
BEA
 WebLogic
Server™

Introduction to WebLogic
Server and WebLogic
Express™
Release 8.1
Document Revised: October 29, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Introduction to WebLogic Server and WebLogic Express

Part Number Document Revised Software Version

TBD October 29, 2002 BEA WebLogic Server
Version 8.1

Contents

About This Document
Audience..v

e-docs Web Site... vi

How to Print the Document... vi

Contact Us! .. vi

Documentation Conventions .. vii

1. Introduction to WebLogic Server
The WebLogic Server Solution ... 1-2

J2EE Platform .. 1-2

Application Deployment Across Distributed, Heterogeneous Environments..
1-3

About WebLogic Express.. 1-5

WebLogic Server Application Architecture.. 1-5

Software Component Tiers.. 1-6

Client Tier Components ... 1-7

Middle Tier Components ... 1-8

Backend Tier Components ... 1-9

Application Logic Layers .. 1-9

Presentation Logic Layer ... 1-10

Web Browser Clients .. 1-11

Non-Browser Clients... 1-11

Web Service Clients.. 1-12

Business Logic Layer ... 1-13

Entity Beans .. 1-13

Session Beans.. 1-14

Message-Driven Beans ... 1-14
Introduction to WebLogic Server and WebLogic Express iii

Application Services Layer .. 1-15

XML Implementation.. 1-15

Network Communications Technologies .. 1-15

Data and Access Services.. 1-19

Messaging Technologies ... 1-22

WebLogic Server Users... 1-24

Evaluator... 1-24

Installer ... 1-25

System Administrator... 1-26

Developer/Engineer.. 1-27

2. WebLogic Server Services
WebLogic Server as a Web Server.. 2-1

How WebLogic Server Functions as a Web Server 2-1

Web Server Features... 2-2

Virtual Hosting.. 2-2

Using Proxy Server Configurations .. 2-2

Load Balancing ... 2-3

Failover and Replication ... 2-3

WebLogic Server Security Service.. 2-4

WebLogic Server Clusters... 2-6

Benefits of Using Clusters.. 2-6

Cluster Architecture.. 2-7

How a WebLogic Server Cluster Is Defined in a Network 2-7

How WebLogic Servers in a Cluster Communicate................................... 2-8

Clustered Services .. 2-9

Server Management and Monitoring ... 2-10

Administration Server .. 2-11

Administration Console.. 2-11
iv Introduction to WebLogic Server and WebLogic Express

About This Document

This document introduces basic concepts relating to the Java 2 Platform, Enterprise
Edition (J2EE) from Sun Microsystems, Inc. It also outlines BEA WebLogic Server™
features, and describes the architecture of J2EE-compliant applications that run on the
WebLogic Server platform.

The document is organized as follows:

! Chapter 1, “Introduction to WebLogic Server,” introduces WebLogic Server and
describes BEA WebLogic Server products.

! Chapter 2, “WebLogic Server Services,” outlines the basic services that
WebLogic Server provides, including Web, security, clustering, and management
services.

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

Non-developers will also benefit from reading this document, which describes the
place of the application server in enterprise software systems, the basic requirements
and architecture of J2EE applications, and how WebLogic Server fulfills these
requirements.
Introduction to WebLogic Server and WebLogic Express v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.
vi Introduction to WebLogic Server and WebLogic Express

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;
Introduction to WebLogic Server and WebLogic Express vii

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
viii Introduction to WebLogic Server and WebLogic Express

CHAPTER
1 Introduction to WebLogic
Server

The following sections provide an overview of the WebLogic Server e-commerce
platform:

! “The WebLogic Server Solution” on page 1-2

! “About WebLogic Express” on page 1-5

! “WebLogic Server Application Architecture” on page 1-5

! “Software Component Tiers” on page 1-6

! “Application Logic Layers” on page 1-9

! “WebLogic Server Users” on page 1-24
Introduction to WebLogic Server and WebLogic Express 1-1

1 Introduction to WebLogic Server
The WebLogic Server Solution

Today’s business environment demands Web and e-commerce applications that
accelerate your entry into new markets, help you find new ways to reach and retain
customers, and allow you to introduce new products and services quickly. To build and
deploy these new solutions, you need a proven, reliable e-commerce platform that can
connect and empower all types of users while integrating your corporate data,
mainframe applications, and other enterprise applications in a powerful, flexible,
end-to-end e-commerce solution. Your solution must provide the performance,
scalability, and high availability needed to handle your most critical enterprise-scale
computing.

