‘.."‘

S’ 7
2 bea
L/

BEA WeDbLogic
Server-

Developing Security
Providers for WebLogic
Server

Release 7.0
Document Revised: August 30, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Developing Security Providers for WebL ogic Server

Part Number Document Revised Software Version

N/A August 30, 2002 BEA WebL ogic Server
Version 8.1

Contents

About This Document

Audience for ThISGUITE........cooe i e Xiii
E-0OCS WED SItE....ceiiiiiiieeie ettt e e Xiii
HOW t0 Print the DOCUMENEcoerieeereeeeee s et ere e eenee e Xiii
Related INFOrMEtioN.........c.ooiiiie i Xiv
CONLACE US! .. bbb et Xiv
Documentation CONVENLIONS.......c.cveuereeeereseseeseeseseeseeaeseeeeseseesessessesesssenes XV
1. Introduction to Developing Security Providers for WebLogic
Server
Audience for ThISGUITEccoeiiiinere e 1-1
Security Providers and the WebL ogic Security Frameworkcccceeeveneeee. 1-2
Types of SECUNtY PrOVIAErS ..ot 1-2
Authentication ProVIiderS.........ccooveeeiireni e s 1-3
Identity ASSErtion PrOVIErS.......ccvceeceieeve e 1-4
Principal Validation ProViders........c.coeenenenneseeseese e 1-5
AUthOriZation ProVidErS........coceeireereeere e 1-5
Adjudication ProViders...........coceieeveiiiie st 1-6
Role Mapping ProVidersS..........couueiieinieiieirie e 1-7
AUItING ProVIAErS ..o 1-8
Credential Mapping ProVidersccooeeereeiieniececsiece e see s 1-8
Security Provider SUMMANYcooveirreninenieesiee e 1-9
Security Providers and Security REAIMScocveveinieinieiececeeeseesiees 1-10
LI .01 7o oo | 1-12
2. Design Considerations
Overview of the DevelOpment PrOCESScoveereerieereereesees e 2-1

Developing Security Providers for WebL ogic Server i

iv

Designing the Custom Security Providercccoveevvierneeine s 2-2
Creating Runtime Classesfor the Custom Security Provider by Implementing

SOPUS .ttt bbb bbb 2-3
Generating an MBean Type to Configure and Manage the Custom Security
0V = S 2-3
Writing CoNnS0le EXIENSIONS.......ccueiiieirieirieirieieeie e 2-4
Configuring the Custom Security Providerccccceveeeinieeinene e 2-6
General Architecture of a Security Providercocooeeneenninncnnese e 2-7
Security Services Provider Interfaces (SSPIS).......coevereerienenene e 2-8
Understand the Purpose of the “Provider” SSPIS..........ccooviiiniiienenene. 2-8
Determine Which “Provider” Interface Y ou Will Implement.................. 2-10
The DeployableAuthorizationProvider SSPIccccooviiininieenne 2-10
The DeployableRoleProvider SSPI ... 2-11
The DeployableCredential Provider SSPI ..o, 2-11
Understand the SSPI Hierarchy and Determine Whether Y ou Will Create One
Or TWO RUNEIME ClESSES ... 2-12
SSPI QUICK REFEIENCE.......ccoveieeeie e 2-14
Security Service Provider Interface (SSPI) MBeans........ccccveevirerinenenenenn. 2-15
Understand Why Y ou Need an MBean TYPEcceurerinerienenesene s 2-16
Determine Which SSPI MBeans to Extend and Implement 2-16
Understand the Basic Elements of an MBean Definition File (MDF) 2-17
Understand the SSPI MBean Hierarchy and How It Affects the
Administration CONSOIEc..covreiereerecire e 2-19
Understand What the WebL ogic MBeanMaker Provides................c....... 2-21
SSPI MBean QUiCK REFEIENCEcovvirieire e 2-23
Initializing the Security Provider Database...........ccoceveeevievieesieseereceeee e, 2-25
What I's a Security Provider Database?.........cccvveeeeveveevescie e 2-25
Security Realms and Security Provider Databases..........ccovvevreeinerienennen. 2-26
Best Practice: Create a Simple Database If None EXiStS.........ccccccevveneee. 2-27
Best Practice: Configure an Existing Database..........c..ccccovvceverceesiennenne, 2-28
Best Practice: Delegate Database Initialization..........ccooeeeveeinrenenenennen. 2-29

3. Authentication Providers

Authentication CONCEPLS.........ccveeeieiieseeeee e s et 3-2
Users and Groups, Principals and SUDJECES..........ccereereceneninecreeeneeieens 3-2
LOGINMOUIES.......cvieiriiriite sttt bbb e 3-3

Developing Security Providers for WebL ogic Server

The LoginModule INtErfate.......ccvveeverere e 34

LoginModules and Multipart Authenticationccceovereiienenene 35
Java Authentication and Authorization Service (JAAS).....cccveveveencenens 3-6
How JAAS Works With the WebL ogic Security Framework 36
Example: Standalone T3 Applicationccccverinevenienenceeeeenen 3-8
The AuthentiCation ProCeESS...........cureiieireireereseee e 311
Do Y ou Need to Develop a Custom Authentication Provider?.............c....... 312
How to Develop a Custom Authentication Providercoccceevnininennne 3-12
Create Runtime Classes Using the Appropriate SSPIS.........cccoovevenenen. 3-13
Implement the AuthenticationProvider SSPIccocoveenieienienene, 3-13
Implement the JAAS LoginModule Interface..........ocoeeevereeiieenne. 3-15

Example: Creating the Runtime Classes for the Sample Authentication
PrOVITES ..ot e 3-16
Generate an MBean Type Using the WebL ogic MBeanMaker 3-23
Create an MBean Definition File (MDF).......cccooioniiiienireee 3-24
Use the WebLogic MBeanMaker to Generate the MBean Type...... 3-25
Use the WebL ogic MBeanMaker to Create the MBean JAR File (MJF).

3-29

Install the MBean Type Into the WebL ogic Server Environment 3-30

Configure the Custom Authentication Provider Using the Administration
(000150 1= R 3-30

4. ldentity Assertion Providers

Identity ASSErtion CONCEPLSc.eerieueriiiriiere st 4-1
Identity Assertion Providersand LoginModUIESccoevveerecriieninne 4-2
Identity Assertion and TOKENS.........ccceeiviieeve e 4-2

How to Create New TOKEN TYPES....c.coeireereeee e 4-3
How to Make New Token Types Available for Identity Assertion

Provider Configurations............cooveireineeneeneeseeeeeee e 4-4

Passing Tokens for Perimeter Authentication..........cccccevveveeeeieviesecenne, 4-6

Common Secure Interoperability Verson 2 (CSIV2).......ccccevvvvvevrennienenn 4-6

The ldentity ASSErtioN PrOCESS.ccviriirierne et 4-7

Do You Need to Develop a Custom Identity Assertion Provider?.................... 4-8

How to Develop a Custom Identity Assertion Provider..........ccccveeveenicnnne, 4-9
Create Runtime Classes Using the Appropriate SSPIS..........ccccoceeenenene. 4-10

Developing Security Providers for WebL ogic Server \

Implement the AuthenticationProvider SSPIcccccoeveevvnieneveenee, 4-10

Implement the Identity Asserter SSPccooveinennenene e 4-12
Example: Creating the Runtime Class for the Sample Identity Assertion
0V L= 4-12
Generate an MBean Type Using the WebL ogic MBeanMaker 4-16
Create an MBean Definition File (MDF) ..., 4-17
Use the WebL ogic MBeanMaker to Generate the MBean Type......4-17
Use the WebL ogic MBeanM aker to Create the MBean JAR File (MJF)
4-21

Install the MBean Type Into the WebL ogic Server Environment ... 4-22
Configure the Custom Identity Assertion Provider Using the Administration

5. Principal Validation Providers

Principal Validation CONCEPLS.......cceurireririere e 51
Principal Validation and Principal TYPES.......ccovvvrrierrernenieienesie e 5-2
How Principal Validation Providers Differ From Other Types of Security

PrOVITEIS......oeeec et 5-2
Security Exceptions Resulting from Invalid Principals...........cccccceenenene. 5-3

The Principal Validation ProCESScoviiirrieinieeere e 5-3

Do You Need to Develop a Custom Principal Validation Provider?................ 5-4

How to Develop a Custom Principal Validation Providercccoovevvneene. 55
Implement the PrincipalValidator SSPI ..., 5-6

6. Authorization Providers

AUthOrization CONCEPLScceeiecieeeceese e st 6-1
WEDLOQIC RESDUICES.......cecuieieetiesiesiee e sieteeie e esee st e e e sae e saesreesaesnaesresneens 6-2
The Architecture of WebL 0giC RESOUICES..........ccovreererenenieninereeienens 6-2

Types of WebLOQIC RESOUICESccevveevieieieieceesteeee e 6-3

WebL ogic Resource [dentifiers..........ccoccvveecenievesece e, 6-4

How Security Providers Use WebL ogic Resources...........ccveeveeueneee 6-5
Single-Parent Resource Hierarchies..........coocevvveice i, 6-7

WebL ogic Resources, Roles, and Security Policies...........cccceeveenee. 6-8

ACCESS DECISIONS....cueeueeneeieeeetieieseeeeesteseeseeseeseeeesesseeesseesessesnessessessesaessenenn 6-8
The AUthOriZatION PrOCESS.oieeeeieeeeie ettt s e 6-9
Do You Need to Develop a Custom Authorization Provider? ... 6-11

Vi Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Providerccccevevevveeceenenininnns 6-12

Create Runtime Classes Using the Appropriate SSPIScccccceveieneenns 6-12
Implement the AuthorizationProvider SSPIccocccvvenennienniene 6-13
Implement the DeployableAuthorizationProvider SSPI 6-13
Implement the AccessDeciSion SSPI ... 6-14
Example: Creating the Runtime Class for the Sample Authorization

PrOVITES ..ot e 6-15

Generate an MBean Type Using the WebL ogic MBeanMaker 6-18

Create an MBean Definition File (MDF).......cccooiriiiiniieee 6-19

Use the WebLogic MBeanMaker to Generate the MBean Type...... 6-20
Use the WebL ogic MBeanMaker to Create the MBean JAR File (MJF).
6-24
Install the MBean Type Into the WebL ogic Server Environment 6-25
Configure the Custom Authorization Provider Using the Administration

(000150 1= 6-25
Managing Authorization Providers and Deployment Descriptors.... 6-26
Enabling Security Policy Deployment..........cccoeeeiennenenieneene 6-29

7. Adjudication Providers

The AdjudiCation PrOCESS.........ccovririeirei et 7-1
Do Y ou Need to Develop a Custom Adjudication Provider?..........cccccevenennene 7-2
How to Develop a Custom Adjudication Provider...........ccecveereenencccnenne 7-3
Create Runtime Classes Using the Appropriate SSPIScoeveeireenen. 7-3
Implement the AdjudicationProvider SSPIccoevinininincnne 7-4
Implement the Adjudicator SSPI ... 7-4
Generate an MBean Type Using the WebL ogic MBeanMaker 7-5
Create an MBean Definition File (MDF)......ccccovvievievecceeieceece e, 7-6

Use the WebLogic MBeanMaker to Generate the MBean Type........ 7-6

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).
7-9

Install the MBean Type Into the WebL ogic Server Environment 7-10

Configure the Custom Adjudication Provider Using the Administration
CONSOIE......cei ittt ettt s eree e enee s 7-11

Setting the Require Unanimous Permit Attribute..........cc.coovevveneee. 7-11

Developing Security Providers for WebL ogic Server vii

8. Role Mapping Providers

Role Mapping CONCEPLSceruiiriiiriirereiresisie e 81
ROIES...o et 8-2
ROIE DEfINITIONSeveiireeie st 82
Roles and WebL0giC RESOUICES........c.couerviereeierieieneee e 8-2
Dynamic ROIE ASSOCIBLION.......cceieieeiiriererie et 8-3
The Role Mapping PrOCESS........ccocoirrirririeerieee et 8-4
Do Y ou Need to Develop a Custom Role Mapping Provider?.........ccoccveeeeneeee. 8-6
How to Develop a Custom Role Mapping Provider...........cocoveiiieicicnnenne 8-7
Create Runtime Classes Using the Appropriate SSPIS.........cccoeeeirennene 8-7
Implement the RoleProvider SSPIccooeiiirinenineseee e 8-8
Implement the DeployableRoleProvider SSPcccvvvencnenenienn. 8-8
Implement the RoleMapper SSPI ... 8-9
Example: Creating the Runtime Class for the Sample Role Mapping
PrOVIGES ... s 89
Generate an MBean Type Using the WebL ogic MBeanMaker 8-15
Create an MBean Definition File (MDF)ccccoeeviieneincennicenes 8-15
Use the WebL ogic MBeanMaker to Generate the MBean Type...... 8-16
Use the WebL ogic MBeanM aker to Create the MBean JAR File (MJF)
8-19

Install the MBean Type Into the WebL ogic Server Environment 8-20
Configure the Custom Role Mapping Provider Using the Administration

CONSOIB.....eeeecte ettt bbb b e sn e 8-20
Managing Role Mapping Providers and Deployment Descriptors... 8-21
Enabling Security Role Deployment...........c.coeveereeeneeneneneneneneene 8-24

9. Auditing Providers

AUAItiNG CONCEPLScvecieeieeeesteeie ettt ras et e e nneenes 9-1
How Auditing Providers Work With the WebL ogic Security Framework and
Other Types of Security ProViders.........ccovevennieneeneeeeeeceeenes 9-2

AUt ChanNELS......cooieeeeieeeees e s 9-4

Do You Need to Develop a Custom Auditing Provider?.........ccceecevevvceeveennee, 9-4
How to Develop a Custom Auditing Provider...........ccoeoeveineinensenesessieens 9-6
Create Runtime Classes Using the Appropriate SSPIS..........ccovvererineene. 9-6
Implement the AuditProvider SSPI ..o 9-6

viii Developing Security Providers for WebL ogic Server

Implement the AuditChannel SSPIcccocvvevvvecce v 9-7
Example: Creating the Runtime Class for the Sample Auditing Provider

9-7
Generate an MBean Type Using the WebLogic MBeanMaker 9-9
Create an MBean Definition File (MDF).......ccocevevevinnennecneneee 9-10

Use the WebL ogic MBeanMaker to Generate the MBean Type...... 9-10
Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).
9-13
Install the MBean Type Into the WebL ogic Server Environment 9-14
Configure the Custom Auditing Provider Using the Administration Console.
9-15
Configuring Audit SEVELYccoeirerrerrerre e 9-15

10. Credential Mapping Providers

Credential Mapping CONCEPLS.coueruerieieireeirieeerie et e e enen 10-1
The Credential Mapping PrOCESS........ccoeireireinieesieesie st 10-2
Do You Need to Develop a Custom Credential Mapping Provider?.............. 10-3
How to Develop a Custom Credential Mapping Provider..........cccceeveeeinnene 10-4
Create Runtime Classes Using the Appropriate SSPIS.........cccocvevinene. 10-4
Implement the Credential Provider SSPI ... 10-5
Implement the DeployableCredential Provider SSPI...........ccceveeee. 10-5
Implement the CredentialMapper SSPI ... 10-6
Generate an MBean Type Using the WebL ogic MBeanMaker 10-7
Create an MBean Definition File (MDF)......ccccoeeviciieve e 10-8

Use the WebL ogic MBeanMaker to Generate the MBean Type...... 10-8
Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).
10-12
Install the MBean Type Into the WebL ogic Server Environment .. 10-13
Configure the Custom Credential Mapping Provider Using the

Administration CONSOIEcoveeeeeeeeere e 10-14

Managing Credential Mapping Providers, Resource Adapters, and
Deployment DESCIIPLOIScuvvveereeerieereee e 10-14

Enabling Deployable Credential Mappings........ccccceveeveveereeeneenee. 10-16

11. Auditing Events From Custom Security Providers
Security Services and the Auditor SErViCe.........cocveerereninireeses 11-2

Developing Security Providers for WebL ogic Server iX

How to Audit From a Custom Security Providerccccoevevveeveseniesevenneennns 11-3

Create an AUt EVENEo.ooviieee e 11-4
Implement the AUdItEVENt SSPI ..o 11-4
Implement an Audit Event Convenience Interface.........cccccvvveeeene 11-5
AUIT SEVENTY .o e e 11-8
AUt CONLEXE ..ot 11-9
Example: Implementation of the AuditAtnEvent Interface............... 11-9

Obtain and Use the Auditor Serviceto Write Audit Events................... 11-11
Example: Obtaining and Using the Auditor Service to Write

Authentication Audit EVENES........coovvereeneeneeneeeeeneeeee 11-11

12. Writing Console Extensions for Custom Security Providers

When Should | Write a Console EXtENSION?cccveciveeeeeieice e 12-2
When In the Development Process Should | Write a Console Extension?..... 12-3
How Writing a Console Extension for a Custom Security Provider Differs From a
BasiC CoNS0I€ EXLENSIONcveeeireeieeeeirieeeeseseesie e e teee e neeseeneeneenens 12-4
Main Steps for Writing an Administration Console Extension............c.cc...... 12-4
Replacing Custom Security Provider-Related Administration Console Dialog
Screens Using the SecurityExtension Interface........coovevveevvvervreeseennnn 12-5
How a Console Extension Affects the Administration Console...................... 12-6
A. MBean Definition File (MDF) Element Syntax
The MBeanType (ROOL) EIEMENLtccooririininireneresee e A-1
The MBeanAttribute SUDEIEMENtcoveeririirie e e A-15
The MBeanNotification SUDEIEMENtcceererininene e A-31
The MBeanConstructor SUDEIEMENtccoerereierieere e A-37
The MBeanOperation SUDEIEMENTccoveririnrinre e A-38
Examples: Well-Formed and Valid MBean Definition Files (MDFS) A-46

Developing Security Providers for WebL ogic Server

About This Document

This document provides security vendors and application devel opers with the
information needed to devel op new security providersfor use with the BEA WebL ogic
Server™,

The document is organized as follows:

m Chapter 1, “Introduction to Developing Security Providers for WebL ogic
Server,” which provides basic information about devel oping security providers
for use with WebL ogic Server. It specifies the audience for this guide, defines
terminology that you should be familiar with before proceeding, describes the
different types of security providers you may want to develop, and explains how
security providers work in a security realm.

m Chapter 2, “Design Considerations,” which describes the development process
for custom security providers, explains the general architecture of a security
provider, provides background information you should understand about
implementing SSPIs and generating M Bean types, and suggests ways in which
your custom security providers might work with databases that contain
information the security providers require.

m Chapter 3, “ Authentication Providers,” which explains the authentication process
(for simplelogins) and provides instructions about how to implement each type
of security service provider interface (SSPI) associated with custom
Authentication providers. Thistopic also includes a discussion about JAAS
LoginModules.

m Chapter 4, “Identity Assertion Providers,” which explains the authentication
process (for perimeter authentication using tokens) and provides instructions
about how to implement each type of security service provider interface (SSPI)
associated with custom Identity Assertion providers.

m Chapter 5, “Principa Validation Providers,” which explains how Principal
Validation providers assist Authentication providers by signing and verifying the

Developing Security Providers for WebL ogic Server Xi

authenticity of principals stored in a subject, and provides instructions about how
to develop custom Principal Validation providers.

m Chapter 6, “Authorization Providers,” which explains the authorization process
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Authorization providers.

m Chapter 7, “Adjudication Providers,” which explains the adjudication process
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Adjudication providers.

m Chapter 8, “Role Mapping Providers,” which explains the role mapping process
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Role Mapping providers.

m Chapter 9, “Auditing Providers,” which explains the auditing process and
provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom Auditing providers. This topic
also includes information about how to audit from other types of security
providers.

m Chapter 10, “Credential Mapping Providers,” which explains the credential
mapping process and provides instructions about how to implement each type of
security service provider interface (SSPI) associated with custom Credential
Mapping providers.

m Chapter 11, “Auditing Events From Custom Security Providers,” which explains
how to add auditing capabilities to the custom security providers you devel op.

m Chapter 12, “Writing Console Extensions for Custom Security Providers,” which
provide information about writing console extensions specifically for use with
custom security providers.

= Appendix A, “MBean Definition File (MDF) Element Syntax,” which describes
all the elements and attributes that are available for usein avalid MDF. An
MDFisan XML file used to generate the MBean types, which enable the
management of your custom security providers.

Xii Developing Security Providers for WebL ogic Server

Audience for This Guide

Developing Security Providers for WebL ogic Server is written for independent
software vendors (1SV's) who want to write their own security providers for use with
WebL ogic Server. It isassumed that most ISV s reading this documentation are
sophisticated application developers who have a solid understanding of security
concepts, and that no basic security concepts require explanation. It is also assumed
that security vendors and application developers are familiar with BEA WebL ogic
Server and with Java (including Java M anagement eXtensions (JM X)). Prior to
reading this guide, readers should review Introduction to WebLogic Security and
“Terminology” on page 1-12.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File -Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and a so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Developing Security Providers for WebL ogic Server Xiii

http://e-docs.bea.com/wls/docs81b/secintro/index.html
http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebL ogic Server. Other
WebL ogic Server documents that may be of interest to security vendors and
application devel opers working with security providers are:

Introduction to WebLogic Security

= Managing WebLogic Security

= Programming WWebLogic Security

m Upgrading Security in WebLogic Server Version 6.x to Veersion 7.0
m WebLogic Server 7.0 Sngle Sgn-On: An Overview

Additional resourcesinclude:

m The Security FAQ

m Security JavaDocs

Contact Us!

Xiv

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problems installing and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secintro/index.html
http://e-docs.bea.com/wls/docs81b/secmanage/index.html
http://e-docs.bea.com/wls/docs81b/security/index.html
http://e-docs.bea.com/wls/docs81b/upgrade/upgrade6xto70.html#security
http://e-docs.bea.com/wls/docs81b/pdf/sso.pdf
http://e-docs.bea.com/wls/docs81b/faq/security.html
http://e-docs.bea.com/wls/docs81b/javadocs/index.html
mailto:docsupport@bea.com
http://www.bea.com

®m Your nhame, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage
Ctrl+Tab Keysyou press simultaneously.
italics Emphasis and book titles.
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that the user istold to enter from the keyboard.
Examples:
inmport java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cations
.java
config.xm
f1 oat
nonospace Placeholders.
italic Example:
t ext

String Custoner Nane;

Developing Security Providers for WebL ogic Server

XV

XVi

Convention Usage
UPPERCASE Device names, environment variables, and logical operators.
MONGSPACE
TEXT Examples:
LPT1
BEA_HOME
R
{1} A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnumber] [-t timeout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c.deploy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

= Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from asyntax line.

Developing Security Providers for WebL ogic Server

CHAPTER

1 Introduction to

Developing Security
Providers for WebLogic
Server

The following sections provide an overview of security providers and how they
function with the WebL ogic Security Framework:

m “Audiencefor ThisGuide’ on page 1-1

m “Security Providers and the WebL ogic Security Framework” on page 1-2
m “Typesof Security Providers’ on page 1-2

m “Security Providers and Security Realms’ on page 1-10

m “Terminology” on page 1-12

Audience for This Guide

Developing Security Providers for WebL ogic Server is designed for independent
software vendors (1SV's) who want to write their own security providers for use with
WebL ogic Server. It isassumed that most |SV s reading this documentation are

Developing Security Providers for WebL ogic Server 1-1

1 introduction to Developing Security Providers for WebLogic Server

sophisticated application devel opers who have a solid understanding of security
concepts, and that no basic security concepts require explanation. It is also assumed
that security vendors and application developers are familiar with BEA WebL ogic
Server and with Java (including Java Management eXtensions (JMX)). Prior to
reading this guide, readers should review Introduction to WebLogic Security and
“Terminology” on page 1-12.

Security Providers and the WebLogic
Security Framework

Security providers are modules that you “plug into” a WebL ogic Server security
realm to provide security servicesto applications. Y ou devel op a security provider by:

m |mplementing the appropriate security service provider interfaces (SSPIs) from
thewebl ogi c. security. spi package to create runtime classes for the security
provider.

m Creating an MBean Definition File (MDF) and using the WebL ogic
MBeanMaker utility to generate an MBean type, which is used to configure and
manage the security provider.

Security providers call into the WebL ogic Security Framework on behalf of
applications. The WebL ogic Security Framewor k consists of interfaces, classes, and
exceptionsin thewebl ogi c. securi ty. servi ce package.

Types of Security Providers

The following sections describe the types of security providers that you can use with
WebL ogic Server:

m “Authentication Providers’ on page 1-3
m “|dentity Assertion Providers’ on page 1-4

1-2 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secintro/index.html

Types of Security Providers

m “Principa Validation Providers’ on page 1-5
m “Authorization Providers’ on page 1-5

m “Adjudication Providers’ on page 1-6

m “Role Mapping Providers’ on page 1-7

m “Auditing Providers’ on page 1-8

m “Credential Mapping Providers’ on page 1-8

“Security Provider Summary” on page 1-9 specifies whether you can configure
multiple security providers of the same type in a security realm.

Note: You cannot develop asingle security provider that merges several provider
types (for example, you cannot have one security provider that does
authorization and role mapping).

Authentication Providers

Authentication providers allow WebL ogic Server to establish trust by validating a
user. The WebL ogic Server security architecture supports Authentication providers
that perform: username/password authentication; certificate-based authentication
directly with WebL ogic Server; and HTTP certificate-based authentication proxied
through an external Web server.

Note: Anldentity Assertion provider isaspecial type of Authentication provider that
handles perimeter-based authentication and multiple security token
types/protocols. For more information, see “ldentity Assertion Providers’ on

page 1-4.

A LoginModuleisthe part of an Authentication provider that actually performs the
authentication of auser or system. Authentication providers also use Principal
Validation providersto verify the authenticity of principals (users/groups) associated
with the Java A uthentication and Authorization Service (JAAS). For moreinformation
about Principal Validation providers, see “Principal Validation Providers’ on page
1-5.

Developing Security Providers for WebL ogic Server 1-3

1 introduction to Developing Security Providers for WebLogic Server

Y ou must have one Authentication provider in asecurity realm, and you can configure
multiple A uthentication providersin asecurity realm. Having multiple Authentication
providers alows you to have multiple LoginM odul es, each of which may perform a
different kind of authentication. An administrator configures each Authentication
provider to determine how multiple LoginModules are called when users attempt to
login to the system. Because they add security to the principal s used in authentication,
aPrincipal Validation provider must be accessible to your Authentication providers.

Authentication providersand LoginModules are discussed in more detail in Chapter 3,
“Authentication Providers.”

Identity Assertion Providers

An Identity Assertion provider performsperimeter authentication—aspecial type of
authentication using tokens. | dentity Assertion providersalso allow WebL ogic Server
to establish trust by validating a user. The WebL ogic Server security architecture
supports Identity Assertion providers that perform perimeter-based authentication
(Web server, firewall, VPN) and handle multiple security token types/protocols
(SOAP, I10P-CSIv2).

I dentity assertion involvesestablishing aclient’sidentity using client-supplied tokens
that may exist outside of the request. Thus, the function of an Identity Assertion
provider isto validate and map atoken to ausername. Once this mapping is compl ete,
an Authentication provider’s LoginModule can be used to convert the username to
principals.

You can develop Identity Assertion providers that support different token types,
including Kerberos, SAML (Security Assertion Markup Language) and Microsoft
Passport. When used with an Authentication provider’s LoginModule, Identity
Assertion providers support single sign-on. For example, the Identity Assertion
provider can generate atoken from adigital certificate, and that token can be passed
around the system so that users are not asked to sign on more than once.

Y ou can configure multiple Identity Assertion providersin asecurity realm, but none
are required. Identity Assertion providers can support more than one token type, but
only one token type per Identity Assertion provider can be active at a given time. For
example, an ldentity Assertion provider can support both Kerberos and SAML, but an
administrator configuring the system must select which token type (Kerberos or
SAML) isthe active token type for the Identity Assertion provider. If this Identity

1-4 Developing Security Providers for WebL ogic Server

Types of Security Providers

Assertion provider is set to Kerberos, but SAML token types must be supported, then
another Identity Assertion provider that can handle SAML must have SAML set asits
active token type.

| dentity Assertion providers are discussed in more detail in Chapter 4, “Identity
Assertion Providers.”

Principal Validation Providers

Because some LoginM odules can be remotely executed on behalf of RMI clients, and
because the client application code can retain the authenticated subject between
programmatic server invocations, Authentication providersrely on Principal
Validation providers to provide additional security protections for the principals
contained within the subject.

Principal Validation providers provide these additional security protectionsby signing
and verifying the authenticity of the principals. Thisprincipal validation providesan
additional level of trust and may reduce the likelihood of malicious principal
tampering. Verification of the subject’s principals takes place during the WebL ogic
Server' sdemarshalling of RMI client requestsfor each invocation. The authenticity of
the subject’ s principals is also verified when making authorization decisions.

Because you must have one Authentication provider in asecurity realm, you must also
have one Principal Validation provider in a security realm. If you have multiple
Authentication providers, each of those Authentication providers must have a
corresponding Principal Validation provider.

Principa Validation providers are discussed in more detail in Chapter 5, “Principal
Validation Providers.”

Authorization Providers

Authorization providers control access to WebL ogic resources based on user identity
or other information. The WebL ogic security architecture supports several types of
authorization:

m Parametric authorization: The parameters to an operation, which are obtained
from the application running inside the resource container, are used in making

Developing Security Providers for WebL ogic Server 1-5

1 introduction to Developing Security Providers for WebLogic Server

the authorization decision. Thus, parametric authorization allows an
authorization decision about a protected WebL ogi ¢ resource to be determined
based on the context of the request.

m Permissions-based authorization: Explicit permissions are given to a user via
security policies. Java 2 Enterprise Edition (J2EE) security uses this type of
authorization by obtaining data from the webl ogi c. pol i cy file. Although
deprecated in WebL ogic Server 7.0, access control lists (ACLS) are an example
of permissions-based authorization.

Note: For more information about security policies, see “Understanding
WebL ogic Security Policies’ in Managing WebLogic Security.

m Capabilities-based authorization: Explicit permissions are given to auser (asin
permissions-based authorization), but the objects and operations on those objects
are also specified. For example, a user can be given permission to access a
particular method of an Enterprise JavaBean (EJB). Thus, permissions may be
specified at ahigh or low level. An example of capabilities-based authorization
isthe use of roles.

An Access Decision is the part of the Authorization provider that actually determines
whether a subject has permission to perform a given operation on aWebL ogic
resource. Authorization providers can a so use Principal Validation providersto verify
the authenticity of principals (users and groups) associated with the Java
Authentication and Authorization Service (JAAS). For more information about
Principal Validation providers, see “Principal Validation Providers’ on page 1-5.

Y ou must have one Authorization provider in a security realm, and you can configure
multiple Authorization providersin a security realm. Having multiple Authorization
providers allows you to follow a more modular design (for example, you may want to
have an Authorization provider that handles INDI permissions and another that
handles Web application permissions).

Authorization providers and Access Decisions are discussed in more detail in
Chapter 6, “Authorization Providers.”

Adjudication Providers

Aspart of an Authorization provider, an Access Decision determineswhether asubject
has permission to access a given WebL ogic resource. Therefore, if multiple
Authorization providers are configured, each may return a different answer to the“is

1-6 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies

Types of Security Providers

access allowed?’ question. These answers may be PERM T, DENY, or ABSTAI N.
Determining what do to if multiple Authorization providers' Access Decisions do not
agree on an answer is the function of an Adjudication provider. The Adjudication
provider resolves authorization conflicts by weighing each A ccess Decision’ s answer
and returning afinal result. If you only have one Authorization provider and no
Adjudication provider, then an ABSTAI N returned from the single Authorization
provider’s Access Decision is treated like a DENY.

Y ou must configure an Adjudication provider in a security realm only if you have
multiple Authorization providers. Y ou can have only one Adjudication provider in a
security realm.

Adjudication providers are discussed in more detail in Chapter 7, “ Adjudication
Providers.”

Role Mapping Providers

A Role Mapping provider supports dynamic role associations by obtaining acomputed
set of roles granted to a requestor for a given WebL ogic resource. The WebL ogic
Security Framework determineswhich roles (if any) apply to aparticular subject at the
moment that access is required for a given WebL ogic resource by:

m Obtaining roles from the J2EE and WebL ogic deployment descriptor files.
m Using business logic and the current operation parameters to determine roles.

A Role Mapping provider supplies Authorization providers with thisrole information
so that the Authorization provider can answer the “is access allowed?’ question for
WebL ogic resources that use role-based security (that is, Web application and
Enterprise JavaBean container resources).

You set roles in J2EE deployment descriptors, or create them using the WebL ogic
Server Administration Console. These roles are applied at deployment time (unless
you specifically choose to ignore the roles).

Y ou must have one Role Mapping provider in asecurity realm, and you can configure
multiple Role Mapping providersin a security realm. Having multiple Role Mapping
providersallowsyou to work within existing infrastructure requirements (for example,
configuring one Role Mapping provider for each LDAP server that contains user and

Developing Security Providers for WebL ogic Server 1-7

1 introduction to Developing Security Providers for WebLogic Server

roleinformation), or follow amore modular design (for example, configuring one Role
Mapping provider that handles mappings for INDI resources and another that handles
mappings for Web applications).

Note: If multiple Role Mapping providersare configured, the set of rolesreturned by
all Role Mapping providers will be intersected by the WebL ogic Security
Framework. That is, role names from all the Role Mapping providers will be
merged into single list, with duplicates removed.

Role Mapping providers are discussed in more detail in Chapter 8, “Role Mapping
Providers.”

Auditing Providers

An Auditing provider collects, stores, and distributes information about operating
reguests and the outcome of those requests for the purposes of non-repudiation. An
Auditing provider makes the decision about whether to audit a particular event based
on specific audit criteria, including audit severity levels. Auditing providers can write
the audit information to output repositories such as an LDAP back-end, database, or
simplefile. Specific actions, such as paging security personnel, can a so be configured
as part of an Auditing provider.

Other types of security providers (such as Authentication or Authorization providers)
can request audit services before and after security operations have been performed by
calling through the Auditor. (The Auditor is the portion of the WebL ogic Server
Framework that callsinto each Auditing provider, enabling audit event recording.)

Y ou can configure multiple Auditing providersin a security realm, but none are
required.

Auditing providers are discussed in more detail in Chapter 9, “Auditing Providers.”

Credential Mapping Providers

A credential map isamapping of credentials used by WebL ogic Server to credentials
used in alegacy (or any remote) system, which tell WebL ogic Server how to connect
to agiven resource in that system. In other words, credential maps allow WebL ogic

1-8 Developing Security Providers for WebL ogic Server

Types of Security Providers

Server to log into a remote system on behalf of a subject that has already been
authenticated. Y ou can develop a Credential Mapping provider to map credentialsin
thisway.

A Credential Mapping provider can handle several different types of credentials (for
example, username/password combinations, Kerberos tickets, and public key
certificates). Y ou can set credential mappings in deployment descriptors or by using
the WebL ogic Server Administration Console. These credential mappings are applied
at deploy time (unless you specifically choose to ignore the credential mappings).

Y ou must have one Credential Mapping provider in a security realm, and you can
configure multiple Credential Mapping providersin a security realm. If multiple
Credential Mapping providers are configured, then the Credential Manager—the
portion of the WebL ogic Security Framework that callsinto each Credential Mapping
provider to find out if they contain the type of credential s requested by the container—
accumulates and returns all the credentialsas alist.

Credential Mapping providers are discussed in more detail in Chapter 10, “ Credential
Mapping Providers.”

Security Provider Summary

Table 1-1 indicates whether you can configure multiple security providers of the same
type in asecurity realm.

Table 1-1 Security Provider Summary

Type Multiple?
Authentication provider Yes
Identity Assertion provider Yes
Principal Validation provider Yes
Authorization provider Yes
Adjudication provider No

Role Mapping provider Yes
Auditing provider Yes

Developing Security Providers for WebL ogic Server 1-9

1 introduction to Developing Security Providers for WebLogic Server

Table 1-1 Security Provider Summary

Type Multiple?

Credential Mapping provider Yes

Security Providers and Security Realms

All security providers exist within the context of a security realm. If you are not
running a prior, 6.x release of WebLogic Server, the WebLogic Server 7.0 security
realm defined out-of-the-box as the default realm (that is, the active security realm
called nyr eal m) contains the WebL ogic security providers displayed in Figure 1-1.

Note: If you are upgrading from a 6.x release to the 7.0 release, your out-of-the-box
experience begins with a compatibility realm—which isinitially defined as
the default realm—to allow you to work with your existing configuration.
Because the 6.x model is deprecated, you need to upgrade your security realm
to the 7.0 model. For information about upgrading, see“ Upgrading Security”
under “Upgrading WebL ogic Server 6.x to Version 7.0” inthe Upgrade Guide
for BEA WebLogic Server 7.0.

1-10 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/upgrade/upgrade6xto70.html#security

Security Providers and Security Realms

Figure1l-1 A WebLogic Server 7.0 Security Realm

Authentication Provider Authorization Provider
Feguired only when
LoginModule there are muliple
Authorization providers
: |dentity Assertion Provider ! i Adjudication Provider
: Idertity Ssserter Adjucicator
Principal Yalidation Provider Hole Mapping Provider
P ppINg WehLogic only.
Principal alictor Role M Deprecated in
\WehLogic Server
7.0 sPO1.
Auditing Provider Credential Mapping Provider
i Keystore Provider |
Audit Channel Credertial Mapper

Note: The types of security providers that are required for a 7.0 security realm are
shown in solid boxes; the security providersthat are optional for a7.0 security
realm are shown in dashed boxes.

Because security providers are individual modules or components that are “plugged
into” aWebL ogic Server security realm, you can add, replace, or remove a security
provider with minimal effort. Y ou can use the WebL ogic security providers, custom
security providers you develop, security providers obtained from third-party security
vendors, or acombination of al three to create a fully-functioning security realm.
However, as Figure 1-1 also shows, some types of security providers are required for
a 7.0 security realm to operate properly. Table 1-2 summarizes which security
providers must be configured for afully-operationa 7.0 security realm.

Table 1-2 Security Providersin a Security Realm

Type Required?
Authentication provider Yes
Identity Assertion provider No

Principal Validation provider Yes

Developing Security Providers for WebL ogic Server 1-11

1 introduction to Developing Security Providers for WebLogic Server

Table 1-2 Security Providersin a Security Realm

Type Required?
Authorization provider Yes
Adjudication provider Yes, if there are multiple Authorization

providers configured.

Role Mapping provider Yes

Auditing provider No

Credential Mapping provider Yes

Keystore provider No

Note: TheWebLogic Keystore provider has
been deprecated in WebL ogic Server
7.0 SPO1, and you cannot develop
custom Keystore providers.

For more information about security realms, see the following topicsin Managing
WebLogic Security:

m Configuration Steps for Security
m Setting the Default Security Realm
m Deleting a Security Realm

Terminology

The following terms are used in Developing Security Providers for WebL ogic Server:

Access Decision
Code that determines whether a subject has permission to perform a given
operation on aWebL ogic resource, with specific parametersin an application.
The result of an Access Decision isto permit, deny, or abstain from making a
decision. An Access Decisionisacomponent of an Authorization provider. See
aso subject, WebL ogic resource.

1-12 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/overview.html#security_config_steps
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#set_default_realm
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#deletesecrealm

Terminology

Adjudicator
Code that resolves conflicts between multiple Access Decisions, by tallying
each Access Decision and returning afinal result. See also Access Decision.

auditing
Process whereby information about operating requests and the outcome of
those requestsiis collected, stored, and distributed for the purposes of
non-repudiation. Auditing provides an electronic trail of computer activity.

authentication
Process whereby the identity of users or system processes are proved or
verified. Authentication also involves remembering, transporting, and making
identity information available to various components of a system when that
information is needed. Authentication istypically done using
username/password combinations, but may also be done using tokens. See also
LoginModule, identity assertion, perimeter authentication.

authorization
Process whereby the interactions between users and WebL ogic resources are
limited to ensure integrity, confidentiality, and availability. Authorization
controls access to resources based on user identity or other information. See
al so parametric authorization, WebL ogic resource.

certificate
Digital statement that associates a particular public key with aname or other
attributes. The statement is digitally signed by a certificate authority (CA). By
trusting that authority to sign only true statements, you can trust that the public
key belongs to the person named in the certificate. See also public key, trusted
(root) CA.

compatibility realm
Security realm that isthe default realm if you are running a prior, 6.x rel ease of
WebL ogic Server. The compatibility realm uses your existing providers and
allowsyou to migrateto the new security architecture. If WebL ogic Server does
not find an existing provider for a particular security service, the appropriate
WebL ogic security provider will be configured in the compatibility realm. See
also default realm, security realm, WebL ogic security provider.

credential
Security-related attribute of a subject, which may contain information used to
authenticate the subject to new services. Types of credentials include
username/password combinations, Kerberos tickets, and public key
certificates. See also credential map.

Developing Security Providers for WebL ogic Server 1-13

1 introduction to Developing Security Providers for WebLogic Server

credential map
Mapping of credentials used by WebL ogic Server to credentials used in a
legacy or any remote system, thereby telling WebL ogic Server how to connect
to agiven resourcein that system. See also credential.

custom security provider
Security provider written by athird-party security vendor or security
application developer that does not come with WebL ogic Server. See also
security provider, WebL ogic security provider.

database del egator
Intermediary classthat mediatesinitialization calls between asecurity provider
and the security provider's database. See also security provider database.

default realm
Active security realm in which the WebL ogic security providers are already
configured, if you are running WebL ogic Server 7.0. See also compatibility
realm, security realm.

domain
A collection of servers, services, interfaces, machines, and associated
WebL ogic resource managers defined by a single configuration file. See al'so
WebL ogic resource.

dynamic role association
Late binding of principals to roles at runtime, which occurs just prior to an
authorization decision for a protected WebL ogic resource. See also
authorization, principal, role, WebL ogic resource.

group
Set of usersthat share some characteristics. Giving permission to agroup isthe

same as giving the permission to each user who isamember of the group. See
also user.

identity assertion
Special type of authentication whereby aclient’ sidentity isestablished through
the use of client-supplied tokens that may exist outside of the request. I dentity
is asserted when tokens are mapped to usernames. Identity assertion can be
used to enable single sign-on. See also authentication, single sign-on, token.

Java Authentication and Authorization Service (JAAS)
Set of packagesthat enable services to authenticate and enforce access controls
upon users. It implements a Java version of the standard Pluggable

1-14 Developing Security Providers for WebL ogic Server

Terminology

Authentication Module (PAM) framework, and supports user-based
authorization. See also authentication.

LoginModule
Code based on the Java A uthentication and Authorization Service (JAAS) that
isresponsible for authenticating users within the security realm and for
popul ating a subject with the necessary principals. A LoginModuleisa
component of Authentication and Identity Assertion providers. See also
authentication.

MBean
Short for “managed bean,” a Java object that represents a Java M anagement
eXtensions (JM X) manageable resource. MBeans are instances of MBean
types. MBeans are used to configure and manage your security providers. See
also MBean type, security provider.

MBean Definition File (MDF)
XML file used by the WebL ogic MBeanM aker to generate files for an MBean
type. See also MBean type, WebL ogic MBeanM aker.

MBean implementation file
One of several intermediate Javafiles generated by the WebL ogic
MBeanMaker utility to create an MBean type for a custom security provider.
Y ou edit thisfile to supply your specific method implementations. See a so
MBean information file, MBean interface file, MBean type, WebL ogic
MBeanMaker.

MBean information file
One of severa intermediate Javafiles generated by the WebL ogic
MBeanMaker utility to create an MBean type for a custom security provider.
This file contains mostly metadata and therefore requires no editing. See also
M Bean implementation file, MBean interface file, MBean type, WebL ogic
MBeanMaker.

MBean interface file
One of severa intermediate Javafiles generated by the WebL ogic
MBeanMaker utility to create an MBean type for a custom security provider.
Thisfileisthe client-side API to the MBean that your runtime class or your
MBean implementation will use to obtain configuration data, and requires no
editing. See a'so MBean implementation file, MBean information file, MBean
type, runtime class, WebL ogic MBeanMaker.

Developing Security Providers for WebL ogic Server 1-15

1 introduction to Developing Security Providers for WebLogic Server

MBean JAR File (MJF)
JAR file that contains the runtime classes and MBean types for a security
provider. MJFs are created by the WeblL ogic MBeanMaker and are installed
into WebL ogic Server. See also MBean type, runtime class, security provider,
WebL ogic MBeanMaker.

MBean type
Factory for creating the MBeans used to configure and manage security
providers. MBean types are created by the WebL ogic MBeanMaker. See also
MBean, security provider, WebL ogic MBeanM aker.

parametric authorization
The ability to perform authorization decisions on protected WebL ogic
resources, taking the context and target of the business request into account.
See also authorization, WebL ogic resource.

perimeter authentication
Special type of authentication whereby tokens are used instead of a
username/password combination. Perimeter authentication is made possible
through identity assertion. See also authentication, identity assertion.

principal
Theidentity assigned to a user or system process as a result of authentication.
A principal can consist of any number of users and groups. Principals are
typically stored within subjects. See also authentication, group, subject, user.

principa validation
The act of signing and later verifying that aprincipal has not been altered since
it was signed. Principal validation establishes trust of principals. See also
principal.

private key
An encryption/decryption key known only to the party or partiesthat exchange
secret messages. See also public key.

public key
Value provided by some designated authority as an encryption key that,
combined with a private key derived from the public key, can be used to
effectively encrypt messages and digital signatures. See also private key.

resource adapter
System-level software driver used by an application server such as WebL ogic
Server to connect to an enterprise information system (EIS).

1-16 Developing Security Providers for WebL ogic Server

Terminology

role
Abstract, logical collectionsof userssimilar to agroup. Thedifference between
groups and rolesisagroup is a static identity that a system administrator
assigns, while membership in arole is dynamically calculated based on data
such as username, group membership, or the time of day. Roles are granted to
individual users or to groups, and multiple roles can be used to create security
policies for aWebL ogic resource. See also dynamic role association, group,
security policy, user, WebL ogic resource.

role mapping
Process whereby the groups and/or principal s recognized by the container are
associ ated with the security roles specified in adeployment descriptor. See also
group, principal, role.

runtime class
Java class that implements the security service provider interfaces (SSPIs) and
contains the actual security-related behavior for a security provider. See also
security provider, security service provider interface (SSPI).

security policy
An association between a WebL ogic resource and a user, group, or rolethat is
designed to protect the WebL ogic resource against unauthorized access. A
WebL ogic resource has no protection until you assign it a security policy. You
assign security policiesto an individual WebL ogic resource or to attributes or
operations of the WebL ogic resource. See also group, role, user, WebL ogic
resource.

security provider
Modules that can be “plugged into” a WebL ogic Server security realm to
provide security services (such as authentication, authorization, auditing, or
PK1) to applications. A security provider consists of runtime classes and
MBeans, which are created from SSPIs and MBean types, respectively.
Security providers may be categorized as WebL ogic security providers and
custom security providers. See also custom security provider, security service
provider interface (SSPI), MBean, MBean type, runtime class, WebL ogic
security provider.

security provider database
Databasethat containsthe users, groups, policies, roles, and credential s used by
some types of security providers to provide security services. The security
provider database can be the embedded LDAP server (asused by the WebL ogic

Developing Security Providers for WebL ogic Server 1-17

1 introduction to Developing Security Providers for WebLogic Server

security providers), apropertiesfile (as used by the sample security providers),
or a production-quality database that you may already be using.

security realm
Container for the mechani sms—including authenticators, adjudicators,
authorizers, auditors, role mappers, and credential mappers—that are used to
protect WebL ogic resources. All security providers exist within the context of
asecurity realm. Y ou can have multiple security realmsin a domain, but only
one can be the active (default) realm. See also compatibility realm, default
realm, domain, security provider, WebL ogic resource.

security service provider interface (SSPI)
Interfaces used by BEA to create runtime classes for the WebL ogic security
providers, and from which you create runtime classes for custom security
providers. See also runtime class, security provider.

single sign-on
Ability to require auser to sign on to an application only once and gain access
to many different application components, even though these components may
have their own authentication schemes. Single sign-on is acheived using
identity assertion, LoginModules, and tokens. See also authentication, identity
assertion, LoginModule, token.

SSPI MBean
Interfaces used by BEA to generate MBean types for the WebL ogic security
providers, and from which you generate M Bean types for custom security
providers. SSPI MBeans may be required (for configuration) or optional (for
management). See also MBean type, security provider.

subject
Container for authentication information, including principals, as specified by
the Java A uthentication and Authorization Service (JAAS). Y ou can store any
number of principalsin asubject. See al so authentication, Java Authentication
and Authorization Service (JAAS), principal.

token
Artifact resulting from the authentication process that must be presented to
determineinformation about the authenticated user at alater time. Tokenscome
in many different formats or types, including Kerberos and SAML. See aso
authentication, identity assertion, single sign-on, user.

1-18 Developing Security Providers for WebL ogic Server

Terminology

trusted (root) CA
Special type of certificate issued by atrusted certificate authority (CA). A
trusted CA also containsapublic key, soit can be paired with aprivate key. See
also private key, public key.

user
Entities that use WebL ogic Server, such as application end users, client
applications, and other instances of WebL ogic Server. Usersmay be placed into
groups that are associated with roles, or be directly associated with roles. See
also group, role.

WebL ogic MBeanM aker

Command-line utility that takes an MBean Definition File (MDF) asinput and
outputs files for an MBean type. See also MBean Definition File (MDF),
MBean type.

WebL ogic resource
Entities that are accessible from WebL ogic Server, such as events, servlets,
JDBC connection pools, IM S destinations, JINDI contexts, connections,
sockets, files, and enterprise applications and resources, such as databases.

WebL ogic Security Framework
Interfacesin the webl ogi c. securi ty. servi ce package that unify security
enforcement and present security as a service to other WebL ogic Server
components. Security providerscall into the WebL ogic Security Framework on
behalf of applications requiring security services.

WebL ogic security provider
Security provider supplied by BEA Systems as part of WebL ogic Server. See
also custom security provider, security provider.

Developing Security Providers for WebL ogic Server 1-19

1 introduction to Developing Security Providers for WebLogic Server

1-20 Developing Security Providers for WebL ogic Server

CHAPTER

2 Design Considerations

Careful planning of development activities can greatly reduce the time and effort you
spend creating custom security providers. The following sections describe general
security provider concepts and functionality to help you get started:

m “Overview of the Development Process’ on page 2-1

m “General Architecture of a Security Provider” on page 2-7

m “Security Services Provider Interfaces (SSPIs)” on page 2-8
m “Security Service Provider Interface (SSPI) MBeans’ on page 2-15
m “Initializing the Security Provider Database” on page 2-25

Overview of the Development Process

This section is a high-level overview of the process for developing new security
providers, so you know what to expect. Details for each step are discussed later in this
guide.

The main steps for devel oping a custom security provider are:
m “Designing the Custom Security Provider” on page 2-2

m “Creating Runtime Classes for the Custom Security Provider by Implementing
SSPIS’ on page 2-3

m “Generating an MBean Type to Configure and Manage the Custom Security
Provider” on page 2-3

m “Writing Console Extensions’ on page 2-4

Developing Security Providers for WebL ogic Server 2-1

2 Design Considerations

m “Configuring the Custom Security Provider” on page 2-6

Designing the Custom Security Provider

The design process includes the following steps:

1. Review the descriptions of the WebL ogic security providersto determine whether
you need to create a custom security provider.

Descriptions of the WebL ogic security providers are available in Introduction to
WebLogic Security and in later sections of this guide under the “Do You Need to
Create a Custom <Provider_Type> Provider?’ headings. <Provider_Type> can
be Authentication, Identity Assertion, Principal Validation, Authorization,
Adjudication, Role Mapping, Auditing, or Credential Mapping.

2. Determine which type of custom security provider you want to create.

The type may be Authentication, |dentity Assertion, Principal Validation,
Authorization, Adjudication, Role Mapping, Auditing, or Credential Mapping, as
described in “ Types of Security Providers’ on page 1-2. Your custom security
provider can augment or replace the WebL ogic security providersthat are
aready supplied with WebL ogic Server.

3. Identify which security service provider interfaces (SSPIs) you must implement
to create the runtime classes for your custom security provider, based on the type
of security provider you want to create.

The SSPIsfor the different security provider types are described in “ Security
Services Provider Interfaces (SSPIs)” on page 2-8 and summarized in “ SSPI
Quick Reference” on page 2-14.

4. Decide whether you will implement the SSPIsin one or two runtime classes.

These options are discussed in “Understand the SSPI Hierarchy and Determine
Whether Y ou Will Create One or Two Runtime Classes’ on page 2-12.

5. ldentify which required SSPI MBeans you must extend to generate an MBean
type through which your custom security provider can be managed. If you want
to provide additional management functionality for your custom security provider
(such as handling of users, groups, roles, and policies), you also need to identify
which optional SSPI M Beans to implement.

2-2 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secintro/index.html
http://e-docs.bea.com/wls/docs81b/secintro/index.html

Overview of the Development Process

The SSPI MBeans are described in “ Security Service Provider Interface (SSPI)
MBeans’ on page 2-15 and summarized in “ SSPI MBean Quick Reference” on
page 2-23.

6. Determine how you will initialize the database that your custom security provider
reguires. You can have your custom security provider create a simple database, or
configure your custom security provider to use an existing, fully-populated
database.

These two database initialization options are explained in “Initializing the
Security Provider Database” on page 2-25.

Creating Runtime Classes for the Custom Security
Provider by Implementing SSPIs

In one or two runtime classes, implement the SSPIs you have identified by providing
implementations for each of their methods. The methods should contain the specific
algorithms for the security services offered by the custom security provider. The
content of these methods describe how the service should behave.

