a non-reliable way and
you want to update the application to invoke the Web Service reliably.

For details about these tasks, see Chapter 5, “Implementing WebLogic Web Services,”
Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks,” and Chapter 7,
“Invoking Web Services from Client Applications and WebLogic Server.”

1. Configure the reliable SOAP messaging attributes for the sender WebLogic Server instance.

See “Configuring the Sender WebLogic Server” on page 10-8.

2. Configure the reliable SOAP messaging attributes for the receiver WebLogic Server
instance.

See “Configuring the Receiver WebLogic Server” on page 10-10.

3. Update the build.xml file that contains the call to the servicegen Ant task, adding the
<reliability> child element to the <service> element that builds your Web Service on
the receiver WebLogic Server, as shown in the following example:

 <servicegen

 destEar="ears/myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services" >

 <service

 ejbJar="jars/myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True" >

 <reliability duplicateElimination="True"

 persistDuration="60"

 />

 </service>

 </servicegen>

In the example, the Web Service ignores duplicate invokes from the same sender
application and persists messages for at least 60 seconds. For more information on the
attributes of the <reliability> element, see “servicegen” on page B-25.

Using Re l iab le SOAP Messag ing

10-8 Programming WebLogic Web Services

Note: When you regenerate your Web Service using this build.xml file, every operation
that returns void will be enabled for reliable invocation. If you want only certain
operations to be invoked reliably, or you prefer not to regenerate your Web Service
using servicegen, you can update the web-services.xml file of your WebLogic
Web Service manually. For details, see “Updating the web-services.xml File
Manually for Reliable SOAP Messaging” on page 10-15.

4. Re-run the servicegen Ant task to regenerate your receiver Web Service.

5. Re-run the clientgen Ant task, specifying the generateAsyncMethods="True"
attribute, to generate a new Web Service-specific client JAR file that contains the
asynchronous operation invocations. This new client JAR file will be used with the
server-side application running in the sender WebLogic Server.

6. On the client application running on the sender WebLogic Server, update the Java code that
invokes the Web Service to invoke it reliably.

For an example, see “Writing the Java Code to Invoke an Operation Reliably” on
page 10-11.

Configuring the Sender WebLogic Server
This section describes how to configure reliable SOAP messaging attributes for a WebLogic
Server instance in its role as a sender of a reliable SOAP message.

Note: Part of the reliable SOAP messaging configuration involves configuring, if it does not
already exist, a JMS File or JDBC store.

The following table describes the reliable SOAP messaging attributes.

Table 10-1 Reliable SOAP Messaging Attributes for a Sender WebLogic Server

Attribute Description

Store The persistent JMS store used by WebLogic Server, in its
role as a sender, to persist the reliable SOAP messages
that it sends.

Using Re l iab le SOAP Messag ing : Main S teps

Programming WebLogic Web Services 10-9

To configure these attributes:

1. Invoke the Administration Console in your browser, as described in “Overview of
Administering WebLogic Web Services” on page 17-1.

2. Create, if one does not already exist, a JMS store. This can be either a JMS File store or a
JMS JDBC store. See JMS File Store Tasks at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_file_stores
and JMS JDBC Store Tasks at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
.

Warning: The JMS Store is not migratable.

3. Click the Servers node in the left pane.

4. Select the WebLogic Server for which you want to configure reliable SOAP messaging in
its role as a sender.

5. In the right pane, select the Services→Web Services tab.

6. Select the JMS store from the Store drop-down list that will contain WebLogic Server’s
reliable SOAP messages when acting as a sender.

7. Enter the default maximum number of times the sender WebLogic Server should attempt to
resend a message in the Default Retry Count field.

Default Retry Count The default maximum number of times that the sender
runtime should attempt to re-deliver a message that the
receiver WebLogic Server has not yet acknowledged.

Default value is 10.

Default Retry Interval The default minimum number of seconds that the sender
runtime should wait between retries if the receiver does
not send an acknowledgement of receiving the message,
or if the sender runtime detects a communications error
while attempting to send a message.

Default value is 600.

Table 10-1 Reliable SOAP Messaging Attributes for a Sender WebLogic Server

Attribute Description

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

Using Re l iab le SOAP Messag ing

10-10 Programming WebLogic Web Services

8. Enter the default minimum number of seconds that the sender WebLogic Server should wait
between retries in the Default Retry Interval field.

9. Enter the default minimum number of seconds that the receiver of the reliable SOAP
message should persist the history of the message in its JMS store in the Default Time to
Live field

Warning: This value should be larger than the corresponding value of any Web Service
operation being invoked reliably. Later sections describe how to configure his
value in the Web Service’s web-services.xml file by updating the
persist-duration attribute of the <reliable-delivery> subelement of the
invoked <operation>.

10. Click Apply.

Configuring the Receiver WebLogic Server
This section describes how to configure reliable SOAP messaging attributes for a WebLogic
Server instance in its role as a receiver of a reliable SOAP message.

Note: Part of the reliable SOAP messaging configuration involves configuring, if it does not
already exist, a JMS File or JDBC store.

The following table describes the reliable SOAP messaging attributes.

Table 10-2 Reliable SOAP Messaging Attributes for a Receiver WebLogic Server

Attribute Description

Store The persistent JMS store used by the receiver WebLogic
Server to persist the history of a reliable SOAP message
sent by a sender.

Default Time To Live The default number of seconds that the receiver of the
reliable SOAP message should persist the history of the
message in its store.

If the Default Time to Live number of seconds have
passed since the message was first sent, the sender will not
resend a message with the same message ID.

If a sender cannot send a message successfully before the
Default Time To Live number of seconds has passed, the
sender reports a delivery failure.

Using Re l iab le SOAP Messag ing : Main S teps

Programming WebLogic Web Services 10-11

To configure these attributes:

1. Invoke the Administration Console in your browser, as described in “Overview of
Administering WebLogic Web Services” on page 17-1.

2. Create, if one does not already exist, a JMS store. This can be either a JMS File store or a
JMS JDBC store. See JMS File Store Tasks at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_file_stores
and JMS JDBC Store Tasks at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
.

Warning: The JMS Store is not migratable.

3. Click the Servers node in the left pane.

4. Select the WebLogic Server for which you want to configure reliable SOAP messaging in
its role as a receiver.

5. In the right pane, select the Services→Web Services tab.

6. Select the JMS store from the Store drop-down list that will be used for duplicate
elimination by the receiver.

7. Enter the number of seconds in the Default Time to Live field.

Later sections in this document describe how each Web Service operation can override this
default value. See “Updating the web-services.xml File Manually for Reliable SOAP
Messaging” on page 10-15.

8. Click Apply.

Writing the Java Code to Invoke an Operation Reliably
You specify that a WebLogic Web Service operation is reliable by updating its definition in the
web-services.xml file, adding the <reliable-deliver> child element to the corresponding
<operation> element. You can do this using the servicegen Ant task (see “Using Reliable
SOAP Messaging: Main Steps” on page 10-6), or by updating the web-services.xml file
manually (see “Updating the web-services.xml File Manually for Reliable SOAP Messaging” on
page 10-15). A client application, however, is not required to invoke a reliable operation in a
reliable manner. There are three ways to invoke a reliable operation:

Synchronously with no reliability. This is the standard JAX-RPC way of invoking
operations.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

Using Re l iab le SOAP Messag ing

10-12 Programming WebLogic Web Services

Asynchronously with no reliability, as described in “Writing an Asynchronous Client
Application” on page 7-11.

Asynchronously with reliability, as described in this chapter.

Writing the Java code to invoke a Web Service operation reliably from a sender application is
very similar to invoking an operation asynchronously, as described in “Writing an Asynchronous
Client Application” on page 7-11. The asynchronous invoke of an operation is split into two
methods: startOperation() and endOperation().

In addition to the standard asynchronous client Java code, to invoke an operation reliably you
must:

Enable reliable delivery in your client application with the
AsyncInfo.setReliableDelivery(true) method.

This method also checks for correct JMS configuration and throws an exception if it finds
any errors in the configuration.

Optionally create and set a listener to listen for the results of a reliable operation invocation
with the AsyncInfo.setResultListener(listener) method. The listener class
implements the ResultListener interface, which in turn defines the onCompletion()
listener callback method in which you define what happens when the asynchronous reliable
operation invocation completes.

The following example shows the simplest way to invoke the processOrder() operation
asynchronously and reliably by specifying the setReliableDeliver(true) method and using
the asynchronous API to split the operation into two invocations: startProcessOrder() and
endProcessOrder(). You tell the clientgen Ant task to generate these two methods in the
stubs by specifying the generateAsyncMethods attribute.

import weblogic.utils.Debug;

import weblogic.webservice.async.AsyncInfo;
import weblogic.webservice.async.FutureResult;

public final class ReliableSender {

public void placeOrder(String order) {
 try {
 // set up Web Service port
 MarketService market = new MarketService_Impl();
 MarketServicePort marketPort = marketService.getMarketServicePort();

 // enable reliable delivery
 AsyncInfo asyncCtx = new AsyncInfo();
 asyncCtx.setReliableDelivery(true);

Using Re l iab le SOAP Messag ing : Main S teps

Programming WebLogic Web Services 10-13

 // call the Web Service asynchronously
 FutureResult futureResult = marketPort.startProcessOrder(order, asyncCtx);
 marketPort.endProcessOrder(futureResult);

 } catch (Exception e) {
 Debug.say("Exception in ReliableSender: " + e);
 }
 }
}

The following more complex example builds on the previous by setting a result listener to listen
for the completion of the asynchronous and reliable operation invoke. The implementation of the
onCompletion() method specifies what happens when the invoke completes; in the example, a
message is printed if the invoke failed.

import java.io.Serializable;

import weblogic.webservice.async.AsyncInfo;
import weblogic.webservice.async.FutureResult;
import weblogic.webservice.async.InvokeCompletedEvent;
import weblogic.webservice.async.ResultListener;
import weblogic.webservice.async.ReliableDeliveryFailureEvent;

import weblogic.utils.Debug;

public final class ReliableSender {

 public void placeOrder(String order) {
 try {
 // set up Web Service port
 MarketService market = new MarketService_Impl();
 MarketServicePort marketPort = marketService.getMarketServicePort();

 // enable reliable delivery
 AsyncInfo asyncCtx = new AsyncInfo();
 asyncCtx.setReliableDelivery(true);

 // set up the result listener
 RMListener listener = new RMListener();
 asyncCtx.setResultListener(listener);

 // call the Web Service asynchronously
 FutureResult futureResult = marketPort.startProcessOrder(order, asyncCtx);

 while (!futureResult.isCompleted()) {
 Debug.say("async polling ..."); // do something else
 Thread.sleep(3000);
 }

 marketPort.endProcessOrder(futureResult);

Using Re l iab le SOAP Messag ing

10-14 Programming WebLogic Web Services

 } catch (Exception e) {
 Debug.say("Exception in ReliableSender: " + e);
 }
 }
}

class RMListener implements ResultListener, Serializable {

 public void onCompletion(InvokeCompletedEvent event) {
 if (event instanceof ReliableDeliveryFailureEvent) {
 ReliableDeliveryFailureEvent rdEvent =
 (ReliableDeliveryFailureEvent) event;
 Debug.say("Reliable delivery failed with the following message: " +
 rdEvent.getErrorMessage());
 }
 }
}

Handling Sender Server Failures
The application that invokes an operation reliably must handle the case where the sender server
crashes in the middle of retrying SOAP message delivery. Once the sender server restarts, it will
check its persistent store for any messages that have not yet been successfully delivered, and if it
finds any, it will continue trying to send the message to the receiver server. The problem,
however, is that due to the sender server crash, the application that initially invoked the operation
reliably may not be deployed anymore, and when the receiver server sends back an
acknowledgement after the sender server restarts, there will be no application to accept the
acknowledgment.

To handle this situation correctly, code your application to follow these guidelines:

Create a class that implements the ResultListener interface. This class listens for the
completion of the reliable operation invoke. See the second example “Writing the Java
Code to Invoke an Operation Reliably” on page 10-11 for a sample of writing this class.

Code the class that implements the ResultListener interface to also implement the
Serializable interface to ensure that, in case of a sender server crash, the class will be
serialized and stored on disk. Then, once the sender server restarts, the result listener class
will also be invoked and will handle subsequent acknowledgment messages from the
receiver.

Be sure to also serialize any information needed by the result listener class so that once the
class is instantiated after a sender server crash it can return to its previous state and
correctly handle acknowledgments from the receiver.

Using Re l iab le SOAP Messag ing : Main S teps

Programming WebLogic Web Services 10-15

Updating the web-services.xml File Manually for Reliable
SOAP Messaging
If you regenerated your Web Service using the servicegen Ant task, every operation that returns
void is enabled for reliable invocation. If you want only certain operations to be invoked reliably,
or you prefer not to regenerate your Web Service using servicegen, you can update the
web-services.xml file of your WebLogic Web Service manually, as described in this section.

The web-services.xml file is located in the WEB-INF directory of the Web application of the
Web Services EAR file. See “The Web Service EAR File Package” on page 6-17 for more
information on locating the file.

To update the web-services.xml file to enable reliable SOAP messaging for one or more
operations:

1. Open the file in your favorite editor.

2. For each operation for which you want to enable reliable SOAP messaging, add a
<reliable-delivery> subelement and specify the following optional attributes:

– duplicate-elimination - Boolean that specifies whether the WebLogic Web Service
should ignore duplicate invokes with the same message ID from the same sender
application. Default value is True.

– persist-duration - Integer value that specifies the minimum number of seconds that
the Web Service should persist the history of the reliable SOAP message (received
from the sender that invoked the Web Service) in its storage. When persist-duration
seconds have elapsed, the receiver WebLogic Server deletes the history of the message
from its store. The value of this attribute, if you set it, should be greater than the
product of the retry interval and the retry count of the sender.

This attribute overrides the default server value you set in “Configuring the Receiver
WebLogic Server” on page 10-10. The default if neither is set is 360 seconds.

The following example shows an operation that can be invoked reliably:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote">
 <reliable-delivery persist-duration="80" />
</operation>

Using Re l iab le SOAP Messag ing

10-16 Programming WebLogic Web Services

Programming WebLogic Web Services 11-1

C H A P T E R 11

Using Non-Built-In Data Types

The following sections describe how to use non-built-in data types in WebLogic Web Services:

“Overview of Using Non-Built-In Data Types” on page 11-1

“Creating Non-Built-In Data Types Manually: Main Steps” on page 11-2

Overview of Using Non-Built-In Data Types
You can create a WebLogic Web Service that uses non-built-in data types as the Web Service
parameters and return value. Non-built-in data types are defined as data types other than the
supported built-in data types, such as int and String. For the full list of built-in types, see
“Supported Built-In Data Types” on page 5-15.

WebLogic Server transparently handles the conversion of the built-in data types between their
XML and Java representation. However, if your Web Service operation uses non-built-in data
types, you must provide the following information so that WebLogic Server can perform the
conversion:

Serialization class that converts between the XML and Java representation of the data.

A Java class to contain the Java representation of the data type.

An XML Schema representation of the data type.

Data type mapping information in the web-services.xml deployment descriptor file.

WebLogic Server includes the servicegen and autotype Ant tasks which automatically
generate the preceding components by introspecting the stateless session EJB or Java class

Us ing Non-Bu i l t - In Data Types

11-2 Programming WebLogic Web Services

back-end component for your Web Service. These Ant tasks can handle many non-built-in data
types, so most programmers will not ever have to create the components manually.

Sometimes, however, you may need to create the non-built-in data type components manually.
Your data type may be so complex that the Ant task cannot correctly generate the components.
Or maybe you want more control over how the data is converted between its XML and Java
representations rather than relying on the default conversion procedure used by WebLogic
Server.

For a full list of the supported non-built-in data types, see “Non-Built-In Data Types Supported
by servicegen and autotype Ant Tasks” on page 6-18.

For procedural instructions on using servicegen and autotype, see Chapter 6, “Assembling
WebLogic Web Services Using Ant Tasks.” For reference information, see Appendix B, “Web
Service Ant Tasks and Command-Line Utilities.”

Creating Non-Built-In Data Types Manually: Main Steps
The following procedure describes how to create non-built-in data types and use the servicegen
Ant task to create a deployable Web Service:

1. Write the XML Schema representation of your data type. See “Writing the XML Schema Data
Type Representation” on page 11-3.

2. Write a Java class that represents your data type. See “Writing the Java Data Type
Representation” on page 11-4.

3. Write a serialization class that converts the data between its XML and Java representations.
See “Writing the Serialization Class” on page 11-5.

4. Compile your Java code into classes. Ensure that your CLASSPATH variable can locate the
classes.

5. Create a text file that contains the data type mapping information about your non-built-in
data type. See “Creating the Data Type Mapping File” on page 11-10.

6. Assemble your Web Service using the servicegen Ant task as described in “Assembling
WebLogic Web Services Using the servicegen Ant Task” on page 6-3, with the following
addition: when creating the build.xml file that calls the servicegen Ant task, be sure
you specify the typeMappingFile attribute of servicegen, setting it equal to the name of
the data type mapping file you created in the preceding step.

BEA recommends that you create an exploded directory, rather than an EAR file, by
specifying a value for the destEar attribute of servicegen that does not have an .ear

Creat ing Non-Bui l t - In Data Types Manual l y : Ma in S teps

Programming WebLogic Web Services 11-3

suffix. You can later package the exploded directory into an EAR file when you are ready
to deploy the Web Service.

7. Update the web-services.xml file (which was generated by the servicegen Ant task),
adding the XML Schema representation of your data type that you created in the first step
of this procedure. See “Updating the web-services.xml File With XML Schema
Information” on page 11-11.

8. Either deploy the exploded directory as your Web Service, or package the directory into an
EAR file and deploy it on WebLogic Server.

9. If you want to use the clientgen Ant task to generate a Java client, follow the procedure
described in “Running the clientgen Ant Task” on page 6-13 with the following additions to
the build.xml file that calls clientgen:

– Specify the ear attribute and set it to the full name of your Web Service EAR file. Do
not specify the wsdl attribute.

– Specify the useServerTypes attribute and set it to True.

Writing the XML Schema Data Type Representation
Web Services use SOAP as the message format to transmit data between the service and the client
application that invokes the service. Because SOAP is an XML-based protocol, you must use
XML Schema notation to describe the structure of non-built-in data types used by Web Service
operations.

Warning: XML Schema is a powerful and complex data description language, and its use is
not recommended for the faint of heart.

The following example shows the XML Schema that describes a non-built-in data type called
EmployBean:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:stns="java:examples.newTypes"

 attributeFormDefault="qualified"

 elementFormDefault="qualified"

 targetNamespace="java:examples.newTypes">

 <xsd:complexType name="EmployeeBean">

 <xsd:sequence>

 <xsd:element name="name"

 type="xsd:string"

Us ing Non-Bu i l t - In Data Types

11-4 Programming WebLogic Web Services

 nillable="true"

 minOccurs="1"

 maxOccurs="1">

 </xsd:element>

 <xsd:element name="id"

 type="xsd:int"

 minOccurs="1"

 maxOccurs="1">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

The following XML shows an instance of the EmployeeBean data type:

<EmployeeBean>

 <name>Beverley Talbott</name>

 <id>1234</id>

</EmployeeBean>

For detailed information about using XML Schema notation to describe your non-built-in data
type, see the XML Schema specification at http://www.w3.org/TR/xmlschema-0/.

Writing the Java Data Type Representation
You use the Java representation of the non-built-in data type in your EJB or Java class that
implements the Web Service operation.

The following example shows one possible Java representation of the EmployeeBean data type
whose XML representation is described in the preceding section:

package examples.newTypes;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public final class EmployeeBean {

 private String name = "John Doe";
 private int id = -1;

 public EmployeeBean() {
 }

http://www.w3.org/TR/xmlschema-0/

Creat ing Non-Bui l t - In Data Types Manual l y : Ma in S teps

Programming WebLogic Web Services 11-5

 public EmployeeBean(String n, int i) {
 name = n;
 id = i;
 }

 public String getName() {
 return name;
 }
 public void setName(String v) {
 this.name = v;
 }

 public int getId() {
 return id;
 }
 public void setId(int v) {
 this.id = v;
 }

 public boolean equals(Object obj) {
 if (obj instanceof EmployeeBean) {
 EmployeeBean e = (EmployeeBean) obj;
 return (e.name.equals(name) && (e.id == id));
 }
 return false;
 }
}

Writing the Serialization Class
The serialization class performs the actual conversion of your data between its XML and Java
representations. You write only one class that contains methods to serialize and deserialize your
data. In the class you use the WebLogic XML Streaming API to process the XML data.

The WebLogic XML Streaming API provides an easy and intuitive way to consume and generate
XML documents. It enables a procedural, stream-based handling of XML documents.

For detailed information on using the WebLogic XML Streaming API, see Programming
WebLogic XML at http://e-docs.bea.com/wls/docs81/xml/xml_stream.html.

For more information on the WebLogic Web Services and XML APIs used in this section, see
the Javadocs at http://e-docs.bea.com/wls/docs81/javadocs/index.html.

The following example shows a class that uses the XML Streaming API to serialize and
deserialize the data type described in “Writing the XML Schema Data Type Representation” on
page 11-3 and “Writing the Java Data Type Representation” on page 11-4; the procedure after the
example lists the main steps to create such a class:

http://e-docs.bea.com/wls/docs81/xml/xml_stream.html
http://e-docs.bea.com/wls/docs81/xml/xml_stream.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Us ing Non-Bu i l t - In Data Types

11-6 Programming WebLogic Web Services

package examples.newTypes;

import weblogic.webservice.encoding.AbstractCodec;

import weblogic.xml.schema.binding.DeserializationContext;
import weblogic.xml.schema.binding.DeserializationException;
import weblogic.xml.schema.binding.Deserializer;
import weblogic.xml.schema.binding.SerializationContext;
import weblogic.xml.schema.binding.SerializationException;
import weblogic.xml.schema.binding.Serializer;

import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLOutputStream;
import weblogic.xml.stream.XMLStreamException;

public final class EmployeeBeanCodec extends
 weblogic.webservice.encoding.AbstractCodec
{
 public void serialize(Object obj,
 XMLName name,
 XMLOutputStream writer,
 SerializationContext context)
 throws SerializationException
 {
 EmployeeBean emp = (EmployeeBean) obj;

 try {

 //outer start element
 writer.add(ElementFactory.createStartElement(name));

 //employee name element
 writer.add(ElementFactory.createStartElement("name"));
 writer.add(ElementFactory.createCharacterData(emp.getName()));
 writer.add(ElementFactory.createEndElement("name"));

 //employee id element
 writer.add(ElementFactory.createStartElement("id"));
 String id_string = Integer.toString(emp.getId());
 writer.add(ElementFactory.createCharacterData(id_string));
 writer.add(ElementFactory.createEndElement("id"));

Creat ing Non-Bui l t - In Data Types Manual l y : Ma in S teps

Programming WebLogic Web Services 11-7

 //outer end element
 writer.add(ElementFactory.createEndElement(name));

 } catch(XMLStreamException xse) {
 throw new SerializationException("stream error", xse);
 }
 }

 public Object deserialize(XMLName name,
 XMLInputStream reader,
 DeserializationContext context)
 throws DeserializationException
 {
 // extract the desired information out of reader, consuming the
 // entire element representing the type,
 // construct your object, and return it.
 EmployeeBean employee = new EmployeeBean();

 try {
 if (reader.skip(name, XMLEvent.START_ELEMENT)) {
 StartElement top = (StartElement)reader.next();

 //next start element should be the employee name
 if (reader.skip(XMLEvent.START_ELEMENT)) {
 StartElement emp_name = (StartElement)reader.next();

 //assume that the next element is our name character data
 CharacterData cdata = (CharacterData) reader.next();
 employee.setName(cdata.getContent());
 } else {
 throw new DeserializationException("employee name not found");
 }

 //next start element should be the employee id
 if (reader.skip(XMLEvent.START_ELEMENT)) {
 StartElement emp_id = (StartElement)reader.next();

 //assume that the next element is our id character data
 CharacterData cdata = (CharacterData) reader.next();
 employee.setId(Integer.parseInt(cdata.getContent()));
 } else {
 throw new DeserializationException("employee id not found");
 }

 //we must consume our entire element to leave the stream in a
 //good state for any other deserializer
 if (reader.skip(name, XMLEvent.END_ELEMENT)) {
 XMLEvent end = reader.next();
 } else {
 throw new DeserializationException("expected end element not found");

Us ing Non-Bu i l t - In Data Types

11-8 Programming WebLogic Web Services

 }
 } else {
 throw new DeserializationException("expected start element not found");
 }
 } catch (XMLStreamException xse) {
 throw new DeserializationException("stream error", xse);
 }
 return employee;
 }

 public Object deserialize(XMLName name,
 Attribute att,
 DeserializationContext context)
 throws DeserializationException
 {
 //NOTE: not used in this example

 // extract the desired information out of att, consuming the
 // entire element representing the type,
 // construct your object, and return it.
 return new EmployeeBean();
 }
}

To create the serialization class using the WebLogic XML Streaming API, follow these steps:

1. Import the following classes, which are implemented by the abstract class that your
serialization class will extend:

import weblogic.webservice.encoding.AbstractCodec;

import weblogic.xml.schema.binding.DeserializationContext;
import weblogic.xml.schema.binding.DeserializationException;
import weblogic.xml.schema.binding.Deserializer;
import weblogic.xml.schema.binding.SerializationContext;
import weblogic.xml.schema.binding.SerializationException;
import weblogic.xml.schema.binding.Serializer;

2. Import the WebLogic XML Streaming API classes as needed. The preceding example
imports the following classes:

import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLName;

Creat ing Non-Bui l t - In Data Types Manual l y : Ma in S teps

Programming WebLogic Web Services 11-9

import weblogic.xml.stream.XMLOutputStream;
import weblogic.xml.stream.XMLStreamException;

3. Write your Java class to extend the following abstract class:

weblogic.webservice.encoding.AbstractCodec

Because JAX-RPC does not define a standard mechanism for accessing XML, the
AbstractCodec class provides the glue to allow user written serialization classes to be
used in the WebLogic Web Services runtime.

4. Implement the serialize() method, used to convert the data from Java to XML. The
signature of this method is as follows:

 void serialize(Object obj,
 XMLName name,
 XMLOutputStream writer,
 SerializationContext context)
 throws SerializationException;

Your Java object will be contained in the Object parameter. Use the XML Streaming API
to write the Java object to the XMLOutputStream parameter. Use the XMLName parameter
as the name of the resulting element.

Warning: Do not update the SerializationContext parameter; it is used internally by
WebLogic Server.

5. Implement the deserialize() method, used to convert the data from XML to Java. The
signature of this method is as follows:

 Object deserialize(XMLName name,
 XMLInputStream reader,
 DeserializationContext context)
 throws DeserializationException;

The XML that you want to deserialize is contained in the XMLInputStream parameter.
Use the WebLogic XML Streaming API to parse the XML and convert it into the returned
Object. The XMLName parameter contains the expected name of the XML element.

Call the deserialize() method recursively to build contained Objects.

When you use the XML Streaming API to read the stream of events that make up your
XML document, be sure you always finish reading an element all the way up to and
including the EndElement event, rather than finish reading once you have read all the
actual data. If you finish before reaching an EndElement event, the deserialization of
subsequent elements might fail.

Us ing Non-Bu i l t - In Data Types

11-10 Programming WebLogic Web Services

Warning: Do not update the DeserializationContext parameter; it is used internally by
WebLogic Server.

6. If the data type for which you are creating a serialization class is used as an attribute value
in your XML files, implement the following variation of the deserialize() method:

 Object deserialize(XMLName name,
 Attribute att,
 DeserializationContext context)
 throws DeserializationException;

The Attribute parameter contains the attribute value to deserialize. The XMLName
attribute contains the expected name of the XML element.

Warning: Do not update the DeserializationContext parameter; it is used internally by
WebLogic Server.

Creating the Data Type Mapping File
The data type mapping file is a subset of the web-services.xml deployment descriptor file. It
centralizes some of the information about non-built-in data types, such as the name of the Java
class that describes the Java representation of the data, the name of the serialization class that
converts the data between XML and Java, and so on. The servicegen Ant task uses this data
type mapping file when creating the web-services.xml deployment descriptor for the
WebLogic Web Service that uses the non-built-in data type.

To create the data type mapping file, follow these steps:

1. Create a text file with any name.

2. Within in the text file, add a <type-mapping> root element:

<type-mapping>
...
</type-mapping>

3. For each non-built-in data type for which you have created a serialization class, add a
<type-mapping-entry> child element of the <type-mapping> element. Include the
following attributes:

– xmlns:name —Declares a namespace.

– class-name—Specifies the fully qualified name of the Java class.

– type—Specifies the name of XML Schema type for which this data type mapping
entry applies.

Creat ing Non-Bui l t - In Data Types Manual l y : Ma in S teps

Programming WebLogic Web Services 11-11

– serializer—The fully qualified name of the serialization class that converts the data
from its Java to its XML representation. For details on creating this class, see “Writing
the Serialization Class” on page 11-5.

– deserializer—The fully qualified name of the serialization class that converts the
data from its XML to its Java representation. For details on creating this class, see
“Writing the Serialization Class” on page 11-5.

The following example shows a possible data type mapping file with one
<type-mapping> entry for the XML Schema data type shown in “Updating the
web-services.xml File With XML Schema Information” on page 11-11:

<type-mapping>
 <type-mapping-entry
 xmlns:p2="java:examples.newTypes"
 class-name="examples.newTypes.EmployeeBean"
 type="p2:EmployeeBean"
 serializer="examples.newTypes.EmployeeBeanCodec">
 deserializer="examples.newTypes.EmployeeBeanCodec"
 </type-mapping-entry>
</type-mapping>

Updating the web-services.xml File With XML Schema
Information
The web-services.xml file generated by servicegen will not have the XML Schema
information for the non-built-in data type for which you have created your own custom
serialization class. For this reason, you must manually add the XML Schema information to the
deployment descriptor, as described in the following steps:

1. In the existing web-services.xml file generated by the servicegen Ant task, find the
<types> child element of the <web-service> element:

<types>
...
</types>

2. Merge your XML Schema representation of your non-built-in data type that you created in
“Writing the XML Schema Data Type Representation” on page 11-3 with the any existing
information within the <types> element, as shown in the following example:

<types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:stns="java:examples.newTypes"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"

Us ing Non-Bu i l t - In Data Types

11-12 Programming WebLogic Web Services

 targetNamespace="java:examples.newTypes">
 <xsd:complexType name="EmployeeBean">
 <xsd:sequence>
 <xsd:element name="name"
 type="xsd:string"
 nillable="true"
 minOccurs="1"
 maxOccurs="1">
 </xsd:element>
 <xsd:element name="id"
 type="xsd:int"
 minOccurs="1"
 maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</types>

Programming WebLogic Web Services 12-1

C H A P T E R 12

Creating SOAP Message Handlers to
Intercept the SOAP Message

The following sections discuss how to use SOAP message handlers to intercept the request and
response SOAP messages when developing a WebLogic Web Service:

“Overview of SOAP Message Handlers and Handler Chains” on page 12-1

“Creating SOAP Message Handlers: Main Steps” on page 12-2

“Designing the SOAP Message Handlers and Handler Chains” on page 12-4

“Implementing the Handler Interface” on page 12-6

“Extending the GenericHandler Abstract Class” on page 12-17

“Updating the web-services.xml File with SOAP Message Handler Information” on
page 12-19

“Using SOAP Message Handlers and Handler Chains in a Client Application” on
page 12-21

“Accessing the MessageContext of a Handler From the Backend Component” on
page 12-23

Overview of SOAP Message Handlers and Handler Chains
A SOAP message handler intercepts the SOAP message in both the request and response of the
Web Service. You can create handlers in both the Web Service itself and the client applications
that invoke the Web Service. Refer to “Using SOAP Message Handlers to Intercept the SOAP
Message” on page 4-5 for examples of when to use handlers.

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-2 Programming WebLogic Web Services

The following table describes the main classes and interfaces of the javax.xml.rpc.handler
API; later sections in this chapter describe how to use them to create handlers.

Creating SOAP Message Handlers: Main Steps
The following procedure assumes that you have already implemented and assembled a WebLogic
Web Service using the servicegen Ant task, and you want to update the Web Service by adding
handlers and handler chains.

1. Design the handlers and handler chains. See “Designing the SOAP Message Handlers and
Handler Chains” on page 12-4.

2. For each handler in the handler chain, create a Java class that implements the
javax.xml.rpc.handler.Handler interface. See “Implementing the Handler Interface”
on page 12-6.

WebLogic Server includes an extension to the JAX-RPC handler API which you can use to
simplify the coding of your handler class: an abstract class called

Table 12-1 JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes and
Interfaces

Description

Handler Main interface that you implement when creating a
handler. Contains methods to handle the SOAP request,
response, and faults.

HandlerInfo Contains information about the handler, in particular the
initialization parameters, specified in the
web-services.xml file.

MessageContext Abstracts the message context processed by the handler.
The MessageContext properties allow the handlers in a
handler chain to share processing state.

soap.SOAPMessageContext Sub-interface of the MessageContext interface used to get
at or update the SOAP message.

javax.xml.soap.SOAPMessage Object that contains the actual request or response SOAP
message, including its header, body, and attachment.

Creat ing SOAP Message Hand le rs : Ma in Steps

Programming WebLogic Web Services 12-3

weblogic.webservice.GenericHandler. See “Extending the GenericHandler Abstract
Class” on page 12-17.

3. Compile the Java code into class files.

4. Update the build.xml file that contains the call to the servicegen Ant task, adding the
<handlerChain> child element to the <service> element that builds your Web Service, as
shown in the following example:

 <servicegen

 destEar="ears/myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services" >

 <service

 ejbJar="jars/myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True" >

 <handlerChain

 name="myChain"

 handlers="myHandlers.handlerOne,

 myHandlers.handlerTwo,

 myHandlers.handlerThree"

 />

 </service>

 </servicegen>

For more information on the attributes of the <handlerChain> element, see “servicegen”
on page B-25.

Note: When you regenerate your Web Service using this build.xml file, every operation
will be associated with the handler chain. Additionally, there is no way to specify
input parameters for a handler using servicegen. If you want only certain operations
to be associated with this handler chain, or you prefer not to regenerate your Web
Service using servicegen, you can update the web-services.xml file of your
WebLogic Web Service manually. For details, see “Updating the web-services.xml
File with SOAP Message Handler Information” on page 12-19.

5. Re-run the servicegen Ant task to regenerate your Web Service.

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-4 Programming WebLogic Web Services

For information about creating client-side SOAP message handlers and handler chains, see
“Using SOAP Message Handlers and Handler Chains in a Client Application” on page 12-21.

Designing the SOAP Message Handlers and Handler Chains
When designing your SOAP message handlers, you must decide:

The number of handlers needed to perform all the work

The sequence of execution

Whether to invoke a back-end component or whether the Web Service consists of only a
handler chain.

Each handler in a handler chain has one method for handling the request SOAP message and
another method for handling the response SOAP message. You specify the handlers in the
web-services.xml deployment descriptor file. An ordered group of handlers is referred to as a
handler chain.

When invoking a Web Service, WebLogic Server executes handlers as follows:

1. The handleRequest() methods of the handlers in the handler chain are all executed, in the
order specified in the web-services.xml file. Any of these handleRequest() methods
might change the SOAP message request.

2. When the handleRequest() method of the last handler in the handler chain executes,
WebLogic Server invokes the back-end component that implements the Web Service,
passing it the final SOAP message request.

Note: This step only occurs if a back-end component has actually been defined for the Web
Service; it is possible to develop a Web Service that consists of only a handler chain.

3. When the back-end component has finished executing, the handleResponse() methods of
the handlers in the handler chain are executed in the reverse order specified in the
web-services.xml file. Any of these handleResponse() methods might change the
SOAP message response.

4. When the handleResponse() method of the first handler in the handler chain executes,
WebLogic server returns the final SOAP message response to the client application that
invoked the Web Service.

For example, assume that you have specified a handler chain called myChain that contains three
handlers in the web-services.xml deployment descriptor, as shown in the following excerpt:

Des ign ing the SOAP Message Hand le rs and Hand le r Cha ins

Programming WebLogic Web Services 12-5

<handler-chains>

 <handler-chain name="myChain">

 <handler class-name="myHandlers.handlerOne" />

 <handler class-name="myHandlers.handlerTwo" />

 <handler class-name="myHandlers.handlerThree" />

 </handler-chain>

</handler-chains>

The following graphic shows the order in which WebLogic Server executes the
handleRequest() and handleResponse() methods of each handler:

Figure 12-1 Order of Execution of Handler Methods

Each SOAP message handler has a separate method to process the request and response SOAP
message because the same type of processing typically must happen in both places. For example,
you might design an Encryption handler whose handleRequest() method decrypts secure data
in the SOAP request and handleResponse() method encrypts the SOAP response.

You can, however, design a handler that process only the SOAP request and does no equivalent
processing of the response.

You can also choose not to invoke the next handler in the handler chain and send an immediate
response to the client application at any point. The way to do this is discussed in later sections.

Finally, you can design a Web Service that contains only handlers in a handler chain, and no
back-end component at all. In this case, when the handleRequest() method in the last handler
has executed, the chain of handleResponse() methods is automatically invoked. See “Updating
the web-services.xml File with SOAP Message Handler Information” on page 12-19 for an
example of using the web-services.xml file to specify that only a handler chain, and no
back-end component, implements a Web Service.

handlerThree.
handleResponse()

handlerTwo.
handleResponse()

handlerOne.
handleResponse()

handlerThree.
handleRequest()

handlerTwo.
handleRequest()

handlerOne.
handleRequest()

Back-end
Component

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-6 Programming WebLogic Web Services

Implementing the Handler Interface
Your SOAP message handler class must implement the javax.rpc.xml.handler.Handler
interface, as shown in the example at the end of this section. In particualr, the Handler interface
contains the following methods that you must implement:

init()

See “Implementing the Handler.init() Method” on page 12-8.

destroy()

See “Implementing the Handler.destroy() Method” on page 12-8.

getHeaders()

See “Implementing the Handler.getHeaders() Method” on page 12-9.

handleRequest()

See “Implementing the Handler.handleRequest() Method” on page 12-9.

handleResponse()

See “Implementing the Handler.handleResponse() Method” on page 12-10.

handleFault()

See “Implementing the Handler.handleFault() Method” on page 12-11.

Sometimes you might need to directly view or update the SOAP message from within your
handler, in particular when handling attachments, such as image. In this case, use the
javax.xml.soap.SOAPMessage abstract class, which is part of the SOAP With Attachments
API for Java 1.1 (SAAJ) specification For details, see “Directly Manipulating the SOAP Request
and Response Message Using SAAJ” on page 12-12.

The following example demonstrates a simple SOAP message handler that prints out the SOAP
request and response messages:

package examples.webservices.handler.log;

import java.util.Map;

import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;

import weblogic.logging.NonCatalogLogger;

http://java.sun.com/xml/saaj/index.html
http://java.sun.com/xml/saaj/index.html

Implement ing the Hand le r In te r face

Programming WebLogic Web Services 12-7

/**
 * Class that implements a handler in the handler chain, used to access the SOAP
 * request and response message.
 * <p>
 * The class implements the <code>javax.xml.rpc.handler.Handler</code>
 * interface. The class simply prints the SOAP request and response messages
 * to a log file before the messages are processed by the backend component.
 *
 * @author Copyright (c) 2003 by BEA Systems. All Rights Reserved.
 */

public final class LogHandler
 implements Handler
{
 private NonCatalogLogger log;

 private HandlerInfo handlerInfo;

 /**
 * Initializes the instance of the handler. Creates a nonCatalogLogger to
 * log messages to.
 */
 public void init(HandlerInfo hi) {
 log = new NonCatalogLogger("WebService-LogHandler");
 handlerInfo = hi;
 }

 /**
 * Destroys the Handler instance.
 */
 public void destroy() {}

 public QName[] getHeaders() { return handlerInfo.getHeaders(); }

 /**
 * Specifies that the SOAP request message be logged to a log file before the
 * message is sent to the Java class backend component
 */
 public boolean handleRequest(MessageContext mc) {
 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 System.out.println("** Request: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;
 }

 /**
 * Specifies that the SOAP response message be logged to a log file before the
 * message is sent back to the client application that invoked the Web service.

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-8 Programming WebLogic Web Services

 */
 public boolean handleResponse(MessageContext mc) {

 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 System.out.println("** Response: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;
 }

 /**
 * Specifies that a message be logged to the log file if a SOAP fault is
 * thrown by the Handler instance.
 */
 public boolean handleFault(MessageContext mc) {
 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 System.out.println("** Fault: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;
 }

Implementing the Handler.init() Method
The Handler.init() method is called to create an instance of a Handler object and to enable
the instance to initialize itself. Its signature is:

 public void init(HandlerInfo config) throws JAXRPCException {}

The HandlerInfo object contains information about the SOAP message handler, in particular
the initialization parameters, specified in the web-services.xml file. Use the
HandlerInfo.getHandlerConfig() method to get the parameters; the method returns a Map
object that contains name-value pairs.

Implement the init() method if you need to process the initialization parameters or if you have
other initialization tasks to perform.

Sample uses of initialization parameters are to turn debugging on or off, specify the name of a log
file to which to write messages or errors, and so on.

Implementing the Handler.destroy() Method
The Handler.destroy() method is called to destroy an instance of a Handler object. Its
signature is:

 public void destroy() throws JAXRPCException {}

Implement ing the Hand le r In te r face

Programming WebLogic Web Services 12-9

Implement the destroy() method to release any resources acquired throughout the handler’s
lifecycle.

Implementing the Handler.getHeaders() Method
The Handler.getHeaders() method gets the header blocks processed by this Handler instance.
Its signature is:

 public QName[] getHeaders() {}

Implementing the Handler.handleRequest() Method
The Handler.handleRequest() method is called to intercept a SOAP message request before
it is processed by the back-end component. Its signature is:

 public boolean handleRequest(MessageContext mc) throws JAXRPCException {}

Implement this method to decrypt data in the SOAP message before it is processed by the
back-end component, to make sure that the request contains the correct number of parameters,
and so on.

The MessageContext object abstracts the message context processed by the SOAP message
handler. The MessageContext properties allow the handlers in a handler chain to share
processing state.

 Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message request. The SOAP message request itself is stored in a
javax.xml.soap.SOAPMessage object. For detailed information on this object, see “Directly
Manipulating the SOAP Request and Response Message Using SAAJ” on page 12-12.

The SOAPMessageContext class defines two methods for processing the SOAP request:

SOAPMessageContext.getMessage()returns a javax.xml.soap.SOAPMessage object
that contains the SOAP message request.

SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage)updates the SOAP
message request after you have made changes to it.

After you code all the processing of the SOAP request, do one of the following:

Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as the next <handler> subelement of
the <handler-chain> element in the web-services.xml deployment descriptor. If there
are no more handlers in the chain, the method either invokes the back-end component,

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-10 Programming WebLogic Web Services

passing it the final SOAP message request, or invokes the handleResponse() method of
the last handler, depending on how you have configured your Web Service.

Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end component does
not get executed for this invoke of the Web Service. You might want to do this if you have
cached the results of certain invokes of the Web Service, and the current invoke is on the
list.

Although the handler request chain does not continue processing, WebLogic Server does
invoke the handler response chain, starting at the current handler. For example, assume that
a handler chain consists of two handlers: handlerA and handlerB, where the
handleRequest() method of handlerA is invoked before that of handlerB. If processing is
blocked in handlerA (and thus the handleRequest() method of handlerB is not invoked),
the handler response chain starts at handlerA and the handleRequest() method of
handlerB is not invoked either.

Throw the javax.xml.rpc.soap.SOAPFaultException to indicate a SOAP fault.

If the handleRequest() method throws a SOAPFaultException, WebLogic Server
catches the exception, terminates further processing of the handler request chain, and
invokes the handleFault() method of this handler.

Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server catches
the exception, terminates further processing of the handler request chain, logs the exception
to the WebLogic Server logfile, and invokes the handleFault() method of this handler.

Implementing the Handler.handleResponse() Method
The Handler.handleResponse() method is called to intercept a SOAP message response after
it has been processed by the back-end component, but before it is sent back to the client
application that invoked the Web Service. Its signature is:

 public boolean handleResponse(MessageContext mc) throws JAXRPCException {}

Implement this method to encrypt data in the SOAP message before it is sent back to the client
application, to further process returned values, and so on.

The MessageContext object abstracts the message context processed by the SOAP message
handler. The MessageContext properties allow the handlers in a handler chain to share
processing state.

Implement ing the Hand le r In te r face

Programming WebLogic Web Services 12-11

 Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message response. The SOAP message response itself is stored in a
javax.xml.soap.SOAPMessage object. See “Directly Manipulating the SOAP Request and
Response Message Using SAAJ” on page 12-12.

The SOAPMessageContext class defines two methods for processing the SOAP response:

SOAPMessageContext.getMessage(): returns a javax.xml.soap.SOAPMessage object
that contains the SOAP message response.

SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage): updates the
SOAP message response after you have made changes to it.

After you code all the processing of the SOAP response, do one of the following:

Invoke the next handler on the handler response chain by returning true.

The next response on the handler chain is specified as the preceding <handler>
subelement of the <handler-chain> element in the web-services.xml deployment
descriptor. (Remember that responses on the handler chain execute in the reverse order that
they are specified in the web-services.xml file. See “Designing the SOAP Message
Handlers and Handler Chains” on page 12-4 for more information.)

If there are no more handlers in the chain, the method sends the final SOAP message
response to the client application that invoked the Web Service.

Block processing of the handler response chain by returning false.

Blocking the handler response chain processing implies that the remaining handlers on the
response chain do not get executed for this invoke of the Web Service and the current
SOAP message is sent back to the client application.

Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server catches
the exception, terminates further processing of the handler request chain, logs the exception
to the WebLogic Server logfile, and invokes the handleFault() method of this handler.

Implementing the Handler.handleFault() Method
The Handler.handleFault() method processes the SOAP faults based on the SOAP message
processing model. Its signature is:

 public boolean handleFault(MessageContext mc) throws JAXRPCException {}

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-12 Programming WebLogic Web Services

Implement this method to handle processing of any SOAP faults generated by the
handleResponse() and handleRequest() methods, as well as faults generated by the
back-end component.

The MessageContext object abstracts the message context processed by the SOAP message
handler. The MessageContext properties allow the handlers in a handler chain to share
processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message. The SOAP message itself is stored in a
javax.xml.soap.SOAPMessage object. See “Directly Manipulating the SOAP Request and
Response Message Using SAAJ” on page 12-12.

The SOAPMessageContext class defines the following two methods for processing the SOAP
message:

SOAPMessageContext.getMessage(): returns a javax.xml.soap.SOAPMessage object
that contains the SOAP message.

SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage): updates the
SOAP message after you have made changes to it.

After you code all the processing of the SOAP fault, do one of the following:

Invoke the handleFault() method on the next handler in the handler chain by returning
true.

Block processing of the handler fault chain by returning false.

Directly Manipulating the SOAP Request and Response
Message Using SAAJ
The javax.xml.soap.SOAPMessage abstract class is part of the SOAP With Attachments API
for Java 1.1 (SAAJ) specification. You use the class to manipulate request and response SOAP
messages when creating SOAP message handlers. This section describes the basic structure of a
SOAPMessage object and some of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual SOAP XML
document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class. For more
information on SAAJ, go to http://java.sun.com/xml/saaj/index.html.

http://java.sun.com/xml/saaj/index.html
http://java.sun.com/xml/saaj/index.html
http://java.sun.com/xml/saaj/index.html

Implement ing the Hand le r In te r face

Programming WebLogic Web Services 12-13

The SOAPPart Object
The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope object. You
use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getRequest();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

The AttachmentPart Object
The javax.xml.soap.AttachmentPart object contains the optional attachments to the SOAP
message. Unlike the rest of a SOAP message, an attachment is not required to be in XML format
and can therefore be anything from simple text to an image file.

Warning: If you are going to access a java.awt.Image attachment from your SOAP message
handler, see “Manipulating Image Attachments in a SOAP Message Handler” on
page 12-15 for important information.

Use the following methods of the SOAPMessage class to manipulate the attachments:

countAttachments(): returns the number of attachments in this SOAP message.

getAttachments(): retrieves all the attachments (as AttachmentPart objects) into an
Iterator object.

createAttachmentPart(): create an AttachmentPart object from another type of
Object.

addAttachmentPart(): adds an AttachmentPart object, after it has been created, to the
SOAPMessage.

The following example shows how you can create a SOAP message handler that accesses the
SOAP attachment using the SAAJ API. The example uses the
weblogic.webservice.GenericHandler abstract class, which is a WebLogic Server
extension to the JAX-RPC handler API. For details about the GenericHandler class, see
“Extending the GenericHandler Abstract Class” on page 12-17.

import java.util.Iterator;

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-14 Programming WebLogic Web Services

import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.rpc.JAXRPCException;

import javax.xml.soap.AttachmentPart;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;

import weblogic.webservice.GenericHandler;

import weblogic.utils.Debug;

public final class ServerHandler
 extends GenericHandler
{
 public boolean handleRequest(MessageContext m) {

 SOAPMessageContext ctx = (SOAPMessageContext) m;

 SOAPMessage request = ctx.getMessage();

 if (request.countAttachments() == 0) {
 throw new JAXRPCException("** Expected attachments");
 }

 Iterator it = request.getAttachments();

 try {
 while(it.hasNext()) {
 AttachmentPart part = (AttachmentPart) it.next();
 Debug.say("** Received attachment: "+
 part.getContent());
 }
 } catch (SOAPException e) {
 e.printStackTrace();
 throw new JAXRPCException(e);
 }

 return true;

 }

public boolean handleResponse(MessageContext m) {

 SOAPMessageContext ctx = (SOAPMessageContext) m;

 SOAPMessage response = ctx.getMessage();

 if (response.countAttachments() != 0) {
 throw new JAXRPCException("** Expected no attachments");
 }

Implement ing the Hand le r In te r face

Programming WebLogic Web Services 12-15

 AttachmentPart part = response.createAttachmentPart();

 part.setContent("<weblogic>RESPONSE</weblogic>", "text/xml");
 response.addAttachmentPart(part);

 return true;
 }
}

Manipulating Image Attachments in a SOAP Message Handler
It is assumed in this section that you are creating a SOAP message handler that accesses a
java.awt.Image attachment and that the Image has been sent from a client application that uses
the client JAX-RPC stubs generated by the clientgen Ant task.

In the client code generated by the clientgen Ant task, a java.awt.Image attachment is sent
to the invoked WebLogic Web Service with a MIME type of text/xml rather than image/gif,
and the Image is serialized into a stream of integers that represents the image. In particular, the
client code serializes the Image using the following format:

int width

int height

int[] pixels

This means that, in your SOAP message handler that manipulates the received Image attachment,
you must deserialize this stream of data to then re-create the original Image.

The following example shows an implementation of the handleRequest() method of the
Handler interface that iterates through the attachments of a SOAP message, and for each
attachment, gets the input stream, deserializes it into a java.awt.Image, and then displays it in
a frame using the Java Swing classes. It is assumed in the handler that all attachments are Images.

// it is assumed in this handler that all attachments are Image attachments

 public boolean handleRequest(MessageContext mc)
 {
 try {
 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 SOAPMessage soapmsg = messageContext.getMessage();
 Iterator iter = soapmsg.getAttachments();

 // iterate through the attachments
 while (iter.hasNext()) {
 AttachmentPart part = (AttachmentPart) iter.next();

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-16 Programming WebLogic Web Services

 // get the input stream from the attachment and read the bytes into a
byte[]

 DataHandler dh = part.getDataHandler();
 InputStream is = dh.getInputStream();
 int size = is.available();
 byte[] bytes = new byte[size];
 is.read(bytes, 0, size);

 // create a String from the byte[]
 String content = new String(bytes);

 // decode the String
 byte[] bin =
weblogic.xml.schema.types.XSDBase64Binary.convertXml(content);

 // get an input stream for the binary object
 ByteArrayInputStream in = new ByteArrayInputStream(bin);
 ObjectInputStream oin = new ObjectInputStream(in);

 // deserialize the stream.
 // the format for an image is:
 // int width
 // int height
 // int[] pix -- an array of pixels
 int width = oin.readInt();
 int height = oin.readInt();
 int[] pix = (int[])oin.readObject();

 // create an Image from the deserialized pieces
 java.awt.image.MemoryImageSource source =
 new java.awt.image.MemoryImageSource(width, height, pix, 0, width);

 // this is sample code for displaying the image in a frame
 java.awt.Panel panel = new java.awt.Panel();
 java.awt.Image image = panel.createImage(source);

 javax.swing.ImageIcon ii = new javax.swing.ImageIcon(image);
 javax.swing.JLabel label = new javax.swing.JLabel(ii);
 javax.swing.JFrame mainframe = new javax.swing.JFrame();
 mainframe.getContentPane().add(label);
 mainframe.pack();
 mainframe.setVisible(true);
 }
 } catch (Exception ex) { ex.printStackTrace(); }

 return true;
 }

Ex tending the Gene r icHandle r Abst ract C lass

Programming WebLogic Web Services 12-17

Extending the GenericHandler Abstract Class
WebLogic Server includes an extension to the JAX-RPC handler API that you can use to simplify
the Java code of your SOAP message handler class. This extension is the abstract class
weblogic.webservices.GenericHandler. It implements the JAX-RPC
javax.xml.rpc.handler.Handler interface.

Note: The weblogic.webservices.GenericHandler abstract class was originally
developed for WebLogic Server when the JAX-RPC specification was not yet final and
did not include this functionality. However, now that JAX-RPC includes its own
GenericHandler class which is almost exactly the same as the WebLogic Server class,
BEA highly recommends that you use the standard JAX-RPC abstract class rather than
the WebLogic-specific one. The documentation in this section is provided for
compatibility reasons only. For more information about the JAX-RPC
javax.xml.rpc.handler.GenericHandler abstract class, see the JAX-RPC
Javadocs.

Because GenericHandler is an abstract class, you need only implement the methods that will
contain actual code, rather than having to implement every method of the Handler interface even
if the method does nothing. For example, if your handler does not use initialization parameters
and you do not need to allocate any additional resources, you do not need to implement the
init() method.

The GenericHandler class is defined as follows:

package weblogic.webservice;

import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.namespace.QName;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public abstract class GenericHandler
 implements Handler
{

 private HandlerInfo handlerInfo;

 public void init(HandlerInfo handlerInfo) {
 this.handlerInfo = handlerInfo;
 }

 protected HandlerInfo getHandlerInfo() { return handlerInfo; }

http://java.sun.com/webservices/docs/1.3/api/index.html
http://java.sun.com/webservices/docs/1.3/api/index.html

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-18 Programming WebLogic Web Services

 public boolean handleRequest(MessageContext msg) {
 return true;
 }

 public boolean handleResponse(MessageContext msg) {
 return true;
 }

 public boolean handleFault(MessageContext msg) {}

 public void destroy() {}
 public QName[] getHeaders() { return handlerInfo.getHeaders(); }

}

The following sample code, taken from the examples.webservices.handler.nocomponent
product example, shows how to use the GenericHandler abstract class to create your own
handler. The example implements only the handleRequest() and handleResponse()
methods. It does not implement (and thus does not include in the code) the init(), destroy(),
getHeaders(), and handleFault() methods.

package examples.webservices.handler.nocomponent;

import java.util.Map;

import javax.xml.rpc.JAXRPCException;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.*;

import weblogic.webservice.GenericHandler;

import weblogic.utils.Debug;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public final class EchoStringHandler
 extends GenericHandler
{
 private int me = System.identityHashCode(this);

 public boolean handleRequest(MessageContext messageContext) {
 System.err.println("** handleRequest called in: "+me);
 return true;
 }

 public boolean handleResponse(MessageContext messageContext) {

Updat ing the web-serv i ces . xml F i l e w i th SOAP Message Handle r In fo rmat ion

Programming WebLogic Web Services 12-19

 try {
 MessageFactory messageFactory = MessageFactory.newInstance();

 SOAPMessage m = messageFactory.createMessage();

 SOAPEnvelope env = m.getSOAPPart().getEnvelope();

 SOAPBody body = env.getBody();

 SOAPElement fResponse =
 body.addBodyElement(env.createName("echoResponse"));

 fResponse.addAttribute(env.createName("encodingStyle"),
 "http://schemas.xmlsoap.org/soap/encoding/");

 SOAPElement result =
 fResponse.addChildElement(env.createName("result"));

 result.addTextNode("Hello World");

 ((SOAPMessageContext)messageContext).setMessage(m);

 return true;

 } catch (SOAPException e) {
 e.printStackTrace();
 throw new JAXRPCException(e);
 }
 }
}

Updating the web-services.xml File with SOAP Message Handler
Information

The web-services.xml deployment descriptor file describes the SOAP message handlers and
handler chains defined for a Web Service and the order in which they should be executed.