As the industry-leading e-commerce transaction platform, WebLogic Server allows
you to quickly develop and deploy reliable, secure, scalable and manageable
applications. It manages system-level details so you can concentrate on business logic
and presentation.

J2EE Platform

WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.3
technologies (http://java.sun.com/j2ee/sdk_1.3/index.html). J2EE is the
standard platform for developing multitier enterprise applications based on the Java
programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

J2EE applications are based on standardized, modular components. WebLogic Server
provides a complete set of services for those components and handles many details of
application behavior automatically, without requiring programming.

Note: Because J2EE is backward compatible, you can still run J2EE 1.2 on
WebLogic Server 7.0.
1-2 Introduction to WebLogic Server and WebLogic Express

http://java.sun.com/j2ee/sdk_1.3/index.html

The WebLogic Server Solution
Application Deployment Across Distributed, Heterogeneous
Environments

WebLogic Server provides essential features for developing and deploying
mission-critical e-commerce applications across distributed, heterogeneous computing
environments. These features include the following:

! Standards leadership—Comprehensive enterprise Java support to ease the
implementation and deployment of application components. WebLogic Server is
the first independently developed Java application server to achieve J2EE
certification. In addition, BEA actively participates in the development of J2EE
and Web Services standards that drive innovation and advancement in Java and
XML technology.

! Rich client options—WebLogic Server supports Web browsers and other clients
that use HTTP; Java clients that use RMI (Remote Method Invocation) or IIOP
(Internet Inter-ORB Protocol); SOAP clients on any SOAP-enabled plaftorm;
and mobile devices that use (WAP) Wireless Access Protocol. Connectors from
BEA and other companies enable virtually any client or legacy application to
work with a WebLogic Server application.

! Flexible Web services—WebLogic Server provides a solid platform for
deploying Web services as components of a heterogeneous distributed
application. Web services use a cross-platform, cross-language data model
(XML) to provide interoperability among application components on diverse
hardware and software platforms. Web services support user-defined data types
and one-way asynchronous operations. A Web service can intercept SOAP
messages for further processing. New Ant tasks automatically generate important
components and package the service into a deployable EAR file.

WebLogic Server 7.0 uses Web Services Description Language (WSDL) 1.1, an
XML-based specification, to describe Web services. WebLogic Web services
support Simple Object Access Protocol (SOAP) 1.1 and 1.2 as the message
format and HTTP as a connection protocol.

Note: WebLogic Web services accept both SOAP 1.1 and 1.2 incoming requests,
but produce only SOAP 1.1 outgoing responses.

! Enterprise e-business scalability—Efficient use and high availability of critical
resources are achieved through Enterprise JavaBean business components and
Introduction to WebLogic Server and WebLogic Express 1-3

1 Introduction to WebLogic Server
mechanisms such as WebLogic Server clustering for dynamic Web pages,
backend resource pooling, and connection sharing.

! Robust administration—WebLogic Server offers a Web-based Administration
Console for configuring and monitoring WebLogic Server services. A
command-line interface for configuration makes it convenient to administer
WebLogic Servers with scripts.

! E-commerce-ready security—WebLogic Server provides Secure Sockets Layer
(SSL) support for encrypting data transmitted across WebLogic Server, clients,
and other servers. User authentication and authorization for all WebLogic Server
services are provided through roles and security providers. External security
stores, such as Lightweight Directory Access Protocol (LDAP) servers, can still
be adapted to WebLogic realms, enabling single sign-on for the enterprise. The
Security Service Provider Interface makes it possible to extend WebLogic
Security services and to implement WebLogic Security features in applications.

! Maximum development and deployment flexibility—WebLogic Server provides
tight integration with and support for leading databases, development tools, and
other environments.

! Bi-directional functional interoperability between Java/J2EE objects and
Microsoft ActiveX components—BEA WebLogic jCOM provides a run-time
component that implements both Component Object Model (COM)/Distributed
Component Object Model (DCOM) and Remote Method Invocation (RMI)
distributed components infrastructures. This makes the objects look like native
objects for each environment.