Procedures for thistask are dependent on the type of security provider you want to
create, and are provided under the “ Create Runtime Classes Using the Appropriate
SSPIs’ heading in the sections that discuss each security provider in detail.

Generating an MBean Type to Configure and Manage the
Custom Security Provider

Generating an MBean type includes the following steps:

1. Create an MBean Definition File (MDF) for the custom security provider that
extends the required SSPI M Bean, implements any optional SSPI MBeans, and
adds any custom attributes and operations that will be required to configure and
manage the custom security provider.

Information about MDFsis available in “Understand the Basic Elements of an
MBean Definition File (MDF)” on page 2-17, and procedures for thistask are

Developing Security Providers for WebL ogic Server 2-3

2 Design Considerations

provided under the “ Create an MBean Definition File (MDF)" heading in the
sections that discuss each security provider in detail.

2. Run the MDF through the WebL ogic MBeanMaker to generate intermediate files
(including the MBean interface, MBean implementation, and MBean information
files) for the custom security provider’s MBean type.

Information about the WebL ogic MBeanMaker and how it uses the MDF to
generate Javafilesis provided in “ Understand What the WebL ogic
MBeanMaker Provides’ on page 2-21, and procedures for this task are provided
under the “ Use the WebL ogic MBeanMaker to Generate the MBean Type”
heading in the sections that discuss each security provider in detail .

3. Edit the MBean implementation file to supply content for any methods inherited
from implementing optional SSPI M Beans, as well as content for the method
stubs generated as aresult of custom attributes and operations added to the MDF.

4. Run the modified intermediate files (for the MBean type) and the runtime classes
for your custom security provider through the WebL ogic MBeanMaker to
generate a JAR file, called an MBean JAR File (MJF).

Procedures for thistask are provided under the “Use the WebL ogic
MBeanMaker to Create the MBean JAR File (MJF)” heading in the sections that
discuss each security provider in detail.

5. Install the MBean JAR File (MJF) into the WebL ogic Server environment.

Procedures for thistask are provided under the “Install the MBean Type into the
WebL ogic Server Environment” heading in the sections that discuss each
security provider in detail.

Writing Console Extensions

Console extensions allow you to add JavaServer Pages (JSPs) to the WebL ogic Server
Administration Console to support additional management and configuration of
custom security providers. Console extensions allow you to include Administration
Console support where that support does not yet exist, as well as to customize
administrative interactions as you see fit.

To get complete configuration and management support through the WebL ogic Server
Administration Console for a custom security provider, you need to write a console
extension when:

2-4 Developing Security Providers for WebL ogic Server

Overview of the Development Process

m You decide not to implement an optional SSPI MBean when you generate an
MBean type for your custom security provider, but still want to configure and
manage your custom security provider viathe Administration Console. (That is,
you do not want to use the WebL ogic Server Command-Line Interface instead.)

Generating an MBean type (as described in “ Generating an MBean Type to
Configure and Manage the Custom Security Provider” on page 2-3) isthe
BEA-recommended way for configuring and managing custom security
providers. However, you may want to configure and manage your custom
security provider completely through a console extension that you write.

m You implement optional SSPI MBeans for custom security providers that are not
custom Authentication providers.

When you implement optional SSPI MBeansto develop a custom Authentication
provider, you automatically receive support in the Administration Console for
the MBean type's attributes (inherited from the optional SSPI MBean). Other
types of custom security providers, such as custom Authorization providers, do
not receive this support.

m You add a custom attribute that cannot be represented as a simple data typeto
your MBean Definition File (MDF), which is used to generate the custom
security provider's MBean type.

The Details tab for a custom security provider will automatically display custom
attributes, but only if they are represented as a simple data type, such as a string,
MBean, boolean or integer value. If you have custom attributes that are
represented as atypical data types (for example, an image of afingerprint), the
Administration Console cannot visualize the custom attribute without
customization.

m You add a custom operation to your MBean Definition File (MDF), whichis
used to generate the custom security provider's MBean type.

Because of the potential variety involved with custom operations, the
Administration Console does not know how to automatically display or process
them. Examples of custom operations might be a microphone for avoice print,
or import/export buttons. The Administration Console cannot visualize and
process these operations without customization.

In any of the preceding situations, if you do not want to write aconsol e extension that
alows you to use the WebL ogic Server Administration Console, you can use the
WebL ogic Server Command-Line Interface to manage and configure your custom

Developing Security Providers for WebL ogic Server 2-5

2 Design Considerations

security providersinstead. For more information about the WebL ogic Server
Command-Line Interface, see “WebL ogic Server Command-Line Interface
Reference” in the BEA WebLogic Server Administration Guide.

Some other (optional) reasons for extending the Administration Console include:

m Corporate branding—when, for example, you want your organization’s logo or
look and feel on the pages used to configure and manage a custom security
provider.

m Consolidation—when, for example, you want all the fields used to configure and
manage a custom security provider on one page, rather than in separate tabs or
locations.

For more information about console extensions, see Extending the Administration
Console and Chapter 12, “Writing Console Extensions for Custom Security
Providers.”

Configuring the Custom Security Provider

Note: The configuration process can be completed by the same person who
developed the custom security provider, or by a designated administrator.

The configuration process consists of using the WebL ogic Server Administration
Console (or the WebL ogic Server Command-Line Interface) to supply the custom
security provider with configuration information. If you generated an MBean type for
managing the custom security provider, “configuring” the custom security provider in
the Administration Console also means that you are creating a specific instance of the
MBean type.

For more information about configuring security providers using the Administration
Console, see “ Customizing the Default Security Configuration” in Managing
WebLogic Security. For instructions about how to use the WebL ogic Server
Command-Line Interface, see “WebL ogic Server Command-Line Interface
Reference” in the BEA WebLogic Server Administration Guide.

2-6 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/admin_ref/cli.html
http://e-docs.bea.com/wls/docs81b/admin_ref/cli.html
http://e-docs.bea.com/wls/docs81b/console_ext/index.html
http://e-docs.bea.com/wls/docs81b/console_ext/index.html
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#customize_security_realm
http://e-docs.bea.com/wls/docs81b/adminguide/cli.html
http://e-docs.bea.com/wls/docs81b/adminguide/cli.html

General Architecture of a Security Provider

General Architecture of a Security Provider

Although there are different types of security providersyou can create (see “ Types of
Security Providers’ on page 1-2), all security providers follow the same general
architecture. Figure 2-1 illustrates the general architecture of a security provider, and
an explanation follows.

Figure2-1 Security Provider Architecture

Runtime Class (.Java files) MBean Type (.xml files)
FooProviderS5PI | | FooOtherS5PI | | FooRegSSPIMBean ‘ ‘ FooOpt535PIBean
[I [
extends ——implements extends implements Seﬂ:rhls_sugilg
. resads config dat - '
M},fFDDF'rD\fIderlmpl m—zecurity frameswork uses to creste— MyFDDMBEEn Secu"w DEVEIDPM
\ Implementations

Adminiztrator uses to set configuration
data (for example, in the WeblLogic Server
Adminiztration Conzole)

Note: The SSPIsand the runtime classes (that is, implementations) you will create
using the SSPIs are shown on the left side of Figure 2-1 and are .. j ava files.

Like the other files on the right side of Figure 2-1, MyFooMBean beginsas a

. xm file, inwhichyouwill extend (and optionally implement) SSPI MBeans.
When this MBean Definition File (MDF) is run through the WebL ogic
MBeanMaker utility, the utility generatesthe. j ava filesfor the MBean type,
as described in “ Generating an MBean Type to Configure and Manage the
Custom Security Provider” on page 2-3.

Figure 2-1 shows the relationship between a single runtime class

(MyFooPr ovi der I npl) and an MBean type (MyFooMBean) you create when
developing a custom security provider. The process begins when a WebL ogic Server
instance starts, and the WebL ogic Security Framework:

1. Locatesthe MBean type associated with the security provider in the security realm.

Developing Security Providers for WebL ogic Server 2-7

2 Design Considerations

2. Obtains the name of the security provider’s runtime class (the one that
implements the “Provider” SSPI, if there are two runtime classes) from the
MBean type.

3. Passesin the appropriate MBean instance, which the security provider usesto
initialize (read configuration data).

Therefore, both the runtime class (or classes) and the M Bean type form what is called
the “ security provider.”

Security Services Provider Interfaces (SSPIs)

Asdescribed in “Overview of the Development Process’ on page 2-1, you develop a
custom security provider by first implementing anumber of security services provider
interfaces (SSPIs) to create runtime classes. This section helps you:

m Understand the Purpose of the “ Provider” SSPIs
m Determine Which “Provider” Interface You Will Implement

m Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

Additionally, this section provides an SSPI Quick Reference that indicates which
SSPIs can be implemented for each type of security provider.

Understand the Purpose of the “Provider” SSPIs

Each SSPI that endsin the suffix "Provider" (for example, Cr edent i al Pr ovi der)
exposesthe services of asecurity provider to the WebL ogic Security Framework. This
allowsthe security provider to be manipulated (initialized, started, stopped, and so on).

2-8 Developing Security Providers for WebL ogic Server

Security Services Provider Interfaces (SSPIs)

Figure2-2 “Provider” SSPIs

WebLogic Senver

S5PIs
SecurityProvider. java
all extend
AuditProvider. java AdjudicationProvider. java AuthenticationProvider. java AuthorizationProvider. java

CredentialProvider jawva

DeployableCredentialProvider. java

RoleProvider jawa

extends

DeployableRoleProvider. java

DeployableduthorizationProvider . java

Asshown in Figure 2-2, the SSPIs exposing security services to the WebL ogic
Security Framework are provided by WebL ogic Server, and all extend the
SecurityProvi der interface, which includes the following methods:

initialize

public void initialize(ProviderMBean provi der MBean,

SecurityServices securityServices)

Theini tial i ze method takes as an argument a Pr ovi der MBean, which can
be narrowed to the security provider’ s associated MBean instance. The MBean
instance is created from the M Bean type you generate, and contains
configuration data that allows the custom security provider to be managed in
the WebL ogic Server environment. If this configuration dataiis available, the
i nitialize method should be used to extract it.

Thesecuri t yServi ces argument isan object from which the custom security
provider can obtain and use the Auditor Service. For more information about
the Auditor Service and auditing, see Chapter 9, “ Auditing Providers.”

getDescription

public String getDescription()

Thismethod returns abrief textual description of the custom security provider.

shutdown

public voi d shutdown()

Developing Security Providers for WebL ogic Server 2-9

2 Design Considerations

This method shuts down the custom security provider.

Because they extend Secur i t yPr ovi der , aruntime class that implements any SSPI
ending in "Provider" must provide implementations for these inherited methods.

Determine Which “Provider” Interface You Will
Implement

Implementations of SSPIs that begin with the prefix "Deployable" and end with the
suffix “Provider” (for example, Depl oyabl eCr edent i al Provi der) expose the
services of a custom security provider into the WebL ogic Security Framework as
explainedin “ Understand the Purpose of the* Provider” SSPIS’ on page 2-8. However,
implementations of these SSPIs also perform additional tasks.

Authorization providers, Role Mapping providers, and Credential Mapping providers
have deployable versions of their “Provider” SSPIs.

Note: If your security provider database (which stores policies, roles, and
credentials) isread-only, you canimplement the non-deployable version of the
SSPI for your Authorization, Role Mapping, and Credential Mapping security
providers. However, you will still need to configure deployable versions of
these security provider that do handle deployment.

The DeployableAuthorizationProvider SSPI

An Authorization provider that supports deploying policies on behalf of Web
application or Enterprise JavaBean (EJB) deployments needs to implement the

Depl oyabl eAut hori zat i onPr ovi der SSPI instead of the

Aut hori zat i onPr ovi der SSPI. (However, because the

Depl oyabl eAut hori zat i onPr ovi der SSPI extendsthe Aut hor i zat i onPr ovi der
SSPI, you actually will need to implement the methods from both SSPIs.) Thisis
because Web application and EJB deployment activities require the Authorization
provider to perform additional tasks, such as creating and removing policies. In a
security realm, at least one Authorization provider must support the

Depl oyabl eAut hori zati onProvi der SSPI, or elseit will be impossible to deploy
Web applications and EJBs.

2-10 Developing Security Providers for WebL ogic Server

Security Services Provider Interfaces (SSPIs)

Note: For more information about security policies, see “Understanding WebL ogic
Security Policies’ in Managing WebLogic Security.

The DeployableRoleProvider SSPI

A Role Mapping provider that supports deploying roles on behalf of Web application
or Enterprise JavaBean (EJB) deployments needs to implement the

Depl oyabl eRol eProvi der SSPI instead of the Rol ePr ovi der SSPI. (However,
because the Depl oyabl eRol eProvi der SSPI extendsthe Rol ePr ovi der SSPI, you
will actually need to implement the methods from both SSPIs.) Thisis because Web
application and EJB deployment activities require the Role Mapping provider to
perform additional tasks, such as creating and removing roles. In a security realm, at
least one Role Mapping provider must support this SSPI, or else it will be impossible
to deploy Web applications and EJBs.

Note: For more information about roles, see “ Role Mapping Concepts’ on page 8-1.

The DeployableCredentialProvider SSPI

A Credential Mapping provider that supports deploying policieson behalf of Resource
Adapter (RA) deployments needs to implement the

Depl oyabl eCr edent i al Provi der SSPI instead of theCr edent i al Provi der SSPI.
(However, because the Depl oyabl eCr edent i al Provi der SSPI extends the
Credenti al Provi der SSPI, you will actually need to implement the methods from
both SSPIs.) Thisis because Resource Adapter deployment activities require the
Credential Mapping provider to perform additional tasks, such as creating and
removing credentials and mappings. In a security realm, at least one Credential
Mapping provider must support this SSPI, or else it will be impossible to deploy
Resource Adapters.

Note: For more information about credentials, see “ Credential Mapping Concepts”
on page 10-1.

Developing Security Providers for WebL ogic Server 2-11

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies

2 Design Considerations

Understand the SSPI Hierarchy and Determine Whether

You Will Create One or Two Runtime Classes

2-12

Figure 2-3 uses a Credential Mapping provider to illustrate the inheritance hierarchy
that iscommonto all SSPI's, and shows how aruntime class you supply can implement
thoseinterfaces. In thisexample, BEA suppliestheSecuri t yProvi der interface, and

the Cr edent i al Provi der, Depl oyabl eCr edent i al Provi der, and
Credenti al Mapper SSPIs. Figure 2-3 shows a single runtime class called
M/Cr edent i al Mapper Provi der | npl that implementsthe

Depl oyabl eCredent i al Provi der and Cr edent i al Mapper SSPIs.

Figure2-3 Credential Mapping SSPIsand a Single Runtime Class

impleriwents

SecurityProvider

nitiatizal)
getDescrption])
shutciown(]

?

extends

CredentialFrovider

getCredentialF rovider()

extencs

CredentialMapper

getCredentials()
getCredentials()
getSupported Tines(]

DeployableCradentialFrovider

deployCredentiailapping()

undeployCredentiaiMappings()

h

§

WebLogic
Server 55PIs

implements

Wy CredentialbapperProviderimpl

impls for all inherited methods

Security Developer

implements Implementations

Developing Security Providers for WebL ogic Server

Security Services Provider Interfaces (SSPIs)

However, Figure 2-3 illustrates only one way you can implement SSPIs: by creating a
single runtime class. If you prefer, you can have two runtime classes (as shown in
Figure 2-4): onefor theimplementation of the SSPI endingin“Provider” (for example,

Credenti al Provi der or Depl oyabl eCr edent i al Provi der), and one for the
implementation of the other SSPI (for example, the Cr edent i al Mapper SSPI).

When there are separate runtime classes, the class that implementsthe SSPI ending in
“Provider” acts as afactory for generating the runtime class that implements the other
SSPI. For example, in Figure 2-4, MyCr edent i al Mapper Provi der | npl actsasa

factory for generating MyCr edent i al Mapper | npl .

Figure2-4 Credential Mapping SSPIsand Two Runtime Classes

SecurityProvider

Initializef]
getDescrption])
shutcown]

$

extends

CredentialProvider CredentialMapper
-
getCredentialProvider() getCredentials(]
¥ getCredentials])
extends getBupportedTipes(]
| F 1
DeployableCredentialPraovider
' : deployCredentiaifapning)
ImpIETBmS undeployCredentiaiMappings()
implements Webl ogic
i Server S5Pls
impleni‘nerrts Security Developer

My CredentiallapperProviderlmpl

impls for ail inherited methods

Implementations

— factorm

My Credentialtappermpl

irpls for alt inherted methods

Developing Security Providers for WebL ogic Server

2-13

2 Design Considerations

Note: If you decide to have two runtime implementation classes, you need to
remember to include both runtime implementation classesin the MBean JAR
File (MJF) when you generate the security provider’s M Bean type. For more
information, see “ Generating an MBean Type to Configure and Manage the
Custom Security Provider” on page 2-3.

SSPI Quick Reference

Table 2-1 mapsthe types of security providers (and their components) with the SSPIs
and other interfaces you use to develop them.

Table 2-1 Security Providers, Their Components, and Corresponding SSPIs

Type/Component

SSPI d/Interfaces

Authentication provider

Aut henti cati onProvi der

LoginModule (JAAS)

Logi nMbdul e

I dentity Assertion provider

Aut henti cati onProvi der

Identity Asserter

I dentityAsserter

Principal Vaidation provider

Princi pal Val i dat or

Authorization

Aut hori zat i onProvi der
Depl oyabl eAut hori zat i onPr ovi der

Access Decision

AccessDeci si on

Adjudication provider

Adj udi cat i onProvi der

Adjudicator Adj udi cat or
Role Mapping provider Rol ePr ovi der
Depl oyabl eRol eProvi der
Role Mapper Rol eMapper

Auditing provider

Audi t Provi der

Audit Channel

Audi t Channel

2-14 Developing Security Providers for WebL ogic Server

Security Service Provider Interface (SSPI) MBeans

Table 2-1 Security Providers, Their Components, and Corresponding SSPIs

Type/Component SSPI /I nterfaces

Credentia Mapping provider Credenti al Provi der
Depl oyabl eCredent i al Provi der

Credential Mapper Credenti al Mapper

Note: The SSPIsyou useto create runtime classes for custom security providers are
located in thewebl ogi c. securi ty. spi package. For more information
about this package, see the WebLogic Server 7.0 API Reference Javadoc.

Security Service Provider Interface (SSPI)
MBeans

Asdescribed in “ Overview of the Development Process’ on page 2-1, the second step
in developing a custom security provider is generating an MBean type for the custom
security provider. This section helps you:

m Understand Why You Need an MBean Type
m Determine Which SSPI M Beans to Extend and | mplement
m Understand the Basic Elements of an MBean Definition File (MDF)

m Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console

m Understand What the WebL ogic MBeanMaker Provides

Additionally, this section provides an SSPI MBean Quick Reference that indicates
which required SSPI MBeans must be extended and which optional SSPI MBeans can
be implemented for each type of security provider.

Developing Security Providers for WebL ogic Server 2-15

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/package-summary.html

2 Design Considerations

Understand Why You Need an MBean Type

In addition to creating runtime classes for a custom security provider, you must also
generate an MBean type. The term M Bean is short for managed bean, a Java object
that represents a Java Management eXtensions (JM X) manageable resource.

Note: JMX isaspecification created by Sun Microsystems that defines a standard
management architecture, APIs, and management services. For more
information, see the Java Management Extensions White Paper.

An MBean typeisafactory for instances of MBeans, the latter of which you or an
administrator can create using the WebL ogic Server Administration Console. Once
they are created, you can configure and manage the custom security provider using the
MBean instance, through the Administration Console.

Note: All MBean instances are aware of their parent type, so if you modify the
configuration of an MBean type, all instancesthat you or an administrator may
have created using the Administration Console will also update their
configurations. (For more information, see “Understand the SSPI MBean
Hierarchy and How It Affects the Administration Console” on page 2-19.)

Determine Which SSPI MBeans to Extend and Implement

2-16

Y ou use MBean interfaces called SSPI M Beansto create MBean types. Therearetwo
types of SSPI MBeans you can use to create anM Bean type for a custom security
provider:

m Required SSPI M Beans, which you must extend because they define the basic
methods that allow a security provider to be configured and managed within the
WebL ogic Server environment.

= Optional SSPI M Beans, which you can implement because they define
additional methods for managing security providers. Different types of security
providers are able to use different optional SSPI MBeans.

For more information, see “SSPI MBean Quick Reference” on page 2-23.

Developing Security Providers for WebL ogic Server

http://java.sun.com/products/JavaManagement/wp/

Security Service Provider Interface (SSPI) MBeans

Understand the Basic Elements of an MBean Definition
File (MDF)

An M Bean Definition File (MDF) isan XML file used by the WebL ogic
MBeanMaker utility to generate the Javafilesthat comprisean MBean type. All MDFs
must extend arequired SSPI M Bean that is specific to the type of the security provider
you have created, and can implement optional SSPI MBeans.

Listing 2-1 shows a sample MBean Definition File (MDF), and an explanation of its
content follows. (Specificaly, it isthe MDF used to generate an MBean type for the
WebL ogic Credential Mapping provider.)

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Listing 2-1 DefaultCredentialM apper.xml

<?xm version="1.0" ?>
<! DOCTYPE MBeanType SYSTEM "commo. dtd">

<MBeanType

Name = "Defaul t Credenti al Mapper"

Di spl ayNane = "Defaul t Credenti al Mapper"

Package = "webl ogi c. security.providers.credential s"

Ext ends = "webl ogi c. managenent . security. credenti al s.
Depl oyabl eCredent i al Mapper "

I npl ements = "webl ogi c. managenent. security.credenti al s.
User Passwor dCr edent i al MapEdi t or "

Persi stPolicy = "OnUpdat e"

Description = "This MBean represents configuration attributes for
the WebLogi ¢ Credential Mapping provider. & t;p>"
>

<MBeanAttribute
Name = "Provi der d assNane"
Type = "java.lang. String"
Witeable = "fal se"
Def aul t = "" ; webl ogi c. security. providers.credentials.
Def aul t Credent i al Mapper Provi der | npl " ;"
Description = "The nane of the Java class that | oads the WbLogic
Credential Mappi ng provider."
/>

Developing Security Providers for WebL ogic Server 2-17

2 Design Considerations

2-18

<MBeanAttri bute
Name = "Descri ption"

Type = "java.l ang. String"
Witeable = "fal se"
Default = "" Provider that perforns Default Credential

Mappi ng" ; "

Description = "A short description of the WblLogi c Credenti al
Mappi ng provider."
/>

<MBeanAttri bute

Name = "Version"
Type = "java.l ang. String"
Witeable = "fal se"

Default = "" 1. 0" ;"

Description = "The version of the WbLogi c Credential Mapping
provider."
/>

</ MBeanType>

The bold attributes in the <MBeanType> tag show that this MDF is named

Def aul t Credent i al Mapper and that it extends the required SSPI MBean called
Depl oyabl eCr edent i al Mapper . It alsoincludesadditional management capabilities
by implementing the User Passwor dCr edent i al MapEdi t or optional SSPI M Bean.

The Provi der O assName, Descri pti on, and Ver si on attributes defined in the
<MBeanAt t r i but e> tags are required in any MDF used to generate MBean types for
security providers because they define the security provider’s basic configuration
methods, and are inherited from the base required SSPI MBean called Pr ovi der (see
Figure 2-6). ThePr ovi der O assName attributeisespecially important. The valuefor
the Provi der O assNane attribute is the Java filename of the security provider’s
runtime class (that is, the implementation of the appropriate SSPI ending in
“Provider”). The example runtime class shown in Listing 2-1 is

Def aul t Credent i al Mapper Provi der |l npl . j ava.

Whilenot shownin Listing 2-1, you can include additional attributes and operationsin
an MDF using the <MBeanAt t ri but e> and <MBeanOper at i on> tags. Most custom
attributeswill automatically appear inthe Detailstab for your custom security provider
in the WebL ogic Server Administration Console (an example of which is shownin
Figure 2-5). To display custom operations, however, you need to write a console
extension. (See “Writing Console Extensions’ on page 2-4.)

Developing Security Providers for WebL ogic Server

Security Service Provider Interface (SSPI) MBeans

Figure2-5 Sample Details Tab

General I:Eﬁa

The custom attributes you define in your MBean Definition File (MDF) will appear here.

Understand the SSPI MBean Hierarchy and How It
Affects the Administration Console

All attributes and operations that are specified in the required SSPI M Beans that your
MBean Definition File (MDF) extends (all the way up to the Pr ovi der base SSPI

M Bean) automatically appear in aWebL ogic Server Administration Console page for
the associated security provider. Y ou use these attributes and operatationsto configure
and manage your custom security providers.

Note: For Authentication security providers only, the attributes and operations that
are specified in the optional SSPI MBeans your MDF implements are also
automatically supported by the Administration Console. For other types of
security providers, you must write a console extension in order to make the
attributes and operations inherited from the optional SSPI MBeans available
in the Administration Console. For more information, see “Writing Console
Extensions’ on page 2-4.

Figure 2-6 illustrates the SSPI M Bean hierarchy for security providers (using the
WebL ogic Credential Mapping MDF asan example), and indicateswhat attributesand
operations will appear in the Administration Console for the WebL ogic Credential
Mapping provider.

Developing Security Providers for WebL ogic Server 2-19

2 Design Considerations

Figure2-6 SSPI MBean Hierarchy for Credential Mapping Providers

Required Optlonal
Provider
PraviderCiassiName
Description
lYersion
extends
|
CredentialMapper ‘ ‘ UserPasswordCredentialMapReader ‘
extends implements
|
DeployableCredentialMapper ‘ UserPasswordCredentialMapEditar ‘
h
C i i wmentEnabled
WebLogic Server
SSPI MBeans
extends
Security Developer-
Supplied MDF
DefaultCredentialMapper
PraviderCiassiName impal rts
Description
lYersion

Implementing the hierarchy of SSPI MBeans in the Def aul t Cr edent i al Mapper
MDF (shown in Figure 2-6) produces the page in the Administration Console that is
shown in Figure 2-7. (The full listing of the Def aul t Cr edent i al Mapper MDF is
shownin Listing 2-1.)

Figure2-7 DefaultCredentialM apper Administration Console Page

m Details |

M9 Name DefaultCredentialMapper

0wy =

Description: Provider that performs Default Credential Mapping

)

Yersion: 1.0

[=
w3

¥ Credential Mapping Deployment Enabled

Apply

2-20 Developing Security Providers for WebL ogic Server

Security Service Provider Interface (SSPI) MBeans

The Name, Description, and Version fields come from attributes with these names
inherited from the base required SSPI MBean called Pr ovi der and specified in the
Def aul t Cr edent i al Mapper MDF. Note that the Di spl ayNarre attributein the

Def aul t Credent i al Mapper MDF generates the value for the Name field, and that
theDescri pti on and Ver si on attributes generate the values for their respective
fieldsaswell. The Credential Mapping Deployment Enabled field i sdisplayed because
of the Cr edent i al Mappi ngDepl oynment Enabl ed attribute in the

Depl oyabl eCr edent i al Mapper required SSPI MBean, which the

Def aul t Cr edent i al Mapper MDF extends. Notice that this Administration Console
page does not display afield for the Def aul t Cr edent i al Mapper MDF's
implementation of the User Passwor dCr edent i al MapEdi t or optional SSPI MBean.

Understand What the WebLogic MBeanMaker Provides

The WebL ogic MBeanM aker isacommand-line utility that takes an MBean
Definition File (MDF) asinput and outputsfilesfor an MBean type. When you run the
MDF you created through the WebL ogic MBeanMaker, the following occurs:

m Any attributes inherited from required SSPI MBeans—as well as any custom
attributes you added to the MDF—cause the WebL ogic MBeanM aker to
generate complete getter/setter methods in the M Bean type’'sinformation file.
(The MBean information file is not shown in Figure 2-8.)

Necessary developer action: None. No further work must be done for these
methods.

m Any operations inherited from optional SSPI MBeans cause the MBean
implementation file to inherit their methods, whose implementations you must
supply from scratch.

Necessary developer action: Currently, the WebL ogic MBeanM aker does not

generate method stubs for these inherited methods, so you will need to use the
“Mapping MDF Operation Declarations to Java Method Signatures Document”
(available on the dev2dev Web site) to supply the appropriate implementations.

m Any custom operations you added to the MDF will cause the WebL ogic
MBeanMaker to generate method stubs.

Necessary developer action: You must provide implementations for these
methods. (However, because the WebL ogic MBeanMaker generates the stubs,
you do not need to look up the Java method signatures.)

Developing Security Providers for WebL ogic Server 2-21

http://dev2dev/code/codedirect.jsp?highlight=codedirect

2 Design Considerations

Thisisillustrated in Figure 2-8.

Figure2-8 What the WebL ogic MBeanM aker Provides

Required S5F1 MBean

Attnbute T

Optional S5P1 MBean COptional S5P1 MBean

Oparation 2

Ooaration 3

implements

|

extends

4

f 3

MDF

" Custom Attribute 2
Custor COperation 4

lﬁun through

J\Eutputs

MBean Interface File

Attribute 1

Custom Attnbute 2
Cloerabion 2
Clperation 3
Custarn Operstion 4

(Wethgin: MBeanhaker | outputs 3
extends

implements

WMBean Implementation File

Operation 2 [Methods from acratch)
Oparation 3 fMethods from acratch]
Custorn Cperahion 4 (Wethod stubs)

2-22 Developing Security Providers for WebL ogic Server

Security Service Provider Interface (SSPI) MBeans

SSPI MBean Quick Reference

Based on the list of SSPIs you need to implement as part of developing your custom
security provider, locate the required SSPI MBeans you need to extend in Table 2-2.
Using Table 2-3 through Table 2-5, locate any optional SSPI MBeans you also want
to implement for managing your security provider.

Table 2-2 Required SSPI M Beans

Type Package Name Required SSPI M Bean
Authentication provider aut henti cation Aut hent i cat or
Identity Assertion provider aut henti cati on I dentityAsserter
Authorization provider aut hori zation Aut hori zer or

Depl oyabl eAut hori zer
Adjudication provider aut hori zati on Adj udi cat or
Role Mapping provider aut hori zati on Rol eMapper or

Depl oyabl eRol eMapper
Auditing provider audi t Audi t or
Credential Mapping provider credential s Credenti al Mapper or

Depl oyabl eCr edent i al Mapper

Note: Therequired SSPI MBeans shown in Table 2-2 are located in the
webl ogi c. managenent . security. <Package_Name> package.

Table 2-3 Optional Authentication SSPI M Beans

Optional SSPI M Beans

Purpose

G oupEdi t or

Create a group. If the group already exists, an
exception isthrown.

G oupMenber Li st er

List agroup's members.

G oupReader

Read data about groups.

Developing Security Providers for WebL ogic Server 2-23

2 Design Considerations

Table 2-3 Optional Authentication SSPI M Beans (Continued)

Optional SSPI M Beans Purpose

G oupRenover Remove groups.

Menber G ouplLi st er List the groups containing a user or a group.
User Edi t or Creste, edit and remove users.

User Passwor dEdi t or Change a user's password.

User Reader Read data about users.

User Renover Remove users.

Notes: The optional Authentication SSPI MBeans shown in Table 2-3 arelocated in
thewebl ogi c. management . security. aut henti cati on package. They
are also supported in the WebL ogic Server Administration Console.

Table 2-4 Optional Authorization SSPI M Beans

Optional SSPI M Beans Purpose

Pol i cyEdi t or Create, edit and remove security policies.
Pol i cyReader Read data about security policies.

Rol eEdi t or Create, edit and remove roles.

Rol eReader Read data about roles.

Note: The optional Authorization SSPI MBeans shown in Table 2-4 are located in
thewebl ogi c. management . securi ty. aut hori zat i on package.

Table 2-5 Optional Credential Mapping SSPI M Beans

Optional SSPI M Beans Purpose

User Passwor dCr edent i al MapEdi t or Edit credential maps that map a WebL ogic user to a
remote username and password.

2-24 Developing Security Providers for WebL ogic Server

Initializing the Security Provider Database

Table 2-5 Optional Credential Mapping SSPI M Beans

Optional SSPI M Beans Purpose

User Passwor dCr edent i al MapReader Read credentia maps that map aWebL ogic user to a

remote username and password.

Note: The optional Credential Mapping SSPI MBeans shown in Table 2-5 are

located in the webl ogi c. managenent . security. credenti al s package.

Initializing the Security Provider Database

The following sections explain what a security provider database is, describe how
security realms affect the use of security provider databases, and address best practices
for initializing a security provider database:

What |s a Security Provider Database?

Security Realms and Security Provider Databases

Best Practice: Create a Simple Database If None Exists
Best Practice: Configure an Existing Database

Best Practice: Delegate Database Initialization

What Is a Security Provider Database?

A security provider database contains the users, groups, policies, roles, and
credentials used by some types of security providersto provide security services. For
example: an Authentication provider requiresinformation about users and groups; an
Authorization provider requires information about security policies; a Role Mapping
provider requiresinformation about roles, and a Credential Mapping provider requires
information about credentials. These security providers need this information to be
available in a database in order to function properly.

Developing Security Providers for WebL ogic Server 2-25

2 Design Considerations

The security provider database can be the embedded LDAP server (as used by the
WebL ogic security providers), a properties file (as used by the sample security
providers), or a production-quality database that you may already be using.

Note: The sample security providers are available under “Code Direct” on the
dev2dev Web site.

The security provider database should beinitialized thefirst time security providersare
used. Thisinitialization can be done:

= When the WebL ogic Server instance boots.
m When acall is made to one of the security provider’s MBeans.

At minimum, you must initialize a security provider database with the default users,
groups, policies, roles, or credentials that your Authentication, Authorization, Role

Mapping, and Credential Mapping providers expect. For more information, see the

following sectionsin Managing WebLogic Security:

m Default Group Associations
m Default Security Policies
m Default Global Roles and Permissions

m Using WebL ogic Server to Authenticate to Remote Systems

Security Realms and Security Provider Databases

If you have multiple security providers of the same type configured in the same
security realm, these security providers may use the same security provider database.
This behavior holds true for all of the WebL ogic security providers and the sample
security providersthat are available under “ Code Direct” on the dev2dev Web site.

For example, if you or an administrator configure two WebL ogic A uthentication
providersin the default security realm (called nyr eal m), both WebL ogic
Authentication providers will use the same location in the embedded LDAP server as
their security provider database, and thus, will use the same users and groups.
Furthermore, if you or an administrator add a user or group to one of the WebL ogic
Authentication providers, you will see that user or group appear for the other

WebL ogic Authentication provider aswell.

2-26 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#defaultgroups_and_globalroles
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#default_security_policies
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#default_global_roles
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#mappingtoWLSuser
http://dev2dev/code/codedirect.jsp?highlight=codedirect

Initializing the Security Provider Database

Note: If you have two WebL ogic security providers (or two sample security
providers) of the same type configured in two different security realms, each
will use its own security provider database.

The custom security providers that you develop (or the custom security providers that
you obtain from third-party security vendors) can be designed so that each instance of
the security provider usesits own database or so that all instances of the security
provider in asecurity realm share the same database. Thisisadesign decision that you
need to make based on your existing systems and security requirements.

Best Practice: Create a Simple Database If None Exists

Thefirst time an Authentication, Authorization, Role Mapping, or Credential Mapping
provider is used, it attemptsto locate a database with the information it needs to

provideits security service. If the security provider failsto locate the database, you can
haveit create one and automatically populateit with the default users, groups, policies,
roles, and credentials. This option may be useful for devel opment and testing purposes.

Both the WebL ogic security providers and the sample security providers follow this
practice. The WebL ogic Authentication, Authorization, Role Mapping, and Credential
Mapping providers storethe user, group, policy, role, and credential informationin the
embedded LDAP server. If you want to use any of these WebL ogic security providers,
you will need to follow the “ Configuring the Embedded LDAP Server” instructionsin
Managing WebLogic Security.

Note: The sample security providers simply create and use a propertiesfile as their
database. For exampl e, the sample Authentication provider createsafilecalled
Sanpl eAut hent i cat or Dat abase. j ava that contains the necessary
information about users and groups. The sample security providers are
available under “Code Direct” on the dev2dev Web site.

Developing Security Providers for WebL ogic Server 2-27

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#embedded_ldap_server
http://dev2dev/code/codedirect.jsp?highlight=codedirect

2 Design Considerations

Best Practice: Configure an Existing Database

If you already have a database (such as an external LDAP server), you can populate
that database with the users, groups, policies, roles, and credentials that your
Authentication, Authorization, Role Mapping, and Credential Mapping providers
require. (Populating an existing database is accomplished using whatever tools you
aready havein place for performing these tasks.)

Once your database contains the necessary information, you must configure the
security providersto look in that database. Y ou accomplish this by adding custom
attributes in your security provider’s MBean Definition File (MDF). Some examples
of custom attributes are the database’ s host, port, password, and so on. After you run
the MDF through the WebL ogic MBeanMaker and complete afew other stepsto
generate the MBean type for your custom security provider, you or an administrator
use the WebL ogic Server Administration Console to set these attributesto point to the
database.

Note: For more information about MDFs, MBean types, and the WebL ogic
MBeanMaker, see“ Generating an MBean Type to Configure and Manage the
Custom Security Provider” on page 2-3.

Asan example, Listing 2-2 shows some custom attributes that are part of the

WebL ogic LDAP Authentication provider’s MDF. These attributes enable an
administrator to specify information about the WebL ogic LDAP Authentication
provider’ sdatabase (an external LDAP server), soit can locateinformation about users
and groups.

Listing 2-2 LDAPAuthenticator.xml

<MBeanAttri bute
Name = "User Obj ect O ass"

Type = "java.l ang. String"

Default = "" per son" ;"

Description = "The LDAP object class that stores users."
/>

<MBeanAttribute
Name = "User NaneAttri bute"
Type = "java.lang. String"
Default = "" ; ui d" ;"

2-28 Developing Security Providers for WebL ogic Server

Initializing the Security Provider Database

Description = "The attribute of an LDAP user object that specifies the name of
the user."
/>

<MBeanAttribute

Narme = "User Dynam cG oupDNAttri bute"

Type = "java.lang. String"

Description = "The attribute of an LDAP user object that specifies the
di stingui shed names (DNs) of dynami c groups to which this user bel ongs.
If such an attribute does not exist, WebLogic Server determines if a
user is a nenber of a group by evaluating the URLs on the dynam c group.
If a group contains other groups, WbLogic Server evaluates the URLs on
any of the descendents of the group."

/>

<MBeanAttribute
Nanme = "User BaseDN'
Type = "java.lang. String"
Default = "" ; ou=peopl e, o=exanpl e. com" ;"
Description = "The base di stingui shed nane (DN) of the tree in the LDAP directory
that contains users."
/>

<MBeanAttribute
Narme = "User Sear chScope"
Type = "java.lang. String"
Default = "" subtree" ;"
Legal Val ues = "subtree, onel evel "
Description = "Specifies howdeep in the LDAP directory tree to search for Users.
Valid values are & t;code> subtree& t;/code>
and & t;code> onel evel & t;/code>."
/>

Best Practice: Delegate Database Initialization

If possible, initialization calls between a security provider and the security provider's
database should be done by anintermediary class, referred to asadatabase delegator .
The database delegator should interact with the runtime class and the MBean type for
the security provider, as shown in Figure 2-9.

Developing Security Providers for WebL ogic Server 2-29

2 Design Considerations

Figure2-9 Positioning of the Database Delegator Class

Security Provider

Runtime Class

‘ MBean Type
f F

_ﬁl

‘ Database Delegator ‘

A database del egator is used by the WebL ogic Authentication and Credential Mapping
providers. The WebL ogic Authentication provider, for example, callsinto a database
delegator to initialize the embedded L DAP server with default users and groups, which
it requires to provide authentication services for the default security realm.

Use of a database delegator is suggested as a convenience to application developers
and security vendors who are devel oping custom security providers, because it hides
the security provider’s database and centralizes calsinto the database.

2-30 Developing Security Providers for WebL ogic Server

CHAPTER

3

Authentication
Providers

Authentication isthe mechanism by which callers provethat they are acting on behal f
of specific users or systems. Authentication answers the question, “Who are you?’
using credentials such as username/password combinations.

In WebL ogic Server, Authentication providers are used to prove the identity of users
or system processes. A uthentication providersal so remember, transport, and make that
identity information available to various components of a system (via subjects) when
needed. During the authentication process, a Principal Validation provider provides
additional security protections for the principals (users and groups) contained within
the subject by signing and verifying the authenticity of those principals. (For more
information, see Chapter 5, “Principal Validation Providers.”)

The following sections describe A uthentication provider concepts and functionality,
and provide step-by-step instructions for developing a custom Authentication
provider:

m “Authentication Concepts’ on page 3-2
m “The Authentication Process’ on page 3-11
m “Do You Need to Develop a Custom Authentication Provider?’ on page 3-12

m “How to Develop a Custom Authentication Provider” on page 3-12

Note: An Identity Assertion provider isaspecific form of Authentication provider
that allows users or system processes to assert their identity using tokens. For
more information, see Chapter 4, “Identity Assertion Providers.”

Developing Security Providers for WebL ogic Server 31

3 Authentication Providers

Authentication Concepts

Before delving into the specifics of devel oping custom Authentication providers, itis
important to understand the following concepts:

m “Usersand Groups, Principals and Subjects’ on page 3-2
m “LoginModules’ on page 3-3
m “Java Authentication and Authorization Service (JAAS)” on page 3-6

Users and Groups, Principals and Subjects

A user issimilar to an operating system user in that it represents aperson. A group is
a category of users, classified by common traits such as job title. Categorizing users
into groups makes it easier to control the access permissions for large numbers of
users. For more information about users and groups, see “Defining Users’ and
“Defining Groups® in Managing WebLogic Security.

Both users and groups can be used as principals by application serverslike WebL ogic
Server. A principal isan identity assigned to a user or group as aresult of
authentication. The Java Authentication and Authorization Service (JAAS) requires
that subjects be used as containers for authentication information, including
principals. For more information about JAAS, see “ Java Authentication and
Authorization Service (JAAS)” on page 3-6.

Note: Subjects replace WebL ogic Server 6.x users.

Figure 3-1 illustrates the relationships among users, groups, principals, and subjects.

32 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#users
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#groups

Authentication Concepts

Figure3-1 Relationships Among Users, Groups, Principals and Subjects

Principals

WLSUser
"Smith"

WLSGroup
"Developers”

Subject =

WLSGroup
"Administrators"

hyPrincipal
"foobar"

R

As part of asuccessful authentication, principals are signed and stored in a subject for
future use. A Principal Validation provider signs principals, and an Authentication
provider’s LoginModule actually stores the principals in the subject. L ater, when a
caller attempts to access a principal stored within a subject, a Principal Validation
provider verifies that the principal has not been altered since it was signed, and the
principal is returned to the caller (assuming all other security conditions are met).

Note: For more information about Principal Validation providers and
LoginModules, see Chapter 5, “Principal Validation Providers,” and
“LoginModules’ on page 3-3, respectively.

Any principal that is going to represent a WebL ogic Server user or group needs to

implement the W.SUser and W.SG oup interfaces, which are available in the
webl ogi c. securi ty. spi package.

LoginModules

A LoginModuleis arequired component of an Authentication provider, and can be a
component of an ldentity Assertion provider if you want to develop a separate
LoginModule for perimeter authentication.

Developing Security Providers for WebL ogic Server 33

3 Authentication Providers

L oginM odules are the work-horses of authentication: all LoginModules are
responsible for authenticating users within the security realm and for populating a
subject with the necessary principals (users/groups). LoginModules that are not used
for perimeter authentication also verify the proof material submitted (for example, a
user’s password).

Note: For more information about Identity Assertion providers and perimeter
authentication, see Chapter 4, “I1dentity Assertion Providers.”

If there are multiple Authentication providers configured in a security realm, each of
the Authentication providers' LoginModuleswill store principals within the same
subject. Therefore, if aprincipal that represents a WebL ogic Server user (that is, an
implementation of theW.SUser interface) named “Joe” is added to the subject by one
Authentication provider’s LoginModule, any other Authentication provider in the
security realm should be referring to the same person when they encounter “Joe”. In
other words, the other Authentication providers LoginM odules should not attempt to
add another principal to the subject that represents a WebL ogic Server user (for
example, named “ Joseph”) to refer to the same person. However, it is acceptablefor a
another Authentication provider’sLoginModuleto add a principal of atype other than
W SUser with the name * Joseph”.

The LoginModule Interface

3-4

LoginModules can be written to handle a variety of authentication mechanisms,
including username/password combinations, smart cards, biometric devices, and so
on. You develop LoginM odules by implementing the

j avax. security. aut h. spi . Logi nMbdul e interface, which is based on the Java
Authentication and Authorization Service (JAAS) and uses asubject as acontainer for
authentication information. The Logi nMbdul e interface enables you to plug in
different kinds of authentication technol ogiesfor use with asingle application, and the
WebL ogic Security Framework is designed to support multiple Logi nModul e
implementations for multipart authentication. Y ou can also have dependencies across
LoginModule instances or share credentials across those instances. However, the
relationship between LoginM odules and Authentication providersis one-to-one. In
other words, to have a LoginM odul e that handles retina scan authentication and a
LoginModule that interfaces to a hardware device like a smart card, you must devel op
and configure two A uthentication providers, each of which include animplementation
of the Logi nMbdul e interface. For more information, see “Implement the JAAS
LoginModule Interface” on page 3-15.

Developing Security Providers for WebL ogic Server

Authentication Concepts

Note: You can aso obtain LoginModules from third-party security vendors instead
of developing your own.

LoginModules and Multipart Authentication

The way you configure multiple Authentication providers (and thus, multiple
LoginModules) can affect the overall outcome of the authentication process, whichis
especially important for multipart authentication. First, because LoginModules are
components of Authentication providers, they are called in the order in which the
Authentication providers are configured. Generally, you configure Authentication
providersusing the WebL ogic Server Administration Console. (For more information,
see “Configure the Custom Authentication Provider Using the Administration
Console” on page 3-30.) Second, the way each LoginModul€'s control flag is set
specifies how afailure during the authentication process should be handled. Figure 3-2
illustrates asample flow involving three different LoginModules (that are part of three
Authentication providers), and illustrates what happens to the subject for different
authentication outcomes.

Figure3-2 Sample LoginM odule Flow

User Principal Control Flag

Authenticated? Created? Setting Subject

Weblogic Authentication Provider)
Yes Yes, pl Required p1

Loginkodule

Custom Authentication Provider #1)
No No Optional MiA

Loginkodule

Custom Authentication Provider #2)
Yes Yes, p2 Required p2

Loginkodule

If the control flag for Custom Authentication Provider #1 had been set to Required, the
authentication failure in its User Authentication step would have caused the entire
authentication process to have failed. Also, if the user had not been authenticated by
the WebL ogic Authentication provider (or custom Authentication provider #2), the

Developing Security Providers for WebL ogic Server 35

3 Authentication Providers

entire authentication processwoul d havefailed. If the authentication processhad failed
in any of these ways, all three LoginModules would have been rolled back and the
subject would not contain any principals.

Note: For more information about the LoginModule control flag setting and the
LoginModul einterface, seethe Java Authentication and Authorization Service
(JAAS) 1.0 LoginModule Developer’s Guide and the Java 2 Enterprise
Edition, v1.3.1 API Specification Javadoc for the LoginModule interface,
respectively.

Java Authentication and Authorization Service (JAAS)

Whether the client isan application, applet, Enterprise JavaBean (EJB), or servlet that
requires authentication, WebL ogic Server uses the Java Authentication and
Authorization Service (JAAS) classes to reliably and securely authenticate to the
client. JAAS implements a Java version of the Pluggable Authentication Module
(PAM) framework, which permits applicationsto remain independent from underlying
authentication technologies. Therefore, the PAM framework allows the use of new or
updated authentication technol ogies without requiring modifications to your
application.

WebL ogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and
developers of remote fat client applications need to be involved with JAAS directly.
Users of thin clients or devel opers of within-container fat client applications (for
example, those calling an Enterprise JavaBean (EJB) from aservlet) do not requirethe
direct use or knowledge of JAAS.

How JAAS Works With the WebLogic Security Framework

Genericaly, authentication using the JAAS classes and WebL ogic Security
Framework is performed in the following manner:

1. A client-side application obtains authentication information from auser or system
process. The mechanism by which this occursis different for each type of client.

2. The client-side application can optionally create aCal | backHandl er containing
the authentication information.

Developing Security Providers for WebL ogic Server

http://java.sun.com/security/jaas/doc/module.html
http://java.sun.com/security/jaas/doc/module.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/spi/LoginModule.html

Authentication Concepts

a. The client-side application passes the Cal | backHandl er toalocal
(client-side) LoginModule using the Logi nCont ext class. (Thelocal
LoginModule could be User namePasswor dLogi nModul e, which is provided
as part of WebL ogic Server.)

b. Thelocal LoginModule passesthe Cal | backHandl er containing the
authentication information to the appropriate WebL ogic Server container (for
example, RMI, EJB, servlet, or 11OP).

Notes: A Cal | backHandl er isahighly-flexible JAAS standard that allows a
variable number of argumentsto be passed as complex objectsto amethod.
There are three types of Cal | backHandl er S: NaneCal | back,

Passwor dCal | back, and Text | nput Cal | back, all of whichresideinthe
j avax. security. aut h. cal | back package. The NaneCal | back and
Passwor dCal | back return the username and password, respectively.
Text | nput Cal | back can be used to access the data users enter into any
additional fields on alogin form (that is, fields other than those for
obtaining the username and password). When used, there should be one
Text | nput Cal | back per additional form field, and the prompt string of
each Text | nput Cal | back must match the field name in the form.
WebL ogic Server only usesthe Text I nput Cal | back for form-based Web
application login. For more information about Cal | backHandl er s, see
the Java 2 Enterprise Edition, v1.4.0 APl Specification Javadoc for the
CallbackHandler interface.

For more information about the Logi nCont ext class, see the Java 2
Enterprise Edition v1.3.1 Specification Javadoc for the LoginContext
class.

For more information about the User nanePasswor dLogi nMbdul e, see
the WebLogic Server 7.0 API Reference Javadoc for the
UsernamePasswordL oginModul e class.

If you do not want to use a client-side LoginModule, you can specify the
username and password in other ways. for example, as part of the initial
JINDI lookup.

3. The WebLogic Server container callsinto the WebL ogic Security Framework. If
thereisaclient-side Cal | backHandl er containing authentication information,
thisis passed into the WebL ogic Security Framework.

Developing Security Providers for WebL ogic Server 37

http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/LoginContext.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/LoginContext.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/auth/login/UsernamePasswordLoginModule.html

3 Authentication Providers

4. For each of the configured Authentication providers, the WebL ogic Security
Framework creates aCal | backHandl er using the authentication information
that was passed in. (These are internal Cal | backHandl er s created on the
server-side by the WebL ogic Security Framework, and are not related to the
client'sCal | backHandl er.)

5. The WebL ogic Security Framework calls the L oginM odul e associated with the
Authentication provider (that is, the LoginModule that is specifically designed to
handle the authentication information).

Note: For moreinformation about LoginModules, see “LoginModules’ on page
3-3.

The LoginM odul e attempts to authenticate the client using the authentication
information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a Principal Validation provider to
ensure their authenticity between programmatic server invocations. For more
information about Principal Validation providers, see Chapter 5, “Principal
Validation Providers.”

b. The LoginModule associates the signed principal s with a subject, which
represents the user or system process being authenticated. For more
information about subjects and principals, see “ Users and Groups, Principals
and Subjects’ on page 3-2.

Note: For authentication performed entirely on the server-side, the process would
begin at step 3, and the WebL ogic Server container would call the
webl ogi c. security. services. aut henti cati on. | ogi n method prior to
step 4. (Thewebl ogi c. security. services. aut henti cation. | ogin
method is only available in WebL ogic Server 7.0 SPOL.)

Example: Standalone T3 Application

Figure 3-3 illustrates how the JAAS classes work with the WebL ogic Security
Framework for a standalone, T3 application, and an explanation follows.

3-8 Developing Security Providers for WebL ogic Server

Authentication Concepts

Figure3-3 Authentication Using JAAS Classes and WebL ogic Server

authertication status, suk:njel:‘.'.E

Client-Side Server-Side
@)
Standalone T3 Application RMI Container
2 CalloackHandler: username, (37 Cliert CalloackHandler:
pas=ar, CallbackHandler: username, username, password, URL
password, URL
LaginContext | WebLogic Security Framework
CallbackHandler: username, Server CallbackHandler:
passwword, LRL usetnames, passyword, URL

(USernamePaSSWDrdLoginModule/f

l—subjec:t

Authentication Provider

E

ient-zide JAAS
Loginklodule

principals

stared in

Loginkdcociule
Server-gide J.&.&.S// 1
Loginkodule principals
zigned

4

Principal Validation
Provider

subject

For this example, authentication using the JAAS classes and WebL ogic Security

Framework is performed in the following manner:

1. The T3 application obtains authentication information (username, password, and

URL) from auser or system process.

2. The T3 application creates a Cal | backHandl er containin
information.

g the authentication

a. The T3 application passesthe Cal | backHandl er to the
User namePasswor dLogi nMbdul e using the Logi nCont ext class.

