
BEA
 WebLogic
Server™

Programming WebLogic
Enterprise JavaBeans
Release 8.1
Document Revised: December 9, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Enterprise JavaBeans

Part Number Date Software Version

N/A December 9, 2002 BEA WebLogic Server
Version 8.1

Contents

About This Document
Audience... xxii

e-docs Web Site.. xxii

How to Print the Document.. xxii

Related Information... xxiii

Contact Us! .. xxiv

Documentation Conventions ... xxiv

1. Overview of WebLogic Server Enterprise JavaBeans (EJBs)
What Are EJBs? .. 1-1

Types of EJBs... 1-2

EJB Components .. 1-3

The EJB Container ... 1-3

Creating EJBs: Main Steps.. 1-4

EJB Developer Tools... 1-5

ANT Tasks to Create Skeleton Deployment Descriptors........................... 1-6

WebLogic Builder .. 1-6

EJBGen... 1-6

DDInit... 1-7

weblogic.Deployer ... 1-7

XML Editor .. 1-7

Implementation of Java Specifications.. 1-7

EJB Features and Changes in this Release .. 1-8

Performance Monitoring Improvements .. 1-8

appc .. 1-8

Batch Operations .. 1-9

Automatic Database Detection... 1-9
Programming WebLogic Enterprise JavaBeans -iii

EJB QL Compiler Enhancements... 1-9

Performance Improvements.. 1-9

Reloadable EJB Modules ... 1-10

EJB Deployment Assistants ... 1-10

New dbms-column-type Values ... 1-10

sql-select-distinct Deprecated... 1-10

ejbc Deprecated .. 1-11

2. Designing Session and Entity EJBs
Designing Session Beans... 2-1

Session Facade Pattern ... 2-2

Designing Entity Beans ... 2-2

Entity Bean Home Interface ... 2-3

Make Entity EJBs Coarse-Grained... 2-3

Encapsulate Additional Business Logic in Entity EJBs 2-3

Optimize Entity EJB Data Access.. 2-4

Using Inheritance with EJBs ... 2-4

Accessing Deployed EJBs ... 2-5

Differences Between Accessing EJBs from Local Clients and Remote Clients
2-6

Restrictions on Concurrency Access of EJB Instances 2-7

Storing EJB References in Home Handles... 2-7

Using Home Handles Across a Firewall .. 2-7

Preserving Transaction Resources... 2-8

Allowing the Datastore to Manage Transactions 2-8

Using Container-Managed Transactions Instead of Bean-Managed
Transactions for EJBs.. 2-9

Never Demarcate Transactions from Application............................... 2-9

Always Use A Transactional Datasource for Container-Managed EJBs.
2-10

3. Designing Message-Driven Beans
What Are Message-Driven Beans?.. 3-1

Differences Between Message-Driven Beans and Standard JMS Consumers
3-2

Differences Between Message-Driven Beans and Stateless Session EJBs 3-3
-iv Programming WebLogic Enterprise JavaBeans

Concurrent Processing for Topics and Queues .. 3-3

Developing and Configuring Message-Driven Beans....................................... 3-4

Message-Driven Bean Class Requirements ... 3-6

Using the Message-Driven Bean Context .. 3-8

Implementing Business Logic with onMessage() 3-8

Specifying Principals and Setting Permissions for JMS Destinations 3-9

Handling Exceptions .. 3-10

Invoking a Message-Driven Bean ... 3-11

Creating and Removing Bean Instances.. 3-11

Deploying Message-Driven Beans in WebLogic Server................................. 3-12

Using Transaction Services with Message-Driven Beans............................... 3-12

Message Receipts ... 3-13

Message Acknowledgment .. 3-14

Message-Driven Bean Migratable Service.. 3-14

Enabling the Message-Driven Bean Migratable Service 3-14

Migrating Message-Driven Beans.. 3-15

4. The WebLogic Server EJB Container and Supported Services
EJB Container.. 4-2

EJB Lifecycle in WebLogic Server ... 4-2

Stateless Session EJB Life Cycle ... 4-2

Initializing Stateless Session EJB Instances 4-3

Activating and Pooling Stateless Session EJBs 4-4

Stateful Session EJB Life Cycle... 4-4

Activating and Using Stateful Session EJB Instances 4-5

Passivating Stateful Session EJBs... 4-5

Removing Stateful Session EJB Instances.. 4-6

Stateful Session EJB Requirements .. 4-7

Using max-beans-in-free-pool... 4-7

Special Use of max-beans-in-free-pool.. 4-8

EJBs in WebLogic Server Clusters ... 4-8

Clustered EJB Home Objects... 4-9

Clustered EJBObjects... 4-10

Session EJBs in a Cluster ... 4-10

Stateless Session EJBs .. 4-10
Programming WebLogic Enterprise JavaBeans -v

Stateful Session EJBs .. 4-12

In-Memory Replication for Stateful Session EJBs................................... 4-13

Requirements and Configuration for In-Memory Replication.......... 4-13

Limitations of In-Memory Replication ... 4-14

Entity EJBs in a Cluster.. 4-14

Read-Write Entity EJBs in a Cluster .. 4-15

Cluster Address .. 4-16

Transaction Management .. 4-16

Transaction Management Responsibilities... 4-17

Using javax.transaction.UserTransaction... 4-17

Restriction for Container-Managed EJBs ... 4-18

Transaction Isolation Levels... 4-18

Setting User Transaction Isolation Levels .. 4-18

Setting Container-Managed Transaction Isolation Levels 4-19

Limitations of TransactionSerializable ... 4-19

Special Note for Oracle Databases.. 4-19

Distributing Transactions Across Multiple EJBs 4-21

Calling Multiple EJBs from a Single Transaction Context............... 4-21

Encapsulating a Multi-Operation Transaction 4-22

Distributing Transactions Across EJBs in a WebLogic Server Cluster ...
4-22

Database Insert Support... 4-23

Delay-Database-Insert-Until... 4-23

Batch Operations ... 4-24

Database Operation Ordering.. 4-25

Batch Operations Guidelines and Limitations 4-25

Resource Factories... 4-26

Setting Up JDBC Data Source Factories.. 4-26

Setting Up URL Connection Factories... 4-28

Using EJB Links .. 4-29

5. WebLogic Server Container-Managed Persistence Service -
Basic Features

Overview of Container Managed Persistence Service....................................... 5-2

EJB Persistence Services.. 5-2
-vi Programming WebLogic Enterprise JavaBeans

Using WebLogic Server RDBMS Persistence ... 5-3

Using Primary Keys .. 5-4

Primary Key Mapped to a Single CMP Field .. 5-5

Primary Key Class That Wraps Single or Multiple CMP Fields 5-5

Anonymous Primary Key Class ... 5-5

Hints for Using Primary Keys.. 5-6

Mapping to a Database Column.. 5-6

Container-Managed Persistence Relationships ... 5-7

One-to-One Relationships .. 5-8

One-to-Many Relationships ... 5-9

Many-to-Many Relationships... 5-9

Unidirectional Relationships .. 5-11

Bidirectional Relationships .. 5-11

Removing Beans in Relationships.. 5-11

Local Interfaces .. 5-11

Using the Local Client .. 5-12

Changes to the Container for Local Interfaces.................................. 5-13

Using EJB QL for EJB 2.0 .. 5-14

EJB QL Requirement for EJB 2.0 Beans ... 5-14

Migrating from WLQL to EJB QL .. 5-14

Using EJB 2.0 WebLogic QL Extension for EJB QL.............................. 5-15

Using SELECT DISTINCT .. 5-15

Using ORDERBY ... 5-16

Using SubQueries ... 5-17

Using Aggregate Functions... 5-22

Using Queries that Return ResultSets ... 5-24

EJB QL Error-Reporting Enhancements.. 5-26

Visual Indicator of Error in Query .. 5-26

Multiple Errors Reported after a Single Compilation....................... 5-27

Using Dynamic Queries .. 5-27

Enabling Dynamic Queries .. 5-27

Executing Dynamic Queries... 5-28

BLOB and CLOB DBMS Column Support for the Oracle DBMS................. 5-29

Specifying a BLOB Using the Deployment Descriptor 5-29

Specifying a CLOB Using the Deployment Descriptors 5-30
Programming WebLogic Enterprise JavaBeans -vii

Cascade Delete .. 5-30

Cascade Delete Method.. 5-31

Database Cascade Delete Method .. 5-31

Flushing the CMP Cache ... 5-32

Java Data Types for CMP Fields ... 5-33

EJB Concurrency Strategy... 5-35

Concurrency Strategy for Read-Write EJBs... 5-36

Specifying the Concurrency Strategy... 5-36

Exclusive Concurrency Strategy .. 5-37

Database Concurrency Strategy ... 5-37

Optimistic Concurrency Strategy ... 5-38

ReadOnly Concurrency Strategy.. 5-39

Read-Only Entity Beans ... 5-40

Restrictions for ReadOnly Concurrency Strategy............................. 5-40

Automatic Database Detection .. 5-41

Enabling Automatic Database Detection.. 5-41

Behavior When Type Conflict Detected .. 5-42

6. WebLogic Server Container-Managed Persistence Service -
Advanced Features

Read-Only Multicast Invalidation ... 6-2

Read-Mostly Pattern .. 6-3

Relationship Caching with Entity Beans ... 6-4

Specifying Relationship Caching ... 6-4

Enabling Relationship Caching .. 6-6

Relationship Caching Limitations .. 6-6

Combined Caching with Entity Beans... 6-7

Caching Between Transactions ... 6-8

Caching Between Transactions with Exclusive Concurrency.................... 6-8

Caching Between Transactions with ReadOnly Concurrency 6-9

Caching Between Transactions with Optimistic Concurrency................... 6-9

Enabling Caching Between Transactions... 6-9

Using cache-between-transactions to Limit Calls to ejbLoad() 6-10

Restrictions and Warnings for cache-between-transactions..................... 6-11

ejbLoad() and ejbStore() Behavior for Entity EJBs .. 6-11
-viii Programming WebLogic Enterprise JavaBeans

Warning for is-modified-method-name ... 6-12

Using delay-updates-until-end-of-tx to Change ejbStore() Behavior 6-12

Groups ... 6-13

Specifying Field Groups... 6-13

Using Groups.. 6-14

Automatic Primary Key Generation.. 6-15

Valid Key Field Types .. 6-16

Specifying Primary Key Support for Oracle .. 6-16

Specifying Primary Key Support for Microsoft SQL Server 6-17

Specifying Primary Key Named Sequence Table Support 6-18

Automatic Table Creation ... 6-19

Automatic Database Detection... 6-21

Enabling Automatic Database Detection .. 6-22

Behavior When Type Conflict Detected... 6-23

Using Oracle SELECT HINTS ... 6-23

Multiple Table Mapping.. 6-24

Multiple Table Mappings for cmp-fields ... 6-25

Multiple Table Mappings for cmr-fields.. 6-26

7. Packaging EJBs for the WebLogic Server Container
Required Steps for Packaging EJBs .. 7-2

Reviewing the EJB Source File Components.. 7-2

WebLogic Server EJB Deployment Files.. 7-3

ejb-jar.xml .. 7-4

weblogic-ejb-jar.xml .. 7-4

weblogic-cmp-rdbms.xml .. 7-4

Relationships Among the Deployment Files.. 7-4

Specifying and Editing the EJB Deployment Descriptors 7-5

Creating the Deployment Files.. 7-6

Manually Editing EJB Deployment Descriptors.. 7-6

Referencing Other EJBs and Resources .. 7-7

Referencing External EJBs... 7-7

Referencing Application-Scoped EJBs .. 7-7

Referencing Application-Scoped JDBC DataSources 7-8

Packaging EJBs into a Deployment Directory .. 7-9
Programming WebLogic Enterprise JavaBeans -ix

ejb.jar file.. 7-10

Compiling EJB Classes and Generating EJB Container Classes 7-10

Possible Generated Class Name Collisions.. 7-12

Loading EJB Classes into WebLogic Server... 7-12

Specifying an ejb-client.jar.. 7-13

Manifest Class-Path ... 7-14

8. Deploying EJBs to WebLogic Server
Deploying EJBs at WebLogic Server Startup ... 8-1

Deploying EJBs in Different Applications... 8-2

Deploying EJBs on a Running WebLogic Server ... 8-3

EJB Deployment Names... 8-3

Deploying New EJBs into a Running Environment................................... 8-4

Viewing Deployed EJBs.. 8-5

Undeploying Deployed EJBs... 8-5

Undeploying EJBs .. 8-5

Updating Deployed EJBs... 8-6

The Update Process .. 8-6

Updating the EJB.. 8-7

Deploying Compiled EJB Files ... 8-7

Deploying Uncompiled EJB Files ... 8-8

9. EJB Runtime Monitoring
Runtime Cache Attributes ... 9-1

Cached Beans Current Count ... 9-2

Cache Access Count ... 9-2

Cache Hit Count ... 9-2

Cache Miss Count... 9-2

Activation Count .. 9-3

Passivation Count ... 9-3

Cache Miss Ratio.. 9-3

Runtime Lock Manager Attributes .. 9-3

Lock Entries Current Count.. 9-4

Lock Manager Access Count.. 9-4

Waiter Total Count ... 9-4
-x Programming WebLogic Enterprise JavaBeans

Timeout Total Count .. 9-4

Lock Waiter Ratio .. 9-5

Lock Timeout Ratio ... 9-5

Runtime Free Pool Attributes.. 9-5

Access Total Count .. 9-6

Miss Total Count.. 9-6

Destroyed Total Count ... 9-6

Pooled Beans Current Count .. 9-6

Beans In Use Current Count... 9-7

Waiter Current Count ... 9-7

Pool Timeout Total Count.. 9-7

Pool Miss Ratio .. 9-7

Destroyed Bean Ratio... 9-8

Pool Timeout Ratio .. 9-8

Runtime Transaction Attributes .. 9-9

Transactions Committed Total Count .. 9-9

Transactions Rolled Back Total Count .. 9-9

Transactions Timed Out Total Count... 9-9

Transaction Rollback Ratio .. 9-10

Transaction Timeout Ratio... 9-10

JMS Attributes... 9-10

JMSConnection Alive .. 9-11

10. WebLogic Server EJB Tools
Ant Tasks... 10-1

appc.. 10-3

appc Syntax .. 10-3

appc Options... 10-3

appc Ant Task... 10-5

appc and EJBs .. 10-5

Advantages of Using appc.. 10-6

Builder ... 10-6

DDConverter ... 10-7

Conversion Options Available with DDConverter 10-8

Using DDConverter to Convert EJBs .. 10-10
Programming WebLogic Enterprise JavaBeans -xi

DDConverter Syntax .. 10-11

DDConverter Arguments.. 10-11

DDConverter Options... 10-11

DDConverter Examples.. 10-12

DDInit .. 10-12

DDInit Ant Tasks ... 10-12

Deployer .. 10-13

EJBGen.. 10-13

EJBGen Syntax... 10-13

EJBGen Example.. 10-16

EJBGen Tags ... 10-18

@ejbgen:automatic-key-generation .. 10-18

@ejbgen:cmp-field.. 10-18

@ejbgen:cmr-field... 10-19

@ejbgen:create-default-rdbms-tables ... 10-19

@ejbgen:ejb-client-jar... 10-19

@ejbgen:ejb-local-ref.. 10-19

@ejbgen:ejb-ref... 10-20

@ejbgen:entity .. 10-20

@ejbgen:env-entry .. 10-22

@ejbgen:finder.. 10-22

@ejbgen:jndi-name ... 10-23

@ejbgen:local-home-method .. 10-23

@ejbgen:local-method .. 10-24

@ejbgen:message-driven .. 10-24

@ejbgen:primkey-field ... 10-25

@ejbgen:relation ... 10-25

@ejbgen:remote-home-method... 10-26

@ejbgen:remote-method ... 10-27

@ejbgen:resource-env-ref ... 10-27

@ejbgen:resource-ref .. 10-28

@ejbgen:role-mapping.. 10-28

@ejbgen:select .. 10-28

@ejbgen:session.. 10-29

@ejbgen:value-object.. 10-30
-xii Programming WebLogic Enterprise JavaBeans

ejbc .. 10-30

Advantages of Using ejbc .. 10-31

ejbc Syntax ... 10-32

ejbc Arguments .. 10-32

ejbc Options.. 10-33

ejbc Examples .. 10-34

11. The weblogic-ejb-jar.xml Deployment Descriptor
EJB Deployment Descriptors .. 11-1

DOCTYPE Header Information .. 11-2

Document Type Definitions (DTDs) for Validation 11-4

weblogic-ejb-jar.xml ... 11-4

ejb-jar.xml ... 11-5

2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure.................... 11-5

2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements........................... 11-6

allow-concurrent-calls ... 11-10

cache-between-transactions... 11-11

cache-type.. 11-12

client-authentication .. 11-13

client-cert-authentication... 11-14

clients-on-same-server... 11-15

concurrency-strategy ... 11-16

confidentiality.. 11-18

connection-factory-jndi-name ... 11-19

delay-updates-until-end-of-tx .. 11-20

description ... 11-21

destination-jndi-name .. 11-22

ejb-name .. 11-23

ejb-reference-description... 11-24

ejb-ref-name .. 11-25

Example.. 11-25

ejb-local-reference-description.. 11-26

enable-call-by-reference .. 11-27

enable-dynamic-queries... 11-28

entity-cache.. 11-29
Programming WebLogic Enterprise JavaBeans -xiii

entity-cache-name.. 11-30

entity-cache-ref .. 11-31

entity-clustering ... 11-32

entity-descriptor... 11-33

estimated-bean-size ... 11-34

finders-load-bean ... 11-35

home-call-router-class-name ... 11-36

home-is-clusterable.. 11-37

home-load-algorithm ... 11-38

idempotent-methods .. 11-39

identity-assertion ... 11-40

idle-timeout-seconds.. 11-41

iiop-security-descriptor.. 11-43

initial-beans-in-free-pool ... 11-44

initial-context-factory .. 11-45

integrity.. 11-46

invalidation-target.. 11-47

is-modified-method-name ... 11-48

isolation-level .. 11-49

jms-polling-interval-seconds ... 11-50

jms-client-id .. 11-51

jndi-name ... 11-52

local-jndi-name.. 11-53

max-beans-in-cache ... 11-54

max-beans-in-free-pool.. 11-55

message-driven-descriptor... 11-56

method ... 11-57

method-intf .. 11-58

method-name ... 11-59

method-param.. 11-60

method-params .. 11-61

persistence ... 11-62

persistence-type ... 11-63

persistence-use... 11-65

persistent-store-dir ... 11-66
-xiv Programming WebLogic Enterprise JavaBeans

pool .. 11-67

principal-name... 11-68

provider-url.. 11-69

read-timeout-seconds... 11-70

reference-descriptor... 11-71

relationship-description ... 11-72

replication-type.. 11-72

res-env-ref-name.. 11-73

res-ref-name... 11-74

resource-description .. 11-75

resource-env-description ... 11-76

role-name... 11-77

security-permission.. 11-78

security-permission-spec ... 11-79

security-role-assignment.. 11-80

stateful-session-cache .. 11-81

stateful-session-clustering ... 11-82

stateful-session-descriptor ... 11-83

stateless-bean-call-router-class-name.. 11-84

stateless-bean-is-clusterable .. 11-85

stateless-bean-load-algorithm.. 11-86

stateless-bean-methods-are-idempotent .. 11-87

stateless-clustering... 11-88

stateless-session-descriptor.. 11-89

transaction-descriptor .. 11-90

transaction-isolation .. 11-91

transport-requirements... 11-92

trans-timeout-seconds.. 11-93

type-identifier .. 11-94

type-storage ... 11-95

type-version ... 11-96

weblogic-ejb-jar... 11-97

weblogic-enterprise-bean .. 11-98

... 11-98
Programming WebLogic Enterprise JavaBeans -xv

12. The weblogic-cmp-rdbms-
jar.xml Deployment Descriptor

EJB Deployment Descriptors .. 12-2

DOCTYPE Header Information .. 12-2

Document Type Definitions (DTDs) for Validation 12-4

weblogic-cmp-rdbms-jar.xml.. 12-4

ejb-jar.xml ... 12-4

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure....... 12-5

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements.............. 12-6

automatic-key-generation .. 12-9

caching-element... 12-10

caching-name... 12-11

check-exists-on-method... 12-12

cmp-field.. 12-13

cmr-field .. 12-14

column-map ... 12-15

create-default-dbms-tables... 12-16

database-type ... 12-17

data-source-name... 12-18

db-cascade-delete... 12-19

dbms-column ... 12-20

dbms-column-type ... 12-21

description ... 12-22

delay-database-insert-until... 12-23

Example.. 12-23

ejb-name .. 12-24

enable-batch-operations... 12-25

enable-tuned-updates ... 12-26

field-group ... 12-27

field-map.. 12-28

foreign-key-column ... 12-29

foreign-key-table ... 12-30

generator-name .. 12-31

generator-type .. 12-32
-xvi Programming WebLogic Enterprise JavaBeans

group-name.. 12-33

include-updates.. 12-34

Function.. 12-34

key-cache-size ... 12-35

Example.. 12-35

key-column .. 12-36

max-elements... 12-37

method-name ... 12-38

method-param.. 12-39

method-params .. 12-40

optimistic-column.. 12-41

order-database-operations.. 12-42

primary-key-table .. 12-43

query-method... 12-44

relation-name... 12-45

relationship-caching .. 12-46

relationship-role-map .. 12-47

relationship-role-name... 12-48

sql-select-distinct ... 12-49

table-map ... 12-50

table-name ... 12-52

use-select-for-update ... 12-53

validate-db-schema-with ... 12-54

verify-columns... 12-55

weblogic-ql .. 12-56

weblogic-query .. 12-57

weblogic-rdbms-bean .. 12-58

weblogic-rdbms-jar.. 12-59

weblogic-rdbms-relation.. 12-60

weblogic-relationship-role... 12-61

13. Important Information for EJB 1.1 Users
Writing for RDBMS Persistence for EJB 1.1 CMP .. 13-2

Finder Signature ... 13-2

finder-list Stanza .. 13-3
Programming WebLogic Enterprise JavaBeans -xvii

finder-query Element.. 13-3

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP 13-4

WLQL Syntax .. 13-4

WLQL Operators.. 13-5

WLQL Operands .. 13-6

Examples of WLQL Expressions ... 13-6

Using SQL for CMP 1.1 Finder Queries ... 13-8

Tuned EJB 1.1 CMP Updates in WebLogic Server .. 13-9

Using is-modified-method-name to Limit Calls to ejbStore()....................... 13-10

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure 13-11

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements 13-11

caching-descriptor .. 13-12

max-beans-in-free-pool ... 13-12

initial-beans-in-free-pool... 13-12

max-beans-in-cache... 13-13

idle-timeout-seconds ... 13-13

cache-strategy.. 13-13

read-timeout-seconds .. 13-14

persistence-descriptor ... 13-14

is-modified-method-name ... 13-15

delay-updates-until-end-of-tx.. 13-15

persistence-type... 13-15

db-is-shared ... 13-16

stateful-session-persistent-store-dir... 13-17

persistence-use .. 13-17

clustering-descriptor ... 13-17

home-is-clusterable ... 13-18

home-load-algorithm... 13-18

home-call-router-class-name... 13-18

stateless-bean-is-clusterable .. 13-19

stateless-bean-load-algorithm.. 13-19

stateless-bean-call-router-class-name.. 13-19

stateless-bean-methods-are-idempotent .. 13-19

transaction-descriptor ... 13-19

trans-timeout-seconds.. 13-20
-xviii Programming WebLogic Enterprise JavaBeans

reference-descriptor.. 13-20

resource-description .. 13-21

ejb-reference-description .. 13-21

enable-call-by-reference... 13-21

jndi-name.. 13-21

transaction-isolation ... 13-22

isolation-level.. 13-22

method... 13-23

security-role-assignment .. 13-24

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure..... 13-24

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements............ 13-25

RDBMS Definition Elements... 13-25

pool-name.. 13-26

schema-name... 13-26

table-name... 13-26

EJB Field-Mapping Elements .. 13-26

attribute-map ... 13-26

object-link ... 13-26

bean-field .. 13-27

dbms-column... 13-27

Finder Elements.. 13-27

finder-list ... 13-27

finder ... 13-28

method-name... 13-28

method-params.. 13-28

method-param ... 13-28

finder-query... 13-28

finder-expression... 13-29
Programming WebLogic Enterprise JavaBeans -xix

-xx Programming WebLogic Enterprise JavaBeans

About This Document

This document describes how to develop and deploy Enterprise JavaBeans (EJBs) on
WebLogic Server. This document is organized as follows:

! Chapter 1, “Overview of WebLogic Server Enterprise JavaBeans (EJBs),” is an
overview of EJB features supported in WebLogic Server.

! Chapter 2, “Designing Session and Entity EJBs,” is an overview of design
techniques developers can use to create session and entity EJBs.

! Chapter 3, “Designing Message-Driven Beans,” explains how to design, develop
and deploy message-driven beans in the WebLogic Server container.

! Chapter 4, “The WebLogic Server EJB Container and Supported Services,”
describes the services available to the EJB with the WebLogic Services
container.

! Chapter 5, “WebLogic Server Container-Managed Persistence Service - Basic
Features,” describes the basic features of the EJB container-managed persistence
service available for entity EJBs in the WebLogic Server container.

! Chapter 6, “WebLogic Server Container-Managed Persistence Service -
Advanced Features,” describes the advanced features of the EJB
container-managed persistence service available for entity EJBs in the WebLogic
Server container.

! Chapter 10, “WebLogic Server EJB Tools,” describes the tools shipped with
WebLogic Server that are used with EJBs.

! Chapter 11, “The weblogic-ejb-jar.xml Deployment Descriptor,” describes the
WebLogic-specific deployment descriptor elements found in
weblogic-ejb-jar.xml.
Programming WebLogic Enterprise JavaBeans xxi

! Chapter 12, “The weblogic-cmp-rdbms- jar.xml Deployment Descriptor,”
describes the WebLogic-specific deployment descriptor elements found in
weblogic-cmp-rdbms-jar.xml.

! Chapter 13, “Important Information for EJB 1.1 Users,” contains design and
implementation information for EJB 1.1.

Audience

This document is intended mainly for application developers who are interested in
developing Enterprise JavaBeans (EJBs) for use in dynamic Web-based applications.
Readers are assumed to be familiar with EJB architecture, XML coding, and Java
programming.

e-docs Web Site

BEA WebLogic Server product documentation is available on the BEA corporate Web
site. From the BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation and select the document you want to print.
xxii Programming WebLogic Enterprise JavaBeans

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com/.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.
However, the following information will provide you with related information that
may help you when using Enterprise JavaBeans with WebLogic Server.

! For more information about Sun Microsystem’s EJB Specification, see the
JavaSoft EJB Specification.

! For more information about the J2EE Specification, see the JavaSoft J2EE
Specification.

! For more information about SunMicrosystem’s EJB deployment descriptors and
descriptions, see the JavaSoft EJB Specification.

! For more information on the deployment descriptors in WebLogic Server’s
weblogic-ejb-jar.xml file, see Chapter 11, “The weblogic-ejb-jar.xml
Deployment Descriptor.”

! For more information on the deployment descriptors in WebLogic Server’s
weblogic-cmp-rdbms-jar.xml file, see Chapter 12, “The weblogic-cmp-rdbms-
jar.xml Deployment Descriptor.”

! For more information on transactions, see Programming WebLogic JTA.

! For more information about WebLogic’s implementation of the JavaSoft Remote
Method Invocation (RMI) specification, see the following:

" JavaSoft Remote Method Invocation Specification

" Programming WebLogic RMI

" Programming RMI over IIOP
Programming WebLogic Enterprise JavaBeans xxiii

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Server documentation.

In your e-mail message, please indicate the software name and version you are using
as well as the title and document date of your documentation.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xxiv Programming WebLogic Enterprise JavaBeans

http://www.bea.com

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Programming WebLogic Enterprise JavaBeans xxv

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xxvi Programming WebLogic Enterprise JavaBeans

CHAPTER
1 Overview of WebLogic
Server Enterprise
JavaBeans (EJBs)

The following sections provide an overview of EJBs, and how they are implemented
in WebLogic Server, as well as a discussion of WebLogic Server EJB features and
changes introduced in this release.

! “What Are EJBs?” on page 1-1

! “Creating EJBs: Main Steps” on page 1-4

! “EJB Developer Tools” on page 1-5

! “Implementation of Java Specifications” on page 1-7

! “EJB Features and Changes in this Release” on page 1-8

What Are EJBs?

Enterprise JavaBeans (EJBs) are reusable Java components that implement business
logic and enable you to develop component-based distributed business applications.
EJBs reside in an EJB container, which provides a standard set of services such as
persistence, security, transactions, and concurrency. Enterprise JavaBeans are the
Programming WebLogic Enterprise JavaBeans 1-1

1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
standard for defining server-side components. WebLogic Server’s implementation of
the Enterprise JavaBeans component architecture is based on Sun Microsystems EJB
specification.

WebLogic Server is compliant with the Sun J2EE specification and EJB 1.1 and EJB
2.0 specifications. While you can deploy existing EJB 1.1 beans in this version of
WebLogic Server, BEA strongly recommends that any new beans you develop be EJB
2.0 beans.

The information in this guide is focused on the EJB 2.0 implementation. Features and
behaviors specific to EJB 1.1 are covered in Chapter 13, “Important Information for
EJB 1.1 Users.”

Types of EJBs

There are four types of EJBs:

! Stateless session. An instance of these non-persistent EJBs provides a service
without storing an interaction or conversation state between methods. Any
instance can be used for any client. Stateless session beans can use either
container-managed or bean-managed transaction demarcation.

! Stateful session. An instance of these non-persistent EJBs maintains state across
methods and transactions. Each instance is associated with a particular client.
Stateful session beans can use either container-managed or bean-managed
transaction demarcation.

! Entity. An instance of these persistent EJBs represents an object view of the
data, usually rows in a database. An entity bean has a primary key as a unique
identifier. Entity bean persistence can be either container-managed or
bean-managed and use either container-managed or bean-managed transaction
demarcation.

! Message-driven. An instance of these EJBs is integrated with the Java Message
Service (JMS) to enable message-driven beans to act as a standard JMS message
consumer and perform asynchronous processing between the server and the JMS
message producer. The WebLogic Server container directly interacts with a
message-driven bean by creating bean instances and passing JMS messages to
those instances as necessary. Message-driven beans can use either
container-managed or bean-managed transaction demarcation.
1-2 Programming WebLogic Enterprise JavaBeans

What Are EJBs?
EJB Components

An entity or session EJB consists of these main components:

! Remote interface. This interface exposes business logic to clients running in a
separate application from the EJB. It defines the business methods a client can
access to do work.

! Local interface. This interface exposes business logic to clients running within
the same application as the EJB. It defines the business methods a client can
access to do work. This interface is not available for 1.1 EJBs.

! Remote home interface. The EJB factory, also known as a life-cycle interface.
Clients running in a separate application from the EJB use this interface to
create, remove and find EJB instances.

! Local home interface. The EJB factory, also known as a life-cycle interface.
Clients running within the same application as the EJB use this interface to
create, remove and find EJB instances. This interface is not available for 1.1
EJBs.

! Bean class. This interface implements business logic. Session and entity bean
classes implement a bean’s business and life-cycle methods.

! Primary key. A class that provides a pointer into a database. This class is
relevant for entity beans only.

A message-driven EJB consists only have a bean class. It has neither component
interfaces nor a primary key class.

The EJB Container

The EJB container takes care of “behind-the-scenes” system-level work so that beans
do not have to. WebLogic Server manages the EJB container, providing EJBs access
to system-level services such as database management, lifecycle management,
security, and transaction services.

Chapter 4, “The WebLogic Server EJB Container and Supported Services,” examines
the WebLogic Server EJB container in detail.
Programming WebLogic Enterprise JavaBeans 1-3

1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
Chapter 5, “WebLogic Server Container-Managed Persistence Service - Basic
Features,” and Chapter 6, “WebLogic Server Container-Managed Persistence Service
- Advanced Features,” help you design your application to make the best use of the
container-managed persistence service the WebLogic Server EJB container provides.

Creating EJBs: Main Steps

To create an EJB, you code a distributed application’s business logic into the EJB’s
implementation class; specify the deployment parameters in deployment descriptor
files; and package the EJB into a JAR file. You can then deploy the EJB individually
from a JAR file, or package it along with other EJBs and a Web application into an
EAR file, which you then deploy on WebLogic Server. Finally you monitor the health
of your running EJBs and tune them as needed. The following are the specific steps:

1. Design the EJBs. Decide which type of beans you want your application to use,
how many, where they will be deployed, what their behavior will be, etcetera. This
process includes choosing values for the elements in the EJB-relevant deployment
descriptor files: ejb-jar.xml, weblogic-ejb-jar.xml and
weblogic-cmp-rdbms-jar.xml.

Use the design process documented in this guide to design the EJBs that are
deployed in the WebLogic Server environment. For more information on the
design process, see Chapter 2, “Designing Session and Entity EJBs,” and
Chapter 3, “Designing Message-Driven Beans.”

2. Write the EJB code. The result of this process is an ejb.jar file that contains
one or more EJB java files.

3. Compile the EJB java files into class files with a Java compiler, typically javac.

4. Generate deployment descriptors.

5. Edit the deployment descriptors as needed to fine-tune the behavior of your EJBs.

Note: You have a number of different tools to choose from for generating and editing
deployment descriptors. See Chapter 10, “WebLogic Server EJB Tools.”

6. Generate stub and skeleton files and EJB container classes with the appc tool.
1-4 Programming WebLogic Enterprise JavaBeans

EJB Developer Tools
7. Package the EJB class files and deployment descriptors. This means placing the
class files and deployment descriptor files into their proper locations in
preparation for deployment. Packaging can also include archiving the class files
and deployment descriptors into JARs.

Chapter 7, “Packaging EJBs for the WebLogic Server Container,” discusses
packaging in detail.

Chapter 11, “The weblogic-ejb-jar.xml Deployment Descriptor,” and Chapter 12,
“The weblogic-cmp-rdbms- jar.xml Deployment Descriptor,” examine
deployment descriptor files and their elements in detail.

8. Deploy the EJBs on WebLogic Server from a JAR file or package them along
with other EJBs and WebLogic Server components in a EAR file, which you then
deploy on WebLogic Server. Chapter 7, “Packaging EJBs for the WebLogic
Server Container,” discusses deployment in detail.

9. Monitor your EJBs via the WebLogic Server Administration console. Tune their
behavior as needed by adjusting the appropriate deployment descriptor values
and redeploying. See Chapter 9, “EJB Runtime Monitoring,” and the “Tuning
WebLogic Server EJBs” chapter of the WebLogic Server Performance and
Tuning Guide
(http://http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html).

For more information on the deployment descriptors, see Chapter 11, “The
weblogic-ejb-jar.xml Deployment Descriptor,” and Chapter 12, “The
weblogic-cmp-rdbms- jar.xml Deployment Descriptor.”

For more information on container-managed persistence, see Chapter 5,
“WebLogic Server Container-Managed Persistence Service - Basic Features,”
and Chapter 6, “WebLogic Server Container-Managed Persistence Service -
Advanced Features.” For more information on the deploy process, see Chapter 7,
“Packaging EJBs for the WebLogic Server Container.”

EJB Developer Tools

BEA provides several tools you can use to help you create and configure EJBs.
Programming WebLogic Enterprise JavaBeans 1-5

http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html

1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
ANT Tasks to Create Skeleton Deployment Descriptors

You can use the WebLogic ANT utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
ANT task looks at a directory containing an EJB and creates deployment descriptors
based on the files it finds in the ejb.jar file. Because the ANT utility does not have
information about all of the desired configurations and mappings for your EJB, the
skeleton deployment descriptors the utility creates are incomplete. After the utility
creates the skeleton deployment descriptors, you can use a text editor, an XML editor,
or the EJB Deployment Descriptor Editor in the Administration Console to edit the
deployment descriptors and complete the configuration of your EJB.

For more information on using ANT utilities to create deployment descriptors, see
Packaging Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/programming/packaging.html in the
Developing WebLogic Server Applications.

WebLogic Builder

WebLogic Builder is a development tools that provides a visual environment for you
to edit an application’s deployment descriptor XML files. You can use WebLogic
Builder’s interface to view these XML files as you edit them, but you will not need to
make textual edits to the XML files. For instructions on how to use the WebLogic
Builder tool, see WebLogic Builder.

EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application. For more
information on EJBGen and a list of the supported javadoc tags, see “EJBGen” on page
10-13.
1-6 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/programming/packaging.html
http://e-docs.bea.com/wls/docs81b/programming/index.html

Implementation of Java Specifications
DDInit

DDInit examines the contents of a staging directory and builds the standard J2EE and
WebLogic-specific deployment descriptors based on the EJB classes. See “DDInit” on page
10-12.

weblogic.Deployer

The weblogic.Deployer command-line tool allows you to initiate deployment from
the command line, a shell script, or any automated environment other than Java.

For instructions on using weblogic.Deployer and a list of the commands, see
Deploying Using weblogic.Deployer.

XML Editor

The XML editor is a simple, user-friendly tool from Ensemble for creating and editing
XML files. It can validate XML code according to a specified DTD or XML Schema.
You can use the XML editor on Windows or Solaris machines and download it from
the Dev2Dev Online.

Implementation of Java Specifications

WebLogic Server is compliant with the following Java Specifications.

! J2EE Specification

WebLogic Server 8.1 is compliant with the J2EE 1.3 specification.

! EJB 2.0 Specification
Programming WebLogic Enterprise JavaBeans 1-7

http://e-docs.bea.com/wls/docs81b/programming/deploying.html
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools

1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
The Enterprise JavaBeans 2.0 implementation in WebLogic Server is fully
compliant and can be used in production.

EJB Features and Changes in this Release

The following EJB features and changes are introduced in this release of WebLogic
Server.

Performance Monitoring Improvements

This release introduces greatly improved monitoring of performance, via new tab
pages in the WebLogic Server Administration Console.

Performance monitoring is discussed in detail in Chapter 9, “EJB Runtime
Monitoring.”

appc

appc provides a single tool for compiling and validating a J2EE ear file, an ejb-jar file
or war file for deployment. Previously, a user wanting to compile all modules within
an ear file had to extract the individual components of an ear and manually execute the
appropriate compiler (jspc or ejbc) to prepare the module for deployment. appc
automates this process and performs additional pre-deployment validation checks not
previously performed.

appc is discussed in detail in “appc” on page 10-3.
1-8 Programming WebLogic Enterprise JavaBeans

EJB Features and Changes in this Release
Batch Operations

WebLogic Server now supports batch updates and deletes, in addition to the existing
batch insert (previously known as “bulk insert”) support. In addition, the EJB container
now prevents exceptions by performing dependency checks between batch operations.
See “Batch Operations” on page 4-24.

Automatic Database Detection

As application developers develop their entity beans, the underlying table schema must
change. With the automatic database detection feature enabled, WebLogic Server
automatically changes the underlying table schema as entity beans change. See
“Automatic Database Detection” on page 6-21 for more information on automatic
database detection.

EJB QL Compiler Enhancements

Compiler error messages in EJB QL now provide a visual aid to identify which part of
the query is in error and allow the reporting of more than one error per compilation.
See “EJB QL Error-Reporting Enhancements” on page 5-26 for more information on
this feature.

Performance Improvements

WebLogic Server provides improved performance for EJB bulk updates, optimistic
concurrency, field groups, relationship caching, and EJB redeployment.
Programming WebLogic Enterprise JavaBeans 1-9

1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
Reloadable EJB Modules

With the Reloadable J2EE Modules feature, you can also redeploy EJBs independently
of other components in an Enterprise Application. For more information, see
Developing WebLogic Server Applications at
http://http://e-docs.bea.com/wls/docs81b/programming/index.html.

EJB Deployment Assistants

The Administration Console provides an EJB Module Deployment Assistant to help
you deploy EJBs. For more information, see the EJB section of the Administration
Console Online Help at
http://http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ejb.html.

New dbms-column-type Values

WebLogic Server supports two additional values for the dbms-column-type element
in weblogic-cmp-rdbms.xml: LongString and SybaseBinary. See
“dbms-column-type” on page 12-21 for details.

sql-select-distinct Deprecated

This version of WebLogic Server deprecates the sql-select-distinct element in
weblogic-cmp-rdbms-jar.xml. Use the DISTINCT clause directly in finder queries
instead of this XML element. For finder queries that have a DISTINCT clause, the
container defers duplicate elimination to the database if FOR UPDATE is not used and
filter duplicates if used.

If sql-select-distinct is set to true, but the finder query does not have a
DISTINCT clause, it is equivalent to not specifying sql-select-distinct but
having a DISTINCT clause in the finder query.

If sql-select-distinct is set to false, but the finder query has a DISTINCT clause,
the value of sql-select-distinct is ignored.
1-10 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/programming/index.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ejb.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ejb.html

EJB Features and Changes in this Release
For more information on sql-select-distinct, see “sql-select-distinct” on page
12-49.

For more information on the SELECT DISTINCT clause in EJB QL, see “Using
SELECT DISTINCT” on page 5-15.

ejbc Deprecated

The ejbc compiler has been deprecated. Use appc in its place.
Programming WebLogic Enterprise JavaBeans 1-11

1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
1-12 Programming WebLogic Enterprise JavaBeans

CHAPTER
2 Designing Session and
Entity EJBs

The following sections provide guidelines for designing session and entity EJBs, and
include a discussion of inheritance, access to deployed EJBs and transaction resource
preservation.

! Designing Session Beans

! Designing Entity Beans

! Using Inheritance with EJBs

! Accessing Deployed EJBs

! Preserving Transaction Resources

Message-driven bean design is discussed in Chapter 3, “Designing Message-Driven
Beans.”

Designing Session Beans

One way to design session beans is to use the model-view design. The view is the
graph-user interface (GUI) form and the model is the piece of code that supplies data
to the GUI. In a typical client-server system, the model lives on the same server as the
view and talks to the server.
Programming WebLogic Enterprise JavaBeans 2-1

2 Designing Session and Entity EJBs
Have the model reside on the server, in the form of a session bean. (This is analogous
to having a servlet providing support for an HTML form, except that a model session
bean does not affect the final presentation.) There should be one model session bean
instance for each GUI form instance, which acts as the form’s representative on the
server. For example, if you have a list of 100 network nodes to display in a form, you
might have a method called getNetworkNodes() on the corresponding EJB that
returns an array of values relevant to that list.

This approach keeps the overall transaction time short, and requires minimal network
bandwidth. In contrast, consider an approach where the GUI form calls an entity EJB
finder method that retrieves references to 100 separate network nodes. For each
reference, the client must go back to the datastore to retrieve additional data, which
consumes considerable network bandwidth and may yield unacceptable performance.

Session Facade Pattern

IN DEVELOPMENT.

Designing Entity Beans

Reading and writing RDBMS data via an entity bean can consume valuable network
resources. Network traffic may occur between a client and WebLogic Server, as well
as between WebLogic Server and the underlying datastore. Use the following
suggestions to model entity EJB data correctly and avoid unnecessary network traffic.
2-2 Programming WebLogic Enterprise JavaBeans

Designing Entity Beans
Entity Bean Home Interface

The container provides an implementation of the home interface for each entity bean
deployed in the container and it makes the home interface accessible to the clients
through JNDI. An object that implements an entity beans’s home interface is called an
EJBHome object. The entity bean’s home interface enables a client to do the
following:

! Use the create() methods to create new entity objects within the home.

! Use the finder() methods to find existing entity objects within the home.

! Use the remove() methods to remove an entity object from the home.

! Execute a home method that is not specific to a particular entity bean instance.

Make Entity EJBs Coarse-Grained

Do not attempt to model every object in your system as an entity EJB. In particular,
small subsets of data consisting of only a few bytes should never exist as entity EJBs,
because the trade-off in network resources is unacceptable.

For example, cells in a spreadsheet are too fine-grained and should not be accessed
frequently over a network. In contrast, logical groupings of an invoice’s entries, or a
subset of cells in a spreadsheet can be modeled as an entity EJB, if additional business
logic is required for the data.

Encapsulate Additional Business Logic in Entity EJBs

Even coarse-grained objects may be inappropriate for modeling as an entity EJB if the
data requires no additional business logic. For example, if the methods in your entity
EJB work only to set or retrieve data values, it is more appropriate to use JDBC calls
in an RDBMS client or to use a session EJB for modeling.
Programming WebLogic Enterprise JavaBeans 2-3

2 Designing Session and Entity EJBs
Entity EJBs should encapsulate additional business logic for the modeled data. For
example, a banking application that uses different business rules for “Platinum” and
“Gold” customers might model all customer accounts as entity EJBs; the EJB methods
can then apply the appropriate business logic when setting or retrieving data fields for
a particular customer type.

Optimize Entity EJB Data Access

Entity EJBs ultimately model fields that exist in a data store. Optimize entity EJBs
wherever possible to simplify and minimize database access. In particular:

! Limit the complexity of joins against EJB data.

! Avoid long-running operations that require disk access in the datastore.

Ensure that EJB methods return as much data as possible, so as to minimize round-trips
between the client and the datastore. For example, if your EJB client must retrieve data
fields, use bulk get/setAttributes() methods to minimize network traffic.

Using Inheritance with EJBs

Using inheritance may be appropriate when building groups of related beans that share
common code. However, be aware of several inheritance restrictions apply to EJB
implementations.

For bean-managed entity EJBs, the ejbCreate() method must return a primary key.
Any class that inherits from the bean-managed EJB class cannot have an
ejbCreate() method that returns a different primary key class than does the
bean-managed EJB class. This restriction applies even if the new class is derived from
the base EJB’s primary key class. The restriction also applies to the bean’s ejbFind()
method.

Also, EJBs inheriting from other EJB implementations change the interfaces. For
example, the following figure shows a situation where a derived bean adds a new
method that is meant to be accessible remotely.
2-4 Programming WebLogic Enterprise JavaBeans

Accessing Deployed EJBs
Figure 2-1 Derived bean (BBean) adding new method to be accessible remotely

An additional restriction is that because AHome.create() and BHome.create()

return different remote interfaces, you cannot have the BHome interface inherit from the
AHome interface. You can still use inheritance to have methods in the beans that are
unique to a particular class, that inherit from a superclass or that are overridden in the
subclass. See the EJB 1.1 subclass Child example in the and classes in the WebLogic
Server distribution for an examples of inheritance.

Accessing Deployed EJBs

WebLogic Server automatically creates implementations of an EJB’s home and remote
interfaces that can function remotely. This means that all clients — whether they reside
on the same server as the EJB, or on a remote computer — can access deployed EJBs
in a similar fashion.

All EJBs must specify their environment properties using Java Naming and Directory
Interface (JNDI). You can configure the JNDI name spaces of EJB clients to include
the home EJBs that reside anywhere on the network — on multiple machines,
application servers, or containers.

ABean

BBean
extends ABean

Bean Interface

ARemote

BRemote
extends ARemote

foo ()
foo2 ()

foo3 ()foo3 ()

foo ()
foo2 ()
Programming WebLogic Enterprise JavaBeans 2-5

2 Designing Session and Entity EJBs
However, in designing enterprise application systems, you must still consider the
effects of transmitting data across a network between EJBs and their clients. Because
of network overhead, it is still more efficient to access beans from a “local” client —
a servlet or another EJB — than to do so from a remote client where data must be
marshalled, transmitted over the network, and then unmarshalled.

Differences Between Accessing EJBs from Local Clients
and Remote Clients

One difference between accessing EJBs from local clients and remote clients is in
obtaining an InitialContext for the bean. Remote clients obtain an
InitialContext from the WebLogic Server InitialContext factory. WebLogic
Server local clients generally use a getInitialContext method to perform this
lookup, similar to the following excerpt:

Figure 2-2 Code sample of a local client performing a lookup

...

Context ctx = getInitialContext("t3://localhost:7001", "user1", "user1Password");

...

static Context getInitialContext(String url, String user, String password) {

Properties h = new Properties();

h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

h.put(Context.PROVIDER_URL, url);

h.put(Context.SECURITY_PRINCIPAL, user);

return new InitialContext(h);

}

Internal clients of an EJB, such as servlets, can simply create an InitialContext

using the default constructor, as shown here:

Context ctx = new InitialContext();
2-6 Programming WebLogic Enterprise JavaBeans

Accessing Deployed EJBs
Restrictions on Concurrency Access of EJB Instances

Although database concurrency is the default and recommended concurrency access
option, multiple clients can use the exclusive concurrency option to access EJBs in a
serial fashion. Using this exclusive option means that if two clients simultaneously
attempt to access the same entity EJB instance (an instance having the same primary
key), the second client is blocked until the EJB is available. For more information on
the database concurrency option, see “Exclusive Concurrency Strategy” on page 5-37.

Simultaneous access to a stateful session EJB results in a RemoteException. This
access restriction on stateful session EJBs applies whether the EJB client is remote or
internal to WebLogic Server. However, you can set the allow-concurrent-calls
option to specify that a stateful session bean instance will allow concurrent method
calls.

If multiple servlet classes access a session EJB, each servlet thread (rather than each
instance of the servlet class) must have its own session EJB instance. To avoid
concurrent access, a JSP/servlet can use a stateful session bean in request scope.

Storing EJB References in Home Handles

Once a client obtains the EJBHome object for an EJB instance, you can create a handle
to the home object by calling getHomeHandle(). getHomeHandle() returns a
HomeHandle object, which can be used to obtain the home interface to the same EJB
at a later time.

A client can pass the HomeHandle object as arguments to another client, and the
receiving client can use the handle to obtain a reference to the same EJBHome object.
Clients can also serialize the HomeHandle and store it in a file for later use.

Using Home Handles Across a Firewall

By default, WebLogic Server stores its IP address in the HomeHandle object for EJBs.
This can cause problems with certain firewall systems. If you cannot locate EJBHome
objects when you use home handles passed across a firewall, use the following steps:

1. Start WebLogic Server.
Programming WebLogic Enterprise JavaBeans 2-7

2 Designing Session and Entity EJBs
2. Start the WebLogic Server Administration Console.

3. From the left pane, expand the Servers node and select a server.

4. In the right pane, select the Configuration tab for that server and then the
Network tab.

5. Check the Reverse DNS Allowed box to enable reverse DNS lookups.

When you enable reverse DNS lookups, WebLogic Server stores the DNS name of the
server, rather than the IP address, in EJB home handles.

Preserving Transaction Resources

Database transactions are typically one of the most valuable resources in an online
transaction-processing system. When you use EJBs with WebLogic Server,
transaction resources are even more valuable because of their relationship with
database connections.

WebLogic Server can use a single connection pool to service multiple, simultaneous
database requests. The efficiency of the connection pool is largely determined by the
number and length of database transactions that use the pool. For non-transactional
database requests, WebLogic Server can allocate and deallocate a connection very
quickly, so that the same connection can be used by another client. However, for
transactional requests, a connection becomes “reserved” by the client for the duration
of the transaction.

To optimize transaction use on your system, always follow an “inside-out” approach
to transaction demarcation. Transactions should begin and end at the “inside” of the
system (the database) where possible, and move “outside” (toward the client
application) only as necessary. The following sections describe this rule in more detail.

Allowing the Datastore to Manage Transactions

Many RDBMS systems provide high-performance locking systems for Online
Transaction Processing (OLTP) transactions. With the help of Transaction Processing
(TP) monitors such as Tuxedo, RDBMS systems can also manage complex decision
2-8 Programming WebLogic Enterprise JavaBeans

Preserving Transaction Resources
support queries across multiple datastores. If your underlying datastore has such
capabilities, use them where possible. Never prevent the RDBMS from automatically
delimiting transactions.

Using Container-Managed Transactions Instead of
Bean-Managed Transactions for EJBs

Your system should rarely rely on bean-managed transaction demarcation. Use
WebLogic Server container-managed transaction demarcation unless you have a
specific need for bean-managed transactions.

Possible scenarios where you must use bean-managed transactions are:

! You define multiple transactions from within a single method call. WebLogic
Server demarcates transactions on a per-method basis.

Rather than using multiple transactions in a single method call, break the method
into multiple methods, with each of the multiple methods having its own
container-managed transaction.

! You define a single transaction that “spans” multiple EJB method calls. For
example, you define a stateful session EJB that uses one method to begin a
transaction, and another method to commit or roll back a transaction.

Note: Avoid this practice if possible because it requires detailed information
about the workings of the EJB object. However, if this scenario is required,
you must use bean-managed transaction coordination, and you must
coordinate client calls to the respective methods.

Never Demarcate Transactions from Application

In general, client applications are not guaranteed to stay active over long periods of
time. If a client begins a transaction and then exits before committing, it wastes
valuable transaction and connection resources in WebLogic Server. Moreover, even if
the client does not exit during a transaction, the duration of the transaction may be
unacceptable if it relies on user activity to commit or roll back data. Always demarcate
transactions at the WebLogic Server or RDBMS level where possible.

For more information on demarcating transaction see “Transaction Management
Responsibilities” on page 4-17.
Programming WebLogic Enterprise JavaBeans 2-9

2 Designing Session and Entity EJBs
Always Use A Transactional Datasource for Container-Managed EJBs

If you configure a JDBC datasource factory for use with container-managed EJBs,
make sure you configure a transactional datasource (TXDataSource) rather than a
non-transactional datasource (DataSource). With a non-transactional datasource, the
JDBC connection operates in auto commit mode, committing each insert and update
operation to the database immediately, rather than as part of a container-managed
transaction.
2-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
3 Designing
Message-Driven Beans

The following sections describe how to develop message-driven beans and to deploy
then on WebLogic Server. Because message-driven beans use parts of the standard
Java Messing Service (JMS) API, you should first become familiar with the WebLogic
JMS before attempting to implement message-driven beans. See Programming
WebLogic JMS for more information.

! What Are Message-Driven Beans?

! Developing and Configuring Message-Driven Beans

! Invoking a Message-Driven Bean

! Creating and Removing Bean Instances

! Deploying Message-Driven Beans in WebLogic Server

! Using Transaction Services with Message-Driven Beans

! Message-Driven Bean Migratable Service

What Are Message-Driven Beans?

A message-driven bean is an EJB that acts as a message consumer in the WebLogic
JMS messaging system. As with standard JMS message consumers, message-driven
beans receive messages from a JMS Queue or Topic, and perform business logic based
on the message contents.
Programming WebLogic Enterprise JavaBeans 3-1

http://e-docs.bea.com/wls/docs81b/jms/index.html
http://e-docs.bea.com/wls/docs81b/jms/index.html

3 Designing Message-Driven Beans
EJB deployers create listeners to a Queue or Topic at deployment time, and WebLogic
Server automatically creates and removes message-driven bean instances as needed to
process incoming messages.

Differences Between Message-Driven Beans and
Standard JMS Consumers

Because message-driven beans are implemented as EJBs, they benefit from several
key services that are not available to standard JMS consumers. Most importantly,
message-driven bean instances are wholly managed by the WebLogic Server EJB
container. Using a single message-driven bean class, WebLogic Server creates
multiple EJB instances as necessary to process large volumes of messages
concurrently. This stands in contrast to a standard JMS messaging system, where the
developer must create a MessageListener class that uses a server-wide session pool.