! Java Message Service (JMS)—An enterprise messaging system, also referred to
as message-oriented middleware (MOM), enables applications to communicate
with one another through the exchange of messages. A message is a request,
report, and/or event that contains information needed to coordinate
communication between different applications. A message provides a level of
abstraction, allowing you to separate the details about the destination system
from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise
messaging systems. Specifically, JMS enables Java applications sharing a
messaging system to exchange messages, and it simplifies application
development by providing a standard interface for creating, sending, and
receiving messages.
1-4 Introduction to WebLogic Server and WebLogic Express

About WebLogic Express
About WebLogic Express

BEA WebLogic Express™ is a scalable platform that serves dynamic content and data
to Web and wireless applications. WebLogic Express incorporates the presentation
and database access services from WebLogic Server, enabling developers to create
interactive and transactional e-business applications quickly and to provide
presentation services for existing applications.

WebLogic Express offers many services and APIs available with WebLogic Server,
including WebLogic JDBC features, JavaServer Pages (JSP), servlets, Remote Method
Invocation (RMI), and Web server functionality.

WebLogic Express differs from WebLogic Server in that WebLogic Express does not
provide Enterprise JavaBeans (EJB), Java Message Services (JMS), or the two-phase
commit protocol for transactions.

WebLogic Server Application Architecture

WebLogic Server is an application server: a platform for developing and deploying
multitier distributed enterprise applications. WebLogic Server centralizes application
services such as Web server functionality, business components, and access to
backend enterprise systems. It uses technologies such as caching and connection
pooling to improve resource use and application performance. WebLogic Server also
provides enterprise-level security and powerful administration facilities.

WebLogic Server operates in the middle tier of a multitier (or n-tier) architecture. A
multitier architecture determines where the software components that make up a
computing system are executed in relation to each other and to the hardware, network,
and users. Choosing the best location for each software component lets you develop
applications faster; eases deployment and administration; and provides greater control
over performance, utilization, security, scalability, and reliability.

WebLogic Server implements J2EE, the Java Enterprise standard. Java is a
network-savvy, object-oriented programming language, and J2EE includes component
technologies for developing distributed objects. This functionality adds a second
Introduction to WebLogic Server and WebLogic Express 1-5

1 Introduction to WebLogic Server
dimension to the WebLogic Server application architecture—a layering of application
logic, with each layer selectively deployed among WebLogic Server J2EE
technologies.

The next two sections describe these two views of WebLogic Server architecture:
software tiers and application logic layers.

Software Component Tiers

The software components of a multitier architecture consist of three tiers:

! The client tier contains programs executed by users, including Web browsers
and network-capable application programs. These programs can be written in
virtually any programming language.

! The middle tier contains WebLogic Server and other servers that are addressed
directly by clients, such as existing Web servers or proxy servers.

! The backend tier contains enterprise resources, such as database systems,
mainframe and legacy applications, and packaged enterprise resource planning
(ERP) applications.

Client applications access WebLogic Server directly, or through another Web server
or proxy server. WebLogic Server generally connects with backend services on behalf
of clients. However, clients may directly access backend services using a multitier
JDBC driver.

Figure 1-1 illustrates the three tiers of the WebLogic Server architecture.

Figure 1-1 Three-Tier Architecture
1-6 Introduction to WebLogic Server and WebLogic Express

Software Component Tiers
Client Tier Components

WebLogic Server clients use standard interfaces to access WebLogic Server services.
WebLogic Server has complete Web server functionality, so a Web browser can
request pages from WebLogic Server using the Web’s standard HTTP protocol.
WebLogic Server servlets and JavaServer Pages (JSPs) produce the dynamic,
personalized Web pages required for advanced e-commerce Web applications.

Client programs written in Java may include highly interactive graphical user
interfaces built with Java Swing classes. They can also access WebLogic Server
services using standard J2EE APIs.

All these services are also available to Web browser clients by deploying servlets and
JSP pages in WebLogic Server.