Note: The

webl ogi c. security. aut h. | ogi n. User nanePasswor dLogi nMbdu

| e implements the standard JAAS

j avax. security. aut h. spi. Logi nMbdul e i
client-side APIs to authenticate a WebL ogic cl
Server instance. It can be used for both T3 and

nterface and uses
ient to aWebLogic
IIOP clients. Callers of

Developing Security Providers for WebL ogic Server 39

3 Authentication Providers

this LoginM odule must implement a Cal | backHandl er to passthe
username (NameCal | back), password (Passwor dCal | back), and a
URL (URLCal | back).

b. The User nanePasswor dLogi nMbdul e passesthe Cal | backHandl er
containing the authentication information (that is, username, password, and
URL) to the WebL ogic Server RMI container.

3. TheWebL ogic Server RMI container calls into the WebL ogic Security
Framework. The client-side Cal | backHandl er containing authentication
information is passed into the WebL ogic Security Framework.

4. For each of the configured Authentication providers, the WebL ogic Security
Framework creates aCal | backHandl er containing the username, password, and
URL that was passed in. (These are internal Cal | backHandl er s created on the
server-side by the WebL ogic Security Framework, and are not related to the
client’'sCal | backHandl er.)

5. The WebL ogic Security Framework calls the L oginM odul e associated with the
Authentication provider (that is, the LoginModule that is specifically designed to
handle the authentication information).

The LoginModul e attempts to authenticate the client using the authentication
information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a Principal Validation provider to
ensure their authenticity between programmatic server invocations.

b. The LoginModule associates the signed principals with a subject, which
represents the user or system being authenticated.

¢. The WebLogic Security Framework returns the authentication statusto the T3
client application, and the T3 client application retrieves the authenticated
subject from the WebL ogic Security Framework.

3-10 Developing Security Providersfor WebL ogic Server

The Authentication Process

The Authentication Process

Figure 3-4 showsabehind-the-scenes|ook of the authentication processfor afat-client
login. JAAS runs on the server to perform the login. Even in the case of athin-client
login (that is, abrowser client) JAAS s still run on the server.

Figure 3-4 The Authentication Process

Usernamefpasswiord
P JAASLogin > LoginModules
Client WebLogic
Application Server Principal
Sign Validation
Frovider
Subject

Notes: Only developersof custom Authentication providerswill beinvolved with this
JAAS process directly. The client application could either use INDI initial
context creation or JAASto initiate the passing of the username and password.

When auser attempts to log into a system using a username/password combination,
WebL ogic Server establishes trust by validating that user’s username and password,
and returns a subject that is populated with principals per JAAS requirements. As
Figure 3-4 also shows, this process requires the use of aL oginModule and a Principal
Validation provider, which are discussed in detail in “LoginModules’ on page 3-3 and
Chapter 5, “Principal Validation Providers,” respectively.

After successfully proving a caller’ sidentity, an authentication context is established,
which allows an identified user or system to be authenticated to other entities.
Authentication contexts may also be del egated to an application component, allowing
that component to call ancther application component whileimpersonating the original
caler.

Developing Security Providers for WebL ogic Server 311

3 Authentication Providers

Do You Need to Develop a Custom
Authentication Provider?

The default (that is, active) security realm for WebL ogic Server includes aWebL ogic
Authentication provider.

Note: In conjunction with the WebL ogic Authorization provider, the WebL ogic
Authentication provider replaces the functionality of the File realm that was
availablein 6.x releases of WebL ogic Server.

The WebL ogic Authentication provider supports delegated username/password
authentication, and utilizes an embedded LDAP server to store user and group
information. The WebL ogic Authentication provider alows you to edit, list, and
manage usersand group membership. If you want to perform additional authentication
tasks, then you need to develop a custom Authentication provider.

Note: If you want to perform perimeter authentication using X509 certificates or
CORBA Common Secure Interoperability version 2 (CSIv2), you might need
to develop a custom Identity Assertion provider. For more information, see
Chapter 4, “Identity Assertion Providers.”

How to Develop a Custom Authentication
Provider

If the WebL ogic Authentication provider does not meet your needs, you can develop
a custom Authentication provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIS’ on page 3-13
2. “Generate an MBean Type Using the WebL ogic MBeanMaker” on page 3-23

3. “Configure the Custom Authentication Provider Using the Administration
Console” on page 3-30

312 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authentication Provider

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIS’ on page 2-8

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Authentication provider by following these steps:

m “Implement the AuthenticationProvider SSPI” on page 3-13
= “Implement the JAAS LoginModule Interface” on page 3-15

For an example of how to create aruntime class for a custom Authentication provider,
see“ Example: Creating the Runtime Classes for the Sample Authentication Provider”
on page 3-16.

Implement the AuthenticationProvider SSPI

Toimplement the Aut hent i cat i onProvi der SSPI, provideimplementationsfor the
methods described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8
and the following methods:

getLoginModuleConfiguration
publ i c AppConfigurati onEntry getLogi nModul eConfi gurati on()

The get Logi nMbdul eConf i gur at i on method obtains information about the
Authentication provider’s associated LoginModule, which is returned as an
AppConfi gurationEntry. The AppConfi gurationEntry isaJava
Authentication and Authorization Service (JAAS) class that contains the
classname of the LoginModule; the LoginModul€’s control flag (which was
passed in viathe Authentication provider’'s associated MBean); and a
configuration options map for the LoginModule (which allows other
configuration information to be passed into the LoginM odule).

For more information about the AppConf i gur at i onEnt ry class (located in
thej avax. security. aut h. | ogi n package) and the control flag options for
LoginModules, see the Java 2 Enterprise Edition, v1.3.1 APl Specification
Javadoc for the AppConfigurationEntry class and the Configuration class. For

Developing Security Providers for WebLogic Server 3-13

http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/AppConfigurationEntry.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/Configuration.html

3 Authentication Providers

more information about LoginModules, see“LoginModules’” on page 3-3. For
more information about security providers and MBeans, see“ Understand Why
Y ou Need an MBean Type” on page 2-16.

getAssertionM oduleConfiguration
public AppConfigurati onEntry
get Asserti onModul eConfi guration()

Theget Asser ti onModul eConf i gur at i on method obtains information
about an Identity Assertion provider’s associated LoginModule, which is
returned asan AppConf i gur at i onEntry. The AppConfi gurati onEntryisa
JAAS class that contains the classname of the LoginModule; the
LoginModul€e's control flag (which was passed in via the Identity Assertion
provider’s associated M Bean); and a configuration options map for the
LoginModule (which allows other configuration information to be passed into
the LoginModule).

Note: Theimplementation of the get Asserti onMbdul eConfi guration
method can be to return nul 1 , if you want the Identity Assertion provider
to use the same L oginM odul e as the Authentication provider.

getPrincipal Validator
public Principal Validator getPrincipal Validator ()

Theget Pri nci pal Val i dat or method obtains a reference to the Principal
Validation provider’s runtime class (that is, the Pri nci pal Val i dat or SSPI
implementation). In most cases, the WebL ogic Principal Validation provider
can be used (see Listing 3-1 for an example of how to return the WebL ogic
Principal Validation provider). For more information about Principal
Validation providers, see Chapter 5, “Principal Validation Providers.”

getldentityAsserter
public ldentityAsserter getldentityAsserter()

Theget I dentityAsserter method obtains areference to the Identity
Assertion provider’s runtime class (that is, thel dent i t yAssert er SSPI
implementation). In most cases, the return value for this method will be nul |
(seeListing 3-1 for anexample). For moreinformation about | dentity Assertion
providers, see Chapter 4, “Identity Assertion Providers.”

For more information about the Aut hent i cat i onProvi der SSPI and the methods
described above, see the WebLogic Server 7.0 API Reference Javadoc.

3-14 Developing Security Providersfor WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuthenticationProvider.html

How to Develop a Custom Authentication Provider

Implement the JAAS LoginModule Interface

To implement the JAAS|j avax. security. aut h. spi . Logi nMdul e interface,
provide implementations for the following methods:

initialize

login

public void initialize (Subject subject, CallbackHandl er
cal | backHandl er, Map sharedState, Map options)

Thei nitial i ze method initializes the LoginModule. It takes as arguments a
subject in which to store the resulting principals, aCal | backHandl er that the
Authentication provider will useto call back to the container for authentication
information, amap of any shared state information, and amap of configuration
options (that is, any additional information you want to pass to the
LoginModule).

A Cal | backHandl er isahighly-flexible JAAS standard that allowsavariable
number of arguments to be passed as complex objects to a method. For more
information about Cal | backHandl er s, see the Java 2 Enterprise Edition,
v1.3.1 API Specification Javadoc for the CallbackHandler interface.

publ i c bool ean | ogin() throws Logi nException

Thel ogi n method attempts to authenticate the user and create principals for
the user by calling back to the container for authentication information. If
multiple LoginModules are configured (as part of multiple Authentication
providers), this method is called for each LoginModule in the order that they
are configured. Information about whether the login was successful (that is,
whether principals were created) is stored for each LoginModule.

commit

abort

public bool ean commt() throws Logi nException

Thecomi t method attemptsto add the principals created inthel ogi n method
to the subject. Thismethod is also called for each configured LoginModule (as
part of the configured Authentication providers), and executed in order.
Information about whether the commit was successful is stored for each
LoginModule.

publ i c bool ean abort() throws Logi nException

Developing Security Providers for WebLogic Server 3-15

http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html

3 Authentication Providers

Theabort method is called for each configured LoginModule (as part of the
configured Authentication providers) if any commits for the LoginM odules
failed (in other words, the relevant REQUI RED, REQUI SI TE, SUFFI ClI ENT and
OPTI ONAL LoginModules did not succeed). The abor t method will remove
that LoginModul€'s principals from the subject, effectively rolling back the
actions performed. For more information about the available control flag
settings, see the Java 2 Enterprise Edition, v1.3.1 APl Specification Javadoc
for the LoginModule interface.

logout
publ i c bool ean | ogout() throws Logi nException

Thel ogout method attemptsto log the user out of the system. It also resetsthe
subject so that its associated principals are no longer stored.

For more information about the JAAS Logi nMbdul e interface and the methods
described above, see the Java Authentication and Authorization Service (JAAS) 1.0
Developer’s Guide, and the Java 2 Enterprise Edition, v1.3.1 APl Specification
Javadoc for the LoginModule interface.

Example: Creating the Runtime Classes for the Sample Authentication Provider

Listing 3-1 showsthe Sanpl eAut hent i cat i onPr ovi der | npl . j ava class, whichis
one of two runtime classes for the sample Authentication provider. This runtime class
includes implementations for:

m Thethree methods inherited from the Securi t yPr ovi der interface:
initialize,getDescriptionandshutdown (asdescribed in “Understand the
Purpose of the “Provider” SSPIS’ on page 2-8.)

m Thefour methodsinthe Aut henti cati onProvi der SSPI: the
get Logi nMbdul eConfi gurati on, get Asserti onMbdul eConfi gurati on,
get Pri nci pal Val i dat or, and get | dent i t yAssert er methods (as described
in “Implement the AuthenticationProvider SSPI” on page 3-13).

Note: The bold face code in Listing 3-1 highlights the class declaration and the
method signatures.

Listing 3-1 SampleAuthenticationProvider I mpl.java

package exanpl es. security. providers. authenticati on;

3-16

Developing Security Providers for WebL ogic Server

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/security/auth/spi/LoginModule.html
http://java.sun.com/security/jaas/doc/api.html
http://java.sun.com/security/jaas/doc/api.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/security/auth/spi/LoginModule.html

How to Develop a Custom Authentication Provider

inmport java.util.HashMap;

import javax.security.auth.login.AppConfigurationEntry;

import javax.security.auth.login.AppConfigurationEntry. Logi nMddul eCont rol Fl ag;
i mport webl ogi c. managenent . security. Provi der MBean;

i mport webl ogi c. security. provider.Principal Val i dator| npl;
i mport webl ogi c. security.spi.AuthenticationProvider;
import webl ogic.security.spi.ldentityAsserter;

i mport webl ogi c. security.spi.Principal Validator;

import webl ogi c. security.spi.SecurityServices;

public final class Sanpl eAut henticationProviderlnpl inplenments
Aut hent i cati onProvi der

{

private String description;
private Sanpl eAut henti cat or Dat abase dat abase;
private Logi nModul eControl Fl ag control Fl ag;

public void initialize(ProviderMBean nbean, SecurityServices services)

{
System out. printl n("Sanpl eAut henticati onProviderlnpl.initialize");
Sanpl eAut hent i cat or MBean myMBean = (Sanpl eAut henti cat or MBean) nbean;
description = nmyMBean. get Description() + "\n" + nmyMBean. getVersion();
dat abase = new Sanpl eAut hent i cat or Dat abase(myMBean) ;

String flag = nyMBean. get Control Fl ag();
if (flag.equal slgnoreCase("REQU RED")) ({
control Fl ag = Logi nModul eCont r ol Fl ag. REQUI RED;
} else if (flag.equalslgnoreCase("OPTIONAL")) {
control Fl ag = Logi nModul eCont r ol Fl ag. OPTI ONAL;
} else if (flag.equalslgnoreCase("REQU SITE")) {
control Fl ag = Logi nMbdul eCont r ol Fl ag. REQUI SI TE;
} else if (flag.equalslgnoreCase("SUFFICI ENT")) {
control Fl ag = Logi nModul eCont r ol FI ag. SUFFI Cl ENT;
} else {
throw new I Il egal Argunent Exception("invalid flag value" + flag);

}
}
public String getDescription()
{
return description;
}
public void shutdown()
{
System out. printl n(" Sanpl eAut henti cati onProvi derl| npl . shut down") ;
}

private AppConfigurationEntry getConfiguration(HashMap options)
{

Developing Security Providers for WebLogic Server 3-17

3 Authentication Providers

opti ons. put ("dat abase", database);
return new
AppConfi gurati onEntry(
"exanpl es. security. providers. aut henti cati on. Sanpl eLogi nModul el npl ",
control Fl ag,

options
)

}
publ i c AppConfigurationEntry getLogi nMbdul eConfi guration()
{

HashMap options = new HashMap();

return get Configuration(options);
}

publi c AppConfigurationEntry getAsserti onModul eConfi guration()

HashMap options = new HashMap();
options. put("ldentityAssertion","true");
return get Configuration(options);

}
public Principal Validator getPrincipal Validator()
{
return new Principal Validatorlnpl();
}
public ldentityAsserter getldentityAsserter()
{
return null;
}

Listing 3-2 shows the Sanpl eLogi nModul el npl . j ava class, which is one of two
runtime classes for the sampl e Authentication provider. Thisruntime classimplements
theJAASLoginModuleinterface (asdescribed in“ Implement the JAAS LoginM odule
Interface” on page 3-15), and therefore includesimplementationsfor itsi ni ti al i ze,
| ogi n, conmi t,abort, and | ogout methods.

Note: The bold face code in Listing 3-2 highlights the class declaration and the
method signatures.

3-18 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authentication Provider

Listing 3-2 SampleL oginM odulel mpl.java

package exanpl es. security. providers. aut henticati on;

inmport java.io.|CException;

inmport java.util.Enumeration;

inmport java.util.Mp;

inmport java.util.Vector;

import javax.security.auth. Subject;

import javax.security.auth.call back. Cal | back;

import javax.security.auth.call back. Cal | backHandl er;
import javax.security.auth.callback. NameCal | back;
import javax.security.auth.callback.PasswordCal | back;
import javax.security.auth. callback. UnsupportedCal | backExcepti on;
import javax.security.auth.login.Logi nException;

i mport javax.security.auth.login.Fail edLogi nExcepti on;
import javax.security.auth.spi.Logi nMbdul e;

i mport webl ogi c. managenent . util s. Not FoundExcepti on;
import webl ogic.security.spi.WSG oup;

import webl ogic.security.spi.WSUser;

i mport webl ogi c. security. principal . W.SG oupl npl ;
import webl ogi c.security. principal.WSUserl npl ;

final public class Sanpl eLogi nModul el npl i npl ements Logi nMbdul e

{

private Subject subject;
private Call backHandl er cal | backHandl er;
private Sanpl eAut henti cat or Dat abase dat abase;

/1 Determ ne whether this is a login or assert identity
private bool ean isldentityAssertion;

// Authentication status

private bool ean | ogi nSucceeded;

private bool ean principal sl nSubj ect;

private Vector principal sForSubject = new Vector();

publicvoidinitialize(Subject subject, Call backHandl er cal | backHandl er, Map
sharedState, Map options)
{

/1 only called (once!) after the constructor and before | ogin

System out. printl n("Sanpl eLogi nModul el npl .initialize");
thi s. subj ect = subject;
t hi s. cal | backHandl er = cal | backHandl er;

/1 Check for ldentity Assertion option
isldentityAssertion =
"true". equal sl gnoreCase((String)options.get("ldentityAssertion"));

Developing Security Providers for WebLogic Server 3-19

3 Authentication Providers

}

dat abase = (Sanpl eAut hent i cat or Dat abase) opti ons. get (" dat abase");

public bool ean login() throws Logi nException

{

3-20

/1 only called (once!) after initialize

System out. printl n("Sanpl eLogi nModul el npl . | ogi n");

/1 | ogi nSucceeded shoul d be fal se
/1 principal slnSubject should be false
/'l user shoul d be null
/1 group shoul d be null

Cal | back[] cal |l backs = get Cal | backs();
String userNanme = get User Nane(cal | backs);

if (userNane.length() > 0) {
if (!database. userExists(userNanme)) {
t hr owFai | edLogi nException("Authentication Failed: User " + userName
+ " doesn't exist.");

}
if (lisldentityAssertion) {
String passwordwWant = null;
try {
passwor dWant = dat abase. get User Passwor d(user Nane) ;
} catch (Not FoundExcepti on shoul dNot Happen) {}
String passwordHave = get Passwor dHave(user Nanme, cal | backs);
if (passwordWant == null || !passwordWant. equal s(passwordHave)) {
t hr owFai | edLogi nExcept i on(
"Aut hentication Failed: User " + userNane + " bad password. "

"Have " + passwordHave + ". Want " + passwordWant + "
)
}
}
} else {
/1 anonynous login - let it through?
Systemout.println("\tenpty userNane");
}

| ogi nSucceeded = true;
pri nci pal sFor Subj ect. add(new W.SUser | npl (user Nane)) ;
addG oupsFor Subj ect (user Nane) ;

return | ogi nSucceeded;

Developing Security Providers for WebL ogic Server

How to Develop a Custom Authentication Provider

public bool ean commt() throws Logi nException

{
/1 only called (once!) after login
/1 1 ogi nSucceeded shoul d be true or false
/1 principal sl nSubj ect should be fal se
/1 user shoul d be null if !loginSucceeded, null or not-null otherw se
/1 group should be null if user == null, null or not-null otherw se
System out. printl n(" Sanpl eLogi nModul e. commi t");
i f (1oginSucceeded) {
subj ect. get Princi pal s().addAl | (pri nci pal sFor Subj ect) ;
princi pal sl nSubj ect = true;
return true;
} else {
return fal se;
}
}
public bool ean abort() throws Logi nException
{
/1 only called (once!) after login or conmmt
/1 or may be? called (n times) after abort
/1 1 ogi nSucceeded shoul d be true or false
/1 user shoul d be null if !loginSucceeded, otherw se null or not-null
/1 group should be null if user == null, otherwise null or not-null
/'l principal sl nSubj ect shoul d be false if user is null, otherw se true
I/ or false
System out. printl n(" Sanpl eLogi nModul e. abort");
i f (principalslnSubject) {
subj ect. get Pri nci pal s().renoveAl | (principal sFor Subj ect) ;
princi pal sl nSubj ect = fal se;
}
return true;
}

public bool ean | ogout() throws Logi nException

}

/1 should never be called
System out. printl n(" Sanpl eLogi nMddul e. | ogout") ;
return true;

private void throwLogi nException(String nsg) throws Logi nException

{

System out. println("Throw ng Logi nException(" + nsg + ")");

Developing Security Providers for WebLogic Server 3-21

3 Authentication Providers

t hr ow new Logi nExcepti on(mnsg);

private void t hrowFai |l edLogi nException(String nsg) throws Fail edLogi nExcepti on

System out. println("Throwi ng Fail edLogi nException(" + nmsg + ")");
t hrow new Fai | edLogi nExcepti on(nsg);

private Call back[] getCallbacks() throws Logi nException

if (callbackHandl er == null) {
t hr omLogi nExcepti on("No Cal | backHandl er Specified");
}

if (database == null) {
t hr omLogi nExcepti on("dat abase not specified");
}

Cal | back[] cal |l backs;
if (isldentityAssertion) {
cal | backs = new Cal | back[1];
} else {
cal | backs = new Cal | back[2] ;
cal | backs[1] = new PasswordCal | back("password: ", fal se);

cal | backs[0] = new NaneCal | back("username: ");

try {
cal | backHandl er. handl e(cal | backs) ;

} catch (I CException e) {

t hrow new Logi nException(e.toString());
} catch (UnsupportedCal | backException e) {

t hromLogi nException(e.toString() + " " + e.getCall back().toString());
}

return cal |l backs;

}

private String getUserNane(Cal |l back[] cal |l backs) throws Logi nException

{
String userNanme = ((NaneCal | back) cal | backs[0]) . get Nane();

if (userNane == null) {
t hr owLogi nExcepti on("Usernane not supplied.");
}

Systemout.printin("\tuserNane\t= " + user Nane);
return user Name;

3-22 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authentication Provider

private voi d addG oupsFor Subj ect (String user Nane)

{
for (Enuneration e = database. get User G oups(user Nane) ;
e. hasMoreEl enments();) {
String groupName = (String)e.nextEl enent();
Systemout.printin("\tgroupNane\t= " + groupNane);
pri nci pal sFor Subj ect . add(new W.SG oupl npl (gr oupNan®e)) ;
}
}

private String getPasswordHave(String userNanme, Callback[] callbacks) throws
Logi nExcepti on

{
Passwor dCal | back passwordCal | back = (PasswordCal | back) cal | backs[1] ;
char[] password = passwordCal | back. get Password();
passwor dCal | back. cl ear Passwor d() ;
if (password == null || password.length < 1) {
t hrowLogi nException("Authentication Failed: User " + userName + "
Password not supplied");
}
String passwd = new String(password);
Systemout. println("\tpasswordHave\t= " + passwd);
return passwd;
}

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you
should first:

m “Understand Why You Need an MBean Type” on page 2-16
m “Determine Which SSPI M Beans to Extend and Implement” on page 2-16

m “Understand the Basic Elements of an MBean Definition File (MDF)” on page
2-17

m “Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

Developing Security Providers for WebLogic Server 3-23

3 Authentication Providers

“Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have made your design decisions, createthe
MBean type for your custom Authentication provider by following these steps:

1
2.
3.

4,

“Create an MBean Definition File (MDF)” on page 3-24
“Use the WebL ogic MBeanMaker to Generate the MBean Type” on page 3-25

“Use the WebL ogic MBeanM aker to Create the MBean JAR File (MJF)” on page
3-29

“Install the MBean Type Into the WebL ogic Server Environment” on page 3-30

Notes: Several sample security providers (available under “Code Direct” on the

dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1

4.

Copy the MDF for the sample Authentication provider to atext file.

Note: The MDF for the sample Authentication provider is called
Sanpl eAut henti cat or. xmi .

Modify the content of the <MBeanType> and <MBeanAt t ri but e> elementsin
your MDF so that they are appropriate for your custom Authentication provider.

Add any custom attributes and operations (that is, additional <MBeanAt tri but e>
and <MBeanQper at i on> elements) to your MDF.

Savethefile.

Note: A complete reference of MDF element syntax is available in Appendix A,

“MBean Definition File (MDF) Element Syntax.”

3-24 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Authentication Provider

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asits input an MDF, and outputs some intermediate Javafiles, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

Theinstructions for generating an MBean type differ based on the design of your
custom Authentication provider. Follow the instructions that are appropriate to your
situation:

m “No Optional SSPI MBeans and No Custom Operations’ on page 3-25
m “Optiona SSPI MBeans or Custom Operations’ on page 3-26

No Optional SSPI MBeans and No Custom Operations

If the MDF for your custom Authentication provider does not implement any optional
SSPI MBeans and does not include any custom operations, follow these steps:

1. Create anew DOS shell.

2. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
files for the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
aready exist in the location specified by fi | esdi r, you are informed that the
exigting files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs(in other words,
multiple Authentication providers).

Developing Security Providers for WebLogic Server 3-25

3 Authentication Providers

3. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 3-29.

Optional SSPI MBeans or Custom Operations

If the MDF for your custom Authentication provider does implement some optional
SSPI MBeans or does include custom operations, consider the following:

m Areyou creating an MBean type for the first time? If so, follow these steps:
1. Create anew DOS shell.

2. Typethe following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple M DFs (in other words,
multiple Authentication providers).

3. If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

Sanpl eAut hent i cat or, the MBean implementation file to be edited is
named Sanpl eAut hent i cat or I npl . j ava.

b. For each optional SSPI MBean that you implemented in your MDF, copy the
method stubs from the “ Mapping M DF Operation Declarationsto Java M ethod
Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

3-26 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Authentication Provider

. If you included any custom attributes/operations in your MDF, implement the
methods using the method stubs.

. Savethefile.

. Proceed to “ Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 3-29.

Are you updating an existing MBean type? If so, follow these steps:

. Copy your existing MBean implementation file to atemporary directory so that
your current method implementations are not overwritten by the WebL ogic
MBeanMaker.

. Create anew DOS shell.

. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherexm Fi | e isthe MDF (the XML MBean Description File) and f i | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xm fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by f i | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple MDFs (in other words,
multiple Authentication providers).

. If you implemented optional SSPI MBeansin your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named <MBeanNane>I npl . j ava. For example, for the MDF named

Sanpl eAut hent i cat or, the MBean implementation file to be edited is
named Sanpl eAut henti cator | npl . j ava.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

Developing Security Providers for WebLogic Server 3-27

3 Authentication Providers

¢. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebL ogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated M Bean implementation file (or, alternatively, adding the
new methods from the newly-generated MBean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the M Bean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeansthat were not in
the original MDF, copy the method stubs from the “Mapping MDF Operation
Declarations to Java Method Signatures Document” (available on the dev2dev
Web site) into the M Bean implementation file, and implement each method. Be
sure to also provide implementations for any methods that the optional SSPI
MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Savethe version of the MBean implementation file that is complete (that is, has
al methods implemented).

7. Copy this MBean implementation file into the directory where the WebL ogic
MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfil esdir instep 3. (Youwill be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as aresult of step 3.)

8. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)" on page 3-29.

About the Generated MBean Interface File

The M Bean interfacefileisthe client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypicaly
used intheinitialize method as described in “ Understand the Purpose of the* Provider”
SSPIs” on page 2-8.

3-28 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Authentication Provider

Because the WebL ogic MBeanMaker generates M Bean types from the MDF you
created, the generated M Bean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the

Sanpl eAut hent i cat or MDF through the WebL ogic MBeanMaker will yield an
MBean interface file called Sanpl eAut hent i cat or MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Once your have run your MDF through the WebL ogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithiniit, you need to packagethe MBean
files and the runtime classes for the custom Authentication provider into an MBean
JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Authentication provider, follow these steps:
1. Create anew DOS shell.

2. Type the following command:

java -DMIF=jarfile -DFiles=filesdir
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherej arfil e isthe namefor the MJF andfi | esdi r isthelocation wherethe
WebL ogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If j arfi | e isprovided,
and no errors occur, an MJF is created with the specified name.

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also has a- DI ncl udeSour ce option, which
controlswhether source files are included into the resulting M JF. Source files
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMJF is not used.

The resulting M JF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Developing Security Providers for WebLogic Server 3-29

3 Authentication Providers

Install the MBean Type Into the WebLogic Server Environment

Toinstal an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ server\ | i b\ mbeant ypes directory, where W._HOME is the top-level
installation directory for WebL ogic Server. This “deploys’ your custom
Authentication provider—that is, it makes the custom Authentication provider
manageabl e from the WebL ogic Server Administration Console.

Y ou can create instances of the M Bean type by configuring your custom
Authentication provider (see “ Configure the Custom Authentication Provider Using
the Administration Console” on page 3-30), and then use those M Bean instances from
aGUI, from other Java code, or from APIs. For example, you can use the WebL ogic
Server Administration Console to get and set attributes and invoke operations, or you
can develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see“Backing Up Security Configuration Data” under
“Recovering Failed Servers’ in Creating and Configuring WebL ogic Server Domains.

Configure the Custom Authentication Provider Using the
Administration Console

Configuring a custom Authentication provider means that you are adding the custom
Authentication provider to your security realm, where it can be accessed by
applications requiring authentication services.

Configuring custom security providersis an administrative task, but it is atask that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
Authentication providers:

m “Managing User Lockouts’ on page 3-31

Note: The steps for configuring a custom Authentication provider using the
WebL ogic Server Administration Console are described in “ Configuring a
Custom Security Provider” in Managing WebLogic Security.

3-30 Developing Security Providersfor WebL ogic Server

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

How to Develop a Custom Authentication Provider

Managing User Lockouts

As part of using acustom Authentication provider, you need to consider how you will
configure and manage user lockouts. Y ou have two choices for doing this:

m “Rely on the Ream-Wide User Lockout Manager” on page 3-31

m “Implement Your Own User Lockout Manager” on page 3-31

Rely on the Realm-Wide User Lockout Manager

The WebL ogic Security Framework provides a realm-wide User Lockout Manager
that works directly with the WebL ogic Security Framework to manage user lockouts.

Note: Both the realm-wide User Lockout Manager and a WebL ogic Server 6.1
Passwor dPol i cyMBean (at the Realm Adapter level) may be active. For more
information, see the WebLogic Server 6.1 APl Reference Javadoc.

If you decide to rely on the realm-wide User Lockout Manager, then all you must do
to makeit work with your custom Authentication provider is use the WebL ogic Server
Administration Console to:

1. Ensurethat User Lockout is enabled. (It should be enabled by default.)

2. Modify any parameters for User Lockout (as necessary).

Notes: Changesto the User Lockout Manager do not take effect until you reboot the
server. Instructions for using the Administration Console to perform these
tasks are described in “ Protecting User Accounts’ under “ Configuring
WebL ogic Security” in Managing WebLogic Security.

Implement Your Own User Lockout Manager

If you decide to implement your own User Lockout Manager as part of your custom
Authentication provider, then you must:

1. Disablethe realm-wide User Lockout Manager to prevent double lockouts from
occurring. (When you create a new security realm using the WebL ogic Server
Administration Console, a User Lockout Manager is always created.) Instructions
for performing thistask are provided in “Protecting User Accounts’ under
“Configuring WebL ogic Security” in Managing WebLogic Security.

Developing Security Providers for WebLogic Server 3-31

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/PasswordPolicyMBean.html
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#protect_accounts
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#protect_accounts

3 Authentication Providers

2. Because you cannot borrow anything from the WebL ogic Security Framework’s
realm-wide implementation, you must also perform the following tasks:

a. Providethe implementation for your User Lockout Manager. Note that thereis
no security service provider interface (SSPI) provided for User Lockout
Managers.

b. Create an MBean by which the User L ockout Manager can be managed.

c. Createanew JavaServer Page (JSP) for configuring the User L ockout Manager,
and incorporate it into the Administration Console using console extensions.
For more information, see Extending the Administration Console and
Chapter 12, “Writing Console Extensions for Custom Security Providers.”

3-32 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/console_ext/index.html

CHAPTER

4 1dentity Assertion
Providers

An ldentity Assertion provider is a specific form of Authentication provider that
allows users or system processes to assert their identity using tokens (in other words,
perimeter authentication). Y ou can use an Identity Assertion provider in place of an
Authentication provider if you create a LoginModule for the Identity Assertion
provider, or in addition to an Authentication provider if you want to use the
Authentication provider’s LoginModule. Identity Assertion providers enable
perimeter authentication and support single sign-on.

The following sections describe Identity Assertion provider concepts and
functionality, and provide step-by-step instructions for developing a custom I dentity
Assertion provider:

m “ldentity Assertion Concepts’ on page 4-1
m “The ldentity Assertion Process’ on page 4-7
m “Do You Need to Develop a Custom |dentity Assertion Provider?’ on page 4-8

m “How to Develop a Custom Identity Assertion Provider” on page 4-9

Identity Assertion Concepts

Before you develop an Identity Assertion provider, you need to understand the
following concepts:

m “ldentity Assertion Providers and LoginModules’ on page 4-2

Developing Security Providers for WebL ogic Server 4-1

4 |dentity Assertion Providers

m “ldentity Assertion and Tokens’ on page 4-2
m “Passing Tokensfor Perimeter Authentication” on page 4-6

m “Common Secure Interoperability Version 2 (CSIv2)” on page 4-6

Identity Assertion Providers and LoginModules

When used with a LoginModule, Identity Assertion providers support single sign-on.
For example, an Identity Assertion provider can generate atoken from adigital
certificate, and that token can be passed around the system so that users are not asked
to sign on more than once.

The LoginModule that an Identity Assertion provider uses can be:

m Part of acustom Authentication provider you develop. For more information, see
Chapter 3, “Authentication Providers.”

m Part of the WebL ogic Authentication provider BEA developed and packaged
with WebL ogic Server. For more information, see “Do Y ou Need to Develop a
Custom Authentication Provider?’ on page 3-12.

m Part of athird-party security vendor’s Authentication provider.

Unlike in asimple authentication situation (described in “ The Authentication Process”
on page 3-11), the LoginModules that Identity Assertion providers use do not verify
proof material such as usernames and passwords; they simply verify that the user
exists.

Note: For more information about LoginModules, see“LoginModules’ on page 3-3.

Identity Assertion and Tokens

Y ou develop Identity Assertion providers to support the specific types of tokens that
you will be using to assert theidentities of usersor system processes. Y ou can develop
an ldentity Assertion provider to support multiple token types, but you or an
administrator configure the Identity Assertion provider so that it validates only one

4-2 Developing Security Providers for WebL ogic Server

Identity Assertion Concepts

“active” token type. While you can have multiple Identity Assertion providersin a
security realm with the ability to validate the same token type, only one Identity
Assertion provider can actually perform this validation.

Note: “Supporting” token types meansthat the I dentity Assertion provider’ sruntime
class (that is, thel dent i t yAssert er SSPI implementation) can validate the
token typeitsassert I dent i t y method. For more information, see
“Implement the IdentityAsserter SSPI” on page 4-12.

The following sections will help you work with new token types:
m “How to Create New Token Types’ on page 4-3

m “How to Make New Token Types Available for Identity Assertion Provider
Configurations’ on page 4-4

How to Create New Token Types

If you develop a custom Identity Assertion provider, you can also create new token
types. A token typeissimply apiece of data represented as a string. The token types
you create and use are completely up to you. As examples, the following token types
are currently defined for the WebL ogic Identity Assertion provider: X. 509,

CSl . Pri nci pal Name, CSI . | TTAnonymous, CSI . X509Cer t Chai n, and

CSl . Di stingui shedNare.

To create new token types, you create anew Javafile and declare any new token types
asvariables of type St ri ng., asshown in Listing 4-1. The
PerinmeterldentityAsserter TokenTypes. j ava file defines the names of the
token typesTest 1, Test 2,and Test 3 asstrings.

Listing 4-1 Perimeter|ldentityAsserter TokenTypes,java

package sanpl e. security. providers. authentication. peri meter ATN;

public class PerineterldentityAsserterTokenTypes

{
public final static String TEST1_TYPE = “Test 1";
public final static String TEST2_TYPE = “Test 2";
public final static String TEST3_TYPE = “Test 3";
}

Developing Security Providers for WebL ogic Server 4-3

4 [dentity Assertion Providers

Note: If you are defining only one new token type, you can also do it right in the
I dentity Assertion provider’s runtime class, as shown in Listing 4-4,
“SampleldentityAsserterProviderimpl.java,” on page 4-13.

How to Make New Token Types Available for Identity Assertion Provider
Configurations

When you or an administrator configure a custom Identity Assertion provider (see
“Configure the Custom Identity Assertion Provider Using the Administration
Console” on page 4-23), the Supported Typesfield displays alist of the token types
that the Identity Assertion provider supports. Y ou enter one of the supported typesin
the Active Types field, as shown in Figure 4-1.

Figure4-1 Configuring the Sample | dentity Assertion Provider

M2 Name; hWySample ldentity Asserter
? Description: Wiehlogic Sample ldentity Asserter Provider
2 Version: 10

? Supported Types: SamplePerimeteranToken

SemplePerimeteritnToken ;I

M2 Active Types:

Amw|

The content for the Supported Typesfield is obtained from the Suppor t edTypes
attribute of the MBean Definition File (MDF), which you use to generate your custom
I dentity Assertion provider's MBean type. An example from the sample | dentity
Assertion provider is shown in Listing 4-2. (For more information about MDFs and
MBean types, see “ Generate an MBean Type Using the WebL ogic MBeanMaker” on
page 4-16.)

Listing4-2 Samplel dentityAsserter MDF: SupportedTypes Attribute

<MBeanType>

4-4 Developing Security Providers for WebL ogic Server

Identity Assertion Concepts

<MBeanAttribute
Name = "SupportedTypes"

Type = "java.lang. String[]"

Witeable = "fal se"

Default = "new String[] {" Sanpl ePeri net er At nToken" ; }"
/>

</ MBeanType>

Similarly, the content for the Active Typesfield is obtained from the Act i veTypes
attribute of the M Bean Definition File (MDF). Y ou or an administrator can default the
Act i veTypes attributeinthe MDF so that it does not have to be set manually with the
WebL ogic Server Administration Console. An example from the sample Identity
Assertion provider is shown in Listing 4-3.

Listing 4-3 Samplel dentityAsserter MDF: ActiveTypes Attribute with Default

<MBeanAttribute

Name= "ActiveTypes"

Type= "java.lang. String[]"

Default = "new String[] { " Sanpl ePeri nmet er At nToken" }"
/>

While defaulting the Act i veTypes attribute is convenient, you should only do this if
no other Identity Assertion provider will ever validate that token type. Otherwise, it
would be easy to configure an invalid security realm (where more than one I dentity
Assertion provider attemptsto validate the sasmetoken type). Best practicedictatesthat
all MDFsfor Identity Assertion providers turn off the token type by default; then an
administrator can manually make the token type active by configuring the Identity
Assertion provider that validatesiit.

Developing Security Providers for WebL ogic Server 4-5

4

Identity Assertion Providers

Note: If an Identity Assertion provider is not developed and configured to validate
and accept atoken type, the authentication process will fail. For more
information about configuring an ldentity Assertion provider, see “Configure
the Custom I dentity Assertion Provider Using the Administration Console” on
page 4-23.

Passing Tokens for Perimeter Authentication

An ldentity Assertion providers can pass tokens from Java clients to servlets for the
purpose of perimeter authentication. Tokens can be passed using HTTP headers,
cookies, SSL certificates, or other mechanisms. For example, a string that is base
64-encoded (which enablesthe sending of binary data) can be sent to aservlet through
an HTTP header. The value of this string can be a username, or some other string
representation of a user’sidentity. The Identity Assertion provider used for perimeter
authentication can then take that string and extract the username.

If the token is passed through HT TP headers or cookies, thetokenisequal to the header
or cookie name, and the resource container passes the token to the part of the

WebL ogic Security Framework that handles authentication. The WebL ogic Security
Framework then passes the token to the I dentity Assertion provider, unchanged.

Common Secure Interoperability Version 2 (CSlv2)

4-6

WebL ogic Server provides support for an Enterprise JavaBean (EJB) interoperability
protocol based on Internet Inter-ORB (110P) (GIOP version 1.2) and the CORBA
Common Secure Interoperability version 2 (CSIv2) specification. CSIv2 support in
WebL ogic Server:

m Interoperates with the Java 2 Enterprise Edition (J2EE) version 1.3 reference
implementation.

m Allows WebL ogic Server [1OP clients to specify a username and password in the
same manner as T3 clients.

m Supports Generic Security Services Application Programming Interface
(GSSAPI) initial context tokens. For this release, only usernames and passwords
and GSSUP (Generic Security Services Username Password) tokens are
supported.

Developing Security Providers for WebL ogic Server

The Identity Assertion Process

Note: The CSIv2 implementation in WebL ogic Server passed Java 2 Enterprise
Edition (J2EE) Compatibility Test Suite (CTS) conformance testing.

The external interface to the CSIv2 implementation isa JAAS LoginModul e that
retrieves the username and password of the CORBA object. The JAAS LoginModule
can be used in aWebL ogic Javaclient or in aWebL ogic Server instance that actsas a
client to another J2EE application server. The JAAS LoginModule for the CSlv2
support is called User namePasswor dLogi nMbdul e, and is located in the

webl ogi c. security. aut h. | ogi n package.

CSlv2 worksin the following manner:

1. A Security Extensionsto Interoperable Object Reference (IOR) is created, and
contains atagged component identifying the security mechanismsthat the CORBA
object supports. This tagged component includes transport information, client
authentication information, and identity token/authorization token information.

2. The client evaluates the security mechanismsin the IOR and selects the
mechanism that supports the options required by the client.

3. Theclient usesthe SAS protocol to establish a security context with WebL ogic
Server. The SAS protocol defines messages contained within the service context
of requests and replies. A context can be stateful or stateless.

For information about using CSlv2, see “Using CORBA Common Secure
Interoperability Version 2 in EJBS’ in Programming WebL ogic Security. For more
information about JAAS LoginModules, see “LoginModules’ on page 3-3.

The Identity Assertion Process

In perimeter authentication, a system outside of WebL ogic Server establishes trust
viatokens (as opposed to the type of authentication described in “The Authentication
Process’ on page 3-11, where WebL ogic Server establishes trust via usernames and
passwords). Identity Assertion providers are used as part of perimeter authentication
process, which works as follows (see Figure 4-2):

1. A token from outside of WebL ogic Server is passed to an Identity Assertion
provider that isresponsiblefor validating tokens of that type and that is configured
as“active’.

Developing Security Providers for WebL ogic Server 4-7

http://e-docs.bea.com/wls/docs81b/secintro/concepts.htm
http://e-docs.bea.com/wls/docs81b/secintro/concepts.htm

4

Identity Assertion Providers

2. If thetoken is successfully validated, the Identity Assertion provider maps the
token to a WebL ogic Server username, and sends that username back to

WebL ogic Server, which then continues the authentication process as described
in “The Authentication Process’ on page 3-11. Specifically, the usernameis sent
viaa Java Authentication and Authorization Service (JAAS) Cal | backHandl er
and passed to each configured Authentication provider’s LoginModule, so that

the LoginModule can populate the subject with the appropriate principals.

Figure4-2 Perimeter Authentication

Client
Application

As Figure 4-2 also shows, perimeter authentication requires the same components as
the authentication process described in “ The Authentication Process’ on page 3-11,

Tokens

WebLogic
Server

but also adds an Identity Assertion provider.

Get ldentity

JAAS Login

Sign

|dentity
Assertion
Froviders

Loginkodules

Frincipal
Validation
Frovider

Do You Need to Develop a Custom Identity
Assertion Provider?

4-8

The WebL ogic Identity Assertion provider supports certificate authentication using
X509 certificates and CORBA Common Secure Interoperability version 2 (CSIv2)

identity assertion.

The WebL ogic Identity Assertion provider validates the token type, then maps X509
digital certificates and X501 distinguished namesto WebL ogic usernames. It also

specifiesalist of trusted client principals to use for CSlv2 identity assertion. The

Developing Security Providers for WebL ogic Server

How to Develop a Custom Identity Assertion Provider

wildcard character (*) can be used to specify that al principals are trusted. If aclient
isnot listed as atrusted client principal, the CSIv2 identity assertion fails and the
invokeis rejected.

The WebL ogic Identity Assertion provider supports the following token types:

AU_TYPE—for aWebL ogic Aut hent i cat edUser used as atoken.

X509 _TYPE—for an X509 client certificate used as a token.

CSl _PRI NCI PAL_TYPE—for a CSIv2 principal name identity used as a token.
CSl _ANONYMOUS_TYPE—for a CSlv2 anonymous identity used as a token.

CSl _X509_CERTCHAI N_TYPE—for a CSlv2 X509 certificate chain identity used
asatoken.

CSl _DI STI NGUI SHED_NAME_TYPE—for a CSlv2 distinguished name identity
used as atoken.

If you want to perform additional identity assertion tasks or create new token types,
then you need to develop a custom Identity Assertion provider.

How to Develop a Custom Identity Assertion

Provider

If the WebL ogic Identity Assertion provider does hot meet your needs, you can
develop a custom Identity Assertion provider by following these steps:

1
2.
3.

“Create Runtime Classes Using the Appropriate SSPIS’ on page 4-10
“Generate an MBean Type Using the WebL ogic MBeanMaker” on page 4-16

“Configure the Custom Identity Assertion Provider Using the Administration
Console” on page 4-23

Developing Security Providers for WebL ogic Server 4-9

4

Identity Assertion Providers

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIS’ on page 2-8

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Identity Assertion provider by following these steps:

m “Implement the AuthenticationProvider SSPI” on page 4-10

= “Implement the IdentityAsserter SSPI” on page 4-12

Note: If you want to create a separate LoginModule for your custom |dentity
Assertion provider (that is, not usethe L oginM odul e from your Authentication
provider), you also need to implement the JAAS Logi nMbdul e interface, as
described in “Implement the JAAS LoginModule Interface” on page 3-15.

For an example of how to create a runtime class for a custom Identity Assertion
provider, see* Example: Creating the Runtime Class for the Sample Identity Assertion
Provider” on page 4-12.

Implement the AuthenticationProvider SSPI

4-10

Toimplement the Aut hent i cat i onProvi der SSPI, provideimplementationsfor the
methods described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8
and the following methods:

getLoginModuleConfiguration
public AppConfigurationEntry getLogi nMbdul eConfi guration()

The get Logi nModul eConf i gur at i on method obtains information about the
Authentication provider’s associated LoginModule, which is returned as an
AppConfi gurati onEntry. The AppConfi gurationEntry isaJava
Authentication and Authorization Service (JAAS) class that contains the
classname of the LoginModule; the LoginModul €' s control flag (which was
passed in via the Authentication provider’'s associated MBean); and a
configuration options map for the LoginModule (which allows other
configuration information to be passed into the LoginM odul €).

Developing Security Providers for WebL ogic Server

How to Develop a Custom Identity Assertion Provider

For more information about the AppConf i gur at i onEnt ry class (located in
thej avax. securi ty. aut h. | ogi n package) and the control flag options for
LoginModules, see the Java 2 Enterprise Edition, v1.3.1 APl Specification
Javadoc for the AppConfigurationEntry class and the Configuration class. For
more information about LoginModules, see“LoginModules’ on page 3-3. For
more information about security providers and MBeans, see“ Understand Why
You Need an MBean Type” on page 2-16.

getAssertionM oduleConfiguration

publ i c AppConfigurati onEntry
get Asserti onModul eConfi guration()

The get Asser ti onModul eConfi gur at i on method obtains information
about an Identity Assertion provider’s associated LoginModule, which is
returned asan AppConf i gur at i onEntry. The AppConfi gurati onEntryisa
JAAS classthat contains the classname of the LoginModule; the
LoginModul€' s control flag (which was passed in viathe Identity Assertion
provider’s associated M Bean); and a configuration options map for the
LoginModule (which allows other configuration information to be passed into
the LoginModule).

getPrincipal Validator

public Principal Validator getPrincipal Validator()

Theget Pri nci pal Val i dat or method obtains a reference to the Principal
Validation provider’s runtime class (that is, the Pri nci pal Val i dat or SSPI
implementation). For more information, see Chapter 5, “Principal Validation
Providers.”

getldentityAsserter

Note:

public lIdentityAsserter getldentityAsserter()

Theget I dentityAsserter method obtains areference to the Identity
Assertion provider’s runtime class (that is, the | dent i t yAssert er SSPI
implementation). For more information, see Chapter 4, “Identity Assertion
Providers.”

When the LoginModul e used for the Identity Assertion provider isthe sameas
that used for an existing Authentication provider, implementations for the
methodsin the Aut hent i cat i onProvi der SSPI (excluding the

get | dentityAsserter method) for Identity Assertion providers can just
return nul | . An example of thisis shown in Listing 4-4,

“ Sampl el dentity A sserterProviderimpl.java,” on page 4-13.

Developing Security Providers for WebL ogic Server 4-11

http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/AppConfigurationEntry.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/login/Configuration.html

4 |dentity Assertion Providers

For more information about the Aut hent i cat i onPr ovi der SSPI and the methods
described above, see the WebLogic Server 7.0 API Reference Javadoc.

Implement the IdentityAsserter SSPI

Toimplement thel dent i t yAsserter SSPI, provide implementations for the
following method:

assertldentity

public Cal | backHandl er assertldentity(String type, Object
token) throws IldentityAsserti onException;

TheassertIdentity method asserts an identity based on the token identity
information that is supplied. In other words, the purpose of this method isto
validate any tokens that are not currently trusted against trusted client
principals. Thet ype parameter represents the token type to be used for the
identity assertion. Note that identity assertion types are case insensitive. The
t oken parameter contains the actual identity information. The

Cal | backHandl er returnedfromtheassert | dentity methodispassedtoall
configured Authentication providers LoginModules to perform principal
mapping, and should contain the asserted username. If the Cal | backHandl er
isnul |, thissignifies that the anonymous user should be used.

A Cal | backHandl er isahighly-flexible JAAS standard that alowsavariable
number of arguments to be passed as complex objects to a method. For more
information about Cal | backHandl er s, see the Java 2 Enterprise Edition,
v1.3.1 API Specification Javadoc for the CallbackHandler interface.

For more information about the | dent i t yAssert er SSPI and the method described
above, see the WebLogic Server 7.0 API Reference Javadoc.

Example: Creating the Runtime Class for the Sample Identity Assertion

Provider

Listing Note: shows the Sanpl el denti t yAssert er Provi der | npl . j ava class,
which is the runtime class for the sample Identity Assertion provider. This runtime
class includes implementations for:

m Thethree methods inherited from the Securi t yPr ovi der interface:
initialize,getDescription,andshutdown (asdescribed in“Understand
the Purpose of the “ Provider” SSPIS’ on page 2-8.)

4-12 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuthenticationProvider.html
http://java.sun.com/j2se/1.4/docs/api/javax/security/auth/callback/CallbackHandler.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/IdentityAsserter.html

How to Develop a Custom Identity Assertion Provider

m Thefour methodsin the Aut hent i cat i onProvi der SSPI: the
get Logi nModul eConfi gurati on, get Asserti onMbdul eConfi gurati on,
get Princi pal Val i dat or, and get | dent i t yAssert er methods (as described
in “Implement the AuthenticationProvider SSPI” on page 4-10).

m Themethodinthel dentityAsserter SSPI: theassert|dentity method
(described in “ Implement the I dentityAsserter SSPI” on page 4-12).

Note: The bold face code in Listing 4-4 highlights the class declaration and the
method signatures.

Listing 4-4 Samplel dentityAsserter Providermpl.java

package exanpl es.security. providers.identityassertion;

import javax.security.auth.callback. Cal | backHandl er;
import javax.security.auth.login.AppConfigurationEntry;
i mport webl ogi c. managenent . security. Provi der MBean;

i mport webl ogi
i mport webl ogi

i mport webl ogi

security.spi.AuthenticationProvider;
security.spi.ldentityAsserter;

security.spi.Principal Validator;

C.
C.

inmport webl ogic.security.spi.ldentityAsserti onExcepti on;
c.
C.

i mport webl ogi

security.spi.SecurityServices;

public final class SanpleldentityAsserterProviderlnpl inplenents
Aut henti cati onProvi der, ldentityAsserter

{

final static private String TOKEN_TYPE = "Sanpl ePeri neter At nToken";
final static private String TOKEN_PREFI X = "usernanme=";

private String description;

public void initialize(ProviderMBean nbean, SecurityServices services)

{
System out. println("Sanpl eldentityAsserterProviderlnpl.initialize");
Sanpl el dentityAssert er MBean nyMBean = (Sanpl el dentityAsserter MBean) nbean;
description = nmyMBean. get Description() + "\n" + nmyMBean. get Version();

}
public String getDescription()
{
return description;
}
public void shutdown()
{

Developing Security Providers for WebLogic Server 4-13

4 |dentity Assertion Providers

System out. println("Sanpl el dentityAsserterProviderlnpl.shutdown");
}

public AppConfigurationEntry getLogi nMbdul eConfi guration()
{

}
publi c AppConfigurationEntry getAsserti onMddul eConfi guration()

return null;

return null;
}
public Principal Validator getPrincipal Validator()
{
return null;
}
public ldentityAsserter getldentityAsserter()
{
return this;
}

public CallbackHandl er assertldentity(String type, Object token) throws

I dentityAsserti onException

{
System out. println("SanpleldentityAsserterProviderlnpl.assertldentity");
Systemout.printin("\tType\t\t=" + type);
Systemout.println("\tToken\t\t=" + token);

if (!'(TOKEN_TYPE. equal s(type))) {
String error = "Sanpl eldentityAsserter recei ved unknown token type \""
+ type + "\"." + " Expected " + TOKEN_TYPE;
Systemout.println("\tError: " + error);
t hrow new | dentityAsserti onException(error);

if (!(token instanceof byte[])) {
String error = "Sanpl el dentityAsserter received unknown token class \""
+ token.getClass() + "\"." + " Expected a byte[].";
Systemout.printin("\tError: " + error);
throw new I dentityAsserti onException(error);

}

byte[] tokenBytes = (byte[])token;

if (tokenBytes == null || tokenBytes.length < 1) {
String error = "Sanpl el dentityAsserter received enpty token byte array"”;
Systemout.printin("\tError: " + error);
throw new | dentityAsserti onException(error);

4-14 Developing Security Providers for WebL ogic Server

How to Develop a Custom Identity Assertion Provider

String tokenStr = new String(tokenBytes);

if (!'(tokenStr.startsWth(TOKEN_PREFI X))) {
String error = "Sanpl el dentityAsserter recei ved unknown token string \""
+ type + "\"." + " Expected " + TOKEN_PREFI X + "usernane";
Systemout.println("\tError: " + error);
throw new I dentityAssertionException(error);

}
String userName = tokenStr. substring(TOKEN_PREFI X. | ength());
Systemout.println("\tuserName\t= " + user Nane) ;

return new Sanpl eCal | backHandl er | mpl (user Nane) ;

Listing 4-5 shows the sample Cal | backHandl er implementation that is used along
with the Sanpl el denti t yAssert er Provi der | npl . j ava runtime class. This

Cal | backHandl er implementation is used to send the username back to an
Authentication provider’s LoginModule.