To update the web-services.xml file with handler information:

1. Create a <handler-chains> child element of the <web-services> root element that will
contain a list of all handler chains defined for the Web Service.

2. Create a <handler-chain> child element of the <handler-chains> element; within this
element list all the handlers in the handler chain. For each handler, use the class-name
attribute to specify the fully qualified name of the Java class that implements the handler.
Use the <init-params> element to specify any initialization parameters of the handler.

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-20 Programming WebLogic Web Services

The following sample excerpt shows a handler chain called myChain that contains three
handlers, the first of which has an initialization parameter:

<web-services>
 <handler-chains>
 <handler-chain name="myChain">
 <handler class-name="myHandlers.handlerOne" >
 <init-params>
 <init-param name="debug" value="on" />
 </init-params>
 </handler>
 <handler class-name="myHandlers.handlerTwo" />
 <handler class-name="myHandlers.handlerThree" />
 </handler-chain>
 </handler-chains>
...
</web-services>

3. Use the <operation> child element of the <operations> element (which itself is a child
of the <web-service> element) to specify that the handler chain is an operation of the Web
Service. Follow one of the next two scenarios:

– The handler chain executes together with a back-end component, such as a stateless
session EJB.

In this case use the component, method, and handler-chain attributes of the
<operation> element, as shown in the following partial excerpt of a
web-services.xml file:

<web-service>
 <components>
 <stateless-ejb name="myEJB">
 ...
 </stateless-ejb>
 </components>
 <operations>
 <operation name="getQuote"
 method="getQuote"
 component="myEJB"
 handler-chain="myChain" />
 </operations>
</web-service>

In the example, the request chain of the myChain handler chain executes first, then the
getQuote() method of the myEJB stateless session EJB component, and finally the
response chain of myChain.

– The handler chain executes on its own, without a back-end component.

Us ing SOAP Message Handle rs and Handle r Chains in a C l ien t Appl i cat ion

Programming WebLogic Web Services 12-21

In this case use only the handler-chain attribute of the <operation> element and
explicitly do not specify the component or method attributes, as shown in the following
excerpt:

<web-service>
 <operations>
 <operation name="chainService"
 handler-chain="myChain" />
 </operations>
</web-service>

In the example, the Web Service consists solely of the myChain handler chain.

Using SOAP Message Handlers and Handler
Chains in a Client Application

Most of this chapter describes how to create SOAP message handlers in a handler chain that
execute as part of the Web Service running on WebLogic Server. You can also create handlers
that execute in a client application. In the case of a client-side handler, the handler executes twice
when a client application invokes a Web Service:

directly before the client application sends the SOAP request to the Web Service

directly after the client application receives the SOAP response from the Web Service

You create a client-side handler in the same way you create a server-side handler: write a Java
class that implements the javax.rpc.xml.handler.Handler interface. In many cases you can
use the exact same handler class on both the Web Service running on WebLogic Server and the
client applications that invoke the Web Service. For example, you can write a generic logging
handler class that logs all sent and received SOAP messages, both for the server and for the client.
For details about writing the handler Java class, see “Implementing the Handler Interface” on
page 12-6.

After you have created your client-side handler class, the process for registering the handler on
the client application is different from that of the server. Because client applications do not have
deployment descriptors, you must register the handler programmatically using the
javax.xml.rpc.handler.HandlerInfo and javax.xml.rpc.handler.HandlerRegistry
classes. The following sample client application shows how to do this, with relevant sections in
bold discussed after the example:

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-22 Programming WebLogic Web Services

import java.util.ArrayList;

import java.io.IOException;

import javax.xml.namespace.QName;

import javax.xml.rpc.ServiceException;

import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.HandlerRegistry;

public class Main{

 public static void main(String[] args){

 if(args.length == 1){
 new Main(args[0]);
 }else{
 throw new IllegalArgumentException("URL of the service not specified");
 }
 }

 public Main(String wsdlUrl){
 try{

 HelloWorldService service = new HelloWorldService_Impl(wsdlUrl);
 HelloWorldServicePort port = service.getHelloWorldServicePort();

 QName portName = new QName("http://tutorial/sample4/",
 "HelloWorldServicePort");

 HandlerRegistry registry = service.getHandlerRegistry();

 List handlerList = new ArrayList();
 handlerList.add(new HandlerInfo(ClientHandler.class, null, null));

 registry.setHandlerChain(portName, handlerList);

 System.out.println(port.helloWorld());
 }catch(IOException e){
 System.out.println("Failed to create web service client:" + e);
 }catch(ServiceException e){
 System.out.println("Failed to create web service client:" + e);
 }
 }
}

The main points to notice about the example are as follows:

Import the JAX-RPC HandlerInfo and HandlerRegistry classes which will be used to
register the client-side handler class:

Access ing the MessageContex t o f a Hand le r F rom the Backend Component

Programming WebLogic Web Services 12-23

import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.HandlerRegistry;

Create a QName object that contains the qualified name of the Web Service port:

 QName portName = new QName("http://tutorial/sample4/",
 "HelloWorldServicePort");

Refer to the WSDL of the Web Service you are invoking for the name of the port and its
namespace.

Create a HandlerRegistry object:

HandlerRegistry registry = service.getHandlerRegistry();

Create a List object that contains a list of the handlers you want to register. This list
becomes the client-side handler chain. Use the HandlerInfo class to specify the name of
your Java handler class:

List handlerList = new ArrayList();
handlerList.add(new HandlerInfo(ClientHandler.class, null, null));

In the example, the handler chain consists of just one handler: ClientHandler.class.
You can, however, create a handler chain of as many handlers as you want.

Warning: The order in which you add the handlers to the List object specifies the order in
which the handlers are executed in the client application. For example, if you want
HandlerA.class to execute first and then HandlerB.class, be sure you add
HandlerA.class to the list before HandlerB.class.

Register the handler chain with the client application using the
HandlerRegistry.setHandlerChain() method:

registry.setHandlerChain(portName, handlerList);

Accessing the MessageContext of a Handler From the Backend
Component

When you create a handler by implementing the Handler interface, you can set properties of the
MessageContext object in one of the handler methods (such as handleRequest()), by using
the MessageContext.setProperty() method. To access these properties from the backend
component that is invoked after the handler chain, you must use the
weblogic.webservice.context.WebServiceContext API to get the MessageContext.

Creat ing SOAP Message Handle rs to In te rcept the SOAP Message

12-24 Programming WebLogic Web Services

For example, the following code snippet shows an implementation of the
Handler.handleRequest() method in which a user-defined property TransID is set for the
MessageContext object:

import javax.xml.rpc.handler.MessageContext;

 ...

 public boolean handleRequest(MessageContext mc) {
 try {
 mc.setProperty("TransId", "AX123");
 }
 catch (Exception ex) {
 System.out.println("exception from Handler: " + ex.getLocalizedMessage());
 }

 return true;
}

The following sample code from the Java class that implements the backend component shows
how to access the TransID property using the
weblogic.webservice.context.WebServiceContext API:

import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.rpc.handler.MessageContext;
import weblogic.webservice.context.WebServiceContext;

 ...

 public String someMethod(String s) {
 try {
 SOAPMessageContext soapMessageContext =
 WebServiceContext.currentContext().getLastMessageContext();
 String somePropery = (String)soapMessageContext.getProperty("TransId");
 System.out.println("TransId =" + someProperty);

 }
 catch(Exception ex) {
 System.out.println("exception from service: " + ex.getLocalizedMessage());
 }

 return s;
 }

Programming WebLogic Web Services 13-1

C H A P T E R 13

Configuring Security

The following sections describe how to configure security for WebLogic Web Services:

“Overview of Web Services Security” on page 13-1

“What Type of Security Should You Configure?” on page 13-2

“Configuring Message-Level Security (Digital Signatures and Encryption)” on page 13-3

“Configuring Transport-Level Security (SSL): Main Steps” on page 13-31

“Configuring SSL for a Client Application” on page 13-33

“Configuring Access Control Security: Main Steps” on page 13-41

“Testing a Secure WebLogic Web Service From Its Home Page” on page 13-46

Overview of Web Services Security
To secure your WebLogic Web Service, you configure one or more of three conceptually
different types of security:

Message-level security, in which data in a SOAP message is digitally signed or encrypted.

See “Configuring Message-Level Security (Digital Signatures and Encryption)” on
page 13-3.

Transport-level security, in which SSL is used to secure the connection between a client
application and the Web Service.

See “Configuring Transport-Level Security (SSL): Main Steps” on page 13-31.

Conf igur ing Secur i t y

13-2 Programming WebLogic Web Services

Access control security, which specifies which users, groups, and roles are allowed to
access Web Services.

See “Configuring Access Control Security: Main Steps” on page 13-41.

What Type of Security Should You Configure?
Access control security answers the question “who can do what?” First you specify the list of
users, groups, or roles that are allowed to access a Web Service (or the component that implement
the Web Service). Then, when a client application attempts to invoke a Web Service operation,
the client authenticates itself to WebLogic Server, using HTTP, and if the client has the
authorization, it is allowed to continue with the invocation. Access control security secures only
WebLogic Server resources. This means that if you configure only access control security, the
connection between the client application and WebLogic Server is not secure and the SOAP
message is in plain text.

With transport-level security, you secure the connection between the client application and
WebLogic Server with Secure Sockets Layer (SSL). SSL provides secure connections by
allowing two applications connecting over a network to authenticate the other's identity and by
encrypting the data exchanged between the applications. Authentication allows a server, and
optionally a client, to verify the identity of the application on the other end of a network
connection. Encryption makes data transmitted over the network intelligible only to the intended
recipient.

Transport-level security, however, secures only the connection itself. This means that if there is
an intermediary between the client and WebLogic Server, such as a router or message queue, the
intermediary gets the SOAP message in plain text. When the intermediary sends the message to
a second receiver, the second receiver does not know who the original sender was. Additionally,
the encryption used by SSL is “all or nothing”: either the entire SOAP message is encrypted or it
is not encrypted at all. There is no way to specify that only selected parts of the SOAP message
be encrypted.

Message-level security includes all the security benefits of SSL, but with additional flexibility
and features. Message-level security is end-to-end, which means that a SOAP message is secure
even when the transmission involves one or more intermediaries. The SOAP message itself is
digitally signed and encrypted, rather than just the connection. And finally, you can specify that
only parts of the message be signed or encrypted.

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-3

Configuring Message-Level Security (Digital Signatures and
Encryption)

Message-level security specifies whether the SOAP messages between a client application and
the Web Service it is invoking should be digitally signed or encrypted or both.

WebLogic Web Services implement the following OASIS Standard 1.0 Web Services Security
specifications, dated April 6 2004:

Web Services Security: SOAP Message Security

Web Services Security: Username Token Profile

Web Services Security: X.509 Token Profile

These specifications provide three main mechanisms: security token propagation, message
integrity, and message confidentiality. These mechanisms can be used independently (such as
passing a username security token for user authentication) or together (such as digitally signing
and encrypting a SOAP message.)

The following sections provide information about message-level security:

“Main Use Cases” on page 13-3

“Unimplemented Features of the Web Services Security Core Specification” on page 13-4

 “Terminology” on page 13-5

“Architectural Overview of Message-Level Security” on page 13-5

“Configuring Message-Level Security: Main Steps” on page 13-9

Main Use Cases
BEA’s implemenation of the Web Services Security: SOAP Message Security specification is
designed to fully support the following use cases:

Use an X.509 certificate to encrypt and sign a SOAP message, starting from the client
application that invokes the message-secured Web Service, to the WebLogic Server
instance that is hosting the Web Service and back to the client application. The SOAP
message itself contains all the security information, so intermediaries between the client
application and Web Service can also play a part without compromising any security of the
message.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Conf igur ing Secur i t y

13-4 Programming WebLogic Web Services

Provide flexibility over what parts of the SOAP message are signed and encrypted. By
default, when you enable WebLogic Web Service message-level security, the entire SOAP
message body is encrypted and signed. You can, however, specify that all occurrences of a
specific element in the SOAP message be signed, encrypted, or both.

Include an encrypted and signed username and password in the SOAP message (rather than
in the HTTP header, as is true for SSL and access control security) for further downstream
processing.

Unimplemented Features of the Web Services Security Core
Specification
WebLogic Web Services do not implement all features of the Web Services Security Core
specification as follows:

The specification allows for any type of security token to be passed in the SOAP message.
WebLogic Web Services, however, supports only two types of tokens:

– UsernameToken

– BinarySecurityToken

Additionally, the only supported value for the ValueType attribute of the
BinarySecurityToken element is wsse:X509v3.

WebLogic Web Services do not support (among others) custom, SAML, Kerberos, and
XrML tokens.

WebLogic Web Services uses the default Identity Asserter to map certificates to valid
users. The default Identity Asserter, however, does not verify that a client application’s
digital certificate used to sign or encrypt a SOAP message was issued by a trusted
certificate authority (CA). If you require this type of validation, you must write a custom
Identity Assertion provider for X.509 that validates the digital certificate as part of the
mapping of a user to a Subject.

For more information, see the Identity Assertion Providers section of the Developing
Security Providers for WebLogic Server guide.

WebLogic Web Services do not support the XML Decryption Transformation algorithm
when signing a SOAP message. WebLogic Web Services support only the Exclusive XML
Canonicalization algorithm.

A message-secured WebLogic Web Service first signs and then encrypts the out-going
SOAP response. You cannot change this order.

http://e-docs.bea.com/wls/docs81/dvspisec/ia.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-5

WebLogic Web Services do not support secret key encryption; they support only public key
encryption.

Terminology
Note the following terms:

key pair: pair of public and private keys.

digital certificate: binding of key pairs to an identity, such as a username.

keystore: file that stores key pairs and digital certificates securely.

Architectural Overview of Message-Level Security
The <security> element of the web-services.xml deployment descriptor file specifies
whether a WebLogic Web Service has been configured for message-level security. In particular,
the <security> element describes:

For a particular message-secured operation, what parts of the SOAP request and response
should be encrypted or digitally signed.

The encryption and signature key pairs that WebLogic Server uses from its identity
keystore to sign, verify, encrypt, and decrypt the SOAP messages.

Which operations have been configured for message-level security.

When the Web Service is deployed, the security information specified in the web-services.xml
file is published in the WSDL so that client applications that invoke the Web Service know
whether they need to digitally sign or encrypt the SOAP messages.

Note: Because WSDL 1.1 does not include a standard for specifying security information, the
way that WebLogic Server publishes its message-level security information is
proprietary.

The following diagram and paragraphs describe what happens when a message-secured
WebLogic Web Service is deployed and a client application invokes it. The paragraphs are
broken up according to the actor that performs the action.

Conf igur ing Secur i t y

13-6 Programming WebLogic Web Services

Figure 13-1 Message-Secured WebLogic Web Service Architecture

A. WebLogic Server

1. Loads the key pairs and certificates from WebLogic Server’s identity keystore.

2. Deploys the message-secured Web Service, using information from the
web-services.xml deployment descriptor, such as which operations require what type of
message-level security.

3. Updates the WSDL of the Web service with security information so that client applications
that invoke the Web Service know what security processing needs to occur on the SOAP
request. This security information includes the certificate for WebLogic Server’s encryption
key pair, used by the client application to encrypt the SOAP request. WebLogic Server uses
the information in the <security> element of the web-services.xml deployment
descriptor file to determine how it should update the WSDL.

B. Client Application

WLS

Client Keystore

Client

Private Key
and Certificate

WebLogic Server
 Identity Keystore

Application
Web Services
Client
Runtime

WebLogic
Server

<web-service>

web-services.xmlWSDL

 <security>
 ...

<web-services>

SOAP over HTTP/S

HTTP/S

A.1

A.2

A.3

B

C.1

C.7

 <portType>

 ...

<definitions>

 <binding>
 <service>

D

 <message>

Private Key
and Certificate

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-7

The client application loads the signature key pair and certificate from its client keystore and uses
the weblogic.webservice.context.WebServiceContext API to add the public key and
certificate as attributes to the Web Service session.

Note: The client application uses the key pair and certificate loaded from its client keystore to
digitally sign the SOAP request. WebLogic Server later uses the key pair and certificate
to encrypt the SOAP response.

C. WebLogic Web Services Client Runtime Environment

When the client application is executed, the Web Services client runtime environment, packaged
in the client runtime JAR files, performs the following tasks:

Note: The client runtime performs all encryption and signature tasks directly before it sends the
request to WebLogic Server and after all client handlers have executed.

1. Reads the WSDL of the Web Service being invoked to determine what parts of the SOAP
request should be digitally signed or encrypted. The client runtime also gets the certificate for
the server encryption key from the WSDL.

2. Generates the unsecured SOAP message request.

3. Creates a <Security> element in the header of the SOAP request that will contain the
security information.

4. If required by the WSDL, inserts a username token with the client’s username and password
into the <Security> header of the SOAP request.

5. If the WSDL requires that the SOAP request be digitally signed, the Web Services client
runtime environment:

a. Generates a digital signature, according to the WSDL requirements, using the private key
from the client’s WebServiceContext.

b. Adds the digital signature to the <Security> header of the SOAP request.

c. Adds the certificate from the client’s WebServiceContext to the <Security> header of
the SOAP request. WebLogic Server later uses this certificate to verify the signature.

6. If the WSDL requires that the SOAP request be encrypted, the Web Services client runtime
environment:

a. Gets WebLogic Server’s public encryption key from the certificate published in the
WSDL.

Conf igur ing Secur i t y

13-8 Programming WebLogic Web Services

b. Encrypts the SOAP request according to the requirements in the WSDL using WebLogic
Server’s public encryption key. The WSDL specifies what part of the SOAP message
should be encrypted.

c. Adds a description of the encryption to the <Security> header of the SOAP request.
WebLogic Server later uses this description to decrypt the SOAP request.

7. The Web Services client runtime sends the encrypted and signed SOAP request to
WebLogic Server.

D. WebLogic Server

1. Receives the SOAP request and extracts the <Security> header.

2. If the SOAP request has been encrypted, WebLogic Server:

a. Reads the description of the encryption and decrypts the SOAP request using WebLogic
Server’s private encryption key from its identity keystore.

b. Removes the encryption description from the <Security> header.

3. If the SOAP request has been digitally signed, WebLogic Server performs the following
tasks to verify the signature:

a. Extracts the client’s certificate from the <Security> header of the SOAP request.

b. Extracts the digital signature from the <Security> header.

c. Verifies the signature using the client’s public key, obtained from the client’s certificate.

d. Asserts the identity of the client certificate to ensure that it maps to a valid WebLogic
Server user.

e. Removes the signature from the <Security> header.

4. Extracts, if present, the username token from the <Security> header.

5. Asserts the identity of the user and verifies their password. The rest of the invocation of the
Web Service operation is run as this user.

6. Removes the <Security> header from the SOAP request.

7. Saves the client certificate that was included in the SOAP request for encrypting the SOAP
response, if required.

8. Verifies that the specifications in the <Security> header matched the requirements in the
WSDL.

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-9

9. Sends the post-processed SOAP request to the Web Services runtime for standard
invocation.

When WebLogic Server sends the SOAP response back to the client, and it is required to digitally
sign or encrypt the SOAP response, it follows the same steps as the WebLogic Web Services
client runtime environment did when it initially sent its SOAP request (see “C. WebLogic Web
Services Client Runtime Environment”), but with the following differences:

WebLogic Server uses the public key from the saved client certificate to encrypt the SOAP
response. The client application in turn uses the private key from its
WebServiceContext (originally loaded from the client keystore) to decrypt the response.

WebLogic Server uses the signature key pair and certificate from its identity keystore to
digitally sign the SOAP response. WebLogic Server includes this certificate in the response
so that the client application can verify the signature.

WebLogic Server includes a username token in the SOAP response only if explicitly
specified in the web-services.xml deployment descriptor file. Typically this is not
needed because the client application does not need to assert the identity.

Configuring Message-Level Security: Main Steps
Configuring message-level security for a WebLogic Web Service involves some standard
security tasks, such as obtaining digital certificates, creating keystores, and users, as well as Web
Service-specific tasks, such as updating the web-services.xml file with security information.

To configure message-level security for a WebLogic Web Service and a client that invokes the
service, follow these steps. Later sections describe some steps in more detail.

Note: The following procedure assumes that you have already implemented and assembled a
WebLogic Web Service and you want to update it to use digital signatures and
encryption.

1. Obtain two sets of key pair and digital certificates to be used by WebLogic Web Services.
Although not required, BEA recommends that you obtain key pairs and certificates that will
be used only by WebLogic Web Services.

Warning: BEA requires that the key length be 1024 bits or larger.

For clarity, it is assumed that the key pair/certificate used for digital signatures has a name
digSigKey and password digSigKeyPassword and the one used for encryption has a
name encryptKey and password encryptKeyPassword.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/keytool.html

Conf igur ing Secur i t y

13-10 Programming WebLogic Web Services

For details, see Obtaining Private Keys and Digital Signatures at
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#get_keys_certs_trustedcas.

2. Create, if one does not currently exist, a custom identity keystore for WebLogic Server and
load the key pairs and digital certificates you obtained in the preceding step into the identity
keystore.

If you have already configured WebLogic Server for SSL, then you have already created a
identity keystore which you can also use for WebLogic Web Services data security
purposes.

You can use WebLogic’s ImportPrivateKey utility and Sun Microsystem’s keytool
utility to perform this step. For development purposes, the keytool utility is the easiest
way to get started.

For details, see Creating a Keystore and Loading Key Pairs Into the Keystore at
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#keystore_creating.

3. Using the Administration Console, configure WebLogic Server to locate the keystore you
created in the preceding step. If you are using a keystore that has already been configured
for WebLogic Server, you do not need to perform this step.

For details, see Configuring Keystores at
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#ConfiguringKeystores.

4. Create a keystore used by the client application. BEA recommends that you create one
client keystore per application user.

You can use the Cert Gen utility or Sun Microsystem's keytool utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

Later sections of this document assume you created a client keystore called
client_keystore with password client_keystore_password.

For details, see Obtaining Private Keys and Digital Signatures at
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#get_keys_certs_trustedcas.

5. Create a key pair and a digital certificate, and load them into the client keystore. The same
key pair will be used to digitally sign the SOAP request and encrypt the SOAP responses.
The digital certificate will be mapped to a user of WebLogic Server, created in a later step.

Warning: BEA requires that the key length be 1024 bits or larger.

You can use Sun Microsystem's keytool utility to perform this step.

Later sections of this document assume you created a key pair called client_key with
password client_key_password.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#get_keys_certs_trustedcas
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/keytool.html
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#keystore_creating
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#ConfiguringKeystores
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/keytool.html
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#get_keys_certs_trustedcas
http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/keytool.html

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-11

6. Using the Administration Console, configure an Identity Asserter provider for your
WebLogic Server security realm.

WebLogic Server provides a default security realm, called myrealm, which is configured
with a default Identity Asserter provider. Use this default security realm if you do not want
to configure your own Identity Asserter provider. You must, however, perform additional
configuration tasks to ensure that the default Identity Asserter Provider works correctly
with message-secured WebLogic Web Services.

For details, see “Configuring The Identity Asserter Provider for the myrealm Security
Realm” on page 13-12.

7. Using the Administration Console, create users for authentication in your security realm.

For details, see Creating Users at
http://e-docs.bea.com/wls/docs81/secwlres/usrs_grps.html.

Later sections of this guide assume you created a user auth_user with password
auth_user_password.

8. Update the build.xml file that contains the call to the servicegen Ant task by adding the
<security> child element to the <service> element that builds your Web Service.
Specify information such as the encryption key pair, the digital signature key pair, and their
corresponding passwords.

Note: The servicegen Ant task offers only course-grained control of the encryption and
digital signature configuration for a Web Service. For more fine-grained control of
the data in the SOAP message that is encrypted or digitally signed, you must update
the web-services.xml file manually. For details, see “Updating Security
Information in the web-services.xml File” on page 13-14.

For details about using servicegen, see “Updating the servicegen build.xml File” on
page 13-12.

9. Re-run the servicegen Ant task to re-assemble your Web Service and regenerate the
web-services.xml deployment descriptor.

10. Optionally encrypt the various passwords in the web-services.xml file of the EAR for
your domain before deploying the EAR file to WebLogic Server. Typically you perform this
step only when you deploy your Web Service in production mode.

For details, see “Encrypting Passwords in the web-services.xml File” on page 13-21.

11. Update your client application to invoke the message-secured Web Service.

http://e-docs.bea.com/wls/docs81/secwlres/usrs_grps.html

Conf igur ing Secur i t y

13-12 Programming WebLogic Web Services

For details, see “Updating a Java Client to Invoke a Data-Secured Web Service” on
page 13-23.

Configuring The Identity Asserter Provider for the myrealm Security Realm
You can use the default Identity Asserter provider, configured for the default myrealm security
realm, with message-secured WebLogic Web Services. You must, however, perform some
additional configuration tasks:

1. In the left pane of the Administration Console, expand the
Security→Realms→myrealm→Providers→Authentication folder.

2. Click DefaultIdentityAsserter under the Authentication folder. The page to configure the
default Identity Asserter appears in the right pane, open to the General tab.

3. In the right pane, scroll down to the Types box.

4. Move X.509 from the Available box to the Chosen box.

5. Click Apply.

6. Select the Details tab.

7. Ensure that Use Default User Name Mapper is checked.

8. Select the Default User Name Mapper Attribute Type used when mapping the X.509 digital
certificate to a user name.

9. Select the Default User Name Mapper Attribute Delimiter.

10. Click Apply.

For additional information about configuring the Identity Asserter, see:

WebLogic Identity Asserter Provider -> Details at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_defaultidentityasserter_details.html

WebLogic Identity Asserter Provider -> General at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_defaultidentityasserter_general.htm
l

Updating the servicegen build.xml File
Update the build.xml file that contains the call to the servicegen Ant task by adding a
<security> child element to the <service> element that builds your Web Service, as shown in
the following example. By default, servicegen specifies that the entire SOAP body will be

http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_defaultidentityasserter_details.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_defaultidentityasserter_general.html

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-13

digitally signed or encrypted, rather than specific elements. Later sections describe how to
digitally sign or encrypt specific elements.

Note: For clarity, the following excerpt of servicegen’s build.xml file contains passwords
in clear text. However, for security reasons, BEA recommends that you update your
build.xml file to prompt for the passwords, using the <input> Ant task, rather than
actually store the passwords in the file. For details on using the <input> Ant task, see
Apache Ant User Manual at http://ant.apache.org/manual/.

 <servicegen

 destEar="ears/myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services" >

 <service

 ejbJar="jars/myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True" >

 <security

 signKeyName="digSigKey"

 signKeyPass="digSigKeyPassword"

 encryptKeyName="encryptKey"

 encryptKeyPass="encryptKeyPassword"

 />

 </service>

 </servicegen>

The preceding build.xml file specifies that servicegen assemble a Web Service that includes
the following message-level security information in the web-services.xml deployment
descriptor file:

The signKeyName and signKeyPass attributes specify that the body of the SOAP request
and response must be digitally signed. WebLogic Server uses the key pair and certificate,
accessed using the name digSigKey and password digSigKeyPassword, from its
keystore to digitally sign the SOAP response. The key pair and certificate are those that
you added in step 1 of “Configuring Message-Level Security: Main Steps” on page 13-9.

The encryptKeyName and encryptKeyPass attributes specify that the body of the SOAP
request and response must be encrypted. WebLogic Server uses the key pair and certificate,

http://ant.apache.org/manual/

Conf igur ing Secur i t y

13-14 Programming WebLogic Web Services

accessed using the name encryptKey and password encryptKeyPassword, from its
keystore to encrypt and decrypt the SOAP request. The key pair and certificate are those
that you added in step 1 of “Configuring Message-Level Security: Main Steps” on
page 13-9.

Note: Always encrypt the passwords in the web-services.xml file with the
weblogic.webservice.encryptpass utility, described in “Encrypting Passwords in
the web-services.xml File” on page 13-21.

If you use the <security> element of the servicegen Ant task to add security to your Web
Service, the entire SOAP body is encrypted and digitally signed for all operations of the Web
Service. The encryption and digital signatures occur for both the request and response SOAP
messages.

If you want more fine-grained control, such as specifying particular elements of the SOAP
message to be digitally signed or encrypted, a subset of operations that have message-level
security, and so on, update the web-services.xml file of your WebLogic Web Service
manually. For details, see “Updating Security Information in the web-services.xml File” on
page 13-14.

Updating Security Information in the web-services.xml File
The servicegen Ant task adds minimal default message-level security information to the
generated web-services.xml deployment descriptor file. In particular, the default information
specifies that, for all operations of the Web Service, the entire body of the SOAP messages be
digitally signed or encrypted, rather than specific elements. This default behavior is adequate in
many cases; however, you might sometimes want to specify just a subset of the elements to be
digitally signed or encrypted, as well as specify different security specifications for different
operations. In this case, you must update the web-services.xml file manually.

If you use the build.xml file in “Updating the servicegen build.xml File” on page 13-12 to run
servicegen, the following example shows the resulting <security> element in the generated
web-services.xml file; the sections in bold are described after the example:

<web-service>
...
 <security>

 <signatureKey>
 <name>digSigKey</name>
 <password>digSigKeyPassword</password>
 </signatureKey>

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-15

 <encryptionKey>
 <name>encryptKey</name>
 <password>encryptKeyPassword</password>
 </encryptionKey>

 <spec:SecuritySpec xmlns:spec="http://www.openuri.org/2002/11/wsse/spec"
 Namespace="http://schemas.xmlsoap.org/ws/2002/07/secext"
 Id="default-spec">

 <spec:BinarySecurityTokenSpec
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"
 EncodingType="wsse:Base64Binary"
 ValueType="wsse:X509v3">
 </spec:BinarySecurityTokenSpec>

 <spec:SignatureSpec
 SignatureMethod="http://www.w3.org/2000/09/xmldsig#rsa-sha1"
 SignBody="true"
 CanonicalizationMethod="http://www.w3.org/2001/10/xml-exc-c14n#">
 </spec:SignatureSpec>

 <spec:EncryptionSpec
 EncryptBody="true"
 EncryptionMethod="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">
 </spec:EncryptionSpec>

 </spec:SecuritySpec>

 </security>

 ...

 <operations>
 <operation
 name="myOperation" method="myMethod" component="ejbComp"
 in-security-spec="default-spec" out-security-spec="default-spec">
 ...
 </operation>
 </operations>

 ...

</web-service>

Note: The spec prefix in the preceding example is a namespace prefix that is required for the
security information in the web-services.xml deployment descriptor file. For more
information about XML namespaces, see Namespaces in XML at
http://www.w3.org/TR/REC-xml-names/.

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

Conf igur ing Secur i t y

13-16 Programming WebLogic Web Services

The <signatureKey> and <encryptKey> elements in the preceding web-services.xml
excerpt specify the username and passwords used to retrieve the keys for digital signatures and
encryption, respectively, from the server’s keystore.

The Id="default-spec" attribute of the <spec:SecuritySpec> element specifies that it is the
default security specification. By default, the SOAP requests and responses for invokes of all
operations of the Web Service must follow the security information described by this security
specification; this is specified with the in-security-spec="default-spec" and
out-security-spec="default-spec" attributes of each <operation> element.

The SignBody="true" and EncryptBody="true" attributes of the <spec:SignatureSpec>
and <spec:EncryptionSpec> elements specify that the entire body of the SOAP messages for
all operations must be digitally signed and encrypted.

The following sections describe how to update the web-services.xml file to specify more
fine-grained message-level security:

“Digitally Signing or Encrypting a Particular Element in the SOAP Message” on
page 13-16

“Associating an Operation with a Particular Security Specification” on page 13-17

“Using Timestamps” on page 13-19

Digitally Signing or Encrypting a Particular Element in the SOAP Message
To specify particular elements to be digitally signed or encrypted, add one or more
<spec:ElementIdentifier> child elements to the <spec:SignatureSpec> or
<spec:EncryptionSpec> element, respectively, in the web-services.xml file.

For example, assume that, in addition to the entire SOAP body, you want to digitally sign an
element in the SOAP header whose local name is Timestamp. To specify this configuration, add
a <spec:ElementIdentifier> child element to the <spec:SignatureSpec> element as
shown:

<spec:SignatureSpec
 SignatureMethod="http://www.w3.org/2000/09/xmldsig#rsa-sha1"
 SignBody="true"
 CanonicalizationMethod="http://www.w3.org/2001/10/xml-exc-c14n#">

 <spec:ElementIdentifier
 LocalPart="Timestamp"
 Namespace="http://www.bea.com/examples/security" />
</spec:SignatureSpec>

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-17

The example shows how to identify that the Timestamp element of the SOAP message be
digitally signed by using the LocalPart and Namespace attributes of the
<spec:ElementIdentifier> element. Set the LocalPart attribute equal to the name of the
element in the SOAP message you want to encrypt and the Namespace attribute to its namespace.
To get the exact name and namespace of the element, you can:

Look at the WSDL of the Web Service. To get the WSDL of a WebLogic Web Service, use
the wsdlgen Ant task on the existing non-secure Web Service. For details, see “wsdlgen”
on page B-50.

View the actual SOAP messages generated from an invoke of the operation when deployed
as a non-secure Web Service. For details, see “Using the Web Service Home Page to Test
Your Web Service” on page 20-2.

Specifying a particular element to be encrypted is very similar. For example, to encrypt just the
element CreditCardNumber, wherever it appears in the SOAP message (rather than the entire
SOAP body), update the <spec:EncryptionSpec> element as shown:

<spec:EncryptionSpec
 EncryptionMethod="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" >

 <spec:ElementIdentifier
 LocalPart="CreditCardNumber"
 Namespace="http://www.bea.com/examples/security" />
</spec:EncryptionSpec>

For details about the <security> element, and all its child elements discussed in this section, see
Appendix A, “WebLogic Web Service Deployment Descriptor Elements.”

Associating an Operation with a Particular Security Specification
The <security> element of the web-services.xml deployment descriptor file can contain
zero or more <spec:SecuritySpec> elements. These elements specify the security
requirements for a particular SOAP message: what should be signed, what should be encrypted,
what tokens should be included, and so on.

Each <spec:SecuritySpec> element typically has an Id attribute that uniquely identifies it. In
the <operations> section of the web-services.xml file, each <operation> element can
reference a specific security specification by setting the operation's in-security-spec or
out-security-spec attribute to the relevant Id value. The security specification referenced by
the in-security-spec attribute is applied to SOAP requests; the security specification
referenced by the out-security-spec attribute is applied to SOAP responses.

Conf igur ing Secur i t y

13-18 Programming WebLogic Web Services

If a <spec:SecuritySpec> element contains no Id attribute, or it is assigned the value
default-spec, the security specification is treated as the default specification and is applied to
all operations that do not explicitly reference a specification. Only one default specification can
be defined: if more than one is defined in the web-services.xml file, the Web Service will not
deploy.

The servicegen Ant task always generates a default security specification in the generated
web-services.xml file (with an Id="default-spec" attribute) and this security specification
is applied to all SOAP messages for all operations. The individual <operation> elements do not
contain any direct reference to this security specification, since none is needed.

For example, assume you have defined the following two security specifications for a Web
Service:

<web-service>
...
 <security>
 ...
 <spec:SecuritySpec xmlns:spec="http://www.openuri.org/2002/11/wsse/spec"
 Namespace="http://schemas.xmlsoap.org/ws/2002/07/secext"
 Id="encrypt-only">
 <spec:EncryptionSpec
 ...
 </spec:EncryptionSpec>
 </spec:SecuritySpec>

 <spec:SecuritySpec xmlns:spec="http://www.openuri.org/2002/11/wsse/spec"
 Namespace="http://schemas.xmlsoap.org/ws/2002/07/secext"
 Id="sign-only">
 <spec:SignatureSpec
 ...
 </spec:SignatureSpec>
 </security>
 ...
</web-service>

In the example, the encrypt-only security specification requires only encryption and the
sign-only security specification requires only digital signatures. You can mix and match these
security specifications for particular operations by using the in-security-spec and
out-security-spec attributes of the relevant <operation> element, as shown in the following
example:

 <operations>
 <operation
 name="operationOne" method="methodOne" component="ejbComp"
 in-security-spec="encrypt-only"

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-19

 out-security-spec="encrypt-only">
 ...
 </operation>
 <operation
 name="operationTwo" method="methodTwo" component="ejbComp"
 in-security-spec="sign-only">
 ...
 </operation>
 </operations>

The preceding excerpt shows that both the SOAP request and response of the operationOne
operation must be encrypted, but not digitally signed. The SOAP request for operationTwo must
be digitally signed (although not encrypted), but the SOAP response requires no security at all.

For details about the <security> and <operation> elements, see Appendix A, “WebLogic
Web Service Deployment Descriptor Elements.”

Using Timestamps
When a client application invokes a WebLogic Web Service that has been configured for
message-level security, WebLogic Server may also require and add timestamp information in the
SOAP request and response. By default, WebLogic Server:

Requires that digitally signed SOAP requests include a timestamp and rejects any that do
not. The timestamp itself must be digitally signed.

Assumes that its clock and the client application’s clock are not synchronized. This means
that if the SOAP request from a client application includes a timestamp with an expiration,
WebLogic Server rejects the message. This is because WebLogic Server is unable to ensure
that the message has not already expired.

Adds a timestamp to the SOAP response. The timestamp contains only the creation date of
the SOAP response; it does not contain an expiration date.

You can change the default timestamp behavior of your WebLogic Web Service by adding a
<timestamp> child element to the <security> element in the web-services.xml deployment
descriptor.

The following web-services.xml excerpt shows an example of configuring timestamp
behavior:

<web-service>

 ...

 <security>

 <timestamp>

Conf igur ing Secur i t y

13-20 Programming WebLogic Web Services

 <clocks-synchronized>true</clocks-synchronized>

 <clock-precision>30000</clock-precision>

 <require-signature-timestamp>false</require-signature-timestamp>

 <generate-signature-timestamp>true</generate-signature-timestamp>

 <inbound-expiry>120000</inbound-expiry>

 <outbound-expiry>30000</outbound-expiry>

 </timestamp>

 ...

 </security>

 ...

</web-service>

The preceding <timestamp> element specifies the following timestamp behavior when the
relevant Web Service operation is invoked:

WebLogic Server’s and the client application’s clocks are synchronized, and are accurate
within 30000 milliseconds (30 seconds) of each other. This implies that if WebLogic
Server receives a digitally signed SOAP request whose expiration period is less than 30
seconds, WebLogic Server automatically rejects the request because it cannot accurately
determine if the message has expired.

WebLogic Server does not require that digitally signed SOAP requests include a
timestamp, although it always includes a timestamp in its digitally signed SOAP responses.

WebLogic Server has its own expiration period for digitally signed SOAP requests of
120000 milliseconds (2 minutes). This means that, independent of any client-specified
expiration, WebLogic Server rejects the request if it receives it more than 2 minutes after it
was created (adjusting for clock precision.)

WebLogic Server includes an expiration of 30000 milliseconds (30 seconds) in the SOAP
response.

The value specified for the <clock-precision> element is a reflection of how accurately the
clocks are synchronized between WebLogic Server and the client applications that invoke the
Web Service operation. WebLogic Server uses the value to round all timestamps in a consistent
manner. For example, assume that the clock precision is 30000 milliseconds, or 30 seconds. This
means that all timestamps are rounded to the closest 30 second increment. This means that, in this
example, WebLogic Server rounds the times 12:00:10 and 11:59:50 to the same time
(12:00:00) and thus treats the two timestamps equally.

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-21

Each of the timestamp elements of the web-services.xml deployment descriptor has a
client-side equivalent system property that you can set in your client application. For details, see
“Using Web Services System Properties” on page 7-14.

For detailed descriptions of the <timestamp> element and all its child elements, see Appendix A,
“WebLogic Web Service Deployment Descriptor Elements.”

Encrypting Passwords in the web-services.xml File
Encrypt the key pair passwords (used for encryption and digital signatures) in the
web-services.xml file with the weblogic.webservice.encryptpass utility.

The weblogic.webservice.encryptpass utility updates the specified EAR file (or exploded
directory) by editing the <security> element of the web-services.xml file, replacing any
plain text passwords with their encrypted equivalents.

Only the WebLogic Server domain you specify to the utility is able to decrypt the passwords. This
means that if, for example, you want to deploy the EAR file on a WebLogic Server domain
different from the one you specified in the encryptpass utility, you must rerun the utility against
the EAR file that contains plain text passwords, specifying the new domain.

To encrypt the passwords:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Change to the domain directory of the WebLogic Server domain which will be deploying
your EAR file. The domain directory contains the config.xml file for the WebLogic
Server.

Warning: Only this WebLogic Server domain will be able to decrypt the encrypted
passwords in the web-services.xml file.

3. Run the utility:

java weblogic.webservice.encryptpass options ear_or_dir

Conf igur ing Secur i t y

13-22 Programming WebLogic Web Services

where

– options refers to one or more of the options described in Table 13-1.

– ear_or_dir refers to the full path name of the EAR file (or exploded directory) for
which you want to encrypt the passwords in the web-services.xml file.

The following example shows how to encrypt the passwords for the Hello Web Service
packaged in the ears/myService.ear file:

java weblogic.webservice.encryptpass -serviceName Hello -verbose
ears/myService.ear

Table 13-1 Options for the weblogic.webservice.encryptpass Utility

Option Description

-help Prints the usage message for the utility.

-version Prints the version information for the utility.

-verbose Enables verbose output.

-warName name Specifies the name of the Web application WAR file,
packaged inside the EAR file, that contains the
web-services.xml file.

Default value is web-services.war.

-serviceName name Specifies the name of the Web Service for which you want
to encrypt passwords. The name corresponds to the name
attribute of the Web Service’s <web-service> element
in the web-services.xml file.

Default value is the first Web Service in the
web-services.xml file.

-domain directory Specifies the domain directory of the WebLogic Server to
which you want to deploy your Web Service.

Default value is the current directory from which you are
running the utility.

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-23

Updating a Java Client to Invoke a Data-Secured Web Service
To update a Java client application to invoke either a WebLogic or a non-WebLogic Web Service
that uses digital signatures or encryption:

1. Update your client application’s CLASSPATH to include WL_HOME/server/lib/wsse.jar,
where WL_HOME refers to the top-level directory of WebLogic Platform. This client JAR file
contains BEA’s implementation of the Web Services Security (WS-Security) specification.

2. Update your Java code to load a key pair and digital certificate from the client’s keystore
and pass this information, along with a username and password for user authentication, to
the secure WebLogic Web Service being invoked.

For details, see “Writing the Java Code to Invoke a Secure WebLogic Web Service” on
page 13-23.

For an example of invoking a secure non-WebLogic Web Service, see “Writing the Java
Code to Invoke a Secure Non-WebLogic Web Service” on page 13-26

3. Run the client application.

For details about system properties you can set to get more information about the digital
signatures and encryption, see “Running the Client Application” on page 13-31.

Writing the Java Code to Invoke a Secure WebLogic Web Service
The following example shows a Java client application that invokes a message-secured
WebLogic Web Service, with the security-specific code in bold (and described after the
example):

import java.io.IOException;
import java.io.FileInputStream;

import javax.xml.rpc.ServiceException;

import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.cert.CertificateException;
import java.security.UnrecoverableKeyException;
import java.security.Key;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.X509Certificate;

import weblogic.webservice.context.WebServiceContext;
import weblogic.webservice.context.WebServiceSession;
import weblogic.webservice.core.handler.WSSEClientHandler;

Conf igur ing Secur i t y

13-24 Programming WebLogic Web Services

import weblogic.xml.security.UserInfo;

public class Main{

 private static final String CLIENT_KEYSTORE = "client_keystore";
 private static final String KEYSTORE_PASS = "client_keystore_password";
 private static final String CLIENT_KEYNAME = "client_key";
 private static final String CLIENT_KEYPASS = "client_key_password";
 private static final String AUTHENTICATION_USER = "auth_user";
 private static final String AUTHENTICATION_USER_PASS = "auth_user_password";

 public static void main(String[] args){

 if(args.length == 1){
 new Main(args[0]);
 }else{
 throw new IllegalArgumentException("URL of the service not specified");
 }
 }

 public Main(String wsdlUrl){

 try{
 HelloWorldService service = new HelloWorldService_Impl(wsdlUrl);
 HelloWorldServicePort port = service.getHelloWorldServicePort();

 WebServiceContext context = service.context();

 X509Certificate clientcert = getCertificate(CLIENT_KEYNAME,
CLIENT_KEYSTORE);

 PrivateKey clientprivate = (PrivateKey)getPrivateKey(CLIENT_KEYNAME,
CLIENT_KEYPASS,CLIENT_KEYSTORE);

 WebServiceSession session = context.getSession();

 session.setAttribute(WSSEClientHandler.CERT_ATTRIBUTE, clientcert);
 session.setAttribute(WSSEClientHandler.KEY_ATTRIBUTE, clientprivate);

 UserInfo ui = new UserInfo(AUTHENTICATION_USER, AUTHENTICATION_USER_PASS);
 session.setAttribute(WSSEClientHandler.REQUEST_USERINFO, ui);

 World world = port.helloComplexWorld();

 System.out.println(world);

 }catch(IOException e){
 System.out.println("Failed to create web service client:" + e);
 }catch(ServiceException e){
 System.out.println("Failed to create web service client:" + e);
 }catch(KeyStoreException e){
 System.out.println("Failed to create web service client:" + e);

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-25

 }catch(CertificateException e){
 System.out.println("Failed to create web service client:" + e);
 }catch(UnrecoverableKeyException e){
 System.out.println("Failed to create web service client:" + e);
 }catch(NoSuchAlgorithmException e){
 System.out.println("Failed to create web service client:" + e);
 }
 }

 private Key getPrivateKey(String keyname, String password, String keystore)
 throws IOException, KeyStoreException, NoSuchAlgorithmException,
 CertificateException, UnrecoverableKeyException{

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(keystore), KEYSTORE_PASS.toCharArray());
 Key result = ks.getKey(keyname, password.toCharArray());
 return result;
 }

 private static X509Certificate getCertificate(String keyname, String keystore)
 throws IOException, KeyStoreException, NoSuchAlgorithmException,
 CertificateException {

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(keystore), KEYSTORE_PASS.toCharArray());
 X509Certificate result = (X509Certificate) ks.getCertificate(keyname);
 return result;
 }

}

The main points to note about the preceding code are:

Once you create the JAX-RPC Service object, get the WebLogic Web Service context:

WebServiceContext context = service.context();

Note: The weblogic.webservice.context.WebServiceContext class is a proprietary
WebLogic Web Service client API.

Load the needed key pairs and X.509 digital certificates from a client keystore:

X509Certificate clientcert =
 getCertificate(CLIENT_KEYNAME, CLIENT_KEYSTORE);

PrivateKey clientprivate =
 (PrivateKey)getPrivateKey(CLIENT_KEYNAME,
CLIENT_KEYPASS,CLIENT_KEYSTORE);

From the WebLogic Web Service context, get the session information:

WebServiceSession session = context.getSession();

Conf igur ing Secur i t y

13-26 Programming WebLogic Web Services

Note: The weblogic.webservice.context.WebServiceSession class is a WebLogic
Web Service client API.

Use WebServiceSession attributes to pass the private key and digital certificates to the
WebLogic Web Service being invoked:

session.setAttribute(WSSEClientHandler.CERT_ATTRIBUTE, clientcert);
session.setAttribute(WSSEClientHandler.KEY_ATTRIBUTE,
clientprivate);

Create a UserInfo object that contains the authentication username and password, and use
an attribute of the WebServiceSession to pass the information to the WebLogic Web
Service being invoked:

UserInfo ui = new UserInfo(AUTHENTICATION_USER,
AUTHENTICATION_USER_PASS);
session.setAttribute(WSSEClientHandler.REQUEST_USERINFO, ui);

Note: The weblogic.xml.security.UserInfo class is a WebLogic Web Service client
API.

The local methods getPrivateKey() and getCertificate() are simple examples of
how to get information from the client’s local keystore. Depending on how you have set up
your client keystore, you will use different ways of getting this information.

For more information about the WebLogic Web Services APIs discussed in this section, see the
Javadoc.

Writing the Java Code to Invoke a Secure Non-WebLogic Web Service
The following example is similar to the one in the previous section, except that it shows how to
write a Java client application that invokes a non-WebLogic Web Service, such as .NET.

The example uses the weblogic.xml.security.wsse and weblogic.xml.security.specs
APIs to create user Tokens, X.509 Tokens, EncryptionSpecs, and SignatureSpecs which
the WebLogic client API uses to create the appropriate <wsse:Security> element in the SOAP
message request that invokes the non-WebLogic Web Service. The user Token objects contain
username and passwords and X.509 Token objects contain a certificate and an optional private
key.

Note: Because there is currently no standard way of specifying security information in the
WSDL of a Web Service, consult with the Web Service provider to find out what needs
to be signed and encrypted when invoking a non-WebLogic Web Service.

The relevant sections of the example are in bold (and described after the example):

http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-27

import java.io.IOException;
import java.io.FileInputStream;

import java.util.List;
import java.util.ArrayList;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.cert.X509Certificate;
import java.security.cert.CertificateException;

import javax.xml.rpc.ServiceException;

import javax.xml.namespace.QName;

import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.HandlerRegistry;

import weblogic.webservice.context.WebServiceContext;
import weblogic.webservice.core.handler.WSSEClientHandler;
import weblogic.xml.security.wsse.Security;
import weblogic.xml.security.wsse.Token;
import weblogic.xml.security.wsse.SecurityElementFactory;
import weblogic.xml.security.specs.EncryptionSpec;
import weblogic.xml.security.specs.SignatureSpec;
import weblogic.xml.security.SecurityAssertion;
import examples.security.basicclient.BasicPort;
import examples.security.basicclient.Basic_Impl;
import examples.security.basicclient.Basic;

public class Client {

 private static final String CLIENT_KEYSTORE = "client.keystore";
 private static final String KEYSTORE_PASS = "gumby1234";

 private static final String KEY_ALIAS = "joe";
 private static final String KEY_PASSWORD = "myKeyPass";

 private static final String SERVER_KEY_ALIAS = "myServer";

 private static final String USERNAME = "pete";
 private static final String USER_PASSWORD = "myPassword";

 public static void main(String[] args)
 throws IOException, ServiceException, Exception {

 {
 final KeyStore keystore = loadKeystore(CLIENT_KEYSTORE, KEYSTORE_PASS);

Conf igur ing Secur i t y

13-28 Programming WebLogic Web Services

 Basic service = new Basic_Impl();
 WebServiceContext context = service.context();

 // add WSSE Client Handler to the handler chain for the service.
 HandlerRegistry registry = service.getHandlerRegistry();

 List list = new ArrayList();

 list.add(new HandlerInfo(WSSEClientHandler.class, null, null));

 registry.setHandlerChain(new QName("basicPort"), list);

 // load the client credential
 X509Certificate clientcert;
 clientcert = getCertificate(KEY_ALIAS, keystore);

 PrivateKey clientprivate;
 clientprivate = getPrivateKey(KEY_ALIAS, KEY_PASSWORD, keystore);

 // load the server's certificate...
 X509Certificate serverCert = getCertificate(SERVER_KEY_ALIAS, keystore);

 // configure the Security element for the service.
 SecurityElementFactory factory =
 SecurityElementFactory.getDefaultFactory();

 Token x509token = factory.createToken(clientcert, clientprivate);
 Token userToken = factory.createToken(USERNAME, USER_PASSWORD);

 EncryptionSpec encSpec = EncryptionSpec.getDefaultSpec();
 SignatureSpec sigSpec = SignatureSpec.getDefaultSpec();

 Token serverToken = null;

 // create a token for the server's cert... no PrivateKey...
 serverToken = factory.createToken(serverCert, null);

 Security security = factory.createSecurity(/* role */ null);

 //add a Timestamp to the Security header. The creation time will be
 // the current time, and there is no expiration.
 security.addTimestamp();

 //add the username/password to the header as a UsernameToken
 security.addToken(userToken);

 security.addSignature(x509token, sigSpec);

 //add client cert for signature verification and response encryption
 // should be added after the signature....
 security.addToken(x509token);

Conf igur ing Message-Leve l Secur i t y (D ig i ta l S ignatures and Enc ryp t i on)

Programming WebLogic Web Services 13-29

 security.addEncryption(serverToken, encSpec);

 BasicPort port = service.getbasicPort();

 // add the security element to the request...
 context.getSession().setAttribute("weblogic.webservice.security.request",
 security);

 String result = null;
 result = port.helloback();

 System.out.println(result);

 // view the assertions from processing the server's response...
 SecurityAssertion[] assertions = (SecurityAssertion[])

context.getSession().getAttribute("weblogic.webservice.security.assertions.res
ponse");
 for (int i = 0; i < assertions.length; i++) {

 SecurityAssertion assertion = assertions[i];
 System.out.println(assertion);
 }
 }
 }

 private static KeyStore loadKeystore(String filename, String password)
 throws KeyStoreException, IOException, NoSuchAlgorithmException,
 CertificateException {
 final KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(filename), password.toCharArray());
 return ks;
 }

 private static PrivateKey getPrivateKey(String alias, String password,
 KeyStore keystore)
 throws Exception {
 PrivateKey result =
 (PrivateKey) keystore.getKey(alias, password.toCharArray());

 return result;
 }

 private static X509Certificate getCertificate(String alias, KeyStore keystore)
 throws Exception {
 X509Certificate result = (X509Certificate) keystore.getCertificate(alias);
 return result;
 }
}

The main points to note about the preceding code are:

Conf igur ing Secur i t y

13-30 Programming WebLogic Web Services

Add the WSSE client handler to the client’s handler chain:

HandlerRegistry registry = service.getHandlerRegistry();
List list = new ArrayList();
list.add(new HandlerInfo(WSSEClientHandler.class, null, null));
registry.setHandlerChain(new QName("basicPort"), list);

Use the weblogic.xml.security.wsse.SecurityElementFactory to create an object
that represents the <wsse:Security> element of the SOAP message. Also use this factory
to create the user and X.509 tokens, as shown in the following code excerpts:

SecurityElementFactory factory =
 SecurityElementFactory.getDefaultFactory();

Token x509token = factory.createToken(clientcert, clientprivate);
Token userToken = factory.createToken(USERNAME, USER_PASSWORD);

Token serverToken = null;

Security security = factory.createSecurity(/* role */ null);

Once you have the security object and tokens, create optional EncryptionSpec and
SignatureSpec objects that specify the elements of the SOAP message that you want to
encrypt or digitally sign, respectively.

EncryptionSpec encSpec = EncryptionSpec.getDefaultSpec();
SignatureSpec sigSpec = SignatureSpec.getDefaultSpec();

Use the addTimestamp() method to to add a timestamp, and optional expiration date, to
the security element in the SOAP message. Use one of the following four flavors of the
Security.addTimestamp() method:

– addTimestamp()—Sets the creation timestamp to the current time, with no expiration
date.

– addTimestamp(long)—Sets the creation timestamp to the current time and the
expiration date to long number of milliseconds after the creation timestamp.

– addTimestamp(java.util.Calendar)—Sets the creation timestamp to the value of
the Calendar parameter, with no expiration date.

– addTimestamp(java.util.Calendar, java.util.Calendar)—Sets the creation
timestamp to the value of the first Calendar parameter and the expiration date to the
value of the second Calendar parameter.

Use the addToken(), addSignature(), and addEncryption() methods to add the
tokens to the security element and to specify whether you want the SOAP message to be
encrypted or digitally signed. If you created the optional EncryptionSpec or

Conf igur ing T ranspo r t -Leve l Secur i t y (SSL) : Ma in Steps

Programming WebLogic Web Services 13-31

SignatureSpec objects, specify them as parameters to the respective methods. If you do
not specify these specs, the entire SOAP message body is encrypted or digitally signed.

security.addToken(userToken);
security.addSignature(x509token, sigSpec);
security.addToken(x509token);
security.addEncryption(serverToken, encSpec);

Add the security element to the SOAP request by setting it as an attribute to the session
using the weblogic.webservice.security.request attribute:

 context.getSession().setAttribute("weblogic.webservice.security.request",
 security);

Keep the following points in mind when using the WebLogic Web Services Security APIs to
invoke a secure non-WebLogic Web Service:

When you use the addXXX() methods to add tokens and encryption and signature
information to the <wsse:Security> element of the SOAP message, they are applied to
the message in the order you specify. They appear, however, in reverse order in the
resulting SOAP message.