Version 8.1 of WebLogic Server supports a true J2EE application client. In previous
versions, a WebLogic client that could fully utilize WLS features such as clustering,
security, transactions and JMS, required locating the complete WebLogic jar on the
client machine.
Introduction to WebLogic Server and WebLogic Express 1-7

1 Introduction to WebLogic Server
A J2EE application client runs on a client machine and can provide a richer user
interface than can be provided by a markup language. Application clients directly
access enterprise beans running in the business tier, and can, as appropriate,
communicate via HTTP with servlets running in the Web tier. An application client is
typically downloaded from the server, but can be installed on a client machine.

Although a J2EE application client is a Java application, it differs from a stand-alone
Java application client because it is a J2EE component, hence it offers the advantages
of portability to other J2EE-compliant servers, and can access J2EE services.

Middle Tier Components

The middle tier includes WebLogic Server and other Web servers, firewalls, and proxy
servers that mediate traffic between clients and WebLogic Server. The Nokia WAP
server, part of the BEA mobile commerce solution, is an example of another middle
tier server that provides connectivity between wireless devices and WebLogic Server.

Applications based on a multitier architecture require reliability, scalability, and high
performance in the middle tier. The application server you select for the middle tier is,
therefore, critical to the success of your system.

The WebLogic Server cluster option allows you to distribute client requests and
back-end services among multiple cooperating WebLogic Servers. Programs in the
client tier access the cluster as if it were a single WebLogic Server. As the workload
increases, you can add WebLogic Servers to the cluster to share the work. The cluster
uses a selectable load-balancing algorithm to choose a WebLogic Server in the cluster
that is capable of handling the request.

When a request fails, another WebLogic Server that provides the requested service can
take over. Failover is transparent whenever possible, which minimizes the amount of
code that must be written to recover from failures. For example, servlet session state
can be replicated on a secondary WebLogic Server so that if the WebLogic Server that
is handling a request fails, the client’s session can resume uninterrupted on the
secondary server. WebLogic EJB, JMS, JDBC, and RMI services are all implemented
with clustering capabilities.
1-8 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
Backend Tier Components

The backend tier contains services that are accessible to clients only through
WebLogic Server. Applications in the backend tier tend to be the most valuable and
mission-critical enterprise resources. WebLogic Server protects them by restricting
direct access by end users. With technologies such as connection pools and caching,
WebLogic Server uses back-end resources efficiently and improves application
response.

Backend services include databases, enterprise resource planning (ERP) systems,
mainframe applications, legacy enterprise applications, and transaction monitors.
Existing enterprise applications can be integrated into the backend tier using the Java
Connector Architecture (JCA) specification from Sun Microsystems. WebLogic
Server makes it easy to add a Web interface to an integrated backend application.

A database management system is the most common backend service, required by
nearly all WebLogic Server applications. WebLogic EJB and WebLogic JMS typically
store persistent data in a database in the backend tier.

A JDBC connection pool, defined in WebLogic Server, opens a predefined number of
database connections. Once opened, database connections are shared by all WebLogic
Server applications that need database access. The expensive overhead associated with
establishing a connection is incurred only once for each connection in the pool, instead
of once per client request. WebLogic Server monitors database connections, refreshing
them as needed and ensuring reliable database services for applications.

WebLogic Enterprise Connectivity, which provides access to BEA WebLogic
Enterprise™ systems, and Jolt® for WebLogic Server, which provides access to BEA
Tuxedo® systems, also use connection pools to enhance system performance.

Application Logic Layers

WebLogic Server implements J2EE component technologies and services. J2EE
component technologies include servlets, JSP Pages, and Enterprise JavaBeans. J2EE
services include access to standard network protocols, database systems, and
messaging systems. To build a WebLogic Server application, you must create and
assemble components, using the service APIs when necessary.
Introduction to WebLogic Server and WebLogic Express 1-9

1 Introduction to WebLogic Server
Components are executed in the WebLogic Server Web container or EJB container.
Containers provide the life cycle support and services defined by the J2EE
specifications so that the components you build do not have to handle underlying
details.

Web components provide the presentation logic for browser-based J2EE applications.
EJB components encapsulate business objects and processes. Web applications and
EJBs are built on J2EE application services, such as JDBC, JMS (Java Messaging
Service), and JTA (Java Transaction API).

Figure 1-2 illustrates WebLogic Server component containers and application
services.

Figure 1-2 Application Logic Layers

The following sections discuss the presentation logic, business logic, and application
services layers.

