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About This Document

This document describes BEA WebLogic Server™ clusters, and provides an
introduction to developing clusters with WebLogic Server 8.1.

The document is organized as follows:

! Chapter 1, “Introduction to WebLogic Server Clustering”

! Chapter 2, “Communications in a Cluster”

! Chapter 3, “Understanding Cluster Configuration and Application Deployment”

! Chapter 4, “Load Balancing in a Cluster”

! Chapter 5, “Failover and Replication in a Cluster”

! Chapter 6, “Cluster Architectures”

! Chapter 7, “Setting up WebLogic Clusters”

! Chapter 8, “Troubleshooting Common Problems”

! Appendix A, “The WebLogic Cluster API”

! Appendix B, “Configuring Alteon™ Hardware with Clusters”

! Appendix C, “Configuring BIG-IP™ Hardware with Clusters”.
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Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main ( ) the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ( )

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
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{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
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CHAPTER
1 Introduction to 
WebLogic Server 
Clustering

This section is a brief introduction to WebLogic Server clusters. It contains the
following information:

! “What Is a WebLogic Server Cluster?” on page 1-1

! “How Does a Cluster Relate to a Domain?” on page 1-2

! “What Are the Benefits of Clustering?” on page 1-3

! “What Are the Key Capabilities of a Cluster?” on page 1-4

! “What Types of Objects Can Be Clustered?” on page 1-5

! “What Types of Objects Cannot Be Clustered?” on page 1-10

! “What Are the New Clustering Features in WebLogic Server 8.1?” on page 1-10

What Is a WebLogic Server Cluster?

A WebLogic Server cluster consists of multiple WebLogic Server server instances
running simultaneously and working together to provide increased scalability and
reliability. A cluster appears to clients to be a single WebLogic Server instance. The
server instances that constitute a cluster can run on the same machine, or be located on
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1 Introduction to WebLogic Server Clustering
different machines. You can increase a cluster’s capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster
to host the incremental server instances. Each server instance in a cluster must run the
same version of WebLogic Server.

How Does a Cluster Relate to a Domain?

A cluster is part of a particular WebLogic Server domain.

A domain is an interrelated set of WebLogic Server resources that are managed as a
unit. A domain includes one or more WebLogic Server instances, which can be
clustered, non-clustered, or a combination of clustered and non-clustered instances. A
domain can include multiple clusters. A domain also contains the application
components deployed in the domain, and the resources and services required by those
application components and the server instances in the domain. Examples of the
resources and services used by applications and server instances include machine
definitions, optional network channels, connectors, and startup classes.

You can use a variety of criteria for organizing WebLogic Server instances into
domains. For instance, you might choose to allocate resources to multiple domains
based on logical divisions of the hosted application, geographical considerations, or
the number or complexity of the resources under management. For additional
information about domains see “Overview of WebLogic Server Domains” in
Configuring and Managing WebLogic Server.

In each domain, one WebLogic Server instance acts as the Administration Server—the
server instance which configures, manages, and monitors all other server instances and
resources in the domain. Each Administration Server manages one domain only. If a
domain contains multiple clusters, each cluster in the domain has the same
Administration Server.

All server instances in a cluster must reside in the same domain; you cannot “split” a
cluster over multiple domains. Similarly, you cannot share a configured resource or
subsystem between domains. For example, if you create a JDBC connection pool in
one domain, you cannot use it with a server instance or cluster in another domain.
(Instead, you must create a similar connection pool in the second domain.)
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What Are the Benefits of Clustering?
Clustered WebLogic Server instances behave similarly to non-clustered instances,
except that they provide failover and load balancing. The process and tools used to
configure clustered WebLogic Server instances are the same as those used to configure
non-clustered instances. However, to achieve the load balancing and failover benefits
that clustering enables, you must adhere to certain guidelines for cluster configuration.

To understand how the failover and load balancing mechanisms used in WebLogic
Server relate to particular configuration options see “Load Balancing in a Cluster” on
page 4-1, and “Failover and Replication in a Cluster” on page 5-1.

Detailed configuration recommendations are included throughout the instructions in
“Setting up WebLogic Clusters” on page 7-1.

What Are the Benefits of Clustering?

A WebLogic Server cluster provides these benefits:

! Scalability

The capacity of an application deployed on a WebLogic Server cluster can be
increased dynamically to meet demand. You can add server instances to a cluster
without interruption of service—the application continues to run without impact
to clients and end users.

! High-Availability

In a WebLogic Server cluster, application processing can continue when a server
instance fails. You “cluster” application components by deploying them on
multiple server instances in the cluster—so, if a server instance on which a
component is running fails, another server instance on which that component is
deployed can continue application processing.

The choice to cluster WebLogic Server instances is transparent to application
developers and clients. However, understanding the technical infrastructure that
enables clustering will help programmers and administrators maximize the scalability
and availability of their applications.
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1 Introduction to WebLogic Server Clustering
What Are the Key Capabilities of a Cluster?

This section defines, in non-technical terms, the key clustering capabilities that enable
scalability and high availability.

! Failover

Simply put, failover means that when an application component (typically
referred to as an “object” in the following sections) doing a particular “job”—
some set of processing tasks—becomes unavailable for any reason, a copy of the
failed object finishes the job.

For the new object to be able to take over for the failed object:

" There must be a copy of the failed object available to take over the job.

" There must be information, available to other objects and the program that
manages failover, defining the location and operational status of all objects—
so that it can be determined that the first object failed before finishing its job.

" There must be information, available to other objects and the program that
manages failover, about the the progress of jobs in process—so that an object
taking over an interrupted job knows how much of the job was completed
before the first object failed, for example, what data has been changed, and
what steps in the process were completed.

WebLogic Server uses standards-based communication techniques and
facilities—multicast, IP sockets, and the Java Naming and Directory Interface
(JNDI)—to share and maintain information about the availability of objects in a
cluster. These techniques allow WebLogic Server to determine that an object
stopped before finishing its job, and where there is a copy of the object to
complete the job that was interrupted.

Information about what has been done on a job is called state. WebLogic Server
maintains information about state using techniques called session replication and
replica-aware stubs. When a particular object unexpectedly stops doing its job,
replication techniques enable a copy of the object pick up where the failed object
stopped, and finish the job.

! Load Balancing
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What Types of Objects Can Be Clustered?
Load balancing is the even distribution of jobs and associated communications
across the computing and networking resources in your environment. For load
balancing to occur:

" There must be multiple copies of an object that can do a particular job.

" Information about the the location and operational status of all objects must
be available.

WebLogic Server allows objects to be clustered—deployed on multiple server
instances—so that there are alternative objects to do the same job. WebLogic
Server shares and maintains the availability and location of deployed objects
using multicast, IP sockets, and JNDI.

A detailed discussion of how communications and replication techniques are
employed by WebLogic Server is provided in “Communications in a Cluster” on page
2-1.

What Types of Objects Can Be Clustered?

A clustered application or application component is one that is available on multiple
WebLogic Server instances in a cluster. If an object is clustered, failover and load
balancing for that object is available. Deploy objects homogeneously—to every server
instance in your cluster—to simplify cluster administration, maintenance, and
troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java
Beans (EJBs), servlets, and Java Server Pages (JSPs). Each object type has a unique
set of behaviors related to control, invocation, and how it functions within an
application. For this reason, the methods that WebLogic Server uses to support
clustering—and hence to provide load balancing and failover—can vary for different
types of objects. The following types of objects can be clustered in a WebLogic Server
deployment:

! Servlets

! JSPs

! EJBs
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1 Introduction to WebLogic Server Clustering
! Remote Method Invocation (RMI) objects

! Java Messaging Service (JMS) destinations

! Java Database Connectivity (JDBC) connections

Different object types can have certain behaviors in common. When this is the case,
the clustering support and implementation considerations for those similar object types
may be same. In the sections that follow, explanations and instructions for the
following types of objects are generally combined:

! Servlets and JSPs

! EJBs and RMI objects

The sections that follow briefly describe the clustering, failover, and load balancing
support that WebLogic Server provides for different types of objects.

Servlets and JSPs 

WebLogic Server provides clustering support for servlets and JSPs by replicating the
HTTP session state of clients that access clustered servlets and JSPs. WebLogic Server
can maintain HTTP session states in memory, a filesystem, or a database.

To enable automatic failover of servlets and JSPs, session state must persist in
memory. For information about how failover works for servlets and JSPs, and for
related requirements and programming considerations, see “HTTP Session State
Replication” on page 5-3.

You can balance the servlet and JSP load across a cluster using a WebLogic Server
proxy plug-in or external load balancing hardware. WebLogic Server proxy plug-ins
perform round robin load balancing. External load balancers typically support a variety
of session load balancing mechanisms. For more information, see “Load Balancing for
Servlets and JSPs” on page 4-1.
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What Types of Objects Can Be Clustered?
EJBs and RMI Objects

Load balancing and failover for EJBs and RMI objects is handled using replica-aware
stubs, which can locate instances of the object throughout the cluster. Replica-aware
stubs are created for EJBs and RMI objects as a result of the object compilation
process. EJBs and RMI objects are deployed homogeneously—to all the server
instances in the cluster.

Failover for EJBs and RMI objects is accomplished using the object’s replica-aware
stub. When a client makes a call through a replica-aware stub to a service that fails, the
stub detects the failure and retries the call on another replica. To understand failover
support for different types of objects, see “Replication and Failover for EJBs and
RMIs” on page 5-14.

WebLogic Server clusters support multiple algorithms for load balancing clustered
EJBs and RMI objects: round-robin, weight-based, random, round-robin-affinity,
weight-based-affinity, and random-affinity. By default, a WebLogic Server cluster
will use the round-robin method. You can configure a cluster to use one of the other
methods using the Administration Console. The method you select is maintained
within the replica-aware stub obtained for clustered objects. For details, see “Load
Balancing for EJBs and RMI Objects” on page 4-6.

JDBC Connections

WebLogic Server allows you to cluster JDBC objects, including data sources,
connection pools and multipools, to improve the availability of cluster-hosted
applications. Each JDBC object you configure for your cluster must exist on each
managed server in the cluster—when you configure the JDBC objects, target them to
the cluster.

! Data Sources—In a cluster, external clients must obtain connections through a
JDBC data source on the JNDI tree. The data source uses the WebLogic Server
RMI driver to acquire a connection. The cluster-aware nature of WebLogic data
sources in external client applications allows a client to request another
connection if the server instance hosting the previous connection fails. Although
not strictly required, BEA recommends that server-side clients also obtain
connections via a data source on the JNDI tree.
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! Connection Pools—Connection pools are a collection of ready-to-use database
connections. When a connection pool starts up, it creates a specified number of
identical physical database connections. By establishing connections at start-up,
the connection pool eliminates the overhead of creating a database connection
for each application. BEA recommends that both client and server-side
applications obtain connections from a connection pool through a data source on
the JNDI tree. When finished with a connection, applications return the
connection to the connection pool.

! Multipools—Multipools are multiplexers for basic connection pools. To the
application they appear exactly as basic pools, but multipools allow you to
establish a pool of connection pools, in which the connection attributes vary
from connection pool to connection pool. All of the connections in a given
connection pool are identical, but the connections in each connection pool in a
multipool should vary in some significant way such that an expected failure of
one pool will not invalidate another pool in the multipool. Usually these pools
will be to different instances of the same database.

Multipools are only useful if there are multiple distinct database instances that
can equally handle an application connection, and the application system takes
care of synchronizing the databases when application work is distributed among
the databases. In rare cases it may be valuable to have the pools to the same
database instance, but as different users. This would be useful if the DBA
disabled one user, leaving the other user viable.

By default, a clustered multipool provides high availability (DBMS failover). A
multipool can be optionally configured to also provide load balancing.

For more information about JDBC, see “Creating and Deploying JDBC
Components—Connection Pools, MultiPools, and Data Sources” in the
Administration Console Online Help.

Getting Connections with Clustered JDBC

To ensure that any JDBC request can be handled equivalently by any cluster member,
each managed server in the cluster must have similarly named/defined pools and, if
applicable, multipools. Data sources, if intended for use in external clients, should be
targeted to the cluster so they are cluster-aware and their connections can be to any
cluster members.

! External Clients Connections—External clients that require a database
connection perform a JNDI lookup and obtain a replica-aware stub for the data
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What Types of Objects Can Be Clustered?
source. The stub for the data source contains a list of the server instances that
host the data source—which should be all of the Managed Servers in the cluster.
Replica-aware stubs contain load balancing logic for distributing the load among
host server instances.

! Server-Side Client Connections—For server-side use, application code can use a
server-side pool driver directly instead of a JNDI lookup and a data source, but
if a data source is used, it will be a local object. A server-side data source will
not go to another cluster member for its JDBC connections. The data source
obtains a connection from the pool it references. The connection is pinned to the
local server instance for the duration of the database transaction, and as long as
the application code retains it (until the connection is closed).

Failover and Load Balancing for JDBC Connections

Clustering your JDBC objects does not enable failover of connections but it can ease
the process of reconnection when a connection fails. In replicated database
environments, multipools may be clustered to support database failover, and
optionally, load balancing of connections. See the following topics for more
information:

! To understand the behavior of clustered JDBC objects when failures occur, see
“Failover and JDBC Connections” on page 5-25.

! To learn more about how clustered multipools enable load balancing of
connections, see “Load Balancing for JDBC Connections” on page 4-20.

! For instructions on configuring clustered JDBC objects, see “Configure
Clustered JDBC” on page 7-24.

JMS

The WebLogic Java Messaging Service (JMS) architecture implements clustering of
multiple JMS servers by supporting cluster-wide, transparent access to destinations
from any WebLogic Server server instance in the cluster. Although WebLogic Server
supports distributing JMS destinations and connection factories throughout a cluster,
the same JMS topic or queue is still managed separately by each WebLogic Server
instance in the cluster.
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Load balancing is supported for JMS. To enable load balancing, you must configure
targets for JMS servers. For more information about load balancing and JMS
components, see “Load Balancing for JMS” on page 4-18. For instructions on setting
up clustered JMS, see “Configure Migratable Targets for Pinned Services” on page
7-23 and “Deploying, Activating, and Migrating Migratable Services” on page 7-29.

Automatic failover is not supported by WebLogic JMS in this release.

What Types of Objects Cannot Be Clustered?

The following APIs and internal services cannot be clustered in WebLogic Server:

! File services

! Time services

! WebLogic Events (deprecated in WebLogic Server 6.0)

! Workspaces (deprecated in WebLogic Server 6.0)

You can still use these services on individual WebLogic Server instances in a cluster.
However, the services do not make use of load balancing or failover features.

What Are the New Clustering Features in 
WebLogic Server8.1?

The new features in WebLogic Server 8.1 that pertain to clustering are describe in the
following sections.
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What Are the New Clustering Features in WebLogic Server 8.1?
Server Affinity for Client Connections to RMI Objects

WebLogic Server 8.1 provides new server affinity features that reduce the number of
sockets used for RMI communications. For details, see “Round-Robin Affinity,
Weight-Based Affinity, and Random-Affinity” on page 4-10.
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CHAPTER
2 Communications in a 
Cluster

WebLogic Server clusters implement two key features: load balancing and failover.
The following sections provide information that helps architects and administrators
configure a cluster that meets the needs of a particular Web application:

! “WebLogic Server Communication in a Cluster” on page 2-1

! “Cluster-Wide JNDI Naming Service” on page 2-9

WebLogic Server Communication in a 
Cluster

WebLogic Server instances in a cluster communicate with one another using two
basic network technologies:

" IP multicast, which server instances use to broadcast availability of services
and heartbeats that indicate continued availability.

" IP sockets, which are the conduits for peer-to-peer communication between
clustered server instances.

The way in which WebLogic Server uses IP multicast and socket communication
affects the way you configure your cluster.
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One-to-Many Communication Using IP Multicast

IP multicast is a simple broadcast technology that enables multiple applications to
“subscribe” to a given IP address and port number and listen for messages. A multicast
address is an IP address in the range from 224.0.0.0 to 239.255.255.255.

IP multicast broadcasts messages to applications, but it does not guarantee that
messages are actually received. If an application’s local multicast buffer is full, new
multicast messages cannot be written to the buffer and the application is not notified
when messages are “dropped.” Because of this limitation, WebLogic Server instances
allow for the possibility that they may occasionally miss messages that were broadcast
over IP multicast.

WebLogic Server uses IP multicast for all one-to-many communications among server
instances in a cluster. This communication includes:

! Cluster-wide JNDI updates—Each WebLogic Server instance in a cluster uses
multicast to announce the availability of clustered objects that are deployed or
removed locally. Each server instance in the cluster monitors these
announcements and updates its local JNDI tree to reflect current deployments of
clustered objects. For more details, see “Cluster-Wide JNDI Naming Service” on
page 2-9.

! Cluster heartbeats— Each WebLogic Server instance in a cluster uses multicast
to broadcast regular “heartbeat” messages that advertise its availability. By
monitoring heartbeat messages, server instances in a cluster determine when a
server instance has failed. (Clustered server instances also monitor IP sockets as
a more immediate method of determining when a server instance has failed.)

Multicast and Cluster Configuration

Because multicast communications control critical functions related to detecting
failures and maintaining the cluster-wide JNDI tree (described in “Cluster-Wide JNDI
Naming Service” on page 2-9) it is important that neither the cluster configuration nor
the network topology interfere with multicast communications. The sections that
follow provide guidelines for avoiding problems with multicast communication in a
cluster.
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If Your Cluster Spans Multiple Subnets in a WAN 

In many deployments, clustered server instances reside within a single subnet,
ensuring multicast messages are reliably transmitted. However, you may want to
distribute a WebLogic Server cluster across multiple subnets in a Wide Area Network
(WAN) to increase redundancy, or to distribute clustered server instances over a larger
geographical area.

If you choose to distribute a cluster over a WAN (or across multiple subnets), plan and
configure your network topology to ensure that multicast messages are reliably
transmitted to all server instances in the cluster. Specifically, your network must meet
the following requirements:

! Full support of IP multicast packet propagation. In other words, all routers and
other tunneling technologies must be configured to propagate multicast messages
to clustered server instances.

! Network latency low enough to ensure that most multicast messages reach their
final destination in 200 to 300 milliseconds.

! Multicast Time-To-Live (TTL) value for the cluster high enough to ensure that
routers do not discard multicast packets before they reach their final destination.
For instructions on setting the Multicast TTL parameter, see “Configure
Multicast Time-To-Live (TTL)” on page 7-36.

Note: Distributing a WebLogic Server cluster over a WAN may require network
facilities in addition to the multicast requirements described above. For
example, you may want to configure load balancing hardware to ensure that
client requests are directed to server instances in the most efficient manner (to
avoid unnecessary network hops).

Firewalls Can Break Multicast Communication

Although it may be possible to tunnel multicast traffic through a firewall, this practice
is not recommended for WebLogic Server clusters. Treat each WebLogic Server
cluster as a logical unit that provides one or more distinct services to clients of a Web
application. Do not split this logical unit between different security zones.
Furthermore, any technologies that potentially delay or interrupt IP traffic can disrupt
a WebLogic Server cluster by generating false failures due to missed heartbeats.
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Do Not Share the Cluster Multicast Address with Other Applications

Although multiple WebLogic Server clusters can share a single IP multicast address
and port, other applications should not broadcast or subscribe to the multicast address
and port used by your cluster or clusters. That is, if the machine or machines that host
your cluster also host other applications that use multicast communications, make sure
that those applications use a different multicast address and port than the cluster does.

Sharing the cluster multicast address with other applications forces clustered server
instances to process unnecessary messages, introducing overhead. Sharing a multicast
address may also overload the IP multicast buffer and delay transmission of WebLogic
Server heartbeat messages. Such delays can result in a WebLogic Server instance
being marked as failed, simply because its heartbeat messages were not received in a
timely manner.

For these reasons, assign a dedicated multicast address for use by WebLogic Server
clusters, and ensure that the address can support the broadcast traffic of all clusters that
use the address.

If Multicast Storms Occur

If server instances in a cluster do not process incoming messages on a timely basis,
increased network traffic, including NAK messages and heartbeat re-transmissions,
can result. The repeated transmission of multicast packets on a network is referred to
as a multicast storm, and can stress the network and attached stations, potentially
causing end-stations to hang or fail. Increasing the size of the multicast buffers can
improve the rate at which announcements are transmitted and received, and prevent
multicast storms. See “Configure Multicast Buffer Size” on page 7-37.

Peer-to-Peer Communication Using IP Sockets

IP sockets provide a simple, high-performance mechanism for transferring messages
and data between two applications. Clustered WebLogic Server instances use IP
sockets for:

! Accessing non-clustered objects deployed to another clustered server instance on
a different machine.

! Replicating HTTP session states and stateful session EJB states between a
primary and secondary server instance.
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! Accessing clustered objects that reside on a remote server instance. (This
generally occurs only in a multi-tier cluster architecture, such as the one
described in “Recommended Multi-Tier Architecture” on page 6-6.)

Note: The use of IP sockets in WebLogic Server extends beyond the cluster
scenario—all RMI communication takes place using sockets, for example,
when a remote Java client application accesses a remote object.

Proper socket configuration is crucial to the performance of a WebLogic Server
cluster. Two factors determine the efficiency of socket communications in WebLogic
Server:

! Whether the server instance’s host system uses a native or a pure-Java socket
reader implementation.

! For systems that use pure-Java socket readers, whether the server instance is
configured to use enough socket reader threads.

Pure-Java Versus Native Socket Reader Implementations

Although the pure-Java implementation of socket reader threads is a reliable and
portable method of peer-to-peer communication, it does not provide the best
performance for heavy-duty socket usage in a WebLogic Server cluster. With
pure-Java socket readers, threads must actively poll all opened sockets to determine if
they contain data to read. In other words, socket reader threads are always “busy”
polling sockets, even if the sockets have no data to read. This unnecessary overhead
can reduce performance.

The performance issue is magnified when a server instance has more open sockets than
it has socket reader threads—each reader thread must poll more than one open socket.
When the socket reader encounters an inactive socket, it waits for a timeout before
servicing another. During this timeout period, an active socket may go unread while
the socket reader polls inactive sockets, as shown in the following figure.
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Figure 2-1 Pure-Java Socket Reader Threads Poll Inactive Sockets

For best socket performance, configure the WebLogic Server host machine to use the
native socket reader implementation for your operating system, rather than the
pure-Java implementation. Native socket readers use far more efficient techniques to
determine if there is data to read on a socket. With a native socket reader
implementation, reader threads do not need to poll inactive sockets—they service only
active sockets, and they are immediately notified (via an interrupt) when a given socket
becomes active.

Note: Applets cannot use native socket reader implementations, and therefore have
limited efficiency in socket communication.

For instructions on how to configure the WebLogic Server host machine to use the
native socket reader implementation for your operating system, see “Configure Native
IP Sockets Readers on Machines that Host Server Instances” on page 7-35.

Configuring Reader Threads for Java Socket Implementation

If you do use the pure-Java socket reader implementation, you can still improve the
performance of socket communication by configuring the proper number of socket
reader threads for each server instance. For best performance, the number of socket
reader threads in WebLogic Server should equal the potential maximum number of
opened sockets. This configuration avoids the situation in which a reader thread must
service multiple sockets, and ensures that socket data is read immediately.

To determine the proper number of reader threads for server instances in your cluster,
see the following section, “Determining Potential Socket Usage.”
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For instructions on how to configure socket reader threads, see “Set the Number of
Reader Threads on Machines that Host Server Instances” on page 7-36.

Determining Potential Socket Usage

Each WebLogic Server instance can potentially open a socket for every other server
instance in the cluster. However, the actual maximum number of sockets used at a
given time depends on the configuration of your cluster. In practice, clustered systems
generally do not open a socket for every other server instance, because objects are
deployed homogeneously—to each server instance in the cluster.

If your cluster uses in-memory HTTP session state replication, and you deploy objects
homogeneously, each server instance potentially opens a maximum of only two
sockets, as shown in the following figure.