If you specify that you want the SOAP message to be digitally signed, in your Java code
add the X.509 token used for the signature after you have added the signature using the
appropriate addXXX() method. This is because the X.509 token, which specifies the actual
certificate and optional private key, should be read by the recipient of the message before it
processes the signature.

You cannot encrypt or sign the contents of the <wsse:Security> element itself.

Running the Client Application
When you run the client application that uses digital signatures and encryption to invoke a Web
Service, you can set the following system properties to view more runtime security information:

weblogic.xml.encryption.verbose=true

weblogic.xml.signature.verbose=true

Configuring Transport-Level Security (SSL): Main Steps
Transport-level security refers to securing the connection between a client application and a Web
Service with Secure Sockets Layer (SSL). The following procedure describes the high-level
steps; later sections in the chapter describe the steps in more detail.

Conf igur ing Secur i t y

13-32 Programming WebLogic Web Services

1. Configure SSL for WebLogic Server.

You can configure one-way SSL (the default) where WebLogic Server is required to
present a certificate to the client application, or two-way SSL where both the client
applications and WebLogic server present certificates to each other.

For details about SSL, the difference between one-way and two-way, and procedures to
configure both, see Configuring SSL at
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html.

2. Optionally update the web-services.xml file to specify that the Web Service can be
accessed only by HTTPS.

See “Specifying the HTTPS Protocol” on page 13-44.

3. Configure SSL for the client application.

See “Configuring SSL for a Client Application” on page 13-33.

Warning: If you use two-way SSL to secure the connection when invoking a WebLogic Web
Service, WebLogic Server uses anonymous identity to authorize access to the Web
Service. If this authorization fails, WebLogic Server first asserts the identity of the
certificate to ensure that it maps to a valid WebLogic Server user and then uses that
user identity to invoke the Web Service, even if the Web Service or the stateless EJB
back-end component does not require any special privileges.

To use the user credentials mapped to the client certificate instead of using the
anonymous user identity, you need to disable anonymous access for the Web Service

WebLogic Server does not assert the identity of the certification in one-way SSL,
however, because in that case the client application does not send its certificate.

Implications of Using SSL With Web Services
You should be aware of the following thread safety issues when using SSL with Web Services.
The BEA generated JAX-RPC client stubs are thread-safe by default. However, as soon as you
enable SSL, the client stubs are no longer thread-safe. To minimize the chances of your Web
Service client applications running into threading problems, BEA recommends you do either of
the following:

Implement your Web Service client as an EJB, either stateless session or message-driven.
Then, if you want to use a single weblogic.webservice.core.rpc.StubImpl object for
all operation invocations, the EJB container will prevent more that one WebLogic execute
thread from running at a time. To do this, create an instance variable in the EJB to store the
object that extends StubImpl, as shown in the following code snippet:

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html

Conf igur ing SSL fo r a C l ien t App l i cat ion

Programming WebLogic Web Services 13-33

private TraderServicePort trader_;

The TraderServicePort object in the preceding line extends
weblogic.webservice.core.rpc.StubImpl.

Create a new instance of the weblogic.webservice.core.rpc.StubImpl object for
each thread. This has some major performance (and coding) implications, so it should only
be used as a last resort.

If your client application is not an EJB, you could also use synchronization to handle threading
issues. You cannot use synchronization if your client is an EJB, because this would violate the
EJB specifiation.

Configuring SSL for a Client Application
Configure SSL for your client application by using either:

The WebLogic Server-provided SSL implementation. See “Using the WebLogic
Server-Provided SSL Implementation” on page 13-33.

A third-party SSL implementation. See “Using a Third-Party SSL Implementation” on
page 13-38.

If you are using two-way SSL, your client application must also present its certificate to
WebLogic Server. For details, see “Configuring Two-Way SSL For a Client Application” on
page 13-40.

For additional detailed information about the APIs discussed in this section see the Web Service
security Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html.

Using the WebLogic Server-Provided SSL Implementation
If you are using a stand-alone client application, WebLogic Server provides an implementation
of SSL in the webserviceclient+ssl.jar client runtime JAR file. In addition to the SSL
implementation, this client JAR file contains the standard client JAX-RPC runtime classes
contained in webservicesclient.jar.

Note: For information about BEA’s current licensing of client functionality, see the BEA
eLicense Web Site at http://elicense.bea.com/elicense_webapp/index.jsp.

To configure basic SSL support for your client application, follow these steps:

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Conf igur ing Secur i t y

13-34 Programming WebLogic Web Services

1. Set the filename of the file containing trusted Certificate Authority (CA) certificates. Do this
by either:

– Setting the System property weblogic.webservice.client.ssl.trustedcertfile
to the name of the file that contains a collection of PEM-encoded certificates.

– Executing the BaseWLSSLAdapter.setTrustedCertificatesFile(String
ca_filename) method in your client application.

2. Run your Java client application, either as a standalone client or on WebLogic Server.

If you are creating a standalone client application:

– Add the WL_HOME/server/lib/webserviceclient+ssl.jar runtime Java client
JAR file to you CLASSPATH, where WL_HOME refers to the top-level directory of
WebLogic Platform. This client JAR file contains the client runtime implementation of
JAX-RPC as well as the implementation of SSL.

If your client application is running on WebLogic Server, you do not need this runtime
client JAR file.

– Set the following System properties on the command line:
bea.home=license_file_directory

java.protocol.handler.pkgs=com.certicom.net.ssl

where license_file_directory refers to the directory that contains the BEA license
file license.bea, as shown in the following example:

java -Dbea.home=/bea_home \
 -Djava.protocol.handler.pkgs=com.certicom.net.ssl my_app

Note: If your client application is running on a computer different from the computer
hosting WebLogic Server (which is typically the case), copy the BEA license file
from the server computer to a directory on the client computer, and then point the
bea.home System property to this client-side directory.

3. If you are not using a certificate issued by a CA in your trusted CA file, then disable strict
certificate validation by either setting the
weblogic.webservice.client.ssl.strictcertchecking System property to false
at the command line when you run the standalone application, or programmatically use the
BaseWLSSLAdapter.setStrictCheckingDefault() method. Use the second way if your
client application is running on WebLogic Server.

By default, client applications that use the WebLogic SSL implementation do not share sockets.
If you want to change this behavior, see “Using SSL Socket Sharing When Using the WebLogic
SSL Implementation” on page 13-36.

Conf igur ing SSL fo r a C l ien t App l i cat ion

Programming WebLogic Web Services 13-35

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html.

Configuring the WebLogic SSL Implementation Programatically
You can also configure the WebLogic Server-provided SSL implementation programatically by
using the weblogic.webservice.client.WLSSLAdapter adapter class. This adapter class
hold configuration information specific to WebLogic Server’s SSL implementation and allows
the configuration to be queried and modified.

The following excerpt shows an example of configuring the WLSSLAdapter class for a specific
WebLogic Web Service; the lines in bold are discussed after the example:

 // instantiate an adapter...
 WLSSLAdapter adapter = new WLSSLAdapter();
 adapter.setTrustedCertifcatesFile("mytrustedcerts.pem");

 // optionally set the Adapter factory to use this
 // instance always...
 SSLAdapterFactory.getDefaultFactory().setDefaultAdapter(adapter);
 SSLAdapterFactory.getDefaultFactory().setUseDefaultAdapter(true);

 //create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 //create service
 Service service = factory.createService(serviceName);

 //create call
 Call call = service.createCall();

 call.setProperty("weblogic.webservice.client.ssladapter",
 adapter);

 try {

 //invoke the remote web service
 String result = (String) call.invoke(new Object[]{ "BEAS" });
 System.out.println("Result: " +result);
 } catch (JAXRPCException jre) {
 ...
 }

The example first shows how to instantiate an instance of the WebLogic Server-provided
WLSSLAdapter class, which supports the SSL implementation contained in the
webserviceclient+ssl.jar file. It then configures the adapter instance by setting the name
of the file that contains the Certificate Authority certificates using the

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html

Conf igur ing Secur i t y

13-36 Programming WebLogic Web Services

setTrustedCertificatesFile(String) method; in this case the file is called
mytrustedcerts.pem.

The example then shows how to set WLSSLAdapter as the default adapter of the adapter factory
and configures the factory to always return this default.

Note: This step is optional; it allows all Web Services to share the same adapter class along with
its associated configuration.

You can also set the adapter for a particular Web Service port or call. The preceding example
shows how to do this when using the Call class to invoke a Web Service dynamically:

call.setProperty("weblogic.webservice.client.ssladapter", adapter);

Set the property to an object that implements the weblogic.webservice.client.SSLAdapter
interface (which in this case is the WebLogic Server-provided WLSSLAdapter class.)

The following excerpt shows how to set the adapter when using the Stub interface to statically
invoke a Web Service:

((javax.xml.rpc.Stub)stubClass)._setProperty("weblogic.webservice.client.sslad
apter", adapterInstance);

You can get the adapter for a specific instance of a Web Service call or port by using the following
method for dynamic invocations:

call.getProperty("weblogic.webservice.client.ssladapter");

Use the following method for static invocations:

((javax.xml.rpc.Stub)stubClass)._getProperty("weblogic.webservice.client.sslad
apter");

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html.

Using SSL Socket Sharing When Using the WebLogic SSL Implementation
By default, socket sharing is disabled for SSL client applications that connect to a WebLogic Web
Service using the WebLogic Server-provided SSL implemenation.

However, to improve the performance of your client application, you can enable socket sharing
for multiple serial invokes of a Web Service. This socket sharing mechanism provides the
improved performance of SSL connection reuse, while giving you the ability to enforce any
necessary security.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html

Conf igur ing SSL fo r a C l ien t App l i cat ion

Programming WebLogic Web Services 13-37

Implications of Enabling SSL Socket Sharing
If your application is actually a server in which multiple clients use SSL authentication to invoke
a Web Service, it is your responsibility to prevent access by one client to another client's
JAX-RPC stub implementation object (weblogic.webservice.core.rpc.StubImpl).

Because of the security and general thread safety issues (see “Implications of Using SSL With
Web Services” on page 13-32), the socket sharing mechanism is not enabled by default.

Enabling SSL Socket Sharing Using System Properties
To enable, using system properties, socket sharing in your SSL client application, set the Java
system property https.sharedsocket to true on the command you use to invoke your client
application, as shown in the following example:

java -Dbea.home=/bea_home \

 -Djava.protocol.handler.pkgs=com.certicom.net.ssl \

 -Dhttps.sharedsocket=true my_app

The default value of the https.sharedsocket system property is false.

You can also specify the timeout value for shared sockets by using the
https.sharedsocket.timeout system property to set the number of seconds that shared
sockets live, as shown in the following example:

java -Dbea.home=/bea_home \

 -Djava.protocol.handler.pkgs=com.certicom.net.ssl \

 -Dhttps.sharedsocket=true

 -Dhttps.sharedsocket.timeout=30 my_app

The default value of https.sharedsocket.timeout is 15 seconds.

Note: This timeout value does nothing to the actual transport layer controlling the socket. The
value is used to determine if the SSL socket has not been referenced in the given
timeframe and if not, then on this reference, if the time has expired, then the socket is
closed and the protocol handshake is restarted.

Enabling SSL Socket Sharing Using the HttpsBindingInfo API
You can also use the weblogic.webservice.binding.https.HttpsBindingInfo SSL
binding API, rather than system properties, to programmatically enable socket sharing from
within your SSL client application. When you use the WebLogic SSL implementation, you use
the public constructor of HttpsBindingInfo to create an HttpsBindingInfo object; the

Conf igur ing Secur i t y

13-38 Programming WebLogic Web Services

constructor specifies that the client application is using the WLSSSLAdapter subclass of the
SSLAdapter class.

To enable socket sharing in your client application with the API, use the
HttpsBindingInfo.setSocketSharing(boolean) setter method on the HttpsBindingInfo
object, passing it a value of true. To disable socket sharting, pass the method a value of false.
The default value, if you do not call this method in your application, is false (no socket sharing).

You can also specify the timeout value for shared sockets by using the
HttpsBindingInfo.setSharedSocketTimeout(long) method on the HttpsBindingInfo
object, passing it the number of seconds that shared sockets live. The default value, if you do not
set this method, is 15 seconds.

Note: This timeout value does nothing to the actual transport layer controlling the socket. The
value is used to determine if the SSL socket has not been referenced in the given
timeframe and if not, then on this reference, if the time has expired, then the socket is
closed and the protocol handshake is restarted.

To close the shared SSL socket in your client application, use the
HttpsBindingInfo.closeSharedSocket() method on the HttpsBindingInfo object. This
method takes no parameters. Typically you close the shared socket in the cleanup method of the
object from which you created the HttpsBindingInfo object.

Using a Third-Party SSL Implementation
If you want to use a third-party SSL implementation, you must first implement your own adapter
class. The following example shows a simple class that provides support for JSSE; the main steps
to implementing your own class are discussed after the example:

import java.net.URL;
import java.net.Socket;
import java.net.URLConnection;
import java.io.IOException;

public class JSSEAdapter implements weblogic.webservice.client.SSLAdapter {

 javax.net.SocketFactory factory =
 javax.net.ssl.SSLSocketFactory.getDefault();

 // implements weblogic.webservice.client.SSLAdapter interface...

 public Socket createSocket(String host, int port) throws IOException {
 return factory.createSocket(host, port);
 }

Conf igur ing SSL fo r a C l ien t App l i cat ion

Programming WebLogic Web Services 13-39

 public URLConnection openConnection(URL url) throws IOException {
 // assumes you have java.protocol.handler.pkgs properly set..
 return url.openConnection();
 }

 // the configuration interface...

 public void setSocketFactory(javax.net.ssl.SSLSocketFactory factory) {
 this.factory = factory;
 }

 public javax.net.ssl.SSLSocketFactory getSocketFactory() {
 return (javax.net.ssl.SSLSocketFactory) factory;
 }
}

To create your own adapter class:

1. Create a class that implements the following interface:

weblogic.webservice.client.SSLAdapter

2. Implement the createSocket method, whose signature is:

public Socket createSocket(String host, int port)
 throws IOException

This method returns an object that extends java.net.Socket. The object is connected to
the designated hostname and port when a Web Service is invoked.

3. Implement the openConnection method, whose signature is:

public URLConnection openConnection(URL url) throws IOException

This method returns an object that extends the java.net.URLConnection class. The
object is configured to connect to the designated URL. These connections are used for
infrequent network operations, such as downloading the Web Service WSDL.

4. When you run your client application, set the following System property to the fully
qualified name of your adapter class:

weblogic.webservice.client.ssl.adapterclass

The default SSLAdapterFactory class loads your adapter class and creates an instance of
the class using the default no-argument constructor.

5. Configure your custom adapter class as shown in “Configuring the WebLogic SSL
Implementation Programatically” on page 13-35, substituting your class for WLSSLAdapter
and using the configuration methods defined for your adapter.

Conf igur ing Secur i t y

13-40 Programming WebLogic Web Services

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html.

Extending the SSLAdapterFactory Class
You can create your own custom SSL adapter factory class by extending the
SSLAdapterFactory class, which is used to create instances of adapters. One reason for
extending the factory class is to allow custom configuration of each adapter when it is created,
prior to use.

To create a custom SSL adapter factory class:

1. Create a class that extends the following class:

weblogic.webservice.client.SSLAdapterFactory

2. Override the following method of the SSLAdapterFactory class:

public weblogic.webservice.client.SSLAdapter createSSLAdapter();

This method is called whenever a new SSLAdapter, or an adapter that implements this
interface, is created by the adapter factory. By overriding this method, you can perform
custom configuration of each new adapter before it is actually used.

3. In your client application, create an instance of your factory and set it as the default factory
by executing the following method:

SSLAdapterFactory.setDefaultFactory(factoryInstance);

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html.

Configuring Two-Way SSL For a Client Application
If you configured two-way SSL for WebLogic Server, the client application must present a
certificate to WebLogic Server, in addition to WebLogic Server presenting a certificate to the
client application as required by one-way SSL. The following sample Java code shows one way
of doing this where the client application receives the client certificate file as an argument
(relevant code in bold):

...

SSLAdapterFactory factory = SSLAdapterFactory.getDefaultFactory();
WLSSLAdapter adapter = (WLSSLAdapter) factory.getSSLAdapter();

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/webservice/client/package-summary.html

Conf igur ing Access Cont ro l Secur i t y : Ma in S teps

Programming WebLogic Web Services 13-41

if (argv.length > 1) {
 System.out.println("loading client certs from "+argv[1]);

FileInputStream clientCredentialFile = new FileInputStream (argv[1]);
String pwd = "clientkey";

adapter.loadLocalIdentity(clientCredentialFile, pwd.toCharArray());

javax.security.cert.X509Certificate[] certChain = adapter.getIdentity("RSA",0);

factory.setDefaultAdapter(adapter);

factory.setUseDefaultAdapter(true);

...

Using a Proxy Server
If your client application is running inside a firewall, for example, and needs to use a proxy
server, set the host name and the port of the proxy server using the following two System
properties:

weblogic.webservice.transport.https.proxy.host

weblogic.webservice.transport.https.proxy.port

For more information on these System properties, see “Using Web Services System Properties”
on page 7-14.

Configuring Access Control Security: Main Steps
Access control security refers to configuring the Web Service to control the users who are
allowed to access it, and then coding your client application to authenticate itself, using HTTP,
to the Web Service when the client invokes one of its operations.

The following procedure describes the high-level steps; later sections in the chapter describe the
steps in more detail.

1. Control access to either the entire Web Service or some of its components by creating roles,
mapping the roles to principals in your realm, then specifying which components are secured
and accessible only by the principals in the role.

See “Controlling Access to WebLogic Web Services” on page 13-42.

2. Optionally update the web-services.xml file to specify that the Web Service can be
accessed only by HTTPS.

Conf igur ing Secur i t y

13-42 Programming WebLogic Web Services

See “Specifying the HTTPS Protocol” on page 13-44.

3. Code your client to authenticate itself using HTTP when invoking a WebLogic Web
Service.

See “Coding a Client Application to Authenticate Itself to a Web Service” on page 13-45.

Controlling Access to WebLogic Web Services
WebLogic Web Services are packaged as standard J2EE Enterprise applications. Consequently,
to secure access to the Web Service, you secure access to some or all of the following components
that make up the Web Service:

The entire Web Service

A subset of the operations of the Web Service

The Web Service URL

The stateless session EJB that implements the Web Service

A subset of the methods of the stateless session EJB

The WSDL and Home Page of the Web Service

You can use basic HTTP authentication or SSL to authenticate a client that is attempting to access
a WebLogic Web Service. Because many of the preceding components are standard J2EE
components, you secure them by using standard J2EE security procedures. The following
sections describe how to secure each of these components.

Note: If the back-end component that implements your Web Service is a Java class or a JMS
listener, the only way to secure the Web Service is by adding security constraints to the
entire Web Service or to the URL that invokes the Web Service. In other words, you
cannot secure just the back-end component that implements the Web Service.

 For additional and detailed information about configuring, programming, and managing
WebLogic security, see the security documentation at
http://e-docs.bea.com/wls/docs81/security.html.

Securing the Entire Web Service and Its Operations
You secure an entire Web Service by creating a security policy through the Administration
Console and assigning it to a WebLogic Web Service. You can also use the Administration
Console to secure a subset of the Web Service operations. Security policies answer the question
"who has access" to a WebLogic resource, in this case a Web Service or a subset of its operations.

http://e-docs.bea.com/wls/docs81/security.html
http://e-docs.bea.com/wls/docs81/security.html

Conf igur ing Access Cont ro l Secur i t y : Ma in S teps

Programming WebLogic Web Services 13-43

A security policy is created when you define an association between a WebLogic resource and a
user, group, or role. A WebLogic resource has no protection until you assign it a security policy.

You assign security policies to an individual resource or to attributes or operations of a resource.
If you assign a security policy to a type of resource, all new instances of that resource inherit that
security policy. Security policies assigned to individual resources or attributes override security
policies assigned to a type of resource.

To use a user or group to create a security policy, the user or group must be defined in the
Authentication provider configured in the default security realm. To use a role to create a security
policy, the role must be defined in the Role Mapping provider configured in the default security
realm. By default, the WebLogic Authentication and Role Mapping providers are configured.

For more information and procedures about setting protections for a WebLogic Web Service or
a subset of its operations using the Administration Console, see Securing WebLogic Resources at
http://e-docs.bea.com/wls/docs81/secwlres/intro.html.

Securing the Web Service URL
Client applications use a URL to access a Web Service, as described in “WebLogic Web Services
Home Page and WSDL URLs” on page 6-23. An example of such a URL is:

http://ariel:7001/web_services/TraderService

You can restrict access to the entire Web Service by restricting access to its URL. To do this,
update the web.xml and weblogic.xml deployment descriptor files (in the Web application that
contains the web-services.xml file) with security information.

For detailed information about restricting access to URLs, see Securing WebLogic Resources at
http://e-docs.bea.com/wls/docs81/secwlres/index.html.

Securing the Stateless Session EJB and Its Methods
If you secure the stateless session EJB that implements a Web Service, client applications that
invoke the service have access to the Web application, the WSDL, and the Web Service Home
Page, but might not be able to invoke the actual method that implements an operation. This type
of security is useful if you want to closely monitor who has access to the business logic of the
EJB but do not want to block access to the entire Web Service.

You can also use this type of security to decide at the method-level who has access to the various
operations of the Web Service. For example, you can specify that any user can invoke a method
that views information, but only a certain subset of users are allowed to update the information.

http://e-docs.bea.com/wls/docs81/secwlres/intro.html
http://e-docs.bea.com/wls/docs81/secwlres/index.html

Conf igur ing Secur i t y

13-44 Programming WebLogic Web Services

For more information and procedures about securing EJBs and individual methods of an EJB
using the Administration Console, see Securing WebLogic Resources at
http://e-docs.bea.com/wls/docs81/secwlres/intro.html.

Securing the WSDL and Home Page of the Web Service
You can restrict access to either the WSDL or Home Page of a WebLogic Web Service by
updating the web-services.xml deployment descriptor that describes the service, as described
in the following procedure:

1. Open the web-services.xml file in your favorite editor.

The web-services.xml file is located in the WEB-INF directory of the Web application of
the Web Services EAR file. See “The Web Service EAR File Package” on page 6-17 for
more information on locating the file.

2. To restrict access to the WSDL, add the exposeWSDL="False" attribute to the
<web-service> element that describes your Web Service. To restrict access to the Home
page, add the exposeHomePage="False" attribute. The following excerpt shows an
example:

 <web-service
 name="stockquotes"
 uri="/myStockQuoteService"
 exposeWSDL="False"
 exposeHomePage="False" >
 ...
 </web-service>

The default value of the exposeWSDL and exposeHomePage attributes is True.

3. Re-deploy your Web Service for the change to take affect. The WSDL and Home Page of
the Web Service will be inaccessible to all users.

Specifying the HTTPS Protocol
You make a Web Service accessible only through HTTPS by updating the protocol attribute of
the <web-service> element in the web-services.xml file that describes the Web Service, as
shown in the following excerpt:

<web-services>

 <web-service name="stockquotes"

 targetNamespace="http://example.com"

 uri="/myStockQuoteService"

http://e-docs.bea.com/wls/docs81/secwlres/intro.html

Conf igur ing Access Cont ro l Secur i t y : Ma in S teps

Programming WebLogic Web Services 13-45

 protocol="https" >

 ...

 </web-service>

</web-services>

Note: If you configure SSL for WebLogic Server and you do not specify the HTTPS protocol
in the web-services.xml file, client applications can access the Web Service using
both HTTP and HTTPS. However, if you specify HTTPS access in the
web-services.xml file, client applications cannot use HTTP to access the Web
Service.

If you use the servicegen Ant task to assemble the Web Service, use the protocol attribute of
the <service> element to specify the HTTPS protocol, as shown in the following sample
build.xml file:

<project name="buildWebservice" default="ear">
 <target name="ear">
 <servicegen
 destEar="ws_basic_statelessSession.ear"
 contextURI="WebServices"
 <service
 ejbJar="HelloWorldEJB.jar"
 targetNamespace="http://www.bea.com/webservices/basic/statelesSession"
 serviceName="HelloWorldEJB"
 serviceURI="/HelloWorldEJB"
 protocol="https"
 generateTypes="True"
 expandMethods="True">
 </service>
 </servicegen>
 </target>
</project>

Coding a Client Application to Authenticate Itself to a Web
Service
When you write a JAX-RPC client application that invokes a Web Service, you use the following
two properties to send a user name and password to the service so that the client can authenticate
itself:

javax.xml.rpc.security.auth.username

javax.xml.rpc.security.auth.password

Conf igur ing Secur i t y

13-46 Programming WebLogic Web Services

The following example, taken from the JAX-RPC specification, shows how to use these
properties when using the javax.xml.rpc.Stub interfaces to invoke a secure Web Service:

StockQuoteProviderStub sqp = // ... get the Stub;
sqp._setProperty ("javax.xml.rpc.security.auth.username", "juliet");
sqp._setProperty ("javax.xml.rpc.security.auth.password", "mypassword");
float quote sqp.getLastTradePrice("BEAS");

If you use the WebLogic-generated client JAR file to invoke a Web Service, the Stub classes are
already created for you, and you can pass the user name and password to the Service-specific
implementation of the getServicePort() method, as shown in the following example taken
from the JAX-RPC specification:

StockQuoteService sqs = // ... Get access to the service;
StockQuoteProvider sqp = sqs.getStockQuoteProviderPort ("juliet",
"mypassword");
float quote = sqp.getLastTradePrice ("BEAS");

In this example, the implementation of the getStockQuoteProvidePort() method sets the two
authentication properties.

For additional information on writing a client application using JAX-RPC to invoke a secure Web
Service, see http://java.sun.com/xml/jaxrpc/index.html.

Testing a Secure WebLogic Web Service From Its Home Page
The section “Deploying and Testing WebLogic Web Services” on page 6-23 describes how to
invoke and test a non-secure WebLogic Web Service from its Home page.

Testing a secure WebLogic Web Service from its Home Page requires additional configuration
of WebLogic Server, because in this case the server itself is acting as a secure client to the Web
Service. In particular, you must configure WebLogic Server to use a trusted certificate authority
(CA) file called trusted-ca.pem, which the Home Page is hard-coded to use when invoking the
secure Web Service; the Home Page does not use the server keystore. This is because the Home
Page uses the standard WebLogic Web Services client JAR file, which, with the aim of keeping
the JAR file as thin as possible, does not include the security APIs needed to extract certificates
from a keystore.

Note: You cannot use two-way SSL when testing a secure Web Service from its Home Page.

To test a secure WebLogic Web Service from its Home Page, follow these steps.

1. If not already configured, configure SSL for WebLogic Server.

http://java.sun.com/xml/jaxrpc/index.html

Test ing a Secure WebLog ic Web Se rv ice F rom I ts Home Page

Programming WebLogic Web Services 13-47

For more information, see Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html.

2. Add the following flags to the script that starts up this instance of WebLogic Server:

-Dweblogic.webservice.client.ssl.strictcertchecking=false
-Dweblogic.security.SSL.ignoreHostnameVerification=true

3. Create a trusted certificate authority (CA) file called trusted-ca.pem by following these
steps:

a. Open a command window and set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your
domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your
domain.

b. Move to the WL_HOME\server\lib directory, where WL_HOME refers to the top-level
WebLogic Platform installation directory.

c. Use the utils.der2pem WebLogic Server Java utility to convert the
WL_HOME\server\lib\CertGenCA.der trusted certificate authority file from DER
format to PEM:

java utils.der2pem CertGenCA.der

The utility generates a file called CertGenCA.pem.

d. Rename the generated CertGenCA.pem to trusted-ca.pem.

4. Move the trusted-ca.pem file you created in the preceding step to the domain directory
of WebLogic Server.

5. Restart WebLogic Server for the startup flags to take effect.

6. Invoke the secure WebLogic Web Service’s Home Page in your browser. The browser will
return a message saying the certificate is not trusted.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html

Conf igur ing Secur i t y

13-48 Programming WebLogic Web Services

7. Load the trusted certificate in your browser. You may need to restart your browser for it to
take effect.

8. Invoke the secure WebLogic Web Service’s Home Page again in your browser. You should
now be able to test your secure Web Service as described in “Deploying and Testing
WebLogic Web Services” on page 6-23.

Programming WebLogic Web Services 14-1

C H A P T E R 14

Internationalization

The Internationalization Guide at http://e-docs.bea.com/wls/docs81/i18n/index.html provides
general information about internationalizing a WebLogic Server application. The following
sections describe additional information specific to internationalizing a WebLogic Web Service:

“Overview of Internationalization” on page 14-1

“Internationalizing a WebLogic Web Service” on page 14-2

“Invoking a Web Service Using a Specific Character Set” on page 14-4

Overview of Internationalization
Internationalization refers to the preparation of software so that it behaves properly in multiple
locations. Internationalization of WebLogic Web Services primarily involves specifying the
character set of the SOAP request and response. You then specify the character set of the SOAP
request inside the client application that invokes the Web Service. There are a variety of ways to
specify the character set that WebLogic Server uses in its SOAP response, as outlined in later
sections. WebLogic Server can also accept many character sets in a SOAP request used to invoke
a deployed WebLogic Web Service.

Often the default character sets used by WebLogic Server are adequate and you do not need to
explicitly specify a character set for a Web Service. For example, if a client application specifies
its preferred character set, and there is no character set specified for a Web Service, then
WebLogic Server responds by using the client’s preferred character set. Also,
non-internationalized WebLogic Server instances use the US-ASCII character set by default, and
internationalized WebLogic Server instances use the UTF-8 character set by default, and both of

http://e-docs.bea.com/wls/docs81/i18n/index.html

In te rnat iona l i za t ion

14-2 Programming WebLogic Web Services

these character sets are compatible when one WebLogic Server instance is communicating with
the other. This also means that a Web Service running on a non-internationalized WebLogic
Server instance can handle multi-byte characters correctly.

However, if the default character sets are not adequate for your application, use the information
here to specify the character set that you need.

Internationalizing a WebLogic Web Service
This section describes how to set the character set for a WebLogic Web Service. It also describes
how WebLogic Server determines what character set it should use when sending the SOAP
message response of an invoke of a deployed Web Service.

Specifying the Character Set for a WebLogic Web Service
When you specify the character set for a WebLogic Web Service, you are specifying the value of
the Content-Type HTTP header of the SOAP message response to an invoke of a deployed Web
Service. You use one of the following two methods to specify the character set for a WebLogic
Web Service:

Update the web-services.xml deployment descriptor file.

Set the weblogic.webservice.i18n.charset WebLogic Server system property.

Warning: This method specifies the character set for all deployed Web Services.

Updating the web-services.xml File
The preferred way to specify the character set used by a particular WebLogic Web Service is by
updating its web-serivces.xml file.

To specify the character set for a WebLogic Web Service, update the charset attribute of the
<web-service> element in the web-services.xml file. Set it equal to the standard name of the
character set, as shown in the following sample excerpt:

<web-services>
 <web-service name="stockquotes"
 targetNamespace="http://example.com"
 uri="/myStockQuoteService"
 charset="Shift_JIS">
 ...

 </web-service>
</web-services>

In te rnat iona l i z ing a WebLogic Web Serv i ce

Programming WebLogic Web Services 14-3

The default value is US-ASCII.

For the full list of character sets, see http://www.iana.org/assignments/character-sets.

If you set this attribute, the WebLogic Web Service always uses the specified character set in its
SOAP response to an invoke of any operation in the Web Service.

Setting a WebLogic Server System Property
You can also specify the character set for all deployed WebLogic Web Services deployed on a
WebLogic Server instance by setting the system property
weblogic.webservice.i18n.charset equal to the name of the character set. Set this system
property in the script that starts up the WebLogic Server instance:

-Dweblogic.webservice.i18n.charset=utf-8

Order of Precedence of Character Set Configuration Used By
WebLogic Server
The following list shows the order by which WebLogic Server determines the character set of a
WebLogic Web Service when it is creating the SOAP response to an invoke of one of its
operations:

1. The value of the charset attribute in the corresponding <web-service> element of the
web-services.xml deployment descriptor.

If this is not set, then WebLogic Server looks at the following:

2. The character set preferred by the client application that invoked the Web Service operation.
If your client application uses the WebLogic Web Services client APIS, the character set is
specified using the
weblogic.webservice.binding.BindingInfo.setAcceptCharset() method.

If this is not set, then WebLogic Server looks at the following:

3. The value of the WebLogic Server system property
weblogic.webservice.i18n.charset.

If this is not set, then WebLogic Server looks at the following:

4. The character set specified for the JVM. Specifically, if the JVM property user.language
is set to en, then WebLogic Web Services use the US-ASCII character set. If the
user.language property is set to anything else, WebLogic Web Services use the UTF-8
character set.

http://www.iana.org/assignments/character-sets

In te rnat iona l i za t ion

14-4 Programming WebLogic Web Services

Invoking a Web Service Using a Specific Character Set
This section describes how to use WebLogic Web Service APIs to invoke a Web Service using a
character set other than the default. The section also describes the character set settings in the
HTTP request headers that are honored by WebLogic Web Services.

Setting the Character Set When Invoking a Web Service
If you use the WebLogic Web Service client APIs to invoke a Web Service, you use the
weblogic.webservice.binding.BindingInfo.setCharset() to set the character set of the
client application’s SOAP request. In particular, this method sets the Content-Type HTTP
header. This method sets the character set of only the data travelling from the client application
to the Web Service. The SOAP response from the Web Service might use a completely different
character set; see “Order of Precedence of Character Set Configuration Used By WebLogic
Server” on page 14-3 for details on how to determine the character set of the SOAP response from
a WebLogic Web Service.

Your client application can specify the character set that it would prefer the Web Service to use
in its response by using the
weblogic.webservice.binding.BindingInfo.setAcceptCharset() method. In
particular, this method sets the Accept-Charset HTTP header.

The following code excerpt shows how to set the character set when invoking a Web Service
operation, as well as specify the preferred character set in the response; in the example, stub is
the instance of the JAX-RPC Stub class for your Web Service:

import weblogic.webservice.binding.BindingInfo;

...

 BindingInfo info =
 (BindingInfo)stub._getProperty("weblogic.webservice.bindinginfo");

 // The following method sets the Content-Type HTTP header
 info.setCharset("UTF-8");
 port.helloWorld();

 // The following method sets the Accept-Charset HTTP header
 info.setAcceptCharset("UTF-16");
 port.helloWorld();

For more information about the weblogic.webservice.binding package, see the Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/index.html.

http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

I nvok ing a Web Se rv ice Us ing a Spec i f i c Characte r Se t

Programming WebLogic Web Services 14-5

Warning: The weblogic.webservice.binding package is a proprietary WebLogic API;
using it in your client applications might make it difficult to port them to
non-WebLogic environments.

Character Set Settings in HTTP Request Headers Honored by
WebLogic Web Services
When a WebLogic Web Service receives an HTTP SOAP request that invokes one of the
service’s operations, it honors HTTP headers as follows:

WebLogic Web Services always honor the charset attribute of the Content-Type HTTP
header, which specifies the character set of the SOAP request.

WebLogic Web Services sometimes honor the Accept-Charset HTTP header. This header
specifies the character set of the SOAP response preferred by the application that invoked
the Web Service operation. If the WebLogic Web Service has not been configured with a
specific character set (see “Specifying the Character Set for a WebLogic Web Service” on
page 14-2), the SOAP response uses the character set specified by the Accept-Charset
HTTP header. If, however, the WebLogic Web Service is configured to use a specific
character set, that character set is always used in the SOAP response.

WebLogic Web Services never honor the encoding attribute of the optional <?xml?>
element that starts the SOAP 1.1 envelope.

Note: This is true only for SOAP 1.1. For SOAP 1.2, if the ContentType HTTP Header is
missing, then the encoding attribute of the <?xml?> element is honored.

The following excerpt of a SOAP envelope, including the HTTP headers, shows the three ways
of specifying characters sets in bold:

POST /StockQuote HTTP/1.1
Host: www.sample.com
Content-Type: text/xml; charset="US-ASCII"
Content-Length: nnnn
SOAPAction: "Some-URI"
Accept-Charset: UTF-8

<?xml version="1.0" encoding="UTF-16"?>
<SOAP-ENV:Envelope
 ...
</SOAP-ENV:Envelope>

In te rnat iona l i za t ion

14-6 Programming WebLogic Web Services

Programming WebLogic Web Services 15-1

C H A P T E R 15

Using SOAP 1.2

The following sections provide information about using SOAP 1.2 as the message format:

“Overview of Using SOAP 1.2” on page 15-1

“Specifying SOAP 1.2 for a WebLogic Web Service: Main Steps” on page 15-2

“Updating the web-services.xml File Manually” on page 15-3

“Invoking a Web Service Using SOAP 1.2” on page 15-3

Overview of Using SOAP 1.2
By default, a WebLogic Web Service uses SOAP 1.1 as the message format when a client
application invokes one of its operations. You can, however, use SOAP 1.2 as the message format
by updating the web-services.xml file and specifying a particular attribute in clientgen
when you generate the client stubs.

Warning: BEA’s SOAP 1.2 implementation is based on the W3C Working Draft specification
(June 26, 2002). Because this specification is not yet a W3C Recommendation,
BEA’s current implementation is subject to change. BEA highly recommends that
you use the SOAP 1.2 feature included in this version of WebLogic Server in a
development environment only.

When a WebLogic Web Service is configured to use SOAP 1.2 as the message format:

The generated WSDL of the Web Service contains two port definitions: one with a SOAP
1.1 binding, and another with a SOAP 1.2 binding.

http://www.w3.org/2000/xp/Group/

Using SOAP 1 .2

15-2 Programming WebLogic Web Services

The clientgen Ant task, when generating the Web-service specific client JAR file for the
Web Service, creates a Service implementation that contains two getPort() methods,
one for SOAP 1.1 and another for SOAP 1.2.

Specifying SOAP 1.2 for a WebLogic Web Service: Main Steps
The following procedure assumes that you are familiar with the servicegen Ant task, and you
want to update the Web Service to use SOAP 1.2 as the message format. For an example of using
servicegen, see Chapter 3, “Creating a WebLogic Web Service: A Simple Example.”

1. Update the build.xml file that contains the call to the servicegen Ant task, adding the
attribute useSOAP12="True" to the <service> element that builds your Web Service, as
shown in the following example:

 <servicegen

 destEar="ears/myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services" >

 <service

 ejbJar="jars/myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True"

 useSOAP12="True" >

 </service>

 </servicegen>

Note: If you are not using servicegen, you can update the web-services.xml file of
your WebLogic Web Service manually. For details, see “Updating the
web-services.xml File Manually” on page 15-3.

2. Re-run the servicegen Ant task to regenerate your Web Service to use SOAP 1.2.

For general details about the servicegen Ant task, see “Creating the Build File That
Specifies the servicegen Ant Task” on page 6-5.

3. Re-run the clientgen Ant task.

Updat ing the web-serv ices . xml F i l e Manual l y

Programming WebLogic Web Services 15-3

Because the WSDL of the Web Service has been updated to include an additional port with
a SOAP 1.2 binding, the clientgen Ant task automatically creates new stubs that contains
these SOAP 1.2-specific getPort() methods.

For details, see “Generating the Client JAR File by Running the clientgen Ant Task” on
page 7-5.

See “Invoking a Web Service Using SOAP 1.2” on page 15-3 for details about writing a Java
client application that invokes your Web Service.

Updating the web-services.xml File Manually
The web-services.xml file is located in the WEB-INF directory of the Web application of the
Web Services EAR file. See “The Web Service EAR File Package” on page 6-17 for more
information on locating the file.

To update the web-services.xml file to specify SOAP 1.2:

1. Open the file in your favorite editor.

2. Add the useSOAP12="True" attribute to the <web-service> element that describes your
Web Service. For example:

<web-service
 name="myWebService"
 useSOAP12="True"
 ...>
...
</web-service>

Invoking a Web Service Using SOAP 1.2
When writing your client application to invoke the SOAP 1.2-enabled WebLogic Web Service,
you first use the clientgen Ant task to generate the Web Service-specific client JAR file that
contains the generated stubs, as usual. The clientgen Ant task in this case generates a JAX-RPC
Service implementation that contains two getPort() methods: the standard one for SOAP 1.1,
called getServiceNamePort(), and a second one for SOAP 1.2, called
getServiceNamePortSoap12(), where ServiceName refers to the name of your Web Service.
These two getPort() methods correspond to the two port definitions in the generated WSDL of
the Web Service, as described in “Overview of Using SOAP 1.2” on page 15-1.

The following example of a simple client application shows how to invoke the helloWorld
operation of the MyService Web Service using both SOAP 1.1 (via the getMyservicePort()
method) and SOAP 1.2 (via the getMyServicePortSoap12() method):

Using SOAP 1 .2

15-4 Programming WebLogic Web Services

import java.io.IOException;

public class Main{

 public static void main(String[] args) throws Exception{

 MyService service = new MyService_Impl();

 MyServicePort port = service.getMyServicePort();

 System.out.println(port.helloWorld());

 port = service.getMyServicePortSoap12();

 System.out.println(port.helloWorld());

 }

}

Programming WebLogic Web Services 16-1

C H A P T E R 16

Creating JMS-Implemented WebLogic
Web Services

The following sections describe how to create JMS-implemented WebLogic Web Services:

“Designing JMS-Implemented WebLogic Web Services” on page 16-2

“Creating JMS-Implemented WebLogic Web Services” on page 16-3

“Configuring JMS Components for Message-Style Web Services” on page 16-4

“Assembling JMS-Implemented WebLogic Web Services Using servicegen” on page 16-5

“Assembling JMS-Implemented WebLogic Web Services Manually” on page 16-8

“Deploying JMS-Implemented WebLogic Web Services” on page 16-10

“Invoking JMS-Implemented WebLogic Web Services” on page 16-10

Overview of JMS-Implemented WebLogic Web Services
In addition to implementing a Web Service operation with a stateless session EJB or a Java class,
you can use a JMS message consumer or producer, such as a message-driven bean.

There are two types of JMS-implemented operations:

Operations that send data to a JMS destination.

You implement this type of operation with a JMS message consumer. The message
consumer consumes the message after a client that invokes the Web Service operation
sends data to the JMS destination.

Operations that receive data from a JMS queue.

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-2 Programming WebLogic Web Services

You implement this type of operation with a JMS message producer. The message producer
puts a message on the specified JMS queue and a client invoking this message-style Web
Service component polls and receives the message.

When a client application sends data to a JMS-implemented Web Service operation, WebLogic
Server first converts the XML data to its Java representation using either the built-in or custom
serializers, depending on whether the data type of the data is built-in or not. WebLogic Server
then wraps the resulting Java object in a javax.jms.ObjectMessage object and puts it on the
JMS destination. You can then write a JMS listener, such as a message-driven bean, to take the
ObjectMessage and process it. Similar steps happen in reverse when a client application invokes
a Web Service to receive data from a JMS queue.

If you are using non-built-in data types, you must update the web-services.xml deployment
descriptor file with the correct data type mapping information. If the Web Service cannot find
data type mapping information for the data, then it converts the data to a
javax.xml.soap.SOAPElement data type, defined by the SOAP With Attachments API For
Java (SAAJ) specification.

Note: Input and return parameters to a Web Service operation implemented with a JMS
consumer or producer must implement the java.io.Serializable interface.

For detailed information about programming message-driven beans, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs81/ejb/index.html.

Designing JMS-Implemented WebLogic Web Services
This section describes the relationship between JMS and WebLogic Web Services operations
implemented with a JMS consumer or producer, and design considerations for developing these
types of Web Services.

Retrieving and Processing Messages
After you decide what type of JMS destination you are going to use, you must decide what type
of J2EE component will retrieve the message from the JMS destination and process it. Typically
this will be a message-driven bean. This message-driven bean can do all the message-processing
work, or it can parcel out some or all of the work to other EJBs. Once the message-driven bean
finishes processing the message, the execution of the Web Service is complete.

Because a single Web Service operation cannot both send and receive data, you must create two
Web Service operations if you want a client application to be able to both send data and receive
data. The sending Web Service operation is related to the receiving one because the original

http://java.sun.com/xml/saaj/index.html
http://java.sun.com/xml/saaj/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html

Creat ing JMS- Implemented WebLog ic Web Serv ices

Programming WebLogic Web Services 16-3

message-driven bean that processed the message puts the response on the JMS destination
corresponding to the receiving Web Service operation.

Example of Using JMS Components
Figure 16-1 shows two separate Web Service operations, one for receiving a message from a
client and one for sending a message back to the client. The two Web Service operations have
their own JMS destinations. The message-driven bean gets messages from the first JMS
destination, processes the information, then puts a message back onto the second JMS
destination. The client invokes the first Web Service operation to send the message to WebLogic
Server and then invokes the second Web Service operation to receive a message back from
WebLogic Server.

Figure 16-1 Data Flow Between JMS-Implemented Web Service Operations and JMS

Creating JMS-Implemented WebLogic Web Services
To create a Web Service implemented with a JMS message producer or consumer, follow these
steps:

1. Write the Java code for the J2EE component (typically a message-driven bean) that will
consume or produce the message from or on the JMS destination.

Client
Message-Driven Bean

JMS
Destination

JMS
Destination

Send Web Service

Receive Web Service

WebLogic Server

Operation

Operation

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-4 Programming WebLogic Web Services

For detailed information, see Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81/ejb/index.html.

2. Use the Administration Console to configure the following JMS components of WebLogic
Server:

– The JMS queue that will either receive the XML data from a client or send XML data
to a client. Later, when you assemble the Web Service as described in Chapter 6,
“Assembling WebLogic Web Services Using Ant Tasks,” you will use the name of this
JMS destination.

– The JMS Connection factory that the WebLogic Web Service uses to create JMS
connections.

For more information on this step, see “Configuring JMS Components for Message-Style
Web Services” on page 16-4.

Configuring JMS Components for Message-Style Web Services
In this section it is assumed that you have already configured a JMS server. For information about
configuring JMS servers, and general information about JMS, see JMS: Configuring at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html and Programming WebLogic
JMS at http://e-docs.bea.com/wls/docs81/jms/index.html.

To configure a JMS queue and JMS Connection Factory, follow these steps:

1. Invoke the Administration Console in your browser. For details, see “Overview of
Administering WebLogic Web Services” on page 17-1.

2. In the left pane, open Services→JMS.

3. Right-click the Connection Factories node and choose Configure a new
JMSConnectionFactory from the drop-down list.

4. Enter a name for the Connection Factory in the Name field.

5. Enter the JNDI name of the Connection Factory in the JNDIName field.

6. Enter values in the remaining fields as appropriate. For information on these fields, see
JMS: Configuring at http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html.

7. Click Create.

8. Select the servers or clusters on which you would like to deploy this JMS connection
factory.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html
http://e-docs.bea.com/wls/docs81/jms/index.html
http://e-docs.bea.com/wls/docs81/jms/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html

Assembl ing JMS- Implemented WebLog ic Web Se rv ices Us ing se rv icegen

Programming WebLogic Web Services 16-5

9. Click Apply.

10. In the left pane, open Services→JMS→Servers.

11. Select the JMS server for which you want to create a JMS destination.

12. Right-click the Destinations node and choose from the drop-down list Configure a new
JMSQueue to create a queue.

13. Enter the name of the JMS destination in the Name text field.

14. Enter the JNDI name of the destination in the JNDIName text field.

15. Enter values in the remaining fields as appropriate. For information on these fields, see
JMS: Configuring at http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html.

16. Click Create.

Assembling JMS-Implemented WebLogic Web Services Using
servicegen

You can use the servicegen Ant task to assemble a JMS-implemented Web Service
automatically. The Ant task creates a web-services.xml deployment descriptor file based on
the attributes of the build.xml file, optionally creates the non-built-in data type components
(such as serialization class), optionally creates a client JAR file used to invoke the Web Service,
and packages everything into a deployable EAR file.

To automatically assemble a Web Service using the servicegen Ant task:

1. Create a staging directory to hold the components of your Web Service.

2. Package your JMS message consumers and producers (such as message-driven beans) into a
JAR file.

For detailed information on this step, refer to Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/environment.html.

3. Copy the JAR file to the staging directory.

4. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html
http://e-docs.bea.com/wls/docs81/programming/environment.html

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-6 Programming WebLogic Web Services

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

5. In the staging directory, create the Ant build file (called build.xml by default) that
contains a call to the servicegen Ant task.

For details about specifying the servicegen Ant task, see Listing 16-1.

For general information about creating Ant build files, see
http://jakarta.apache.org/ant/manual/.

Note: The Apache Jakarta Web site publishes online documentation for only the most
current version of Ant, which might be different from the version of Ant that is
bundled with WebLogic Server. To determine the version of Ant that is bundled with
WebLogic Server, run the following command after setting your WebLogic
environment:

prompt> ant -version

To view the documentation for a specific version of Ant, download the Ant zip file
from http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

6. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant

The Ant task generates the Web Services EAR file in the staging directory which you can
then deploy on WebLogic Server.

The following sample build.xml file contains a call to the servicegen Ant task.

Listing 16-1 Sample build.xml File

<project name="buildWebservice" default="ear">

 <target name="ear">

 <servicegen

 destEar="jms_send_queue.ear"

 contextURI="WebServices" >

 <service

 JMSDestination="jms.destination.queue1"

 JMSAction="send"

http://jakarta.apache.org/ant/manual/
http://archive.apache.org/dist/ant/binaries/

Assembl ing JMS- Implemented WebLog ic Web Se rv ices Us ing se rv icegen

Programming WebLogic Web Services 16-7

 JMSDestinationType="queue"

 JMSConnectionFactory="jms.connectionFactory.queue"

 JMSOperationName="sendName"

 JMSMessageType="types.myType"

 generateTypes="True"

 targetNamespace="http://tempuri.org"

 serviceName="jmsSendQueueService"

 serviceURI="/jmsSendQueue"

 expandMethods="True">

 </service>

 </servicegen>

 </target>

</project>

When you run the servicegen Ant task using the preceding build.xml file, the Ant task creates
a single Web Service called jmsSendQueueService. The URI to identify this Web Service is
/jmsSendQueue; the full URL to access the Web Service is

http://host:port/WebServices/jmsSendQueue

The servicegen Ant task packages the Web Service in an EAR file called
jms_send_queue.ear. The EAR file contains a WAR file called web-services.war (default
name) that contains all the Web Service components, such as the web-services.xml
deployment descriptor file.

The Web Service exposes a single operation called sendName. Client applications that invoke this
Web Service operation send messages to a JMS queue whose JNDI name is
jms.destination.queue1. The JMS ConnectionFactory used to create the connection to
this queue is jms.connectionFactory.queue. The data type of the single parameter of the
sendName operation is types.myType. Because the generateTypes attribute is set to True, the
servicegen Ant task generates the non-built-in data type components for this data type, such as
the serialization class.

Note: The types.myType Java class must be in servicegen’s CLASSPATH so that
servicegen can generate appropriate components.

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-8 Programming WebLogic Web Services

Assembling JMS-Implemented WebLogic Web Services
Manually

To assemble a JMS-implemented WebLogic Web Service manually:

1. Package the JMS message consumers and producers into a JAR file. See “Packaging the JMS
Message Consumers and Producers” on page 16-8.

2. Update the web-services.xml file with component information. See “Updating the
web-services.xml File With Component Information” on page 16-8.

3. Follow the steps described in “Assembling WebLogic Web Services Using Individual Ant
Tasks” on page 6-6, using the JMS-specific information where appropriate.

The following sections describe JMS-specific information about assembling Web Services
manually.

Packaging the JMS Message Consumers and Producers
Package your JMS message consumers and producers (such as message-driven beans) into a JAR
file.

When you create the EAR file that contains the entire Web Service, put this JAR file in the
top-level directory, in the same location as EJB JAR files.

Updating the web-services.xml File With Component
Information
Use the <components> child element of the <web-service> element to list and describe the
JMS back-end components that implement the operations of the Web Service. Each back-end
component has a name attribute that you later use when describing the operation that the
component implements.

See “Sample web-services.xml File for JMS Component Web Service” on page 16-9 for an
example.

You list the following types of back-end components for JMS-implemented Web Services:

<jms-send-destination>

This element describes a JMS back-end component to which client applications send data.
The component puts the sent data on to a JMS destination. Use the connection-factory
attribute of this element to specify the JMS Connection factory that WebLogic Server uses

Assembl ing JMS- Implemented WebLog ic Web Se rv ices Manua l l y

Programming WebLogic Web Services 16-9

to create a JMS Connection object. Use the <jndi-name> child element to specify the
JNDI name of the destination, as shown in the following example:

<components>
 <jms-send-destination name="inqueue"
 connection-factory="myapp.myqueueCF">
 <jndi-name path="myapp.myqueueIN" />
 </jms-send-destination>
</components>

<jms-receive-queue>

This element describes the JMS back-end component in which client applications receive
data, in particular from a JMS queue. Use the connection-factory attribute to specify
the JMS Connection factory that WebLogic Server users to create a JMS Connection
object. Use the <jndi-name> child element to specify the JNDI name of the queue, as
shown in the following example:

<components>
 <jms-receive-queue name="outqueue"
 connection-factory="myapp.myqueueCF">
 <jndi-name path="myapp.myqueueOUT" />
 </jms-receive-queue>
</components>

Sample web-services.xml File for JMS Component Web Service
The following sample web-services.xml file describes a Web Service that is implemented with
a JMS message consumer or producer:

<web-services>
 <web-service targetNamespace="http://example.com"
 name="myMessageService" uri="MessageService">

 <components>
 <jms-send-destination name="inqueue"
 connection-factory="myapp.myqueuecf">
 <jndi-name path="myapp.myinputqueue" />
 </jms-send-destination>
 <jms-receive-queue name="outqueue"
 connection-factory="myapp.myqueuecf">
 <jndi-name path="myapp.myoutputqueue" />
 </jms-receive-queue>
 </components>

 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <operation invocation-style="one-way" name="enqueue"
 component="inqueue" />

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-10 Programming WebLogic Web Services

 <params>
 <param name="input_payload" style="in" type="xsd:anyType" />
 </params>
 </operation>
 <operation invocation-style="request-response" name="dequeue"
 component="outqueue" >
 <params>
 <return-param name="output_payload" type="xsd:anyType"/>
 </params>
 </operation>
 </operations>
 </web-service>
</web-services>

The example shows two JMS back-end components, one called inqueue in which a client
application sends data to a JMS destination, and one called outqueue in which a client
application receives data from a JMS queue.

Two corresponding Web Service operations, enqueue and dequeue, are implemented with these
back-end components.

The enqueue operation is implemented with the inqueue component. This operation is defined
to be asynchronous one-way, which means that the client application, after sending the data to the
JMS destination, does not receive a SOAP response (not even an exception.) The data sent by the
client is contained in the input_payload parameter.

The dequeue operation is implemented with the outqueue component. The dequeue operation
is defined as synchronous request-response because the client application invokes the operation
to receive data from the JMS queue. The response data is contained in the output parameter
output_payload.

Deploying JMS-Implemented WebLogic Web Services
Deploying a WebLogic Web Service refers to making it available to remote clients. Because
WebLogic Web Services are packaged as standard J2EE Enterprise applications, deploying a
Web Service is the same as deploying an Enterprise application.

For detailed information on deploying Enterprise applications, see Deploying WebLogic Server
Applications at http://e-docs.bea.com/wls/docs81/deployment/index.html.

Invoking JMS-Implemented WebLogic Web Services
This section shows two sample client applications that invoke JMS-implemented WebLogic Web
Services: a client application that sends data to a service operation, and a client application that

http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html

I nvok ing JMS- Implemented WebLog ic Web Serv ices

Programming WebLogic Web Services 16-11

receives data from another operation within the same Web Service. The first operation is
implemented with a JMS destination, the second with a JMS queue, as shown in the following
web-services.xml file that describes the Web Service:

<web-services xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <web-service
 name="BounceService"
 targetNamespace="http://www.foobar.com/echo"
 uri="/BounceService">

 <components>

 <jms-send-destination name="inqueue"
 connection-factory="weblogic.jms.ConnectionFactory">
 <jndi-name path="weblogic.jms.inqueue" />
 </jms-send-destination>
 <jms-receive-queue name="outqueue"
 connection-factory="weblogic.jms.ConnectionFactory">
 <jndi-name path="weblogic.jms.outqueue" />
 </jms-receive-queue>
 </components>

 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <operation invocation-style="one-way" name="submit" component="inqueue" >
 </operation>

 <operation invocation-style="request-response"
 name="query" component="outqueue" >
 <params>
 <return-param name="output_payload" type="xsd:string"/>
 </params>
 </operation>
 </operations>

 </web-service>

</web-services>

Invoking an Asynchronous Web Service Operation to Send Data
The following example shows a dynamic client application that invokes the submit operation,
described in the web-services.xml file in the preceding section. The submit operation sends
data from the client application to the weblogic.jms.inqueue JMS destination. Because the
operation is defined as one-way, it is asynchronous and does not return any value to the client
application that invoked it.