Presentation Logic Layer

The presentation layer includes an application’s user interface and display logic. Most
J2EE applications use a Web browser on the client machine because it is much easier
than deploying client programs to every user’s computer. In this case, the presentation
logic is the WebLogic Server Web container. Client programs written in any
programming language, however, must contain either logic to render HTML or their
1-10 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
own presentation logic. A client that accesses a Web service must assemble a SOAP
message that describes the Web service it wants to invoke, and include the necessary
data in the body of the SOAP message.

Web Browser Clients

Web-based applications built with standard Web technologies are easy to access,
maintain, and port. Web browser clients are standard for e-commerce applications.

In Web-based applications, the user interface is represented by HTML documents,
JavaServer Pages (JSP), and servlets. The Web browser contains the logic to render the
Web page on the user’s computer from the HTML description.

JavaServer Pages (JSP) and servlets are closely related. Both produce dynamic Web
content by executing Java code on WebLogic Server each time they are invoked. The
difference between them is that JSP is written with an extended version of HTML, and
servlets are written with the Java programming language.

JSP is convenient for Web designers who know HTML and are accustomed to working
with an HTML editor or designer. Servlets, written entirely in Java, are more suited to
Java programmers than to Web designers. Writing a servlet requires some knowledge
of the HTTP protocol and Java programming. A servlet receives the HTTP request in
a request object and typically writes HTML or XML in its response object.

JSP pages are converted to servlets before they are executed on WebLogic Server, so
ultimately JSP pages and servlets are different representations of the same thing. JSP
pages are deployed on WebLogic Server the same way an HTML page is deployed.
The .jsp file is copied into a directory served by WebLogic Server. When a client
requests a .jsp file, WebLogic Server checks whether the page has been compiled or
has changed since it was last compiled. If needed, it calls the WebLogic JSP compiler,
which generates Java servlet code from the .jsp file, and then it compiles the Java
code to a Java class file.

Non-Browser Clients

A client program that is not a Web browser must supply its own code for rendering the
user interface. Non-browser clients usually contain their own presentation and
rendering logic, depending on WebLogic Server only for business logic and access to
back-end services. This makes them more difficult to develop and deploy and less
suited for Internet-based e-commerce applications than browser-based clients.
Introduction to WebLogic Server and WebLogic Express 1-11

1 Introduction to WebLogic Server
Java programs can use the Java Swing classes to create powerful and portable user
interfaces. Client programs written in Java can use any WebLogic Server service over
Java RMI (Remote Method Invocation)., allowing the client to operate on a WebLogic
Server object the same way it would operate on a local object in the client. Because
RMI hides the details of making calls over a network, J2EE client code and server-side
code are very similar.

To leverage WebLogic Server services over RMI, WebLogic Server classes must be
available on the client. WebLogic Server 8.1 supports a true J2EE application client,
referred to herein as the thin client. Small footprint standard and JMS jars—each about
400 KB—are provided. The WebLogic Server client can leverage standared J2EE
artifacts such as InitialContext, UserTransaction, and EJBs. It supports iiop, iiops, http,
https, t3, and t3s—each of which can be selected by using a different URL in
InitialContext.

WebLogic RMI-IIOP allows CORBA-enabled programs to execute WebLogic Server
enterprise beans and RMI classes as CORBA objects. The WebLogic Server RMI and
EJB compilers can generate IDL (Interface Definition Language) for RMI classes and
enterprise beans. IDL generated this way is compiled to create skeletons for an ORB
(Object Request Broker) and stubs for the client program. WebLogic Server parses
incoming IIOP requests and dispatches them to the RMI run-time system.

Web Service Clients

Client applications that invoke WebLogic Web services can be written using any
technology: Java, Microsoft .NET Toolkit, and so on. The client application assembles
a SOAP (Simple Object Access Protocol) message that describes the Web service it
wants to invoke and includes all the necessary data in the body of the SOAP message.
The client then sends the SOAP message over HTTP/HTTPS to WebLogic Server,
which executes the Web service and sends a SOAP message back to the client over
HTTP/HTTPS.