Figure 2-2 Homogeneous Deployment Minimizes Socket Requirements

The two sockets in this example are used to replicate HTTP session states between
primary and secondary server instances. Sockets are not required for accessing
clustered objects, due to the collocation optimizations that WebLogic Server uses to
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access those objects. (These optimizations are described in “Optimization for
Collocated Objects” on page 4-15.) In this configuration, the default socket reader
thread configuration is sufficient.

Deployment of "pinned" services—services that are active on only one server instance
at a time—can increase socket usage, because server instances may need to open
additional sockets to access the pinned object. (This potential can only be released if a
remote server instance actually accesses the pinned object.) The following figure
shows the potential effect of deploying a non-clustered RMI object to Server A.

Figure 2-3 Non-Clustered Objects Increase Potential Socket Requirements

In this example, each server instance can potentially open a maximum of three sockets
at a given time, to accommodate HTTP session state replication and to access the
pinned RMI object on Server A.

Note: Additional sockets may also be required for servlet clusters in a multi-tier
cluster architecture, as described in “Configuration Notes for Multi-Tier
Architecture” on page 7-38.
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Client Communication via Sockets

Clients of a cluster use the Java implementation of socket reader threads.

In WebLogic Server 8.1, you can configure server affinity load balancing algorithms
that reduce the number of IP sockets opened by a Java client application. A client
accessing multiple objects on a server instance will use a single socket. If an object
fails, the client will failover to a server instance to which it already has an open socket,
if possible. In 7.0, under some circumstances, a client might open a socket to each
server instance instance in a cluster.

For best performance, configure enough socket reader threads in the Java Virtual
Machine (JVM) that runs the client. For instructions, see “Set the Number of Reader
Threads on Client Machines” on page 7-36.

Cluster-Wide JNDI Naming Service

Clients of a non-clustered WebLogic Server server instance access objects and
services by using a JNDI-compliant naming service. The JNDI naming service
contains a list of the public services that the server instance offers, organized in a tree
structure. A WebLogic Server instance offers a new service by binding into the JNDI
tree a name that represents the service. Clients obtain the service by connecting to the
server instance and looking up the bound name of the service.

Server instances in a cluster utilize a cluster-wide JNDI tree. A cluster-wide JNDI tree
is similar to a single server instance JNDI tree, insofar as the tree contains a list of
available services. In addition to storing the names of local services, however, the
cluster-wide JNDI tree stores the services offered by clustered objects (EJBs and RMI
classes) from other server instances in the cluster.

Each WebLogic Server instance in a cluster creates and maintains a local copy of the
logical cluster-wide JNDI tree. The follow sections describe how the cluster-wide
JNDI tree is maintained, and how to avoid naming conflicts that can occur in a
clustered environment.

Warning: Do not use the cluster-wide JNDI tree as a persistence or caching
mechanism for application data. Although WebLogic Server replicates a
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2 Communications in a Cluster
clustered server instance’s JNDI entries to other server instances in the
cluster, those entries are removed from the cluster if the original instance
fails. Also, storing large objects within the JNDI tree can overload
multicast traffic and interfere with the normal operation of a cluster.

How WebLogic Server Creates the Cluster-Wide JNDI 
Tree

Each WebLogic Server in a cluster builds and maintains its own local copy of the
cluster-wide JNDI tree, which lists the services offered by all members of the cluster.
Creation of a cluster-wide JNDI tree begins with the local JNDI tree bindings of each
server instance. As a server instance boots (or as new services are dynamically
deployed to a running server instance), the server instance first binds the
implementations of those services to the local JNDI tree. The implementation is bound
into the JNDI tree only if no other service of the same name exists.

Note: When you start a Managed Server in a cluster, the server instance identifies
other running server instances in the cluster by listening for heartbeats, after a
warm-up period specified by the MemberWarmupTimeoutSeconds parameter
in ClusterMBean. The default warm-up period is 30 seconds.

Once the server instance successfully binds a service into the local JNDI tree,
additional steps are performed for clustered objects that use replica-aware stubs. After
binding the clustered object’s implementation into the local JNDI tree, the server
instance sends the object’s stub to other members of the cluster. Other members of the
cluster monitor the multicast address to detect when remote server instances offer new
services.

The following figure shows a snapshot of the JNDI binding process.
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Figure 2-4 Server A Binds an Object in its JNDI Tree, then Multicasts Object
Availability

In the previous figure, Server A has successfully bound an implementation of clustered
Object X into its local JNDI tree. Because Object X is clustered, it offers this service
to all other members of the cluster. Server C is still in the process of binding an
implementation of Object X.

Other server instances in the cluster listening to the multicast address note that Server
A offers a new service for clustered object, X. These server instances update their local
JNDI trees to include the new service.

Updating the local JNDI bindings occurs in one of two ways:

! If the clustered service is not yet bound in the local JNDI tree, the server
instance binds a new replica-aware stub into the local tree that indicates the
availability of Object X on Server A. Servers B and D would update their local
JNDI trees in this manner, because the clustered object is not yet deployed on
those server instances.

! If the server instance already has a binding for the cluster-aware service, it
updates its local JNDI tree to indicate that a replica of the service is also
available on Server A. Server C would update its JNDI tree in this manner,
because it will already have a binding for the clustered Object X.
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In this manner, each server instance in the cluster creates its own copy of a cluster-wide
JNDI tree. The same process would be used when Server C announces that Object X
has been bound into its local JNDI tree. After all broadcast messages are received, each
server instance in the cluster would have identical local JNDI trees that indicate the
availability of the object on Servers A and C, as shown below.

Figure 2-5 Each Server’s JNDI Tree is the Same after Multicast Messages are
Received

Note: In an actual cluster, Object X would be deployed homogeneously, and an
implementation which can invoke the object would be available on all four
server instances.

How JNDI Naming Conflicts Occur

Simple JNDI naming conflicts occur when a server instance attempts to bind a
non-clustered service that uses the same name as a non-clustered service already bound
in the JNDI tree. Cluster-level JNDI conflicts occur when a server instance attempts to
bind a clustered object that uses the name of a non-clustered object already bound in
the JNDI tree.
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WebLogic Server detects simple naming conflicts (of non-clustered services) when
those services are bound to the local JNDI tree. Cluster-level JNDI conflicts may occur
when new services are advertised over multicast. For example, if you deploy a pinned
RMI object on one server instance in the cluster, you cannot deploy a replica-aware
version of the same object on another server instance.

If two server instances in a cluster attempt to bind different clustered objects using the
same name, both will succeed in binding the object locally. However, each server
instance will refuse to bind the other server instance’s replica-aware stub in to the
JNDI tree, due to the JNDI naming conflict. A conflict of this type would remain until
one of the two server instances was shut down, or until one of the server instances
undeployed the clustered object. This same conflict could also occur if both server
instances attempt to deploy a pinned object with the same name.

Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts 

To avoid cluster-level JNDI conflicts, you must homogeneously deploy all
replica-aware objects to all WebLogic Server instances in a cluster. Having
unbalanced deployments across WebLogic Server instances increases the chance of
JNDI naming conflicts during startup or redeployment. It can also lead to unbalanced
processing loads in the cluster.

If you must pin specific RMI objects or EJBs to individual server instances, do not
replicate the object’s bindings across the cluster.

How WebLogic Server Updates the JNDI Tree

When a clustered object is removed (undeployed from a server instance), updates to
the JNDI tree are handled similarly to the updates performed when new services are
added. The server instance on which the service was undeployed broadcasts a message
indicating that it no longer provides the service. Again, other server instances in the
cluster that observe the multicast message update their local copies of the JNDI tree to
indicate that the service is no longer available on the server instance that undeployed
the object.
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Once the client has obtained a replica-aware stub, the server instances in the cluster
may continue adding and removing host servers for the clustered objects. As the
information in the JNDI tree changes, the client’s stub may also be updated.
Subsequent RMI requests contain update information as necessary to ensure that the
client stub remains up-to-date.

Client Interaction with the Cluster-Wide JNDI Tree

Clients that connect to a WebLogic Server cluster and look up a clustered object obtain
a replica-aware stub for the object. This stub contains the list of available server
instances that host implementations of the object. The stub also contains the load
balancing logic for distributing the load among its host servers.

For more information about replica-aware stubs for EJBs and RMI classes, see
“Replication and Failover for EJBs and RMIs” on page 5-14.

For a more detailed discussion of how WebLogic JNDI is implemented in a clustered
environment and how to make your own objects available to JNDI clients, see “Using
WebLogic JNDI in a Clustered Environment” in Programming WebLogic JNDI.
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CHAPTER
3 Understanding Cluster 
Configuration and 
Application 
Deployment

This following sections explain how the information that defines the configuration of
a cluster is stored and maintained, and the methods you can use to accomplish
configuration tasks:

! “Cluster Configuration and config.xml” on page 3-2

! “Role of the Administration Server” on page 3-2

! “How Dynamic Configuration Works” on page 3-5

! “Application Deployment Topics” on page 3-5

! “Methods of Configuring Clusters” on page 3-9

Note: Much of the information in this section also pertains to the process of
configuring a WebLogic domain in which the server instances are not
clustered.
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Cluster Configuration and config.xml

The config.xml file is an XML document that describes the configuration of a
WebLogic Server domain. The content and structure of the config.xml is defined in
the associated Document Type Definition (DTD), config.dtd.

config.xml consists of a series of XML elements. The Domain element is the
top-level element, and all elements in the Domain descend from the Domain element.
The Domain element includes child elements, such as the Server, Cluster, and
Application elements. These child elements may have children of their own. For
example, the Server element includes the child elements WebServer, SSL and Log.
The Application element includes the child elements EJBComponent and
WebAppComponent.

Each element has one or more configurable attributes. An attribute defined in
config.dtd has a corresponding attribute in the configuration API. For example, the
Server element has a ListenPort attribute, and likewise, the
weblogic.management.configuration.ServerMBean has a ListenPort
attribute. Configurable attributes are readable and writable, that is, ServerMBean has
a getListenPort and a setListenPort method.

To learn more about config.xml, see BEA WebLogic Server Configuration
Reference.

Role of the Administration Server

The Administration Server is the WebLogic Server instance that configures and
manages the WebLogic Server instances in its domain.

A domain can include multiple WebLogic Server clusters and non-clustered
WebLogic Server instances. Strictly speaking, a domain could consist of only one
WebLogic Server instance—however, in that case that sole server instance would be
an Administration Server, because each domain must have exactly one Administration
Server.
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Role of the Administration Server
There are a variety of ways to invoke the services of the Administration Server to
accomplish configuration tasks, as described in “Methods of Configuring Clusters” on
page 3-9. Whichever method is used, the Administration Server for a cluster must be
running when you modify the configuration.

When the Administration Server starts, it loads the config.xml for the domain. It
looks for config.xml in the current directory. Unless you specify another directory
when you create a domain, config.xml is stored in:

BEA_HOME/user_projects/mydomain

where mydomain is a domain-specific directory, with the same name as the domain.

Each time the Administration Server starts successfully, a backup configuration file
named config.xml.booted is created in the domain directory. In the unlikely event
that the config.xml file should be corrupted during the lifetime of the server instance,
it is possible to revert to this previous configuration.

The following figure shows a typical production environment that contains an
Administration Server and multiple WebLogic Servers instances. When you start the
server instances in such a domain, the Administration Server is started first. As each
additional server instance is started, it contacts the Administration Server for its
configuration information. In this way, the Administration Server operates as the
central control entity for the configuration of the entire domain.
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Figure 3-1 WebLogic Server Configuration

What Happens if the Administration Server Fails?

The failure of an Administration Server for a domain does not affect the operation of
Managed Servers in the domain. If an Administration Server for a domain becomes
unavailable while the server instances it manages—clustered or otherwise—are up and
running, those Managed Servers continue to run. If the domain contains clustered
server instances, the load balancing and failover capabilities supported by the domain
configuration remain available, even if the Administration Server fails.

Note: If an Administration Server fails because of a hardware or software failure on
its host machine, other server instances on the same machine may be similarly
affected. However, the failure of an Administration Server itself does not
interrupt the operation of Managed Servers in the domain.

For instructions on re-starting an Administration Server, see “Restarting an
Administration Server When Managed Servers are Running” in Configuring and
Managing WebLogic Server.
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How Dynamic Configuration Works

WebLogic Server allows you to change the configuration attributes of domain
resources dynamically—while server instances are running. In most cases you do not
need to restart the server instance for your changes to take effect. When an attribute is
reconfigured, the new value is immediately reflected in both the current run-time value
of the attribute and the persistent value stored in config.xml.

Not all configuration changes are applied dynamically. For example, if you change a
WebLogic Server instance’s ListenPort value, the new port will not be used until the
next time you start the affected server instance. The updated value is stored in XML
file, but the current runtime value is not affected. When the runtime value for a
configuration attribute is different than the value stored in config.xml, the
Administration Console displays an alert icon next to the attribute, which indicates that
the server instance must be restarted for the configuration change to take effect.

The console does a validation check on each attribute that users change. The validation
performed includes checking for out-of-range errors and datatype mismatch errors. In
both cases, an error dialog box is displayed.

Once the Administration Console has been started, if another process captures the
listen port assigned to the Administration Server, you should stop the process that
captured the port. If you are not able to remove the process that captured the list port,
edit the config.xml file to change the ListenPort value.

Application Deployment Topics

This section is brief introduction to the application deployment process. For more
information about deployment, see Deploying WebLogic Server Applications.

For instructions on how to perform common deployment tasks, see “Deploy
Applications” on page 7-26.
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Deployment Methods

You can deploy an application to a cluster using following methods:

! WebLogic Server Administration Console

The Administration Console is a graphical user interface (GUI) to the BEA
Administration Service.

! WebLogic Builder

WebLogic Builder is a graphical tool for assembling a J2EE component, creating
and editing its deployment descriptors, and deploying it to a WebLogic Server.

! weblogic.Deployer

The weblogic.Deployer utility is a Java-based deployment tool that provides a
command-line interface to the WebLogic Server deployment API.

These deployment tools are discussed in “Deployment Tools Reference” in Deploying
WebLogic Server Applications.

Regardless of the deployment tool you use, when you initiate the deployment process
you specify the components to be deployed, and the targets to which they will be
deployed—your cluster, or individual server instances within the cluster or domain.

The Administration Server for the domain manages the deployment process,
communicating with the Managed Servers in the cluster throughout the process. Each
Managed Server downloads components to be deployed, and initiates local
deployment tasks. The deployment state is maintained in the relevant MBeans for the
component being deployed. For more information, see Deployment Management API.

Note: You must package components before you deploy them to WebLogic Server.
For information about packaging applications, see “Packaging” in Developing
WebLogic Server Applications.

Introduction to Two-Phase Deployment

In WebLogic Server 7.0 and later, applications are deployed in two phases: the prepare
phase and the activation phase.
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Application Deployment Topics
When the user initiates application deployment to a cluster, before starting the prepare
phase, WebLogic Server first determines the availability of the Managed Servers in the
cluster.

Preparing a Deployment

During the prepare phase of deployment, application components are distributed to the
target servers instances, in accordance with user selections, and the planned
deployment is validated. (In a cluster, applications should be targeted to the cluster,
rather than to individual Managed Servers.) The purpose of the prepare phase is to
verify that the application components can be successfully deployed. During this
phase, user requests to the application being deployed are not allowed.

Failures encountered after initiation of the prepare phase will result in the deployment
being aborted on all server instances—including those that successfully acknowledged
the prepare. Files that have been staged will not be removed; however, container-side
changes performed during the preparation will be reverted.

Activating a Deployment

During activation, the application and its component are fully deployed on the target
server instances, and the deployed application is made available to clients.

If a failure occurs during the activation phase on a server instance, deployment to that
instance will be cancelled. Such a failure on one Managed Server does not prevent
activation of the deployment on other clustered server instances.

If a cluster member fails to deploy an application, it will fail at startup in order to
ensure cluster consistency—as any failure of a cluster-deployed application on a
Managed Server causes the Managed Server to abort its startup.

Guidelines for Deploying to a Cluster 

Ideally, all Managed Servers in a cluster should be running and available during the
deployment process. Deploying applications while some members of the cluster are
unavailable is not recommended. Before deploying applications to a cluster, ensure, if
possible, that all Managed Servers in the cluster are running and reachable by the
Administration Server.
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Cluster membership should not change during the deployment process. After initiating
deployment, do not:

! add or remove Managed Servers to the target cluster

! shut down Managed Servers in the target cluster

WebLogic Server 8.1 Supports “Relaxed Deployment” Rules

WebLogic Server 7.0 imposed these restrictions on deployment to clusters:

! No partial deployment—In WebLogic Server 7.0, if one or more of the Managed
Servers in the cluster are unavailable, the deployment process is terminated, and
an error message is generated, indicating that unreachable Managed Servers
should be either restarted or removed from the cluster before attempting
deployment.

! Pinned services cannot be deployed to multiple Managed Servers in a cluster—If
an application is not deployed to the cluster, you can deploy it to one and only
one Managed Server in the cluster.

In WebLogic Server 7.0 SP01, these deployment rules were relaxed, allowing user
discretion in deployment practices. This behavior remains unchanged in WebLogic
Server 8.1.

Deployment to a Partial Cluster is Allowed

By default, WebLogic Server allows deployment to a partial cluster. If one or more of
the Managed Servers in the cluster are unavailable, the following message may be
displayed:

Cannot deploy to the following server(s) because they are
unreachable: “managed_server_n”. Make sure that these servers are
currently shut down. Deployment will continue on the remaining
servers in the cluster “clustering”. Once deployment has commenced,
do not attempt to start or shutdown any servers until the
application deployment completes.

When the unreachable Managed Server becomes available, deployment to that server
instance will be initiated. Until the deployment process is completed, the Managed
Server may experience failures related to missing or out-of-date classes.
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Deploying to Complete Clusters in WebLogic Server 

You can ensure that deployment is only performed if all Managed Servers in the cluster
are reachable by setting the enforceClusterConstraints flag with
weblogic.Deployer. When enforceClusterConstraints is set to “true”,
deployment will occur in accordance with the rules that were enforced in WebLogic
7.0, which are described in “WebLogic Server 8.1 Supports “Relaxed Deployment”
Rules” on page 3-8.

Pinned Services can be Deployed to Multiple Managed Servers.

It is possible to target a pinned service to multiple Managed Servers in a cluster. This
practice is not recommended. The load-balancing capabilities and scalability of your
cluster can be negatively affected by deploying a pinned service to multiple Managed
Servers in a cluster. If you target a pined service to multiple Managed Servers, the
following message is printed to the server logs:

Adding server servername of cluster clustername as a target for
module modulename. This module also includes server servername that
belongs to this cluster as one of its other targets. Having multiple
individual servers a cluster as targets instead of having the entire
cluster as the target can result in non-optimal load balancing and
scalability. Hence this is not usually recommended.

Methods of Configuring Clusters

There are several methods for modifying the configuration information in
config.xml:

! Domain Configuration Wizard

The Domain Configuration Wizard is the recommended tool for creating a new
domain or cluster. For a list of the tasks you can perform with the wizard, see
“Domain Configuration Wizard Capabilities” later in this section.

! WebLogic Server Administration Console

The Administration Console is a graphical user interface (GUI) to the BEA
Administration Service. It allows you to perform a variety of domain
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configuration and monitoring functions. For a list of the tasks you can perform
with the console, see “Administration Console Capabilities” on page 3-11.

! WebLogic Server Application Programming Interface (API)

You can write a program to modify the configuration attributes, based on the
configuration application programming interface (API) provided with WebLogic
Server. This method is not recommended for initial cluster implementation.

! WebLogic Server command-line utility.

You can access the attributes of a domain with the WebLogic Server
command-line utility. This utility allows you to create scripts to automate
domain management. This method is not recommended for initial cluster
implementation.

Domain Configuration Wizard Capabilities

The Domain Configuration Wizard uses pre-configured domain templates to ease the
process of creating a domain and its server instances. Using the wizard, you can select
a domain template, and then supply key information, such as machine addresses,
names, and port numbers for the server instances you wish to created.

Note: The Domain Configuration Wizard can install the appropriate directory
structure and scripts for a domain on a Managed Server that is running on a
remote machine from the Administration Server. This is helpful if you need to
use a Managed Server as a backup Administration Server for a domain.

The wizard prompts you to select one of four typical domain configurations:

! Single Server—domain with a single WebLogic Server instance.

! Administration Server with Managed Servers—domain with an Administration
Server, and one or more Managed Servers that are not clustered.

! Administration Server with clustered Managed Servers—domain with an
Administration Server, and one or more Managed Servers that are clustered.

! Managed Server (Owning Administrative Configuration)

After you select the desired configuration type, the wizard prompts you to provide
relevant details about the domain and its server instances.
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For information on how to use the Domain Configuration Wizard, see “Creating
Domains, Administration Servers, and Managed Servers” in Configuring and
Managing WebLogic Server.

Administration Console Capabilities

These sections in Administration Console Online Help list and describe the
cluster-related configuration tasks you can perform using the WebLogic Server
Administration Console.

! “Servers”

! “Clusters”

! “Deploying Applications and Modules”

! “Monitoring a Server”

! “Monitoring a Cluster”
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CHAPTER
4 Load Balancing in a 
Cluster

This section describes the load balancing support that a WebLogic Server cluster
provides for different types of objects, and related planning and configuration
considerations for architects and administrators. It contains the following information:

! “Load Balancing for Servlets and JSPs” on page 4-1

! “Load Balancing for EJBs and RMI Objects” on page 4-6

! “Load Balancing for JMS” on page 4-18

! “Load Balancing for JDBC Connections” on page 4-20

For information about replication and failover in a cluster, see “Failover and
Replication in a Cluster” on page 5-1.

Load Balancing for Servlets and JSPs

Load balancing of servlets and JSPs can be accomplished with the built-in load
balancing capabilities of a WebLogic proxy plug-in or with separate load balancing
hardware.

Note: External load balancers can distribute HTTP traffic, but do not provide load
balancing for EJBs and RMI objects. Object-level load balancing requires
specific algorithms and services that current external load balancers do not
provide. See “Load Balancing for EJBs and RMI Objects” on page 4-6 for a
discussion of object-level load balancing in WebLogic Server.
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Load Balancing with a Proxy Plug-in

The WebLogic proxy plug-in maintains a list of WebLogic Server instances that host
a clustered servlet or JSP, and forwards HTTP requests to those instances on a
round-robin basis. This load balancing method is described in “Round Robin Load
Balancing” on page 4-8.

The plug-in also provides the logic necessary to locate the replica of a client’s HTTP
session state if a WebLogic Server instance should fail.

WebLogic Server supports the following Web servers and associated proxy plug-ins:

! WebLogic Server with the HttpClusterServlet

! Netscape Enterprise Server with the Netscape (proxy) plug-in

! Apache with the Apache Server (proxy) plug-in

! Microsoft Internet Information Server with the Microsoft-IIS (proxy) plug-in

For instructions on setting up proxy plug-ins, see “Configure Proxy Plug-Ins” on page
7-19.

How Session Connection and Failover Work with a Proxy Plug-in

For a description of connection and failover for HTTP sessions in a cluster with proxy
plug-ins, see “Accessing Clustered Servlets and JSPs Using a Proxy” on page 5-8.

Load Balancing HTTP Sessions with an External Load 
Balancer

Clusters that utilize a hardware load balancing solution can use any load balancing
algorithm supported by the hardware. These can include advanced load-based
balancing strategies that monitor the utilization of individual machines.
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Load Balancer Configuration Requirements

If you choose to use load balancing hardware instead of a proxy plug-in, it must
support a compatible passive or active cookie persistence mechanism, and SSL
persistence.

! Passive Cookie Persistence

Passive cookie persistence enables WebLogic Server to write a cookie containing
session parameter information through the load balancer to the client. For
information about the session cookie and how a load balancer uses session
parameter data to maintain the relationship between the client and the primary
WebLogic Server hosting a HTTP session state, see “Load Balancers and the
WebLogic Session Cookie” on page 4-3.