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-12 Programming WebLogic Web Services

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

/**
 * send2WS - this module sends to a specific Web Service connected JMS queue
 * If the message is 'quit' then the module exits.
 *
 * @returns
 * @throws Exception
 */

public class send2WS{

 public static void main(String[] args) throws Exception {

 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 ServiceFactory factory = ServiceFactory.newInstance();

 //define qnames
 String targetNamespace = "http://www.foobar.com/echo";

 QName serviceName = new QName(targetNamespace, "BounceService");
 QName portName = new QName(targetNamespace, "BounceServicePort");

 //create service
 Service service = factory.createService(serviceName);

 //create outbound call
 Call Ws2JmsCall = service.createCall();

 QName operationName = new QName(targetNamespace, "submit");

 //set port and operation name
 Ws2JmsCall.setPortTypeName(portName);
 Ws2JmsCall.setOperationName(operationName);

 //add parameters
 Ws2JmsCall.addParameter("param",

I nvok ing JMS- Implemented WebLog ic Web Serv ices

Programming WebLogic Web Services 16-13

 new QName("http://www.w3.org/2001/XMLSchema", "string"),
ParameterMode.IN

);
 //set end point address
 Ws2JmsCall.setTargetEndpointAddress(
 "http://localhost:7001/BounceBean/BounceService");

 // get message from user
 BufferedReader msgStream =
 new BufferedReader(new InputStreamReader(System.in));
 String line = null;
 boolean quit = false;
 while (!quit) {
 System.out.print("Enter message (\"quit\" to quit): ");
 line = msgStream.readLine();
 if (line != null && line.trim().length() != 0) {
 String result = (String)Ws2JmsCall.invoke(new Object[]{ line });
 if(line.equalsIgnoreCase("quit")) {
 quit = true;
 System.out.print("Done!");
 }
 }
 }
 }
}

Invoking a Synchronous Web Service Operation to Send Data
The following example shows a dynamic client application that invokes the query operation,
described in the web-services.xml file in “Invoking JMS-Implemented WebLogic Web
Services” on page 16-10. The client application invoking the query operation receives data from
the weblogic.jms.outqueue JMS queue. Because the operation is defined as
request-response, it is synchronous and returns the data from the JMS queue to the client
application.

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-14 Programming WebLogic Web Services

/**
 * fromWS - this module receives from a Web Service associated JMS queue
 * If the message is 'quit' then the module exits.
 *
 * @returns
 * @throws Exception
 */

public class fromWS {

 public static void main(String[] args) throws Exception {

 boolean quit = false;
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 ServiceFactory factory = ServiceFactory.newInstance();

 //define qnames
 String targetNamespace = "http://www.foobar.com/echo";

 QName serviceName = new QName(targetNamespace, "BounceService");
 QName portName = new QName(targetNamespace, "BounceServicePort");

 //create service
 Service service = factory.createService(serviceName);

 //create outbound call
 Call Ws2JmsCall = service.createCall();

 QName operationName = new QName(targetNamespace, "query");

 //set port and operation name
 Ws2JmsCall.setPortTypeName(portName);
 Ws2JmsCall.setOperationName(operationName);

 //add parameters
 Ws2JmsCall.addParameter("output_payload",
 new QName("http://www.w3.org/2001/XMLSchema", "string"),
 ParameterMode.OUT);
 //set end point address
 Ws2JmsCall.setTargetEndpointAddress(
 "http://localhost:7001/BounceBean/BounceService");

 System.out.println("Setup complete. Waiting for a message...");

 while (!quit) {
 String result = (String)Ws2JmsCall.invoke(new Object[] {});
 if(result != null) {
 System.out.println("TextMessage:" + result);

I nvok ing JMS- Implemented WebLog ic Web Serv ices

Programming WebLogic Web Services 16-15

 if (result.equalsIgnoreCase("quit")) {
 quit = true;
 System.out.println("Done!");
 }
 continue;
 }
 try {Thread.sleep(2000);} catch (Exception ignore) {}
 }
 }
}

Creat ing JMS- Implemented WebLog ic Web Se rv ices

16-16 Programming WebLogic Web Services

Programming WebLogic Web Services 17-1

C H A P T E R 17

Administering WebLogic Web Services

The following sections describe tasks for administering WebLogic Web Services:

“Overview of Administering WebLogic Web Services” on page 17-1

“Using the Administration Console to Administer Web Services” on page 17-2

Overview of Administering WebLogic Web Services
Once you develop and assemble a WebLogic Web Service, you can use the Administration
Console to deploy it on WebLogic Server. Additionally, you can use the Administration Console
to perform standard WebLogic administration tasks on the deployed Web Services, such as
undeploy, delete, view, and so on.

Typically, a Web Service is packaged as an EAR file. The EAR file consists of a WAR file that
contains the web-services.xml file and optional Java classes (such as the Java classes that
implement a Web Service, handlers, and serialization classes for non-built-in data types) and a
optional EJB JAR files that contain the stateless EJBs that implement the Web Service
operations. The servicegen Ant task always packages a Web Service into an EAR file.

You can also package a Web Service as just a Web application WAR file if the operations are
implemented with only Java classes, and not EJBs.

The Administration Console identifies a Web Service by the contents of the WAR file. In other
words, if the WAR file contained in an EAR file contains a web-services.xml file, then the
Administration Console lists the WAR file as a Web Service. The Administration Console uses

the icon to indicate that the WAR file is in fact a Web Service.

Admin is te r ing WebLog ic Web Se rv i ces

17-2 Programming WebLogic Web Services

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

host refers to the computer on which the Administration Server is running.

port refers to the port number where the Administration Server is listening for connection
requests. The default port number for the Administration server is 7001.

The following figure shows the main Administration Console window.

Figure 17-1 WebLogic Server Administration Console Main Window

Using the Administration Console to Administer Web Services
You can perform the following tasks using the Administration Console:

Using the Admin is t ra t i on Conso le to Admin is te r Web Serv ices

Programming WebLogic Web Services 17-3

Configure and Deploy a New Web Service at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#deploy_ws

View a Deployed Web Service at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#view_ws

Undeploy a Deployed Web Service at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#undeploy_ws

Delete a Web Service at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#delete_ws

View the Web Service Deployment Descriptor at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#view_dd_ws

Configure Reliable SOAP Messaging at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#reliable_messaging

http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#deploy_ws
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#view_ws
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#undeploy_ws
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#delete_ws
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#view_dd_ws
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#reliable_messaging
http://e-docs.bea.com/wls/docs81/ConsoleHelp/webservices.html#reliable_messaging

Admin is te r ing WebLog ic Web Se rv i ces

17-4 Programming WebLogic Web Services

Programming WebLogic Web Services 18-1

C H A P T E R 18

Publishing and Finding Web Services
Using UDDI

The following sections provide information about publishing and finding Web Services using
UDDI:

“Overview of UDDI” on page 18-1

“WebLogic Server UDDI Features” on page 18-4

“UDDI 2.0 Server” on page 18-5

“UDDI Directory Explorer” on page 18-21

“UDDI Client API” on page 18-22

“Pluggable tModel” on page 18-22

Overview of UDDI
UDDI stands for Universal Description, Discovery and Integration. The UDDI Project is an
industry initiative that is working to enable businesses to quickly, easily, and dynamically find
and carry out transactions with one another.

A populated UDDI registry contains cataloged information about businesses, the services that
they offer and communication standards and interfaces they use to conduct transactions.

Built on the Simple Object Access Protocol (SOAP) data communication standard, UDDI creates
a global, platform-independent, open architecture space that will benefit businesses.

The UDDI registry can be broadly divided into two categories:

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-2 Programming WebLogic Web Services

UDDI and Web Services

UDDI and Business Registry

For details about the UDDI data structure, see “UDDI Data Structure” on page 18-3.

UDDI and Web Services
The owners of Web Services publish them to the UDDI registry. Once published, the UDDI
registry maintains pointers to the Web Service description and to the service.

The UDDI allows clients to search this registry, find the intended service and retrieve its details.
These details include the service invocation point as well as other information to help identify the
service and its functionality.

Web Service capabilities are exposed through a programming interface, and usually explained
through Web Services Description Language (WSDL). In a typical publish-and-inquire scenario,
the provider publishes its business, registers a service under it and defines a binding template with
technical information on its Web Service. The binding template also holds reference to one or
several tModels, which represent abstract interfaces implemented by this Web Service. The
tModels might have been uniquely published by the provider, with information on the interfaces
and URL references to the WSDL document.

A typical client inquiry may have one of two objectives:

1. To seek an implementation of a known interface.

In other words, the client has a tModel ID and seeks binding templates referencing that
tModel.

2. To seek the updated value of the invocation point (i.e., access point) of a known binding
template ID.

UDDI and Business Registry
As a Business Registry solution, UDDI enables companies to advertise the business products and
services they provide, as well as how they conduct business transactions on the Web. This use of
UDDI has the potential of fueling growth of business-to-business (B2B) electronic commerce.

The minimum required information to publish a business is a single business name. Once
completed, a full description of a business entity may contain a wealth of information, all of
which helps to advertise the business entity and its products and services in a precise and
accessible manner.

Overv iew o f UDDI

Programming WebLogic Web Services 18-3

A Business Registry may contain the following:

Business Identification—Multiple names and descriptions of the business, comprehensive
contact information and standard business identifiers such as a tax identifier.

Categories—Standard categorization information (for example a D-U-N-S business
category number).

Service Description—Multiple names and descriptions of a service. As a container for
service information, companies can advertise numerous services, while clearly displaying
the ownership of services. The bindingTemplate information describes how to access the
service.

Standards Compliance—In some cases it is important to specify compliance with
standards. These standards might display detailed technical requirements on how to use the
service.

Custom Categories—It is possible to publish proprietary specifications (tModels) that
identify or categorize businesses or services.

UDDI Data Structure
The data structure within UDDI is comprised of four constructions: a businessEntity
structure, a businessService structure, a bindingTemplate structure and a tModel structure.

The following table outlines the difference between these constructions when used for Web
Service or Business Registry applications.

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-4 Programming WebLogic Web Services

WebLogic Server UDDI Features
Weblogic Server provides the following UDDI features:

UDDI 2.0 Server

Table 18-1 UDDI Data Structure

Data Structure Web Service Business Registry

businessEntity Represents a Web Service provider:
• Company name
• Contact detail
• Other business information

Represents a company, a division or a
department within a company:
• Company name(s)
• Contact details
• Identifiers and Categories

businessService A logical group of one or several Web
Services.

API(s) with a single name stored as a child
element, contained by the business entity
named above.

A group of services may reside in a single
businessEntity.
• Multiple names and descriptions
• Categories
• Indicators of compliancy with

standards

bindingTemplate A single Web Service.

Information provided here gives client
applications the technical information
needed to bind and interact with the target
Web Service.

Contains access point (i.e., URI to invoke a
Web Service).

Further instances of standards conformity.

Access points for the service in form of
URLs, phone numbers, email addresses, fax
numbers or other similar address types.

tModel Represents a technical specification;
typically a specifications pointer, or
metadata about a specification document,
including a name and a URL pointing to the
actual specifications. In the context of Web
Services, the actual specifications
document is presented in the form of a
WSDL file.

Represents a standard or technical
specification, either well established or
registered by a user for specific use.

UDDI 2 .0 Server

Programming WebLogic Web Services 18-5

UDDI Directory Explorer

UDDI Client API.

Pluggable tModel

UDDI 2.0 Server
The UDDI 2.0 Server is part of WebLogic Server and is started automatically when WebLogic
Server is started. The UDDI Server implements the UDDI 2.0 server specification at
http://www.uddi.org/specification.html.

Configuring the UDDI 2.0 Server
To configure the UDDI 2.0 Server:

1. Stop WebLogic Server.

2. Update the uddi.properties file, located in the WL_HOME/server/lib directory, where
WL_HOME refers to the main WebLogic Platform installation directory.

Warning: If your WebLogic Server domain was created by a user different from the user that
installed WebLogic Server, the WebLogic Server administrator must change the
permissions on the uddi.properties file to give access to all users.

3. Restart WebLogic Server.

Never edit the uddi.properties file while WebLogic Server is running. Should you modify
this file in a way that prevents the successful startup of UDDI Server, refer to the
WL_HOME/server/lib/uddi.properties.booted file for the last known good configuration.

To restore your configuration to its default, remove the uddi.properties file from the
WL_HOME/server/lib directory. BEA strongly recommends that you move this file to a backup
location, because a new uddi.properties file will be created and with its successful startup the
uddi.properties.booted file will also be overwritten. After removing the properties file, start
the server. Minimal default properties will be loaded and written to a newly created
uddi.properties file.

The following section describes the UDDI Server properties that you can include in the
uddi.properites file. The list of properties has been divided according to component, usage
and functionality. At any given time, you do not need all these properties to be present.

http://www.uddi.org/specification.html
http://www.uddi.org/specification.html

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-6 Programming WebLogic Web Services

Configuring an External LDAP Server
The UDDI 2.0 Server is automatically configured with an embedded LDAP server. You can,
however, also configure an external LDAP Server by following the procedure in this section.

Note: Currently, WebLogic Server supports only the SunOne Directory Server for use with the
UDDI 2.0 Server.

To configure the SunOne Directory Server to be used with UDDI, follow these steps:

1. Create a file called 51acumen.ldif in the
LDAP_DIR/Sun/MPS/slapd-LDAP_INSTANCE_NAME/config/schema directory, where
LDAP_DIR refers to the root installation directory of your SunOne Directory Server and
LDAP_INSTANCE_NAME refers to the instance name.

2. Update the 51acumen.ldif file with the content described in “51acumen.ldif File
Contents” on page 18-6.

3. Restart the SunOne Directory Server.

4. Update the uddi.properties file of the WebLogic UDDI 2.0 Server, adding the following
properties:

datasource.ldap.manager.password
datasource.ldap.manager.uid
datasource.ldap.server.root
datasource.ldap.server.url

The value of the properties depends on the configuration of your SunOne Directory Server.
The following example shows a possible configuration that uses default values:

datasource.ldap.manager.password=password
datasource.ldap.manager.uid=cn=Directory Manager
datasource.ldap.server.root=dc=beasys,dc=com
datasource.ldap.server.url=ldap://host:port

See Table 18-11, “LDAP Security Configuration,” on page 18-20 for information about
these properties.

5. Restart WebLogic Server.

51acumen.ldif File Contents
Use the following content to create the 51acumen.ldif file:

dn: cn=schema
#
attribute types:

UDDI 2 .0 Server

Programming WebLogic Web Services 18-7

#
attributeTypes: (11827.0001.1.0 NAME 'uddi-Business-Key' DESC
'Business Key' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.1 NAME 'uddi-Authorized-Name' DESC
'Authorized Name for publisher of data' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.2 NAME 'uddi-Operator' DESC
'Name of UDDI Registry Operator' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.3 NAME 'uddi-Name' DESC
'Business Entity Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.4 NAME 'uddi-Description' DESC
'Description of Business Entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.7 NAME 'uddi-Use-Type' DESC
'Name of convention that the referenced document follows' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.8 NAME 'uddi-URL' DESC
'URL' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.9 NAME 'uddi-Person-Name' DESC
'Name of Contact Person' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.10 NAME 'uddi-Phone' DESC
'Telephone Number' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{50} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.11 NAME 'uddi-Email' DESC
'Email address' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.12 NAME 'uddi-Sort-Code' DESC
'Code to sort addresses' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.13 NAME 'uddi-tModel-Key' DESC
'Key to reference a tModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.14 NAME 'uddi-Address-Line' DESC
'Actual address lines in free form text' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{80} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.15 NAME 'uddi-Service-Key' DESC
'Service Key' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.16 NAME 'uddi-Service-Name' DESC
'Service Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.17 NAME 'uddi-Binding-Key' DESC
'Binding Key' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.18 NAME 'uddi-Access-Point' DESC 'A

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-8 Programming WebLogic Web Services

text field to convey the entry point address for calling a web service' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.19 NAME 'uddi-Hosting-Redirector' DESC
'Provides a Binding Key attribute to redirect reference to a different binding
template' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.20 NAME 'uddi-Instance-Parms' DESC
'Parameters to use a specific facet of a bindingTemplate description' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.21 NAME 'uddi-Overview-URL' DESC
'URL reference to a long form of an overview document' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.22 NAME 'uddi-From-Key' DESC
'Unique key reference to first businessEntity assertion is made for' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.23 NAME 'uddi-To-Key' DESC
'Unique key reference to second businessEntity assertion is made for' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.24 NAME 'uddi-Key-Name' DESC
'An attribute of the KeyedReference structure' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.25 NAME 'uddi-Key-Value' DESC
'An attribute of the KeyedReference structure' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.26 NAME 'uddi-Auth-Info' DESC
'Authorization information' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.27 NAME 'uddi-Key-Type' DESC
'The key for all UDDI entries' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.28 NAME 'uddi-Upload-Register' DESC
'The upload register' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.29 NAME 'uddi-URL-Type' DESC
'The type for the URL' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.30 NAME 'uddi-Ref-Keyed-Reference' DESC
'reference to a keyedReference entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.31 NAME 'uddi-Ref-Category-Bag' DESC
'reference to a categoryBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.32 NAME 'uddi-Ref-Identifier-Bag' DESC
'reference to a identifierBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.33 NAME 'uddi-Ref-TModel' DESC
'reference to a TModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255}
SINGLE-VALUE X-ORIGIN 'acumen defined')
id names for each entry

UDDI 2 .0 Server

Programming WebLogic Web Services 18-9

attributeTypes: (11827.0001.1.34 NAME 'uddi-Contact-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.35 NAME 'uddi-Discovery-URL-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.36 NAME 'uddi-Address-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.37 NAME 'uddi-Overview-Doc-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.38 NAME 'uddi-Instance-Details-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.39 NAME 'uddi-tModel-Instance-Info-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.40 NAME 'uddi-Publisher-Assertions-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.41 NAME 'uddi-Keyed-Reference-ID' DESC
'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.42 NAME 'uddi-Ref-Attribute' DESC 'a
reference to another entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.43 NAME 'uddi-Entity-Name' DESC
'Business entity Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.44 NAME 'uddi-tModel-Name' DESC
'tModel Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.45 NAME 'uddi-tMII-TModel-Key' DESC
'tModel key referneced in tModelInstanceInfo' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.46 NAME 'uddi-Keyed-Reference-TModel-Key' DESC
'tModel key referneced in KeyedReference' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.47 NAME 'uddi-Address-tModel-Key' DESC
'tModel key referneced in Address' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.48 NAME 'uddi-isHidden' DESC 'a
flag to indicate whether an entry is hidden' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.49 NAME 'uddi-Time-Stamp' DESC
'modification time satmp' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.50 NAME 'uddi-next-id' DESC

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-10 Programming WebLogic Web Services

'generic counter' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.51 NAME 'uddi-tModel-origin' DESC
'tModel origin' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.52 NAME 'uddi-tModel-type' DESC
'tModel type' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.53 NAME 'uddi-tModel-checked' DESC
'tModel field to check or not' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.54 NAME 'uddi-user-quota-entity' DESC
'quota for business entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.55 NAME 'uddi-user-quota-service' DESC
'quota for business services per entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.56 NAME 'uddi-user-quota-binding' DESC
'quota for binding templates per service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.57 NAME 'uddi-user-quota-tmodel' DESC
'quota for tmodels' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.58 NAME 'uddi-user-quota-assertion' DESC
'quota for publisher assertions' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.59 NAME 'uddi-user-quota-messagesize' DESC
'quota for maximum message size' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.60 NAME 'uddi-user-language' DESC
'user language' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.61 NAME 'uddi-Name-Soundex' DESC
'name in soundex format' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.62 NAME 'uddi-var' DESC
'generic variable' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'acumen
defined')
#
objectclasses:
#
objectClasses: (11827.0001.2.0 NAME 'uddi-Business-Entity' DESC
'Business Entity object' SUP top STRUCTURAL MUST (uddi-Business-Key $
uddi-Entity-Name $ uddi-isHidden $ uddi-Authorized-Name) MAY (
uddi-Name-Soundex $ uddi-Operator $ uddi-Description $ uddi-Ref-Identifier-Bag
$ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.1 NAME 'uddi-Business-Service' DESC
'Business Service object' SUP top STRUCTURAL MUST (uddi-Service-Key $
uddi-Service-Name $ uddi-isHidden) MAY (uddi-Name-Soundex $ uddi-Description

UDDI 2 .0 Server

Programming WebLogic Web Services 18-11

$ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.2 NAME 'uddi-Binding-Template' DESC
'Binding Template object' SUP TOP STRUCTURAL MUST (uddi-Binding-Key $
uddi-isHidden) MAY (uddi-Description $ uddi-Access-Point $
uddi-Hosting-Redirector) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.3 NAME 'uddi-tModel' DESC
'tModel object' SUP top STRUCTURAL MUST (uddi-tModel-Key $ uddi-tModel-Name $
uddi-isHidden $ uddi-Authorized-Name) MAY (uddi-Name-Soundex $ uddi-Operator
$ uddi-Description $ uddi-Ref-Identifier-Bag $ uddi-Ref-Category-Bag $
uddi-tModel-origin $ uddi-tModel-checked $ uddi-tModel-type) X-ORIGIN 'acumen
defined')
objectClasses: (11827.0001.2.4 NAME 'uddi-Publisher-Assertion' DESC
'Publisher Assertion object' SUP TOP STRUCTURAL MUST (
uddi-Publisher-Assertions-ID $ uddi-From-Key $ uddi-To-Key $
uddi-Ref-Keyed-Reference) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.5 NAME 'uddi-Discovery-URL' DESC
'Discovery URL' SUP TOP STRUCTURAL MUST (uddi-Discovery-URL-ID $ uddi-Use-Type
$ uddi-URL) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.6 NAME 'uddi-Contact' DESC
'Contact Information' SUP TOP STRUCTURAL MUST (uddi-Contact-ID $
uddi-Person-Name) MAY (uddi-Use-Type $ uddi-Description $ uddi-Phone $
uddi-Email $ uddi-tModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.7 NAME 'uddi-Address' DESC
'Address information for a contact entry' SUP TOP STRUCTURAL MUST (
uddi-Address-ID) MAY (uddi-Use-Type $ uddi-Sort-Code $ uddi-Address-tModel-Key
$ uddi-Address-Line) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.8 NAME 'uddi-Keyed-Reference' DESC
'KeyedReference' SUP TOP STRUCTURAL MUST (uddi-Keyed-Reference-ID $
uddi-Key-Value) MAY (uddi-Key-Name $ uddi-Keyed-Reference-TModel-Key)
X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.9 NAME 'uddi-tModel-Instance-Info' DESC
'tModelInstanceInfo' SUP TOP STRUCTURAL MUST (uddi-tModel-Instance-Info-ID $
uddi-tMII-TModel-Key) MAY (uddi-Description) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.10 NAME 'uddi-Instance-Details' DESC
'instanceDetails' SUP TOP STRUCTURAL MUST (uddi-Instance-Details-ID) MAY (
uddi-Description $ uddi-Instance-Parms) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.11 NAME 'uddi-Overview-Doc' DESC
'overviewDoc' SUP TOP STRUCTURAL MUST (uddi-Overview-Doc-ID) MAY (
uddi-Description $ uddi-Overview-URL) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.12 NAME 'uddi-Ref-Object' DESC
'an object class conatins a reference to another entry' SUP TOP STRUCTURAL MUST
(uddi-Ref-Attribute) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.13 NAME 'uddi-Ref-Auxiliary-Object' DESC
'an auxiliary type object used in another structural class to hold a reference
to a third entry' SUP TOP AUXILIARY MUST (uddi-Ref-Attribute) X-ORIGIN 'acumen
defined')
objectClasses: (11827.0001.2.14 NAME 'uddi-ou-container' DESC
'an organizational unit with uddi attributes' SUP organizationalunit STRUCTURAL
MAY (uddi-next-id $ uddi-var) X-ORIGIN 'acumen defined')

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-12 Programming WebLogic Web Services

objectClasses: (11827.0001.2.15 NAME 'uddi-User' DESC 'a
User with uddi attributes' SUP inetOrgPerson STRUCTURAL MUST (uid $
uddi-user-language $ uddi-user-quota-entity $ uddi-user-quota-service $
uddi-user-quota-tmodel $ uddi-user-quota-binding $ uddi-user-quota-assertion $
uddi-user-quota-messagesize) X-ORIGIN 'acumen defined')

Description of Properties in the uddi.properties File
The following tables describe all the properties of the uddi.properties file, categorized by the
type of UDDI feature they configure:

Basic UDDI Configuration

UDDI User Defaults

General Server Configuration

Logger Configuration

Connection Pools

LDAP Datastore Configuration

Replicated LDAP Datastore Configuration

File Datastore Configuration

General Security Configuration

LDAP Security Configuration

File Security Configuration

UDDI 2 .0 Server

Programming WebLogic Web Services 18-13

Table 18-2 Basic UDDI Configuration

UDDI Property Key Description

auddi.discoveryurl Specifies the DiscoveryURL prefix that is set for each saved
business entity. This will typically be the full URL to the
uddilistener servlet, so that the full DiscoveryURL results in the
display of the stored BusinessEntity data.

auddi.inquiry.secure Permissible values are true and false. When set to true,
inquiry calls to UDDI Server will be limited to secure https
connections only. Any UDDI inquiry calls through a regular http
URL will be rejected.

auddi.publish.secure Permissible values are true and false. When set to true,
publish calls to UDDI Server will be limited to secure https
connections only. Any UDDI publish calls through a regular
http URL will be rejected.

auddi.search.maxrows The value of this property specifies the maximum number of
returned rows for search operations. When the search results in
a higher number of rows then the limit set by this property, the
result will be truncated.

auddi.search.timeout The value of this property specifies a timeout value for search
operations. The value is indicated in milliseconds.

auddi.siteoperator This property determines the name of the UDDI registry site
operator. The specified value will be used as the operator
attribute, saved in all future BusinessEntity registrations. This
attribute will later be returned in responses, and indicates which
UDDI registry has generated the response.

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-14 Programming WebLogic Web Services

security.cred.life The value of this property, in seconds, specifies the credential
life for authentication. Upon authentication of a user, an
AuthToken is assigned which will be valid for the duration
specified by this property.

pluggableTModel.file.list UDDI Server is pre-populated with a set of Standard TModels.
You can further customize the UDDI server by providing your
own taxonomies, in the form of TModels. Taxonomies must be
defined in XML files, following the provided XML schema. The
value of this property a comma-separated list of URIs to such
XML files. Values that refer to these TModels will be checked
and validated against the specified taxonomy.

Table 18-3 UDDI User Defaults

UDDI Property Key Description

auddi.default.lang The value of this property determines a user's initial language,
assigned to his user profile by default at the time of creation. A
user's profile settings may be changed either at sign-up or later.

auddi.default.quota.assertion The value of this property determines a user's initial assertion
quota, assigned to his user profile by default at the time of
creation. The assertion quota is the maximum number of
publisher assertions that the user is allowed to publish. To not
impose any limits, set a value of -1 for this property. A user's
profile settings may be changed either at sign-up or later.

auddi.default.quota.binding The value of this property determines a user's initial binding
quota, assigned to his user profile by default at the time of
creation. The binding quota is the maximum number of binding
templates that the user is allowed to publish, per each business
service. To not impose any limits, set a value of -1 for this
property. A user's profile settings may be changed either at
sign-up or later.

Table 18-2 Basic UDDI Configuration

UDDI Property Key Description

UDDI 2 .0 Server

Programming WebLogic Web Services 18-15

auddi.default.quota.entity The value of this property determines a user's initial business
entity quota, assigned to his user profile by default at the time of
creation. The entity quota is the maximum number of business
entities that the user is allowed to publish. To not impose any
limits, set a value of -1 for this property. A user's profile settings
may be changed either at sign-up or later.

auddi.default.quota.messageSize The value of this property determines a user's initial message
size limit, assigned to his user profile by default at the time of
creation. The message size limit is the maximum size of a SOAP
call that the user may send to UDDI Server. To not impose any
limits, set a value of -1 for this property. A user's profile settings
may be changed either at sign-up or later.

auddi.default.quota.service The value of this property determines a user's initial service
quota, assigned to his user profile by default at the time of
creation. The service quota is the maximum number of business
services that the user is allowed to publish, per each business
entity. To not impose any limits, set a value of -1 for this
property. A user's profile settings may be changed either at
sign-up or later.

auddi.default.quota.tmodel The value of this property determines a user's initial TModel
quota, assigned to his user profile by default at the time of
creation. The TModel quota is the maximum number of
TModels that the user is allowed to publish. To not impose any
limits, set a value of -1 for this property. A user's profile settings
may be changed either at sign-up or later.

Table 18-3 UDDI User Defaults

UDDI Property Key Description

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-16 Programming WebLogic Web Services

Table 18-4 General Server Configuration

UDDI Property Keys Description

auddi.datasource.type This property allows you to configure the physical storage of
UDDI data. This value defaults to WLS. The value of WLS for
this property indicates that the internal LDAP directory of
WebLogic Server is to be used for data storage. Other
permissible values include LDAP, ReplicaLDAP, and File.

auddi.security.type This property allows you to configure UDDI Server's security
module (authentication). This value defaults to WLS. The value
of WLS for this property indicates that the default security realm
of WebLogic Server is to be used for UDDI authentication. As
such, a WebLogic Server user would be an UDDI Server user
and any WebLogic Server administrator would also be an UDDI
Server administrator, in addition to members of the UDDI
Server administrator group, as defined in UDDI Server settings.
Other permissible values include LDAP and File.

auddi.license.dir The value of this property specifies the location of the UDDI
Server license file. In the absence of this property, the
WL_HOME/server/lib directory is assumed to be the default
license directory, where WL_HOME is the main WebLogic
Platform installation directory. Some WebLogic users are
exempt from requiring an UDDI Server license for the basic
UDDI Server components, while they may need a license for
additional components (e.g., UDDI Server Browser).

auddi.license.file The value of this property specifies the name of the license file.
In the absence of this property, uddilicense.xml is
presumed to be the default license filename. Some WebLogic
users are exempt from requiring an UDDI Server license for the
basic UDDI Server components, while they may need a license
for additional components (e.g., UDDI Server Browser).

UDDI 2 .0 Server

Programming WebLogic Web Services 18-17

Table 18-5 Logger Configuration

UDDI Property Key Description

logger.file.maxsize The value of this property specifies the maximum size of logger
output files (if output is sent to file), in Kilobytes. Once an
output file reaches maximum size, it is closed and a new log file
is created.

logger.indent.enabled Permissible values are true and false. When set to true, log
messages beginning with "+" and "-", typically TRACE level
logs, cause an increase or decrease of indentation in the output.

logger.indent.size The value of this property, an integer, specifies the size of each
indentation (how many spaces for each indent).

logger.log.dir The value of this property specifies an absolute or relative path
to a directory where log files are stored.

logger.log.file.stem The value of this property specifies a string that is prefixed to all
log file names.

logger.log.type The value of this property determines whether log messages are
sent to the screen, to a file or to both destinations. Permissible
values for this property, respectively are: LOG_TYPE_SCREEN,
LOG_TYPE_FILE, and LOG_TYPE_SCREEN_FILE.

logger.output.style The value of this property determines whether logged output
will simply contain the message, or if thread and timestamp
information will be included. The two permissible values are
OUTPUT_LONG and OUTPUT_SHORT.

logger.quiet The value of this property determines whether the logger itself
displays information messages or not. Permissible values are
true and false.

logger.verbosity The value of this property determines the logger's verbosity
level. Permissible values (case sensitive) are TRACE, DEBUG,
INFO, WARNING and ERROR, where each severity level includes
the following ones accumulatively.

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-18 Programming WebLogic Web Services

Table 18-6 Connection Pools

UDDI Property Key Description

datasource.ldap.pool.increment When all connections in the pool are busy, the value of this
property specifies the number of new connections to create and
add to the pool.

datasource.ldap.pool.initialsize The value of this property specifies the number of connections
to be stored, at the time of creation and initialization of the pool.

datasource.ldap.pool.maxsize The value of this property specifies the maximum number of
connections that the pool may hold.

datasource.ldap.pool.systemmaxsize The value of this property specifies the maximum number of
connections created, even after the pool has reached its capacity.
Once the pool reaches its maximum size, and all connections are
busy, connections are temporarily created and returned to the
client, but not stored in the pool. However once the system max
size is reached, all requests for new connections are blocked
until a previously busy connection becomes available.

Table 18-7 LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.manager.uid The value of this property specifies back-end LDAP server
administrator or privileged user ID, (e.g. cn=Directory
Manager) who can save data in LDAP.

datasource.ldap.manager.password The value of this property is the password for the above user ID,
and is used to establish connections with the LDAP directory
used for data storage.

datasource.ldap.server.url The value of this property is an "ldap://" URL to the LDAP
directory used for data storage.

datasource.ldap.server.root The value of this property is the root entry of the LDAP
directory used for data storage (e.g., dc=acumenat, dc=com).

UDDI 2 .0 Server

Programming WebLogic Web Services 18-19

Note: In a replicated LDAP environment, there are "m" LDAP masters and "n" LDAP replicas,
respectively numbered from 0 to (m-1) and from 0 to (n-1). The fifth part of the property
keys below, quoted as "i", refers to this number and differs for each LDAP server
instance defined.

Table 18-8 Replicated LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.server.master.i.manager.uid The value of this property specifies the
administrator or privileged user ID for this
"master" LDAP server node, (e.g. cn=Directory
Manager) who can save data in LDAP.

datasource.ldap.server.master.i.manager.password The value of this property is the password for the
matching above user ID, and is used to establish
connections with the relevant "master" LDAP
directory to write data.

datasource.ldap.server.master.i.url The value of this property is an "ldap://" URL to
the corresponding LDAP directory node.

datasource.ldap.server.master.i.root The value of this property is the root entry of the
corresponding LDAP directory node (e.g.,
dc=acumenat, dc=com).

datasource.ldap.server.replica.i.manager.uid The value of this property specifies the user ID for
this "replica" LDAP server node, (e.g.
cn=Directory Manager) who can read the UDDI
data from LDAP.

datasource.ldap.server.replica.i.manager.password The value of this property is the password for the
matching above user ID, and is used to establish
connections with the relevant "replica" LDAP
directory to read data.

datasource.ldap.server.replica.i.url The value of this property is an "ldap://" URL to
the corresponding LDAP directory node.

datasource.ldap.server.replica.i.root The value of this property is the root entry of the
corresponding LDAP directory node (e.g.,
dc=acumenat, dc=com).

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-20 Programming WebLogic Web Services

Table 18-9 File Datastore Configuration

UDDI Property Key Description

datasource.file.directory The value of this property specifies the directory where UDDI
data is stored in the file system.

Table 18-10 General Security Configuration

UDDI Property Key Description

security.custom.group.operators The value of this property specifies a security group name,
where the members of this group will be treated as UDDI
administrators.

Table 18-11 LDAP Security Configuration

UDDI Property Key Description

security.custom.ldap.manager.uid The value of this property specifies security LDAP server
administrator or privileged user ID, i.e. cn=Directory
Manager who can save data in LDAP.

security.custom.ldap.manager.password The value of this property is the password for the above user
ID, and is used to establish connections with the LDAP
directory used for security.

security.custom.ldap.url The value of this property is an "ldap://" URL to the LDAP
directory used for security.

security.custom.ldap.root The value of this property is the root entry of the LDAP
directory used for security (e.g., dc=acumenat, dc=com).

UDDI D i rec to r y Exp lo re r

Programming WebLogic Web Services 18-21

UDDI Directory Explorer
The UDDI Directory Explorer allows authorized users to publish Web Services in private
WebLogic Server UDDI registries and to modify information for previously published Web
Services.

The UDDI Directory Explorer also enables you to search both public and private UDDI registries
for Web Services and information about the companies and departments that provide these Web
Services. The Directory Explorer also provides access to details about the Web Services and
associated WSDL files (if available.)

To invoke the UDDI Directory Explorer in your browser, enter the following URL:

http://host:port/uddiexplorer

where

host refers to the computer on which WebLogic Server is running.

port refers to the port number where WebLogic Server is listening for connection
requests. The default port number is 7001.

You can perform the following tasks with the UDDI Directory Explorer:

security.custom.ldap.userroot The value of this property specifies the users root entry on
the security LDAP server. For example, ou=People.

security.custom.ldap.group.root The value of this property specifies the operator entry on the
security LDAP server. For example, "cn=UDDI
Administrators, ou=Groups". This entry contains IDs of all
UDDI administrators.

Table 18-12 File Security Configuration

UDDI Property Key Description

security.custom.file.userdir The value of this property specifies the directory where UDDI
security information (users and groups) is stored in the file
system.

Table 18-11 LDAP Security Configuration

UDDI Property Key Description

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-22 Programming WebLogic Web Services

Search public registries

Search private registries

Publish to a private registry

Modify private registry details

Setup UDDI directory explorer

For more information about using the UDDI Directory Explorer, click the Explorer Help link on
the main page.

UDDI Client API
WebLogic Server includes an implementation of the client-side UDDI API that you can use in
your Java client applications to programmatically search for and publish Web Services.

The two main classes of the UDDI client API are Inquiry and Publish. Use the Inquiry class
to search for Web Services in a known UDDI registry and the Publish class to add your Web
Service to a known registry.

WebLogic Server provides an implementation of the following client UDDI API packages:

weblogic.uddi.client.service

weblogic.uddi.client.structures.datatypes

weblogic.uddi.client.structures.exception

weblogic.uddi.client.structures.request

weblogic.uddi.client.structures.response

For detailed information on using these packages, see the UDDI API Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/index.html.

Pluggable tModel
A taxonomy is basically a tModel used as reference by a categoryBag or identifierBag. A major
distinction is that in contrast to a simple tModel, references to a taxonomy are typically checked
and validated. WebLogic Server’s UDDI Server takes advantage of this concept and extends this
capability by introducing custom taxonomies, called "pluggable tModels". Pluggable tModels
allow users (UDDI administrators) to add their own checked taxonomies to the UDDI registry,
or overwrite standard taxonomies.

To add a pluggable tModel:

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/uddi/client/service/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/uddi/client/structures/datatypes/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/uddi/client/structures/exception/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/uddi/client/structures/request/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/uddi/client/structures/response/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Pluggab le tMode l

Programming WebLogic Web Services 18-23

1. Create an XML file conforming to the specified format described in “XML Schema for
Pluggable tModels” on page 18-24, for each tModelKey/categorization.

2. Add the comma-delimited, fully qualified file names to the pluggableTModel.file.list
property in the uddi.properties file used to configure UDDI Server. For example:
pluggableTModel.file.list=c:/temp/cat1.xml,c:/temp/cat2.xml

See “Configuring the UDDI 2.0 Server” on page 18-5 for details about the uddi.properties
file.

3. Restart WebLogic Server.

The following sections include a table detailing the XML elements and their permissible values,
the XML schema against which pluggable tModels are validated, and a sample XML.

XML Elements and Permissible Values
The following table describes the elements of the XML file that describes your pluggable
tModels.

Table 18-13 Description of the XML Elements to Configure Pluggable tModels

Element/Attrib
ute

Required Role Values Comments

Taxonomy Required Root Element

checked Required Whether this
categorization is
checked or not.

true / false If false,
keyValue will
not be validated.

type Required The type of the
tModel.

categorization /
identifier / valid
values as defined
in uddi-org-types

See
uddi-org-types
tModel for valid
values.

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-24 Programming WebLogic Web Services

XML Schema for Pluggable tModels
The XML Schema against which pluggable tModels are validated is as follows:

<simpleType name="type">

 <restriction base="string"/>

</simpleType>

applicability Optional Constraints on
where the tModel
may be used.

No constraint is
assumed if this
element is not
provided

scope Required if the
applicability
element is
included.

businessEntity /
businessService /
bindingTemplate
/ tModel

tModel may be
used in
tModelInstanceI
nfo if scope
“bindingTemplat
e” is specified.

tModel Required The actual
tModel,
according to the
UDDI data
structure.

Valid tModelKey
must be
provided.

categories Required if
checked is set to
true.

category Required if
element
categories is
included

Holds actual
keyName and
keyValue pairs.

keyName /
keyValue pairs

category may be
nested for
grouping or tree
structure.

keyName Required

keyValue Required

Table 18-13 Description of the XML Elements to Configure Pluggable tModels

Element/Attrib
ute

Required Role Values Comments

Pluggab le tMode l

Programming WebLogic Web Services 18-25

<simpleType name="checked">

 <restriction base="NMTOKEN">

 <enumeration value="true"/>

 <enumeration value="false"/>

 </restriction>

</simpleType>

<element name="scope" type="string"/>

<element name = "applicability" type = "uddi:applicability"/>

<complexType name = "applicability">

 <sequence>

 <element ref = "uddi:scope" minOccurs = "1" maxOccurs = "4"/>

 </sequence>

</complexType>

<element name="category" type="uddi:category"/>

<complexType name = "category">

 <sequence>

 <element ref = "uddi:category" minOccurs = "0" maxOccurs = "unbounded"/>

 </sequence>

 <attribute name = "keyName" use = "required" type="string"/>

 <attribute name = "keyValue" use = "required" type="string"/>

</complexType>

<element name="categories" type="uddi:categories"/>

<complexType name = "categories">

 <sequence>

 <element ref = "uddi:category" minOccurs = "1" maxOccurs = "unbounded"/>

 </sequence>

</complexType>

<element name="Taxonomy" type="uddi:Taxonomy"/>

<complexType name="Taxonomy">

 <sequence>

 <element ref = "uddi:applicability" minOccurs = "0" maxOccurs = "1"/>

 <element ref = "uddi:tModel" minOccurs = "1" maxOccurs = "1"/>

 <element ref = "uddi:categories" minOccurs = "0" maxOccurs = "1"/>

 </sequence>

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-26 Programming WebLogic Web Services

 <attribute name = "type" use = "required" type="uddi:type"/>

 <attribute name = "checked" use = "required" type="uddi:checked"/>

</complexType>

Sample XML for a Pluggable tModel
The following shows a sample XML for a pluggable tModel:

<?xml version="1.0" encoding="UTF-8" ?>

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <Taxonomy checked="true" type="categorization" xmlns="urn:uddi-org:api_v2" >
 <applicability>
 <scope>businessEntity</scope>
 <scope>businessService</scope>
 <scope>bindingTemplate</scope>
 </applicability>
 <tModel tModelKey="uuid:C0B9FE13-179F-41DF-8A5B-5004DB444tt2" >
 <name> sample pluggable tModel </name>
 <description>used for test purpose only </description>
 <overviewDoc>
 <overviewURL>http://www.abc.com </overviewURL>
 </overviewDoc>
 </tModel>
 <categories>
 <category keyName="name1 " keyValue="1">
 <category keyName="name11" keyValue="12">
 <category keyName="name111" keyValue="111">
 <category keyName="name1111" keyValue="1111"/>
 <category keyName="name1112" keyValue="1112"/>
 </category>
 <category keyName="name112" keyValue="112">
 <category keyName="name1121" keyValue="1121"/>
 <category keyName="name1122" keyValue="1122"/>
 </category>
 </category>
 </category>
 <category keyName="name2 " keyValue="2">
 <category keyName="name21" keyValue="22">
 <category keyName="name211" keyValue="211">
 <category keyName="name2111" keyValue="2111"/>
 <category keyName="name2112" keyValue="2112"/>
 </category>
 <category keyName="name212" keyValue="212">

Pluggab le tMode l

Programming WebLogic Web Services 18-27

 <category keyName="name2121" keyValue="2121"/>
 <category keyName="name2122" keyValue="2122"/>
 </category>
 </category>
 </category>
 </categories>
 </Taxonomy>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Pub l i sh ing and F ind ing Web Serv ices Us ing UDDI

18-28 Programming WebLogic Web Services

Programming WebLogic Web Services 19-1

C H A P T E R 19

Interoperability

The following sections provide an overview of what it means for Web Services to be
interoperable and tips on creating Web Services that interoperate with each other as much as
possible:

“Overview of Interoperability” on page 19-1

“Avoid Using Vendor-Specific Extensions” on page 19-2

“Stay Current With the Latest Interoperability Tests” on page 19-2

“Understand the Data Models of Your Applications” on page 19-3

“Understand the Interoperability of Various Data Types” on page 19-3

“Results of SOAPBuilders Interoperability Lab Round 3 Tests” on page 19-5

“Interoperating With .NET” on page 19-5

Overview of Interoperability
A fundamental characteristic of Web Services is that they are interoperable. This means that a
client can invoke a Web Service regardless of the client’s hardware or software. In particular,
interoperability demands that the functionality of a Web Service application be the same across
differing:

Application platforms, such as BEA WebLogic Server, IBM Websphere, or Microsoft
.NET.

In te roperab i l i t y

19-2 Programming WebLogic Web Services

Programming languages, such as Java, C++, C#, or Visual Basic.

Hardware, such as mainframes, PCs, or peripheral devices.

Operating systems, such as different flavors of UNIX or Windows.

Application data models.

For example, an interoperable Web Service running on WebLogic Server on a Sun Microsystems
computer running Solaris can be invoked from a Microsoft .NET Web Service client written in
Visual Basic.

To ensure the maximum interoperability, WebLogic Server supports the following specifications
and versions when generating your Web Service:

HTTP 1.1 for the transport protocol

XML Schema to describe your data

WSDL 1.1 to describe your Web Service

SOAP 1.1 for the message format

The following sections provide some useful interoperability tips and information when writing
Web Service applications.

Avoid Using Vendor-Specific Extensions
Avoid using vendor-specific implementation extensions to specifications (such as SOAP,
WSDL, and HTTP) that are used by Web Services. If your Web Service relies on this extension,
a client application that invokes it might not use the extension and the invoke might fail.

Stay Current With the Latest Interoperability Tests
Public interoperability tests provide information about how different vendor implementations of
Web Service specifications interoperate with each other. This information is very useful if you
are creating a Web Service on WebLogic Server that has to, for example, interoperate with Web
Services from other vendors, such as .NET.

Warning: BEA’s participation in these interoperability tests does not imply that BEA officially
certifies its Web Services implementation against the other platforms participating
in the tests.

The following Web sites include public interoperability tests:

Unders tand the Data Mode ls o f Your App l i cat i ons

Programming WebLogic Web Services 19-3

Web Service Interoperability Organization at http://www.ws-i.org/

SoapBuilder Interoperability Lab at http://www.whitemesa.com/

You can also use the vendor implementations listed in these Web sites to exhaustively test your
Web service for interoperability.

Understand the Data Models of Your Applications
A good use of Web Services is to provide a cross-platform technology for integrating existing
applications. These applications typically have very different data models which your Web
Service must reconcile.

For example, assume that you are creating a Web Service application to integrate the two
accounting systems in a large company. Although the data models of each accounting system
are probably similar, they most likely differ in at least some way, such as the name of a data field,
the amount of information stored about each customer, and so on. It is up to the programmer of
the Web Service to understand each data model, and then create an intermediate data model to
reconcile the two. Typically this intermediate data model is expressed in XML using XML
Schema. If you base your Web Service application on only one of the data models, the two
applications probably will not interoperate very well.

Understand the Interoperability of Various Data Types
The data types of the parameters and return values of your Web Service operations have a great
impact on the interoperability of your Web Service. The following table describes how
interoperable the various types of data types are.

http://www.ws-i.org/
http://www.whitemesa.com

In te roperab i l i t y

19-4 Programming WebLogic Web Services

Table 19-1 Interoperability of Various Types of Data Types

Data Type Description

JAX-RPC built-in
data types

Interoperate with no additional programming.

The JAX-RPC specification defines a subset of the XML Schema
built-in data types that any implementation of JAX-RPC must
support. Because all of these data types map directly to a
SOAP-ENC data type, they are interoperable.

Built-in WebLogic
Server data types

Interoperate with no additional programming.

WebLogic Server includes support for all the XML Schema built-in
data types. Because all of these data types map directly to a
SOAP-ENC data type, they are interoperable.

For the full list of built-in WebLogic Server data types, see
“Supported Built-In Data Types” on page 5-15.

Non-built-in data
types

Interoperate with additional programming or tools support.

If your Web Service uses non-built-in data types, you must create
the XML Schema that describes the XML representation of the data,
the Java class that describes the Java representation, and the
serialization class that converts the data between its XML and Java
representation. WebLogic Server includes the servicegen and
autotype Ant tasks that automatically generate these objects.
Keep in mind, however, that these Ant tasks might generate an XML
Schema that does not interoperate well with client applications or it
might not be able to create an XML Schema at all if the Java data
type is very complex. In these cases you might need to manually
create the objects needed by non-built-in data types, as described in
Chapter 11, “Using Non-Built-In Data Types.”

Additionally, you must ensure that client applications that invoke
your Web Service include the serialization class needed to convert
the data between its XML representation and the language-specific
representation of the client application. WebLogic Server can
generate the serialization class for Weblogic client applications with
the clientgen Ant task. If, however, the client applications that
invoke your Web Service are not written in Java, then you must
create the serialization class manually.

Resu l ts o f SOAPBui lde rs In te roperab i l i t y Lab Round 3 Tes ts

Programming WebLogic Web Services 19-5

Results of SOAPBuilders Interoperability Lab Round 3 Tests
For the results of WebLogic Web services’ participation in the SOAPBuilders Interoperability
Lab Round 3 tests, see http://webservice.bea.com:7001. The tests were run with version 8.1 of
WebLogic Server.

For the test results, see http://webservice.bea.com/index.html#qz41; for the source code of the
tests, see http://webservice.bea.com/index.html#qz40.

For more information on the SOAPBuilder Interoperability tests, see
http://www.whitemesa.com.

Warning: BEA’s participation in these interoperability tests does not imply that BEA officially
certifies its Web Services implementation against the other platforms participating
in the tests.

Interoperating With .NET

You invoke a .NET Web Service from a WebLogic Web Services client application exactly as
described in Chapter 7, “Invoking Web Services from Client Applications and WebLogic
Server.” When you execute the clientgen Ant task to generate the Web Service-specific client
JAR file, use the wsdl attribute to specify the URL of the WSDL of the deployed .NET Web
Service.

To invoke a deployed WebLogic Web Service from a .NET client application, use Microsoft
Visual Studio .NET to create an application, then add a Web Reference, specifying the WSDL of
the deployed WebLogic Web Service, as described in the following example. In Microsoft Visual
Studio, adding a Web Reference is equivalent to executing the WebLogic clientgen Ant task.

Warning: The following example describes one way to invoke a WebLogic Web Service from
a .NET client application. For the most current and detailed information about using
Microsoft Visual Studio .NET to invoke WebLogic (and other) Web Services,
consult the Microsoft documentation at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxc
onATourOfVisualStudio.asp.

1. Start and use Microsoft Visual Studio .NET to create your application as usual.

http://webservice.bea.com:7001
http://webservice.bea.com/index.html#qz41
http://webservice.bea.com/index.html#qz40
http://www.whitemesa.com
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp

In te roperab i l i t y

19-6 Programming WebLogic Web Services

2. In the Solution Explorer in the right pane, right-click your application and chose Add Web
Reference. The Solution Explorer Browser appears.

3. Enter the WSDL of the deployed WebLogic Web Service in the Solution Explorer Browser.
As soon as the browser accepts the WSDL, the Add Reference button becomes active.

See “WebLogic Web Services Home Page and WSDL URLs” on page 6-23 for information
on getting the WSDL of a deployed WebLogic Web Service.

4. Click the Add Reference button. The WebLogic Web Service appears in the Solution
Explorer.

5. In your application component that will be used to invoke the Web Service, such as a
button, add Visual C# or Visual Basic code to invoke a particular operation of the Web
Service. Visual Studio .NET uses statement completion to help you write this code. The
following Visual C# code excerpt shows a simple example of invoking the echoString
operation of the SoapInteropBaseService Web Service:

WebReference1.SoapInteropBaseService s = new SoapInteropBaseService();
string s = s.echoString("Hi there!");

In the example, WebReference1 is the name of the Web Reference you added in preceding
steps.

Programming WebLogic Web Services 20-1

C H A P T E R 20

Troubleshooting

The following sections describe how to troubleshoot WebLogic Web Services:

“Using the Web Service Home Page to Test Your Web Service” on page 20-2

“Viewing SOAP Messages” on page 20-4

“Posting the HTTP SOAP Message” on page 20-5

“Debugging Problems with WSDL” on page 20-8

“Verifying a WSDL File” on page 20-9

“Verifying an XML Schema” on page 20-10

“Debugging Data Type Generation (Autotyping) Problems” on page 20-10

“Debugging Performance Problems” on page 20-11

“Performance Hints” on page 20-12

“Re-Resolving IP Addresses in the Event of a Failure” on page 20-12

“BindingException When Running clientgen or autotype Ant Task” on page 20-13

“Client Error When Using the WebLogic Web Service Client to Connect to a Third-Party
SSL Server” on page 20-13

“Client Error When Invoking Operation That Returns an Abstract Type” on page 20-14

Troub leshoot ing

20-2 Programming WebLogic Web Services

“Including Nillable, Optional, and Empty XML Elements in SOAP Messages” on
page 20-15

“SSLKeyException When Trying to Invoke a Web Service Using HTTPS” on page 20-17

“Autotype Ant Task Not Generating Serialization Classes for All Specified Java Types” on
page 20-17

“Client Gets HTTP 401 Error When Invoking a Non-Secure Web Service” on page 20-18

“Asynchronous Web Service Client Using JMS Transport Not Receiving Response
Messages From WebLogic Server” on page 20-19

“Running autotype Ant Task on a Large WSDL File Returns
java.lang.OutOfMemoryError” on page 20-20

“Error When Trying to Log Onto the UDDI Explorer” on page 20-20

“Data Type Non-Compliance with JAX-RPC” on page 20-21

Using the Web Service Home Page to Test Your Web Service
Every Web Service deployed on WebLogic Server has a Home Page. From the Home page you
can:

View the WSDL that describes the service.

Test each operation with sample parameter values to ensure that it is working correctly.

View the SOAP request and response messages from a successful execution of an
operation.

URL Used to Invoke the Web Service Home Page
To invoke the Web Service Home page for a particular service in your browser, use the following
URL:

[protocol]://[host]:[port]/[contextURI]/[serviceURI]

where:

protocol refers to the protocol over which the service is invoked, either http or https.
This value corresponds to the protocol attribute of the <web-service> element that
describes the Web Service in the web-services.xml file. If you used the servicegen
Ant task to assemble your Web Service, this value corresponds to the protocol attribute.

Using the Web Serv i ce Home Page to Test Your Web Serv i ce

Programming WebLogic Web Services 20-3

host refers to the computer on which WebLogic Server is running.

port refers to the port number on which WebLogic Server is listening (default value is
7001).

contextURI refers to the context root of the Web application, corresponding to the
<context-root> element in the application.xml deployment descriptor of the EAR
file. If you used the servicegen Ant task to assemble your Web Service, this value
corresponds to the contextURI attribute.

If your application.xml file does not include the <context-root> element, then the
value of contextURI is the name of the Web application archive file or exploded directory.

serviceURI refers to the URI of the Web Service. This value corresponds to the uri
attribute of the <web-service> element in the web-services.xml file. If you used the
servicegen Ant task to assemble your Web Service, this value corresponds to the
serviceURI attribute.

For example, assume you used the following build.xml file to assemble a WebLogic Web
Service using the servicegen Ant task:

<project name="buildWebservice" default="build-ear">

 <target name="build-ear">

 <servicegen

 destEar="myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services">

 <service

 ejbJar="myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True" >

 </service>

 </servicegen>

 </target>

</project>

The URL to invoke the Web Service Home Page, assuming the service is running on a host called
ariel at the default port number, is:

Troub leshoot ing

20-4 Programming WebLogic Web Services

http://ariel:7001/web_services/TraderService

Testing the Web Service
The Web Service Home Page lists the operations that can be invoked for this service. To test a
particular operation:

1. Click on the operation link.

2. Enter sample values for the parameters in the table. The first two columns of the table list
the name and Java data type of the operation.

3. Click Invoke.

The SOAP request and response messages and the value returned by the operation are
displayed in a new browser window.

The main Web Service Home Page also displays an example of the Java code to invoke one of
the operations and a sample build.xml file for executing the clientgen Ant task to generate
the Web Service-specific client JAR file.