Listing 4-5 SampleCallbackHandlerI mpl.java

package exanpl es. security. providers.identityassertion;

i mport javax.security.auth. call back. Cal |l back;

i mport javax.security.auth. cal | back. NaneCal | back;

i mport javax.security.auth. call back. Cal | backHandl er;

i mport javax.security.auth. call back. UnsupportedCal | backExcepti on;

/ *package*/ class Sanpl eCal | backHandl er inpl ements Cal | backHandl er

private String userNaneg;
/ *package*/ Sanpl eCal | backHandl er| npl (String user)
{

user Nane = user;

}

public void handl e(Cal | back[] call backs) throws UnsupportedCal | backException
{

for (int i =0; i < callbacks.length; i++) {

Cal | back cal | back = cal | backs[i];

Developing Security Providers for WebLogic Server 4-15

4 [dentity Assertion Providers

if (!(callback instanceof NanmeCall back)) {
t hrow new Unsupport edCal | backExcepti on(cal | back, "Unrecogni zed
Cal | back");

}

NanmeCal | back naneCal | back = (NaneCal | back) cal | back;
naneCal | back. set Name(user Nane) ;

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you
should first:

m “Understand Why You Need an MBean Type” on page 2-16
m “Determine Which SSPI MBeansto Extend and Implement” on page 2-16

m “Understand the Basic Elements of an MBean Definition File (MDF)” on page
2-17

m “Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

m “Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have made your design decisions, createthe
MBean type for your custom Identity Assertion provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 4-17
2. “Usethe WebL ogic MBeanMaker to Generate the MBean Type” on page 4-17

3. “Usethe WebL ogic MBeanMaker to Create the MBean JAR File (MJF)” on page
4-21

4. “Install the MBean Type Into the WebL ogic Server Environment” on page 4-22

4-16 Developing Security Providers for WebL ogic Server

How to Develop a Custom Identity Assertion Provider

Notes: Several sample security providers (available under “Code Direct” on the
dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample I dentity Assertion provider to atext file.

Note: The MDF for the sample Identity Assertion provider is called
Sanpl el dentityAsserter.xmn .

2. Modify the content of the <MBeanType> and <MBeanAt t r i but e> elementsin
your MDF so that they are appropriate for your custom Identity Assertion
provider.

3. Add any custom attributes and operations (that is, additional <MBeanAt t ri but e>
and <MBeanQper at i on> elements) to your MDF.

4, Savethefile.

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asitsinput an MDF, and outputs some intermediate Java files, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

Theinstructions for generating an MBean type differ based on the design of your
custom I dentity Assertion provider. Follow theinstructionsthat are appropriate to your
situation:

m “No Optional SSPI MBeans and No Custom Operations’ on page 4-18

m “Optional SSPI MBeans or Custom Operations’ on page 4-18

Developing Security Providers for WebLogic Server 4-17

http://dev2dev/code/codedirect.jsp?highlight=codedirect

4 |dentity Assertion Providers

No Optional SSPI MBeans and No Custom Operations

If the MDF for your custom Identity Assertion provider does not implement any
optional SSPI M Beans and does not include any custom operations, follow these steps:

1. Create anew DOS shell.

2. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing fileswill be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple M DFs (in other words,
multiple Identity Assertion providers).

3. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 4-21.

Optional SSPI MBeans or Custom Operations

If the MDF for your custom Identity Assertion provider doesimplement some optional
SSPI MBeans or does include custom operations, consider the following:

= Areyou creating an MBean type for the first time? If so, follow these steps:
1. Create anew DOS shell.

2. Type the following command:

java -DMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xnl Fi | e isthe MDF (the XML MBean Description File) andfi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

4-18 Developing Security Providers for WebL ogic Server

How to Develop a Custom Identity Assertion Provider

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanM aker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple M DFs (in other words,
multiple Identity Assertion providers).

. 1f you implemented optional SSPI MBeansin your MDF, follow these steps:

a Locate the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

Sanpl el denti t yAssert er, the MBean implementation file to be edited is
named Sanpl el dentityAsserterlnpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, copy the
method stubs from the “ Mapping M DF Operation Declarationsto JavaMethod
Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

. If you included any custom operations in your MDF, implement the methods
using the method stubs.

. Savethefile.

. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 4-21.

Areyou updating an existing MBean type? If so, follow these steps:

. Copy your existing MBean implementation file to atemporary directory so that
your current method implementations are not overwritten by the WebL ogic
MBeanMaker.

. Create anew DOS shell.

. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . cormp. WebLogi cMBeanMaker

Developing Security Providers for WebLogic Server 4-19

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

4

Identity Assertion Providers

4-20

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
files for the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
aready exist in the location specified by f i | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs (in other words,
multiple Identity Assertion providers).

. If you implemented optional SSPI MBeansin your MDF, follow these steps:

a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

Sanpl el denti t yAssert er, the MBean implementation file to be edited is
named Sanpl el dentityAsserterlnpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebL ogic MBeanM aker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing MBean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated M Bean implementation file to your
existing MBean implementation file), and verifying that any changesto
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If you modified the MDF to implement optional SSPI MBeansthat werenot in
the original MDF, copy the method stubs from the “Mapping MDF Operation
Declarations to Java Method Signatures Document” (available on the dev2dev
Web site) into the M Bean implementation file, and implement each method. Be
sure to also provide implementations for any methods that the optional SSPI
MBean inherits.

Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Identity Assertion Provider

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Savethe version of the MBean implementation file that is complete (that is, has
all methods implemented).

7. Copy this MBean implementation file into the directory where the WebL ogic
MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfil esdir instep 3. (You will be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as aresult of step 3.)

8. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 4-21.

About the Generated MBean Interface File

The MBean interface file is the client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypically
used intheinitialize method as described in“ Understand the Purpose of the* Provider”
SSPIS’ on page 2-8.

Because the WebL ogic MBeanMaker generates M Bean types from the MDF you
created, the generated M Bean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the

Sanpl el denti t yAssert er MDF through the WebL ogic MBeanMaker will yield an
MBean interface file called Sanpl el dent i t yAssert er MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Onceyour have run your MDF through the WebL ogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithin it, you need to packagethe MBean
filesand the runtime classes for the custom I dentity Assertion provider into an MBean
JAR File (MJF). The WebL ogic MBeanMaker also automates this process.

To create an MJF for your custom ldentity Assertion provider, follow these steps:
1. Create anew DOS shell.

2. Type the following command:

java -DMIF=jarfile -DFiles=filesdir
webl ogi c. managenent . cormp. WebLogi cMBeanMaker

Developing Security Providers for WebLogic Server 4-21

4 |dentity Assertion Providers

wherej arfil e isthenameforthe MJF andfi | esdir isthelocation wherethe
WebL ogic MBeanMaker looks for the files to JAR into the M JF.

Compilation occurs at this point, so errors are possible. If j arfi | e is provided,
and no errors occur, an MJF is created with the specified name.

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also has a- DI ncl udeSour ce option, which
controls whether sourcefiles are included into the resulting M JF. Source files
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMIF is not used.

The resulting MJF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Install the MBean Type Into the WebLogic Server Environment

Toinstal an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ server\ | i b\ mbeant ypes directory, where W._HOMVE is the top-level
installation directory for WebL ogic Server. This “deploys’ your custom I dentity
Assertion provider—that is, it makes the custom Identity Assertion provider
manageabl e from the WebL ogic Server Administration Console.

Y ou can create instances of the MBean type by configuring your custom Identity
Assertion provider (see “ Configure the Custom Identity Assertion Provider Using the
Administration Console” on page 4-23), and then use those MBean instances from a
GUI, from other Java code, or from APIs. For example, you can use the WebL ogic
Server Administration Console to get and set attributes and invoke operations, or you
can develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see*Backing Up Security Configuration Data” under
“Recovering Failed Servers’ in Creating and Configuring WebL ogic Server Domains.

4-22 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans

How to Develop a Custom Identity Assertion Provider

Configure the Custom Identity Assertion Provider Using
the Administration Console

Configuring a custom Identity Assertion provider means that you are adding the
custom Identity Assertion provider to your security realm, whereit can be accessed by
applications requiring identity assertion services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

Note: The steps for configuring a custom Identity Assertion provider using the
WebL ogic Server Administration Console are described under “ Configuring a
Custom Security Provider” in Managing WebLogic Security.

Developing Security Providers for WebLogic Server 4-23

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

4 |dentity Assertion Providers

4-24 Developing Security Providers for WebL ogic Server

CHAPTER

5 Principal Validation
Providers

Authentication providersrely on Principal Validation providersto sign and verify the
authenticity of principals (users and groups) contained within a subject. Such
verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. Verification of the subject’s principals takes place
during the WebL ogic Server’s demarshalling of RMI client requests for each
invocation. The authenticity of the subject’s principals is also verified when making
authorization decisions.

The following sections describe Principal Validation provider concepts and
functionality, and provide step-by-step instructions for devel oping a custom Principal
Validation provider:

m “Principal Validation Concepts’ on page 5-1
m “The Principal Validation Process’ on page 5-3
m “Do You Need to Develop a Custom Principal Validation Provider?’ on page 5-4

m “How to Develop a Custom Principal Validation Provider” on page 5-5

Principal Validation Concepts

Before you develop aPrincipal Validation provider, you need to understand the
following concepts:

m “Principal Vaidation and Principal Types’ on page 5-2

Developing Security Providers for WebL ogic Server 51

S Principal Validation Providers

m “How Principal Validation Providers Differ From Other Types of Security
Providers’ on page 5-2

m “Security Exceptions Resulting from Invalid Principals’ on page 5-3

Principal Validation and Principal Types

Likeldentity Assertion providerssupport specific typesof tokens, Principal Validation
providers support specific types of principals. For example, the WebL ogic Principal
Validation provider (described in “Do Y ou Need to Develop a Custom Principal
Validation Provider?’ on page 5-4) signs and verifies the authenticity of WebL ogic
Server principals.

ThePrincipa Validation provider that i sassociated with the configured Authentication
provider (as described in “How Principa Validation Providers Differ From Other
Types of Security Providers’ on page 5-2) will sign and verify all the principals stored
in the subject that are of the type the Principal Validation provider is designed to
support.

How Principal Validation Providers Differ From Other
Types of Security Providers

A Principal Validation provider isaspecial type of security provider that primarily acts
asa“helper” to an Authentication provider. The main function of a Principal
Validation provider is to prevent malicious individual s from tampering with the
principals stored in a subject.

The Aut hent i cat i onProvi der SSPI (as described in “Implement the
AuthenticationProvider SSPI” on page 3-13) includes a method called

get Pri nci pal Val i dat or . In this method, you specify the Principal Validation
provider’s runtime class to be used with the Authentication provider. The Principal
Validation provider’'s runtime class can be the one BEA provides (called the

WebL ogic Principal Validation provider) or one you develop (called a custom
Principal Vdidation provider). An example of using the WebL ogic Principal
Validation provider in an Authentication provider’sget Pri nci pal Val i dat or
method is shown in Listing 3-1, “ SampleAuthenticationProviderlmpl.java,” on page
3-16.

5-2 Developing Security Providers for WebL ogic Server

The Principal Validation Process

Because you generate MBean types for Authentication providers and configure
Authentication providers using the WebL ogic Server Administration Console, you do
not have to perform these steps for a Principal Validation provider.

Security Exceptions Resulting from Invalid Principals

When the WebL ogic Security Framework attempts an authentication (or
authorization) operation, it checks the subject’s principalsto see if they arevalid. If a
principal is not valid, the WebL ogic Security Framework throws a security exception
with text indicating that the subject isinvalid. A subject may be invalid because:

m A principal in the subject does not have a corresponding Principal Validation
provider configured (which means there is no way for the WebL ogic Security
Framework to validate the subject).

Note: Because you can have multiple principals in a subject, each stored by the
LoginModule of a different Authentication provider, the principals can
have different Principal Validation providers.

m A principa was signed in another WebL ogic Server security domain (with a
different credentia from this security domain) and the caller istrying to useitin
the current domain.

m Aprincipal with aninvalid signature was created as part of an attempt to
compromise security.

m A subject never had its principals signed.

The Principal Validation Process

Asshownin Figure 5-1, auser attemptsto log into a system using a
username/password combination. WebL ogic Server establishestrust by calling the
configured Authentication provider’s LoginM odule, which validates the user's
username and password and returns a subject that is popul ated with principal s per Java
Authentication and Authorization Service (JAAS) requirements.

Developing Security Providers for WebL ogic Server 5-3

S Principal Validation Providers

Figure5-1 ThePrincipal Validation Process

Client
Application

Usernamefpasswiord

WebL ogic Server passes the subject to the specified Principal Validation provider,
which signsthe principalsand then returnsthemto the client application viaWebL ogic

Subject

WebLogic
Server

JAAS Login

Sign

Loginkodules

Frincipal
Validation
Frovider

Server. Whenever the principal s stored within the subject are required for other
security operations, the same Principal Validation provider will verify that the

principals stored within the subject have not been modified since they were signed.

Do You Need to Develop a Custom Principal

Validation Provider?

The default (that is, active) security realm for WebL ogic Server includes aWebL ogic
Principal Validation provider. The WebL ogic Principal Validation provider signsand
verifies WebL ogic Server principals. In other words, it signs and verifies principals

that represent WebL ogic Server users or WebL ogic Server groups.

Notes. You can usethe W.SPri nci pal s class (located in thewebl ogi c. security
package) to determine whether aprincipal (user or group) has special meaning
toWebLogic Server. (That is, whether itisapredefined WebL ogic Server user

or WebL ogic Server group.) Furthermore, any principal that is going to

54 Developing Security Providers for WebL ogic Server

How to Develop a Custom Principal Validation Provider

represent a WebL ogic Server user or group needs to implement the W.SUser
and W.SGr oup interfaces (availablein thewebl ogi c. security. spi

package).

The WebL ogic Principal Validation provider includesimplementations of the
W.SUser and W.SG oup interfaces, named W.SUser | npl and W.SGr oupl npl . These
arelocated in the webl ogi c. securi ty. princi pal package. It also includesan
implementation of the Pri nci pal Val i dat or SSPI called

Pri nci pal Val i dat or | npl . (For moreinformation about thePr i nci pal Val i dat or
SSPI, see “Implement the PrincipalValidator SSPI” on page 5-6.)

Much like an Identity Assertion provider supports a specific type of token, a Principal
Validation provider signs and verifies the authenticity of a specific type of principal.
Y ou can use the WebL ogic Principal Validation provider, but if you want to provide
validation for principals other than WebL ogic Server principals, then you need to
develop a custom Principal Validation provider.

How to Develop a Custom Principal
Validation Provider

Y ou have a number of choices when it comes to devel oping a custom Principal
Validation provider. You can:

m UsethePrinci pal Val i dat or I npl class (located in the
webl ogi c. securi ty. provi der package), and either:

e Implement the W.SPri nci pal interface.
e Extend the W.SUser | npl or W.SG oupl npl classes.

e Extend the W.SAbst ract Pri nci pal class. (The W.SAbst ract Pri nci pal
classis aconvenience abstract class that implements a principal whose name
field will be signed by the
webl ogi c. security. provider. Principal Validatorlnpl class)

Note: TheW.SPri nci pal interfaceand W.SUser | npl , W.SG oupl npl , and
W.SAbst ract Pri nci pal classesarelocated in the
webl ogi c. security. princi pal package.

Developing Security Providers for WebL ogic Server 55

S Principal Validation Providers

m Develop your own user or group implementation by extending the JDK's
Princi pal class, thenimplement thePri nci pal Val i dat or SSPI. For more
information, see the Java 2 Enterprise Edition, v1.3.1 APl Specification Javadoc

for the Principal class and “Implement the PrincipalValidator SSPI” on page 5-6.

Note: Thisoptionis preferable if you must connect to some external server to

perform principal validation becauseit does not requirethat asigned secret
be propagated to all the managed servers.

Implement the PrincipalValidator SSPI

To implement the Pri nci pal Val i dat or SSPI, provide implementations for the
following methods:

validate

sign

publ i c bool ean validate(Principal principal) throws
SecurityExcepti on;

Theval i dat e method takes a principal as an argument and attempts to
validateit. In other words, thismethod verifiesthat the principa wasnot atered
since it was signed.

publ i c bool ean sign(Principal principal);

Thesi gn method takes a principal as an argument and signs it to assure trust.
This allows the principal to later be verified using the val i dat e method.

Y our implementation of the si gn method should be a secret algorithm that
malicious individuals cannot easily recreate. Y ou can include that algorithm
within the si gn method itself, have the si gn method call out to a server for a
token it should use to sign the principal, or implement some other way of
signing the principal.

getPrincipal BaseClass

public C ass getPrincipal Based ass();

Theget Pri nci pal Based ass method returns the base class of principalsthat
this Principal Validation provider knows how to validate and sign.

For more information about the Pri nci pal Val i dat or SSPI and the methods
described above, see the WebLogic Server 7.0 API Reference Javadoc.

5-6 Developing Security Providers for WebL ogic Server

http://java.sun.com/j2se/1.3/docs/api/java/security/Principal.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/PrincipalValidator.html

CHAPTER

O Authorization
Providers

Authorization isthe process whereby the interactions between users and WebL ogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, “What can you access?’ In WebL ogic Server, an
Authorization provider is used to limit the interactions between users and WebL ogic
resources to ensure integrity, confidentiality, and availability.

The following sections describe A uthorization provider concepts and functionality,
and provide step-by-step instructions for developing a custom Authorization provider:

m “Authorization Concepts’ on page 6-1
m “The Authorization Process’ on page 6-9
m “Do You Need to Develop a Custom Authorization Provider?’ on page 6-11

m “How to Develop a Custom Authorization Provider” on page 6-12

Authorization Concepts

Before you develop an Authorization provider, you need to understand the following
concepts:

= “WebLogic Resources’ on page 6-2

m “Access Decisions’ on page 6-8

Developing Security Providers for WebL ogic Server 6-1

© Authorization Providers

WebLogic Resources

A WebL ogic resourceis a structured object used to represent an underlying

WebL ogic Server entity that can be protected from unauthorized access. The level of
granularity for WebL ogic resourcesis up to you. For example, you can consider an
entire Web application, a particular Enterprise JavaBean (EJB) within that Web
application, or a single method within that EJB to be a WebL ogic resource.

Note: WebL ogic resourcesreplace WebL ogic Server 6.x access control lists (ACLS).

The Architecture of WebLogic Resources

The Resour ce interface, located inthewebl ogi c. securi ty. spi package, provides
the definition for an object that represents a WebL ogic resource, which can be
protected from unauthorized access. The Resour ceBase class, located in the

webl ogi c. security. servi ce package, isan abstract base class for more specific
WebL ogic resource types, and facilitates the model for extending resources. (See
Figure 6-1 and “ Types of WebL ogic Resources’ on page 6-3 for more information.)

Figure6-1 Architecture of WebL ogic Resour ces

Resource

implemernts

ResourceBase

getkeys()

get!oy)

getlalues()

toStringy)

e>de|nds

AdminResource		ElSResource		SererResource
ApplicationResource		JDOBCResource		URLResource
COMResource		JMSResource		WehSer\ficeResource
EJEResource		JNDIResource		

6-2 Developing Security Providers for WebL ogic Server

Authorization Concepts

The Resour ceBase class includes the BEA-provided implementations of the get | D,
get Keys, get Val ues, andt oSt ri ng methods. For more information, see the
WebLogic Server 7.0 API Reference Javadoc for the ResourceBase class.

This architecture allows you to develop security providers without requiring that they
be aware of any WebL ogic resources. Therefore, when new resource types are added,
you should not need to modify the security providers.

Types of WebLogic Resources

Asshown in Figure 6-1, certain classesin thewebl ogi c. securi ty. service
package extend the Resour ceBase class, and therefore provide you with
implementations for specific types of WebL ogic resources. WebL ogic resource
implementations are available for:

m Administrative resources
m Application resources
m COM resources

m EISresources

m EJB resources

m JDBC resources

m JMS resources

m JINDI resources

m Server resources

m URL resources

m \Web Service resources

Note: Each of these WebL ogic resource implementations are explained in detail in
the WebLogic Server 7.0 API Reference Javadoc.

Developing Security Providers for WebL ogic Server 6-3

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/ResourceBase.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/package-summary.html

© Authorization Providers

WebLogic Resource Identifiers

Each WebL ogic resource (described in “ Types of WebL ogic Resources’ on page 6-3)
canidentified in two ways: by itst oSt ri ng() representation or by an associated
resource ID (that is, using the get | D method).

The toString() Method

If you usethet oSt ri ng method of any WebL ogic resource implementation, a
description of the WebL ogic resource will be returned in the form of asSt ri ng. First,
the type of the WebL ogic resource is printed in pointy-brackets. Then, each key is
printed, in order, along with its value. The keys are comma-separated. Values that are
lists are comma-separated and delineated by open and close curly braces. Each value
isprinted asis, except that commas (,), open braces ({), close braces (}), and back
slashes (\) are each escaped with a back slash. For example, the EJB resource:

EJBResource (“myApp”,

“MyJarFile”,

“myEJB",

“myMet hod”,

“Horme” ,
new String[] {“argunent Typel”, “argunment Type2”}
)

will produce the following t oSt r i ng outpult:

type=<ej b>, app=nyApp, nodul e="MWJarFile", ejb=nyEJ]B,
met hod=" nyMet hod”, net hodl nterface="Hone”,
met hodPar ans={ ar gunent Typel, argunent Type2}

The format of the WebL ogic resource description provided by thet oSt ri ng method
ispublic (that is, you can construct one without using a Resour ce object) and is
reversible (meaning that you can convert the St ri ng form back to the original

WebL ogic resource).

Note: Listing 6-1 illustrates how to usethet oSt ri ng method to identify a
WebL ogic resource.

6-4 Developing Security Providers for WebL ogic Server

Authorization Concepts

Resource IDs and the getID Method

The get | D method on each of the defined WebL ogic resource types returns a 64-bit
hashcode that can be used to uniquely identify the WebL ogic resource in a security
provider. The resource ID can be effectively used for fast runtime caching, using the
following agorithm:

1. Obtain aWebL ogic resource.

2. Get theresource ID for the WebL ogic resource using the get I D method.
3. Look up theresource ID in the cache.

4. If theresource ID isfound, then return the security policy.

5. If theresource ID is not found, then:

a. Usethet oSt ri ng method to look up the WebL ogic resource in the security
provider database.

b. Storethe resource ID and the security policy in cache.

c. Return the security policy.

Note: Listing 6-2 illustrates how to use the getlD method to identify a WebL ogic
resource in Authorization provider, and provides a sample implementation of
this algorithm.

Because it is not guaranteed stable across multiple runs, you should not use the
resource ID to store information about the WebL ogic resource in a security provider
database. | nstead, best practice dictates that the security provider database containsthe
Resour ce. t oSt ri ng-to-security policy mapping, while the runtime cache contains
the Resour ce. get | D-to-security policy mapping.

How Security Providers Use WebLogic Resources

WebL ogic resources are used in calls to Authorization and Role Mapping providers
runtime classes (specifically, in the AccessDeci si on and Rol eMapper SSPI
implementations). BEA recommends that these types of security providers store any
resource-to-security policy and resource-to-role mappings in their corresponding
security provider database using the WebL ogic resource’ st oSt ri ng method.

Developing Security Providers for WebL ogic Server 6-5

© Authorization Providers

Notes: For more information about security provider databases, see “Initializing the
Security Provider Database” on page 2-25. For more information about the
t oSt ri ng method, see “ The toString() Method” on page 6-4. For more
information about Role Mapping providers, see Chapter 8, “Role Mapping
Providers.”

Listing 6-1 illustrates how to look up a WebL ogic resource in the runtime class of an
Authorization provider. Thisalgorithm assumesthat the security provider database for
the Authorization provider contains a mapping of WebL ogic resources to security
policies. It isnot required that you use the algorithm shown in Listing 6-1, or that you
utitilize the call to the get Par ent Resour ce method. (For more information about the
get Par ent Resour ce method, see “ Single-Parent Resource Hierarchies’ on page
6-7.)

Listing6-1 HowtoL ook Up aWebL ogic Resourcein an Authorization Provider:
Using the toString M ethod

Policy findPolicy(Resource resource) {
Resource nyResource = resource;
while (nyResource !'= null) {
String resourceText = nmyResource.toString();

Policy policy = | ookupl nDB(resourceText);
if (policy !'=null) return policy;
myResource = nyResour ce. get Parent Resource();
}
return null;

Y ou can optimize the algorithm for looking up a WebL ogic resource by using the
get | D method for the resource. (Use of thet oSt ri ng method alone, as shown in
Listing 6-1, may impact performance due to the frequency of string concatenations.)
The get | Dmethod may be quicker and more efficient because it is a hash operation
that is cal culated and cached within the WebL ogic resourceitself. Therefore, when the
get | D method is used, thet oSt ri ng value only needs to be ca culated once per
resource (as shown in Listing 6-2).

Listing6-2 How toL ook Up aWebL ogic Resour cein an Authorization Provider:

6-6 Developing Security Providers for WebL ogic Server

Authorization Concepts

Using the getlD Method

Pol i cy findPolicy(Resource resource) {
Resource nmyResource = resource
while (nyResource != null) {
long id = nyResource.getlD);
Policy policy = |ookupl nCache(id);

if (policy !'=null) return policy;
String resourceText = nyResource.toString();
Policy policy = | ookupl nDB(resourceText);

if (policy !'=null) {
addToCache(id, policy);
return policy;

}

myResour ce = nmyResour ce. get Parent Resour ce();
}
return null

Note: Theget | Dmethod is not guaranteed between service packs or future
WebL ogic Server releases. Therefore, you should not store get | Dvaluesin
your security provider database.

Single-Parent Resource Hierarchies

WebL ogic resources are arranged in a hierarchical structure ranging from most
specificto least specific. Y ou can usetheget Par ent Resour ce method for each of the
WebL ogic resource types if you like, but it is not required.

The WebL ogic security providers use the single-parent resource hierarchy asfollows:
If aWebL ogic security provider attempts to access a specific WebL ogic resource and
that resource cannot be located, the WebL ogic security provider will call the

get Par ent Resour ce method of that resource. The parent of the current WebL ogic
resource is returned, and allows the WebL ogic security provider to move up the
resource hierarchy to protect the next (less-specific) resource. For example, if acaler
attempts to access the following URL resource:

type=<url >, application=myApp, contextPath="/nywebapp”,
uri=fool/ bar/ny.jsp

and that exact URL resource cannot be located, the WebL ogic security provider will
progressively attempt to locate and protect the following resources (in order):

Developing Security Providers for WebL ogic Server 6-7

© Authorization Providers

type=<url >,
type=<url >,
type=<url >,
type=<url >,
type=<url >,
type=<url >,
type=<app>,
type=<url >

appl i cati on=myApp, context Path="/nywebapp", uri=/fool/bar/*
appl i cati on=nyApp, contextPath="/nywebapp", uri=/fool*
appl i cati on=nyApp, contextPath="/nywebapp", uri=*.jsp

appl i cati on=myApp, context Path="/nmywebapp", uri=/*

appl i cati on=nyApp, context Pat h="/nywebapp"

appl i cati on=nmyApp

appl i cati on=myApp

Note: For moreinformation about the get Par ent Resour ce method, see the
WebLogic Server 7.0 API Reference Javadoc for any of the predefined
WebL ogic resource types or the Resource interface.

WebLogic Resources, Roles, and Security Policies

Roles are abstract, logical collections of users similar to a group. Once you create a
role, you define an association between that role and aWebL ogic resource. This
association (called a security policy) specifies who has what access to the WebL ogic
resource. Security policies (aswell asroles) are instantiated for each level of the
WebL ogic resource hierarchy.

Notes: For more information about WebL ogic resource hierarchies, see
“Single-Parent Resource Hierarchies’” on page 6-7. For information about
roles and security policies for use with WebL ogic resources, see
“Understanding Roles” and “Understanding WebL ogic Security Policies’ in
Managing WebLogic Security.

Access Decisions

Like LoginModules for Authentication providers, an Access Decision isthe
component of an Authorization provider that actually answersthe“isaccessallowed?’
question. Specifically, an Access Decision is asked whether a subject has permission
to perform a given operation on a WebL ogic resource, with specific parametersin an
application. Given thisinformation, the Access Decision responds with aresult of
PERM T, DENY, or ABSTAI N.

Note: For more information about Access Decisions, see “Implement the
AccessDecision SSPI” on page 6-14.

6-8 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/Resource.html
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_roles
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies

The Authorization Process

The Authorization Process

Figure 6-2 illustrates how Authorization providers (and the associated Adjudication
and Role Mapping providers) interact with the WebL ogic Security Framework during
the authorization process, and an explanation follows.

Figure6-2 Authorization Providersand the Authorization Process

Resource Container @

{1)|Request > ElB Serviet | | JsP

subject, resource,
ContextHandler TRTE(ED

WeblLogic Security Framework

Security Providers (Y

subject, resource)
. . ContexdtHandler @
Role Mapping Providers e |

lizt of applicabld

Role Mappers — roles

subject,
o] rEsaUrcE,
Authorization Providers ContextHandler,
roles
[Access Decisiuns' | ‘
|
PERMIT,
| @ DEMY, or
TRUE ABSTAIN
Adjudication Provider

— Adjudicator 3 §

Generally, authorization is performed in the following manner:

1. A user or system process regquests aWebL ogic resource on which it will attempt to
perform a given operation.

Developing Security Providers for WebL ogic Server 6-9

© Authorization Providers

2. Theresource container that handles the type of WebL ogic resource being
requested receives the request (for example, the EJB container receives the
request for an EJB resource).

3. Theresource container constructs a Cont ext Handl er object that may be used by
the configured Role Mapping providers and the configured Authorization
providers Access Decisions to obtain information associated with the context of
the request.

Note: A Cont ext Handl er isahigh-performing WebL ogic class that allows a
variable number of argumentsto be passed as stringsto amethod. For more
information about Cont ext Handl er s, see the WebL ogic Server 7.0 API
Reference Javadoc for the ContextHandler interface. For moreinformation
about Access Decisions, see “ Access Decisions’ on page 6-8. For more
information about Role Mapping providers, see Chapter 8, “Role Mapping
Providers.”

The resource container calls the WebL ogic Security Framework, passing in the
subject, the WebL ogic resource, and optionally, the Cont ext Handl er object (to
provide additional input for the decision).

4. The WebLogic Security Framework calls the configured Role Mapping
providers.

5. The Role Mapping providers use the Cont ext Handl er to request various pieces
of information about the request. They construct a set of Cal | back objects that
represent the type of information being requested. This set of Cal | back objects
isthen passed as an array to the Cont ext Handl er using the handl e method.

The Role Mapping providers use the values contained in the Cal | back objects,
the subject, and the resource to compute allist of roles to which the subject
making the request is entitled, and pass the list of applicable roles back to the
WebL ogic Security Framework.

6. The WebL ogic Security Framework delegates the actual decision about whether
the subject is entitled to perform the requested action on the WebL ogic resource
to the configured Authorization providers.

The Authorization providers' Access Decisions also use the Cont ext Handl er to
request various pieces of information about the request. They too construct a set
of Cal | back objects that represent the type of information being requested. This
set of Cal | back objectsisthen passed as an array to the Cont ext Handl er

using the handl e method. (The process is the same as described for Role
Mapping providersin Step 5.)

6-10 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/ContextHandler.html

Do You Need to Develop a Custom Authorization Provider?

7. TheisAccessAl | owed method of each configured Authorization provider’s
Access Decisionis called to determine if the subject is authorized to perform the
requested access, based on the Cont ext Handl er, subject, resource, and roles.
Eachi sAccessAl | owed method can return one of three values:

e PERM T—Indicates that the requested accessis permitted.
e DENY—Indicates that the requested access is explicitly denied.

e ABSTAI N—Indicates that the Access Decision was unable to render an
explicit decision.

This process continues until all Access Decisions are used.

8. The WebL ogic Security Framework delegates the job of reconciling any
discrepancies among the results rendered by the configured Authorization
providers Access Decisions to the Adjudication provider. The Adjudication
provider determines the ultimate outcome of the authorization decision.

Note: For more information about the Adjudication provider, see Chapter 7,
“Adjudication Providers.”

9. The Adjudication provider returns either a TRUE or FALSE verdict to the
Authorization provider, which forwards it to the resource container through the
WebL ogic Security Framework.

e |f the decisionis TRUE, the resource container dispatches the request to the
protected WebL ogic resource.

e |f the decision is FALSE, the resource container throws a security exception
that indicates that the requestor was not authorized to perform the requested
access on the protected WebL ogic resource.

Do You Need to Develop a Custom
Authorization Provider?

The default (that is, active) security realm for WebL ogic Server includes aWebL ogic
Authorization provider. The WebL ogic Authorization provider supplies the default
enforcement of authorization for this version of WebL ogic Server. The WebLogic
Authorization provider returns an access decision using a policy-based authorization

Developing Security Providers for WebL ogic Server 6-11

© Authorization Providers

engine to determine if aparticular user is allowed access to a protected WebL ogic
resource. The WebL ogic Authorization provider also supports the deployment and
undeployment of security policies within the system. If you want to use an
authorization mechanism that already existswithin your organization, you could create
acustom Authorization provider to tie into that system.

How to Develop a Custom Authorization
Provider

If the WebL ogic Authorization provider does not meet your needs, you can develop a
custom Authorization provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIS’ on page 6-12
2. “Generate an MBean Type Using the WebL ogic MBeanMaker” on page 6-18

3. “Configure the Custom Authorization Provider Using the Administration
Consol€e” on page 6-25

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIs” on page 2-8
m “Determine Which “Provider” Interface You Will Implement” on page 2-10

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Authorization provider by following these steps:

= “Implement the AuthorizationProvider SSPI” on page 6-13 or “Implement the
DeployableAuthorizationProvider SSPI” on page 6-13

m “Implement the AccessDecision SSPI” on page 6-14

6-12 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Provider

Note: At least one Authorization provider in a security realm must implement the
Depl oyabl eAut hori zat i onProvi der SSPI, or elseit will be impossible to
deploy Web applications and EJBs.

For an example of how to create aruntime class for a custom Authorization provider,
see“Example: Creating the Runtime Class for the Sample Authorization Provider” on
page 6-15.

Implement the AuthorizationProvider SSPI

To implement the Aut hori zat i onPr ovi der SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8
and the following method:

getAccessDecision
publ i c AccessDeci si on get AccessDeci si on();

The get AccessDeci si on method obtains the implementation of the
AccessDeci si on SSPI. For asingle runtime class called

MyAut hor i zat i onProvi der | npl .j ava, the implementation of the
get AccessDeci si on method would be:

return this;

If there are two runtime classes, then the implementation of the
get AccessDeci si on method could be:

return new MyAccessDeci si onl npl ;
This is because the runtime class that implements the

Aut hori zat i onProvi der SSPI isused as afactory to obtain classes that
implement the AccessDeci si on SSPI.

For more information about the Aut hori zat i onPr ovi der SSPI and the
get AccessDeci si on method, see the WebLogic Server 7.0 APl Reference Javadoc.

Implement the DeployableAuthorizationProvider SSPI

To implement the Depl oyabl eAut hori zat i onProvi der SSPI, provide
implementations for the methods described in “ Understand the Purpose of the
“Provider” SSPIS” on page 2-8, “ Implement the AuthorizationProvider SSPI” on page
6-13, and the following methods:

Developing Security Providers for WebL ogic Server 6-13

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuthorizationProvider.html

© Authorization Providers

deployPolicy
public void depl oyPol i cy(Resource resource,
java.lang. String[] rol eNanes) throws
Resour ceCr eat i onExcepti on

Thedepl oyPol i cy method creates a policy on behalf of a deployed Web
application or EJB, based on the WebL ogic resource to which the policy should
apply and the role names that are in the policy.

undeployPolicy
public void undepl oyPol i cy(Resource resource) throws
Resour ceRenpval Excepti on

Theundepl oyPol i cy method deletes a policy on behalf of an undeployed
Web application or EJB, based on the WebL ogic resource to which the policy

applied.

For moreinformation about the Depl oyabl eAut hori zat i onPr ovi der SSPI and the
depl oyPol i cy and undepl oyPol i cy methods, see the WebLogic Server 7.0 API
Reference Javadoc.

Implement the AccessDecision SSPI

When you implement the AccessDeci si on SSPI, you must provide implementations
for the following methods:

isAccessAllowed
public Result isAccessAl | owed(Subject subject, Map roles,
Resource resource, ContextHandl er handler, Direction
direction) throws InvalidPrincipal Exception

Thei sAccessAl | owed method utilizes information contained within the
subject to determine if the requestor should be allowed to access a protected
method. Thei sAccessAl | owed method may be called prior to or after a
request, and returns values of PERM T, DENY, or ABSTAI N. If multiple Access
Decisions are configured and return conflicting values, an Adjudication
provider will be needed to determine afinal result. For more information, see
Chapter 7, “Adjudication Providers.”

isProtectedResource
publ i ¢ bool ean i sProtect edResource(Subj ect subject, Resource
resource) throws |nvalidPrincipal Exception

6-14 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/DeployableAuthorizationProvider.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/DeployableAuthorizationProvider.html

How to Develop a Custom Authorization Provider

Thei sProt ect edResour ce method is used to determine whether the
specified WebL ogic resource is protected, without incurring the cost of an
actual access check. It isonly alightweight mechanism because it does not
compute a set of roles that may be granted to the caller’ s subject.

For more information about the AccessDeci si on SSP| and thei sAccessAl | owed
and i sPr ot ect edResour ce methods, see the WebLogic Server 7.0 API Reference
Javadoc.

Example: Creating the Runtime Class for the Sample Authorization Provider

Listing 6-3 shows the Sanpl eAut hori zat i onProvi der | npl . j ava class, whichis
the runtime class for the sample Authorization provider. This runtime class includes
implementations for:

m Thethree methods inherited from the Securi t yPr ovi der interface:
initialize,getDescriptionandshutdown (asdescribedin“Understand the
Purpose of the “Provider” SSPIS” on page 2-8).

m The method inherited from the Aut hori zat i onPr ovi der SSPI: the
get AccessDeci si on method (as described in “Implement the
AuthorizationProvider SSPI” on page 6-13).

m Thetwo methodsin the Depl oyabl eAut hori zat i onProvi der SSPI: the
depl oyPol i cy and undepl oyPol i cy methods (as described in “Implement the
DeployableAuthorizationProvider SSPI” on page 6-13).

m Thetwo methodsin the AccessDeci si on SSPI: thei sAccessAl | owed and
i sPr ot ect edResour ce methods (as described in “Implement the
AccessDecision SSPI” on page 6-14).

Note: The bold face code in Listing 6-3 highlights the class declaration and the
method signatures.

Listing 6-3 SampleAuthorizationProvider | mpl.java

package exanpl es.security. providers. authori zation;

inmport java.security. Principal;
inmport java.util.Enumeration;
inmport java.util.lterator;
inmport java.util.Mp;

Developing Security Providers for WebL ogic Server 6-15

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AccessDecision.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AccessDecision.html

© Authorization Providers

import java.util. Set;

i mport javax.security.auth. Subject;

i mport webl ogi c. managenent . security. Provi der MBean;

i mport webl ogi c. security. W.SPri nci pal s;

i mport webl ogi c. security. service. Cont ext Handl er;

i mport webl ogi c. security. spi.AccessDeci sion;

i mport webl ogi c. security. spi.Depl oyabl eAut hori zati onProvi der;
i mport webl ogi c.security.spi.Direction;

i mport webl ogi c. security.spi.lnvalidPrincipal Exception;
i mport webl ogi c. security. spi.Resource;

i mport webl ogi c. security. spi.ResourceCreati onExcepti on;
i mport webl ogi c. security. spi.ResourceRenpval Excepti on;

i mport webl ogi c.security.spi.Result;

i mport webl ogi c. security.spi.SecurityServices;

public final class Sanpl eAut horizationProviderlnpl inplenents
Depl oyabl eAut hori zati onProvi der, AccessDeci si on

private String description;
private Sanpl eAut hori zer Dat abase dat abase;

public void initialize(Provider©MBean nbean, SecurityServices services)

{
System out . println("Sanpl eAut hori zati onProviderlnpl.initialize");
Sanpl eAut hori zer MBean nyMBean = (Sanpl eAut hori zer MBean) nbean;
description = nyMBean. get Description() + "\n" + myMBean. get Version();
dat abase = new Sanpl eAut hori zer Dat abase(nyMBean) ;

}

public String getDescription()

{ return description;

}

public void shutdown()

i System out . println(" Sanpl eAut hori zati onProvi der| npl . shut down") ;
public AccessDeci sion get AccessDeci sion()

i return this;

public Result isAccessAl | owed(Subject subject, Mp roles, Resource resource,
Cont ext Handl er handl er, Direction direction) throws |nvalidPrincipal Exception
{
System out . println("Sanpl eAut hori zat i onProvi der | npl . i sAccessAl | owed") ;
Systemout.println("\tsubject\t=" + subject);
Systemout.printin("\troles\t=" + roles);

6-16 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Provider

Systemout.println("\tresource\t= + resource);
Systemout.printin("\tdirection\t=" + direction);

Set principals = subject.getPrincipals();

for (Resource res = resource; res !=null; res = res. getParent Resource()) {
i f (database. policyExists(res)) {
return i sAccessAl | owed(res, principals, roles);
}
}

return Result. ABSTAI N,
}

publ i c bool ean i sProt ect edResour ce(Subj ect subj ect, Resource resource) throws
I nval i dPrinci pal Excepti on

{
System out. printl n(" Sanpl eAut hori zati onProvi der | npl .
i sProt ect edResource");
Systemout.println("\tsubject\t=" + subject);
Systemout.println("\tresourcel\t=" + resource);
for (Resource res = resource; res !=null; res = res. getParent Resource()) {
i f (database. policyExists(res)) {
return true;
}
}
return fal se;
}

public void depl oyPolicy(Resource resource, String[] rol eNanesAl | owed)
throws ResourceCreati onException

{
System out. printl n(" Sanpl eAut hori zati onProvi der | npl . depl oyPol i cy");
Systemout.println("\tresourcel\t=" + resource);
for (int i = 0; roleNamesAllowed != null && i < rol eNanesAl | owed. | engt h;
i++) {
Systemout.println("\trol eNanesAl |l owed[" + i1 + "]J\t=" +
rol eNanmesAl | owed[i]);
}
dat abase. set Pol i cy(resource, rol eNanesAl | owed);
}

public void undepl oyPol i cy(Resource resource) throws ResourceRenpval Excepti on

{
System out . println("Sanpl eAut hori zati onProvi der| npl . undepl oyPol i cy");
Systemout.println("\tresource\t=" + resource);

dat abase. renmovePol i cy(resource);

Developing Security Providers for WebL ogic Server 6-17

© Authorization Providers

private bool ean princi pal sO Rol esContai n(Set principals, Map roles, String
princi pal O Rol eNameWant)

{
if (roles.containsKey(principal O Rol eNaneWant)) {
return true;
}
{
for (lterator i = principals.iterator(); i.hasNext();) {
Principal principal = (Principal)i.next();
String princi pal NameHave = pri nci pal . get Nane();
i f (principal O Rol eNanmeWant . equal s(princi pal NaneHave)) {
return true;
}
}
return fal se;
}

private Result isAccessAll owed(Resource resource, Set principals, Map roles)

{

for (Enuneration e = database. getPolicy(resource); e.hasMreEl ements();)
{
String principal O Rol eNaneAl | owed = (String)e. nextEl enent();
if (W.SPrincipals.getEveryoneG oupnane().
equal s(princi pal Or Rol eNaneAl | owed) ||
(WLSPri nci pal s. get User sGr oupnane() . equal s(pri nci pal O Rol eNaneAl | owed)

&& !principals.isEnpty()) || principal sO Rol esContain(principals,
rol es, principal O Rol eNaneAl | owed))
{

return Result.PERM T,
}
}
return Resul t. DENY;

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you
should first:

m “Understand Why You Need an MBean Type’ on page 2-16

6-18 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Provider

“Determine Which SSPI M Beans to Extend and |mplement” on page 2-16

“Understand the Basic Elements of an MBean Definition File (MDF)” on page
2-17

“Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

“Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have madeyour design decisions, createthe
MBean type for your custom Authorization provider by following these steps:

1
2.
3.

4.

“Create an MBean Definition File (MDF)” on page 6-19
“Use the WebL ogic MBeanMaker to Generate the MBean Type” on page 6-20

“Use the WebL ogic MBeanMaker to Create the MBean JAR File (MJF)” on page
6-24

“Install the MBean Type Into the WebL ogic Server Environment” on page 6-25

Notes: Several sample security providers (available under “Code Direct” on the

dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1

Copy the MDF for the sample Authorization provider to atext file.

Note: The MDF for the sample Authorization provider is called
Sanpl eAut hori zer. xm .

Modify the content of the <MBeanType> and <MBeanAt t ri but e> elementsin
your MDF so that they are appropriate for your custom Authorization provider.

Add any custom attributes and operations (that is, additional <MBeanAt t ri but e>
and <MBeanQper at i on> elements) to your MDF.

Savethefile.

Developing Security Providers for WebL ogic Server 6-19

http://dev2dev/code/codedirect.jsp?highlight=codedirect

© Authorization Providers

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asits input an MDF, and outputs some intermediate Javafiles, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

Theinstructions for generating an MBean type differ based on the design of your
custom Authorization provider. Follow the instructions that are appropriate to your
situation:

m “No Optional SSPI MBeans and No Custom Operations’ on page 6-20
m “Optiona SSPI MBeans or Custom Operations” on page 6-21

No Optional SSPI MBeans and No Custom Operations

If the MDF for your custom Authorization provider does not implement any optional
SSPI MBeans and does not include any custom operations, follow these steps:

1. Create anew DOS shell.

2. Type the following command:

java -DMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xnl Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, a new set of output filesis generated. If files
dready exist in the location specified by f i | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

6-20 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Provider

3.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple MDFs (in other words,
multiple Authorization providers).

Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 6-24.

Optional SSPI MBeans or Custom Operations

If the MDF for your custom Authorization provider does implement some optional
SSPI MBeans or does include custom operations, consider the following:

1
2.

3.

Areyou creating an MBean type for the first time? If so, follow these steps:
Create anew DOS shell.

Type the following command:

java -DVDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . cormp. WebLogi cMBeanMaker

where xm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processes one MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs(in other words,
multiple Authorization providers).

If you implemented optional SSPI MBeansin your MDF, follow these steps:

a Locate the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

Sanpl eAut hori zer, the MBean implementation file to be edited is named
Sanpl eAut hori zer | npl . j ava.

Developing Security Providers for WebL ogic Server 6-21

© Authorization Providers

b. For each optional SSPI MBean that you implemented in your MDF, copy the
method stubs from the “ Mapping M DF Operation Declarations to Java M ethod
Signatures Document” (available on the dev2dev Wb site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

4. If you included any custom operationsin your MDF, implement the methods
using the method stubs.

5. Savethefile.

6. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 6-24.

m Areyou updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to atemporary directory so that
your current method implementations are not overwritten by the WebL ogic
MBeanM aker.

2. Create anew DOS shell.

3. Type the following command:

java -DMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple M DFs (in other words,
multiple Authorization providers).

4. 1If you implemented optional SSPI MBeans in your MDF, follow these steps:

a. Locate the MBean implementation file.

6-22 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Authorization Provider

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

Sanpl eAut hori zer, the MBean implementation file to be edited is named
Sanpl eAut hori zer | npl . j ava.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebL ogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing M Bean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated M Bean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

d. If youmodified the MDF to implement optional SSPI MBeansthat werenot in
the original MDF, copy the method stubs from the “Mapping MDF Operation
Declarations to Java M ethod Signatures Document” (available on the dev2dev
Web site) into the MBean implementation file, and implement each method. Be
sure to also provide implementations for any methods that the optional SSPI
MBean inherits.

. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

. Savethe version of the MBean implementation file that is complete (that is, has
all methods implemented).

. Copy this MBean implementation file into the directory where the WebL ogic
MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfil esdir instep 3. (You will be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as a result of step 3.)

. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 6-24.

Developing Security Providers for WebL ogic Server 6-23

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

© Authorization Providers

About the Generated MBean Interface File

The MBean interfacefile is the client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypicaly
used intheinitialize method as described in “ Understand the Purpose of the* Provider”
SSPIS’ on page 2-8.

Because the WebL ogic MBeanM aker generates M Bean types from the MDF you
created, the generated MBean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the

Sanpl eAut hor i zer MDF through the WebL ogic MBeanMaker will yield an MBean
interface file called Sanpl eAut hor i zer MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Once your have run your MDF through the WebL ogic MBeanM aker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithin it, you need to packagethe MBean
files and the runtime classes for the custom Authorization provider into an MBean
JAR File (MJF). The WebL ogic MBeanMaker also automates this process.

To create an MJF for your custom Authorization provider, follow these steps:
1. Create anew DOS shell.

2. Type the following command:

java -DMIF=jarfile -DFiles=filesdir
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherej arfil e isthenameforthe MJFandfi | esdi r isthelocation wherethe
WebL ogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If j arfi | e is provided,
and no errors occur, an MJF is created with the specified name.

6-24 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Provider

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also has a- DI ncl udeSour ce option, which
controls whether source files areincluded into the resulting MJF. Sourcefiles
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMIF is not used.

The resulting MJF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Install the MBean Type Into the WebLogic Server Environment

Toinstall an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ ser ver\ | i b\ mbeant ypes directory, where W._HOME is the top-level
installation directory for WebL ogic Server. This“deploys” your custom Authorization
provider—that is, it makes the custom Authorization provider manageable from the
WebL ogic Server Administration Console.

Y ou can create instances of the M Bean type by configuring your custom Authorization
provider (see” Configure the Custom Authori zation Provider Using the Administration
Console” on page 6-25), and then use those M Bean instances from a GUI, from other
Java code, or from APIs. For example, you can use the WebL ogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate M Beans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see“Backing Up Security Configuration Data’ under
“Recovering Failed Servers’ in Creating and Configuring WebL ogic Server Domains.

Configure the Custom Authorization Provider Using the
Administration Console

Configuring a custom Authorization provider means that you are adding the custom
Authorization provider to your security realm, whereit can be accessed by applications
requiring authorization services.

Developing Security Providers for WebL ogic Server 6-25

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans

© Authorization Providers

Configuring custom security providersis an administrative task, but it is atask that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
Authorization providers:

m “Managing Authorization Providers and Deployment Descriptors’ on page 6-26
m “Enabling Security Policy Deployment” on page 6-29

Note: The steps for configuring a custom Authorization provider using the
WebL ogic Server Administration Consol e are described under “ Configuring a
Custom Security Provider” in Managing WebLogic Security.

Managing Authorization Providers and Deployment Descriptors

Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java 2 Enterprise Edition
(J2EE) and WebL ogic Server deployment descriptors. For Web applications, the
deployment descriptor files(called web. xml andwebl ogi c. xm) contain information
for implementing the J2EE security model, including declarations of security policies.
Typically, you will want to include thisinformation when first configuring your
Authorization providers in the WebL ogic Server Administration Console.

The Administration Console provides an Ignore Security Datain Deployment
Descriptors flag for this purpose, which you or an administrator should deselect the
first time a custom Authorization provider is configured. (To locate this flag, click
Security —~Realms —realmin theleft pane of the Administration Console, where

r eal misthe name of your security realm. Then select the General tab.) When thisflag
is deselected and a Web application or EJB is deployed, WebL ogic Server reads
security policy information from the web. xm and webl ogi c. xm deployment
descriptor files (an example of aweb. xm fileisshownin Listing 6-4). This
information is then copied into the security provider database for the Authorization
provider.