! Active Cookie Persistence

Certain active cookie persistence mechanisms can be used with WebLogic
Server clusters, provided the load balancer does not modify the WebLogic
Server cookie. WebLogic Server clusters do not support active cookie
persistence mechanisms that overwrite or modify the WebLogic HTTP session
cookie. If the load balancer’s active cookie persistence mechanism works by
adding its own cookie to the client session, no additional configuration is
required to use the load balancer with a WebLogic Server cluster.

! SSL Persistence

When SSL persistence is used, the load balancer performs all encryption and
decryption of data between clients and the WebLogic Server cluster. The load
balancer then uses the plain text cookie that WebLogic Server inserts on the
client to maintain an association between the client and a particular server in the
cluster.

Load Balancers and the WebLogic Session Cookie

A load balancer that uses passive cookie persistence can use a string constant in the
WebLogic session cookie to associate a client with the server hosting its primary
HTTP session state. The string constant uniquely identifies a server instance in the
cluster. You must configure the load balancer with the offset and length of the string
constant. The correct values for the offset and length depend on the format of the
session cookie. To understand the how the format of the session cookie affects the load
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balancer configuration process, see the following section, “Understanding the Session
Cookie.” If your cluster will host WAP-enabled applications, also see “A Special Case:
Session Cookie for WAP-Enabled Applications” on page 4-5.

Understanding the Session Cookie

The basic format of a session cookie is:

where:

! Random Session ID is a randomly generated identifier of the HTTP session. The
length of the value is configured by the IDLength parameter in the
<session-descriptor> element in the weblogic.xml file for an application.
By default, the length of the Random Session ID is 52 bytes.

! String Constant identifies the WebLogic Server instance hosting the session,
including its host machine and listen ports.

In a non-clustered environment, the string constant can be up to 60 bytes long,
with this format:

Primary_JVMID_Differentiator!HOST!PORT!SSLPORT

In a clustered environment, the string constant specifies both the primary and the
secondary WebLogic Server instances for the session—it may be up to 120 bytes
long, with this format:

Primary_JVMID_Differentiator!Host!Port!SSLPort!Secondary_JVMID_
Differentiator!Host!Port!SSLPort

The first 19 bytes of the string constant uniquely identify the primary WebLogic
Server instance.

Note: If your cluster will host WAP-enabled applications, see “A Special Case:
Session Cookie for WAP-Enabled Applications”.

For general instructions on configuring load balancers, see “Configure Load Balancing
Hardware” on page 7-16. Vendor-specific instructions are provided in:

! Configuring Alteon with a WebLogic Server Cluster

Random Session ID 1 byte delimiter String Constant
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! Configuring BIG-IP™ Hardware with Clusters

A Special Case: Session Cookie for WAP-Enabled Applications

Because many wireless devices do not support cookies, an alternative method of
session tracking—URL rewriting—can be used for WAP applications. Because
wireless devices often support only a limited length URL, use of URL rewriting for
WAP-enabled applications requires a reduction in the length of session parameters.

There are two techniques that are used to shorten session parameters that can affect
how you configure your load balancer:

! The length of the Random Session ID can be shortened by editing the value of
the IDLength parameter in the <session -descriptor> element in the
weblogic.xml file for your application. The minimum length for the Random
Session ID is 8 bytes.

! The length of the session parameters that specify the primary and secondary
server instances for the session can be shortened by setting the WAPEnabled
parameter in the config.xml file for the domain to "true". When WAPEnabled

is “true”, the primary and secondary servers are identified in the cookie by short
hash codes.

Shortening the Random Session ID and the session parameters that specify the servers
results in a string constant with this format:

Rand_Sess_ID!Primary_JVMID_HASH!Secondary_JVMID_HASH

where the length of:

Rand_Sess_ID is 8 bytes

Primary_JVMID_HASH is 8 to 10 bytes

SECONDARY_JVMID_HASH is 8 to 10 bytes

For instructions on configuring a load balancer to work with a cluster that hosts
WAP-enabled applications, or in environments with non-standard session cookies, see
“Configuring Load Balancer for Reduced Length Session Parameters
(WAP-Enabled)” on page 7-18.
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Related Programming Considerations 

For programming constraints and recommendations for clustered servlets and JSPs,
see “Programming Considerations for Clustered Servlets and JSPs” on page 5-4.

How Session Connection and Failover Works with a Load Balancer

For a description of connection and failover for HTTP sessions in a cluster with load
balancing hardware, see “Accessing Clustered Servlets and JSPs with Load Balancing
Hardware” on page 5-11.

Load Balancing for EJBs and RMI Objects

WebLogic Server 8.1 introduces three new load balancing algorithms for RMI objects
that provide server affinity. Server affinity turns off load balancing for external client
connections: instead, the client considers its existing connections to WebLogic server
instances when choosing the server instance on which to access an object. If an object
is configured for server affinity, the client-side stub attempts to choose a server
instance to which it is already connected, and continues to use the same server instance
for method calls. All stubs on that client attempt to use that server instance. If the server
instance becomes unavailable, the stubs fail over, if possible, to a server instance to
which the client is already connected.

The purpose of server affinity is to minimize the number IP sockets opened between
external Java clients and server instances in a cluster. WebLogic Server accomplishes
this by causing method calls on objects to “stick” to an existing connection, instead of
being load balanced among the available server instances. With server affinity
algorithms, the less costly server-to-server connections are still load-balanced
according to the configured load balancing algorithm—load balancing is disabled only
for external client connections.

Server affinity is used in combination with one of the standard load balancing methods:
round-robin, weight-based, or random, providing a total of six alternatives for load
balancing objects:

! round-robin—round robin load balancing is used for both internal and external
connections.
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! weight-based—weight-based load balancing is used for both internal and
external connections.

! random—random load balancing is used for both internal and external
connections.

! round-robin-affinity—server affinity governs connections between external Java
clients and server instances; round robin load balancing is used for connections
between server instances.

! weight-based-affinity—server affinity governs connections between external
Java clients and server instances; weight-based load balancing is used for
connections between server instances.

! random-affinity—server affinity governs connections between external Java
clients and server instances; random load balancing is used for connections
between server instances.

By default, a WebLogic Server cluster uses round-robin load balancing for objects.
You can configure a different default load balancing method for the cluster as a whole
by using the Administration Console to set
weblogic.cluster.defaultLoadAlgorithm. For instructions, see “Configure
Load Balancing Method for EJBs and RMIs” on page 7-15.

You can also specify the load balancing algorithm for a specific RMI object using the
-loadAlgorithm option in rmic, or with the home-load-algorithm or
stateless-bean-load-algorithm in an EJB’s deployment descriptor. A load
balancing algorithm that you configure for an object overrides the default load
balancing algorithm for the cluster.

The load balancing algorithm for an object is maintained in the replica-aware stub
obtained for a clustered object.

To understand WebLogic load balancing algorithms for RMI objects and EJBs, see:

! “Round Robin Load Balancing” on page 4-8

! “Weight-Based Load Balancing” on page 4-9

! “Random Load Balancing” on page 4-10

! “Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity” on page
4-10
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In addition to the standard load balancing algorithms, WebLogic Server supports
custom parameter-based routing. For more information, see “Parameter-Based
Routing for Clustered Objects” on page 4-15.

Server Affinity and Initial Context

A client can request an initial context from a particular server instance in the cluster,
or from the cluster by specifying the cluster address in the URL. The connection
process varies, depending on how the context is obtained:

! If the initial context is requested from a specific Managed Server, the context is
obtained using a new connection to the specified server instance.

! If the initial context is requested from a the cluster, by default, context requests
are load balanced on a round-robin basis among the clustered server instances.
To reuse an existing connection between a particular JVM and the cluster, set
ENABLE_SERVER_AFFINITY to true in the hashtable of
weblogic.jndi.WLContext properties you specify when obtaining context. (If
a connection is not available, a new connection is created.)
ENABLE_SERVER_AFFINITY is only supported when the context is requested
from the cluster address.

Load Balancing Algorithms for RMI Objects and EJBs

This following sections describes the standard load balancing methods available in a
WebLogic Server cluster.

Round Robin Load Balancing 

WebLogic Server uses the round-robin algorithm as the default load balancing strategy
for clustered object stubs when no algorithm is specified. This algorithm is supported
for RMI objects and EJBs. It is also the method used by WebLogic proxy plug-ins.

The round-robin algorithm cycles through a list of WebLogic Server instances in order.
For clustered objects, the server list consists of WebLogic Server instances that host
the clustered object. For proxy plug-ins, the list consists of all WebLogic Server
instances that host the clustered servlet or JSP.
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The advantages of the round-robin algorithm are that it is simple, cheap and very
predictable. The primary disadvantage is that there is some chance of convoying.
Convoying occurs when one server is significantly slower than the others. Because
replica-aware stubs or proxy plug-ins access the servers in the same order, a slow
server can cause requests to “synchronize” on the server, then follow other servers in
order for future requests.

Note: WebLogic Server does not always load balance an object’s method calls. For
more information, see “Optimization for Collocated Objects” on page 4-15.

Weight-Based Load Balancing 

This algorithm applies only to EJB and RMI object clustering.

Weight-based load balancing improves on the round-robin algorithm by taking into
account a pre-assigned weight for each server. You can use the Server ->
Configuration -> Cluster tab in the Administration Console to assign each server in the
cluster a numerical weight between 1 and 100, in the Cluster Weight field. This value
determines what proportion of the load the server will bear relative to other servers. If
all servers have the same weight, they will each bear an equal proportion of the load.
If one server has weight 50 and all other servers have weight 100, the 50-weight server
will bear half as much as any other server. This algorithm makes it possible to apply
the advantages of the round-robin algorithm to clusters that are not homogeneous.

If you use the weight-based algorithm, carefully determine the relative weights to
assign to each server instance. Factors to consider include:

! The processing capacity of the server’s hardware in relationship to other servers
(for example, the number and performance of CPUs dedicated to WebLogic
Server).

! The number of non-clustered (“pinned”) objects each server hosts.

If you change the specified weight of a server and reboot it, the new weighting
information is propagated throughout the cluster via the replica-aware stubs. For
related information see “Cluster-Wide JNDI Naming Service” on page 2-9.

Note: WebLogic Server does not always load balance an object’s method calls. For
more information, see “Optimization for Collocated Objects” on page 4-15.
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Random Load Balancing

The random method of load balancing applies only to EJB and RMI object clustering.

In random load balancing, requests are routed to servers at random. Random load
balancing is recommended only for homogeneous cluster deployments, where each
server instance runs on a similarly configured machine. A random allocation of
requests does not allow for differences in processing power among the machines upon
which server instances run. If a machine hosting servers in a cluster has significantly
less processing power than other machines in the cluster, random load balancing will
give the less powerful machine as many requests as it gives more powerful machines.

Random load balancing distributes requests evenly across server instances in the
cluster, increasingly so as the cumulative number of requests increases. Over a small
number of requests the load may not be balanced exactly evenly.

Disadvantages of random load balancing include the slight processing overhead
incurred by generating a random number for each request, and the possibility that the
load may not be evenly balanced over a small number of requests.

Note: WebLogic Server does not always load balance an object’s method calls. For
more information, see “Optimization for Collocated Objects” on page 4-15.

Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity

WebLogic Server 8.1 introduces three new load balancing algorithms that provide
server affinity:

! round-robin-affinity

! weight-based-affinity

! random-affinity

Server affinity is supported for all types of RMI objects including JMS objects, all EJB
home interfaces, and stateless EJB remote interfaces.

The server affinity algorithms consider existing connections between an external Java
client and server instances in balancing the client load among WebLogic server
instances. Server affinity:

! turns off load balancing between external Java clients and server instances
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! causes method calls from an external Java client to stick to a server instance to
which the client has an open connection, assuming that the connection supports
the necessary protocol and QOS

! in the case of failure, causes the client to failover to a server instance to which it
has an open connection, assuming that the connection supports the necessary
protocol and QOS

! does not affect the load balancing performed for server-to-server connections

Server Affinity Examples

The following examples illustrate the effect of server affinity under a variety of
circumstances. In each example, the objects deployed are configured for
round-robin-affinity.

Example 1—Context from cluster. In this example, the client obtains context
from the cluster. Lookups on the context and object calls stick to a single connection.
Requests for new initial context are load balanced on a round-robin basis.
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1. Client requests a new initial context from the cluster
(Provider_URL=clusteraddress) and obtains the context from MS1.

2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Client issues a call to Object A. The call goes to MS1, to which the client is
already connected. Additional method calls to Object A stick to MS1.

4. Client requests a new initial context from the cluster
(Provider_URL=clusteraddress) and obtains the context from MS2.

5. Client does a lookup on the context for Object B. The call goes to MS2, to which
the client is already connected. Additional method calls to Object B stick to MS2.

Client

Stub A

A
B

A
B

A
B
C

Objects

Objects

Objects

MS1

MS2

MS3

Calls on B

NewIC (clusteraddress)
IC.lookup A

IC.lookup B

Calls on A

load algorithm: round-robin-affinity
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Example 2—Server affinity and failover. This example illustrates the
effect that server affinity has on object failover. When a Managed Server goes down,
the client fails over to another Managed Server to which it has a connection.

1. Client requests new initial context from MS1.

2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Client makes a call to Object A. The call goes to MS1, to which the client is
already connected. Additional calls to Object A stick to MS1.

4. The client obtains a stub for Object C, which is pinned to MS3. The client opens
a connection to MS3.

5. MS1 fails.
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6. Client makes a call to Object A.The client no longer has a connection to MS1.
Because the client is connected to MS3, it fails over to a replica of Object A on
MS3.

Example 3—Server affinity and server-to-server connections. This
example illustrates the fact that server affinity does not affect the connections between
server instances.

1. A JSP on MS4 obtains a stub for Object B.

2. The JSP selects a replica on MS1. For each method call, the JSP cycles through
the Managed Servers upon which Object B is available, on a round-robin basis.

JSP

F
ir

e
w

a
ll

A
B A

B

A
B
C

Objects
Objects

Objects

MS1
MS2

MS3U
n

tr
u

s
te

d

Stub B

load algorithm: round-robin-affinity

MS4
4-14 Using WebLogic Server Clusters



Load Balancing for EJBs and RMI Objects
Parameter-Based Routing for Clustered Objects

Parameter-based routing allows you to control load balancing behavior at a lower
level. Any clustered object can be assigned a CallRouter. This is a class that is called
before each invocation with the parameters of the call. The CallRouter is free to
examine the parameters and return the name server to which the call should be routed.
For information about creating custom CallRouter classes, see Appendix A, “The
WebLogic Cluster API.”

Optimization for Collocated Objects

WebLogic Server does not always load balance an object’s method calls. In most
cases, it is more efficient to use a replica that is collocated with the stub itself, rather
than using a replica that resides on a remote server. The following figure illustrates
this.

Figure 4-1 Collocation Optimization Overrides Load Balancer Logic for Method
Call

In this example, a client connects to a servlet hosted by the first WebLogic Server
instance in the cluster. In response to client activity, the servlet obtains a replica-aware
stub for Object A. Because a replica of Object A is also available on the same server
instance, the object is said to be collocated with the client’s stub.
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4 Load Balancing in a Cluster
WebLogic Server always uses the local, collocated copy of Object A, rather than
distributing the client’s calls to other replicas of Object A in the cluster. It is more
efficient to use the local copy, because doing so avoids the network overhead of
establishing peer connections to other servers in the cluster.

This optimization is often overlooked when planning WebLogic Server clusters. The
collocation optimization is also frequently confusing for administrators or developers
who expect or require load balancing on each method call. If your Web application is
deployed to a single cluster, the collocation optimization overrides any load balancing
logic inherent in the replica-aware stub.

If you require load balancing on each method call to a clustered object, see
“Recommended Multi-Tier Architecture” on page 6-6 for information about how to
plan your WebLogic Server cluster accordingly.

Transactional Collocation

As an extension to the basic collocation strategy, WebLogic Server attempts to use
collocated clustered objects that are enlisted as part of the same transaction. When a
client creates a UserTransaction object, WebLogic Server attempts to use object
replicas that are collocated with the transaction. This optimization is depicted in the
figure below.
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Figure 4-2 Collocation Optimization Extends to Other Objects in Transaction

In this example, a client attaches to the first WebLogic Server instance in the cluster
and obtains a UserTransaction object. After beginning a new transaction, the client
looks up Objects A and B to do the work of the transaction. In this situation WebLogic
Server always attempts to use replicas of A and B that reside on the same server as the
UserTransaction object, regardless of the load balancing strategies in the stubs for
A and B.

This transactional collocation strategy is even more important than the basic
optimization described in “Optimization for Collocated Objects” on page 4-15. If
remote replicas of A and B were used, added network overhead would be incurred for
the duration of the transaction, because the peer connections for A and B would be
locked until the transaction committed. Furthermore, WebLogic Server would need to
employ a multi-tiered JDBC connection to commit the transaction, incurring
additional network overhead.
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By using collocating clustered objects during a transaction, WebLogic Server reduces
the network load for accessing the individual objects. The server also can make use of
a single-tiered JDBC connection, rather than a multi-tiered connection, to do the work
of the transaction.

Load Balancing for JMS

WebLogic Server JMS supports server affinity for distributed JMS destinations and
client connections.

By default, a WebLogic Server cluster uses the round-robin method to load balance
objects. To use a load balancing algorithm that provides server affinity for JMS
objects, you must configure the desired method for the cluster as a whole. You can
configure the load balancing algorithm by using the Administration Console to set
weblogic.cluster.defaultLoadAlgorithm. For instructions, see “Configure
Load Balancing Method for EJBs and RMIs” on page 7-15.

Server Affinity for Distributed JMS Destinations 

Server affinity is supported for JMS applications that use the distributed destination
feature; this feature is not supported for standalone destinations.

If you configure server affinity for JMS connection factories, a server instance that is
load balancing consumers or producers across multiple physical destinations in a
distributed destination set will attempt to load balance across any destinations that are
running on the same a server instance.

For instructions to configure server affinity for distributed JMS destinations, see
“Tuning Distributed Destinations” in Administration Console Online Help.
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 Initial Context Affinity and Server Affinity for Client 
Connections 

A system administrator can establish load balancing of JMS destinations across
multiple servers in a cluster by configuring multiple JMS servers and using targets to
assign them to the defined WebLogic Servers. Each JMS server is deployed on exactly
one WebLogic Server and handles requests for a set of destinations. During the
configuration phase, the system administrator enables load balancing by specifying
targets for JMS servers. For instructions on setting up targets, see “Configure
Migratable Targets for Pinned Services” on page 7-23. For instructions on deploying
a JMS server to a migratable target, see “Deploying, Activating, and Migrating
Migratable Services” on page 7-29.

A system administrator can establish cluster-wide, transparent access to destinations
from any server in the cluster by configuring multiple connection factories and using
targets to assign them to WebLogic Servers. Each connection factory can be deployed
on multiple WebLogic Servers. Connection factories are described in more detail in
“Connection Factory” in Programming WebLogic JMS.

The application uses the Java Naming and Directory Interface (JNDI) to look up a
connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for a set of destinations. Requests for
destinations not handled by a JMS server are forwarded to the appropriate server.

WebLogic Server 8.1 provides server affinity for client connections. If an application
has a connection to a given server instance, JMS will attempt to establish new JMS
connections to the same server instance.

When creating a connection, JMS will try first to achieve initial context affinity. It will
attempt to connect to the same server or servers to which a client connected for its
initial context, assuming that the server instance is configured for that connection
factory. For example, if the connection factory is configured for servers A and B, but
the client has an InitialContext on server C, then the connection factory will not
establish the new connection with A, but will choose between servers B and C.

If a connection factory cannot achieve initial context affinity, it will try to provide
affinity to a server to which the client is already connected. For instance, assume the
client has an InitialContext on server A and some other type of connection to server B.
If the client then uses a connection factory configured for servers B and C it will not
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4 Load Balancing in a Cluster
achieve initial context affinity. The connection factory will instead attempt to achieve
server affinity by trying to create a connection to server B, to which it already has a
connection, rather than server C.

If a connection factory cannot provide either initial context affinity or server affinity,
then the connection factory is free to make a connection wherever possible. For
instance, assume a client has an initial context on server A, no other connections and
a connection factory configured for servers B and C. The connection factory is unable
to provide any affinity and is free to attempt new connections to either server B or C.

Note: In the last case, if the client attempts to make a second connection using the
same connection factory, it will go to the same server as it did on the first
attempt. That is, if it chose server B for the first connection, when the second
connection is made, the client will have a connection to server B and the server
affinity rule will be enforced.

Load Balancing for JDBC Connections

Load balancing of JDBC connection requires the use of a multipool configured for load
balancing. Load balancing support is an option you can choose when configuring a
multipool.

A load balancing multipool provides the high available behavior described in
“Failover and JDBC Connections” on page 5-25, and in addition, balances the load
among the connection pools in the multipool. A multipool has an ordered list of
connection pools it contains. If you do not configure the multipool for load balancing,
it always attempts to obtain a connection from the first connection pool in the list. In a
load-balancing multipool, the connection pools it contains are accessed using a
round-robin scheme. In each successive client request for a multipool connection, the
list is rotated so the first pool tapped cycles around the list.

For instructions on clustering JDBC objects, see “Configure Clustered JDBC” on page
7-24.
4-20 Using WebLogic Server Clusters



CHAPTER
5 Failover and 
Replication in a Cluster

In order for a cluster to provide high availability it must be able to recover from service
failures. The following sections describe how WebLogic Server detect failures in a
cluster, and provides an overview of how failover is accomplished for different types
of objects:

! “How WebLogic Server Detects Failures” on page 5-1

! “Replication and Failover for Servlets and JSPs” on page 5-3

! “Replication and Failover for EJBs and RMIs” on page 5-14

! “Migration for Pinned Services” on page 5-22

! “Failover and JDBC Connections” on page 5-25

How WebLogic Server Detects Failures

WebLogic Server instances in a cluster detect failures of their peer server instances by
monitoring:

! Socket connections to a peer server

! Regular server heartbeat messages
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Failure Detection Using IP Sockets

WebLogic Server instances monitor the use of IP sockets between peer server
instances as an immediate method of detecting failures. If a server connects to one of
its peers in a cluster and begins transmitting data over a socket, an unexpected closure
of that socket causes the peer server to be marked as “failed,” and its associated
services are removed from the JNDI naming tree.

The WebLogic Server “Heartbeat”

If clustered server instances do not have opened sockets for peer-to-peer
communication, failed servers may also be detected via the WebLogic Server
heartbeat. All server instances in a cluster use multicast to broadcast regular server
heartbeat messages to other members of the cluster. Each heartbeat message contains
data that uniquely identifies the server that sends the message. Servers broadcast their
heartbeat messages at regular intervals of 10 seconds. In turn, each server in a cluster
monitors the multicast address to ensure that all peer servers’ heartbeat messages are
being sent.

If a server monitoring the multicast address misses three heartbeats from a peer server
(i.e., if it does not receive a heartbeat from the server for 30 seconds or longer), the
monitoring server marks the peer server as “failed.” It then updates its local JNDI tree,
if necessary, to retract the services that were hosted on the failed server.

In this way, servers can detect failures even if they have no sockets open for
peer-to-peer communication.

Note: For more information about how WebLogic Server uses IP sockets and
multicast communications see “WebLogic Server Communication in a
Cluster” on page 2-1.
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Replication and Failover for Servlets and 
JSPs 

In clusters that utilize Web servers with WebLogic proxy plug-ins, the proxy plug-in
handles failover transparently to the client. If a server fails, the plug-in locates the
replicated HTTP session state on a secondary server and redirects the client’s request
accordingly.

For clusters that use a supported hardware load balancing solution, the load balancing
hardware simply redirects client requests to any available server in the WebLogic
Server cluster. The cluster itself obtains the replica of the client’s HTTP session state
from a secondary server in the cluster.

HTTP Session State Replication

To support automatic failover for servlet and JSP HTTP session states, WebLogic
Server replicates the session state in memory. WebLogic Server creates a primary
session state on the server to which the client first connects, and a secondary replica on
another WebLogic Server instance in the cluster. The replica is kept up-to-date so that
it may be used if the server that hosts the servlet fails. The process of copying a session
state from one server instance to another is called in-memory replication.