Viewing SOAP Messages
If you encounter an error while trying to invoke a Web Service (either WebLogic or
non-WebLogic), it is useful to view the SOAP request and response messages, because they often
point to the problem.

To view the SOAP request and response messages, run your client application with the
-Dweblogic.webservice.verbose=true flag, as shown in the following example that runs a
client application called my.app.RunService:

prompt> java -Dweblogic.webservice.verbose=true my.app.RunService

The full SOAP request and response messages are printed in the command window from which
you ran your client application.

You configure this feature by setting verbose mode to true, either with Ant or programmatically.

Setting Verbose Mode with Ant
If you use Ant to run your client application, you can set verbose mode by adding a
<sysproperty> element to the build.xml file, as shown in the following example:

Pos t ing the HTTP SOAP Message

Programming WebLogic Web Services 20-5

<java classname="my.app.RunService">
 <sysproperty key="weblogic.webservice.verbose" value="true"/>
</java>

You can also configure WebLogic Server to print the SOAP request and response messages each
time a deployed WebLogic Web Service is invoked by specifying the
-Dweblogic.webservice.verbose=true flag when you start WebLogic Server. The SOAP
messages are printed to the command window from which you started WebLogic Server.

Note: Because of possible decrease in performance due to the extra output, BEA recommends
you set this WebLogic Server flag only during the development phase.

Setting Verbose Mode Programatically
You can programmatically set verbose mode in your client application by using the
weblogic.webservice.binding.BindingInfo.setVerbose(true) method, as shown in
the following code excerpt:

import weblogic.webservice.binding.BindingInfo;

...

 BindingInfo info =
 (BindingInfo)stub._getProperty("weblogic.webservice.bindinginfo");

 info.setVerbose(true);
 port.helloWorld();

In the example, stub is the instance of the JAX-RPC Stub class for your Web Service. When the
helloWorld() operation executes, the SOAP request and response messages will be printed in
the command window from which you executed the client application.

To turn off verbose mode, invoke the setVerbose(false) method.

For more information about the weblogic.webservice.binding package, see the Javadocs at
http://e-docs.bea.com/wls/docs81/javadocs/index.html.

Note: The weblogic.webservice.binding package is a proprietary WebLogic API.

Posting the HTTP SOAP Message
To further troubleshoot problems with the SOAP messages, you can post the request directly to
a SOAP server (rather than through a client application) and view the raw SOAP response.
By-passing the client application and viewing the raw SOAP messages may pinpoint the problem.
You can then update selected parts of the SOAP request by editing the text file, then re-post the
request to see what fixes the problem.

http://e-docs.bea.com/wls/docs81/javadocs/index.html
http://e-docs.bea.com/wls/docs81/javadocs/index.html

Troub leshoot ing

20-6 Programming WebLogic Web Services

Note: It is assumed that you understand the structure of a SOAP message; if you need more
detailed information about the SOAP XML Schema, see SOAP 1.1 at
http://www.w3.org/TR/SOAP.

To post a SOAP request to a SOAP server directly:

1. Create a text file that contains an HTTP SOAP request; the request should include both the
HTTP headers and SOAP envelope. See “Composing the SOAP Request” on page 20-7 for
more information on creating this file. The following example shows an HTTP SOAP request:

POST /asmx/simple.asmx HTTP/1.1
Host: www.stock.org:7001
Content-Type: text/xml; charset=utf-8
Connection: close
SOAPAction: "http://soapinterop.org/"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="http://soapinterop.org/"
 xmlns:types="http://soapinterop.org/encodedTypes"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <tns:echoString>
 <inputString xsi:type="xsd:string">string</inputString>
 </tns:echoString>
 </soap:Body>
</soap:Envelope>

2. Use the weblogic.webservice.tools.debug.Post utility to post the message to a
SOAP server, as shown in the following example:

java weblogic.webservice.tools.debug.Post filename

where filename refers to the text file that contains the HTTP SOAP request, created in the
preceding step. The Post utility uses the HTTP header to determine the URL of the SOAP
server.

3. The SOAP server sends back the raw HTTP SOAP response which you can examine for
clues about your problem.

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

Pos t ing the HTTP SOAP Message

Programming WebLogic Web Services 20-7

Composing the SOAP Request
This section describes how to create a file that contains a well-formed HTTP SOAP request
generated by the WebLogic Web Services client when invoking a Web Service.

1. Copy into a file the generated SOAP request for the invocation of a Web Service by either
using the weblogic.webservice.verbose property, as described in “Viewing SOAP
Messages” on page 20-4, or cutting and pasting the SOAP message generated from testing the
WebLogic Web Service from its Home Page, as described in “Using the Web Service Home
Page to Test Your Web Service” on page 20-2.

The following SOAP request was generated f rom an invocation of the sample
examples.webservices.complex.statelessSession Web Service , and was cut and
pasted from the Web Services Home Page:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <env:Header>
 </env:Header>
 <env:Body
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <m:sell xmlns:m="http://www.bea.com/examples/Trader">
 <string xsi:type="xsd:string">sample string</string>
 <intVal xsi:type="xsd:int">100</intVal>
 </m:sell>
 </env:Body>
</env:Envelope>

2. By default, the generated SOAP request does not include the standard XML declaration, so
add the following line, shown in bold, to the beginning of the file:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
...

3. Ensure that the XML is well-formed by opening it in an XML editor, such as XMLSpy, and
editing where necessary. XMLSpy is a product that is installed with BEA WebLogic
Platform.

4. Add the needed HTTP headers to the beginning of the file, with the appropriate Host and
POST header values, as shown in bold in the following example:

POST /filetransferAtResponse/FTService HTTP/1.1
Host: localhost:7001

Troub leshoot ing

20-8 Programming WebLogic Web Services

Content-Type: text/xml; charset=utf-8
Connection: close
SOAPAction: ""

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
...

HTTP is very strict about structure when parsing a request, so be sure you create a
well-formed HTTP request. In particular, be sure you:

– Include a blank line between the headers and the XML declaration.

– Do not include any extra spaces after the headers.

You should now have a good HTTP SOAP request to post to a SOAP server.

Debugging Problems with WSDL
Another potential reason for errors produced when invoking a Web Service is that the WSDL
might be invalid. Fixing a published WSDL that contains problems might be out of your hands;
however, you can at least pinpoint the problem and let the provider know so that the provider can
fix it.

Note: It is assumed that you understand the structure of a WSDL file; if you need more
information on the WSDL XML Schema, see Web Services Description Language
(WSDL) 1.1 at http://www.w3.org/TR/wsdl.

This section does not attempt to cover all possible problems with a WSDL file but rather, describe
the following common ones:

An invalid URL for the Web Service endpoint. This URL is listed in the <service>
element of the WSDL, as shown in the following excerpt:

<service name="myservice>
 <port name="myport" binding="tns:mybinding">
 <soap address="http://a_host:4321/service" />
 </port>
</service>

In this case, ensure that the URL http://a_host:4321/service is indeed the Web
Service endpoint.

References to undefined elements

For example, the type attribute of the <binding> element refers to the name attribute of a
<portType> element, as shown in the following excerpts:

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

Ver i f y ing a WSDL F i le

Programming WebLogic Web Services 20-9

<binding name="my-binding" type="tns:my-port">
 <operation name="foo">
 <input />
 <output />
 </operation>
</binding>

<portType name="my-port">
 <operation name="foo">
 <input message="tns:fooReq" />
 <output message="tns:fooRes" />
 </operation>
</portType>

If, for example, the <portType> element had a name of my-port1, then the reference to it
in the <binding> element would be invalid, and attempting to invoke the Web Service
described by this WSDL would fail.

Problems with the <import> element.

WSDL allows associating a namespace with a document location using an <import>
element, as shown:

<definitions >
 <import
 namespace="http://example.com/stockquote/definitions"
 location="http://example.com/stockquote/stockquote.wsdl"/>
 </definitions>

The WSDL specified in the location attribute might itself have an import statement that
points to another WSDL, and so on. Although this is a good technique for creating clearer
Web Service definitions, because it separates the definitions according to their level of
abstraction, it is also possible to create a problem if there are many layers of abstraction. In
this case, make sure all imported WSDL files actually exist and are valid.

The WSDL may contain XML data types that are not compatible with WebLogic Web
Services.

Verifying a WSDL File
To verify that a WSDL is compatible with WebLogic Web Services, use the clientgen Ant task
with the wsdl attribute, as shown in the following example:

<clientgen wsdl="http://example.com/myapp/myservice.wsdl"
 packageName="myapp.myservice.client"
 clientJar="myapps/myService_client.jar"
/>

Troub leshoot ing

20-10 Programming WebLogic Web Services

If the clientgen Ant task completes with no errors, then the WSDL is compatible and
well-formed.

Verifying an XML Schema
To verify that an XML Schema is compatible with WebLogic Web Services, use the autotype
Ant task with the schemaFile attribute, as shown in the following example:

<autotype schemaFile="my-schema.xsd"
 packageName="foo"
 destDir="temp_dir"
/>

If the autotype Ant task completes with no errors, then the XML Schema is compatible and
well-formed.

Debugging Data Type Generation (Autotyping) Problems
If you encounter an error while using the servicegen, autotype, or clientgen Ant tasks to
generate the autotyping components (such as the serialization class and Java or XML
representations) for any non-built-in data types, you can set the
weblogic.xml.schema.binding.verbose=true property to print out verbose information
about the autotyping activity taking place, and perhaps get an idea of what the problem is.

You can set this property while using the command-line versions of the autotype or clientgen
Ant tasks, as shown in the following example:

java -Dweblogic.xml.schema.binding.verbose=true \
 weblogic.webservice.clientgen -wsdl foo.wsdl \
 -clientJar /tmp/test_client.jar -packageName foo

Common XML Schema Problems
The following list describes typical problems with your XML Schema when using the autotyping
features of WebLogic Server (in other words, the autotype, servicegen, or clientgen Ant
tasks) to generate the serialization class and Java representation of a non-built-in XML data type:

A missing import statement for the namespace associated with a data type.

Using unsupported XML Schema data types. See “Non-Built-In Data Types Supported by
servicegen and autotype Ant Tasks” on page 6-18 and “Unsupported Features” on
page 1-11 for more information.

Debugging Pe r fo rmance P rob lems

Programming WebLogic Web Services 20-11

Common Java Problems
The following list describes typical problems with your Java class when using the autotyping
features of WebLogic Server (in other words, the autotype, servicegen, or clientgen Ant
tasks) to generate the serialization class and XML Schema representation of a non-built-in Java
data type:

The Java class does not have a public default constructor.

The Java class does not have both get and set methods for all private fields. In this case,
the autotyping feature of the Web Services Ant tasks will ignore these private fields when
generating the serialization class and corresponding XML Schema.

If you use public fields in your Java class, you do not have to create get and set methods
for each field.

Using unsupported Java data types. For the full list of the non-built-in Java data types that
the autotyping feature supports, see “Non-Built-In Data Types Supported by servicegen
and autotype Ant Tasks” on page 6-18

Not being able to roundtrip generated Java/XML data types. For more information, see
“Non-Roundtripping of Generated Data Type Components” on page 6-22.

Debugging Performance Problems
Web Services use SOAP as their message protocol. Other binary protocols will likely achieve
better performance. For example, if you can invoke a Web Service 300 times a second, you might
be able to invoke the same method 1500 times a second using RMI.

The main factors that determine the performance of a Web Service, from the most influential to
the least, are as follows:

Using HTTP as the connection protocol

If you are using security, the process of encrypting and decrypting the SOAP message

Parsing and generating XML, such as the SOAP message

Converting data between its Java and XML representations

Using very large parameters

Typically, HTTP has the most influence in the performance of a Web Service. To determine if
this is true for your WebLogic Web Service, follow these guidelines:

Troub leshoot ing

20-12 Programming WebLogic Web Services

1. Create a servlet which simply receives the SOAP message that is used to invoke your Web
Service and returns the SOAP response message. Your servlet should do no other processing,
such as converting data between XML and Java. For details on getting the SOAP request and
response, see “Viewing SOAP Messages” on page 20-4.

2. Time how long it takes to invoke the Web Service in the standard way.

3. Time how long it takes to send the SOAP request to the servlet and for your client to receive
the response.

4. Invoking the Web Service in the standard way should take only a little longer than sending
the SOAP messages to the servlet. If this is true for your Web Service, then there is not
much more you can do to speed up the invoke because HTTP is the main factor. However,
if it takes a lot more time (such as twice as long) to invoke the Web Service than it does to
use the servlet, then you might be running into one of the other factors. See “Performance
Hints” on page 20-12 for information on how to increase the performance of your Web
Service.

Performance Hints
The following list describes performance issues you should be aware of as you program your
WebLogic Web Service.

Use the us-ascii character set whenever you can, because it is the most efficient and fast.
For details, see “Specifying the Character Set for a WebLogic Web Service” on page 14-2.

Use literal encoding rather than SOAP encoding by specifying that your Web Service be
document-oriented. For details, see “Choosing RPC-Oriented or Document-Oriented Web
Services” on page 4-3.

Security, such as data encryption and digital signatures, can slow down performance
significantly, so be very judicious when adding security to a Web Service.

Be very aware of what the handlers in your handler chains are doing, because they will
execute for every single Web Service operation invoke.

Be sure to turn off all debugging flags you might have turned on during development.

Re-Resolving IP Addresses in the Event of a Failure
The first time you invoke a Web Service from a client application that uses the WebLogic client
JAR files, the client caches the IP address of the computer on which the Web Service is running,
and by default this cache is never refreshed with a new DNS lookup. This means that if you

Bind ingExcept ion When Runn ing c l i en tgen o r auto t ype Ant Task

Programming WebLogic Web Services 20-13

invoke a Web Service, and later the computer on which the Web Service is running crashes, but
then another computer with a different IP address takes over for the crashed computer, a
subsequent invoke of the Web Service from the original client application will fail because the
client application continues to think that the Web Service is running on the computer with the old
cached IP address. In other words, it does not try to re-resolve the IP address with a new DNS
lookup, but rather uses the cached information from the original lookup.

To work around this problem, update your client application to set the JDK 1.4 system property
sun.net.inetaddr.ttl to the number of seconds that you want the application to cache the IP
address.

BindingException When Running clientgen or autotype Ant Task
If you use the clientgen or autotype Ant tasks with the wsdl attribute to generate client or
data type components from a WSDL file, you might sometimes get the following exception:

weblogic.webservice.tools.build.WSBuildException: Failed to do type mapping -
with nested exception:
[weblogic.xml.schema.binding.BindingException: unable to find a definition for
type datatype

This exception means that there is an undefined data type in the section of the WSDL file that
describes the XML Schema data types used by the Web Service. The solution to this problem is
to add the data type definition to the WSDL file.

Client Error When Using the WebLogic Web Service Client to
Connect to a Third-Party SSL Server

You can use the WebLogic client-side implementation of SSL in your client application to
connect to a third-party SSL server, such as OpenSSL, by specifying the
weblogic.webservice.client https protocol handler, as shown in the following example:

-Djava.protocol.handler.pkgs=weblogic.webservice.client

However, because of the way that the WebLogic client-side SSL was implemented, you must use
the SSLAdapter class to open a URL connection to the SSL server and get an InputStream, as
shown in the following code snippet:

SSLAdapter adapter =
 SSLAdapterFactory.getDefaultFactory().getSSLAdapter();
InputStream in = adapter.openConnection(url).getInputStream();

The preceding code replaces generic code to open a connection, shown in the following example:

Troub leshoot ing

20-14 Programming WebLogic Web Services

URLConnection con = url.openConnection();
InputStream in = con.getInputStream();

If you do not use the SSLAdapter class as shown, you might get the following error when running
your client:

Exception: FATAL Alert:BAD_CERTIFICATE - A corrupt or unuseable
certificate was received

Client Error When Invoking Operation That Returns an Abstract
Type

When a client invokes a Web Service operation implemented with a method that returns an
abstract type, the client might get the following error:

java.lang.Error: cannot create abstract type: my.abstractType

The exact scenario for this error to occur is as follows:

abstract class Foo { }

class Bar extends Foo {}

class MyService {
 public Foo getFoo() {
 return new Bar();
 }
}

So, although the signature of the getFoo() method specifies that it returns a Foo object, the
actual return statement in the implemenation of the method returns a Bar object, which extends
the abstract Foo.

In this scenario, it is important that you explicitly execute the autotype Ant task for the Bar class
to generate its serialization components before you execute autotype on the MyService class.
The second autotype execution on the MyService class automatically generates serialization
components for the Foo abstract class because it is the explicit return value of the getFoo()
method. If you execute the two autotype tasks in the reverse order, you will get an error when
trying to invoke the Web Service operation that is implemented by the getFoo() method, even
though you will not get an error when executing the Ant tasks themselves.

The following snippet from a build.xml file shows an example of running the two autotype
Ant tasks in the correct order:

<autotype

 javaTypes="Bar"
 targetNamespace="com.bea.example"

Inc lud ing N i l lab le , Opt iona l , and Empty XML E lements in SOAP Messages

Programming WebLogic Web Services 20-15

 packageName="com.bea.example"
 keepGenerated="True"
 destDir="${classes}">
 <classpath>
 <path refid="project.classpath"/>
 <pathelement path="${classes}"/>
 </classpath>
 </autotype>

 <autotype
 javaComponents="MyService"
 targetNamespace="com.bea.example"
 typeMappingFile="${classes}/types.xml"
 packageName="com.bea.example"
 keepGenerated="True"
 destDir="${classes}">
 <classpath>
 <path refid="project.classpath"/>
 <pathelement path="${classes}"/>
 </classpath>
 </autotype>

Note: You cannot use the servicegen Ant task on the MyService class to generate all the
serialization components in this scenario. This is because the servicegen Ant task will
not know to generate components for the Bar class, because this class does not explicitly
appear in the signatures of the methods of the MyService class.

Including Nillable, Optional, and Empty XML Elements in SOAP
Messages

When WebLogic Server generates the SOAP response to an invocation of a Web Service
operation, and one of the XML elements of the return value is defined as nillable and optional (or
in other words, the XML Schema definition of the element includes the nillable="true" and
minOccurs="0" attributes), and there is no actual data associated with the element, then
WebLogic Server does not include the element in the SOAP response at all. This behavior,
although not a bug in WebLogic Server, might be unexpected and could cause interoperability
problems when different clients invoke the Web Service.

For example, assume the WSDL of your Web Service defines the ProductType XML data type
as shown:

<xsd:complexType name="ProductType">

 <xsd:sequence>

 <xsd:element type="xsd:string" name="ID"
 minOccurs="0" nillable="true"/>

Troub leshoot ing

20-16 Programming WebLogic Web Services

 <xsd:element type="xsd:string" name="Name"
 minOccurs="0" nillable="true"/>
 <xsd:element type="xsd:string" name="Description"
 minOccurs="0" nillable="true"/>
 </xsd:sequence>

</xsd:complexType>

Further assume a Web Service operation returns a Product, which is of type ProductType, and
that in a particular invocation, the Description element is empty because the product has no
description. WebLogic Server generates a SOAP response similar to the following:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/";
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/";
 xmlns:xsd="http://www.w3.org/2001/XMLSchema";>
 <env:Header/>
 <env:Body>
 <n1:Product xmlns:n1="http://mycompany.com/mywebservice"; >
 <n1:ID>1234</n1:ID>
 <n1:Name>MyFabProduct</n1:Name>
 </n1:Product>
 </env:Body>
</env:Envelope>

Note that the <n1:Product> element simply does not include the <n1:Description> child
element at all.

This behavior is different if the XML element is not optional (minOccurs="1"). In this case,
WebLogic Server includes the empty element in the SOAP response, but with the
xsi:nil="true" attribute, as shown in the following example:

...
 <n1:Product xmlns:n1="http://mycompany.com/mywebservice"; >
 <n1:ID>1234</n1:ID>
 <n1:Name>MyFabProduct</n1:Name>
 <n1:Description xsi:nil="true"></n1:Description>
 </n1:Product>
...

This is not a bug in WebLogic Server. The difference in behavior is due to the ambiguity of the
XML Schema Part 0: Primer specification, which is very clear about what should happen when
minOccurs="1", but unclear in the case where minOccurs="0".

If you always want nillable and optional XML elements to appear in the SOAP response, even
when they have no content, then you can do one of the following:

Explicitly set the value of the corresponding Java object to null, using a setXXX(null)
method, in the backend implementation of your Web Service operation.

http://www.w3.org/TR/xmlschema-0/

SSLKeyExcept ion When T ry ing to Invoke a Web Serv ice Us ing HTTPS

Programming WebLogic Web Services 20-17

Update the WSDL of the Web Service so that all nillable="true" XML elements that
might sometimes be empty also have the minOccurs="1" attribute set. This option is not
always possible, however, so BEA recommends the preceding workaround.

SSLKeyException When Trying to Invoke a Web Service Using
HTTPS

When a client application invokes, for the first time, a Web Service whose endpoint URL uses
HTTPS, the application might get the following error:

[java] </bea_fault:stacktrace>javax.net.ssl.SSLKeyException: FATAL
Alert:BAD_CERTIFICATE - A corrupt or unuseable certificate was received.

This can happen when, for example, you initially ran the clientgen Ant task to generate the
stubs from a WSDL whose endpoint address uses HTTP, create a client application that invokes
this Web Service, and then switch to an endpoint address that uses HTTPS (and thus SSL) in the
client application by setting the ENDPOINT_ADDRESS_PROPERTY property of the
javax.xml.rpc.Stub interface, as shown in the following example:

String url = "https://localhost:7002/webservice/TraderService";
((javax.xml.rpc.Stub)trader)._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, url);

The problem in this case could be that the client application is not using the WLSSLAdapter class
to load the client certificate, which is needed for SSL. The problem only arises when using
HTTPS, which is why the problem did not occur when invoking the Web Service using HTTP.

To solve the problem, use the WLSSLAdapter.setTrustedCertificateFile() method (for
1-way SSL) or WLSSLAdapter.loadLocalIdentity() method (for 2-way SSL) to load the
client certificate, as shown in the following example:

SSLAdapterFactory factory = SSLAdapterFactory.getDefaultFactory();
WLSSLAdapter adapter = (WLSSLAdapter) factory.getSSLAdapter();

// Uncomment following to load the client certificate for 1-way SSL
// adapter.setTrustedCertificatesFile("mytrustedcerts.pem");

// Uncomment following to load the client certificate for 2-way SSL
// adapter.loadLocalIdentity(clientCredentialFile, pwd.toCharArray());

Autotype Ant Task Not Generating Serialization Classes for All
Specified Java Types

When you use the autotype Ant task to generate serialization classes for a list of Java data types
whose class names are the same, but are in different packages, make sure you do not specify the

Troub leshoot ing

20-18 Programming WebLogic Web Services

packageName attribute. If you do, the autotype Ant task generates the serialization class for
only the last Java data type, rather than all the specified Java data types.

For example, assume you want to generate serialization classes for the following Java data types:

mypackage.MyClass

mypackage.test.MyClass

The following sample autotype Ant task specification in the build.xml file is correct and will
generate serialization classes for the two Java data types:

 <autotype
 destDir="/output/type_defs"
 javaTypes="mypackage.MyClass,mypackage.test.MyClass"
 keepGenerated="True"
 overwrite="True">
 <classpath refid="client.classpath"/>
 </autotype>

The following autotype specification is incorrect and will generate only one serialization class
(for the mypackage.test.MyClass class):

 <autotype
 destDir="/output/type_defs"
 javaTypes="mypackage.MyClass,mypackage.test.MyClass"
 keepGenerated="True"
 overwrite="True"
 packageName="mypackage">
 <classpath refid="client.classpath"/>
 </autotype>

Client Gets HTTP 401 Error When Invoking a Non-Secure Web
Service

If a client application includes the Authorization HTTP header in its SOAP request when
invoking a Web Service, but the Web Service has not been configured with access control
security constraints, WebLogic Server still refuses the request with an HTTP 401 Error:
Unauthorized Access. This differs from the way Web Applications handle the same situation:
Web Applications ignore the Authorization HTTP header if the Web Application is not
configured with security constraints.

If you want your Web Service to behave like a Web Application in this situation, set the
ignoreAuthHeader="True" attribute of the servicegen or source2wsdd Ant task that
assembles your Web Service, as shown in the following example:

Asynchronous Web Se rv ice C l i ent Us ing JMS T ranspor t Not Rece i v ing Response Messages F rom WebLog ic

Programming WebLogic Web Services 20-19

<servicegen
 destEar="ears/myWebService.ear"
 warName="myWAR.war">
 <service
 javaClassComponents="examples.webservices.basic.javaclass.HelloWorld"
 targetNamespace="http://www.bea.com/examples/HelloWorld"
 serviceName="HelloWorld"
 serviceURI="/HelloWorld"
 generateTypes="True"
 ignoreAuthHeader="True"
 expandMethods="True">
 </service>
</servicegen>

Setting this attribute in the Ant task in turn sets the ignoreAuthHeader="True" attribute for the
<web-service> element that describes the Web Service in the generated web-services.xml
deployment descriptor.

Warning: Be careful using the ignoreAuthHeader attribute. If you set the value of this
attribute to True, WebLogic Server never authenticates a client application that is
attempting to invoke a Web Service, even if access control security constraints have
been defined for the EJB, Web Application, or Enterprise Application that make up
the Web Service. Or in other words, a client application that does not provide
athentication credentials is still allowed to invoke a Web Service that has security
constraints defined on it.

Asynchronous Web Service Client Using JMS Transport Not
Receiving Response Messages From WebLogic Server

You can configure a WebLogic Web Service so that client applications can use the JMS transport
to invoke the Web Service. This feature is described in Chapter 9, “Using JMS Transport to
Invoke a WebLogic Web Service.” Furthermore, you can write a client application to invoke an
operation of a Web Service asynchronously, which means that the client application first invokes
the operation without immediately waiting for the result, and then optionally gets the results of
the invoke in a later step. This feature is described in “Writing an Asynchronous Client
Application” on page 7-11.

However, be aware that if you use the two features together, in certain situations the client
application might never receive the asynchronous response message from WebLogic Server that
includes the results of an initial invoke of the Web Service operation. In particular, assume that
an asynchronous client application invokes an operation, but before the application can invoke
the second request for the results of the operation, WebLogic Server is restarted. After WebLogic
Server starts up again, it sees that it has a response message to send back to the client, but it does

Troub leshoot ing

20-20 Programming WebLogic Web Services

not know where to send this response, and thus the asynchronous client application never receives
it. This is because the Web Service asynchronous client uses temporary, rather than permanent,
JMS destinations in its implementation, and references to this temporary destination from
WebLogic Server are lost after a server restart.

Running autotype Ant Task on a Large WSDL File Returns
java.lang.OutOfMemoryError

If you run the autotype Ant task on a very large WSDL file, your computer might run out of
resources and return any one of the following errors:

The system is out of resources.

Consult the following stack trace for details. java.lang.OutOfMemoryError

package weblogic.xml.schema.binding.internal.builtin does not exist

To solve this problem, expand the memory of the java command used by the Ant task by
increasing the heap size to at least 512M.

In particular, update the ant.bat file, located in the BEA_HOME/weblogic81/server/bin
directory, where BEA_HOME is the main BEA installation directory, such as c:/bea. Update the
file by adding the -Xmx512m option to the %_JAVACMD% variable used in the various :runAnt
labels . For example:

:runAnt

"%_JAVACMD%" -Xmx512m -classpath "%LOCALCLASSPATH%" -Dant.home="%ANT_HOME%"
 %ANT_OPTS% org.apache.tools.ant.Main %ANT_ARGS% %ANT_CMD_LINE_ARGS%

if errorlevel 1 exit /b 1

goto end

Error When Trying to Log Onto the UDDI Explorer
If your WebLogic Server domain was created by a user different from the user that installed
WebLogic Server, the following error is returned when a user tries to log onto the UDDI
Explorer:

An error has occurred

E_fatalError(10500): a serious technical error has occurred while
processing the request. 'Exception while attempting to instantiate
subclass of DataReader: com.acumenat.uddi.persistence.ldap.LDAPInit'

Data Type Non-Compl iance w i th JAX-RPC

Programming WebLogic Web Services 20-21

To resolve this problem, the WebLogic Server administrator must change the permissions on the
uddi.properties file to give access to all users. The uddi.properties file, used to configure
the UDDI server, is located in the WL_HOME/server/lib directory, where WL_HOME refers to the
main WebLogic Platform installation directory.

Data Type Non-Compliance with JAX-RPC
The autotype Ant task does not comply with the JAX-RPC specification if the XML Schema
data type (for which it is generating the Java representation) has certain characteristics; see “Data
Type Non-Compliance with JAX-RPC” on page 6-21 for details.

Troub leshoot ing

20-22 Programming WebLogic Web Services

Programming WebLogic Web Services 21-1

C H A P T E R 21

Upgrading WebLogic Web Services

The following sections describe how to upgrade WebLogic Web Services to 8.1:

“Overview of Upgrading WebLogic Web Services” on page 21-1

“Upgrading a 7.0 WebLogic Web Service to 8.1” on page 21-1

“Upgrading a 6.1 WebLogic Web Service to 8.1” on page 21-2

Overview of Upgrading WebLogic Web Services
Because of changes in the Web Service runtime system between Versions 6.1, 7.0, and 8.1 of
WebLogic Server, you must upgrade Web Services created in version 6.1 and 7.0 to run on
Version 8.1.

Upgrading a 7.0 WebLogic Web Service to 8.1
To upgrade a 7.0 WebLogic Web Service to Version 8.1:

1. Set your 8.1 environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is

Upgrading WebLogic Web Serv ices

21-2 Programming WebLogic Web Services

BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Change to the staging directory that contains the components of your Version 7.0 Web
Service, such as the EJB JAR file and the build.xml file that contains the call to the
servicegen Ant task.

3. Execute the servicegen Ant task specified in the build.xml file by typing ant in the
staging directory:

prompt> ant

The Ant task generates the 8.1 Web Services EAR file in the staging directory which can
then deploy on WebLogic Server.

Upgrading a 6.1 WebLogic Web Service to 8.1
You upgrade a 6.1 Web Service manually, by rewriting the build.xml file you used to create the
6.1 Web Service to now call the servicegen Ant task rather than the wsgen Ant task. You cannot
deploy a 6.1 Web Service on a 8.1 WebLogic Server instance.

Warning: The wsgen Ant task was deprecated in Version 7.0 of WebLogic Server, and is not
supported in Version 8.1.

The WebLogic Web Services client API included in version 6.1 of WebLogic Server has been
removed and you cannot use it to invoke 8.1 Web Services. Version 8.1 includes a new client API,
based on the Java API for XML based RPC (JAX-RPC). You must rewrite client applications
that used the 6.1 Web Services client API to now use the JAX-RPC APIs. For details, see
Chapter 7, “Invoking Web Services from Client Applications and WebLogic Server.”

To upgrade a 6.1 WebLogic Web Service to 8.1:

1. Convert the build.xml Ant build file used to assemble 6.1 Web Services with the wsgen Ant
task to the 8.1 version that calls the servicegen Ant task.

For details see “Converting a 6.1 build.xml file to 8.1” on page 21-3.

2. Un-jar the 6.1 Web Services EAR file and extract the EJB JAR file that contains the
stateless session EJBs (for 6.1 RPC-style Web Services) or message-driven beans (for 6.1
message-style Web Services), along with any supporting class files.

3. If your 6.1 Web Service was RPC-style, see“Assembling WebLogic Web Services Using the
servicegen Ant Task” on page 6-3 for instructions on using the servicegen Ant task. If
your 6.1 Web Service was message-style, see “Assembling JMS-Implemented WebLogic
Web Services Using servicegen” on page 16-5.

Upgrading a 6 .1 WebLog ic Web Se rv ice to 8 .1

Programming WebLogic Web Services 21-3

4. In your client application, update the URL you use to access the Web Service or the WSDL
of the Web Service from that used in 6.1 to 8.1. For details, see “Updating the URL Used to
Access the Web Service” on page 21-5.

Converting a 6.1 build.xml file to 8.1
The main difference between the 6.1 and 8.1 build.xml files used to assemble a Web Service is
the Ant task: in 6.1 the task was called wsgen and in 8.1 it is called servicegen. The
servicegen Ant task uses many of the same elements and attributes of wsgen, although some
do not apply anymore. The servicegen Ant task also includes additional configuration options.
The table at the end of this section describes the mapping between the elements and attributes of
the two Ant tasks.

The following build.xml excerpt is from the 6.1 RPC-style Web Services example:

<project name="myProject" default="wsgen">

 <target name="wsgen">

 <wsgen destpath="weather.ear"

 context="/weather">

 <rpcservices path="weather.jar">

 <rpcservice bean="statelessSession"

 uri="/weatheruri"/>

 </rpcservices>

 </wsgen>

 </target>

</project>

The following example shows an equivalent 8.1 build.xml file:

<project name="myProject" default="servicegen">

 <target name="servicegen">

 <servicegen

 destEar="weather.ear"

 contextURI="weather" >

 <service

 ejbJar="weather.jar"

 serviceURI="/weatheruri"

 includeEJBs="statelessSession" >

 </service>

 </servicegen>

Upgrading WebLogic Web Serv ices

21-4 Programming WebLogic Web Services

 </target>

</project>

For detailed information on the WebLogic Web Service Ant tasks, see Appendix B, “Web
Service Ant Tasks and Command-Line Utilities.”

The following table maps the 6.1 wsgen elements and attributes to their equivalent 8.1
servicegen elements and attributes.

Table 21-1 6.1 to 8.1 wsgen Ant Task Mapping

6.1 wsgen
Element

Attribute Equivalent 8.1
servicegen element

Attribute

wsgen basepath No equivalent. No equivalent

destpath servicegen destEar

context servicegen contextURI

protocol servicegen.service protocol

host No equivalent. No equivalent

port No equivalent. No equivalent

webapp servicegen warName

classpath servicegen classpath

rpcservices module No equivalent. No equivalent

path servicegen.service ejbJar

rpcservice bean servicegen.service includeEJBS,
excludeEJBs

uri servicegen.service serviceURI

messageservices N/A No equivalent. No equivalent

Upgrading a 6 .1 WebLog ic Web Se rv ice to 8 .1

Programming WebLogic Web Services 21-5

Updating the URL Used to Access the Web Service
The default URL used by client applications to access a WebLogic Web Service and its WSDL
has changed between versions 6.1 and 8.1 of WebLogic Server.

In Version 6.1, the default URL was:

[protocol]://[host]:[port]/[context]/[WSname]/[WSname].wsdl

as described in URLs to Invoke WebLogic Web Services and Get the WSDL at
http://e-docs.bea.com/wls/docs61/webServices/client.html#client008.

For example, the URL to invoke a 6.1 Web Service built with the build.xml file shown in
“Converting a 6.1 build.xml file to 8.1” on page 21-3, is:

http://host:port/weather/statelessSession.WeatherHome/statelessSession.Weather
Home.wsdl

In 8.1, the default URL is:

[protocol]://[host]:[port]/[contextURI]/[serviceURI]?WSDL

as described in “WebLogic Web Services Home Page and WSDL URLs” on page 6-23.

For example, the URL to invoke the equivalent 8.1 Web Service after converting the 6.1
build.xml file shown in “Converting a 6.1 build.xml file to 8.1” on page 21-3 and running
wsgen is:

http://host:port/weather/weatheruri?WSDL

messageservice name No equivalent. No equivalent.

destination servicegen.service JMSDestination

destinationtype servicegen.service JMSDestinationType

action servicegen.service JMSAction

connectionfactory servicegen.service JMSConnectionFactory

uri servicegen.service serviceURI

clientjar path servicegen.service.client clientJarName

Table 21-1 6.1 to 8.1 wsgen Ant Task Mapping

6.1 wsgen
Element

Attribute Equivalent 8.1
servicegen element

Attribute

http://e-docs.bea.com/wls/docs61/webServices/client.html#client008

Upgrading WebLogic Web Serv ices

21-6 Programming WebLogic Web Services

Programming WebLogic Web Services 22-1

C H A P T E R 22

Using WebLogic Workshop With
WebLogic Web Services

The following sections describe how to use WebLogic Workshop to create WebLogic Web
Services:

“Overview of WebLogic Workshop and WebLogic Web Services” on page 22-1

“Using WebLogic Workshop To Create a WebLogic Web Service: A Simple Example” on
page 22-4

“Using WebLogic Workshop To Create a WebLogic Web Service: A More Complex
Example” on page 22-7

Overview of WebLogic Workshop and WebLogic Web Services
This document provides examples and scenarios of using different technologies of WebLogic
Platform (Workshop IDE) to create WebLogic Web Services. The overview information is
divided into the following topics:

“WebLogic Workshop and WebLogic Web Services” on page 22-1

“EJBGen” on page 22-2

“Using Meta-Data Tags When Creating EJBs and Web Services” on page 22-3

WebLogic Workshop and WebLogic Web Services
Today in Java, there are two main programming models for developing Web Services. Both of
these models are supported by BEA. The first is defined in JAX-RPC, which relies on a back-end

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-2 Programming WebLogic Web Services

EJB or a plain Java Object to provide the business logic of the Web Service. To develop Web
Services using this model you can use the WebLogic Web Services Ant tasks (such as
servicegen). The second model is based on code annotation as defined in JSR-181, Web
Services Metadata for the Java Platform. The model used to develop Web Services in WebLogic
Workshop is a precursor to JSR-181. Whether you decide to use the JAX-RPC model or the
WebLogic Workshop model, the Web Services you develop will deploy and run on WebLogic
Server, however the SOAP implementation and dispatch model will vary depending on which
programming model you choose.

Typically, this difference in SOAP implementation is transparent and unimportant. However, due
to the differences in the programming models and the slight differences in the characteristics of
the two runtimes, you sometimes might want to use WebLogic Workshop to create applications
that run on the runtime supported by the JAX-RPC programming model. To do so, you cannot
use annotated JWS files, the standard way to create Web Services in WebLogic Workshop.
Rather, you use WebLogic Workshop to create the back-end component (stateless session EJB),
export the EJB and an Ant build script that builds the component, then add calls to the Web
Service Ant tasks to the build script to package everything up into a Web Service than runs on
the runtime supported by the JAX-RPC model. The examples in this document show how to go
through this process.

Once you have exported the EJB to a JAR file from WebLogic Workshop, follow the standard
guidelines outlined in this book to create a Web Service that runs on the runtime supported by the
JAX-RPC programming model. In particular, refer to:

Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks” for procedural
information about using the Ant tasks.

Appendix B, “Web Service Ant Tasks and Command-Line Utilities” for reference
information about the Ant tasks.

“Deploying and Testing WebLogic Web Services” on page 6-23 for information about
deploying and testing the Web Service.

EJBGen
When you use WebLogic Workshop to create a stateless session EJB back-end component, you
are actually using a plug-in called EJBGen, an EJB 2.0 code generator. When you write the code
for your EJB in Workshop, you use special @ejbgen Javadoc tags to describe what the EJB looks
like, and then, when you build your EJB, Workshop calls the EJBGen plug-in to generate the
remote and home interface classes and the deployment descriptor files.

Overv iew o f WebLog ic Workshop and WebLog ic Web Serv ices

Programming WebLogic Web Services 22-3

EJBGen can also be executed as a command-line utility, which means that the same *.ejb file
you use in Workshop can also be processed outside of Workshop. (The only difference is that
you must change the extension from *.ejb to *.java.) Use the java command, as shown in the
following example:

java weblogic.tools.ejbgen.EJBGen myEJB.java

One way of using the command-line version of EJBGen is to add it to the Ant build script that
calls the Ant tasks, such as servicegen, to build your WebLogic Web Service so that you can
re-generate your EJB without having to use Workshop.

Because you can use EJBGen both within Workhop and as a command-line utility, it is assumed
in the examples in this document that you might use either flavor, even if the example describes
one particular flavor.

For details about using the command-line EJBGen tool, see EJBGen Reference at
http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html. For details about the EJBGen
Workshop plug-in, see the Developing Enterprise JavaBeans topic in the left frame of the
WebLogic Workshop Help at
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html.

Using Meta-Data Tags When Creating EJBs and Web Services
The examples in this document show how to use meta-data tags in Java source code files to create
Web Services. These meta-data tags come in two flavors:

those used by EJBgen, specified with the @ejbgen Javadoc tag.

those used by the WebLogic Web Service source2wsdd Ant task, specified with the @wlws
Javadoc tag.

You use meta-data Javadoc tags in a Java source file to specify in more detail what an EJB, and
the Web Service that exposes the EJB, look like. Then you use either EJBGen or the
source2wsdd Ant task (or both) to generate the additional components. In particular, EJBGen
generates the EJB deployment descriptors and the EJB Home and Remote interfaces; the
source2wsdd Ant task generates the Web Services deployment descriptor file.

For reference information about the EJBGen tags, see EJBGen Reference at
http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html. For information about the
source2wsdd tags, see Appendix C, “source2wsdd Tag Reference.”

http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html
http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html
http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-4 Programming WebLogic Web Services

Using WebLogic Workshop To Create a WebLogic Web Service:
A Simple Example

This section describes a simple example of creating a WebLogic Web Service using the
WebLogic Workshop IDE.

Note: This procedure works only with Service Pack 2 of WebLogic Workshop. For an example
that works on the GA version of WebLogic Workshop, see “Using WebLogic Workshop
To Create a WebLogic Web Service: A More Complex Example” on page 22-7.

The example first uses Workshop to create a stateless session EJB called PurchaseOrderBean,
and then uses the servicegen WebLogic Web Services Ant task to expose the EJB as a Web
Service that runs on the runtime supported by the JAX-RPC programming model. In this
example, all the business logic is directly in the PurchaseOrderBean, which exposes two
methods as Web Service operations: submitPO and getStatus.

Note: The following procedure does not always describe the exact steps you must perform in
the IDE to create the various projects and objects. For this kind of detailed information,
see the Developing Enterprise JavaBeans topic in the left frame of the WebLogic
Workshop Help at
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html.

1. Invoke WebLogic Workshop from the Start menu.

2. If one does not already exist, create an application that will contain the stateless session
EJB.

It is assumed in the procedure that the application is named myApp.

3. If one does not already exist, create an EJB project under your Workshop application.

It is assumed that the project is named myEJBs.

4. Create a folder under the EJB project.

It is assumed that the folder is named myPackage.

5. Create a Session bean under the myPackage folder.

It is assumed that your EJB is named PurchaseOrderBean.ejb.

6. Click Source View and update PurchaseOrderBean.ejb, replacing all the code after the
package myPackage statement with the following code:

import javax.ejb.*;
import weblogic.ejb.*;

http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html

Us ing WebLog ic Workshop To Create a WebLogic Web Serv ice : A S imple Example

Programming WebLogic Web Services 22-5

/**
* @ejbgen:session
* ejb-name = "PurchaseOrder"
*
* @ejbgen:jndi-name
* remote = "ejb.PurchaseOrderRemoteHome"
*
* @ejbgen:file-generation
* remote-class = "true"
* remote-class-name = "PurchaseOrder"
* remote-home = "true"
* remote-home-name = "PurchaseOrderHome"
* local-class = "false"
* local-class-name = "PurchaseOrderLocal"
* local-home = "false"
* local-home-name = "PurchaseOrderLocalHome"
 */
public class PurchaseOrderBean
 extends GenericSessionBean
 implements SessionBean
{
 public void ejbCreate() {
 // Your code here
 }

 /**
 * @ejbgen:remote-method
 */
 public long submitPO(String PoText)
 {
 return System.currentTimeMillis();
 }

 /**
 * @ejbgen:remote-method
 */
 public int getStatus(long orderNo)
 {
 return 0;
 }
}

7. Ensure that the EJB builds correctly by right-clicking on the myEJBs project in the
application pane and selecting Build myEJBs.

8. Export the Ant build file that builds the PurchaseOrder EJB outside of Workshop by
clicking Tools->Application Properties..., choosing Build in the left pane, and clicking the
Export to Ant File button.

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-6 Programming WebLogic Web Services

A file called exported_build.xml is generated in the project directory of your Workshop
application.

Make a note of the project directory, listed under the EAR heading in the right pane.

9. Open a command window change to the project directory of your Workshop application.

10. Edit the exported_build.xml file, adding the following elements to invoke the
servicegen Ant task on the PurchaseOrder EJB you created in Workshop:

– A taskdef definition for the servicegen Ant task:

 <taskdef name="servicegen"

classname="weblogic.ant.taskdefs.webservices.servicegen.ServiceGenTask"
 classpath="${server.classpath}" />

– A target for the servicegen Ant task:
 <target name="servicegen">

 <delete file="${output.file}" />

 <servicegen

 destEar="${output.file}"

 >

 <service

 ejbJar="myEJBs.jar"

 serviceName="PurchaseOrderService"

 serviceURI="/PurchaseOrderService"

 targetNamespace="http://example.com/PurchaseOrderService"

 />

 </servicegen>

 </target>

11. Set your environment by executing the setEnv.cmd command, located in your domain
directory. The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

12. Execute the build and servicegen Ant tasks of the exported_build.xml file:

prompt> ant -f exported_build.xml build servicegen

The servicegen target of the Ant task updates the application, exposing the
PurchaseOrder EJB as a WebLogic Web Service.

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-7

13. Deploy the application as usual. For details, see “Deploying and Testing WebLogic Web
Services” on page 6-23.

Using WebLogic Workshop To Create a WebLogic Web Service:
A More Complex Example

This section describes a more complex example of creating a WebLogic Web Service using the
WebLogic Workshop IDE.

Description of the Example
In the example, the PurchaseOrderServiceBean EJB is exposed as a Web Service, but it does
not contain any business logic. It has one operation that accepts a purchase order number from an
incoming SOAP request and returns a PurchaseOrder object in the SOAP response. The
PurchaseOrderServiceBean EJB that is exposed as a Web Service delegates all the actual
work of looking up a purchase order to a conventional session facade EJB called
PurchasingManagerBean. This EJB implements all the business logic of the application,
independent of the Web Service entry point. The EJB uses the Item and PurchaseOrder
complex data types when processing purchase orders, and creates new PurchaseOrder objects
using the PurchaseOrderFactory.

The PurchaseOrderServiceBean EJB, in addition to using EJBGen Javadoc tags as in the
preceding example, also uses WebLogic Web Service source2wsdd tags, identified with the
@wlws prefix. Because of the use of meta-data tags, the example uses individual Ant tasks, such
as source2wsdd and autotype, to assemble a Web Service, rather than the all-encompassing
servicegen Ant task. For details about the source2wsdd tags, see Appendix C, “source2wsdd
Tag Reference.”

The example also shows how to use a SOAP message handler. The SOAP message handler looks
for a SOAP header called My-Username in the SOAP request from a client, and if it exists, it
extracts the value, and logs a message that includes the name to a log file. If the header does not
exist, the SOAP message handler logs a message with Unknown as the username. For additional
information about SOAP message handlers, see Chapter 12, “Creating SOAP Message Handlers
to Intercept the SOAP Message.”

Assumptions
This main point of this example is to show how to use WebLogic Workshop to create an EJB and
SOAP message handler that together will be exposed as a Web Service, and then how to package

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-8 Programming WebLogic Web Services

it all together into a deployable EAR file than runs on the runtime supported by the JAX-RPC
programming model. For this reason, it is assumed that you have already:

Created an application in WebLogic Workshop, called myComplexApp, that contains an
EJB Project called PurchaseOrderService.

Within the PurchaseOrderService EJB project, created a folder called po that contains
the EJB that performs all the business logic (PurchasingManagerBean) as well as the
various objects used by the PurchasingManagerBean EJB, such as Item,
PurchaseOrder, and PurchaseOrderFactory.

See “Source Code for Supporting Java Objects” on page 22-16 for sample source code for
these objects.

The Example
Note: The following procedure does not always describe the exact steps you must perform in

the IDE to create the various projects and objects. For this kind of detailed information,
see the Developing Enterprise JavaBeans topic in the left frame of the WebLogic
Workshop Help at
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html.

1. Invoke WebLogic Workshop from the Start menu.

2. Create a folder under the PurchaseOrderService EJB project called service.

3. Create a Session bean under the service folder called
PurchaseOrderServiceBean.ejb.

4. Click Source View and update PurchaseOrderBean.ejb, replacing all the
Workshop-generated Java code with the following code:

package service;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import po.PurchasingManagerLocal;
import po.PurchasingManagerLocalHome;

/**
 * This is the web service facade. It defines the web service
 * operations and contains any web service-specific

http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/../../workshop/docs81/doc/en/core/index.html

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-9

 * application logic (such as logging invokes in a handler).
 *
 * @ejbgen:session
 * ejb-name = "PurchaseOrderServiceEJB"
 * @ejbgen:jndi-name
 * local = "PurchaseOrderService"
 * @ejbgen:ejb-local-ref
 * link = "PurchasingManagerEJB"
 * @wlws:webservice
 * name="PurchaseOrderService"
 * targetNamespace="http://openuri.org/easypo_service"
 * style="document"
 */

public class PurchaseOrderServiceBean implements SessionBean {

 // local interface of the PurchasingManager session facade
 PurchasingManagerLocal pm = null;

 /**
 * This operation return a PurchaseOrder that is retrieved from
 * the PurchasingManager

 * @ejbgen:local-method
 * @wlws:operation handler-chain = "PurchaseOrderServiceHandlerChain"
 */
 public po.PurchaseOrder getPurchaseOrder(String poNumber) {
 return pm.getPO(poNumber);
 }
 public void ejbCreate() throws CreateException {
 try {
 InitialContext ctx = new InitialContext();
 PurchasingManagerLocalHome pmhome = (PurchasingManagerLocalHome)
ctx.lookup("java:/comp/env/ejb/PurchasingManagerEJB");
 pm = pmhome.create();
 } catch (NamingException ne) {
 throw new CreateException("Could not locate PurchasingManager EJB");
 }
 }

 public void ejbRemove() {
 }

 public void ejbPassivate() {
 }

 public void ejbActivate() {
 }

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-10 Programming WebLogic Web Services

 public void setSessionContext(SessionContext ctx) {
 }

}

5. Create a Java class under the service folder called
PurchaseOrderServiceHandler.java. This class implements the server-side SOAP
message handler.

6. In the middle pane, replace all the Workshop-generated Java code of
PurchaseOrderServiceHandler.java with the following code:

package service;

import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.namespace.QName;
import javax.xml.soap.*;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Map;
import java.util.Iterator;
import java.util.Date;

/**
 * Represents a JAX-RPC handler that intercepts an incoming SOAP message,
 * extracts an optional header called"My-Username" and logs a message to a
 * log file.
 */

public class PurchaseOrderServiceHandler implements Handler {
 private static final String HEADER_NAME = "My-Username";
 private PrintWriter out;

 public QName[] getHeaders() {
 return new QName[]{new QName(HEADER_NAME)};
 }

 public boolean handleRequest(MessageContext messageContext) {
 String userName = null;
 try {
 userName = getHeaderValue(messageContext, HEADER_NAME);
 } catch (SOAPException e) {
 throw new RuntimeException("Could not retrieve header value", e);
 }
 if (userName == null) userName = "UNKNOWN";
 out.println(new Date() + ": Received request from username " + userName);

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-11

 out.flush();
 return true;
 }

 public boolean handleResponse(MessageContext messageContext) {
 return true;
 }

 public boolean handleFault(MessageContext messageContext) {
 return true;
 }

 public void init(HandlerInfo handlerInfo) {
 Map config = handlerInfo.getHandlerConfig();
 String logFileName = (String) config.get("logFile");
 if (logFileName == null) {
 throw new RuntimeException("Could not initialize handler; logFile
not specified in init-params.");
 }
 try {
 out = new PrintWriter(new FileWriter(logFileName));
 } catch (IOException e) {
 throw new RuntimeException("Could not initialize handler; could not
open log file " + logFileName, e);
 }
 }

 public void destroy() {
 out.close();
 }

 private static String getHeaderValue(MessageContext messageContext,
 String headerName) throws SOAPException {
 SOAPFactory fact = SOAPFactory.newInstance();
 SOAPMessageContext ctx = (SOAPMessageContext) messageContext;
 SOAPHeader headers =
 ctx.getMessage().getSOAPPart().getEnvelope().getHeader();

 Iterator i = headers.getChildElements(fact.createName(HEADER_NAME));
 while (i.hasNext()) {
 SOAPElement elt = (SOAPElement) i.next();
 if (headerName.equals(elt.getElementName().getLocalName())) {
 return elt.getValue();
 }
 }
 return null;
 }
}

7. Create an XML file called handler-chain.xml under the service folder.

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-12 Programming WebLogic Web Services

This XML file will contain a description of the SOAP message handler and handler chain
used by the Web Service. The file will late be used by the source2wsdd Ant task when
generating the Web Service deployment descriptor.

8. In the middle pane, replace the Workshop-generated <root></root> XML elements with
the following XML:

<handler-chains>
 <handler-chain name="PurchaseOrderServiceHandlerChain">
 <handler class-name="service.PurchaseOrderServiceHandler">
 <init-params>
 <init-param name="logFile" value="./posvc.log" />
 </init-params>
 </handler>
 </handler-chain>
</handler-chains>

9. Click Tools->Application Properties... and choose Build in the left pane. Make a note of the
project directory, listed under the EAR heading in the right pane.

10. Open a command window and change to the project directory of your Workshop
application.

11. Set your environment by executing the setEnv.cmd command, located in your domain
directory. The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain

12. Ensure you can rebuild your EJB project from the command line by exeucting the
WL_HOME\workshop\wlwBuild.cmd, where WL_HOME refers to the main WebLogic
Platform directory, such as c:\beahome\weblogic81. Use the -project option to pass it
the name of the EJB project, as shown in the following example:

prompt> c:\beahome\weblogic81\workshop\wlwBuild.cmd -project
PurchaseOrderService

You can add this line to your automated shell scripts that iteratively build the application.

13. In the Workshop project directory, create an Ant build.xml file that includes calls to the
autotype and source2wsdd WebLogic Web Service ant tasks.

These Ant tasks take the compiled EJB and SOAP message handler class and create the
needed Web Services components, such as the deployment descriptor and data type
components. For an example of this file, see “Sample build.xml File” on page 22-13.

14. Execute the Ant tasks by running the ant command:

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-13

prompt> ant

If you use a build.xml file similar to the sample, the Ant task create a deployable EAR file
called PurchaseOrderService.ear in a directory called output that is parallel to the
Workshop project directory.

15. Deploy the PurchaseOrderService.ear file as usual. For details, see “Deploying and
Testing WebLogic Web Services” on page 6-23.