The WebLogic Server container provides other standard EJB services to message-
driven beans, such as security services and automatic transaction management. These
services are described in more detail in “When you configure a cluster, you supply a
cluster address that identifies the Managed Servers in the cluster. The cluster address
is used in entity and stateless beans to construct the host name portion of URLs. If the
cluster address is not set, EJB handles may not work properly. For more information
on cluster addresses, see Using WebLogic Server Clusters.” on page 4-16 and in
“Using Transaction Services with Message-Driven Beans” on page 3-12.

Finally, message-driven beans benefit from the write-once, deploy-anywhere quality
of EJBs. Whereas a JMS MessageListener is tied to specific session pools,

Queues, or Topics, message-driven beans can be developed independently of available
server resources. A message-driven bean’s Queues and Topics are assigned only at
deployment time, utilizing resources available on WebLogic Server.

Note: One limitation of message-driven beans compared to standard JMS listeners is
that you can associate a given message-driven bean deployment with only one
Queue or Topic, as described in “Invoking a Message-Driven Bean” on page
3-11. If your application requires a single JMS consumer to service messages
from multiple Queues or Topics, you must use a standard JMS consumer, or
deploy multiple message-driven bean classes.
3-2 Programming WebLogic Enterprise JavaBeans

What Are Message-Driven Beans?
Differences Between Message-Driven Beans and
Stateless Session EJBs

The dynamic creation and allocation of message-driven bean instances partially
mimics the behavior of stateless session EJB instances. However, message-driven
beans differ from stateless session EJBs (and other types of EJBs) in several significant
ways:

! Message-driven beans process multiple JMS messages asynchronously, rather
than processing a serialized sequence of method calls.

! Message-driven beans have no home or remote interface, and therefore cannot
be directly accessed by internal or external clients. Clients interact with
message-driven beans only indirectly, by sending a message to a JMS Queue or
Topic.

Note: Only the WebLogic Server container directly interacts with a message-driven
bean by creating bean instances and passing JMS messages to those instances
as necessary.

! WebLogic Server maintains the entire life cycle of a message-driven bean;
instances cannot be created or removed as a result of client requests or other API
calls.

Concurrent Processing for Topics and Queues

Message-Driven Beans support concurrent processing for both Topics and Queues.
Previously, only concurrent processing for Queues was supported.

To ensure concurrency, the container uses threads from the execute queue. The default
setting for the max-beans-in-free-pool deployment descriptor found in the
weblogic-ejb-jar.xml file provides the most parallelism. The only reason to
change this setting would be to limit the number of parallel consumers. For more
information on this element see, “max-beans-in-free-pool” on page 11-55.
Programming WebLogic Enterprise JavaBeans 3-3

3 Designing Message-Driven Beans
Developing and Configuring
Message-Driven Beans

When developing message-driven beans, follow the conventions described in the
JavaSoft EJB 2.0 specification, and observe the general practices that result in proper
bean behavior. Once you have created the message-driven bean class, configuring the
bean for WebLogic Server by specify the bean’s deployment descriptor elements in the
EJB XML deployment descriptor files.

To develop a message-driven bean:

1. Create a source file (message-driven bean class) that implements both the
javax.ejb.MessageDrivenBean and javax.jms.MessageListener

interfaces.

The message-driven bean class must define the following methods:

" One ejbCreate() method that the container uses to create an instance of the
message-driven bean on the free pool.

" One onMessage() method that is called by the bean’s container when a
message is received. This method contains the business logic that handles
processing of the message.

" One setMessageDrivenContext{} method that provides information to
the bean instance about its environment (certain deployment descriptor
values); the Context is also the mechanism the bean class uses to access
some services provided by the EJB container.

" One ejbRemove() method that removes the message-driven bean instance
from the free pool.

For an example of output for a message-driven bean class, see “Message-Driven
Bean Class Requirements” on page 3-6.

2. Specify the following XML deployment descriptor files for the message-driven
bean.

" ejb-jar.xml

" weblogic-ejb-jar.xml

" weblogic-cmp-rdbms-jar.xml
3-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html

Developing and Configuring Message-Driven Beans
For instructions on specifying the XML files, see “Specifying and Editing the
EJB Deployment Descriptors” on page 7-5.

3. Set the message-driven element in the bean’s ejb-jar.xml file to declare the
bean.

4. Set the message-driven-destination element in the bean’s ejb-jar.xml file
to specify whether the bean is intended for a Topic or Queue.

5. Set the subscription-durability sub-element in the bean’s ejb-jar.xml
file when you want to specify whether an associated Topic should be durable.

6. If your bean will demarcate its own transaction boundaries, set the
acknowledge-mode sub-element to specify the JMS acknowledgment semantics
to use. This element has two possible values: AUTO_ACKNOWLEDGE (the default)
or DUPS_OK_ACKNOWLEDGE.

7. If the container will manage the transaction boundaries, set the
transaction-type element in the bean’s ejb-jar.xml file to specify how the
container must manage the transaction boundaries when delegating a method
invocation to an enterprise bean’s method.

The following sample shows how to specify a message-driven bean in the
ejb-jar.xml file.

Figure 3-1 Sample XML stanza from an ejb-jar.xml file:

<enterprise-beans>

<message-driven>

<ejb-name>exampleMessageDriven1</ejb-name>

<ejb-class>examples.ejb20.message.MessageTraderBean</ejb-class>

<transaction-type>Container</transaction-type>

<message-driven-destination>

<destination-type>

javax.jms.Topic

</destination-type>

</message-driven-destination>
Programming WebLogic Enterprise JavaBeans 3-5

http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#AUTO_ACKNOWLEDGE
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#DUPS_OK_ACKNOWLEDGE

3 Designing Message-Driven Beans
...

</message-driven>

...

</enterprise-beans>

8. Set the message-driven-descriptor element in the bean’s
weblogic-ejb-jar.xml file to associate the message-driven bean with a JMS
destination in WebLogic Server.

The following sample shows how to specify a message-driven bean in an
weblogic-ejb-jar.xml file.

Figure 3-2 Sample XML stanza from an weblogic-ejb-jar.xml file:

<message-driven-descriptor>

<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

9. Compile and generate the message-driven bean class using instructions in
“Packaging EJBs into a Deployment Directory” on page 7-9.

10. Deploy the bean on WebLogic Server using the instructions in “Deploying
Compiled EJB Files” on page 8-7.

The container manages the message-driven bean instances at runtime.

Message-Driven Bean Class Requirements

The EJB 2.0 specification provides detailed guidelines for defining the methods in a
message-driven bean class. The following output shows the basic components of a
message-driven bean class. Classes, methods, and method declarations are highlighted
bold.

Figure 3-3 Sample output of basic components of message-driven beans class

public class MessageTraderBean implements MessageDrivenBean,
MessageListener{

public MessageTraderBean() {...};
3-6 Programming WebLogic Enterprise JavaBeans

Developing and Configuring Message-Driven Beans
// An EJB constructor is required, and it must not

// accept parameters. The constructor must not be
declared as

// final or abstract.

public void ejbCreate() (...)

//ejbCreate () is required and must not accept
parameters.

The throws clause (if used) must not include an
application

//exception. ejbCreate() must not be declared as
final or static.

public void onMessage(javax.jms.Message MessageName) {...}

// onMessage() is required, and must take a single
parameter of

// type javax.jms.Message. The throws clause (if
used) must not

// include an application exception. onMessage() must
not be

// declared as final or static.

public void ejbRemove() {...}

// ejbRemove() is required and must not accept
parameters.

// The throws clause (if used) must not include an
application

//exception. ejbRemove() must not be declared as
final or static.

// The EJB class cannot define a finalize() method

}

Programming WebLogic Enterprise JavaBeans 3-7

3 Designing Message-Driven Beans
Using the Message-Driven Bean Context

WebLogic Server calls setMessageDrivenContext() to associate the
message-driven bean instance with a container context.This is not a client context; the
client context is not passed along with the JMS message. WebLogic Server provides
the EJB with a container context, whose properties can be accessed from within the
bean’s instance by using the following methods from the MessageDrivenContext
interface:

! getCallerPrincipal()) — This method is inherited from the EJBContext
interface and should not be called by message-driven bean instances.

! isCallerInRole()) — This method is inherited from the EJBContext
interface and should not be called by message-driven bean instances.

! setRollbackOnly() — The EJB can use this method only if it uses
container-managed transaction demarcation.

! getRollbackOnly() — The EJB can use this method only if it uses
container-managed transaction demarcation.

! getUserTransaction() — The EJB can use this method only if it uses
bean-managed transaction demarcation.

Note: Although getEJBHome() is also inherited as part of the
MessageDrivenContext interface, message-driven beans do not have a
home interface. Calling getEJBHome() from within a message-driven EJB
instance yields an IllegalStateException.

Implementing Business Logic with onMessage()

The message-driven bean’s onMessage() method implements the business logic for
the EJB. WebLogic Server calls onMessage() when the EJB’s associated JMS Queue
or Topic receives a message, passing the full JMS message object as an argument. It is
the message-driven bean’s responsibility to parse the message and perform the
necessary business logic in onMessage().
3-8 Programming WebLogic Enterprise JavaBeans

Developing and Configuring Message-Driven Beans
Make sure that the business logic accounts for asynchronous message processing. For
example, it cannot be assumed that the EJB receives messages in the order they were
sent by the client. Instance pooling within the container means that messages are not
received or processed in a sequential order, although individual onMessage() calls to
a given message-driven bean instance are serialized.

See javax.jms.MessageListener.onMessage() for more information.

Specifying Principals and Setting Permissions for JMS
Destinations

Message-driven beans connect to the JMS destination using the run-as principal. The
run-as principal maps to the run-as element that is set in the ejb-jar.xml file. This
setting specifies the run-as identity used for the execution of the message-driven
bean’s methods. A message-driven bean is associated with a JMS destination when
you deploy the bean in the WebLogic Server EJB container. The JMS destination can
either be a queue or a topic. You specify the JMS destination by setting the
destination-type element to either queue or topic in the message-driven bean’s
ejb-jar.xml file.

Set the permissions for the bean’s run-as principal to receive, as described below,
when connecting message-driven beans to the JMS destinations. This allows the
message-driven bean to connect to remote queues in the same domain or in another
domain as long as the same principal is defined in the other domain. WebLogic Server
uses the default guest user if you do not specify the run-as principal. However,
whether you use the run-as principal or guest, you must assign the receive
permission to the security principal.

To set the receive permission, you must first create a new access control list (ACL)
or modify an existing one. ACLs are lists of Users and Groups that have permission to
access the resources. Permissions are the privileges required to access resources, such
as permission to read, write, send, and receive files and load servlets, and link to
libraries.

Note: Do not use the system user for message-driven beans that connect to JMS
destinations because system prevents the message-driven bean from
connecting to a destination in another domain.

For more information on security principal users, see Defining Users.
Programming WebLogic Enterprise JavaBeans 3-9

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/jms/MessageListener.html

3 Designing Message-Driven Beans
See the following instructions to create the ACL, specify principals, and set
permissions:

1. Start the WebLogic Server Administration Console.

2. Go to the Security→ACLs node in the left pane of the Administration Console.

3. In the right pane of the Administration Console, click the Create a New ACL
link.

The ACL Configuration window appears.

4. Specify the name of WebLogic Server resource that you want to protect with an
ACL in the New ACL Name field.

For example, create an ACL for a JMS destination named topic.

5. Click Create.

6. Click the Add a New Permission link.

7. Specify the receive permission for the topic JMS destination resource.

8. Specify the run-as-principal user as having the specified permission to the
resource.

9. Click Apply.

Handling Exceptions

Message-driven bean methods should not throw an application exception or a
RemoteException, even in onMessage(). If any method throws such an exception,
WebLogic Server immediately removes the EJB instance without calling
ejbRemove(). However, from the client perspective the EJB still exists, because
future messages are forwarded to a new bean instance that WebLogic Server creates.
3-10 Programming WebLogic Enterprise JavaBeans

Invoking a Message-Driven Bean
Invoking a Message-Driven Bean

When a JMS Queue or Topic receives a message, WebLogic Server calls an associated
message-driven bean as follows:

1. WebLogic Server obtains a new bean instance.

WebLogic Server uses the max-beans-in-free-pool attribute, set in the
weblogic-ejb-jar.xml file, to determine if a new bean instance is available in
the free pool.

2. If a bean instance is available in the free pool, WebLogic Server uses that
instance. If no bean instance is available in the free pool, because the
max-beans-in-free-pool attribute is at maxBeans (maximum setting),
WebLogic Server waits until a bean instance is free. See
“max-beans-in-free-pool” on page 11-55 for more information about this
attribute.

If no bean instance is located in the free pool, WebLogic Server creates a new
instance by calling the bean’s ejbCreate() method and then the bean’s
setMessageDrivenContext() to associate the instance with a container
context. The bean can use elements of this context as described in “Using the
Message-Driven Bean Context” on page 3-8.

3. WebLogic Server calls the bean’s onMessage() method to implement the
business logic when the bean’s associated JMS Queue or Topic receives a
message.

See “Implementing Business Logic with onMessage()” on page 3-8.

Note: These instances can be pooled.

Creating and Removing Bean Instances

The WebLogic Server container calls the message-driven bean’s ejbCreate() and
ejbRemove() methods, to create or remove an instance of the bean class. Each
message-driven bean must have at least one ejbCreate() and ejbRemove()method.
Programming WebLogic Enterprise JavaBeans 3-11

3 Designing Message-Driven Beans
The WebLogic Server container uses these methods to handle the create and remove
functions when a bean instance is created, upon receipt of a message from a JMS
Queue or Topic or removed, once the transaction commits. WebLogic Server receives
a message from a JMS queue or Topic.

As with other EJB types, the ejbCreate() method in the bean class should prepare
any resources that are required for the bean’s operation. The ejbRemove() method
should release those resources, so that they are freed before WebLogic Server removes
the instance.

Message-driven beans should also perform some form of regular clean-up routine
outside of the ejbRemove() method, because the beans cannot rely on ejbRemove()

being called under all circumstances (for example, if the EJB throws a runtime
exception).

Deploying Message-Driven Beans in
WebLogic Server

Deploy the message-driven bean on WebLogic Server either when the server is first
started or on a running server. For instructions on deploying the bean, see “Deploying
EJBs at WebLogic Server Startup” on page 8-1 or “Deploying EJBs on a Running
WebLogic Server” on page 8-3.

Using Transaction Services with
Message-Driven Beans

As with other types of EJB, message-driven beans can demarcate transaction
boundaries either on their own (using bean-managed transactions), or by having the
WebLogic Server container manage transactions (container-managed transactions). In
either case, a message-driven bean does not receive a transaction context from the
3-12 Programming WebLogic Enterprise JavaBeans

Using Transaction Services with Message-Driven Beans
client that sends a message. WebLogic Server always calls a bean’s onMessage()
method by using the transaction context specified in the bean’s deployment descriptor
file.

Because no client provides a transaction context for calls to a message-driven bean,
beans that use container-managed transactions must be deployed with the Required
or NotSupported trans-attribute specified for the container-transaction
element in the ejb-jar.xml file.

The following sample code from the ejb-jar.xml file shows how to specify the
bean’s transaction context.

Figure 3-4 Sample XML stanza from an ejb-jar.xml file:

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>MyMessageDrivenBeanQueueTx</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

</assembly-descriptor>

Message Receipts

The receipt of a JMS message that triggers a call to an EJB’s onMessage() method is
not generally included in the scope of a transaction. However, it is handled differently
for bean-managed and container-managed transactions.

! For EJBs that use bean-managed transactions, the message receipt is always
outside the scope of the bean’s transaction.

! For EJBs that use container-managed transaction demarcation, WebLogic Server
includes the message receipt as part of the bean’s transaction only if the bean’s
transaction-type element in the ejb-jar.xml file is set to Required.
Programming WebLogic Enterprise JavaBeans 3-13

3 Designing Message-Driven Beans
Message Acknowledgment

For message-driven beans that use container-managed transaction demarcation,
WebLogic Server automatically acknowledges a message when the EJB transaction
commits. If the EJB uses bean-managed transactions, both the receipt and the
acknowledgment of a message occur outside the EJB transaction context. WebLogic
Server automatically acknowledges messages for EJBs with bean-managed
transactions, but you can configure acknowledgment semantics using the
acknowledge-mode deployment descriptor element defined in the ejb-jar.xml file.

Message-Driven Bean Migratable Service

WebLogic Server supports migratable and recovery services for message-driven
beans. To provide these migratable and recovery services, WebLogic JMS uses the
migration framework provided by WebLogic Server to respond to migration requests
and bring a JMS server back online after a failure. Once the JMS server migrates to an
available server, you should manually migrate the associated message-driven beans
from a failed server in a WebLogic Server cluster to the same available server. The
Message-driven bean can only use the Migratable Service when they are on clustered
servers At this time, the Migratable Service cannot span multiple clusters.

If WebLogic Server does not migrate the message-driven bean along with the JMS
Server to an available server in the cluster, the JMS destination will be flooded with
messages. To expedite message-driven bean recovery until the original server
recovers, the message-driven bean marks itself as migratable and WebLogic Server
implements the Migratable Service process. After you migrate the bean to another
server, it connects to its JMS server and continues to pull messages from the JMS
destination on behalf of the failed server.

Enabling the Message-Driven Bean Migratable Service

To enable the message-driven bean Migratable Service:

1. Configure the message-driven bean as described in “Developing and Configuring
Message-Driven Beans” on page 3-4.
3-14 Programming WebLogic Enterprise JavaBeans

Message-Driven Bean Migratable Service
2. Specify the message-driven bean’s JMS destination type as either topic or queue
by setting the destination-type element in the ejb-jar.xml file. For
instructions, see JMS Destination Tasks.

3. Specify one of the following deployment schemes for the JMS destination:

" Simple destination - EJB container deploys the message-driven bean with the
JMS destination when the JMS destination isn’t distributed.

" Distributed destination - EJB container deploys the message-driven bean
with the JMS destination on every server when the JMS destination is
distributed.

For instructions, see JMS Distributed Destination Tasks.

4. Use the WebLogic Server Administration Console, configure a JMS server. For
instructions see JMS Server Tasks.

A JMS server is deployed on a server in a WebLogic Server cluster and handles
requests for a set of JMS destinations.

5. Configure JMS migratable targets for the JMS server. For instructions, see Server
--> Control --> JMS Migration Configuration.

Migrating Message-Driven Beans

To migrate message-driven bean from a failed server in a WebLogic Server cluster to
an available server:

1. Start the WebLogic Server Administration Console.

2. Specify one of the following deployment schemes for the JMS destination:

" Simple destination - EJB container deploys the message-driven bean with the
JMS destination when the JMS destination isn’t distributed.

" Distributed destination - EJB container deploys the message-driven bean
with the JMS destination on every server when the JMS destination is
distributed.

Because the message-driven bean can detect the migration target for the JMS server,
you do not need to change the migration target for the message-driven bean.
Programming WebLogic Enterprise JavaBeans 3-15

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_control_migration-configuration.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_control_migration-configuration.html

3 Designing Message-Driven Beans
However, the message-driven bean must be deployed in the cluster or all of the servers
on the JMS server migration target lists because message-driven bean is not possible
during migration.The message-driven bean is deployed with the a JMS destination on
all servers in the migration target list, and remain inactive when the JMS destination is
inactive.

When WebLogic Server activates a message-driven bean, it detects the JMS server and
starts pulling the message from the JMS destination that is specified for the bean.

As of WebLogic Server 7.0, you can deploy an MDB that supports container-managed
transactions against a foreign JMS provider. If the MDB is configured with a
“transaction-type” attribute of “Container” and a “trans-attribute” of “Required”, then
WLS will use XA to automatically enlist the foreign JMS provider in a transaction.

If the foreign JMS provider does not support XA, then you cannot deploy an MDB that
supports container-managed transactions with that provider. Furthermore, if the JMS
provider does support XA, you must ensure that the JMS connection factory that you
specify in the weblogic-ejb-jar.xml file supports XA—each JMS provider has a
different way to specify this.

See the white paper, “Using Foreign JMS Providers with WLS Message Driven
Beans” (jmsmdb.doc) on
http://dev2dev.bea.com/resourcelibrary/whitepapers.jsp?highlight=whitepapers for an
example of how to configure an MDB to use a foreign provider.
3-16 Programming WebLogic Enterprise JavaBeans

http://dev2dev.bea.com/resourcelibrary/whitepapers.jsp?highlight=whitepapers
http://dev2dev.bea.com/resourcelibrary/whitepapers.jsp?highlight=whitepapers

CHAPTER
4 The WebLogic Server
EJB Container and
Supported Services

The following sections describe the WebLogic Server EJB container and various
aspects of EJB behavior in terms of the features and services that the container
provides.

! EJB Container

! EJB Lifecycle in WebLogic Server

! Using max-beans-in-free-pool

! EJBs in WebLogic Server Clusters

! Database Insert Support

! Batch Operations

! Resource Factories

! Using EJB Links

For information on the specific topic of container-managed persistence, see Chapter 5,
“WebLogic Server Container-Managed Persistence Service - Basic Features,” and
Chapter 6, “WebLogic Server Container-Managed Persistence Service - Advanced
Features.”
Programming WebLogic Enterprise JavaBeans 4-1

4 The WebLogic Server EJB Container and Supported Services
EJB Container

The EJB container is a runtime container for deployed EJBs. It is automatically created
when WebLogic Server is started. During the entire life cycle of an EJB object, from
its creations to removal, it lives in the container. The EJB container provides a standard
set of services, including caching, concurrency, persistence, security, transaction
management, locking, environment, memory replication, and clustering for the EJB
objects that live in the container.

You can deploy multiple beans in a single container. For each session and entity bean
deployed in a container, the container provides a home interface. The home interface
allows a client to create, find, and remove entity objects that belong to the entity bean
as well as to execute home business methods which are not specific to a particular
entity bean object. A client can look up the entity bean’s home interface through the
Java Naming and Directory Interface (JNDI) or by following an EJB reference, which
is preferred. The container is responsible for making the entity bean’s home interface
available in the JNDI name space. For instructions on looking up the home interface
through JNDI, see Programming WebLogic JNDI.

EJB Lifecycle in WebLogic Server

The following sections provide information about how the container supports caching
services. They describe the life cycle of EJB instances in WebLogic Server, from the
perspective of the server. These sections use the term EJB instance to refer to an actual
instance of the EJB bean class. EJB instance does not refer to the logical instance of
the EJB as seen from the point of view of a client.

Stateless Session EJB Life Cycle

WebLogic Server uses a free pool to improve performance and throughput for stateless
session EJBs. The free pool stores unbound stateless session EJBs. Unbound EJB
instances are instances of a stateless session EJB class that are not processing a method
call.
4-2 Programming WebLogic Enterprise JavaBeans

EJB Lifecycle in WebLogic Server
The following figure illustrates the WebLogic Server free pool, and the processes by
which stateless EJBs enter and leave the pool. Dotted lines indicate the “state” of the
EJB from the perspective of WebLogic Server.

Figure 4-1 WebLogic Server free pool showing stateless session EJB life cycle

Initializing Stateless Session EJB Instances

By default, no stateless session EJB instances exist in WebLogic Server at startup time.
As clients access individual beans, WebLogic Server initializes new instances of the
EJB. However, if you want inactive instances of the EJB to exist in WebLogic Server
when it is started, specify how many in the initial-beans-in-free-pool
deployment descriptor element, in the weblogic-ejb-jar.xml file.

This can improve initial response time when clients access EJBs, because initial client
requests can be satisfied by activating the bean from the free pool (rather than
initializing the bean and then activating it). By default,
initial-beans-in-free-pool is set to 0.

Note: The maximum size of the free pool is limited either by available memory, or
the value of the max-beans-in-free-pool deployment element.

Method complete

Client request

C
li

en
t

R
eq

ue
st

<initial-beans-in-free-pool>

free pool

EJB busy EJB inactive

EJB does not exist
Programming WebLogic Enterprise JavaBeans 4-3

4 The WebLogic Server EJB Container and Supported Services
Activating and Pooling Stateless Session EJBs

When a client calls a method on a stateless session EJB, WebLogic Server obtains an
instance from the free pool. The EJB remains active for the duration of the client’s
method call. After the method completes, the EJB instance is returned to the free pool.
Because WebLogic Server unbinds stateless session beans from clients after each
method call, the actual bean class instance that a client uses may be different from
invocation to invocation.

If all instances of an EJB class are active and max-beans-in-free-pool has been
reached, new clients requesting the EJB class will be blocked until an active EJB
completes a method call. If the transaction times out (or, for non-transactional calls, if
five minutes elapse), WebLogic Server throws a RemoteException for a remote
client or an EJBException for a local client.

Stateful Session EJB Life Cycle

WebLogic Server uses a cache of bean instances to improve the performance of
stateful session EJBs. The cache stores active EJB instances in memory so that they
are immediately available for client requests. Active EJBs consist of instances that are
currently in use by a client, as well as instances that were recently in use, as described
in the following sections. The cache is unlike the free pool insofar as stateful session
beans in the cache are bound to a particular client, while the stateless session beans in
the free pool have no client association.

The following figure illustrates the WebLogic Server cache, and the processes by
which stateful EJBs enter and leave the cache. Dotted lines indicate the state of the EJB
from the perspective of WebLogic Server.
4-4 Programming WebLogic Enterprise JavaBeans

EJB Lifecycle in WebLogic Server
Figure 4-2 WebLogic Server cache showing stateful session EJB life cycle

Activating and Using Stateful Session EJB Instances

No stateful session EJB instances exist in WebLogic Server at startup time. As clients
look up and obtain references to individual beans, WebLogic Server initializes new
instances of the EJB class and stores them in the cache.

Passivating Stateful Session EJBs

To achieve high performance, WebLogic Server reserves the cache for EJBs that
clients are currently using and EJBs that were recently in use. When EJBs no longer
meet these criteria, they become eligible for passivation. Passivation is the process by
which WebLogic Server removes an EJB from cache while preserving the EJB’s state
on disk. While passivated, EJBs use minimal WebLogic Server resources and are not
immediately available for client requests (as they are while in the cache).

Note: Stateful session EJBs must abide by certain rules to ensure that bean fields can
be serialized to persistent storage. See “Stateful Session EJB Requirements”
on page 4-7 for more information.

The max-beans-in-cache deployment element in the weblogic-ejb-jar.xml file
provides some control over when EJBs are passivated.

EJB activated

Passivation

Activation
C

lie
nt

R
eq

ue
st

cache

EJB passivated

EJB does not exist
Programming WebLogic Enterprise JavaBeans 4-5

4 The WebLogic Server EJB Container and Supported Services
If max-beans-in-cache is reached and EJBs in the cache are not being used,
WebLogic Server passivates some of those beans. This occurs even if the unused beans
have not reached their idle-timeout-seconds limit. If max-beans-in-cache is
reached and all EJBs in the cache are being used by clients, WebLogic Server throws
a CacheFullException.

Note: When an EJB becomes eligible for passivation, it does not mean that
WebLogic Server passivates the bean immediately. In fact, the bean may not
be passivated at all. Passivation occurs only when the EJB is eligible for
passivation and there is pressure on server resources, or when WebLogic
Server performs regular cache maintenance.

You can specify the explicit passivation of stateful EJBs that have reached
idle-timeout-seconds by setting the cache-type element in the
weblogic-ejb-jar.xml file. This setting has two values: least recently used (LRU)
and not recently used (NRU).

If you specify LRU, the container passivates the bean when idle-timeout-seconds

is reached.

If you specify NRU, the container passivates the bean when there is pressure in the
cache and idle-timeout-seconds determines how often the container checks to see
how full the cache is.

Removing Stateful Session EJB Instances

The max-beans-in-cache and idle-timeout-seconds deployment elements also
exert control over when stateful session EJBs are removed from the cache or from disk:

! For cached EJB instances: When WebLogic Server detects that EJB classes are
approaching their max-beans-in-cache limit, WebLogic Server takes EJB
instances that have not been used for idle-timeout-seconds and removes
them from the cache (rather than passivating them to disk). Removing, rather
than passivating, the instance ensures that “inactive” EJBs do not consume cache
or disk resources in WebLogic Server.

If a stateful session bean is idle for longer than idle-timeout-seconds,
WebLogic Server may remove the instance from memory as regular cache
maintenance, even if the EJB class is max-beans-in-cache limit has not been
reached.
4-6 Programming WebLogic Enterprise JavaBeans

Using max-beans-in-free-pool
Note: Setting idle-timeout-seconds to 0 stops WebLogic Server from removing
EJBs that are idle for a period of time. However, EJBs may still be passivated
if cache resources become scarce.

! For passivated EJB instances: After a stateful session EJB instance is
passivated, a client must use the EJB instance before idle-timeout-seconds
is reached. Otherwise, WebLogic Server removes the passivated instance from
disk.

Stateful Session EJB Requirements

The EJB developer must ensure that a call to the ejbPassivate() method leaves a
stateful session bean in a condition where WebLogic Server can serialize its data and
passivate the bean’s instance. During passivation, WebLogic Server attempts to
serialize any fields that are not declared transient. This means that you must ensure
that all non-transient fields represent serializable objects, such as the bean’s remote
or home interface.

Using max-beans-in-free-pool

In general, you should not set the max-beans-in-free-pool element for stateless
session beans. The only reason to set max-beans-in-free-pool is to limit access to
an underlying resource. For example, if you use stateless session EJBs to implement a
legacy connection pool, you do not want to allocate more bean instances than the
number of connections that can support your legacy system. When you ask the free
pool for a bean instance, there are three possible scenarios that you can follow:

! Option 1: An instance is available in the pool. WebLogic Server makes that
instance available and you proceed with processing.

! Option 2: No instance is available in the pool, but the number of instances in
use is less then max-beans-in-free-pool. WebLogic Server allocates a new
bean instance and gives it to you.

! Option 3: No instances are available in the pool and the number of instances in
use is already max-beans-in-free-pool. You wait until either your
transaction times out or a bean instance that already exists in the pool becomes
available.
Programming WebLogic Enterprise JavaBeans 4-7

4 The WebLogic Server EJB Container and Supported Services
By default, max-beans-in-free-pool is set to 1000. Essentially, it means that
Option 3 should never happen because you will always just allocate a new bean
instance. However, you are limited by the number of executable threads. In most cases,
each thread needs, at most, a single bean instance.

Special Use of max-beans-in-free-pool

The following options describe special cases when max-beans-in-free-pool can
be set to 0:

! Stateless Session Beans: WebLogic Server always creates a new instance for
stateless session beans.

! Stateful Session Beans: Not applicable for stateful session beans. These beans
are not pooled.

! Message-Driven Beans: Illegal instances of message-driven beans are created
and registered as JMS listeners during deployment. WebLogic Server never
creates new instances at runtime. So, max-beans-in-free-pool must be set to
less then zero (< 0.)

Note:

EJBs in WebLogic Server Clusters

This section providers information on how the EJB container supports clustering
services. It describes the behavior of EJBs and their associated transactions in a
WebLogic Server cluster, and explains key deployment descriptors that affect EJB
behavior in a cluster.

EJBs in a WebLogic Server cluster use modified versions of two key structures: the
Home object and the EJB object. In a single server (unclustered) environment, a client
looks up an EJB through the EJB’s home interface, which is backed on the server by a
4-8 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
corresponding Home object. After referencing the bean, the client interacts with the
bean’s methods through the remote interface, which is backed on the server by an EJB
object.

The following figure shows EJB behavior in a single server environment.

Figure 4-3 Single server behavior

Note: Failover of EJBs work only between a remote client and the EJB.

Clustered EJB Home Objects

In a WebLogic Server cluster, the client-side representation of the Home object can be
replaced by a cluster-aware “stub.” The cluster-aware home stub has knowledge of
EJB Home objects on all WebLogic Servers in the cluster. The clustered home stub
provides load balancing by distributing EJB lookup requests to available servers. It can
also provide failover support for lookup requests, because it routes those requests to
available servers when other servers have failed.

All EJB types — stateless session, stateful session, and entity EJBs — can have
cluster-aware home stubs. Whether or not a cluster-aware home stub is created is
determined by the home-is-clusterable deployment element in
weblogic-ejb-jar.xml.

Home EJBHome
Interface Object

Remote EJB
Interface Object

WebLogic Server (single-server)

Datastore

Client

comm
it

obtain bean

call method
Programming WebLogic Enterprise JavaBeans 4-9

4 The WebLogic Server EJB Container and Supported Services
Clustered EJBObjects

In a WebLogic Server cluster, the server-side representation of the EJBObject can also
be replaced by a replica-aware EJBObject stub. This stub maintains knowledge about
all copies of the EJBObject that reside on servers in the cluster. The EJBObject stub
can provide load balancing and failover services for EJB method calls. For example, if
a client invokes an EJB method call on a particular WebLogic Server and the server
goes down, the EJBObject stub can failover the method call to another, running server.

Whether or not an EJB can use a replica-aware EJBObject stub depends on the type of
EJB deployed and, for entity EJBs, the cache strategy selected at deployment time.

Session EJBs in a Cluster

This section describes cluster capabilities and limitations for stateful and stateless
session EJBs.

Stateless Session EJBs

Stateless session EJBs can have both a cluster-aware home stub and a replica-aware
EJBObject stub. By default, WebLogic Server provides failover services for EJB
method calls, but only if a failure occurs between method calls. For example, failover
is automatically supported if a failure occurs after a method completes, or if the method
fails to connect to a server. When failures occur while an EJB method is in progress,
WebLogic Server does not automatically fail over from one server to another.

This default behavior ensures that database updates within an EJB method are not
“duplicated” due to a failover scenario. For example, if a client calls a method that
increments a value in a datastore and WebLogic Server fails over to another server
before the method completes, the datastore would be updated twice for the client’s
single method call.

If methods are written in such a way that repeated calls to the same method do not
cause duplicate updates, the method is said to be “idempotent.” For idempotent
methods, WebLogic Server provides two weblogic-ejb-jar.xml deployment
properties, one at the bean level and one at the method level.
4-10 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
At the bean level, if you set stateless-bean-methods-are-idempotent to “true”,
WebLogic Server assumes that the method is idempotent and will provide failover
services for the EJB method, even if a failure occurs during a method call.

At the method level, you can use the idempotent-methods deployment property to
accomplish the same thing:

<idempotent-methods>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</idempotent-methods>

The following figure illustrates stateless session EJBs in a WebLogic Server clustered
environment.
Programming WebLogic Enterprise JavaBeans 4-11

4 The WebLogic Server EJB Container and Supported Services
Figure 4-4 Stateless session EJBs in a clustered server environment

Stateful Session EJBs

To enable stateful session EJBs to use cluster-aware home stubs, set
home-is-clusterable to “true.” This provides failover and load balancing for
stateful EJB lookups. Stateful session EJBs configured this way use replica-aware
EJBObject stubs. For more information on in-memory replication for stateful session
EJBs, see “In-Memory Replication for Stateful Session EJBs” on page 4-13.

Note: Load balancing and failover are discussed extensively in Using WebLogic
Server Clusters. See these three sections: “EJB and RMI Objects”, “Load
Balancing for EJBs and RMI Objects” and “Replication and Failover for EJBs
and RMIs”.

Datastore

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

failure

commit

during
method

obtain bean

call method

Client
4-12 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/cluster/overview.html#1003909
http://e-docs.bea.com/wls/docs81b/cluster/load_balancing.html#1008605
http://e-docs.bea.com/wls/docs81b/cluster/load_balancing.html#1008605
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1008850
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1008850

EJBs in WebLogic Server Clusters
In-Memory Replication for Stateful Session EJBs

The following sections describe how the EJB Container supports replication services.
The WebLogic Server EJB container supports clustering for stateful session EJBs.
Whereas in WebLogic Server 5.1 only the EJBHome object is clustered for stateful
session EJBs, the EJB container can also replicate the state of the EJB across clustered
WebLogic Server instances.

Replication support for stateful session EJBs is transparent to clients of the EJB. When
a stateful session EJB is deployed, WebLogic Server creates a cluster-aware EJBHome
stub and a replica-aware EJBObject stub for the stateful session EJB. The EJBObject
stub maintains a list of the primary WebLogic Server instances on which the EJB
instance runs, as well as the name of a secondary WebLogic Server to use for
replicating the bean’s state.

Each time a client of the EJB commits a transaction that modifies the EJB’s state,
WebLogic Server replicates the bean’s state to the secondary server instance.
Replication of the bean’s state occurs directly in memory, for best performance in a
clustered environment.

Should the primary server instance fail, the client’s next method invocation is
automatically transferred to the EJB instance on the secondary server. The secondary
server becomes the primary WebLogic Server for the EJB instance, and a new
secondary server handles possible additional failovers. Should the EJB’s secondary
server fail, WebLogic Server enlists a new secondary server instance from the cluster.

Clients of a stateful session EJB are therefore guaranteed to have quick access to the
latest committed state of the EJB, except under the special circumstances described in
“Limitations of In-Memory Replication” on page 4-14. For more information on the
use of replication groups, see Using Replication Groups.

Requirements and Configuration for In-Memory Replication

To replicate the state of a stateful session EJB in a WebLogic Server cluster, make sure
that the cluster is homogeneous for the EJB class. In other words, deploy the same EJB
class to every WebLogic Server instance in the cluster, using the same deployment
descriptor. In-memory replication is not supported for heterogeneous clusters.
Programming WebLogic Enterprise JavaBeans 4-13

4 The WebLogic Server EJB Container and Supported Services
By default, WebLogic Server does not replicate the state of stateful session EJB
instances in a cluster. This models the behavior released with WebLogic Server
Version 6.0. To enable replication, set the replication-type deployment parameter
in the weblogic-ejb-jar.xml deployment file to InMemory.

Figure 4-5 XML sample enabling replication

<stateful-session-clustering>

...

<replication-type>InMemory</replication-type>

</stateful-session-clustering>

Limitations of In-Memory Replication

By replicating the state of a stateful session EJB, clients are generally guaranteed to
have the last committed state of the EJB, even if the primary WebLogic Server instance
fails. However, in the following rare failover scenarios, the last committed state may
not be available:

! A client commits a transaction involving a stateful EJB, but the primary
WebLogic Server fails before the EJB’s state is replicated. In this case, the
client’s next method invocation works against the previous committed state.

! A client creates an instance of a stateful session EJB and commits an initial
transaction, but the primary WebLogic Server fails before the EJB’s initial state
can be replicated. The client’s next method invocation fails to locate the bean
instance, because the initial state could not be replicated. The client needs to
recreate the EJB instance, using the clustered EJBHome stub, and restart the
transaction.

! Both the primary and secondary servers fail. The client needs to recreate the EJB
instance and restart the transaction.

Entity EJBs in a Cluster

As with all EJB types, entity EJBs can utilize cluster-aware home stubs once you set
home-is-clusterable to “true.”
4-14 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Read-Write Entity EJBs in a Cluster

read-write entity EJBs in a cluster behave similarly to entity EJBs in a non-clustered
system, in that:

! Multiple clients can use the bean in transactions.

! ejbLoad() is always called at the beginning of each transaction when
cache-between-transactions is set to false.

! ejbStore() behavior is governed by the rules described in “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 6-11.

Figure 4-6 shows read-write entity EJBs in a WebLogic Server clustered environment.
The three arrows on Home Stub point to all three servers and show multiple client
access.

Figure 4-6 Read-write entity EJBs in a clustered server environment

Datastore

Home Home
Stub

Remote Object
Stub

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

begin
...
commit

begin
...
commit

obtain bean

call methodcall methodcall method

obtain bean

call method

obtain bean

Client

Client
Programming WebLogic Enterprise JavaBeans 4-15

4 The WebLogic Server EJB Container and Supported Services
Note: In the preceding figure, the set of three arrows for both home stubs refers to
the EJBHome on each server.

read-write entity EJBs support automatic failover on a safe exception, if
home-is-clusterable is set to true. For example, failover is automatically
supported if there is a failure after a method completes, or if the method fails to connect
to a server.

Cluster Address

When you configure a cluster, you supply a cluster address that identifies the Managed
Servers in the cluster. The cluster address is used in entity and stateless beans to
construct the host name portion of URLs. If the cluster address is not set, EJB handles
may not work properly. For more information on cluster addresses, see Using
WebLogic Server Clusters.

Transaction Management

The following sections provide information on how the EJB container supports
transaction management services. They describe EJBs in several transaction scenarios.
EJBs that engage in distributed transactions (transactions that make updates in
multiple datastores) guarantee that all branches of the transaction commit or roll back
as a logical unit.

The current version of WebLogic Server supports Java Transaction API (JTA), which
you can use to implement distributed transactional applications.

Also, two-phase commit is supported for both 1.1 and 2.0 EJBs. The two-phase
commit protocol is a method of coordinating a single transaction across two or more
resource managers. It guarantees data integrity by ensuring that transactional updates
are committed in all participating databases, or are fully rolled back out of all the
databases, reverting to the state prior to the start of the transaction.
4-16 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/cluster/setup.html#cluster_address
http://e-docs.bea.com/wls/docs81b/cluster/setup.html#cluster_address

Transaction Management
Transaction Management Responsibilities

Session EJBs can rely on their own code, their client’s code, or the WebLogic Server
container to define transaction boundaries. EJBs can use container- or
client-demarcated transaction boundaries, but they cannot define their own transaction
boundaries unless they observe certain restrictions.

! In bean-managed transactions, the EJB’ code manages the transaction
demarcation. If bean- or client-managed transactions are required, you must
provide the java code and use the javax.transaction.UserTransaction
interface. The EJB or client can then access a UserTransaction object through
JNDI and specify transaction boundaries with explicit calls to tx.begin(),
tx.commit(), tx.rollback(). See “Using javax.transaction.UserTransaction”
on page 4-17 for more information on defining transaction boundaries.

! In container-managed transactions, the WebLogic Server EJB container
manages the transaction demarcation. For EJBs that use container-managed
transactions (or EJBs that mix container and bean-managed transactions) you
can use several deployment elements to control the transactional requirements
for individual EJB methods. For more information about the deployment
descriptors, see Programming WebLogic EJB.

Note: If the EJB provider does not specify a transaction attribute for a method in the
ejb-jar.xml file, WebLogic Server uses the supports attribute by default.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Using javax.transaction.UserTransaction

To define transaction boundaries in EJB or client code, you must obtain a
UserTransaction object and begin a transaction before you obtain a Java
Transaction Service (JTS) or JDBC database connection. To obtain the
UserTransaction object, use this command:

ctx.lookup("javax.transaction.UserTransaction");
Programming WebLogic Enterprise JavaBeans 4-17

4 The WebLogic Server EJB Container and Supported Services
If you start a transaction after obtaining a database connection, the connection has no
relationship to the new transaction, and there are no semantics to “enlist” the
connection in a subsequent transaction context. If a JTS connection is not associated
with a transaction context, it operates similarly to a standard JDBC connection that has
autocommit equal to true, and updates are automatically committed to the datastore.

Once you create a database connection within a transaction context, that connection
becomes “reserved” until the transaction either commits or rolls back. To maintain
performance and throughput for your applications, always ensure that your transaction
completes quickly, so that the database connection can be released and made available
to other client requests. See “Preserving Transaction Resources” on page 2-8 for more
information.

Note: You can associate only a single database connection with an active transaction
context.

Restriction for Container-Managed EJBs

You cannot use the javax.transaction.UserTransaction method within an EJB
that uses container-managed transactions.

Transaction Isolation Levels

There are two ways to begin a transaction: explicitly with a user transaction or
automatically using the EJB container. To do this you set the isolation level for the
transaction. The isolation level defines how concurrent transactions accessing a
persistent store are isolated from one another for read purposes.

Setting User Transaction Isolation Levels

You set the isolation level for user transactions in the beans java code. When the
application runs, the transaction is explicitly started. See Figure 4-7 for a code sample
of how to set the level.

Figure 4-7 Sample Java Code setting user transaction isolation levels

import javax.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
4-18 Programming WebLogic Enterprise JavaBeans

Transaction Management
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;

User Transaction tx = (UserTransaction)

ctx.lookup("javax.transaction.UserTransaction");

//Begin user transaction

tx.begin();

//Set transaction isolation level to TRANSACTION_READ_COMMITED

Transaction tx = TxHelper.getTransaction();
tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
(Connection.TRANSACTION_READ_COMMITED));

//perform transaction work

tx.commit();

Setting Container-Managed Transaction Isolation Levels

You set the isolation level for container-managed transactions in the
transaction-isolation element of the weblogic-ejb-jar.xml deployment file.
WebLogic Server passes this value to the underlying database. The behavior of the
transaction depends both on the EJB’s isolation level setting and the concurrency
control of the underlying persistent store. For more information on setting
container-managed transaction isolation levels, see Programming WebLogic JTA.

Limitations of TransactionSerializable

Many datastores provide limited support for detecting serialization problems, even for
a single user connection. Therefore, even if you set transaction-isolation to
TransactionSerializable, you may experience serialization problems due to the
limitations of the datastore.

Refer to your RDBMS documentation for more details about isolation level support.

Special Note for Oracle Databases

Oracle uses optimistic concurrency. As a consequence, even with a setting of
TransactionSerializable, Oracle does not detect serialization problems until
commit time. The message returned is:
Programming WebLogic Enterprise JavaBeans 4-19

4 The WebLogic Server EJB Container and Supported Services
java.sql.SQLException: ORA-08177: can't serialize access for this
transaction

Even if you use the TransactionSerializable setting for an EJB, you may receive
exceptions or rollbacks in the EJB client if contention occurs between clients for the
same rows. To avoid these problems, make sure that the code in your client application
catches and examines the SQL exceptions, and that you take the appropriate action to
resolve the exceptions, such as restarting the transaction.

In addition, use WebLogic Server’s optimistic concurrency strategy with a
ReadCommitted isolation level.

You specify the locking mechanism that the EJB uses by setting the
concurrency-strategy deployment parameter inweblogic-ejb-jar.xml. You set
concurrency-strategy at the individual EJB level, so that you can mix locking
mechanisms within the EJB container.

The following excerpt from weblogic-ejb-jar.xml shows how to set an optimistic
concurrency strategy for an EJB.

<entity-descriptor>

<entity-cache>

...

<concurrency-strategy>Optimistic</concurrency-strategy>

</entity-cache>

...

</entity-descriptor>

With WebLogic Server, set the isolation level for transactions as follows:

! TransactionReadCommittedForUpdate for methods on which this option is
defined. When set, every SELECT query from that point on will have FOR
UPDATE added to acquired locks on the selected rows. Consequently, if Oracle
cannot lock the rows affected by the query immediately, then it waits until the
rows are free. This condition remains in effect until the transaction does a
COMMIT or ROLLBACK.
4-20 Programming WebLogic Enterprise JavaBeans

Transaction Management
! TransactionReadCommittedForUpdateNoWait for methods on which the
option is defined. When set, every SELECT query from that point on will have
FOR_UPDATE_NOWAIT added to acquire locks on the selected rows.
Consequently, if Oracle cannot lock the rows affected by the query immediately,
then Oracle terminates the query before completion. This condition remains in
effect until the transaction does a COMMIT or ROLLBACK.

Note: FOR_UPDATE_NOWAIT affects container-managed beans only.

Distributing Transactions Across Multiple EJBs

WebLogic Server does support transactions that are distributed over multiple
datasources; a single database transaction can span multiple EJBs on multiple servers.
You can explicitly enable support for these types of transactions by starting a
transaction and invoking several EJBs. Or, a single EJB can invoke other EJBs that
implicitly work within the same transaction context. The following sections describe
these scenarios.

Calling Multiple EJBs from a Single Transaction Context

In the following code fragment, a client application obtains a UserTransaction
object and uses it to begin and commit a transaction. The client invokes two EJBs
within the context of the transaction. The transaction attribute for each EJB is set to
Required:

Figure 4-8 Beginning and committing a transaction

import javax.transaction.*;

...

u = (UserTransaction)
jndiContext.lookup("javax.transaction.UserTransaction");

u.begin();

account1.withdraw(100);

account2.deposit(100);

u.commit();

...
Programming WebLogic Enterprise JavaBeans 4-21

4 The WebLogic Server EJB Container and Supported Services
In the above code fragment, updates performed by the “account1” and “account2”
EJBs occur within the context of a single UserTransaction. The EJBs commit or roll
back as a logical unit. This is true regardless of whether “account1” and “account2”
reside on the same WebLogic Server, multiple WebLogic Servers, or a WebLogic
Server cluster.

The only requirement for wrapping EJB calls in this manner is that both “account1”
and “account2” must support the client transaction. The beans’ trans-attribute
element must be set to Required, Supports, or Mandatory.

Encapsulating a Multi-Operation Transaction

You can also use a “wrapper” EJB that encapsulates a transaction. The client calls the
wrapper EJB to perform an action such as a bank transfer. The wrapper EJB responds
by starting a new transaction and invoking one or more EJBs to do the work of the
transaction.

The “wrapper” EJB can explicitly obtain a transaction context before invoking other
EJBs, or WebLogic Server can automatically create a new transaction context, if the
EJB’s trans-attribute element is set to Required or RequiresNew. The
trans-attribute element is set in the ejb-jar.xml file. All EJBs invoked by the
wrapper EJB must be able to support the transaction context (their trans-attribute
elements must be set to Required, Supports, or Mandatory).

Distributing Transactions Across EJBs in a WebLogic Server Cluster

WebLogic Server provides additional transaction performance benefits for EJBs that
reside in a WebLogic Server cluster. When a single transaction utilizes multiple EJBs,
WebLogic Server attempts to use EJB instances from a single WebLogic Server
instance, rather than using EJBs from different servers. This approach minimizes
network traffic for the transaction.

In some cases, a transaction can use EJBs that reside on multiple WebLogic Server
instances in a cluster. This can occur in heterogeneous clusters, where all EJBs have
not been deployed to all WebLogic Server instances. In these cases, WebLogic Server
uses a multitier connection to access the datastore, rather than multiple direct
connections. This approach uses fewer resources, and yields better performance for the
transaction.

However, for best performance, the cluster should be homogeneous — all EJBs should
reside on all available WebLogic Server instances.
4-22 Programming WebLogic Enterprise JavaBeans

Database Insert Support
Database Insert Support

WebLogic Server allows you to control when and how the EJB container inserts newly
created beans into the database.You specify your preference by setting the
delay-database-insert-until deployment descriptor element in the
weblogic-cmp-rdbms-jar.xml file. This element allows you to choose:

! To delay the database insert until after the EJB Container performs either an
ejbCreate or ejbPostCreate, as described in “Delay-Database-Insert-Until”
on page 4-23.

! To insert multiple entries into the database in one SQL statement, as described in
“Batch Operations” on page 4-24.

Delay-Database-Insert-Until

The permitted values for the delay-database-insert-until element are:

! ejbCreate - This method performs a database insert immediately after
ejbCreate.

! ejbPostCreate - This method performs an insert immediately after
ejbPostCreate (default).

Figure 4-9 Sample xml specifying delay-database-insert-until

<delay-database-insert-until>ejbPostCreate</delay-database-insert
-until> -->

By default, the database insert occurs after the client calls the ejbPostCreate
method. The EJB container delays inserting the new bean when you specify either the
ejbCreate or ejbPostCreate options for the delay-database-insert-until
element in the weblogic-cmp-rdbms-jar.xml file. Setting either of these options
specifies the precise time at which the EJB Container inserts a new bean that uses
RDBMS CMP into the database.
Programming WebLogic Enterprise JavaBeans 4-23

4 The WebLogic Server EJB Container and Supported Services
You must specify that the EJB Container delaying the database insert until after
ejbPostCreate when a cmr-field is mapped to a foreign-key column that does
not allow null values. In this case, set the cmr-field to a non-null value in
ejbPostCreate before the bean is inserted into the database.

Note: You may not set the cmr-fields during a ejbCreatemethod call, before the
primary key of the bean is known.

BEA recommends that you specify the delay the database insert until after
ejbPostCreate if the ejbPostCreate method modifies the bean’s persistent field.
Doing so yields better performance by avoiding an unnecessary store operation.

For maximum flexibility, avoid creating related beans in their ejbPostCreate
method. Creating these additional instances may make delaying the database insert
impossible if database constraints prevent related beans from referring to a bean that
has not yet been created.

Batch Operations

Multiple instances of same type of container-managed persistence (cmp) entity beans
are often changed in a single transaction. Each cmp entity bean instance is often an
entry in a database table, and the EJB container will make a database update for every
cmp entity bean instance. Sometimes, a transaction needs to update thousands of cmp
entity bean instances, so it will cause thousands of database roundtrips. This is not a
very efficient process, and becomes a performance bottleneck.

Application developers often have to take the performance impact or use SQL
statements directly to update entries in the database; neither solution is desirable.

The EJB batch operations features solves this problem by updating multiple entries in
a database table in one SQL statement. Batch operations support increases the
performance of container-managed persistence (CMP) bean creation by enabling the
EJB container to perform multiple database inserts, deletes or updates for CMP beans
in one SQL statement, thereby economizing network roundtrips.

To permit batch database inserts, updates or deletes, set the
enable-batch-operations element in the weblogic-cmp-rdbms-jar.xml file to
True.
4-24 Programming WebLogic Enterprise JavaBeans

Batch Operations
Database Operation Ordering

The batch operations feature includes database operation ordering functionality that
can prevent constraint errors by sorting database dependency between batch inserts,
updates and deletes. For example, performing an update before an insert or after a
delete triggers a constraint error.

With database ordering feature enabled, the EJB container sorts out these
dependencies, and sends batch operations to the database in such way that does not
cause any database exceptions. To enable this database ordering, set the
order-database-operations element of weblogic-cmp-rdbms-jar.xml to
True.

Enabling database ordering instructs the EJB container to do two things:

! Delay all database operations to commit time

! Order database operations at commit time

For more information on the order-database-operations element, see
“order-database-operations” on page 12-42.

Batch Operations Guidelines and Limitations

When using batch operations, you must set the boundary for the transaction, as batch
operations only apply to the inserts, updates or deletes between transaction begin

and transaction commit.

Note: Batch operations only work with drivers that support the addBatch() and
executeBatch() methods. If the EJB container detects unsupported drivers,
it reports that batch operations are not supported and disables batch operations.

There are several limitations on using batch operations:

! The total number of entries created in a single batch operation cannot exceed the
max-beans-in-cache setting, which is specified in the
weblogic-ejb-jar.xml file. See “max-beans-in-cache” on page 11-54 for
more information on this element.

! If you set the dbms-column-type element in the
weblogic-cmp-rdbms-jar.xml file to either OracleBlob or OracleClob,
batch operation automatically turns off because you will not save much time if a
Programming WebLogic Enterprise JavaBeans 4-25

4 The WebLogic Server EJB Container and Supported Services
Blob or Clob column exist in the database table. In this case, WebLogic Server
performs one insert per bean, which is the default behavior.

For more information on the enable-batch-operations element, see
“enable-batch-operations” on page 12-25.

Resource Factories

The following sections provide information on how the EJB container supports
resource services. In WebLogic Server, EJBs can access JDBC connection pools by
directly instantiating a JDBC pool driver. However, it is recommended that you instead
bind a JDBC datasource resource into the WebLogic Server JNDI tree as a resource
factory.