Note: WebLogic Server can also maintain the HTTP session state of a servlet or JSP
using file-based or JDBC-based persistence. For more information on these
persistence mechanisms, see “Configuring Session Persistence” in
Programming WebLogic HTTP Servlets.

Requirements for HTTP Session State Replication

To utilize in-memory replication for HTTP session states, you must access the
WebLogic Server cluster using either a collection of Web servers with identically
configured WebLogic proxy plug-ins, or load balancing hardware.
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Supported Server and Proxy Software

The WebLogic proxy plug-in maintains a list of WebLogic Server instances that host
a clustered servlet or JSP, and forwards HTTP requests to those instances using a
round-robin strategy. The plug-in also provides the logic necessary to locate the replica
of a client’s HTTP session state if a WebLogic Server instance should fail.

In-memory replication for HTTP session states is supported by the following Web
server and proxy software:

! WebLogic Server with the HttpClusterServlet

! Netscape Enterprise Server with the Netscape (proxy) plug-in

! Apache with the Apache Server (proxy) plug-in

! Microsoft Internet Information Server with the Microsoft-IIS (proxy) plug-in

For instructions on setting up proxy plug-ins, see “Configure Proxy Plug-Ins” on page
7-19.

Load Balancer Requirements

If you choose to use load balancing hardware instead of a proxy plug-in, it must
support a compatible passive or active cookie persistence mechanism, and SSL
persistence. For details on these requirements, see “Load Balancer Configuration
Requirements” on page 4-3. For instructions on setting up a load balancer, see
“Configure Load Balancing Hardware” on page 7-16.

Programming Considerations for Clustered Servlets and JSPs

This section highlights key programming constraints and recommendations for
servlets and JSPs that you will deploy in a clustered environment.

! Session Data Must Be Serializable

To support in-memory replication of HTTP session states, all servlet and JSP
session data must be serializable.

Note: Serialization is the process of converting a complex data structure, such as a
parallel arrangement of data (in which a number of bits are transmitted at a
time along parallel channels) into a serial form (in which one bit at a time is
transmitted); a serial interface provides this conversion to enable data
transmission.
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Every field in an object must be serializable or transient in order for the object to
be considered serializable. If the servlet or JSP uses a combination of
serializable and non-serializable objects, WebLogic Server does not replicate the
session state of the non-serializable objects.

! Use setAttribute to Change Session State

In an HTTP servlet that implements javax.servlet.http.HttpSession, use
HttpSession.setAttribute (which replaces the deprecated putValue) to
change attributes in a session object. If you set attributes in a session object with
setAttribute, the object and its attributes are replicated in a cluster using
in-memory replication. If you use other set methods to change objects within a
session, WebLogic Server does not replicate those changes. Every time a change
is made to an object that is in the session, setAttribute() should be called to
update that object across the cluster.

Likewise, use removeAttribute (which, in turn, replaces the deprecated
removeValue) to remove an attribute from a session object.

Note: Use of the deprecated putValue and removeValue methods will also cause
session attributes to be replicated.

! Consider Serialization Overhead

Serializing session data introduces some overhead for replicating the session
state. The overhead increases as the size of serialized objects grows. If you plan
to create very large objects in the session, test the performance of your servlets
to ensure that performance is acceptable.

! Control Frame Access to Session Data

If you are designing a Web application that utilizes multiple frames, keep in
mind that there is no synchronization of requests made by frames in a given
frameset. For example, it is possible for multiple frames in a frameset to create
multiple sessions on behalf of the client application, even though the client
should logically create only a single session.

In a clustered environment, poor coordination of frame requests can cause
unexpected application behavior. For example, multiple frame requests can
“reset” the application’s association with a clustered instance, because the proxy
plug-in treats each request independently. It is also possible for an application to
corrupt session data by modifying the same session attribute via multiple frames
in a frameset.
Using WebLogic Server Clusters 5-5



5 Failover and Replication in a Cluster
To avoid unexpected application behavior, carefully plan how you access session
data with frames. You can apply one of the following general rules to avoid
common problems:

" In a given frameset, ensure that only one frame creates and modifies session
data.

" Always create the session in a frame of the first frameset your application
uses (for example, create the session in the first HTML page that is visited).
After the session has been created, access the session data only in framesets
other than the first frameset.

Using Replication Groups

By default, WebLogic Server attempts to create session state replicas on a different
machine than the one that hosts the primary session state. You can further control
where secondary states are placed using replication groups. A replication group is a
preferred list of clustered servers to be used for storing session state replicas.

Using the WebLogic Server Console, you can define unique machine names that will
host individual server instances. These machine names can be associated with new
WebLogic Server instances to identify where the servers reside in your system.

Machine names are generally used to indicate servers that run on the same machine.
For example, you would assign the same machine name to all server instances that run
on the same machine, or the same server hardware.

If you do not run multiple WebLogic Server instances on a single machine, you do not
need to specify WebLogic Server machine names. Servers without a machine name are
treated as though they reside on separate machines. For detailed instructions on setting
machine names, see “Configure Machine Names” on page 7-37.

When you configure a clustered server instance, you can assign the server to a
replication group, and a preferred secondary replication group for hosting replicas of
the primary HTTP session states created on the server.

When a client attaches to a server in the cluster and creates a primary session state, the
server hosting the primary state ranks other servers in the cluster to determine which
server should host the secondary. Server ranks are assigned using a combination of the
server’s location (whether or not it resides on the same machine as the primary server)
and its participation in the primary server’s preferred replication group. The following
table shows the relative ranking of servers in a cluster.
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Using these rules, the primary WebLogic Server ranks other members of the cluster
and chooses the highest-ranked server to host the secondary session state. For example,
the following figure shows replication groups configured for different geographic
locations.

Figure 5-1 Replication Groups for Different Geographic Locations

In this example, Servers A, B, and C are members of the replication group
“Headquarters” and use the preferred secondary replication group “Crosstown.”
Conversely, Servers X, Y, and Z are members of the “Crosstown” group and use the
preferred secondary replication group “Headquarters.” Servers A, B, and X reside on
the same machine, “sardina.”

Server
Rank

Server Resides on a
Different Machine?

Server Is a Member of Preferred
Replication Group?

1 Yes Yes

2 No Yes

3 Yes No

4 No No
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If a client connects to Server A and creates an HTTP session state,

! Servers Y and Z are most likely to host the replica of this state, since they reside
on separate machines and are members of Server A’s preferred secondary group.

! Server X holds the next-highest ranking because it is also a member of the
preferred replication group (even though it resides on the same machine as the
primary.)

! Server C holds the third-highest ranking since it resides on a separate machine
but is not a member of the preferred secondary group.

! Server B holds the lowest ranking, because it resides on the same machine as
Server A (and could potentially fail along with A if there is a hardware failure)
and it is not a member of the preferred secondary group.

To configure a server’s membership in a replication group, or to assign a server’s
preferred secondary replication group, follow the instructions in “Configure
Replication Groups” on page 7-22.

Accessing Clustered Servlets and JSPs Using a Proxy

This section describes the connection and failover processes for requests that are
proxied to clustered servlets and JSPs. For instructions on setting up proxy plug-ins,
see “Configure Proxy Plug-Ins” on page 7-19.

The following figure depicts a client accessing a servlet hosted in a cluster. This
example uses a single WebLogic Server to serve static HTTP requests only; all servlet
requests are forwarded to the WebLogic Server cluster via the HttpClusterServlet.
5-8 Using WebLogic Server Clusters



Replication and Failover for Servlets and JSPs
Figure 5-2 Accessing Servlets and JSPs using a Proxy

Note: The discussion that follows also applies if you use a third-party Web server
and WebLogic proxy plug-in, rather than WebLogic Server and the
HttpClusterServlet.

Proxy Connection Procedure

When the HTTP client requests the servlet, HttpClusterServlet proxies the request
to the WebLogic Server cluster. HttpClusterServletmaintains the list of all servers
in the cluster, and the load balancing logic to use when accessing the cluster. In the
above example, HttpClusterServlet routes the client request to the servlet hosted
on WebLogic Server A. WebLogic Server A becomes the primary server hosting the
client’s servlet session.

To provide failover services for the servlet, the primary server replicates the client’s
servlet session state to a secondary WebLogic Server in the cluster. This ensures that
a replica of the session state exists even if the primary server fails (for example, due to
a network failure). In the example above, Server B is selected as the secondary.
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The servlet page is returned to the client through the HttpClusterServlet, and the
client browser is instructed to write a cookie that lists the primary and secondary
locations of the servlet session state. If the client browser does not support cookies,
WebLogic Server can use URL rewriting instead.

Using URL Rewriting to Track Session Replicas

In its default configuration, WebLogic Server uses client-side cookies to keep track of
the primary and secondary server that host the client’s servlet session state. If client
browsers have disabled cookie usage, WebLogic Server can also keep track of primary
and secondary servers using URL rewriting. With URL rewriting, both locations of the
client session state are embedded into the URLs passed between the client and proxy
server. To support this feature, you must ensure that URL rewriting is enabled on the
WebLogic Server cluster. For instructions on how to enable URL rewriting, see “Using
URL Rewriting”, in Assembling and Configuring Web Applications.

Proxy Failover Procedure

Should the primary server fail, HttpClusterServlet uses the client’s cookie
information to determine the location of the secondary WebLogic Server that hosts the
replica of the session state. HttpClusterServlet automatically redirects the client’s
next HTTP request to the secondary server, and failover is transparent to the client.

After the failure, WebLogic Server B becomes the primary server hosting the servlet
session state, and a new secondary is created (Server C in the previous example). In
the HTTP response, the proxy updates the client’s cookie to reflect the new primary
and secondary servers, to account for the possibility of subsequent failovers.

In a two-server cluster, the client would transparently fail over to the server hosting the
secondary session state. However, replication of the client’s session state would not
continue unless another WebLogic Server became available and joined the cluster. For
example, if the original primary server was restarted or reconnected to the network, it
would be used to host the secondary session state.
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Accessing Clustered Servlets and JSPs with Load 
Balancing Hardware

To support direct client access via load balancing hardware, the WebLogic Server
replication system allows clients to use secondary session states regardless of the
server to which the client fails over. WebLogic Server uses client-side cookies or URL
rewriting to record primary and secondary server locations. However, this information
is used only as a history of the servlet session state location; when accessing a cluster
via load balancing hardware, clients do not use the cookie information to actively
locate a server after a failure.

The following sections describe the connection and failover procedure when using
HTTP session state replication with load balancing hardware.

Connection with Load Balancing Hardware

The following figure illustrates the connection procedure for a client accessing a
cluster through a load balancer.
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Figure 5-3 Connection with Load Balancing Hardware

When the client of a Web application requests a servlet using a public IP address:

1. The load balancer routes the client’s connection request to a WebLogic Server
cluster in accordance with its configured policies. It directs the request to
WebLogic Server A.

2. WebLogic Server A acts as the primary host of the client’s servlet session state. It
uses the ranking system described in “Using Replication Groups” on page 5-6 to
select a server to host the replica of the session state. In the example above,
WebLogic Server B is selected to host the replica.

3. The client is instructed to record the location of WebLogic Server instances A
and B in a local cookie. If the client does not allow cookies, the record of the
primary and secondary servers can be recorded in the URL returned to the client
via URL rewriting.

Note: You must enable WebLogic Server URL rewriting capabilities to support
clients that disallow cookies, as described in “Using URL Rewriting to Track
Session Replicas” on page 5-10.
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4. As the client makes additional requests to the cluster, the load balancer uses an
identifier in the client-side cookie to ensure that those requests continue to go to
WebLogic Server A (rather than being load-balanced to another server in the
cluster). This ensures that the client remains associated with the server hosting
the primary session object for the life of the session.

Failover with Load Balancing Hardware

Should Server A fail during the course of the client’s session, the client’s next
connection request to Server A also fails, as illustrated in the following figure.

Figure 5-4 Failover with Load Balancing Hardware

In response to the connection failure:

1. The load balancing hardware uses its configured policies to direct the request to an
available WebLogic Server in the cluster. In the above example, assume that the
load balancer routes the client’s request to WebLogic Server C after WebLogic
Server A fails.
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2. When the client connects to WebLogic Server C, the server uses the information
in the client’s cookie (or the information in the HTTP request if URL rewriting is
used) to acquire the session state replica on WebLogic Server B. The failover
process remains completely transparent to the client.

WebLogic Server C becomes the new host for the client’s primary session state, and
WebLogic Server B continues to host the session state replica. This new information
about the primary and secondary host is again updated in the client’s cookie, or via
URL rewriting.

Replication and Failover for EJBs and RMIs

For clustered EJBs and RMIs, failover is accomplished using the object’s
replica-aware stub. When a client makes a call through a replica-aware stub to a service
that fails, the stub detects the failure and retries the call on another replica.

With clustered objects, automatic failover generally occurs only in cases where the
object is idempotent. An object is idempotent if any method can be called multiple
times with no different effect than calling the method once. This is always true for
methods that have no permanent side effects. Methods that do have side effects have
to be written with idempotence in mind.

Consider a shopping cart service call addItem() that adds an item to a shopping cart.
Suppose client C invokes this call on a replica on Server S1. After S1 receives the call,
but before it successfully returns to C, S1 crashes. At this point the item has been added
to the shopping cart, but the replica-aware stub has received an exception. If the stub
were to retry the method on Server S2, the item would be added a second time to the
shopping cart. Because of this, replica-aware stubs will not, by default, attempt to retry
a method that fails after the request is sent but before it returns. This behavior can be
overridden by marking a service idempotent. For more information see “Session EJBs
in a Cluster”, in Programming WebLogic Enterprise JavaBeans.
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Clustering Objects with Replica-Aware Stubs 

If an EJB or RMI object is clustered, instances of the object are deployed on all
WebLogic Server instances in the cluster. The client has a choice about which instance
of the object to call. Each instance of the object is referred to as a replica.

The key technology that supports object clustering objects in WebLogic Server is the
replica-aware stub. When you compile an EJB that supports clustering (as defined in
its deployment descriptor), appc passes the EJB’s interfaces through the rmic
compiler to generate replica-aware stubs for the bean. For RMI objects, you generate
replica-aware stubs explicitly using command-line options to rmic, as described in
“WebLogic RMI Compiler,” in Programming WebLogic RMI.

A replica-aware stub appears to the caller as a normal RMI stub. Instead of
representing a single object, however, the stub represents a collection of replicas. The
replica-aware stub contains the logic required to locate an EJB or RMI class on any
WebLogic Server instance on which the object is deployed. When you deploy a
cluster-aware EJB or RMI object, its implementation is bound into the JNDI tree. As
described in “Cluster-Wide JNDI Naming Service” on page 2-9, clustered WebLogic
Server instances have the capability to update the JNDI tree to list all server instances
on which the object is available. When a client accesses a clustered object, the
implementation is replaced by a replica-aware stub, which is sent to the client.

The stub contains the load balancing algorithm (or the call routing class) used to load
balance method calls to the object. On each call, the stub can employ its load algorithm
to choose which replica to call. This provides load balancing across the cluster in a way
that is transparent to the caller. To understand the load balancing algorithms available
for RMI objects and EJBs, see “Load Balancing for EJBs and RMI Objects” on page
4-6. If a failure occurs during the call, the stub intercepts the exception and retries the
call on another replica. This provides a failover that is also transparent to the caller.

Clustering Support for Different Types of EJBs

EJBs differ from plain RMI objects in that each EJB can potentially generate two
different replica-aware stubs: one for the EJBHome interface and one for the
EJBObject interface. This means that EJBs can potentially realize the benefits of load
balancing and failover on two levels:

! When a client looks up an EJB object using the EJBHome stub
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! When a client makes method calls against the EJB using the EJBObject stub

The following sections describe clustering support for different types of EJBs. See
"EJBs in WebLogic Server Clusters" in Programming WebLogic Enterprise
JavaBeans for a detailed explanation of the clustering behavior for different EJB types.

EJB Home Stubs

All bean homes can be clustered. When a bean is deployed on a server, its home is
bound into the cluster-wide naming service. Because homes can be clustered, each
server can bind an instance of the home under the same name. When a client looks up
this home, it gets a replica-aware stub that has a reference to the home on each server
that deployed the bean. When create() or find() is called, the replica-aware stub
routes the call to one of the replicas. The home replica receives the find() results or
creates an instance of the bean on this server.

Note: In WebLogic Server 8.1, new load balancing algorithms provide server
affinity for EJB home interfaces. To understand server affinity and how it
affects load balancing and failover, see “Round-Robin Affinity, Weight-Based
Affinity, and Random-Affinity” on page 4-10.

Stateless EJBs

When a home creates a stateless bean, it returns a replica-aware EJBObject stub that
can route to any server on which the bean is deployed. Because a stateless bean holds
no state on behalf of the client, the stub is free to route any call to any server that hosts
the bean. Also, because the bean is clustered, the stub can automatically fail over in the
event of a failure. The stub does not automatically treat the bean as idempotent, so it
will not recover automatically from all failures. If the bean has been written with
idempotent methods, this can be noted in the deployment descriptor and automatic
failover will be enabled in all cases.

Note: In WebLogic Server 8.1, new load balancing algorithms provide server
affinity for stateless EJB remote interfaces. To understand server affinity and
how it affects load balancing and failover, see “Round-Robin Affinity,
Weight-Based Affinity, and Random-Affinity” on page 4-10.
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Stateful EJBs

As with all EJBs, clustered stateful session EJBs utilize a replica-aware EJBHome stub.
If you use stateful session EJB replication, the EJB also utilizes a replica-aware
EJBObject stub that maintains the location of the EJB’s primary and secondary states.
The state of the EJB is maintained using a replication scheme similar to that used for
HTTP session state. Replication for stateful session EJBs is described in the following
sections.

Stateful Session Bean Replication

The state replication method WebLogic Server uses for stateful session EJBs is similar
to the method it uses for replicating HTTP session states. When a client creates the
EJBObject stub, the point-of-contact WebLogic Server instance automatically selects
a secondary server instance to host the replicated state of the EJB. Secondary server
instances are selected using the same rules defined in “Using Replication Groups” on
page 5-6. For example, you can define a collection of WebLogic Server instances to
act as a replication group for hosting replicating stateful session EJB data.

The client receives a replica-aware stub that lists the location of the primary and
secondary servers in the cluster that host the EJB’s state. The following figure shows
a client accessing a clustered stateful session EJB.
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Figure 5-5 Client Accessing Stateful Session EJB

The primary server hosts the actual instance of the EJB that the client interacts with.
The secondary server hosts only the replicated state of the EJB, which consumes a
small amount of memory. The secondary sever does not create an actual instance of
the EJB unless a failover occurs. This ensures minimal resource usage on the
secondary server; you do not need to configure additional EJB resources to account for
replicated EJB states.

Replicating EJB State Changes

As the client makes changes to the state of the EJB, state differences are replicated to
the secondary server instance. For EJBs that are involved in a transaction, replication
occurs immediately after the transaction commits. For EJBs that are not involved in a
transaction, replication occurs after each method invocation.

In both cases, only the actual changes to the EJB’s state are replicated to the secondary
server. This ensures that there is minimal overhead associated with the replication
process.
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Note: The actual state of a stateful EJB is non-transactional, as described in the EJB
specification. Although it is unlikely, there is a possibility that the current state
of the EJB can be lost. For example, if a client commits a transaction involving
the EJB and there is a failure of the primary server before the state change is
replicated, the client will fail over to the previously-stored state of the EJB. If
it is critical to preserve the state of your EJB in all possible failover scenarios,
use an entity EJB rather than a stateful session EJB.

Failover for Stateful Session EJBs

Should the primary server fail, the client’s EJB stub automatically redirects further
requests to the secondary WebLogic Server instance. At this point, the secondary
server creates a new EJB instance using the replicated state data, and processing
continues on the secondary server.

After a failover, WebLogic Server chooses a new secondary server to replicate EJB
session states (if another server is available in the cluster). The location of the new
primary and secondary server instances is automatically updated in the client’s
replica-aware stub on the next method invocation, as shown below.
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Figure 5-6 Replica Aware Stubs are Updated after Failover

Entity EJBs

There are two types of entity beans to consider: read-write entities and read-only
entities.

! Read-Write Entities

When a home finds or creates a read-write entity bean, it obtains an instance on
the local server and returns a stub pinned to that server. Load balancing and
failover occur only at the home level. Because it is possible for multiple
instances of the entity bean to exist in the cluster, each instance must read from
the database before each transaction and write on each commit.

! Read-Only Entities

When a home finds or creates a read-only entity bean, it returns a replica-aware
stub. This stub load balances on every call but does not automatically fail over in
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the event of a recoverable call failure. Read-only beans are also cached on every
server to avoid database reads.

For more information about using EJBs in a cluster, read "The WebLogic Server EJB
Container and Supported Services" in Programming WebLogic Enterprise JavaBeans.

Clustering Support for RMI Objects

WebLogic RMI provides special extensions for building clustered remote objects.
These are the extensions used to build the replica-aware stubs described in the EJB
section. For more information about using RMI in clusters, see "WebLogic RMI
Features and Guidelines" in Programming WebLogic RMI.

Object Deployment Requirements

If you are programming EJBs to be used in a WebLogic Server cluster, read the
instructions in this section and in “The WebLogic Server EJB Container” in
Programming WebLogic Enterprise JavaBeans to understand the capabilities of
different EJB types in a cluster. Then ensure that you enable clustering in the EJB’s
deployment descriptor. “weblogic-ejb-jar.xml Deployment Descriptors” in
Programming WebLogic Enterprise JavaBeans describes the XML deployment
elements relevant for clustering.

If you are developing either EJBs or custom RMI objects, also refer to “Using
WebLogic JNDI in a Clustered Environment” in Programming WebLogic JNDI to
understand the implications of binding clustered objects in the JNDI tree.

Other Failover Exceptions

Even if a clustered object is not idempotent, WebLogic Server performs automatic
failover in the case of a ConnectException or MarshalException. Either of these
exceptions indicates that the object could not have been modified, and therefore there
is no danger of causing data inconsistency by failing over to another instance.
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Migration for Pinned Services

For HTTP session states and EJBs, a WebLogic Server cluster provides high
availability and failover by duplicating the object or service on redundant servers in
the cluster. However, certain services, such as JMS servers and the JTA transaction
recovery service, are designed with the assumption that there is only one active
instance of the service running in a cluster at any given time. These types of services
are referred to as “pinned” services because they remain active on only one server
instance at a time.

WebLogic Server allows the administrator to migrate pinned services from one server
to another in the cluster, either in response to a server failure or as part of
regularly-scheduled maintenance. This capability improves the availability of pinned
services in a cluster, because those services can be quickly restarted on a redundant
server should the host server fail.

In this release, migration is supported only for JMS servers and the JTA transaction
recovery services. This document refers to these services as migratable services,
because you can move them from one server to another within a cluster. Note that JMS
also offers improved service continuity in the event of a single Weblogic Server failure
by enabling you to configure multiple physical destinations (queues and topics) as part
of a single distributed destination set.

Note: WebLogic Server does not support automatic migration (failover) for pinned
services in this release. For information about migrating pinned services
manually, see “Migrating a Pinned Service to a Target Server Instance” on
page 7-31.

How Migration of Pinned Services Works

Clients access a migratable service in a cluster using a migration-aware RMI stub. The
RMI stub keeps track of which server currently hosts the pinned service, and it directs
client requests accordingly. For example, when a client first accesses a pinned service,
the stub directs the client request to the server instance in the cluster that currently
hosts the service. If the service migrates to a different WebLogic Server between
subsequent client requests, the stub transparently redirects the request to the correct
target server.
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WebLogic Server implements a migration-aware RMI stub for JMS servers and the
JTA transaction recovery service when those services reside in a cluster and are
configured for migration.

Migrating a Service When Currently Active Host is 
Unavailable

There are special considerations when you migrate a service from a server instance that
has crashed or is unavailable to the Administration Server. If the Administration Server
cannot reach the previously active host of the service at the time you perform the
migration, that Managed Server’s local configuration information will not be updated
to reflect that it is no longer the active host for the service. In this situation, you must
purge the unreachable Managed Server’s local configuration cache before starting it
again. This prevents the previous active host from re-activating at startup a service that
has been migrated to another Managed Server. For more information see “Migrating
When the Currently Active Host is Unavailable” on page 7-32.