Sample build.xml File
<project name="build-scenario1" default="build">

 <!-- WebLogic Home. -->
 <property name="platformhome" value="/home/toddk/bea/weblogic81"/>

 <!-- base url of the server and administrator user, password -->
 <property name="server_url" value="http://localhost:7001"/>
 <property name="admin_user" value="weblogic"/>
 <property name="admin_passwd" value="gumby1234"/>

 <!-- location of the browser executable -->
 <property name="browser"
 value="/usr/local/MozillaFirebird/MozillaFirebird"/>

 <!-- the dir into which the output of compilers and tools is directed -->
 <property name="output_dir" value="../output"/>

 <!-- the name of service (used in constructing war file name, WSDL, etc.) -->
 <property name="service_name" value="PurchaseOrderService"/>

 <!-- the Java package in which the service class is located -->
 <property name="service_package" value="service"/>

 <!-- the target namespace of the service -->
 <property name="target_namespace"
 value="http://openuri.org/easypo_service"/>

 <!-- name of the Workshop EJB project containing the web service EJBs -->
 <property name="service_ejb_project" value="PurchaseOrderService" />

 <!-- the dir that contains the exploded ear file containing the web service
-->
 <property name="output_ear" value="${output_dir}/${service_name}-ear"/>
 <path id="build.classpath">
 <pathelement path="${java.class.path}"/>
 <pathelement location="${platformhome}/server/lib/webservices.jar"/>
 <pathelement location="${output_ear}"/>
 <pathelement location="${output_ear}/APP-INF/classes"/>

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-14 Programming WebLogic Web Services

 <pathelement location="${service_ejb_project}.jar"/>
 </path>
 <target name="build"
 depends="clean, setup, webservice.build, webservice.client, build.finish"/>
 <target name="clean" description="delete generated stuff">
 <delete dir="${output_dir}"/>
 </target>

 <target name="setup" description="create output directories">
 <mkdir dir="${output_ear}/META-INF"/>
 <mkdir dir="${output_dir}/${service_name}-war/WEB-INF"/>
 </target>

 <!-- build the web service from the web service EJB JAR -->
 <target name="webservice.build">

 <!-- put the EJB JAR in the exploded EAR -->
 <copy file="${service_ejb_project}.jar" todir="${output_ear}" />

 <!-- generate XML types from the Java value types in the service -->
 <autotype javaComponents="${service_package}.${service_name}Local"
 typeMappingFile="${output_ear}/APP-INF/classes/types.xml"
 destDir="${output_ear}/APP-INF/classes"
 packageName="${service_package}"
 classpathref="build.classpath"/>

 <!-- build the service from the EJB and autotyper types -->
 <source2wsdd

javaSource="${service_ejb_project}/${service_package}/${service_name}Bean.ejb"
 ddFile="${output_dir}/${service_name}-war/WEB-INF/web-services.xml"
 typesInfo="${output_ear}/APP-INF/classes/types.xml"

handlerInfo="${service_ejb_project}/${service_package}/handler-chain.xml"
 serviceURI="/${service_name}"
 wsdlFile="${output_dir}/${service_name}-war/${service_name}.wsdl"
 ejblink="${service_ejb_project}.jar#${service_name}EJB"
 classpathref="build.classpath">
 </source2wsdd>

 <!-- package the web service war -->
 <jar destFile="${output_ear}/${service_name}.war"
basedir="${output_dir}/${service_name}-war"/>

 <!-- package the ear -->
 <echo file="${output_ear}/META-INF/application.xml">
 <![CDATA[
 <!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN'
 'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-15

 <application>
 <display-name> ${service_name}-Service </display-name>
 <module>
 <ejb>
 ${service_ejb_project}.jar
 </ejb>
 </module>
 <module>
 <web>
 <web-uri> ${service_name}.war </web-uri>
 <context-root> ${service_name} </context-root>
 </web>
 </module>
 </application>
]]>
 </echo>
 <jar destFile="${output_dir}/${service_name}.ear"
baseDir="${output_ear}"/>

 </target>

 <target name="webservice.client">

 <!-- generate JAX-RPC client interfaces, stubs into the client jar -->
 <clientgen
 description="create a web service client from the ear"
 clientJar="${output_dir}/${service_name}-client"
 wsdl="${output_dir}/${service_name}-war/${service_name}.wsdl"
 typeMappingFile="${output_ear}/APP-INF/classes/types.xml"
 packageName="${service_package}.client"
 usePortNameAsMethodName="true"
 keepgenerated="true"
 classpathref="build.classpath">
 </clientgen>
 <!-- compile the client app into the client jar -->
 <javac srcdir="."
 includes="client/*.java"
 destdir="${output_dir}/${service_name}-client"
 classpathref="build.classpath">
 </javac>

 <!-- package the client jar; executing the jar runs the test app -->
 <jar
 destFile="${output_dir}/${service_name}-client.jar"
 baseDir="${output_dir}/${service_name}-client"/>

 </target>

 <target name="build.finish" description="clean up temp files">
 <delete dir="${output_dir}/${service_name}-client"/>

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-16 Programming WebLogic Web Services

 <delete dir="${output_dir}/${service_name}-war"/>
 <delete dir="${output_ear}"/>
 </target>

 <target name="deploy" description="deploy service">
 <wldeploy action="deploy" source="${output_dir}/${service_name}.ear"
 adminurl="${server_url}"
 user="${admin_user}" password="${admin_passwd}"/>
 </target>

 <target name="undeploy" description="undeploy service">
 <wldeploy action="undeploy" source="${output_dir}/${service_name}.ear"
 adminurl="${server_url}"
 user="${admin_user}" password="${admin_passwd}"/>
 </target>

 <target name="browse" description="browse test page for this service">
 <exec executable="${browser}">
 <arg line="${server_url}/${service_name}/${service_name}"/>
 </exec>
 </target>

 <target name="run" description="run client">
 <java classname="client.Main" fork="true">
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${output_dir}/${service_name}-client.jar"/>

 </classpath>
 <arg line="${server_url}/${service_name}/${service_name}?WSDL"/>
 <jvmarg line="-Dweblogic.webservice.verbose=true"/>
 </java>
 </target>

</project>

Source Code for Supporting Java Objects
This section provides sample code for the following supporting Java objects which are already
assumed to exist:

Item.java

PurchaseOrder.java

PurchasingManagerBean.java

PurchaseOrderFactory.java

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-17

Item.java
package po;

/**

 * Represents a single item on a purchase order.

 */

public class Item {

 private String catNumber;

 private String description;

 private int quantity;

 public Item() {

 }

 public Item(String catNumber, String description, int quantity) {

 this.catNumber = catNumber;

 this.description = description;

 this.quantity = quantity;

 }

 public String getCatNumber() {

 return catNumber;

 }

 public void setCatNumber(String catNumber) {

 this.catNumber = catNumber;

 }

 public String getDescription() {

 return description;

 }

 public void setDescription(String description) {

 this.description = description;

 }

 public int getQuantity() {

 return quantity;

 }

 public void setQuantity(int quantity) {

 this.quantity = quantity;

 }

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-18 Programming WebLogic Web Services

 public String toString() {

 StringBuffer sbuf = new StringBuffer();

 sbuf.append("[Item");

 sbuf.append("\n\tcatNumber = " + catNumber);

 sbuf.append("\n\tdescription = " + description);

 sbuf.append("\n\tquantity = " + quantity);

 sbuf.append("\n]");

 return sbuf.toString();

 }

}

PurchaseOrder.java
package po;

import po.Item;

/**

 * Date: Oct 15, 2003

 * Time: 3:29:23 PM

 */

public class PurchaseOrder {

 private String poNumber;

 private Item[] items;

 private String custName;

 private String custAddress;

 public PurchaseOrder() {

 }

 public PurchaseOrder(String poNumber) {

 this.poNumber = poNumber;

 }

 public String getPoNumber() {

 return poNumber;

 }

 public void setPoNumber(String poNumber) {

 this.poNumber = poNumber;

 }

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-19

 public Item[] getItems() {

 return items;

 }

 public void setItems(Item[] items) {

 this.items = items;

 }

 public String getCustName() {

 return custName;

 }

 public void setCustName(String custName) {

 this.custName = custName;

 }

 public String getCustAddress() {

 return custAddress;

 }

 public void setCustAddress(String custAddress) {

 this.custAddress = custAddress;

 }

 public String toString() {

 StringBuffer sbuf = new StringBuffer();

 sbuf.append("[PurchaseOrder");

 sbuf.append("\n\tpoNumber = " + poNumber);

 sbuf.append("\n\tcustName = " + custName);

 sbuf.append("\n\tcustAddress = " + custAddress);

 if (items != null) {

 for (int i = 0; i < items.length; ++i) {

 sbuf.append("\n");

 sbuf.append(items[i].toString());

 }

 }

 sbuf.append("\n]");

 return sbuf.toString();

 }

}

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-20 Programming WebLogic Web Services

PurchasingManagerBean.java
package po;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

/**

 * This is a session facade EJB that is the entry point to the business

 * logic ofthe application.

 *

 * @ejbgen:session

 * ejb-name = "PurchasingManagerEJB"

 * @ejbgen:jndi-name

 * local = "PurchasingManager"

 */

public class PurchasingManagerBean implements SessionBean {

 /**

 * @ejbgen:local-method

 */

 public PurchaseOrder getPO(String poNumber) {

 return PurchaseOrderFactory.createPO(); // always return same thing

 }

 /**

 * @ejbgen:local-method

 */

 public int getStatus(String poNumber) {

 return 1;

 }

 public void ejbRemove() {}

 public void ejbCreate() {}

 public void ejbPassivate() {}

 public void ejbActivate() {}

 public void setSessionContext(SessionContext ctx) {}

}

PurchaseOrderFactory.java
package po;

Using WebLogic Workshop To Create a WebLog ic Web Se rv ice : A More Complex Example

Programming WebLogic Web Services 22-21

import java.util.ArrayList;

import java.util.List;

/**

 * A Factory to create PurchaseOrders. This just creates the same

 * dummy PO each time.

 */

public class PurchaseOrderFactory {

 /**

 * Constructs a PurchaseOrder object

 */

 public static PurchaseOrder createPO() {

 PurchaseOrder po = new PurchaseOrder("PO8048392");

 // Add customer

 po.setCustName("Mary Mary Quite Contrary");

 po.setCustAddress("123 Main Street, Hogsmeade");

 // Add Line Items

 List items = new ArrayList();

 items.add(new Item("S-123", "Lacewing Flies", 100));

 items.add(new Item("S-456", "Leeches", 3));

 items.add(new Item("S-043", "Powdered Bicon Horn", 1));

 items.add(new Item("S-153", "Knotgrass", 5));

 items.add(new Item("S-904", "Fluxweed", 1));

 items.add(new Item("S-034", "Boomslang Skin", 2));

 po.setItems((Item[]) items.toArray(new Item[]{}));

 return po;

 }

}

Using WebLog ic Workshop Wi th WebLog ic Web Serv ices

22-22 Programming WebLogic Web Services

Programming WebLogic Web Services A-1

A P P E N D I X A

WebLogic Web Service Deployment
Descriptor Elements

The following sections describe the web-services.xml file using different formats:

“Overview of web-services.xml” on page A-1

“Graphical Representation” on page A-1

“Element Reference” on page A-4

Overview of web-services.xml
The web-services.xml deployment descriptor file contains information that describes one or
more WebLogic Web Services. This information includes details about the back-end components
that implement the operations of a Web Service, the non-built-in data types used as parameters
and return values, the SOAP message handlers that intercept SOAP messages, and so on. As is
true for all deployment descriptors, web-services.xml is an XML file.

Graphical Representation
The following graphic describes the web-services.xml element hierarchy.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-2 Programming WebLogic Web Services

Figure 22-1 web-services.xml Element Hierarchy

web-services

web-service

components

stateless-ejb

ejb-link

jndi-name

jms-send-destination

jndi-name

jms-receive-queue

jndi-name

(Continued)

java-class

handler-chains

handler

init-params

init-param

handler-chain

types

XML Schema

type-mapping

type-mapping-entry

#web-services
#web-service
#components
#components
#ejb-link
#jndi-name
#jms-send-destination
#jndi-name
#jms-receive-queue
#jndi-name
#java-class
#handler-chains
#handler
#init-params
#init-param
#handler-chain
#types
#type-mapping
#type-mapping-entry

Graphica l Representat ion

Programming WebLogic Web Services A-3

operations

operation

params

param

return-param

fault

reliable-delivery

security

user

name

password

encryptionKey

name

password

signatureKey

name

password
(Continued)

(Continued)

#operations
#operation
#params
#param
#return-param
#fault
#reliable-delivery
#security
#user
#name
#password
#encryptionKey
#name
#password
#signatureKey
#name
#password

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-4 Programming WebLogic Web Services

Element Reference
The following sections, arranged alphabetically, describe each element in the
web-services.xml file.

See “Examining Different Types of web-services.xml Files” on page E-9 for sample Web
Services deployment descriptor files for a variety of different types of WebLogic Web Services.

timestamp

clocks-synchronized

outbound-expiry

generate-signature-timestamp

inbound-expiry

enforce-precision

require-signature-timestamp

clock-precision

(Continued)

spec:SecuritySpec

spec:UsernameTokenSpec

spec:BinarySecurityTokenSpec

spec:SignatureSpec

spec:ElementIdentifier

spec:EncryptionSpec

spec:ElementIdentifier

#timestamp
#clocks-synchronized
#outbound-expiry
#generate-signature-timestamp
#inbound-expiry
#enforce-precision
#require-signature-timestamp
#clock-precision
#spec:SecuritySpec
#spec:UsernameTokenSpec
#spec:BinarySecurityTokenSpec
#spec:SignatureSpec
#spec:ElementIdentifier
#spec:EncryptionSpec
#spec:ElementIdentifier

E lement Refe rence

Programming WebLogic Web Services A-5

clock-precision
Describes the accuracy of synchronization between the clock of a client application invoking a
WebLogic Web Service and WebLogic Server’s clock. WebLogic Server uses this value to
account for a reasonable level of clock skew between two clocks.

The value is expressed in milliseconds. This means, for example, that if the clocks are accurate
within a one minute of each other, the value of this element is 60000.

If the value of this element is greater than the expiration period of an incoming SOAP request,
WebLogic Server rejects the request because it cannot accurately enforce the expiration. For
example, if the clock precision value is 60000 milliseconds, and WebLogic Server receives a
SOAP request that expires 30000 milliseconds after its creation time, it is possible that the
message has lived for longer than 30000 seconds, due to the 60000 millisecond clock precision
discrepancy, so WebLogic Server has no option but to reject the message. You can relax this strict
enforcement by setting the <enforce-precision> element to false. For details, see
“enforce-precision” on page A-7.

This element must be specified in conjunction with <clocks-synchronized>.

The default value for this element is 60000.

This element does not have any attributes. This element is a child element of <timestamp>.

clocks-synchronized
Specifies whether WebLogic Server assumes that the clocks of the client application invoking a
WebLogic Web Service and WebLogic Server are synchronized when dealing with timestamps
in SOAP messages.

If the value of this element is true, WebLogic Server enforces, if it exists, the time expiration of
the SOAP request from a client application that is invoking a WebLogic Web Service. This means
that if the time stamp has expired, WebLogic Server does not invoke the Web Service operation.
If the value of this element is false, WebLogic Server rejects all SOAP requests that contain a
time expiration.

Valid values for this element are true and false. The default value is false.

This element does not have any attributes. This element is a child element of <timestamp>.

components
Defines the back-end components that implement the Web Service.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-6 Programming WebLogic Web Services

A WebLogic Web Service can be implemented using one or more of the following components:

Stateless session EJB

JMS destination

A Java class

This element has no attributes.

ejb-link
Identifies which EJB in an EJB JAR file is used to implement the stateless session EJB back-end
component.

encryptionKey
Specifies the name and password of a key pair and certificate used when encrypting elements of
the SOAP message. Specify the name using the <name> subelement; specify the password with
the <password> subelement.

Note: Create the key and certificate pair in the WebLogic Server keystore with the
Administration Console. For details, see Storing Private Keys, Digital Certificates, and
Trusted CAs.

Table A-1 Attributes of the <ejb-link> Element

Attribute Description Datatype Required?

path Name of the EJB in the form of:

jar-name#ejb-name

jar-name refers to the name of the JAR file, contained
within the Web Service EAR file, that contains the
stateless session EJB. The name should include
pathnames relative to the top level of the EAR file.

ejb-name refers to the name of the stateless session
EJB, corresponding to the <ejb-name> element in the
ejb-jar.xml deployment descriptor file in the EJB
JAR file.

Example: myapp.jar#StockQuoteBean

String Yes

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#store_keys_certs_trustedcas

E lement Refe rence

Programming WebLogic Web Services A-7

This element does not have any attributes.

enforce-precision
Specifies whether to enforce the clock precision time period.

If this element is set to false, WebLogic Server does not reject SOAP requests whose time
expiration period is smaller than the clock precision time, specified with the
<clock-precision> element. By default, WebLogic Server rejects these SOAP requests
because it cannot accurately determine whether the message has expired, due to the discrepancy
in clock precision between the client application and WebLogic Server.

Valid values for this element are true and false. The default value is true.

This element does not have any attributes. This element is a child element of <timestamp>.

fault
Specifies the SOAP fault that should be thrown if there is an error invoking this operation.

This element is not required.

generate-signature-timestamp
Specifies whether WebLogic Server includes a timestamp in the SOAP response to a client
application that has invoked a WebLogic Web Service operation.

Valid values for this element are true and false. The default value is true.

This element does not have any attributes. This element is a child element of <timestamp>.

Table A-2 Attributes of the <fault> Element

Attribute Description Datatype Required?

class-name Fully qualified Java class that implements the SOAP fault. String Yes

name Name of the fault. String Yes

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-8 Programming WebLogic Web Services

handler
Describes a SOAP message handler in a handler chain. A single handler chain can consist of one
or more handlers.

If the Java class that implements the handler expects initialization parameters, specify them using
the optional <init-params> child element of the <handler> element.

handler-chain
Lists the SOAP message handlers that make up a particular handler chain. A single WebLogic
Web Service can define zero or more handler chains.

The order in which the handlers (defined by the <handler> child element) are listed is important.
By default, the handleRequest() methods of the handlers execute in the order that they are
listed as child elements of the <handler-chain> element. The handleResponse() methods of
the handlers execute in the reverse order that they are listed.

handler-chains
Contains a list of <handler-chain> elements that describe the SOAP message handler chains
used in the Web Service described by this web-services.xml file. A single WebLogic Web
Service can define zero or more handler chains.

This element does not have any attributes.

Table A-3 Attributes of the <handler> Element

Attribute Description Datatype Required?

class-name Fully qualified Java class that implements the SOAP
message handler.

String Yes

Table A-4 Attributes of the <handler-chain> Elementback-end

Attribute Description Datatype Required?

name Name of this handler chain. String Yes

E lement Refe rence

Programming WebLogic Web Services A-9

inbound-expiry
Specifies, in milliseconds, WebLogic Server’s expiration period for a SOAP request from a client
application invoking a Web Service. WebLogic Server adds the value of this element to the
creation date in the time stamp of the SOAP request, accounts for clock precision, then compares
the result to the current time. If the result is greater than the current time, WebLogic Server rejects
the invoke.

In addition to its own expiration period for SOAP requests, WebLogic Server also honors
expirations in the SOAP request message itself, specified by the client application.

To specify no expiration, set this element to -1.

The default value of this element is -1.

If you set this element to a value, be sure you also specify that the clocks between WebLogic
Server and client applications are synchronized by setting the <clocks-synchronized>
element to true.

init-param
Specifies a name-value pair that represents one of the initialization parameters of a handler.

init-params
Contains the list of initialization parameters that are passed to the Java class that implements a
handler.

This element does not have any attributes.

Table A-5 Attributes of the <init-param> Element

Attribute Description Datatype Required?

name Name of the parameter. String Yes

value Value of the parameter. String Yes

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-10 Programming WebLogic Web Services

java-class
Describes the Java class component that implements one or more operations of a Web Service.

jms-receive-queue
Specifies that one of the operations in the Web Service is mapped to a JMS queue. Use this
element to describe a Web Service operation that receives data from a JMS queue.

Typically, a message producer puts a message on the specified JMS queue, and a client invoking
this Web Service operation polls and receives the message.

Table A-6 Attributes of the <java-class> Element

Attribute Description Datatype Required

class-name Fully qualified name of the Java class that implements this
component.

String Yes

name Name of this component. String Yes

Table A-7 Attributes of the <jms-receive-queue> Element

Attribute Description Datatype Required?

connection-factory JNDI name of the JMS Connection factory that
WebLogic Server uses to create a JMS
Connection object.

String Yes

initial-context-factory Context factory for a non-WebLogic Server JMS
implementation.

String No

name Name of this component. String Yes

provider-url URL used to connect to a non-WebLogic Server
JMS implementation.

String No

E lement Refe rence

Programming WebLogic Web Services A-11

jms-send-destination
Specifies that one of the operations in the Web Service is mapped to a JMS queue. Use this
element to describe a Web Service operation that sends data to the JMS queue.

Typically, a message consumer (such as a message-driven bean) consumes the message after it is
sent to the JMS destination.

jndi-name
Specifies a reference to an object bound into a JNDI tree. The reference can be to a stateless
session EJB or to a JMS destination.

name
Depending on the parent element, the <name> element specifies:

Table A-8 Attributes of the <jms-send-destination> Element

Attribute Description Datatype Required?

connection-factory JNDI name of the JMS Connection factory that
WebLogic Server uses to create a JMS
Connection object.

String Yes

initial-context-factory Context factory for a non-WebLogic Server JMS
implementation.

String No

name Name of this component. String Yes

provider-url URL used to connect to a non-WebLogic Server
JMS implementation.

String No

Table A-9 Attributes of the <jndi-name> Element

Attribute Description Datatype Required?

path Path name to the object from the JNDI context root. String Yes

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-12 Programming WebLogic Web Services

The username used in the username token in the SOAP response message. (Parent
element is <user>.)

The name of the key pair and certificate, stored in WebLogic Server’s keystore, used to
encrypt part of the SOAP message. (Parent element is <encryptionKey>.)

The name of the key pair and certificate, stored in WebLogic Server’s keystore, used to
digitally sign part of the SOAP message. (Parent element is <signatureKey>.)

This element does not have any attributes.

operation
Configures a single operation of a Web Service. Depending on the value and combination of
attributes for this element, you can configure the following types of operations:

An invoke of a method of a stateless session EJB or Java class. Specify this type of
operation by setting the component attribute to the name of the stateless session EJB or
Java class component and the method attribute to the name of the method.

An invoke of a JMS back-end component. Specify this type of operation by setting the
component attribute to the name of the JMS component.

The sequential invoke of the SOAP message handlers on a handler chain together with the
invoke of a back-end component. Specify this type of operation by setting the component
attribute to the name of the component, and the handler-chain attribute to the name of
the handler chain you want to invoke.

The sequential invoke of the SOAP message handlers on a handler chain, but with no
back-end component. Specify this type of operation by just setting the handler-chain
attribute to the name of the handler chain you want to invoke and not setting the
component and method attributes.

Use the <params> child element to explicitly specify the parameters and return values of the
operation.

E lement Refe rence

Programming WebLogic Web Services A-13

Table A-10 Attributes of the <operation> Element

Attribute Description Datatype Required?

component Name of the component that implements this
operation.

The value of this attribute corresponds to the name
attribute of the appropriate <component> element.

String No

handler-chain Name of the SOAP message handler chain that
implements the operation.

If you specify this attribute along with the
component and method attributes, then the
operation is implement with both the method and the
handler chain. If, however, you do not specify the
component and method attributes, but rather
specify handler-chain on its own, then the
operation is implemented with just a SOAP message
handler chain.

The value of this attribute corresponds to the name
attribute of the appropriate <handler-chain>
element.

String No

in-security-spec Specifies the name of the security specification that
describes the message-level security of the client
application’s SOAP request when it invokes the
operation. The security specification describes what
part of the SOAP request should be encrypted or
digitally signed.

If you do not specify this attribute, the default security
specification, if it exists, is applied to the SOAP
request. If there is no default security specification,
then no message-level security is applied to the SOAP
request.

The value of this attribute corresponds to the Id
attribute of the appropriate
<spec:SecuritySpec> element.

String No.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-14 Programming WebLogic Web Services

invocation-style Specifies whether the operation both receives a SOAP
request and sends a SOAP response, or whether the
operation only receives a SOAP request but does not
send back a SOAP response.

This attribute accepts only two values:
request-response (default value) or one-way.

Note: If the back-end component that implements
this operation is a method of a stateless
session EJB or Java class and you set this
attribute to one-way, the method must
return void.

String No

method Name of the method of the EJB or Java class that
implements the operation if you specify with the
component attribute that the operation is
implemented with a stateless session EJB or Java
class.

You can specify all the methods with the asterisk (*)
character.

If your EJB or Java class does not overload the
method, you need only specify the name of the
method, such as:

method="sell"

If, however, the EJB or Java class overloads the
method, then specify the full signature, such as:

method="sell(int)"

String No

name Name of the operation that will be used in the
generated WSDL.

If you do not specify this attribute, the name of the
operation defaults to either the name of the method or
the name of the SOAP message handler chain.

String No

Table A-10 Attributes of the <operation> Element

Attribute Description Datatype Required?

E lement Refe rence

Programming WebLogic Web Services A-15

operations
The <operations> element groups together the explicitly declared operations of this Web
Service.

This element does not have any attributes.

outbound-expiry
Specifies, in milliseconds, the expiration period that WebLogic Server adds to the timestamp
header of the SOAP response.

To specify no expiration, set this element to -1.

The default value of this element is -1.

out-security-spec Specifies the name of the security specification that
describes the message-level security of WebLogic
Server’s SOAP response after a client application has
invoked the operation. The security specification
describes what part of the SOAP response should be
encrypted or digitally signed.

If you do not specify this attribute, the default security
specification, if it exists, is applied to the SOAP
response. If there is no default security specification,
then no message-level security is applied to the SOAP
response.

The value of this attribute corresponds to the Id
attribute of the appropriate
<spec:SecuritySpec> element.

String No.

portTypeName Port type in the WSDL file to which this operation
belongs. You can include this operation in multiple
port types by specifying a comma-separated list of
port types. When the WSDL for this Web Service is
generated, a separate <portType> element is
created for each specified port type.

The default value is the value of the portType
attribute of the <web-service> element.

String No

Table A-10 Attributes of the <operation> Element

Attribute Description Datatype Required?

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-16 Programming WebLogic Web Services

param
The <param> element specifies a single parameter of an operation.

You must list the parameters in the same order in which they are defined in the method that
implements the operation. The number of <param> elements must match the number of
parameters of the method.

E lement Refe rence

Programming WebLogic Web Services A-17

Table A-11 Attributes of the <param> Element

Attribute Description Datatype Required?

class-name Java class name of the Java representation of the
data type of the parameter.

If you do not specify this attribute, WebLogic
Server introspects the back-end component that
implements the operation for the Java class of the
parameter.

You are required to specify this attribute only if you
want the mapping between the XML and Java
representations of the parameter to be different than
the default. For example, xsd:int maps to the
Java primitive int type by default, so use this
attribute to map it to java.lang.Integer
instead.

NMTOKEN Maybe. See
the
description
of the
attribute.

location Part of the request SOAP message (either the
header, the body, or the attachment) that contains
the value of the input parameter.

Valid values for this attribute are Body, Header, or
attachment. The default value is Body.

If you specify Body, the value of the parameter is
extracted from the SOAP Body, according to
regular SOAP rules for RPC operation invocation.
If you specify Header, the value is extracted from
a SOAP Header element whose name is the value of
the type attribute.

If you specify attachment, the value of the
parameter is extracted from the SOAP Attachment
rather than the SOAP envelope. As specified by the
JAX-RPC specification, only the following Java
data types can be extracted from the SOAP
Attachment:
• java.awt.Image

• java.lang.String

• javax.mail.internet.MimeMultiport

• javax.xml.transform.Source

• javax.activation.DataHandler

String No.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-18 Programming WebLogic Web Services

params
The <params> element groups together the explicitly declared parameters and return values of
an operation.

You do not have to explicitly list the parameters or return values of an operation. If an
<operation> element does not have a <params> child element, WebLogic Server introspects
the back-end component that implements the operation to determine its parameters and return
values. When generating the WSDL file of the Web Service, WebLogic Server uses the names of
the corresponding method’s parameters and return value.

You explicitly list an operation’s parameters and return values when you want:

The name of the parameters and return values in the generated WSDL to be different from
those of the method that implements the operation.

To map a parameter to a name in the SOAP header request or response.

To use out or in-out parameters.

Use the <param> child element to specify the parameters of the operation.

name Name of the input parameter that will be used in the
generated WSDL.

The default value is the name of the parameter in the
method’s signature.

String No.

style Style of the input parameter, either a standard input
parameter, an out parameter used as a return value,
or an in-out parameter for both inputting and
outputting values.

Valid values for this attribute are in, out, and
in-out.

If you specify a parameter as out or in-out, the
Java class of the parameter in the back-end
component’s method must implement the
javax.xml.rpc.holders.Holder interface.

String Yes.

type XML Schema data type of the parameter. NMTOKEN Yes.

Table A-11 Attributes of the <param> Element

Attribute Description Datatype Required?

E lement Refe rence

Programming WebLogic Web Services A-19

Use the <return-param> child element to specify the return value of the operation.

The <params> element does not have any attributes.

password
Depending on the parent element, the <password> element specifies:

The password used in the username token in the SOAP response message. (Parent
element is <user>.)

The password of the key pair and certificate, stored in WebLogic Server’s keystore, used to
encrypt part of the SOAP message. (Parent element is <encryptionKey>.)

The password of the key pair and certificate, stored in WebLogic Server’s keystore, used to
digitally sign part of the SOAP message. (Parent element is <signatureKey>.)

This element does not have any attributes.

reliable-delivery
The <reliable-delivery> element specifies that the operation can be invoked asynchronously
using reliable SOAP messaging. This means that the application that invokes the Web Service
has a guaranteed that the SOAP message was delivered to the Web Service operation, or it
receives an explicit exception saying that the delivery did not happen.

You can specify only one <reliable-delivery> element for a given operation.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-20 Programming WebLogic Web Services

require-signature-timestamp
Specifies whether WebLogic Server requires that the SOAP request from a client application that
invokes a WebLogic Server include a timestamp. If this element is set to true, and a SOAP
request does not contain a timestamp, WebLogic Server rejects the request.

Valid values for this element are true and false. The default value is true.

This element does not have any attributes. This element is a child element of <timestamp>.

Table A-12 Attributes of the <reliable-delivery> Element

Attribute Description Datatype Required?

duplicate-elimination Specifies whether the WebLogic Web Service
should ignore duplicate invokes from the same
client application.

If this attribute is set to True, the Web Service
persists the message IDs from client applications
that invoke the Web Service so that it can eliminate
any duplicate invokes. If this values is set to False,
the Web Service does not keep track of duplicate
invokes, which means that if a client retries an
invoke, both invokes could return values.

Valid values for this attribute are True and False.
The default value is True.

Boolean No.

persist-duration The default minimum number of seconds that the
Web Service should persist the history of a reliable
SOAP message (received from the sender that
invoked the Web Service) in its storage.

The Web Service, after recovering from a
WebLogic Server crash, does not dispatch persisted
messages that have expired.

The value of this attribute, if you set it, should be
greater than the product of the retry interval and the
retry count of the sender.

The default value of this attribute is 60,000.

Integer No.

E lement Refe rence

Programming WebLogic Web Services A-21

return-param
The <return-param> element specifies the return value of the Web Service operation.

You can specify only one <return-param> element for a given operation.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-22 Programming WebLogic Web Services

Table A-13 Attributes of the <return-param> Element

Attribute Description Datatype Required?

class-name Java class name of the Java representation of the
data type of the return parameter.

If you do not specify this attribute, WebLogic
Server introspects the back-end component that
implements the operation for the Java class of the
return parameter.

You are required to specify this attribute if:
• The back-end component that implements the

operation is <jms-receive-queue>.
• The mapping between the XML and Java

representations of the return parameter is
ambiguous, such as mapping xsd:int to
either the int Java primitive type or
java.lang.Integer.

NMTOKEN Maybe. See
the
description
of the
attribute.

location Part of the response SOAP message (either the
header, the body, or the attachment) that contains
the value of the return parameter.

Valid values for this attribute are Body, Header, or
attachment. The default value is Body.

If you specify Body, the value of the return
parameter is added to the SOAP Body. If you
specify Header, the value is added as a SOAP
Header element whose name is the value of the
type attribute.

If you specify attachment, the value of the
parameter is added to the SOAP Attachment rather
than the SOAP envelope. As specified by the
JAX-RPC specification, only the following Java
data types can be added to the SOAP Attachment:
• java.awt.Image

• java.lang.String

• javax.mail.internet.MimeMultiport

• javax.xml.transform.Source

• javax.activation.DataHandler

String No.

E lement Refe rence

Programming WebLogic Web Services A-23

security
Element that contains all the security configuration information about a particular Web Service.
This information includes:

The username and password used in the SOAP response username token (<user> child
element).

The name of the key pairs in WebLogic Server’s keystore used for data encryption and
digital signatures (<encryptionKey> and <signatureKey> child elements).

What parts of the SOAP message should be encrypted and digitally signed
(<spec:SecuritySpec> child element).

signatureKey
Specifies the name and password of a key pair and certificate used when digitally signing
elements of the SOAP message. Specify the name using the <name> subelement; specify the
password with the <password> subelement.

Note: Create the key pair and certificate in the WebLogic Server keystore with the
Administration Console. For details, see Storing Private Keys, Digital Certificates, and
Trusted CAs.

name Name of the return parameter that will be used in the
generated WSDL file.

If you do not specify this attribute, the return
parameter is called result.

String No.

type XML Schema data type of the return parameter. NMTOKEN Yes.

Table A-13 Attributes of the <return-param> Element

Attribute Description Datatype Required?

Table A-14 Attributes of the <security> Element

Attribute Description Datatype Required?

Name The name of this security element. String Yes.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#store_keys_certs_trustedcas

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-24 Programming WebLogic Web Services

This element does not have any attributes.

spec:BinarySecurityTokenSpec
Specifies the (binary) non-XML-based security tokens included in the SOAP messages.

Note: You must include the following namespace declaration with this element:

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"

and the value of each attribute of this element should be qualified with the wsse
namespace.

spec:ElementIdentifier
Identifies a particular element in the SOAP message (either the header or the body) that you want
to digitally sign or encrypt. You uniquely identify an element in the SOAP message by its local
name and its namespace.

Specify this element as the child of either <spec:SignatureSpec> or
<spec:EncryptionSpec>.

Table A-15 Attributes of the <spec:BinarySecurityTokenSpec> Element

Attribute Description Datatype Required?

EncodingType Specifies the encoding format of the binary data.

Only one valid value: wsse:Base64Binary

String Yes

ValueType Specifies the value type and space of the encoded binary
data.

Only one valid value: wsse:X509v3 (for X.509
certificates)

String Yes

E lement Refe rence

Programming WebLogic Web Services A-25

spec:EncryptionSpec
Specifies the elements in the SOAP message that are encrypted and how they are encrypted.

You can specify that the entire SOAP body be encrypted by setting the attribute
EncryptBody="True". You can also use the <spec:ElementIdentifier> child element to
specify particular elements of the SOAP message that are to be encrypted.

Warning: Do not specify both EncryptBody="True" and one or more elements with the
<spec:ElementIdentifier> child element, but rather, use just one way to specify
the elements of the SOAP message that should be encrypted.

Use the EncryptionMethod attribute to specify how to encrypt the SOAP message elements.

Table A-16 Attributes of the <spec:ElementIdentifier> Element

Attribute Description Datatype Required?

LocalPart The local name of the element. Do not specify the
namespace with this attribute.

String Yes.

Namespace The namespace in which the element is defined. String Yes.

Restriction Specifies whether to restrict the identification of the
element to the SOAP header or body.

Valid values are header or body. If this attribute is not
specified, the entire SOAP message is searched when
identifying the element.

Note: If you specify a value for this optional attribute,
only the top-level elements in the relevant SOAP
message part (header or body) are searched. If
you do not specify this attribute, then all
elements, no matter how deeply nested, are
searched.

String No.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-26 Programming WebLogic Web Services

Table A-17 Attributes of the <spec:EncryptionSpec> Element

Attribute Description Data
type

Require
d?

EncryptBody Specifies whether to encrypt the entire SOAP body.

Note: Do not specify both EncryptBody="True" and one
or more elements with the
<spec:ElementIdentifier> child element, but
rather, use just one way to specify the elements of the
SOAP message that should be encrypted.

Valid values are True and False.

String Yes.

EncryptionMethod Specifies the algorithm used to encrypt the specified elements of
the SOAP message.

Valid values are:
http://www.w3.org/2001/04/xmlenc#tripledes-c
bc
http://www.w3.org/2001/04/xmlenc#kw-triplede
s

Default value is
http://www.w3.org/2001/04/xmlenc#tripledes-c

bc.

String No.

KeyWrappingMethod Specifies the algorithm used to encrypt the message encryption
key.

Valid values are:

http://www.w3.org/2001/04/xmlenc#rsa-1_5 (to
specify the REQUIRED RSA-v1.5 algorithm)
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mg
f1p (to specify the REQUIRED RSA-OAEP algorithm)

When using this attribute, set the value to the URI, such as:
KeyWrappingMethod="http://www.w3.org/2001/04
/xmlenc#rsa-oaep-mgf1p"

Default value is
http://www.w3.org/2001/04/xmlenc#rsa-1_5.

String No.

E lement Refe rence

Programming WebLogic Web Services A-27

spec:SecuritySpec
Specifies the set of security-related information associated with this Web Service.

The information in this element can include:

A security token that specifies the username and password of the client invoking the Web
Service. (<spec:UsernameTokenSpec> child element)

A binary security token that specify non-XML-based security tokens, such as X.509
certificates. (<spec:BinarySecurityTokenSpec> child element)

A specification for the parts of the SOAP message that are digitally signed.
(<spec:SignatureSpec> child element)

A specification of the parts of the SOAP message that are encrypted.
(<spec:EncryptionSpec> child element.)

The information in the <spec:SecuritySpec> element appears in the generated WSDL of the
Web Service so that client applications that invoke the Web Service know how to create the
SOAP request to comply with all the security specifications.

WebLogic Server also uses the information in this element to verify that a SOAP request to
invoke a particular Web Service contains all the necessary security information in the header. For
example, if the <spec:SecuritySpec> element requires that a portion of the SOAP message be
digitally signed, then WebLogic Server knows to check for this when it receives the SOAP
request. WebLogic Server then uses the same information to create the security information in
the SOAP response message.

You can create many security specifications for a single Web Service, and specify that different
operations use different security specifications. For example, you can configure one operation so
that the SOAP messages (both request and response) are only digitally signed, and configure a
different operation such that only the SOAP request is both digitally signed and encrypted. You
do this by associating operations with different security specifications.

Note: You must include the following namespace declaration with this element:
xmlns:spec="http://www.openuri.org/2002/11/wsse/spec"

and all child elements of the <spec:SecuritySpec> element must be qualified with the
spec namespace.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-28 Programming WebLogic Web Services

spec:SignatureSpec
Specifies the elements in the SOAP message that are digitally signed and how they are signed.

Digital signatures are a way to determine whether a message was altered in transit and to verify
that a message was really sent by the possessor of a particular security token.

You can specify that the entire SOAP body be digitally signed by setting the attribute
SignBody="True". Use the <spec:ElementIdentifier> child element to specify additional
particular elements of the SOAP message that are to be signed.

Use the CanonicalizationMethod and SignatureMethod attributes to specify how to
digitally sign the SOAP message elements.

Table A-18 Attributes of the <spec:SecuritySpec> Element

Attribute Description Datatype Required?

Id Name used to identity this security specification. This id
can be later associated with an operation.

If you do not specify this attribute, this security
specification becomes the default for the Web Service.
This means that operations that do not explicitly associate
with a security specification use this one by default.

String No.

Namespace The namespace in which this security specification is
defined.

String Yes.

E lement Refe rence

Programming WebLogic Web Services A-29

spec:UsernameTokenSpec
Specifies that the SOAP response after an invoke of this Web Service must include a username
token.

WebLogic Server uses the information in the <user> child element of the <security> element
when creating the security information in a SOAP response message.

Note: You must include the following namespace declaration with this element:

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"

and the value of each attribute of this element should be qualified with the wsse
namespace.

Table A-19 Attributes of the <spec:SignatureSpec> Element

Attribute Description Data
type

Require
d?

CanonicalizationMethod Specifies the algorithm used to canonicalize the SOAP
message elements being signed.

Only one valid value:
http://www.w3.org/2001/10/xml-exc-cl4n#

String Yes.

SignatureMethod Specifies the cryptographic algorithm used to compute the
signature.

Note: Be sure that you specify an algorithm that is
compatible with the certificates you are using in your
enterprise.

Valid values are:
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

String Yes.

SignBody Specifies whether to digitally sign the entire SOAP body, in
addition to the any specific elements identified with the
optional <spec:ElementIdentifier> child elements.

Valid values are True and False.

String Yes.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-30 Programming WebLogic Web Services

stateless-ejb
Describes the stateless session EJB component that implements one or more operations of a Web
Service.

timestamp
The <timestamp> element groups together the elements used to configure timestamp behavior
of WebLogic Server. WebLogic Server adds or requires timestamps only in SOAP messages that
are encrypted or digitally signed.

If the web-services.xml deployment descriptor does not include a <timestamp> child element
of the <security> element, and the Web Service has been configured for message-level security
(encryption and digital signatures), WebLogic Server:

Requires that SOAP requests include a timestamp and rejects any that do not.

Assumes that its clock and the client application’s clock are not synchronized. This means
that if the SOAP request from a client application includes a timestamp with an expiration,

Table A-20 Attributes of the <spec:UsernameTokenSpec> Element

Attribute Description Datatype Required?

PasswordType Specifies how to include the password in the SOAP
message.

Only valid value is wsse:PasswordText (actual
password for the username.)

String Yes.

Table A-21 Attributes of the <stateless-ejb> Element

Attribute Description Datatype Required?

name Name of the stateless EJB component.

Note: The name is internal to the
web-services.xml file; it does not refer to
the name of the EJB in the ejb-jar.xml file.

String Yes.

E lement Refe rence

Programming WebLogic Web Services A-31

WebLogic Server rejects the message because it cannot ensure that the message has not
already expired.

Adds a timestamp to the SOAP response. The timestamp contains only the creation date of the
SOAP response.

This element has no attributes. This element has the following child elements:

clock-precision

clocks-synchronized

enforce-precision

generate-signature-timestamp

inbound-expiry

outbound-expiry

require-signature-timestamp

type-mapping
The <type-mapping> element contains the list of mappings between the XML data types
defined in the <types> element and their Java representations.

For each data type in the <types> element, there is a corresponding <type-mapping-entry>
element that lists the Java class that implements the data type, how to serialize and deserialize the
data, and so on.

This element has no attributes.

type-mapping-entry
Describes the mapping between a single XML data type in the <types> element and its Java
representation.

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-32 Programming WebLogic Web Services

Table A-22 Attributes of the <type-mapping-entry> Element

Attribute Description Datatype Required?

class-name Fully qualified name of the Java class that maps to its
corresponding XML data type.

String Yes.

deserializer Fully qualified name of the Java class that converts the
data from XML to Java.

String Only required if the
data type is not one
of the built-in data
dates supported by
the WebLogic Web
Services runtime,
listed in
“Supported
Built-In Data
Types” on
page 5-15.

element Name of the XML data type that maps to the Java data
type. Specify only if the XML Schema definition of the
data type uses the <element> element.

NMTOKEN One, but not both,
of either element
or type is
required.

serializer Fully qualified name of the Java class that converts the
data from Java to XML.

String Only required if the
data type is not one
of the built-in data
dates supported by
the WebLogic Web
Services runtime,
listed in
“Supported
Built-In Data
Types” on
page 5-15.

type Name of the XML data type that maps to the Java data
type. Specify only if the XML Schema definition of the
data type uses the <type> element.

NMTOKEN One, but not both,
of either element
or type is
required.

E lement Refe rence

Programming WebLogic Web Services A-33

types
Describes, using XML Schema notation, the non-built-in data types used as parameters or return
types of the Web Service operations.

For details on using XML Schema to describe the XML representation of a non-built-in data type,
see http://www.w3.org/TR/xmlschema-0/.

The following example shows an XML Schema declaration of a data type called TradeResult
that contains two elements: stockSymbol, a string data type, and numberTraded, an integer.

<types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:stns="java:examples.webservices"

 attributeFormDefault="qualified"

 elementFormDefault="qualified"

 targetNamespace="java:examples.webservices">

 <xsd:complexType name="TradeResult">

 <xsd:sequence>

 <xsd:element maxOccurs="1"

 name="stockSymbol"

 type="xsd:string" minOccurs="1">

 </xsd:element>

 <xsd:element maxOccurs="1"

 name="numberTraded"

 type="xsd:int"

 minOccurs="1">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:schema>

</types>

user
Specifies the username and password to be used in the SOAP response message.

This element has two child elements:

<name>

<password>

http://www.w3.org/TR/xmlschema-0/

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-34 Programming WebLogic Web Services

This element has no attributes.

web-service
Defines a single Web Service.

The Web Service is defined by the following:

Back-end components that implement an operation, such as a stateless session EJB, a Java
class, or a JMS consumer or producer.

An optional set of data type declarations for non-built-in data types used as parameters or
return values to the Web Service operations.

An optional set of XML to Java data type mappings that specify the serialization class and
Java classes for the non-built-in data types.

A declaration of the operations supported by the Web Service.

Table A-23 Attributes of the <web-service> Element

Attribute Description Datatype Required?

charset Specifies the character set that the Web Service uses in
its response to an invocation. Examples of character sets
include US-ASCII, UTF-8, and Shift_JIS.

The default value is US-ASCII.

Note: Although US-ASCII is the default value for
this attribute, this does not mean that the
US-ASCII character set will always be used
in the response of a WebLogic Web Service
invocation if you have not explicitly set the
attribute in the web-service.xml file of the
Web Service. See “Order of Precedence of
Character Set Configuration Used By
WebLogic Server” for more details.

String No.

exposeHomePage Specifies whether to publicly expose the Home Page of
the Web Service.

Valid values for this attribute are True and False. The
default value is True. This means that by default the
Home Page is publicly accessible.

Boolean No.

E lement Refe rence

Programming WebLogic Web Services A-35

exposeWSDL Specifies whether to publicly expose the automatically
generated WSDL of the Web Service.

Valid values for this attribute are True and False. The
default value is True. This means that by default the
WSDL is publicly accessible.

Boolean No.

ignoreAuthHeader Specifies that the Web Service ignore the
Authorization HTTP header in the SOAP request.

Note: Be careful using this attribute. If you set the
value of this attribute to True, WebLogic
Server never authenticates a client application
that is attempting to invoke a Web Service,
even if access control security constraints have
been defined for the EJB, Web Application, or
Enterprise Application that make up the Web
Service. Or in other words, a client application
that does not provide athentication credentials
is still allowed to invoke a Web Service that
has security constraints defined on it.

Valid values are True and False. Default value is
False.

Boolean. No.

jmsUri Specifies that client applications can use the JMS
transport to invoke the Web Service, in addition to the
default HTTP/S transport. The form of this attribute is:

connection_factory_name/queue_name

where connection_factory_name is the JNDI
name of the JMS connection factory and queue_name
is the JNDI name of the JMS queue that you have
configured for the JMS transport. For example:
jmsURI="JMSTransFactory/JMSTransQueue"

If this attribute is set, the generated WSDL of the Web
Service contains an additional port that uses a JMS
binding. The clientgen Ant task, when generating
the stubs used to invoke this Web Service, generates a
getServicePortJMS() method, in addition to the
default getServicePort() method, used for JMS
and HTTP/S respectively.

String. No.

Table A-23 Attributes of the <web-service> Element

Attribute Description Datatype Required?

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-36 Programming WebLogic Web Services

name Name of the Web Service. String Yes.

portName Name of the <port> child element of the <service>
element of the dynamically generated WSDL of this
Web Service.

The default value is the name attribute of this element
with Port appended. For example, if the name of this
Web Service is TraderService, the port name will
be TraderServicePort.

String No

portTypeName Name of the default <portType> element in the
dynamically generated WSDL of this Web Service.

The default value is the name attribute of this element
with Port appended. For example, if the name of this
Web Service is TraderService, the portType name
will be TraderServicePort.

String No.

protocol Protocol over which the service is invoked.

Valid values are http or https. Default is http.

String No.

Table A-23 Attributes of the <web-service> Element

Attribute Description Datatype Required?

E lement Refe rence

Programming WebLogic Web Services A-37

style Specifies whether the Web Service has RPC-oriented or
document-oriented operations.

RPC-oriented WebLogic Web Service operations use
SOAP encoding. Document-oriented WebLogic Web
Service operations use literal encoding.

The following two values specify document-oriented
Web Service operations: document and
documentwrapped.

If you specify document for this attribute, the resulting
Web Service operations take only one parameter. This
means that the methods that implement the operations
must also have only one parameter.

If you specify documentwrapped, the resulting Web
Service operations can take any number of parameters,
although the parameter values will be wrapped into one
complex data type in the SOAP messages. If two or
more methods of your stateless session EJB or Java
class that implement the Web Service have the same
number and data type of parameters, and you want the
operations to be document-oriented, you must specify
documentwrapped for this attribute rather than
document.

Valid values are rpc, documentwrapped, and
document. Default value is rpc.

Note: Because the style attribute applies to an
entire Web Service, all operations specified in
a single <web-service> element must be
either RPC-oriented or documented-oriented;
WebLogic Server does not support mixing the
two styles within the same Web Service.

String No.

targetNamespace Namespace of this Web Service. String Yes.

Table A-23 Attributes of the <web-service> Element

Attribute Description Datatype Required?

WebLogic Web Serv ice Dep loyment Desc r ip to r E l ements

A-38 Programming WebLogic Web Services

web-services
The root element of the web-services.xml deployment descriptor.

This element does not have any attributes.

uri URI of the Web Service, used subsequently in the URL
that invokes the Web Service.

Note: Be sure to specify the leading "/", such as
/TraderService.

String Yes.

useSOAP12 Specifies whether to use SOAP 1.2 as the message
format protocol. By default, WebLogic Web Services
use SOAP 1.1.

If you specify useSOAP12="True", the generated
WSDL of the deployed WebLogic Web Service
includes two ports: the standard port that specifies a
binding for SOAP 1.1 as the message format protocol,
and a second port that uses SOAP 1.2. Client
applications, when invoking the Web Service, can use
the second port if they want to use SOAP 1.2 as their
message format protocol.

Valid values for this attribute are True and False. The
default value is False.

Boolean No.

Table A-23 Attributes of the <web-service> Element

Attribute Description Datatype Required?

Programming WebLogic Web Services B-1

A P P E N D I X B

Web Service Ant Tasks and
Command-Line Utilities

The following sections describe WebLogic Web Service Ant tasks and the command-line utilities
based on these Ant tasks:

“Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities” on
page B-1

“autotype” on page B-7

“clientgen” on page B-14

“servicegen” on page B-25

“source2wsdd” on page B-41

“wsdl2Service” on page B-46

“wsdlgen” on page B-50

“wspackage” on page B-52

Overview of WebLogic Web Services Ant Tasks and
Command-Line Utilities

Ant is a Java-based build tool, similar to the make command but much more powerful. Ant uses
XML-based configuration files (called build.xml by default) to execute tasks written in Java.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-2 Programming WebLogic Web Services

BEA provides a number of Ant tasks that help you generate important parts of a Web Service
(such as the serialization class, a client JAR file, and the web-services.xml file) and to package
all the pieces of a WebLogic Web Service into a deployable EAR file.

The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and EJB JAR
files. For more information, see http://jakarta.apache.org/ant/manual/.

Note: The Apache Jakarta Web site publishes online documentation for only the most current
version of Ant, which might be different from the version of Ant that is bundled with
WebLogic Server. To determine the version of Ant that is bundled with WebLogic
Server, run the following command after setting your WebLogic environment:

prompt> ant -version

To view the documentation for a specific version of Ant, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

You can also run some of the Ant tasks as a command-line utility, using flags rather than
attributes to specify how the utility works. The description of the flags is exactly the same as the
description of its corresponding attribute.

Warning: Not all the attributes of the Ant tasks are available as flags to the equivalent
command-line utility. See the sections that describe each Ant task for a list of the
supported flags when using the command-line equivalent.

For further examples and explanations of using these Ant tasks, see Chapter 6, “Assembling
WebLogic Web Services Using Ant Tasks.”

List of Web Services Ant Tasks and Command-Line Utilities
The following table provides an overview of the Web Service Ant tasks provided by BEA and
the name of the corresponding command-line utility.

http://jakarta.apache.org/ant/manual/
http://archive.apache.org/dist/ant/binaries/

Overv iew o f WebLog ic Web Se rv ices Ant Tasks and Command-L ine Ut i l i t i es

Programming WebLogic Web Services B-3

Using the Web Services Ant Tasks
To use the Ant tasks, follow these steps:

Table B-1 WebLogic Web Services Ant Tasks

Ant Task Corresponding Command-Line
Utility

Description

autotype weblogic.webservice.autotype Generates the serialization class, Java representation,
XML Schema representation, and data type mapping
information for non-built-in data types used as parameters
or return values to a WebLogic Web Service.

clientgen weblogic.webservice.clientgen Generates a client JAR file that contains a thin Java client
used to invoke a Web Service.

servicegen Not available. Main Ant task that performs all the steps needed to
assemble a Web Service. These steps include:
• Creating the Web Service deployment descriptor

(web-services.xml).
• Introspecting EJBs and Java classes and generating

any needed non-built-in data type supporting
components.

• Generating the client JAR file.
• Packaging all the pieces into a deployable EAR file.

source2wsdd Not available Generates a web-services.xml deployment
descriptor file from the Java source file for a Java
class-implemented WebLogic Web Service.

wsdl2Service Not available. Generates the components of a WebLogic Web Service
from a WSDL file. The components include the
web-services.xml deployment descriptor file and a
Java source file that you can use as a starting point to
implement the Web Service.

wsdlgen weblogic.webservice.wsdlgen Generates a WSDL file from the EAR and WAR files that
make up the Web Service.

wspackage Not available. Packages the components of a WebLogic Web Service
into a deployable EAR file.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-4 Programming WebLogic Web Services

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a file called build.xml that contains a call to the Web Services Ant tasks.

The following example shows a simple build.xml file (with details of the Web Services
Ant tasks servicegen and clientgen omitted for clarity):

<project name="buildWebservice" default="build-ear">
 <target name="build-ear">
 <servicegen attributes go here...>
 ...
 </servicegen>
 </target>
 <target name="build-client" depends="build-ear">
 <clientgen attributes go here .../>
 </target>
 <target name="clean">
 <delete>
 <fileset dir="."
 includes="example.ear,client.jar" />
 </delete>
 </target>
</project>

Later sections provide examples of specifying the Ant task in the build.xml file.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

Differences in Operating System Case Sensitivity When
Manipulating WSDL and XML Schema Files
Many of the WebLogic Web Service Ant tasks have attributes that you can use to specify an
operating system file, such as a WSDL or an XML Schema file. For example, you can use the

Overv iew o f WebLog ic Web Se rv ices Ant Tasks and Command-L ine Ut i l i t i es

Programming WebLogic Web Services B-5

wsdl attribute of the clientgen Ant task to create the Web Services-specific client JAR file
from an existing WSDL file that describes a Web Service.

The Ant tasks process these files in a case-sensitive way. This means that if, for example, the
XML Schema file specifies two complex types whose names differ only in their capilatization
(for example, MyReturnType and MYRETURNTYPE), the clientgen Ant task correctly generates
two separate sets of Java source files for the Java represenation of the complex data type:
MyReturnType.java and MYRETURNTYPE.java.

However, compiling these source files into their respective class files might cause a problem if
you are running the Ant task on Microsoft Windows, because Windows is a case insensitive
operating system. This means that Windows considers the files MyReturnType.java and
MYRETURNTYPE.java to have the same name. So when you compile the files on Windows, the
second class file overwrites the first, and you end up with only one class file. The Ant tasks,
however, expect that two classes were compiled, thus resulting in an error similar to the
following:

c:\src\com\bea\order\MyReturnType.java:14:
class MYRETURNTYPE is public, should be declared in a file named
MYRETURNTYPE.java
public class MYRETURNTYPE
 ^

To work around this problem rewrite the XML Schema so that this type of naming conflict does
not occur, or if that is not possible, run the Ant task on a case sensitive operating system, such as
Unix.

Setting the Classpath for the WebLogic Ant Tasks
Each WebLogic Ant task accepts a classpath attribute or element so that you can add new
directories or JAR files to your current CLASSPATH environment variable.

The following example shows how to use the classpath attribute of the servicegen Ant task
to add to the CLASSPATH variable:

<servicegen destEar="myEJB.ear"

 classpath="${java.class.path};my_fab_directory"

 ...

</servicegen>

The following example shows how to add to the CLASSPATH by using the <classpath>
element:

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-6 Programming WebLogic Web Services

<servicegen ...>

 <classpath>

 <pathelement path="${java.class.path}" />

 <pathelement path="my_fab_directory" />

 </classpath>

...

</servicegen>

The following example shows how you can build your CLASSPATH variable outside of the
WebLogic Web Service Ant task declarations, then specify the variable from within the task
using the <classpath> element:

<path id="myid">

 <pathelement path="${java.class.path}"/>

 <pathelement path="${additional.path1}"/>

 <pathelement path="${additional.path2}"/>

</path>

<servicegen>

 <classpath refid="myid" />

...

</servicegen>

Warning: The WebLogic Web Services Ant tasks support the standard Ant property
build.sysclasspath. The default value for this property is ignore. This means
that if you specifically set the CLASSPATH in the build.xml file as described in
this section, the Ant task you want to run ignores the system CLASSPATH (or the
CLASSPATH in effect when Ant is run) and uses only the one that you specifically
set. It is up to you to include in your CLASSPATH setting all the classes that the Ant
task needs to successfully run. To change this default behavior, set the
build.sysclasspath property to last to concatenate the system CLASSPATH to
the end of the one you specified, or first to concatenate your specified
CLASSPATH to the end of the system one.

For more information on the build.sysclasspath property, see the Ant
documentation.