Using resource factories enables the EJB to map a resource factory reference in the
EJB deployment descriptor to an available resource factory in a running WebLogic
Server. Although the resource factory reference must define the type of resource
factory to use, the actual name of the resource is not specified until the bean is
deployed.

The following sections explain how to bind JDBC datasource and URL resources to
JNDI names in WebLogic Server.

Note: WebLogic Server also supports JMS connection factories.

Setting Up JDBC Data Source Factories

Follow these steps to bind a javax.sql.DataSource resource factory to a JNDI
name in WebLogic Server. Note that you can set up either a transactional or
non-transactional JDBC datasource as necessary.

With a non-transactional data source, the JDBC connection operates in auto commit
mode, committing each insert and update operation to the database immediately, rather
than as part of a container-managed transaction.
4-26 Programming WebLogic Enterprise JavaBeans

Resource Factories
With a transactional data source, multiple insert and update operations in a method can
be submitted as a single, container-managed transaction that either commits or rolls
back as a logical unit.

Note: Entity beans that use container-managed persistence should always use a
transactional data source, rather than a non-transactional data source, to
preserve data consistency.

To create a JDBC data source factory:

1. Set up a JDBC connection pool in the Administration Console. See Managing
JDBC Connectivity in the Administration Console Online Help for more
information.

2. Start WebLogic Server.

3. Start WebLogic Server Administration Console.

4. In the left pane of the Console, click the Services node and expand JDBC.

5. Select JDBC Data Source Factory and click the Configure a New JDBC Data
Source Factory option in the right pane.

6. Enter values in the Name, User Name, URL, Driver Class Name, and Factory
Name, attribute fields.

7. Enter any connection properties in the Properties attribute field.

a. For non-transactional JDBC datasources, enter:

weblogic.jdbc.DataSource.jndi_name=pool_name

where jndi_name is the full WebLogic Server JNDI name to bind to the
datasource and pool_name is the name of the WebLogic Server connection pool
you created in step 1.

For example, to set up a non-transactional connection pool for demonstration
purposes, you might enter:

weblogic.jdbc.DataSource.weblogic.jdbc.demoPool=demoPool

This binds a datasource for the “demoPool” pool to the JNDI name,
“weblogic.jdbc.demoPool”.

b. For transactional JDBC datasources, select Tx Data Sources from the left pane
of the Administration Console, click Configure a New JDBC Tx Data Source
in the right pane, and enter:
Programming WebLogic Enterprise JavaBeans 4-27

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_connection_pools.html

4 The WebLogic Server EJB Container and Supported Services
weblogic.jdbc.TXDataSource.jndi_name=pool_name

where jndi_name is the full WebLogic Server JNDI name to bind to the
transactional datasource and pool_name is the name of the WebLogic Server
connection pool you created in step 1.

For example, to set up a transactional connection pool for demonstration
purposes, you might enter:

weblogic.jdbc.TXDataSource.weblogic.jdbc.jts.demoPool=demoPool

This binds a transactional datasource for the “demoPool” pool to the JNDI name,
“weblogic.jdbc.jts.demoPool”.

8. Click Create to create the JDBC Data Source Factory. The new Data Source
Factory is added under the JDBC Data source Node in the left pane.

9. Click Apply to save the changes.

10. Bind the JNDI name of the datasource to the EJB’s local JNDI environment by
doing one of the following:

" Map an existing EJB resource factory reference to the JNDI name.

" Directly edit the resource-description element in the
weblogic.ejb-jar.xml deployment file. See “Specifying and Editing the
EJB Deployment Descriptors” on page 7-5 for instructions on editing
deployment descriptors.

Setting Up URL Connection Factories

To set up a URL connection factory in WebLogic Server, bind a URL string to a JNDI
name using these instructions:

1. In a text editor, open the config.xml file for the instance of the WebLogic Server
you are using and set the URLResource attribute for the following config.xml

elements:

" WebServer

" VirtualHost:

2. Set the URLResource attribute for the WebServer element using the following
syntax:
4-28 Programming WebLogic Enterprise JavaBeans

Using EJB Links
<WebServer URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” DefaultWebApp=”default-tests”/>

3. Set the URLResource attribute for the VirtualHost element, when virtual
hosting is required, using the following syntax:

<VirtualHostName=guestserver” targets=”myserver,test_web_server
“URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” VirtualHostNames=”guest.com”/>

4. Save the changes in the config.xml file and reboot WebLogic Server.

Using EJB Links

WebLogic Server fully supports EJB links as defined in the EJB 2.0 Specification. You
can link an EJB reference that is declared in one application component to an
enterprise bean that is declared in the same J2EE application.

To create an ejb-link:

1. Specify the link to the EJB using the optional ejb-link deployment descriptor
element of the ejb-ref element of the referencing application component.

The value of the ejb-link element must be the ejb-name of the target EJB.
The target EJB can be in any EJB JAR file in the same J2EE application as the
referencing application component.

Because ejb-names are not required to be unique across EJB JAR files, you may
need to provide the qualified path for the link.

2. Use the following syntax to provide the path name for the EJBs within the same
J2EE application.

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

This reference provides the path name of the EJB JAR file that contains the
referenced EJB with the appended ejb-name of the target bean separated from
the path by “#”. The path name is relative to the referencing application
component JAR file.

! For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.
Programming WebLogic Enterprise JavaBeans 4-29

4 The WebLogic Server EJB Container and Supported Services
4-30 Programming WebLogic Enterprise JavaBeans

CHAPTER
5 WebLogic Server
Container-Managed
Persistence Service -
Basic Features

The following sections describe the basic features of the container-managed
persistence (CMP) service available with the WebLogic Server EJB container, where
“basic” refers to features developers should be familiar with in order to write an EJB
application and get it running. For a discussion of advanced CMP features, see
Chapter 6, “WebLogic Server Container-Managed Persistence Service - Advanced
Features.”

! “Overview of Container Managed Persistence Service” on page 5-2

! “Using Primary Keys” on page 5-4

! “Container-Managed Persistence Relationships” on page 5-7

! “Using EJB QL for EJB 2.0” on page 5-14

! “Using Dynamic Queries” on page 5-27

! “BLOB and CLOB DBMS Column Support for the Oracle DBMS” on page
5-29

! “Cascade Delete” on page 5-30

! “Flushing the CMP Cache” on page 5-32
Programming WebLogic Enterprise JavaBeans 5-1

5 WebLogic Server Container-Managed Persistence Service - Basic Features
! “Java Data Types for CMP Fields” on page 5-33

! “EJB Concurrency Strategy” on page 5-35

! “Automatic Database Detection” on page 5-41

Overview of Container Managed Persistence
Service

WebLogic Server’s container is responsible for providing a uniform interface between
the EJB and the server. The container creates new instances of the EJBs, manages these
bean resources, and provides persistent services such as, transactions, security,
concurrency, and naming at runtime. In most cases, EJBs from earlier version of
WebLogic Server run in the container. However, see the Migration Guide for
information on when you would need to migrate your bean code. See “prompt> java
weblogic.ejbc -normi
c:%SAMMPLES_HOME%\server\src\examples\ejb\basic\containerManaged\build\s
td_ejb_basic_containerManaged.jar” on page 10-34 for instructions on using the
conversion tool.

WebLogic Server’s container-managed persistence (CMP) model handles persistence
of CMP entity beans automatically at runtime by synchronizing the EJB’s instance
fields with the data in the database.

EJB Persistence Services

WebLogic Server provides persistence services for entity beans. An entity EJB can
save its state in any transactional or non-transactional persistent storage
(“bean-managed persistence”), or the container can save the EJB’s non-transient
instance variables automatically (“container-managed persistence”). WebLogic Server
allows both choices and a mixture of the two.

If an EJB will use container-managed persistence, you specify the type of persistence
services that the EJB uses in the weblogic-ejb-jar.xml deployment file. High-level
definitions for automatic persistence services are stored in the persistence-type and
5-2 Programming WebLogic Enterprise JavaBeans

Overview of Container Managed Persistence Service
persistence-use elements. The persistence-type element defines one or more
automatic services that the EJB can use. The persistence-use element defines
which service the EJB uses at deployment time.

Automatic persistence services use additional deployment files to specify their
deployment descriptors, and to define entity EJB finder methods. For example,
WebLogic Server RDBMS-based persistence services obtain deployment descriptors
and finder definitions from a particular bean using the bean’s
weblogic-cmp-rdbms-jar.xml file, described in “Using WebLogic Server RDBMS
Persistence” on page 5-3.

Third-party persistence services cause other file formats to configure deployment
descriptors. However, regardless of the file type, you must reference the configuration
file in the persistence-type and persistence-use elements in weblogic-ejb-jar.xml.

Note: Configure container-managed persistence beans with a connection pool with
maximum connections greater than 1. WebLogic Server’s container-managed
persistence service sometimes needs to get two connections simultaneously.

Using WebLogic Server RDBMS Persistence

To use WebLogic Server RDBMS-based persistence service with your EJBs:

1. Create a dedicated XML deployment file.

2. Define the persistence elements for each EJB that will use container-managed
persistence.

3. For help creating deployment descriptor files, see “Specifying and Editing the
EJB Deployment Descriptors” on page 7-5.

If you use WebLogic Server’s tool, prompt> java weblogic.ejbc -normi
c:%SAMMPLES_HOME%\server\src\examples\ejb\basic\containerManaged\build\s
td_ejb_basic_containerManaged.jar to create this file, it is named
weblogic-cmp-rdbms-jar.xml. If you create the file from scratch, you can save it
to a different filename. However, you must ensure that the persistence-type and
persistence-use elements in weblogic-ejb-jar.xml refer to the correct file.

weblogic-cmp-rdbms-jar.xml defines the persistence deployment descriptors for
EJBs using WebLogic Server RDBMS-based persistence services.
Programming WebLogic Enterprise JavaBeans 5-3

5 WebLogic Server Container-Managed Persistence Service - Basic Features
In each weblogic-cmp-rdbms-jar.xml file you define the following persistence
options:

! EJB connection pools or data source for EJB 2.0 CMP

! EJB field to database element mappings

! Query Language

" WebLogic Query Language (WLQL) for EJB 1.1 CMP

" WebLogic EJB-QL with WebLogic QL extension for EJB 2.0 CMP
(optional)

! Finder method definitions (CMP 1.1)

! Foreign key mappings for relationships

! WebLogic Server-specific deployment descriptors for queries

Using Primary Keys

The primary key is an object that uniquely identifies an entity bean within its home.
The container must be able to manipulate the primary key of an entity bean. Each entity
bean class may define a different class for its primary key, but multiple entity beans
can use the same primary key class. The primary key is specified in the deployment
descriptor for the entity bean. You can specify a primary key class for an entity bean
with container-managed persistence by mapping the primary key to either a single field
or to multiple fields in the entity bean class.

Every entity object has a unique identity within its home. If two entity objects have the
same home and the same primary key, they are considered identical. A client can
invoke the getPrimaryKey() method on the reference to an entity object’s remote
interface to determine the entity object’s identity within its home. The object identify
associated with the a reference does not change during the lifetime of the reference.
Therefore, the getPrimaryKey() method always returns the same value when called
on the same entity object reference. A client that knows the primary key of an entity
object can obtain a reference to the entity object by invoking the
findByPrimaryKey(key) method on the bean’s home interface.
5-4 Programming WebLogic Enterprise JavaBeans

Using Primary Keys
Primary Key Mapped to a Single CMP Field

In the entity bean class, you can have a primary key that maps to a single CMP field.
You use the primkey-field element, a deployment descriptor in the ejb-jar.xml
file, to specify the container-managed field that is the primary key. The
prim-key-class element must be the primary key field’s class.

Primary Key Class That Wraps Single or Multiple CMP
Fields

You can have a primary key class that maps to single or multiple fields. The primary
key class must be public, and have a public constructor with no parameters. You
use the prim-key-class element, a deployment descriptor in the ejb-jar.xml file
to specify the name of the entity bean’s primary key class. You can only specify the
the class name in this deployment descriptor element. All fields in the primary key
class must be declared public. The fields in the class must have the same name as the
primary key fields in the ejb-jar.xml file.

Anonymous Primary Key Class

If your entity EJB uses an anonymous primary key class, you must subclass the EJB
and add a cmp-field of type java.lang.Integer to the subclass. Enable automatic
primary key generation for the field so that the container fills in field values
automatically, and map the field to a database column in the
weblogic-cmp-rdbms-jar.xml deployment descriptor.

Finally, update the ejb-jar.xml file to specify the EJB subclass, rather than the
original EJB class, and deploy the bean to WebLogic Server.

If you use the original EJB (instead of the subclass) with an anonymous primary key
class, WebLogic Server displays the following error message during deployment:

In EJB ejb_name, an 'Unknown Primary Key Class' (<prim-key-class>
== java.lang.Object) MUST be specified at Deployment time (as
something other than java.lang.Object).
Programming WebLogic Enterprise JavaBeans 5-5

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Hints for Using Primary Keys

Some hints for using primary keys with WebLogic Server include:

! Do not make the primary key class a container-managed field.

Although ejbCreate specifies the primary key class as a return type:

! Do not construct a new primary key class with an ejbCreate. Instead, allow the
container to create the primary key class internally.

! Set the values of the primary key cmp-fields using the setXXX methods within
the ejbCreate method.

! Do not use a cmp field of the type BigDecimal as a primary key field for CMP
beans. The boolean BigDecimal.equals (object x) method considers two
BigDecimal equal only if they are equal in value and scale. This is because
there are differences in precision between the Java language and different
databases. For example, the method does not consider 7.1 and 7.10 to be equal.
Consequently, this method will most likely return false or cause the CMP bean
to fail.

If you need to use BigDecimal as the primary key, you should:

a. Implement a primary key class.

b. In this primary key class, implement the boolean equal (Object x)

method.

c. In the equal method, use boolean BigDecimal.compareTo(BigDecimal

val).

Mapping to a Database Column

WebLogic Server supports mapping a database column to a cmp-field and a
cmr-field concurrently. The cmp-field is read-only in this case. If the cmp-field
is a primary key field, specify that the value for the field be set when the create()
method is invoked by using the setXXX method for the cmp-field.
5-6 Programming WebLogic Enterprise JavaBeans

Container-Managed Persistence Relationships
Container-Managed Persistence
Relationships

The entity bean relies on container-managed persistence to generate the methods that
perform persistent data access for the entity bean instances. The generated methods
transfer data between entity bean instances and the underlying resource manager.
Persistence is handled by the container at runtime. The advantage of using
container-managed persistence is that the entity bean can be logically independent of
the data source in which the entity is stored. The container manages the mapping
between the logical and physical relationships at runtime and manages their referential
integrity.

Persistent fields and relationships make up the entity bean’s abstract persistence
schema. The deployment descriptors indicate that the entity bean uses
container-managed persistence, and these descriptors are used as input to the container
for data access.

Entity beans can have relationships with other beans. These relationships can be either
bidirectional or unidirectional. For example, you can have bidirectional or
unidirectional relationships for each of the three types of relationship mappings
identified below, such as unidirectional one-to-one relationships or bidirectional
one-to-one relationships.

You specify relationships in the ejb-jar.xml file and
weblogic-cmp-rdbms-jar.xml. You specify container-managed field mappings in
the weblogic-cmp-rdbms-jar.xml file.

WebLogic Server supports three types of relationship mappings that are managed by
WebLogic container-managed persistence (CMP):

! One-to-one

! One-to-many

! Many-to-many
Programming WebLogic Enterprise JavaBeans 5-7

5 WebLogic Server Container-Managed Persistence Service - Basic Features
One-to-One Relationships

A WebLogic Server one-to-one relationship involves the physical mapping from a
foreign key in one bean to the primary key in another bean. For more information on
primary keys, see “Using Primary Keys” on page 5-4.

The following example shows a one-to one relationship mapped between an employee
bean and another employee bean, the employee’s manager.

Figure 5-1 Sample mapping of a one-to-one relationship

<weblogic-rdbms-relation>
<relation-name>employee-manager</relation-name>
<weblogic-relationship-role>

<relationship-role-map>
<column-map>

<foreign-key-column>manager-id
</foreign-key-column>
<key-column>id</key-column>

</column-map>
</relationship-role-map>
<relationship-role-name>employee
</relationship-role-name>

</weblogic-relationship-role>
</weblogic-rdbms-relation>

In Figure 5-1, there is a foreign-key-column, called manager-id in the table. This
is the field to which the bean on the employee side of the relationship is mapped. Also,
there is a foreign-key-column that refers to the primary key column (key-column)
called id, in the table to which the bean on the manager side of the relationship is
mapped.

If either of the beans in the relationship is mapped to multiple tables, then the table for
that bean that contains the foreign key or primary key must also be specified in the
relationship-role-map element. For more information on
relationship-role-map, see “relationship-role-map” on page 12-47.
5-8 Programming WebLogic Enterprise JavaBeans

Container-Managed Persistence Relationships
One-to-Many Relationships

A WebLogic Server one-to-many relationship involves the physical mapping from a
foreign key in one bean to the primary key of another. However, in a one-to-many
relationship, the foreign key is always contained in the role that occupies the “many”
side of the relationship. In a one-to-many relationship, the foreign key is always
associated with the bean that is on the many side of the relationship. This means that
the specification of the relationship-role-name in the following sample is redundant,
but it is included for uniformity.

The following example shows a one-to many relationship mapped between an
employees bean and a departments bean.

Figure 5-2 Sample mapping of a one-to-many relationship

<weblogic-rdbms-relation>
<relation-name>employee-department</relation-name>
<weblogic-relationship-role>

<relationship-role-map>
<column-map>

<foreign-key-column>dept-id
</foreign-key-column>
<key-column>id</key-column>

</column-map>
</relationship-role-map>
<relationship-role-name>employee
</relationship-role-name>

</weblogic-relationship-role>
</weblogic-rdbms-relation>

In Figure 5-2, there is a foreign key column, called dept-id in the table. This is
the field to which the bean on the employees side of the relationship is mapped. Also,
there is a foreign-key-column that refers to the primary key column (key-column)
called id, in the table to which the bean on the departments side of the relationship is
mapped.

Many-to-Many Relationships

A WebLogic Server many-to-many relationship involves the physical mapping of a
join table. Each row in the join table contains two foreign keys that maps to the primary
keys of the entities involved in the relationship.
Programming WebLogic Enterprise JavaBeans 5-9

5 WebLogic Server Container-Managed Persistence Service - Basic Features
The following example shows a many-to many relationship mapped between a bean
called friends and a bean called employees.

Figure 5-3 Sample mapping of a many-to-many relationship

<weblogic-rdbms-relation>
<relation-name>friends</relation-name>
<table-name>FRIENDS</table-name>
<weblogic-relationship-role>

<relationship-role-name>friend
</relationship-role-name>

<relationship-role-name>
<<column-map>

<foreign-key-column>first-friend-id
</foreign-key-column>

<key-column>id</key-column>
</column-map

</relationship-role-map>
<weblogic-relationship-role>

<weblogic-relationship-role>
<relationship-role-name>second-friend

</relationship-role-name>
<relationship-role-map>

<column-map>
<foreign-key-column>second-
friend-id</foreign-key-column>
<key-column>id</key-column>

</column-map>
</relationship-role-map>

</weblogic-relationship-role>
</weblogic-rdbms-relation>

In Figure 5-3, the FRIENDS join table has two columns, called first-friend-id and
second-friend-id, Each column contains a foreign key that designates a particular
employee who is a friend of another employee. The primary key column
(key-column) of the employee table is called id. For this example, assume that the
employee bean is mapped to a single table. If the employee bean is mapped to multiple
tables, then the table containing the primary key column (key-column) must be
specified in the relationship-role-map.
5-10 Programming WebLogic Enterprise JavaBeans

Container-Managed Persistence Relationships
Unidirectional Relationships

Unidirectional relationships only navigate in one direction. For example, if entity A
and entity B are in a one-to-one, unidirectional relationship and the direction is from
entity A to entity B, than entity A is aware of entity B, but entity B is unaware of entity
A. This type of relationship is implemented when you specify a cmr-field deployment
descriptor element for the entity bean from which navigation can take place and no
related cmr-field element is specified for the target entity bean.

You specify the cmr-field element in the weblogic-cmp-rdbms-jar.xml file. For
more information on how to specify deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

Bidirectional Relationships

Bidirectional relationships navigate in both directions. These types of
container-managed relationships can exist only between beans whose abstract
persistence schemas are defined in the same EJB-jar file and therefore managed by
the same container. For example, if entity A and entity B are in a one-to-one
bidirectional relationship, both are aware of each other.

Removing Beans in Relationships

When a bean with a relationship to another bean is removed, the container
automatically removes the relationship.

Local Interfaces

WebLogic Server provides support for local interfaces for session and entity beans.
Local interfaces allow enterprise javabeans to work together within the same EJB
container using different semantics and execution contexts. The EJBs are usually
co-located within the same EJB container and execute within the same Java Virtual
Programming WebLogic Enterprise JavaBeans 5-11

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Machine (JVM). This way, they do not use the network to communicate and avoid the
over-head of a Java Remote Method Invocation-Internet Inter-ORB Protocol
(RMI-IIOP) connection.

EJB relationships with container-managed persistence are now based on the EJB’s
local interface. Any EJB that participates in a relationship must have a local interface.
Local interface objects are lightweight persistent objects. They allow you to do more
fine grade coding than do remote objects. Local interfaces also use pass-by-reference.
The getter is in the local interface.

In earlier versions of WebLogic Server, you can base relationships on remote
interfaces. However, CMP relationships that use remote interfaces should probably not
be used in new code.

The EJB container makes the local home interface accessible to local clients through
JNDI. To reference a local interface you need to have a local JNDI name. The objects
that implement the entity beans’ local home interface are called EJBLocalHome

objects. You can specify either a jndi-name or local-jndi-name in the
weblogic-ejb-jar.xml file. For more information on how to specify deployment
descriptors, see “Specifying and Editing the EJB Deployment Descriptors” on page
7-5

In earlier versions of WebLogic Server, ejbSelect methods were used to return
remote interfaces. Now you can specify a result-type-mapping element in the
ejb-jar.xml file that indicates whether the result returned by the query will be
mapped to a local or remote object.

Using the Local Client

A local client of a session bean or entity bean can be another EJB, such as a session
bean, entity bean, or message-driven bean. A local client can be a servlet as long as it
is included as part of the same EAR file and as long as the EAR file is not remote.
Clients of a local bean must be part of an EAR or a standalone JAR.

A local client accesses a session or entity bean through the bean’s local interface and
local home interfaces. The container provides classes that implement the bean’s local
and local home interfaces. The objects that implement these interfaces are local Java
objects. The following diagram shows the container with a local client and local
interfaces.
5-12 Programming WebLogic Enterprise JavaBeans

Container-Managed Persistence Relationships
Figure 5-4 Local client and local interfaces

WebLogic Server provides support for both local and uni-directional remote
relationships between EJBs. If the EJBs are on the same server and are part of the same
JAR file, they can have local relationships. If the EJBs are not on the same server, the
relationships must be remote. For a relationship between local beans, multiple column
mappings are specified if the key implementing the relation is a compound key. For a
remote bean, only a single column-map is specified, since the primary key of the
remote bean is opaque. No column-maps are specified if the role just specifies a
group-name. No group-name is specified if the relationship is remote.

Changes to the Container for Local Interfaces

Changes made to the structure of the container to accommodate local interfaces
include the following additions:

! EJB local home

! New model for handling exceptions that propagates the correct exception to the
client.

Client

Container

EJB 1

EJB 2

EJB LocalObjects

EJB LocalHome

EJB Home

EJB Objects
Programming WebLogic Enterprise JavaBeans 5-13

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Using EJB QL for EJB 2.0

EJB Query Language (QL) is a portable query language that defines finder methods
for 2.0 entity EJBs with container-managed persistence. Use this SQL-like language
to select one or more entity EJB objects or fields in your query. Because of the
declaration of CMP fields in a deployment descriptor, you can create queries in the
deployment descriptor for any finder method other than findByPrimaryKey().
findByPrimaryKey is automatically handled by the container. The search space for
an EJB QL query consists of the EJB’s schema as defined in ejb-jar.xml (the bean’s
collection of container-managed fields and their associated database columns).

EJB QL Requirement for EJB 2.0 Beans

The deployment descriptors must define each finder query for EJB 2.0 entity beans by
using an EJB QL query string. You cannot use WebLogic Query Language (WLQL)
with EJB 2.0 entity beans. WLQL is intended for use with EJB 1.1 CMP. For more
information on WLQL, see CROSS REF TO 1.1 CHAPTER.

Migrating from WLQL to EJB QL

If you have used previous versions of WebLogic Server, your container-managed
entity EJBs may use WLQL for finder methods. This section provides a quick
reference to common WLQL operations. Use this table to map the WLQL syntax to
EJB QL syntax.

Sample WLQL Syntax Equivalent EJB QL Syntax

(= operand1 operand2) WHERE operand1 = operand2

(< operand1 operand2) WHERE operand1 < operand2

(> operand1 operand2) WHERE operand1 > operand2

(<= operand1 operand2) WHERE operand1 <= operand2
5-14 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
Using EJB 2.0 WebLogic QL Extension for EJB QL

WebLogic Server has an SQL-like language, called WebLogic QL, that extends the
standard EJB QL. This language works with the finder expressions and is used to query
EJB objects from the RDBMS. You define the query in the
weblogic-cmp-rdbms-jar.xml deployment descriptor using the weblogic-ql
element.

There must be a query element in the ejb-jar.file that corresponds to the
weblogic-ql element in the weblogic-cmp-rdbms-jar.xml file. However, the
weblogic-cmp-rdbms-jar.xml query element overrides the ejb-jar.xml query
element.

Using SELECT DISTINCT

The EJB WebLogic QL extension SELECT DISTINCT allows your database to filter
duplicate queries. Using SELECT DISTINCT means that the EJB container’s
resources are not used to sort through duplicated results when SELECT DISTINCT is
specified in the EJB QL query.

(>= operand1 operand2) WHERE operand1 >= operand2

(! operand) WHERE NOT operand

(& expression1
expression2)

WHERE expression1 AND
expression2

(| expression1
expression2)

WHERE expression1 OR
expression2

(like text_string%) WHERE operand LIKE
‘text_string%’

(isNull operand) WHERE operand IS NULL

(isNotNull operand) WHERE operand IS NOT NULL

Sample WLQL Syntax Equivalent EJB QL Syntax
Programming WebLogic Enterprise JavaBeans 5-15

5 WebLogic Server Container-Managed Persistence Service - Basic Features
If you specify a sql-select-distinct element with the value TRUE in a
weblogic-ql element’s XML stanza for an EJB 2.0 CMP bean, then the generated
SQL STATEMENT for the database query will contain a DISTINCT clause.

You specify the sql-select-distinct element in the
weblogic-cmp-rdbms-jar.xml file. However, you cannot specify
sql-select-distinct if you are running an isolation level of
READ_C0MMITED_FOR_UPDATE on an Oracle database. This is because a query on
Oracle cannot have both a sql-select-distinct and a
READ_C0MMITED_FOR_UPDATE. If there is a chance that this isolation level will be
used, for example in a session bean, do not use the sql-select-distinct element.

Using ORDERBY

The EJB WebLogic QL extension ORDERBY is a keyword that works with the Finder
method to specify the CMP field selection sequence for your selections.

Figure 5-5 WebLogic QL ORDERBY extension showing order by id.

ORDERBY

SELECT OBJECT(A) from A for Account.Bean

ORDERBY A.id

Note: ORDERBY defers all sorting to the DBMS. Thus, the order of the retrieved
result depends on the particular DBMS installation on top of which the bean is
running

Also, you can specify an ORDERBY with ascending [ASC] or descending [desc] order
for multiple fields as follows:.

Figure 5-6 WebLogic QL ORDERBY extension showing order by id. with ASC
and DESC

ORDERBY <field> [ASC|DESC], <field> [ASC|DESC]

SELECT OBJECT(A) from A for Account.Bean, OBJECT(B) from B
for Account.Bean

ORDERBY A.id ASC; B.salary DESC
5-16 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
Using SubQueries

WebLogic Server supports the use of the following features with subqueries in EJB
QL:

! Subquery return type

" Single cmp-fields

" Aggregate functions

" Beans with simple primary keys

! Subqueries as comparison operands

! Correlated subqueries

! Uncorrelated subqueries

! DISTINCT clauses with subqueries

The relationship between WebLogic QL and subqueries is similar to the relationship
between SQL queries and subqueries. Use WebLogic QL subqueries in the WHERE
clause of an outer WebLogic QL query. With a few exceptions, the syntax for a
subquery is the same as a WebLogic QL query.

To specify WebLogic QL, see “Using EJB 2.0 WebLogic QL Extension for EJB QL”
on page 5-15. Use those instructions with a SELECT statement that specifies a
subquery as shown the following sample.

The following query selects all above average students as determined by the provided
grade number:

SELECT OBJECT(s) FROM studentBean AS s WHERE s.grade > (SELECT
AVG(s2.grade) FROM StudentBean AS s2)

Note that in the above query the subquery, (SELECT AVG(s2.grade) FROM

StudentBean AS s2), has the same syntax as an EJB QL query.

You can create nested subqueries.The depth is limited by the underlying database’s
nesting capabilities.

In a WebLogic QL query, the identifiers declared in the FROM clauses of the main
query and all of its subqueries must be unique. This means that a subquery may not
re-declare a previously declared identifier for local use within that subquery.
Programming WebLogic Enterprise JavaBeans 5-17

5 WebLogic Server Container-Managed Persistence Service - Basic Features
For example, the following example is not legal because employee bean is being
declared as emp in both the query and the subquery:

SELECT OBJECT(emp)
FROM EmployeeBean As emp

WHERE emp.salary=(SELECT MAX(emp.salary) FROM
EmployeeBean AS emp WHERE employee.state=MA)

Instead, this query should be written as follows:

SELECT OBJECT(emp)
FROM EmployeeBean As emp

WHERE emp.salary=(SELECT MAX(emp2.salary) FROM
EmployeeBean AS emp2 WHERE emp2.state=MA)

The above examples correctly declares the subquery’s employee bean to have a
different identifier from the main query’s employee bean.

Subquery Return Types

The return type of a WebLogic QL subquery can be one of a number of different types,
such as:

Single cmp-field Type Subqueries

WebLogic Server supports a return type consisting of a cmp-field. The results
returned by the subquery may consists of a single value or collection of values. An
example of a subquery that returns value(s) of the type cmp-field is as follows:

SELECT emp.salary FROM EmployeeBean AS emp WHERE emp.dept =
‘finance’

This subquery selects all of the salaries of employees in the finance department.

Aggregate Functions

WebLogic Server supports a return type consisting of an aggregate of a cmp-field.
As an aggregate always consist of a single value, the value returned by the aggregate
is always a single value. An example of a subquery that return a value of the type
aggregate (MAX) of a cmp-field is as follows:

SELECT MAX(emp.salary) FROM EmployeeBean AS emp WHERE emp.state=MA

This subquery selects the single highest employee salary in Massachusetts.

For more information on aggregate functions, see “Using Aggregate Functions” on
page 5-22.
5-18 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
Beans with Simple Primary Key

WebLogic Server supports a return type consisting of a cmp-bean with a simple
primary key.

Note: Beans with compound primary keys are NOT supported. Attempts to
designate the return type of a subquery to a bean with a compound
primary key will result in a failure when you compile the query.

An example of a subquery that returns the value(s) of the type bean with a simple
primary key is as follows:

SELECT OBJECT(emp) FROM EMployeeBean As emp WHERE
emp.department.budget>1,000,000

This subquery provides a list of all employee in departments with budgets greater than
$1,000,000.

Subqueries as Comparison Operands

Use subqueries as the operands of comparison operators. WebLogic QL supports
subqueries as the operands of the following Comparison Operators: [NOT]IN,
[NOT]EXISTS, and the following Arithmetic Operators: <, >, <=, >=, =, <> with
ANY and ALL.

[NOT]IN

The [NOT]IN comparison operator tests whether the left-had operand is or is not a
member of the subquery operand on the right-hand side.

An example of a subquery which is the right-hand operand of the NOT IN operator is
as follows:

SELECT OBJECT(item)
FROM ItemBean AS item

WHERE item.itemId NOT IN
(SELECT oItem2.item.itemID

FROM OrderBean AS orders2,
IN(orders2.orderItems)oIttem2

The subquery selects all items from all orders.

The main query’s NOT IN operator selects all the items that are not in the set returned
by the subquery. So the end result is that the main query selects all unordered items.

[NOT]EXISTS
Programming WebLogic Enterprise JavaBeans 5-19

5 WebLogic Server Container-Managed Persistence Service - Basic Features
The [NOT]EXISTS comparison operator tests whether the set returned by the
subquery operand is or is not empty.

An example of a subquery which is the operand of the NOT EXISTS operand is as
follows:

SELECT (cust) FROM CustomerBean AS cust
WHERE NOT EXISTS

(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

This is an example of a query with a correlated subquery. See “Correlated and
UnCorrelated Subqueries” on page 5-21 for more information. This query returns all
customers that have not placed an order.SELECT (cust) FROM CustomerBean AS
cust

WHERE cust.num NOT IN
(SELECT order.cust_um FROM OrderBean AS order

WHERE cust.num=order_num)

Arithmetic Operators

Use arithmetic operators for comparison when the right-hand subquery operand
returns a single value. If the right hand subquery instead returns multiple values, then
the qualifiers ANY or ALL must precede the subquery.

An example of a subquery which uses the ‘=’ operator is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem

WHERE oItem.quantityOrdered =
(SELECT MAX (subOItem.quantityOrdered)

FROM Order ItemBean AS subOItem
WHERE subOItem,item itemID = ?1)

AND oItem.item.itemId = ?1

For a given itemId, the subquery returns the maximum quantity ordered of that item.
Note that this aggregate returned by the subquery is a single value as required by the
‘=’ operator.

For the same given itemId, the main query’s ‘=’ comparison operator checks which
order’s OrderItem.quantity Ordered equals the maximum quantity returned by the
subquery. The end result is that the query returns the OrderBean that contains the
maximum quantity of a given item that has been ordered.

Use arithmetic operators in conjunction with ANY or ALL, when the right-hand
subquery operand may return multiple values.
5-20 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
An example of a subquery which uses ANY and ALL is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem

WHERE oItem.quantityOrdered > ALL
(SELECT subOItem.quantityOrdered

FROM OrderBean AS suborder IN
(subOrder.orderItems)subOItem

WHERE subOrder,orderId = ?1)

For a given orderId, the subquery returns the set of orderItem.quantityOrdered of each
item ordered for that orderId. The main query’s ‘>’ ALL operator looks for all orders
whose orderItem.quantityOrdered exceeds all values in the set returned by the
subquery. The end result is that the main query returns all orders in which all
orderItem.quantityOrdered exceeds every orderItem.quantityOrdered of the input
order.

Note that since the subquery can return multi-valued results that they ‘>’ALL operator
is used rather then the ‘>’ operator.

All of the arithmetic operators, <, >, <= >=, =, <> are use, as in the above examples.

Correlated and UnCorrelated Subqueries

WebLogic Server supports both correlated and Uncorrelated subqueries.

UnCorrelated Subqueries

Uncorrelated subqueries may be evaluated independently of the outer query. An
example of an uncorrelated subquery is as follows:

SELECT OBJECT(emp) FROM EmployeeBean AS emp
WHERE emp.salary>
(SELECT AVG(emp2.salary) FROM EmployeeBean AS emp2)

This example of a uncorrelated subquery selects the employees whose salaries are
above average. This examples uses the ‘>’ arithmetic operator.

Correlated

Correlated subqueries are subqueries in which values from the outer query are
involved in the evaluation of the subquery. An example of a correlated subquery is as
follows:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>
Programming WebLogic Enterprise JavaBeans 5-21

5 WebLogic Server Container-Managed Persistence Service - Basic Features
(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

This example of a correlated subquery selects the last 10 shipped Orders. This example
uses the NOT IN operator.

Note: Keep in mind that correlated subqueries can involve more processing
overhead the uncorrelated subqueries.

DISTINCT Clause with Subqueries

Use the DISTINCT clause in a subquery to enable an SQL SELECT DISTINCT in the
subquery’s generated SQL. Using a DISTINCT clause in a subquery is different from
using one in a main query because the EJB container enforces the DISTICNT clause
in a main query; whereas the DISTICT clause in the subquery is enforced by the
generated SQL, SELECT DISTINCT. An example of a DISTINCT clause in a
subquery is as follows:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>

(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

This example of a selects the last 10 shipped Orders.

Using Aggregate Functions

WebLogic Server supports aggregate functions with WebLogic QL. You only use
these functions as SELECT clause targets, not as other parts of a query, such as a
WHERE clause. The aggregate functions behave like SQL functions. They are
evaluated over the range of the beans returned by the WHERE conditions of the query

To specify WebLogic QL, see “Using EJB 2.0 WebLogic QL Extension for EJB QL”
on page 5-15. Use those instructions with a SELECT statement that specifies an
aggregate function as shown in the samples shown in the following table.
5-22 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
A list of the supported functions and sample statements follow:

Aggregate
Function

Description Sample Statement

MIN(x) Returns the minimum value of
this field.

SELECT MIN(t.price) FROM TireBean AS t
WHERE t.size=?1

This statement selects the lowest price for a tire of
a given input size.

MAX(x) Returns the maximum value of
this field.

SELECT MAX(s.customer_count) FROM
SalesRepBean AS s WHERE s.city=’Los
Angeles’

This statement selects the maximum number of
customers served by any single sales
representative in Los Angeles.

AVG([DISTINCT] x) Returns the average value of
this field

SELECT AVG(b.price) FROM BookBean AS b
WHERE b.category=’computer_science’

This statement selects the Average Price of a book
in the Computer Science category.

SUM([DISTINCT] x) Returns the sum of this field. SELECT SUM(s.customer_count) FROM
SalesRepBean AS s WHERE s.city=’Los
Angeles’

This statement retrieves the total number of
customers served by sales representatives in Los
Angeles.

COUNT([DISTINCT] x) Returns the number of
occurrences of a field.

SELECT COUNT(s.deal.amount) FROM
SalesRepBean AS s, IN(deal)s WHERE
s.deal.status=’closed’ AND
s.deal.amount>=1000000

This statement retrieves the number of closed
deals for at lease 1 million dollars.
Programming WebLogic Enterprise JavaBeans 5-23

5 WebLogic Server Container-Managed Persistence Service - Basic Features
You can return aggregate functions in ResultSets as described below.

Using Queries that Return ResultSets

WebLogic Server supports ejbSelect() queries that return the results of
multi-column queries in the form of a java.sql.ResultSet. To support this feature,
WebLogic Server now allows you to use the SELECT clause to specify a comma
delimited list of target fields as shown in the following query:

SELECT emmp.name, emp.zip FROM EmployeeBean AS emp

This query returns a java.sqlResultSet with rows whose columns are the values
Employee’s Name and Employee’s Zip.

To specify WebLogic QL, see “Using EJB 2.0 WebLogic QL Extension for EJB QL”
on page 5-15. Use those instructions with a query specifying a ResultSet as shown in
the above query to specify WebLogic QL, see “Using EJB 2.0 WebLogic QL
Extension for EJB QL” on page 5-15. Use those instructions with a SELECT statement
that specifies an aggregate query like the samples shown in the following table.

.

ResultSets created in EJB QL can only return cmp-field values or aggregates of
cmp-field values, they cannot return beans.

In addition, you can create powerful queries, as described in the following example,
when you combine cmp-fields and aggregate functions.

The following rows (beans) show the salaries of employees in different locations:

CMP fields showing salaries of employees in California

Name Location Salary

Matt CA 110,000

Rob CA 100,000
5-24 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
CMP fields showing salaries of employees in Arizona

CMP fields showing salaries of employees in Texas

Note: Each row represents a bean.

The following SELECT statement shows a query that uses ResultSets and the
aggregate function (AVG) along with a GROUP BY statement and an ORDER BY
statement using a descending sort to retrieve results from a multi-column query.

SELECT e.location, AVG(e.salary)
FROM Finder EmployeeBean AS e

GROUP BY e.location
ORDER BY 2 DESC

The query shows the average salary in of employees at each location in descending
order. The number, 2 means that the ORDERBY sort is on the second item in the
SELECT statement. The GROUP BY clause specifies the AVEAGE salary of
employees with a matching e.location attribute.

The ResultSet, in descending order is as follows:

Name Location Salary

Dan AZ 120,000

Dave AZ 80,000

Name Location Salary

Curly TX 70,000

Larry TX 180,000

Moe TX 80,00

Location Average

TX 110,000

AZ 100,000
Programming WebLogic Enterprise JavaBeans 5-25

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Note: You can only use integers as ORDERBY arguments in queries that return
ResultSets. WebLogic Server does not support the use of integers as
ORDERBY arguments in any Finder or ejbselect() that returns beans.

EJB QL Error-Reporting Enhancements

Compiler error messages in EJB QL provide a visual aid to identify which part of the
query is in error and allow the reporting of more than one error per compilation.

Visual Indicator of Error in Query

When an error is reported, EJB QL indicates the location of the problem within these
symbols: =>> <<=. These symbols are highlighted in red in the following sample
compiler error report.

ERROR: Error from appc: Error while reading
'META-INF/FinderEmployeeBeanRDBMS.xml'. The error was:

Query:

EJB Name: FinderEmployeeEJB

Method Name: findThreeLowestSalaryEmployees

Parameter Types: (java.lang.String)

Input EJB Query: SELECT OBJECT(e) FROM FinderEmployeeBean e WHERE
f.badField = '2' O

R (e.testId = ?1) ORDERBY e.salary

SELECT OBJECT(e) FROM FinderEmployeeBean e
WHERE =>> f.badField <<= = '2' OR (e.testId = ?1) ORDERBY e.salary

Invalid Identifier in EJB QL expression:

Problem, the path expression/Identifier 'f.badField' starts with an
identifier: 'f'. The identifier 'f', which can be either a range
variable identifier or a collection member identifier, is required

CA 105,000

Location Average
5-26 Programming WebLogic Enterprise JavaBeans

Using Dynamic Queries
to be declared in the FROM clause of its query or in the FROM clause
of a parent query.

'f' is not defined in the FROM clause of either its query or in any
parent query.

Action, rewrite the query paying attention to the usage of
'f.badField'.

Multiple Errors Reported after a Single Compilation

If a query contains multiple errors, EJB QL is now capable of reporting more than one
of these after a single compilation. Previously, the compiler could only report one error
per compilation. Reporting of subsequent errors required recompilation.

Note: The compiler is not guaranteed to report all errors after a single compilation.

Using Dynamic Queries

Dynamic queries allow you to construct and execute EJB-QL queries
programmatically in your application code. Queries are expressions that allow you to
request information of EJB objects from the RDBMS. This feature is only available for
use with EJB 2.0 CMP beans. Using dynamic queries provides the following benefits:

! Allows you to create and execute new queries without having to update and
deploy an EJB.

! Allows you to reduce the size of the EJB’s deployment descriptor file. This is
because finder queries can be dynamically created instead of statically defined in
the deployment descriptors.

Enabling Dynamic Queries

To enable dynamic queries:

1. Specify the enable-dynamic-queries element in the EJB’s
weblogic-ejb-jar.xml deployment descriptor file as follows:
Programming WebLogic Enterprise JavaBeans 5-27

5 WebLogic Server Container-Managed Persistence Service - Basic Features
<enable-dynamic-queries>True</enable-dynamic-queries>

2. For instructions on how to add or edit the enable-dynamic-queries element,
see “Specifying and Editing the EJB Deployment Descriptors” on page 7-5.

3. Set standard method permissions to control access to dynamic queries by
specifying the method-permission element in the ejb-jar.xml deployment
descriptor file.

Setting method-permission for the createQuery() method of the
weblogic.ejb.QueryHome interface controls access to the
weblogic.ejb.Query object necessary to executes the dynamic queries.

If you specify method-permission for the createQuery() method, the
method-permission settings apply to the execute and find methods of the
Query class.

Executing Dynamic Queries

The following code sample demonstrates how to execute a dynamic query.

InitialContext ic=new InitialContext();
FooHome fh=(FooHome)ic.lookup(“fooHome”);
QueryHome qh=(QueryHome)fh;
Sring ejbql=”SELECT OBJECT(e)FROM EmployeeBean e WHERE
e.name=’rob’”
Query query=qh.createQuery();
query.setMaxElements(10)
Collection results=query.find(ejbql);
5-28 Programming WebLogic Enterprise JavaBeans

BLOB and CLOB DBMS Column Support for the Oracle DBMS
BLOB and CLOB DBMS Column Support for
the Oracle DBMS

WebLogic Server supports Oracle Binary Large Object (BLOB) and Character Large
Object (CLOB) DBMS columns with EJB CMP. BLOBs and CLOBs are data types
used for efficient storage and retrieval of large objects. CLOBs are string or char
objects; BLOBs are binary or serializable objects such as pictures that translate into
large byte arrays.

BLOBs and CLOBs map a string variable, a value of OracleBlob or OracleClob, to
a BLOB or CLOB column. WebLogic Server maps CLOBs only to the data type
java.lang.string. At this time, no support is available for mapping char arrays to
a CLOB column.

To enable BLOB/CLOB support:

1. In the bean class, declare the variable.

2. Edit the XML by declaring the dbms-column-type deployment descriptor in the
weblogic-cmp-rdbms jar.xml file.

3. Create the BLOB or CLOB in the Oracle database.

Using BLOB or CLOB may slow performance because of the size of the BLOB or
CLOB object.

Specifying a BLOB Using the Deployment Descriptor

The following XML code shows how to specify a BLOB object using the
dbms-column element in weblogic-cmp-rdbms-jar-xml file.

Figure 5-7 Specifying a BLOB object

<field-map>
<cmp-field>photo</cmp-field>
<dbms-column>PICTURE</dbms-column>
<dbms_column-type>OracleBlob</dbms-column-type>
Programming WebLogic Enterprise JavaBeans 5-29

5 WebLogic Server Container-Managed Persistence Service - Basic Features
</field-map>

Specifying a CLOB Using the Deployment Descriptors

The following XML code shows how to specify a CLOB object using the
dbms-column element in the weblogic-cmp-rdbms-jar-xml file.

Figure 5-8 Specifying a CLOB object

<field-map>
<cmp-field>description</cmp-field>
<dbms-column>product_description</dbms-column>
<dbms_column-type>OracleClob</dbms-column-type>

</field-map>

Cascade Delete

Use the cascade delete mechanism to remove entity bean objects. When cascade delete
is specified for a particular relationship, the lifetime of one entity object depends on
another. You can specify cascade delete for one-to-one and one-to-many relationships;
many-to-many relationships are not supported. The cascade delete() method uses
the delete features in WebLogic Server, and the database cascade delete()

method instructs WebLogic Server to use the underlying database’s built-in support
for cascade delete.

To enable this feature, you must recompile the bean code for the changes to the
deployment descriptors to take effect.

Use one of the following two methods to enable cascade delete.
5-30 Programming WebLogic Enterprise JavaBeans

Cascade Delete
Cascade Delete Method

With the cascade delete() method you use WebLogic Server to remove objects. If
an entity is deleted and the cascade delete element is specified for a related entity
bean, then the removal is cascaded and any related entity bean objects are also
removed.

To specify cascade delete, use the cascade-delete element in the ejb-jar.xml
deployment descriptor elements. This is the default method. Make no changes to your
database settings, and WebLogic Server will cache the entity objects for removal when
the cascade delete is triggered.

Specify cascade delete using the cascade-delete element in the ejb-jar.xml file
as follows:

Figure 5-9 Specifying a cascade delete

<ejb-relation>
<ejb-relation-name>Customer-Account</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Account-Has-Customer
</ejb-relationship-role-name>
<multiplicity>one</multiplicity>
<cascade-delete/>

</ejb-relationship-role>
</ejb-relation>

Note: This cascade delete() method can only be specified for a
ejb-relationship-role element contained in an ejb-relation element if
the other ejb-relationship-role element in the same ejb-relation
element specifies a multiplicity attribute with a value of one.

Database Cascade Delete Method

The database cascade delete() method allows an application to take advantage
of a database's built-in cascade delete support, and possibly improve performance. If
the db-cascade-delete element is not already specified in the
weblogic-cmp-rdbms-jar.xml file, do not enable any of the database's cascade
delete functionality, because this will produce incorrect results in the database.
Programming WebLogic Enterprise JavaBeans 5-31

5 WebLogic Server Container-Managed Persistence Service - Basic Features
The db-cascade-delete element in the weblogic-cmp-rdbms-jar.xml file
specifies that a cascade delete operation will use the built-in cascade delete facilities
of the underlying DBMS. By default, this feature is turned off and the EJB container
removes the beans involved in a cascade delete by issuing an individual SQL DELETE
statement for each bean.

If db-cascade-delete element is specified in the weblogic-cmp-rdbms-jar.xml,
the cascade-delete element must be specified in the ejb-jar.xml.

When db-cascade-delete is enabled, additional database table setup is required.
For example, the following setup for the Oracle database table will cascade delete all
of the employees if the dept is deleted in the database.

Figure 5-10 Oracle table setup for cascade delete

CREATE TABLE dept

(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,

dname VARCHAR2(9));

CREATE TABLE emp

(empno NUMBER(4) PRIMARY KEY,

ename VARCHAR2(10),

deptno NUMBER(2) CONSTRAINT fk_deptno

REFERENCES dept(deptno)

ON DELETE CASCADE);

Flushing the CMP Cache

Updates made by a transaction must be reflected in the results of queries, finders, and
ejbSelects issued during the transactions. Because this requirement can slow
performance, a new option enables you to specify that the cache be flushed before the
query for the bean is executed.
5-32 Programming WebLogic Enterprise JavaBeans

Java Data Types for CMP Fields
If this option is turned off, which is the default behavior, the results of the current
transactions are not reflected in the query. If this option is turned on, the container
flushes all changes for cached transactions written to the database before executing the
new query. This way, the changes show up in the results.

To enable this option, in weblogic-cmp-rdbms-jar.xml file set the
include-updates element to true.

Figure 5-11 Specifying that results of transactions be reflected in the query

<weblogic-query>
<query-method>
<method-name>findBigAccounts</method_name>
<method-params>

<method-param>double</method-param>
</method-params>
</query-method>
<weblogic-ql>WHERE BALANCE>10000 ORDERBY NAME</weblogic-ql>
<include-updates>true</include-updates>

</weblogic-query>

The default is false, which provides the best performance. Updates made to the
cached transaction are reflected in the result of a query; no changes are written to the
database, and you do not see the changes in the query result.

Whether you use this feature depends on whether performance is more important than
current and consistent data.

Java Data Types for CMP Fields

The following table provides a list of the Java data types for CMP fields used in
WebLogic Server and shows how they map to the Oracle extensions for the standard
SQL data types.
Programming WebLogic Enterprise JavaBeans 5-33

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Table 5-1 Java data types for CMP fields

Java Types for CMP Fields Oracle Data Types

boolean SMALLINT

byte SMALLINT

char SMALLINT

double NUMBER

float NUMBER

int INTEGER

long NUMBER

short SMALLINT

java.lang.String VARCHAR/VARCHAR2

java.lang.Boolean SMALLINT

java.lang.Byte SMALLINT

java.lang.Character SMALLINT

java.lang.Double NUMBER

java.lang.Float NUMBER

java.lang.Integer INTEGER

java.lang.Long NUMBER

java.lang.Short SMALLINT

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATE

java.math.BigDecimal NUMBER

byte[] RAW, LONG RAW
5-34 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
Do not use the SQL CHAR data type for database columns that are mapped to CMP
fields. This is especially important for fields that are part of the primary key, because
padding blanks that are returned by the JDBC driver can cause equality comparisons
to fail when they should not. Use the SQL VARCHAR data type instead of SQL
CHAR.

A CMP field of type byte[] cannot be used as a primary key unless it is wrapped in a
user-defined primary key class that provides meaningful equals() and hashCode()

methods. This is because the byte[] class does not provide useful equals and
hashCode.

EJB Concurrency Strategy

The concurrency strategy specifies how the EJB container should manage concurrent
access to an entity bean. Although the Database option is the default concurrency
strategy for WebLogic Server, you may want to specify other options for your entity
bean depending on the type of concurrency access the bean requires. WebLogic Server
provides the following concurrency strategy options:

serializable RAW, LONG RAW

Java Types for CMP Fields Oracle Data Types

Concurrency Option Description

Exclusive Places an exclusive lock on cached entity EJB instances when
the bean is associated with a transaction. Other requests for the
EJB instance are block until the transaction completes. This
option was the default locking behavior for WebLogic Server
versions 3.1 through 5.1

Database Defers locking requests for an entity EJB to the underlying
datastore. WebLogic Server allocates a separate entity bean
instance and allows locking and caching to be handled by the
database. This is the default option.
Programming WebLogic Enterprise JavaBeans 5-35

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Concurrency Strategy for Read-Write EJBs

You can use the Exclusive, Database, and ReadOnly concurrency strategies for
read-write EJBs. WebLogic Server loads EJB data into the cache at the beginning
of each transaction, or as described in “Using cache-between-transactions to Limit
Calls to ejbLoad()” on page 6-10. WebLogic Server calls ejbStore() at the
successful commit of a transaction.

Specifying the Concurrency Strategy

You specify the locking mechanism that the EJB uses by setting the
concurrency-strategy deployment parameter in weblogic-ejb-jar.xml. You
set concurrency-strategy at the individual EJB level, so that you can mix locking
mechanisms within the EJB container.

The following excerpt from weblogic-ejb-jar.xml shows how to set the
concurrency strategy for an EJB. In the following sample XML, the code specifies the
default locking mechanism, Database.

Figure 5-12 Sample XML specifying the concurrency strategy

<entity-descriptor>

<entity-cache>

Optimistic Holds no locks in the EJB container or database during a
transaction. The EJB container verifies that none the data
updated by the transaction has changed before committing the
transaction. If any updated data changed, the EJB container rolls
back the transaction.

ReadOnly Used only for read-only entity beans. Activates a new
instance for each transaction so that requests proceed in
parallel. WebLogic Server calls ejbLoad() for
ReadOnly beans are based on the
read-timeout-seconds parameter.

Concurrency Option Description
5-36 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
...

<concurrency-strategy>Database</concurrency-strategy>

</entity-cache>

...

</entity-descriptor>

If you do not specify a concurrency-strategy, WebLogic Server performs database
locking for entity EJB instances.

A description of each concurrency strategy is covered in the following sections.

Exclusive Concurrency Strategy

The Exclusive concurrency strategy was the default in WebLogic Server 5.1 and
4.5.1. This locking method provides reliable access to EJB data, and avoids
unnecessary calls to ejbLoad() to refresh the EJB instance’s persistent fields.
However, exclusive locking does not provide the best model for concurrent access to
the EJB’s data. Once a client has locked an EJB instance, other clients are blocked
from the EJB’s data even if they intend only to read the persistent fields.

The EJB container in WebLogic Server can use exclusive locking mechanism for
entity EJB instances. As clients enlist an EJB or EJB method in a transaction,
WebLogic Server places an exclusive lock on the EJB instance for the duration of the
transaction. Other clients requesting the same EJB or method are blocked until the
current transaction completes.