Defining Migratable Target Servers in a Cluster

By default, WebLogic Server can migrate the JTA transaction recovery service or a
JMS server to any other server in the cluster. You can optionally configure a list of
servers in the cluster that can potentially host a pinned service. This list of servers is
referred to as a migratable target, and it controls the servers to which you can migrate
a service. In the case of JMS, the migratable target also defines the list of servers to
which you can deploy a JMS server.

For example, the following figure shows a cluster of four servers. Servers A and B are
configured as the migratable target for a JMS server in the cluster.
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In the above example, the migratable target allows the administrator to migrate the
pinned JMS server only from Server A to Server B, or vice versa. Similarly, when
deploying the JMS server to the cluster, the administrator selects either Server A or B
as the deployment target to enable migration for the service. (If the administrator does
not use a migratable target, the JMS server can be deployed or migrated to any
available server in the cluster.)

WebLogic Server enables you to create separate migratable targets for the JTA
transaction recovery service and JMS servers. This allows you to always keep each
service running on a different server in the cluster, if necessary. Conversely, you can
configure the same selection of servers as the migratable target for both JTA and JMS,
to ensure that the services remain co-located on the same server in the cluster.
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Failover and JDBC Connections

JDBC is a highly stateful client-DBMS protocol, in which the DBMS connection and
transactional state are tied directly to the socket between the DBMS process and the
client (driver). For this reason, failover of a connection is not supported. If a WebLogic
Server instance dies, any JDBC connections that it managed will die, and the DBMS(s)
will roll back any transactions that were under way. Any applications affected will
have to restart their current transactions from the beginning. All JDBC objects
associated with dead connections will also be defunct. Clustered JDBC eases the
reconnection process: the cluster-aware nature of WebLogic data sources in external
client applications allow a client to request another connection from them if the server
instance that was hosting the previous connection fails.

If you have replicated, synchronized database instances, you can use a JDBC multipool
to support database failover. In such an environment, if a client cannot obtain a
connection from one connection pool in the multipool because the pool doesn’t exist
or because database connectivity from the pool is down, WebLogic Server will attempt
to obtain a connection from the next connection pool in the list of pools.

For instructions on clustering JDBC objects, see “Configure Clustered JDBC” on page
7-24.

Notes: If a client requests a connection for a pool in which all the connections are in
use, an exception is generated, and WebLogic Server will not attempt to obtain
a connection from another pool. You can address this problem by increasing
the number of connections in the connection pool.

Any connection pool assigned to a multipool must be configured to test its
connections at reserve time. This is the only way a pool can verify it has a good
connection, and the only way a multipool can know when to fail over to the
next pool on its list.
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CHAPTER
6 Cluster Architectures

This following sections describes alternative architectures for a WebLogic Server
cluster”

! “Architectural and Cluster Terminology” on page 6-1

! “Recommended Basic Architecture” on page 6-4

! “Recommended Multi-Tier Architecture” on page 6-6

! “Recommended Proxy Architectures” on page 6-13

! “Security Options for Cluster Architectures” on page 6-18

! “Avoiding Problems” on page 6-25

Architectural and Cluster Terminology

This section define the terms used herein to refer to the components of clusters and and
Web applications.

Architecture

In this section he term “architecture” refers to how the tiers of an application are
deployed to one or more clusters.
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Web Application “Tiers”

A Web application is divided into several “tiers” that correspond to the logical services
the application provides. Because not all Web applications are alike, your application
may not utilize all of the tiers described below. Also keep in mind that the tiers
represent logical divisions of an application’s services, and not necessarily physical
divisions between hardware or software components. In some cases, a single machine
running a single WebLogic Server instance can provide all of the tiers described
below.

! Web Tier

The web tier provides static content (for example, simple HTML pages) to
clients of a Web application. The web tier is generally the first point of contact
between external clients and the Web application. A simple Web application may
have a web tier that consists of one or more machines running WebLogic
Express, Apache, Netscape Enterprise Server, or Microsoft Internet Information
Server.

! Presentation Tier

The presentation tier provides dynamic content (for example, servlets or Java
Server Pages) to clients of a Web application. A cluster of WebLogic Server
instances that hosts servlets and/or JSPs comprises the presentation tier of a web
application. If the cluster also serves static HTML pages for your application, it
encompasses both the web tier and the presentation tier.

! Object Tier

The object tier provides Java objects (for example, Enterprise JavaBeans or RMI
classes) and their associated business logic to a Web application. A WebLogic
Server cluster that hosts EJBs provides an object tier.

Combined Tier Architecture

A cluster architecture in which all tiers of the Web application are deployed to a single
WebLogic Server cluster is called a combined tier architecture.
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De-Militarized Zone (DMZ)

The De-Militarized Zone (DMZ) is a logical collection of hardware and services that
is made available to outside, untrusted sources. In most Web applications, a bank of
Web servers resides in the DMZ to allow browser-based clients access to static HTML
content.

The DMZ may provide security against outside attacks to hardware and software.
However, because the DMZ is available to untrusted sources, it is less secure than an
internal system. For example, internal systems may be protected by a firewall that
denies all outside access. The DMZ may be protected by a firewall that hides access to
individual machines, applications, or port numbers, but it still permits access to those
services from untrusted clients.

Load Balancer

In this document, the term load balancer describes any technology that distributes
client connection requests to one or more distinct IP addresses. For example, a simple
Web application may use the DNS round-robin algorithm as a load balancer. Larger
applications generally use hardware-based load balancing solutions such as those from
Alteon WebSystems, which may also provide firewall-like security capabilities.

Load balancers provide the capability to associate a client connection with a particular
server in the cluster, which is required when using in-memory replication for client
session information. With certain load balancing products, you must configure the
cookie persistence mechanism to avoid overwriting the WebLogic Server cookie
which tracks primary and secondary servers used for in-memory replication. See
“Configure Load Balancing Hardware” on page 7-16 for more information.

Proxy Plug-In

A proxy plug-in is a WebLogic Server extension to an HTTP server—such as Apache,
Netscape Enterprise Server, or Microsoft Internet Information Server—that accesses
clustered servlets provided by a WebLogic Server cluster. The proxy plug-in contains
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the load balancing logic for accessing servlets and JSPs in a WebLogic Server cluster.
Proxy plug-ins also contain the logic for accessing the replica of a client’s session state
if the primary WebLogic Server hosting the session state fails.

Recommended Basic Architecture

The Recommended Basic Architecture is a combined tier architecture—all tiers of the
Web application are deployed to the same WebLogic Server cluster. This architecture
is illustrated in the following figure.

Figure 6-1 Recommended Basic Architecture

The benefits of the Recommended Basic Architecture are:

! Ease of administration
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Because a single cluster hosts static HTTP pages, servlets, and EJBs, you can
configure the entire Web application and deploy/undeploy objects using the
WebLogic Server Console. You do not need to maintain a separate bank of Web
servers (and configure WebLogic Server proxy plug-ins) to benefit from
clustered servlets.

! Flexible load balancing

Using load balancing hardware directly in front of the WebLogic Server cluster
enables you to use advanced load balancing policies for accessing both HTML
and servlet content. For example, you can configure your load balancer to detect
current server loads and direct client requests appropriately.

! Robust security

Placing a firewall in front of your load balancing hardware enables you to set up
a De-Militarized Zone (DMZ) for your web application using minimal firewall
policies.

! Optimal performance

The combined tier architecture offers the best performance for applications in
which most or all of the servlets or JSPs in the presentation tier typically access
objects in the object tier, such as EJBs or JDBC objects

Note: When using a third-party load balancer with in-memory session replication,
you must ensure that the load balancer maintains a client’s connection to the
WebLogic Server instance that hosts its primary session state (the
point-of-contact server). For more information about load balancers, see
“Configure Load Balancing Hardware” on page 7-16.

When Not to Use a Combined Tier Architecture

While a combined tier architecture, such as the Recommended Basic Architecture,
meets the needs of many Web applications, it limits your ability to fully employ the
load balancing and failover capabilities of a cluster. Load balancing and failover can
be introduced only at the interfaces between Web application tiers, so, when tiers are
deployed to a single cluster, you can only load balance between clients and the cluster.

Because most load balancing and failover occurs between clients and the cluster itself,
a combined tier architecture meets the needs of most Web applications.
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However, combined-tier clusters provide no opportunity for load balancing method
calls to clustered EJBs. Because clustered objects are deployed on all WebLogic
Server instances in the cluster, each object instance is available locally to each server.
WebLogic Server optimizes method calls to clustered EJBs by always selecting the
local object instance, rather than distributing requests to remote objects and incurring
additional network overhead.

This collocation strategy is, in most cases, more efficient than load balancing each
method request to a different server. However, if the processing load to individual
servers becomes unbalanced, it may eventually become more efficient to submit
method calls to remote objects rather than process methods locally.

To utilize load balancing for method calls to clustered EJBs, you must split the
presentation and object tiers of the Web application onto separate physical clusters, as
described in the following section.

Consider the frequency of invocations of the object tier by the presentation tier when
deciding between a combined tier and multi-tier architecture. If presentation objects
usually invoke the object tier, a combined tier architecture may offer better
performance than a multi-tier architecture.

Recommended Multi-Tier Architecture

This section describes the Recommended Multi-Tier Architecture, in which different
tiers of your application are deployed to different clusters.

The recommended multi-tier architecture uses two separate WebLogic Server clusters:
one to serve static HTTP content and clustered servlets, and one to serve clustered
EJBs. The multi-tier cluster is recommended for Web applications that:

! Require load balancing for method calls to clustered EJBs.

! Require more flexibility for balancing the load between servers that provide
HTTP content and servers that provide clustered objects.

! Require higher availability (fewer single points of failure).
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Note: Consider the frequency of invocations from the presentation tier to the object
tier when considering a multi-tier architecture. If presentation objects usually
invoke the object tier, a combined tier architecture may offer better
performance than a multi-tier architecture.

The following figure depicts the recommended multi-tier architecture.

Figure 6-2 Recommended Multi-Tier Architecture

Physical Hardware and Software Layers

In the Recommended Multi-Tier Architecture the application tiers are hosted on two
separate physical layers of hardware and software.
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Web/Presentation Layer

The web/presentation layer consists of a cluster of WebLogic Server instances
dedicated to hosting static HTTP pages, servlets, and JSPs. This servlet cluster does
not host clustered objects. Instead, servlets in the presentation tier cluster act as clients
for clustered objects, which reside on an separate WebLogic Server cluster in the
object layer.

Object Layer

The object layer consists of a cluster of WebLogic Server instances that hosts only
clustered objects—EJBs and RMI objects as necessary for the web application. By
hosting the object tier on a dedicated cluster, you lose the default collocation
optimization for accessing clustered objects described in “Optimization for Collocated
Objects” on page 4-15. However, you gain the ability to load balance on each method
call to certain clustered objects, as described in the following section.

Benefits of Multi-Tier Architecture

The multi-tier architecture provides these advantages:

! Load Balancing EJB Methods

By hosting servlets and EJBs on separate clusters, servlet method calls to EJBs
can be load balanced across multiple servers. This process is described in detail
in “Load Balancing Clustered Objects in a in Multi-Tier Architecture” on page
6-9.

! Improved Server Load Balancing

Separating the presentation and object tiers onto separate clusters provides more
options for distributing the load of the web application. For example, if the
application accesses HTTP and servlet content more often than EJB content, you
can use a large number of WebLogic Server instances in the presentation tier
cluster to concentrate access to a smaller number of servers hosting EJBs.

! Higher Availability

By utilizing additional WebLogic Server instances, the multi-tier architecture has
fewer points of failure than the basic cluster architecture. For example, if a
6-8 Using WebLogic Server Clusters
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WebLogic Server that hosts EJBs fails, the HTTP- and servlet-hosting capacity
of the Web application is not affected.

! Improved Security Options

By separating the presentation and object tiers onto separate clusters, you can
use a firewall policy that places only the servlet/JSP cluster in the DMZ. Servers
hosting clustered objects can be further protected by denying direct access from
untrusted clients. For more information, see “Security Options for Cluster
Architectures” on page 6-18.

Load Balancing Clustered Objects in a in Multi-Tier 
Architecture

WebLogic Server’s collocation optimization for clustered objects, described in
“Optimization for Collocated Objects” on page 4-15, relies on having a clustered
object (the EJB or RMI class) hosted on the same server instance as the replica-aware
stub that calls the object.

The net effect of isolating the object tier is that no client (HTTP client, Java client, or
servlet) ever acquires a replica-aware stub on the same server that hosts the clustered
object. Because of this, WebLogic Server cannot use its collocation optimization
(described in “Optimization for Collocated Objects” on page 4-15), and servlet calls to
clustered objects are automatically load balanced according to the logic contained in
the replica-aware stub. The following figure depicts a client accessing a clustered EJB
instance in the multi-tier architecture.
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Figure 6-3 Load Balancing Objects in a Multi-Tier Architecture

Tracing the path of the client connection, you can see the implication of isolating the
object tier onto separate hardware and software:

1. An HTTP client connects to one of several WebLogic Server instances in the
web/servlet cluster, going through a load balancer to reach the initial server.

2. The client accesses a servlet hosted on the WebLogic Server cluster.

3. The servlet acts as a client to clustered objects required by the web application. In
the example above, the servlet accesses a stateless session EJB.

The servlet looks up the EJB on the WebLogic Server cluster that hosts clustered
objects. The servlet obtains a replica-aware stub for the bean, which lists the
addresses of all servers that host the bean, as well as the load balancing logic for
accessing bean replicas.

Note: EJB replica-aware stubs and EJB home load algorithms are specified using
elements of the EJB deployment descriptor. See “weblogic-ejb-jar.xml
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Recommended Multi-Tier Architecture
Deployment Descriptors” in Programming WebLogic Enterprise
JavaBeans for more information.

4. When the servlet next accesses the EJB (for example, in response to another
client), it uses the load-balancing logic present in the bean’s stub to locate a
replica. In the example above, multiple method calls are directed using the
round-robin algorithm for load balancing.

In this example, if the same WebLogic Server cluster hosted both servlets and EJBs (as
in the Recommended Basic Architecture), WebLogic Server would not load balance
requests for the EJB. Instead, the servlet would always invoke methods on the EJB
replica hosted on the local server. Using the local EJB instance is more efficient than
making remote method calls to an EJB on another server. However, the multi-tier
architecture enables remote EJB access for applications that require load balancing for
EJB method calls.

Configuration Considerations for Multi-Tier Architecture

IP Socket Usage

Because the multi-tier architecture provides load balancing for clustered object calls,
the system generally utilizes more IP sockets than a combined-tier architecture. In
particular, during peak socket usage, each WebLogic Server in the cluster that hosts
servlets and JSPs may potentially use a maximum of:

! One socket for replicating HTTP session states between primary and secondary
servers, plus

! One socket for each WebLogic Server in the EJB cluster, for accessing remote
objects

For example, in Figure 6-2, each server in the servlet/JSP cluster could potentially
open a maximum of five sockets. This maximum represents a worst-case scenario
where primary and secondary session states are equally dispersed throughout the
servlet cluster, and each server in the servlet cluster simultaneously accesses a remote
object on each server in the object cluster. In most cases, the number of sockets actual
sockets in use would be less than this maximum.
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6 Cluster Architectures
If you use a pure-Java sockets implementation with the multi-tier architecture, ensure
that you configure enough socket reader threads to accommodate the maximum
potential socket usage. For details, see “Configuring Reader Threads for Java Socket
Implementation” on page 2-6.

Hardware Load Balancers

Because the multi-tier architecture uses a hardware load balancer, you must configure
the load balancer to maintain a “sticky” connection to the client’s point-of-contact
server if you use in-memory session state replication. For details, see “Configure Load
Balancing Method for EJBs and RMIs” on page 7-15.

Limitations of Multi-Tier Architectures

This section summarizes the limitations of multi-tier cluster architectures.

No Collocation Optimization

Because the Recommended Multi-Tier Architecture cannot optimize object calls using
the collocation strategy, the Web application incurs network overhead for all method
calls to clustered objects. This overhead may be acceptable, however, if your Web
application requires any of the benefits described in “Benefits of Multi-Tier
Architecture” on page 6-8.

For example, if your Web clients make heavy use of servlets and JSPs but access a
relatively small set of clustered objects, the multi-tier architecture enables you to
concentrate the load of servlets and object appropriately. You may configure a servlet
cluster of ten WebLogic Server instances and an object cluster of three WebLogic
Server instances, while still fully utilizing each server’s processing power.

Firewall Restrictions

If you place a firewall between the servlet cluster and object cluster in a multi-tier
architecture, you must bind all servers in the object cluster to public DNS names, rather
than IP addresses. Binding those servers with IP addresses can cause address
translation problems and prevent the servlet cluster from accessing individual server
instances.
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If the internal and external DNS names of a WebLogic Server instance are not
identical, use the ExternalDNSName attribute for the server instance to define the
server's external DNS name. Outside the firewall the externalDNSName should
translate to external IP address of the server. Set this attribute in the Administration
Console using the Server—>Configuration—>General tab. See Server—
>Configuration—>General in Administration Console Online Help.

Recommended Proxy Architectures

You can configure WebLogic Server clusters to operate alongside existing Web
servers. In such an architecture, a bank of Web servers provides static HTTP content
for the Web application, using a WebLogic proxy plug-in or HttpClusterServlet to
direct servlet and JSP requests to a cluster.

The following sections describe two alternative proxy architectures.

Two-Tier Proxy Architecture

The two-tier proxy architecture illustrated in the following figure is similar to the
“Recommended Basic Architecture” on page 6-4, except that static HTTP servers are
hosted on a bank of Web servers.
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6 Cluster Architectures
Figure 6-4 Two-Tier Proxy Architecture

Physical Hardware and Software Layers

The two-tier proxy architecture contains two physical layers of hardware and software.

Web Layer

The proxy architecture utilizes a layer of hardware and software dedicated to the task
of providing the application’s web tier. This physical web layer can consist of one or
more identically-configured machines that host one of the following application
combinations:

! WebLogic Server with the HttpClusterServlet

! Apache with the WebLogic Server Apache proxy plug-in

! Netscape Enterprise Server with the WebLogic Server NSAPI proxy plug-in
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Recommended Proxy Architectures
! Microsoft Internet Information Server with the WebLogic Server Microsoft-IIS
proxy plug-in

Regardless of which Web server software you select, keep in mind that the physical
tier of Web servers should provide only static Web pages. Dynamic content—servlets
and JSPs—are proxied via the proxy plug-in or HttpClusterServlet to a WebLogic
Server cluster that hosts servlets and JSPs for the presentation tier.

Servlet/Object Layer

The recommended two-tier proxy architecture hosts the presentation and object tiers
on a cluster of WebLogic Server instances. This cluster can be deployed either on a
single machine or on multiple separate machines.

The Servlet/Object layer differs from the combined-tier cluster described in
Recommended Basic Architecture in that it does not provide static HTTP content to
application clients.

Multi-Tier Proxy Architecture

You can also use a bank of Web servers as the front-end to a pair of WebLogic Server
clusters that host the presentation and object tiers. This architecture is shown in the
following figure.
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Figure 6-5 Multi-Tier Proxy Architecture

This architecture provides the same benefits (and the same limitations) as the
Recommended Multi-Tier Architecture. It differs only insofar as the web tier is placed
on a separate bank of Web servers that utilize WebLogic proxy plug-ins.

Proxy Architecture Benefits

Using standalone Web servers and proxy plug-ins provides the following advantages:
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If you already have a Web application architecture that provides static HTTP
content to clients, you can easily integrate existing Web servers with one or
more WebLogic Server clusters to provide dynamic HTTP and clustered objects.

! Familiar Firewall Policies

Using a Web server proxy at the front-end of your Web application enables you
to use familiar firewall policies to define your DMZ. In general, you can
continue placing the Web servers in your DMZ while disallowing direct
connections to the remaining WebLogic Server clusters in the architecture. The
figures above depict this DMZ policy.

Proxy Architecture Limitations

Using standalone Web servers and proxy plug-ins limits your Web application in
the following ways:

! Additional administration

The Web servers in the proxy architecture must be configured using third-party
utilities, and do not appear within the WebLogic Server administrative domain.
You must also install and configure WebLogic proxy plug-ins to the Web servers
in order to benefit from clustered servlet access and failover.

! Limited Load Balancing Options

When you use proxy plug-ins or the HttpClusterServlet to access clustered
servlets, the load balancing algorithm is limited to a simple round-robin strategy.

Proxy Plug-In Versus Load Balancer

Using a load balancer directly with a WebLogic Server cluster provides several
benefits over proxying servlet requests. First, using WebLogic Server with a load
balancer requires no additional administration for client setup—you do not need to set
up and maintain a separate layer of HTTP servers, and you do not need to install and
configure one or more proxy plug-ins. Removing the Web proxy layer also reduces the
number of network connections required to access the cluster.
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Using load balancing hardware provides more flexibility for defining load balancing
algorithms that suit the capabilities of your system. You can use any load balancing
strategy (for example, load-based policies) that your load balancing hardware
supports. With proxy plug-ins or the HttpClusterServlet, you are limited to a
simple round-robin algorithm for clustered servlet requests.

Note, however, that using a third-party load balancer may require additional
configuration if you use in-memory session state replication. In this case, you must
ensure that the load balancer maintains a “sticky” connection between the client and
its point-of-contact server, so that the client accesses the primary session state
information. When using proxy plug-ins, no special configuration is necessary because
the proxy automatically maintains a sticky connection.

Security Options for Cluster Architectures

The boundaries between physical hardware/software layers in the recommended
configurations provide potential points for defining your Web application’s
De-Militarized Zone (DMZ). However, not all boundaries can support a physical
firewall, and certain boundaries can support only a subset of typical firewall policies.

The sections that follow describe several common ways of defining your DMZ to
create varying levels of application security.

Basic Firewall for Proxy Architectures

The basic firewall configuration uses a single firewall between untrusted clients and
the Web server layer, and it can be used with either the Recommended Basic
Architecture or Recommended Multi-Tier Architecture cluster architectures.
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Security Options for Cluster Architectures
Figure 6-6 Basic Proxy with Firewall Architecture

In the above configuration, the single firewall can use any combination of policies
(application-level restrictions, NAT, IP masquerading) to filter access to three HTTP
servers. The most important role for the firewall is to deny direct access to any other
servers in the system. In other words, the servlet layer, the object layer, and the
database itself must not be accessible from untrusted clients.

Note that you can place the physical firewall either in front of or behind the Web
servers in the DMZ. Placing the firewall in front of the Web servers simplifies your
firewall policies, because you need only permit access to the web servers and deny
access to all other systems.
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6 Cluster Architectures
Note: If you place the firewall between the three Web servers and the WebLogic
Server cluster, you must bind all server instances using publicly-listed DNS
names, rather than IP addresses. Doing so ensures that the proxy plug-ins can
freely connect to each server in the cluster and not encounter address
translation errors as described in “Firewall Considerations” on page 6-26.

If the internal and external DNS names of a WebLogic Server instance are not
identical, use the ExternalDNSName attribute for the server instance to define
the server's external DNS name. Outside the firewall the externalDNSName
should translate to external IP address of the server. Set this attribute in the
Administration Console using the Server—>Configuration—>General tab.
See Server—>Configuration—>General in Administration Console Online
Help.

DMZ with Basic Firewall Configurations

By denying access to all but the Web server layer, the basic firewall configuration
creates a small-footprint DMZ that includes only three Web servers. However, a more
conservative DMZ definition might take into account the possibility that a malicious
client may gain access to servers hosting the presentation and object tiers.

For example, assume that a hacker gains access to one of the machines hosting a Web
server. Depending on the level of access, the hacker may then be able to gain
information about the proxied servers that the Web server accesses for dynamic
content.

If you choose to define your DMZ more conservatively, you can place additional
firewalls using the information in “Additional Security for Shared Databases” on page
6-23.