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or ant.bat
(Windows) configuration files in the WL_HOME\server\bin directory to set various
Ant-specific variables, where WL_HOME is the top-level directory of your WebLogic
Platform installation If you need to update these Ant variables, make the relevant
changes to the appropriate file for your operating system.

http://ant.apache.org/manual/

auto type

Programming WebLogic Web Services B-7

Using the Web Services Command-Line Utilities
To use the command-line utility equivalents of the Ant tasks, follow these steps:

1. Set your environment.

On Windows NT, execute the setEnv.cmd command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setEnv.sh command, located in your domain directory. The
default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Open a command shell window.

3. Execute the utility using the java command, as shown in the following example:

prompt> java weblogic.webservice.clientgen \
 -ear myapps/myapp.ear \
 -serviceName myService \
 -packageName myservice.client \
 -clientJar myapps/myService_client.jar

Run the command with no arguments to get a usage message.

autotype
The autotype Ant task generates the following components for non-built-in data types that used
as parameters or return values of your Web Service operation:

Serialization class that converts between the XML and Java representation of the data.

Given an XML Schema or WSDL file, a Java class to contain the Java representation of
the data type.

Given a Java class that represents the non-built-in data type, an XML Schema
representation of the data type.

Data type mapping information to be included in the web-services.xml deployment
descriptor file.

For the list of non-built-in data types for which autotype can generate data type components,
see “Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on page 6-18.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-8 Programming WebLogic Web Services

You can specify one of the following types of input to the autotype Ant task:

A Java class file that represents your non-built-in data types by specifying the javaTypes
attribute. The autotype Ant task generates the corresponding XML Schemas, the
serialization classes, and the data type mapping information for the web-services.xml
file.

A Java class file of the component that implements your Web Service by specifying the
javaComponents attribute. If your Web Service is implemented with a Java class, then
this attribute points to the Java class. If your Web Service is implemented with a stateless
session EJB, then this attribute points to the remote interface of the EJB. The autotype
Ant task looks for non-built-in data types used as parameters or return values in the
component, then generates the corresponding XML Schemas, the serialization classes, and
the data type mapping information for the web-services.xml file. Be sure to include the
Java class for your non-built-in data type in your CLASSPATH.

An XML Schema file that represents your non-built-in data type by specifying the
schemaFile attribute. The autotype Ant task generates the corresponding Java
representations, the serialization classes, and the data type mapping information for the
web-services.xml file.

A URL to a WSDL file that contains a description of your non-built-in data type by
specifying the wsdlURI attribute. The autotype Ant task generates the corresponding Java
representations, the serialization classes, and the data type mapping information for the
web-services.xml file.

Use the destDir attribute to specify the name of a directory that contains the generated
components. The generated XML Schema and data type mapping information are generated in a
file called types.xml. You can use this file to manually update an existing web-services.xml
file with non-built-in data type mapping information, or use it in conjunction with the
typeMappingFile attribute of the servicegen or clientgen Ant tasks, or the typesInfo
attribute of the source2wsdd Ant task.

Warning: The serialization class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be round-tripped. For
more information, see “Non-Roundtripping of Generated Data Type Components”
on page 6-22.

Note: The fully qualified name for the autotype Ant task is
weblogic.ant.taskdefs.webservices.javaschema.JavaSchema.

auto type

Programming WebLogic Web Services B-9

Example
The following example shows how to create non-built-in data type components from a Java class:

<autotype javatypes="mypackage.MyType"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output" />

The following example is similar to the preceding one, except it creates non-built-in data type
components for an array of mypackage.MyType Java data types:
<autotype javaTypes="[Lmypackage.MyType;"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output" />

Note: The [Lclassname; syntax follows the Java class naming conventions as outlined in the
java.lang.Class.getName() method documentation.

The following example shows how to use the autotype Ant task against a WSDL file; it also
shows how to specify that the Ant task keep the generated Java files for the serialization class:

<autotype wsdl="wsdls/myWSDL"

 targetNamespace="http://www.foobar.com/autotyper"

 packageName="a.package.name"

 destDir="output"

 keepGenerated="True" />

Attributes
The following table describes the attributes of the autotype Ant task.

http://java.sun.com/j2se/1.4/docs/api/java/lang/Class.html#getName()

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-10 Programming WebLogic Web Services

Table B-2 Attributes of the autotype Ant task

Attribute Description Data Type Required?

destDir Full pathname of the directory that will contain the
generated components. The generated XML Schema
and data type mapping information are generated in a
file called types.xml.

String Yes.

encoding Specifies whether the autotype Ant task uses
SOAP or literal encoding when generating the XML
Schema file that describes the XML representation of
a Java data type.

The encoding is particularly important when
generating complex XML data types, such as arrays.
SOAP arrays are structurally different from
non-SOAP arrays, so it is important to always use the
correct one for the correct situation.

If you are creating a document-oriented Web Service,
you must specify that autotype use literal encoding,
or users might run into interoperability problems
when they later invoke your Web Service.

Use this attribute only when generating an XML
Schema from an existing Java data type.

Valid values for this attribute are soap and
literal. The default value is soap.

String No.

Use this attribute
only in conjunction
with either the
javaTypes or
javaComponents
attributes. An error is
returned if you use
the encoding
attribute with the
schemaFile
attribute.

javaComponents Comma-separated list of Java class names that
implement the Web Service. For Java
class-implemented Web Services, this attribute points
to the Java class. For stateless session
EJB-implemented Web Services, this attribute points
to the remote interface of the EJB. The Java classes
(of both the implementation of the component and the
implementation of your non-built-in data type) must
be compiled and in your CLASSPATH.

For example:
javaComponents="my.class1,my.class2"

The autotype Ant task introspects the Java classes
to automatically generate the components for all
non-built-in data types it finds.

String You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

auto type

Programming WebLogic Web Services B-11

javaTypes Comma-separated list of Java class names that
represent your non-built-in data types. The Java
classes must be compiled and in your CLASSPATH.

For example:
javaTypes="my.class1,my.class2"

Note: Use the syntax [Lclassname; to specify
an array of the Java data type. For an
example, see “Example” on page B-9.

String You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

keepGenerated Specifies whether the autotype Ant task should
keep (and thus include in the generated components)
the Java source code of the serialization class for any
non-built-in data types used as parameters or return
values to the Web Service operations, or whether the
autotype Ant task should include only the compiled
class file.

Valid values for this attribute are True and False.
The default value is False.

Boolean No.

overwrite Specifies whether the components generated by this
Ant task should be overwritten if they already exist.

If you specify True, new components are always
generated and any existing components are
overwritten.

If you specify False, the Ant task overwrites only
those components that have changed, based on the
timestamp of any existing components.

Valid values for this attribute is True or False. The
default value is True.

Boolean No.

Table B-2 Attributes of the autotype Ant task

Attribute Description Data Type Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-12 Programming WebLogic Web Services

packageBase Base package name of the generated Java classes for
any non-built-in data types used as a return value or
parameter in a Web Service. This means that each
generated Java class will be part of the same package
name, although the autotype Ant task generates its
own specific name for each Java class which it
appends to the specified package base name.

If you do not specify this attribute, the autotype Ant
task generates a base package name for you.

Note: BEA recommends you not use this attribute,
but rather, specify the full package name
using the packageName attribute. The
packageBase attribute is available for
JAX-RPC compliance.

String No.

If you specify this
attribute, you cannot
also specify
packageName.

packageName Full package name of the generated Java classes for
any non-built-in data types used as a return value or
parameter in a Web Service.

If you do not specify this attribute, the autotype Ant
task generates a package name for you.

Note: Although not required, BEA recommends
you specify this attribute in most cases.

Currently, the only situation in which you should
not specify this attribute is if you use the
javaTypes attribute to specify a list of Java data
types whose class names are the same, but their
package names are different. In this case, if you
also specify the packageName attribute, the
autotype Ant task generates a serialization
class for only the last class.

String No.

If you specify this
attribute, you cannot
also specify
packageBase.

Table B-2 Attributes of the autotype Ant task

Attribute Description Data Type Required?

auto type

Programming WebLogic Web Services B-13

Equivalent Command-Line Utility
The equivalent command-line utility of the autotype Ant task is called
weblogic.webservice.autotype. The description of the flags of the utility is the same as
the description of the Ant task attributes, described in the preceding section.

schemaFile Name of a file that contains the XML Schema
representation of your non-built-in data types.

String You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

targetNamespace Namespace URI of the generated XML Schema. String Yes.

typeMappingFile File that contains data type mapping information for
non-built-in data types for which have already
generated needed components, as well as the XML
Schema representation of your non-built-in data
types. The format of the information is the same as the
data type mapping information in the
<type-mapping> and <types> elements of the
web-services.xml file.

The autotype Ant task does not generate
non-built-in data type components for any data types
listed in this file. It merges the information in this file
with the generated information in its output
types.xml file.

String No.

wsdl Full path name or URI of the WSDL that contains the
XML Schema description of your non-built-in data
type.

String You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

Table B-2 Attributes of the autotype Ant task

Attribute Description Data Type Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-14 Programming WebLogic Web Services

The weblogic.webservice.autotype utility supports the following flags (see the equivalent
attribute for a description of the flag):

-help (Prints the standard usage message)

-version (Prints version information)

-verbose (Enables verbose output)

-destDir dir

-schemaFile pathname

-wsdl uri

-javaTypes classname

-javaComponents classname

-packageName name

-packageBase name

-encoding name

-generatePublicFields true_or_false

-typeMappingFile pathname

-keepGenerated true_or_false

clientgen
The clientgen Ant task generates a Web Service-specific client JAR file that client applications
can use to invoke both WebLogic and non-WebLogic Web Services. Typically, you use the
clientgen Ant task to generate a client JAR file from an existing WSDL file; you can also use
it with an EAR file that contains the implementation of a WebLogic Web Service.

The contents of the client JAR file includes:

Client interface and stub files (conforming to the JAX-RPC specification) used to invoke a
Web Service in static mode.

Optional serialization class for converting non-built-in data between its XML and Java
representation.

Optional client-side copy of the Web Service WSDL file

c l ientgen

Programming WebLogic Web Services B-15

You can use the clientgen Ant task to generate a client JAR file from the WSDL file of an
existing Web Service (not necessarily running on WebLogic Server) or from an EAR file that
contains a Weblogic Web Service implementation.

The WebLogic Server distribution includes a client runtime JAR file that contains the client side
classes needed to support the WebLogic Web Services runtime component. For more
information, see “Generating the Client JAR File by Running the clientgen Ant Task” on
page 7-5.

Warning: The clientgen Ant task does not support solicit-response or notification WSDL
operations. This means that if you attempt to create a client JAR file from a WSDL
file that contains these types of operations, the Ant task ignores the operations.

Warning: The serialization class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be round-tripped. For
more information, see “Non-Roundtripping of Generated Data Type Components”
on page 6-22.

Note: The fully qualified name of the clientgen Ant task is
weblogic.ant.taskdefs.webservices.clientgen.ClientGenTask.

Example
<clientgen wsdl="http://example.com/myapp/myservice.wsdl"

 packageName="myapp.myservice.client"

 clientJar="myapps/myService_client.jar"

/>

Attributes
The following table describes the attributes of the clientgen Ant task.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-16 Programming WebLogic Web Services

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

autotype Specifies whether the clientgen task should
generate and include in the client JAR file the
serialization class for any non-built-in data types
used as parameters or return values to the Web
Service operations.

Valid values are True and False. Default value
is True.

Boolean No.

clientJar Name of a JAR file or exploded directory into
which the clientgen task puts the generated
client interface classes, stub classes, optional
serialization class, and so on.

To create or update a JAR file, use a.jar suffix
when specifying the JAR file, such as
myclientjar.jar. If the attribute value does
not have a.jar suffix, then the clientgen task
assumes you are referring to a directory name.

If you specify a JAR file or directory that does not
exist, the clientgen task creates a new JAR file
or directory.

String Yes.

c l ientgen

Programming WebLogic Web Services B-17

ear Name of an EAR file or exploded directory that
contains the WebLogic Web Service
implementation for which a client JAR file should
be generated.

Note: If the saveWSDL attribute of
clientgen is set to True (the default
value), the clientgen Ant task
generates a WSDL file from the
information in the EAR file, and stores it
in the generated client JAR file. Because
clientgen does not know the host
name or port number of the WebLogic
Server instance which will host the Web
Service, clientgen uses the following
endpoint address in the generated
WSDL:

http://localhost:7001/contextURI/s
erviceURI

where contextURI and serviceURI are
the same values as described in “WebLogic
Web Services Home Page and WSDL URLs”
on page 6-23. If this endpoint address is not
correct, and your client application uses the
WSDL file stored in the client JAR file, you
must manually update the WSDL file with the
correct endpoint address.

String Either wsdl
or ear must
be specified.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-18 Programming WebLogic Web Services

generateAsyncMethods Specifies that the clientgen Ant task should
generate two special methods used to invoke each
Web Service operation asynchronously, in
addition to the standard methods. The special
methods take the following form:

FutureResult startMethod (params,
 AsyncInfo asyncInfo);
result endMethod (FutureResult
 futureResult);

where:
• Method is the name of the standard method

used to invoke the Web Service operation.
• params is the list of parameters to the

operation.
• result is the result of the operation.
• FutureResult is a WebLogic object used

as a placeholder for the impending result.
• AsyncInfo is a WebLogic object used to

pass contextual information.

Valid values for this attribute are True and
False. The default value is False.

Boolean No.

generatePublicFields Specifies whether the clientgen Ant task, when
generating the Java representation of any
non-built-in data types used by the Web Service,
should use public fields for the JavaBean
attributes rather than getter and setter methods.

Valid values are True and False. Default values
is False.

Boolean No.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

c l ientgen

Programming WebLogic Web Services B-19

j2me Specifies whether the clientgen Ant task
should create a J2ME/CDC-compliant client JAR
file.

Note: The generated client code is not
JAX-RPC compliant.

Valid values are True and False. Default value
is False.

Boolean No.

keepGenerated Specifies whether the clientgen Ant task
should keep (and thus include in the generated
JAR file) the Java source code of the serialization
class for any non-built-in data types used as
parameters or return values to the Web Service
operations, or whether the clientgen Ant task
should include only the compiled class file.

Valid values for this attribute are True and
False. The default value is False.

Boolean No.

overwrite Specifies whether the components generated by
this Ant task should be overwritten if they already
exist.

If you specify True, new components are always
generated and any existing components are
overwritten.

If you specify False, the Ant task overwrites
only those components that have changed, based
on the timestamp of any existing components.

Valid values for this attribute is True or False.
The default value is True.

Boolean No.

packageName Package name into which the generated
JAX-RPC client interfaces and stub files should
be packaged.

String Yes.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-20 Programming WebLogic Web Services

saveWSDL When set to True, specifies that the WSDL of the
Web Service be saved in the generated client JAR
file. This means that client applications do not
need to download the WSDL every time they
create a stub to the Web Service, possibly
improving performance of the client because of
reduced network usage.

Valid values are True and False. Default value
is True.

Boolean No.

serviceName Web Service name for which a corresponding
client JAR file should be generated.

If you specify the wsdl attribute, the Web Service
name corresponds to the <service> elements in
the WSDL file. If you specify the ear attribute,
the Web Service name corresponds to the
<web-service> element in the
web-services.xml deployment descriptor
file.

If you do not specify the serviceName
attribute, the clientgen task generates client
classes for the first service name found in the
WSDL or web-services.xml file.

String No.

typeMappingFile File that contains data type mapping information,
used by the clientgen task when generating the
JAX-RPC stubs. The format of the information is
the same as the data type mapping information in
the <type-mapping> element of the
web-services.xml file.

If you specified the ear attribute, the information
in this file overrides the data type mapping
information found in the web-services.xml
file.

String No.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

c l ientgen

Programming WebLogic Web Services B-21

typePackageBase Specifies the base package name of the generated
Java class for any non-built-in data types used as
a return value or parameter in a Web Service. This
means that each generated Java class will be part
of the same package name, although the
clientgen Ant task generates its own specific
name for each Java class which it appends to the
specified package base name.

If you specify this attribute, you cannot also
specify typePackageName.

If you do not specify this attribute and the XML
Schema in the WSDL file defines a target
namespace, then the clientgen Ant task
generates a package name for you based on the
target namespace. This means that if your XML
Schema does not define a target namespace, then
you must specify either the typePackageName
(preferred) or typePackageBase attributes of
the clientgen Ant task.

Note: Rather than using this attribute, BEA
recommends that you specify the full
package name with the
typePackageName attribute. The
typePackageBase attribute is
available for JAX-RPC compliance.

String Required
only if you
specified the
wsdl
attribute and
the XML
Schema in
the WSDL
file does not
define a
target
namespace.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-22 Programming WebLogic Web Services

typePackageName Specifies the full package name of the generated
Java class for any non-built-in data types used as
a return value or parameter in a Web Service.

If you specify this attribute, you cannot also
specify typePackageBase.

If you do not specify this attribute and the XML
Schema in the WSDL file defines a target
namespace, then the clientgen Ant task
generates a package name for you based on the
target namespace. This means that if your XML
Schema does not define a target namespace, then
you must specify either the typePackageName
(preferred) or typePackageBase attributes of
the clientgen Ant task.

Note: Although not required, BEA
recommends you specify this attribute.

String Required
only if you
specified the
wsdl
attribute and
the XML
Schema in
the WSDL
file does not
define a
target
namespace..

useLowerCaseMethodNames When set to true, specifies that the method names
in the generated stubs have a lower-case first
character. Otherwise, all method names will the
same as the operation names in the WSDL file.

Valid values are True and False. Default value
is True.

Boolean No.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

c l ientgen

Programming WebLogic Web Services B-23

usePortNameAsMethodName Specifies where the clientgen Ant task should
get the names of the operations when generating a
client from a WSDL file.

If this value is set to true, then operations take the
name specified by the name attribute of the
<port> element in the WSDL file (where
<port> is the child element of the <service>
element). If usePortNameAsMethodName is
set to false, then operations take the name
specified by the name attribute of the
<portType> element in the WSDL file (where
<portType> is the child element of the
<definitions> element).

Valid values are True and False. Default value
is False.

Boolean No.

useServerTypes Specifies where the clientgen task gets the
implementation of any non-built-in Java data
types used in a Web Service: either the task
generates the Java code or the task gets it from the
EAR file that contains the full implementation of
the Web Service.

Valid values are True (use the Java code in the
EAR file) and False. Default value is False.

For the list of non-built-in data types for
which clientgen can generate data type
components, see “Non-Built-In Data Types
Supported by servicegen and autotype Ant
Tasks” on page 6-18.

Boolean No.

Use only in
combination
with the ear
attribute.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-24 Programming WebLogic Web Services

Equivalent Command-Line Utility
The equivalent command-line utility of the clientgen Ant task is called
weblogic.webservice.clientgen. The description of the flags of the utility is the same as
the description of the Ant task attributes, described in the preceding section.

The weblogic.webservice.clientgen utility supports the following flags (see the equivalent
attribute for a description of the flag):

-help (Prints the standard usage message)

-version (Prints version information)

-verbose (Enables verbose output)

-wsdl uri

-ear pathname

-clientJar pathname

-packageName name

warName Name of the WAR file which contains the Web
Service(s).

The default value is web-services.war.

String No.

You can
specify this
attribute only
in
combination
with the ear
attribute.

wsdl Full path name or URL of the WSDL that
describes a Web Service (either WebLogic or
non-WebLogic) for which a client JAR file should
be generated.

The generated stub factory classes in the client
JAR file use the value of this attribute in the
default constructor.

String Either wsdl
or ear must
be specified.

Table B-3 Attributes of the clientgen Ant Task

Attribute Description Data
Type

Required?

serv icegen

Programming WebLogic Web Services B-25

-warName name

-serviceName name

-typeMappingFile pathname

-useServerTypes true_or_false

-typePackageName name

-typePackageBase name

-useLowerCaseMethodNames true_or_false

-usePortNameAsMethodName true_or_false

-generateAsyncMethods true_or_false

-generatePublicFields true_or_false

-saveWSDL true_or_false

-autotype true_or_false

-overwrite true_or_false

-keepGenerated true_or_false

servicegen
The servicegen Ant task takes as input an EJB JAR file or list of Java classes, and creates all
the needed Web Service components and packages them into a deployable EAR file.

In particular, the servicegen Ant task:

Introspects the EJBs and Java classes, looking for public methods to convert into Web
Service operations.

Creates a web-services.xml deployment descriptor file, based on the attributes of the
servicegen Ant task and introspected information.

Optionally creates the serialization class that converts the non-built-in data between its
XML and Java representations. It also creates XML Schema representations of the Java
objects and updates the web-services.xml file accordingly. This feature is referred to as
autotyping.

Packages all the Web Service components into a Web application WAR file, then packages
the WAR and EJB JAR files into a deployable EAR file.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-26 Programming WebLogic Web Services

You can also configure default configuration for reliable SOAP messaging, handler chains, and
data security (digital signatures and encryption) for a Web Service using servicegen.

While you are developing your Web Service, BEA recommends that you create an exploded
directory, rather than an EAR file, by specifying a value for the destEar attribute of servicegen
that does not have an .ear suffix. You can later package the exploded directory into an EAR file
when you are ready to deploy the Web Service.

Warning: The serialization class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be round-tripped. For
more information, see “Non-Roundtripping of Generated Data Type Components”
on page 6-22.

Note: The fully qualified name of the servicegen Ant task is
weblogic.ant.taskdefs.webservices.servicegen.ServiceGenTask.

Example
 <servicegen

 destEar="ears/myWebService.ear"

 warName="myWAR.war"

 contextURI="web_services" >

 <service

 ejbJar="jars/myEJB.jar"

 targetNamespace="http://www.bea.com/examples/Trader"

 serviceName="TraderService"

 serviceURI="/TraderService"

 generateTypes="True"

 expandMethods="True" >

 </service>

 </servicegen>

Attributes and Child Elements
The servicegen Ant task has four attributes and one child element (<service>) for each Web
Service you want to define in a single EAR file. You must specify at least one <service>
element.

The <service> element has four optional elements: <client>, <reliability>,
<handlerChain>, and <security>.

serv icegen

Programming WebLogic Web Services B-27

The following graphic describes the hierarchy of the servicegen Ant task.

Figure B-1 Element Hierarchy of servicegen Ant Task

servicegen
The servicegen Ant task is the main task for automatically generating and assembling all the
parts of a Web Service and packaging it into a deployable EAR file.

The following table describes the attributes of the servicegen Ant task.

servicegen

client

service

security

reliability

handlerChain

client

service

security

reliability

handlerChain

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-28 Programming WebLogic Web Services

Table B-4 Attributes of the servicegen Ant Task

Attribute Description Data
Type

Required?

contextURI Context root of the Web Service. You use this value in
the URL that invokes the Web Service.

The default value of the contextURI attribute is the
value of the warName attribute.

String No.

destEar Pathname of the EAR file or exploded directory which
will contain the Web Service and all its components.

To create or update an EAR file, use a.ear suffix when
specifying the EAR file, such as
ears/mywebservice.ear. If the attribute value
does not have a.ear suffix, then the servicegen task
creates an exploded directory.

If you specify an EAR file or directory that does not
exist, the servicegen task creates a new one.

String Yes

keepGenerated Specifies whether the servicegen Ant task should
keep (and thus include in the generated Web Services
EAR file) the Java source code of the serialization class
for any non-built-in data types used as parameters or
return values to the Web Service operations, or whether
the servicegen Ant task should include only the
compiled class file.

Valid values for this attribute are True and False. The
default value is False.

Boolean No.

mergeWithExistingWS Specifies whether the servicegen Ant task should
attempt to merge the generated components into
existing Web Services in the EAR file specified by the
destEar attribute.

Valid values for this attribute are True and False. The
default value is False.

Boolean No.

serv icegen

Programming WebLogic Web Services B-29

service
The <service> element describes a single Web Service implemented with either a stateless
session EJB or a Java class.

The following table describes the attributes of the <service> element of the servicegen Ant
task. Include one <service> element for every Web Service you want to package in a single
EAR file.

overwrite Specifies whether the components generated by this Ant
task should be overwritten if they already exist.

If you specify True, new components are always
generated and any existing components are overwritten.

If you specify False, the Ant task overwrites only
those components that have changed, based on the
timestamp of any existing components.

Valid values for this attribute is True or False. The
default value is True.

Boolean No

warName Name of the WAR file or exploded directory into which
the Web Service Web application is written. The WAR
file or directory is created at the top level of the EAR
file.

The default value is a WAR file called
web-services.war.

To specify a WAR file, use a .war suffix, such as
mywebserviceWAR.war. If the attribute value does
not have a .war suffix, then the servicegen task
creates an exploded directory.

String No

Table B-4 Attributes of the servicegen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-30 Programming WebLogic Web Services

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

ejbJar JAR file or exploded directory that contains the EJBs
that implement the back-end component of a Web
Service operation. The servicegen Ant task
introspects the EJBs to automatically generate all the
components.

String You must
specify either
the ejbJar,
javaClassC
omponents,
or JMS*
attribute.

excludeEJBs Comma-separated list of EJB names for which
non-built-in data type components should not be
generated.

If you specify this attribute, the servicegen task
processes all EJBs except those on the list.

The EJB names correspond to the <ejb-name>
element in the ejb-jar.xml deployment descriptor
in the EJB JAR file (specified with the ejbJar
attribute).

String No.

Used only in
combination
with the
ejbJar
attribute.

expandMethods Specifies whether the servicegen task, when
generating the web-services.xml file, should
create a separate <operation> element for each
method of the EJB or Java class, or whether the task
should implicitly refer to all methods by specifying
only one <operation> element that contains a
method="*" attribute.

Valid values are True and False. Default value is
False.

Boolean No.

serv icegen

Programming WebLogic Web Services B-31

generateTypes Specifies whether the servicegen task should
generate the serialization class and Java
representations for non-built-in data types used as
parameters or return values.

Valid values are True and False. Default value is
True.

For the list of non-built-in data types for which
servicegen can generate data type components, see
“Non-Built-In Data Types Supported by
servicegen and autotype Ant Tasks” on
page 6-18.

Boolean No.

ignoreAuthHeader Specifies that the Web Service ignore the
Authorization HTTP header in the SOAP
request.

Note: Be careful using this attribute. If you set the
value of this attribute to True, WebLogic
Server never authenticates a client
application that is attempting to invoke a
Web Service, even if access control security
constraints have been defined for the EJB,
Web Application, or Enterprise Application
that make up the Web Service. Or in other
words, a client application that does not
provide athentication credentials is still
allowed to invoke a Web Service that has
security constraints defined on it.

Valid values are True and False. Default value is
False.

Boolean No.

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-32 Programming WebLogic Web Services

includeEJBs Comma-separated list of EJB names for which
non-built-in data type components should be
generated.

If you specify this attribute, the servicegen task
processes only those EJBs on the list.

The EJB names correspond to the <ejb-name>
element in the ejb-jar.xml deployment descriptor
in the EJB JAR file (specified with the ejbJar
attribute).

Boolean No.

Used only in
combination
with the
ejbJar
attribute.

javaClassComponents Comma-separated list of Java class names that
implement the Web Service operation. The Java
classes must be compiled and in your CLASSPATH.

For example:
javaClassComponents="my.FirstClass,my
.SecondClass"

Note: Do not include the .class extension when
specifying the class names.

The servicegen Ant task introspects the Java
classes to automatically generate all the needed
components.

String You must
specify either
the ejbJar,
javaClassC
omponents,
or JMS*
attribute.

JMSAction Specifies whether the client application that invokes
this JMS-implemented Web Service sends or receives
messages to or from the JMS destination.

Valid values are send or receive.

Specify send if the client sends messages to the JMS
destination and receive if the client receives
messages from the JMS destination.

String Yes, if creating
a
JMS-impleme
nted Web
Service.

JMSConnectionFactory JNDI name of the ConnectionFactory used to
create a connection to the JMS destination.

String Yes, if creating
a
JMS-impleme
nted Web
Service.

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

serv icegen

Programming WebLogic Web Services B-33

JMSDestination JNDI name of a JMS queue. String Yes, if creating
a
JMS-impleme
nted Web
Service.

JMSDestinationType Type of JMS destination. Currently only one type is
supported: Queue.

Valid value is queue.

String Yes, if creating
a
JMS-impleme
nted Web
Service.

JMSMessageType Data type of the single parameter to the send or
receive operation.

Default value is java.lang.String.

If you use this attribute to specify a non-built-in data
type, and set the generateTypes attribute to True,
be sure the Java representation of this non-built-in
data type is in your CLASSPATH.

String No.

JMSOperationName Name of the operation in the generated WSDL file.

Default value is either send or receive, depending
on the value of the JMSAction attribute.

String No.

protocol Protocol over which this Web Service is deployed.

Valid values are http and https. The default value
is http.

String No.

serviceName Name of the Web Service which will be published in
the WSDL.

Note: If you specify more than one <service>
element in your build.xml file that calls
servicegen, and set the serviceName
attribute for each element to the same value,
servicegen attempts to merge the
multiple <service> elements into a single
Web Service.

String Yes.

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-34 Programming WebLogic Web Services

serviceURI Web Service URI portion of the URL used by client
applications to invoke the Web Service.

Note: Be sure to specify the leading "/", such as
/TraderService.

The full URL to invoke the Web Service will be:
protocol://host:port/contextURI/servi
ceURI

where
• protocol refers to the protocol attribute of

the <service> element
• host refers to the computer on which WebLogic

Server is running
• port refers to the port on which WebLogic

Server is listening
• contextURI refers to the contextURI

attribute of the main servicegen Ant task
• serviceURI refers to this attribute

String Yes.

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

serv icegen

Programming WebLogic Web Services B-35

style Specifies whether the servicegen Ant task should
generate RPC-oriented or document-oriented Web
Service operations.

RPC-oriented WebLogic Web Service operations use
SOAP encoding. Document-oriented WebLogic Web
Service operations use literal encoding.

You can use the following two values to generate
document-oriented Web Service operations:
document and documentwrapped.

If you specify document for this attribute, the
resulting Web Service operations take only one
parameter. This means that the methods that
implement the operations must also have only one
parameter. In this case, if servicegen encounters
methods that have more than one parameter,
servicegen ignores the method and does not
generate a corresponding Web Service operation for
it.

If you specify documentwrapped, the resulting
Web Service operations can take any number of
parameters, although the parameter values will be
wrapped into one complex data type in the SOAP
messages. If two or more methods of your stateless
session EJB or Java class that implement the Web
Service have the same number and data type of
parameters, and you want the operations to be
document-oriented, you must specify
documentwrapped for this attribute rather than
document.

Valid values for this attribute are rpc,
documentwrapped, and document. Default value
is rpc.

Note: Because the style attribute applies to an
entire Web Service, all operations in a single
WebLogic Web Service must be either
RPC-oriented or documented-oriented;
WebLogic Server does not support mixing
the two styles within the same Web Service.

String No.

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-36 Programming WebLogic Web Services

client
The optional <client> element describes how to create the client JAR file that client
applications use to invoke the Web Service. Specify this element only if you want the
servicegen Ant task to create a client JAR file.

Note: You do not have to create the client JAR file when you assemble your Web Service. You
can later use the clientgen Ant task to generate the JAR file.

typeMappingFile File that contains additional XML data type mapping
information and XML Schema representation of
non-built-in data types. The format of the information
is the same as the data type mapping information in a
web-services.xml.

Use this attribute if you want to include extra XML
data type information in the <type-mapping>
element of the web-services.xml file, in addition
to the required XML descriptions of data types used
by the EJB or Java class that implements an operation.
The servicegen task adds the extra information in
the specified file to a generated
web-services.xml file.

String No.

targetNamespace The namespace URI of the Web Service. String Yes.

useSOAP12 Specifies whether to use SOAP 1.2 as the message
format protocol. By default, WebLogic Web Services
use SOAP 1.1.

If you specify useSOAP12="True", the generated
WSDL of the deployed WebLogic Web Service
includes two ports: the standard port that specifies a
binding for SOAP 1.1 as the message format protocol,
and a second port that uses SOAP 1.2. Client
applications, when invoking the Web Service, can use
the second port if they want to use SOAP 1.2 as their
message format protocol.

Valid values for this attribute are True and False.
The default value is False.

Boolean No.

Table B-5 Attributes of the <service> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

serv icegen

Programming WebLogic Web Services B-37

The following table describes the attributes of the <client> element.

Table B-6 Attributes of the <client> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

clientJarName Name of the generated client JAR file.

When the servicegen task packages the Web Service, it puts
the client JAR file in the top-level directory of the Web Service
WAR file of the EAR file.

Default name is serviceName_client.jar, where
serviceName refers to the name of the Web Service (the
serviceName attribute)

Note: If you want a link to the client JAR file to automatically
appear in the Web Service Home Page, you should not
change its default name.

String No.

packageName Package name into which the generated client interfaces and
stub files are packaged.

String Yes.

saveWSDL When set to True, saves the WSDL file of the Web Service in
the generated client JAR file. This means that client applications
do not need to download the WSDL file every time they create
a stub to the Web Service, possibly improving performance of
the client because of reduced network usage.

Valid values are True and False. Default value is True.

Boolean No.

useServerTypes Specifies where the servicegen task gets the implementation
of any non-built-in Java data types used in a Web Service: either
the task generates the Java code or the task gets it from the EAR
file that contains the full implementation of the Web Service.

Valid values are True (use the Java code in the EAR file) and
False. Default value is False.

For the list of non-built-in data types for which servicegen can
generate data type components, see “Non-Built-In Data
Types Supported by servicegen and autotype Ant Tasks”
on page 6-18.

Boolean No.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-38 Programming WebLogic Web Services

handlerChain
The optional <handlerChain> child element of the <service> element adds a handler chain
component to the Web Service, and specifies that the handler chain is associated with every
operation of the Web Service. A handler chain consists of one or more handlers. For more
information on handler chains, see Chapter 12, “Creating SOAP Message Handlers to Intercept
the SOAP Message.”

Note: Setting this element in servicegen associates the handler chain with every operation in
your Web Service. If you want only some operations to be associated with this handler
chain, then you must edit the generated web-services.xml file and remove the
handler-chain attribute of the corresponding <operation> element. For details of
these elements and attributes, see Appendix A, “WebLogic Web Service Deployment
Descriptor Elements.”

The following table describes the attributes of the <handlerChain> element.

Table B-7 Attributes of the <handlerChain> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

handlers Comma separated fully qualified list of Java class names that
implement the handlers in the handler chain. You must include
at least one class name.

Note: If the Java class that implements a handler
expects initialization parameters, you must edit
the generated web-services.xml file and add
an <init-params> child element to the
<handler> element. For details of these
elements, see Appendix A, “WebLogic Web
Service Deployment Descriptor Elements.”

String Yes.

name The name of the handler chain.

Default value is serviceNameHandlerChain, where
serviceName is the value of the serviceName attribute of
the <service> parent element.

String No.

serv icegen

Programming WebLogic Web Services B-39

reliability
The optional <reliability> child element of the <service> element specifies that every
operation of the Web Service can be invoked asynchronously using reliable SOAP messaging.
For more information on reliable SOAP messaging, see Chapter 10, “Using Reliable SOAP
Messaging.”

Note: Setting this element in servicegen enables reliable SOAP messaging for every
operation in your Web Service. If you want only some operations to have reliable SOAP
messaging, then you must edit the generated web-services.xml file and remove the
<reliable-delivery> child element of the corresponding <operation> element. For
details of these elements, see Appendix A, “WebLogic Web Service Deployment
Descriptor Elements.”

The following table describes the attributes of the <reliability> element.

Table B-8 Attributes of the <reliability> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

duplicateElimination Specifies whether the WebLogic Web Service operations
should ignore duplicate invokes from the same client
application.

If this attribute is set to True, the Web Service persists the
message IDs from client applications that invoke the Web
Service so that it can eliminate any duplicate invokes. If this
values is set to False, the Web Service does not keep track
of duplicate invokes, which means that if a client retries an
invoke, both invokes could return values.

Valid values for this attribute are True and False. The
default value is True.

Boolean No.

persistDuration The default minimum number of seconds that the Web
Service should persist the history of a reliable SOAP
message (received from the sender that invoked the Web
Service) in its storage.

The Web Service, after recovering from a WebLogic Server
crash, does not dispatch persisted messages that have
expired.

The default value of this attribute is 60,000 seconds.

Integer No.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-40 Programming WebLogic Web Services

security
The optional <security> child element of the <service> element adds default data security,
such as digital signatures and encryption, to your Web Service. For more information about data
security, see Chapter 13, “Configuring Security.”.

Note: You can encrypt or digitally sign only the entire SOAP message body when you
configure data security using the servicegen Ant task. If you want to specify particular
elements of the SOAP message that are to be digitally signed or encrypted, see
“Configuring Message-Level Security: Main Steps” on page 13-9. This section also
describes the general security configuration tasks you must perform with the
Administration Console before you can successfully invoke your secure Web Service.

The following table describes the attributes of the <security> element.

Table B-9 Attributes of the <security> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

enablePasswordAuth Specifies whether user authentication is enabled or disabled.
If enabled, a username token is added to the <security>
element of the web-services.xml deployment descriptor file.

Valid values for the attribute are True and False. The
default value is False.

Boolean No.

encryptKeyName The name of the key and certificate pair, stored in WebLogic
Server’s keystore, used to encrypt SOAP message.

If you do not specify this attribute, no part of the SOAP
message will be encrypted.

String Only if you
want to
encrypt the
SOAP
message.

encryptKeyPass The password of the key and certificate pair, stored in
WebLogic Server’s keystore, used to encrypt the SOAP
message.

If you do not specify this attribute, no part of the SOAP
message will be encrypted.

String Only if you
want to
encrypt the
SOAP
message.

source2wsdd

Programming WebLogic Web Services B-41

source2wsdd
The source2wsdd Ant task generates a web-services.xml deployment descriptor file from the
Java source file for a stateless session EJB- or Java class-implemented WebLogic Web Service.
You can also specify that the WSDL that describes the Web Service be generated.

The source2wsdd Ant task sets the name of the Web Service to the class name of the Java class
or EJB that implements the Web Service. This name will also be the public name of the Web
Service published in its WSDL.

The source2wsdd Ant task does not generate data type mapping information for any non-built-in
data types used as parameters or return values of the methods of your EJB or Java class If your

password Specifies the password used in the username token of the
SOAP response message.

If you do not specify this attribute, the SOAP response
message will not include a username token specification.

String Only if your
SOAP
messages
require a
username
token.

signKeyName The name of the key and certificate pair, stored in
WebLogic Server’s keystore, used to digitally sign the
SOAP message.

If you do not specify this attribute, no part of the SOAP
message will be digitally signed.

String Only if you
want to
digitally sign
the SOAP
message.

signKeyPass The password of the key and certificate pair, stored in
WebLogic Server’s keystore, used to digitally sign the
SOAP message.

If you do not specify this attribute, no part of the SOAP
message will be digitally signed.

String Only if you
want to
digitally sign
the SOAP
message.

username Specifies the username used in the username token of the
SOAP response message.

If you do not specify this attribute, the SOAP response
message will not include a username token specification.

String Only if your
SOAP
messages
require a
username
token.

Table B-9 Attributes of the <security> Element of the servicegen Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-42 Programming WebLogic Web Services

EJB or Java class uses non-built-in data types, you must first run the autotype Ant task to
generate the needed components, then point the typesInfo attribute of the source2wsdd Ant
task to the types.xml file generated by the autotype Ant task.

If your EJB or Java class refers to other Java class files, be sure to set the sourcePath attribute
of source2wsdd Ant task to the directory that contains them.

Note: The fully qualified name of the source2wsdd Ant task is
weblogic.ant.taskdefs.webservices.autotype.JavaSource2DD.

Example
The following example shows how to generate a web-services.xml file, generated into the
ddfiles directory, for a Java class-implemented Web Service. The information about the
non-built-in data types is contained in the autotype/types.xml file. The Web Service portion
of the URI used to invoke the service is /MyService.

<source2wsdd

 javaSource="source/MyService.java"

 typesInfo="autotype/types.xml"

 ddFile="ddfiles/web-services.xml"

 serviceURI="/MyService"

/>

The following example shows how to generate both a web-services.xml file and the WSDL
file (called wsdFiles/Temperature.wsdl) that describes a stateless session EJB-implemented
Web Service. Because the ejbLink attribute is specified, the javaSource attribute must point
to the EJB source file. The source2wsdd Ant task uses the value of the ejblink attribute as the
value of the <ejb-link> child element of the <stateless-ejb> element in the generated
web-services.xml file.

<source2wsdd

javaSource="source/TemperatureService.java"

ejbLink="TemperatureService.jar#TemperatureServiceEJB"

ddFile="ddfiles/web-services.xml"

typesInfo="autotype/types.xml"

serviceURI="/TemperatureService"

wsdlFile="wsdlFiles/Temperature.wsdl"

/>

source2wsdd

Programming WebLogic Web Services B-43

Attributes
The following table describes the attributes of the source2wsdd Ant task.

Table B-10 Attributes of the source2wsdd Ant Task

Attribute Description Data
Type

Required?

ddFile Full pathname of the Web Services deployment
descriptor file (web-services.xml) which will
contain the generated deployment descriptor
information.

String Yes.

ejblink Specifies the value of the <ejb-link> child element
of the <stateless-ejb> element in the generated
deployment descriptor file for a stateless session
EJB-implemented Web Service. Use this attribute only
if you are generating the web-services.xml file
from an EJB.

Note: The source2wsdd Ant task does not use this
attribute to determine the EJB which it needs to
introspect. Rather, it uses this attribute to
determine what value it should use for the
<ejb-link> element in the generated
web-services.xml file. Use the
javaSource attribute to point to the actual
EJB source file.

The format of this attribute is as follows:

jar-name#ejb-name

jar-name refers to the name of the JAR file, contained
within the Web Service EAR file, that contains the
stateless session EJB. The name should include
pathnames relative to the top level of the EAR file.

ejb-name refers to the name of the stateless session
EJB, corresponding to the <ejb-name> element in the
ejb-jar.xml deployment descriptor file in the EJB
JAR file.

Example: myapp.jar#StockQuoteBean

String No.

If you specify
this attribute,
the required
javaSource
attribute must
point to the
EJB source
file.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-44 Programming WebLogic Web Services

handlerInfo Full pathname of the XML file that contains information
about the SOAP message handlers and handler
chains defined for the Web Service.

You must create this file manually. The root element of
the file is <handler-chains>. For more information
about how to populate the file, see “Updating the
web-services.xml File with SOAP Message
Handler Information” on page 12-19 and
Appendix A, “WebLogic Web Service
Deployment Descriptor Elements.”

 If you do not specify this attribute, the generated
web-services.xml file does not contain any SOAP
message handlers or handler chain information.

String No.

ignoreAuthHeader Specifies that the Web Service ignore the
Authorization HTTP header in the SOAP request.

Note: Be careful using this attribute. If you set the
value of this attribute to True, WebLogic
Server never authenticates a client application
that is attempting to invoke a Web Service,
even if access control security constraints have
been defined for the EJB, Web Application, or
Enterprise Application that make up the Web
Service. Or in other words, a client application
that does not provide athentication credentials
is still allowed to invoke a Web Service that
has security constraints defined on it.

Valid values are True and False. Default value is
False.

Boolean No.

javaSource Name of the stateless session EJB or Java source file
that implements your Web Service component.

String Yes.

Table B-10 Attributes of the source2wsdd Ant Task

Attribute Description Data
Type

Required?

source2wsdd

Programming WebLogic Web Services B-45

mergeWithExistingWS Specifies whether the source2wsdd Ant task should
attempt to merge the generated web-services.xml
deployment descriptor information with an existing file,
specified with the ddFile attribute.

Valid values for this attribute are True and False. The
default value is False.

Boolean No.

overwrite Specifies whether the components generated by this Ant
task should be overwritten if they already exist.

If you specify True, new components are always
generated and any existing components are overwritten.

If you specify False, the Ant task overwrites only
those components that have changed, based on the
timestamp of any existing components.

Valid values for this attribute is True or False. The
default value is True.

Boolean No.

serviceURI Web Service URI portion of the URL used by client
applications to invoke the Web Service.

Note: Be sure to specify the leading "/", such as
/TraderService.

The value of this attribute becomes the uri attribute of
the <web-service> element in the generated
web-services.xml deployment descriptor.

String Yes.

sourcePath Full pathname of the directory that contains any
additional classes referred to by the Java source file
specified with the javaSource attribute.

String No.

Table B-10 Attributes of the source2wsdd Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-46 Programming WebLogic Web Services

wsdl2Service
The wsdl2Service Ant task takes as input an existing WSDL file and generates:

the Java interface that represents the implementation of your Web Service based on the
WSDL file

the Java exception class for user-defined exceptions specified in the WSDL file

an empty Java implementation class

the web-services.xml file that describes the Web Service

The generated Java interface file describes the template for the full Java class-implemented
WebLogic Web Service. The template includes full method signatures that correspond to the
operations in the WSDL file. You must then write a Java class that implements this interface so
that the methods function as you want, following the guidelines in “Implementing a Web Service
By Writing a Java Class” on page 5-4. You can generate a skeleton of the implementation class
by specifying the generateImpl="True" attribute; add the business logic Java code to this class
to complete the implementation.

typesInfo Name of the file that contains the XML Schema
representation and data type mapping information for
any non-built-in data types used as parameters or return
value of the Web Service.

The format of the data type mapping information is the
same as that in the <type-mapping> element of the
web-services.xml file.

Typically you have already run the autotype Ant task
to generate this information into a file called
types.xml.

String Yes.

wsdlFile Specifies that, in addition to the web-services.xml
deployment descriptor, you also want to generate the
WSDL that describes the Web Service.

Set this value to the name of the output file that will
contain the generated WSDL.

String No.

Table B-10 Attributes of the source2wsdd Ant Task

Attribute Description Data
Type

Required?

wsdl2Serv i ce

Programming WebLogic Web Services B-47

The wsdl2Service Ant task generates a Java interface for only one Web Service in a WSDL file
(specified by the <service> element.) Use the serviceName attribute to specify a particular
service; if you do not specify this attribute, the wsdl2Service Ant task generates a Java interface
for the first <service> element in the WSDL.

The wsdl2Service Ant task does not generate data type mapping information for any
non-built-in data types used as parameters or return values of the operations in the WSDL file.
If the WSDL uses non-built-in data types, you must first run the autotype Ant task to generate
the data type mapping information, then point the typeMappingFile attribute of the
wsdl2Service Ant task to the types.xml file generated by the autotype Ant task.

Warning: The wsdl2Service Ant task, when generating the web-services.xml file for your
Web Service, assumes you use the following convention when naming the Java class
that implements the generated Java interface:
 packageName.serviceNameImpl

where packageName and serviceName are the values of the similarly-named
attributes of the wsdl2Service Ant task. The Ant task puts this information in the
class-name attribute of the <java-class> element of the web-services.xml
file.

If you name your Java implementation class differently, you must manually update
the generated web-services.xml file accordingly.

Note: The fully qualified name of the wsdl2Service Ant task is
weblogic.ant.taskdefs.webservices.wsdl2service.WSDL2Service.

Example
<wsdl2service

 wsdl="wsdls/myService.wsdl"

 destDir="myService/implementation"

 typeMappingFile="autotype/types.xml"

 packageName="example.ws2j.service"

/>

Attributes
The following table describes the attributes of the wsdl2Service Ant task.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-48 Programming WebLogic Web Services

Table B-11 Attributes of the wsdl2Service Ant Task

Attribute Description Data
Type

Required?

ddFile Full pathname of the generated Web Services deployment
descriptor file (web-services.xml) which will contain
the deployment descriptor information.

If you do not specify this attribute, the
web-services.xml file is generated in the directory
specified by the destDir attribute.

String No.

destDir The full pathname of the directory that will contain the
generated components (web-services.xml file and Java
interface file that represents the implementation of your
Web Service and optional implementation class.)

String Yes.

generateImpl Specifies that the wsdl2Service Ant task should generate
an empty implementation Java class file.

The name of the Java class is serviceNameImpl, where
serviceName refers to the value of the similarly-named
attribute of the wsdl2Service Ant task. The name of
the generated Java file is serviceNameImpl.java,
and the file is generated in the directory specified by the
destDir attribute.

Valid values for this attribute are True and False. The
default value is False.

Boolean No.

keepGenerated Specifies whether the wsdl2Service Ant task should
keep (and thus include in directory specified by the
destDir attribute) the Java source code of the interface
that represents your Web service and the user-defined
exceptions in the WSDL file. The default behavior is for the
Ant task to include only the compiled class files.

Valid values for this attribute are True and False. The
default value is False.

Boolean No.

wsdl2Serv i ce

Programming WebLogic Web Services B-49

overwrite Specifies whether the components generated by this Ant
task should be overwritten if they already exist.

If you specify True, new components are always generated
and any existing components are overwritten.

If you specify False, the Ant task overwrites only those
components that have changed, based on the timestamp of
any existing components.

Valid values for this attribute is True or False. The
default value is True.

Boolean No.

packageName The package name for the generated Java interface file that
represents the implementation of your Web Service.

String Yes.

serviceName The name of the Web Service in the WSDL file for which a
partial WebLogic implementation will be generated. The
name of a Web Service in a WSDL file is the value of the
name attribute of the <service> element.

If you do not specify this attribute, the wsdl2Service Ant
task generates a partial implementation for the first
<service> element it finds in the WSDL file.

Note: The wsdl2Service Ant task generates a partial
WebLogic Web Service implementation for only
one service in a WSDL file. If your WSDL file
contains more than one Web Service, then you
must run wsdl2Service multiple times,
changing the value of this attribute each time.

String No.

Table B-11 Attributes of the wsdl2Service Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-50 Programming WebLogic Web Services

wsdlgen
The wsdlgen Ant task generates a WSDL file from the EAR and WAR files that implement your
Web Service. The EAR file contains the EJBs that implement your Web Service and the WAR
file contains the web-services.xml deployment descriptor file.

The fully qualified name of the wsdlgen Ant task is
weblogic.ant.taskdefs.webservices.wsdlgen.WSDLGen.

Example
<wsdlgen ear="myapps/myapp.ear"

 warName="myapps/myWAR.war"

 serviceName="myService"

 wsdlFile="wsdls/myService.WSDL"

/>

typeMappingFile File that contains data type mapping information for all
non-built-in data types referred to by the operations of the
Web Service in the WSDL file. The format of the
information is the same as the data type mapping
information in the <type-mapping> element of the
web-services.xml file.

Typically, you first run the autotype Ant task (specifying
the wsdl attribute) against the same WSDL file and
generate all the non-built-in data type components. One of
the components is a file called types.xml that contains
the non-built-in data type mapping information and the
XML Schema of the non-built-in data types. Set the
typeMappingFile attribute equal to this file.

String Required only if
the operations of
the Web Service
in the WSDL file
refer to any
non-built-in data
types.

wsdl The full path name or URL of the WSDL that describes a
Web Service for which a partial WebLogic Web Service
implementation will be generated.

String Yes.

Table B-11 Attributes of the wsdl2Service Ant Task

Attribute Description Data
Type

Required?

wsd lgen

Programming WebLogic Web Services B-51

Attributes
The following table describes the attributes of the wsdlgen Ant task.

Table B-12 Attributes of the wsdlgen Ant Task

Attribute Description Data
Type

Required?

ear Name of an EAR file or exploded directory that contains the
WebLogic Web Service implementation for which the
WSDL file should be generated.

String Yes.

defaultEndpoint Endpoint Web Service URL to be included in the generated
WSDL file.

The default value is http://localhost:7001.

String No.

overwrite Specifies whether the components generated by this Ant
task should be overwritten if they already exist.

If you specify True, new components are always generated
and any existing components are overwritten.

If you specify False, the Ant task overwrites only those
components that have changed, based on the timestamp of
any existing components.

Valid values for this attribute is True or False. The
default value is True.

Boolean No.

serviceName Web Service name for which a corresponding WSDL file
should be generated.

The Web Service name corresponds to the
<web-service> element in the web-services.xml
deployment descriptor file.

If you do not specify the serviceName attribute, the
wsdlgen task generates a WSDL file for the first service
name found in the web-services.xml file.

String No.

warName Name of the WAR file that contains the
web-services.xml deployment descriptor file of your
Web Service.

String Yes.

wsdlFile Name of the output file that will contain the generated
WSDL.

String Yes.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-52 Programming WebLogic Web Services

Equivalent Command-Line Utility
The equivalent command-line utility of the wsdlgen Ant task is called
weblogic.webservice.wsdlgen. The description of the flags of the utility is the same as the
description of the Ant task attributes, described in the preceding section.

The weblogic.webservice.wsdlgen utility supports the following flags (see the equivalent
attribute for a description of the flag):

-help (Prints the standard usage message)

-version (Prints version information)

-verbose (Enables verbose output)

-warName name

-serviceName name

-defaultEndpoint address

wspackage
Use the wspackage Ant task to:

package the various components of a WebLogic Web Service into a new deployable EAR
file.

add extra components to an already existing EAR file.

It is assumed that you have already generated the components, which can include:

The web-services.xml deployment descriptor file

The EJB JAR file that contains the EJBs the implement a Web Service

The Java class file that implements a Web Service

A client JAR file that users can download and use to invoke the Web Service

Implementations of SOAP handlers

Components for any non-built-in data types used as parameters and return values for the
Web Service. These components include the XML and Java representations of the data type
and the serialization class that converts the data between its two representations.

wspackage

Programming WebLogic Web Services B-53

Typically you use other Ant tasks, such as clientgen, autotype, source2wsdd, and
wsdl2Service, to generate the preceding components.

When you use the wspackage Ant task to add additional components to an existing EAR file, be
sure you specify the overwrite="false" attribute to ensure that none of the existing
components are overwritten. Use the output attribute to specify the full pathname of the
existing EAR file.

Note: The fully qualified name of the wspackage Ant task is
weblogic.ant.taskdefs.webservices.wspackage.WSPackage.

Example
The following example shows how to use the wspackage Ant task to package WebLogic Web
Service components into a new EAR file:

<wspackage

 output="ears/myWebService.ear"

 contextURI="web_services"

 codecDir="autotype"

 webAppClasses="example.ws2j.service.SimpleTest"

 ddFile="ddfiles/web-services.xml"

/>

The following example shows how to add additional components to an existing EAR file called
ears/myWebService.ear.

<wspackage

 output="ears/myWebService.ear"

 overwrite="false"

 filesToEar="myEJB2.jar"

/>

Attributes
The following table describes the attributes of the wspackage Ant task.

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-54 Programming WebLogic Web Services

Table B-13 Attributes of the wspackage Ant Task

Attribute Description Data
Type

Required?

codecDir Name of the directory that contains the serialization classes
for any non-built-in data types used as parameters or return
values in your Web Service.

String No.

contextURI Context root of the Web Service. You use this value in the
URL that invokes the Web Service.

The default value of the contextURI attribute is the value
of the warName attribute.

String No.

ddFile Full pathname of an existing Web Services deployment
descriptor file (web-services.xml).

If you do not specify this attribute, it is assumed that you are
using the wspackage Ant task to add additional
components to an existing EAR file. In this case, you must
also specify overwrite="false" and point the output
attribute to the existing EAR file.

String No.

filesToEar Comma-separated list of files to be packaged in the root
directory of the EAR.

Use this attribute to specify the EJB JAR files that
implement a Web Service, as well as any other supporting
EJB JAR files.

String No.

filesToWar Comma-separated list of additional files, such as the client
JAR file, to be packaged in the root directory of the Web
Service’s Web application.

String No.

wspackage

Programming WebLogic Web Services B-55

output Pathname of the EAR file or exploded directory which will
contain the Web Service and all its components. If you are
using the wspackage Ant task to add additional
components to an existing EAR file, this attribute specifies
the full pathname of the existing file.

To create or update an EAR file, use a.ear suffix when
specifying the EAR file, such as
ears/mywebservice.ear. If the attribute value does
not have a.ear suffix, then the wspackage task creates an
exploded directory.

If you specify an EAR file or directory that does not exist,
the wspackage task creates a new one.

String Yes

overwrite Specifies whether you want the components of an existing
EAR file or directory to be overwritten. The components
include the web-services.xml file, serialization class,
client JAR files, and so on.

Valid values for this attribute are True and False. The
default value is True.

If you specify False, the wspackage Ant task attempts to
merge the contents of the EAR file/directory and
information in the web-services.xml file.

If you are using the wspackage Ant task to add additional
components to an existing EAR file, you must specify
overwrite="false".

Boolean No

utilJars Comma-separated list of files that should be packaged in the
WEB-INF/lib directory of the Web Service Web
application.

String No.

Table B-13 Attributes of the wspackage Ant Task

Attribute Description Data
Type

Required?

Web Serv ice Ant Tasks and Command-L ine Ut i l i t i es

B-56 Programming WebLogic Web Services

warName Name of the WAR file into which the Web Service is
written. The WAR file is created at the top level of the EAR
file.