Database Concurrency Strategy

The Database concurrency strategy is the default option for WebLogic Server and the
recommended mechanism for EJB 1.1 and EJB 2.0 beans. It improves concurrent
access for entity EJBs. The WebLogic Server container defers locking services to the
underlying database. Unlike exclusive locking, the underlying data store can provide
finer granularity for locking EJB data, and deadlock detection.
Programming WebLogic Enterprise JavaBeans 5-37

5 WebLogic Server Container-Managed Persistence Service - Basic Features
With the database locking mechanism, the EJB container continues to cache instances
of entity EJB classes. However, the container does not cache the intermediate state of
the EJB instance between transactions. Instead, WebLogic Server calls ejbLoad() for
each instance at the beginning of a transaction to obtain the latest EJB data. The request
to commit data is subsequently passed along to the database. The database, therefore,
handles all lock management and deadlock detection for the EJB’s data.

Deferring locks to the underlying database improves throughput for concurrent access
to entity EJB data, while also providing deadlock detection. However, using database
locking requires more detailed knowledge of the underlying datastore’s lock policies,
which can reduce the EJB’s portability among different systems.

When using the Database concurrency strategy instead of Optimistic with the
caching-between-transactions element set to “True,” you will receive a
warning message from the compiler indicating that cache-between-transactions
should be disabled. If this condition exists, WebLogic Server automatically disables
caching-between-transactions.

Optimistic Concurrency Strategy

The Optimistic concurrency strategy does not hold any locks in the EJB container
or the database while the transaction is in process. When you specify this option, The
EJB container makes sure that the data being updated by a transaction has not changed.
It performs a “smart update” by checking the fields before it commits the transaction.

To verify that you want the data checked for validity, enable optimistic checking by
setting the verify-columns deployment descriptor element in the
weblogic-cmp-rdbms-jar.xml file. The verify-columns element specifies that
the columns in a table be checked for validity when you use the optimistic concurrency
strategy.

1. Set the verify-columns element as follows to check the data:

! Specify Read to check all columns in the table that have been read during the
transaction.

! Specify Modified to check only the columns that have been updated by the
current transaction.

! Specify Version to check that a version column exists in the table and that this
column is used to implement optimistic concurrency.
5-38 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
A version column must be created with an initial value of 0, and must increment
by 1 whenever the row is modified.

! Specify Timestamp to check that a timestamp column exists in the table and that
this column is used to implement optimistic concurrency.

The EJB container manages the version and timestamp columns and ensures that
these columns are kept up to date.

2. Specify the version and timestamp columns using the optimistic-column
deployment descriptor element in the weblogic-cmp-rdbms-jar.xml file.
Mapping this column to a cmp field is optional.

3. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

If the EJB is mapped to multiple tables, optimistic checking is only performed on the
tables that are updated during the transaction.

Note: By default, caching between transactions is not enabled for this feature. You
must explicitly enable it. See “Using cache-between-transactions to Limit
Calls to ejbLoad()” on page 6-10for instructions.

ReadOnly Concurrency Strategy

WebLogic Server provides support for concurrent access to read-only entity beans.
This caching strategy activates an instance of a read-only entity bean for each
transaction so that requests may be processed in parallel.

Previously, read-only entity beans used the exclusive locking concurrency strategy.
This strategy places an exclusive lock on cached entity bean instances when the bean
is associated with a transaction. Other requests for the entity bean instance are block
until the transaction completes.

To avoid reading from the database, WebLogic Server copies the state for an EJB 2.0
CMP bean from the existing instance in the cache. For this release, the default
concurrency strategy for read-only entity beans is the ReadOnly option.

You can specify read-only entity bean caching at the application-level or the
component-level.

To enable read-only entity bean caching:
Programming WebLogic Enterprise JavaBeans 5-39

5 WebLogic Server Container-Managed Persistence Service - Basic Features
1. Specify the ReadOnly option in the concurrency-strategy deployment
descriptor element for either a JAR file or an EAR file.

" Specify the concurrency-strategy element for application-level caches
(EARS) in the weblogic-application.xml file.

" Specify the concurrency-strategy element for component-level caches
(JARS) in the weblogic-ejb-jar.xml file.

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

Read-Only Entity Beans

WebLogic Server continues to support read-only entity beans with the read-timeout
element set in the deployment descriptor. If the ReadOnly option is selected in the
concurrency strategy element and the read-timeout-seconds element is set in
the weblogic-ejb-jar.xml file, when a read-only bean is invoked, WebLogic
Server checks whether the cached data is older than the read-timeout setting. If it is,
the bean’s ejbLoad is called. Otherwise, the cached data is used. So, previous versions
of read-only entity beans will work in this version of WebLogic Server.

Restrictions for ReadOnly Concurrency Strategy

Entity EJBs using the read-only concurrency strategy must observe the following
restrictions:

! They cannot require updates to the EJB data, because WebLogic Server never
calls ejbStore() for read-only entity EJBs.

! The EJB’s method calls must be idempotent. See “Session EJBs in a Cluster” on
page 4-10 for more information.

Because the bean’s underlying data may be updated by an external source, calls to
ejbLoad() are governed by the deployment parameter, read-timeout-seconds.
5-40 Programming WebLogic Enterprise JavaBeans

Automatic Database Detection
Automatic Database Detection

As application developers develop their entity beans, the underlying table schema must
change. With the automatic database detection feature enabled, the WebLogic Server
EJB container automatically changes the underlying table schema as entity beans
change, ensuring that tables always reflect the most recent value of deployment
descriptor values.

Even if a table already exists, if any container-managed persistence fields have been
added or deleted for that table, the container will recreate the table during deployment.
To ensure that the container only changes tables it created, container-created tables
include an extra column, called wls_temp.

Note: Use this feature during development only, not during production.

Enabling Automatic Database Detection

Enable this feature using the create-default-dbms-tables element in
weblogic-cmp-rdbms-jar.xml. The precise behavior of this feature varies,
depending on the value of the element. The following table summarizes how behavior
varies depending on the value:

Table 5-2 Automatic Database Detection values for
<create-default-dbms-tables>

Setting <create-default-dbms-tables>
to this value

Results in this behavior:

DropAndCreate The container drops and creates the table
during deployment if columns have
changed. Data is not saved.

DropAndCreateAlways The container drops and creates the table
during deployment whether or not
columns have changed. Data is not saved.
Programming WebLogic Enterprise JavaBeans 5-41

5 WebLogic Server Container-Managed Persistence Service - Basic Features
Behavior When Type Conflict Detected

If the database type WebLogic Server detects differs from the database type defined in
the deployment descriptor, WebLogic Server will issue a warning and give preference
to the type defined in the deployment descriptor.

CreateOrAlterTable The container creates the table if it does
not yet exist. If the table does exist, the
container alters the table schema. Data is
saved.

Note: Do not choose this option if
either of the following is true:

! A new column is specified as a
primary key

! A column with null values is specified
as the new primary key column

Table 5-2 Automatic Database Detection values for
<create-default-dbms-tables>

Setting <create-default-dbms-tables>
to this value

Results in this behavior:
5-42 Programming WebLogic Enterprise JavaBeans

CHAPTER
6 WebLogic Server
Container-Managed
Persistence Service -
Advanced Features

The following sections describe the advanced features of the container-managed
persistence (CMP) service available with the WebLogic Server EJB container, where
“advanced” refers to performance-related or special-purpose features. For a discussion
of basic CMP features, see Chapter 5, “WebLogic Server Container-Managed
Persistence Service - Basic Features.”

Performance-related features:

! “Read-Only Multicast Invalidation” on page 6-2

! “Read-Mostly Pattern” on page 6-3

! “Relationship Caching with Entity Beans” on page 6-4

! “Combined Caching with Entity Beans” on page 6-7

! “Caching Between Transactions” on page 6-8

! “ejbLoad() and ejbStore() Behavior for Entity EJBs” on page 6-11

! “Groups” on page 6-13
Programming WebLogic Enterprise JavaBeans 6-1

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
Special-purpose features:

! “Automatic Primary Key Generation” on page 6-15

! “Automatic Table Creation” on page 6-19

! “Using Oracle SELECT HINTS” on page 6-23

! “Multiple Table Mapping” on page 6-24

Read-Only Multicast Invalidation

Read-only multicast invalidation is an efficient means of invalidating cached data.

Invalidate a read-only entity bean by calling the following invalidate() method on
either the CachingHome or CachingLocalHome interface:

Figure 6-1 Sample code showing CachingHome and CachingLocalHome
interfaces

package weblogic.ejb;

public interface CachingHome {

public void invalidate(Object pk) throws RemoteException;
public void invalidate (Collection pks) throws RemoteException;
public void invalidateAll() throws RemoteException;

public interface CachingLocalHome {

public void invalidate(Object pk) throws RemoteException;
public void invalidate (Collection pks) throws RemoteException;
public void invalidateAll() throws RemoteException

}

The following example codes shows how to cast the home to CachingHome and then
call the method:

Figure 6-2 Sample code showing how to cast the home and call the method

import javax.naming.InitialContext;
import weblogic.ejb.CachingHome;
6-2 Programming WebLogic Enterprise JavaBeans

Read-Mostly Pattern
Context initial = new InitialContext();
Object o = initial.lookup("CustomerEJB_CustomerHome");
CustomerHome customerHome = (CustomerHome)o;

CachingHome customerCaching = (CachingHome)customerHome;
customerCaching.invalidateAll();

When the invalidate() method is called, the read-only entity beans are invalidated
in the local server, and a multicast message is sent to the other servers in the cluster to
invalidate their cached copies. The next call to an invalidated read-only entity bean
causes ejbLoad to be called. ejbLoad() reads the most current version of the
persistent data from the underlying datastore

WebLogic Server calls the invalidate() method after the transaction update has
completed. If the invalidation occurs during a transaction update, the previous version
may be read if the isolation level does not permit reading uncommitted data.

Read-Mostly Pattern

WebLogic Server does not support a read-mostly cache strategy setting in
weblogic-ejb-jar.xml. However, if you have EJB data that is only occasionally
updated, you can create a “read-mostly pattern” by implementing a combination of
read-only and read-write EJBs.

For an example of the read-mostly pattern, see the Read Mostly example in your
WebLogic Server distribution:

%SAMPLES_HOME%/server/config/examples/ejb/extensions/readMostl
y

WebLogic Server provides an automatic invalidate() method for the Read-Mostly
pattern. With this pattern, Read-Only entity bean and a Read-Write entity bean are
mapped to the same data. To read the data, you use the Read-Only entity bean; to
update the data, you use the Read-Write entity bean.

In a read-mostly pattern, a read-only entity EJB retrieves bean data at intervals
specified by the read-timeout-seconds deployment descriptor element specified in
the weblogic-ejb-jar.xml file. A separate read-write entity EJB models the
same data as the read-only EJB, and updates the data at required intervals.
Programming WebLogic Enterprise JavaBeans 6-3

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
When creating a read-mostly pattern, use the following suggestions to reduce data
consistency problems:

! For all read-only EJBs, set read-timeout-seconds to the same value for all
beans that may be updated in the same transaction.

! For all read-only EJBs, set read-timeout-seconds to the smallest timeframe
that yields acceptable performance levels.

! Ensure that all read-write EJBs in the system update only the smallest portion
of data necessary; avoid beans that write numerous, unchanged fields to the
datastore at each ejbStore().

! Ensure that all read-write EJBs update their data in a timely fashion; avoid
involving read-write beans in long-running transactions that may span the
read-timeout-seconds setting for their read-only counterparts.

If you are running EJB 2.0, you can accomplish the same thing using optimistic
concurrency functionality. See “Optimistic Concurrency Strategy” on page 5-38.

In a WebLogic Server cluster, clients of the read-onlyEJB benefit from using cached
EJB data. Clients of the read-write EJB benefit from true transactional behavior,
because the read-write EJB’s state always matches the state of its data in the
underlying datastore. See “Entity EJBs in a Cluster” on page 4-14 for more
information.

Relationship Caching with Entity Beans

Relationship caching improves the performance of entity beans by loading related
beans into the cache and avoiding multiple queries by issuing a join query for the
related bean.

Specifying Relationship Caching

To specify relationship caching:
6-4 Programming WebLogic Enterprise JavaBeans

Relationship Caching with Entity Beans
1. Set the relationship-caching deployment descriptor element in the bean’s
weblogic-cmp-rdbms-jar.xml file.

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

The XML code shown below specifies entity beans with the following
relationships

The following XML example code shows how to specify relationship-caching:

<relationship-caching>
<caching-name>cacheMoreBeans</caching-name>
<caching-element>

<cmr-field>accounts<</cmr-field>
<group-name>acct_group</group-name>
<caching-element>

<cmr-field>address</cmr-field>
<group-name>addr_group</group-name>

</caching-element>
</caching-element>

<caching-element>
<cmr-field>phone</cmr-field>
<group-name>phone_group</group-name>

</caching-element>
</relationship-caching>

The accounts and phone fields are container-managed relationship (cmr) fields in
the customerBean table; the address field is a cmr field in the accountBean table;
and the addr_group and phone_group are groups in the addressBean and
phoneBean.

Using nested caching-element deployment descriptors enables the bean to load
more than one level of related beans. In the above sample XML code, addressBean
is the second level related bean because it is nested in the accountBean. Currently,
there is no limitation on the number of caching-elements that you can specify.
However, setting too many caching-element levels could have an impact on the
performance of the current transaction.

customerBean has a one-to-many relationship with accountBean

accountBean has a one-to-one relationship with addressBean

customerBean has a one-to-one relationship with phoneBean
Programming WebLogic Enterprise JavaBeans 6-5

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
Enabling Relationship Caching

To enable relationship caching:

1. Specify a caching-name deployment descriptor element in the weblogic-query
element of the weblogic-cmp-rdbms-jar.xml file.

If a caching-name element is specified in a weblogic-query XML element,
when the finder query is executed, WebLogic Server loads the related
accountBean and phoneBean as well as the account’s addressBeans into the
cache.

2. Make sure that the finder-load-bean element, specified in the
weblogic-ejb-jar.xml file, in the bean that specifies an relationship (for
example, customerBean in the above sample XML code) is not set to False or
relationship caching will not be enabled. The finder-load-bean element’s
default is True.

3. Specify a database-type deployment descriptor element in the bean’s
weblogic-cmp-rdbms-jar.xml file. This is because relationship caching uses
outer joins for queries and outer joins don’t have standard syntax for all
databases.

4. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

Since relationship caching uses join queries, and a join query might duplicate results
for a table in the ResultSet, the number of caching-element deployment descriptors
specified in the relationship-caching element will have a direct impact on the
number of duplicate results in the ResultSet. For one-to-many relationships, do not
specify too many caching-element deployment descriptors in the
relationship-caching element because the number of duplicate results might
multiply for each caching-element deployment descriptor

The relationship-caching deployment descriptor element is specified in the
weblogic-cmp-rdbms-jar.xml file

Relationship Caching Limitations

The relationship caching feature has the following limitations:
6-6 Programming WebLogic Enterprise JavaBeans

Combined Caching with Entity Beans
1. Relationship caching only works with one-to-one and one-to-many

relationships.

2. When using weblogic-ql, this feature only works with finder methods that
return references to either EJBObject or EJBLocalObject beans.

3. If you enable relationship caching for a finder or a select method, the result of the
query will always be a distinct set even if the distinct keyword is not specified.
This is because there is no way to identify the duplicate in the ResultSet is the
result of the original data or the result of the outer join.

Combined Caching with Entity Beans

Combined caching allows multiple entity beans that are part of the same J2EE
application to share a single runtime cache. Previously, you had to configure a separate
cache for each entity bean that was part of an application. This caused some usability
and performance problems in that it took more time to configure caches for each entity
bean and more memory to run the application. This feature will help solve those
problems.

To configure an application level cache:

1. Verify that the weblogic-application.xml file is located in the META-INF
directory of the EAR file.

2. Provide an entry in the weblogic-application.xml file as follows:

<weblogic-application>
<ejb>

<entity-cache>
<entity-cache-name>large_account</entity-cache-name>
<max-cache-size>

<megabytes>1</megabytes>
</max-cache-size>

</entity-cache>
</ejb>
</weblogic_application>

Use the entity-cache element to define a named application level cache that
will be used to cache entity bean instances at runtime. There are no restrictions
on the number of different entity beans that may reference an individual cache.
Programming WebLogic Enterprise JavaBeans 6-7

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
The sub elements of entity-cache have the same basic meaning as they do in
the weblogic-ejb-jar.xml deployment descriptor file.

3. Specify an entity-descriptor element in weblogic-ejb-jar.xml file.

Use the entity-descriptor element to configure an entity bean to use an
application level cache.

For instructions on specifying deployment descriptors, see “Specifying and Editing the
EJB Deployment Descriptors” on page 7-5.

The weblogic-application.xml deployment descriptor is documented in full in the
“Application.xml Deployment Descriptor Elements” section of Developing WebLogic
Server Applications.

Caching Between Transactions

Use caching between transactions or long tern caching to enable the EJB container to
cache an entity bean’s persistent data between transactions. You can enable caching
between transactions if the entity bean’s concurrency strategy is set to either
Exclusive, ReadOnly, or Optimistic. See “Specifying the Concurrency Strategy”
on page 5-36 for instructions on setting an entity bean’s concurrency strategy.

Caching Between Transactions with Exclusive
Concurrency

When you enable long term caching for an entity bean with an Exclusive

concurrency strategy the EJB container must have exclusive update access to the
underlying data. This means that another application outside of the EJB container must
not be updating the data. If you deploy an EJB with an Exclusive concurrency strategy
in a cluster, long term caching is disabled automatically because any node in the cluster
may update the data. This would make long term caching impossible.

In previous versions of WebLogic Server, this feature was controlled by the
db-is-shared element of weblogic-ejb-jar.xml.
6-8 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/programming/app_xml.html#1007302

Caching Between Transactions
Note: Exclusive concurrency is a single-server feature. Do not attempt to use it with
clustered servers.

Caching Between Transactions with ReadOnly
Concurrency

When you disable long term caching for an entity bean with a ReadOnly concurrency
strategy it ignores the value of the caching-between-transactions setting because
the EJB container always performs long term caching of read-only data.

Caching Between Transactions with Optimistic
Concurrency

When you enable long term caching for an entity bean with an Optimistic

concurrency strategy the EJB container reuses the cached values from previous
transactions. The container ensures that the updates are transactionally consistent by
checking for optimistic conflicts at the end of the transaction. See “Optimistic
Concurrency Strategy” on page 5-38 for instructions on setting optimistic checking.

In addition, notifications for updates of optimistic data are broadcast to other cluster
members to help avoid optimistic conflicts.

Enabling Caching Between Transactions

To enable caching between transactions:

1. Set the caching-between-transactions element in the
weblogic-ejb-jar.xml file by choosing one of the following options:

" Specify True to enable the EJB container performs long term caching of the
data.
Programming WebLogic Enterprise JavaBeans 6-9

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
" Specify False to enable the EJB container performs short caching of the
data. This is the default setting.

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

Using cache-between-transactions to Limit Calls to
ejbLoad()

WebLogic Server’s default behavior of calling ejbLoad() at the start of each
transaction works well for environments where multiple sources may update the
datastore. Because multiple clients (including WebLogic Server) may be modifying an
EJB’s underlying data, an initial call to ejbLoad() notifies the bean that it needs to
refresh its cached data and ensures that it works against the most current version of the
data.

In the special circumstance where only a single WebLogic Server transaction ever
accesses a particular EJB concurrently, such as when you use exclusive concurrency
for a single server; not a cluster, calling ejbLoad() by default is unnecessary. Because
no other clients or systems update the EJB’s underlying data, WebLogic Server’s
cached version of the EJB data is always up-to-date. Calling ejbLoad() in this case
simply creates extra overhead for WebLogic Server clients that access the bean.

To avoid unnecessary calls to ejbLoad() in the case of a single WebLogic Server
transaction accessing a particular EJB, WebLogic Server provides the
cache-between-transactions deployment parameter. By default,
cache-between-transactions is set to “false” for each EJB in the bean’s
weblogic-ejb-jar.xml file, which ensures that ejbLoad() is called at the start of
each transaction. Where only a single WebLogic Server transaction ever accesses an
EJB’s underlying data concurrently, you can set d to “true” in the bean’s
weblogic-ejb-jar.xml file. When you deploy an EJB with
cache-between-transactions set to “true,” the single instance of WebLogic
Server calls ejbLoad() for the bean only when:

! A client first references the EJB

! The EJB’s transaction is rolled back
6-10 Programming WebLogic Enterprise JavaBeans

ejbLoad() and ejbStore() Behavior for Entity EJBs
Restrictions and Warnings for
cache-between-transactions

Setting cache-between-transactions to “true” overrides WebLogic Server’s
default ejbLoad() container-managed-persistence (behavior, regardless of whether
the EJB’s underlying data is updated by one WebLogic Server instance or multiple
clients. If you incorrectly set cache-between-transactions to “true” and multiple
clients (database clients, other WebLogic Server instances, and so forth) update the
bean data, you run the risk of losing data integrity.

Do not set cache-between-transactions to “true” if you set the entity bean’s
concurrency strategy to the “Database” option. Weblogic Server ignores this
setting because with database concurrency specified, the EJB container continues to
cache instances of entity bean classes. However, the container does not cache the state
of the EJB instance between transactions. Instead, WebLogic Server calls ejbLoad()
for each instance at the beginning of a transaction to obtain the latest EJB data. This
means that setting cache-between-transactions to “true” which prevents
WebLogic Server from calling ejbload() at the beginning of each transaction is
invalid.

Also, due to the limitations of exclusive concurrency, you cannot set
cache-between-transactions to “true” in a WebLogic Server cluster when using
exclusive concurrency. However, you can set this element to true when using either
optimistic or readonly concurrency.

ejbLoad() and ejbStore() Behavior for Entity
EJBs

WebLogic Server reads and writes the persistent fields of entity EJBs using calls to
ejbLoad() and ejbStore(). By default, WebLogic Server calls ejbLoad() and
ejbStore() in the following manner:

1. A transaction is initiated for the entity EJB. The client may explicitly initiate a new
transaction and invoke the bean, or WebLogic Server may initiate a new transaction
in accordance with the bean’s method transaction attributes.
Programming WebLogic Enterprise JavaBeans 6-11

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
2. WebLogic Server calls ejbLoad() to read the most current version of the bean’s
persistent data from the underlying datastore.

3. When the transaction commits, WebLogic Server calls ejbStore() to write
persistent fields back to the underlying datastore.

This simple process of calling ejbLoad() and ejbStore() ensures that new
transactions always use the latest version of the EJB’s persistent data, and always write
the data back to the datastore upon committing. In certain circumstances, however, you
may want to limit calls to ejbLoad() and ejbStore() for performance reasons.
Alternately, you may want to call ejbStore() more frequently to view the
intermediate results of uncommitted transactions.

WebLogic Server provides several deployment descriptor elements in the
weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml files that enable you
to configure ejbLoad() and ejbStore() behavior.

Warning for is-modified-method-name

Using the is-modified-method-name element can improve performance by
avoiding unnecessary calls to ejbStore(). However, it places a greater burden on the
EJB developer to identify correctly when updates have occurred. If the specified
is-modified-method-name returns an incorrect flag to WebLogic Server, data
integrity problems can occur, and they may be difficult to track down.

If entity EJB updates appear “lost” in your system, start by ensuring that the value for
all is-modified-method-name elements return “true” under every circumstance. In
this way, you can revert to WebLogic Server’s default ejbStore() behavior and
possibly correct the problem.

Using delay-updates-until-end-of-tx to Change ejbStore()
Behavior

By default, WebLogic Server updates the persistent store of all beans in a transaction
only at the completion (commit) of the transaction. This generally improves
performance by avoiding unnecessary updates and repeated calls to ejbStore().
6-12 Programming WebLogic Enterprise JavaBeans

Groups
If your datastore uses an isolation level of READ_UNCOMMITTED, you may want to allow
other database users to view the intermediate results of in-progress transactions. In this
case, the default WebLogic Server behavior of updating the datastore only at
transaction completion may be unacceptable.

You can disable the default behavior by using the
delay-updates-until-end-of-tx deployment descriptor element. This element is
set in the weblogic-ejb-jar.xml file. When you set this element to “false,”
WebLogic Server calls ejbStore() after each method call, rather than at the
conclusion of the transaction.

Setting delay-updates-until-end-of-tx to false does not cause database updates
to be “committed” to the database after each method invoke; they are only sent to the
database. Updates are committed or rolled back in the database only at the conclusion
of the transaction.

Groups

In container-managed persistence, you use groups to specify certain persistent
attributes of an entity bean. A field-group represents a subset of the cmp and
CMR-fields of a bean. You can put related fields in a bean into groups that are faulted
into memory together as a unit. You can associate a group with a query or relationship,
so that when a bean is loaded as the result of executing a query or following a
relationship, only the fields mentioned in the group are loaded.

A special group named “default” is used for queries and relationships that have no
group specified. By default, the default group contains all of a bean's CMP-fields and
any CMR-fields that add a foreign key to the persistent state of the bean.

A field can belong to multiple groups. In this case, the getXXX() method for the field
will fault in the first group that contains the field.

Specifying Field Groups

Field groups are specified in the weblogic-rdbms-cmp-jar.xml file as follows:
Programming WebLogic Enterprise JavaBeans 6-13

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
<weblogic-rdbms-bean>
<ejb-name>XXXBean</ejb-name>
<field-group>

<group-name>medical-data</group-name>
<cmp-field>insurance</cmp-field>
<cmr-field>doctors</cmr-fields>

</field-group>
</weblogic-rdbms-bean>

You use field groups when you want to access a subset of fields.

Using Groups

The field group is an optimizing element that should be used with care because it is
possible to corrupt the database.

For example,

You have the following CMP fields: A, B, and C.

A and B belong to the same group.

You set up the following scenario:

getA() // loads A and B
modify A
// then an external process modifies the row getC()

Because C is not in the group, there are two possibilities:

! The container will load C and any the other fields as well. In this case, the
modification that was made to A will be lost.

! The container will load C and only C. When the transaction commits, the new
value for A that was assigned during the transaction might overwrite the newer
value in the database.

! In both cases, the database will be corrupted because you told the container that
within this transaction, that only A and B would be read; however, C also was
read. The correct step to take would have been to add C to the group or to
specify no groups at all.
6-14 Programming WebLogic Enterprise JavaBeans

Automatic Primary Key Generation
Automatic Primary Key Generation

WebLogic Server supports an automatic primary key generation feature for
container-managed persistence (CMP).

Note: This feature is supported for the EJB 2.0 CMP container only, there is no
automatic primary key generation support for EJB 1.1 CMP. For 1.1 beans,
you must use bean-managed-persistence (BMP.)

Generated key support is provided in two ways:

! Using DBMS primary key generation. A set of deployment descriptors are
specified at compile time to generate container code that is used in conjunction
with a supported database to provide key generation support.

With this option, the container defers all key generation to the underlying
database. To enable this feature, you specify the name of the supported DBMS
and the generator name, if required by the database. The CMP code handles all
details of implementing this feature.

For more information on this feature, see “Specifying Primary Key Support for
Oracle” on page 6-16 and “Specifying Primary Key Support for Microsoft SQL
Server” on page 6-17.

! Using Bean Provider Designated Named Sequence table. A user-named and
user-created database table has a schema specified by WebLogic Server. The
container uses this table to generate the keys.

With this option, you name a table that holds the current primary key value. The
table consists of a single row with a single column as defined by the following
statement:

CREATE table_name (SEQUENCE int)
INSERT into table_name VALUES (0)

Note: For instructions on creating a table in Oracle, use the Oracle database
documentation.

In the weblogic-cmp-rdbms-jar.xml file, set the key_cache_size element
to specify how many primary key values a database SELECT and UPDATE will
fetch at one time. The default value of key_cache_size is 1. BEA recommends
that you set this element to a value of >1, to minimize database accesses and to
Programming WebLogic Enterprise JavaBeans 6-15

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
improve performance. For more information in this feature, see “Specifying
Primary Key Named Sequence Table Support” on page 6-18.

At this time, WebLogic Server only provides DBMS primary key generation support
for Oracle and Microsoft SQL Server. However, you can use named sequence tables
with other unsupported databases. Also, this feature is intended for use with simple
(non-compound) primary keys.

Valid Key Field Types

In the abstract ‘get’ and ‘set’ methods of the bean, you can declare the field to be either
of these two types:

! java.lang.Integer

! java.lang.Long

Specifying Primary Key Support for Oracle

Generated primary key support for Oracle databases uses Oracle’s SEQUENCE feature.
This feature works with a Sequence entity in the Oracle database to generate unique
primary keys. The Oracle SEQUENCE is called when a new number is needed.

Once the SEQUENCE already exists in the database, you specify automatic key
generation in the XML deployment descriptors. In the
weblogic-cmp-rdbms-jar.xml file, you specify automatic key generation as
follows:

Figure 6-3 Specifying automatic key generation for Oracle

<automatic-key-generation>
<generator-type>Oracle</generator-type>
<generator_name>test_sequence</generator-name>
<key-cache-size>10</key-cache-size>

</automatic-key-generator>
6-16 Programming WebLogic Enterprise JavaBeans

Automatic Primary Key Generation
Specify the name of the Oracle SEQUENCE to be used, using the generator-name
element. If the Oracle SEQUENCE was created with a SEQUENCE INCREMENT value,
then you must specify a key-cache-size. This value must match the Oracle
SEQUENCE INCREMENT value. If these two values are different, then you will most
likely have duplicate key problems.

Warning: Do not use the generator type USER_DESIGNATED_TABLE with Oracle, as
doing so can cause the following exception:

javax.ejb.EJBException: nested exception is:
java.sql.SQLException: Automatic Key Generation Error:
attempted to UPDATE or QUERY NAMED SEQUENCE TABLE
NamedSequenceTable, but encountered SQLException
java.sql.SQLException: ORA-08177: can't serialize access
for this transaction.

USER_DESIGNATED_TABLE mode sets the TX ISOLATION LEVEL
to SERIALIZABLE which can cause problems with Oracle.

Instead, use the AutoKey option Oracle.

Specifying Primary Key Support for Microsoft SQL Server

Generated primary key support for Microsoft SQL Server databases uses SQL Server’s
IDENTITY column. When the bean is created and a new row is inserted in the database
table, SQL Server automatically inserts the next primary key value into the column that
was specified as an IDENTITY column.

Note: For instructions on creating a table in Microsoft SQL Server, see the Microsoft
SQL Server database documentation.

Once the IDENTITY column is created in the database table, you specify automatic key
generation in the XML deployment descriptors. In the
weblogic-cmp-rdbms-jar.xml file, you specify automatic key generation as
follows:

Figure 6-4 Specifying automatic key generation for Microsoft SQL

<automatic-key-generation>
<generator-type>SQLServer</generator-type>

</automatic-key-generator>
Programming WebLogic Enterprise JavaBeans 6-17

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
The generator-type element lets you specify the primary key generation method
that you want to use.

Specifying Primary Key Named Sequence Table Support

Generated primary key support for unsupported databases uses a Named SEQUENCE
TABLE to hold key values. The table must contain a single row with a single column
that is an integer, SEQUENCE INT. This column will hold the current sequence value.

Note: For instructions on creating the table, see the documentation for the specific
database product.

To use Named Sequence Table support, make sure that the underlying database
supports the transaction isolation level, TransactionSerializable. You specify
this option for the isolation-level element, in the weblogic-ejb.xml file. The
TransactionSerializable option specifies that simultaneously executing a
transaction multiple times has the same effect as executing the transaction multiple
times in a serial fashion. If the database doesn’t support the transaction isolation level,
TransactionSerializable, then you cannot use Named Sequence Table support.

Note: See the documentation for the underlying database to determine the type of
isolation level support it provides and see “Specifying and Editing the EJB
Deployment Descriptors” on page 7-5 for instructions on setting the isolation
level.

Once the NamedSequenceTable exists in the database, you specify automatic key
generation by using the XML deployment descriptors in the
weblogic-cmp-rdbms-jar.xml file, as follows:

Figure 6-5 Specifying automatic key generation for named sequence table
support

<automatic-key-generation>
<generator-type>NamedSequenceTable</generator-type>
<generator_name>MY_SEQUENCE_TABLE_NAME</generator-name>
<key-cache-size>100</key-cache-size>

</automatic-key-generator>

Specify the name of the SEQUENCE TABLE to be used, with the generator-name
element. Using the key-cache-size element, specify the optional size of the key
cache that tells you how many keys the container will fetch in a single DBMS call.
6-18 Programming WebLogic Enterprise JavaBeans

Automatic Table Creation
For improved performance, BEA recommends that you set this value to >1, a number
greater than one. This setting reduces the number of calls to the database to fetch the
next key value.

Also, it is recommended that you define one NAMED SEQUENCE table per bean type.
Beans of different types should not share a common NAMED SEQUENCE table. This
reduces contention for the key table.

Automatic Table Creation

You can specify that WebLogic Server automatically create tables based on the
descriptions in the XML deployment descriptor files and the bean class, if the table
does not already exist. Tables are created for all beans and relationship join tables, if
the relationships in the JAR files have joins. You explicitly turn on this feature by
defining it in the deployment descriptors per each RDBMS deployment, for all beans
in the JAR file.

If you enable automatic table creation, WebLogic Serve examines the value of the
database-type element in weblogic-cmp-rdbms-jar.xml to determine the
correct syntax and datatype conversions to use to create a table in your database.
WebLogic Server uses the vendor-specific CREATE TABLE syntax and datatype
conversions for the following databases and vendors:

! Informix

! Oracle

! PointBase

! SQL Server

! Sybase

For all other database systems, WebLogic Server makes a best attempt to create the
new table using a basic syntax and the datatype conversions shown in the following
table:
Programming WebLogic Enterprise JavaBeans 6-19

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
Table 6-1 Generic Java Field to DBMS Column Type Conversion

Java Type DBMS Column Type

boolean INTEGER

byte INTEGER

char CHAR

double DOUBLE PRECISION

float FLOAT

int INTEGER

long INTEGER

short INTEGER

java.lang.string VARCHAR (150)

java.lang.BigDecimal DECIMAL (38, 19)

java.lang.Boolean INTEGER

java.lang.Byte INTEGER

java.lang.Character CHAR (1)

java.lang.Double DOUBLE PRECISION

java.lang.Float FLOAT

java.lang.Integer INTEGER

java.lang.Long INTEGER

java.lang.Short INTEGER

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATETIME

byte[] RAW (1000)
6-20 Programming WebLogic Enterprise JavaBeans

Automatic Table Creation
If, based on the descriptions in the deployment files, a field cannot be successfully
mapped to an appropriate column type in the database, the CREATE TABLE fails, an
error is thrown, and you must create the table yourself.

Automatic table creation is not recommended for use in a production environment. It
is better suited for the development phase of design and prototype work. A production
environment may require the use of more precise table schema definitions, for
example; the declaration of foreign key constraints.

To define automatic table creation:

1. In the weblogic-cmp-rdbms-jar.xml file, set the
create-default-dbms-tables element to True to explicitly turn on automatic
table creation for all beans in the JAR file. Use the following syntax:

<create-default-dbms-tables>True</create-default-dbms-tables>

2. Specify the correct database system or database vendor name in the
database-type element of weblogic-cmp-rdbms-jar.xml. CREATE TABLE

syntax and datatype mapping is provide for the following database-type

values: Informix, Oracle, POINTBASE, SQLServer, and Sybase. All other
DBMS systems use a basic syntax and the datatype conversions shown in the
table above.

Automatic Database Detection

As application developers develop their entity beans, the underlying table schema must
change. With the automatic database detection feature enabled, the WebLogic Server
EJB container automatically changes the underlying table schema as entity beans
change, ensuring that tables always reflect the most recent value of deployment
descriptor values.

Any serializable Class that is not a valid
SQL type:

RAW (1000)

Java Type DBMS Column Type
Programming WebLogic Enterprise JavaBeans 6-21

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
Even if a table already exists, if any container-managed persistence fields have been
added or deleted for that table, the container will recreate the table during deployment.
To ensure that the container only changes tables it created, container-created tables
include an extra column, called wls_temp.

Note: Use this feature during development only, not during production.

Enabling Automatic Database Detection

Enable this feature using the create-default-dbms-tables element in
weblogic-cmp-rdbms-jar.xml. The precise behavior of this feature varies,
depending on the value of the element. The following table summarizes how behavior
varies depending on the value:

Table 6-2 Automatic Database Detection values for
<create-default-dbms-tables>

Setting <create-default-dbms-tables>
to this value

Results in this behavior:

DropAndCreate The container drops and creates the table
during deployment if columns have
changed. Data is not saved.

DropAndCreateAlways The container drops and creates the table
during deployment whether or not
columns have changed. Data is not saved.

CreateOrAlterTable The container creates the table if it does
not yet exist. If the table does exist, the
container alters the table schema. Data is
saved.

Note: Do not choose this option if
either of the following is true:

! A new column is specified as a
primary key

! A column with null values is specified
as the new primary key column
6-22 Programming WebLogic Enterprise JavaBeans

Using Oracle SELECT HINTS
Behavior When Type Conflict Detected

If the database type WebLogic Server detects differs from the database type defined in
the deployment descriptor, WebLogic Server will issue a warning and give preference
to the type defined in the deployment descriptor.

Using Oracle SELECT HINTS

WebLogic Server supports an EJB QL extension that allows you to pass INDEX usage
hints to the Oracle Query optimizer. With this extension, you can provide a hint to the
database engine. For example, if you know that the database you are searching can
benefit from an ORACLE_SELECT_HINT, you can define an
ORACLE_SELECT_HINT clause that will take ANY string value and then insert that
String value after the SQL SELECT statement as a hint to the database.

To use this option, declare a query that uses this feature in the weblogic-ql element.
This element is found in the weblogic-cmp-rdbms-jar.xml file. The weblogic-ql
element specifies a query that contains a WebLogic specific extension to the EJB-QL
language.

The WebLogic QL keyword and usage is as follows:

SELECT OBJECT(a) FROM BeanA AS a WHERE a.field > 2 ORDERBY a.field
SELECT_HINT '/*+ INDEX_ASC(myindex) */'

This statement generates the following SQL with the optimizer hint for Oracle:

SELECT /*+ INDEX_ASC(myindex) */ column1 FROM (etc)

In the WebLogic QL ORACLE_SELECT_HINT clause, whatever is between the
single quotes (' ') is what gets inserted after the SQL SELECT. It is the query writer's
responsibility to make sure that the data within the quotes makes sense to the Oracle
database.“get” and “set” Method Restrictions
Programming WebLogic Enterprise JavaBeans 6-23

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
WebLogic Server uses a series of accessor methods. The names of these methods begin
with set and get. WebLogic Server uses these methods to read and modify
container-managed fields. These container-generated classes must begin with “get” or
“set” and use the actual name of a persistent field defined in ejb-jar.xml. The
methods are also declared as public, protected, and abstract.

Multiple Table Mapping

Multiple table mapping allows you to map a single EJB to multiple DBMS tables
within a single database for EJB 2.0 CMP beans. You configure this feature by
mapping multiple DBMS tables and columns to the EJB and its fields in the EJB’s
weblogic-cmp-rdbms-xml file. This includes the following types of mappings:

! EJB container-managed persistence (cmp) fields - These fields describe which of
the EJB’s cmp-fields are mapped to which DBMS tables.

! EJB container-managed relationship (cmr) fields - These fields describes which
of the EJBs DBMS tables contain the foreign key columns required for mapping
the relationships in the DBMS.

When enabling multiple table mappings, the following requirements apply:

! All tables included in the EJB’s deployment unit must have primary key
columns that are identical in number and type. The columns should not have the
same names.

! If the EJB is a participant in a container-managed relationship and the
relationship requires that the DBMS tables maintain foreign keys, then those
foreign keys will reside on only one of the EJB’s multiple tables.

Previously, you could associate an EJB with a single table and a list of fields and
columns. Now, you can associate sets of fields and columns for as many tables as the
EJB maps to.

Restrictions for multiple mapped tables on a single bean

Tables that are mapped to a single entity bean must not have referential integrity
constraints declared between their primary keys. Doing so may result in a runtime error
upon bean removal.
6-24 Programming WebLogic Enterprise JavaBeans

Multiple Table Mapping
Multiple Table Mappings for cmp-fields

Configure multiple table mappings for cmp-fields, in a weblogic-rdbms-bean
stanza of the EJB’s weblogic-cmp-rdbms-xml file, as follows:

1. Specify the following elements in the weblogic-cmp-rdbms-jar.xml file:

" table-field-map element

" table-name element

" field-map element

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.

The following sample XML shows an EJB that maps to a single DBMS table:

Figure 6-6 Mapping a single DBMS table

<table-name>TableName</table-name>
<field-map>

<cmp-field>name</cmp-field>
<dbms-column>name_in_tablename</dbms-column>

</field-map>

<field-map>
<cmp-field>street_address</cmp-field>
<dbms-column>street_address_in_tablename

</dbms_column>
</field-map>
<field-map>

<cmp-field>phone</cmp-field>
<dbms-column>phone_in_tablename</dbms-column>

</field-map>

The following sample XML shows an EJB that maps to two different tables:

Figure 6-7 Mapping to two DBMS tables

<table-map>
<table-name>TableName_1</table-name>

<field-map>
<!--Note ‘name’is the primary key field of this EJB -->

<cmp-field>name</cmp-field>
<dbms-column>name_in_tablename_1</dbms-column>

</field-map>
Programming WebLogic Enterprise JavaBeans 6-25

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
<field-map>
<cmp-field>street_address</cmp-field>
<dbms-column>street_address_in_tablename_1

</dbms-column>
</field-map>

</table-map>
<table-map>

<table-name>TableName_2</table-name>
<field-map>

<!--Note ‘name’is the primary key field of this EJB -->
<cmp-field>name</cmp-field>

<dbms-column>name_in_tablename_2</dbms-column>
</field-map>
<field-map>
<cmp-field>phone</cmp-field>
<dbms-column>phone_in_tablename_2</dbms-column>

</field-map>
</table-map>

Note: As shown in the above XML sample for a table mapping, you must map the
primary key field to each table’s primary key column.

Multiple Table Mappings for cmr-fields

Configure multiple table mappings for cmr-fields, in a
weblogic-relationship-role stanza of the EJB’s weblogic-cmp-rdbms-xml
file, as follows:

1. Specify the following elements in the weblogic-cmp-rdbms-jar.xml file:

" column-map element

" foreign-key-column element

" key-column element

" foreign-key-table element

" primary-key-table element

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5.
6-26 Programming WebLogic Enterprise JavaBeans

Multiple Table Mapping
Note: Multiple table mappings for cmr-fields require that the foreign key needed to
maintain a relationship be only one of the tables that constitutes the EJB.

In previous versions, the name of the DBMS table that contains the foreign
keys is implicit and uniquely determined; with multiple table mappings the
table that contains the foreign keys must be explicitly specified. For example,
a foreign key to key column mappings that is required for a one-to-one or
many-to-one relationship.

The following sample XML shows multiple table mapping for cmr-fields for an EJB
with an one-to-one relationship with another EJB:

Figure 6-8 Mapping EJBs with an one-to-one relationship

<column-map>
<foreign-key-column>forfeign_key_1</foreign-key-column>
<key-column>key_1</key-column>

</column-map>
<foreign-key-column>foreign_key_2</foreign-key-column>
<key-column>key_2</key-column>

</column-map>

The following sample XML shows the multiple table mapping for cmr-fields for an
EJB with explicitly named foreign key columns:

Figure 6-9 Mapping foreign key columns in a relationship-role-name stanza

<relationship-role-map>
<foreign-key-table>

<table-name>TableName_2</table-name>
</foreign-key-table>
<column-map>

<foreign-key-column>foreign_key_1
</foreign-key-column>

<key-column>key_11</key-column>
</column-map>
<column-map

<foreign-key-column>foreign_key_2
</foreign-key-column>

<key-column>key_12</key-column>
</column-map>
<column-map

<foreign-key-column>foreign_key_1
</foreign-key-column>

<key-column>key_21</key-column>
</column-map>
<column-map
Programming WebLogic Enterprise JavaBeans 6-27

6 WebLogic Server Container-Managed Persistence Service - Advanced Features
<foreign-key-column>foreign_key_2
</foreign-key-column>

<key-column>key_22</key-column>
</column-map>

</relationship-role-map>

When mapping many-to-many relationships, consider the following:

! The table-name element that you specify in the weblogic-rdbms-relation
element refers to a separate join table that you use to maintain foreign key -
primary key pairs between related beans.

! In the table-column-map element’s column-map, the foreign-key-column
element value refers to the DBMS column in the EJB table and the key-column
element refers to the DBMS column name in the join table which you specify by
the value in the table-name element.
6-28 Programming WebLogic Enterprise JavaBeans

CHAPTER
7 Packaging EJBs for the
WebLogic Server
Container

The following sections describe how to package EJBs into a WebLogic Server
container for deployment. They includes a description of the contents of a deployment
package, including the source files, deployment descriptors, and the deployment mode.

! Required Steps for Packaging EJBs

! Reviewing the EJB Source File Components

! WebLogic Server EJB Deployment Files

! Specifying and Editing the EJB Deployment Descriptors

! Creating the Deployment Files

! Referencing Other EJBs and Resources

! Packaging EJBs into a Deployment Directory

! Compiling EJB Classes and Generating EJB Container Classes

! Loading EJB Classes into WebLogic Server

! Specifying an ejb-client.jar

! Manifest Class-Path
Programming WebLogic Enterprise JavaBeans 7-1

7 Packaging EJBs for the WebLogic Server Container
Required Steps for Packaging EJBs

Packaging EJBs for deployment to WebLogic Server in an EJB container involves the
following steps:

1. Review the EJB source file components.

2. Create the EJB deployment files.

3. Edit the EJB deployment descriptors.

4. Set the deployment mode.

5. Generate the EJB container classes.

6. Package the EJBs into a JAR or EAR file.

7. Load EJB classes into WebLogic Server.

Reviewing the EJB Source File Components

To implement entity and session beans, use the following components:

Component Description

Bean Class The bean class implements the bean’s business and life cycle
methods.

Remote Interface The remote interface defines the beans’s business methods that
can be accessed from applications outside of the bean’s EJB
container.

Remote Home Interface The remote home interface defines the bean’s life cycle methods
that can be accessed from applications outside of the bean’s EJB
container.
7-2 Programming WebLogic Enterprise JavaBeans

WebLogic Server EJB Deployment Files
WebLogic Server EJB Deployment Files

Use the following WebLogic Server deployment files to specify the deployment
descriptor elements for the EJB.

! ejb-jar.xml

! weblogic-ejb-jar.xml

! weblogic-cmp-rdbms-jar.xml (optional, for container-managed persistence
(CMP) entity beans only)

The deployment files become part of the EJB deployment when the bean is compiled.
The XML deployment descriptor files should contain the minimum deployment
descriptor settings for the EJB. Once the file exists, it can later be edited using the
instructions in “Specifying and Editing the EJB Deployment Descriptors” on page 7-5.
The deployment descriptor files must conform to the correct version of the Document
Type Definition (DTD) for each file you use. All element and sub element (attribute)
names for each of the EJB XML deployment descriptor files are described in the file’s
Document Type Definition (DTD) file. For a description of each file, see the following
sections.

Local Interface The local interface defines the bean’s business methods that can
be used by other beans that are co-located in the same EJB
container.

Local Home Interface The local home interface defines the bean’s life cycle methods
that can be used by other beans that are co-located in the same
EJB container.

Primary Key The primary key class provides a pointer into the database. Only
entity beans need a primary key.

Component Description
Programming WebLogic Enterprise JavaBeans 7-3

7 Packaging EJBs for the WebLogic Server Container
ejb-jar.xml

The ejb-jar.xml file contains the Sun Microsystem-specific EJB DTD. The
deployment descriptors in this file describe the enterprise bean’s structure and declares
its internal dependences and the application assembly information, which describes
how the enterprise bean in the ejb-jar file is assembled into an application
deployment unit. For a description of the elements in this file, see the JavaSoft
specification.

weblogic-ejb-jar.xml

The weblogic-ejb-jar.xml file contains the WebLogic Server-specific EJB DTD
that defines the concurrency, caching, clustering, and behavior of EJBs. It also
contains descriptors that map available WebLogic Server resources to EJBs.
WebLogic Server resources include security role names and data sources such as
JDBC pools, JMS connection factories, and other deployed EJBs. For a description of
the elements in this file, see Chapter 11, “The weblogic-ejb-jar.xml Deployment
Descriptor.”

weblogic-cmp-rdbms.xml

The weblogic-cmp-rdbms.xml file contains the WebLogic Server-specific EJB
DTD that defines container-managed persistence services. Use this file to specify how
the container handles synchronizing the entity beans’s instance fields with the data in
the database. For a description of the elements in this file, see Chapter 12, “The
weblogic-cmp-rdbms- jar.xml Deployment Descriptor.”

Relationships Among the Deployment Files

Descriptors in weblogic-ejb-jar.xml are linked to EJB names in ejb-jar.xml, to
resource names in a running WebLogic Server, and to persistence type data defined in
weblogic-cmp-rdbms-jar.xml (for entity EJBs using container-managed
persistence). The following diagram shows the relationship among the deployment
files and WebLogic Server.
7-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

Specifying and Editing the EJB Deployment Descriptors
Figure 7-1 The relationship among the components of the deployment files.

Specifying and Editing the EJB Deployment
Descriptors

You specify or edit EJB deployment descriptors by any of the following methods:

! Using a text editor to manually edit the bean’s deployment files. For instructions
on manually editing the deployment files, see “Manually Editing EJB
Deployment Descriptors” on page 7-6.

<security-role-assignment>. . .
<weblogic-enterprise-bean>

<ejb-name>. . .
<caching-descriptor>. . .
<clustering-descriptor>. . .
<resource-descriptor>. . .
<reference-descriptor>. . .
<persistence-descriptor>. . .

</ejb-name>
</weblogic-enterprise-bean>

weblogic-ejb-jar.xml

Principal

JDBC Pool

JMS

<weblogic-rdbms-bean>
. . .

</weblogic-rdbms-bean>

weblogic-cmp-rdbms-jar.xml

<assembly-descriptor>
<security-role>. . .

</assembly-descriptor>
<entity>

<ejb-name>. . .
<ejb-ref>. . .

</entity>

ejb-jar.xml
WebLogic Server

EJB
Programming WebLogic Enterprise JavaBeans 7-5

7 Packaging EJBs for the WebLogic Server Container
! Using the Builder tool to edit deployment descriptors in a GUI environment.
See “Builder” on page 10-6.

! Using a WebLogic Server command line utility tool called DDConverter to
convert EJB 1.1 deployment descriptors to EJB 2.0 XML. For instructions on
using the DDConverter tool, see “DDConverter” on page 10-7.

Creating the Deployment Files

You create the basic XML deployment files for the EJB that conforms to the correct
version of the Document Type Definition (DTD) for each file. You can use an existing
EJB deployment file as a template or copy one from the EJB examples in your
WebLogic Server distribution:

SAMPLES_HOME\server\config\examples\applications

Manually Editing EJB Deployment Descriptors

To edit XML deployment descriptor elements manually:

1. Use an ASCII text editor that does not reformat the XML or insert additional
characters that could invalidate the file.

2. Open the XML deployment descriptor file that you want to edit.

3. Type in your changes. Use the correct case for file and directory names, even if
your operating system ignores the case.

4. To use the default value for an optional element, either omit the entire element
definition or specify a blank value, as in:

<max-beans-in-cache></max-beans-in-cache>
7-6 Programming WebLogic Enterprise JavaBeans

Referencing Other EJBs and Resources
Referencing Other EJBs and Resources

An EJB can look up and use other EJBs deployed in WebLogic Server by specifying
an EJB reference in the deployment descriptor. The requirements for creating an EJB
reference differ depending on whether the referenced EJB is external to the calling EJB
(deployed independently of the calling EJB’s application EAR file) or deployed as part
of the same application EAR file.

Referencing External EJBs

To reference an external EJB, you add a <reference-descriptor> stanza to the
calling EJB’s weblogic-ejb-jar.xml file. The following XML code shows a
sample stanza that references an external EJB:

Figure 7-2 Sample XML code referencing an external EJB

<reference-descriptor>
<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>
<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>
76</reference-descriptor>

In the sample stanza, the ejb-ref-name element specifies the name that the calling
EJB uses to look up the external EJB. The jndi-name element specifies the global
JNDI name to use when looking up the specified ejb-ref-name.

Referencing Application-Scoped EJBs

When you deploy multiple EJBs as part of the same EAR file, WebLogic Server adds
the EJB names to the application’s local JNDI tree. EJBs and other components of the
application can look up other application-scoped components directly in the JNDI tree
relative to java:comp/env.
Programming WebLogic Enterprise JavaBeans 7-7

7 Packaging EJBs for the WebLogic Server Container
An EJB that references other EJBs deployed as part of the same EAR file does not need
to specify a global JNDI name in the weblogic-ejb-jar.xml file. In fact, you can
omit the weblogic-ejb-jar.xml file entirely if you do not need other
WebLogic-specific features of the deployment descriptor.

To reference an EJB deployed as part of the same EAR file, add an <ejb-local-ref>
stanza to the calling EJB’s ejb-jar.xml deployment descriptor file. For example:

Figure 7-3 Sample XML code referencing an EJB in the same EAR file

<ejb-local-ref>
<description>Reference to application EJB</description>
<ejb-ref-name>ejb1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>mypackage.ejb1.MyHome</home>
<local>mypackage.ejb1.MyRemote</local>
<ejb-link>ejb1.jar#myejb</ejb-link>

</ejb-local-ref>

In this example, the ejb-ref-name element indicates the name the calling EJB uses
to look up the application-scoped EJB. The ejb-link element maps the indicated
<ejb-ref-name> to the other EJB deployed in the EAR file. Note that this example
qualifies the <ejb-link> name with the filename that stores the second EJB.
Qualifying the EJB name in this manner is necessary when two or more EJBs in the
EAR file use the same name; the filename qualifier ensures a unique reference.

For more information about EJB links, see “Using EJB Links” on page 4-29.

Referencing Application-Scoped JDBC DataSources

EJBs can also access JDBC DataSources that are deployed as part of the same EAR
file. DataSources that are identified in the weblogic-application.xml deployment
descriptor can be accessed locally from java:comp/env (without referencing the
DataSource’s global JNDI name). See Configuring Application-Scoped Resources in
Configuring Web Applications for more information.
7-8 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/webapp/components.html#appres
http://e-docs.bea.com/wls/docs81b/webapp/index.html

Packaging EJBs into a Deployment Directory
Packaging EJBs into a Deployment Directory

The deployment process begins with a JAR file or a deployment directory that contains
the compiled EJB interfaces and implementation classes created by the EJB provider.
Regardless of whether the compiled classes are stored in a JAR file or a deployment
directory, they must reside in subdirectories that match their Java package structures.

The EJB provider should also supply an EJB compliant ejb-jar.xml file that
describes the bundled EJB(s). The ejb-jar.xml file and any other required XML
deployment file must reside in a top-level META-INF subdirectory of the JAR or
deployment directory. The following diagram shows the first stage of packaging the
the EJB and the deployment descriptor files into a deployment directory or JAR file.