Combining Firewall with Load Balancer

If you use load balancing hardware with a recommended cluster architecture, you must
decide how to deploy the hardware in relationship to the basic firewall. Although many
hardware solutions provide security features in addition to load balancing services,
most sites rely on a firewall as the first line of defense for their Web applications. In
general, firewalls provide the most well-tested and familiar security solution for
restricting web traffic, and should be used in front of load balancing hardware, as
shown below.
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Security Options for Cluster Architectures
Figure 6-7 Basic Proxy with Firewall and Load Balancer Architecture

The above setup places the load balancer within the DMZ along with the web tier.
Using a firewall in this configuration can simplify security policy administration,
because the firewall need only limit access to the load balancer. This setup can also
simplify administration for sites that support internal clients to the Web application, as
described below.

Expanding the Firewall for Internal Clients

If you support internal clients that require direct access to your Web application (for
example, remote machines that run proprietary Java applications), you can expand the
basic firewall configuration to allow restricted access to the presentation tier. The way
in which you expand access to the application depends on whether you treat the remote
clients as trusted or untrusted connections.

Database

U
n

tr
u

s
te

d
HTTP Server

Web Layer

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

Firewall

HTTP Server

Proxy Plug-inLoad
Balancer

D
M

Z

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster
Using WebLogic Server Clusters 6-21
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If you use a Virtual Private Network (VPN) to support remote clients, the clients may
be treated as trusted connections and can connect directly to the presentation tier going
through a firewall. This configuration is shown below.

Figure 6-8 VPN Users have Restricted Access Through Firewall

If you do not use a VPN, all connections to the Web application (even those from
remote sites using proprietary client applications) should be treated as untrusted
connections. In this case, you can modify the firewall policy to permit
application-level connections to WebLogic Server instances hosting the presentation
tier, as shown in the following figure.
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Security Options for Cluster Architectures
Figure 6-9 Application Components Have Restricted Access Through Firewall

Additional Security for Shared Databases

If you use a single database that supports both internal data and data for
externally-available Web applications, you should consider placing a hard boundary
between the object layer that accesses your database. Doing so simply reinforces the
DMZ boundaries described in “Basic Firewall for Proxy Architectures” on page 6-18
by adding an additional firewall.

DMZ with Two Firewall Configuration

The following configuration places an additional firewall in front of a database server
that is shared by the Web application and internal (trusted) clients. This configuration
provides additional security in the unlikely event that the first firewall is breached, and
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a hacker ultimately gains access to servers hosting the object tier. Note that this
circumstance should be extremely unlikely in a production environment—your site
should have the capability to detect and stop a malicious break-in long before a hacker
gains access to machines in the object layer.

Figure 6-10 DMZ with Two Firewalls Architecture

In the above configuration, the boundary between the object tier and the database is
hardened using an additional firewall. The firewall maintains a strict application-level
policy that denies access to all connections except JDBC connections from WebLogic
Servers hosting the object tier.
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Avoiding Problems

The following sections present considerations to keep in mind when determining your
cluster architecture.

Administration Server Considerations

To start up WebLogic Server instances that participate in a cluster, each Managed
Server must be able to connect to the Administration Server that manages
configuration information for the domain that contains the cluster. For security
purposes, the Administration Server should reside within the same DMZ as the
WebLogic Server cluster.

The Administration Server maintains the configuration information for all server
instances that participate in the cluster. The config.xml file that resides on the
Administration Server contains configuration data for all clustered and non-clustered
servers in the Administration Server’s domain. You do not create a separate
configuration file for each server in the cluster.

The Administration Server must be available in order for clustered WebLogic Server
instances to start up. Note, however, that once a cluster is running, a failure of the
Administration Server does not affect ongoing cluster operation.

The Administration Server should not participate in a cluster. The Administration
Server should be dedicated to the process of administering servers: maintaining
configuration data, starting and shutting down servers, and deploying and undeploying
applications. If the Administration Server also handles client requests, there is a risk of
delays in accomplishing administration tasks.

There is no benefit in clustering an Administration Server; the administrative objects
are not clusterable, and will not failover to another cluster member if the administrative
server fails. Deploying applications on an Administration Server can reduce the
stability of the server and the administrative functions it provides. If an application you
deploy on the Administration Server behaves unexpectedly, it could interrupt
operation of the Administration Server.

For these reasons, make sure that the Administration Server’s IP address is not
included in the cluster-wide DNS name.
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Firewall Considerations 

In any cluster architecture that utilizes one or more firewalls, it is critical to identify all
WebLogic Server instances using publicly-available DNS names, rather than IP
addresses. Using DNS names avoids problems associated with address translation
policies used to mask internal IP addresses from untrusted clients.

If the internal and external DNS names of a WebLogic Server instance are not
identical, use the ExternalDNSName attribute for the server instance to define the
server's external DNS name. Outside the firewall the externalDNSName should
translate to external IP address of the server. Set this attribute in the Administration
Console using the Server—>Configuration—>General tab. See Server—
>Configuration—>General in Administration Console Online Help.

The following figure describes the potential problem with using IP addresses to
identify WebLogic Server instances. In this figure, the firewall translates external IP
requests for the subnet “xxx” to internal IP addresses having the subnet “yyy.”
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Avoiding Problems
Figure 6-11 Translation Errors Can Occur When Servers are Identified by IP
Addresses

The following steps describe the connection process and potential point of failure:

1. The client initiates contact with the WebLogic Server cluster by requesting a
connection to the first server at 205.20.xxx.100:7001. The firewall translates this
address and connects the client to the internal IP address of 205.20.yyy.100:7001.

2. The client performs a JNDI lookup of a pinned Object C that resides on the third
WebLogic Server instance in the cluster. The stub for Object C contains the
internal IP address of the server hosting the object, 205.20.yyy.300:7001.

3. When the client attempts to instantiate Object C, it requests a connection to the
server hosting the object using IP address 205.20.yyy.300:7001. The firewall
denies this connection, because the client has requested a restricted, internal IP
address, rather than the publicly-available address of the server.

If there was no translation between external and internal IP addresses, the firewall
would pose no problems to the client in the above scenario. However, most security
policies involve hiding (and denying access to) internal IP addresses.
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Evaluate Cluster Capacity Prior to Production Use

The architecture of your cluster will influence the capacity of your system. Before
deploying applications for production use, evaluate performance to determine if and
where you may need to add servers or server hardware to support real-world client
loads. Testing software such as LoadRunner from Mercury Interactive allows you to
simulate heavy client usage.
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CHAPTER
7 Setting up WebLogic 
Clusters

The following sections contain guidelines and instructions for configuring a WebLogic
Server cluster:

! “Before You Start” on page 7-1

! “Cluster Implementation Procedures” on page 7-9

Before You Start

This section summarizes prerequisite tasks and information for setting up a WebLogic
Server Cluster.

Obtain a Cluster Licence

Installations for clustered WebLogic Server instances must have a valid cluster license.
If you do not have a cluster license, contact your BEA sales representative.
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Understand the Configuration Process

The information in this section will be most useful to you if you have a basic
understanding of the cluster configuration process and how configuration tasks are
accomplished.

For information about the configuration facilities available in WebLogic Server and
the tasks they support, see “Understanding Cluster Configuration and Application
Deployment” on page 3-1.

Determine Your Cluster Architecture

Determine what cluster architecture best suits your needs. Key architectural decisions
include:

! Should you combine all application tiers in a single cluster or segment your
application tiers in separate clusters?

! How will you balance the load among server instances in your cluster? Will you:

" Use basic WebLogic Server load balancing,

" Implement a third-party load balancer, or

" Deploy the Web tier of your application on one or more secondary HTTP
servers, and proxy requests to it?

! Should you define your Web applications De-Militarized Zone (DMZ) with one
or more firewalls?

To guide these decisions, see “Cluster Architectures” on page 6-1, and “Load
Balancing in a Cluster” on page 4-1.

The architecture you choose affects how you set up your cluster. The cluster
architecture may also require that you install or configure other resources, such as load
balancers, HTTP servers, and proxy plug-ins.
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Before You Start
Consider Your Network and Security Topologies

Your security requirements form the basis for designing the appropriate security
topology. For a discussion of several alternative architectures that provide varying
levels of application security, see “Security Options for Cluster Architectures” on page
6-18.

Notes: Some network topologies can interfere with multicast communication. If you
are deploying a cluster across a WAN, see “If Your Cluster Spans Multiple
Subnets in a WAN” on page 2-3.

Avoid deploying server instances in a cluster across a firewall. For a
discussion of the impact of tunneling multicast traffic through a firewall, see
“Firewalls Can Break Multicast Communication” on page 2-3.

Choose Machines for the Cluster Installation

Identify the machine or machines where you plan to install WebLogic Server—
throughout this section we refer to such machines as “hosts”—and ensure that they
have the resources required. System and software prerequisites are listed in “Preparing
to Install WebLogic Server” in Installing BEA WebLogic Server.

Notes: WebLogic Server allows you to set up a cluster on a single, non-multihomed
machine. This new capability is useful for demonstration or development
environments.

Do not install WebLogic Server on machines that have dynamically assigned
IP addresses.

WebLogic Server Instances on Multi-CPU machines

BEA WebLogic Server has no built-in limit for the number of server instances that can
reside in a cluster. Large, multi-processor servers such as Sun Microsystems, Inc. Sun
Enterprise 10000 can host very large clusters or multiple clusters.

In most cases, WebLogic Server clusters scale best when deployed with one WebLogic
Server instance for every two CPUs. However, as with all capacity planning, you
should test the actual deployment with your target Web applications to determine the
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optimal number and distribution of server instances. See “Performance Considerations
for Multi-CPU Machines” in BEA WebLogic Server Performance and Tuning for
additional information.

Check Host Machines’ Socket Reader Implementation

For best socket performance, configure the WebLogic Server host machine to use the
native socket reader implementation for your operating system, rather than the
pure-Java implementation. To understand why, and for instructions for configuring
native sockets or optimizing pure-Java socket communications, see “Peer-to-Peer
Communication Using IP Sockets” on page 2-4.

Identify Names and Addresses

During the cluster configuration process, you supply addressing information—IP
addresses or DNS names, and port numbers—for the cluster and its members.

For information on intra-cluster communication, and how it enables load balancing
and failover, see “WebLogic Server Communication in a Cluster” on page 2-1.

When you set up your cluster, you must provide location information for:

! Administration Server

! Managed Servers

! Multicast location

Read the sections that follow for an explanation of the information you must provide,
and factors that influence the method you use to identify resources.

Avoiding Listen Address Problems

As you configure a cluster, you can specify address information for the cluster, and the
server instances that comprise it, using either IP addresses or DNS names.
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Before You Start
DNS Names or IP Addresses?

Consider the purpose of the cluster when deciding whether to use DNS names or IP
addresses. For production environments, the use of DNS names is generally
recommended. The use of IP addresses can result in translation errors if:

! Clients will connect to the cluster through a firewall, or

! You have a firewall between the presentation and object tiers, for example, you
have a servlet cluster and EJB cluster with a firewall in between, as described in
the recommended multi-tier cluster.

You can avoid translation errors by binding the address of an individual server instance
to a DNS name. Make sure that a server instance’s DNS name is identical on each side
of firewalls in your environment, and do not use a DNS name that is also the name of
an NT system on your network.

For more information about using DNS names instead of IP addresses, see “Firewall
Considerations” on page 6-26.

When Internal and External DNS Names Vary

If the internal and external DNS names of a WebLogic Server instance are not
identical, use the ExternalDNSName attribute for the server instance to define the
server's external DNS name. Outside the firewall the externalDNSName should
translate to external IP address of the server. Set this attribute in the Administration
Console using the Server—>Configuration—>General tab. See Server—
>Configuration—>General in Administration Console Online Help.

Localhost Considerations

If you identify a server instance’s Listen Address as localhost, non-local processes will
not be able to connect to the server instance. Only processes on the machine that hosts
the server instance will be able to connect to the server instance. If the server instance
must be accessible as localhost (for instance, if you have administrative scripts that
connect to localhost), and must also be accessible by remote processes, leave the Listen
Address blank. The server instance will determine the address of the machine and
listen on it.
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7 Setting up WebLogic Clusters
Assigning Names to Server Instances

Each server instance in your overall WebLogic environment should have a unique
name. Regardless of the domain or cluster in which a server instance resides, or
whether it is an Administration Server or a Managed Server, make sure that its name
is unique.

Administration Server Address and Port

Identify the DNS name or IP address and Listen Port of the Administration Server you
will use for the cluster.

The Administration Server is the WebLogic Server instance used to configure and
manage all the Managed Servers in its domain. When you start a Managed Server, you
identify the host and port of its Administration Server.

Managed Server Addresses and Listen Ports

Identify the DNS name or IP address of each Managed Server planned for your cluster.

Each Managed Server in a cluster must have a unique combination of address and
Listen Port number. Clustered server instances on a single non-multihomed machine
can have the same address, but must use a different Listen Port.

Cluster Multicast Address and Port

Identify the address and port you will dedicate to multicast communications for your
cluster.

Server instances in a cluster communicate with each other using multicast—they use
multicast to announce their services, and to issue periodic heartbeats that indicate
continued availability.

The multicast address for a cluster should not be used for any purpose other than
cluster communications. If the machine where the cluster multicast address exists hosts
or is accessed by cluster-external programs that use multicast communication, make
sure that those multicast communications use a different port than the cluster multicast
port.
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Before You Start
Multicast and Multiple Clusters 

Multiple clusters on a network may share a multicast address and multicast port
combination if necessary.

Multicast and Multi-Tier Clusters

If you are setting up the Recommended Multi-Tier Architecture, described in
Chapter 6, “Cluster Architectures,” with a firewall between the clusters, you will need
two dedicated multicast addresses: one for the presentation (servlet) cluster and one for
the object cluster. Using two multicast addresses ensures that the firewall does not
interfere with cluster communication.

Cluster Address

When you configure a cluster, you define a cluster address that identifies the Managed
Servers in the cluster. The cluster address is used in entity and stateless beans to
construct the host name portion of URLs. If the cluster address is not set, EJB handles
may not work properly.

Cluster Address for Production Environments

In a production environment, specify the cluster address as a DNS name that maps to
the IP addresses or DNS names of each WebLogic Server instance in the cluster.

If you define the cluster address as a DNS name, the Listen Ports for the cluster
members are not specified in the cluster address—it is assumed that each Managed
Server in the cluster has the same Listen Port number. Because each server instance in
a cluster must have a unique combination of address and Listen Port, if a cluster
address is a DNS name, each of the server instance in the cluster must have:

! a unique address and

! the same Listen Port number

When clients obtain an initial JNDI context by supplying the cluster DNS name,
weblogic.jndi.WLInitialContextFactory obtains the list of all addresses that
are mapped to the DNS name. This list is cached by WebLogic Server instances, and
new initial context requests are fulfilled using addresses in the cached list with a
round-robin algorithm. If a server instance in the cached list is unavailable, it is
removed from the list. The address list is refreshed from the DNS service only if the
server instance is unable to reach any address in its cache.
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Using a cached list of addresses avoids certain problems with relying on DNS
round-robin alone. For example, DNS round-robin continues using all addresses that
have been mapped to the domain name, regardless of whether or not the addresses are
reachable. By caching the address list, WebLogic Server can remove addresses that are
unreachable, so that connection failures aren’t repeated with new initial context
requests.

Note: The Administration Server should not participate in a cluster. Ensure that the
Administration Server’s IP address is not included in the cluster-wide DNS
name. For more information, see “Administration Server Considerations” on
page 6-25.

Cluster Address for Development and Test Environments

Use of a cluster DNS name for the cluster address, recommended for production
environments in the previous section, is also fine for development and test
environments.

Alternatively, you can define the cluster address as a list that contains the DNS name
(or IP address) and Listen Port of each Managed Server in the cluster, as shown in the
examples below:

DNSName1:port1,DNSName1:port2,DNSName1:port3

IPaddress1:port1,IPaddress2:port2;IPaddress3:port3

Note that each cluster member has a unique address and port combination.

Cluster Address for Single, Multihomed Machine

If your cluster runs on a single, multihomed machine, and each server instance in the
cluster uses a different IP address, define the cluster address using a DNS name that
maps to the IP addresses of the server instances in the cluster. If you define the cluster
address as a DNS name, specify the same Listen Port number for each of the Managed
Servers in the cluster.
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Cluster Implementation Procedures

This section describes how to get a clustered application up and running, from
installation of WebLogic Server through initial deployment of application
components.

Configuration Roadmap

This section lists typical cluster implementation tasks, and highlights key
configuration considerations. The exact process you follow is driven by the unique
characteristics of your environment and the nature of your application. These tasks are
described:

1. “Install WebLogic Server” on page 7-10

2. “Create a Clustered Domain” on page 7-10

3. “Configure Load Balancing Method for EJBs and RMIs” on page 7-15

4. “Configure Server Affinity for Distributed JMS Destinations” on page 7-16

5. “Configure Load Balancing Hardware” on page 7-16

6. “Configure Proxy Plug-Ins” on page 7-19

7. “Configure Replication Groups” on page 7-22

8. “Configure Migratable Targets for Pinned Services” on page 7-23

9. “Configure Clustered JDBC” on page 7-24

10. “Package Applications for Deployment” on page 7-26

11. “Deploy Applications” on page 7-26

12. “Deploying, Activating, and Migrating Migratable Services” on page 7-29

13. “Configure In-Memory HTTP Replication” on page 7-34

14. “Additional Configuration Topics” on page 7-34
Using WebLogic Server Clusters 7-9



7 Setting up WebLogic Clusters
Not every step is required for every cluster implementation. Additional steps may be
necessary in some cases.

Install WebLogic Server

If you have not already done so, install WebLogic Server. For instructions, see
Installing BEA WebLogic Server.

! If the cluster will run on a single machine, do a single installation of WebLogic
Server under the /bea directory to use for all clustered instances.

! For remote, networked machines, install the same version of WebLogic Server
on each machine. Each machine:

" Must have permanently assigned, static IP addresses. You cannot use
dynamically-assigned IP addresses in a clustering environment.

" Must be accessible to clients. If the server instances are behind a firewall and
the clients are in front of the firewall, each server instance must have a
public IP address that can be reached by the clients.

" Must be located on the same local area network (LAN) and must be
reachable via IP multicast.

Note: Do not use a shared filesystem and a single installation to run multiple
WebLogic Server instances on separate machines. Using a shared filesystem
introduces a single point of contention for the cluster. All server instances
must compete to access the filesystem (and possibly to write individual log
files). Moreover, should the shared filesystem fail, you might be unable to start
clustered server instances.

Create a Clustered Domain

These instructions are for creating a cluster using the BEA Domain Configuration
Wizard.
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Notes: There are other methods for creating and maintaining cluster configurations
See “Methods of Configuring Clusters” on page 3-9.

1. Start the Configuration Wizard using Start -->Programs-->BEA WebLogic
Platform--> Domain Configuration Wizard.

2. In the Choose Domain Type and Name window, click WLS Domain.

3. Enter a domain name, using alphanumeric characters with no embedded spaces,
in the Name field. Click Next to continue.

4. In the Choose Server Type window, click Admin Server with Clustered Managed
Server(s). Click Next to continue.

5. In the Choose Domain Location window, click Next to select the default
directory that is shown, or browse to a different directory.

The Choose Domain Location window shows:

" the directory where your domain directory will be created

" the full path for the domain directory to be created

The domain directory name is the Domain Name you specified on the
Choose Domain Type and Name window.

6. In the Configure Clustered Server(s) window displayed, click Add to configure
the first Managed Server for the cluster.

7. In the Add Server window, complete:

" Server Name—Enter a server name, using alphanumeric characters with no
embedded spaces

Assign a unique name to each server instance you create. Do not give a
server instance a name that is the same as the name of any other Managed
Server or Administrative Server in your WebLogic Server environment.

" Server Listen Address—Enter machine address or name.

For guidelines on how to specify the Listen Address, see “Avoiding Listen
Address Problems” on page 7-4.

" Server Listen Port—Enter a numeric value. The range of allowable values is
1 to 65535.

Click Add to continue.
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8. In the Add Server window click Add to add a Managed Server to the cluster, and
repeat the previous step for each Managed Server in the cluster. When you are
done adding Managed Servers, click Next to continue.

9. In the Configure Cluster window, complete:

" Cluster Name—Contains the default value mycluster. Enter a name for the
cluster, using alphanumeric characters with no embedded spaces

" Cluster Multicast Address—Contains a default value 237.0.0.1. The range of
allowable values is 224.0.0.0 to 239.255.255.255

" Cluster Multicast Port—Contains a default value 7777.

" Cluster Address—Contains a cluster address comprised of the address port
combinations for each server instance in the cluster.

If you modify the cluster address, use the appropriate address format,
depending on whether the cluster will be used in production or not. For
information on the cluster address format for production and non-production
environments, see “Cluster Address” on page 7-7.

Click Next to continue.

10. In the Configure Admin Server (with Cluster) window, complete:

" Server Name—Contains default value myserver. Enter a name for the
cluster’s Administration Server, using alphanumeric characters with no
embedded spaces.

Assign a unique name to each server instance you create. Do not give a
server instance a name that is the same as the name of any other Managed
Server or Administrative Server in your WebLogic Server environment.

" Server Listen Address—Enter machine address or name.

For guidelines on how to specify the Listen Address, see “Avoiding Listen
Address Problems” on page 7-4.

" Server Listen Port—The default port is 7001. The range of allowable values
is 1 to 65535.

" Server SSL Listen Port— The default port is 7002. The range of allowable
values is 1 to 65535.

Click Next to continue.
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11. In the System User Name and Password window complete the User Name and
Password fields. Enter a password with a minimum of eight characters.

User name and password are required to start server instances in the cluster. The
username must belong to a role that is permitted to start server instances. For
information about roles, see “Protecting System Administration Operations” in
BEA WebLogic Server Administration Guide.

Click Next to continue.

12. In the Install Server as Windows Service window,

Click Yes to install the domain as a Windows Service, to cause WebLogic Server
service to start automatically each time the Windows system boots.

or

Click No if you do not want to run WebLogic as a Windows Service. If you
choose No, the WebLogic Server service will not start automatically when the
Windows system boots.

Note: beaSvc is the service name in the domainname_ServerName variable.

13. In the Install Domain in Windows Start Menu window,

Click Yes to add an entry for starting the new domain in your Windows Start
Menu

or

Click No if you do not want an entry for the domain in your Windows Start
Menu

Click Next to continue.

14. In the Configuration Summary window, review the configuration summary
information. Click:

Previous if you wish to return to previous windows and modify configuration
information.

or

Create to create the domain.

15. In the Configuration Wizard Complete window, click End Configuration Wizard
to exit the wizard.
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7 Setting up WebLogic Clusters
To make changes to the preceding configuration steps, and to complete the
configuration process, use the Administration Console. For instructions on using the
Administration Console, see Administration Console Online Help.

Note: The Administration Server for the domain containing the cluster must be
running when you make changes to the cluster configuration. Follow steps 1
through 6 in the following section to start the Administration Server.

Starting a WebLogic Server Cluster

This section has instructions for starting a cluster. First start the Administration Server
for the cluster, then start each of the Managed Servers in the cluster. Each server
instance is started with a command that you execute in a separate command shell.

For a comprehensive discussion of procedures for starting and stopping server
instances, see “Starting and Stopping WebLogic Servers” in Administration Console
Online Help.

1. Open a command shell.

2. Change directory to the domain directory that you created with the Configuration
Wizard.

3. Type this command to start the Administration Server:

StartWebLogic

4. Enter the user name for the domain at the “Enter username to boot WebLogic
Server” prompt.

5. Enter the password for the domain at the “Enter password to boot WebLogic
Server” prompt.

The command shell displays messages that report the status of the startup
process.

6. Open another command shell so that you can start a Managed Server.

7. Change directory to the domain directory that you created with the Configuration
Wizard.

8. Type this command

StartManagedWebLogic server_name address:port

where:
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server_name is the name of the Managed Server you wish to start

address is the IP address or DNS name for the Administration Server for the
domain

port is the listen port for the Administration Server for the domain

9. Enter the user name for the domain at the “Enter username to boot WebLogic
Server” prompt.

10. Enter the password for the domain at the “Enter password to boot WebLogic
Server” prompt.

The command shell displays messages that report the status of the startup
process.