For Java-based Web services clients, WebLogic Server also provides an optional Java
client JAR file. The JAR file includes everything a client application needs to invoke
a WebLogic Web Service, such as the WebLogic Web services Client API and
WebLogic FastParser. Unlike other Java WebLogic Server clients, you do not need to
include the weblogic.jar file with Web services clients, thus making for very thin
client applications.
1-12 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
Business Logic Layer

Enterprise JavaBeans are the business logic components for J2EE applications. The
WebLogic Server EJB container hosts enterprise beans, providing life cycle
management and services such as caching, persistence, and transaction management.

There are three types of enterprise beans: entity beans, session beans, and
message-driven beans. The following sections describe each type in detail.

Entity Beans

An entity bean represents an object that contains data, such as a customer, an account,
or an inventory item. Entity beans contain data values and methods that can be invoked
on those values. The values are saved in a database (using JDBC) or some other data
store. Entity beans can participate in transactions involving other enterprise beans and
transactional services.

Entity beans are often mapped to objects in databases. An entity bean can represent a
row in a table, a single column in a row, or an entire table or query result. Associated
with each entity bean is a unique primary key used to find, retrieve, and save the bean.

An entity bean can employ one of the following:

! Bean-managed persistence—the bean contains code to retrieve and save
persistent values.

! Container-managed persistence—the EJB container loads and saves values on
behalf of the bean.

When container-managed persistence is used, the WebLogic EJB compiler can
generate JDBC support classes to map an entity bean to a row in a database. Other
container-managed persistence mechanisms are available. For example, TopLink for
WebLogic Foundation Library, from WebGain (http://www.webgain.com),
provides persistence for an object relational database.

Entity beans can be shared by many clients and applications. An instance of an entity
bean can be created at the request of any client, but it does not disappear when that
client disconnects. It continues to live as long as any client is actively using it. When
the bean is no longer in use, the EJB container may passivate it: that is, it may remove
the live instance from the server.
Introduction to WebLogic Server and WebLogic Express 1-13

http://www.webgain.com

1 Introduction to WebLogic Server
Session Beans

A session bean is a transient EJB instance that serves a single client. Session beans tend
to implement procedural logic; they embody actions more than data.

The EJB container creates a session bean at a client’s request. It then maintains the
bean as long as the client maintains its connection to the bean. Sessions beans are not
persistent, although they can save data to a persistent store if needed.

A session bean can be stateless or stateful. Stateless session beans maintain no
client-specific state between calls and can be used by any client. They can be used to
provide access to services that do not depend on the context of a session, such as
sending a document to a printer or retrieving read-only data into an application.

A stateful session bean maintains state on behalf of a specific client. Stateful session
beans can be used to manage a process, such as assembling an order or routing a
document through a workflow process. Because they can accumulate and maintain
state through multiple interactions with a client, session beans are often the controlling
objects in an application. Because they are not persistent, session beans must complete
their work in a single session and use JDBC, JMS, or entity beans to record the work
permanently.

Message-Driven Beans

Message-driven beans, introduced in the EJB 2.0 specification, are enterprise beans
that handle asynchronous messages received from JMS Message Queues. JMS routes
messages to a message-driven bean, which selects an instance from a pool to process
the message.

Message-driven beans are managed in the WebLogic Server EJB container. Because
they are not called directly by user-driven applications, they cannot be accessed from
an application using an EJB home. A user-driven application can, however, instantiate
a message-driven bean indirectly by sending a message to the bean’s JMS Queue.
1-14 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
Application Services Layer

WebLogic Server supplies the fundamental services that allow components to
concentrate on business logic without concern for low-level implementation details. It
handles networking, authentication, authorization, persistence, and remote object
access for EJBs and servlets. Standard Java APIs provide portable access to other
services that an application can use, such as database and messaging services.

XML Implementation

WebLogic Server consolidates Extensible Markup Language (XML) technologies
applicable to WebLogic Server and XML applications based on WebLogic Server. A
simplified version of the Standard Generalized Markup Language (SGML) markup
language, XML describes the content and structure of data in a document and is an
industry standard for delivering content on the Internet. Typically, XML is used as the
data exchange format between J2EE applications and client applications, or between
components of a J2EE application. The WebLogic Server XML subsystem supports
the use of standard parsers, the WebLogic FastParser, the WebLogic PullParser, XSLT
transformers, and DTDs and XML schemas to process and convert XML files.