The default value is web-services.war.

String No

webAppClasses Comma-separated list of class files that should be packaged
in the WEB-INF/classes directory of the Web Service’s
Web application.

Use this attribute to specify the Java class that implements a
Web Service, SOAP handler classes, and so on.

String No.

Table B-13 Attributes of the wspackage Ant Task

Attribute Description Data
Type

Required?

Programming WebLogic Web Services C-1

A P P E N D I X C

source2wsdd Tag Reference

The following topics describe the source2wsdd Javadoc tags:

“Overview of Using source2wsdd Tags” on page C-1

“@wlws:webservice” on page C-2

“@wlws:operation” on page C-5

“@wlws:part partname” on page C-7

“@wlws:exclude” on page C-11

Overview of Using source2wsdd Tags
The source2wsdd Ant task generates a web-services.xml deployment descriptor file from the
Java source file for a stateless session EJB- or Java class-implemented WebLogic Web Service.
The web-services.xml deployment descriptor file contains information that describes one or
more WebLogic Web Services. This information includes details about the back-end components
that implement the operations of a Web Service, the non-built-in data types used as parameters
and return values, the SOAP message handlers that intercept SOAP messages, and so on. As is
true for all deployment descriptors, web-services.xml is an XML file.

This chapter describes the optional Javadoc tags you can include in the Java source file that the
source2wsdd Ant task uses to automatically generate the web-services.xml file. If your Java
source file does not contain any Javadoc tags, the source2wsdd Ant task makes a best guess
when adding elements to the file, such as the name of the Web Service, the operations that should
be exposed, and so on. If, however, you want more control over the generated

source2wsdd Tag Refe rence

C-2 Programming WebLogic Web Services

web-services.xml file, use the source2wsdd Javadoc tags to specify exactly what your Web
Service looks like.

There are three source2wsdd Javadoc tags:

@wlws:webservice, used in the Javadoc for the class that implements your Web Service.

@wlws:operation, used in the Javadoc for a method that you want to expose as a Web
Service operation.

@wlws:part partname used in the Javadoc for a method that has been exposed as an
operation and you want to customize the description of its parameters and return values.

Each tag has a set of attributes which correspond to the appropriate element in the
web-services.xml file that it is describing.

@wlws:webservice
The source2wsdd Ant task uses the @wlws:webservice tag to populate the <web-service>
element of the generated web-services.xml file.

You specify the @wlws:webservice tag in the Javadoc of the class that implements your Web
Service.

The following example shows how to use the @wlws:webservice tag in the Javadoc that
documents a Java class:

/**

 * PurchaseOrderService - a service to show different features of

 * Weblogic Web Services.

 *

 * @wlws:webservice

 * targetNamespace="http://www.bea.com/po-service/"

 * name="PurchaseOrderService"

 * portName="POPort"

 * portTypeName="POPort"

 * protocol="https"

*/

public class POService {

 ...

}

@wlws:webserv i ce

Programming WebLogic Web Services C-3

In the example, the POService Java class is the back-end component that implements a Web
Service whose name is PurchaseOrderService (specified with the name attribute of the
@wls:webservice tag). The <port> and <portType> elements in the generated WSDL for the
Web Service are both POPort. Finally, client applications access the Web Service using HTTPS
rather than the default HTTP.

The following table lists all the attributes of the @wlws:webservice tag.

Table C-1 Attributes of the @wlws:webservice source2wsdd Tag

Attribute Name Description Default Value if Attribute is
Not Specified

Name The name of the Web Service, published in the WSDL. The name of the class in the
annotated source code.

portName Name of the <port> child element of the <service>
element of the dynamically generated WSDL of this Web
Service.

The name of the Web Service
with Port appended. For
example, if the name of this
Web Service is
TraderService, the
default port name is
TraderServicePort.

portTypeName Name of the default <portType> element in the
dynamically generated WSDL of this Web service.

The name of this Web
Service with Port appended.
For example, if the name of
this Web service is
TraderService, the
default portType name is
TraderServicePort.

protocol Protocol over which the Web Service is invoked.

Valid values are http and https.

Default value is http.

source2wsdd Tag Refe rence

C-4 Programming WebLogic Web Services

Style Specifies whether the Web Service has RPC-oriented or
document-oriented Web Service operations.

RPC-oriented WebLogic Web Service operations use
SOAP encoding. Document-oriented WebLogic Web
Service operations use literal encoding.

You can use the following two values to generate
document-oriented Web Service operations: document
and documentwrapped.

If you specify document for this attribute, the resulting
Web Service operations take only one parameter. This
means that the methods that implement the operations
must also have only one parameter. In this case, if
source2wsdd encounters methods that have more than
one parameter, source2wsdd ignores the method and
does not generate a corresponding Web Service operation
for it.

If you specify documentwrapped, the resulting Web
Service operations can take any number of parameters,
although the parameter values will be wrapped into one
complex data type in the SOAP messages. If two or more
methods of your stateless session EJB or Java class that
implement the Web Service have the same number and
data type of parameters, and you want the operations to be
document-oriented, you must specify
documentwrapped for this attribute rather than
document.

Valid values for this attribute are rpc,
documentwrapped, and document.Because the
style attribute applies to an entire Web Service, all
operations in a single WebLogic Web Service must be
either RPC-oriented or documented-oriented; WebLogic
Server does not support mixing the two styles within the
same Web Service.

 Default value is rpc.

Table C-1 Attributes of the @wlws:webservice source2wsdd Tag

Attribute Name Description Default Value if Attribute is
Not Specified

@wlws:operat ion

Programming WebLogic Web Services C-5

@wlws:operation
The source2wsdd Ant task uses the @wlws:operation tag to populate the corresponding
<operation> element in the generated web-services.xml file.

By default, every public method of the Java class or EJB that implements a Web Service is
exposed as an operation in the generated WSDL. The source2wsdd Ant task uses information
from the method, such as its signature, to populate the <operation> element; use the
@wlws:operation Javadoc tag to change some of the default information, such as the operation
name. Use the @wlws:exclude tag to specify that a public method not be exposed as a Web
Service operation.

You specify the @wlws:operation tag in the Javadoc of the method that implements the
operation.

The following example shows how to use the @wlws:operation tag in the Javadoc that
documents a method:

/**

 * A one way call. Client will not wait for this method to

 * complete.

 *

 * Note: A one way call must have a void return type.

targetNameSpace The namespace URI of the Web Service. Default value is
http://tempuri.org.

Uri Web Service URI portion of the URL used by client
applications to invoke the Web Service.

Note: Be sure to specify the leading "/", such as
/TraderService.

Note: You can also specify the URI using the
serviceURI attribute of the source2wsdd
Ant task. If you specify the URI in both places,
and they are different from each other, the URI
specified by the @wlws:webservice Javadoc
tag takes precedence.

Although you are not
required to specify the Uri
attribute of the
@wlws:webservice tag,
you are required to specify
the serviceURI of the
source2wsdd Ant task.
This means that there is no
default value and that at some
point you must specify the
Web Service URI.

Table C-1 Attributes of the @wlws:webservice source2wsdd Tag

Attribute Name Description Default Value if Attribute is
Not Specified

source2wsdd Tag Refe rence

C-6 Programming WebLogic Web Services

 *

 * @wlws:operation

 * invocation-style="one-way"

 * Name="sendTime"

 */

 public void oneWayCall(long time){

 }

In the example, the oneWayCall method implements an operation of a Web Service called
sendTime, which is the published name of the operation in the WSDL. The operation is one-way,
which means that the client application does not receive a return value.

The following table lists all the attributes of the @wlws:operation tag.

Table C-2 Attributes of the @wlws:operation source2wsdd Tag

Attribute Name Description Default Value if Attribute is
Not Specified

Handler-chain Name of the SOAP message handler chain that, together
with the method, implements the operation.

The name of this attribute corresponds to the name
attribute of the appropriate <handler-chain> element
in the file that contains the SOAP handler chain
information. You must write this file manually and
specify its location with the handlerInfo attribute of
the source2wsdd Ant task.

If you do not specify this
attribute, no handler-chain
information is added to the
<operation> element in
the web-services.xml
file.

@wlws :par t pa r tname

Programming WebLogic Web Services C-7

@wlws:part partname
The source2wsdd Ant task uses the @wlws:part tag to populate the corresponding <param> and
<return-param> elements that describe the parameters and return values for the operation in the
generated web-services.xml file.

Every public method of the Java class or EJB that implements a Web Service is exposed as an
operation in the generated WSDL. The source2wsdd Ant task uses information from the method
signature to determine basic information about the parameters and return value of the operation.
If, however, you want to change some of this default information, specify the @wlws:part tag in
the Javadoc of the method. In particular, use the attributes of the tag when you want:

The name of the parameters and return values in the generated WSDL to be different from
those of the method that implements the operation.

To map a parameter to a name in the SOAP header request or response.

To use out or in-out parameters.

To explicitly specify the XML and Java represenation of the data type of the paramter or
return value.

Use the @wlws:part tag in the Javadoc of the method that implements the operation. Specify
the name of the parameter right after the tag and before the attributes, as shown:

invocation-style Specifies whether the operation both receives a SOAP
request and sends a SOAP response (request-response), or
whether the operation only receives a SOAP request but
does not send back a SOAP response (one-way).

Valid values are request-response and one-way.

Note: If the back-end component that implements this
operation is a method of a stateless session EJB
or Java class and you set this attribute to
one-way, the method must return void.

Default value is
request-response.

Name The name of the operation. This is the name that is
published in the WSDL of the Web Service.

The name of the method in
the Java source file.

Table C-2 Attributes of the @wlws:operation source2wsdd Tag

Attribute Name Description Default Value if Attribute is
Not Specified

source2wsdd Tag Refe rence

C-8 Programming WebLogic Web Services

@wlws:part paramName attribute="value"

To specify the return value, use the hard-coded word return, as shown:

@wlws:part return attribute="value"

The following example shows how to use the @wlws:part tag in the Javadoc that documents a
method:

/**

 * operation with headers

 *

 * @wlws:part addressInHeader location="header"

 * @wlws:part dataInHeader location="header"

 *

 * @wlws:part return location="body"

 */

 public BaseData methodWithHeaders(String addressInHeader,

 int idInBody, BaseData dataInHeader){

 dataInHeader.setAddress(addressInHeader);

 dataInHeader.setId(idInBody);

 return dataInHeader;

 }

In the example, when a client application invokes the methodWithHeaders operation, the
addressInHeader and dataInHeader input parameters are located in the header of the SOAP
request. When WebLogic Server responds to the invocation of the operation, the return value is
located in the body of the SOAP response.

The following table lists all the attributes of the @wlws:part tag.

@wlws :par t pa r tname

Programming WebLogic Web Services C-9

Table C-3 Attributes of the @wlws:part source2wsdd Tag

Attribute Name Description Default Value if Attribute is Not
Specified

class-name Java class name of the Java representation of the
data type of the inpur or return parameter.

The data type of the parameter or
return value of the operation.

Note: If the mapping between the
XML and Java
representations of the
parameter or return value is
ambiguous (such as
xsd:int mapping to either
the int Java primitive or
java.lang.Integer),
and you do not specify this
attribute, WebLogic Server
makes its best as to which
mapping is correct.

source2wsdd Tag Refe rence

C-10 Programming WebLogic Web Services

location Part of the request or response SOAP message
(header, body, or attachment) that contains the
value of the input or return parameter.

Valid values for this attribute are Body,
Header, or attachment.

If you specify Body, the value of the input or
return parameter is contained in the SOAP Body
(of either the request or response, depending on
whether the parameter is input or return). If you
specify Header, the value contained in a SOAP
Header element whose name is the value of the
type attribute.

If you specify attachment, the value of the
parameter is contained in the SOAP Attachment
rather than the SOAP envelope. As specified by
the JAX-RPC specification, only the following
Java data types can be contained in the SOAP
Attachment:
• java.awt.Image

• java.lang.String

• javax.mail.internet.MimeMultipo
rt

• javax.xml.transform.Source

• javax.activation.DataHandler

The default value is Body.

name The name of the parameter. This is the name
that is published in the WSDL of the Web
Service in the <part> element.

For input parameters, the default
value is the name of the parameter in
the method’s signature.

The default value of the return
parameter is results.

Table C-3 Attributes of the @wlws:part source2wsdd Tag

Attribute Name Description Default Value if Attribute is Not
Specified

@wlws:exc lude

Programming WebLogic Web Services C-11

@wlws:exclude
The source2wsdd Ant task uses the @wlws:exclude tag to exclude public methods of the Java
source file from the list of generated Web Service operations.

By default, every public method of the Java class or EJB that implements a Web Service is
exposed as an operation in the generated WSDL. If you do not want to expose a public method,
you must explicitly add the @wlws:exclude tag to the method’s Javadoc.

The following example shows how to use the @wlws:exclude tag:

style Style of the input parameter: either a standard
input parameter, an out parameter used as a
return value, or an in-out parameter for both
inputting and outputting values.

Valid values for this attribute are in, out, and
inout.

If you specify a parameter as out or inout, the
Java class of the parameter in the back-end
component’s method must implement the
javax.xml.rpc.holders.Holder
interface.

The default value is in.

type XML Schema data type of the parameter.

If you specify this attribute of the @wlws:part
tag, you must also specify a types.xml file
using the typesInfo attribute of the
source2wsdd Ant task. You must also ensure
that the XML Schema data type you specify for
this tag exists in the types.xml file, and that
the two element names match exactly. If the
source2wsdd Ant task does not find the name
of this XML Schema data type in the
types.xml file, the Ant task generates its own
data type mapping information, which could
lead to incorrect behavior of your Web Service.

If you do not specify this attribute, the
XML data type is based on the Java
data type of the parameter.

Table C-3 Attributes of the @wlws:part source2wsdd Tag

Attribute Name Description Default Value if Attribute is Not
Specified

source2wsdd Tag Refe rence

C-12 Programming WebLogic Web Services

 /**

 * A public method that is not exposed as a Web Service operation.

 *

 * @wlws:exclude

 */

 public void dontExposeThisMethod(){

 }

In the example, the source2wsdd will not add the public method dontExposeThisMethod() to
the list of Web Service operations in the generated webservices.xml file, and thus it will also
not appear in the generated WSDL file.

The @wlws:exclude tag does not have any attributes.

Programming WebLogic Web Services D-1

A P P E N D I X D

Customizing WebLogic Web Services

The following sections describe how to customize your WebLogic Web Service by updating the
Web application deployment descriptor files of your Web Service WAR file:

“Publishing a Static WSDL File” on page D-1

“Creating a Custom WebLogic Web Service Home Page” on page D-2

“Configuring Basic Microsoft MIME Types in the Generated web.xml” on page D-3

Publishing a Static WSDL File
By default, WebLogic Server dynamically generates the WSDL of a WebLogic Web Service,
based on the contents of its web-services.xml deployment descriptor file. See “WebLogic
Web Services Home Page and WSDL URLs” on page 6-23 for details on getting the URL of the
dynamically generated WSDL.

You can, however, include a static version of the WSDL file in the Web Services EAR file and
publish its URL as the public description of your Web Service. One reason for publishing a static
WSDL is to be able to add more custom documentation than what the dynamically generated
WSDL contains.

Warning: If you publish a static WSDL as the public description of your Web Service, you
must always ensure that it remains up to date with the actual Web Service. In other
words, if you change your Web Service, you must also manually change the static
WSDL to reflect the changes you made to your Web Service. One advantage of
using the dynamic WebLogic-generated WSDL is that it is always up to date.

Customiz ing WebLog ic Web Serv i ces

D-2 Programming WebLogic Web Services

To include a static WSDL file in your Web Services EAR file and publish it, rather than the
dynamically generated WSDL, to the Web, follow these steps:

1. Un-JAR the WebLogic Web Services EAR file and then the WAR file that contains the
web-services.xml file.

2. Put the static WSDL file in a directory of the exploded Web application. This procedure
assumes you put the file at the top-level directory.

3. Update the web.xml file of the Web application, adding a <mime-mapping> element to
map the extension of your WSDL file to an XML mime type.

For example, if the name of your static WSDL file is myService.wsdl, the corresponding
entry in the web.xml file is as follows:

 <mime-mapping>
 <extension>wsdl</extension>
 <mime-type>text/xml</mime-type>
 </mime-mapping>

4. Re-JAR the Web Services WAR and EAR files.

5. Invoke the static WSDL file using the standard URL to invoke a static file in a Web
application.

For example, use the following URL to invoke the myService.wsdl file in a Web
application that has a context root of web_services:

http://host:port/web_services/myService.wsdl

Creating a Custom WebLogic Web Service Home Page
Every WebLogic Web Service has a default Home Page that contains links to view the WSDL of
the Web Service, test the service, download the client JAR file, and view the SOAP requests and
responses of a client application invoking the Web Service. See “WebLogic Web Services Home
Page and WSDL URLs” on page 6-23 for details.

WebLogic Server dynamically generates the Web Services Home page and thus it cannot be
customized. If you want to create your own custom Home Page, add an HTML or JSP file to the
Web Services WAR file. For more information on creating JSPs, see Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs81/jsp/index.html.

http://e-docs.bea.com/wls/docs81/jsp/index.html
http://e-docs.bea.com/wls/docs81/jsp/index.html

Conf igur ing Bas ic Mic rosof t MIME Types in the Generated web . xml

Programming WebLogic Web Services D-3

Configuring Basic Microsoft MIME Types in the Generated
web.xml

The generated web.xml file in the generated WAR file of your Web Service does not contain
information about how to map the file extensions of basic Microsoft applications (such as
Microsoft Word and Excel) to MIME types. If you want your Web Application to understand
these applications, follow these steps:

1. Update the web.xml file of the Web application, adding a <mime-mapping> element to map
the extensions of Microsoft Word applications to their appropriate MIME type.

For example:

<mime-mapping>
 <extension>xls</extension>
 <mime-type>application/vnd.ms-excel</mime-type>
 <extension>mdb</extension>
 <mime-type>application/vnd.ms-access</mime-type>
 <extension>mpp</extension>
 <mime-type>application/vnd.ms-project</mime-type>
 <extension>doc</extension>
 <mime-type>application/msword</mime-type>
 <extension>xls</extension>
 <mime-type>application/ms-excel</mime-type>
 <extension>ppt</extension>
 <mime-type>application/ms-powerpoint</mime-type>
</mime-mapping>

2. Re-JAR the Web Services WAR and EAR files.

Customiz ing WebLog ic Web Serv i ces

D-4 Programming WebLogic Web Services

Programming WebLogic Web Services E-1

A P P E N D I X E

Assembling a WebLogic Web Service
Manually

The following sections provide information about assembling a WebLogic Web Service
manually:

“Overview of Assembling a WebLogic Web Service Manually” on page E-1

“Assembling a WebLogic Web Service Manually: Main Steps” on page E-2

“Understanding the web-services.xml File” on page E-2

“Creating the web-services.xml File Manually: Main Steps” on page E-3

“Examining Different Types of web-services.xml Files” on page E-9

Overview of Assembling a WebLogic Web Service Manually
Assembling a WebLogic Web Service refers to gathering all the components of the service (such
as the EJB JAR file, the SOAP message handler classes, and so on), generating the
web-services.xml deployment descriptor file, and packaging everything into an Enterprise
Application EAR file that can be deployed on WebLogic Server.

Typically you never assemble a WebLogic Web Service manually, because the procedure is
complex and time-consuming. Rather, use the WebLogic Ant tasks such as servicegen,
autotype, source2wsdd, and so on to automatically generate all the needed components and
package them into a deployable EAR file.

If, however, your Web Service is so complex that the Ant tasks are not able to generate the needed
components, or you want full control over all aspects of the Web Service assembly, then use this
chapter as a guide to assembling the Web Service manually.

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-2 Programming WebLogic Web Services

Assembling a WebLogic Web Service Manually: Main Steps
1. Package or compile the back-end components that implement the Web Service into their

respective packages. For example, package stateless session EJBs into an EJB JAR file and
Java classes into class files.

For detailed instructions, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/environment.html.

2. Create the Web Service deployment descriptor file (web-services.xml).

For a description of the web-services.xml file, see “Understanding the web-services.xml
File” on page E-2. For detailed steps for creating the file manually, see “Creating the
web-services.xml File Manually: Main Steps” on page E-3.

3. If your Web Service uses non-built-in data types, create all the needed components, such as
the serialization class.

For detailed information on creating these components manually, see Chapter 11, “Using
Non-Built-In Data Types.”

4. Package all components into a deployable EAR file.

When packaging the EAR file manually, be sure to put the correct Web Service
components into a Web application WAR file. For details about the WAR and EAR file
hierarchy, see “The Web Service EAR File Package” on page 6-17. For instructions, see
Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/environment.html.

Understanding the web-services.xml File
The web-services.xml deployment descriptor file contains information that describes one or
more WebLogic Web Services, such as the back-end components that implement the Web
Service; the non-built-in data types used as parameters and return values; the SOAP message
handlers that intercept SOAP messages; and so on. As is true for all deployment descriptors,
web-services.xml is an XML file.

Based on the contents of the web-services.xml deployment descriptor file, WebLogic Server
dynamically generates the WSDL of a deployed WebLogic Web Service. See “WebLogic Web
Services Home Page and WSDL URLs” on page 6-23 for details on getting the URL of the
dynamically generated WSDL.

http://e-docs.bea.com/wls/docs81/programming/environment.html
http://e-docs.bea.com/wls/docs81/programming/environment.html

Creat ing the web-se rv i ces . xml F i l e Manual l y : Ma in S teps

Programming WebLogic Web Services E-3

A single WebLogic Web Service consists of one or more operations; you can implement each
operation using methods of different back-end components and SOAP message handlers. For
example, an operation might be implemented with a single method of a stateless session EJB or
with a combination of SOAP message handlers and a method of a stateless session EJB.

A single web-services.xml file contains a description of at least one, and maybe more,
WebLogic Web Services.

If you are assembling a Web Service manually (necessary, for example, is the service uses SOAP
message handlers and handler chains), you need to create the web-services.xml file manually.
If you assemble a WebLogic Web Service with the servicegen Ant task, you do not need to
create the web-services.xml file manually, because the Ant task generates one for you based
on its introspection of the EJBs, the attributes of the Ant task, and so on.

Even if you need to manually assemble a Web Service, you can use the servicegen Ant task to
create a basic template, and then use this document to help you update the generated
web-services.xml with the extra information that servicegen does not provide.

Creating the web-services.xml File Manually: Main Steps
The web-services.xml deployment descriptor file describes one or more WebLogic Web
Service. The file includes information about the operations that make up the Web Services, the
back-end components that implement the operations, data type mapping information about
non-built-in data types used as parameters and return values of the operations, and so on. See
“Examining Different Types of web-services.xml Files” on page E-9 for complete examples of
web-services.xml files that describe different kinds of WebLogic Web Services. You can use
any text editor to create the web-services.xml file.

For detailed descriptions of each element described in this section, see Appendix A, “WebLogic
Web Service Deployment Descriptor Elements.”

The following example shows a simple web-services.xml file; the procedure following the
example describes the main steps to create the file.

<web-services>
 <web-service name="stockquotes" targetNamespace="http://example.com"
 uri="/myStockQuoteService">
 <components>
 <stateless-ejb name="simpleStockQuoteBean">
 <ejb-link path="stockquoteapp.jar#StockQuoteBean" />
 </stateless-ejb>
 </components>
 <operations>
 <operation method="getLastTradePrice"

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-4 Programming WebLogic Web Services

 component="simpleStockQuoteBean" />
 </operations>
 </web-service>
</web-services>

To create the preceding web-services.xml file manually:

1. Create the root <web-services> element which contains all other elements:

<web-services>
...
</web-services>

2. If one or more of your Web Services include SOAP message handlers to intercept SOAP
messages, create a <handler-chains> child element of the <web-services> root element
and include all the relevant child elements to describe the handlers in the handler chain, the
order in which they should be invoked, and so on. For details, see “Updating the
web-services.xml File with SOAP Message Handler Information” on page 12-19.

3. For each Web Service you want to define, follow these steps:

a. Create a <web-service> child element of the <web-services> element. Use the name,
targetNamespace, and uri attributes to specify the name of the Web Service, its target
namespace, and the URI that clients will use to invoke the Web Service, as shown in the
following example:

<web-service name="stockquote"
 targetNamespace="http://example.com"
 uri="myStockQuoteService">
...
</web-service>

To specify that the operations in your Web Service are all document-oriented, use the
style="document" attribute. The default value of the style attribute is rpc, which
means the operations are all RPC-oriented.

b. Create a <components> child element of the <web-service> element that lists the
back-end components that implement the operations of the Web Service. For details, see
“Creating the <components> Element” on page E-5.

c. If the operations in your Web Service use non-built-in data types as parameters or return
values, add data type mapping information by creating <types> and <type-mapping>
child elements of the <web-service> element. For details, see “Creating the Data Type
Mapping File” on page 11-10.

Creat ing the web-se rv i ces . xml F i l e Manual l y : Ma in S teps

Programming WebLogic Web Services E-5

Note: You do not have to perform this step if the operations of your Web Service use
only built-in data types as parameters or return values. See “Supported Built-In
Data Types” on page 5-15 for a list of the supported built-in data types.

d. Create an <operations> child element of the <web-service> element that lists the
operations that make up the Web Service:

<operations xmlns:xsd="http://www.w3.org/2001/XMLSchema">
....
</operations>

e. Within the <operations> element, list the operations defined for the Web Service. For
details, see “Creating <operation> Elements” on page E-6.

Creating the <components> Element
Use the <components> child element of the <web-service> element to list and describe the
back-end components that implement the operations of a Web Service. Each back-end
component has a name attribute that you later use when describing the operation that the
component implements.

Note: If you are creating a SOAP message handler-only type of Web Service in which handlers
and handler chains do all the work and never execute a back-end component, you do not
specify a <components> element in the web-services.xml file. For all other types of
Web Services you must declare a <components> element.

You can list one of the following types of back-end components:

<stateless-ejb>

This element describes a stateless EJB back-end component. Use either the <ejb-link>
child element to specify the name of the EJB and the JAR file where it is located or the
<jndi-name> child element to specify the JNDI name of the EJB, as shown in the
following example:

<components>
 <stateless-ejb name="simpleStockQuoteBean">
 <ejb-link path="stockquoteapp.jar#StockQuoteBean" />
 </stateless-ejb>
</components>

<java-class>

This element describes a Java class back-end component. Use the class-name attribute to
specify the fully qualified path name of the Java class, as shown in the following example:

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-6 Programming WebLogic Web Services

<components>
 <java-class name="customClass"
 class-name="myclasses.MyOwnClass" />
</components>

Creating <operation> Elements
The <operation> element describes how the public operations of a WebLogic Web Service are
implemented. (The public operations are those that are listed in the Web Service’s WSDL and are
executed by a client application that invokes the Web Service.) The following example shows an
<operation> declaration:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote">
 <params>
 <param name="in1" style="in" type="xsd:string" location="Header"/>
 <param name="in2" style="in" type="xsd:int" location="Header"/>
 <return-param name="result" type="xsd:string" location="Header"/>
 </params>
</operation>

Typically, every instance of an <operation> element in the web-services.xml file includes
the name attribute which translates into the public name of the Web Service operation. The only
exception is when you use the method="*" attribute to specify all methods of an EJB or Java
class in a single <operation> element; in this case, the public name of the operation is the name
of the method.

Use the attributes of the <operation> element in combination to specify different kinds of
operations. For details, see “Specifying the Type of Operation” on page E-6.

Use the <params> element to optionally group together the parameters and return value of the
operation. For details, see “Specifying the Parameters and Return Value of the Operation” on
page E-8.

Specifying the Type of Operation
Use the attributes of the <operation> element in different combination to identify the type of
operation, the type of component that implements it, whether it is a one-way operation, and so on.

Note: For clarity, the examples in this section do not declare any parameters.

The following examples show how to declare a variety of different operations:

Creat ing the web-se rv i ces . xml F i l e Manual l y : Ma in S teps

Programming WebLogic Web Services E-7

To specify that an operation is implemented with just a method of a stateless session EJB,
use the name, component, and method attributes, as shown in the following example:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote">
</operation>

To specify with a single <operation> element that you want to include all the methods of
an EJB or Java class, use the method="*" attribute; in this case, the public name of the
operation is the name of the method:

<operation component="simpleStockQuoteBean"
 method="*">
</operation>

To specify that an operation only receives data and does not return anything to the client
application, add the invocation-style attribute:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote(java.lang.String)"
 invocation-style="one-way">
</operation>

The example also shows how to specify the full signature of a method with the method
attribute. You only need to specify the full signature of a method if your EJB or Java class
overloads the method and you thus need to unambiguously declare which method you are
exposing as a Web Service operation.

To specify that an operation is implemented with a SOAP message handler chain and a
method of a stateless session EJB, use the name, component, method, and
handler-chain attributes:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote"
 handler-chain="myHandler">
</operation>

To specify that an operation is implemented with just a SOAP message handler chain, use
just the name and handler-chain attributes:

<operation name="justHandler"
 handler-chain="myHandler">

</operation>

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-8 Programming WebLogic Web Services

Specifying the Parameters and Return Value of the Operation
Use the <params> element to explicitly declare the parameters and return values of the operation.

You do not have to explicitly list the parameters or return values of an operation. If an
<operation> element does not have a <params> child element, WebLogic Server introspects
the back-end component that implements the operation to determine its parameters and return
values. When generating the WSDL of the Web Service, WebLogic Server uses the names of the
corresponding method’s parameters and return value.

You explicitly list an operation’s parameters and return values when you need to:

Make the name of the parameters and return values in the generated WSDL different from
those of the method that implements the operation.

Map a parameter to a name in the SOAP header request or response.

Use out or in-out parameters.

Use the <param> child element of the <params> element to specify a single input parameter and
the <return-param> child element to specify the return value. You must list the input
parameters in the same order in which they are defined in the method that implements the
operation. The number of <param> elements must match the number of parameters of the
method. You can specify only one <return-param> element.

Use the attributes of the <param> and <return-param> elements to specify the part of the SOAP
message where parameter is located (the body or header), the type of the parameter (in, out, or
in-out), and so on. You must always specify the XML Schema data type of the parameter using
the type attribute. The following examples show a variety of input and return parameters.

To specify that a parameter is a standard input parameter, located in the header of the
request SOAP message, use the style and location attributes as shown:

<param name="inparam" style="in"
 location = "Header" type="xsd:string" />

Out and in-out parameters enable an operation to return more than one return value (in
addition to using the standard <return-value> element.) The following sample <param>
element shows how to specify that a parameter is an in-out parameter, which means that it
acts as both an input and output parameter:

<param name="inoutparam" style="inout"
 type="xsd:int" />

Because the default value of the location attribute is Body, both the input and output
parameter values are found in the body of the SOAP message.

Examin ing D i f fe rent Types o f web-serv ices . xml F i l es

Programming WebLogic Web Services E-9

The following example shows how to specify a standard return value located in the header
of the response SOAP message:

 <return-param name="result" location="Header"
 type="xsd:string" />

Optionally use the <fault> child element of the <params> element to specify your own Java
exception that is thrown if there is an error while invoking the operation. This exception will be
thrown in addition to the java.rmi.RemoteException exception. For example:

<fault name="MyServiceException"

 class-name="my.exceptions.MyServiceException" />

Examining Different Types of web-services.xml Files
The following sections provide examples of web-services.xml files for various types of
WebLogic Web Services:

EJB Component Web Service with Built-In Data Types

EJB Component Web Service with Non-Built-In Data Types

EJB Component and SOAP Message Handler Chain Web Service

SOAP Message Handler Chain Web Service

EJB Component Web Service with Built-In Data Types
One kind of WebLogic Web Service is implemented using a stateless session EJB whose
parameters and return values are one of the built-in data types. The following Java interface is an
example of such an EJB:

public interface SimpleStockQuoteService extends javax.ejb.EJBObject {
 public float getLastTradePrice(String ticker) throws java.rmi.RemoteException;
}

The following example shows a possible web-services.xml deployment descriptor for a Web
Service implemented with this sample EJB:

<web-services>
 <web-service name="stockquotes" targetNamespace="http://example.com"
 uri="/myStockQuoteService">
 <components>
 <stateless-ejb name="simpleStockQuoteBean">
 <ejb-link path="stockquoteapp.jar#StockQuoteBean" />
 </stateless-ejb>

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-10 Programming WebLogic Web Services

 </components>
 <operations>
 <operation method="getLastTradePrice"
 component="simpleStockQuoteBean" />
 </operations>
 </web-service>
</web-services>

The example shows a Web Service called stockquotes. The Web Service is implemented with
a stateless session EJB whose <ejb-name> in the ejb-jar.xml file is StockQuoteBean and is
packaged in the EJB JAR file called stockquoteapp.jar. The internal name of this component
is simpleStockQuoteBean. The Web Service has one operation, called getLastTradePrice,
the same as the EJB method name. The input and output parameters are inferred from the method
signature and thus do not need to be explicitly specified in the web-services.xml file.

Note: The servicegen Ant task does not include the methods of EJBObject when generating
the list of operations in the web-services.xml file.

The previous example shows how to explicitly list an operation of a Web Service. You can,
however, implicitly expose all the public methods of an EJB by including just one <operation
method="*"> element, as shown in the following example:

<operations>

 <operation method="*"

 component="simpleStockQuoteBean" />

</operations>

If your Web Service supports only HTTPS, then use the protocol attribute of the
<web-service> element, as shown in the following example:

<web-service name="stockquotes"

 targetNamespace="http://example.com"

 uri="/myStockQuoteService"

 protocol="https" >

...

</web-service>

EJB Component Web Service with Non-Built-In Data Types
A more complex type of Web Service is one whose operations take non-built-in data types as
parameters or return values. Because these non-built-in data types do not directly map to a
XML/SOAP data type, you must describe the data type in the web-services.xml file.

Examin ing D i f fe rent Types o f web-serv ices . xml F i l es

Programming WebLogic Web Services E-11

For example, the following interface describes an EJB whose two methods return a TradeResult
object:

public interface Trader extends EJBObject {

 public TradeResult buy (String stockSymbol, int shares)

 throws RemoteException;

 public TradeResult sell (String stockSymbol, int shares)

 throws RemoteException;

}

The TradeResult class looks like the following:

public class TradeResult implements Serializable {

 private int numberTraded;

 private String stockSymbol;

 public TradeResult() {}

 public TradeResult(int nt, String ss) {

 numberTraded = nt;

 stockSymbol = ss;

 }

 public int getNumberTraded() { return numberTraded; }

 public void setNumberTraded(int numberTraded) {

 this.numberTraded = numberTraded; }

 public String getStockSymbol() { return stockSymbol; }

 public void setStockSymbol(String stockSymbol) {

 this.stockSymbol = stockSymbol; }

}

The following web-services.xml file describes a Web Service implemented with this EJB:

<web-services>

 <web-service name="TraderService"
 uri="/TraderService"
 targetNamespace="http://www.bea.com/examples/Trader">

 <types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:stns="java:examples.webservices"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-12 Programming WebLogic Web Services

 targetNamespace="java:examples.webservices">
 <xsd:complexType name="TradeResult">
 <xsd:sequence><xsd:element maxOccurs="1" name="stockSymbol"
 type="xsd:string" minOccurs="1">
 </xsd:element>
 <xsd:element maxOccurs="1" name="numberTraded"
 type="xsd:int" minOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>

 <type-mapping>
 <type-mapping-entry
 deserializer="examples.webservices.TradeResultCodec"
 serializer="examples.webservices.TradeResultCodec"
 class-name="examples.webservices.TradeResult"
 xmlns:p1="java:examples.webservices"
 type="p1:TradeResult" >
 </type-mapping-entry>
 </type-mapping>

 <components>
 <stateless-ejb name="ejbcomp">
 <ejb-link path="trader.jar#TraderService" />
 </stateless-ejb>
 </components>

 <operations>
 <operation method="*" component="ejbcomp">
 </operation>
 </operations>

 </web-service>

</web-services>

In the example, the <types> element uses XML Schema notation to describe the XML
representation of the TradeResult data type. The <type-mapping> element contains an entry
for each data type described in the <types> element (in this case there is just one:
TradeResult.) The <type-mapping-entry> lists the serialization class that converts the data
between XML and Java, as well as the Java class file used to create the Java object.

Examin ing D i f fe rent Types o f web-serv ices . xml F i l es

Programming WebLogic Web Services E-13

EJB Component and SOAP Message Handler Chain Web
Service
Another type of Web Service is implemented with both a stateless session EJB back-end
component and a SOAP message handler chain that intercepts the request and response SOAP
message. The following sample web-services.xml file describes such a Web Service:

<web-services>
 <handler-chains>
 <handler-chain name="submitOrderCrypto">
 <handler class-name="com.example.security.EncryptDecrypt">
 <init-params>
 <init-param name="elementToDecrypt" value="credit-info" />
 <init-param name="elementToEncrypt" value="order-number" />
 </init-params>
 </handler>
 </handler-chain>
 </handler-chains>

 <web-service targetNamespace="http://example.com" name="myorderproc"
 uri="myOrderProcessingService">
 <components>
 <stateless-ejb name="orderbean">
 <ejb-link path="myEJB.jar#OrderBean" />
 </stateless-ejb>
 </components>
 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <operation name="submitOrder" method="submit"
 component="orderbean"
 handler-chain="submitOrderCrypto" >
 <params>
 <param name="purchase-order" style="in" type="xsd:anyType" />
 <return-param name="order-number" type="xsd:string" />
 </params>
 </operation>
 </operations>
 </web-service>
</web-services>

The example shows a Web Service that includes a SOAP message handler-chain called
submitOrderCrypto used for decrypting and encrypting information in the SOAP request and
response messages. The handler chain includes one handler, implemented with the
com.example.security.EncryptDecrypt Java class. The handler takes two initialization
parameters that specify the elements in the SOAP message that need to be decrypted and
encrypted.

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-14 Programming WebLogic Web Services

The Web Service defines one stateless session EJB back-end component called orderbean.

The submitOrder operation shows how to combine a handler-chain with a back-endback-end
component by specifying the method, component, and handler-chain attributes in
combination. When a client application invokes the submitOrder operation, the
submitOrderCrypto handler chain first processes the SOAP request, decrypting the credit card
information. The handler chain then invokes the submit() method of the orderbean EJB,
passing it the modified parameters from the SOAP message, including the purchase-order
input parameter. The submit() method then returns an order-number, which is encrypted by
the handler chain, and the handler chain finally sends a SOAP response with the encrypted
information to the client application that originally invoked the submitOrder operation.

SOAP Message Handler Chain Web Service
You can also implement a WebLogic Web Service with just a SOAP message handler chain and
never invoke a back-end component. This type of Web Service might be useful, for example, as
a front end to an existing workflow processing system. The handler chain simply takes the SOAP
message request and hands it over to the workflow system, which performs all the further
processing.

The following sample web-services.xml file describes such a Web Service:

<web-services>
 <handler-chains>
 <handler-chain name="enterWorkflowChain">
 <handler class-name="com.example.WorkFlowEntry">
 <init-params>
 <init-param name="workflow-eng-jndi-name"
 value="workflow.entry" />
 </init-params>
 </handler>
 </handler-chain>
 </handler-chains>

 <web-service targetNamespace="http://example.com"
 name="myworkflow" uri="myWorkflowService">
 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <operation name="enterWorkflow"
 handler-chain="enterWorkflowChain"
 invocation-style="one-way" />
 </operations>
 </web-service>
</web-services>

Examin ing D i f fe rent Types o f web-serv ices . xml F i l es

Programming WebLogic Web Services E-15

The example shows a Web Service that includes one SOAP message handler chain, called
enterWorkflowChain. This handler chain has one handler, implemented with the Java class
com.example.WorkFlowEntry, that takes as an initialization parameter the JNDI name of the
existing workflow system.

The Web Service defines one operation called enterWorkflow. When a client application
invokes this operation, the enterWorkflowChain handler chain takes the SOAP message
request and passes it to the workflow system running on WebLogic Server whose JNDI name is
workflow.entry. The operation is defined as asynchronous one-way, which means that the
client application does not receive a SOAP response.

Note that because the enterWorkflow operation does not specify the method and component
attributes, no back-end component is ever invoked directly by the Web Service. This also means
that the web-services.xml file does not need to specify a <components> element.

Assembl ing a WebLog ic Web Se rv i ce Manual l y

E-16 Programming WebLogic Web Services

	Programming WebLogic Web Services
	Copyright
	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	Introduction to WebLogic Web Services
	Overview of Web Services
	Why Use Web Services?
	Web Service Standards
	BEA Implementation of Web Service Specifications
	SOAP
	WSDL 1.1
	JAX-RPC 1.0
	Web Services Security (WS-Security)
	UDDI 2.0
	Additional Specifications Supported by WebLogic Web Services

	WebLogic Web Service Features
	Unsupported Features
	Examples of Creating and Invoking a Web Service
	Creating WebLogic Web Services: Main Steps
	Roadmap to Common Tasks for Creating Web Services
	Editing XML Files

	Architectural Overview
	Overview of WebLogic Web Services Architecture
	Back-end Component Operation
	Back-end Component and SOAP Message Handler Chain Operation
	SOAP Message Handler Chain Operation

	Creating a WebLogic Web Service: A Simple Example
	Overview of the Web Service Example
	Building and Running the Trader WebLogic Web Service Example
	Anatomy of the Example
	The EJB Java Interfaces and Implementation Class
	Remote Interface (Trader.java)
	Session Bean Implementation Class (TraderBean.java)
	Home Interface (TraderHome.java)

	The Non-Built-In Data Type TraderResult
	The EJB Deployment Descriptors
	ejb-jar.xml
	weblogic-ejb-jar.xml

	The servicegen Ant Task That Assembles the Web Service
	The Client Application to Invoke The Web Service

	Designing WebLogic Web Services
	Choosing the Back-end Components of Your Web Service
	EJB Back-end Component
	Java Class Back-end Component

	Choosing Between Synchronous or Asynchronous Operations
	Choosing RPC-Oriented or Document-Oriented Web Services
	Using Built-In and Non-Built-In Data Types
	Using SOAP Message Handlers to Intercept the SOAP Message
	Mimicking a Conversational (Stateful) WebLogic Web Service

	Implementing WebLogic Web Services
	Overview of Implementing a WebLogic Web Service
	Examples of Implementing WebLogic Web Services
	Implementing a WebLogic Web Service: Main Steps
	Writing the Java Code for the Components
	Implementing a Web Service By Writing a Stateless Session EJB
	Implementing a Web Service By Writing a Java Class
	Implementing Non-Built-In Data Types
	Implementing a Document-Oriented Web Service
	Generating a Partial Implementation From a WSDL File
	Running the wsdl2Service Ant Task
	Sample build.xml Files for the wsdl2Service Ant Task

	Using SOAP Attachments
	java.lang.String
	javax.activation.DataHandler

	Implementing Multiple Return Values
	Using Out and In-Out Parameters
	Using Holder Classes to Implement Multiple Return Values

	Throwing SOAP Fault Exceptions

	Supported Built-In Data Types
	XML Schema-to-Java Mapping for Built-In Data Types
	Java-to-XML Mapping for Built-In Data Types

	Assembling WebLogic Web Services Using Ant Tasks
	Overview of Assembling WebLogic Web Services Using Ant Tasks
	Examples of Assembling WebLogic Web Services
	Assembling WebLogic Web Services Using the servicegen Ant Task
	What the servicegen Ant Task Does
	Assembling WebLogic Web Services Automatically: Main Steps
	Creating the Build File That Specifies the servicegen Ant Task

	Assembling WebLogic Web Services Using Individual Ant Tasks
	Assembling a Web Service Starting with Java
	Assembling a Web Service Starting with an XML Schema
	Running the source2wsdd Ant Task
	Running the autotype Ant Task
	Running the clientgen Ant Task
	Running the wspackage Ant task

	The Web Service EAR File Package
	Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks
	Supported XML Non-Built-In Data Types
	Supported Java Non-Built-In Data Types
	Data Type Non-Compliance with JAX-RPC

	Non-Roundtripping of Generated Data Type Components
	Deploying and Testing WebLogic Web Services
	WebLogic Web Services Home Page and WSDL URLs
	Denying Access to the WSDL and Home Page of a WebLogic Web Service

	Invoking Web Services from Client Applications and WebLogic Server
	Overview of Invoking Web Services
	JAX-RPC API 1.0
	The Runtime Client JAR Files
	Examples of Clients That Invoke Web Services

	Creating Java Client Applications to Invoke Web Services: Main Steps
	Generating the Client JAR File by Running the clientgen Ant Task
	Getting Information About a Web Service
	Writing the Java Client Application to Invoke a Web Service
	Writing a Simple Client Application
	Writing a Client That Uses Out or In-Out Parameters

	Writing an Asynchronous Client Application
	Description of the Generated Asynchronous Web Service Client Stub
	Writing the Asynchronous Client Java Code

	Using Web Services System Properties
	Invoking Web Services from WebLogic Server
	Creating and Using Portable Stubs
	Using the VersionMaker Utility to Update Client JAR Files

	Using a Proxy Server with the WebLogic Web Services Client
	Writing Advanced Java Client Applications
	Writing a Dynamic Client That Uses WSDL
	Writing a Dynamic Client That Does Not Use WSDL
	Writing a Dynamic Client That Uses Non-Built-In Data Types
	Writing a J2ME Client
	Writing a J2ME Client That Uses SSL

	Using the WebLogic Web Services APIs
	Overview of the WebLogic Web Service APIs
	Registering Data Type Mapping Information in a Dynamic Client
	Accessing HttpSession Information from a Web Service Component
	Introspecting the WSDL from a Client Application

	Using JMS Transport to Invoke a WebLogic Web Service
	Overview of Using JMS Transport
	Specifying JMS Transport for a WebLogic Web Service: Main Steps
	Updating the web-services.xml File to Specify JMS Transport
	Invoking a Web Service Using JMS Transport

	Using Reliable SOAP Messaging
	Overview of Reliable SOAP Messaging
	Reliable SOAP Messaging Architecture
	Receiver Transactional Context
	Guidelines For Programming the EJB That Implements a Reliable Web Service Operation
	Guidelines for Programming the Java Class That Implements a Reliable Web Service Operation
	Configuring the Transaction

	Limitations of Reliable SOAP Messaging

	Using Reliable SOAP Messaging: Main Steps
	Configuring the Sender WebLogic Server
	Configuring the Receiver WebLogic Server
	Writing the Java Code to Invoke an Operation Reliably
	Handling Sender Server Failures
	Updating the web-services.xml File Manually for Reliable SOAP Messaging

	Using Non-Built-In Data Types
	Overview of Using Non-Built-In Data Types
	Creating Non-Built-In Data Types Manually: Main Steps
	Writing the XML Schema Data Type Representation
	Writing the Java Data Type Representation
	Writing the Serialization Class
	Creating the Data Type Mapping File
	Updating the web-services.xml File With XML Schema Information

	Creating SOAP Message Handlers to Intercept the SOAP Message
	Overview of SOAP Message Handlers and Handler Chains
	Creating SOAP Message Handlers: Main Steps
	Designing the SOAP Message Handlers and Handler Chains
	Implementing the Handler Interface
	Implementing the Handler.init() Method
	Implementing the Handler.destroy() Method
	Implementing the Handler.getHeaders() Method
	Implementing the Handler.handleRequest() Method
	Implementing the Handler.handleResponse() Method
	Implementing the Handler.handleFault() Method
	Directly Manipulating the SOAP Request and Response Message Using SAAJ
	The SOAPPart Object
	The AttachmentPart Object
	Manipulating Image Attachments in a SOAP Message Handler

	Extending the GenericHandler Abstract Class
	Updating the web-services.xml File with SOAP Message Handler Information
	Using SOAP Message Handlers and Handler Chains in a Client Application
	Accessing the MessageContext of a Handler From the Backend Component

	Configuring Security
	Overview of Web Services Security
	What Type of Security Should You Configure?
	Configuring Message-Level Security (Digital Signatures and Encryption)
	Main Use Cases
	Unimplemented Features of the Web Services Security Core Specification
	Terminology
	Architectural Overview of Message-Level Security
	Configuring Message-Level Security: Main Steps
	Configuring The Identity Asserter Provider for the myrealm Security Realm
	Updating the servicegen build.xml File
	Updating Security Information in the web-services.xml File
	Encrypting Passwords in the web-services.xml File
	Updating a Java Client to Invoke a Data-Secured Web Service

	Configuring Transport-Level Security (SSL): Main Steps
	Implications of Using SSL With Web Services

	Configuring SSL for a Client Application
	Using the WebLogic Server-Provided SSL Implementation
	Configuring the WebLogic SSL Implementation Programatically
	Using SSL Socket Sharing When Using the WebLogic SSL Implementation

	Using a Third-Party SSL Implementation
	Extending the SSLAdapterFactory Class
	Configuring Two-Way SSL For a Client Application
	Using a Proxy Server

	Configuring Access Control Security: Main Steps
	Controlling Access to WebLogic Web Services
	Securing the Entire Web Service and Its Operations
	Securing the Web Service URL
	Securing the Stateless Session EJB and Its Methods
	Securing the WSDL and Home Page of the Web Service

	Specifying the HTTPS Protocol
	Coding a Client Application to Authenticate Itself to a Web Service

	Testing a Secure WebLogic Web Service From Its Home Page

	Internationalization
	Overview of Internationalization
	Internationalizing a WebLogic Web Service
	Specifying the Character Set for a WebLogic Web Service
	Updating the web-services.xml File
	Setting a WebLogic Server System Property

	Order of Precedence of Character Set Configuration Used By WebLogic Server

	Invoking a Web Service Using a Specific Character Set
	Setting the Character Set When Invoking a Web Service
	Character Set Settings in HTTP Request Headers Honored by WebLogic Web Services

	Using SOAP 1.2
	Overview of Using SOAP 1.2
	Specifying SOAP 1.2 for a WebLogic Web Service: Main Steps
	Updating the web-services.xml File Manually
	Invoking a Web Service Using SOAP 1.2

	Creating JMS-Implemented WebLogic Web Services
	Overview of JMS-Implemented WebLogic Web Services
	Designing JMS-Implemented WebLogic Web Services
	Retrieving and Processing Messages
	Example of Using JMS Components

	Creating JMS-Implemented WebLogic Web Services
	Configuring JMS Components for Message-Style Web Services
	Assembling JMS-Implemented WebLogic Web Services Using servicegen
	Assembling JMS-Implemented WebLogic Web Services Manually
	Packaging the JMS Message Consumers and Producers
	Updating the web-services.xml File With Component Information
	Sample web-services.xml File for JMS Component Web Service

	Deploying JMS-Implemented WebLogic Web Services
	Invoking JMS-Implemented WebLogic Web Services
	Invoking an Asynchronous Web Service Operation to Send Data
	Invoking a Synchronous Web Service Operation to Send Data

	Administering WebLogic Web Services
	Overview of Administering WebLogic Web Services
	Using the Administration Console to Administer Web Services

	Publishing and Finding Web Services Using UDDI
	Overview of UDDI
	UDDI and Web Services
	UDDI and Business Registry
	UDDI Data Structure

	WebLogic Server UDDI Features
	UDDI 2.0 Server
	Configuring the UDDI 2.0 Server
	Configuring an External LDAP Server
	51acumen.ldif File Contents

	Description of Properties in the uddi.properties File

	UDDI Directory Explorer
	UDDI Client API
	Pluggable tModel
	XML Elements and Permissible Values
	XML Schema for Pluggable tModels
	Sample XML for a Pluggable tModel

	Interoperability
	Overview of Interoperability
	Avoid Using Vendor-Specific Extensions
	Stay Current With the Latest Interoperability Tests
	Understand the Data Models of Your Applications
	Understand the Interoperability of Various Data Types
	Results of SOAPBuilders Interoperability Lab Round 3 Tests
	Interoperating With .NET

	Troubleshooting
	Using the Web Service Home Page to Test Your Web Service
	URL Used to Invoke the Web Service Home Page
	Testing the Web Service

	Viewing SOAP Messages
	Setting Verbose Mode with Ant
	Setting Verbose Mode Programatically

	Posting the HTTP SOAP Message
	Composing the SOAP Request

	Debugging Problems with WSDL
	Verifying a WSDL File
	Verifying an XML Schema
	Debugging Data Type Generation (Autotyping) Problems
	Common XML Schema Problems
	Common Java Problems

	Debugging Performance Problems
	Performance Hints
	Re-Resolving IP Addresses in the Event of a Failure
	BindingException When Running clientgen or autotype Ant Task
	Client Error When Using the WebLogic Web Service Client to Connect to a Third-Party SSL Server
	Client Error When Invoking Operation That Returns an Abstract Type
	Including Nillable, Optional, and Empty XML Elements in SOAP Messages
	SSLKeyException When Trying to Invoke a Web Service Using HTTPS
	Autotype Ant Task Not Generating Serialization Classes for All Specified Java Types
	Client Gets HTTP 401 Error When Invoking a Non-Secure Web Service
	Asynchronous Web Service Client Using JMS Transport Not Receiving Response Messages From WebLogic...
	Running autotype Ant Task on a Large WSDL File Returns java.lang.OutOfMemoryError
	Error When Trying to Log Onto the UDDI Explorer
	Data Type Non-Compliance with JAX-RPC

	Upgrading WebLogic Web Services
	Overview of Upgrading WebLogic Web Services
	Upgrading a 7.0 WebLogic Web Service to 8.1
	Upgrading a 6.1 WebLogic Web Service to 8.1
	Converting a 6.1 build.xml file to 8.1
	Updating the URL Used to Access the Web Service

	Using WebLogic Workshop With WebLogic Web Services
	Overview of WebLogic Workshop and WebLogic Web Services
	WebLogic Workshop and WebLogic Web Services
	EJBGen
	Using Meta-Data Tags When Creating EJBs and Web Services

	Using WebLogic Workshop To Create a WebLogic Web Service: A Simple Example
	Using WebLogic Workshop To Create a WebLogic Web Service: A More Complex Example
	Description of the Example
	Assumptions
	The Example
	Sample build.xml File
	Source Code for Supporting Java Objects
	Item.java
	PurchaseOrder.java
	PurchasingManagerBean.java
	PurchaseOrderFactory.java

	WebLogic Web Service Deployment Descriptor Elements
	Overview of web-services.xml
	Graphical Representation
	Element Reference
	clock-precision
	clocks-synchronized
	components
	ejb-link
	encryptionKey
	enforce-precision
	fault
	generate-signature-timestamp
	handler
	handler-chain
	handler-chains
	inbound-expiry
	init-param
	init-params
	java-class
	jms-receive-queue
	jms-send-destination
	jndi-name
	name
	operation
	operations
	outbound-expiry
	param
	params
	password
	reliable-delivery
	require-signature-timestamp
	return-param
	security
	signatureKey
	spec:BinarySecurityTokenSpec
	spec:ElementIdentifier
	spec:EncryptionSpec
	spec:SecuritySpec
	spec:SignatureSpec
	spec:UsernameTokenSpec
	stateless-ejb
	timestamp
	type-mapping
	type-mapping-entry
	types
	user
	web-service
	web-services

	Web Service Ant Tasks and Command-Line Utilities
	Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities
	List of Web Services Ant Tasks and Command-Line Utilities
	Using the Web Services Ant Tasks
	Differences in Operating System Case Sensitivity When Manipulating WSDL and XML Schema Files
	Setting the Classpath for the WebLogic Ant Tasks
	Using the Web Services Command-Line Utilities

	autotype
	clientgen
	servicegen
	servicegen
	service
	client
	handlerChain
	reliability
	security

	source2wsdd
	wsdl2Service
	wsdlgen
	wspackage

	source2wsdd Tag Reference
	Overview of Using source2wsdd Tags
	@wlws:webservice
	@wlws:operation
	@wlws:part partname
	@wlws:exclude

	Customizing WebLogic Web Services
	Publishing a Static WSDL File
	Creating a Custom WebLogic Web Service Home Page
	Configuring Basic Microsoft MIME Types in the Generated web.xml

	Assembling a WebLogic Web Service Manually
	Overview of Assembling a WebLogic Web Service Manually
	Assembling a WebLogic Web Service Manually: Main Steps
	Understanding the web-services.xml File
	Creating the web-services.xml File Manually: Main Steps
	Creating the <components> Element
	Creating <operation> Elements
	Specifying the Type of Operation
	Specifying the Parameters and Return Value of the Operation

	Examining Different Types of web-services.xml Files
	EJB Component Web Service with Built-In Data Types
	EJB Component Web Service with Non-Built-In Data Types
	EJB Component and SOAP Message Handler Chain Web Service
	SOAP Message Handler Chain Web Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