Note: After you start a Managed Server, it listens for heartbeats from other
running server instances in the cluster. The Managed Server builds its local copy
of the cluster-wide JNDI tree, as described in “How WebLogic Server Updates
the JNDI Tree” on page 2-13, and displays status messages when it has
synchronized with each running Managed Server in the cluster. The
synchronization process can take a minute or so.

11. To start another server instance in the cluster, return to step 6. Continue through
step 10.

12. When you have started all Managed Servers in the cluster, the cluster startup
process is complete.

Configure Load Balancing Method for EJBs and RMIs 

Follow the instructions in this section to select the load balancing algorithm for EJBs
and RMI objects.

Unless you explicitly specify otherwise, WebLogic Server uses the round-robin
algorithm as the default load balancing strategy for clustered object stubs. To
understand alternative load balancing algorithms, see “Load Balancing for EJBs and
RMI Objects” on page 4-6. To change the default load balancing algorithm:

1. Open the WebLogic Server Console.

2. Select the Clusters node.
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3. Select your cluster.

4. Click the drop-down arrow next to the Default Load Algorithm to display load
balancing algorithms.

5. In the item list, select the desired load balancing algorithm.

6. Enter the desired value in the Service Age Threshold field. For a definition of this
attribute, see Administration Console Online Help.

7. Click Apply to save your changes.

Configure Server Affinity for Distributed JMS 
Destinations

To understand the server affinity support provided by WebLogic Server for JMS, see
“Load Balancing for JMS” on page 4-18.

For instructions to configure server affinity for distributed JMS destinations, see
“Tuning Distributed Destinations” in Administration Console Online Help.

Configure Load Balancing Hardware

This section has guidelines for configuring an external load balancer.

For a detailed discussion of external load balancers, session cookie persistence, and
and load balancers can use information from the WebLogic Server session cookie, see
“Load Balancing HTTP Sessions with an External Load Balancer” on page 4-2
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Whether or not a load balancer is supported in a WebLogic Server cluster depends on
how the load balancer implements session persistence. The following table
summarizes support and configuration requirements for difference persistence
implementations.

Load balancers that overwrite the WebLogic Server session cookie are not supported.

Load balancers that use active cookie persistence, that is, insert an additional cookie,
but do not modify theWebLogic Server session cookie, are supported. No
WebLogic-specific configuration is required.

Load balancers that use passive cookie persistence, that is, do not insert cookies or
modify the WebLogic Server session cookie are supported. Instruction are provided
See “Configuring Load Balancers that Support Passive Cookie Persistence” on page
7-17

For vendor-specific instructions for configuring Alteon and Big-IP load balancers, see:

! Appendix B, “Configuring Alteon™ Hardware with Clusters.”

! Appendix C, “Configuring BIG-IP™ Hardware with Clusters.”

Configuring Load Balancers that Support Passive Cookie Persistence

Load balancers that support passive cookie persistence can use information from the
WebLogic Server session cookie to associate a client with the WebLogic Server
instance that hosts the session. The session cookie contains a string constant that the
load balancer uses to identify the primary server instance for the session.

To configure the load balancer to work with your cluster, use the facilities of the load
balancer to define the the offset and length of the string constant.

Persistence Type

Active Cookie Persistence Passive Cookie Persistence

Load Balancer
Overwrites
Cookie

Load Balancer Inserts
Additional Cookie

Not supported No configuration required Specify offset and string constant
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The values recommended for offset and length assume that you have not made changes
to your domain configuration that alter the format of the WebLogic Server session
cookie. Specifically, these instructions assume that:

! The Random Session ID portion of the session cookie is the default length of 52
bytes, and

! The WAPenabled parameter in the weblogic.xml file for your application is set
to the default value, “false”.

On your load balancer, set the offset and length of the string constant as follows:

! string constant offset—set to 53 bytes, the default Random Session ID length
plus 1 byte for the delimiter character.

! string constant length—BEA recommends that you set the length of the string
constant to at least 19 bytes, a length sufficient to ensure that the primary server
instance can be uniquely identified.

If your application or environmental requirements dictate that you change the length
of the Random Session ID from its default value of 52 bytes, you must set the string
constant offset on the load balancer accordingly. The offset for the string constant
must equal the length of the Random Session ID plus 1 byte for the delimiter character.

If your cluster hosts a WAP-enabled application, there are session parameter
considerations that might affect how you configure your load balancer. For details, see
the following section, “Configuring Load Balancer for Reduced Length Session
Parameters (WAP-Enabled)”.

Configuring Load Balancer for Reduced Length Session Parameters (WAP-Enabled)

If WAPEnabled is set to “true” for your domain, and IDLength is 8 bytes, set the offset
and length of the string constant as follows:

! String constant offset—set to 9 bytes, the default Random Session ID length plus
1 byte for the delimiter character.

! String constant length—Set the length of the string constant to 8, the minimum
length of the hash code that identifies the primary server.
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Configure Proxy Plug-Ins 

Refer to the instructions in the section if you wish to load balance servlets and JSPs
using a proxy plug-in. A proxy plug-in proxies requests from a Web server to
WebLogic server instances in a cluster, and provides load balancing and failover for
the proxied HTTP requests.

For information about load balancing using the proxy plug-in, see “Load Balancing
with a Proxy Plug-in” on page 4-2. For information about connection and failover
using the proxy plug-in, see “Replication and Failover for Servlets and JSPs” on page
5-3, and “Accessing Clustered Servlets and JSPs Using a Proxy” on page 5-8.

! If you use the BEA-provided Web server, set up its associated plug-in,
HttpClusterServlet, using the instructions in “Set Up the HttpClusterServlet”
on page 7-19.

! If you use a supported third-party Web server, you will set up a product-specific
plug-in. For a list of supported servers, see “Load Balancing with a Proxy
Plug-in” on page 4-2.

To set up a plug-in for a third party Web server, follow the instructions in Using
WebLogic Server with Plug-ins.

Note: Each Web server that proxies requests to a cluster must have an identically
configured plug-in.

Set Up the HttpClusterServlet

This section has instructions for deploying the HttpClusterServlet.

1. Create a Web Application that includes the HttpClusterServlet, and a
deployment descriptor file containing the elements described in this section. You
can create a Web Application and its deployment descriptors manually or you can
use the WebLogic Builder tool. For background and instructions, see:

" “Overview of Web Applications” in Assembling and Configuring Web
Applications

" “Main Steps to Create a Web Application” in Assembling and Configuring
Web Applications
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" “XML Deployment Descriptors” in Developing WebLogic Server
Applications dd_files

" WebLogic Builder Online Help

2. Create the web.xml deployment descriptor file for the Web Application. (For an
example of a complete deployment descriptor, see “Sample Deployment
Descriptor for the HttpClusterServlet” on page 7-21.)

a. Register the HttpClusterServlet in the Web Application deployment
descriptor in the <servlet> element. The class name for the
HttpClusterServlet is
weblogic.servlet.proxy.HttpClusterServlet:

<servlet-name>HttpClusterServlet</servlet-name>
<servlet-class>

weblogic.servlet.proxy.HttpClusterServlet
</servlet-class>

b. Define, where appropriate, any additional parameters as described in
“Parameters for Web Server Plug-ins” in Using WebLogic Server with Plug-ins.

c. Map the proxy servlet to a <url-pattern>. Specifically, map the file
extensions you want to proxy, for example *.jsp, or *.html.

If you set the <url-pattern> to “/”, then any request that cannot be
resolved by WebLogic Server is proxied to the remote server instance.
However, you must also specifically map the following extensions: *.jsp,
*.html, and *.html, if you want to proxy files ending with those
extensions.

Another way to set up the url-pattern is to map a <url-pattern> such as
/foo and then set the pathTrim parameter to foo, which removes foo from
the proxied URL.

For example:

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>
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<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

3. Use Administration Console to configure this Web Application. (For detailed
information on configuring and deploying a Web Application using the
Administration Console, see “Configuring a New Web Application or Web
Service” in Administration Console Online Help.

a. Create a new server instance in your domain.

b. Assign the Web Application you created as the default Web Application for the
server instance that you just created.

c. Deploy the Web Application on the server.

Note: You can also use the weblogic.Deployer tool to deploy a Web
Application. For more information, see “Deployer” in the BEA WebLogic
Server Administration Guide.

Sample Deployment Descriptor for the HttpClusterServlet

The following is a sample of a Web Applications deployment descriptor, web.xml, for
using the HttpClusterServlet:

Listing 7-1 Sample web.xml for Use with HttpClusterServlet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.
//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<servlet>
<servlet-name>HttpClusterServlet</servlet-name>

<servlet-class>
weblogic.servlet.proxy.HttpClusterServlet

</servlet-class>
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<init-param>
<param-name>WebLogicCluster</param-name>
<param-value>

myserver1:7736:7737|myserver2:7736:7737|myserver:7736:7737
</param-value>

</init-param>

<init-param>
<param-name>DebugConfigInfo</param-name>
<param-value>ON</param-value>

</init-param>

</servlet>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Configure Replication Groups

To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP
session states in memory. You can further control where secondary states are placed
using replication groups. A replication group is a preferred list of clustered instances
to be used for storing session state replicas.

If your cluster will host servlets or stateful session EJBs, you may want to create
replication groups of WebLogic Server instances to host the session state replicas.
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For instructions on how to determine which server instances should participate in each
replication group, and to determine each server instance’s preferred replication group,
follow the instructions in “Using Replication Groups” on page 5-6.

Then follow these steps to configure replication groups for each WebLogic Server
instance:

To configure replication groups for a WebLogic Server instance:

1. Open the WebLogic Server Console.

2. Select the Servers node.

3. Select the server to configure.

4. Select the Cluster tab.

5. Enter values for the following attribute fields:

" Replication Group: Enter the name of the replication group to which this
server instance belongs.

" Preferred Secondary Group: Enter the name of the replication group you
would like to use to host replicated HTTP session states for this server
instance.

6. Apply the changes.

Configure Migratable Targets for Pinned Services

WebLogic Server enables you to configure an optional migratable target, which
defines a list of server instances in the cluster that can potentially host a migratable
service, such as a JMS server or the Java Transaction API (JTA) transaction recovery
service. If you want to use a migratable target, configure the target server list before
deploying or activating the service in the cluster.

If you do not configure a migratable target in the cluster, migratable services can be
migrated to any WebLogic Server instance in the cluster. See “Migration for Pinned
Services” on page 5-22 for more information.

For instructions on configuring migratable JMS targets, see “Configuring JMS
Migratable Targets” in Programming WebLogic JMS.
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For instructions to configure a migratable target for JTA, see “Constraining the Servers
to Which the Transaction Recovery Service can Migrate” in Administration Console
Online Help.

Configure Clustered JDBC

This section provides instructions for configuring JDBC components using the
Administration Console. The choices you make as you configure the JDBC
components are reflected in the config.xml file for the WebLogic Server domain that
contains the cluster.

First you create the connection pools and optionally a multipool, then you create the
data source. When you create a data source object, you specify a connection pool or
multipool as one of the data source attributes. This associates that data source with one
specific connection pool or multipool.

! For an overview of how JDBC objects work in a WebLogic Server cluster, see
“JDBC Connections” on page 1-7.

! For a description of how clustered JDBC can increase application availability,
see “Failover and JDBC Connections” on page 5-25.

! For a description of how clustered JDBC supports load balancing, see “Load
Balancing for JDBC Connections” on page 4-20.

Clustering Connection Pools

Perform these steps to set up a basic connection pool in a cluster:

1. Create a connection pool.

For instructions, see “JDBC” in Administration Console Online Help.

2. Assign the connection pool to the cluster.

For instructions, see “JDBC” in Administration Console Online Help.

3. Create the data source. Specify the connection pool created in the previous step in
the Pool Name attribute.

For instructions, see “JDBC” in Administration Console Online Help.
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4. Assign the data source to the cluster.

For instructions, see “JDBC” in Administration Console Online Help.

Clustering Multipools

Perform these steps to create a clustered multipool for increased availability, and
optionally, load balancing.

Note: Multipools are typically used to provide increased availability and load
balancing of connections to replicated, synchronized instances of a database.
For more information, see “JDBC Connections” on page 1-7.

1. Create two or more connection pools.

For instructions, see “JDBC” in Administration Console Online Help.

2. Assign each connection pool to the cluster.

For instructions, see “JDBC” in Administration Console Online Help.

3. Create a multipool. Assign the connection pools created in the previous step to
the multipool.

For instructions, see “JDBC” in Administration Console Online Help.

4. Assign the Multipool to the cluster.

For instructions, see “JDBC” in Administration Console Online Help.

5. Create the data source. Specify the multipool created in the previous step in the
Pool Name attribute.

For instructions, see “JDBC” in Administration Console Online Help.

6. Assign the data source to the cluster.

For instructions, see “JDBC” in Administration Console Online Help.
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Package Applications for Deployment

Use the instructions in “WebLogic Server Applications Packaging” in Developing
WebLogic Server Applications to prepare your application for deployment. Packaging
your application is a prerequisite for deployment.

Deploy Applications 

This section provides instructions for common deployment tasks. For a discussion of
application deployment in clustered environments see “Application Deployment
Topics” on page 3-5. For a broad discussion of deployment topics, see Deploying
WebLogic Server Applications.

Deploying Applications to a Cluster

Follow the steps in this section to configure and deploy an application using the
WebLogic Server Administration Console:

Note: All server instances in your cluster should be running when you deploy
applications to the cluster using the Administration Console

1. Start the WebLogic Server Administration Console.

2. Select the Domain in which you will be working.

3. In the left pane of the Console, click Deployments.

4. In the left pane of the Console, click the Applications. A table is displayed in the
right pane of the Console showing all the deployed Applications.

5. Select the Configure a new Application option.

6. Locate the .ear, .war, .jar, or .rar file you would like to configure for use
with WebLogic Server. You can also configure an “exploded” application or
component directory. Note that WebLogic Server will deploy all components it
finds in and below the specified directory.

7. Click the WebLogic icon to the left of a directory or file to choose it and proceed
to the next step.
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8. Enter a name for the application or component in the provided field and click
Create.

9. Enter the following information:

" Staging Mode—specify the staging mode. The options include server,
nostage, and stage.

" Deployed—using the provided check box, indicate whether the .ear, .war,
.jar, or .rar file should be deployed upon creation.

10. To configure components for the application, click the Configure Components in
this Application.

11. The Components table is displayed. Click a component to configure.

12. Using the available tabs, enter the following information:

" Configuration—Edit the staging mode and enter the deployment order.

" Targets—Indicate the target for this configured application by moving the
application from the Available list to the Chosen list.

Note: Clustered objects in WebLogic Server should be deployed homogeneously. If
the object contains a replica-aware stub, use the console to deploy it using the
cluster name.

To ensure homogeneous deployment, when you select a target use the cluster
name, rather than individual WebLogic Server instances in the cluster.

The console automates deploying replica-aware objects to clusters. When you
deploy an application or object to a cluster, the console automatically deploys
it to all members of the cluster (whether they are local to the Administration
Server machine or they reside on remote machines)

" Deploy—Deploy the application to all of the selected targets or undeploy it
from all targets.

" Monitoring—View monitoring information related to the application.

" Notes—Enter notes related to the application.

Click Apply.
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Deploying to a Server Instance (Pinned Deployment)

Deploying a application to a server instance, rather than the all cluster members is
called a pinned deployment. Although a pinned deployment targets a specific server
instance, all server instances in the cluster must be running during the deployment
process.

You can perform a pinned deployment using the Administration Console or from the
command line, using weblogic.Deployer.

Pinned Deployment from the Command Line

From a command shell, use the following syntax to target a server instance:

java weblogic.Deployer -activate -name ArchivedEarJar -source
C:/MyApps/JarEar.ear -target server1

Pinned Deployment Using the Administration Console

Perform these steps to target a server instance:

1. In the Administration Console, open the Deployments node.

2. Click the application or component to be deployed.

3. In the right-hand panel, select the Targets --> Clusters tab and make sure the
cluster is in the Available and not the Chosen list.

4. Select the Targets tab and make sure the server is in the Chosen list.

5. Click Apply.

Cancelling Cluster Deployments

You can cancel a deployment using the Administration Console or from the command
line, using weblogic.Deployer.

Cancel Deployment from the Command Line

From a command shell, use the following syntax to cancel the deployment task ID:

java weblogic.Deployer -adminurl http://admin:7001 -cancel -id tag
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Cancel Deployment Using the Administration Console

In the Administration Console, open the Tasks node to view and to cancel any current
deployment tasks.

Viewing Deployed Applications

To view a deployed application in the Administration Console:

1. In the Console, click Deployments.

2. Click the Applications option.

3. View a list of deployed applications in the table displayed in the Console.

Undeploying Deployed Applications

To undeploy a deployed application from the WebLogic Server Administration
Console:

1. In the Console, click Deployments.

2. Click the Applications option.

3. In the displayed table, click the name of the application you wish to undeploy.

4. Click the Configuration tab, and deselect the Deployed check box.

5. Click Apply.

Deploying, Activating, and Migrating Migratable 
Services

The sections that follow provide guidelines and instructions for deploying, activating,
and migrating migratable services. For a discussion of migratable services, see
“Migration for Pinned Services” on page 5-22
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Deploying JMS to a Migratable Target Server Instance

The migratable target that you create defines the scope of server instances in the cluster
that can potentially host a migratable service. You must deploy or activate a pinned
service on one of the server instances listed in the migratable target in order to migrate
the service within the target server list at a later time. Use the instructions that follow
to deploy a JMS server on a migratable target, or activate the JTA transaction recovery
system so that you can migrate it later.

Note: If you did not configure a migratable target, simply deploy the JMS server to
any WebLogic Server instance in the cluster; you can then migrate the JMS
server to any other server instance in the cluster (no migratable target is used).

To deploy a JMS server to a migratable target using the Administration Console:

1. Use the instructions in “Configure Migratable Targets for Pinned Services” on
page 23 to create a migratable target for the cluster, if you have not already done so.

2. Start the Administration Server for the cluster and log in to the Administration
Console.

3. Select the JMS node in the left pane, then select the Servers node under JMS.

4. Select the name of the configured JMS server that you want to deploy to the
cluster. This displays the JMS server configuration in the right pane.

5. Select the Targets->Migratable Targets tab in the right pane.

6. Select the name of a server instance from the drop-down list. The drop-down list
specifies server names that are defined as part of a migratable target.

7. Click Apply to apply the JMS server to the select WebLogic Server instance.

Activating JTA as a Migratable Service

The JTA recovery service is automatically started on one of the server instances listed
in the migratable target for the cluster; you do not have to deploy the service to a
selected server instance.

If you did not configure a JTA migratable target, WebLogic Server activates the
service on any available WebLogic Server instance in the cluster. To change the
current server instance that hosts the JTA service, use the instructions in “Migrating a
Pinned Service to a Target Server Instance” on page 7-31.
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Migrating a Pinned Service to a Target Server Instance

After you have deployed a migratable service, you can use the Administration Console
to migrate the service to another server instance in the cluster. If you configured a
migratable target for the service, you can migrate to any other server instance listed in
the migratable target, even if that server instance is not currently running. If you did
not configure a migratable target, you can migrate the service to any other server
instance in the cluster.

If you migrate a service to a stopped server instance, the server instance will activate
the service upon the next startup. If you migrate a service to a running WebLogic
Server instance, the migration takes place immediately.

To migrate a pinned service using the Administration Console:

1. Use the instructions in “Deploying JMS to a Migratable Target Server Instance” on
page 7-30 to deploy a pinned service to the cluster, if you have not already done so.

2. Start the Administration Server for the cluster and log in to the Administration
Console.

3. Select the Servers node in the left pane, then select a server instance that is a
member of the cluster you want to configure.

4. Select Control->Migrate if you want to migrate the JMS service, or Control->JTA
Migrate to migrate the JTA transaction recovery service.

The Current Server field shows the WebLogic Server instance that currently
hosts the pinned service. The Destination Server drop-down list displays server
instances to which you can migrate the service.

5. Use the Destination Server drop-down list to select the new server instance that
will host the pinned service.

6. Click Migrate to migrate the pinned service from the Current Server to the
Destination Server.

7. If the Current Server is not reachable by the Administration Server, the
Administration Console displays this message:

Unable to contact server MyServer-1, the source server from
which services are being migrated.

Please ensure that server MyServer-1 is NOT running! If the
administration server cannot reach server MyServer-1 due to a
network partition, inspect the server directly to verify that
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it is not running. Continue the migration only if MyServer-1
is not running. Cancel the migration if MyServer-1 is running,
or if you do not know whether it is running.

Before bringing up MyServer-1 again after this migration, use
the java weblogic.PurgeConfigCache utility to prevent
redundant activation of the migrated service. See Help for
more information

If this message is displayed, perform the procedure described in “Migrating
When the Currently Active Host is Unavailable” on page 7-32.

8. If the Destination Server is stopped, the Administration Console notifies you of
the stopped server instance and asks if you would like to continue the migration.
Click the Continue button to migrate to the stopped server instance, or click
Cancel to stop the migration and select a different server instance.

9. The migration process may take several minutes to complete, depending on the
server instance configuration. However, you can continue using other
Administration Console features while the migration takes place. To view the
migration status at a later time, click the Tasks node in the left pane to display the
currently-running tasks for the domain; then select the task description for the
migration task to view the current status.

Migrating When the Currently Active Host is Unavailable

Use this migration procedure if a clustered Managed Server that was the active server
for the migratable service crashes or becomes unreachable.

This procedure purges the failed Managed Server’s configuration cache. The purpose
of purging the cache is to ensure that, when the failed server instance is once again
available, it does not re-deploy a service that you have since migrated to another
Managed Server. Purging the cache eliminates the risk that Managed Server which was
previously the active host for the service uses local, out-of-date configuration data
when it starts up again.

1. Disconnect the machine from the network entirely. It should not be accessible to
the Administration Server or client traffic. If the machine has a dual ported disk,
disconnect it.

2. Migrate the migratable service(s) to a Managed Server instance on a different
machine. The Administration Server must be running, so that it can coordinate
the migration and update the activation table.

" If you use the command line for migration, use the -sourcedown flag.
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" If you use the console, it will ask you to make sure the source server is not
going to restart.

The migratable service is now available on a different Managed Server on a
different machine. The following steps can be performed at leisure.

3. Perform the necessary repair or maintenance on the failed machine.

4. Reboot the machine, but do not connect it to the network.

Node Manager will start as a service or daemon, and will attempt to start the
Managed Servers on the machine.

" If Managed Server Independence is enabled, the Managed Server will start,
even though it cannot connect to the Administration Server.

" If Managed Server Independence is disabled, the Managed Server will not
start, because it cannot connect to the Administration Server.

5. Use the java weblogic.PurgeConfigCache utility to disable all Managed
Servers that host migratable services on the machine. Run the utility from the
WebLogic Server home directory on the machine. If there are multiple
installations on the machine, each with different root directories, participating in
the cluster, run the utility from each WebLogic Server home directory.

The utility will:

" Remove the Managed Servers’ PIDs from the monitor process list—the list
of server instances to be restarted after failure.

" Shut down any Managed Servers that started when the machine was
rebooted, and prevent them from restarting again.

" Delete the replicated config.xml from the Managed Server’s root directory.

6. Reconnect the machine to the network and shared storage, including dual ported
disk, if applicable.

7. Restart the Node Manager daemon/service or reboot the machine, to start all
remaining Managed Servers.

8. Start the Managed Serves that was disabled in step 5. This is a normal start up,
rather than a restart performed by Node Manager. The Administration Server
must be reachable and running, so that the Managed Servers can synchronize
with the migratable service activation table on the Administration Server—and
hence know that it is no longer the active host of the migratable service.
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Configure In-Memory HTTP Replication

To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP
session states in memory.

Note: WebLogic Server can also maintain the HTTP session state of a servlet or JSP
using file-based or JDBC-based persistence. For more information on these
persistence mechanisms, see “Making Sessions Persistent” in Programming
WebLogic HTTP Servlets.