Network Communications Technologies

Client applications connect with WebLogic Server using standard networking
protocols over TCP/IP. WebLogic Server listens for connection requests at a network
address that can be specified as part of a Uniform Resource Identifier (URI).

A URI is a standardized string that specifies a resource on a network, including the
Internet. It contains a protocol specifier called a scheme, the network address of the
server, the name of the desired resource, and optional parameters. The URL you enter
in a Web browser, for example, http://www.bea.com/index.html, is the most
familiar URI format.

Web-based clients communicate with WebLogic Server using the HTTP protocol.
Java clients connect using Java RMI (Remote Method Invocation), which allows a
Java client to execute objects in WebLogic Server. CORBA-enabled clients access
WebLogic Server RMI objects using RMI-IIOP, which allows them to execute
WebLogic Server objects using standard CORBA protocols.

In the following table, the scheme in a URI determines the protocol for network
exchanges between a client and WebLogic Server.
Introduction to WebLogic Server and WebLogic Express 1-15

1 Introduction to WebLogic Server
Table 1-1 Network Protocols

The following sections provide more information about these protocols.

HTTP

HTTP, the standard protocol of the World Wide Web, is a request-response protocol.
A client issues a request that includes a URI. The URI begins with http:// and the
WebLogic Server address, and the name of a resource on WebLogic Server, such as an
HTML page, servlet, or JSP page. If the resource name is omitted, WebLogic Server
returns the default Web page, usually index.html. The header of an HTTP request
includes a command, usually GET or POST. The request can include data parameters
and message content.

Scheme Protocol

HTTP HyperText Transfer Protocol. Used by Web browsers and
HTTP-capable programs.

HTTPS Hypertext Transfer Protocol over Secure Sockets Layer (SSL).
Used by Web browsers and HTTPS-capable client programs.

T3 WebLogic T3 protocol for Java-to-Java connections, which
multiplexes JNDI, RMI, EJB, JDBC, and other WebLogic
services over a network connection.

T3S WebLogic T3 protocol over Secure Sockets Layer (SSL).

RMI Remote Method Invocation (RMI), the standard Java facility for
distributed applications.

IIOP Internet Inter-ORB protocol, used by CORBA-enabled Java
clients to execute WebLogic RMI objects over IIOP. Other
CORBA clients connect to WebLogic Server with a CORBA
naming context instead of a URI for WebLogic Server.

IIOPS Internet Inter-ORB protocol over Secure Sockets Layer (SSL).

SOAP WebLogic Web services use Simple Object Access Protocol
(SOAP) 1.1 as the message format and HTTP as a connection
protocol.
1-16 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
WebLogic Server always responds to an HTTP request by executing a servlet, which
returns results to the client. An HTTP servlet is a Java class that can access the contents
of an HTTP request received over the network and return an HTTP-compliant result to
the client.

WebLogic Server directs a request for an HTML page to the built-in File servlet. The
File servlet looks for the HTML file in the document directory of the WebLogic
Server file system. A request for a custom-coded servlet executes the corresponding
Java class on WebLogic Server. A request for a JSP page causes WebLogic Server to
compile the JSP page into a servlet, if it has not already been compiled, and then to
execute the servlet, which returns results to the client.

T3

T3 is an optimized protocol used to transport data between WebLogic Server and other
Java programs, including clients and other WebLogic Servers. WebLogic Server keeps
track of every Java Virtual Machine (JVM) with which it connects, and creates a single
T3 connection to carry all traffic for a JVM.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool
on WebLogic Server, a single network connection is established between the
WebLogic Server JVM and the client JVM. The EJB and JDBC services can be written
as if they had sole use of a dedicated network connection because the T3 protocol
invisibly multiplexes packets on the single connection.

T3 is an efficient protocol for Java-to-Java applications because it avoids unnecessary
network connection events and uses fewer OS resources. The protocol also has internal
enhancements that minimize packet sizes

RMI

Remote Method Invocation (RMI) is the standard Java facility for distributed
applications. RMI allows one Java program, called the server, to publish Java objects
that another Java program, called a client, can execute. In most applications,
WebLogic Server is the RMI server and a Java client application is the client. But the
roles can be reversed; RMI allows any Java program to play the role of server.