Figure 7-4 Packaging the EJB classes and deployment descriptors into a
deployment directory

As is, the basic JAR or deployment directory cannot be deployed to WebLogic Server.
You must first create and configure the WebLogic-specific deployment descriptor
elements in the weblogic-ejb-jar.xml file, and add that file to the deployment
directory or ejb.jar file. For more information on creating the deployment descriptor
files, see “WebLogic Server EJB Deployment Files” on page 7-3.

If you are deploying an entity EJB that uses container-managed persistence, you must
also add the WebLogic -specific deployment descriptor elements for the bean’s
persistence type. For WebLogic Server container-managed persistence (CMP)
services, the file is generally named weblogic-cmp-rdbms-jar.xml. You require
a separate file for each bean that uses CMP. If you use a third-party persistence vendor,

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

ejb-jar.xml

Step 1:
Set deployment
descriptors

JAR file or deployment directory JAR file or deployment directory

EJB home,
EJB local
home, local,
remote, bean

EJB home, EJB localhome
local, remote, bean
Programming WebLogic Enterprise JavaBeans 7-9

7 Packaging EJBs for the WebLogic Server Container
the file type as well as its contents may be different from
weblogic-cmp-rdbms-jar.xml; refer to your persistence vendor’s documentation
for details.

If you do not have any of the deployment descriptor files needed for your EJB, you
must manually create one. The best method is to copy an existing file and edit the
settings to conform to the needs of your EJB. Use the instructions in “Specifying and
Editing the EJB Deployment Descriptors” on page 7-5 to create the files.

ejb.jar file

You create the ejb.jar file with the Java Jar utility (javac). This utility bundles the
EJB classes and deployment descriptors into a single Java ARchive (JAR) file that
maintains the directory structure. The ejb-jar file is the unit that you deploy to
WebLogic Server.

Compiling EJB Classes and Generating EJB
Container Classes

For part of the process of building your deployment unit, you need to compile your
EJB classes, add your deployment descriptors to the deployment unit, and generate the
container classes used to access the deployment unit.

1. Compile the EJB classes using javac compiler from the command line.

2. Add the appropriate XML deployment descriptor files to the compiled unit using
the guidelines in “WebLogic Server EJB Deployment Files” on page 7-3.

3. Generate the container classes that are used to access the bean using appc.

Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces
(home, local, and/or remote) that clients use.
7-10 Programming WebLogic Enterprise JavaBeans

Compiling EJB Classes and Generating EJB Container Classes
The appc compiler generates container classes according to the deployment
descriptors you have specified in WebLogic-specific XML deployment descriptor
files. For example, if you indicate that your EJBs will be used in a cluster, appc creates
special cluster-aware classes that will be used for deployment.

You can also use appc directly from the command line by supplying the required
options and arguments. See “appc” on page 10-3 for more information.

The following figure shows the container classes added to the deployment unit when
the JAR file is generated.

Figure 7-5 Generating EJB container classes

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

Step 2:
Generate
container
classes

JAR file or deployment directory

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

JAR file or deployment directory

ejbHomeImpl.class

ejbHomeImplWLProxy.class

ejbPSWeblogic_CMP_RDBMS.class

ejbEOImpl.class

EJB home, EJB localhome,
local, remote, bean

EJB home, EJB localhome
local, remote, bean
Programming WebLogic Enterprise JavaBeans 7-11

7 Packaging EJBs for the WebLogic Server Container
Once you have generated the deployment unit, you can designate the file extension as
either a JAR, EAR, or WAR archive.

Possible Generated Class Name Collisions

Although infrequent, when you generate classes with appc, you may encounter a
generated class name collision which could result in a ClassCaastException and
other undesireable behavior. This is because the names of the generated classes are
based on three keys: the bean class name, the bean class package, and the ejb-name for
the bean. This problem occurs when you use an EAR file that contains multiple JAR
files and at least two of the JAR files contains an EJB with both the same bean class,
package, or classname and both of those EJBs have the same ejb-name in their
respective JAR files. If you experience this problem, change the ejb-name of one of
the beans to make it unique.

Since the ejb-name is one of the keys on which the file name is based and the
ejb-name must be unique within a JAR file, this problem never occurs with two EJBs
in the same JAR file. Also, since each EAR file has its own classloader, this problem
never occurs with two EJBs in different EAR files.

Loading EJB Classes into WebLogic Server

Classloaders in Weblogic Server are hierarchical. When you start WebLogic Server,
the Java system classloader is active and is the parent of all subsequent classloaders
that WebLogic Server creates. When WebLogic Server deploys an application, it
automatically creates two new classloaders: one for EJBs and one for Web
applications. The EJB classloader is a child of the Java system classloader and the Web
application classloader is a child of the EJB classloader.

For more information on classloading, see “Classloader Overview” and “About
Application Classloaders” in Developing WebLogic Server Applications.
7-12 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/programming/packaging.html

Specifying an ejb-client.jar
Specifying an ejb-client.jar

WebLogic Server supports the use of ejb-client.jar files.

The ejb-client.jar always contains the home and remote interfaces and the
primary key class, for entity beans. WebLogic Server adds these classes to the
ejb-client.jar and then determines which additional files to load by checking
which files these classes and any files they refer to reference. However, if the file is
referenced in your classpath, WebLogic Server will not add it to ejb-client.jar.
This enables WebLogic Server to add necessary custom classes to the
ejb-client.jar; but restrict the generic classes such as java.lang.String.

Also, ejb-client.jar contains a copy of any classes from the ejb-jar file that are
referenced by the home and remote interfaces and the primary key classhome and
remote interfaces and the primary key class.

For example, the ShoppingCart remote interface might have a method that returns an
Item class. Because this remote interface references this class, and it is located in the
ejb-jar file, it will be included in the EJB client.jar.

Create an ejb-client.jar file by specify this feature in the bean’s ejb-jar.xml
deployment descriptor file and then generating the ejb-client.jar file using
weblogic.appc. An ejb-client.jar contains the class files that a client program
needs to call the EJBs contained in the ejb-jar file. The files are the classes required
to compile the client. If you specify this feature, WebLogic Server automatically
creates the ejb-client.jar.

To specify an ejb-client.jar:

1. Compile the bean’s Java classes into a directory, using the javac compiler from
the command line.

2. Add the EJB XML deployment descriptor files to the compiled unit using the
guidelines in “WebLogic Server EJB Deployment Files” on page 7-3.

3. Edit the ejb-client-jar deployment descriptor in the bean’s ejb-jar.xml
file, as follows, to specify support for ejb-client.jar:

<ejb-client-jar>ShoppingCartClient.jar</ejb-client-jar>
Programming WebLogic Enterprise JavaBeans 7-13

7 Packaging EJBs for the WebLogic Server Container
4. Generate the container classes that are used to access the bean using
weblogic.appc and create the ejb-client.jar using the following
command:

$ java weblogic.appc <ShoppingCart.jar>

Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces
(home, local, and/or remote) that clients use.

The ejb-client.jar always contains the home and remote interfaces and the
primary key class, for entity beans. Also, it contains a copy of any classes from the
ejb-jar file that are referenced by these interfaces. For example, the ShoppingCart
remote interface might have a method that returns an Item class. Because this remote
interface references this class, and it is located in the ejb-jar file, it will be included
in the EJB client.jar.

External clients can include the ejb-client.jar in their classpath. Web applications
would include the ejb-client.jar in their /lib directory.

Manifest Class-Path

Use the manifest file to specify that a JAR file can reference another JAR file.
Standalone EJBs cannot use the Manifest Class-Path. It is only supported for
components that are deployed within an EAR file. The clients should reference the
client.jar in the classpath entry of the manifest file.

To use the manifest file to reference another JAR file:

1. Specify the name of the referenced JAR file in a Class-Path header in the
referencing JAR file’s Manifest file.

The referenced JAR file is named using a URL relative to the URL of the
referencing JAR file.

2. Name the manifest file META-INF/MANIFEST.MF in the JAR file

3. The Class-Path entry in the Manifest file is as follows:

Class-Path: AAyy.jar BByy.jar CCyy.jar.
7-14 Programming WebLogic Enterprise JavaBeans

Manifest Class-Path
Note: The entry is a list of JAR files separated by spaces.

To place the home/remote interfaces for the EJB in the classpath of the calling
component:

1. Use appc to compile the EJB into a JAR file.

2. Create a client.jar file. For instructions on using the client.jar, see
“Specifying an ejb-client.jar” on page 7-13.

3. Place the client.jar, along with all the clients of the bean in an EAR.

4. Reference the EAR in the manifest file.

.

Programming WebLogic Enterprise JavaBeans 7-15

7 Packaging EJBs for the WebLogic Server Container
7-16 Programming WebLogic Enterprise JavaBeans

CHAPTER
8 Deploying EJBs to
WebLogic Server

The following sections provides instructions for deploying EJBs to WebLogic Server
at WebLogic Server startup or on a running WebLogic Server. You can create, modify,
and deploy EJBs in one or more instance of WebLogic Server. You can set up your
EJB deployment, and map EJB references to actual resource factories, roles, and other
EJBs available on a server by editing the XML deployment descriptor files.

! Deploying EJBs at WebLogic Server Startup

! Deploying EJBs on a Running WebLogic Server

! Deploying New EJBs into a Running Environment

! Undeploying Deployed EJBs

! Updating Deployed EJBs

! Deploying Compiled EJB Files

! Deploying Uncompiled EJB Files

Deploying EJBs at WebLogic Server Startup

To deploy EJBs automatically when WebLogic Server starts:
Programming WebLogic Enterprise JavaBeans 8-1

8 Deploying EJBs to WebLogic Server
1. Follow the instructions in “Specifying and Editing the EJB Deployment
Descriptors” on page 7-5 to ensure that your deployable EJB JAR file or
deployment directory contains the required WebLogic Server XML deployment
files.

2. Use a text editor or the EJB Deployment Descriptor Editor in the Administration
Console to edit the XML deployment descriptor elements, as necessary.

3. Follow the instructions in “Compiling EJB Classes and Generating EJB
Container Classes” on page 7-10 to compile implementation classes required for
WebLogic Server.

Compiling the container classes places the JAR file in the deployment directory.
If you want the EJB to automatically deploy when WebLogic Server starts, place
the EJB you want to deploy in the following directory:

mydomain\applications\DefaultWebApp directory

If your EJB JAR file is located in a different directory, make sure that you copy
it to this directory if you want to deploy it at startup.

4. Start WebLogic Server.

When you boot WebLogic Server, it automatically attempts to deploy the
specified EJB JAR file or deployment directory.

5. Launch the Administration Console.

6. In the left pane, click Deployments and then the EJB node.

A list of the EJB deployments for the server displays under the node.

Deploying EJBs in Different Applications

When you deploy EJBs with remote calls to each other in different applications,
you cannot use call-by-reference to invoke the EJBs. Instead, you use
pass-by-value. You should place components that commonly interact with
each other in the same application where call-by-reference can be used. By
default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation because
parameters are not copied. Pass-by-value is always necessary when EJBs are
called remotely (not from within the server).
8-2 Programming WebLogic Enterprise JavaBeans

Deploying EJBs on a Running WebLogic Server
Deploying EJBs on a Running WebLogic
Server

Although placing the EJB JAR file or deployment directory in the
wlserver/config/mydomain/applications directory allows the EJB to be
immediately deployed, if you make a change to the deployed EJB, you must redeploy
the EJB for the changes to take effect.

Automatic deployment is provided for situations where rebooting WebLogic Server is
not feasible and is for development purposes only. Using automatic deployment only
deploys the updated EJB to the Administration Server and does not deploy the EJB to
any Managed Server on the domain. Using automatic deployment features, you can:

! Deploy a newly developed EJB to a running development system

! Remove a deployed EJB to restrict access to data

! Update a deployed EJB implementation class to fix a bug or test a new feature

Whether you deploy or update the EJB from the command line or the Administration
Console, you use the automatic deployment features. The following sections describe
automatic deployment concepts and procedures.

EJB Deployment Names

When you deploy an EJB JAR file or deployment directory, you specify a name for the
deployment unit. This name is a shorthand reference to the EJB deployment that you
can later use to undeploy or update the EJB.

When you deploy an EJB, WebLogic Server implicitly assigns a deployment name that
matches the path and filename of the JAR file or deployment directory. You can use
this assigned name to undeploy or update the bean after the server has started.

Note: The EJB deployment name remains active in WebLogic Server until the server
is rebooted. Undeploying an EJB does not remove the associated deployment
name, because you may later re-use that name to deploy the bean.
Programming WebLogic Enterprise JavaBeans 8-3

8 Deploying EJBs to WebLogic Server
Deploying New EJBs into a Running Environment

To deploy an EJB JAR file or deployment directory that has not been deployed to
WebLogic Server:

1. Start the WebLogic Server Administration Console.

2. Select the Domain in which you will be working.

3. In the left pane of the Console, click Deployments.

4. In the left pane of the Console, click EJB. A table displays in the right pane of the
Console showing all the deployed EJBs.

5. Select the Configure a new EJB option.

6. Locate the EAR, WAR or JAR file you would like to configure. You can also
configure an exploded application or component directory. Note that WebLogic
Server will deploy all components it finds in and below the specified directory.

7. Click [select] to the left of a directory or file to choose desired file and proceed to
the next step.

8. Select a Target Server from among Available Servers.

9. Enter a name for the EJB or application in the provided field.

10. Click Configure and Deploy to install the EJB or application. The Console will
display the Deploy panel, which lists deployment status and deployment
activities for the EJB.

11. Using the available tabs, enter the following information:

" Configuration—Edit the staging mode and enter the deployment order.

" Targets—Indicate the Targets-Server for this configured EJB or application
by moving the server from the Available list to the Chosen list.

" Deploy—Deploy the EJB or application to all or selected targets or undeploy
it from all or selected targets.

" Monitoring—Enable session monitoring for the EJB or application.

" Notes—Enter notes related to the EJB or application.
8-4 Programming WebLogic Enterprise JavaBeans

Viewing Deployed EJBs
Viewing Deployed EJBs

To view deployed EJBs:

1. Start the Administration Console.

2. Click the Deployments node in the left pane and then choose the EJB sub-node.
A list of EJBs deployed on your domain displays under EJB and in the right pane.

Undeploying Deployed EJBs

Undeploying an EJB effectively prohibits all clients from using the EJB. When you
undeploy the EJB, the specified EJB’s implementation class is immediately marked as
unavailable in the server. WebLogic Server automatically removes the implementation
class and propagates an UndeploymentException to all clients that were using the
bean.

Undeployment does not automatically remove the specified EJB’s public interface
classes. Implementations of the home interface, remote interface, and any support
classes referenced in the public interfaces, remain in the server until all references to
those classes are released. At that point, the public classes may be removed due to
normal Java garbage collection routines.

Similarly, undeploying an EJB does not remove the deployment name associated with
the ejb.jar file or deployment directory. The deployment name remains in the server
to allow for later updates of the EJB.

Undeploying EJBs

To undeploy a deployed EJB, use the following steps:

From the WebLogic Server Administration Console:

1. Select the component in the left panel.
Programming WebLogic Enterprise JavaBeans 8-5

8 Deploying EJBs to WebLogic Server
2. In the component Deployments table, select the component to undeploy.

3. Click Apply.

Undeploying an EJB does not remove the EJB deployment name from WebLogic
Server. The EJB remains undeployed for the duration of the server session, as long as
you do not change it once it had been undeployed. You cannot re-use the deployment
name with the deploy argument until you reboot the server. You can re-use the
deployment name to update the deployment, as described in the following section.

Updating Deployed EJBs

When you update the contents of an ejb.jar file or deployment directory that has been
deployed to WebLogic Server, those updates are not reflected in WebLogic Server
until:

! You reboot the server (if the JAR or directory is to be automatically deployed),
or

! You update the EJB deployment using the WebLogic Server Administration
Console.

Updating an EJB deployment enables an EJB provider to make changes to a deployed
EJB’s implementation classes, recompile, and then “refresh” the implementation
classes in a running server.

The Update Process

When you update the currently-loaded implementation, classes for the EJB are
immediately marked as unavailable in the server, and the EJB’s classloader and
associated classes are removed. At the same time, a new EJB classloader is created,
which loads and maintains the revised EJB implementation classes.

When clients next acquire a reference to the EJB, their EJB method calls use the
updated EJB implementation classes.
8-6 Programming WebLogic Enterprise JavaBeans

Deploying Compiled EJB Files
Note: You can update only the EJB implementation classes, as described in
“Loading EJB Classes into WebLogic Server” on page 7-12. You cannot
update the EJB’s public interfaces, or any support classes that are used by the
public interfaces. If you make any changes to the EJB’s public classes and
attempt to update the EJB, WebLogic Server displays an incompatible class
change error when a client next uses the EJB instance.

Updating the EJB

To update or redeploy the EJB implementation class, use the following steps:

From the WebLogic Server Administration Console:

1. Choose EJB from the Deployments node in the left pane of the Console.

2. Click the EJB you want to update from the list.

3. In the displayed table, click the name of the EJB you wish to update.

4. Update the Name and Deployed status as needed.

5. Click Apply.

You can update only the EJB implementation class, not the public interfaces or public
support classes

Deploying Compiled EJB Files

To create compiled EJB 2.0 JAR or EAR files:

1. Compile your EJB classes and interfaces using javac.

2. Package the EJB classes and interfaces into a valid JAR or EAR file.

3. Use the weblogic.appc compiler on the JAR file to generate WebLogic Server
container classes. For instructions on using appc, see “appc” on page 10-3.

To create compiled EJBs from previous versions of WebLogic Server:
Programming WebLogic Enterprise JavaBeans 8-7

8 Deploying EJBs to WebLogic Server
1. Run weblogic.appc against the ejb JAR file to generate EJB 2.0
container-classes.

2. Copy the compiled ejb JAR files into

mydomain\applications\DefaultWebApp directory

Note: You should manually recompile any EJBs from previous versions before
deploying then to the EJB container. Otherwise, WebLogic Server
automatically recompiles the EJBs and if there are errors, the output from the
compile is sent to a separate log file.

If you change the contents of a compiled ejb.jar file in applications (by
repackaging, recompiling, or copying over the existing ejb.jar), WebLogic Server
automatically attempts to redeploy the ejb.jar file using the automatic deployment
feature.

Note: Because the automatic redeployment feature uses dynamic deployment,
WebLogic Server can only redeploy an EJB’s implementation classes. You
cannot redeploy an EJB’s public interfaces.

Deploying Uncompiled EJB Files

The WebLogic Server container also enables you to automatically deploy JAR files
that contain uncompiled EJB classes and interfaces. An uncompiled EJB file has the
same structure as a compiled file, with the following exceptions:

! You do not have to compile individual class files and interfaces.

! You do not have to use weblogic.appc on the packaged JAR file to generate
WebLogic Server container classes.

The .java or .class files in the JAR file must still be packaged in subdirectories that
match their Java package hierarchy. Also, as with all ejb.jar files, you must include
the appropriate XML deployment files in a top-level META-INF directory.

After you package the uncompiled classes, simply copy the JAR into the
wlserver\config\mydomain\applications directory. If necessary, WebLogic
Server automatically runs javac (or a compiler you specify) to compile the .java
8-8 Programming WebLogic Enterprise JavaBeans

Deploying Uncompiled EJB Files
files, and runs weblogic.appc to generate container classes. The compiled classes are
copied into a new JAR file in mydomain\applications\DefaultWebApp, and
deployed to the EJB container.

Should you ever modify an uncompiled ejb .jar in the applications directory
(either by repackaging or copying over the JAR file), WebLogic Server automatically
recompiles and redeploys the JAR using the same steps.

Note: Because the automatic redeployment feature uses dynamic deployment,
WebLogic Server can only redeploy an EJB’s implementation classes. You
cannot redeploy an EJB’s public interfaces.
Programming WebLogic Enterprise JavaBeans 8-9

8 Deploying EJBs to WebLogic Server
8-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
9 EJB Runtime
Monitoring

The runtime information collected for an EJB is substantial and can be very useful for
tuning and debugging the EJB. This section discusses each of the runtime monitoring
attributes and statistics collected and points you to some basic guidelines for tuning
your EJB based on the information.

It is important to note that some runtime counts are only collected to calculate a ratio
and are not useful in isolation. For example, the cache hit count is useless without the
context of the cache access count. Together, however, one can calculate the cache hit
ratio, which can be a very valuable statistic. However, some runtime attributes are
useful by themselves, such as the cached beans current count, which is useful to
measure the current usage of the cache.

Note: Every application is different so you should not consider these guidelines
definitive.

Runtime Cache Attributes

This section gives detailed information on runtime cache attributes, including the fol-
lowing:

! “Cached Beans Current Count” on page 9-2

! “Cache Access Count” on page 9-2

! “Cache Hit Count” on page 9-2
Programming WebLogic Enterprise JavaBeans 9-1

9 EJB Runtime Monitoring
! “Cache Miss Count” on page 9-2

! “Activation Count” on page 9-3

! “Passivation Count” on page 9-3

! “Cache Miss Ratio” on page 9-3

Cached Beans Current Count

Returns the total number of beans from this EJB Home currently in the EJB cache. This
information may be useful to calculate the current percentage of the configured cache
capacity being utilized.

Cache Access Count

Returns the total number of attempts to access a bean from the cache. This information
is useful for giving context to other counts such as cache hits.

Cache Hit Count

Returns the total number of times an attempt to access a bean from the cache
succeeded. This information is useful for determining the effectiveness of the EJB
cache.

Cache Miss Count

Returns the total number of times an attempt to access a bean from the cache failed.
This information is useful for determining the effectiveness of the EJB cache.
9-2 Programming WebLogic Enterprise JavaBeans

Runtime Lock Manager Attributes
Activation Count

Returns the total number of beans from this EJB Home that have been activated.

Passivation Count

Returns the total number of beans from this EJB Home that have been passivated.

Cache Miss Ratio

The cache miss ratio is a ratio of the number of times a container cannot find a bean in
the cache (cache miss) to the number of times it attempts to find a bean in the cache
(cache access). In general, the lower your cache miss ratio, the better your EJB will
perform. The amount of time saved by getting a bean from the cache depends on the
cost of the bean’s ejbActivate method as well as the bean’s
cache-between-transactions setting. When a cache miss occurs, a bean must be
obtained from the free pool and its ejbActivate method must be called. The more
expensive it is to invoke ejbActivate, the more the cache miss will hurt performance.
If the EJB is configured with cache-between-transactions set to true, the cache miss
will also force the EJB container to make an extra call to the database to load the bean.

For information on what to tune in response to the cache miss ratio statistic, see “Cache
Miss Ratio” in the WebLogic Server Performance and Tuning Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#cache_miss_ratio.

Runtime Lock Manager Attributes

This section gives detailed information on runtime lock manager attributes, including
the following:

! “Lock Entries Current Count” on page 9-4

! “Lock Manager Access Count” on page 9-4
Programming WebLogic Enterprise JavaBeans 9-3

http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#cache_miss_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#cache_miss_ratio

9 EJB Runtime Monitoring
! “Waiter Total Count” on page 9-4

! “Timeout Total Count” on page 9-4

! “Lock Waiter Ratio” on page 9-5

! “Lock Timeout Ratio” on page 9-5

Lock Entries Current Count

Returns the current number of lock entries in the lock manager. This information isn’t
really useful for tuning an EJB but it may be helpful in detecting stale lock entries.

Lock Manager Access Count

Returns the total number of attempts to obtain a lock on a bean. This includes attempts
to obtain a lock on a bean that is already locked on behalf of the client. This
information is useful for giving context to the waiter and timeout total counts.

Waiter Total Count

Returns the total number Threads that have waited for a lock on a bean. This
information is useful to calculate the lock waiter ratio.

Timeout Total Count

Returns the total number of threads that have timed out waiting for a lock on a bean.
This information is useful to calculate the lock timeout ratio.
9-4 Programming WebLogic Enterprise JavaBeans

Runtime Free Pool Attributes
Lock Waiter Ratio

This is the ratio of the number of times a thread had to wait to obtain a lock on a bean
to the total amount of lock requests issued. For best performance, you want the lock
waiter ratio to be as low as possible.

For information on what to tune in response to the lock waiter ratio statistic, see “Lock
Waiter Ratio” in the WebLogic Server Performance and Tuning Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#lock_waiter_ratio.

Lock Timeout Ratio

This is the ratio of timeouts to accesses for the lock manager. Timeouts are very
detrimental to performance and therefore, you should strive to keep your lock timeout
ratio to an absolute minimum. Timeouts hurt performance on several levels. First, each
thread waiting for a lock is one less thread that the server can be using to service other
requests. Second, a lock timeout will result in an exception that will roll back the
current transaction, erasing any work already done in the transaction and causing the
current request to fail.

For information on what to tune in response to the lock timeout ratio statistic, see
“Lock Timeout Ratio” in the WebLogic Server Performance and Tuning Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#lock_timeout_ratio.

Runtime Free Pool Attributes

This section gives detailed information on runtime free pool attributes, including the
following:

! “Access Total Count” on page 9-6

! “Miss Total Count” on page 9-6

! “Destroyed Total Count” on page 9-6

! “Pooled Beans Current Count” on page 9-6
Programming WebLogic Enterprise JavaBeans 9-5

http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#lock_waiter_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#lock_waiter_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#lock_timeout_ratio

9 EJB Runtime Monitoring
! “Beans In Use Current Count” on page 9-7

! “Waiter Current Count” on page 9-7

! “Pool Timeout Total Count” on page 9-7

! “Pool Miss Ratio” on page 9-7

! “Destroyed Bean Ratio” on page 9-8

! “Pool Timeout Ratio” on page 9-8

Access Total Count

Returns the total number of times an attempt was made to get an instance from the free
pool. This information is useful for giving context to the other free pool counts.

Miss Total Count

Returns the total number of times a failed attempt was made to get an instance from
the free pool. An Attempt to get a bean from the pool will fail if there are no available
instances in the pool. This information is useful for calculating the pool miss ratio.

Destroyed Total Count

Returns the total number of times a bean instance from this pool was destroyed due to
a non-application Exception being thrown from it. This information is useful for
calculating the destroyed bean ratio.

Pooled Beans Current Count

Returns the current number of available bean instances in the free pool. This
information is useful for tracking demand for your EJB. For example, this can be
important when investigating an abnormal pool miss ratio.
9-6 Programming WebLogic Enterprise JavaBeans

Runtime Free Pool Attributes
Beans In Use Current Count

Returns the number of bean instances currently in use from the free pool. This
information is useful for tracking demand for your EJB. For example, this can be
important when investigating an abnormal pool miss ratio.

Waiter Current Count

Returns the number of Threads currently waiting for an available bean instance from
the free pool. This information may be useful, for example, for investigating the cause
of poor application performance at a particular time.

Pool Timeout Total Count

Returns the total number of Threads that have timed out waiting for an available bean
instance from the free pool. This information is useful for calculating the pool timeout
ratio.

Pool Miss Ratio

The pool miss ratio is a ratio of the number of times a request was made to get a bean
from the pool when no beans were available, to the total number of requests for a bean
made to the pool. The consequence of a pool miss is different for different types of
beans.

A pool miss for a stateless session bean will cause the requesting thread to wait for a
bean to become available in the pool. The maximum time a thread will wait is equal to
the transaction timeout value for the bean.

Entity beans and message-driven beans will never wait for an instance to become
available. Instead, a pool miss will cause the pool to create a new bean instance to
service the request. Pool misses come at a cost since the executing thread will either
have to wait for a bean to become available or have to wait for a new bean to be created.
As such, it is best to try to keep your pool miss ratio to a minimum.
Programming WebLogic Enterprise JavaBeans 9-7

9 EJB Runtime Monitoring
For information on what to tune in response to the pool miss ratio statistic, see “Pool
Miss Ratio” in the WebLogic Server Performance and Tuning Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#pool_miss_ratio.

Destroyed Bean Ratio

The destroyed bean ratio is a ratio of the number of beans destroyed to the total number
of requests for a bean. The EJB specification mandates that the EJB container destroys
a bean when non-application exceptions are thrown from the bean during execution.
Destroying beans comes at a cost, however, because destroyed beans will likely have
to be replaced with new bean instances. As a result, you should keep your destroyed
bean ratio to a minimum.

For information on what to tune in response to the destroyed bean ratio statistic, see
“Destroyed Bean Ratio” in the WebLogic Server Performance and Tuning Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#destroyed_bean_ratio.

Pool Timeout Ratio

The pool timeout ratio is a ratio of requests that have timed out waiting for a bean from
the pool to the total number of requests made. This ratio is only valid for stateless
session beans because it is the only type of bean that will wait for a bean to become
available.

Other types of beans will automatically create a new instance to service a request rather
than waiting. For best performance, the pool timeout ratio should be as small as
possible.

For information on what to tune in response to the pool timeout ratio statistic, see “Pool
Timeout Ratio” in the WebLogic Server Performance and Tuning Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#pool_timeout_ratio.
9-8 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#pool_miss_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#pool_miss_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#destroyed_bean_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#pool_timeout_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#pool_timeout_ratio

Runtime Transaction Attributes
Runtime Transaction Attributes

Note: Runtime transaction attributes are not exposed in the 8.1 Beta 1
Administration Console.

This section gives detailed information on runtime transaction attributes, including the
following:

! “Transactions Committed Total Count” on page 9-9

! “Transactions Rolled Back Total Count” on page 9-9

! “Transactions Timed Out Total Count” on page 9-9

! “Transaction Rollback Ratio” on page 9-10

! “Transaction Timeout Ratio” on page 9-10

Transactions Committed Total Count

Returns the total number of transactions that have been committed for this EJB. This
information is useful for calculating transaction commit ratio.

Transactions Rolled Back Total Count

Returns the total number of transactions that have been rolled back for this EJB. This
information is useful for calculating transaction commit ratio.

Transactions Timed Out Total Count

Returns the total number of transactions that have timed out for this EJB. This
information is useful in calculating transaction timeout ratio.
Programming WebLogic Enterprise JavaBeans 9-9

9 EJB Runtime Monitoring
Transaction Rollback Ratio

The transaction rollback ratio is the ratio of transactions that have rolled back to the
number of total transactions involving the EJB. This information is useful for several
reasons. First, it may be useful for signaling a problem with an application. For
example, an unexpectedly high rollback ratio may be caused by a problem with a
resource used by the application. It may also be useful in gauging the efficiency of an
application. A high transaction rollback ratio may mean that a lot of work is being done
only to eventually be rolled back, which is inefficient.

For information on what to tune in response to the transaction rollback ratio statistic,
see “Transaction Rollback Ratio” in the WebLogic Server Performance and Tuning
Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#transaction_rollback_r
atio.

Transaction Timeout Ratio

The transaction timeout ratio is the ratio of transactions that have timed out to the total
number of transactions involving an EJB. Timeouts can be especially concerning
because they are a signal of inefficiency.

Every EJB request uses valuable server resources such as threads and bean instances.
A timed out transaction means that server resources were tied up in vein. The
transaction timeout ratio is a good indicator of a problem with an application.

For information on what to tune in response to the transaction timeout ratio statistic,
see “Transaction Timeout Ratio” in the WebLogic Server Performance and Tuning
Guide at
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#transaction_timeout_ra
tio.

JMS Attributes

This section gives detailed information on JMS attributes, including the following:
9-10 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#transaction_rollback_ratio
http://e-docs.bea.com/wls/docs81b/perform/EJBTuning.html#transaction_timeout_ratio

JMS Attributes
! “JMSConnection Alive” on page 9-11

JMSConnection Alive

The JMSConnection Alive field tells you whether the EJB container has success-
fully connected to the JMS destination source and that therefore the mes-
sage-driven bean is receiving messages. If this field’s value displays as false,
check the server log for possible reasons for connection failure.
Programming WebLogic Enterprise JavaBeans 9-11

9 EJB Runtime Monitoring
9-12 Programming WebLogic Enterprise JavaBeans

CHAPTER
10 WebLogic Server EJB
Tools

BEA provides several tools you can use to help you create and configure EJBs. They
are discussed in the following sections:

! Ant Tasks

! appc (weblogic.appc)

! Builder

! DDConverter (weblogic.ejb.utils.DDConverter)

! Deployer (weblogic.Deployer)

! EJBGen

! ejbc (weblogic.ejbc)

Ant Tasks

You can use the WebLogic Ant utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
Ant task looks at a directory containing an EJB and creates deployment descriptors
based on the files it finds there. Because the Ant utility does not have information
about all desired configurations and mappings for your EJB, the skeleton deployment
descriptors the utility creates are incomplete. After the utility creates the skeleton
Programming WebLogic Enterprise JavaBeans 10-1

10 WebLogic Server EJB Tools
deployment descriptors, you can use a text editor, an XML editor, or the
Administration Console to edit the deployment descriptors and complete the
configuration of your EJB.

For more information on using Ant utilities to create deployment descriptors, see
"Tools for Deploying" in WebLogic Server Deployment and Packaging.
10-2 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/deployment/index.html

appc
appc

The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs
to WebLogic Server. It also validates the deployment descriptors for compliance with
the current specifications at both the individual module level and the application level.
The application-level checks include checks between the application-level deployment
descriptors and the individual modules as well as validation checks across the modules.

appc Syntax

Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or
directory>

appc Options

The following are the available appc options:

Option Description

-print Prints the standard usage message.

-version Prints jspc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

-lineNumbers Adds line numbers to generated class files to aid in debugging.

-basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.
Programming WebLogic Enterprise JavaBeans 10-3

10 WebLogic Server EJB Tools
-idl Generates IDL for EJB remote interfaces.

-idlOverwrite Always overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL generation.

-idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

-idlNoAbstractInte
rfaces

Does not generate abstract interfaces and methods/attributes
that contain them.

-idlFactories Generates factory methods for valuetypes.

-idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

-idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

-idlDirectory <dir> Specifies the directory where IDL files will be created (default:
target directory or JAR)

-idlMethodSignature
s <>

Specifies the method signatures used to trigger IDL code
generation.

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory
<dir>

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

-keepgenerated Keeps the generated .java files.

-compiler <javac> Selects the Java compiler to use.

-g Compiles debugging information into a class file.

-O Compiles with optimization on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

-deprecation Warns about deprecated calls.

-normi Passes flags through to Symantec's sj.

-J<option> Passes flags through to Java runtime.
10-4 Programming WebLogic Enterprise JavaBeans

appc
appc Ant Task

You can use the following Ant task to invoke the appc compiler:

<taskdef name="appc"
classname="weblogic.ant.taskdefs.j2ee.Appc"/>

appc and EJBs

weblogic.appc performs the following EJB-related functions:

! Generates WebLogic Server container classes for the EJBs.

! Checks all EJB classes and interfaces for compliance with the EJB specification.

! Checks deployment descriptors for potential configuration problems. For
example, if there is a cmp field declared in ejb-jar.xml, appc verifies that the
column is mapped in the weblogic-cmp-rdbms.xml deployment descriptor.

! Runs each EJB container class through the RMI compiler to create RMI
descriptors necessary to dynamically generate stubs and skeletons.

By default, appc uses javac as a compiler. For faster performance, specify a different
compiler (such as Symantec’s sj) using the command-line -compiler flag or via the
Administration Console. See Configuring Compiler Options at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ejb.html#configuring_compiler_opt
ions.

For the location of the public version of weblogic-ejb-jar.xml, see Chapter 11,
“The weblogic-ejb-jar.xml Deployment Descriptor.” For the location of the public
version of weblogic-cmp-rdbms-jar.xml, see Chapter 12, “The
weblogic-cmp-rdbms- jar.xml Deployment Descriptor.”

-classpath <path> Selects the classpath to use during compilation.

-advanced Prints advanced usage options.
Programming WebLogic Enterprise JavaBeans 10-5

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ejb.html#configuring_compiler_options

10 WebLogic Server EJB Tools
Advantages of Using appc

The appc tool offers the following benefits:

! The flexibility of compiling an entire application, rather than compiling
individual modules separately and combining them into an EAR after the fact.

! Validation checks across all modules and validation of application-level
deployment descriptors against the various modules, because WebLogic Server
has access to all modules during EAR compilation.

Previously, a user wanting to compile all modules within an .ear file had to
extract the individual components of an .ear and manually execute the
appropriate compiler (jspc or ejbc) to prepare the module for deployment.
appc automates this process and makes additional pre-deployment validation
checks not previously possible.

! It is easy to identify and correct errors appc produces.

If an error occurs while running appc from the command line, appc exits with
an error message.

By contrast, if you defer compilation to the time of deployment and a
compilation error occurs, the server fails the deployment and goes on with its
work. To determine why deployment failed, you must examine the server output,
fix the problem and then redeploy.

! By running appc prior to deployment, you potentially reduce the number of time
a bean is compiled.

For example, if you deploy a .jar file to a cluster of 3 servers, the .jar file is
copied to each of the three servers for deployment. If the .jar file wasn't
precompiled, each of the three servers will have to compile the file during
deployment.

Builder

WebLogic Builder is a graphical tool for assembling a J2EE application module,
creating and editing its deployment descriptors, and deploying it to a WebLogic server.
10-6 Programming WebLogic Enterprise JavaBeans

DDConverter
WebLogic Builder provides a visual editing environment for editing an application’s
deployment descriptor XML files. You can view these XML files as you visually edit
them in WebLogic Builder, but you won’t need to make textual edits to the XML files.

Use WebLogic Builder to do the following development tasks:

! Generate deployment descriptor files for a J2EE module

! Edit a module’s deployment descriptor files

! Compile and validate deployment descriptor files

! Deploy a J2EE module to a server

WebLogic Builder is discussed in detail in the WebLogic Builder document. The
section called “Working with EJBs” may be particularly useful to you.

DDConverter

The DDConverter is a command line tool that converts earlier versions EJB
deployment descriptors into EJB deployment descriptors that conform to this version
of WebLogic Server. The WebLogic Server EJB container supports both the EJB 1.1
and EJB 2.0 specifications including the EJB 1.1 and EJB 2.0 document type
definitions (DTD). Each WebLogic Server EJB deployment includes standard
deployment descriptors in the following files:

! ejb-jar.xml

This XML file contains the J2EE-specific EJB deployment descriptors.

! weblogic-ejb-jar-.xml

This XML file contains the WebLogic-specific EJB deployment descriptors.

! weblogic-cmp-rdbms-jar.xml

This XML file contains the WebLogic-specific container-managed persistence
(CMP) deployment descriptors.
Programming WebLogic Enterprise JavaBeans 10-7

http://e-docs.bea.com/wls/docs81b/wlbuilder/weblogicbuilder.html#998377
http://edocs/wls/docs70/wlbuilder/weblogicbuilder.html#1006403

10 WebLogic Server EJB Tools
Conversion Options Available with DDConverter

The DDConverter command line tool includes the following conversion options:

! Converting beans from earlier versions of WebLogic Server (WLS).

! Converting CMP and non-CMP beans from earlier version of the EJB
specification.

The following table lists the various conversion options for the DDconverter:

Table 10-1

Conversion Options for the DDConverter tool

WLS EJB non-CMP EJB CMP

From To From To From To

WLS 4.5 - WLS 8.1 See Note 1 EJB CMP 1.0 - EJB CMP 1.1

Note: Use the
DDConverter
command line option
-EJBVer for
converting EJB
CMP 1.0 to EJB
CMP 1.1. See
“DDConverter
Options” on page
10-11 for a
description of this
option.

WLS 4.5 - WLS 8.1 EJB 1.1 - EJB 2.0 EJB CMP 1.0 - EJB CMP 2.0
10-8 Programming WebLogic Enterprise JavaBeans

DDConverter
Note: Converting non-CMP EJB 1.0 beans to non-CMP EJB 1.1 beans is not
necessary because the EJB 1.1 non-CMP deployment descriptors are the same
as the EJB 2.0 non-CMP deployment descriptors.

You should always recompile the beans after you use the DDConverter. We
recommend that you use weblogic.appc and then deploy the new generated JAR file.
Recompiling the bean makes sure that the code is compliant with the EJB Specification
and saves you time because you can skip the recompile process during server startup.

! When converting WLS 4.5 EJB 1.0 beans to WLS 8.1 EJB 1.1 beans, the input
to DDConverter is the WebLogic 4.5 deployment descriptor text. The output is a
JAR file that only includes the WebLogic 8.1 deployment descriptors. Run
weblogic-appc to see if you need to make any additional changes to the source
code following the steps in “Using DDConverter to Convert EJBs” on page
10-10. See the first row in the Conversion Options for the DDConverter tool
table.

! When converting WLS 4.5 EJB 1.1 beans to WLS 8.1 EJB 2.0 beans, the input
to DDConverter is the WebLogic Server 4.5 deployment descriptor text. The
output is a JAR file that only includes the WebLogic 8.1 deployment descriptors.
Run weblogic-appc to see if you need to make any additional changes to the

WLS 5.x - WLS 8.1 EJB 1.1 - EJB 2.0 Note: Although WLS 5.x
CMP 1.1 beans and
WLS 8.1 CMP 1.1
beans differ, WLS 5.1
CMP 1.1 beans can
run in WebLogic
Server 8.1 without
any changes to source
code.

WLS 6.x - WLS 8.1 EJB 1.1 - EJB 2.0 EJB CMP 1.1 - EJB CMP 2.0

WLS 7.0 - WLS 8.1 EJB 1.1 - EJB 2.0 EJB CMP 1.1 - EJB CMP 2.0

Table 10-1

Conversion Options for the DDConverter tool

WLS EJB non-CMP EJB CMP

From To From To From To
Programming WebLogic Enterprise JavaBeans 10-9

10 WebLogic Server EJB Tools
source code, follow the steps in “Using DDConverter to Convert EJBs” on page
10-10. See the second row in the Conversion Options for the DDConverter tool
table.

! You can deploy WLS 5.x EJB 1.1 beans to WLS 8.1 without any making
changes to the source code because WLS 8.1 is backward compatible. WLS 8.1
detects, recompiles, and then deploys beans from previous versions of WLS.
However, we recommend that you use the DDConverter to upgrade the WLS 5.x
EJB 1.1 beans to WLS 8.1 EJB 2.0 beans.

When converting WLS 5.x EJB 1.1 beans to WLS 8.1 EJB 2.0 beans, the input
to DDConverter is the WebLogic 5.1 JAR file. This file contains the
deployment descriptor files and class files. The output goes to a JAR file that
includes the WebLogic 8.1 deployment descriptor files and all necessary class
files. See the third row in the Conversion Options for the DDConverter tool
table.

You can convert non-CMP beans to EJB 2.0 beans with little or no changes to
the source code. To do this, run weblogic.appc on the output.jar file and then
deploy the generated JAR file. With CMP beans, you must make changes to the
source code using the steps in “Using DDConverter to Convert EJBs” on page
10-10.

Using DDConverter to Convert EJBs

To convert earlier versions of EJBs for use in WebLogic Server:

1. Input the EJB’s deployment descriptor file into the DDConverter using the
command line format shown in “DDConverter Syntax” on page 10-11.

The output is a JAR file.

2. Extract the XML deployment descriptors from the JAR file.

3. Modify the source code according to the JavaSoft EJB Specification.

4. Compile the modified java file with the extracted XML deployment descriptors,
using weblogic.appc to create a JAR file.

5. Deploy the JAR file.
10-10 Programming WebLogic Enterprise JavaBeans

DDConverter
DDConverter Syntax

prompt> java weblogic.ejb20.utils.DDConverter [options] file1
[file2...]

DDConverter Arguments

DDConverter takes the argument file1 [file2...], where file is one of the
following:

! A text file containing EJB 1.0-compliant deployment descriptors.

! A JAR file containing EJB 1.1 compliant deployment descriptors.

DDConverter uses the beanHomeName property of EJBs in the text deployment
descriptor to define new ejb-name elements in the resultant ejb-jar.xml file.

DDConverter Options

The following table lists the DDConverter command-line options:

Option Description

-d destDir Specifies the destination directory for the output of
the JAR files.

This is a required option.

-c jar name Specifies a JAR file in which you combine all beans
in the source files.

-EJBVer output EJB
version

Specifies the output EJB version number, such as 2.0
or 1.1. The default is 2.0.

-log log file Specifies a file into which the log information can be
placed instead of the ddconverter.log.

-verboseLog Specifies that extra information on the conversion be
placed in the ddconverter.log.
Programming WebLogic Enterprise JavaBeans 10-11

10 WebLogic Server EJB Tools
DDConverter Examples

The following example converts a WLS 5.x EJB 1.1 bean into a WLS 8.1 EJB 2.0
bean.

The JAR file is created in the destDir subdirectory:

prompt> java weblogic.ejb20.utils.DDConverter -d destDir
Employee.jar

Where the Employee bean is a WLS 5.x EJB 1.1 JAR file.

DDInit

DDInit examines the contents of a staging directory and builds the standard J2EE and
WebLogic-specific deployment descriptors based on the EJB classes.

DDInit Ant Tasks

weblogic.ant.taskdefs.ejb20.DDInit creates the deployment descriptors for
Enterprise JavaBeans 2.0.

weblogic.ant.taskdefs.ejb.DDInit creates the deployment descriptors for
Enterprise JavaBeans 1.1.

-help Prints a list of all options available for the
DDConverter tool.
10-12 Programming WebLogic Enterprise JavaBeans

Deployer
Deployer

The weblogic.Deployer command-line tool is a Java-based deployment tool that
provides a command line interface to the WebLogic Server deployment API. This tool
was developed for administrators and developers who need to initiate deployment
from the command line, a shell script, or any automated environment other than Java.

For instructions on using weblogic.Deployer and a list of the commands, see
Deploying Using weblogic.Deployer.

EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

If you have installed BEA WebLogic 8.1 examples, see
SAMPLES_HOME\server\src\examples\ejb20\ejbgen for an example application
called Bands that uses EJBGen.

EJBGen Syntax

javadoc -docletpath weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen (YourBean).java

If you do not have weblogic.jar in your classpath, add the path to weblogic.jar

as follows:

javadoc -docletpath <path_to_weblogic.jar> weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen (YourBean).java

If you are invoking EJBGen for an EJB that has relationships with other EJBs, invoke
the related EJBs by naming them, following your EJB, in the invocation, as follows:
Programming WebLogic Enterprise JavaBeans 10-13

10 WebLogic Server EJB Tools
javadoc -docletpath weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen (YourBean).java (RelatedBean).java

EJBGen includes the following options.

Option Definition

-d [directory] The directory under which all the files will
be created.

-ignorePackage If this flag is set, EJBGen will ignore the
package name of the Java files it generates
and will create those in the output directory
as specified by the -d flag (or in the current
directory if no -d was specified).

-pfd1 If this flag is set, EJBGen will generate
deployment descriptors compatible with
the Public Final Draft 1 of the EJB 2.0
specification. You should use this flag if
you are using any version anterior to
Weblogic 6.1.

-ejbPrefix [string] (default: "") The prefix to use when generating the EJB
class.

-ejbSuffix [string] (default:
"Bean" or "EJB")

The suffix to use when generating the EJB
class.

-localHomePrefix [string]
(default: "")

The prefix to use when generating the local
EJB class.

-localHomeSuffix [string]
(default: "LocalHome")

The suffix to use when generating the local
EJB class.

-remoteHomePrefix [string]
(default: "")

The prefix to use when generating the
remote EJB home class.

-remoteHomeSuffix [string]
(default: "Home")

The suffix to use when generating the
remote EJB home class.

-remotePrefix [string] (default:
"")

The prefix to use when generating the
remote EJB class.

-remoteSuffix [string] (default:
"")

The suffix to use when generating the
remote EJB class.
10-14 Programming WebLogic Enterprise JavaBeans

EJBGen
-localPrefix [string] (default:
"")

The prefix to use when generating the local
EJB class.

-localSuffix [string] (default:
"Local")

The suffix to use when generating the local
EJB class.

-valueObjectPrefix [string]
(default: "")

The prefix to use when generating the
value object class.

-valueObjectSuffix [string]
(default: "Value")

The suffix to use when generating the
value object class.

-jndiPrefix [string] (default: "") The prefix to use for
@remote-jndi-name and
@local-jndi-name

-jndiSuffix [string] (default: "") The suffix to use for
@remote-jndi-name and
@local-jndi-name

-checkTags If invoked with this option, EJBGen will
not generate any classes but will search the
classes supplied on the command line for
tags that are not valid EJBGen tags.

-docTags Print out all the tags known by EJBGen.
Note that even though this option does not
need any source file, you still need to
specify an existing .java class on the
command line, or Javadoc will emit an
error message even though it recognized
the flag.

-docTag tagName Print out the detailed documentation for
this tag, including all the recognized
attributes. Note that even though this
option does not need any source file, you
still need to specify an existing .java class
on the command line, or Javadoc will emit
an error message even though it
recognized the flag.

Option Definition
Programming WebLogic Enterprise JavaBeans 10-15

10 WebLogic Server EJB Tools
EJBGen Example

This example shows a Bean file annotated so that EJBGen will generate the Remote
and Home interfaces and the deployment descriptor files. AccountBean.java is the
main bean class. It is a CMP EJB 2.0 Entity bean:

/**

* @ejbgen:entity
* ejb-name = AccountEJB-OneToMany
* data-source-name = examples-dataSource-demoPool
* table-name = Accounts
* prim-key-class = java.lang.String

*

* @ejbgen:jndi-name

* local = one2many.AccountHome

* @ejbgen:finder

* signature = "Account findAccount(double balanceEqual)"
* ejb-ql = "WHERE balance = ?1"

*

-docTagsHtml Same as -docTags, but generate an HTML
document.

-propertyFile [fileName] The name of a property file that EJBGen
will read to define substitution variables.
See the substitution variable
documentation

-valueBaseClass [className] Removed. Use the variable
value.baseClass.

-noValueClasses If specified, value classes will not be
generated.

Option Definition
10-16 Programming WebLogic Enterprise JavaBeans

EJBGen
* @ejbgen:finder

* signature = "Collection findBigAccounts(double
balanceGreaterThan)"

* ejb-ql = "WHERE balance > ?1"

*

* @ejbgen:relation

* name = Customer-Account
* target-ejb = CustomerEJB-OneToMany
* multiplicity = many
* cmr-field = customer

*

*/

abstract public class AccountBean implements EntityBean {

/**

* @ejbgen:cmp-field column = acct_id

* @ejbgen:primkey-field

* @ejbgen:remote-method transaction-attribute = Required

*/

abstract public String getAccountId();

abstract public void setAccountId(String val);

//

}

As you can see from this example, there are two types of tags: class tags and method
tags, depending on where you can use them.

Once you finish editing your file, you invoke EJBGen through the following javadoc
command:

javadoc -docletpath weblogic.tools.ejbgen.EJBGen.ejbgen -doclet
EJBGen AccountBean.java

When javadoc exits, it will have generated the following files for you:
Programming WebLogic Enterprise JavaBeans 10-17

10 WebLogic Server EJB Tools
! Account.java

! AccountHome.java

! ejb-jar.xml

! weblogic-ejb-jar.xml

! weblog-cmp-rdbms-jar.xml

EJBGen Tags

Use the following tags to annotate your Bean file.

@ejbgen:automatic-key-generation

Where: Class

Applicable on: Entity bean

@ejbgen:cmp-field

Where: Method

Applicable on: Entity bean

Attribute Description Required

cache-size The size of the key cache. Yes

name The name of the generator. Yes

type The type of the generator. Yes

Attribute Description Required

column The column where this CMP field will be mapped. Yes

column-type The type of this column. (OracleClob|OracleBlob) No
10-18 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:cmr-field

Where:Method

Applicable on: Entity

@ejbgen:create-default-rdbms-tables

Where: Class

Applicable on: Entity bean

@ejbgen:ejb-client-jar

Where: Class

Applicable on: All types of beans

@ejbgen:ejb-local-ref

Where: Class

ordering-number
(0..n)

The number where this field must appear in signatures and
constructors. For this ordering to work, all CMR and CMP
fields must have this attribute to a distinct numeric value.

No

Attribute Description Required

Attribute Description Required

ordering-number
(0..n)

The number where this field must appear in signatures and
constructors. For this ordering to work, all CMR and CMP
fields must have this attribute to a distinct numeric value.

No

Attribute Description Required

file-name The name of the client jar to generate. If more than one
EJB's have this tag, only one of the specified jar files will
be included in the deployment descriptor.

Yes
Programming WebLogic Enterprise JavaBeans 10-19

10 WebLogic Server EJB Tools
Applicable on: All types of beans

@ejbgen:ejb-ref

Where: Class

Applicable on: All types of beans

@ejbgen:entity

Where: Class

Attribute Description Required

home Local class of the bean. No

jndi-name The JNDI name of the reference. No

link Link of the bean. No

local Home class of the bean. No

name Name of the reference. No

type (Entity|Session) No

Attribute Description Required

home Remote class of the bean. No

jndi-name The JNDI name of the reference. No

link Link of the bean. No

name Name of the reference. No

remote Home class of the bean. No

type (Entity|Session) No
10-20 Programming WebLogic Enterprise JavaBeans

EJBGen
Applicable on: Entity beans

Attribute Description Required

ejb-name The name of this Entity bean. Yes

prim-key-class null Yes

abstract-sche
ma-name

The abstract schema name for this EJB. If not specified, the
ejb-name value will be used.

No

concurrency-st
rategy

(Optimistic|ReadOnly|Exclusive|Database) Defines the
concurrency strategy for this bean.

No

data-source-na
me

The name of the DataSource (as it was declared in your
config.xml).

No

db-is-shared (True|False) No

default-transac
tion

The transaction attribute to be applied to all methods that do
not have a more specific transaction attribute setting.

No

delay-database
-insert-until

(ejbCreate|ejbPostCreate) No

delay-updates-
until-end-of-tx

(True|False) Whether updates will be sent after the
transaction has committed.

No

idle-timeout-s
econds

Maximum duration an EJB should stay in the cache. No

invalidation-ta
rget

The ejb-name of a read-only Entity bean that should be
invalidated when this Container-Managed Persistence Entity
EJB has been modified.

No

max-beans-in-
cache

The maximum number of beans in the cache. No

persistence-ty
pe

(cmp|bmp) The type of this Entity bean (default: cmp). No

prim-key-class
-nogen

(True|False). If this keyword is specified, EJBGen will not
generate the primary key class (it is assumed that you are
providing it yourself).

No
Programming WebLogic Enterprise JavaBeans 10-21

10 WebLogic Server EJB Tools
@ejbgen:env-entry

Where:Class

Applicable on: All types of beans

@ejbgen:finder

Where: Class

read-timeout-s
econds

The number of seconds between each ejbLoad() call on a
Read-Only Entity bean.

No

reentrant (True|False) No

run-as Specifies the role-name for this EJB. No

run-as-identity
-principal

The name of the principal in case the role maps to several
principals.

No

table-name The Java class of the primary key. In case of a compound
primary key, this class will be generated by EJBGen.

No

trans-timeout-
seconds

The transaction timeout (in seconds). No

use-caller-iden
tity

(True|False) Whether this EJB uses caller's identity. No

Attribute Description Required

Attribute Description Required

name The name of this environment entry. Yes

type The Java type for this environment entry (must be fully
qualified, even if java.lang).