Listing 6-4 Sample web.xml File

<?xm version="1.0" ?>

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN'
"http://java. sun. cont j 2ee/ dt ds/ web-app_2_2. dtd">

6-26 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

How to Develop a Custom Authorization Provider

<web- app>

<cont ext - par an»
<par am name>HTTPS_PORT</ par am hane>
<param val ue>7502</ par am val ue>

</ cont ext - par an>

<servl et >
<servl et - nane>Securi ty</servl et - nane>
<servl et -cl ass>com beasys. commer ce. ebusi ness. security.
EncryptionServl et </servl et-cl ass>
</servlet>

<servl et - mappi ng>
<servl et - nane>Security</servl et - nane>
<url -pattern>/security</url-pattern>
</ servl et - mappi ng>

<sessi on-confi g>
<sessi on-ti meout >15</ sessi on-ti neout >
</ sessi on-config>

<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>Adm ni strati on Tool Pages</web-resource-nane>
<descri pti on>The Admi ni strati on Tool Pages</descri ption>

<url -pattern>/tool s/catal og/*</url -pattern>
<url -pattern>/tool s/content/*</url-pattern>
<url -pattern>/tool s/order/*</url-pattern>
<url-pattern>/tool s/property/*</url-pattern>
<url -pattern>/tool s/usermgnt/*</url -pattern>
<url-pattern>/tool s/util/*</url-pattern>
<url -pattern>/tool s/webflow *</url -pattern>
<url-pattern>/tools/*info.jsp</url-pattern>
<url-pattern>/repository/*</url-pattern>
<url -pattern>/security/*</url-pattern>

<ht t p- met hod>CET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- net hod>
</ web-resource-col |l ecti on>

Developing Security Providers for WebL ogic Server 6-27

© Authorization Providers

<aut h-constrai nt >
<descri pti on>Adm ni strators</description>
<r ol e- nane>Syst emAdmi nRol e</ r ol e- nane>

</ aut h-constrai nt >

<user - dat a- constrai nt >
<transport-guar ant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- constrai nt >

</security-constraint>

<security-constraint>
<web- r esour ce-col | ecti on>
<web-resource-nane>Portal Adm nistration Tool Pages
</ web- r esour ce- name>
<descri ption>The Portal Admi nistration Tool Pages</description>

<url-pattern>/tool s/portal/*</url-pattern>

<url -pattern>/tool s/w ps_hone. jsp</url-pattern>
<url-pattern>/repository/*</url-pattern>
<url-pattern>/security/*</url-pattern>

<ht t p- met hod>CET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>

<aut h- constrai nt >
<descri pti on>Admi ni strators</description>
<r ol e- nane>Del egat edAdm nRol e</ r ol e- name>
<r ol e- nanme>Syst emAdni nRol e</ r ol e- nanme>

</ aut h- constrai nt >

<user - dat a- constrai nt >
<transport-guarant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- constrai nt >

</security-constraint>

<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- met hod>
</l ogi n-confi g>

<security-rol e>
<descri ption>System Adm ni strators</description>
<r ol e- nane>Syst emAdmi nRol e</r ol e- nane>
</security-rol e>

6-28 Developing Security Providers for WebL ogic Server

How to Develop a Custom Authorization Provider

</ web- app>

While you can set additional security policiesin theweb. xm /webl ogi c. xni
deployment descriptorsand in the Administration Console, BEA recommendsthat you
copy the security policies defined in the Web application or EJB deployment
descriptors once, then use the Administration Console to define subsequent security
policies. Thisis because any changes made to the security policies through the
Administration Console during configuration of an Authorization provider will not be
persisted to theweb. xm and webl ogi c. xni files. Before you deploy the application
again (which will happen if you redeploy it through the Administration Console,
modify it on disk, or restart WebL ogic Server), you should select the Ignore Security
Datain Deployment Descriptorsflag. If you do not, the security policies defined using
the Administration Console will be overwritten by those defined in the deployment
descriptors.

Note: The Ignore Security Datain Deployment Descriptors flag also affects Role
Mapping providers and Credential Mapping providers. For moreinformation,
see “Managing Role Mapping Providers and Deployment Descriptors’ on
page 8-21 and “Managing Credential Mapping Providers, Resource Adapters,
and Deployment Descriptors’ on page 10-14, respectively.

Enabling Security Policy Deployment

If you implemented the Depl oyabl eAut hori zat i onPr ovi der SSPI and want to
support deployable security policies with your custom Authorization provider, the
person configuring the custom Authorization provider (that i, you or an administrator)
must be sure that the Policy Deployment Enabled flag in the WebL ogic Server
Administration Console is checked. Otherwise, deployment for the Authorization
provider is considered “turned off.” Therefore, if multiple Authorization providersare
configured, the Policy Deployment Enabled flag can be used to control which
Authorization provider is used for security policy deployment.

The Policy Deployment Enabled flag performs the same function as the Ignore
Security Datain Deployment Descriptors flag (described in “Managing Authorization
Providersand Deployment Descriptors’ on page 6-26), but is specific to Authorization
providers.

Developing Security Providers for WebL ogic Server 6-29

© Authorization Providers

Note: If both the Policy Deployment Enabled flag and the Ignore Security Datain
Deployment Descriptors flag are checked, the Ignore Security Datain
Deployment Descriptors flag takes precedence. In other words, if the Ignore
Security Datain Deployment Descriptors flag is checked, the Authorization
provider will not do deployment eveniif its Policy Deployment Enabled flagis
checked.

6-30 Developing Security Providers for WebL ogic Server

CHAPTER

[/ Adjudication Providers

Adjudication involves resolving any authorization conflicts that may occur when
more than one Authorization provider is configured, by weighing the result of each
Authorization provider’s Access Decision. In WebL ogic Server, an Adjudication
provider is used to tally the results that multiple Access Decisions return, and
determines the final PERM T or DENY decision. An Adjudication provider may also
specify what should be done when an answer of ABSTAI Nisreturned from asingle
Authorization provider’s Access Decision.

Thefollowing sections describe Adjudi cation provider concepts and functionality, and
provide step-by-step instructions for developing a custom Adjudication provider:

m “The Adjudication Process’ on page 7-1
m “Do You Need to Develop a Custom Adjudication Provider?’ on page 7-2

m “How to Develop a Custom Adjudication Provider” on page 7-3

The Adjudication Process

The use of Adjudication providersispart of the authorization process, and is described
in “The Authorization Process’ on page 6-9.

Developing Security Providers for WebL ogic Server 7-1

{ Adjudication Providers

Do You Need to Develop a Custom
Adjudication Provider?

The default (that is, active) security realm for WebL ogic Server includes aWebL ogic
Adjudication provider. The WebL ogic Adjudication provider is responsible for
adjudicating between potentially differing results rendered by multiple Authorization
providers Access Decisions, and rendering afinal verdict on whether or not access
will be granted to a WebL ogic resource.

The WebL ogic Adjudication provider has an attribute called Require Unanimous
Permit that governs its behavior. By default, the Require Unanimous Permit attribute
is set to TRUE, which causes the WebL ogic Adjudication provider to act as follows:

m |f all the Authorization providers Access Decisions return PERM T, then return a
final verdict of TRUE (that is, permit access to the WebL ogic resource).

m If some Authorization providers' Access Decisions return PERM T and others
return ABSTAI N, then return afinal verdict of FALSE (that is, deny access to the
WebL ogic resource).

m If any of the Authorization providers' Access Decisions return ABSTAI N or DENY,
then return afinal verdict of FALSE (that is, deny access to the WebL ogic
resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebL ogic
Adjudication provider acts as follows:

m If al the Authorization providers' Access Decisions return PERM T, then return a
final verdict of TRUE (that is, permit access to the WebL ogic resource).

m |If some Authorization providers' Access Decisions return PERM T and others
return ABSTAI N, then return afinal verdict of TRUE (that is, permit access to the
WebL ogic resource).

m |f any of the Authorization providers Access Decisions return DENY, then return
afinal verdict of FALSE (that is, deny access to the WebL ogic resource).

7-2 Developing Security Providers for WebL ogic Server

How to Develop a Custom Adjudication Provider

Note: You set the Regquire Unanimous Permit attributes when you configure the
WebL ogic Adjudication provider. For moreinformation about configuring an
Adjudication provider, see “ Configure the Custom Adjudication Provider
Using the Administration Console” on page 7-11.

If you want an Adjudication provider that behavesin away that is different from what
is described above, then you need to develop a custom Adjudication provider. (Keep
in mind that an Adjudication provider may also specify what should be done when an
answer of ABSTAI Nis returned from a single Authorization provider’s Access
Decision, based on your specific security requirements.)

How to Develop a Custom Adjudication
Provider

If the WebL ogic Adjudication provider does not meet your needs, you can develop a
custom Adjudication provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIS” on page 7-3
2. “Generate an MBean Type Using the WebL ogic MBeanMaker” on page 7-5

3. “Configure the Custom Adjudication Provider Using the Administration
Console” on page 7-11

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIS’ on page 2-8

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Adjudication provider by following these steps:

Developing Security Providers for WebL ogic Server 7-3

{ Adjudication Providers

= “Implement the AdjudicationProvider SSPI” on page 7-4

m “Implement the Adjudicator SSPI” on page 7-4

Implement the AdjudicationProvider SSPI

To implement the Adj udi cat i onPr ovi der SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8
and the following method:

getAdjudicator
publ i c Adj udi cat or get Adj udi cat or ()

The get Adj udi cat or method obtains the implementation of the
Adj udi cat or SSPI. For asingle runtime class called

MyAdj udi cat i onProvi der | npl .j ava, theimplementation of the
get Adj udi cat or method would be;

return this;

If there are two runtime classes, then the implementation of the
get Adj udi cat or method could be:

return new MyAdj udi catorl npl ;
Thisisbecausetheruntime classthat implementsthe Adj udi cat i onPr ovi der

SSPI is used as afactory to obtain classes that implement the Adj udi cat or
SSPI.

For more information about the Adj udi cat i onPr ovi der SSPI and the
get Adj udi cat or method, see the WebLogic Server 7.0 API Reference Javadoc.

Implement the Adjudicator SSPI

To implement the Adj udi cat or SSPI, provide implementations for the following

methods:

initialize
public void initialize(String[] accessDeci si onC assNanes)
Theinitial i ze method initializes the names of all the configured
Authorization providers' AccessDecisionsthat will be called to supply aresult

for the “is access allowed?’ question. TheaccessDeci si onC assNanes
parameter may also be used by an Adjudication provider initsadj udi cat e

7-4 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AdjudicationProvider.html

How to Develop a Custom Adjudication Provider

method to favor aresult from a particular Access Decision. For more
information about Authorization providers and Access Decisions, see
Chapter 6, “Authorization Providers.”

adjudicate
publ i c bool ean adjudi cate(Result[] results)

The adj udi cat e method determines the answer to the “is access allowed?’
question, given all the results from the configured Authorization providers
Access Decisions.

For more information about the Adj udi cat or SSPl andtheinitialize and
adj udi cat e methods, see the WebLogic Server 7.0 API Reference Javadoc.

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you
should first:

m “Understand Why You Need an MBean Type” on page 2-16
m “Determine Which SSPI MBeans to Extend and |mplement” on page 2-16

m “Understand the Basic Elements of an MBean Definition File (MDF)” on page
2-17

m “Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

m “Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have made your design decisions, createthe
MBean type for your custom Adjudication provider by following these steps:

1. “Create an MBean Definition File (MDF)” on page 7-6
2. “Usethe WebL ogic MBeanMaker to Generate the MBean Type” on page 7-6

3. “Usethe WebL ogic MBeanMaker to Create the MBean JAR File (MJF)” on page
7-9

Developing Security Providers for WebL ogic Server 7-5

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/Adjudicator.html

{ Adjudication Providers

4. Install the MBean Type Into the WebL ogic Server Environment

Notes: Several sample security providers (available under “Code Direct” on the
dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to atext file.

Note: The MDF for the sample Authentication provider iscalled
Sanpl eAut henti cat or. xni . (Thereiscurrently no sample Adjudication
provider.)

2. Modify the content of the <MBeanType> and <MBeanAt t ri but e> elementsin
your MDF so that they are appropriate for your custom Adjudication provider.

3. Add any custom attributes and operations (that is, additional <MBeanAt t ri but e>
and <MBean(per at i on> elements) to your MDF.

4, Savethefile.

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asits input an MDF, and outputs some intermediate Javafiles, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

Theinstructions for generating an MBean type differ based on the design of your
custom Adjudication provider. Follow the instructions that are appropriate to your
situation:

= “No Custom Operations’ on page 7-7

7-6 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Adjudication Provider

“Custom Operations’ on page 7-7

No Custom Operations

If the MDF for your custom Adjudication provider does not include any custom
operations, follow these steps:

1
2.

Custom Operations

Create anew DOS shell.

Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanM aker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple M DFs (in other words,
multiple Adjudication providers).

Proceed to “ Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 7-9.

If the MDF for your custom Adjudication provider does include custom operations,
consider the following:

]
1
2.

Areyou creating an MBean type for the first time? If so, follow these steps:
Create anew DOS shell.

Type the following command:

java -DMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

Developing Security Providers for WebL ogic Server 7-7

{ Adjudication Providers

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
files for the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs (in other words,
multiple Adjudication providers).

3. For any custom operations in your MDF, implement the methods using the
method stubs.

4, Savethefile.

5. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 7-9.

m Areyou updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to atemporary directory so that
your current method implementations are not overwritten by the WebL ogic
MBeanM aker.

2. Create anew DOS shell.

3. Typethe following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

7-8 Developing Security Providers for WebL ogic Server

How to Develop a Custom Adjudication Provider

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple MDFs (in other words,
multiple Adjudication providers).

4. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

5. Savethe version of the MBean implementation file that is complete (that is, has
all methods i mplemented).

6. Copy this MBean implementation file into the directory where the WebL ogic
MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfil esdir instep 3. (You will be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as aresult of step 3.)

7. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 7-9.

About the Generated MBean Interface File

The MBean interface file is the client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypically
used intheinitialize method as described in “ Understand the Purpose of the“ Provider”
SSPIs” on page 2-8.

Because the WebL ogic MBeanMaker generates M Bean types from the MDF you
created, the generated M Bean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the MyAdj udi cat or
MDF through the WebL ogic MBeanMaker will yield an M Bean interface file called
M/Adj udi cat or MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Once your have run your MDF through the WebL ogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithiniit, you need to packagethe MBean
filesand the runtime classesfor the custom Adjudication provider intoan MBean JAR
File (MJF). The WebL ogic MBeanM aker also automates this process.

To create an MJF for your custom Adjudication provider, follow these steps:

1. Create anew DOS shell.

Developing Security Providers for WebL ogic Server 7-9

{ Adjudication Providers

2. Typethe following command:

java -DMIF=jarfile -DFiles=filesdir
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherejarfil e isthenamefor the MJFandfi |l esdir isthelocation where the
WebL ogic MBeanMaker looks for the filesto JAR into the MJF.

Compilation occurs at this point, so errors are possible. If j arfi | e is provided,
and no errors occur, an MJF is created with the specified name.

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also has a- DI ncl udeSour ce option, which
controls whether source files areincluded into the resulting MJF. Source files
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMIF is not used.

The resulting MJF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Install the MBean Type Into the WebLogic Server Environment

Toinstal an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ server\ | i b\ mbeant ypes directory, where W._HOME is the top-level
installation directory for WebL ogic Server. This“deploys’ your custom Adjudication
provider—that is, it makes the custom Adjudication provider manageable from the
WebL ogic Server Administration Console.

Y ou can create instances of the MBean type by configuring your custom Adjudication
provider (see“ Configure the Custom Adjudication Provider Using the Administration
Consol€e” on page 7-11), and then use those M Bean instances from a GUI, from other
Java code, or from APIs. For example, you can use the WebL ogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate M Beans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see“Backing Up Security Configuration Data” under
“Recovering Failed Servers’ in Creating and Configuring WebLogic Server Domains.

7-10 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans

How to Develop a Custom Adjudication Provider

Configure the Custom Adjudication Provider Using the
Administration Console

Configuring a custom Adjudication provider means that you are adding the custom
Adjudication provider to your security realm, whereit can be accessed by applications
requiring adjudication services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that isimportant for the person configuring your custom
Adjudication providers:

m “Setting the Require Unanimous Permit Attribute” on page 7-11

Note: Thestepsfor configuring acustom Adjudication provider using the WebL ogic
Server Administration Console are described under “ Configuring a Custom
Security Provider” in Managing WebLogic Security.

Setting the Require Unanimous Permit Attribute

The Require Unanimous Permit attribute determines how a custom Adjudication
provider handles a combination of PERM T and ABSTAI N results from the configured
Authorization providers’ Access Decisions.

m |f thisattribute is enabled, all Authorization providers Access Decisions must
vote PERM T in order for the Adjudication provider to vote TRUE. By default, the
Require Unanimous Permit attribute is enabled.

m |f thisattribute is disabled, all the configured Authorization providers' Access
Decisions' ABSTAI N votes are counted as PERM T Votes.

To disable the Require Unanimous Permit attribute, you or an administrator must click
the check box when configuring the custom Adjudication provider. Note that if you or
an administrator change the Require Unanimous Permit attribute, you must reboot
WebL ogic Server in order for the change to take effect.

Developing Security Providers for WebL ogic Server 7-11

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

{ Adjudication Providers

7-12 Developing Security Providers for WebL ogic Server

CHAPTER

8 Role Mapping
Providers

Role mapping is the process whereby principals are dynamically mapped to roles at
runtime. In WebL ogic Server, a Role Mapping provider determines what roles apply
tothe principal s stored asubject when the subject is attempting to perform an operation
on aWebL ogic resource. Because this operation usually involves gaining accessto the
WebL ogic resource, Role Mapping providers are typically used with Authorization
providers.

The following sections describe Role Mapping provider concepts and functionality,
and provide step-by-step instructions for devel oping a custom Role Mapping provider:

m “Role Mapping Concepts’ on page 8-1

m “The Role Mapping Process’ on page 8-4

m “Do You Need to Develop a Custom Role Mapping Provider?’ on page 8-6
m “How to Develop a Custom Role Mapping Provider” on page 8-7

Role Mapping Concepts

Before you develop a Role Mapping provider, you need to understand the following
concepts:

m “Roles’ on page 8-2

m “Dynamic Role Association” on page 8-3

Developing Security Providers for WebL ogic Server 8-1

8 Role Mapping Providers

Roles

A roleisanamed collection of usersor groupsthat have similar permissionsto access
WebL ogic resources. Like groups, roles allow you to control access to WebL ogic
resources for several users at once. However, roles are scoped to specific resources
within asingle application in a WebL ogic Server security domain (unlike groups,
which are scoped to an entire WebL ogic Server security domain), and can be defined
dynamically (as described in “ Dynamic Role Association” on page 8-3).

Notes: For moreinformation about roles, see “Understanding Roles’ in Managing
WebLogic Security. For more information about WebL ogic resources, see
“WebL ogic Resources’ on page 6-2.

Role Definitions

The Securi t yRol e interfacein thewebl ogi c. security. servi ce packageis used
to represent the abstract notion of arole. (For more information, see the WebLogic
Server 7.0 API Reference Javadoc for the SecurityRole interface.)

Mapping a principal (that is, auser or a group) to a security role confers the defined
access permissionsto that principal, aslong as the principa is“in” therole. For
example, an application may define arole called “ AppAdmin,” which provides write
accessto asmall subset of that application'sresources. Any principal inthe AppAdmin
role would then have write access to those resources. Many principals can be mapped
to asinglerole. For more information about principals, see “ Users and Groups,
Principals and Subjects’ on page 3-2.

Roles are specified in Java 2 Enterprise Edition (J2EE) deployment descriptor files
and/or in the WebL ogic Server Administration Console. For more information, see
“Managing Role Mapping Providers and Deployment Descriptors’ on page 8-21.

Roles and WebLogic Resources

Once you create arole, you define an association between that role and a WebL ogic
resource. This association (called a security policy) specifies who has what accessto
the WebL ogic resource. Security policies (as well asroles) are instantiated for each
level of the WebL ogic resource hierarchy.

8-2 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_roles
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/SecurityRole.html

Role Mapping Concepts

Notes: For moreinformation about WebL ogic resources, see“WebL ogic Resources’
on page 6-2 and “Understanding WebL ogic Security Policies’ in Managing
WebLogic Security.

Dynamic Role Association

Roles can be declarative (that is, Java 2 Enterprise Edition roles) or dynamically
computed based on the context of the request. This dynamic computation of roles
providesavery important benefit: userscan be associated with arole based on business
rules. For example, auser may be allowed to bein amanager role only while the actual
manager isaway on an extended businesstrip. Dynamically associating thisrole means
that you do not need to change or redeploy your application to alow for such a
temporarily arrangement. Further, you would not need to remember to revoke the
special privileges when the actual manager returns, as you would if you temporarily
added the user to a management group.

Note: You create dynamic role associations by defining role statementsin the
WebL ogic Server Administration Console. For more information, see the
sections under “Understanding Roles’ in Managing WebL ogic Security.

Dynamic role association is the term for this late binding of principals (that is, users
or groups) to roles at runtime. The late binding occurs just prior to an authorization
decision for a protected WebL ogic resource, regardless of whether the
principal-to-role association is statically defined or dynamically computed. Because of
its placement in the invocation sequence, the result of any principal-to-role
associations can be taken as an authentication identity, as part of the authorization
decision made for the request.

Note: The association of roles for an authenticated user enhances the Role-Based
Access Control (RBAC) security defined by the Java 2 Enterprise Edition
(J2EE) specification.

The computed role is able to access a number of pieces of information that make up
the context of the request, including the identity of the target (if available) and the
parameter values of the request. The context information istypically used as values of
parameters in an expression that is evaluated by the WebL ogic Security Framework.
This functionality is also responsible for associating roles that were statically defined
through a deployment descriptor or through the WebL ogic Server Administration
Console.

Developing Security Providers for WebL ogic Server 8-3

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_roles

8 Role Mapping Providers

The Role Mapping Process

The WebL ogic Security Framework calls each Role Mapping provider that is
configured for a security realm as part of an authorization decision. For related
information, see “ The Authorization Process’ on page 6-9.

Theresult of the dynamic role association (performed by the Role M apping providers)
isaset of rolesthat apply to the principal s stored in asubject at a given moment. These
roles can then be used to make authorization decisions for protected WebL ogic
resources, aswell as for resource container and application code. For example, an
Enterprise JavaBean (EJB) could use the Java 2 Enterprise Edition (J2EE)

i sCal | er 1 nRol e methodtoretrievefieldsfrom arecord in adatabase, without having
knowledge of the business policies that determine whether accessis allowed.

Figure 8-1 shows how the Role Mapping providers interact with the WebL ogic
Security Framework to create dynamic role associations, and an explanation follows.

Figure8-1 Role Mapping Providersand the Role M apping Process

Resource Container (2)

(1}|Reguest > EJE Servist Jsp

subject: userigroup principals
resource identifier,
ContextHandler

WebLogic Security Framework

zubject, resource, ContextHandler
|®

Security Providers 3 @ list of

applicahble
roles

Security Role Mapping Providers

Policies [| Role Mappers) I

84 Developing Security Providers for WebL ogic Server

The Role Mapping Process

Generally, role mapping is performed in the following manner:

1. A user or system process requests a WebL ogi ¢ resource on which it will attempt to
perform a given operation.

2. Theresource container that handles the type of WebL ogic resource being
requested receives the request (for example, the EJB container receives the
request for an EJB resource).

3. Theresource container constructs a Cont ext Handl er object that may be used by
Role Mapping providers to obtain information associated with the context of the
request.

Note: A Cont ext Handl er isahigh-performing WebL ogic classthat allows a
variable number of argumentsto be passed as stringsto amethod. For more
information about Cont ext Handl er s, see the WebLogic Server 7.0 API
Reference Javadoc for the ContextHandler interface.

The resource container calls the WebL ogic Security Framework, passing in the
subject (which already contains user and group principals), an identifier for the
WebL ogic resource, and optionally, the Cont ext Hand! er object (to provide
additional input).

Note: For more information about subjects, see “Users and Groups, Principals
and Subjects’ on page 3-2. For more information about resource
identifiers, see “WebL ogic Resource Identifiers’ on page 6-4.

4. TheWebL ogic Security Framework calls each configured Role Mapping provider
to obtain alist of the roles that apply. Thisworks as follows:

a. The Role Mapping providers use the Cont ext Handl er to request various
pieces of information about the request. They construct a set of Cal | back
objects that represent the type of information being requested. This set of
Cal | back objectsisthen passed asan array to the Cont ext Handl er using the
handl e method.

The Role Mapping providers may call the Cont ext Handl er more than once
in order to obtain the necessary context information. (The number of times a
Role Mapping provider callsthe Cont ext Handl er isdependent upon its
implementation.)

b. Using the context information and their associated security provider databases
containing security policies, the subject, and the resource, the Role Mapping
providers determine whether the requestor (represented by the user and group
principalsin the subject) is entitled to a certain role.

Developing Security Providers for WebL ogic Server 8-5

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/ContextHandler.html

8 Role Mapping Providers

The security policies are represented as a set of expressions or rules that are
evaluated to determineif agiven role isto be granted. These rules may
require the Role Mapping provider to substitute the value of context
information obtained as parameters into the expression. In addition, the rules
may also require the identity of a user or group principal asthe value of an
expression parameter.

Note: Therulesfor security policies are set up in the WebL ogic Server
Administration Console and in Java 2 Enterprise Edition (J2EE)
deployment descriptors. For more information, see “ Understanding
WebL ogic Security Policies’ in Managing WebLogic Security.

c. If asecurity policy specifiesthat the requestor isentitled to aparticular role, the
role is added to the list of roles that are applicable to the subject.

d. This process continues until all security policies that apply to the WebL ogic
resource or the resource container have been evaluated.

5. Thelist of rolesis returned to the WebL ogic Security Framework, where it can be
used as part of other operations, such as access decisions.

Do You Need to Develop a Custom Role
Mapping Provider?

The default (that is, active) security realm for WebL ogic Server includes a WebL ogic
Role Mapping provider. The WebL ogic Role Mapping provider determines dynamic
roles for a specific user (subject) with respect to a specific protected WebL ogic
resource for each of the default users and WebL ogic resources. The WebL ogic Role
Mapping provider supports the deployment and undeployment of roles within the
system. The WebL ogic Role Mapping provider uses the same security policy engine
astheWebL ogic Authorization provider. If you want to use arole mapping mechanism
that al ready exists within your organization, you could create a custom Role Mapping
provider to tie into that system.

8-6 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#understand_policies

How to Develop a Custom Role Mapping Provider

How to Develop a Custom Role Mapping
Provider

If the WebL ogic Role Mapping provider does not meet your needs, you can develop a
custom Role Mapping provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIS’ on page 8-7
2. “Generate an MBean Type Using the WebL ogic MBeanMaker” on page 8-15

3. “Configure the Custom Role Mapping Provider Using the Administration
Console”

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIS’ on page 2-8
m “Determine Which “Provider” Interface You Will Implement” on page 2-10

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Role Mapping provider by following these steps:

m “Implement the RoleProvider SSPI” on page 8-8 or “Implement the
DeployableRoleProvider SSPI” on page 8-8

m “Implement the RoleMapper SSPI” on page 8-9

Note: At least one Role Mapping provider in a security realm must implement the
Depl oyabl eRol eProvi der SSPI, or elseit will beimpossible to deploy Web
applications and EJBs.

Developing Security Providers for WebL ogic Server 8-7

8 Role Mapping Providers

For an example of how to create aruntime class for a custom Role Mapping provider,
see“ Example: Creating the Runtime Class for the Sample Role Mapping Provider” on

page 8-9.

Implement the RoleProvider SSPI

To implement the Rol ePr ovi der SSPI, provide implementations for the methods
described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8 and the
following method:

getRoleM apper
publ i ¢ Rol eMapper get Rol eMapper ()

The get Rol eMapper method obtains the implementation of the Rol eMapper
SSPI. For asingle runtime class called MyRol ePr ovi der | npl .j ava, the
implementation of the get Rol eMapper method would be:

return this;

If there are two runtime classes, then the implementation of the
get Rol eMapper method could be;

return new M/Rol eMapper | npl ;

This is because the runtime class that implements the Rol ePr ovi der SSPI is
used as afactory to obtain classes that implement the Rol eMapper SSPI.

For more information about the Rol ePr ovi der SSPI and the get Rol eMapper
method, see the WebLogic Server 7.0 API Reference Javadoc.

Implement the DeployableRoleProvider SSPI

Toimplement the Depl oyabl eRol ePr ovi der SSPI, provideimplementationsfor the
methods described in “ Understand the Purpose of the “ Provider” SSPIS’ on page 2-8,
“Implement the RoleProvider SSPI” on page 8-8, and the following methods:

deployRole
public void depl oyRol e(Resource resource, java.lang. String
rol eName, java.lang.String[] user AndG oupNanes) throws
Rol eCr eat i onExcepti on

The depl oyRol e method creates arole on behalf of a deployed Web
application or EJB, based on the WebL ogic resource to which the role should

8-8 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/RoleProvider.html

How to Develop a Custom Role Mapping Provider

apply, the name of therole within the application, and the user and group names
that areintherole.

undeployRole
publ i c voi d undepl oyRol e(Resource resource, java.lang. String
rol eNane) throws Rol eRenpval Exception

The undepl oyRol e method deletes arole on behalf of an undeployed Web
application or EJB, based on the WebL ogic resource to which the role applied
and the name of the role within the application.

For more information about the Depl oyabl eRol ePr ovi der SSPI and the
depl oyRol e and undepl oyRol e methods, see the WebLogic Server 7.0 API
Reference Javadoc.

Implement the RoleMapper SSPI

To implement the Rol eMapper SSPI, provide implementations for the following
methods:

getRoles
public Map get Rol es(Subj ect subject, Resource resource,
Cont ext Handl er handl er)

The get Rol es method returns the roles associated with a given subject for a
specified WebL ogic resource, possibly using the optional information specified
in the Cont ext Handl er .

A Cont ext Handl er isahigh-performing WebL ogic classthat allows a
variable number of arguments to be passed as strings to a method. For more
information about Cont ext Handl er s, see the WebLogic Server 7.0 API
Reference Javadoc for the ContextHandler interface.

For moreinformation about the Rol eMapper SSPI andtheget Rol es methods, seethe
WebLogic Server 7.0 API Reference Javadoc.
Example: Creating the Runtime Class for the Sample Role Mapping Provider

Listing 8-1 shows the Sanpl eRol eMapper Provi der | npl . j ava class, which isthe
runtime class for the sample Role Mapping provider. This runtime class includes
implementations for:

Developing Security Providers for WebL ogic Server 8-9

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/DeployableRoleProvider.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/DeployableRoleProvider.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/ContextHandler.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/RoleMapper.html

8 Role Mapping Providers

m Thethree methods inherited from the Securi t yPr ovi der interface:
initialize,getDescriptionandshutdown (asdescribed in “Understand the
Purpose of the “Provider” SSPIS’ on page 2-8.)

m The method inherited from the Rol ePr ovi der SSPI: the get Rol eMapper
method (as described in “Implement the RoleProvider SSPI” on page 8-8).

m Thetwo methodsin the Depl oyabl eRol ePr ovi der SSPI: the depl oyRol e and
undepl oyRol e methods (as described in “Implement the
DeployableRoleProvider SSPI” on page 8-8).

m The method in the Rol eMapper SSPI: the get Rol es method (as described in
“Implement the RoleMapper SSPI” on page 8-9).

Note: The bold face code in Listing 8-1 highlights the class declaration and the
method signatures.

Listing 81 SampleRoleMapper ProviderImpl.java

package exanpl es. security. providers.roles;

i mport java.security.Principal;

inport java.util.Collections;

import java.util.Enuneration;

i mport java.util.HashMap;

inmport java.util.lterator;

import java.util.Mp;

import java.util.Properties;

inport java.util.Set;

i nport javax.security.auth. Subject;

i mport webl ogi c. managenent . security. Provi der MBean,;

i mport webl ogi c. security. W.SPri nci pal s;

i mport webl ogi c. security. service. Cont ext Handl er;

i mport webl ogi c. security. spi.Depl oyabl eRol eProvi der;
i mport webl ogi c. security.spi.Resource;

i mport webl ogi c. security.spi.Rol eCreati onExcepti on;
i mport webl ogi c. security. spi.Rol eMapper;

i mport webl ogi c.security. spi.Rol eRenoval Excepti on;

i mport webl ogi c. security.spi.SecurityServices;

public final class Sanpl eRol eMapper Providerlnmpl inplenents
Depl oyabl eRol eProvi der, Rol eMapper

{
private String description;
private Sanpl eRol eMapper Dat abase dat abase;

8-10 Developing Security Providersfor WebL ogic Server

How to Develop a Custom Role Mapping Provider

private static final Map NO ROLES = Col | ections. unnodi fi abl eMap(new
HashMap(1));

public void initialize(ProviderMBean nbean, SecurityServices services)

{
System out. printl n(" Sanpl eRol eMapper Providerlinpl.initialize");
Sanpl eRol eMapper MBean nyMBean = (Sanpl eRol eMapper MBean) nbean;
description = myMBean. get Description() + "\n" + nmyMBean. getVersion();
dat abase = new Sanpl eRol eMapper Dat abase(myMBean) ;

}
public String getDescription()
{
return description;
}
public void shutdown()
{
System out. printl n(" Sanpl eRol eMapper Provi der | npl . shut down") ;
}
publ i c Rol eMapper get Rol eMapper ()
{
return this;
}
public Map get Rol es(Subj ect subject, Resource resource, ContextHandl er
handl er)
{
System out. printl n(" Sanpl eRol eMapper Provi der | npl . get Rol es") ;
Systemout.println("\tsubject\t=" + subject);
Systemout.println("\tresourcel\t=" + resource);
Map rol es = new HashMap();
Set principals = subject.getPrincipals();
for (Resource res = resource; res != null; res = res. getParentResource())
get Rol es(res, principals, roles);
}
get Rol es(null, principals, roles);
if (roles.isEmpty()) {
return NO_ROLES;
}
return roles;
}

Developing Security Providers for WebL ogic Server 8-11

8 Role Mapping Providers

public void depl oyRol e(Resource resource, String rol eNane, String[]
princi pal Names) throws Rol eCreati onException

{
System out. printl n(" Sanpl eRol eMapper Provi der | npl . depl oyRol ") ;
Systemout.printin("\tresource\t\t=" + resource);
Systemout.printin("\troleNane\t\t= " + rol eNane);
for (int i = 0; principalNanes !'= null &% i < principal Nanes.|ength; i++)
{
Systemout.println("\tprincipal Nanes[" + i + "]\t=" +
princi pal Names[i]);
}
dat abase. set Rol e(resource, rol eNane, principal Nanes);
}

public void undepl oyRol e(Resource resource, String rol eNane) throws
Rol eRenpval Excepti on

{
System out . printl n(" Sanpl eRol eMapper Provi der | npl . undepl oyRol e") ;
Systemout.printIn("\tresource\t=" + resource);
Systemout.printin("\troleName\t= " + rol eNane);
dat abase. renpoveRol e(resource, rol eNane);

}

private void get Rol es(Resource resource, Set principals, Mp roles)

{

for (Enumeration e = database. get Rol es(resource); e.hasMreEl ements();)

{
String role = (String)e. nextEl ement ();
if (roleMatches(resource, role, principals))
rol es.put(role, new Sanpl eSecurityRolelnpl(role, "no description"));
}

}

private bool ean rol eMat ches(Resource resource, String role, Set
pri nci pal sHave)
{
for (Enuneration e = database. get Princi pal sForRol e(resource, role);
e. hasMWor eEl enents();)

{
String principal Want = (String)e. nextEl enent();
if (principal Matches(princi pal Want, princi pal sHave))
return true;
}
}

8-12 Developing Security Providers for WebL ogic Server

How to Develop a Custom Role Mapping Provider

return fal se;

}
private bool ean principal Matches(String principal Want, Set princi pal sHave)
{
if (WLSPrincipal s. get Ever yoneG oupnane() . equal s(princi pal Want) ||
(WLSPri nci pal s. get User sGroupnane() . equal s(pri nci pal Want) &&
I'principal sHave. i sEmpty()) || (WSPrincipal s. get AnonynmousUser nane() .
equal s(princi pal Vant) && princi pal sHave. i sEnpty()) ||
princi pal sCont ai n(pri nci pal sHave, princi pal ant))
{
return true;
}
return fal se;
}

private bool ean principal sContai n(Set principal sHave, String
princi pal NaneWant)

for (lterator i = principalsHave.iterator(); i.hasNext();)

{
Principal principal = (Principal)i.next();
String principal NameHave = princi pal . get Nane();
i f (principal NameWant . equal s(princi pal NaneHave))

{
}

return fal se;

return true;

Listing 8-2 shows the sample Secur i t yRol e implementation that is used along with

the Sanpl eRol eMapper Provi der | npl . j ava runtime class.

Listing 8-2 SampleSecurityRolel mpl.java

package exanpl es. security. providers.roles;
i mport webl ogi c. security.service. SecurityRol e;

public class Sanpl eSecurityRol el nmpl inplenments SecurityRole
{

private String _rol eNang;

Developing Security Providers for WebL ogic Server

8-13

8 Role Mapping Providers

private String _description;
private int _hashCode;

public Sanpl eSecurityRolelnpl (String rol eNane, String description)
{

_rol eNanme = rol eNane;

_description = description;

_hashCode = rol eNane. hashCode() + 17;

}
public bool ean equal s(bj ect secRol e)
{
if (secRole == null)
{
return fal se;
}
if (this == secRol e)
{
return true;
}
if (!(secRole instanceof SanpleSecurityRolelnpl))
{
return fal se;
}
Sanpl eSecurityRol el npl anot her SecRol e = (Sanpl eSecurityRol el npl) secRol e;
if (!_rol eNane. equal s(anot her SecRol e. get Narme()))
{
return fal se;
}
return true;
}

public String toString () { return _rol eNane; }

public int hashCode () { return _hashCode; }

public String getName () { return _rol eNane; }

public String getDescription () { return _description; }

8-14 Developing Security Providersfor WebL ogic Server

How to Develop a Custom Role Mapping Provider

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you
should first:

“Understand Why You Need an MBean Type” on page 2-16
“Determine Which SSPI MBeans to Extend and Implement” on page 2-16

“Understand the Basic Elements of an MBean Definition File (MDF)” on page
2-17

“Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

“Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have made your design decisions, createthe
MBean type for your custom Role Mapping provider by following these steps:

1
2.
3.

4.

“Create an MBean Definition File (MDF)” on page 8-15
“Use the WebL ogic MBeanMaker to Generate the MBean Type” on page 8-16

“Use the WebL ogic MBeanMaker to Create the MBean JAR File (MJF)” on page
8-19

“Install the MBean Type Into the WebL ogic Server Environment” on page 8-20

Notes: Several sample security providers (available under “Code Direct” on the

dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1

Copy the MDF for the sample Role Mapping provider to atext file.

Developing Security Providers for WebLogic Server 8-15

http://dev2dev/code/codedirect.jsp?highlight=codedirect

8 Role Mapping Providers

Note: The MDF for the sample Role Mapping provider is called
Sanpl eRol eMapper. xm .

2. Modify the content of the <MBeanType> and <MBeanAt t r i but e> elementsin
your MDF so that they are appropriate for your custom Role Mapping provider.

3. Add any custom attributes and operations (that is, additional <MBeanAt t ri but e>
and <MBean(per at i on> elements) to your MDF.

4. Savethefile.

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asits input an MDF, and outputs some intermediate Javafiles, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

Theinstructions for generating an MBean type differ based on the design of your
custom Role Mapping provider. Follow the instructions that are appropriate to your
situation:

m “No Custom Operations’ on page 8-16

m “Custom Operations’ on page 8-17

No Custom Operations

8-16

If the MDF for your custom Role Mapping provider does not include any custom
operations, follow these steps:

1. Create anew DOS shell.

2. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

Developing Security Providers for WebL ogic Server

How to Develop a Custom Role Mapping Provider

Custom Operations

wherexm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xmi fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanM aker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple M DFs (in other words,
multiple Role Mapping providers).

Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 8-19.

If the MDF for your custom Role Mapping provider does include custom operations,
consider the following:

|
1
2.

Areyou creating an MBean type for the first time? If so, follow these steps:
Create anew DOS shell.

Type the following command:

java -DVDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . cormp. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) andfi | esdir
isthe location where the WebL ogic MBeanMaker will place the intermediate
files for the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
aready exist in the location specified by fi | esdi r, you are informed that the
exigting files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs(in other words,
multiple Role Mapping providers).

Developing Security Providers for WebLogic Server 8-17

8 Role Mapping Providers

8-18

3. For any custom operations in your MDF, implement the methods using the

method stubs.

. Savethefile.

. Proceed to “ Use the WebL ogic MBeanMaker to Create the MBean JAR File

(MJF)” on page 8-19.

Areyou updating an existing MBean type? If so, follow these steps:

. Copy your existing MBean implementation file to atemporary directory so that

your current method implementations are not overwritten by the WebL ogic
MBeanM aker.

. Create anew DOS shell.

. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
aready exist in the location specified by f i | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple M DFs (in other words,
multiple Role Mapping providers).

. If you modified the MDF to include any custom operations that were not in the

original MDF, implement the methods using the method stubs.

. Savethe version of the MBean implementation file that is complete (that is, has

al methods implemented).

. Copy this MBean implementation file into the directory where the WebL ogic

MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfi | esdir instep 3. (You will be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as aresult of step 3.)

Developing Security Providers for WebL ogic Server

How to Develop a Custom Role Mapping Provider

7. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 8-19.

About the Generated MBean Interface File

The MBean interface file is the client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypically
used intheinitialize method as described in“ Understand the Purpose of the* Provider”
SSPIS’ on page 2-8.

Because the WebL ogic MBeanMaker generates M Bean types from the MDF you
created, the generated M Bean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the

Sanpl eRol eMapper MDF through the WebL ogic MBeanMaker will yield an MBean
interface file called Sanpl eRol eMapper MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Once your have run your MDF through the WebL ogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithinit, you need to package the MBean
files and the runtime classes for the custom Role Mapping provider into an MBean
JAR File (MJF). The WebL ogic MBeanMaker also automates this process.

To create an MJF for your custom Role Mapping provider, follow these steps:
1. Createanew DOS shell.

2. Type the following command:

java -DMIF=jarfile -DFiles=filesdir
webl ogi c. managenent . cormp. WebLogi cMBeanMaker

wherej arfil e isthenamefor the MJF andfi | esdi r isthe location where the
WebL ogic MBeanMaker looks for the filesto JAR into the MJF.

Compilation occurs at this point, so errors are possible. If j arfi | e isprovided,
and no errors occur, an MJF is created with the specified name.

Developing Security Providers for WebLogic Server 8-19

8 Role Mapping Providers

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also has a- DI ncl udeSour ce option, which
controls whether sourcefiles are included into the resulting MJF. Source files
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMJF is not used.

The resulting MJF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Install the MBean Type Into the WebLogic Server Environment

Toinstal an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ server\ | i b\ mbeant ypes directory, where W._HOME is the top-level
installation directory for WebL ogic Server. This“deploys’ your custom Role Mapping
provider—that is, it makes the custom Role Mapping provider manageable from the
WebL ogic Server Administration Console.

Y ou can createinstances of the M Bean type by configuring your custom Role Mapping
provider (see “ Configure the Custom Role Mapping Provider Using the
Administration Console” on page 8-20), and then use those MBean instances from a
GUI, from other Java code, or from APIs. For example, you can use the WebL ogic
Server Administration Console to get and set attributes and invoke operations, or you
can develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see“Backing Up Security Configuration Data” under
“Recovering Failed Servers’ in Creating and Configuring WebL ogic Server Domains.

Configure the Custom Role Mapping Provider Using the
Administration Console

Configuring a custom Role Mapping provider means that you are adding the custom
Role Mapping provider to your security realm, where it can be accessed by
applications requiring role mapping services.

8-20 Developing Security Providersfor WebL ogic Server

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans

How to Develop a Custom Role Mapping Provider

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that isimportant for the person configuring your custom Role
Mapping providers:

m “Managing Role Mapping Providers and Deployment Descriptors’ on page 8-21
m “Enabling Security Role Deployment” on page 8-24

Note: The steps for configuring a custom Role Mapping provider using the
WebL ogic Server Administration Consol e are described under “ Configuring a
Custom Security Provider” in Managing WebLogic Security.

Managing Role Mapping Providers and Deployment Descriptors

Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java 2 Enterprise Edition
(J2EE) and WebL ogic Server deployment descriptors. For Web applications, the
deployment descriptor files(called web. xm and webl ogi c. xn) containinformation
for implementing the J2EE security model, including security role mappings.
Typically, you will want to include this information when first configuring your Role
Mapping providersin the WebL ogic Server Administration Console.

The Administration Console provides an Ignore Security Datain Deployment
Descriptors flag for this purpose, which you or an administrator should deselect the
first time a custom Role Mapping provider is configured. (To locate this flag, click
Security —Realms —realmin the left pane of the Administration Console, where

r eal misthe name of your security realm. Then select the General tab.) When thisflag
is deselected and a Web application or EJB is deployed, WebL ogic Server reads
information from theweb. xm and webl ogi c. xm deployment descriptor files (an
example of aweb. xnl fileisshownin Listing 8-3). Thisinformation is then copied
into the security provider database for the Role Mapping provider.

Listing 8-3 Sample web.xml File

<?xm version="1.0" ?>

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.2//EN
"http://java. sun.conij 2ee/ dt ds/ web-app_2_2. dtd">

<web- app>

Developing Security Providers for WebLogic Server 8-21

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

8 Role Mapping Providers

<cont ext - par an>
<par am name>HTTPS_PCRT</ par am nane>
<par am val ue>7502</ par am val ue>

</ cont ext - par an®

<servl et>
<servl et - name>Securi ty</servl et - nane>
<servl et - cl ass>com beasys. commer ce. ebusi ness. security.
EncryptionServl et </servl et-cl ass>
</servlet>

<servl et - mappi ng>
<servl et - name>Securi ty</servl et - nane>
<url -pattern>/security</url-pattern>
</ servl et - mappi ng>

<sessi on-confi g>
<sessi on-ti neout >15</ sessi on-ti neout >
</ sessi on-confi g>

<security-constraint>
<web- resour ce-col | ecti on>
<web-r esour ce- nane>Adni ni strati on Tool Pages</web-resource-nanme>
<descri pti on>The Admi ni stration Tool Pages</description>

<url -pattern>/tool s/ catal og/ *</url -pattern>
<url-pattern>/tool s/content/*</url-pattern>
<url-pattern>/tool s/order/*</url-pattern>
<url -pattern>/tool s/property/*</url-pattern>
<url-pattern>/tool s/usernmgnt/*</url-pattern>
<url-pattern>/tools/util/*</url-pattern>
<url -pattern>/tool s/ webflow *</url -pattern>
<url-pattern>/tool s/*info.jsp</url-pattern>
<url-pattern>/repository/*</url-pattern>
<url-pattern>/security/*</url-pattern>

<ht t p- met hod>CGET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>

8-22 Developing Security Providers for WebL ogic Server

How to Develop a Custom Role Mapping Provider

<aut h-constrai nt >
<descri pti on>Adm ni strators</description>
<r ol e- nane>Syst emAdni nRol e</ r ol e- name>

</ aut h-constrai nt >

<user - dat a- constrai nt >
<transport-guar ant ee>NONE</ tr ansport - guar ant ee>
</ user - dat a- constrai nt >

</ security-constraint>

<security-constraint>
<web-r esour ce-col | ecti on>
<web-resource- nane>Portal Adnministrati on Tool Pages
</ web- r esour ce- nane>
<description>The Portal Administration Tool Pages</description>

<url-pattern>/tool s/portal/*</url-pattern>

<url -pattern>/tool s/w ps_hone.jsp</url-pattern>
<url-pattern>/repository/*</url-pattern>
<url-pattern>/security/*</url-pattern>

<ht t p- met hod>CGET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- net hod>
</ web-resource-col | ecti on>

<aut h-constrai nt >
<descri pti on>Adm ni strators</description>
<r ol e- nane>Del egat edAdm nRol e</ r ol e- nane>
<r ol e- nane>Syst emAdmi nRol e</r ol e- nane>

</ aut h- constrai nt >

<user - dat a- constrai nt >
<transport-guarant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- constrai nt >

</ security-constraint>

<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- net hod>
</l ogi n-confi g>

<security-rol e>
<descri pti on>Syst em Admi ni strat ors</descripti on>
<r ol e- nane>Syst emAdm nRol e</r ol e- nane>
</security-rol e>

Developing Security Providers for WebLogic Server 8-23

8 Role Mapping Providers

</ web- app>

While you can set additional security role mappingsin the web. xn /webl ogi c. xm
deployment descriptorsand in the Administration Consol e, BEA recommendsthat you
copy the security role mappings defined in the Web application or EJB deployment
descriptors once, then use the Administration Console to define subsequent security
role mappings. Thisis because any changes made to the roles through the
Administration Console during configuration of a Role Mapping provider will not be
persisted to theweb. xm and webl ogi c. xni files. Before you deploy the application
again (which will happen if you redeploy it through the Administration Console,
modify it on disk, or restart WebL ogic Server), you should select the Ignore Security
Datain Deployment Descriptorsflag. If you do not, the security role mappings defined
using the Administration Console will be overwritten by those defined in the
deployment descriptors.

Note: The Ignore Security Data in Deployment Descriptors flag also affects
Authorization providers and Credential Mapping providers. For more
information, see “Managing A uthorization Providers and Deployment
Descriptors” on page 6-26 and “Managing Credential Mapping Providers,
Resource Adapters, and Deployment Descriptors’ on page 10-14,
respectively.

Enabling Security Role Deployment

If you implemented the Depl oyabl eRol ePr ovi der SSPI and want to support
deployable security roles with your custom Role Mapping provider, the person
configuring the custom Role Mapping provider (that is, you or an administrator) must
be surethat the Role Deployment Enabled flag in the WebL ogic Server Administration
Consoleis checked. Otherwise, deployment for the Role Mapping provider is
considered “turned off.” Therefore, if multiple Role Mapping providers are
configured, the Role Deployment Enabled flag can be used to control which Role
Mapping provider is used for security role deployment.

The Role Deployment Enabled flag performs the same function as the Ignore Security
Datain Deployment Descriptors flag (described in “Managing Role Mapping
Providersand Deployment Descriptors’ on page 8-21), but isspecific to Role Mapping
providers.

8-24 Developing Security Providersfor WebL ogic Server

How to Develop a Custom Role Mapping Provider

Note: If both the Role Deployment Enabled flag and the Ignore Security Datain
Deployment Descriptors flag are checked, the Ignore Security Datain
Deployment Descriptors flag takes precedence. In other words, if the Ignore
Security Datain Deployment Descriptors flag is checked, the Role Mapping
provider will not do deployment even if its Role Deployment Enabled flag is
checked.

Caution: Deploying arole for aWebL ogic resource and role name that already
exists will result in the role being overwritten.

Developing Security Providers for WebLogic Server 8-25

8 Role Mapping Providers

8-26 Developing Security Providers for WebL ogic Server

CHAPTER

O Auditing Providers

Auditing is the process whereby information about operating requests and the

outcome of those requests are collected, stored, and distributed for the purposes of
non-repudiation. In WebL ogic Server, an Auditing provider provides this electronic
trail of computer activity.

The following sections describe Auditing provider concepts and functionality, and
provide step-by-step instructions for developing a custom Auditing provider:

m “Auditing Concepts’ on page 9-1
m “Do You Need to Develop a Custom Auditing Provider?’ on page 9-4

m “How to Develop a Custom Auditing Provider” on page 9-6

Note: If you are looking for information about how to write out audit events from a
custom security provider, see Chapter 11, “ Auditing Events From Custom
Security Providers.”

Auditing Concepts

Before you develop an Auditing provider, you need to understand the following
concepts:

m “How Auditing Providers Work With the WebL ogic Security Framework and
Other Types of Security Providers’ on page 9-2

m “Audit Channels’ on page 9-4

Developing Security Providers for WebL ogic Server 9-1

9 Auditing Providers

How Auditing Providers Work With the WebLogic
Security Framework and Other Types of Security
Providers

Figure 9-1 shows how Auditing providers interact with the WebL ogic Security
Framework and other types of security providers (using Authentication providersasan
example). An explanation follows.

Figure9-1 Auditing Providers, the WebL ogic Security Framework, and Other
Security Providers

Resource Container

Request > ‘ EJB H Servet HJSF’ ‘

I
@ login request:

usernamefpassward

WebLogic Security Framework

SecurityServices

» AuditorService

login request: @
usernamefpassward AuditEvent: login AuditEvent: log

Security Providers

YWehlLogic
| Authentication Pravider

Loginhodule { Audit Channels r
Custom @

Authentication Provider

Loginhodule

Auditing Providers

®

Auditing providersinteract with the WebL ogic Security Framework and other types of
security providersin the following manner:

9-2 Developing Security Providers for WebL ogic Server

Auditing Concepts

Note: In Figure 9-1 and the explanation below, the “ other types of security
providers’ are a WebL ogic Authentication provider and a custom
Authentication provider. However, these can be any type of security provider
that is devel oped as described in Chapter 11, “Auditing Events From Custom
Security Providers.”

1. A resource container passes a user’s authentication information (for example, a
username/password combination) to the WebL ogic Security Framework as part of
alogin reguest.

2. The WebL ogic Security Framework passes the information associated with the
login request to the configured Authentication providers.

3. If, inaddition to providing authentication services, the Authentication providers
are designed to post audit events, the Authentication providers will each:

a Instantiate an Audi t Event object. At minimum, the Audi t Event object
includes information about the event type to be audited and an audit severity
level.

Note: An Audi t Event classis created by implementing either the
Audi t Event SSPI or an Audi t Event convenience interface in the
Authentication provider’s runtime class, in addition to the other
security service provider interfaces (SSPIs) the custom Authentication
provider must already implement. For more information about Audit
Events and the Audi t Event SSPI/convenience interfaces, see“Create
an Audit Event” on page 11-4.

b. Make atrusted call to the Auditor Service, passing in the Audi t Event object.

Note: Thisisatrusted call because the Auditor Serviceis aready passed to
the security provider’si ni ti al i ze method as part of its“ Provider”
SSPI implementation. For more information, see “Understand the
Purpose of the “Provider” SSPIS’ on page 2-8.

4. The Auditor Service passesthe Audi t Event object to the configured Auditing
providers' runtime classes (that is, the Audi t Channel SSPI implementations),
enabling audit event recording.

Note: Depending on the Authentication providers implementations of the
Audi t Event convenienceinterface, audit requests may occur both preand
post event, aswell asjust once for an event.

Developing Security Providers for WebL ogic Server 9-3

9 Auditing Providers

5. The Auditing providers' runtime classes use the event type, audit severity and
other information (such as the Audit Context) obtained from the Audi t Event
object to control audit record content. Typically, only one of the configured
Auditing providers will meet all the criteriafor auditing.