In-memory HTTP Session state replication is controlled separately for each
application you deploy. The parameter that controls it—PersistentStoreType—

appears within the session- descriptor element, in the WebLogic deployment
descriptor file, weblogic.xml, for the application.

domain_directory/applications/application_directory/Web-Inf/weblogic.xml

To use in-memory HTTP session state replication across server instances in a cluster,
set the PersistentStoreType to replicated. The fragment below shows the
appropriate XML from weblogic.xml.

<session-descriptor>

<session-param>

<param-name> PersistentStoreType </param-name>

<param-value> replicated </param-value>

</session-param>

</session-descriptor>

Additional Configuration Topics

The sections below contain useful tips for particular cluster configurations.
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Configure IP Sockets

For best socket performance, BEA recommends that you use the native socket reader
implementation, rather than the pure-Java implementation, on machines that host
WebLogic Server instances.

If you must use the pure-Java socket reader implementation for host machines, you can
still improve the performance of socket communication by configuring the proper
number of socket reader threads for each server instance and client machine.

! To learn more about how IP sockets are used in a cluster, and why native socket
reader threads provide best performance, see “Peer-to-Peer Communication
Using IP Sockets” on page 2-4, and “Client Communication via Sockets” on
page 2-9.

! For instructions on how to determine how many socket reader threads are
necessary in your cluster, see “Determining Potential Socket Usage” on page
2-7. If you are deploying a servlet cluster in a multi-tier cluster architecture, this
has an effect on how many sockets you require, as described in “Configuration
Considerations for Multi-Tier Architecture” on page 6-11.

The sections that follow have instructions on how to configure native socket reader
threads for host machines, and how to set the number of reader threads for host and
client machines.

Configure Native IP Sockets Readers on Machines that Host Server Instances

To configure a WebLogic Server instance to use the native socket reader threads
implementation:

1. Open the WebLogic Server Console.

2. Select the Servers node.

3. Select the server instance to configure.

4. Select the Tuning tab.

5. Check the Enable Native IO box.

6. Apply the changes.
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Set the Number of Reader Threads on Machines that Host Server Instances

By default, a WebLogic Server instance creates three socket reader threads upon
booting. If you determine that your cluster system may utilize more than three sockets
during peak periods, increase the number of socket reader threads:

1. Open the WebLogic Server Console.

2. Select the Servers node.

3. Select the server instance to configure.

4. Select the Tuning tab.

5. Edit the percentage of Java reader threads in the Socket Readers attribute field.
The number of Java socket readers is computed as a percentage of the number of
total execute threads (as shown in the Execute Threads attribute field).

6. Apply the changes.

Set the Number of Reader Threads on Client Machines 

On client machines, you can configure the number socket reader threads in the Java
Virtual Machine (JVM) that runs the client. Specify the socket readers by defining the
-Dweblogic.ThreadPoolSize=value and
-Dweblogic.ThreadPoolPercentSocketReaders=value options in the Java
command line for the client.

Configure Multicast Time-To-Live (TTL)

If your cluster spans multiple subnets in a WAN, the value of the Multicast
Time-To-Live (TTL) parameter for the cluster must be high enough to ensure that
routers do not discard multicast packets before they reach their final destination. The
Multicast TTL parameter sets the number of network hops a multicast message makes
before the packet can be discarded. Configuring the Multicast TTL parameter
appropriately reduces the risk of losing the multicast messages that are transmitted
among server instances in the cluster.

For more information about planning your network topology to ensure that multicast
messages are reliably transmitted see“If Your Cluster Spans Multiple Subnets in a
WAN” on page 2-3.
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To configure the Multicast TTL for a cluster, change the Multicast TTL value in the
Multicast tab for the cluster in the Administration Console. The config.xml excerpt
below shows a cluster with a Multicast TTL value of three. This value ensures that the
cluster’s multicast messages can pass through three routers before being discarded:

<Cluster

Name="testcluster"

ClusterAddress="wanclust"

MulticastAddress="wanclust-multi"

MulticastTTL="3"

/>

Configure Multicast Buffer Size

If multicast storms occur because server instances in a cluster are not processing
incoming messages on a timely basis, you can increase the size of multicast buffers.
For information on multicast storms, see “If Multicast Storms Occur” on page 2-4.

TCP/IP kernel parameters can be configured with the UNIX ndd utility. The
udp_max_buf parameter controls the size of send and receive buffers (in bytes) for a
UDP socket. The appropriate value for udp_max_buf varies from deployment to
deployment. If you are experiencing multicast storms, increase the value of
udp_max_buf by 32K, and evaluate the effect of this change.

Do not change udp_max_buf unless necessary. Before changing udp_max_buf, read
the Sun warning in the “UDP Parameters with Additional Cautions” section in the
“TCP/IP Tunable Parameters” chapter in Solaris Tunable Parameters Reference
Manual at http://docs.sun.com/?p=/doc/806-6779/6jfmsfr7o&.

Configure Machine Names

Configure a Machine Name if:

! Your cluster will span multiple machines, and multiple server instances will run
on individual machines in the cluster, or

! You plan to run Node Manager on a machine that does not host a Administration
Server
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WebLogic Server uses configured machine names to determine whether or not two
server instances reside on the same physical hardware. Machine names are generally
used with machines that host multiple server instances. If you do not define machine
names for such installations, each instance is treated as if it resides on separate physical
hardware. This can negatively affect the selection of server instances to host secondary
HTTP session state replicas, as described in “Using Replication Groups” on page 5-6.

For instructions, see “Configuring a Machine” in Administration Console Online Help.

Configuration Notes for Multi-Tier Architecture

If your cluster has a multi-tier architecture, see the configuration guidelines in
“Configuration Considerations for Multi-Tier Architecture” on page 6-11.

Enable URL Rewriting 

In its default configuration, WebLogic Server uses client-side cookies to keep track of
the primary and secondary server instance that host the client’s servlet session state. If
client browsers have disabled cookie usage, WebLogic Server can also keep track of
primary and secondary server instances using URL rewriting. With URL rewriting,
both locations of the client session state are embedded into the URLs passed between
the client and proxy server. To support this feature, you must ensure that URL
rewriting is enabled on the WebLogic Server cluster. For instructions on how to enable
URL rewriting, see “Using URL Rewriting” in Assembling and Configuring Web
Applications.
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CHAPTER
8 Troubleshooting 
Common Problems

This chapter provides guidelines on how to prevent cluster problems or troubleshoot
them if they do occur.

Before You Start the Cluster

You can do a number of things to help prevent problems before you boot the cluster.

Check for a Cluster License

Your WebLogic Server license must include the clustering feature. If you try to start a
cluster without a clustering license, you will see the error message Unable to find a
license for clustering.

Check the Server Version Numbers

All servers in the cluster must have the same major version number, but can have
different minor version numbers and service packs.
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The cluster’s Administration Server is typically not configured as a cluster member,
but it should run the same major version of WebLogic Server used on the managed
servers.

Check the Multicast Address

A problem with the multicast address is one of the most common reasons a cluster does
not start or a server fails to join a cluster.

A multicast address is required for each cluster. The multicast address can be an IP
number between 224.0.0.0 and 239.255.255.255, or a host name with an IP address
within that range.

You can check a cluster’s multicast address and port using the WebLogic Server
Console.

For each cluster on a network, the combination of multicast address and port must be
unique. If two clusters on a network use the same multicast address, they should use
different ports. If the clusters use different multicast addresses, they can use the same
port or accept the default port, 7001.

Before booting the cluster, make sure the cluster’s multicast address and port are
correct and do not conflict with the multicast address and port of any other clusters on
the network.

The errors you are most likely to see if the multicast address is bad are:
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! Unable to create a multicast socket for clustering

! Multicast socket send error

! Multicast socket receive error

Check the CLASSPATH Value

Make sure the value of CLASSPATH is the same on all managed servers in the cluster.
CLASSPATH is set by the setEnv script, which you run before you run
startManagedWebLogic to start the managed servers.

By default, setEnv sets this value for CLASSPATH (as represented on Windows
systems):

set WL_HOME=C:\bea\weblogic700
set JAVA_HOME=C:\bea\jdk131
.
.
set CLASSPATH=%JAVA_HOME%\lib\tools.jar;

%WL_HOME%\server\lib\weblogic_sp.jar;
%WL_HOME%\server\lib\weblogic.jar;
%CLASSPATH%

If you change the value of CLASSPATH on one managed server, or change how setEnv

sets CLASSPATH, you must change it on all managed servers in the cluster.

Check the Thread Count

Each server in the cluster is allocated an execution thread count that you can check in
the console (click Servers > server name > Monitoring > Monitor All Active
Queues > Configure Execute Queue; then click default in the server list).
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Figure 8-1 Checking the Execute Queue Thread Count

Before starting a managed server, check its Thread Count attribute. The default value
is 15, and the minimum value is 5. If the value of Thread Count is below 5, change it
to a higher value so that the managed server doesn’t hang on startup.

After You Start the Cluster

Check Your Commands

If the cluster fails to start, or a server fails to join the cluster, the first step is to check
any commands you have entered, such as startManagedWebLogic or a java
interpreter command, for errors and misspellings.

Remember that in this release, the server starts with the system name and password
weblogic.
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Generate a Log File

Before contacting BEA Technical Support for help with cluster-related problems, you
need to collect some diagnostic information. The information you need most is a log
file with multiple thread dumps from a managed server. The log file is especially
important for addressing cluster freezes and deadlocks.

Remember: a log file that contains multiple thread dumps is a prerequisite for
diagnosing your problem.

To create the log file, follow these steps on an administration server or managed server:

1. Stop the server.

2. Remove or back up any log files you currently have. You should create a new log
file each time you boot a server, rather than appending to an existing log file.

3. Start the server with this command, which turns on verbose garbage collection
and redirects both the standard error and standard output to a log file:

% java -ms64m -mx64m -verbose:gc -classpath $CLASSPATH
-Dweblogic.domain=mydomain -Dweblogic.Name=clusterServer1
-Djava.security.policy==$WL_HOME/lib/weblogic.policy
-Dweblogic.admin.host=192.168.0.101:7001
weblogic.Server >> logfile.txt

Redirecting both standard error and standard output places thread dump
information in the proper context with server informational and error messages
and provides a more useful log.

4. Continue running the cluster until you have reproduced the problem.

5. If a server hangs, use kill -3 or <Ctrl>-<Break> to create the necessary
thread dumps to diagnose your problem. Make sure to do this several times on
each server, spaced about 5-10 seconds apart, to help diagnose deadlocks.

6. Compress the log file using a Unix utility:

% tar czf logfile.tar logfile.txt

- or zip it using a Windows utility.

7. Attach the compressed log file to an e-mail to your BEA Technical Support
representative. Do not cut and paste the log file into the body of an e-mail.
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8. If the compressed log file is too large, you can use the BEA Customer Support
FTP site.

Check Garbage Collection

If you are experiencing cluster problems, you should also check the garbage collection
on the managed servers. If garbage collection is taking too long, the servers will not be
able to make the frequent heartbeat signals that tell the other cluster members they are
running and available.

If garbage collection (either first or second generation) is taking 10 or more seconds,
you need to tune heap allocation (the msmx parameter) on your system.

Run utils.MulticastTest

You can verify that multicast is working by running utils.MulticastTest from one
of the managed servers. See “Using the WebLogic Server Java Utilities” in WebLogic
Server Command Reference.
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CHAPTER
A The WebLogic Cluster 
API 

The following section describes the WebLogic Cluster API including:

! How to Use the API

How to Use the API

The WebLogic Cluster public API is contained in a single interface,
weblogic.rmi.cluster.CallRouter.

Class java.lang.Object
Interface weblogic.rmi.cluster.CallRouter

(extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to
enable parameter-based routing. Run rmic on the service implementation using these
options (to be entered on one line):

$ java weblogic.rmic -clusterable -callRouter
<callRouterClass> <remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked.
The router is responsible for returning the name of the server to which the call should
be routed.
Using WebLogic Server Clusters A-1



A The WebLogic Cluster API
Each server in the cluster is uniquely identified by its name as defined with the
WebLogic Server Console. These are the names that the method router must use for
identifying servers.

Example: Consider the ExampleImpl class which implements a remote interface
Example, with one method foo:

public class ExampleImpl implements Example {
public void foo(String arg) { return arg; }

}

This CallRouter implementation ExampleRouter ensures that all foo calls with
‘arg’ < “n” go to server1 (or server3 if server1 is unreachable) and that all calls with
‘arg’ >= “n” go to server2 (or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
private static final String[] aToM = { "server1", "server3" };
private static final String[] nToZ = { "server2", "server3" };

public String[] getServerList(Method m, Object[] params) {
if (m.GetName().equals("foo")) {
if (((String)params[0]).charAt(0) < 'n') {
return aToM;

} else {
return nToZ;

}
} else {
return null;

}
}

}

This rmic call associates the ExampleRouter with ExampleImpl to enable
parameter-based routing:

$ rmic -clusterable -callRouter ExampleRouter ExampleImpl
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CHAPTER
B Configuring Alteon™ 
Hardware with Clusters

This section describes how to configure an Alteon WebSystems Web switch and server
load balancing software to operate with a WebLogic Server cluster. It assumes that you
have some familiarity with Alteon configuration tasks, such as using the Web OS
administration tools and attaching hardware to the Web switch.

Some step-by-step instructions for configuring Alteon products are included.
However, if you require detailed setup and administration instructions, refer to your
Alteon product documentation. This topic contains the following sections:

! “Requirements”

! “Example Configuration”

! “Configuring Alteon with a WebLogic Server Cluster”

! “Configuring Alteon SSL Accelerator with a WebLogic Server Cluster”

Requirements

The configuration instructions in this section require that you use the following
products:

! WebLogic Server Version 8.1 cluster

! Alteon ACEdirector series AD3 or higher Web switch
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! Alteon Web OS with Server Load Balancing (SLB) and Application Redirection
(AR)

Example Configuration

The steps in this section reference an example WebLogic Server cluster with the
following components:

! Three Weblogic Server instances, which are bound to IP addresses 192.168.0.10,
192.168.0.11, and 192.168.0.12.

! An Alteon Web switch, with ports 6, 7, and 8 used to attach the WebLogic
Server instances. Port 1 is used for client connections.

! A reserved virtual IP address of 172.17.10.100, used by external clients that
connect to the cluster.

! A reserved virtual IP address of 192.168.0.20, assigned to the Web switch itself.

Your actual configuration will likely use different IP addresses, and different ports on
the Web switch. If your system includes an iSD-SSL Accelerator, follow the steps in
“Configuring Alteon with a WebLogic Server Cluster” to configure the basic load
balancing features, then refer to “Configuring Alteon SSL Accelerator with a
WebLogic Server Cluster”.

Configuring Alteon with a WebLogic Server 
Cluster

The following steps summarize the process of configuring Alteon products with a
WebLogic Server cluster:
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1. Install the WebLogic Server cluster and bind server instances to their internal IP
addresses (192.168.0.10, 192.168.0.11, 192, 168.0.12). Make sure all IP addresses
reside in the same subnet on your internet. A single subnet is required to ensure that
all server instances can receive multicast traffic.

2. Physically connect all components to the Alteon Web switch.

3. Create a separate Virtual LAN (VLAN) for the Alteon Web switch and the
WebLogic Server cluster. Note that the Web switch VLAN is configured by
default as VLAN 1. To configure a new VLAN for the cluster:

>> # /cfg/vlan 2

>> VLAN 2# add 6

>> VLAN 2# add 7

>> VLAN 2# add 8

>> VLAN 2#ena

4. Configure and enable an IP interface on the Web switch VLAN and the
WebLogic Server VLAN:

a. To configure the IP interface for the Web switch VLAN:

>> # /cfg/ip/if 1

>> IP Interface 1# addr 192.168.0.20

>> IP Interface 1# ena

b. To configure the IP interface for the WebLogic Server cluster VLAN:

>> # /cfg/ip/if 2

>> IP Interface 2# addr 172.17.10.100

>> IP Interface 2# vlan 2

>> IP Interface 2# ena

5. Add to the Web switch the real IP addresses of each WebLogic Server in the
cluster:

>> # /cfg/slb/real 1

>> Real Server 1# rip 192.168.0.10

>> Real Server 1# ena

>> Real Server 1# /cfg/slb/real 2

>> Real Server 2# rip 192.168.0.11
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>> Real Server 2# ena

>> Real Server 2# /cfg/slb/real 3

>> Real Server 3# rip 192.168.0.12

>> Real Server 3# ena

6. Use Alteon administration software to define an IP address group for the
WebLogic Server instances. You will use this group (along with a virtual IP
address) to define policies for routing traffic between components of the
clustered system:

>> # /cfg/slb/group 1

>> Real server group 1# add 1

>> Real server group 1# add 2

>> Real server group 1# add 3

7. Define the hash load balancing metric for the group:

>> # /cfg/slb/group 1

>> Real Server group 1# metric hash

8. Define a virtual IP address for the WebLogic Server cluster:

>> # /cfg/slb/virt 1

>> Virtual server 1# vip 172.17.10.100

>> Virtual server 1# service http

>> Virtual server 1 http Service# group 1

>> Virtual server 1 http Service# ..

>> Virtual server 1# ena

9. Configure cookie-based persistence, and specify the WebLogic Server identifier.

Note: The following example uses the default values for the WebLogic Server
cookie offset, size, and name. These values can be configured in the
weblogic.xml file for the deployed application.

>> # /cfg/slb/virt 1/service 80

>> Virtual server 1 http service# pbind

Enter clientip|cookie|sslid persistence mode: cookie

Enter passive|rewrite cookie persistence mode: passive
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Enter Cookie Name: JSESSIONID

Enter the starting point of the cookie value: 53

Enter the number of bytes to extract: 10

Look for cookie in URI [e|d]: dis

10. Configure the Web switch ports to which the cluster and clients are attached:

>> # /cfg/slb/port 6

>> Port 6# server ena

>> # /cfg/slb/port 7

>> Port 7# server ena

>> # /cfg/slb/port 8

>> Port 8# server ena

>> Port 8# /cfg/slb/port 1

>> Port 1# client ena

11. Activate and save the new load balancing settings:

>> # /cfg/slb

>> Server Load Balancing# on

>> Server Load Balancing# apply

>> Server Load Balancing# save

Configuring Alteon SSL Accelerator with a 
WebLogic Server Cluster

If you use an Alteon SSL accelerator with the WebLogic Server cluster, you will also
need to configure a Virtual LAN for the accelerator and create routing policies for
directing traffic between the cluster and accelerator. The following steps extend the
example system described in Configuring Alteon with a WebLogic Server Cluster to
use an Alteon iSD100-SSL accelerator. The accelerator is attached to port 2 of the
Alteon web switch.

To use an SSL accelerator with a WebLogic Server cluster:
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1. Install and initialize the iSD100-SSL accelerator using the Alteon product
documentation.

2. Create a Virtual LAN (VLAN) for the Web switch, the SSL accelerator, and for
the WebLogic Server cluster. Note that VLAN 1, the virtual LAN for the Web
switch, is the default VLAN and does not need to be explicitly created. VLAN 2,
the virtual LAN for the cluster, is setup in Configuring Alteon with a WebLogic
Server Cluster. To create and enable a VLAN for the Web SSL accelerator:

>> # /cfg/vlan 2

>> VLAN 2# add 2

>> VLAN 2# ena

3. Disable the Web switch’s Spanning Tree Protocol for the ports attached to the
SSL accelerator and WebLogic Server cluster:

>> # /cfg/stp/port 2

>> STP PORT 2# off

>> # /cfg/stp/port 6

>> STP PORT 6# off

>> # /cfg/stp/port 7

>> STP PORT 7# off

>> # /cfg/stp/port 8

>> STP PORT 8# off

4. Configure and enable an IP interface for the SSL accelerator VLAN. This
example places the SSL accelerator in the same subnet as the WebLogic Server
cluster. Note, however, that you may also place the accelerator in its own private
subnet:

>> # /cfg/ip/if 2

>> IP Interface 2# addr 192.168.0.21

>> IP Interface 2# vlan 2

>> IP Interface 2# ena

5. Configure the cluster real IP addresses, server group, load balancing metric, and
cookie-based persistence using the instructions in “Configuring Alteon with a
WebLogic Server Cluster” on page 2 of this Appendix, if you have not already
done so.
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6. Configure the TCP port number to use for SSL traffic on the SSL accelerator:

>> # /cfg/isd/ssl/setport 81

7. Configure a filter to redirect client HTTPS traffic on TCP port 443 to the SSL
accelerator. The following commands use filter 100 as the HTTPS filter. Note
that group 256 in the following instructions is reserved for the SSL accelerator,
and does not need to be explicitly created:

>> # /cfg/slb/filt 100

>> FILTER 100# proto tcp

>> FILTER 100# dport https

>> FILTER 100# action redir

>> FILTER 100# group 256

>> FILTER 100# rport https

>> FILTER 100# ena

8. Configure a default filter to allow other TCP traffic:

>> # /cfg/slb/filt 101

>> FILTER 101# sip any

>> FILTER 101# dip any

>> FILTER 101# proto any

>> FILTER 101# action allow

>> FILTER 101# ena

9. Add the new filters to client port on the Web switch:

>> # /cfg/slb/port 1

>> PORT 1# add 100

>> PORT 1# add 101

>> PORT 1# filt ena

10. Configure a filter to direct TCP traffic from the WebLogic Server cluster back to
the SSL accelerator:

>> # /cfg/slb/filt 102

>> FILTER 102# proto tcp

>> FILTER 102# sport 81

>> FILTER 102# action redir
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>> FILTER 101# group 256

>> FILTER 101# ena

11. Add the new filters (including the default filter) to WebLogic Server instance
ports on the Web switch:

>> # /cfg/slb/port 6

>> PORT 6# add 101

>> PORT 6# add 102

>> PORT 6# filt ena

>> # /cfg/slb/port 7

>> PORT 7# add 101

>> PORT 7# add 102

>> PORT 7# filt ena

>> # /cfg/slb/port 8

>> PORT 8# add 101

>> PORT 8# add 102

>> PORT 8# filt ena

12. Activate and save the new settings:

>> # /cfg/slb

>> Server Load Balancing# on

>> Server Load Balancing# apply

>> Server Load Balancing# save
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CHAPTER
C Configuring BIG-IP™ 
Hardware with Clusters

This topic contains the following sections:

! Overview

! About Load Balancing and URL Rewriting

! Configuring Session Persistence with a WebLogic Server Cluster

Overview

This section describes how to configure an F5 BIG-IP controller to operate with a
WebLogic Server cluster. It assumes that you have some familiarity with BIG-IP
configuration tasks.

This section provides some step-by-step instructions for configuring BIG-IP.
However, if you require detailed setup and administration instructions, refer to your F5
product documentation.
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About Load Balancing and URL Rewriting

In some cases, you may want to load balance by rewriting a URL. For example,
suppose you have an application with a URL http://www.paradiso.com and you
want to load balance its traffic to servers named www.paradiso[0].com through
www.paradiso[4].com, a total of five servers.

In general, there are many possible solutions to load balancing by URL rewriting.
However, you cannot use URL rewriting if you use BIG-IP as a load balancer.

Configuring Session Persistence with a 
WebLogic Server Cluster

If your cluster uses in-memory replication for client session states, you must configure
BIG-IP to use the Insert mode for cookies. Insert mode insures that the original
WebLogic Server cookie is not overwritten, and can be used in the event that a client
fails to connect to its primary WebLogic Server.

To configure Insert mode for BIG-IP cookies:

1. Open the BIG-IP configuration utility.

2. Select the Pools option from the navigation pane.

3. Select the an available pool to configure.

4. Select the Persistence tab.

5. Select Active HTTP Cookie to begin configuring cookies.

6. Choose Insert mode from the list of methods.

7. Enter the timeout value for the cookie. The timeout value specifies how long the
inserted cookie remains on the client before expiring. Note that the timeout value
does not affect the WebLogic Server session cookie—it affects only the inserted
BIG-IP cookie.
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8. Apply your changes and exit the utility.
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