Yes

value The value for this environment entry. Yes
10-22 Programming WebLogic Enterprise JavaBeans

EJBGen
Applicable on: Entity beans

@ejbgen:jndi-name

Where: Class

Applicable on: All types of beans

@ejbgen:local-home-method

Where: Method

Attribute Description Required

ejb-ql The EJB QL request as it will appear in the deployment
descriptor.

Yes

signature It must match exactly the signature as you want it generated on
the Home class. EJBGen will add the conformant exceptions,
but you must make sure that you specify the fully qualified type
of each parameter, even if it belongs to java.lang.

Yes

isolation-le
vel

The type of transaction isolation for this method. No

transaction-
attribute

The transaction attribute for this local method. If not specified,
the default transaction attribute will be used. Methods with this
tag will be generated on the Local class.

No

weblogic-ej
b-ql

The Weblogic EJB QL request as it will appear in the
deployment descriptor. Note: if this request is needed, you need
to enclose both EJBQL and Weblogic EJBQL within double
quotes.

No

Attribute Description Required

local The local JNDI name of this EJB. It not specified, no local
interfaces will be generated.

No

remote The remote JNDI name of this EJB. It not specified, no remote
interfaces will be generated.

No
Programming WebLogic Enterprise JavaBeans 10-23

10 WebLogic Server EJB Tools
Applicable on: Entity and Session beans

@ejbgen:local-method

Where: Method

Applicable on: Entity and Session beans

@ejbgen:message-driven

Where: Class

Applicable on: Message-Driven beans

Attribute Description Required

transaction-attribute The transaction attribute for this local method. If not
specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Local class.

No

Attribute Description Requir
ed

isolation-level The type of transaction isolation for this method. No

transaction-attribute The transaction attribute for this local method. If not
specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Local class.

No

Attribute Description Required

destination-jndi-name The JNDI name of the destination. Yes

ejb-name The name of this Message-Driven bean. Yes

acknowledge-mode (auto-acknowledge|dups-ok-acknowledge) The
acknowledgement mode.

No
10-24 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:primkey-field

Where: Method

Applicable on: Entity beans

@ejbgen:relation

Where: Class

default-transaction The transaction attribute to be applied to all methods
that do not have a more specific transaction attribute
setting.

No

destination-type (javax.jms.Queue|javax.jms.Topic). No

durable (True|False) If the destination-type is Topic, setting
this attribute to True will make the subscription
durable.

No

initial-beans-in-free-p
ool

The initial number of beans in the free pool. No

max-beans-in-free-po
ol

The maximum number of beans in the free pool. No

message-selector The JMS message selector. No

run-as Specifies the role-name for this EJB. No

run-as-identity-princi
pal

The name of the principal in case the role maps to
several principals.

No

trans-timeout-seconds The transaction timeout (in seconds). No

use-caller-identity (True|False) Whether this EJB uses caller's identity. No

Attribute Description Required
Programming WebLogic Enterprise JavaBeans 10-25

10 WebLogic Server EJB Tools
Applicable on: Entity beans

@ejbgen:remote-home-method

Where: Method

Attribute Description Required

multiplicity (one|many) Yes

name The name of the relationship. Make sure you use the
same name on both ends of a relationship for the
roles to be generated properly (note that this
constraint applies to unidirectional as well).

Yes

target-ejb The EJB name of the target of this relationship. Yes

cascade-delete (True|False) No

cmr-field The CMR field where this relationship will be kept.
This field is optional. If it not present, the
relationship is unidirectional. If it is present, the
attribute fk-column must be specified as well.

No

fk-column Only needed in a relationship having at least one One
side. In that case, the non-One side EJB must declare
a column that it will use to store the primary key of
its counterpart.

No

joint-table Only needed in a Many-Many relationship. It must
be the name of an existing table that will be used to
hold the joint table containing the relationships. In
case you are using a compound primary key, you
need to specify a set of corresponding foreign keys
separated by a comma.

No

role-name The name of this role (such as
ParentHasChildren). If no role name is given,
EJBGen will generate one for you. Note that you
have to specify a role-name if you are going to inherit
relations.

No
10-26 Programming WebLogic Enterprise JavaBeans

EJBGen
Applicable on: Entity and Session beans

@ejbgen:remote-method

Where: Method

Applicable on: Entity and Session beans

@ejbgen:resource-env-ref

Where: Class

Applicable on: All types of beans

Attribute Description Required

transaction-attribute The transaction attribute for this remote method. If
not specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Remote class.

No

Attribute Description Required

isolation-level The type of transaction isolation for this method. No

transaction-attribute The transaction attribute for this remote method. If
not specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Remote class.

No

Attribute Description Required

name Name of the resource environment reference. Yes

type Type of the environment resource references (e.g.
javax.jms.Queue).

Yes

jndi-name JNDI name of the resource. No
Programming WebLogic Enterprise JavaBeans 10-27

10 WebLogic Server EJB Tools
@ejbgen:resource-ref

Where: Class

Applicable on: All types of beans

@ejbgen:role-mapping

Where: Class

Applicable on: All types of beans

@ejbgen:select

Where: Method

Applicable on: Entity beans

Attribute Description Required

auth (Application|Container) Yes

jndi-name JNDI name of the resource. Yes

name Name of the resource. Yes

type Type of the resource (e.g. javax.sql.DataSource). Yes

sharing-scope (Shareable|Unshareable) No

Attribute Description Required

principals The names of the principals in this role (separated by
commas).

Yes

role-name The name of the role Yes

Attribute Description Required

ejb-ql The EJB-QL defining this select method. Note: the
method name must start with ejbSelect.

Yes
10-28 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:session

Where: Class

Applicable on: Session beans

result-type-mapping (Remote|Local) Whether the returned objects are
mapped to EJBLocalObject or EJBObject.

No

weblogic-ejb-ql The Weblogic EJB QL request as it will appear in the
deployment descriptor. Note: if this request is
needed, you need to enclose both EJBQL and
Weblogic EJBQL within double quotes.

No

Attribute Description Required

Attribute Description Required

ejb-name The name of this Session bean. Yes

call-router-class-name Class name to be used for routing home method calls No

default-transaction The transaction attribute to be applied to all methods
that do not have a more specific transaction attribute
setting.

No

idle-timeout-seconds Maximum duration an EJB should stay in the cache. No

initial-beans-in-free-p
ool

The initial number of beans in the free pool. No

is-clusterable (True|False) Whether this bean is clusterable No

load-algorithm (RoundRobin|Random|WeightBased) The name of
the algorithm used to balance replicas of this home

No

max-beans-in-cache The maximum number of beans in the cache. No

max-beans-in-free-po
ol

The maximum number of beans in the free pool. No

methods-are-idempot
ent

(True|False) Whether the methods for this stateless
session bean are idempotent or not.

No
Programming WebLogic Enterprise JavaBeans 10-29

10 WebLogic Server EJB Tools
@ejbgen:value-object

Where: Class

Applicable on: All types of beans

ejbc

Note: ejbc is deprecated

Use the weblogic.ejbc tool for generating and compiling EJB container classes. If
you compile JAR files for deployment into the EJB container, you must use
weblogic.ejbc to generate the container classes.

run-as Specifies the role-name for this EJB. No

run-as-identity-princi
pal

The name of the principal in case the role maps to
several principals.

No

trans-timeout-seconds The transaction timeout (in seconds). No

type (Stateless|Stateful) The type of the Session bean. If
this attribute is not specified, EJBGen will guess the
right type by looking at the ejbCreate() methods on
your class.

No

use-caller-identity (True|False) Whether this EJB uses caller's identity. No

Attribute Description Required

Attribute Description Required

reference (Local|Value) Specify what objects the value
object class should reference when accessing other
EJB's.

Yes
10-30 Programming WebLogic Enterprise JavaBeans

ejbc
weblogic.ejbc does the following:

! Places the EJB classes, interfaces, and XML deployment descriptor files in a
specified JAR file.

! Checks all EJB classes and interfaces for compliance with the EJB specification.

! Generates WebLogic Server container classes for the EJBs.

! Runs each EJB container class through the RMI compiler to create client-side
dynamic proxies and server-side byte code.

Note: ejbc accepts both JAR files and exploded directories as input.

If you specify an output JAR file, ejbc places all generated files into the JAR file.

By default, ejbc uses javac as a compiler. For faster performance, specify a different
compiler (such as Symantec’s sj) using the -compiler flag or via the Administration
Console. See CROSS REF TO ONLINE HELP PAGE.

Although versions of the WebLogic-specific XML deployment descriptor files are
published on or web site for your convience, an internal version is shipped with the
product for use by weblogic.ejbc.

For the location of the public version of weblogic-ejb-jar.xml, see “EJB
Deployment Descriptors” on page 11-1; for the location of the public version of
weblogic-cmp-rdbms-jar.xml, see “EJB Deployment Descriptors” on page 12-2.

Advantages of Using ejbc

The ejbc tool offers the following benefits:

! It is easy to identify and correct errors ejbc produces.

If an error occurs while running ejbc from the command line, ejbc exits with an
error message.

By contrast, if you defer compilation to the time of deployment and a
compilation error occurs, the server fails the deployment and goes on with its
work. To determine why deployment failed, you must examine the server output,
fix the problem and then redeploy.
Programming WebLogic Enterprise JavaBeans 10-31

10 WebLogic Server EJB Tools
! By running ejbc prior to deployment, you potentially reduce the number of time
a bean is compiled.

For example, if you deploy a .jar file to a cluster of 3 servers, the .jar file is
copied to each of the three servers for deployment. If the .jar file wasn't
precompiled, each of the three servers will have to compile the file during
deployment.

ejbc Syntax

prompt> java weblogic.ejbc [options] <source directory or jar file>

<target directory or jar file>

Note: If you output to a JAR file, the output JAR name must be different from the
input JAR name.

ejbc Arguments

Argument Description

<source
directory or jar
file>

Specifies the exploded source directory or JAR file containing the
compiled EJB classes, interfaces, and XML deployment files.

<target
directory or jar
file>

Specifies the destination JAR file or deployment directory in which
ejbc places the output JAR. If you specify an output JAR file,
ejbc places the original EJB classes, interfaces, and XML
deployment files in the JAR, as well as the new container classes
that ejbc generates.
10-32 Programming WebLogic Enterprise JavaBeans

ejbc
ejbc Options

Option Description

-help Prints a list of all options available for the compiler.

-version Prints ejbc version information.

-dispatchPolicy
<queueName>

Specifies a configured execute queue that the EJB should use
for obtaining execute threads in WebLogic Server. For more
information, see Using Execute Queues to Control Thread
Usage.

-idl Generates CORBA Interface Definition Language for remote
interfaces.

-J Specifies the heap size for weblogic.ejbc. Use as follows:
java weblogic.ejbc -J-mx256m input.jar
output.jar

-idlOverwrite Overwrites existing IDL files.

-idlVerbose Displays verbose information while generating IDL.

-idlDirectory <dir> Specifies the directory where ejbc creates IDL files. By
default, ejbc uses the current directory.

-keepgenerated Saves the intermediate Java files generated during compilation.

-compiler <compiler
name>

Sets the compiler for ejbc to use.

-normi Passed through to Symantec's java compiler, sj, to stop
generation of RMI stubs. Otherwise sj creates its own RMI
stubs, which are unnecessary for the EJB.

-classpath <path> Sets a CLASSPATH used during compilation. This overrides
the system or shell CLASSPATH.
Programming WebLogic Enterprise JavaBeans 10-33

10 WebLogic Server EJB Tools
ejbc Examples

The following example uses the javac compiler against an input JAR file in
c:\%SAMPLES_HOME%\server\src\examples\ejb\basic\containerManaged\

build. The output JAR file is placed in
c:\%SAMPLES_HOME%\server\config\examples\applications.

prompt> java weblogic.ejbc -compiler javac
c:\%SAMPLES_HOME%\server\samples\src\examples\ejb\basic\container
Managed\build\std_ejb_basic_containerManaged.jar
c:%SAMPLES_HOME%\server\config\examples\ejb_basic_containerManage
d.jar

The following example checks a JAR file for compliance with the EJB 1.1
specification and generates WebLogic Server container classes, but does not generate
RMI stubs:

prompt> java weblogic.ejbc -normi
c:%SAMMPLES_HOME%\server\src\examples\ejb\basic\containerManaged\
build\std_ejb_basic_containerManaged.jar
10-34 Programming WebLogic Enterprise JavaBeans

CHAPTER
11 The
weblogic-ejb-jar.xml
Deployment Descriptor

The following sections describe the EJB 2.0 deployment descriptor elements found in
the weblogic-ejb-jar.xml file, the weblogic-specific XML document type
definitions (DTD) file. Use these definitions to create the WebLogic-specific
weblogic-ejb-jar.xml file that is part of your EJB deployment.

For information on the EJB 1.1 deployment descriptor elements see Chapter 13,
“Important Information for EJB 1.1 Users.”

! EJB Deployment Descriptors

! DOCTYPE Header Information

! 2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure

! 2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements

EJB Deployment Descriptors

The EJB deployment descriptors contain structural and application assembly
information for an enterprise bean. You specify this information by specifying values
for the deployment descriptors in three EJB XML DTD files. These files are:
Programming WebLogic Enterprise JavaBeans 11-1

11 The weblogic-ejb-jar.xml Deployment Descriptor
! ejb-jar.xml

! weblogic-ejb-jar.xml

! weblogic-cmp-rdbms-jar.xml

You package these three XML files with the EJB and other classes into a deployable
EJB component, usually a JAR file, called ejb.jar.

The ejb-jar.xml file is based on the deployment descriptors found in Sun
Microsystems’s ejb.jar.xml file. The other two XML files are weblogic-specific
files that are based on the deployment descriptors found in weblogic-ejb-jar.xml

and weblogic-cmp-rdbms-jar.xml.

DOCTYPE Header Information

When you edit or create XML deployment files, it is critical to include the correct
DOCTYPE header for the deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose.

WebLogic provides a public location for you to access the correct text for the
WebLogic Server-specific DTD file, weblogic-ejb-jar.xml. However, an identical
version of this DTD file is embedded in WebLogic Server for internal use.
weblogic.appc uses this file when the XML parser checks the sequence of the
deployment descriptors files.

The correct text for the PUBLIC elements for the WebLogic Server-specific

weblogic-ejb-jar.xml file are as follows.

XML File PUBLIC Element String

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN‘
‘http://www.bea.com/servers/wls810/dtd/weblogic-ejb-j
ar.dtd‘

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN‘
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-j
ar.dtd‘
11-2 Programming WebLogic Enterprise JavaBeans

DOCTYPE Header Information
The correct text for the PUBLIC elements for the Sun Microsystem-specific
ejb-jar.xml file are as follows.

For example, the entire DOCTYPE header for a weblogic-ejb-jar.xml file is as
follows:

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN'
'http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd'>

XML files with incorrect header information may yield error messages similar to the
following, when used with a tool that parses the XML (such as appc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN‘
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-j
ar.dtd‘

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN’

‘http://www.bea.com/servers/wls510/dtd/weblogic-ejb-j
ar.dtd’

XML File PUBLIC Element String

XML File PUBLIC Element String

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ‘

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN’

‘http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’
Programming WebLogic Enterprise JavaBeans 11-3

11 The weblogic-ejb-jar.xml Deployment Descriptor
Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server ignores the
DTDs embedded within the DOCTYPE header of XML deployment files, and instead
uses the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid parser
errors.

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-ejb-jar.xml

The following links provide the public locations for weblogic-ejb-jar.xml DTDs,
by version number.

! For weblogic-ejb-jar.xml 8.1 DTD:

http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd

contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

! For weblogic-ejb-jar.xml 7.0 DTD:

http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd

contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

! For weblogic-ejb-jar.xml 6.0 DTD:

http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd

contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

! For weblogic-ejb-jar.xml 5.1 DTD:

http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd

contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.
11-4 Programming WebLogic Enterprise JavaBeans

http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd
http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd
http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd
http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd

2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure
ejb-jar.xml

The following links provide the public DTD locations for the ejb-jar.xml
deployment files used with WebLogic Server:

! For ejb-jar.xml 2.0 DTD:

http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

! For ejb-jar.xml 1.1 DTD:

ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.

Note: Refer to the appropriate JavaSoft EJB specification for a description of the
ejb-jar.xml deployment descriptors.

2.0 weblogic-ejb-jar.xml Deployment
Descriptor File Structure

The WebLogic Server weblogic-ejb-jar.xml deployment descriptor file describes
the elements that are unique to WebLogic Server.

The top level elements in the WebLogic Server 8.1 weblogic-ejb-jar.xml are as
follows:

! description

! weblogic-version

! weblogic-enterprise-bean

" ejb-name
Programming WebLogic Enterprise JavaBeans 11-5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

11 The weblogic-ejb-jar.xml Deployment Descriptor
" entity-descriptor | stateless-session-descriptor | stateful-session-descriptor |
message-driven-descriptor

" transaction-descriptor

" reference-descriptor

" enable-call-by-reference

" clients-on-same-server

" jndi-name

! security-role-assignment

! transaction-isolation

2.0 weblogic-ejb-jar.xml Deployment
Descriptor Elements

! “allow-concurrent-calls” on page 11-10

! “cache-between-transactions” on page 11-11

! “cache-type” on page 11-12

! “client-authentication” on page 11-13

! “client-cert-authentication” on page 11-14

! “clients-on-same-server” on page 11-15

! “concurrency-strategy” on page 11-16

! “confidentiality” on page 11-18

! “connection-factory-jndi-name” on page 11-19

! “delay-updates-until-end-of-tx” on page 11-20

! “description” on page 11-21
11-6 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
! “destination-jndi-name” on page 11-22

! “ejb-local-reference-description” on page 11-26

! “ejb-name” on page 11-23

! “ejb-reference-description” on page 11-24

! “ejb-ref-name” on page 11-25

! “enable-call-by-reference” on page 11-27

! “entity-cache” on page 11-29

! “entity-clustering” on page 11-32

! “entity-descriptor” on page 11-33

! “concurrency-strategy” on page 11-16

! “cache-between-transactions” on page 11-11

! “delay-updates-until-end-of-tx” on page 11-20

! “destination-jndi-name” on page 11-22

! “finders-load-bean” on page 11-35

! “home-call-router-class-name” on page 11-36

! “home-is-clusterable” on page 11-37

! “home-load-algorithm” on page 11-38

! “idle-timeout-seconds” on page 11-41

! “initial-beans-in-free-pool” on page 11-44

! “is-modified-method-name” on page 11-48

! “isolation-level” on page 11-49

! “jndi-name” on page 11-52

! “max-beans-in-cache” on page 11-54

! “max-beans-in-free-pool” on page 11-55

! “message-driven-descriptor” on page 11-56
Programming WebLogic Enterprise JavaBeans 11-7

11 The weblogic-ejb-jar.xml Deployment Descriptor
! “method” on page 11-57

! “method-intf” on page 11-58

! “method-name” on page 11-59

! “method-param” on page 11-60

! “method-params” on page 11-61

! “persistence” on page 11-62

! “persistence-type” on page 11-63

! “persistence-use” on page 11-65

! “persistent-store-dir” on page 11-66

! “pool” on page 11-67

! “principal-name” on page 11-68

! “read-timeout-seconds” on page 11-70

! “reference-descriptor” on page 11-71

! “replication-type” on page 11-72

! “res-ref-name” on page 11-74

! “resource-description” on page 11-75

! “role-name” on page 11-77

! “security-role-assignment” on page 11-80

! “stateful-session-cache” on page 11-81

! “stateful-session-clustering” on page 11-82

! “stateful-session-descriptor” on page 11-83

! “stateless-bean-call-router-class-name” on page 11-84

! “stateless-bean-is-clusterable” on page 11-85

! “stateless-bean-load-algorithm” on page 11-86

! “stateless-bean-methods-are-idempotent” on page 11-87
11-8 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
! “stateless-clustering” on page 11-88

! “stateless-session-descriptor” on page 11-89

! “transaction-descriptor” on page 11-90

! “transaction-isolation” on page 11-91

! “trans-timeout-seconds” on page 11-93

! “type-identifier” on page 11-94

! “type-storage” on page 11-95

! “type-version” on page 11-96

! “weblogic-ejb-jar” on page 11-97

! “weblogic-enterprise-bean” on page 11-98
Programming WebLogic Enterprise JavaBeans 11-9

11 The weblogic-ejb-jar.xml Deployment Descriptor
allow-concurrent-calls

Function

The allow-concurrent-calls element specifies whether a stateful session bean
instance allows concurrent method calls. By default, allows-concurrent-calls is
False. However, when this value is set to True, the EJB container blocks the
concurrent method call and allows it to proceed when the previous call has completed.

Example

See “stateful-session-descriptor” on page 11-83.

Range of values: True | False

Default value: False

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
11-10 Programming WebLogic Enterprise JavaBeans

cache-between-transactions
cache-between-transactions

Function

The cache-between-transactions element, formerly the db-is-shared element,
specifies whether the EJB container will cache the persistent data of an entity bean
across (between) transactions.

The cache-between-transactions element applies only to entity beans. When it is
set to True, WebLogic Server assumes that EJB data can be modified between
transactions and reloads the data at the beginning of each transaction. When set to
False, WebLogic Server assumes that it has exclusive access to the EJB data in the
persistent store.

A Read-Only bean ignores the value of the cache-between-transactions element
because WebLogic Server always performs long term caching of Read-Only data.

See “Caching Between Transactions” on page 6-8 for more information.

Example

See “persistence” on page 11-62.

Range of values: True | False

Default value: False

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-11

11 The weblogic-ejb-jar.xml Deployment Descriptor
cache-type

Function

The cache-type element specifies the order in which EJBs are removed from the
cache. The values are:

! Least recently used (LRU)

! Not recently used (NRU)

The minimum cache size for NRU is 8. If max-beans-in-cache is less than 3,
WebLogic Server uses a value of 8 for cache-type.

Example

The following example shows the structure of the cache-type element.

<stateful-session-cache>

<cache-type>NRU</cache-type>

</stateful-session-cache>

Range of values: NRU | LRU

Default value: NRU

Requirements:

Parent elements: weblogic-enterprise-bean

stateful-session-cache

Deployment file: weblogic-ejb-jar.xml
11-12 Programming WebLogic Enterprise JavaBeans

client-authentication
client-authentication

Function

The client-authentication element specifies whether the EJB supports or
requires client authentication.

Example

See “iiop-security-descriptor” on page 11-43.

Range of values: none | supported | required

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-13

11 The weblogic-ejb-jar.xml Deployment Descriptor
client-cert-authentication

Function

The client-cert-authentication element specifies whether the EJB supports or
requires client certificate authentication at the transport level.

Example

See “transport-requirements” on page 11-92.

Range of values: none | supported | required

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor

transport-requirements

Deployment file: weblogic-ejb-jar.xml
11-14 Programming WebLogic Enterprise JavaBeans

clients-on-same-server
clients-on-same-server

Function

The clients-on-same-server attribute determines whether WebLogic Server
sends JNDI announcements for this EJB when it is deployed. When this attribute is
“False” (the default), a WebLogic Server cluster automatically updates its JNDI tree
to indicate the location of this EJB on a particular server. This ensures that all clients
can access the EJB, even if the client is not collocated on the same server.

You can set clients-on-same-server to True when you know that all clients that
will access this EJB will do so from the same server on which the bean is deployed. In
this case, a WebLogic Server cluster does not send JNDI announcements for this EJB
when it is deployed. Because JNDI updates in a cluster utilize multicast traffic, setting
clients-on-same-server to True can reduce the startup time for very large
clusters.

See Optimization for Collocated Objects in Using WebLogic Server Clusters for more
information on collocated EJBs.

Example

The following example enables pass-by-value for EJB methods:

<weblogic-enterprise-bean>

Range of values: True | False

Default value: False

Requirements: n/a

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-15

http://e-docs.bea.com/wls/docs81b/cluster/load_balancing.html
http://e-docs.bea.com/wls/docs81b/cluster/index.html

11 The weblogic-ejb-jar.xml Deployment Descriptor
<ejb-name>AccountBean</ejb-name>

...

<clients-on-same-server>True</clients-on-same-server>

</weblogic-enterprise-bean>

concurrency-strategy

Function

The concurrency-strategy element specifies how the container should manage
concurrent access to an entity bean. Set this element to one of four values:

! Exclusive causes WebLogic Server to place an exclusive lock on cached entity
EJB instances when the bean is associated with a transaction. Other requests for
the EJB instance are block until the transaction completes. This option was the
default locking behavior for WebLogic Server versions 3.1 through 5.1.

! Database causes WebLogic Server to defer locking requests for an entity EJB to
the underlying datastore. With the Database concurrency strategy, WebLogic
Server allocates a separate entity bean instance and allows locking and caching
to be handled by the database. This is the default option.

Range of values: Exclusive | Database | ReadOnly | Optimistic

Default value: Database

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

Deployment file: weblogic-ejb-jar.xml
11-16 Programming WebLogic Enterprise JavaBeans

concurrency-strategy
! ReadOnly used for read-only entity beans. Activates a new instance for each
transaction so that requests proceed in parallel. WebLogic Server calls
ejbLoad() for ReadOnly beans are based on the read-timeout-seconds
parameter.

! Optimistic holds no locks in the EJB container or database during a
transaction. The EJB container verifies that none of the data updated by a
transaction has changed before committing the transaction. If any updated data
changed, the EJB container rolls back the transaction.

See“EJB Concurrency Strategy” on page 5-35 for more information on the Exclusive
and Database locking behaviors. See“Read-Only Multicast Invalidation” on page 6-2
for more information about read-only entity EJBs.

Example

The following entry identifies the AccountBean class as a read-only entity EJB:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<concurrency-strategy>ReadOnly</concurrency-strategy>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>
Programming WebLogic Enterprise JavaBeans 11-17

11 The weblogic-ejb-jar.xml Deployment Descriptor
confidentiality

Function

The confidentiality element specifies the transport confidentiality requirements
for the EJB. Using the confidentiality element ensures that the data is sent
between the client and server in such a way as to prevent other entities from observing
the contents.

Example

See “transport-requirements” on page 11-92.

Range of values: none | supported | required

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor

transport-requirements n

Deployment file: weblogic-ejb-jar.xml
11-18 Programming WebLogic Enterprise JavaBeans

connection-factory-jndi-name
connection-factory-jndi-name

Function

The connection-factory-jndi-name element specifies the JNDI name of the JMS
ConnectionFactory that the MessageDriven Bean should look up to create its queues
and topics. If this element is not specified, the default is the
weblogic.jms.MessageDrivenBeanConnectionFactory in config.xml.

Example

The following example shows the structure of the connection-factory-jndi-name
element:

<message-driven-descriptor>

<connection-factory-jndi-name>weblogic.jms.MessageDrivenBean
ConnectionFactory</connection-factory-jndi-name>

</message-driven-descriptor>

Range of values: valid name

Default value: weblogic.jms.MessageDrivenBeanConnectionFactory in config.xml

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

message-driven-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-19

11 The weblogic-ejb-jar.xml Deployment Descriptor
delay-updates-until-end-of-tx

Function

Set the delay-updates-until-end-of-tx element to True (the default) to update
the persistent store of all beans in a transaction at the completion of the transaction.
This setting generally improves performance by avoiding unnecessary updates.
However, it does not preserve the ordering of database updates within a database
transaction.

If your datastore uses an isolation level of
TransactionReadCommittedUncommitted, you may want to allow other database
users to view the intermediate results of in-progress transactions. In this case, set
delay-updates-until-end-of-tx to False to update the bean's persistent store at
the conclusion of each method invoke. See “ejbLoad() and ejbStore() Behavior for
Entity EJBs” on page 6-11 for more information.

Note: Setting delay-updates-until-end-of-tx to False does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

Range of values: True | False

Default value: True

Requirements: Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
11-20 Programming WebLogic Enterprise JavaBeans

description
Example

The following example shows a delay-updates-until-end-of-tx stanza.

<entity-descriptor>

<persistence>

<delay-updates-until-end-of-tx>False</delay-updates-until-end-of-
tx>

</persistence>

</entity-descriptor>

description

Function

The description element is used to provide text that describes the parent element.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean,
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-21

11 The weblogic-ejb-jar.xml Deployment Descriptor
Example

The following example specifies the description element.

<dscription>Contains a description of parent element</description>

destination-jndi-name

Function

The destination-jndi-name element specifies the JNDI name used to associate a
message-driven bean with an actual JMS Queue or Topic deployed in the WebLogic
Server JNDI tree.

Example

See “message-driven-descriptor” on page 11-56.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in message-driven-descriptor.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor

Deployment file: weblogic-ejb-jar.xml
11-22 Programming WebLogic Enterprise JavaBeans

ejb-name
ejb-name

Function

ejb-name specifies the name of an EJB to which WebLogic Server applies isolation
level properties. This name is assigned by the ejb-jar file’s deployment descriptor.
The name must be unique among the names of the enterprise beans in the same
ejb.jar file. The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without breaking the
enterprise bean’s function. There is no built-in relationship between the ejb-name in
the deployment descriptor and the JNDI name that the deployer will assign to the
enterprise bean’s home.

Example

See “method” on page 11-57.

Range of values: Name of an EJB defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in method stanza. The name must conform to the lexical rules for an
NMTOKEN.

Parent elements: weblogic-enterprise-bean
method

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-23

11 The weblogic-ejb-jar.xml Deployment Descriptor
ejb-reference-description

Function

The ejb-reference-description element maps the JNDI name in the WebLogic
Server of an EJB that is referenced by the bean in the ejb-reference element.

! ejb-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

! jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

Example

The ejb-reference-description stanza is shown here:

<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

Deployment file: weblogic-ejb-jar.xml
11-24 Programming WebLogic Enterprise JavaBeans

ejb-ref-name
ejb-ref-name

Function

The ejb-ref-name element specifies a resource reference name. This element is the
reference that the EJB provider places within the ejb-jar.xml deployment file.

Example

The ejb-ref-name stanza is shown here:

<reference-descriptor>

<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

ejb-reference-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-25

11 The weblogic-ejb-jar.xml Deployment Descriptor
ejb-local-reference-description

Function

The ejb-local-reference-description element maps the JNDI name of an EJB
in the WebLogic Server that is referenced by the bean in the ejb-local-ref element.

Example

The following example shows the ejb-local-reference-description element.

<ejb-local-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-local-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

Deployment file: weblogic-ejb-jar.xml
11-26 Programming WebLogic Enterprise JavaBeans

enable-call-by-reference
enable-call-by-reference

Function

By default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation because parameters
are not copied.

If you set enable-call-by-reference to False, parameters to the EJB methods
are copied (pass-by-value) in accordance with the EJB 1.1 specification. Pass by value
is always necessary when the EJB is called remotely (not from within the server).

Example

The following example enables pass-by-value for EJB methods:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

...

<enable-call-by-reference>False</enable-call-by-reference>

</weblogic-enterprise-bean>

Range of values: True | False

Default value: False

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

ejb-reference-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-27

11 The weblogic-ejb-jar.xml Deployment Descriptor
enable-dynamic-queries

Function

The optional enable-dynamic-queries element must be set to True to enable dynamic
queries. Dynamic queries are only available for use with EJB 2.0 CMP beans.

Example

The following example enables dynamic queries:

<enable-dynamic-queries>True</enable-dynamic-queries>

Range of values: True | False

Default value: True

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
11-28 Programming WebLogic Enterprise JavaBeans

entity-cache
entity-cache

Function

The entity-cache element defines the following options used to cache entity EJB
instances within WebLogic Server:

! max-beans-in-cache

! idle-timeout-seconds

! read-timeout-seconds

! concurrency-strategy

See“EJB Lifecycle in WebLogic Server” on page 4-2 for a general discussion of the
caching services available in WebLogic Server.

Example

The entity-cache stanza is shown here:

<entity-descriptor>

<entity-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The entity-cache stanza is optional, and is valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-29

11 The weblogic-ejb-jar.xml Deployment Descriptor
<read-timeout-seconds>...<read-timeout-seconds>

<concurrency-strategy>...</concurrency-strategy>

</entity-cache>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

entity-cache-name

Function

The entity-cache-name element refers to an application level entity cache that the
entity bean uses. An application level cache is a cache that may be shared by multiple
entity beans in the same application.

For more information about the weblogic-application.xml file, see the
application deployment descriptors.

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The value you specify for entity-cache-name must match the name assigned to an
application level entity cache in the weblogic-application.xml file.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

entity-cache-ref

Deployment file: weblogic-ejb-jar.xml
11-30 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/programming/app_xml.html

entity-cache-ref
Example

See “entity-cache-ref” on page 11-31.

entity-cache-ref

Function

The entity-cache-ref element refers to an application level entity cache which can
cache instances of multiple entity beans that are part of the same application.
Application level entity caches are declared in the weblogic-application.xml file.

Use the “concurrency-strategy” on page 11-16 to define the type of concurrency you
want the bean to use. The concurrency-strategy must be compatible with the
application level cache’s caching strategy. For example, an Exclusive cache only
supports banes with a concurrency-strategy of Exclusive. While a MultiVersion
cache supports the Database, ReadOnly, and Optimistic concurrency strategies.

Example

The entity-cache-ref stanza is shown here:

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The entity-cache-name element in the entity-cache-ref stanza must contain
the name of the application level cache.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-31

11 The weblogic-ejb-jar.xml Deployment Descriptor
<entity-cache-ref>
<entity-cache-name>AllEntityCache</entity-cache-name>
<concurrency-strategy>ReadOnly</concurrency-strategy>
<estimated-bean-size>20</estimated-bean-size>

</entity-cache-ref>

entity-clustering

Function

The entity-clustering element uses the following options to specify how an entity
bean will be replicated in a WebLogic cluster:

! home-is-clusterable

! home-load-algorithm

! home call-router-class-name

Example

The following excerpt shows the structure of a entity-clustering stanza:

<entity-clustering>

<home-is-clusterable>True</home-is-clusterable>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for entity EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
11-32 Programming WebLogic Enterprise JavaBeans

entity-descriptor
<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

</entity-clustering>

entity-descriptor

Function

The entity-descriptor element specifies the following deployment parameters
that are applicable to an entity bean:

! pool

! entity-cache

! persistence

! entity-clustering

Example

The following example shows the structure of the entity-descriptor stanza:

<entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One entity-descriptor stanza is required for each entity EJB in the .jar.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-33

11 The weblogic-ejb-jar.xml Deployment Descriptor
<entity-cache>...</entity-cache>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

estimated-bean-size

Function

The estimated-bean-size- element specifies the estimated average size of the
instances of an entity bean in bytes. This is the average number of byte of memory that
is consumed by each instance.

Use the estimated-bean-size element when the application level cache you use to
cache beans is also specified in terms of bytes and megabytes.

Although you may not know the exact number of bytes consumed by the entity bean
instances, specifying a size allows you to give some relative weight to the beans that
share a cache. at one time.

For example, suppose bean A ad bean B share a cache, called AB-cache, that has a size
of 1000 bytes and the size of A is 10 bytes and the size of B is 20 bytes, then the cache
can hold at most 100 instances of A and 50 instances of B. If 100 instance s of A are
cached, this implies that 0 instances of B are cached.

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: n/a

Parent elements: weblogic-enterprise-bean
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
11-34 Programming WebLogic Enterprise JavaBeans

finders-load-bean
Example

See “entity-cache-ref” on page 11-31.

finders-load-bean

Function

The finders-load-bean element determines whether WebLogic Server loads the
EJB into the cache after a call to a finder method returns a reference to the bean. If you
set this element to True, WebLogic Server immediately loads the bean into the cache
if a reference to a bean is returned by the finder. If you set this element to False,
WebLogic Server does not automatically load the bean into the cache until the first
method invocation; this behavior is consistent with the EJB 1.1 specification.

Example

The following entry specifies that EJBs are loaded into the WebLogic Server cache
automatically when a finder method returns a reference to the bean:

<entity-descriptor>

Range of values: True | False

Default value: True

Requirements: Optional element. Valid only for CMP entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-35

11 The weblogic-ejb-jar.xml Deployment Descriptor
<persistence>

<finders-load-bean>True</finders-load-bean>

</persistence>

</entity-descriptor>

home-call-router-class-name

Function

home-call-router-class-name specifies the name of a custom class to use for
routing bean method calls. This class must implement
weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Range of values: Valid router class name

Default value: null

Requirements: Optional element. Valid only for entity EJBs, stateful session EJBs, and stateless session
EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
11-36 Programming WebLogic Enterprise JavaBeans

home-is-clusterable
Example

See “entity-clustering” on page 11-32 and “stateful-session-clustering” on page 11-82.

home-is-clusterable

Function

When home-is-clusterable is True, the EJB can be deployed from multiple
WebLogic Servers in a cluster. Calls to the home stub are load-balanced between the
servers on which this bean is deployed, and if a server hosting the bean is unreachable,
the call automatically fails over to another server hosting the bean.

Example

See “entity-clustering” on page 11-32.

Range of values: True | False

Default value: True

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-37

11 The weblogic-ejb-jar.xml Deployment Descriptor
home-load-algorithm

Function

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this element is not defined, WebLogic Server uses the
algorithm specified by the server element,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

! round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

! random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

! weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
11-38 Programming WebLogic Enterprise JavaBeans

idempotent-methods
Example

See “entity-clustering” on page 11-32 and “stateful-session-clustering” on page 11-82.

idempotent-methods

Function

The idempotent-methods element defines list of methods which are written in such
a way that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually compiled on the failed server. When you
enable idempotent-methods for a method, the EJB stub can automatically recover from
any failure as long as it can reach another server hosting the EJB.

To enable clustering, see “entity-clustering” on page 11-32,
“stateful-session-clustering” on page 11-82, and “stateless-clustering” on page 11-88.

The methods on stateless session bean homes and read-only entity beans are
automatically set to be idempotent. It is not necessary to explicitly specify them as
idempotent.

Range of values: n/a

Default value: n/a

Requirements: Clustering must be enabled for the EJB.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-39

11 The weblogic-ejb-jar.xml Deployment Descriptor
Example

The method stanza can contain the elements shown here:

<idempotent-method>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</idempotent-method>

identity-assertion

Function

The identity-assertion element specifies whether the EJB supports or requires
identity assertion.

Range of values: none | supported | required

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor

Deployment file: weblogic-ejb-jar.xml
11-40 Programming WebLogic Enterprise JavaBeans

idle-timeout-seconds
Example

See “iiop-security-descriptor” on page 11-43.

idle-timeout-seconds

Function

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server removes the bean
instance if the number of beans in cache approaches the limit of
max-beans-in-cache. The removed bean instances are passivated. See “EJB
Lifecycle in WebLogic Server” on page 4-2 for more information.

Range of values: 1 to maxSeconds

Default value: 600

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean,
stateful-session-descriptor,

stateful-session-cache

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-41

11 The weblogic-ejb-jar.xml Deployment Descriptor
Example

The following entry indicates that the stateful session EJB, AccountBean, should
become eligible for removal if max-beans-in-cache is reached and the bean has
been in cache for 20 minutes:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<stateful-session-descriptor>

<stateful_session-cache>

<max-beans-in-cache>200</max-beans-in-cache>

<idle-timeout-seconds>1200</idle-timeout-seconds>

</stateful-session-cache>

</stateful-session-descriptor>

</weblogic-enterprise-bean>
11-42 Programming WebLogic Enterprise JavaBeans

iiop-security-descriptor
iiop-security-descriptor

Function

The iiop-security-descriptor element specifies security configuration
parameters at the bean-level. These parameters determine the IIOP security
information contained in the IOR.

Example

The iiop-security-descriptor stanza can contain the elements shown here

<iiop-security-descriptor>

<transport-requirements>...</transport-requirements>

<client-authorization>suppoted<client-authentication>

<identity-assertion>supported</identity-assertion>

</iiop-security-description>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-43

11 The weblogic-ejb-jar.xml Deployment Descriptor
initial-beans-in-free-pool

Function

If you specify a value for initial-beans-in-free-pool, you set the initial size of
the pool. WebLogic Server populates the free pool with the specified number of bean
instances for every bean class at startup. Populating the free pool in this way improves
initial response time for the EJB, because initial requests for the bean can be satisfied
without generating a new instance.

Example

See “pool” on page 11-67.

Range of values: 0 to maxBeans

Default value: 0

Requirements: Optional element. Valid for stateless session, entity, and message-driven EJBs.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor, message-bean-descriptor,

entity-descriptor
pool

Deployment file: weblogic-ejb-jar.xml
11-44 Programming WebLogic Enterprise JavaBeans

initial-context-factory
initial-context-factory

Function

The initial-context-factory element specifies the initial contextFactory that the
container will use to create its connection factories. If initial-context-factory is not
specified, the default will be weblogic.jndi.WLInitialContextFactory.

Example

The following example specifies the initial-context-factory element.

<message-driven-descriptor>

<initial-context-factory>weblogic.jndi.WLInitialContextFactory
</initial-context-factory>

</message-driven-descriptor>

Range of values: True | False

Default value: weblogic.jndi.WLInitialContextFactory

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

message-driven-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-45

11 The weblogic-ejb-jar.xml Deployment Descriptor
integrity

Function

The integrity element specifies the transport integrity requirements for he EJB.
Using the integrity element ensures that the data is sent between the client and server
in such a way that it cannot be changed in transit.

Example

See “transport-requirements” on page 11-92.

Range of values: none | supported | required

Default value:

Requirements: n/a.

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor
transport-requirements

Deployment file: weblogic-ejb-jar.xml
11-46 Programming WebLogic Enterprise JavaBeans

invalidation-target
invalidation-target

Function

The invalidation-target element specifies a Read-Only entity EJB that should be
invalidated when this container-managed persistence entity EJB has been modified.

Example

The following entry specifies that the EJB named StockReaderEJB should be
invalidated when the EJB has been modified.

<invalidation-target>

<ejb-name>StockReaderEJB</ejb-name>

</invalidation-target>

Range of values:

Default value:

Requirements: The target ejb-name must be a Read-Only entity EJB and this element can only be
specified for an EJB 2.0 container-managed persistence entity EJB.

Parent elements: weblogic-enterprise-bean

entity-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-47

11 The weblogic-ejb-jar.xml Deployment Descriptor
is-modified-method-name

Function

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance for EJB
1.1-compliant beans, and for beans that use bean-managed persistence. However, any
errors in the method’s return value can cause data inconsistency problems.

Note: isModified() is no longer required for 2.0 CMP entity EJBs based on the
EJB 2.0 specification However, it still applies to BMP and 1.1 CMP EJBs.
When you deploy EJB 2.0 entity beans with container-managed persistence,
WebLogic Server automatically detects which EJB fields have been modified,
and writes only those fields to the underlying datastore.

Example

The following entry specifies that the EJB method named semidivine will notify
WebLogic Server when the EJB has been modified:

Range of values: Valid entity EJB method name

Default value: None

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
11-48 Programming WebLogic Enterprise JavaBeans

isolation-level
<entity-descriptor>

<persistence>

<is-modified-method-name>semidivine</is-modified-method-name>

</persistence>

</entity-descriptor>

isolation-level

Function

isolation-level specifies the isolation level for all of the EJB’s database
operations. The following are possible values for isolation-level:

! TransactionReadCommittedUncommitted: The transaction can view
uncommitted updates from other transactions.

! TransactionReadCommitted: The transaction can view only committed
updates from other transactions.

! TransactionRepeatableRead: Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

Range of values: Serializable | ReadCommitted | ReadUncommitted |
RepeatableRead

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean,
transaction-isolation

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-49

11 The weblogic-ejb-jar.xml Deployment Descriptor
! TransactionSerializable: Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.

Refer to your database documentation for more information on the implications and
support for different isolation levels.

Example

See “transaction-isolation” on page 11-91.

jms-polling-interval-seconds

Function

The jms-polling-interval-seconds specifies the number of seconds between
each attempt to reconnect to the JMS destination. Each message-driven bean listens on
an associated JMS destination. If the JMS destination is located on another WebLogic
Server instance or a foreign JMS provider, then the JMS destination may become
unreachable. In this case, the EJB container automatically attempts to reconnect to the
JMS Server. Once the JMS Server is up again, the message-driven bean can again
receive messages.

Range of values: n/a

Default value: 10 seconds

Requirements: n/a

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
11-50 Programming WebLogic Enterprise JavaBeans

jms-client-id
Example

The following entry specifies the jms polling intervals for message-driven beans:

<jms-polling-interval-seconds>5</jms-polling-interval seconds>

jms-client-id

Function

The jms-client-id specifies an associated id for the JMS consumers. A
message-driven bean with a durable subscription needs an associated client id. If you
use a separate connection factory, you can set the client id on the connection factory.
In this case, the message-driven bean uses this client id.

If the associated connection factory does not have a client id or if you use the default
connection factory, then the message-driven bean used the jms-client-id value as its
client id.

Example

The following entry specifies an associated id for JMS consumers:

<jms-client-id>MyClientID</jms-client-id>

Range of values: n/a

Default value: The default client identifier is the ejb-name for this EJB.

Requirements: The jms-client-id is necessary for durable subscriptions to JMS topics.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-51

11 The weblogic-ejb-jar.xml Deployment Descriptor
jndi-name

Function

jndi-name specifies the JNDI name of an actual EJB, resource, or reference available
in WebLogic Server.

Example

See “resource-description” on page 11-75 and “ejb-reference-description” on page
11-24.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in resource-description and ejb-reference-description.

Parent elements: weblogic-enterprise-bean

and

weblogic-enterprise-bean
reference-descriptor

resource-description

and

weblogic-enterprise-bean
reference-descriptor

ejb-reference-description

Deployment file: weblogic-ejb-jar.xml
11-52 Programming WebLogic Enterprise JavaBeans

local-jndi-name
local-jndi-name

Function

The local-jndi-name element specifies a jndi-name for a bean’s local home. If a
bean has both a remote and a local home, then it must have two JNDI names; one for
each home.

Example

The following example shows the specifies the local-jndi-name element.

<local-jndi-name>weblogic.jndi.WLInitialContext
</local-jndi-name>

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required if the bean has a local home.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-53

11 The weblogic-ejb-jar.xml Deployment Descriptor
max-beans-in-cache

Function

The max-beans-in-cache element specifies the maximum number of objects of this
class that are allowed in memory. When max-bean-in-cache is reached, WebLogic
Server passivates some EJBs that have not recently been used by a client.
max-beans-in-cache also affects when EJBs are removed from the WebLogic
Server cache, as described in“EJB Concurrency Strategy” on page 5-35.

Example

The following entry enables WebLogic Server to cache a maximum of 200 instances
of the AccountBean class:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

Range of values: 1 to maxBeans

Default value: 1000

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-cache

Deployment file: weblogic-ejb-jar.xml
11-54 Programming WebLogic Enterprise JavaBeans

max-beans-in-free-pool
<entity-cache>

<max-beans-in-cache>200</max-beans-in-cache>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>

max-beans-in-free-pool

Function

WebLogic Server maintains a free pool of EJBs for every stateless session bean and
message-driven bean class. The max-beans-in-free-pool element defines the size
of this pool. By default, max-beans-in-free-pool has no limit; the maximum
number of beans in the free pool is limited only by the available memory. See
“Stateless Session EJB Life Cycle” on page 4-2 and “Differences Between
Message-Driven Beans and Stateless Session EJBs” on page 3-3 for more information.

Range of values: 0 to maxBeans

Default value: max Int

Requirements: Optional element. Valid only for stateless session EJBs.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor, message-bean-descriptor,

entity-descriptor
pool

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-55

11 The weblogic-ejb-jar.xml Deployment Descriptor
Example

See “pool” on page 11-67.

message-driven-descriptor

Function

The message-driven-descriptor element associates a message-driven bean with a
JMS destination in WebLogic Server. This element specifies the following
deployment parameters:

! pool

! destination-jndi-name

! initial-context-factory

! provider-url

! connection-factory-jndi-name

Example

The following example shows the structure of the message-driven-descriptor
stanza:

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements:

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
11-56 Programming WebLogic Enterprise JavaBeans

method
<message-driven-descriptor>

<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

method

Function

The method element defines a method or set of methods for an enterprise bean’s home
or remote interface.

Example

The method stanza can contain the elements shown here:

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. You can specify more than one method stanza to configure multiple
EJB methods.

Parent elements: weblogic-enterprise-bean

transaction-isolation

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-57

11 The weblogic-ejb-jar.xml Deployment Descriptor
<method-name>...</method-name>

<method-params>...</method-params>

</method>

method-intf

Function

method-intf specifies the EJB interface to which WebLogic Server applies isolation
level properties. Use this element only if you need to differentiate between methods
having the same signature in the EJB’s home and remote interface.

Example

See “method” on page 11-57.

Range of values: Home | Remote

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
11-58 Programming WebLogic Enterprise JavaBeans

method-name
method-name

Function

method-name specifies the name of an individual EJB method to which WebLogic
Server applies isolation level properties. Use the asterisk (*) to specify all methods in
the EJB’s home and remote interfaces.

If you specify a method-name, the method must be available in the specified
ejb-name.

Example

See “method” on page 11-57.

Range of values: Name of an EJB defined in ejb-jar.xml | *

Default value: n/a

Requirements: Required element in method stanza.

Parent elements: weblogic-enterprise-bean
transaction-isolation

method

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-59

11 The weblogic-ejb-jar.xml Deployment Descriptor
method-param

Function

The method-param element specifies the fully qualified Java type name of a method
parameter.

Example

See “method-params” on page 11-61.

Range of values: Fully qualified Java type of a method parameter

Default value: n/a

Requirements: Required element in method-params.

Parent elements: weblogic-enterprise-bean

transaction-isolation
method

method-params

Deployment file: weblogic-ejb-jar.xml
11-60 Programming WebLogic Enterprise JavaBeans

method-params
method-params

Function

The method-params stanza contains one or more elements that define the Java type
name of each of the method’s parameters.

Example

The method-params stanza contains one or more method-param elements, as shown
here:

<method-params>

<method-param>java.lang.String</method-param>

...

</method-params>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional stanza.

Parent elements: weblogic-enterprise-bean

transaction-isolation
method

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-61

11 The weblogic-ejb-jar.xml Deployment Descriptor
persistence

Function

The persistence element defines the following options that determine the
persistence type, transaction commit behavior, and ejbLoad() and ejbStore()

behavior for entity EJBs in WebLogic Server:

! is-modified-method-name

! delay-updates-until-end-of-tx

! finders-load-bean

! persistence-type

! db-is-shared

! persistence-use

Example

The following example specifies the persistence element.

<entity-descriptor>

<persistence>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

Deployment file: weblogic-ejb-jar.xml
11-62 Programming WebLogic Enterprise JavaBeans

persistence-type
<is-modified-method-name>...</is-modified-method-name>

<delay-updates-until-end-of-tx>...</delay-updates-until-end-of-tx
>

<finders-load-beand>...</finders-load-bean>

<persistence-type>...</persistence-type>

<db-is-shared>False</db-is-shared>

<persistence-use>...</persistence-use>

</persistence>

</entity-descriptor>

persistence-type

Function

The persistence-type element defines a persistence service that the entity EJB can
use. You can define multiple persistence-type stanzas in
weblogic-ejb-jar.xml for testing your EJB with multiple persistence services.
Only the persistence type defined in persistence-use is actually used during
deployment.

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-63

11 The weblogic-ejb-jar.xml Deployment Descriptor
persistence-type includes several elements that identify the persistence types:

! type-identifier

! type-version

! type-storage

Example

The following excerpt shows a sample persistence-type stanza:

<persistence>

<persistence-type>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-type>

</persistence>
11-64 Programming WebLogic Enterprise JavaBeans

persistence-use
persistence-use

Function

The persistence-use element is similar to persistence-type, but it defines the
persistence service actually used during deployment. persistence-use uses the
type-identifier and type-version elements defined in a persistence-type to identify
the service.

Example

To deploy an EJB using the WebLogic Server RDBMS-based persistence service
defined in persistence-type, use the following persistence-use stanza:

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

</persistence-use>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-65

11 The weblogic-ejb-jar.xml Deployment Descriptor
persistent-store-dir

Function

The persistent-store-dir element specifies a file system directory where
WebLogic Server stores the state of passivated stateful session bean instances.

Example

See “stateful-session-descriptor” on page 11-83.

Range of values: Fully qualified filesystem path

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
11-66 Programming WebLogic Enterprise JavaBeans

pool
pool

Function

The pool element configures the behavior of the WebLogic Server free pool for
stateless session and message-driven EJBs. The options are:

! max-beans-in-free-pool

! initial-beans-in-free-pool

Example

The pool stanza can contain the elements shown here:

<stateless-session-descriptor>

<pool>

<max-beans-in-free-pool>500</max-beans-in-free-pool>

<initial-beans-in-free-pool>250</initial-beans-in-free-pool>

</pool>

</stateless-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
stateless-session-descriptor, message-bean-descriptor,

entity-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-67

11 The weblogic-ejb-jar.xml Deployment Descriptor
principal-name

Function

principal-name specifies the name of an actual WebLogic Server principal to apply
to the specified role-name.

Example

See “security-role-assignment” on page 11-80.

Range of values: valid WebLogic Server principal name

Default value: n/a

Requirements: At least one principal-name is required in the security-role-assignment stanza.
You may define more than one principal-name for each role-name.

Parent elements: weblogic-enterprise-bean
security-role-assignment

Deployment file: weblogic-ejb-jar.xml
11-68 Programming WebLogic Enterprise JavaBeans

provider-url
provider-url

Function

The provider-url element specifies the URL provider to be used by the
InitialContext. Typically, this is the host port and is used in conjunction with
initial-context-factory and connection-factory-jndi-name.

Example

The following example specifies the provider-url element.

<message-driven-descriptor>

<provider-url>WeblogicURL:Port</provider-url>

</message-driven-descriptor>

Range of values: valid name

Default value: n/a

Requirements: Used in conjunction with initial-context-factory and
connection-factory-jndi-name.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-69

11 The weblogic-ejb-jar.xml Deployment Descriptor
read-timeout-seconds

Function

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds
is set to 600, and WebLogic Server calls ejbLoad() only when the bean is brought
into the cache.

Example

The following entry causes WebLogic Server to call ejbLoad() for instances of the
AccountBean class only when the instance is first brought into the cache:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<read-timeout-seconds>0</read-timeout-seconds>

</entity-cache>

Range of values: 0 to maxSeconds

Default value: 600

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

Deployment file: weblogic-ejb-jar.xml
11-70 Programming WebLogic Enterprise JavaBeans

reference-descriptor
</entity-descriptor>

</weblogic-enterprise-bean>

reference-descriptor

Function

The reference-descriptor element maps references in the ejb-jar.xml file to
the JNDI names of actual resource factories and EJBs available in WebLogic Server.

Example

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

...

</resource-description>

<ejb-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-71

11 The weblogic-ejb-jar.xml Deployment Descriptor
...

</ejb-reference-description>

</reference-descriptor>

relationship-description

This element is no longer supported in WebLogic Server.

replication-type

Function

The replication-type element determines whether WebLogic Server replicates the
state of stateful session EJBs across WebLogic Server instances in a cluster. If you
select InMemory, the state of the EJB is replicated. If you select None, the state is not
replicated.

See “In-Memory Replication for Stateful Session EJBs” on page 4-13 for more
information.