Note: For more information about audit severity levels and the Audit Context,
see “Audit Severity” on page 11-8 and “Audit Context” on page 11-9,
respectively.

6. When the criteria for auditing specified by the Authentication providersin their
Audi t Event objectsis met, the appropriate Auditing provider’s runtime class
(that is, the Audi t Channel SSPI implementation) writes out audit recordsin the
manner their implementation specifies.

Note: DependingontheAudi t Channel SSPI implementation, audit records may
be written to afile, adatabase, or some other persistent storage medium
when the criteriafor auditing is met.

Audit Channels

An Audit Channel isthe component of an Auditing provider that determines whether
a security event should be audited, and performs the actual recording of audit
information based on Quality of Service (QoS) policies.

Note: For more information about Audit Channels, see “Implement the
AuditChannel SSPI” on page 9-7.

Do You Need to Develop a Custom Auditing
Provider?

The default (that is, active) security realm for WebL ogic Server includes a WebL ogic
Auditing provider. The WebL ogic Auditing provider records information from a
number of security requests, which are determined internally by the WebL ogic
Security Framework. The WebL ogic Auditing provider aso records the event data
associated with these security requests, and the outcome of the requests.

9-4 Developing Security Providers for WebL ogic Server

Do You Need to Develop a Custom Auditing Provider?

The WebL ogic Auditing provider makes an audit decisioninitswr i t eEvent method,
based on the audit severity level it has been configured with and the audit severity
contained within the Audi t Event object that is passed into the method. (For more
information about Audi t Event objects, see “Create an Audit Event” on page 11-4.

Note: You can change the audit severity level that the WebL ogic Auditing provider
is configured with using the WebL ogic Server Administration Console. For
more information, see “Configuring a WebL ogic Auditing Provider” in
Managing WebLogic Security.

If thereis amatch, the WebL ogic Auditing provider writes audit information to the
Def aul t Audi t Recor der . | og file, which islocated in the

bea_hone\ user _pr oj ect s\ domai n directory (where bea_home represents the
central support directory for all BEA products installed on one machine, and domai n
represents the name of adomain you create). Listing 9-1 is an excerpt from the

Def aul t Audi t Recor der . | og file.

Listing 9-1 DefaultAuditRecorder.log File: Sample Output

Audit Record Begin <Jun 12, 2002 4:55:21 PM> <Severity=l NFORVATI ON\>
<<<Event Type=Rol eManager Audit Event ><Subject:2 Princi pal =cl ass

webl ogi c. security. principal.WSUserlnpl (“installadm nistrator”) Principal =cl ass
webl ogi c. security. princi pal . W.SG oupl npl (“Admi ni strators”) ><<web>><t ype=<web>,
application=_appsdir_certificate_war, uri=certificate.war,
webResource=CertificateServlet, httpMethod=CGET><>>> Audit Record End ####

Specifically, Listing 9-1 shows the Role Manager (a component in the WebL ogic
Security Framework that deal s specifically with roles) recording an audit event to
indicate that an authorized administrator has accessed a protected method in a
certificate servlet.

Each time the WebL ogic Server instance is booted, a new
Def aul t Audi t Recor der . | og fileiscreated (the old Def aul t Audi t Recor der . | og
fileisrenamed to Def aul t Audi t Recor der . | og. ol d).

If you want to write audit information in addition to that which is specified by the
WebL ogic Security Framework, or to an output repository that is not the

Def aul t Audi t Recor der . | og (that is, to asimplefile with a different name/location
or to an existing database), then you need to devel op a custom Auditing provider.

Developing Security Providers for WebL ogic Server 9-5

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#auditprovider

9 Auditing Providers

How to Develop a Custom Auditing Provider

If the WebL ogic Auditing provider does not meet your needs, you can develop a
custom Auditing provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIS’ on page 9-6
2. “Generate an MBean Type Using the WebL ogic MBeanMaker” on page 9-9

3. “Configure the Custom Auditing Provider Using the Administration Console” on
page 9-15

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIS’ on page 2-8

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Auditing provider by following these steps:

m “Implement the AuditProvider SSPI” on page 9-6
m “Implement the AuditChannel SSPI” on page 9-7

For an example of how to create a runtime class for a custom Auditing provider, see
“Example: Creating the Runtime Class for the Sample Auditing Provider” on page 9-7.

Implement the AuditProvider SSPI

To implement the Audi t Provi der SSPI, provide implementations for the methods
described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8 and the
following method:

getAuditChannel
publ i ¢ Audit Channel get Audit Channel ();

9-6 Developing Security Providers for WebL ogic Server

How to Develop a Custom Auditing Provider

The get Audi t Channel method obtains the implementation of the

Audi t Channel SSPI. For asingle runtime class called

MyAudi t Provi der | npl .j ava, the implementation of the get Audi t Channel
method would be:

return this;

If there are two runtime classes, then the implementation of the
get Audi t Channel method could be:

return new MyAudit Channel | npl ;

Thisis because the runtime class that implements the Audi t Pr ovi der SSPI is
used as a factory to obtain classes that implement the Audi t Channel SSPI.

For more information about the Audi t Pr ovi der SSPI and the get Audi t Channel
method, see the WebLogic Server 7.0 API Reference Javadoc.

Implement the AuditChannel SSPI

To implement the Audi t Channel SSPI, provide an implementation for the following
method:

writeEvent
public void witeEvent (AuditEvent event)

Thew it eEvent method writes an audit record based on the information
specified in the Audi t Event object that is passed in. For more information
about Audi t Event objects, see“ Create an Audit Event” on page 11-4.

For more information about the Audi t Channel SSPI and thewr i t eEvent method,
see the WebLogic Server 7.0 API Reference Javadoc.

Example: Creating the Runtime Class for the Sample Auditing Provider

Listing 9-2 showsthe Sanpl eAudi t Pr ovi der | npl . j ava class, whichisthe runtime
class for the sample Auditing provider. This runtime class includes implementations
for:

m Thethree methods inherited from the Securi t yPr ovi der interface:
initialize,getDescriptionandshutdown (asdescribedin“Understand the
Purpose of the “Provider” SSPIS” on page 2-8.)

Developing Security Providers for WebL ogic Server 9-7

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditProvider.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditChannel.html

Auditing Providers

m The method inherited from the Audi t Pr ovi der SSPI: the get Audi t Channel
method (as described in “Implement the AuditProvider SSPI” on page 9-6).

m The method in the Audi t Channel SSPI: thewr i t eEvent method (as described
in “Implement the AuditChannel SSPI” on page 9-7).

Note: The bold face code in Listing 9-2 highlights the class declaration and the
method signatures.

Listing 9-2 SampleAuditProviderImpl.java

package exanpl es.security. providers. audit;

import java.io.File;

i mport java.io.FileQutputStream

i mport java.io. | OException;

i mport java.io.PrintStream

i mport webl ogi c. managenent . security. Provi der MBean;
i mport webl ogi c. security. spi.AuditChannel;

i nport webl ogi c. security.spi.AuditEvent;

i mport webl ogi c.security. spi.AuditProvider;

i mport webl ogi c. security.spi.SecurityServices;

public final class Sanpl eAudit Provi derlnpl inplements AuditChannel, AuditProvider

{

9-8

private String description;
private PrintStream| og;

public void initialize(Provider©MBean nbean, SecurityServices services)

{

}

System out. println("Sanpl eAudi t Providerlinpl.initialize");
description = nbean. getDescription() + "\n" + nbean. getVersion();

Sanpl eAudi t or MBean nmyMBean = (Sanpl eAudi t or MBean) nbean;
File file = new Fil e(myMBean. get LogFi | eNane());
Systemout.printin("\tlogging to " + file.getAbsolutePath());

try {

log = new PrintStrean(new Fil eQutputStream(file), true);
} catch (I Oexception e) {

t hrow new Runti meException(e.toString());
}

public String getDescription()

{

Developing Security Providers for WebL ogic Server

How to Develop a Custom Auditing Provider

return description;

}

public void shutdown()

{

System out . printl n(" Sanpl eAudi t Provi der | npl . shut down") ;
| og. close();

public AuditChannel getAuditChannel ()

{

return this;

}

public void witeEvent (AuditEvent event)

{

// Wite the event out to the sanple Auditing provider’'s log file using
// the event's "toString" nethod.
| og. println(event);

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you

should first:

m “Understand Why You Need an MBean Type” on page 2-16

m “Determine Which SSPI MBeans to Extend and Implement” on page 2-16

m “Understand the Basic Elements of an MBean Definition File (MDF)” on page

2-17

“Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

“Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have made your design decisions, createthe
MBean type for your custom Auditing provider by following these steps:

Developing Security Providers for WebL ogic Server 9-9

9 Auditing Providers

1. “Create an MBean Definition File (MDF)” on page 9-10
2. “Usethe WebL ogic MBeanMaker to Generate the MBean Type’ on page 9-10

3. “Usethe WebL ogic MBeanMaker to Create the MBean JAR File (MJF)” on page
9-13

4. “Install the MBean Type Into the WebL ogic Server Environment” on page 9-14

Notes: Several sample security providers (available under “Code Direct” on the
dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Auditing provider to atext file.

Note: The MDF for the sample Auditing provider is called
Sanpl eAudi tor. xm .

2. Modify the content of the <MBeanType> and <MBeanAt t ri but e> elementsin
your MDF so that they are appropriate for your custom Auditing provider.

3. Add any custom attributes and operations (that is, additional <MBeanAt t ri but e>
and <MBeanQper at i on> elements) to your MDF.

4, Savethefile.

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asitsinput an MDF, and outputs some intermediate Javafiles, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

9-10 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Auditing Provider

Theinstructions for generating an MBean type differ based on the design of your
custom Auditing provider. Follow the instructions that are appropriate to your
situation:

m “No Custom Operations’ on page 9-11
m “Custom Operations’ on page 9-11

No Custom Operations

If the M DF for your custom Auditing provider does not include any custom operations,
follow these steps:

1. Create anew DOS shell.

2. Type the following command:

java -DVDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . cormp. WebLogi cMBeanMaker

where xm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanM aker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs(in other words,
multiple Auditing providers).

3. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 9-13.
Custom Operations

If the MDF for your custom Auditing provider does include custom operations,
consider the following:

m Areyou creating an MBean type for the first time? If so, follow these steps:
1. Create anew DOS shell.

Developing Security Providers for WebL ogic Server 9-11

9 Auditing Providers

2. Typethe following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
files for the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by <fi | esdi r >, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple M DFs (in other words,
multiple Auditing providers).

3. For any custom operations in your MDF, implement the methods using the
method stubs.

4. Savethefile.

5. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 9-13.

m Areyou updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to atemporary directory so that
your current method implementations are not overwritten by the WebL ogic
MBeanMaker.

2. Create anew DOS shell.

3. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
isthe location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

9-12 Developing Security Providers for WebL ogic Server

How to Develop a Custom Auditing Provider

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple MDFs (in other words,
multiple Auditing providers).

4. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

5. Savethe version of the MBean implementation file that is complete (that is, has
all methods implemented).

6. Copy this MBean implementation file into the directory where the WebL ogic
MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfil esdir instep 3. (You will be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as aresult of step 3.)

7. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 9-13.

About the Generated MBean Interface File

The MBean interface file is the client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypically
used intheinitialize method as described in “ Understand the Purpose of the“ Provider”
SSPIs” on page 2-8.

Because the WebL ogic MBeanMaker generates M Bean types from the MDF you
created, the generated M Bean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the Sanpl eAudi t or
MDF through the WebL ogic MBeanMaker will yield an M Bean interface file called
Sanpl eAudi t or MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Once your have run your MDF through the WebL ogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithiniit, you need to packagethe MBean
filesand the runtime classesfor the custom Auditing provider into an MBean JAR File
(MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom Auditing provider, follow these steps:

Developing Security Providers for WebLogic Server 9-13

9 Auditing Providers

1. Create anew DOS shell.

2. Type the following command:

java -DMJF=jarfile -DFiles=filesdir
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherej arfil e isthe namefor the MJF and <f i | esdi r > isthe location where
the WebL ogic MBeanMaker looks for the filesto JAR into the MJF.

Compilation occurs at this point, so errors are possible. If j arfi | e is provided,
and no errors occur, an MJF is created with the specified name.

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also has a- DI ncl udeSour ce option, which
controls whether source files are included into the resulting MJF. Source files
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMIF is not used.

The resulting MJF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Install the MBean Type Into the WebLogic Server Environment

Toinstal an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ server\ | i b\ mbeant ypes directory, where W._HOME is the top-level
installation directory for WebL ogic Server. This “deploys’ your custom Auditing
provider—that is, it makes the custom Auditing provider manageable from the
WebL ogic Server Administration Console.

Y ou can create instances of the MBean type by configuring your custom Auditing
provider (see“ Configure the Custom Auditing Provider Using the Administration
Console” on page 9-15), and then use those M Bean instances from a GUI, from other
Java code, or from APIs. For example, you can use the WebL ogic Server
Administration Console to get and set attributes and invoke operations, or you can
develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see“Backing Up Security Configuration Data” under
“Recovering Failed Servers’ in Creating and Configuring WebLogic Server Domains.

9-14 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans

How to Develop a Custom Auditing Provider

Configure the Custom Auditing Provider Using the
Administration Console

Configuring a custom Auditing provider means that you are adding the custom
Auditing provider to your security realm, where it can be accessed by security
providers requiring audit services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
containsinformation that isimportant for the person configuring your custom Auditing
providers:

m Configuring Audit Severity

Note: The steps for configuring a custom Auditing provider using the WebL ogic
Server Administration Console are described under “ Configuring a Custom
Security Provider” in Managing WebLogic Security.

Configuring Audit Severity
During the configuration process, an Auditing provider’ s audit severity must be set to
one of the following severity levels:
m | NFORMATI ON
® WARNI NG
®m ERROR
m SUCCESS
m FAl LURE

This severity represents the level at which the custom Auditing provider will initiate
auditing.

Developing Security Providers for WebLogic Server 9-15

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

9 Auditing Providers

9-16 Developing Security Providers for WebL ogic Server

CHAPTER

10 Credential Mapping
Providers

Credential mapping is the process whereby alegacy system's database is used to
obtain an appropriate set of credentials to authenticate users to atarget resource. In
WebL ogic Server, a Credential Mapping provider is used to provide credential
mapping services and bring new types of credentials into the WebL ogic Server
environment.

The following sections describe Credential Mapping provider concepts and
functionality, and provide step-by-step instructionsfor devel oping acustom Credential
Mapping provider:

m “Credential Mapping Concepts’ on page 10-1

m “Do You Need to Develop a Custom Credential Mapping Provider?’ on page
10-3

m “How to Develop a Custom Credential Mapping Provider” on page 10-4

Credential Mapping Concepts

A subject, or source of a WebL ogic resource request, has security-related attributes
called credentials. A credential may contain information used to authenticate the
subject to new services. Such credentials include username/password combinations,
Kerberos tickets, and public key certificates. Credentials might also contain data that
alows a subject to perform certain activities. Cryptographic keys, for example,
represent credentials that enable the subject to sign or encrypt data.

Developing Security Providers for WebL ogic Server 10-1

10 credential Mapping Providers

A credential map isamapping of credentials used by WebL ogic Server to credentials
used in alegacy (or any remote) system, which tell WebL ogic Server how to connect
to agiven resource in that system. In other words, credential maps allow WebL ogic
Server to log in to aremote system on behalf of a subject that has aready been
authenticated. Y ou can map credentials in thisway by developing a Credential
Mapping provider.

The Credential Mapping Process

Figure 10-1 illustrates how Credential Mapping providersinteract with the WebL ogic
Security Framework during the credential mapping process, and an explanation
follows.

Figure10-1 Credential Mapping Providersand the Credential M apping Process

Resource Container

Resource Adapters ‘ -

‘ JSPs H Servets H EJBs ‘ i
| | ._uszi credentials Target
i 0 ACCESS Resource

request: passes
aubject, resource passes credentials to
identifier,
credential type

h 4

WebLogic Security Framework

Security Providers @

getCredentials()

returns matching credentials

.
Credential Mapping ansult Database
Provider
Legacy System

Generally, credential mapping is performed in the following manner:

10-2 Developing Security Providers for WebL ogic Server

Do You Need to Develop a Custom Credential Mapping Provider?

1. Application components, such as JavaServer Pages (JSPs), servlets, Enterprise
JavaBeans (EJBs), or Resource Adapters call into the WebL ogic Security
Framework through the appropriate resource container. As part of the call, the
application component passes in the subject (that is, the “who” making the
request), the WebL ogic resource (that is, the “what” that is being requested) and
information about the type of credentials needed to access the WebL ogi ¢ resource.

2. The WebL ogic Security Framework sends the application component’s request
for credentials to a configured Credential Mapping provider that handles the type
of credentials needed by the application component.

3. The Credential Mapping provider consults the legacy system's database to obtain
aset of credentials that match those requested by the application component.

4. The Credential Mapping provider returns the credentials to the WebL ogic
Security Framework.

5. The WebL ogic Security Framework passes the credentials back to the requesting
application component through the resource container.

The application component uses the credential s to access the external system.
The external system might be a database resource, such as an Oracle or SQL
Server.

Do You Need to Develop a Custom Credential
Mapping Provider?

The default (that is, active) security realm for WebL ogic Server includes aWebL ogic
Credential Mapping provider. The WebL ogic Credential Mapping provider maps
WebL ogic Server users and groups to the appropriate username/password credentials
that may be required by other, external systems. If the type of credential mapping you
want is between WebL ogic Server users and groups and username/password
credentialsin another system, then the WebL ogic Credential Mapping provider is
sufficient. However, if you want to map WebL ogic Server users and groups to other
typesof credentials (for example, Kerberostickets), then you need to devel op acustom
Credential Mapping provider.

Developing Security Providers for WebL ogic Server 10-3

10 credential Mapping Providers

How to Develop a Custom Credential
Mapping Provider

If the WebL ogic Credential Mapping provider does not meet your needs, you can
develop acustom Credential Mapping provider by following these steps:

1. “Create Runtime Classes Using the Appropriate SSPIS’ on page 10-4
2. “Generate an MBean Type Using the WebL ogic MBeanMaker” on page 10-7

3. “Configure the Custom Credential Mapping Provider Using the Administration
Console” on page 10-14

Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:
m “Understand the Purpose of the “Provider” SSPIS” on page 2-8
m “Determine Which “Provider” Interface You Will Implement” on page 2-10

m “Understand the SSPI Hierarchy and Determine Whether You Will Create One
or Two Runtime Classes’ on page 2-12

When you understand thisinformation and have made your design decisions, createthe
runtime classes for your custom Credential Mapping provider by following these
steps:

m “Implement the Credential Provider SSPI” on page 10-5 or “Implement the
DeployableCredential Provider SSPI” on page 10-5

= “Implement the CredentialMapper SSPI” on page 10-6

Note: At least one Credential Mapping provider in asecurity realm must implement
the Depl oyabl eCr edent i al Provi der SSPI, or elseit will be impossible to
deploy Resource Adapters.

10-4 Developing Security Providers for WebL ogic Server

How to Develop a Custom Credential Mapping Provider

Implement the CredentialProvider SSPI

To implement the Cr edent i al Provi der SSPI, provide implementations for the
methods described in “Understand the Purpose of the “Provider” SSPIS’ on page 2-8
and the following method:

getCredentia Provider
public Credenti al Mapper get Credential Provider();

The get Cr edent i al Provi der method obtains the implementation of the
Credent i al Mapper SSPI. For asingle runtime class called

M/Cr edent i al Mapper Provi der | npl .j ava (asin Figure 2-3), the
implementation of the get Cr edent i al Provi der method would be:

return this;

If there are two runtime classes, then the implementation of the
get Credent i al Provi der method could be;

return new MyCredenti al Mapper | npl ;

Thisis because the runtime class that implementsthe Cr edent i al Provi der
SSPI is used as a factory to obtain classes that implement the
Credent i al Mapper SSPI.

For more information about the Cr edent i al Provi der SSPI and the
get Credent i al Provi der method, see the WebL ogic Server 7.0 API Reference
Javadoc.

Implement the DeployableCredentialProvider SSPI

To implement the Depl oyabl eCr edent i al Provi der SSPI, provide
implementations for the methods described in “ Understand the Purpose of the
“Provider” SSPIS’ on page 2-8, “Implement the Credential Provider SSPI” on page
10-5, and the following methods:

deployCredential M apping
publ i c voi d depl oyCr edent i al Mappi ng(Resour ce resource, String
initiatingPrincipal, String eisUsernane, String
ei sPasswor d)t hrows ResourceCreati onExcepti on;

Thedepl oyCr edent i al Mappi ng method deploys credential maps (that is,
creates a credential mapping on behalf of a deployed Resource Adapter in a
database). If the mapping aready exigts, it isremoved and replaced by this

Developing Security Providers for WebL ogic Server 10-5

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/CredentialProvider.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/CredentialProvider.html

10 credential Mapping Providers

mapping. Ther esour ce parameter representsthe WebL ogic resourceto which
theinitiating principal (represented asa st ri ng) is requesting access. The
Enterprise Information System (EIS) username and password are the
credentialsin the legacy (remote) system to which the credential maps are
being made.

undepl oyCredential M appings
public voi d undepl oyCredenti al Mappi ngs(Resource resource)
t hrows Resour ceRenpval Excepti on;

Theundepl oyCr edent i al Mappi ngs method undeploys credential maps (that
is, deletes a credential mapping on behalf of an undeployed Resource Adapter
from adatabase). Ther esour ce parameter represents the WebL ogic resource
for which the mapping should be removed.

Note: Thedepl oyCr edent i al Mappi ng/undepl oyCr edent i al Mappi ngs
methods operate on username/password credentials only.

For more information about the Depl oyabl eCr edent i al Provi der SSPI and the
depl oyCr edent i al Mappi ng/undepl oyCr edent i al Mappi ngs methods, see the
WebLogic Server 7.0 API Reference Javadoc.

Implement the CredentialMapper SSPI

10-6

To implement the Cr edent i al Mapper SSPI, you must provide implementations for
the following methods:

getCredentials
public java.util.Vector getCredential s(Subject requestor,
Subj ect initiator, Resource resource, String[]
credenti al Types);

Theget Credent i al s method obtains the appropriate set of credentialsfor the
target resource, based on the identity of the subject. Thisversion of the method
returnsalist of matching credentials for all of the principals within the subject
(asavector) by consulting the remote system’ s database.

getCredentials
public java.lang. Cbject getCredential s(Subject requestor,
String initiator, Resource resource, String[]
credenti al Types);

Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/DeployableCredentialProvider.html

How to Develop a Custom Credential Mapping Provider

Theget Cr edent i al s method obtainsthe appropriate set of credentialsfor the
target resource, based on the identity of the subject. Thisversion of the method
returns one credential for the specified subject (as an object) by consulting the
remote system’ s database.

For more information about the Cr edent i al Mapper SSPI and theget Credenti al s
methods, see the WebLogic Server 7.0 API Reference Javadoc.

Generate an MBean Type Using the WebLogic
MBeanMaker

Before you start generating an MBean type for your custom security provider, you
should first:

“Understand Why You Need an MBean Type” on page 2-16
“Determine Which SSPI M Beans to Extend and |mplement” on page 2-16

“Understand the Basic Elements of an MBean Definition File (MDF)” on page
2-17

“Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console” on page 2-19

“Understand What the WebL ogic MBeanMaker Provides’ on page 2-21

When you understand thisinformation and have made your design decisions, createthe
MBean type for your custom Credential Mapping provider by following these steps:

1
2.
3.

“Create an MBean Definition File (MDF)” on page 10-8
“Use the WebL ogic MBeanMaker to Generate the MBean Type” on page 10-8

“Use the WebL ogic MBeanMaker to Create the MBean JAR File (MJF)” on page
10-12

“Install the MBean Type Into the WebL ogic Server Environment” on page 10-13

Developing Security Providers for WebL ogic Server 10-7

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/CredentialMapper.html

10 credential Mapping Providers

Notes: Several sample security providers (available under “Code Direct” on the
dev2dev Web site) illustrate how to perform these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

1. Copy the MDF for the sample Authentication provider to atext file.

Note: The MDF for the sample Authentication provider iscalled
Sanpl eAut henti cat or. xni . (Thereis currently no sample Credential
Mapping provider.)

2. Modify the content of the <MBeanType> and <MBeanAt t ri but e> elementsin
your MDF so that they are appropriate for your custom Credential Mapping
provider.

3. Add any custom attributes and operations (that is, additional <MBeanAt t ri but e>
and <MBean(per at i on> elements) to your MDF.

4, Savethefile.

Note: A complete reference of MDF element syntax is available in Appendix A,
“MBean Definition File (MDF) Element Syntax.”

Use the WebLogic MBeanMaker to Generate the MBean Type

Once you create your MDF, you are ready to run it through the WebL ogic
MBeanMaker. The WebL ogic MBeanMaker is currently a command-line utility that
takes asitsinput an MDF, and outputs some intermediate Javafiles, including an
MBean interface, an MBean implementation, and an associated MBean information
file. Together, these intermediate files form the M Bean type for your custom security
provider.

Theinstructions for generating an MBean type differ based on the design of your
custom Credential Mapping provider. Follow the instructions that are appropriate to
your situation:

m “No Optional SSPI MBeans and No Custom Operations’ on page 10-9

10-8 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Credential Mapping Provider

“Optiona SSPI MBeans or Custom Operations’ on page 10-9

No Optional SSPI MBeans and No Custom Operations

If the MDF for your custom Credential Mapping provider does not implement any
optional SSPI MBeansand does not include any custom operations, follow these steps:

1. Create anew DOS shell.

2. Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

where xm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanM aker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple M DFs (in other words,
multiple Credential Mapping providers).

Proceed to “ Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 10-12.

Optional SSPI MBeans or Custom Operations

If the MDF for your custom Credential Mapping provider does implement some
optional SSPI MBeans or does include custom operations, consider the following:

1
2.

Areyou creating an MBean type for the first time? If so, follow these steps:
Create anew DOS shell.

Type the following command:

java -DMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

Developing Security Providers for WebL ogic Server 10-9

10 credential Mapping Providers

where xn Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
files for the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r, you are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanMaker processesone MDF at atime. Therefore, you
may haveto repeat thisprocessif you have multiple MDFs (in other words,
multiple Credential Mapping providers).

3. If you implemented optional SSPI MBeansin your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

M/Cr edent i al Mapper, the MBean implementation file to be edited is named
M/Cr edent i al Mapper | npl . j ava.

b. For each optional SSPI MBean that you implemented in your MDF, copy the
method stubs from the “Mapping M DF Operation Declarationsto JavaMethod
Signatures Document” (available on the dev2dev Web site) into the MBean
implementation file, and implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

4. If you included any custom operationsin your MDF, implement the methods
using the method stubs.

5. Savethefile.

6. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 10-12.

m Areyou updating an existing MBean type? If so, follow these steps:

1. Copy your existing MBean implementation file to atemporary directory so that
your current method implementations are not overwritten by the WebL ogic
MBeanM aker.

2. Create anew DOS shell.

10-10 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Credential Mapping Provider

3.

4.

Type the following command:

java -DVMDF=xm file -DFiles=filesdir -DcreateStubs=true
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherexm Fi | e isthe MDF (the XML MBean Description File) and fi | esdi r
is the location where the WebL ogic MBeanMaker will place the intermediate
filesfor the MBean type.

Whenever xni fi | e isprovided, anew set of output filesis generated. If files
already exist in the location specified by fi | esdi r are informed that the
existing files will be overwritten and are asked to confirm.

Each time you use the - Dcr eat eSt ubs=t r ue flag, it overwrites any existing
MBean implementation file.

Note: TheWebL ogic MBeanM aker processesone MDF at atime. Therefore, you
may haveto repeat this processif you have multiple MDFs (in other words,
multiple Credential Mapping providers).

If you implemented optional SSPI MBeansin your MDF, follow these steps:

a. Locate the MBean implementation file.

The MBean implementation file generated by the WebL ogic MBeanMaker is
named MBeanNanel npl . j ava. For example, for the MDF named

Sanpl eCr edent i al Mapper , the MBean implementation file to be edited is
named Sanpl eCr edent i al Mapper | npl . j ava.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebL ogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the
method implementations from your existing M Bean implementation file into
the newly-generated MBean implementation file (or, alternatively, adding the
new methods from the newly-generated M Bean implementation file to your
existing MBean implementation file), and verifying that any changes to
method signatures are reflected in the version of the MBean implementation
file that you are going to use (for methods that exist in both MBean
implementation files).

Developing Security Providers for WebLogic Server 10-11

10 credential Mapping Providers

d. If you modified the MDF to implement optional SSPI MBeansthat werenot in
the original MDF, copy the method stubs from the “Mapping MDF Operation
Declarations to Java Method Signatures Document” (available on the dev2dev
Web site) into the M Bean implementation file, and implement each method. Be
sure to also provide implementations for any methods that the optional SSPI
MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
origina MDF, implement the methods using the method stubs.

6. Savetheversion of the MBean implementation file that is complete (that is, has
al methods implemented).

7. Copy this MBean implementation file into the directory where the WebL ogic
MBeanMaker placed the intermediate files for the MBean type. You specified
thisasfil esdir instep 3. (You will be overriding the MBean implementation
file generated by the WebL ogic MBeanMaker as aresult of step 3.)

8. Proceed to “Use the WebL ogic MBeanMaker to Create the MBean JAR File
(MJF)” on page 10-12.

About the Generated MBean Interface File

The MBean interfacefile is the client-side API to the MBean that your runtime class
or your MBean implementation will use to obtain configuration data. It istypicaly
used intheinitialize method as described in “ Understand the Purpose of the* Provider”
SSPIs” on page 2-8.

Because the WebL ogic MBeanMaker generates M Bean types from the MDF you
created, the generated M Bean interface file will have the name of the MDF, plusthe
text “MBean” appended to it. For example, the result of running the

M/Cr edent i al Mapper MDF through the WebL ogic MBeanMaker will yield an
MBean interface file called MyCr edent i al Mapper MBean. j ava.

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Once your have run your MDF through the WebL ogic MBeanM aker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementationsfor the appropriate methodswithin it, you need to packagethe MBean
files and the runtime classes for the custom Credential Mapping provider into an
MBean JAR File (MJF). The WebLogic MBeanMaker al so automates this process.

10-12 Developing Security Providers for WebL ogic Server

http://dev2dev/code/codedirect.jsp?highlight=codedirect
http://dev2dev/code/codedirect.jsp?highlight=codedirect

How to Develop a Custom Credential Mapping Provider

To create an MJF for your custom Credential Mapping provider, follow these steps:
1. Create anew DOS shell.

2. Type the following command:

java -DMIF=jarfile -DFiles=filesdir
webl ogi c. managenent . conmo. WebLogi cMBeanMaker

wherej arfil e isthe namefor the MJF andfi | esdi r isthelocation wherethe
WebL ogic MBeanMaker looks for the files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If j ar fi | e isprovided,
and no errors occur, an MJF is created with the specified name.

Notes: If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebL ogic MBeanMaker also hasa- DI ncl udeSour ce option, which
controls whether sourcefiles areincluded into the resulting MJF. Sourcefiles
include both the generated source and the MDF itself. The default isf al se.
This option isignored when - DMJIF is not used.

The resulting MJF can be installed into your WebL ogic Server environment, or
distributed to your customers for installation into their WebL ogic Server
environments.

Install the MBean Type Into the WebLogic Server Environment

Toinstall an MBean type into the WebL ogic Server environment, copy the MJF into
the W._HOVE\ server\ | i b\ nbeant ypes directory, where W._HOMVE is the top-level
installation directory for WebL ogic Server. This “deploys’ your custom Credential
Mapping provider—that is, it makes the custom Credential Mapping provider
manageabl e from the WebL ogic Server Administration Console.

Y ou can create instances of the MBean type by configuring your custom Credential
Mapping provider (see* Configurethe Custom Credential Mapping Provider Using the
Administration Console” on page 10-14), and then use those MBean instances from a
GUI, from other Java code, or from APIs. For example, you can use the WebL ogic
Server Administration Console to get and set attributes and invoke operations, or you
can develop other Java objects that instantiate MBeans and automatically respond to
information that the MBeans supply. We recommend that you back up these MBean
instances. For moreinformation, see“Backing Up Security Configuration Data’ under
“Recovering Failed Servers’ in Creating and Configuring WebL ogic Server Domains.

Developing Security Providers for WebLogic Server 10-13

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#backing_up_security_mbeans

10 credential Mapping Providers

Configure the Custom Credential Mapping Provider
Using the Administration Console

Configuring a custom Credential Mapping provider means that you are adding the
custom Credential Mapping provider to your security realm, where it can be accessed
by applications requiring credential mapping services.

Configuring custom security providersis an administrative task, but it is atask that
may also be performed by developers of custom security providers. This section
contains information that isimportant for the person configuring your custom
Credential Mapping providers:

m “Managing Credential Mapping Providers, Resource Adapters, and Deployment
Descriptors’” on page 10-14

m “Enabling Deployable Credential Mappings’ on page 10-16

Note: The steps for configuring a custom Credential Mapping provider using the
WebL ogic Server Administration Consol e are described under “ Configuring a
Custom Security Provider” in Managing WebLogic Security.

Managing Credential Mapping Providers, Resource Adapters, and Deployment

Descriptors

Some application components, such as Resource Adaptersand Web applications, store
relevant deployment information in Java 2 Enterprise Edition (J2EE) deployment
descriptors. For Resource Adapters, the deployment descriptor file (called

webl ogi c-ra. xn) contains information such as username/password combinations
that are used to create credential mappings. Typically, you will want to include this
credential mapping information when first configuring your Credential Mapping
provider in the WebL ogic Server Administration Console.

The Administration Console provides an Ignore Security Datain Deployment
Descriptors flag for this purpose, which you or an administrator should deselect the
first time a custom Credential Mapping provider is configured. (To locate this flag,
click Security —Realms —realmin theleft pane of the Administration Console, where
r eal misthe name of your security realm. Then select the General tab.) When thisflag
is deselected and a Resource Adapter is deployed, WebL ogic Server reads credential

10-14 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider
http://e-docs.bea.com/wls/docs81b/secmanage/realm.html#custprovider

How to Develop a Custom Credential Mapping Provider

mappings from the webl ogi c- ra. xn deployment descriptor file, an example of
which isshown in Listing 10-1. Thisinformation is then copied into the security
provider database for the Credential Mapping provider.

Listing 10-1 Sample weblogic-ra.xml File

<webl ogi c- connecti on- f act ory-dd>
<connecti on-fact ory- name>Logi cal NameO Bl ackBoxNoTx</ connecti on-f act ory- nane>
<j ndi - name>ei s/ Bl ackBoxNoTxConnect or JNDI NAME</ j ndi - nane>

<map- confi g- property>
<map- confi g- property- name>Connect i onURL</ map- confi g- pr operty- name>
<map- confi g- property-val ue>j dbc: poi nt base: server://| ocal host/ deno
<map- confi g- property-val ue>

</ map- confi g- property>

<security-principal - map>
<map-entry>
<initiating-principal>*</initiating-principal>
<resource-princi pal >
<r esour ce- user name>exanpl es</r esour ce- user nane>
<r esour ce- passwor d>exanpl es</ r esour ce- passwor d>
</ resour ce-pri nci pal >
</ map-entry>
</ security-principal - map>

</ webl ogi c-connecti on-factory-dd>

Note: The sample Resource Adapter deployment descriptor showninListing 10-1is
located in
W._HOMVE\ sanpl es\ server\ src\exanpl es\j connector\si npl e\rar s\
META- | NF, where W._HOVE is the top-level installation directory for
WebL ogic Server.

While you can set additional credential mappingsin deployment descriptorsand inthe
Administration Console, BEA recommends that you copy the credential mappings
defined in the Resource Adapter’s deployment descriptor once, then use the
Administration Consol eto define subsequent credential mappings. Thisisbecause any
changes made to the credential mappings through the Administration Console during
configuration of a Credential Mapping provider will not be persisted to the

webl ogi c-ra. xm file. Before you deploy the application again (which will happen
if you redeploy it through the Administration Console, modify it on disk, or restart

Developing Security Providers for WebLogic Server 10-15

10 credential Mapping Providers

WebL ogic Server), you should select the Ignore Security Datain Deployment
Descriptors flag. If you do not, the credential mappings defined using the
Administration Console will be overwritten by those defined in the deployment
descriptor.

Note: The Ignore Security Datain Deployment Descriptors flag also affects Role
Mapping and Authorization providers. For more information, see “Managing
Authorization Providers and Deployment Descriptors’ on page 6-26 and
“Managing Role Mapping Providers and Deployment Descriptors’ on page
8-21, respectively.

Enabling Deployable Credential Mappings

If youimplemented the Depl oyabl eCr edent i al Provi der SSPI and want to support
deployable credential mappings with your custom Credential Mapping provider, the
person configuring the custom Credential Mapping provider (that is, you or an
administrator) must be sure that the Credential Mapping Deployment Enabled flag in
the Administration Console is checked. Otherwise, deployment for the Credential
Mapping provider is considered “turned off.” Therefore, if multiple Credential
Mapping providers are configured, the Credential Mapping Deployment Enabled flag
can be used to control which Credential Mapping provider is used for credential
mapping deployment.

The Credential Mapping Deployment Enabled flag performs the same function asthe
Ignore Security Data in Deployment Descriptors flag (described in “Managing
Credential Mapping Providers, Resource Adapters, and Deployment Descriptors’ on
page 10-14), but is specific to Credential Mapping providers.

Note: If both the Credential Mapping Deployment Enabled flag and the Ignore
Security Datain Deployment Descriptorsflag are checked, the lgnore Security
Datain Deployment Descriptors flag takes precedence. In other words, if the
Ignore Security Data in Deployment Descriptors flag is checked, the
Credential Mapping provider will not do deployment even if its Credential
Mapping Deployment Enabled flag is checked.

10-16 Developing Security Providers for WebL ogic Server

CHAPTER

11 Auditing Events From

Custom Security
Providers

Asdescribed in Chapter 9, “Auditing Providers,” auditing is the process whereby
information about operating requests and the outcome of those requests are collected,
stored, and di stributed for the purposes of non-repudiation. Auditing providersprovide
this electronic trail of computer activity.

Each type of security provider can call the configured Auditing providers with a
request to write out information about security-related events, before or after these
events take place. For example, if a user attempts to access awi t hDr aw method (to
which they have legitimate access) in a bank account application, but attempts to
withdraw an amount over the maximum that is allowable for such atransaction, the
Authorization provider can request that both operations (the initial access and the
exceeded limit error) be recorded. Asthis example also illustrates, security providers
can specify which types of eventsthey would like recorded, and the specific conditions
under which these events should be recorded.

The following sections provide the background information you need to understand
before adding auditing capability to your custom security providers, and provide
step-by-step instructions for adding auditing capability to a custom security provider:

m “Security Services and the Auditor Service” on page 11-2

m “How to Audit From a Custom Security Provider” on page 11-3

Developing Security Providers for WebL ogic Server 11-1

11 Auditing Events From Custom Security Providers

Security Services and the Auditor Service

11-2

ThesSecuri tyServi ces interface, locatedinthewebl ogi c. security. spi package,
isarepository for security services (currently just the Auditor Service). As such, the
SecurityServi ces interfaceisresponsible for supplying callers with areferenceto
the Auditor Service viathe following method:

getAuditorService
publ i c AuditorService getAuditorService

The get Audi t or Ser vi ce method returns the Audi t Ser vi ce if an Auditing
provider is configured.

The Audi t or Ser vi ce interface, also located in thewebl ogi c. security. spi
package, provides other types of security providers (for example, Authentication
providers) with limited (write-only) auditing capabilities. In other words, the Auditor
Service fans out invocations of each configured Auditing provider'swri t eEvent
method, which simply writes an audit record based on the information specified in the
Audi t Event object that is passed in. (For more information about thewr i t eEvent
method, see “Implement the AuditChannel SSPI” on page 9-7. For more information
about Audi t Event objects, see “Create an Audit Event” on page 11-4.) The

Audi t or Ser vi ce interface includes the following method:

providerAuditWriteEvent
public void providerAuditWiteEvent (AuditEvent event)

The provi der Audi t Wi t eEvent method gives security providers write
access to the object in the WebL ogic Security Framework that calls the
configured Auditing providers. Theevent parameterisan Audi t Event object
that containsthe audit criteria, including the type of event to audit and the audit
severity level. For more information about Audit Events and audit severity
levels, see“ Create an Audit Event” on page 11-4 and “ Audit Severity” on page
11-8, respectively.

The Auditor Service can be called to write audit events before or after those events
have taken place, but does not maintain context in between pre and post operations.
Security providers designed with auditing capabilities will need to obtain the Auditor
Service as described in “ Obtain and Use the Auditor Serviceto Write Audit Events’
on page 11-11.

Developing Security Providers for WebL ogic Server

How to Audit From a Custom Security Provider

Notes: Implementations for both the Securi t yServi ces and Audi t or Servi ce

interfaces are created by the WebL ogic Security Framework at boot timeif an
Auditing provider is configured. (For more information about configuring
Auditing providers, see“ Configure the Custom Auditing Provider Using the
Administration Consol€” on page 9-15.) Therefore, you do not need to provide
your own implementations of these interfaces.

Additionally, Securi t ySer vi ces objectsare specific to the security realmin
whichyour security providersare configured. Y our custom security provider’s
runtime class automatically obtains a reference to the realm-specific
SecurityServi ces object as part of itsi ni ti al i ze method. (For more
information, see “Understand the Purpose of the “Provider” SSPIS” on page
2-8.)

For more information about these interfaces and their methods, see the WebL ogic
Server 7.0 API Reference Javadoc for the SecurityServices interface and the
AuditorService interface.

How to Audit From a Custom Security

Provider

Add auditing capability to your custom security provider by following these steps:

m “Create an Audit Event” on page 11-4

m “Obtain and Use the Auditor Service to Write Audit Events’ on page 11-11

Examples for each of these steps are provided in “Example: Implementation of the
AuditAtnEvent Interface” on page 11-9 and “ Example: Obtaining and Using the
Auditor Service to Write Authentication Audit Events’ on page 11-11, respectively.

Note:

If your custom security provider isto record audit events, be sure to include
any classes created as aresult of these steps into the MBean JAR File (MJF)
for the custom security provider (that is, in addition to the other filesthat are
required).

Developing Security Providers for WebL ogic Server 11-3

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/SecurityServices.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditorService.html

11 Auditing Events From Custom Security Providers

Create an Audit Event

Security providers must provide information about the events they want audited, such
asthe type of event (for example, an authentication event) and the audit severity (for
example, “error”). Audit Events contain thisinformation, and can also contain any
other contextual datathat is understandable to a configured Auditing provider. To
create an Audit Event, either:

m “Implement the AuditEvent SSPI” on page 11-4 or

m “Implement an Audit Event Convenience Interface” on page 11-5

Implement the AuditEvent SSPI

To implement the Audi t Event SSPI, provide implementations for the following
methods:

getEventType
public java.lang. String get Event Type()

The get Event Type method returns a string representation of the event type
that is to be audited, which is used by the Audit Channel (that is, the runtime
class that implements the Audi t Channel SSPI). For example, the event type
for the BEA-provided implementation is* Aut hent i cati on Audit Event”.
For more information, see “Audit Channels’ on page 9-4 and “Implement the
AuditChannel SSPI” on page 9-7.

getFailureException
public java.lang. Excepti on getFail ureException()

Theget Fai | ur eExcept i on method returns an Except i on object, which is
used by the Audit Channel to obtain audit information, in addition to the
information provided by thet oSt ri ng method.

getSeverity
public AuditSeverity getSeverity()

The get Severi t y method returns the severity level value associated with the
event typethat isto be audited, whichisused by the Audit Channel. Thisallows
the Audit Channel to make the decision about whether or not to audit. For more
information, see “Audit Severity” on page 11-8.

11-4 Developing Security Providers for WebL ogic Server

How to Audit From a Custom Security Provider

toString
public java.lang. String toString()

Thet oSt ri ng method returns preformatted audit information to the Audit
Channel.

For more information about the Audi t Event SSPI and these methods, see the
WebLogic Server 7.0 API Reference Javadoc.

Implement an Audit Event Convenience Interface

There are severa subinterfaces of the Audi t Event SSPI that are provided for your
convenience, and that can assist you in structuring and creating Audit Events.

Each of these Audit Event convenience interfaces can be used by an Audit Channel
(that is, aruntime class that implements the Audi t Channel SSPI) to more effectively
determine the instance types of extended event type objects, for a certain type of
security provider. For example, the Audi t At nEvent convenience interface can be
used by an Audit Channel that wants to determine the instance types of extended
authentication event type objects. (For more information, see “ Audit Channels’ on
page 9-4 and “Implement the AuditChannel SSPI” on page 9-7.)

The Audit Event convenience interfaces are:

m “The AuditAtnEvent Interface” on page 11-5

m “The AuditAtzEvent and AuditPolicyEvent Interfaces’ on page 11-7

m “The AuditMgmtEvent Interface” on page 11-7

m “The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces” on page 11-8

Note: It isrecommended, but not required, that you implement one of the Audit
Event convenience interfaces.

The AuditAtnEvent Interface

The Audi t At nEvent convenienceinterface helps Audit Channels to determine
instance types of extended authentication event type objects.

To implement the Audi t At nEvent interface, provide implementations for the
methods described in “Implement the AuditEvent SSPI” on page 11-4 and the
following methods:

Developing Security Providers for WebL ogic Server 11-5

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditEvent.html

11 Auditing Events From Custom Security Providers

getUsername
public String getUsernane()

The get User narre method returns the username associated with the
authentication event.

AtnEventType
public AtnEvent Type get At nEvent Type()

The At nEvent Type method returns an event type that more specifically
represents the authentication event. The specific authentication event typesare:

AUTHENTI CATE—simple authentication using a username and password
occurred.

ASSERTI DENTI TY—perimeter authentication based on tokens occurred.

| MPERSONATEI DENTI TY—client identity has been established using the
supplied client username (requires kernal identity).

VALI DATEI DENTI TY—authenticity (trust) of the principalswithin the supplied
subject has been validated.

USERL OCKED—a user account has been locked because of invalid login
attempts.

USERUNL OCKED—a lock on a user account has been cleared.
USERL OCKOUTEXPI RED—a lock on a user account has expired.

toString
public String toString()

Thet oSt ri ng method returns the specific authentication information to audit,
represented as a string.

Note: TheAudi t At nEvent convenienceinterfaceextendsboththeAudi t Event and
Audi t Cont ext interfaces. For more information about the Audi t Cont ext
interface, see “ Audit Context” on page 11-9.

For more information about the Audi t At nEvent convenience interface and these
methods, see the WebLogic Server 7.0 API Reference Javadoc.

11-6 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditAtnEvent.html

How to Audit From a Custom Security Provider

The AuditAtzEvent and AuditPolicyEvent Interfaces

The Audi t At zEvent and Audi t Pol i cyEvent convenienceinterfaces help Audit
Channels to determine instance types of extended authorization event type objects.

Note: The difference between the Audi t At zEvent convenience interface and the
Audi t Pol i cyEvent convenience interface isthat the latter only extends the
Audi t Event interface. (It does not also extend the Audi t Cont ext interface.)
For moreinformation about the Audi t Cont ext interface, see” Audit Context”
on page 11-9.

To implement the Audi t At zEvent or Audi t Pol i cyEvent interface, provide
implementations for the methods described in “Implement the AuditEvent SSPI” on
page 11-4 and the following methods:

getSubject
publ i ¢ Subject getSubject()

The get Subj ect method returns the subject associated with the authorization
event (that is, the subject attempting to access the WebL ogic resource).

getResource
publ i ¢ Resource get Resource()

The get Resour ce method returns the WebL ogic resource associated with the
authorization event that the subject is attempting to access.

For more information about these convenience interfaces and methods, see the
WebLogic Server 7.0 APl Reference Javadoc for the AuditAtzEvent interface or the
AuditPolicyEvent interface.

The AuditMgmtEvent Interface

The Audi t Mgnt Event convenience interface helps Audit Channels to determine
instance types of extended security management event type objects, such as asecurity
provider’s MBean. It contains no methods that you must implement, but maintains the
best practice structure for an Audit Event implementation.

Note: For moreinformation about M Beans, see* Security Service Provider Interface
(SSPI) MBeans” on page 2-15.

For more information about the Audi t Myt Event convenience interface, see the
WebLogic Server 7.0 API Reference Javadoc.

Developing Security Providers for WebL ogic Server 11-7

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditAtzEvent.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditPolicyEvent.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditMgmtEvent.html

11 Auditing Events From Custom Security Providers

The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

The Audi t Rol eDepl oynent Event and Audi t Rol eEvent convenience interfaces
help Audit Channels to determine instance types of extended role mapping event type
objects. They contain no methods that you must implement, but maintain the best
practice structure for an Audit Event implementation.

Note: The difference between the Audi t Rol eEvent convenience interface and the
Audi t Rol eDepl oynment Event convenience interface is that the latter only
extendsthe Audi t Event interface. (It doesnot also extend the Audi t Cont ext
interface.) For more information about the Audi t Cont ext interface, see
“Audit Context” on page 11-9.

For moreinformation about these convenienceinterfaces, seethe WebLogic Server 7.0
API Reference Javadoc for the AuditRoleEvent interface or the
AuditRoleDeploymentEvent interface.

Audit Severity

The audit severity isthelevel at which a security provider wants audit eventsto be
recorded. When the configured Auditing providers receive arequest to audit, each will
examine the severity level of eventstaking place. If the severity level of an event is
greater than or equal to the level an Auditing provider was configured with, that
Auditing provider will record the audit data.

Note: Auditing providersare configured using the WebL ogic Server Administration
Console. For moreinformation, see“ Configure the Custom Auditing Provider
Using the Administration Console” on page 9-15.

The Audi t Severi ty class, which is part of thewebl ogi c. securi ty. spi package,
provides audit severity levels as both numeric and text values to the Audit Channel
(that is, the Audi t Channel SSPI implementation) through the Audi t Event object.
The numeric severity value isto be used in logic, and the text severity valueisto be
used in the composition of the audit record output. For more information about the
Audi t Channel SSPI and the Audi t Event object, see “Implement the AuditChannel
SSPI” on page 9-7 and “ Create an Audit Event” on page 11-4, respectively.

11-8 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditRoleEvent.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/spi/AuditRoleDeploymentEvent.html

How to Audit From a Custom Security Provider

Audit Context

Some of the Audit Event convenience interfaces extend the Audi t Cont ext interface
to indicate that an implementation will also contain contextual information. This

contextual information can then be used by Audit Channels. For moreinformation, see
“Audit Channels’ on page 9-4 and “Implement the AuditChannel SSPI” on page 9-7.

The Audi t Cont ext interface includes the following method:

getContext
publ i ¢ Cont ext Handl er get Cont ext ()

The get Cont ext method returnsa Cont ext Handl er object, which isused by
the runtime class (that is, the Audi t Channel SSPI implementation) to obtain
additional audit information.

A Cont ext Handl er isahigh-performing WebL ogic class that allows strings
to be passed as arguments to a method. For more information about

Cont ext Handl er s, see the WebL ogic Server 7.0 API Reference Javadoc for
the the ContextHandler interface.

Example: Implementation of the AuditAtnEvent Interface

Listing 11-1 showsthe MyAudi t At nEvent | npl . j ava class, which isasample
implementation of an Audit Event convenience interface (in this case, the
Audi t At nEvent convenience interface). This class includes implementations for:

m Thefour methods inherited from the Audi t Event SSPI: get Event Type,
get Fai | ur eExcepti on, get Severity andtoString (asdescribedin
“Implement the AuditEvent SSPI” on page 11-4).

m Thethree methodsin the Audi t At nEvent interface: get User nane,
At nEvent Type, andt oSt ri ng (as described in “ The AuditAtnEvent Interface’

on page 11-5).

Note: Thebold face codein Listing 11-1 highlights the class declaration and the
method signatures.

Listing 11-1 MyAuditAtnEventlmpl.java

i nport webl ogi c. security.spi.AuditAtnEvent;
i mport webl ogi c. security.spi.AuditSeverity;

Developing Security Providers for WebL ogic Server 11-9

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/security/service/ContextHandler.html

11 Auditing Events From Custom Security Providers

public class My/Audit At nEvent| npl inplements AuditAtnEvent
{

private AuditSeverity severity;

private String event Type;

private Exception exception;

private ContextHandl er context;

private String myAudit Text;

public MyAudit At nEvent | npl (Audit Severity severity, String eventType)
{

this.severity = severity;
thi s. event Type = event Type;

}

public void setFail ureExcepti on(Excepti on exception)

{

thi s. exception = exception;

}
public Exception getFail ureException()
{
return exception;
}
public AuditSeverity getSeverity()
{
return severity;
}
public String get Event Type()
{
return event Type;
}
public void set Cont ext (Context Handl er context)
{
this.context = context;
}
publ i ¢ Cont ext Handl er get Cont ext ()
{
return context;
}
public void setAuditbData(String auditText)
{
this. myAudit Text = audit Text;
}

11-10 Developing Security Providers for WebL ogic Server

How to Audit From a Custom Security Provider

public String toString()

{
StringBufer buf = new StringBuffer();
buf . append("<");
buf . append(" nyAudi t Text");
buf . append(">");
return buf.toString();
}

Obtain and Use the Auditor Service to Write Audit Events

To obtain and use the Auditor Service to write audit events from a custom security
provider, follow these steps:

1. Usetheget Audi t or Ser vi ce method to return the Audit Service.

Notes: Recall that aSecurityServi ces object is passed into a security
provider’ simplementation of a“Provider” SSPI aspart of thei ni ti al i ze
method. (For more information, see “Understand the Purpose of the
“Provider” SSPIS” on page 2-8.) An Audi t or Ser vi ce object will only be
returned if an Auditing provider has been configured.