Range of values: InMemory | None

Default value: None

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

Deployment file: weblogic-ejb-jar.xml
11-72 Programming WebLogic Enterprise JavaBeans

res-env-ref-name
Example

See “stateful-session-clustering” on page 11-82.

res-env-ref-name

Function

The res-env-ref-name element specifies the name of a resource environment
reference.

Example

See “resource-description” on page 11-75.

Range of values: A valid resource environment reference name from the ejb-jar.xml file

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-env-description

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-73

11 The weblogic-ejb-jar.xml Deployment Descriptor
res-ref-name

Function

The res-ref-name element specifies the name of a resourcefactory reference.
This is the reference that the EJB provider places within the ejb-jar.xml deployment
file.

Example

See “resource-description” on page 11-75.

Range of values: A valid resource reference name from the ejb-jar.xml file

Default value: n/a

Requirements: Required element if the EJB specifies resource references in ejb-jar.xml

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-description

Deployment file: weblogic-ejb-jar.xml
11-74 Programming WebLogic Enterprise JavaBeans

resource-description
resource-description

Function

The resource-description element maps a resource reference defined in
ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

The resource-description stanza can contain additional elements as shown here:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>...</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-75

11 The weblogic-ejb-jar.xml Deployment Descriptor
</reference-descriptor>

resource-env-description

Function

The resource-env-description element maps a resource environment reference
defined in ejb-jar.xml to the JNDI name of an actual resource available in
WebLogic Server.

Example

The resource-env-description stanza can contain additional elements as shown
here:

<reference-descriptor>

<resource-env-description>

<res-env-ref-name>. . .</res-env-ref-name>

<jndi-name>...</jndi-name>

<reference-env-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

Deployment file: weblogic-ejb-jar.xml
11-76 Programming WebLogic Enterprise JavaBeans

role-name
role-name

Function

The role-name element identifies an application role name that the EJB provider
placed in the ejb-jar.xml deployment file. Subsequent principal-name elements
in the stanza map WebLogic Server principals to the specified role-name.

Example

See “security-role-assignment” on page 11-80.

Range of values: An EJB role name defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in security-role-assignment.

Parent elements: weblogic-enterprise-bean
security-role-assignment

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-77

11 The weblogic-ejb-jar.xml Deployment Descriptor
security-permission

Function

The security-permission element specifies a security permission

Example

The security-permission stanza can contain one or more of the following
elements:

<security-permission> </security-permission>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: .

Parent elements: n/a

Deployment file: weblogic-ejb-jar.xml
11-78 Programming WebLogic Enterprise JavaBeans

security-permission-spec
security-permission-spec

Function

The security-permission element specifies a single security permission based on
the Security policy file syntax.

Example

The security-permission-spec stanza can contain one or more of the following
elements:

<security-permission>

<security-permission-spec>grant</security-permission-spec>

</security-permission>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: n/a

Parent elements: security-permission

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-79

11 The weblogic-ejb-jar.xml Deployment Descriptor
security-role-assignment

Function

The security-role-assignment element maps application roles in the
ejb-jar.xml file to the names of security principals available in WebLogic Server.

Example

The security-role-assignment stanza can contain one or more of the following
elements:

<security-role-assignment>

<role-name>PayrollAdmin</role-name>

<principal-name>Tanya</principal-name>

<principal-name>system</principal-name>

...

</security-role-assignment>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required element if ejb-jar.xml defines application roles.

Parent elements: n/a

Deployment file: weblogic-ejb-jar.xml
11-80 Programming WebLogic Enterprise JavaBeans

stateful-session-cache
stateful-session-cache

Function

The stateful-session-cache element defines the following options used to cache
stateful session EJB instances within WebLogic Server.

! max-beans-in-cache

! idle-timeout-seconds

! cache-type

See“EJB Lifecycle in WebLogic Server” on page 4-2 for a general discussion of the
caching services available in WebLogic Server.

Example

The following example shows how to specify the stateful-session-cache element

<stateful-session-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<read-timeout-seconds>...<read-timeout-seconds>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The stateful-session-cache stanza is optional, and is valid only for stateful
session EJBs.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-81

11 The weblogic-ejb-jar.xml Deployment Descriptor
</stateful-session-cache>

stateful-session-clustering

Function

The stateful-session-clustering stanza element specifies the following options
that determine how WebLogic Server replicates stateful session EJB instances in a
cluster:

! home-is-clusterable

! home-load-algorithm

! home-call-router-class-name

! replication-type

Example

The following excerpt shows the structure of a entity-clustering stanza:

<stateful-session-clustering>

<home-is-clusterable>True</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor

Deployment file: weblogic-ejb-jar.xml
11-82 Programming WebLogic Enterprise JavaBeans

stateful-session-descriptor
<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

<replication-type>InMemory</replication-type>

</stateful-session-clustering>

stateful-session-descriptor

Function

The stateful-session-descriptor element specifies the following deployment
parameters that are applicable for stateful session EJBs in WebLogic Server:

! stateful-session-cache

! persistent-store-dir

! stateful-session-clustering

! allow-concurrent-calls

Example

The following example shows the structure of the stateful-session-descriptor
stanza:

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateful-session-descriptor stanza is required for each stateful session
EJB in the .jar.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-83

11 The weblogic-ejb-jar.xml Deployment Descriptor
<stateful-session-descriptor>

<stateful-session-cache>...</stateful-session-cache>

<persistence>...</persistence>

<allow-concurrent-calls>...</allow-concurrent-calls>

<persistent-store-dir>/weblogic/myserver</persistent-store-dir>

<stateful-session-clustering>...</stateful-session-clustering>

</stateful-session-descriptor>

stateless-bean-call-router-class-name

Function

The stateless-bean-call-router-class-name element specifies the name of a
custom class to use for routing bean method calls. This class must implement
weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Range of values: Valid router class name

Default value: n/a

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
11-84 Programming WebLogic Enterprise JavaBeans

stateless-bean-is-clusterable
Example

See “stateless-clustering” on page 11-88.

stateless-bean-is-clusterable

Function

When stateless-bean-is-clusterable is True, the EJB can be deployed from
multiple WebLogic Servers in a cluster. Calls to the home stub are load-balanced
between the servers on which this bean is deployed, and if a server hosting the bean is
unreachable, the call automatically fails over to another server hosting the bean.

Example

See “stateless-clustering” on page 11-88.

Range of values: True | False

Default value: True

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-85

11 The weblogic-ejb-jar.xml Deployment Descriptor
stateless-bean-load-algorithm

Function

stateless-bean-load-algorithm specifies the algorithm to use for load balancing
between replicas of the EJB home. If this property is not defined, WebLogic Server
uses the algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define stateless-bean-load-algorithm as one of the following values:

! round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

! random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

! weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “stateless-clustering” on page 11-88.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
11-86 Programming WebLogic Enterprise JavaBeans

stateless-bean-methods-are-idempotent
stateless-bean-methods-are-idempotent

Function

Set stateless-bean-methods-are-idempotent to True only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
property to True makes it possible for the bean stub to recover automatically from any
failure as long as another server hosting the bean can be reached.

Example

See “stateless-clustering” on page 11-88.

Range of values: True | False

Default value: False

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-87

11 The weblogic-ejb-jar.xml Deployment Descriptor
stateless-clustering

Function

The stateless-clustering element specifies the following options that determine
how WebLogic Server replicates stateless session EJB instances in a cluster:

! stateless-bean-is-clusterable

! stateless-bean-load-algorithm

! stateless-bean-call-router-class-name

! stateless-bean-methods-are-idempotent

Example

The following excerpt shows the structure of a stateless-clustering stanza:

<stateless-clustering>

<stateless-bean-is-clusterable>True</stateless-bean-is-clusterabl
e>

<stateless-bean-load-algorithm>random</stateless-bean-load-algori
thm>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

Deployment file: weblogic-ejb-jar.xml
11-88 Programming WebLogic Enterprise JavaBeans

stateless-session-descriptor
<stateless-bean-call-router-class-name>beanRouter</stateless-bean
-call-router-class-name>

<stateless-bean-methods-are-idempotent>True</stateless-bean-metho
ds-are-idempotent>

</stateless-clustering>

stateless-session-descriptor

Function

The stateless-session-descriptor element defines deployment parameters,
such as caching, clustering, and persistence for stateless session EJBs in WebLogic
Server.

Example

The following example shows the structure of the stateless-session-descriptor
stanza:

<stateless-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateless-session-descriptor element is required for each stateless
session EJB in the JAR file.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-89

11 The weblogic-ejb-jar.xml Deployment Descriptor
<pool>...</pool>

<stateless-clustering>...</stateless-clustering>

</stateless-session-descriptor>

transaction-descriptor

Function

The transaction-descriptor element specifies options that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:
trans-timeout-seconds.

Example

The following example shows the structure of the transaction-descriptor stanza:

<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean

Deployment file: weblogic-ejb-jar.xml
11-90 Programming WebLogic Enterprise JavaBeans

transaction-isolation
transaction-isolation

Function

The transaction-isolation element defines method-level transaction isolation
settings for an EJB.

Example

The transaction-isolation stanza can contain the elements shown here:

<transaction-isolation>

<isolation-level>Serializable</isolation-level>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</transaction-isolation>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-jar

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-91

11 The weblogic-ejb-jar.xml Deployment Descriptor
transport-requirements

Function

The transport-requirements element provides the transport requirements for the
EJB.

Example

The transport-requirements stanza can contain the elements shown here

<iiop-security-descriptor>

<transport-requirements>

<confidentiality>supported</confidentiality>

<integrity>supported</integrity>

<client-cert-authorization>suppoted

</client-cert-authentication>

</transport-requirements>

</iiop-security-description>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean,
iiop-security-descriptor

Deployment file: weblogic-ejb-jar.xml
11-92 Programming WebLogic Enterprise JavaBeans

trans-timeout-seconds
trans-timeout-seconds

Function

The trans-timeout-seconds element specifies the maximum duration for an EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

Example

See “transaction-descriptor” on page 11-90.

Range of values: 0 to max

Default value: 30

Requirements: Optional element. Valid for any type of EJB.

Parent elements: weblogic-enterprise-bean,
transaction-descriptor

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-93

11 The weblogic-ejb-jar.xml Deployment Descriptor
type-identifier

Function

The type-identifier element contains text that identifies an entity EJB persistence
type. WebLogic Server RDBMS-based persistence uses the identifier,
WebLogic_CMP_RDBMS. If you use a different persistence vendor, consult the vendor’s
documentation for information on the correct type-identifier.

Example

See “persistence-type” on page 11-63 for an example that shows the complete
persistence-type definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type

and

weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-use

Deployment file: weblogic-ejb-jar.xml
11-94 Programming WebLogic Enterprise JavaBeans

type-storage
type-storage

Function

The type-storage element defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level of
the EJB’s JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the JAR file.

Example

See “persistence-type” on page 11-63 for an example that shows the complete
persistence-type definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-95

11 The weblogic-ejb-jar.xml Deployment Descriptor
type-version

Function

The type-version element identifies the version of the specified persistence type.

Note: If you use WebLogic Server RDBMS-based persistence, the specified version
must exactly match the RDBMS persistence version for the WebLogic Server
release. Specifying an incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type

and

weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-use

Deployment file: weblogic-ejb-jar.xml
11-96 Programming WebLogic Enterprise JavaBeans

weblogic-ejb-jar
Example

See persistence-type for an example that shows the complete persistence-type
definition for WebLogic Server RDBMS-based persistence.

weblogic-ejb-jar

Function

weblogic-ejb-jar is the root element of the weblogic component of the EJB
deployment descriptor.

Range of values: N/A

Default value: N/A

Requirements: N/A

Parent elements: N/A

Deployment file: weblogic-ejb-jar.xml
Programming WebLogic Enterprise JavaBeans 11-97

11 The weblogic-ejb-jar.xml Deployment Descriptor
weblogic-enterprise-bean

Function

The weblogic-enterprise-bean element contains the deployment information for
a bean that is available in WebLogic Server.

Range of values:

Default value:

Requirements:

Parent elements: weblogic-ejb-jar

Deployment file: weblogic-ejb-jar.xml
11-98 Programming WebLogic Enterprise JavaBeans

CHAPTER
12 The
weblogic-cmp-rdbms-
jar.xml Deployment
Descriptor

The following sections describe the EJB 2.0 deployment descriptor elements found in
the weblogic-cmp-rdbms-jar.xml file, the weblogic-specific XML document type
definitions (DTD) file. Use these definitions to create the WebLogic-specific
weblogic-cmp-rdbms-jar.xml file that is part of your EJB deployment.

The following sections provide a complete reference of the WebLogic-specific XML
including the DOCTYPE header information. Use these deployment descriptor
elements to specify container-managed-persistence (CMP).

For information on the EJB 1.1 deployment descriptor elements see Chapter 13,
“Important Information for EJB 1.1 Users.”

! EJB Deployment Descriptors

! DOCTYPE Header Information

! 2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure

! 2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
Programming WebLogic Enterprise JavaBeans 12-1

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
EJB Deployment Descriptors

The EJB deployment descriptors provide structural and application assembly
information for an enterprise bean. You specify this information by specifying values
for the deployment descriptors in three EJB XML DTD files. These files are:

! ejb-jar.xml

! weblogic-ejb-jar.xml

! weblogic-cmp-rdbms-jar.xml

You package these three XML files with the EJB and other classes into a deployable
EJB component, usually a JAR file, called ejb.jar.

The ejb-jar.xml file is based on the deployment descriptors found in Sun
Microsystems’s ejb.jar.xml file. The other two XML files are weblogic-specific
files that are based on the deployment descriptors found in weblogic-ejb-jar.xml

and weblogic-cmp-rdbms-jar.xml.

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose. The correct text for the PUBLIC element for each XML deployment file is as
follows.

The correct text for the PUBLIC element for the WebLogic Server-specific
weblogic-cmp-rdbms-jar.xml files are as follows.

XML File PUBLIC Element String

weblogic-cmp-rdbms
-jar.xml

‘-// BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB RDBMS
Persistence//EN‘
‘http://www.bea.com/servers/wls810/dtd/weblogic-rdbms
20-persistence-810.dtd‘
12-2 Programming WebLogic Enterprise JavaBeans

DOCTYPE Header Information
The correct text for the PUBLIC elements for the Sun Microsystem-specific ejb-jar
files are as follows.

For example, the entire DOCTYPE header for a weblogic-cmp-rdbms-jar.xml file is
as follows:

<!DOCTYPE weblogic-cmp-rdbms-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB RDBMS
Persistence//EN'
'http://www.bea.com/servers/wls810/dtd/weblogic-rdbms20-persisten

ce-810.dtd '>

XML files with incorrect header information may yield error messages similar to the
following, when used with a tool that parses the XML (such as appc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

weblogic-cmp-rdbms
-jar.xml

‘-// BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB RDBMS
Persistence//EN‘
‘http://www.bea.com/servers/wls700/dtd/weblogic-rdbms
20-persistence-700.dtd‘

weblogic-cmp-rdbms
-jar.xml

‘-// BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS
Persistence//EN‘
‘http://www.bea.com/servers/wls600/dtd/weblogic-rdbms
20-persistence-600.dtd‘

XML File PUBLIC Element String

XML File PUBLIC Element String

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ‘

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN’

‘http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’
Programming WebLogic Enterprise JavaBeans 12-3

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server utilities
ignore the DTDs embedded within the DOCTYPE header of XML deployment files, and
instead use the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-cmp-rdbms-jar.xml

The following links provide the public locations for weblogic-cmp-rdbms-jar.xml
DTDs, by version number.

The following links provide the public DTD locations for the
weblogic-cmp-rdbms-jar.xml deployment files used with WebLogic Server:

! For weblogic-cmp-rdbms-jar.xml 8.1 DTD:

http://www.bea.com/servers/wls810/dtd/weblogic-rdbms20-
persistence-810.dtd

! For weblogic-cmp-rdbms-jar.xml 7.0 DTD:

http://www.bea.com/servers/wls700/dtd/weblogic-rdbms-
persistence-700.dtd

! For weblogic-cmp-rdbms-jar.xml 6.0 DTD:

http://www.bea.com/servers/wls600/dtd/weblogic-rdbms-
persistence-600.dtd

ejb-jar.xml

The following links provide the public locations for the ejb-jar.xmlDTDs used with
WebLogic Server:

! For ejb-jar.xml 2.0 DTD:
12-4 Programming WebLogic Enterprise JavaBeans

http://www.bea.com/servers/wls810/dtd/weblogic-rdbms20- persistence-810.dtd persistence-810.dtd
http://www.bea.com/servers/wls810/dtd/weblogic-rdbms20- persistence-810.dtd persistence-810.dtd
http://www.bea.com/servers/wls700/dtd/weblogic-rdbms- persistence-700.dtd
http://www.bea.com/servers/wls600/dtd/weblogic-rdbms- persistence-600.dtd

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

! For ejb-jar.xml 1.1 DTD:

ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.

Note: Refer to the appropriate JavaSoft EJB specification for a description of the
ejb-jar.xml deployment descriptors.

2.0 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor File Structure

The weblogic-cmp-rdbms-jar.xml file defines deployment descriptors for a entity
EJBs that uses WebLogic Server RDBMS-based persistence services. The EJB
container uses a version of weblogic-cmp-rdbms-jar.xml that is different from the
XML shipped with WebLogic Server Version 6.x.

You can continue to use the earlier weblogic-cmp-rdbms-jar.xmlDTD for EJB 1.1
beans that you will deploy on the WebLogic Server Version 8.1. However, if you want
to use any of the new CMP 2.0 features, you must use the new DTD described below.

The top-level element of the WebLogic Server 8.1 weblogic-cmp-rdbms-jar.xml

consists of a weblogic-rdbms-jar stanza:

description

weblogic-version

weblogic-rdbms-jar

weblogic-rdbms-bean
ejb-name
data-source-name
table-map
Programming WebLogic Enterprise JavaBeans 12-5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
field-group
relationship-caching
weblogic-query
delay-database-insert-until
automatic-key-generation
check-exists-on-method

weblogic-rdbms-relation
relation-name
table-name
weblogic-relationship-role

create-default-dbms-tables
validate-db-schema-with
database-type

2.0 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor Elements

! “automatic-key-generation” on page 12-9

! “caching-element” on page 12-10

! “caching-name” on page 12-11

! “check-exists-on-method” on page 12-12

! “cmp-field” on page 12-13

! “cmr-field” on page 12-14

! “column-map” on page 12-15

! “create-default-dbms-tables” on page 12-16

! “database-type” on page 12-17

! “data-source-name” on page 12-18

! “db-cascade-delete” on page 12-19

! “dbms-column” on page 12-20
12-6 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
! “dbms-column-type” on page 12-21

! “description” on page 12-22

! “delay-database-insert-until” on page 12-23

! “ejb-name” on page 12-24

! “enable-batch-operations” on page 12-25

! “enable-tuned-updates” on page 12-26

! “field-group” on page 12-27

! “field-map” on page 12-28

! “foreign-key-column” on page 12-29

! “foreign-key-table” on page 12-30

! “generator-name” on page 12-31

! “generator-type” on page 12-32

! “group-name” on page 12-33

! “include-updates” on page 12-34

! “key-cache-size” on page 12-35

! “key-column” on page 12-36

! “max-elements” on page 12-37

! “method-name” on page 12-38

! “method-param” on page 12-39

! “method-params” on page 12-40

! “optimistic-column” on page 12-41

! “order-database-operations” on page 12-42

! “primary-key-table” on page 12-43

! “query-method” on page 12-44

! “relation-name” on page 12-45
Programming WebLogic Enterprise JavaBeans 12-7

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
! “relationship-caching” on page 12-46

! “relationship-role-map” on page 12-47

! “relationship-role-name” on page 12-48

! “sql-select-distinct” on page 12-49

! “table-map” on page 12-50

! “table-name” on page 12-52

! “use-select-for-update” on page 12-53

! “validate-db-schema-with” on page 12-54

! “verify-columns” on page 12-55

! “weblogic-ql” on page 12-56

! “weblogic-query” on page 12-57

! “weblogic-rdbms-bean” on page 12-58

! “weblogic-rdbms-jar” on page 12-59

! “weblogic-rdbms-relation” on page 12-60

! “weblogic-relationship-role” on page 12-61
12-8 Programming WebLogic Enterprise JavaBeans

automatic-key-generation
automatic-key-generation

Function

The automatic-key-generation element specifies the use of the Sequence/Key
Generation feature.

Example

The XML stanza can contain the elements shown here:

<automatic-key-generation>
<generator-type>Oracle</generator-type>
<generator-name>test_sequence</generator-name>
<key-cache-size>10</key-cache-size>

</automatic-key-generation>

<automatic-key-generation>
<generator-type>SQL-SERVER</generator-type>

</automatic-key-generation>

<automatic-key-generation>
<generator-type>NamedSequenceTable</generator-type>
<generator-name>MY_SEQUENCE_TABLE_NAME</generator-name>

Range of values: n/a

Default value: n/a

Requirements: Optional.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-9

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
<key-cache-size>100</key-cache-size>
</automatic-key-generation>

caching-element

Function

The caching-element descriptor specifies the container-managed relationship
(cmr-field) for the related bean, and the group-name in the related bean. If
group-name is not specified, the default group-name (load all fields) is used. For
more information about group-name, see “group-name” on page 12-33.

For more information about relationship caching, see “Relationship Caching with
Entity Beans” on page 6-4.

Example

See “relationship-caching” on page 12-46:

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

relationship-caching

Deployment file: weblogic-cmp-rdbms-jar.xml
12-10 Programming WebLogic Enterprise JavaBeans

caching-name
caching-name

Function

The caching-name element specifies the name of a relationship cache. For more
information about relationship caching, see “Relationship Caching with Entity Beans”
on page 6-4.

Example

See “relationship-caching” on page 12-46:

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

relationship-caching

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-11

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
check-exists-on-method

Function

The check-exists-on method element specifies that WebLogic Server notify the
application that a business method is invoked on a CMP entity bean that has been
removed if the value is set to “True.”

By default, WebLogic RDBMS CMP only checks that an entity bean actually exists in
the underlying database when it needs to read or write data to the RDBMS. This
provides most applications with higher performance and a sufficient level of checking.
For example, when the value of a cmp-field is passed to an application for a bean that
has been removed, it throws a NoSuchObjectException or
NoSuchObjectLocalException error immediately while an

Example

The following example specifies that WebLogic Server notify the application that a
business method is invoked on a CMP entity bean that has been removed.

<check-exists-on-method>True</check-exists-on-method>

Range of values: True | False

Default value: True

Requirements: .

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-12 Programming WebLogic Enterprise JavaBeans

cmp-field
cmp-field

Function

This name specifies the mapped field in the bean instance which should be populated
with information from the database.

Example

See “field-map” on page 12-28.

Range of values: Valid name

Default value: n/a

Requirements: Field is case sensitive and must match the name of the field in the bean and must also
have a cmp-entry entry in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean
field-map

weblogic-rdbms-relation
field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-13

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
cmr-field

Function

The cmr-field element specifies the name of a container-managed relationship field
(cmr-field.)

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock
purchases</cmp-field>

<cmr-field>stock options</cmr-field>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: The field referenced in cmr-field must have a matching cmr-field entry in the
ejb-jar.xml.

Parent elements: weblogic-rdbms-relation

field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
12-14 Programming WebLogic Enterprise JavaBeans

column-map
column-map

Function

This element represents the mapping of a foreign key column in one table in the
database to a corresponding primary key. The two columns may or may not be in the
same table. The tables to which the column belong are implicit from the context in
which the column-map element appears in the deployment descriptor.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<column-map

<foreign-key-column>account-id</foreign-key-column>
<key-column>id</key-column>

</column-map>

</weblogic-rdbms-bean>
</weblogic-rdbms-jar>

Range of values: n/a.

Default value: n/a

Requirements: The key-column element is not specified, if the foreign-key-column refers to a
remote bean.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-15

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
create-default-dbms-tables

Function

The create-default-dbms-table element serves two functions:

! It turns on or off a feature that automatically creates a default table based on the
descriptions in the deployment files and the bean class. When set to False, this
feature is turned off and table will not automatically be generated. When set to
True, this feature is turned on and the table is automatically created. If TABLE
CREATION fails, a Table Not Found error is thrown and the table must be
created by hand.

! It determines whether and how the EJB container drops and recreates tables
whose underlying schema has changed:

" When set to DropAndCreate, the container drops and creates the table during
deployment if columns have changed and table data is not saved.

" When set to DropAndCreateAlways, the container drops and creates the
table during deployment whether or not columns have changed and data is
not saved.

" When set to CreateOrAlterTable, the container creates the table if it does
not yet exist. If the table does exist, the container alters the table schema.
Table data is saved.

Range of values: True | False | DropAndCreate | DropAndCreateAlways | CreateOrAlterTable

Default value: False

Requirements: Use this element only for convenience during the development and prototyping phases.
This is because the Table Schema in the DBMS CREATE statement used will be the
container’s best approximation of the definition. A production environment most likely,
will require a more precise schema definition.

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
12-16 Programming WebLogic Enterprise JavaBeans

database-type
Warning: Do not choose this option if a new column is specified as a primary
key or if a column with null values is specified as the new primary
key column.

Example

The following example specifies the create-default-dbms-tables element.

<create-default-dbms-tables>True</create-default-dbms-tables>

database-type

Function

The database-type element specifies the database used as the underlying dbms.

Example

The following example specifies the underlying dbms.

<database-type>POINTBASE</database-type>

Range of values: DB2| Informix| Oracle| SQLServer| Sybase| POINTBASE.

Default value: NA

Requirements: NA.

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-17

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
data-source-name

Function

The data-source-name that specifies the JDBC data source name to be used for all
database connectivity for this bean.

Example

See “table-name” on page 12-52.

Range of values: Valid name of the data source used for all data base connectivity for this bean.

Default value: n/a

Requirements: Must be defined as a standard WebLogic Server JDBC data source for database
connectivity. For more information on datasources, see Programming WebLogic JDBC.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-18 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/jdbc/index.html

db-cascade-delete
db-cascade-delete

Function

The db-cascade-delete element specifies whether the database cascade feature is
turned on. If this element is not specified, WebLogic Server assumes that database
cascade delete is not specified.

Example

See “Cascade Delete Method” on page 5-31.

Range of values:

Default value: n/a

Requirements: Only supported for Oracle database. Can only be specified for one-to-one or
one-to-many relationships.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-19

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
dbms-column

Function

The name of the database column to which the field should be mapped.

Example

See “field-map” on page 12-28.

Range of values: Valid name

Default value: n/a

Requirements: dbms-column is case maintaining, although not all database are case sensitive.

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
12-20 Programming WebLogic Enterprise JavaBeans

dbms-column-type
dbms-column-type

Function

The dbms-column-type element maps the current field to a Blob or Clob in an Oracle
database or a LongString or SybaseBinary in a Sybase database. This element can be
one of the following:

! OracleBlob

! OracleCLob

! LongString

! SybaseBinary

Example

<field-map>
<cmp-field>photo</cmp-field>
<dbms-column>PICTURE</dbms-column>
<dbms_column-type>OracleBlob</dbms-column-type>

</field-map>

Range of values: Valid name

Default value: n/a

Requirements:

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-21

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
description

Function

The description element is used to provide text that describes the parent element.

Example

The following example specifies the description element.

<dscription>Contains a description of parent element</description>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
12-22 Programming WebLogic Enterprise JavaBeans

delay-database-insert-until
delay-database-insert-until

Function

The delay-database-insert-until element specifies the precise time when a new
bean that uses RDBMS CMP is inserted into the database.

It is advisable to delay the database insert until after the ejbPostCreate method
modifies the persistent fields of the bean. This can yield better performance by
avoiding an unnecessary store operation.

For maximum flexibility, you should avoid creating related beans in your
ejbPostCreate method. This may make delaying the database insert impossible if
database constraints prevent related beans from referring to a bean that has not yet been
created.

Example

The following example specifies the delay-database-insert-until element.

Range of values: ejbCreate | ejbPostCreate | commit

Default value: ejbPostCreate

Requirements: Database insert is delayed until after ejbPostCreate when a cmr-field is mapped
to a foreign-key column that does not allow null values. In this case, the
cmr-field must be set to a non-null value in ejbPostCreate before the bean is
inserted into the database.

The cmr-fields may not be set during ejbCreate, before the primary key of the
bean is known.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-23

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
<delay-database-insert-until>ejbPostCreate</delay-database-insert
-until>

ejb-name

Function

The name that specifies an EJB as defined in the ejb-cmp-rdbms.xml. This name must
match the ejb-name of a cmp entity bean contained in the ejb-jar.xml.

Example

See “table-name” on page 12-52.

Range of values: Valid name of an EJB.

Default value: n/a

Requirements: Must match the ejb-name of the cmp entity bean defined in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-24 Programming WebLogic Enterprise JavaBeans

enable-batch-operations
enable-batch-operations

Function

This element allows or disallows the EJB container to perform batch operations,
including batch inserts, batch updates and batch deletes.

If this element is set to True, the EJB delays database operations in a transaction until
commit time.

Example

The following XML sample demonstrates use of the enable-batch-operations
element:

<enable-batch-operations>True</enable-batch-operations>

Range of values: True | False

Default value: True

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-25

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
enable-tuned-updates

Function

The enable-tuned-updates element specifies that when ejbStore is called that the
EJB container automatically determine which container-managed fields have been
modified and then writes only those fields back to the database.

Example

The following examples shows how to specify the enable-tuned-updates element.

<enable-tuned-updates>True</enable-tuned-updates>

Range of values: True/False

Default value: True

Requirements:

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-26 Programming WebLogic Enterprise JavaBeans

field-group
field-group

Function

The field-group element represents a subset of the cmp and cmr-fields of a bean.
Related fields in a bean can be put into groups that are faulted into memory together
as a unit. A group can be associated with a finder or relationship, so that when a bean
is loaded as the result of executing a finder or following a relationship, only the fields
specified in the group are loaded.

A field may belong to multiple groups. In this case, the getXXX method for the field
faults in the first group that contains the field.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-bean>
<ejb-name>XXXBean</ejb-name>
<field-group>

<group-name>medical-data</group-name>
<cmp-field>insurance</cmp-field>
<cmr-field>doctors</cmr-fields>

</field-group>
</weblogic-rdbms-bean>

Range of values: Valid name

Default value: A special group named default is used for finders and relationships that have no group
specified.

Requirements: The default group contains all of a bean’s cmp-fields, but none of its cmr-fields.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-27

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
field-map

Function

The name of the mapped field for a particular column in a database that corresponds
to a cmp field in the bean instance.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<field-map>
<cmp-field>accountId</cmp-field>

<dbms-column>id</dbms-column>
</field-map>

<field-map>
<cmp-field>balance</cmp-field>

<dbms-column>bal</dbms-column>
</field-map>

<field-map>
<cmp-field>accountType</cmp-field>

<dbms-column>type</dbms-column>
</field-map>

Range of values: Valid name

Default value: n/a

Requirements: Field mapped to the column in the database must correspond to a cmp field in the bean.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-28 Programming WebLogic Enterprise JavaBeans

foreign-key-column
</weblogic-rdbms-bean>
</weblogic-rdbms-jar>

foreign-key-column

Function

The foreign-key-column element represents a column of a foreign key in the
database.

Example

See “column-map” on page 12-15.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a foreign key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-29

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
foreign-key-table

Function

The foreign-key-table element specifies the name of a DBMS table that contains
a foreign key.

Example

See “relationship-role-map” on page 12-47.

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-relation

weblogic-relationship-role
relationship-role-map

Deployment file: weblogic-cmp-rdbms-jar.xml
12-30 Programming WebLogic Enterprise JavaBeans

generator-name
generator-name

Function

The generator-name element is used to specify the name of the generator.

For example;

! If the generator-type element is Oracle, then the generator-name element
would be the name of the ORACLE_SEQUENCE to be used.

! If the generator-type element is NamedSequenceTable, then the
generator-name element would be the name of the SEQUENCE_TABLE to be
used.

Example

See “automatic-key-generation” on page 12-9.

Range of values: n/a

Default value: n/a

Requirements: Optional.

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-31

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
generator-type

Function

The generator-type element specifies the key generation method to use. The options
include:

! Oracle

! SQLServer

! NamedSequenceTable

Example

See “automatic-key-generation” on page 12-9.

Range of values: n/a

Default value: n/a

Requirements: Optional

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
12-32 Programming WebLogic Enterprise JavaBeans

group-name
group-name

Function

The group-name element specifies the name of a field group.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock
purchases</cmp-field>

<cmr-field>stock options</cmr-field>

<group-name>financial
data</group-name>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-relation

field-group

weblogic-rdbms-bean

finder

finder-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-33

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

include-updates

Function

The include-updates element specifies that updates made during the current transaction
must be reflected in the result of a query. If this element is set to True, the container
will flush all changes made by the current transaction to disk before executing the
query.

The default value is False for beans that use optimistic concurrency. The default value
is True for beans that use other concurrency types, such as database, or exclusive.

Example

The XML stanza can contain the elements shown here:

<include-updates>False</include_updates>

Range of values: True | False

Default value: False

Requirements: The default value, which is False, provides the best performance.

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
12-34 Programming WebLogic Enterprise JavaBeans

key-cache-size
key-cache-size

Function

The key-cache-size element specifies the optional size of the primary key cache
available in the automatic primary key generation feature.

Example

See “automatic-key-generation” on page 12-9.

Range of values: n/a

Default value: 1

Requirements: Optional

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-35

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
key-column

Function

The key-column element represents a column of a primary key in the database.

Example

See “column-map” on page 12-15.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a primary key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
12-36 Programming WebLogic Enterprise JavaBeans

max-elements
max-elements

Function

max-elements specifies the maximum number of elements that should be returned by
a multi-valued query. This element is similar to the maxRows feature in JDBC.

Example

The XML stanza can contain the elements shown here:

<max-elements>100</max-elements>

<!ELEMENT max-element (PCDATA)>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-37

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
method-name

Function

The method-name element specifies the name of a finder or ejbSelect method.

Example

See “weblogic-query” on page 12-57.

Range of values: n/a

Default value: n/a

Requirements: The ‘*’ character may not be used as a wildcard.

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
12-38 Programming WebLogic Enterprise JavaBeans

method-param
method-param

Function

The method-param element contains the fully qualified Java type name of a method
parameter.

Example

The XML stanza can contain the elements shown here:

<method-param>java.lang.String</method-param>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

method-params

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-39

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
method-params

Function

The method-params element contains an ordered list of the fully-qualified Java type
names of the method parameters.

Example

See “weblogic-query” on page 12-57.

Range of values: list of valid names

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
12-40 Programming WebLogic Enterprise JavaBeans

optimistic-column
optimistic-column

Function

The optimistic-column element denotes a database column that contains a version
or timestamp value used to implement optimistic concurrency. For more information
on optimistic concurrency, see “Optimistic Concurrency Strategy” on page 5-38.

Example

The following sample XML shows the use of the optimistic-column element.

<optimistic-column>ROW_VERSION</optimistic-column>

Range of values: n/a

Default value: n/a

Requirements: Although not all databases are case sensitive, this element is case maintaining.

Parent elements: weblogic-rdbms-bean

table-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-41

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
order-database-operations

Function

Determines whether the EJB container delays all database operations in a transaction
until commit time, automatically sorts the database dependency between the
operations, and sends these operations to the database in such a way to avoid any
database constraint errors.

If enable-batch-operations is set to True, the container automatically sets
order-database-operations to True.

Example

The following sample XML demonstrates the use of the
order-database-operations element.

<order-database-operations>True</order-database-operations>

Range of values: True | False

Default value: True

Requirements:

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-42 Programming WebLogic Enterprise JavaBeans

primary-key-table
primary-key-table

Function

The primary-key-table element specifies the name of a DBMS table that contains
a primary key. For more information about primary keys, see “Using Primary Keys”
on page 5-4.

In the following XML stanza The bean on the primary-key side of a one-to-one
relationship, called Pk_bean is mapped to multiple tables, but the bean on the
foreign-key side of the relationship, called Fk_Bean is mapped to one table, called
Fk_BeanTable. The foreign-key columns are named Fk_column_1 and
Fk_column_2.

Example

The following sample XML shows the use of the primary-key-table element.

<relationship-role-map
<primary-key-table->Pk_BeanTable_1</primary-key-table>
<column-map>
<foreign-key-column>Fk_column_1</foreign-key-column>
<key-column>Pk_table1_pkColumn_1</key-column>

Range of values: n/a

Default value: n/a

Requirements: Although not all databases are case sensitive, this element is case maintaining.

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-relation

weblogic-relationship-role
relationship-role-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-43

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
</column-map>
<column-map>
<foreign-key-column>Fk_column_2</foreign-key-column>
<key-column>Pk_table1_pkColumn_2</key-column>
</column-map>
</relationship-role-map>

query-method

Function

The query-method element specifies the method that is associated with a
weblogic-query. It also uses the same format as the ejb-jar.xml descriptor.

Example

See “weblogic-query” on page 12-57.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-44 Programming WebLogic Enterprise JavaBeans

relation-name
relation-name

Function

The relation-name element specifies the name of a relation.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>

<table-name>stocks</table-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: Must match the ejb-relation-name of an ejb-relation in the associated
ejb-jar.xml deployment descriptor file. The ejb-relation-name is optional, but is
required for each relationship defined in the associated ejb-jar.xml deployment
descriptor file

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-45

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
relationship-caching

Function

The relation-caching element specifies relationship caching. For more
information about relationship caching, see “Relationship Caching with Entity Beans”
on page 6-4.

Example

The XML stanza can contain the elements shown here:

<relationship-caching>
<caching-name>cacheMoreBeans</caching-name>
<caching-element>

<cmr-field>accounts<</cmr-field>
<group-name>acct_group</group-name>
<caching-element>

<cmr-field>address</cmr-field>
<group-name>addr_group</group-name>

</caching-element>
</caching-element>

<caching-element>
<cmr-field>phone</cmr-field>
<group-name>phone_group</group-name>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-46 Programming WebLogic Enterprise JavaBeans

relationship-role-map
</caching-element>
</relationship-caching>

relationship-role-map

Function

The relationship-role-map element specifies foreign-key-column to key-column
mapping for beans involved in a relationship.

Example

The XML stanza can contain the elements shown here:

<relationship-role-map
<foreign-key-table->Fk_BeanTable_2</foreign-key-table>
<column-map>

<foreign-key-column>Fk_column_1</foreign-key-column>
<key-column>Pk_table_pkColumn_1</key-column>

</column-map>
<column-map>

<foreign-key-column>Fk_column_2</foreign-key-column>
<key-column>Pk_table_pkColumn_2</key-column>

Range of values: Valid name

Default value: n/a

Requirements: The name must match the ejb-relationship-role-name of an
ejb-relationship-role in the associated ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-47

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
</column-map>
</relationship-role-map>

relationship-role-name

Function

The relationship-role-name element specifies the name of a relationship role.
The bean on the foreign-key side of the a one-to-one relationship called Fk_Bean, as
shown in the following XML stanza, is mapped to multiple tables. The table that has
the foreign-key columns must be specified in the foreign-key-table element. See
“foreign-key-table” on page 12-30.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<weblogic-relationship-role>stockholder</weblogic-
relationship-role>

Range of values: Valid name

Default value: n/a

Requirements: The name must match the ejb-relationship-role-name of an
ejb-relationship-role in the associated ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
12-48 Programming WebLogic Enterprise JavaBeans

sql-select-distinct
<relationship-role-name>stockholders</relationship- role-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

sql-select-distinct

Note: This element is deprecated. To achieve the same functionality, use the SELECT
DISTINCT clause directly in finder queries.See “Using SELECT DISTINCT”
on page 5-15.

Function

The sql-select-distinct element controls whether the generated SQL SELECT
statement will contain a a DISTINCT qualifier. Using the DISTINCT qualifier caused
the database to return unique rows.

Range of values: True | False

Default value: False

Requirements: The Oracle database does not allow you to use a SELECT DISTINCT in conjunction
with a FOR UPDATE clause. Therefore, you cannot use the sql-select-distinct
element if any bean in the calling chain has a method with a
transaction-isolation element set to the isolation-level sub element with
a value of TRANSACTION_READ_COMMITED_FOR_UPDATE You specify the
transaction-isolation element in the weblogic-ejb-jar.xml file.

Parent elements: weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-49

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
Example

The XML example contains the element shown here:

<sql-select-distinct>True</sql-select-distinct>

table-map

Function

The table-map element specifies a mapping between the cmp-fields of a bean and the
columns of a table for all of the cmp-fields mapped to that table. If you map a CMP
bean to n DBMS tables, then you must specify n table-map elements for the bean,
one for each n DBMS table.

When you map a CMP bean to multiple tables, each table contains a row that maps to
a particular bean instance. Consequently, all tables will contain the same number of
rows at any point in time. In addition, each table contains the same set of homogeneous
primary key values. Therefore, each table must have the same number of primary key
columns and corresponding primary key columns in different tables must have the
same type, although they may have different names.

Each table-map element must specify a mapping from the primary key column(s) for
a particular table to the primary key field(s) of the bean. You can only map
non-primary key fields to a single table.

Range of values: n/a

Default value: n/a

Requirements: Each table-map element must contain a mapping for the bean’s primary key fields.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
12-50 Programming WebLogic Enterprise JavaBeans

table-map
Example

The XML stanza can contain the elements shown here:

<table-map>
<table-nme>DeptTable</table-name>

<field-map>
<cmp-field>deptId1</cmp-field>
<dbms-column>t1_deptId1_column</dbms-column>

</field-map>
<field-map>

<cmp-field>deptId2</cmp-field>
<dbms-column>t1_deptId2_column</dbms-column>

</field-map>
<field-map>

<cmp-field>location</cmp-field>
<dbms-column>location_column</dbms-column>

</field-map>
<cmp-field>budget</cmp-field>
<dbms-column>budget</dbms-column>

</field-map>
<fieldmap

</table-map>
Programming WebLogic Enterprise JavaBeans 12-51

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
table-name

Function

The fully qualified SQL name of the table. The user defined for the data-source for
this bean must have read and write privileges for this table, but does not necessarily
need schema modification privileges.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms.jar>

<weblogic-rdbms-bean>

<ejb-name>containerManaged</ejb-name>

<data-source-name>examples-dataSource-demoPool</data-source-name>

<table-name>ejbAccounts</table-name>

</weblogic-rdbms-bean>

</weblogic-rdbms-jar>

Range of values: Valid, fully qualified SQL name of the source table in the database.

Default value: n/a

Requirements: table-name must be set in all cases.

Parent elements: weblogic-rdbms-bean

weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
12-52 Programming WebLogic Enterprise JavaBeans

use-select-for-update
use-select-for-update

Function

Enforces pessimistic concurrency on a per-bean basis. Specifying True causesSELECT
... FOR UPDATE to be used whenever the bean is loaded from the database. This is
different from the transaction isolation level of
TransactionReadCommittedForUpdate in that this is set at the bean level rather
than the transaction level.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms.jar>

<weblogic-rdbms-bean>

<ejb-name>containerManaged</ejb-name>

<use-select-for-update>True</use-select-for-update>

</weblogic-rdbms-bean>

</weblogic-rdbms-jar>

Range of values: True | False

Default value: False

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-53

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
validate-db-schema-with

Function

The validate-db-schema-with element specifies that container-managed
persistence checks that beans have been mapped to a valid database schema during
deployment.

If you specify MetaData WebLogic Server uses the JDBC metadata to validate the
schema.

If you specify TableQuery, the default setting, WebLogic Server queries the tables
directly to verify that they have the schema expected by CMP runtime.

Example

The XML stanza can contain the elements shown here:

<validate-db-schema-with>TableQuery</validate-db-schema-with>

Range of values: MetaData | TableQuery

Default value: TableQuery

Requirements: n/a

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
12-54 Programming WebLogic Enterprise JavaBeans

verify-columns
verify-columns

Function

The verify-columns element specifies the columns in a table that you want
WebLogic Server to check for validity when you use the optimistic concurrency
strategy. WebLogic Server checks columns at the end of a transaction, before
committing it to the database, to make sure that no other transaction has modified the
data.

See “Optimistic Concurrency Strategy” on page 5-38 for more information.

Example

The XML stanza can contain the elements shown here:

<verify-columns>Modified</verify-columns>

Range of values: Read | Modified | Version | Timestamp.

Default value: none

Requirements: table-name must be set in all cases.

Parent elements: weblogic-rdbms-bean

table-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-55

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
weblogic-ql

Function

The weblogic-ql element specifies a query that contains a WebLogic specific
extension to the ejb-ql language. You should specify queries that only use standard
EJB-QL language features in the ejb-jar.xml deployment descriptor.

Example

See “weblogic-query” on page 12-57.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
12-56 Programming WebLogic Enterprise JavaBeans

weblogic-query
weblogic-query

Function

The weblogic-query element allows you to associate WebLogic specific attributes
with a query, as necessary. For example, weblogic-query can be used to specify a
query that contains a WebLogic specific extension to EJB-QL. Queries that do not take
advantage of WebLogic extensions to EJB-QL should be specified in the
ejb-jar.xml deployment descriptor.

Also, the weblogic-query element is used to associate a field-group with the
query if the query retrieves an entity bean that should be pre-loaded into the cache by
the query.

Example

The XML stanza can contain the elements shown here:

<weblogic-query>

<query-method>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-57

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
</method-params>

<query-method>

<weblogic-ql>WHERE BALANCE>10000
ORDERBY NAME</weblogic-ql>

</weblogic-query>

weblogic-rdbms-bean

Function

The weblogic-rdbms-bean represents a single entity bean that is managed by the
WebLogic RDBMS CMP persistence type.

Example

The XML structure of weblogic-rdbms-bean is:

weblogic-rdbms-bean
ejb-name
data-source-name

table-map
field-group
relationship-caching
weblogic-query

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
12-58 Programming WebLogic Enterprise JavaBeans

weblogic-rdbms-jar
dalay-database-insert-until
automatic-key-generation
check-exists-on-method

weblogic-rdbms-jar

Function

The weblogic-rdbms-jar element is the root level element of a WebLogic RDBMS
CMP deployment descriptor. This element contains the deployment information for
one or more entity beans and an optional set of relations.

Example

The XML structure of weblogic-rdbms-jar is:

weblogic-rdbms-jar
weblogic-rdbms-bean
weblogic-rdbms-relation
create-default-dbms-tables
validate-db-schema-with
database-type

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: n/a

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-59

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
weblogic-rdbms-relation

Function

The weblogic-rdbms-relation element represents a single relationship that is
managed by the WebLogic CMP persistence type. deployment descriptor. WebLogic
Server supports the following three relationship mappings:

! For one-to-one relationships, the mapping is from a foreign key in one bean to
the primary key of the other bean. For more information on one-to-one
relationships, see “One-to-One Relationships” on page 5-8.

! For one-to-many relationships, the mapping is also from a foreign key in one
bean to the primary key of another bean. For more information on one-to-many
relationships, see “One-to-Many Relationships” on page 5-9.

! For many-to-many relationships, the mapping involves a join table. Each row in
the join table contains two foreign keys that map tot he primary keys of the
entities involved in the relation. for more information on one-to-one
relationships, see “Many-to-Many Relationships” on page 5-9.

Example

The XML structure of a weblogic-rdbms-relation showing a one-to-one
relationship follows:

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
12-60 Programming WebLogic Enterprise JavaBeans

weblogic-relationship-role
<weblogic-rdbms-relation>
<relation-name>employee-manager</relation-name>
<weblogic-relationship-role>

<relationship-role-name>employee
</relationship-role-name>

<relationship-role-name>
<<column-map>

<foreign-key-column>manager-id
</foreign-key-column>

<key-column>id</key-column>
</column-map>

<relationship-role-name>
</weblogic-relationship-role>

</weblogic-rdbms-relation>

weblogic-relationship-role

Function

The weblogic-relationship-role element is used to express a mapping from a
foreign key to a primary key. Only one mapping is specified for one-to-one
relationships when the relationship is local. However, with a many-to-many
relationship, you must specify two mappings

Multiple column mappings are specified for a single role, it the key is complex. No
column-map is specified if the role is just specifying a group-name.

Range of values: Valid name

Default value: n/a

Requirements: The mapping of a role to a table is specified in the associated weblogic-rdbms-bean
and ejb-relation elements.

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 12-61

12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>

<table-name>stocks</table-name>

<weblogic-relationship-role>stockholder
</weblogic-relationship-role>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>
12-62 Programming WebLogic Enterprise JavaBeans

CHAPTER
13 Important Information
for EJB 1.1 Users

BEA strongly recommends that new users implement their distributed business
applications using EJB 2.0 beans. However, if your existing application implements
EJB 1.1 beans, please read the following sections, which contain important design and
implementation information specific to EJB 1.1. This section includes a detailed
reference to EJB 1.1 deployment descriptors.

! “Writing for RDBMS Persistence for EJB 1.1 CMP” on page 2

! “Using WebLogic Query Language (WLQL) for EJB 1.1 CMP” on page 4

! “Using SQL for CMP 1.1 Finder Queries” on page 8

! “Tuned EJB 1.1 CMP Updates in WebLogic Server” on page 9

! “Using is-modified-method-name to Limit Calls to ejbStore()” on page 10

! “5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure” on page 11

! “5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements” on page 11

! “1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure” on
page 24

! “1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements” on page 25
Programming WebLogic Enterprise JavaBeans 13-1

13 Important Information for EJB 1.1 Users
Writing for RDBMS Persistence for EJB 1.1
CMP

Clients use finder methods to query and receive references to entity beans that fulfill
query conditions. This section describes how to write finders for WebLogic-specific
1.1 EJBs that use RDBMS persistence. You use EJB QL, a portable query language,
to define finder queries for 2.0 EJBs with container-managed persistence. For more
information about on EJB QL, see “Using EJB QL for EJB 2.0” on page 5-14.

WebLogic Server provides an easy way to write finders.

1. Write the method signature of a finder in the EJBHome interface.

2. Define the finder’s query expressions in the ejb-jar.xml deployment file.

appc creates implementations of the finder methods at deployment time, using the
queries in ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

! The finder method signature in EJBHome.

! A query stanza defined within ejb-jar.xml.

! An optional finder-query stanza within weblogic-cmp-rdbms-jar.xml.

The following sections explain how to write EJB finders using XML elements in
WebLogic Server deployment files.

Finder Signature

Specify finder method signatures using the form findMethodName(). Finder methods
defined in weblogic-cmp-rdbms-jar.xml must return a Java collection of EJB
objects or a single object.

Note: You can also define a findByPrimaryKey(primkey) method that returns a
single object of the associated EJB class.
13-2 Programming WebLogic Enterprise JavaBeans

Writing for RDBMS Persistence for EJB 1.1 CMP
finder-list Stanza

The finder-list stanza associates one or more finder method signatures in EJBHome
with the queries used to retrieve EJB objects. The following is an example of a simple
finder-list stanza using WebLogic Server RDBMS-based persistence:

<finder-list>

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>

</finder-list>

Note: If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather
than Timestamp. If you do not use a qualified name, appc generates an error
message when you compile the deployment unit.

finder-query Element

The finder-query element defines the WebLogic Query Language (WLQL)
expression you use to query EJB objects from the RDBMS. WLQL uses a standard set
of operators against finder parameters, EJB attributes, and Java language expressions.
See “Using WebLogic Query Language (WLQL) for EJB 1.1 CMP” on page 13-4 for
more information on WLQL.

Note: Always define the text of the finder-query value using the XML CDATA

attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.
Programming WebLogic Enterprise JavaBeans 13-3

13 Important Information for EJB 1.1 Users
A CMP finder can load all beans using a single database query. So, 100 beans can be
loaded with a single database round trip. A bean-managed persistence (BMP) finder
must do one database round trip to get the primary key values of the beans selected by
the finder. As each bean is accessed, another database access is also typically required,
assuming the bean wasn’t already cached. So, to access 100 beans, a BMP might do
101 database accesses.

Using WebLogic Query Language (WLQL) for
EJB 1.1 CMP

WebLogic Query Language (WLQL) for EJB 1.1 CMP allows you to query 1.1 entity
EJBs with container-managed persistence. In the weblogic-cmp-rdbms-jar.xml
file, each finder-query stanza must include a WLQL string that defines the query
used to return EJBs. Use WLQL for EJBs and their corresponding deployment files
that are based on the EJB 1.1 specification.

Note: For queries to 2.0 EJBs, see “Using EJB QL for EJB 2.0” on page 5-14. Using
the weblogic-ql query completely overrides the ejb-ql query.

WLQL Syntax

WLQL strings use the prefix notation for comparison operators, as follows:

(operator operand1 operand2)

Additional WLQL operators accept a single operand, a text string, or a keyword.
13-4 Programming WebLogic Enterprise JavaBeans

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
WLQL Operators

The following are valid WLQL operators.

Operator Description Sample Syntax

= Equals (= operand1 operand2)

< Less than (< operand1 operand2)

> Greater than (> operand1 operand2)

<= Less than or equal to (<= operand1 operand2)

>= Greater than or equal to (>= operand1 operand2)

! Boolean not (! operand)

& Boolean and (& operand)

| Boolean or (| operand)

like Wildcard search based on % symbol
in the supplied text_string or an
input parameter

(like text_string%)

isNull Value of single operand is null (isNull operand)

isNotNull Value of single operand is not null (isNotNull operand)

orderBy Orders results using specified
database columns

Note: Always specify a database
column name in the
orderBy clause, rather
than a persistent field name.
WebLogic Server does not
translate field names
specified in orderBy.

(orderBy 'column_name')

desc Orders results in descending order.
Used only in combination with
orderBy.

(orderBy 'column_name
desc')
Programming WebLogic Enterprise JavaBeans 13-5

13 Important Information for EJB 1.1 Users
WLQL Operands

Valid WLQL operands include:

! Another WLQL expression

! A container-managed field defined elsewhere in the
weblogic-cmp-rdbms-jar.xml file

Note: You cannot use RDBMS column names as operands in WLQL. Instead,
use the EJB attribute (field) that maps to the RDBMS column, as defined
in the attribute-map in weblogic-cmp-rdbms-jar.xml.

! A finder parameter or Java expression identified by $n, where n is the number of
the parameter or expression. By default, $n maps to the nth parameter in the
signature of the finder method. To write more advanced WLQL expressions that
embed Java expressions, map $n to a Java expression.

Note: The $n notation is based on an array that begins with 0, not 1. For example,
the first three parameters of a finder correspond to $0, $1, and $2.
Expressions need not map to individual parameters. Advanced finders can
define more expressions than parameters.

Examples of WLQL Expressions

The following example code shows excerpts from the
weblogic-cmp-rdbms-jar.xml file that use basic WLQL expressions.

! This example returns all EJBs that have the balance attribute greater than the
balanceGreaterThan parameter specified in the finder. The finder method
signature in EJBHome is:

public Enumeration findBigAccounts(double balanceGreaterThan)

throws FinderException, RemoteException;

The sample <finder> stanza is:

<finder>

<method-name>findBigAccounts</method-name>

<method-params>
13-6 Programming WebLogic Enterprise JavaBeans

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>

Note that you must define the balance field n the attribute map of the EJB’s
persistence deployment file.