2. Instantiate the Audit Event you created in “Implement the AuditEvent SSPI” on
page 11-4 and send it to the Auditor Service through the
Audi t Servi ce. provi der Audi t Wit eEvent method.

Example: Obtaining and Using the Auditor Service to Write Authentication
Audit Events

Listing 11-2 illustrates how a custom Authentication provider’s runtime class (called
MyAut hent i cat i onProvi der | npl . j ava) would obtain the Auditor Service and use
it to write out audit events.

Note: TheMyAut henti cati onProvi der| npl . j ava classrelies on the
M/Audi t At nEvent | npl . j ava classfrom Listing 11-1.

Developing Security Providers for WebLogic Server 11-11

11 Auditing Events From Custom Security Providers

Listing 11-2 MyAuthenticationProviderImpl.java

i mport webl ogi c.security.spi.SecurityServices;
i nport webl ogi c. security.spi.AuditorService;

public class MyAut henticationProviderlnpl inplenents AuthenticationProvider

{

private AuditorService auditor = null;

public initialize (Provider MBean nBean, SecurityServices securityServices)

{
/1 ...initialization information
auditor = securityServices. getAuditorService();
}
myAut hent i cat i onMet hod()
{
if (auditor !'= null)
/1 ...an Auditor object is configured
{
MyAudi t At nEvent | npl nmyAudi t Event = new MyAudi t At nEvent | npl (severity,
event Type) ;
nyAudi t Event . set Audi t Dat a(" myAt nAudi t Text Record") ;
audi tor. provi der Audi t Wit eEvent (nyAudi t Event) ;
}
el se
/1 handl e Auditor not configured condition
}
}

11-12 Developing Security Providers for WebL ogic Server

CHAPTER

12 Writing Console

Extensions for Custom
Security Providers

Console extensions allow you to provide functionality that is not included in the
standard WebL ogic Server Administration Console, or provide an alternate interface
for existing functionality. Y ou provide this functionality by adding nodes to the
navigation tree, and/or by adding or replacing tabbed dialogs and dialog screens.

Note: Detailed information about how to write console extensions is provided in
Extending the Administration Console, and should be reviewed before
proceeding.

The following sections provide information about writing console extensions
specifically for use with custom security providers:

m “When Should | Write a Console Extension?’ on page 12-2

m “When In the Development Process Should | Write a Console Extension?” on
page 12-3

m “How Writing a Console Extension for a Custom Security Provider Differs From
aBasic Console Extension” on page 12-4

m “Main Steps for Writing an Administration Console Extension” on page 12-4

m “Replacing Custom Security Provider-Related Administration Console Dialog
Screens Using the SecurityExtension Interface” on page 12-5

m “How aConsole Extension Affects the Administration Console” on page 12-6

Developing Security Providers for WebL ogic Server 12-1

http://e-docs.bea.com/wls/docs81b/console_ext/index.html

12 Writing Console Extensions for Custom Security Providers

When Should I Write a Console Extension?

To get complete configuration and management support through the WebL ogic Server
Administration Console for a custom security provider, you need to write a console
extension when:

m You decide not to implement an optional SSPI MBean when you generate an
MBean type for your custom security provider, but still want to configure and
manage your custom security provider viathe Administration Console. (That is,
you do not want to use the WebL ogic Server Command-Line Interface instead.)

Generating an MBean type (as described in “ Generating an MBean Typeto
Configure and Manage the Custom Security Provider” on page 2-3) isthe
BEA-recommended way for configuring and managing custom security
providers. However, you may want to configure and manage your custom
security provider completely through a consol e extension that you write.

m You implement optional SSPI MBeans for custom security providers that are not
custom Authentication providers.

When you implement optional SSPI MBeans to develop a custom Authentication
provider, you automatically receive support in the Administration Console for
the MBean type's attributes (inherited from the optional SSPI MBean). Other
types of custom security providers, such as custom Authorization providers, do
not receive this support.

m You add a custom attribute that cannot be represented as a simple data type to
your MBean Definition File (MDF), which is used to generate the custom
security provider’s MBean type.

The Details tab for a custom security provider will automatically display custom
attributes, but only if they are represented as a simple data type, such as a string,
MBean, boolean or integer value. If you have custom attributes that are
represented as atypical datatypes (for example, an image of afingerprint), the
Administration Console cannot visualize the custom attribute without
customization.

m You add a custom operation to your MBean Definition File (MDF), whichis
used to generate the custom security provider’'s MBean type.

Because of the potential variety involved with custom operations, the
Administration Console does not know how to automatically display or process

12-2 Developing Security Providers for WebL ogic Server

When In the Development Process Should | Write a Console Extension?

them. Examples of custom operations might be a microphone for avoice print,
or import/export buttons. The Administration Console cannot visualize and
process these operations without customization.

Some other (optional) reasons for extending the Administration Console include:

m Corporate branding—when, for example, you want your organization’s logo or
look and feel on the pages used to configure and manage a custom security
provider.

m Consolidation—when, for example, you want all the fields used to configure and
manage a custom security provider on one page, rather than in separate tabs or
locations.

When In the Development Process Should |
Write a Console Extension?

The various programmatic elements that comprise a console extension are packaged
into a Web application and deployed in your WebL ogic Server domain. The point in
the development process when you devel op the Web application is completely up to
you.

However, before you or an administrator can use the console extension to configure
and manage a custom security provider, the MBean type for the custom security
provider must have been generated (as described in “ Generating an MBean Type to
Configure and Manage the Custom Security Provider” on page 2-3) and the console
extension Web application properly packaged and deployed.

Note: For instructions about how to develop, package, and deploy a console
extension as a Web application, see “Main Steps for Writing an
Administration Console Extension” on page 12-4.

Developing Security Providers for WebL ogic Server 12-3

12 Writing Console Extensions for Custom Security Providers

How Writing a Console Extension for a
Custom Security Provider Differs From a
Basic Console Extension

While basic consol e extensions (described in Extending the Administration Consol€)
provide a great deal of flexibility and capability, the additional mechanisms that are
available for writing security provider-specific console extensions enable:

m Tighter integration with the Administration Console pages already provided for
configuring and managing custom security providers.

m [ntegration of tabbed dialogs and dialog screens at several different, specific
points. (Basic console extensions only allow you to add tabbed dialogs and
dialog screens as part of new navigation tree nodes.)

m Replacement of existing tabbed dialogs and dialog screens used to configure and
manage custom security providers.

Main Steps for Writing an Administration
Console Extension

Although security provider-specific console extensions provide the additional features
described in “How Writing a Console Extension for a Custom Security Provider
Differs From a Basic Console Extension” on page 12-4, the main process for writing
console extensions is the same:

1. Create aJavaclassthat defines your Administration Console extension. This class
defines where your console extension appears in the navigation tree and can
provide additiona functionality required by your extension. For moreinformation,
see “Implementing the NavTreeExtension Interface” in Extending the
Administration Console.

12-4 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/console_ext/index.html
http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1104843

Replacing Custom Security Provider-Related Administration Console Dialog Screens

2. Define the behavior of the Navigation tree. In this step you can define multiple
nodes that appear under the node you definein step 1. You can also define
right-click menus and actions. For more information, see “ Setting Up the
Navigation Tree” in Extending the Administration Console.

3. Write JavaServer Pages (JSPs) to display your console extension screens. You
may use localized text by looking up strings in alocalization catalog. A supplied
tag library allows you to create tabbed dialog screens similar to those in the
standard Administration Console and to access the localization catal ogs. For
more information, see “Writing the Console Screen JSPS” in Extending the
Administration Console.

4. Package your JSPs, catalogs, and Java classes as a Web application. For more
information, see “ Packaging the Administration Console Extension” in Extending
the Administration Console.

5. Deploy the Web application containing your console extension on the
Administration Server in your WebL ogic Server domain. For more information,
see “Deploying an Administration Console Extension” in Extending the
Administration Console.

Replacing Custom Security Provider-Related
Administration Console Dialog Screens
Using the SecurityExtension Interface

The Securi t yExt ensi on interface provides methods that allow you to replace
various custom security provider-related Administration Console dialog screens. The
Java class you create to define your console extension can implement the

Securi t yExt ensi on interface in addition to (or in place of) extending the

Ext ensi on class. (The Ext ensi on classis used for basic console extensions, and its
use is described in “Implementing the NavTreeExtension Interface” in Extending the
Administration Console.).

Note: You need not implement all the methodsin thisinterface. Simply return nul |
for the methods you choose not to implement.

Developing Security Providers for WebL ogic Server 12-5

http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1104993
http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1104993
http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1106377
http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1113974
http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1108213
http://e-docs.bea.com/wls/docs81b/console_ext/overview.html#1104843

12 Writing Console Extensions for Custom Security Providers

Table 12-1 shows the security provider-related dialog screensthat you are most likely
to replace, aswell asthe methodsinthe Secur i t yExt ensi on interface that you need
to implement to replace them.

Table 12-1 Using the SecurityExtension Interface

To Replace Dialog Screens Used to... Implement the...

Configure a new custom security provider and ~ get Ext ensi onFor Provi der method
edit an existing custom security provider's
configuration

Create anew user and edit an existing user. (For get Ext ensi onFor User method
use with custom Authentication providers.

Create anew group and edit an existing group. get Ext ensi onFor G- oup method
(For use with custom Authentication providers.

Create anew role and edit an existing role. (For get Ext ensi onFor Rol e method
use with custom Role Mapping providers.)

Create anew security policy and edit anexisting get Ext ensi onFor Pol i cy method
security policy. (For use with custom
Authorization providers.)

Note: For more detailed information, see the WebLogic Server 7.0 APl Reference
Javadoc for the SecurityExtension interface and the Extension class.

How a Console Extension Affects the
Administration Console

Whether you write a console extension that is meant is to replace the BEA-provided
dialog screens for configuring a custom security provider, or the dialog screens for
creating and editing users, groups, roles, or security policies that are associated with
security providers, the WebL ogic Server Administration Console will be affected in
the same way.

12-6 Developing Security Providers for WebL ogic Server

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/console/extensibility/SecurityExtension.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/console/extensibility/Extension.html

How a Console Extension Affects the Administration Console

Asan example, the following processwill occur when you or an administrator attempt
to configure a custom security provider using the WebL ogic Server Administration
Console:

1. If you or an administrator click a Configure aNew Security_Provider_Type... link
on one of the Administration Consol€e’s dialog screens (examples of which are
shown in the top portion of Figure 12-1), the Administration Console attempts to
locate a console extension for the custom security provider.

Figure12-1 Configuring the Sample Authentication Provider

P!

- i
2 hea

myrealm> Authentication P... y=) =

Connected to localhost: 7001 Active Domain: sampledomain? Aug 16, 2

B/ Configure a new Default Identity Asserter.

B/ Configure a new Sample Identity Asserter.

B/ Configure a new Sample Authenticator. .

B/ Configure a new Default Authenticator. .

B/ Configure a new MNovell Authenticator, .

B/ Configure a new Active Directory Authenticator..
B/ Configure a new IPlanet Authenticator. .

B/ Configure a new Realm Adapter Authenticator..
B/ Configure a new Open L DAPAuthenticator ..

& Custormize this view...

Name Description Version
hWySample Authenticator |Weblogic Sample Authentication Provider | 1.0 o
hWySample [dentity Asserter | Weblogic Sample ldentity Asserter Provider | 1.0 o

If you or an administrator are editing a custom security provider’s configuration
(rather than adding it as step 1 describes), the Administration Console attempts
to locate a console extension when you click the hyperlinked name of the
custom security provider (examples of which are shown in the bottom portion of
Figure 12-1).

2. If the Administration Console detects that a console extension for the security
provider is available, the Administration Console displays the JavaServer Page
(JSP) specified by the URL that is returned from the
get Ext ensi onFor Provi der method (or other get Ext ensi onFor * method
described in Table 12-1, “Using the SecurityExtension Interface,” on page 12-6).

3. You or an administrator use the JSP to configure and manage the custom security
provider, instead of the BEA-provided interface.

Developing Security Providers for WebL ogic Server 12-7

12 Writing Console Extensions for Custom Security Providers

12-8 Developing Security Providers for WebL ogic Server

CHAPTER

A MBean Definition File
(MDF) Element Syntax

An MBean Definition File (MDF) isan input file to the WeblL ogic MBeanM aker
utility, which uses the file to create an MBean type for managing a custom security
provider. An MDF must be formatted as awell-formed and valid XML file that
describes a single M Bean type. The following sections describe all the elements and
attributes that are available for usein avalid MDF:

m “The MBeanType (Root) Element” on page A-1

m “The MBeanAttribute Subelement” on page A-15

m “The MBeanNotification Subelement” on page A-31
m “The MBeanConstructor Subelement” on page A-37
m “The MBeanOperation Subelement” on page A-38

m “Examples. Well-Formed and Valid MBean Definition Files (MDFs)” on page
A-46

The MBeanType (Root) Element

All MDFs must contain exactly one root element called MBeanType, which hasthe
following syntax:

<MBeanType Nane= string optional _attributes>
subel erment s
</ MBeanType>

Developing Security Providers for WebL ogic Server A-1

A MBean Definition File (VDF) Element Syntax

The MBeanType element must include a Name attribute, which specifies the internal,
programmatic name of the MBean type. (To specify aname that is visiblein auser
interface, use the Di spl ayNane and LanguageMap attributes.) Other attributes are
optional.

The following is asimplified example of an MBeanType (root) element:

<MBeanType Name=“M/MBean” Package="com nyconpany” >
<MBeanAttribute Nane="M/Attr” Type="java.lang. String” Default="Hello World"/>
</ MBeanType>

Attributes specified in the MBean Ty pe (root) element apply to the entire set of MBeans
instantiated from that M Bean type. To override attributes for specific MBean
instances, you need to specify attributesin the MBeanAt t ri but e subelement. For
more information, see “ The MBeanAttribute Subelement” on page A-15.

Table A-2 describes the attributes available to the MBeanType (root) element. The
JMX Specification/BEA Extension column indicates whether the attribute isa BEA
extension to the IMX specification or a standard IMX attribute. Note that BEA
extensions might not function on other J2EE Web servers.

Table A-2 Attributes of the MBeanType (Root) Element

Attribute JMX Specification Allowed Description
/BEA Extension Values

Abstract BEA Extension true/fal se A true valuespecifiesthat the MBean
type cannot be instantiated (like any
abstract Javaclass), though other MBean
types can inherit its attributes and
operations. If you specify t r ue, you
must create other non-abstract MBean
types for carrying out management
tasks. If you do not specify avalue for
this attribute, the assumed value is
fal se.

A-2 Developing Security Providers for WebL ogic Server

The MBeanType (Root) Element

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Cachi ngDi sabl ed BEA Extension true/fal se Ignored. Thisflag existsto support
future functionality. For example, if
caching is provided in the types-stubs,
this flag may turn off that caching.
Currently, MBeans created viathe
WebL ogic MBeanMaker provide
server-level caching as per the
specification for IMX Model MBeans.

Note: For more information on IM X
Model MBeans, see the Java
Management eXtensions 1.0
specification.

Classification BEA Extension Sring A string that you can use to classify or
group your MBean types, for example,
toidentify all MBean typesthat provide
implementations of security
authorization. Thereis no default or
assumed value for this attribute.

CurrencyTi neLim t JMX Specification Integer The number of seconds that any value
cached is considered fresh. After this
value expires, the next attempt to access
the value triggers arecalcul ation.

When specified in the MBeanType
element, thisvalue is considered the
default for MBean types. It can be
overridden for individual MBeans by
setting the sameattributeintheMBean's
MBeanAttri bute or

MBeanOper at i on subelement.

Depr ecat ed BEA Extension true/fal se Indicatesthat the MBean typeis
deprecated. This information appearsin
the generated Java source, and is also
placed intheModel MBeanl nf o object
for possible use by a management
application. If you do not specify this
attribute, the assumed valueisf al se.

Developing Security Providers for WebL ogic Server A-3

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Descri ption JMX Specification Sring

An arbitrary string associated with the
MBean type that appearsin various
locations, such as the Javadoc for
generated classes. Thereisno default or
assumed value.

Note: To specify adescription that is
visiblein auser interface, use
the Di spl ayNane,

Di spl ayMessage, and
PresentationString
attributes.

Di spl ayMessage JMX Specification Sring

The message that a user interface
displays to describe the MBean type.
Thereis no default or assumed value.

TheDi spl ayMessage may bea
paragraph used in Tool Tipsor in Help.
A Di spl ayMessage set for the
MBeantypeisconsidered the default for
MBean instances, unless a different
valueisspecified for individual MBeans
when the instance is created.

A-4

Developing Security Providers for WebL ogic Server

The MBeanType (Root) Element

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Di spl ayNane JMX Specification Sring The name that a user interface displays
to identify instances of MBean types.
For an instance of type X, the default
Di spl ayNane is "instance of type X."
Thisvaueistypicaly overridden when
instances are created.

If you use the LanguageMap attribute,
theDi spl ayNane valueisused asa
key to find anamein the
LanguageMap’sresource bundle. If
you do not specify the LanguageMap
atribute, or if the key isnot present in
theresourcebundle, the Di spl ayNane
valueitself isdisplayed in the user
interface.

Seedso Messagel D.

Export JMX Specification Sring The WebL ogic MBeanMaker does not
use this attribute. However, to support
applications that might use it, the
WebL ogic MBeanMaker addsthe value
to the MBeanl nf o object. Thereisno
default or assumed value.

Note: For moreinformation on the
Export attribute, seethe Java
Management eXtensions 1.0
specification.

Ext ends BEA Extension Pathname A fully qualified M Bean type name that
this MBean type extends.

Seedso ! npl enent s.

Developing Security Providers for WebL ogic Server A-5

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Gener at eExt ended BEA Extension truelf al se
Accessors

A true valueenablesall

MBeanAt t ri but e subelementswhose
Type isar r ay to generate additional
operations and interface methods to
support indexed access. A f al se value
preventsall MBeanAttri but e
subelements from generating additional
operations and methods. If you do not
specify this attribute, the assumed value
istrue.

I npl enent s BEA Extension Comma-

separated list

A comma-separated list of fully
qualified MBean type names that this
MBean type implements.

See dlso Ext ends.

| nst anceExt ent BEA Extension true/f al se

At r ue value specifiesthat all instances
of an MBean type should be retained in
alist for faster and easier access. Setting
thisattributetot r ue, however, takesup
more space.

Note: By default, all security-related
MBeantypesaresettot r ue. If
instances of those MBeans
override this attribute, security
may be adversely impacted.

A-6

Developing Security Providers for WebL ogic Server

The MBeanType (Root) Element

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

LanguageMap BEA Extension Sring Specifiesafully qualified pathnameto a
resource bundle that contains a map of
displayable strings. Other attributes,
suchasDi spl ayMessage and
Di spl ayNane, usethe stringsin the
LanguageMap to display information
about the MBean type.

If you do not specify this attribute, other
atributes, such asDi spl ayMessage
and Di spl ayNane, display their own
values (as opposed to using their values
asakey to find appropriate stringsin the
resource bundle).

Li sten BEA Extension true/fal se Causesastub for anctification listener
to be generated in the MBean
implementation object. If you do not
specify this attribute, the assumed value
isf al se.

Note: For more information about
listener stubs, see the Java
Management eXtensions 1.0
specification.

Log JMX Specification true/fal se A true vaue specifiesthat
notifications for the MBean type are
added to thelog file. (The LogFi | e
attribute specifiesthefileinto which the
information should bewritten.) If you do
not specify this attribute, the assumed
valueisf al se, and notificationsarenot
added to the log file.

Note: For more information about
MBean natifications and logs,
see the Java Management
eXtensions 1.0 specification.

Developing Security Providers for WebL ogic Server A-7

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Description

The fully qualified pathname of an
existing, writable file into which
messages are written when notifications
occur for this MBean type. For logging
to occur, theLog attribute must be set to
t rue. Thereisno default or assumed
value for this attribute.

Note: For moreinformation about
MBean notifications and logs,
see the Java Management
eXtensions 1.0 specification.

A fully qualified classnamethat isa
subclass of an MBean type BEA
provides. Thisisincluded primarily for
future devel opment and for those
wanting to extend Model MBeans.

Note: For more information on JIM X
Model MBeans, see the Java
Management eXtensions 1.0
specification.

Attribute JMX Specification Allowed
/BEA Extension Values
LogFil e JMX Specification Pathname
MBeanC assName BEA Extension Pathname
Messagel D JMX Specification Sring

Provides akey for retrieving a message
from a client-side message repository
per the Java Management eXtensions 1.0
specification.

You can use Messagel D, or

Di spl ayMessage, or bothtodescribe
anotification MBean type. If you do not
specify this attribute, no message ID is
available.

Note: Messagel Ddoes not use the
same resource bundle that the
LanguageMap attribute
specifies, anditisavailable for
notification MBean types only.

A-8 Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanType (Root) Element

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values
Nane IMX Specification String Mandatory attribute that specifies the
internal, programmatic name of the
MBean type.
Package BEA Extension Sring Specifies the package name of the

MBean type and determinesthelocation
of the class files that the WebL ogic
MBeanMaker creates. If you do not
specify this attribute, the MBean typeis
placed in the Java default package.

Note: MBean type names can be the
same as long as the package
name varies.

Per si st Locati on

JMX Specification Pathname

The WebL ogic MBeanMaker does not
use this attribute. However, to support
cases where an MBean type extends
Model MBeans that do use

Per si st Locat i on, the WebLogic
MBeanMaker adds the value to the
MBeanl nf o class. Thereisnodefault or
assumed value.

Note: For more information about
Per si st Locat i on and
Model MBeans, see the Java
Management eXtensions 1.0
specification.

Developing Security Providers for WebL ogic Server A-9

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Per si st Nane JMX Specification Sring

The WebL ogic MBeanMaker does not
use this attribute. However, to support
cases where an MBean type extends
Model MBeans that do use

Per si st Nanme, WebLogic
MBeanMaker adds the value to the
MBeanl nf o class. Thereisnodefault or
assumed value.

Note: For more information about
Per si st Nane and Model
MBeans, see the Java
Management eXtensions 1.0
specification.

Per si st Peri od JMX Specification Integer

Specifies the number of seconds that the
OnTi mer or NoMbr e t enThan
persistence policies use. If you do not
specify thisattribute in the MBean Ty pe
or MBeanAt t ri but e elements, the
assumed valueis 0.

If Persi st Policyissetto

OnTi ner , then the attribute is persisted
when the number of seconds expires. If
Per si st Pol i cy isset to

NoMor eCf t enThan, then persistence
is constrained to happen not more often
than the specified number seconds.

Note: When specified in the
MBeanType element, this
value overrides any setting
within an individual
MBeanAttri bute
subelement.

A-10

Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanType (Root) Element

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute

JM X Specification
/BEA Extension

Allowed
Values

Description

Per si st Pol i cy

JMX Specification

Never

/ OnTi nmer
/ OnUpdat e
/ NoNbr ek
t enThan

Specifies how persistence will occur:

Never . The attribute is never
stored. Thisis useful for highly
volatile data or data that only has
meaning within the context of a
session or execution period.

OnTi nmer . The attributeis stored
whenever the MBean type's
persistence timer, as defined in the
Per si st Per i od attribute,
expires.

OnUpdat e. The attributeis stored
every time the attribute is updated.

NoMor e t enThan. The attribute
is stored every timeit is updated
unless the updates are closer
together than the

Per si st Per i od. Thismechanism
helps prevent temporarily highly
volatile data from affecting
performance.

If you do not specify thisattributein the
MBeanType or MBeanAttri bute
elements, the assumed valueis Never .

Note: When specified in the

MBeanType element, this
value overrides any setting
within an individual
MBeanAttri bute
subelement.

Developing Security Providers for WebLogic Server A-11

A MBean Definition File (VDF) Element Syntax

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

PresentationString JMX Specification Pathname

A fully qualified pathname to asingle
XML document that provides
information that a user interface can use
to display theitem. The XML document
provides additional metadatathat is
relevant to presentation logic. The
format of the Pr esent ati onStri ng
isany XML/IMX-compliant
information.

Note: BEA doesnot currently define
a specialized format, and
recommends that customers
wait before defining their own.
ThePresentationString
attribute is for future use.

Readabl e JMX Specification truel/f al se

Determines whether an MBean
attribute’s value can be read through the
MBean API. If you do not specify this
atribute in the MBeanType or
MBeanAt tri but e e ements, the
assumed valueist r ue.

When specified in the MBeanType
element, thisvalueis considered the
default for individual

MBeanAt t ri but e subelements.

A-12

Developing Security Providers for WebL ogic Server

The MBeanType (Root) Element

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values
Servers BEA Extension Comma- Definesthe list of serversthat can
separated list instantiate instances of an MBean type

and the serversto which instances of the
MBean type are visible. Instances of the
MBean type are guaranteed to be
accessible (for read access) from these
servers even if the Administration
Server isnot available.

The comma-separated list must specify
names of serversthat are in the same
management domain asthe MBean type.
If no valueis specified, the scopeis
assumed to be global, meaning that the
instanceisvisibleto al serversin the
domain. If thereis only one Managed
Server inthe list, the scopeis
server-specific, meaning that instances
are only visible to the Managed Server
and cannot bereplicated to other servers.
If an Administration Server and one or
more Managed Serversareinthelist, the
scope is shared, meaning that the
instance is visible to the Administration
Server and the Managed Servers
specified. Specifying more than one
Managed Server without an
Administration Server produces an
error.

Developing Security Providers for WebLogic Server A-13

A MBean Definition File (VDF) Element Syntax

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Versi onl D BEA Extension Long

Trandatesto the Java
seri al Ver si onUl D. The provided

values are placed directly into the
generated implementation filein the
following form:

static final |ong

seri al Versi onUl D = <user
provi ded | D>;

Userswho change an MBean classin an
incompatible way will need to modify
theseri al Ver si onUl D (using

Ver si onl D) to get Javaserializationto
work correctly.

For more information about

seri al Ver si onUl D, seethe Java 2
Platform Sandard Edition v1.3.1 API
specification.

Visibility JMX Specification Integer: 1-4

Denotes alevel of importance for the
MBean type. User interfaces use the
number to determine whether they
present the MBean type to a particular
user in aparticular context. The lower
the value, the higher the level of
importance. Y ou can specify a number
from 1 to 4. If you do not specify this
attribute, the assumed valueis 1.

For items that have a high level of
interest for users, provide alow

Vi si bi | i ty number. For example, in
the WebL ogic Server Administration
Console, MBeanswithaVi siblity
value of 1 are displayed in the left-pane
navigation tree.

A-14

Developing Security Providers for WebL ogic Server

http://java.sun.com/j2se/1.3/docs/api/java/security/Key.html#serialVersionUID
http://java.sun.com/j2se/1.3/docs/api/java/security/Key.html#serialVersionUID
http://java.sun.com/j2se/1.3/docs/api/java/security/Key.html#serialVersionUID

The MBeanAttribute Subelement

Table A-2 Attributes of the MBeanType (Root) Element (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Witeable JMX Specification true/fal se Atruevauealowsthe MBean APl to
set an MBeanAt t ri but e’svaue. If
you do not specify this attributein
MBeanType orMBeanAt t ri but e, the
assumed valueist r ue.

When specified in the MBeanType
element, thisvalue is considered the
default for individual

MBeanAt t ri but e subelements.

The MBeanAttribute Subelement

Y ou must supply one instance of an MBeanAt t ri but e subelement for each attribute
inyour MBean type. The MBeanAt t ri but e subelement must be formatted as follows:

<MBeanAttri bute Name=string optional _attributes />

The MBeanAt t ri but e subelement must include a Name attribute, which specifiesthe
internal, programmatic name of the Java attribute in the MBean type. (To specify a
name that isvisible in a user interface, use the Di spl ayName and LanguageNap
attributes.) Other attributes are optional.

The following isasimplified example of an MBeanAt t ri but e subelement within an
MBeanType € ement:

<MBeanType Nanme=“M/MBean” Package="com nyconpany” >
<MBeanAttri bute Name= “WienToCache”
Type="j ava.l ang. Stri ng”
Legal Val ues="" cache-on-reference’,’ cache-at-initialization’,’'cache-never’'"
Def aul t = “cache- on-reference”
/>
</ MBeanType>

Developing Security Providers for WebLogic Server A-15

A MBean Definition File (VDF) Element Syntax

Attributes specified in an MBeanAt t ri but e subelement apply to a specific MBean
instance. To set attributes for the entire set of MBeans instantiated from an MBean
type, you need to specify attributes in the MBeanType (root) el ement. For more
information, see “The MBeanType (Root) Element” on page A-1.

Table A-3 describes the attributes available to the MBeanAt t r i but e subelement. The
JMX Specification/BEA Extension column indicates whether the attribute isa BEA
extension to the IMX specification. Note that BEA extensions might not function on
other J2EE Web servers.

Table A-3 Attributes of the MBeanAttribute Subelement

Attribute JMX Specification Allowed Description
/BEA Extension Values
Cachi ngDi sabl ed BEA Extension true/fal se Ignored. Thisflag existsto support

future functionality. For example, if
caching is provided in the types-stubs,
this flag may turn off that caching.

Currently, MBeans created viathe
WebL ogic MBeanMaker provide
server-level caching as per the
specification for IMX Model MBeans.

Note: For moreinformation on JIMX
Model M Beans, see the Java
Management extensions 1.0
specification.

CurrencyTi meLim t JMX Specification Integer The number of seconds that any value

cached is considered fresh. After this
value expires, the next attempt to access
the value triggers arecalcul ation.

When specified in the MBeanType
element, this value is considered the
default for MBean types. It can be
overridden for individual M Beans by
setting the same attribute in the
MBean'sMBeanAttri but e or
MBeanQper at i on subelement.

A-16

Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Def aul t JMX Specification Sring The value to be returned if the
MBeanAt t ri but e subelement does
not provide a getter method or a cached
value. The string represents a Java
expression that must evaluate to an
object of atypethat is compatible with
the provided data type for this attribute.

If you do not specify this attribute, the
assumed valueisnul | . If you use this
assumed value, and if you set the
Legal Nul | attributetof al se, then
an exception is thrown by WebL ogic
MBeanMaker and WebL ogic Server.

Def aul t String JMX Specification Sring Same as Def aul t, but can be used if
the type of the attribute is String. If
Def aul t isused for astring attribute,
the value must be enclosed in quotation
marks. If Def aul t St ri ng isused, the
quotation marks should be omitted.

Depr ecat ed BEA Extension truel/fal se Indicatesthat the MBean attributeis
deprecated. Thisinformation appearsin
the generated Java source, and is al'so
placedinthe Model MBeanl nf o object
for possible use by a management
application. If you do not specify this
atribute, the assumed valueisf al se.

Developing Security Providers for WebLogic Server A-17

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Descri ption JMX Specification Sring

An arbitrary string associated with the
MBean attribute that appearsin various
locations, such as the Javadoc for
generated classes. Thereis no default or
assumed value.

Note: To specify adescription that is
visiblein auser interface, use
the Di spl ayNane,

Di spl ayMessage, and
PresentationString
attributes.

Di spl ayMessage JMX Specification Sring

The message that a user interface
displaysto describe the MBean
attributes. Thereis no default or
assumed value.

TheDi spl ayMessage may bea
paragraph used in Tool Tipsor in Help.
A Di spl ayMessage set for the
MBeantypeisconsidered thedefault for
MBean instances, unless a different
valueisspecified for individual MBeans
when the instance is created.

A-18

Developing Security Providers for WebL ogic Server

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values
Di spl ayNane JMX Specification String The name that a user interface displays
to identify the instances of MBean
types.

The default value for Di spl ayNane
(from the MBean type) istypically
overridden when instances are created.
For an instance of type X, the default
Di spl ayNane is"instance of type X."

If you usethe LanguageMap attribute,
the Di spl ayNane valueisused asa
key to find anamein the
LanguageMap’sresource bundle. If
you do not specify the LanguageMap
atribute, or if the key isnot present in
theresource bundle, the Di spl ayNanme
valueitself isdisplayed in the user
interface.

Seedso Messagel D.

Encrypt ed BEA Extension true/fal se Atruevaueindicatesthat thisMBean
attributewill beencrypted whenitisset.
If you do not specify this attribute, the
assumed valueisf al se.

Export JMX Specification Sring The WebL ogic MBeanMaker does not
use this attribute. However, to support
applicationsthat might useit, WebL ogic
MBeanMaker adds the value to the
MBeanl nf o object. Thereisno default
or assumed value.

Note: For moreinformation on the
Export attribute, seethe Java
Management eXtensions 1.0
specification.

Developing Security Providers for WebLogic Server A-19

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description

/BEA Extension Values
Gener at eExt ended BEA Extension true/false Atrue vaueenablesal MBean
Accessors atributeswhose Type isar r ay to

generate additional operations and
interface methods to support indexed
access. A f al se value prevents all
MBeanAt t ri but e subelements from
generating additional operations and
methods. If you do not specify this
atribute, the assumed valueist r ue.

Get Met hod JMX Specification Sring Overrides the MBean type’ s default
attribute handling logic and providesthe
name of a getter method to be used for
the current MBeanAt t ri but e
subelement. The value must correspond
to the Nanme of an MBeanQOper at i on
subelement that defines a getter
operation within the current MDF.

If you do not specify this attribute, the
MBean uses its default logic to retrieve
the M Bean attribute' s value.

Note: Thisattributeisaffected by the
Readabl e attribute: if
Readabl e isf al se, thenno
getters are invoked for the
current MBeanAttri but e
subelement.

InterfaceType BEA Extension String Classname of an interface to be used
instead of the MBean interface
generated by the WebL ogic
MBeanMaker. Currently ignored but
may be used for future extensibility.

A-20 Developing Security Providers for WebL ogic Server

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values
Isls JMX Specification truel/fal se Specifieswhether agenerated Java
interface uses the IMX

i s<Attri but eName> method to
access the boolean value of the MBean
attribute (as opposed to the

get <At t ri but eName> method). If
you do not specify this attribute, the
assumed valueisf al se.

Iterable JMX Specification truel/fal se For aggregate attribute types, indicates
whether the attribute supports iteration
(that is, whether it can increment its
valueeachtimeitisaccessed). If you do
not specify this attribute, the assumed
valueisf al se.

The WebL ogic MBeanMaker does not
use this attribute. However, to support
applications that might use it,

WebL ogic MBeanMaker addsthevalue
to the MBeanl nf o class.

Note: For moreinformation on the
I t er abl e attribute, see the
Java Management eXtensions
1.0 specification.

LanguageMap BEA Extension String Specifiesafully qualified pathnameto a
resource bundle that contains a map of
displayable strings. Other attributes,
suchasDi spl ayMessage and
Di spl ayNane, usethe strings in the
LanguageMap to display information
about the MBean attribute.

If you do not specify this attribute, other
atributes, such asDi spl ayMessage
and Di spl ayNane, display their own
values (as opposed to using their values
asakey to find appropriate stringsin the
resource bundle).

Developing Security Providers for WebLogic Server A-21

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute

JMX Specification Allowed
/BEA Extension Values

Description

Legal Nul |

BEA Extension truelfal se

Specifieswhether nul | isan alowable
value for the current

MBeanAt t ri but e subelement. If you
do not specify thisattribute, the assumed
valueistrue.

Legal Val ues

BEA Extension Comma-
separated list

Specifiesafixed set of allowable values
for the current MBeanAt t ri but e
subelement. If you do not specify this
attribute, the MBean attribute allows
any value of thetypethat is specified by
the Ty pe attribute.

Note: Theitemsin thelist must be
convertibleto the datatypethat
is specified by the
subelement’s Ty pe attribute.

Li sten

BEA Extension truelfal se

Causes a stub for a notification listener
to be generated in the MBean
implementation object. If you do not
specify thisattribute, the assumed value
isfal se.

Note: For more information about
listener stubs, see the Java
Management extensions 1.0
specification.

A-22 Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Log JMX Specification true/fal se Atrue vaue specifiesthat MBean
notifications are added to the log file.
(TheLogFi | e attribute specifiesthe
fileinto whichtheinformation should be
written.) If you do not specify this
attribute, the assumed valueisf al se,
and notificationsarenot added to thelog
file.

Note: For moreinformation about
MBean notifications and logs,
see the Java Management
eXtensions 1.0 specification.

LogFil e JMX Specification Pathname The fully qualified pathname of an
existing, writable file into which
messages are written when notifications
occur for this MBean attribute. For
logging to occur, theLog attribute must
besettot rue. Thereisno default or
assumed value for this attribute.

Note: For moreinformation about
MBean notifications and logs,
see the Java Management
eXtensions 1.0 specification.

Max BEA Extension Integer For numeric MBean attributetypesonly,
providesanumeric value that represents
the inclusive maximum value for the
attribute. If you do not specify this
attribute, the value can be aslarge asthe
datatype alows.

Note: If this maximum varies
dynamically, varies based on
context, or hasacomplex set of
value ranges (for example,
1-10 or >100), use the
Val i dat or attribute instead.

Developing Security Providers for WebLogic Server A-23

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Messagel D JMX Specification Sring

Provides akey for retrieving a message
from a client-side message repository
per the Java Management eXtensions
1.0 specification.

You can use Messagel D, or

Di spl ayMessage, or both to
describe a notification MBean type. If
you do not specify this attribute, no
message ID isavailable.

Note: Messagel Ddoes not usethe
same resource bundle that the
LanguageMap attribute

specifies, and it isavailablefor

notification MBean typesonly.

BEA Extension Integer

For numeric MBean attributetypesonly,
provides a numeric value which
represents the inclusive minimum value
for the attribute. If you do not specify
this attribute, the value can be as small
asthe datatype allows.

Note: If thisminimum varies
dynamically, varies based on
context, or hasacomplex set of
value ranges (for example,
1-10 or >100), use the

Val i dat or attribute instead.

JMX Specification Sring

Mandatory attribute that specifiesthe
internal, programmatic name of the
MBean attribute.

NoDunp BEA Extension truelfal se

A t r ue value prevents the MBean
attribute from being dumped by the
WebL ogic MBeanDumper utility.

A-24 Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Per si st Locati on JMX Specification Pathname The WebL ogic MBeanMaker does not
use this attribute. However, to support
cases where an MBean extends Model
MBeans that do use
Per si st Locat i on, the WebLogic
MBeanMaker adds the value to the
MBeanl nf o class. Thereis no default
or assumed value.

Note: For moreinformation about
Per si st Locat i on and
Model MBeans, see tthe Java
Management eXtensions 1.0
specification.

Per si st Nane JMX Specification String The WebL ogic MBeanMaker does not
use this attribute. However, to support
cases where an MBean extends Model
MBeans that do use Per si st Nane,
WebL ogic MBeanMaker addsthevalue
to the MBeanl nf o class. Thereisno
default or assumed value.

Note: For moreinformation about
Per si st Nane and Model
MBeans, see the Java
Management eXtensions 1.0
specification.

Developing Security Providers for WebLogic Server A-25

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

Per si st Peri od JMX Specification Integer

Specifiesthe number of secondsthat the
OnTi mer or NoMor eOf t enThan
persistence policies use. If you do not
specify thisattributein the MBeanType
or MBeanAt t ri but e elements, the
assumed valueisO.

If Persi stPolicyissetto

OnTi mer , thentheattributeis persisted
when the number of seconds expires. If
Per si st Pol i cy issetto

NoMbor eCf t enThan, then persistence
is constrained to happen not more often
than the specified number seconds.

Note: When specified in the
MBeanType element, this
value overrides any setting
within an individual
MBeanAttri bute
subelement.

A-26

Developing Security Providers for WebL ogic Server

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute

JMX Specification Allowed
/BEA Extension Values

Description

Per si st Pol i cy

JMX Specification Never
/ OnTi nmer
/ OnUpdat e
/ NoMor e
t enThan

Specifies how persistence will occur:

m Never . Theattributeis never
stored. Thisis useful for highly
volatile data or data that only has
meaning within the context of a
session or execution period.

m OnTi ner. Theattributeis stored
whenever the MBean attribute’' s
persistence timer, as defined in the
Per si st Per i od attribute,
expires.

m OnUpdat e. The attributeis stored
every time the attribute is updated.

m NoMoreOf t enThan. Theattribute
is stored every timeit is updated
unless the updates are closer
together than the
Per si st Peri od. This
mechanism helps prevent
temporarily highly volatile data
from affecting performance.

If you do not specify thisattributein the
MBeanType or MBeanAttri bute
elements, the assumed valueis Never .

Note: When specified in the
MBeanType eement, this
value overrides any setting
within an individual
MBeanAttri bute
subelement.

Developing Security Providers for WebLogic Server A-27

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

PresentationString JMX Specification Pathname

A fully qualified pathname to asingle
XML document that provides
information that auser interface can use
to display theitem. The XML document
provides additional metadata that is
relevant to presentation logic. The
format of the Pr esent ati onString
isany XML/IMX-compliant
information.

Note: BEA does not currently define
a specialized format, and
recommends that customers
wait before defining their own.
ThePresentationString
attribute is for future use.

Pr ot ocol Map JMX Specification Pathname

TheModel MBean APIsallow mapping
of the application’'s Model MBean
attributes to existing management data
models through the Pr ot ocol Map
field of the descriptor. The

Pr ot ocol Map field of an attribute’s
descriptor must contain areferenceto an
instance of a class that implements the
Descri pt or interface.

Note: For moreinformation about the
Pr ot ocol Map attribute and
Model M Beans, see the Java
Management extensions 1.0
specification.

A-28

Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanAttribute Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Readabl e JMX Specification true/fal se Determines whether the MBean
attribute’ svalue can be read through the
MBean API. If you do not specify this
atribute in the MBeanType or
MBeanAt t ri but e elements, the
assumed valueist r ue.

When specified in the MBeanType
element, this value is considered the
default for individual

MBeanAt t ri but e subelements.

Set Met hod JMX Specification String Overrides the MBean type's default
attribute handling logic and providesthe
name of a setter method to be used for
the current MBeanAt t ri but e
subelement. The value must correspond
to the Nane of an MBeanQper ati on
subelement that defines a setter
operation within the current MDF.

If you do not specify this attribute, the
MBean usesits default logic to set the
MBeanAttri but e’svaue.

Note: Thisattributeisaffected by the
Wit eabl e attribute: if
Wi tabl eisfal se, thenno
setters are invoked for the
current MBeanAttri bute

subelement.
Type JMX Specification Java class Thefully qualified classnameof thedata
name typeof thisattribute. Thiscorresponding

classmust be availabl e on the classpath.
If you do not specify this attribute, the
assumed valueis

java.lang. String.

Developing Security Providers for WebLogic Server A-29

A MBean Definition File (VDF) Element Syntax

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Description

The classname of a serializable object
that implements the webl ogi c.
managenent . commo. Val i dat or
interface. This allows you to supply
your own logic to ensure that values of
the attribute are correct. If a specific
validator is not provided, WebL ogic
Server does only basic checking to
ensure type compatibility and, for
numeric values, simple range checking
(as specified in M n and Max).
Instantiation and use of avalidator is
automatic and requires no additional
action, beyond that of providing the
validator namein the MBean Definition
File (MDF) and the validator class on
the classpath.

Attribute JMX Specification Allowed
/BEA Extension Values
Val i dat or BEA Extension Java class
name
Visibility JMX Specification Integer: 1-4

Denotes alevel of importance for the
MBean attribute. User interfaces use the
number to determine whether they
present the MBean attribute to a
particular user in a particular context.
Thelower the value, the higher thelevel
of importance. Y ou can specify a
number from 1 to 4. If you do not
specify this attribute, the assumed value
isl.

For items that have a high level of
interest for users, provide alow

Vi si bi i ty number. For example, in
the WebL ogic Server Administration
Console, MBeanswithaVi si bl ity
value of 1 aredisplayed in the left-pane
navigation tree.

A-30 Developing Security Providers for WebL ogic Server

The MBeanNotification Subelement

Table A-3 Attributes of the M BeanAttribute Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values
Witeable JMX Specification true/fal se Atruevauealowsthe MBean APl to

set an MBeanAt t ri but e’svalue. If
you do not specify this attribute in
MBeanType or MBeanAttri but e,
the assumed valueist r ue.

When specified in the MBeanType
element, this value is considered the
default for individual

MBeanAt t ri but e subelements.

The MBeanNotification Subelement

Y ou must supply oneinstance of an MBeanNot i f i cat i on subelement for each type of
notification (that is, broadcast of amanagement event) that your M Bean type can issue.
The MBeanNot i fi cati on must be formatted as follows:

<MBeanNot i fi cati on Nane=stri ng optional _attributes />

The MBeanNot i fi cat i on subelement must include aNane attribute, which specifies
the internal, programmatic name of the Java notification. (To specify anamethat is
visiblein a user interface, use the Di spl ayName and LanguageMap attributes.) Other
attributes are optional .

Thefollowing isasimplified example of an MBeanNot i fi cat i on subelement within
an MBeanType € ement:

<MBeanType Nanme=“M/MBean” Package="com nyconpany” >

<MBeanNot i fi cati on Nane="com nmyconpany. nyNotification” />
</ MBeanType>

Developing Security Providers for WebLogic Server A-31

A MBean Definition File (VDF) Element Syntax

Table A-4 describes the attributes available to the MBeanNot i fi cat i on subelement.
The IMX Specification/BEA Extension column indicates whether the attributeis a
BEA extension tothe IMX specification. Notethat BEA extensions might not function
on other J2EE Web servers.

Table A-4 Attributes of the M BeanNotification Subelement

Attribute JMX Specification Allowed Description
/BEA Extension Values

d assnane JMX Specification Sring The classname for the
MBeanNot i fi cati on, asdefined by
the Java Management eXtensions 1.0
specification. The default classname
will work in most cases, but if desired,
this attribute allows you to changeit.

Depr ecat ed BEA Extension true/fal se Indicatesthat the MBean notification is
deprecated. Thisinformation appearsin
the generated Java source, and is also
placedinthe Model MBeanl nf o object
for possible use by a management
application. If you do not specify this
attribute, the assumed value isf al se.

Descri ption JMX Specification Sring An arbitrary string associated with the
MBean notification type that appearsin
various locations, such as the Javadoc
for generated classes. Thereisno default
or assumed value.

Note: To specify adescription that is
visiblein auser interface, use
the Di spl ayNane,

Di spl ayMessage, and
PresentationString
attributes.

A-32 Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanNotification Subelement

Table A-4 Attributes of the MBeanNotification Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Di spl ayMessage BEA Extension Sring The message that a user interface
displays to describe the MBean
notification. There is no default or
assumed value.

TheDi spl ayMessage may bea
paragraph used in Tool Tipsor in Help.
A Di spl ayMessage set for the

M Beantypeisconsidered thedefault for
MBean instances, unless a different
valueisspecified for individual MBeans
when the instance is created.

Di spl ayNane JMX Specification Sring The name that a user interface displays
to identify the MBean notification type.
There is no default or assumed value.

If you use the LanguageMap attribute,
the Di spl ayNane valueisused asa
key to find anamein the
LanguageMap’sresource bundle. If
you do not specify the LanguageMap
attribute, or if the key is not present in
theresourcebundle, theDi spl ayName
valueitself isdisplayed in user
interfaces.

Seeaso Messagel D.

LanguageMap BEA Extension Sring Specifiesafully quaified pathnameto a
resource bundle that contains a map of
displayable strings. Other attributes,
such asDi spl ayMessage and
Di spl ayNane, usethestringsin the
LanguageMap to display information
about the MBean notification.

If you do not specify thisattribute, other
attributes, such asDi spl ayMessage
and Di spl ayNane, display their own
values (as opposed to using their values
asakey tofind appropriate stringsinthe
resource bundle).

Developing Security Providers for WebLogic Server A-33

A MBean Definition File (VDF) Element Syntax

Table A-4 Attributes of the MBeanNotification Subelement (Continued)

Allowed
Values

Attribute JMX Specification

/BEA Extension

Description

Li sten BEA Extension truelf al se

Causes a stub for a notification listener
to be generated in the MBean
implementation object. If you do not
specify this attribute, the assumed value
isf al se.

For more information about
listener stubs, see the Java
Management eXtensions 1.0
specification.

Note:

Log JMX Specification truel/fal se

A t r ue vaue specifies that MBean
notifications are added to the log file.
(TheLogFi | e attribute specifiesthe
fileinto whichtheinformation should be
written.) If you do not specify this
attribute, the assumed valueisf al se,
and notificationsarenot added tothelog
file.

For more information about
MBean natifications and logs,
see the Java Management
eXtensions 1.0 specification.

Note:

LogFil e JMX Specification Pathname

The fully qualified pathname of an
existing, writable file into which
messages are written when notifications
occur for this MBean notification type.
For logging to occur, the Log attribute
must besettot r ue. Thereisno default
or assumed value for this attribute.

For more information about
MBean notifications and logs,
see the Java Management
eXtensions 1.0 specification.

Note:

A-34 Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanNotification Subelement

Table A-4 Attributes of the MBeanNotification Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Messagel D JMX Specification Sring Provides akey for retrieving a message
from a client-side message repository
per the Java Management eXtensions
1.0 specification.

You can use Messagel D, or

Di spl ayMessage, or both to
describe a notification MBean type. If
you do not specify this attribute, no
message ID isavailable.

Note: Messagel Ddoes not usethe
same resource bundle that the
LanguageMap attribute
specifiesand it is available for
notification MBeans only.

Nane IMX Specification Sring Mandatory attribute that specifies the
internal, programmatic name of the
Java notification.

Noti fi cati onTypes JMX Specification Comma- The types of notifications that are the
separated list characterizations of generic notification
objects. The list consists of any number
of dot-separated components, separated
by commasto alow an arbitrary,
user-defined structure in the naming of
notification types.

Note: For moreinformation about
notification types, seethe Java
Management eXtensions 1.0
specification

Developing Security Providers for WebLogic Server A-35

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-4 Attributes of the MBeanNotification Subelement (Continued)

Attribute JMX Specification Allowed

/BEA Extension Values

Description

PresentationString JMX Specification Pathname

A fully qudified pathnameto asingle
XML document that provides
information that a user interface can use
todisplay theitem. The XML document
provides additional metadatathat is
relevant to presentation logic. The
format of the Pr esent ati onString
isany XML/IMX-compliant
information.

Note: BEA does not currently define
a specialized format, and
recommends that customers
wait before defining their own.
ThePresentationString
attributeis for future use.

Severity JMX Specification Integer or

Sring

Indicatesthe severity of thenotification.
Y ou must use one of the following
values:

0 or unknown

1 ornon-recoverabl e
2,critical,orfailure

3, nmj or,or severe

4, m nor, mar gi nal ,orerror
5 orwarni ng

6,nornal ,cl eared,orinfo

The value of thistag can be either the
number or any of the provided strings
(caseinsensitive). If you useastring, the
MBean! nf o object always converts it
to the numerical equivalent and stores
the numeric value.

If you do not specify this attribute, the

notification reports a severity of
unknown.

A-36 Developing Security Providers for WebL ogic Server

The MBeanConstructor Subelement

Table A-4 Attributes of the MBeanNotification Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Visibility JMX Specification Integer: 1-4 Denotes alevel of importance for the
MBean notification. User interfaces use
the number to determine whether they
present the MBean notification to a
particular user in aparticular context.
The lower thevalue, the higher thelevel
of importance. Y ou can specify a
number from 1 to 4. If you do not
specify this attribute, the assumed value
isi.

For items that have a high level of
interest for users, provide alow

Vi si bi i ty number. For example, in
the WebL ogic Server Administration
Console, MBeanswithaVi siblity
value of 1 aredisplayed in the left-pane
navigation tree.

The MBeanConstructor Subelement

MBeanConst r uct or subelements are not currently used by the WebL ogic
MBeanMaker, but are supported for compliance with the Java Management
eXtensions 1.0 specification and upward compatibility. Therefore, attribute detailsfor
the MBeanConst r uct or subelement (and its associated MBeanConst r uct or Ar g
subelement) are omitted from this documentation.

Developing Security Providers for WebLogic Server A-37

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

The MBeanOperation Subelement

Y ou must supply one instance of an MBeanOper at i on subelement for each operation
(method) that your MBean type supports. The MBeanQper at i on must be formatted as
follows:

<MBeanOper ati on Nane=string optional_attributes >
<MBeanQper at i onArg Name=string optional_attributes/ >
</ MBeanOper ati on>

The MBeanper at i on subelement must include a Nane attribute, which specifiesthe
internal, programmatic name of the operation. (To specify anamethat isvisibleina
user interface, use the Di spl ayName and LanguageNap attributes.) Other attributes
areoptional.

Within the MBeanQper at i on element, you must supply one instance of an
MBeanQper at i onAr g subelement for each argument that your operation (method)
uses. The MBeanOper at i onAr g must be formatted as follows:

<MBeanQper at i onArg Name=string optional_attributes />

The Nane attribute must specify the name of the operation. The only optional attribute
for MBeanper at i onAr g is Type, which provides the Java class name that specifies
behavior for a specific type of Java attribute. If you do not specify this attribute, the
assumed valueisj ava. | ang. Stri ng.

Thefollowing is asimplified example of an MBean(per at i on and
MBeanQOper at i onAr g subelement within an MBeanType element:

<MBeanType Name=“M/MBean” Package="com nyconpany” >

<MBeanQper at i on
Name= “fi ndPar ser Sel ect MBeanByKey”
Ret ur nType=" XM_Par ser Sel ect Regi st ryEnt r yMBean”
Description="G ven a public ID, systemI|D, or root element tag, returns the
obj ect nanme of the correspondi ng XM.Par ser Sel ect Regi stryEntryMBean.”
>
<MBeanQper ati onArg Nane="publicl D" Type="java.lang. String"/>
<MBeanQper ati onArg Nane="system D' Type="java.l ang. String"/>
<MBeanQper at i onArg Nanme="r oot Tag” Type="java.lang. String”/>
</ MBeanQper at i on>

</ MBeanType>

A-38 Developing Security Providers for WebL ogic Server

The MBeanOperation Subelement

Table A-5 describes the attributes available to the MBeanOper at i on subelement. The
JMX Specification/BEA Extension column indicates whether the attribute is a BEA
extension to the IM X specification. Note that BEA extensions might not function on
other J2EE Web servers.

Table A-5 Attributes of the M BeanOperation Subelement

Attribute JMX Specification Allowed Description
/BEA Extension Values
CurrencyTi neLimit JMX Specification Integer The number of seconds that any

value cached is considered fresh.
After this value expires, the next
attempt to accessthevaluetriggersa
recalculation.

When specified in the MBeanType
element, thisvalueisconsidered the
default for MBean types. It can be
overridden for individual MBeans
by setting the same attribute in the
MBean'sMBeanAt t ri but e or
MBeanOper at i on subelement.

Depr ecat ed BEA Extension true/fal se Indicatesthat the MBean operation
is deprecated. Thisinformation
appears in the generated Java
source, and is also placed in the
Mbdel MBeanl nf o object for
possible use by a management
application. If you do not specify
this attribute, the assumed value is
fal se.

Developing Security Providers for WebLogic Server A-39

A MBean Definition File (VDF) Element Syntax

Table A-5 Attributes of the MBeanOperation Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Description JMX Specification Sring An arbitrary string associated with
the MBean operation that appearsin
various locations, such asthe
Javadoc for generated classes. There
is no default or assumed value.

Note: To specify adescription
that isvisiblein a user
interface, use the
Di spl ayNane,

Di spl ayMessage, and
PresentationString
attributes.

Di spl ayMessage BEA Extension String The message that a user interface
displays to describe the MBean
operation.There is no default or
assumed value.

TheDi spl ayMessage may bea
paragraph used in Tool Tipsorin
Help. A Di spl ayMessage set for
the MBean typeis considered the
default for MBean instances, unless
adifferent value is specified for
individual MBeans when the
instance is created.

A-40 Developing Security Providers for WebL ogic Server

The MBeanOperation Subelement

Table A-5 Attributes of the MBeanOperation Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Di spl ayNane JMX Specification Sring The name that a user interface
displaysto identify the MBean
operation. There is no default or
assumed value.

If you use the LanguageMap
atribute, the Di spl ayName value
isused asakey to find anameinthe
LanguageMap’sresource bundle.
If you do not specify the
LanguageMap attribute, or if the
key is not present in the resource
bundle, the Di spl ayNane vaue
itself isdisplayed in user interfaces.

Seedso Messagel D.

| npact JMX Specification The part of an MBean operation that
communicates the impact the
operation will have on the managed

entity represented by the MBean.

Note: For more information, see
the Java Management
eXtensions 1.0
specification

Developing Security Providers for WebLogic Server A-41

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-5 Attributes of the MBeanOperation Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

LanguageMap BEA Extension String Specifiesafully qualified pathname
to aresource bundle that contains a
map of displayable strings. Other
attributes, such as
Di spl ayMessage and
Di spl ayNane, usethe stringsin
the LanguageMap to display
information about the MBean
operation.

If you do not specify this attribute,
other attributes, such as

Di spl ayMessage and

Di spl ayNane, display their own
values (as opposed to using their
values as akey to find appropriate
strings in the resource bundle).

Li sten BEA Extension true/fal se Causesastub for anotification
listener to be generated in the
MBean implementation object. If
you do not specify this attribute, the
assumed valueisf al se.

Note: For moreinformation
about listener stubs, seethe
Java Management
eXtensions 1.0
specification.

A-42 Developing Security Providers for WebL ogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

The MBeanOperation Subelement

Table A-5 Attributes of the MBeanOperation Subelement (Continued)

Attribute JMX Specification Allowed Description
/BEA Extension Values

Messagel D JMX Specification Sring Provides akey for retrieving a
message from a client-side message
repository per the Java Management
eXtensions 1.0 specification.

You can use Messagel D, or

Di spl ayMessage, or both to
describe a notification MBean type.
If you do not specify this attribute,
no message ID isavailable.

Note: Messagel Ddoesnot use
the same resource bundle
that the LanguageMap
attribute specifiesand it is
available for notification
MBeans only.

Nane JMX Specification Sring Mandatory attribute that specifies
theinternal, programmatic name
of the MBean operation.

PresentationString JMX Specification Pathname A fully qualified pathnameto a
single XML document that provides
information that a user interface can
useto display theitem. The XML
document provides additional
metadata that is relevant to
presentationlogic. Theformat of the
PresentationStringisany
XML/IMX-compliant information.

Note: BEA does not currently
define a specialized
format, and recommends
that customers wait before
defining their own. The
PresentationString
attribute is for future use.

Developing Security Providers for WebLogic Server A-43

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

A MBean Definition File (VDF) Element Syntax

Table A-5 Attributes of the MBeanOperation Subelement (Continued)

Attribute JMX Specification Allowed
/BEA Extension Values

Description

Ret ur nType JMX Specification Sring

A string containing the fully
qualified classname of the Java
object returned by the operation
being described.

Ret ur nTypeDescri pti on JMX Specification String

A textual description of the Java
object returned by the operation
being described, which can be used
in the Javadoc or a graphical user
interface.

Visibility JMX Specification Integer: 1-4

Denotes alevel of importance for
the MBean operation. User
interfaces use the number to
determine whether they present the
M Bean operationto aparticul ar user
inaparticular context. Thelower the
value the higher the level of
importance. Y ou can specify a
number from 1 to 4. If you do not
specify this attribute, the assumed
valueis 1.

For items that have ahigh level of
interest for users, provide alow

Vi si bi i ty number. For
example, in the WebL ogic Server
Administration Console, MBeans
withaVi si bl ity vaueof 1 are
displayed intheleft-pane navigation
tree.

A-44 Developing Security Providers for WebL ogic Server

The MBeanOperation Subelement

Table A-6 describes the attributes available to the MBeanper at i onAr g subelement.
The IMX Specification/BEA Extension column indicates whether the attribute isa
BEA extension tothe IM X specification. Notethat BEA extensions might not function
on other J2EE Web servers.

Table A-6 Attributes of the MBeanOperationArg Subelement

Attribute JMX Specification Allowed Description
/BEA Extension Values
Descri ption JMX Specification Sring An arbitrary string associated with

the M Bean operation argument that
appearsin variouslocations, such as
the Javadoc for generated classes.
Thereis no default or assumed
value.

I nterfaceType BEA Extension Sring Classname of aninterfaceto beused
instead of the MBean interface
generated by the WebL ogic
MBeanMaker. Currently ignored
but may be used for future
extensibility.

Nane JMX Specification Sring Mandatory attribute that specifies
the name of the argument.

Type JMX Specification Sring The type of the MBean operation
argument. If you do not specify this
atribute, the assumed valueis
java.lang. String.

Developing Security Providers for WebLogic Server A-45

A MBean Definition File (VDF) Element Syntax

Examples: Well-Formed and Valid MBean
Definition Files (MDFs)

Listing A-1and Listing A-2 provide examples of MBean Definition Files (MDFs) that
use many of the attributes described in this Appendix. Listing A-1 shows the MDF
used to generate an M Bean type that manages predicates and reads data about
predicates and their arguments. Listing A-2 shows the MDF used to generate the
MBean type for the WebL ogic (default) Authorization provider.

Listing A-1 PredicateEditor.xml

<?xm version="1.0" ?>
<! DOCTYPE MBeanType SYSTEM "conmo. dtd">

<MBeanType
Name = "PredicateEditor"
Package = "webl ogi c. security. providers. authorization"
I npl enents = "webl ogi c. security. providers. authorization. Predi cat eReader”
Per si st Poli cy = "OnUpdat e"
Abstract = "fal se"

Description = "This MBean nanages predi cates and reads data about predicates and
their argunents. & t; p>"
>

<MBeanQper at i on

Name = "regi sterPredi cate"
Ret urnType = "voi d"
Description = "Registers a new predicate with the specified class nane."

>

<MBeanQper at i onAr g

Name = "predicated assNane"

Type = "java.lang. String"

Description = "The name of the Java class that inplenents the predicate."”
/>

<MBeanExcept i on>webl ogi c. managenent . util s. | nval i dPredi cat eExcepti on</ MBean
Excepti on>

<MBeanExcept i on>webl ogi c. managenent . util s. Al readyExi st sExcept i on</ MBeanExc
epti on>

A-46 Developing Security Providers for WebL ogic Server

Examples: Well-Formed and Valid MBean Definition Files (MDFs)

</ MBeanOper at i on>

<MBeanOper at i on

Name = "unregi sterPredicate"

Ret urnType = "voi d"

Description = "Unregisters the currently registered predicate."
>

<MBeanQper at i onAr g

Name = "predicated assNane"
Type = "java.lang. String"
Description = "The nanme of the Java class that inplenents predicate to be
unregi stered.”
/>

<MBeanExcept i on>webl ogi c. managemnent . uti | s. Not FoundExcepti on</ MBeanExcepti o
n>

</ MBeanQper at i on>

</ MBeanType>

Listing A-2 DefaultAuthorizer.xml

<?xm version="1.0" ?>
<! DOCTYPE MBeanType SYSTEM "commo. dtd">

<MBeanType
Name = "Def aul t Aut hori zer"
Di spl ayNane = "Defaul t Aut hori zer"

Package = "webl ogi c. security. providers. aut hori zati on"
Ext ends = "webl ogi c. managenent. security. aut hori zati on. Depl oyabl eAut hori zer"
I mpl erents = "webl ogi c. managenent . security. authorization. PolicyEditor,

webl ogi c. security. provi ders. aut hori zati on. Predi cat eEdi t or"

Persi st Policy = "OnUpdate"

Description = "This MBean represents configuration attributes for the WbLogic
Aut hori zation provider. &t;p>"
>

<MBeanAttribute

Name = "Provi der Cl assNane"

Type = "java.lang. String"

Witeable = "fal se"

Default =
"" ; webl ogi c. security. provi ders. aut hori zati on. Def aul t Aut hori zati onProvi derl m
pl " ;"

Description = "The nane of the Java class used to | oad the WbLogic

Developing Security Providers for WebLogic Server A-47

A MBean Definition File (VDF) Element Syntax

Aut hori zation provider."
/>

<MBeanAttribute

Name = "Descri pti on"

Type = "java.lang. String"

Witeable = "fal se"

Default = "" Wbl ogi c Default Authorization Provider""

Description = "A short description of the WebLogi ¢ Authorization provider."
/>

<MBeanAttri bute

Name = "Version"

Type = "java.lang. String"

Witeable = "fal se"

Default = "" 1. 0" ;"

Description = "The version of the WbLogi c Authorization provider."
/>

</ MBeanType>

A-48 Developing Security Providers for WebL ogic Server

| ndex

A

Access Decisions
definition 6-8
purpose 6-8
relationship to Authorization providers
1-6, 6-8
AccessDecision SSPI
methods 6-14
Active Types
attribute in MBean Definition Files
(MDFs) for Identity Assertion
providers 4-5
defaulting 4-5
field in WebL ogic Server
Administration Console 4-5
adjudication
definition 7-1
general process 7-1
Adjudication providers
configuring
in the WebL ogic Server
Administration Console 7-
11
Require Unanimous Permit attribute
7-11
custom
determining necessity 7-2
main steps for developing 7-3
introductory description 1-6
purpose 7-1
WebLogic

description 7-2
AdjudicationProvider SSPI
methods 7-4
Adjudicator SSPI
methods 7-4
appearance of custom attributes/operationsin
WebL ogic Server Administration
Console 2-18
architecture of a security provider 2-7
argument-passing mechanisms
CallbackHandlers 3-7, 3-15, 4-12
ContextHandlers 6-10, 8-5, 8-9, 11-9
asserting identity using tokens 1-4
attributes for MBean Definition File (MDF)
elements
MBeanAttribute subelement A-16
MBeanNotification subelement A-32
MBeanOperation subelement A-39
MBeanOperationArg subelement A-45
MBeanType (root) element A-2
attributes/operations, custom
appearance in WebL ogic Server
Administration Console 2-18
using to configure an existing security
provider database 2-28
what the WebL ogic MBeanMaker utility
provides 2-21
Audit Channels
definition 9-4
purpose 9-4
relationship to Auditing providers 9-4

Developing Security Providers for WebL ogic Server [-i

audit context
definition 11-9
audit events
creating 11-4
definition 11-4
using the Auditor Service to write 11-11
example 11-11
audit severity
definition 11-8
AuditChannel SSPI
methods 9-7
AuditContext interface
methods 11-9
AuditEvent SSPI
convenience interfaces 11-5
AuditAtnEvent
example 11-9
methods 11-5
AuditAtzEvent
methods 11-7
AuditMgmtEvent 11-7
AuditPolicyEvent
methods 11-7
AuditRoleDeploymentEvent 11-8
AuditRoleEvent 11-8
methods 11-4
auditing
definition 9-1, 11-1
from a custom security provider
example 11-1
main steps 11-3
Auditing providers
configuring in the WebL ogic Server
Administration Console 9-15
audit severity 9-15
custom
determining necessity 9-4
main steps for developing 9-6
example of creating runtime classes 9-7
interaction
with other types of security

providers 9-2
with WebL ogic Security
Framework 9-2
introductory description 1-8
purpose 9-1, 11-1
relationship
to Audit Channels 9-4
WebL ogic
description 9-4
Auditor Service
obtaining and using to write audit events
11-11
example 11-11
AuditorService interface
implementations 11-3
methods 11-2
purpose 11-2
AuditProvider SSPI
methods 9-6
authentication
client-side
using
UsernamePasswordL ogin
Module 3-7, 3-9, 4-7
definition 3-1
enabling different technol ogies with
LoginModules 3-4
establishing context 3-11
example
standalone T3 application 3-8
general process
usernames/passwords 3-11
multipart
using LoginModules 3-5
perimeter
definition 4-7
passing tokens 4-6
use of separate LoginMaodule 3-3
server-side
use of login method 3-8
use of CallbackHandlers 3-7, 3-15, 4-12

I-ii Developing Security Providers for WebL ogic Server

use of Java Authentication and
Authorization Service (JAAS)
3-6
Authentication providers
appearance of optional SSPI MBean
attributes/operationsin
WebL ogic Server
Administration Console 2-19
configuring in the WebL ogic Server
Administration Console 3-30
custom
determining necessity 3-12
main steps for developing 3-12
difference from Identity Assertion
providers 3-1
example of creating runtime classes 3-16
introductory description 1-3
purpose 3-1
relationship
to LoginModules 1-3, 3-3, 3-4
to Principal Validation providers 1-
5 31,51,52
use of LoginModules for multipart
authentication 3-5
WebL ogic
description 3-12
use of embedded LDAP server 3-12
AuthenticationProvider SSPI
methods 3-13, 4-10
getPrincipal Validator 5-2
authorization
definition 6-1
general process 6-9
types
capabilities-based 1-6
parametric 1-5
permissions-based 1-6
use of ContextHandlers 6-10, 11-9
Authorization providers
configuring in the WebL ogic Server
Administration Console 6-25

support for deployable security
policies 6-29
use of security policiesin
deployment descriptors 6-
26
custom
determining necessity 6-11
main steps for developing 6-12
effect of Ignore Security Datain
Deployment Descriptors flag 6-
26
example of creating runtime classes 6-15
introductory description 1-5
purpose 6-1
relationship
to Access Decisions 1-6, 6-8
to Principal Validation providers 1-
6
use of WebL ogic resources 6-5
use with deployment descriptors 6-26
use with Role Mapping providers 8-1
WebL ogic
description 6-11
AuthorizationProvider SSPI
methods 6-13
automatic creation of a security provider
database 2-27

B

base required SSPI MBean 2-18
basic console extensions
differencefrom custom security provider
console extensions 12-4
best practices
security provider database
automatic creation 2-27
configuring existing 2-28

Developing Security Providers for WebL ogic Server | -iii

C

CallbackHandlers
definition 3-7, 3-15, 4-12
example of creating 4-15
capabilities-based authorization 1-6
classes
ResourceBase 6-2
WL SAbstractPrincipal 5-5
WL SPrincipals 5-4
client-side authentication using
UsernamePasswordL oginModule 3-
7,39, 4-7
combining WebL ogic, custom, and third-
party security providers 1-11
Common Secure | nteroperability Version 2
(Cslv2)
process 4-7
support 4-6
compatibility security realm 1-10
configuring
Adjudication providers
Reguire Unanimous Permit attribute
7-11
an existing database for usewith security
providers 2-28
Auditing Providers
audit severity 9-15
Authorization providers
use of security policiesin
deployment descriptors 6-
26
Credential Mapping providers
use of credential mappingsin
deployment descriptors
10-14
custom security providers
general information 2-6
I dentity Assertion providersfor usewith
token types 4-4, 4-5
Role Mapping providers

use of role mappings in deployment
descriptors 8-21
console extensions
affect on WebL ogic Server
Administration Console 12-6
for custom security providers
difference from basic 12-4
main steps 12-4
when to write 2-4, 12-2
in the development process 12-3
purpose 12-1
context
audit
definition 11-9
authentication
establishing 3-11
request
consideration during dynamic role
association 8-3
ContextHandlers
definition 6-10, 8-5, 8-9, 11-9
control flag setting for LoginModules 3-6
CORBA
Common Secure Interoperability
Version2 (CSIv2) specification
4-6
creating runtime classes for custom security
providers
main steps 2-3
credential map 1-8
Credential Mapping Deployment Enabled
flag 10-16
Credential Mapping providers
configuring in the WebL ogic Server
Administration Console 10-14
support for deployable credential
mappings 10-16
use of credential mappingsin
deployment descriptors
10-14
custom

I-iv Developing Security Providers for WebL ogic Server

determining necessity 10-3
main steps for developing 10-4
effect of Ignore Security Datain
Deployment Descriptors flag
10-14
interaction with WebL ogic Security
Framework 10-2
introductory description 1-8
purpose 10-1
use with deployment descriptors 10-14
WebL ogic
description 10-3
credential mappings
definition 10-1, 10-2
enabling deployment 10-16
in deployment descriptors 10-14
use of Credential Mapping Deployment
Enabled flag 10-16
use of Ignore Security Datain
Deployment Descriptors flag
10-16
CredentialMapper SSPI
methods 10-6
CredentialProvider SSPI
methods 10-5
credentials
default
security provider database
initialization 2-26
definition 10-1
custom attributes/operations
appearance in WebL ogic Server
Administration Console 2-18
specific steps for WebL ogic
MBeanMaker utility 3-25, 3-
26, 4-18, 6-20, 6-21, 7-7, 8-16,
8-17,9-11, 10-9
using to configure an existing security
provider database 2-28
what the WebL ogic MBeanMaker utility
provides 2-21

custom security provider-related dialog
screens in the Administration
Console
replacing 12-5
customer support contact information XiV

D

database, security provider
definition 2-25
initializing 2-25, 2-26
automatic creation 2-27
configuring existing 2-28
default users, groups, roles, policies,
credentials 2-26
requirements 2-26
relationship to security realms 2-26
storing WebL ogi ¢ resources 6-5
declarativeroles 8-3
default security realm 1-10
default users, groups, roles, policies, and
credentials
security provider database initialization
2-26
defaulting the ActiveTypes attribute for
I dentity Assertion providers 4-5
Deployable versions of Provider SSPIs 2-10
DeployableAuthorizationProvider 2-10
methods 6-13
DeployableCredential Provider 2-11
methods 10-5
DeployableRoleProvider 2-11
methods 2-11
deployment descriptors
configuring use of in the WebL ogic
Server Administration Console
Authorization providers 6-26
Credential Mapping providers 10-
14
Role Mapping providers 8-21
credential mappings defined in 10-14

Developing Security Providers for WebL ogic Server I-v

definitions
of roles 8-2
of security policies 6-26
of security roles 8-21
Enterprise JavaBean (EJB)/Web
application use of 6-26, 8-21
obtaining roles from 1-7
Resource Adapter (RA)/Web application
use of 10-14
deployment support
for credential mappings 10-16
for role mappings 8-24
for security policies 6-29
developing custom security providers
creating runtime classes 2-3
designing 2-2
general information about configuring 2-
6
generating MBean types 2-3
main steps
Adjudication 7-3
Auditing 9-6
Authentication 3-12
Authorization 6-12
Credential Mapping 10-4
Identity Assertion 4-9
Role Mapping 8-7
options for Principal Validation 5-5
process 2-1
writing console extensions 12-1
differences between Principa Validation
providers and other security
providers 5-2
documentation, where to find it Xiii
dynamic role association 8-3
consideration of request context 8-3
definition 8-3
general process 8-5
result of 8-4
using Role Mapping providers 1-7

E

element syntax for MBean Definition Files
(MDFs) A-1
examples A-46
MBeanAttribute subelement A-15
M BeanConstructor subelement A-37
MBeanNotification subelement A-31
M BeanOperation subelement A-38
M BeanOperationArg subelement A-38
MBeanType (root) element A-1
understanding 2-17
embedded LDAP server
WebL ogic Authentication provider use
of 3-12
enabling different authentication
technologies with LoginModules 3-
4
Enterprise JavaBeans (EJBS)
use of deployment descriptors 6-26, 8-21
events, audit
creating 11-4
definition 11-4
using the Auditor Serviceto write 11-11
example 11-11
exceptions, security
resulting from invalid principals 5-3
extending and implementing SSPI MBeans
2-16
extensions, console
affect on WebL ogic Server
Administration Console 12-6
for custom security providers
difference from basic 12-4
main steps 12-4
when to write 2-4, 12-2
in the development process 12-3
purpose 12-1

F

factories, Provider SSPIs as 2-13

I-vi Developing Security Providers for WebL ogic Server

file, MBean interface
definition 3-28, 4-21, 6-24, 7-9, 8-19, 9-
13,10-12
flag
control 3-6
Credential Mapping Deployment
Enabled 10-16
Ignore Security Datain Deployment
Descriptors
effect on Authorization providers 6-
26
effect on Credential Mapping
providers 10-14
effect on Role Mapping providers 8-
21
recommended use 6-29, 8-24, 10-16
Policy Deployment Enabled 6-29
Role Deployment Enabled 8-24

G

generating MBean types for custom security
providers
main steps 2-3
getID method
for optimizing look ups of WebL ogic
resources 6-6
use for runtime caching 6-5
usefor WebL ogic resourceidentification
6-5
getParentResource method
for traversing the single-parent resource
hierarchy 6-7
getPrincipal Validator method in
AuthenticationProvider SSPI 5-2
groups
default
security provider database
initialization 2-26
definition 3-2
WebL ogic Server 3-3

H
hierarchy, single-parent
WebL ogic resources 6-7
getParentResource method 6-7

I
identifying WebL ogic resources 6-4
using the getlD method 6-5
using the toString method 6-4
identity assertion
general process 4-7
using tokens 1-4
I dentity Assertion providers
configuring in the WebL ogic Server
Administration Console 4-4, 4-
23
ActiveTypesfield 4-5
Supported Typesfield 4-4
custom
determining necessity 3-12, 4-8
main steps for developing 4-9
defaulting the Active Types attribute 4-5
difference from Authentication
providers 3-1, 4-1
example of creating runtime classes 4-12
introductory description 1-4
purpose 4-1
support for single sign-on 1-4
use of separate LoginModule 3-3, 4-2
use of tokens 4-2
creating new 4-3
WebL ogic
description 4-8
token types supported 4-9
I dentity Asserter SSPI
methods 4-12
Ignore Security Datain Deployment
Descriptorsflag
effect on Authorization providers 6-26
effect on Credential Mapping providers

Developing Security Providers for WebL ogic Server I-vii

10-14
effect on Role Mapping providers 8-21
recommended use 6-29, 8-24, 10-16
inheritance hierarchy
SSPI MBeans 2-19
SSPIs 2-12
initialization
security provider database 2-25, 2-26
automatic creation 2-27
configuring existing 2-28
default users, groups, roles, policies,
credentials 2-26
relationship to security realms 2-26
reguirements 2-26
using a database delegator 2-29
instances, MBean 2-16
interfaces
AuditContext
methods 11-9
AuditEvent convenience 11-5
AuditAtnEvent 11-5
example implementation 11-9
AuditAtzEvent 11-7
AuditMgmtEvent 11-7
AuditPolicyEvent 11-7
AuditRoleDeploymentEvent 11-8
AuditRoleEvent 11-8
AuditorService
implementations 11-3
methods 11-2
Resource 6-2
SecurityExtension 12-5
methods 12-6
SecurityRole 8-2
SecurityServices
implementations 11-3
methods 11-2
WLSGroup 3-3, 5-5
WL SUser 3-3, 5-5

J

Java Authentication and Authorization
Service (JAAS)
CallbackHandlers 3-7, 3-15, 4-12
description 3-6
subject’s use of 3-2
use of LoginModules 3-4
WebL ogic Security Framework
interaction 3-6
example 3-8
Java Management eXtensions (M X)
specification 2-16

L

lockouts, user
implementing your own User Lockout
Manager 3-31
managing 3-31
preventing double 3-31
realm-wide User Lockout Manager 3-31
relationship to PasswordPolicyMBean
331
login method
use for server-side authentication 3-8
LoginModule interface
methods 3-15
LoginModules
control flag setting 3-6
definition 3-3
enabling different authentication
technologies 3-4
example implementation 3-18
Java Authentication and Authorization
Service (JAAS) use of 3-4
purpose 3-3
relationship to Authentication providers
1-3,3-3,34
use
for multipart authentication 3-5
for perimeter authentication 3-3

I-viii Developing Security Providers for WebL ogic Server

with Common Secure
Interoperability Version 2

(CSlv2) 4-6
with Identity Assertion providers 4-
2
M
main steps

writing console extensions 12-4
map, credential 1-8
mappings
credential
definition 10-1, 10-2
enabling deployment 10-16
Ignore Security Datain Deployment
Descriptors flag 10-16
in deployment descriptors 10-14
use of Credential Mapping
Deployment Enabled flag
10-16
role
definition 8-1
enabling deployment 8-24
Ignore Security Datain Deployment
Descriptors flag 8-24
in deployment descriptors 8-21
use of Role Deployment Enabled
flag 8-24
MBean Definition Files (MDFs)
creating 3-24, 4-17, 6-19, 7-6, 8-15, 9-
10, 10-8
definition A-1
description 2-17
element syntax A-1
examples A-46
M BeanAttribute subelement A-15
attributes A-16
M BeanConstructor subelement A-
37
M BeanNotification subelement A-

31
attributes A-32
M BeanOperation subelement A-38
attributes A-39
M BeanOperationArg subelement
A-38
attributes A-45
understanding 2-17
I dentity Assertion providers
ActiveTypes attribute 4-5
Supported Types attribute 4-4
sample 2-17
use of by WebL ogic MBeanMaker
utility 2-17, 2-21
using custom attributes/operations to
configure an existing security
provider database 2-28
MBean interface file
definition 3-28, 4-21, 6-24, 7-9, 8-19, 9-
13,10-12
MBean JAR Files (MJFs)
creating with WebL ogic MBeanM aker
utility 3-29, 4-21, 6-24, 7-9, 8-
19, 9-13, 10-12
MBean types
definition 2-16
generating
from SSPI MBeans 2-15
with WebL ogic MBeanM aker
utility 3-23, 3-24, 3-25, 4-
16, 4-17, 6-18, 6-19, 6-20,
7-5, 7-6, 8-15, 8-16, 9-9, 9-
10, 10-7, 10-8
installing into WebL ogic Server
environment 3-30, 4-22, 6-25,
7-10, 8-20, 9-14, 10-13
instances created from 2-16
purpose 2-16
MBeans
definition 2-16
SSPI

Developing Security Providers for WebL ogic Server I-ix

quick reference 2-23

MBeanType (root) element in MBean

Definition Files (MDFs)
attributes A-2
syntax A-1

methods

I-x

AccessDecision SSPI 6-14
AdjudicationProvider SSPI 7-4
Adjudicator SSPI 7-4
AuditAtnEvent convenience interface
11-5
AuditAtzEvent convenience interface
11-7
AuditChannel SSPI 9-7
AuditContext interface 11-9
AuditEvent SSPI 11-4
AuditorService interface 11-2
AuditPolicyEvent convenienceinterface
11-7
AuditProvider SSPI 9-6
AuthenticationProvider SSPI 3-13, 4-10
getPrincipal Validator 5-2
AuthorizationProvider SSPI 6-13
CredentialMapper SSPI 10-6
CredentialProvider SSPI 10-5
DeployableAuthorizationProvider SSPI
6-13
DeployableCredentia Provider SSPI 10-
5
DeployableRoleProvider SSPI 2-11, 8-8
getiD
for optimizing look ups of
WebL ogic resources 6-6
use for runtime caching 6-5
use for WebL ogic resource
identification 6-5
getParentResource
for traversing the single-parent
resource hierarchy 6-7
| dentityAsserter SSPI 4-12
login

Developing Security Providers for WebL ogic Server

use for server-side authentication 3-
8
LoginModule interface 3-15
PrincipalValidator SSPI 5-6
RoleMapper SSPI 8-9
RoleProvider SSPI 8-8
SecurityExtension interface 12-6
SecurityProvider interface 2-9
SecurityServices interface 11-2
toString
format 6-4
use for WebL ogic resource
identification 6-4

multipart authentication

using LoginModules 3-5

optional SSPI MBeans

definition 2-16

specific steps for WebL ogic
MBeanMaker utility 3-25, 3-
26, 4-18, 6-20, 6-21, 10-9

what the WebL ogic M BeanMaker utility
provides 2-21

parametric authorization 1-5
PasswordPolicyMBean

relationship to user lockouts 3-31

perimeter authentication

definition 4-7
passing tokens 4-6
use of separate LoginModules 3-3

permissions-based authorization 1-6
planning development activities 2-1
policies, security

default
security provider database
initialization 2-26

definition 6-8, 8-2
enabling deployment 6-29
Ignore Security Datain Deployment
Descriptors flag 6-29
in deployment descriptors 6-26
relationship to roles and WebL ogic
resources 6-8
use of Policy Deployment Enabled flag
6-29
Policy Deployment Enabled flag 6-29
preventing double user lockouts 3-31
principal validation 1-5
general process 5-3
principal types 5-2
Principal Validation providers
custom
determining necessity 5-4
options for developing 5-5
differencesfrom other security providers
5-2
introductory description 1-5
principal types 5-5
purpose 3-3
relationship
to Authentication providers 1-5, 3-
1,51,52
to Authorization providers 1-6
WebL ogic
description 5-4
principals
definition 3-2
invalid 5-3
types 5-5
PrincipalValidator SSPI 5-5
methods 5-6
printing product documentation Xiil
process
adjudication 7-1
authentication
using identity assertion 4-7
using usernames/passwords 3-11

authorization 6-9
for devel oping custom security providers
2-1
writing console extensions 12-3
principa validation 5-3
role mapping 8-4
Provider SSPIs
asfactory 2-13
Deployable versions 2-10
DeployableAuthorizationProvider
2-10, 6-13
DeployableCredential Provider 2-
11, 10-5
DeployableRoleProvider 2-11, 8-8
purpose 2-8

Q

quick reference
SSPI MBeans 2-23
SSPIs2-14

R

reguest context
consideration during dynamic role
association 8-3
Require Unanimous Permit attribute for
configuring Adjudication providers
7-11
required SSPI M Beans
definition 2-16
Resource Adapters (RAS)
use of deployment descriptors 10-14
Resource interface 6-2
ResourceBase class 6-2
resources, WebL ogic
architecture 6-2
definition 6-2
identifiers 6-4
resource |Ds 6-5

Developing Security Providers for WebL ogic Server [-Xi

toString method 6-4
optimizing look ups 6-6
relationship to rolesand security policies
6-8
security provider use 6-5
single-parent hierarchy 6-7
getParentResource method 6-7
storing in security provider database 6-5
types 6-3
Role Deployment Enabled flag 8-24
role mapping
definition 8-1
enabling deployment 8-24
general process 8-4
in deployment descriptors 8-21
use
of ContextHandlers 8-5, 8-9
of Ignore Security Datain
Deployment Descriptors
flag 8-24
of Role Deployment Enabled flag 8-
24
Role Mapping providers
configuring in the WebL ogic Server
Administration Console 8-20
support for deployable role
mappings 8-24
use of role mappings in deployment
descriptors 8-21
custom
determining necessity 8-6
main steps for developing 8-7
effect of Ignore Security Datain
Deployment Descriptorsflag 8-
21
example of creating runtime classes 8-9
introductory description 1-7
purpose 8-1
support for dynamic role associations 1-
7
use

of WebL ogic resources 6-5
with Authorization providers 8-1
with deployment descriptors 8-21
WebL ogic
description 8-6
RoleMapper SSPI
methods 8-9
RoleProvider SSPI
methods 8-8
roles
declarative 8-3
default
security provider database
initialization 2-26
definition 6-8, 8-2
dynamic association 8-3
consideration of request context 8-3
definition 8-3
general process 8-5
result of 8-4
in deployment descriptors 8-2
obtaining 1-7
relationship to security policies and
WebL ogic resources 6-8
specified in the WebL ogic Server
Administration Console 8-2
runtime caching using the getlD method 6-5
runtime classes
creating using security service provider
interfaces (SSPIs)
Adjudication providers 7-3
Auditing providers 9-6
AuditingProvider example
implementation 9-7
Authentication providers 3-13
AuthenticationProvider example
implementation 3-16
Authorization providers 6-12
AuthorizationProvider example
implementation 6-15
CallbackHandler example

I-xii Developing Security Providers for WebL ogic Server

implementation 4-15
Credential Mapping providers 10-4
Identity Assertion providers 4-10
| dentityAsserter example

implementation 4-12
LoginModule example

implementation 3-18
Role Mapping providers 8-7
RoleProvider example

implementation 8-9
SecurityRole example

implementation 8-13

one versus two 2-12

S
sample MBean Definition File (MDF) 2-17
security policies
default
security provider database
initialization 2-26
definition 6-8, 8-2
enabling deployment 6-29
in deployment descriptors 6-26
relationship to roles and WebL ogic
resources 6-8
use
of Ignore Security Datain
Deployment Descriptors
flag 6-29
of Policy Deployment Enabled flag
6-29
security provider databases
definition 2-25
initializing 2-25
automatic creation 2-27
configuring existing 2-28
default users, groups, roles, policies,
credentials 2-26
requirements 2-26
storing WebL ogic resources 6-5

security providers
Adjudication
configuring inthe WebL ogic Server
Administration Console 7-
11
custom
determining necessity for 7-2
main steps for developing 7-3
purpose 7-1
Require Unanimous Permit attribute
7-11
Auditing
configuring inthe WebL ogic Server
Administration Console 9-
15
custom
determining necessity for 9-4
main steps for developing 9-6
example of creating runtime classes
9-7
interaction with other types of
security providers 9-2
interaction with WebL ogic Security
Framework 9-2
purpose 9-1, 11-1
relationship
to Audit Channels 9-4
auditing from
example 11-1
main steps 11-3
Authentication
configuring inthe WebL ogic Server
Administration Console 3-
30
custom
determining necessity for 3-12
main steps for developing 3-12
difference from Identity Assertion
providers 3-1, 4-1
example of creating runtime classes
3-16

Developing Security Providers for WebLogic Server |-xiii

|-Xxiv

optional SSPI MBean
attributes/operationsin the
WebL ogic Server
Administration Console 2-
19
purpose 3-1
relationship
to LoginModules 3-3, 3-4
to Principal Validation provid-
ers3-1,5-1
use of LoginModules for multipart
authentication 3-5
Authorization
configuring inthe WebL ogic Server
Administration Console 6-
25, 6-29
custom
determining necessity for 6-11
main steps for developing 6-12
effect of Ignore Security Datain
Deployment Descriptors
flag 6-26
example of creating runtime classes
6-15
purpose 6-1
relationship
to Access Decisions 6-8
use with Role Mapping providers 8-
1
combining WebL ogic, custom, and
third-party 1-11
Credential Mapping
configuring inthe WebL ogic Server
Administration Console
10-14, 10-16
custom
determining necessity for 10-3
main steps for developing 10-4
effect of Ignore Security Datain
Deployment Descriptors
flag 10-14

Developing Security Providers for WebL ogic Server

interaction with WebL ogic Security
Framework 10-2
purpose 10-1
custom
auditing from 11-1
main steps 11-3
creating runtime classes 2-3
general information about
configuring 2-6
generating MBean types 2-3
when to write console extensions 2-
4,12-2
general architecture 2-7
how the WebL ogic Security Framework
locates 2-7
Identity Assertion
configuring
for use with token types 4-4
in the WebLogic Server Ad-
ministration Console
4-23
custom
determining necessity for 3-12
main steps for developing 4-9
determining necessity for custom 4-
8
difference from Authentication
providers 3-1, 4-1
example of creating runtime classes
4-12
purpose 4-1
use of separate LoginModule 3-3, 4-
2
use of tokens 4-2
initializing a database for use with 2-25
automatic creation 2-27
configuring existing 2-28
default users, groups, roles, policies,
credentials 2-26
requirements 2-26
interfaces

for creating runtime classes 2-8
for generating M Bean types 2-15
Principal Validation
custom
determining necessity for 5-4
options for developing 5-5
differences from other types 5-2
purpose 3-3
relationship
to Authentication providers 3-
1,51
process for developing 2-1
relationship
to security realms 1-10
to WebL ogic Security Framework
1-2
reguired and optional 1-11
Role Mapping
configuring inthe WebL ogic Server
Administration Console 8-
20, 8-24
custom
determining necessity for 8-6
main steps for developing 8-7
effect of Ignore Security Datain
Deployment Descriptors
flag 8-21
example of creating runtime classes
89
purpose 8-1
use with Authorization providers 8-
1
samples
Auditing provider 9-7
Authentication provider 3-16
Authorization provider 6-15
Identity Assertion provider 4-12
Role Mapping provider 8-9
use of WebL ogic resources 6-5
use with deployment descriptors
Authorization 6-26

Credential Mapping 10-14
Role Mapping 8-21

security realms

combining WebL ogic, custom, and
third-party security providers
1-11
compatibility 1-10
default 1-10
relationship
to security provider database 2-26
to security providers 1-10
requirements 1-11

security service provider interfaces (SSPIs)

AccessDecision 6-14
AdjudicationProvider 7-4
Adjudicator 7-4
AuditChannel 9-7
AuditEvent 11-4
AuditEvent convenience interfaces 11-5
AuditProvider 9-6
AuthenticationProvider 3-13, 4-10
getPrincipal Validator method 5-2
AuthorizationProvider 6-13
creating runtime classes
Adjudication providers 7-3
Auditing providers 9-6
AuditingProvider example
implementation 9-7
Authentication providers 3-13
AuthenticationProvider example
implementation 3-16
Authorization providers 6-12
AuthorizationProvider example
implementation 6-15
Credential Mapping providers 10-4
Identity Assertion providers 4-10
I dentityAsserter example
implementation 4-12
LoginModule example
implementation 3-18
Role Mapping providers 8-7

Developing Security Providers for WebL ogic Server [-xv

RoleProvider example
implementation 8-9
SecurityRole example
implementation 8-13
CredentialMapper 10-6
Credential Provider 10-5
Deployable versions
DeployableAuthorizationProvider
2-10, 6-13
DeployableCredential Provider 2-
11, 10-5
DeployableRoleProvider 2-11, 8-8
ending in Provider
asfactory 2-13
Deployable versions 2-10, 6-13, 8-
8,10-5
purpose 2-8
I dentityAsserter 4-12
inheritance hierarchy 2-12
package location 1-2
PrincipalValidator 5-5, 5-6
quick reference 2-14
RoleMapper 8-9
RoleProvider 8-8
security terms and definitions 1-12
SecurityExtension interface 12-5
methods 12-6
SecurityProvider interface
methods 2-9
SecurityRole interface 8-2
SecurityServices interface
implementations 11-3
methods 11-2
purpose 11-2
server, embedded LDAP
WebL ogic Authentication provider use
of 3-12
severity, audit

configuring for Auditing providersinthe

WebL ogic Server
Administration Console 9-15

definition 11-8
single sign-on
using Identity Assertion providers and
LoginModules 1-4, 4-2
single-parent WebL ogic resource hierarchies
6-7
getParentResource method 6-7
specification, Java Management exXtensions
(IMX) 2-16
SSPI MBeans
base required 2-18
definition 2-16
determining which to extend and
implement 2-16
inheritance hierarchy 2-19
optional
appearance of attributes/operations
in WebL ogic Server
Administration Console 2-
19
definition 2-16
specific steps for WebL ogic
MBeanMaker utility 3-25,
3-26, 4-18, 6-20, 6-21, 10-
9
what the WebL ogic MBeanM aker
utility provides 2-21
quick reference 2-23
required
definition 2-16
using to generate MBean types 2-15
subinterfaces of the AuditEvent SSPI 11-5
subjects
definition 3-2, 10-1
support
technical Xiv
Supported Types
attribute in MBean Definition Files
(MDFs) for Identity Assertion
providers 4-4
field in WebL ogic Server

I-xvi Developing Security Providers for WebL ogic Server

Administration Console 4-4
syntax, MBean Definition File (MDF)

elements A-1

examples A-46

MBeanAttribute subelement A-15
attributes A-16

MBeanConstructor subelement A-37

MBeanNoatification subelement A-31
attributes A-32

MBeanOperation subelement A-38
attributes A-39

MBeanOperationArg subelement A-38
attributes A-45

MBeanType (root) element A-1
attributes A-2

T

terms and definitions related to security 1-12
tokens
passing for perimeter authentication 4-6
types
configuring Identity Assertion
providers for use with 4-4
creating new 4-3
definition 4-3
for identity assertion 1-4, 4-2
supported by WebL ogic Identity
Assertion provider 4-9
toString method
format 6-4
usefor WebL ogic resourceidentification
6-4
types
of authorization
capabilities-based 1-6
parametric 1-5
permissions-based 1-6
principa 5-2, 5-5
tokens
configuring Identity Assertion

providers for use with 4-4
creating new 4-3
definition 4-3
for identity assertion 4-2
supported by WebL ogic Identity
Assertion provider 4-9

U

user lockouts
implementing your own User Lockout
Manager 3-31
managing 3-31
preventing double 3-31
realm-wide User L ockout Manager 3-31
relationship to PasswordPolicyMBean
331
username/password authentication 3-11
UsernamePasswordL oginModule
using for client-side authentication 3-7,
39
using for Common Secure
Interoperability version 2
(CSlv2) 4-7
users
default
security provider database
initialization 2-26
definition 3-2
WebL ogic Server 3-3
utility, WebL ogic MBeanMaker
use of MDFs 2-17, 2-21
what it provides 2-21

\
validation of principals 1-5

W
Web applications

Developing Security Providers for WebLogic Server | -xvii

use of deployment descriptors 6-26, 8-
21, 10-14
WebL ogic MBeanMaker utility
creating MBean JAR Files (MJFs) 3-29,
4-21, 6-24, 7-9, 8-19, 9-13, 10-
12
generating MBean types 3-23, 3-24, 3-
25, 4-16,4-17,6-18, 6-19, 6-20,
7-5, 7-6, 8-15, 8-16, 9-9, 9-10,
10-7, 10-8
specific steps
custom operations 3-25, 3-26, 4-18,
6-20, 6-21, 7-7,8-16, 8-17,
9-11, 109
optional SSPI MBeans 3-25, 3-26,
4-18, 6-20, 6-21, 10-9
use of MDFs 2-17, 2-21
what it provides 2-21
WebL ogic resources
architecture 6-2
definition 6-2
identifiers 6-4
resource IDs 6-5
toString method 6-4
optimizing ook ups 6-6
relationship to rolesand security policies
6-8
security provider use 6-5
single-parent hierarchy 6-7
getParentResource method 6-7
storing in security provider database 6-5
types 6-3
WebL ogic Security Framework
interaction
with Auditing providers 9-2
with Credential Mapping providers
10-2
with Java Authentication and
Authorization Service
(JAAS) 3-6
example 3-8

package location 1-2
relationship to security providers 1-2
security providers
exposing to 2-8
how located 2-7
WebL ogic security providers
description
Adjudication provider 7-2
Auditing provider 9-4
Authentication provider 3-12
Authorization provider 6-11
Credential Mapping provider 10-3
I dentity Assertion provider 4-8
Principal Validation provider 5-4
Role Mapping provider 8-6
WebL ogic Server
installing MBean types into 3-30, 4-22,
6-25, 7-10, 8-20, 9-14, 10-13
support for Common Secure
Interoperability version 2
(CSlv2) 4-6
process 4-7
WebL ogic Server Administration Console
ActiveTypesfield for Identity Assertion
providers 4-5
configuring
Adjudication providers 7-11
audit severity of Auditing providers
9-15
Auditing providers 9-15
Authentication providers 3-30
Authorization providers 6-25, 6-26
Credential Mapping providers 10-
14
deployable credential mappings 10-
16
deployable security policies 6-29
deployable security roles 8-24
Identity Assertion providers 4-23
Role Mapping providers 8-20
custom attributes/operationsin 2-18

I-xviii Developing Security Providers for WebL ogic Server

effect of aconsole extension 12-6
optional SSPI MBean
attributes/operations for
Authentication providersin 2-
19
replacing custom security provider-
related dialog screens 12-5
specifying roles 8-2
SSPI MBeans' effect on 2-19
Supported Types field for Identity
Assertion providers 4-4
WL SAbstractPrincipal class 5-5
WL SGroup interface 3-3, 5-5
WL SPrincipals class 5-4
WL SUser interface 3-3, 5-5
writing console extensions
affect on WebL ogic Server
Administration Console 12-6
for custom security providers
difference from basic 12-4
main steps 12-4
when to write 2-4, 12-2
in the devel opment process 12-3
purpose 12-1

Developing Security Providers for WebL ogic Server

I-Xix

	About This Document
	Audience for This Guide
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to Developing Security Providers for WebLogic Server
	Audience for This Guide
	Security Providers and the WebLogic Security Framework
	Types of Security Providers
	Authentication Providers
	Identity Assertion Providers
	Principal Validation Providers
	Authorization Providers
	Adjudication Providers
	Role Mapping Providers
	Auditing Providers
	Credential Mapping Providers
	Security Provider Summary

	Security Providers and Security Realms
	Terminology

	2 Design Considerations
	Overview of the Development Process
	Designing the Custom Security Provider
	Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs
	Generating an MBean Type to Configure and Manage the Custom Security Provider
	Writing Console Extensions
	Configuring the Custom Security Provider

	General Architecture of a Security Provider
	Security Services Provider Interfaces (SSPIs)
	Understand the Purpose of the “Provider” SSPIs
	Determine Which “Provider” Interface You Will Implement
	The DeployableAuthorizationProvider SSPI
	The DeployableRoleProvider SSPI
	The DeployableCredentialProvider SSPI

	Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two Runtime Classes
	SSPI Quick Reference

	Security Service Provider Interface (SSPI) MBeans
	Understand Why You Need an MBean Type
	Determine Which SSPI MBeans to Extend and Implement
	Understand the Basic Elements of an MBean Definition File (MDF)
	Understand the SSPI MBean Hierarchy and How It Affects the Administration Console
	Understand What the WebLogic MBeanMaker Provides
	SSPI MBean Quick Reference

	Initializing the Security Provider Database
	What Is a Security Provider Database?
	Security Realms and Security Provider Databases
	Best Practice: Create a Simple Database If None Exists
	Best Practice: Configure an Existing Database
	Best Practice: Delegate Database Initialization

	3 Authentication Providers
	Authentication Concepts
	Users and Groups, Principals and Subjects
	LoginModules
	The LoginModule Interface
	LoginModules and Multipart Authentication

	Java Authentication and Authorization Service (JAAS)
	How JAAS Works With the WebLogic Security Framework
	Example: Standalone T3 Application

	The Authentication Process
	Do You Need to Develop a Custom Authentication Provider?
	How to Develop a Custom Authentication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthenticationProvider SSPI
	Implement the JAAS LoginModule Interface
	Example: Creating the Runtime Classes for the Sample Authentication Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Authentication Provider Using the Administration Console
	Managing User Lockouts

	4 Identity Assertion Providers
	Identity Assertion Concepts
	Identity Assertion Providers and LoginModules
	Identity Assertion and Tokens
	How to Create New Token Types
	How to Make New Token Types Available for Identity Assertion Provider Configurations

	Passing Tokens for Perimeter Authentication
	Common Secure Interoperability Version 2 (CSIv2)

	The Identity Assertion Process
	Do You Need to Develop a Custom Identity Assertion Provider?
	How to Develop a Custom Identity Assertion Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthenticationProvider SSPI
	Implement the IdentityAsserter SSPI
	Example: Creating the Runtime Class for the Sample Identity Assertion Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Identity Assertion Provider Using the Administration Console

	5 Principal Validation Providers
	Principal Validation Concepts
	Principal Validation and Principal Types
	How Principal Validation Providers Differ From Other Types of Security Providers
	Security Exceptions Resulting from Invalid Principals

	The Principal Validation Process
	Do You Need to Develop a Custom Principal Validation Provider?
	How to Develop a Custom Principal Validation Provider
	Implement the PrincipalValidator SSPI

	6 Authorization Providers
	Authorization Concepts
	WebLogic Resources
	The Architecture of WebLogic Resources
	Types of WebLogic Resources
	WebLogic Resource Identifiers
	How Security Providers Use WebLogic Resources
	Single-Parent Resource Hierarchies
	WebLogic Resources, Roles, and Security Policies

	Access Decisions

	The Authorization Process
	Do You Need to Develop a Custom Authorization Provider?
	How to Develop a Custom Authorization Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuthorizationProvider SSPI
	Implement the DeployableAuthorizationProvider SSPI
	Implement the AccessDecision SSPI
	Example: Creating the Runtime Class for the Sample Authorization Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Authorization Provider Using the Administration Console
	Managing Authorization Providers and Deployment Descriptors
	Enabling Security Policy Deployment

	7 Adjudication Providers
	The Adjudication Process
	Do You Need to Develop a Custom Adjudication Provider?
	How to Develop a Custom Adjudication Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AdjudicationProvider SSPI
	Implement the Adjudicator SSPI

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Adjudication Provider Using the Administration Console
	Setting the Require Unanimous Permit Attribute

	8 Role Mapping Providers
	Role Mapping Concepts
	Roles
	Role Definitions
	Roles and WebLogic Resources

	Dynamic Role Association

	The Role Mapping Process
	Do You Need to Develop a Custom Role Mapping Provider?
	How to Develop a Custom Role Mapping Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the RoleProvider SSPI
	Implement the DeployableRoleProvider SSPI
	Implement the RoleMapper SSPI
	Example: Creating the Runtime Class for the Sample Role Mapping Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Role Mapping Provider Using the Administration Console
	Managing Role Mapping Providers and Deployment Descriptors
	Enabling Security Role Deployment

	9 Auditing Providers
	Auditing Concepts
	How Auditing Providers Work With the WebLogic Security Framework and Other Types of Security Prov...
	Audit Channels

	Do You Need to Develop a Custom Auditing Provider?
	How to Develop a Custom Auditing Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the AuditProvider SSPI
	Implement the AuditChannel SSPI
	Example: Creating the Runtime Class for the Sample Auditing Provider

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Auditing Provider Using the Administration Console
	Configuring Audit Severity

	10 Credential Mapping Providers
	Credential Mapping Concepts
	The Credential Mapping Process
	Do You Need to Develop a Custom Credential Mapping Provider?
	How to Develop a Custom Credential Mapping Provider
	Create Runtime Classes Using the Appropriate SSPIs
	Implement the CredentialProvider SSPI
	Implement the DeployableCredentialProvider SSPI
	Implement the CredentialMapper SSPI

	Generate an MBean Type Using the WebLogic MBeanMaker
	Create an MBean Definition File (MDF)
	Use the WebLogic MBeanMaker to Generate the MBean Type
	Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	Install the MBean Type Into the WebLogic Server Environment

	Configure the Custom Credential Mapping Provider Using the Administration Console
	Managing Credential Mapping Providers, Resource Adapters, and Deployment Descriptors
	Enabling Deployable Credential Mappings

	11 Auditing Events From Custom Security Providers
	Security Services and the Auditor Service
	How to Audit From a Custom Security Provider
	Create an Audit Event
	Implement the AuditEvent SSPI
	Implement an Audit Event Convenience Interface
	Audit Severity
	Audit Context
	Example: Implementation of the AuditAtnEvent Interface

	Obtain and Use the Auditor Service to Write Audit Events
	Example: Obtaining and Using the Auditor Service to Write Authentication Audit Events

	12 Writing Console Extensions for Custom Security Providers
	When Should I Write a Console Extension?
	When In the Development Process Should I Write a Console Extension?
	How Writing a Console Extension for a Custom Security Provider Differs From a Basic Console Exten...
	Main Steps for Writing an Administration Console Extension
	Replacing Custom Security Provider-Related Administration Console Dialog Screens Using the Securi...
	How a Console Extension Affects the Administration Console

	A MBean Definition File (MDF) Element Syntax
	The MBeanType (Root) Element
	The MBeanAttribute Subelement
	The MBeanNotification Subelement
	The MBeanConstructor Subelement
	The MBeanOperation Subelement
	Examples: Well-Formed and Valid MBean Definition Files (MDFs)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