Note: Always define the text of the finder-query value using the XML CDATA

attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

! The following example shows how to use compound WLQL expressions. Also
note the use of single quotes (') to distinguish strings:

<finder-query><![CDATA[(& (> balance $0) (! (= accountType
'checking')))]]></finder-query>

! The following example finds all the EJBs in a table. It uses the sample finder
method signature:

public Enumeration findAllAccounts()

throws FinderException, RemoteException

The sample <finder> stanza uses an empty WLQL string:

<finder>

<method-name>findAllAccounts</method-name>

<finder-query></finder-query>

</finder>

! The following query finds all EJBs whose lastName field starts with “M”:

<finder-query><![CDATA[(like lastName M%)]]></finder-query>

! This query returns all EJBs that have a null firstName field:

<finder-query><![CDATA[(isNull firstName)]]></finder-query>

! This query returns all EJBs whose balance field is greater than 5000, and orders
the beans by the database column, id:

<finder-query><![CDATA[WHERE >5000 (orderBy 'id' (> balance
5000))]]></finder-query>
Programming WebLogic Enterprise JavaBeans 13-7

13 Important Information for EJB 1.1 Users
! This query is similar to the previous example, except that the EJBs are returned
in descending order:

<finder-query><![CDATA[(orderBy 'id desc' (>
))]]></finder-query>

Using SQL for CMP 1.1 Finder Queries

WebLogic Server allows you to use a SQL string instead of the standard WLQL query
language to write SQL for a CMP 1.1 finder query. The SQL statement retrieves the
values from the database for the CMP 1.1 finder query. Use SQL to write a CMP 1.1
finder query when a more complicated finder query is required and you cannot use
WLQL.

For more information on WLQL, see “Using WebLogic Query Language (WLQL) for
EJB 1.1 CMP” on page 13-4.

To specify this SQL finder query:

1. In the weblogic-cmp-rdbms-jar.xml file write a SQL query using the
finder-sql element in the weblogic-cmp-rdbms-jar.xml file as follows.

findBigAccounts(double cutoff) as follows:

<finder-sql><![CDATA{balance >$0]]></finder-sql>

Use values like $0, or $1 in the SQL string to reference the parameters to the
finder method. The WebLogic Server Container replaces the $ parameters but
will not interpret the SQL query.

2. The Container emits the following SQL:

SELECT <columns> FROM table WHERE balance > ?

The SQL should be the WHERE clause of an SQL statement. The Container
prepends the SELECT and FROM clauses. The WHERE clause may contain
arbitrary SQL.

If you use characters in your SQL query that may confuse an XML parser, such as
the.greater than (>) symbol and the less than (<) symbol, make sure that you declare
the SQL query using the CDATA format shown in the preceding sample SQL
statement.
13-8 Programming WebLogic Enterprise JavaBeans

Tuned EJB 1.1 CMP Updates in WebLogic Server
You can use any amount of vendor-specific SQL in the SQL query.

Tuned EJB 1.1 CMP Updates in WebLogic
Server

EJB container-managed persistence (CMP) automatically support tuned updates
because the container receives get and set callbacks when container-managed EJBs
are read or written. Tuning EJB 1.1 CMP beans helps improve their performance.

WebLogic Server now supports tuned updates for EJB 1.1 CMP. When ejbStore is
called, the EJB container automatically determines which container-managed fields
have been modified in the transaction. Only modified fields are written back to the
database. If no fields are modified, no database updates occur.

With previously versions of WebLogic Server, you could to write an isModified

method that notified the container whether the EJB 1.1 CMP bean had been modified.
isModified is still supported in WebLogic Server, but we recommend that you no
longer use isModified methods and instead allow the container to determine the
update fields.

This feature is enabled for EJB 2.0 CMP, by default. To enable tuned EJB 1.1 CMP
updates, make sure that you set the following deployment descriptor element in the
weblogic-cmp-rdbms-jar.xml file to true.

<enable-tuned-updates>true</enable-tuned-updates>

You can disable tuned CMP updates by setting this deployment descriptor element as
follows:

<enable-tuned-updates>false</enable-tuned-updates>

In this case, ejbStore always writes all fields to the database.
Programming WebLogic Enterprise JavaBeans 13-9

13 Important Information for EJB 1.1 Users
Using is-modified-method-name to Limit
Calls to ejbStore()

The is-modified-method-name deployment descriptor element applies to EJB 1.1
container-managed-persistence (CMP) beans only. This element is found in the
weblogic-ejb-jar.xml file. WebLogic Server CMP implementation automatically
detects modifications of CMP fields and writes only those changes to the underlying
datastore. We recommend that you do not use is-modified-method-name with
bean-managed-persistence (BMP) because you would need to create both the
is-modified-method-name element. and the ejbstore method.

By default, WebLogic Server calls the ejbStore() method at the successful
completion (commit) of each transaction. ejbStore() is called at commit time
regardless of whether the EJB’s persistent fields were actually updated, and results in
a DBMS update. WebLogic Server provides the is-modified-method-name
element for cases where unnecessary calls to ejbStore() may result in poor
performance.

To use is-modified-method-name, EJB providers must first develop an EJB
method that “cues” WebLogic Server when persistent data has been updated. The
method must return “false” to indicate that no EJB fields were updated, or “true” to
indicate that some fields were modified.

The EJB provider or EJB deployment descriptors then identify the name of this method
by using the value of the is-modified-method-name element. WebLogic Server
calls the specified method name when a transaction commits, and calls ejbStore()
only if the method returns “true.” For more information on this element, see
“is-modified-method-name” on page 11-48.
13-10 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
5.1 weblogic-ejb-jar.xml Deployment
Descriptor File Structure

The WebLogic Server 5.1 weblogic-ejb-jar.xml file defines the EJB
document type definitions (DTD)s you use with EJB 1.1 beans. These deployment
descriptor elements are WebLogic-specific. The top level elements in the WebLogic
Server 5.1 weblogic-ejb-jar.xml are as follows:

! description

! weblogic-version

! weblogic-enterprise-bean

" ejb-name

" caching-descriptor

" persistence-descriptor

" clustering-descriptor

" transaction-descriptor

" reference-descriptor

" jndi-name

" transaction-isolation

! security-role-assignment

5.1 weblogic-ejb-jar.xml Deployment
Descriptor Elements

The following sections describe WebLogic-Server 5.1 weblogic-ejb-jar.xml

deployment descriptor elements.
Programming WebLogic Enterprise JavaBeans 13-11

13 Important Information for EJB 1.1 Users
caching-descriptor

The caching-descriptor stanza affects the number of EJBs in the WebLogic Server
cache as well as the length of time before EJBs are passivated or pooled. The entire
stanza, as well as each of its elements, is optional. WebLogic Server uses default
values where no elements are defined.

The following is a sample caching-descriptor stanza that shows the caching
elements described in this section:

<caching-descriptor>

<max-beans-in-free-pool>500</max-beans-in-free-pool>

<initial-beans-in-free-pool>50</initial-beans-in-free-pool>

<max-beans-in-cache>1000</max-beans-in-cache>

<idle-timeout-seconds>20</idle-timeout-seconds>

<cache-strategy>Read-Write</cache-strategy>

<read-timeout-seconds>0</read-timeout-seconds>

</caching-descriptor>

max-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.

WebLogic Server maintains a free pool of EJBs for every bean class. This optional
element defines the size of the pool. By default, max-beans-in-free-pool has no
limit; the maximum number of beans in the free pool is limited only by the available
memory. See “Activating and Using Stateful Session EJB Instances” on page 4-5 in
“The WebLogic Server EJB Container and Supported Services” on page 4-1 for more
information.

initial-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.
13-12 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
If you specify a value for initial-bean-in-free-pool, WebLogic Server
populates the free pool with the specified number of bean instances at startup.
Populating the free pool in this way improves initial response time for the EJB, since
initial requests for the bean can be satisfied without generating a new instance.

initial-bean-in-free-pool defaults to 0 if the element is not defined.

max-beans-in-cache

Note: This element is valid only for stateful session EJBs and entity EJBs.

This element specifies the maximum number of objects of this class that are allowed
in memory. When max-bean-in-cache is reached, WebLogic Server passivates
some EJBs that have not been recently used by a client. max-beans-in-cache also
affects when EJBs are removed from the WebLogic Server cache, as described in
“Removing Stateful Session EJB Instances” on page 4-6.

The default value of max-beans-in-cache is 100.

idle-timeout-seconds

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server may remove the
bean instance if the number of beans in cache approaches the limit of
max-beans-in-cache. See “EJB Lifecycle in WebLogic Server” on page 4-2 for
more information.

idle-timeout-seconds defaults to 600 if you do not define the element.

cache-strategy

The cache-strategy element can be one of the following:

! Read-Write

! Read-Only

The default value is Read-Write.
Programming WebLogic Enterprise JavaBeans 13-13

13 Important Information for EJB 1.1 Users
read-timeout-seconds

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds
is set to 600 seconds. If you set this value to 0, WebLogic Server calls ejbLoad only
when the bean is brought into the cache.

persistence-descriptor

The persistence-descriptor stanza specifies persistence options for entity EJBs.
The following shows all elements contained in the persistence-descriptor
stanza:

<persistence-descriptor>

<is-modified-method-name>. . .</is-modified-method-name>

<delay-updates-until-end-of-tx>. .
.</delay-updates-until-end-of-tx>

<persistence-type>

<type-identifier>. . .</type-identifier>

<type-version>. . .</type-version>

<type-storage>. . .</type-storage>

</persistence-type>

<db-is-shared>. . .</db-is-shared>

<stateful-session-persistent-store-dir>

. . .

</stateful-session-persistent-store-dir>

<persistence-use>. . .</persistence-use>

</persistence-descriptor>
13-14 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
is-modified-method-name

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance. However,
any errors in the method’s return value can cause data inconsistency problems.

delay-updates-until-end-of-tx

Set this property to true (the default), to update the persistent store of all beans in a
transaction at the completion of the transaction. This generally improves performance
by avoiding unnecessary updates. However, it does not preserve the ordering of
database updates within a database transaction.

If your datastore uses an isolation level of
TransactionReadCommittedUncommitted, you may want to allow other database
users to view the intermediate results of in-progress transactions. In this case, set
delay-updates-until-end-of-tx to false to update the bean's persistent store at
the conclusion of each method invoke. See “ejbLoad() and ejbStore() Behavior for
Entity EJBs” on page 6-11 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

persistence-type

A persistence-type defines a persistence service that can be used by an EJB. You
can define multiple persistence-type entries in weblogic-ejb-jar.xml for
testing with multiple persistence services. Only the persistence type defined in
“persistence-use” on page 13-17 is used during deployment.

persistence-type includes several elements that define the properties of a service:

! type-identifier contains text that identifies the specified persistence type.
For example, WebLogic Server RDBMS persistence uses the identifier,
WebLogic_CMP_RDBMS.
Programming WebLogic Enterprise JavaBeans 13-15

13 Important Information for EJB 1.1 Users
! type-version identifies the version of the specified persistence type.

Note: The specified version must exactly match the RDBMS persistence version for
the WebLogic Server release. Specifying an incorrect version results in the
error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

! type-storage defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level
of the EJB’s JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the JAR file.

The following shows an example persistence-type stanza with values appropriate
for WebLogic Server RDBMS persistence:

<persistence-type>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml</type-stora
ge>

</persistence-type>

db-is-shared

The db-is-shared element applies only to entity beans. When set to true (the
default value), WebLogic Server assumes that EJB data could be modified between
transactions and reloads data at the beginning of each transaction. When set to false,
WebLogic Server assumes that it has exclusive access to the EJB data in the persistent
store. See “Using cache-between-transactions to Limit Calls to ejbLoad()” on page
6-10 for more information.
13-16 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
stateful-session-persistent-store-dir

stateful-session-persistent-store-dir specifies the file system directory
where WebLogic Server stores the state of passivated stateful session bean instances.

persistence-use

The persistence-use property is similar to persistence-type, but it defines the
persistence service actually used during deployment. persistence-use uses the
type-identifier and type-version elements defined in a persistence-type to
identify the service.

For example, to actually deploy an EJB using the WebLogic Server RDBMS-based
persistence service defined in persistence-type, the persistence-use stanza
would resemble:

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

</persistence-use>

clustering-descriptor

The clustering-descriptor stanza defines the replication properties and behavior
for EJBs deployed in a WebLogic Server cluster. The clustering-descriptor
stanza and each of its elements are optional, and are not applicable to single-server
systems.

The following shows all elements contained in the clustering-descriptor stanza:

<clustering-descriptor>

<home-is-clusterable>. . .</home-is-clusterable>

<home-load-algorithm>. . .</home-load-algorithm>

<home-call-router-class-name>. .
.</home-call-router-class-name>

<stateless-bean-is-clusterable>. .
.</stateless-bean-is-clusterable>
Programming WebLogic Enterprise JavaBeans 13-17

13 Important Information for EJB 1.1 Users
<stateless-bean-load-algorithm>. .
.</stateless-bean-load-algorithm>

<stateless-bean-call-router-class-name>. .
.</stateless-bean-call-router-class-name>

<stateless-bean-methods-are-idempotent>. .
.</stateless-bean-methods-are-idempotent>

</clustering-descriptor>

home-is-clusterable

You can set this element to either true or false. When home-is-clusterable is
true, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to
the home stub are load-balanced between the servers on which this bean is deployed,
and if a server hosting the bean is unreachable, the call automatically fails over to
another server hosting the bean.

home-load-algorithm

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this property is not defined, WebLogic Server uses the
algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

! round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

! random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

! weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

home-call-router-class-name

home-call-router-class-name specifies the custom class to use for routing bean
method calls. This class must implement
weblogic.rmi.extensions.CallRouter(). If specified, an instance of this class is
13-18 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

stateless-bean-is-clusterable

This property is similar to home-is-clusterable, but it is applicable only to
stateless session EJBs.

stateless-bean-load-algorithm

This property is similar to home-load-algorithm, but it is applicable only to
stateless session EJBs.

stateless-bean-call-router-class-name

This property is similar to home-call-router-class-name, but it is applicable only
to stateless session EJBs.

stateless-bean-methods-are-idempotent

You can set this element to either true or false. Set
stateless-bean-methods-are-idempotent to true only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
property to true makes it possible for the bean stub to automatically recover from any
failure as long as another server hosting the bean can be reached.

Note: This property is applicable only to stateless session EJBs.

transaction-descriptor

The transaction-descriptor stanza contains elements that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:

<transaction-descriptor>
Programming WebLogic Enterprise JavaBeans 13-19

13 Important Information for EJB 1.1 Users
<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

trans-timeout-seconds

The trans-timeout-seconds element specifies the maximum duration for the EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

If you specify no value for trans-timeout-seconds, container-initiated transactions
timeout after five minutes, by default.

reference-descriptor

The reference-descriptor stanza maps references in the ejb-jar.xml file to the
JNDI names of actual resource factories and EJBs available in WebLogic Server.

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>. . .</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>
13-20 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
resource-description

The following elements define an individual resource-description:

! res-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

! jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

ejb-reference-description

The following elements define an individual ejb-reference-description:

! ejb-ref-name specifies an EJB reference name. This is the reference that the
EJB provider places within the ejb-jar.xml deployment file.

! jndi-name specifies the JNDI name of an actual EJB available in WebLogic
Server.

enable-call-by-reference

By default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation since parameters are
not copied.

If you set enable-call-by-reference to false, parameters to EJB methods are
copied (pass by value) in accordance with the EJB 1.1 specification. Pass by value is
always necessary when the EJB is called remotely (not from within the server).

jndi-name

The jndi-name element specifies a jndi-name for a bean, resource, or reference.
Programming WebLogic Enterprise JavaBeans 13-21

13 Important Information for EJB 1.1 Users
transaction-isolation

The transaction-isolation stanza specifies the transaction isolation level for EJB
methods. The stanza consists of one or more isolation-level elements that apply
to a range of EJB methods. For example:

<transaction-isolation>

<isolation-level>Serializable</isolation-level>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</transaction-isolation>

The following sections describe each element in transaction-isolation.

isolation-level

isolation-level defines a valid transaction isolation level to apply to specific EJB
methods. The following are possible values for isolation-level:

! TransactionReadCommittedUncommitted: The transaction can view
uncommitted updates from other transactions.

! TransactionReadCommitted: The transaction can view only committed
updates from other transactions.

! TransactionRepeatableRead: Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

! TransactionSerializable: Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.
13-22 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
Refer to your database documentation for more information on the implications and
support for different isolation levels.

method

The method stanza defines the EJB methods to which an isolation level applies.
method defines a range of methods using the following elements:

! description is an optional element that describes the method.

! ejb-name identifies the EJB to which WebLogic Server applies isolation level
properties.

! method-intf is an optional element that indicates whether the specified
method(s) reside in the EJB’s home or remote interface. The value of this
element must be “Home” or “Remote”. If you do not specify method-intf, you
can apply an isolation to methods in both interfaces.

! method-name specifies either the name of an EJB method or an asterisk (*) to
designate all EJB methods.

! method-params is an optional stanza that lists the Java types of each of the
method’s parameters. The type of each parameter must be listed in order, using
individual method-param elements within the method-params stanza.

For example, the following method stanza designates all methods in the
“AccountBean” EJB:

<method>

<ejb-name>AccountBean</ejb-name>

<method-name>*</method-name>

</method>

The following stanza designates all methods in the remote interface of
“AccountBean:”

<method>

<ejb-name>AccountBean</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>
Programming WebLogic Enterprise JavaBeans 13-23

13 Important Information for EJB 1.1 Users
</method>

security-role-assignment

The security-role-assignment stanza maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

security-role-assignment can contain one or more pairs of the following
elements:

! role-name is the application role name that the EJB provider placed in the
ejb-jar.xml deployment file.

! principal-name specifies the name of an actual WebLogic Server principal.

1.1 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor File Structure

weblogic-cmp-rdbms-jar.xml defines deployment elements for a single entity EJB
that uses WebLogic Server RDBMS-based persistence services.

The top-level element of the WebLogic Server 1.1 weblogic-cmp-rdbms-jar.xml

consists of a weblogic-enterprise-bean stanza:

description

weblogic-version

<weblogic-enterprise-bean>

<pool-name>finance_pool</pool-name>

<schema-name>FINANCE_APP</schema-name>

<table-name>ACCOUNT</table-name>

<attribute-map>

<object-link>
13-24 Programming WebLogic Enterprise JavaBeans

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
<bean-field>accountID</bean-field>

<dbms-column>ACCOUNT_NUMBER</dbms-column>

</object-link>

<object-link>

<bean-field>balance</bean-field>

<dbms-column>BALANCE</dbms-column>

</object-link>

</attribute-map>

<finder-list>

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

<finder-expression>. . .</finder-expression>

</finder>

</finder-list>

</weblogic-enterprise-bean>

1.1 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor Elements

RDBMS Definition Elements

This section describes the RDBMS definition elements.
Programming WebLogic Enterprise JavaBeans 13-25

13 Important Information for EJB 1.1 Users
pool-name

pool-name specifies name of the WebLogic Server connection pool to use for this
EJB’s database connectivity. See Using connection pools for more information.

schema-name

schema-name specifies the schema where the source table is located in the database.
This element is required only if you want to use a schema that is not the default schema
for the user defined in the EJB’s connection pool.

Note: This field is case sensitive, although many SQL implementations ignore case.

table-name

table-name specifies the source table in the database. This element is required in all
cases.

Note: The user defined in the EJB’s connection pool must have read and write
privileges to the specified table, though not necessarily schema modification
privileges. This field is case sensitive, although many SQL implementations
ignore case.

EJB Field-Mapping Elements

This section describes the EJB field-mapping elements.

attribute-map

The attribute-map stanza links a single field in the EJB instance to a particular
column in the database table. The attribute-map must have exactly one entry for
each field of an EJB that uses WebLogic Server RDBMS-based persistence.

object-link

Each attribute-map entry consists of an object-link stanza, which represents a
link between a column in the database and a field in the EJB instance.
13-26 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs81b/jdbc/index.html

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
bean-field

bean-field specifies the field in the EJB instance that should be populated from the
database. This element is case sensitive and must precisely match the name of the field
in the bean instance.

The field referenced in this tag must also have a cmp-field element defined in the
ejb-jar.xml file for the bean.

dbms-column

dbms-column specifies the database column to which the EJB field is mapped. This
tag is case sensitive, although many databases ignore the case.

Note: WebLogic Server does not support quoted RDBMS keywords as entries to
dbms-column. For example, you cannot create an attribute map for column
names such as “create” or “select” if those names are reserved in the
underlying datastore.

Finder Elements

This section describes the finder elements.

finder-list

The finder-list stanza defines the set of all finders that are generated to locate sets
of beans.

finder-list must contain exactly one entry for each finder method defined in the
home interface, except for findByPrimarykey. If an entry is not provided for
findByPrimaryKey, one is generated at compilation time.

Note: If you do provide an entry for findByPrimaryKey, WebLogic Server uses
that entry without validating it for correctness. In most cases, you should omit
an entry for findByPrimaryKey and accept the default, generated method.
Programming WebLogic Enterprise JavaBeans 13-27

13 Important Information for EJB 1.1 Users
finder

The finder stanza describes a finder method defined in the home interface. The
elements contained in the finder stanza enable WebLogic Server to identify which
method in the home interface is being described, and to perform required database
operations.

method-name

method-name defines the name of the finder method in the home interface. This tag
must contain the exact name of the method.

method-params

The method-params stanza defines the list of parameters to the finder method being
specified in method-name.

Note: WebLogic Server compares this list against the parameter types for the finder
method in the EJB’s home interface; the order and type for the parameter list
must exactly match the order and type defined in the home interface.

method-param

method-param defines the fully-qualified name for the parameter’s type. The type
name is evaluated into a java.lang.Class object, and the resultant object must
precisely match the respective parameter in the EJB’s finder method.

You can specify primitive parameters using their primitive names (such as “double” or
“int”). If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather than
Timestamp. If you do not use a qualified name, appc generates an error message when
you compile the deployment unit.

finder-query

finder-query specifies the WebLogic Query Language (WLQL) string that is used
to retrieve values from the database for this finder.
13-28 Programming WebLogic Enterprise JavaBeans

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
Note: Always define the text of the finder-query value using the XML CDATA

attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

finder-expression

finder-expression specifies a Java language expression to use as a variable in the
database query for this finder.

Future versions of the WebLogic Server EJB container will use the EJB QL query
language (as required by the EJB 2.0 specification). EJB QL does not provide support
for embedded Java expressions. Therefore, to ensure easier upgrades to future EJB
containers, create entity EJB finders without embedding Java expressions in WLQL.
Programming WebLogic Enterprise JavaBeans 13-29

http://java.sun.com/products/ejb/docs.html

13 Important Information for EJB 1.1 Users
13-30 Programming WebLogic Enterprise JavaBeans

Index

A
acessing remote clients 2-6
aggregate functions

subqueries 5-22
with subquery return types 5-18

ANT tasks 1-6
application level cache

configuring 6-7
applications

building with EJBs 2-1
application-scoped

EJBs 7-7
arguments

ejbc 10-32
arithmetic operators 5-20
automatic

table creation 6-19
automatic generation

primary key 6-15
primary key support for named sequence

table 6-18
primary key support for Oracle 6-16, 6-

17

B
bean-managed transactions 4-17
bidirectional

relationships 5-11
BLOB

binary large object 5-29

DBMS column support 5-29
specifying with deployment descriptors

5-29
business logic

modeling in entity EJBs 2-3

C
cache strategy

Read-Mostly 6-3
caching

application level cache 6-7
between transactions 6-8
between transactions (restrictions) 6-11
between transactions with exclusive

concurrency 6-8
between transactions with optimistic

concurrency 6-9
between transactions with ReadOnly

concurrency 6-9
combined caching 6-7
flushing the CMP cache 5-32
relationship caching 6-4

calling
multiple EJBs 4-21

cascade delete
database cascade delete method 5-31
method 5-31
removing objects 5-30

class name
possible generated collisions 7-12
Programming WebLogic Enterprise JavaBeans I-i

class requirements
message-driven beans 3-6

classloading 7-12
clients

accessing local clients 2-6
accessing remote clients 2-6

CLOB
character large object 5-29
DBMS column support 5-29
specifying with deployment descriptors

5-30
cluster

distributing transactions across EJBS 4-
22

entity EJBs 4-14
read-wrie entity EJBs 4-15
session EJBs 4-10
stateful session EJBs 4-12
stateless session EJBs 4-10
using EJBs 4-8

clustered
EJBObjrcts 4-10
home objects 4-9

CMP 5-1, 6-1
EJB persistence services 5-2
flushing the cache 5-32
groups 6-13
Java data types for CMP fields 5-33
overview 5-2
relationships 5-7
using SQL with 1.1 finder queries 13-8

combined caching
with entity beans 6-7

compiling
EJBs 7-10

components
bean class 1-3
EJBs 1-3
home interface 1-3
remote interface 1-3

concurrency strateg

optimistic 5-38
concurrency strategy

database 5-37
exclusive 5-37
for EJBs 5-35
ReadOnly 5-39
ReadOnly restrictions 5-40
read-write EJBs 5-36
specifying 5-36

concurrent processing
topics and queues 3-3

configure
application level cache 6-7

container
EJB 4-1

container-managed
restrictions for EJBs 4-18
setting transaction isolation levels 4-19
transactions 4-17

container-managed persistence 5-1, 5-2, 6-1
groups 6-13
relationships 5-7

context interface 3-8
correlated subqueries 5-21
customer support contact information xxiv

D
data source factories 4-26
data types

java data types
for CMP fields 5-33

database
concurrency strategy 5-37

database insert support 4-23
delay-database-insert-until 4-23

datastore
managing transactions 2-8

DDConverter 10-7
conversion options 10-8
examples 10-12
I-ii Programming WebLogic Enterprise JavaBeans

options 10-11
syntax 10-11

defining the methods 3-6
delay-database-insert-until 4-23
delay-updates-until-end-of-tx

ejbStore 6-12
transactions 6-12

delete
cascade 5-30

deploy
invoking deployed EJBs 2-5

deploying
message-driven beans 3-12

deployment
compiled EJBs 8-7
descriptors

EJB 11-1
descriptors (DOCTYPE header

information 11-2
EJB files 7-3
EJBs at server startup 8-1
EJBs in different applications 8-2
names 8-3
new EJBS in a running environment 8-4
on a running server 8-3
packaging EJBs 7-9
relationship among deployment files 7-4
uncompiled EJBs 8-8
undeploying EJBs 8-5
updating EJBs 8-6
weblogic-cmp-rdbms-jar.xml file

structure 12-5
deployment descriptor

creating deployment files 7-6
ejb-jar.xml 7-4
weblogic-cmp-rdbms.xml 7-4
weblogic-ejb-jar.xml 7-4

deployment descriptors
manually editing 7-6

design tips 2-1
designing

session beans 2-1
developer tools

ANT 1-6
EJB 1-5
EJBGen 1-6
WebLogic Builder 1-6
XML Editor 1-7

DISTINCT clause
with subqueries 5-22

distributing
transactions accross multiple EJBs 4-21

documentation, where to find it xxii
DTD

elements 11-6
valid definitions (weblogic-cmp-rdbms-

jar.xml) 12-4
dynamic queries

enabling 5-27
executing 5-28
queries

dynamic
EJB QL

dynamic queries 5-27

E
eager

relationship caching 6-4
editing

EJB deployment descriptors 7-5
manually editing deployment descriptors

7-6
EJB 7-5

accessing local clients 2-6
activating EJB instance from free pool 4-

4
ANT tasks 1-6
building applications 2-1
clustered home objects 4-9
coarse-grained entity EJBs 2-3
compiling 7-10
Programming WebLogic Enterprise JavaBeans I-iii

components 1-3
concurrency strategy 5-35
container 4-1
container context 3-8
conversion options 10-8
converting to latest version of WLS 10-

10
creating bean instances 3-11
creating deployment files 7-6
creating message-driven beans 3-4
deploying at server startup 8-1
deploying compiled EJBs 8-7
deploying in a running environment 8-4
deploying in different applications 8-2
deploying on a running server 8-3
deploying uncompiled EJBs 8-8
deployment descriptors 11-1
deployment descriptors (weblogic-cmp-

rdbms-jar.xml) 12-2
deployment names 8-3
design and development 2-1
developer tools 1-5
document type definitions 11-4
editing deployment descriptors 7-5
ejb-client.jar 7-13
EJBGen 1-6
ejb-jar 7-10
ejb-jar.xml file 7-4
enhancements for this release 1-8
enity bean home interface 2-3
generated class name collisions 7-12
generating 7-10
handling beans 3-10
initializing EJB instances 4-3
invoking deployed EJBs 2-5
lifecycle of EJB instances 4-2
lifecycle of stateless session EJBs 4-2
links 4-29
loading into WebLogic Server 7-12
manually editing deployment descriptors

7-6

message-driven beans 3-1
modeling entity EJBs 2-2
multiple table mapping for 2.0 CMP 6-

24
optimizing data access 2-4
overview 1-1
packaging for use in the container 7-1
packaging in deployment directory 7-9
packaging steps 7-2
persistence services 5-2
pooling EJB instances 4-4
QL for 2.0 beans 5-14
referencing applicaion-scoped EJBs 7-7
referencing external EJBs 7-7
removing bean instances 3-11
restriction for accessing EJBs 2-7
source file components 7-2
storing references in home handles 2-7
transaction resources 2-8
tuned 1.1 CMP updates 13-9
undeploying 8-5
updating 8-6
using inheritance 2-4
viewing deployed EJBs

EJB
viewing deployed 8-5

WebLogic Builder 1-6
weblogic-cmp-rdbms.xml file 7-4
weblogic-ejb-jar.xml file 7-4
writing RDBMS persistence for 1.1

CMP beans 13-2
XML Editor 1-7

EJB container
description 4-2
resource factoires 4-26
supported services 4-1

EJB deployment files 7-3
EJB life cycle

stateful session 4-4
EJB manifest class-path 7-14
I-iv Programming WebLogic Enterprise JavaBeans

EJB QL
migration from WLQL 5-14
requirements for 2.0 EJBs 5-14
WebLogic QL extension for EJB 2.0 5-

15
EJB support

database insert 4-23
ejbc 10-30

arguments 10-32
examples 10-34
options 10-33
syntax 10-32

ejbCreate() 3-11
EJBGen 1-6, 10-13

example 10-16
syntax 10-14
tags 10-18

ejbLoad
entity beans 6-11

EJBObjects
clustered 4-10

ejbRemove() 3-11
EJBs

distributing transactions across multiple
EJBs 4-21

in clusters 4-8
in-memory replication of stateful session

EJBs 4-13
ReadOnly 5-40
restrictions for container-managed 4-18

ejbStore
delay-updates-until-end-of-tx 6-12
entity beans 6-11

enabling
caching between transactions 6-9
relationship caching 6-6

encapsulating
multi-operational transactions 4-22

entity bean
home interface 2-3

entity beans

combined caching 6-7
relationship caching 6-4
standard ReadOnly 5-40

entity EJBs 1-2
behavior with ejbLoad entity EJBs

behavior with ejbStore 6-11
in a cluster 4-14

examples
DDConverter 10-12
ejbc 10-34

exceptions
for message-driven beans 3-10

exclusive
concurrency strategy 5-37

EXISTS
comparison operator 5-20

F
field groups 6-13
file components

EJBs 7-2
finder

EJB QL for 2.0 beans 5-14
signature 13-2

finder-list
stanza 13-3

finder-query
element 13-3
using for 1.1 CMP with SQL 13-8

firewall
using with home handles 2-7

G
generating

EJBs 7-10
get method

restrictions 6-24
groups 6-13

field groups 6-13
Programming WebLogic Enterprise JavaBeans I-v

using 6-14

H
home handles

EJB references 2-7
using across a firewall 2-7

home interface
entity bean 2-3

home objects
clustered 4-9

I
IN 5-19
inheritance

restrictions 2-4
using with EJBs 2-4

initial-bean-free-pool property 4-3
initializing

EJB instances 4-3
in-memory replication 4-13

limitations 4-14
requirements 4-13

installing
EJBs 8-4

is-modified-method-name
EJB 1.1 only 13-10

isolation levels
setting 4-18
setting for container-managed

transactions 4-19
transactions 4-18

J
Java specification

EJB 2.0 1-7
J2EE 1-7

java.transaction.UserTransaction 4-17
JDBC data source 4-26

L
limitations

in-memory replication 4-14
relationship caching 6-6
TRANSACTION_SERIALIZABLE 4-

19
links

EJB links 4-29
local client 5-12
local interfaces 5-11

local client 5-12

M
manifest class-path 7-14
many-to-many

relationships 5-9
max-beans-in-free-pool 4-7
message acknowledgement 3-14
message receipts 3-13
message-driven beans 3-6

basic components 3-6
basic invocation procedure 3-11
container context 3-8
deploying 3-12
description 3-1
develop and deploy 3-1
developing 3-4
differences from JMS 3-2
differences from stateless session 3-3
EJB services 3-2
ejbCreate() 3-11
ejbRemove() 3-11
handling exceptions 3-10
implementing business logic with

onMessage() 3-8
message acknowledgement 3-14
message receipts 3-13
migratable service 3-14
migrating 3-15
onMessage() 3-8
I-vi Programming WebLogic Enterprise JavaBeans

setting permissions for JMS destinations
3-9

specifying principals for JMS
destinations 3-9

transaction services 3-12
message-driven EJBs 1-2
migratable service

enabling 3-14
for message-driven beans 3-14

migrating
from WLQL to EJB QL 5-14
message-driven beans 3-15

modeling
coarse-entity EJBs 2-3
entity EJBs 2-2
entity EJBs with business logic 2-3

multicast invalidation
Read-Only beans 6-2

multiple table mapping
for cmp-fields 6-25
for cmr-fields 6-26
for EJB 2.0 CMP 6-24

N
comparison operands

5-19, 5-20

O
one-to-many

relationships 5-9
one-to-one

relationships 5-8
optimistic

concurrency strategy 5-38
optimizing

entity EJB data access 2-4
options

DDConverter 10-11
ejbc 10-33

ORDERBY 5-16
overview

EJBs 1-1

P
packaging

EJBs 7-1
EJBs in deployment directory 7-9

passivating
stateful session EJBs 4-5

persistence
finder signature 13-2
finder-list stanza 13-3
finder-query element 13-3
using this service 5-3
writing for EJB 1.1 CMP 13-2

persistence services 5-2
primary key 5-4

anonymous class 5-5
automatic generation for EJB 2.0 CMP

6-15
automatic generation support for named

sequence table 6-18
automatic generation support for Oracle

6-16, 6-17
mapped to single CMP field 5-5
mapping to a database column 5-6
usage hints 5-6
wraps single or multiple CMP fields 5-5

printing product documentation xxii

Q
queries

that return ResultSets 5-24
query language

for EJB 2.0 5-14
queues and topics

concurrent processing 3-3
Programming WebLogic Enterprise JavaBeans I-vii

R
READ_COMMITTED_FOR_UPDATE 4-

20
Read-Mostly pattern 6-3
Read-Only

multicast invalidation 6-2
ReadOnly

concurrency strategy 5-39
concurrency strategy restrictions 5-40

read-write
EJBs

in a cluster 4-15
read-write EJBs

concurrency strategy 5-36
Rea-Only

entity beans 5-40
referencing

application-scoped EJBs 7-7
external EJBs 7-7

relationship caching
enabling 6-6
limations 6-6
with entity beans 6-4

relationships
among deployment files 7-4
bidirectional 5-11
contianer-managed persistence 5-7
many-to-many 5-9
one-to-many 5-9
one-to-one 5-8
removing beans 5-11
unidirectional 5-11

relatoinship caching
specifying 6-4

removing
cascade delete 5-30
EJBs in relationships 5-11
stateful session EJB instances 4-6

requirements
for in-memory replications 4-13

resource factories 4-26
JDBC data source factories 4-26
URL connection factories 4-28

restrictions
accessing EJB instances 2-7
container-managed EJBs 4-18
get method 6-24
set method 6-24

ResultSets
using with queries 5-24

S
SELECT DISTINCT 5-15
SELECT HINTS 6-23
serializable objects

BLOB 5-29
session beans 2-1

designing 2-1
set method

restrictions 6-24
setting

container-managed isolation levels 4-19
JDBC data source factories 4-26
transaction isolation levels 4-18
URL connection factories 4-28

specification
final EJB version 1-8

specifying
concurrency strategy 5-36
EJB deployment descriptors 7-5
ejb-client.jar 7-13
field groups 6-13
primary key support for named sequence

table 6-18
primary key support for Oracle 6-16, 6-

17
relationship caching 6-4

SQL
for CMP 1.1 finder queries 13-8

stateful session
I-viii Programming WebLogic Enterprise JavaBeans

activating instances 4-5
EJB life cycle 4-4

stateful session beans
passivating 4-5

stateful session EJBs 1-2
in a cluster 4-12
in-memory replication 4-13
removing instances 4-6

stateless session
lifecycle of these EJBs 4-2
max-beans-in-free-pool 4-7

stateless session EJBs 1-2
in a cluster 4-10

storing
EJB references in home handles 2-7

string objects
CLOB 5-29

subqueries 5-17
aggregate functions 5-22
arithmetic operators 5-20
as comparison operands 5-19
correlated 5-21
uncorrelated 5-21
with DISTINCT clause 5-22

subquery return types 5-18
aggregate functions 5-18
beans with simple primary key 5-19
single cmp-field type 5-18

support
DBMS column 5-29
technical xxiv

syntax
DDConverter 10-11
ejbc 10-32
EJBGen 10-14

T
table creation

automatic 6-19
tags

EJBGen 10-18
tips

allow datastore to manage transactions
2-8

business logic in entity EJBs 2-3
demarcating transactions 2-9
modeling enitty EJBs 2-2
optimizing EJB data access

data access
optimizing for EJBs 2-4

preserve transaction resources 2-8
using coarse-grained entity EJBs 2-3
using container-managed transactions 2-

9
using inheritance with EJBs 2-4
using session beans 2-1

topics and queues
concurrent processing 3-3

TRANSACTION _SERIALIZABLE
using with Oracle 4-19

transaction boundaries
using java.transaction.UserTransaction

4-17
transaction management 4-16

responsibilities 4-17
TRANSACTION_SERIALIZABLE

limitations 4-19
transactions

bean-managed 4-17
caching betwteen 6-8
container-managed 4-17
container-managed over bean-managed

2-9
demarcating in WebLogic Server 2-9
distributing across EJBS in a cluster 4-

22
encapsulating multi-opeartional 4-22
isolation levels 4-18
managed by the datastore 2-8
message acknowledgements 3-14
Programming WebLogic Enterprise JavaBeans I-ix

message receipts 3-13
preserving resources 2-8
single context (calling multiple EJBs) 4-

21
with message-driven beans 3-12

tuned
EJB 1.1 CMP updates 13-9

types of EJBs
entity 1-2
message-driven 1-2
stateful session 1-2
stateless session 1-2

U
uncorrelated subqueries 5-21
undeploying

EJBs 8-5
unidirectional

relationships 5-11
updating

EJBs 8-6
URL connections 4-28
using

DDConverter 10-10
Oracle SELECT HINTS 6-23
RDBMS persistence 5-3

utilities
DDConverter 10-7
ejbc 10-30
EJBGen 10-13

W
WebLogic Builder 1-6
WebLogic QL

EJB QL extension 5-15
ORDERBY 5-16
SELECT DISTINCT 5-15
subqueries 5-17

WebLogic Query Language

expressions 13-6
for EJB 1.1 CMP 13-4
operands 13-6
operators 13-5
syntax 13-4

WebLogic Server
creating bean instances 3-11
developing message-driven beans 3-4
EJB container 4-1
free pool 4-2
invocation procedure for message-

driven beans 3-11
message-driven beans 3-2
removing bean instances 3-11

WebLogic Server immplementation of
final EJBspecification 1-8

weblogic-cmp-rdbms.xml file 7-4
weblogic-cmp-rdbms-jar.xml

descriptor elements 12-6
weblogic-ejb-jar.xml

2.0 file structure 11-5
descriptor elements 11-6

weblogic-ejb-jar.xml file 7-4
weblogiic-cmp-rdbms-jar.xml

DOCTYPE Header information 12-2
WLQL

expressions 13-6
for EJB 1.1 CMP 13-4
migration to EJB QL 5-14
operands 13-6
operators 13-5
syntax 13-4

X
XML Editor 1-7
I-x Programming WebLogic Enterprise JavaBeans

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Server Enterprise JavaBeans (EJBs)
	What Are EJBs?
	Types of EJBs
	EJB Components
	The EJB Container

	Creating EJBs: Main Steps
	EJB Developer Tools
	ANT Tasks to Create Skeleton Deployment Descriptors
	WebLogic Builder
	EJBGen
	DDInit
	weblogic.Deployer
	XML Editor

	Implementation of Java Specifications
	EJB Features and Changes in this Release
	Performance Monitoring Improvements
	appc
	Batch Operations
	Automatic Database Detection
	EJB QL Compiler Enhancements
	Performance Improvements
	Reloadable EJB Modules
	EJB Deployment Assistants
	New dbms-column-type Values
	sql-select-distinct Deprecated
	ejbc Deprecated

	2 Designing Session and Entity EJBs
	Designing Session Beans
	Session Facade Pattern

	Designing Entity Beans
	Entity Bean Home Interface
	Make Entity EJBs Coarse-Grained
	Encapsulate Additional Business Logic in Entity EJBs
	Optimize Entity EJB Data Access

	Using Inheritance with EJBs
	Accessing Deployed EJBs
	Differences Between Accessing EJBs from Local Clients and Remote Clients
	Restrictions on Concurrency Access of EJB Instances
	Storing EJB References in Home Handles
	Using Home Handles Across a Firewall

	Preserving Transaction Resources
	Allowing the Datastore to Manage Transactions
	Using Container-Managed Transactions Instead of Bean-Managed Transactions for EJBs
	Never Demarcate Transactions from Application
	Always Use A Transactional Datasource for Container-Managed EJBs

	3 Designing Message-Driven Beans
	What Are Message-Driven Beans?
	Differences Between Message-Driven Beans and Standard JMS Consumers
	Differences Between Message-Driven Beans and Stateless Session EJBs
	Concurrent Processing for Topics and Queues

	Developing and Configuring Message-Driven Beans
	Message-Driven Bean Class Requirements
	Using the Message-Driven Bean Context
	Implementing Business Logic with onMessage()
	Specifying Principals and Setting Permissions for JMS Destinations
	Handling Exceptions

	Invoking a Message-Driven Bean
	Creating and Removing Bean Instances
	Deploying Message-Driven Beans in WebLogic Server
	Using Transaction Services with Message-Driven Beans
	Message Receipts
	Message Acknowledgment

	Message-Driven Bean Migratable Service
	Enabling the Message-Driven Bean Migratable Service
	Migrating Message-Driven Beans

	4 The WebLogic Server EJB Container and Supported Services
	EJB Container
	EJB Lifecycle in WebLogic Server
	Stateless Session EJB Life Cycle
	Initializing Stateless Session EJB Instances
	Activating and Pooling Stateless Session EJBs

	Stateful Session EJB Life Cycle
	Activating and Using Stateful Session EJB Instances
	Passivating Stateful Session EJBs
	Removing Stateful Session EJB Instances
	Stateful Session EJB Requirements

	Using max-beans-in-free-pool
	Special Use of max-beans-in-free-pool

	EJBs in WebLogic Server Clusters
	Clustered EJB Home Objects
	Clustered EJBObjects
	Session EJBs in a Cluster
	Stateless Session EJBs
	Stateful Session EJBs

	In-Memory Replication for Stateful Session EJBs
	Requirements and Configuration for In-Memory Replication
	Limitations of In-Memory Replication

	Entity EJBs in a Cluster
	Read-Write Entity EJBs in a Cluster
	Cluster Address

	Transaction Management
	Transaction Management Responsibilities
	Using javax.transaction.UserTransaction
	Restriction for Container-Managed EJBs

	Transaction Isolation Levels
	Setting User Transaction Isolation Levels
	Setting Container-Managed Transaction Isolation Levels
	Limitations of TransactionSerializable
	Special Note for Oracle Databases

	Distributing Transactions Across Multiple EJBs
	Calling Multiple EJBs from a Single Transaction Context
	Encapsulating a Multi-Operation Transaction
	Distributing Transactions Across EJBs in a WebLogic Server Cluster

	Database Insert Support
	Delay-Database-Insert-Until

	Batch Operations
	Database Operation Ordering
	Batch Operations Guidelines and Limitations

	Resource Factories
	Setting Up JDBC Data Source Factories
	Setting Up URL Connection Factories

	Using EJB Links

	5 WebLogic Server Container-Managed Persistence Service - Basic Features
	Overview of Container Managed Persistence Service
	EJB Persistence Services
	Using WebLogic Server RDBMS Persistence

	Using Primary Keys
	Primary Key Mapped to a Single CMP Field
	Primary Key Class That Wraps Single or Multiple CMP Fields
	Anonymous Primary Key Class
	Hints for Using Primary Keys
	Mapping to a Database Column

	Container-Managed Persistence Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships
	Unidirectional Relationships
	Bidirectional Relationships
	Removing Beans in Relationships
	Local Interfaces
	Using the Local Client
	Changes to the Container for Local Interfaces

	Using EJB QL for EJB 2.0
	EJB QL Requirement for EJB 2.0 Beans
	Migrating from WLQL to EJB QL
	Using EJB 2.0 WebLogic QL Extension for EJB QL
	Using SELECT DISTINCT
	Using ORDERBY
	Using SubQueries
	Using Aggregate Functions
	Using Queries that Return ResultSets

	EJB QL Error-Reporting Enhancements
	Visual Indicator of Error in Query
	Multiple Errors Reported after a Single Compilation

	Using Dynamic Queries
	Enabling Dynamic Queries
	Executing Dynamic Queries

	BLOB and CLOB DBMS Column Support for the Oracle DBMS
	Specifying a BLOB Using the Deployment Descriptor
	Specifying a CLOB Using the Deployment Descriptors

	Cascade Delete
	Cascade Delete Method
	Database Cascade Delete Method

	Flushing the CMP Cache
	Java Data Types for CMP Fields
	EJB Concurrency Strategy
	Concurrency Strategy for Read-Write EJBs
	Specifying the Concurrency Strategy
	Exclusive Concurrency Strategy
	Database Concurrency Strategy
	Optimistic Concurrency Strategy
	ReadOnly Concurrency Strategy
	Read-Only Entity Beans
	Restrictions for ReadOnly Concurrency Strategy

	Automatic Database Detection
	Enabling Automatic Database Detection
	Behavior When Type Conflict Detected

	6 WebLogic Server Container-Managed Persistence Service - Advanced Features
	Read-Only Multicast Invalidation
	Read-Mostly Pattern
	Relationship Caching with Entity Beans
	Specifying Relationship Caching
	Enabling Relationship Caching
	Relationship Caching Limitations

	Combined Caching with Entity Beans
	Caching Between Transactions
	Caching Between Transactions with Exclusive Concurrency
	Caching Between Transactions with ReadOnly Concurrency
	Caching Between Transactions with Optimistic Concurrency
	Enabling Caching Between Transactions
	Using cache-between-transactions to Limit Calls to ejbLoad()
	Restrictions and Warnings for cache-between-transactions

	ejbLoad() and ejbStore() Behavior for Entity EJBs
	Warning for is-modified-method-name
	Using delay-updates-until-end-of-tx to Change ejbStore() Behavior

	Groups
	Specifying Field Groups
	Using Groups

	Automatic Primary Key Generation
	Valid Key Field Types
	Specifying Primary Key Support for Oracle
	Specifying Primary Key Support for Microsoft SQL Server
	Specifying Primary Key Named Sequence Table Support

	Automatic Table Creation
	Automatic Database Detection
	Enabling Automatic Database Detection
	Behavior When Type Conflict Detected

	Using Oracle SELECT HINTS
	Multiple Table Mapping
	Multiple Table Mappings for cmp-fields
	Multiple Table Mappings for cmr-fields

	7 Packaging EJBs for the WebLogic Server Container
	Required Steps for Packaging EJBs
	Reviewing the EJB Source File Components
	WebLogic Server EJB Deployment Files
	ejb-jar.xml
	weblogic-ejb-jar.xml
	weblogic-cmp-rdbms.xml
	Relationships Among the Deployment Files

	Specifying and Editing the EJB Deployment Descriptors
	Creating the Deployment Files
	Manually Editing EJB Deployment Descriptors

	Referencing Other EJBs and Resources
	Referencing External EJBs
	Referencing Application-Scoped EJBs
	Referencing Application-Scoped JDBC DataSources

	Packaging EJBs into a Deployment Directory
	ejb.jar file

	Compiling EJB Classes and Generating EJB Container Classes
	Possible Generated Class Name Collisions

	Loading EJB Classes into WebLogic Server
	Specifying an ejb-client.jar
	Manifest Class-Path

	8 Deploying EJBs to WebLogic Server
	Deploying EJBs at WebLogic Server Startup
	Deploying EJBs in Different Applications

	Deploying EJBs on a Running WebLogic Server
	EJB Deployment Names
	Deploying New EJBs into a Running Environment

	Viewing Deployed EJBs
	Undeploying Deployed EJBs
	Undeploying EJBs

	Updating Deployed EJBs
	The Update Process
	Updating the EJB

	Deploying Compiled EJB Files
	Deploying Uncompiled EJB Files

	9 EJB Runtime Monitoring
	Runtime Cache Attributes
	Cached Beans Current Count
	Cache Access Count
	Cache Hit Count
	Cache Miss Count
	Activation Count
	Passivation Count
	Cache Miss Ratio

	Runtime Lock Manager Attributes
	Lock Entries Current Count
	Lock Manager Access Count
	Waiter Total Count
	Timeout Total Count
	Lock Waiter Ratio
	Lock Timeout Ratio

	Runtime Free Pool Attributes
	Access Total Count
	Miss Total Count
	Destroyed Total Count
	Pooled Beans Current Count
	Beans In Use Current Count
	Waiter Current Count
	Pool Timeout Total Count
	Pool Miss Ratio
	Destroyed Bean Ratio
	Pool Timeout Ratio

	Runtime Transaction Attributes
	Transactions Committed Total Count
	Transactions Rolled Back Total Count
	Transactions Timed Out Total Count
	Transaction Rollback Ratio
	Transaction Timeout Ratio

	JMS Attributes
	JMSConnection Alive

	11 The weblogic-ejb-jar.xml Deployment Descriptor
	EJB Deployment Descriptors
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	weblogic-ejb-jar.xml
	ejb-jar.xml

	2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
	allow-concurrent-calls
	cache-between-transactions
	cache-type
	client-authentication
	client-cert-authentication
	clients-on-same-server
	concurrency-strategy
	confidentiality
	connection-factory-jndi-name
	delay-updates-until-end-of-tx
	description
	destination-jndi-name
	ejb-name
	ejb-reference-description
	ejb-ref-name
	Example

	ejb-local-reference-description
	enable-call-by-reference
	enable-dynamic-queries
	entity-cache
	entity-cache-name
	entity-cache-ref
	entity-clustering
	entity-descriptor
	estimated-bean-size
	finders-load-bean
	home-call-router-class-name
	home-is-clusterable
	home-load-algorithm
	idempotent-methods
	identity-assertion
	idle-timeout-seconds
	iiop-security-descriptor
	initial-beans-in-free-pool
	initial-context-factory
	integrity
	invalidation-target
	is-modified-method-name
	isolation-level
	jms-polling-interval-seconds
	jms-client-id
	jndi-name
	local-jndi-name
	max-beans-in-cache
	max-beans-in-free-pool
	message-driven-descriptor
	method
	method-intf
	method-name
	method-param
	method-params
	persistence
	persistence-type
	persistence-use
	persistent-store-dir
	pool
	principal-name
	provider-url
	read-timeout-seconds
	reference-descriptor
	relationship-description
	replication-type
	res-env-ref-name
	res-ref-name
	resource-description
	resource-env-description
	role-name
	security-permission
	security-permission-spec
	security-role-assignment
	stateful-session-cache
	stateful-session-clustering
	stateful-session-descriptor
	stateless-bean-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-methods-are-idempotent
	stateless-clustering
	stateless-session-descriptor
	transaction-descriptor
	transaction-isolation
	transport-requirements
	trans-timeout-seconds
	type-identifier
	type-storage
	type-version
	weblogic-ejb-jar
	weblogic-enterprise-bean

	12 The weblogic-cmp-rdbms- jar.xml Deployment Descriptor
	EJB Deployment Descriptors
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	weblogic-cmp-rdbms-jar.xml
	ejb-jar.xml

	2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
	2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
	automatic-key-generation
	caching-element
	caching-name
	check-exists-on-method
	cmp-field
	cmr-field
	column-map
	create-default-dbms-tables
	database-type
	data-source-name
	db-cascade-delete
	dbms-column
	dbms-column-type
	description
	delay-database-insert-until
	Example

	ejb-name
	enable-batch-operations
	enable-tuned-updates
	field-group
	field-map
	foreign-key-column
	foreign-key-table
	generator-name
	generator-type
	group-name
	include-updates
	Function

	key-cache-size
	Example

	key-column
	max-elements
	method-name
	method-param
	method-params
	optimistic-column
	order-database-operations
	primary-key-table
	query-method
	relation-name
	relationship-caching
	relationship-role-map
	relationship-role-name
	sql-select-distinct
	table-map
	table-name
	use-select-for-update
	validate-db-schema-with
	verify-columns
	weblogic-ql
	weblogic-query
	weblogic-rdbms-bean
	weblogic-rdbms-jar
	weblogic-rdbms-relation
	weblogic-relationship-role

	13 Important Information for EJB 1.1 Users
	Writing for RDBMS Persistence for EJB 1.1 CMP
	Finder Signature
	finder-list Stanza
	finder-query Element

	Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
	WLQL Syntax
	WLQL Operators
	WLQL Operands
	Examples of WLQL Expressions

	Using SQL for CMP 1.1 Finder Queries
	Tuned EJB 1.1 CMP Updates in WebLogic Server
	Using is-modified-method-name to Limit Calls to ejbStore()
	5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
	caching-descriptor
	max-beans-in-free-pool
	initial-beans-in-free-pool
	max-beans-in-cache
	idle-timeout-seconds
	cache-strategy
	read-timeout-seconds

	persistence-descriptor
	is-modified-method-name
	delay-updates-until-end-of-tx
	persistence-type
	db-is-shared
	stateful-session-persistent-store-dir
	persistence-use

	clustering-descriptor
	home-is-clusterable
	home-load-algorithm
	home-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-call-router-class-name
	stateless-bean-methods-are-idempotent

	transaction-descriptor
	trans-timeout-seconds

	reference-descriptor
	resource-description
	ejb-reference-description

	enable-call-by-reference
	jndi-name
	transaction-isolation
	isolation-level
	method

	security-role-assignment

	1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
	1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
	RDBMS Definition Elements
	pool-name
	schema-name
	table-name

	EJB Field-Mapping Elements
	attribute-map
	object-link
	bean-field
	dbms-column

	Finder Elements
	finder-list
	finder
	method-name
	method-params
	method-param
	finder-query
	finder-expression

	Index