RMI architecture is similar to the CORBA architecture. To create a remote object, a
programmer writes an interface for a Java class that defines the methods that may be
executed by a remote client. The WebLogic Server RMI compiler, rmic, processes the
interface, producing RMI stub and skeleton classes. The remote class, stubs, and
skeletons are installed in WebLogic Server.
Introduction to WebLogic Server and WebLogic Express 1-17

1 Introduction to WebLogic Server
A Java client looks up a remote object in WebLogic Server using the Java Naming and
Directory Interface (JNDI), which is described later in this section. JNDI establishes a
connection to WebLogic Server, looks up the remote class, and returns the stubs to the
client.

The client executes a stub method as if it were executing the method directly on the
remote class. The stub method prepares the call and transmits it over the network to the
skeleton class in WebLogic Server.

On WebLogic Server, the skeleton class unpacks the request and executes the method
on the server-side object. Then it packages the results and returns them to the stub on
the client side.

WebLogic EJB and several other services available to Java clients are built on RMI.
Most applications should use EJB instead of using RMI directly, because EJB provides
a better abstraction for business objects. In addition, the WebLogic Server EJB
container provides enhancements such as caching, persistence, and life cycle
management that are not automatically available to remote classes.

RMI-IIOP

Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) is a protocol
that allows CORBA client programs to execute WebLogic RMI objects, including
enterprise beans. RMI-IIOP is based on two specifications from the Object
Management Group (http://www.omg.com):

! Java-to-IDL mapping

! Objects-by-value

The Java-to-IDL specification defines how an Interface Definition Language (IDL) is
derived from a Java interface. The WebLogic Server compilers for RMI and EJB give
you the option of producing IDL when compiling RMI and EJB objects. This IDL can
be compiled with an IDL API compiler to produce the stubs required by a CORBA
client.

The objects-by-value specification defines how complex data types are mapped
between Java and CORBA. To use objects-by-value, a CORBA client must use an
Object Request Broker (ORB) with CORBA 2.3 support. Without a CORBA 2.3 ORB,
CORBA clients can use only Java primitive data types.
1-18 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
SSL

Data exchanged with the HTTP and T3 protocols can be encrypted with the Secure
Sockets Layer (SSL) protocol. Using SSL assures the client that it has connected with
an authenticated server and that data transmitted over the network is private.

SSL uses public key encryption. Public key encryption requires you to purchase a
Server ID, which is a certificate for your WebLogic Server from a Certificate
Authority such as VeriSign. When a client connects to the WebLogic Server SSL port,
the server and client execute a protocol that includes authenticating the server’s Server
ID and negotiating encryption algorithms and parameters for the session. WebLogic
Server can also be configured to require the client to present a certificate, an
arrangement that is called mutual authentication.

SOAP

SOAP (Simple Object Access Protocol) is a lightweight, XML-based protocol used to
exchange information in a decentralized, distributed environment. The protocol
consists of an envelop that describes the SOAP message, encoding rules, and
conventions for representing remote procedure calls and responses.

All information is embedded in a Multipurpose Internet Mail Extensions
(MIME)-encoded package that can be transmitted over HTTP or other Web protocols.
MIME is a specification for formatting non-ASCII messages so that they can be sent
over the Internet.

Data and Access Services

WebLogic Server implements standard J2EE technologies to provide data and access
services to applications and components. These services include the following APIs:

! Java Naming and Directory Interface (JNDI)

! Java Database Connectivity (JDBC)

! Java Transaction API (JTA)

! J2EE Connector Architecture

! eXtensible Markup Language (XML)

The following sections discuss these services in detail.
Introduction to WebLogic Server and WebLogic Express 1-19

1 Introduction to WebLogic Server
JNDI

The Java Naming and Directory Interface (JNDI) is a standard Java API that enables
applications to look up an object by name. WebLogic Server or a user application binds
the Java objects it serves to a name in a naming tree. An application can look up
objects, such as RMI objects, Enterprise JavaBeans, JMS Queues and Topics, and
JDBC DataSources, by getting a JNDI context from WebLogic Server and then calling
the JNDI lookup method with the name of the object. The lookup returns a reference
to the WebLogic Server object.

WebLogic JNDI supports WebLogic Server cluster load balancing and failover. Each
WebLogic Server in a cluster publishes the objects it serves in a replicated cluster-wide
naming tree. An application can get an initial JNDI context from any WebLogic Server
in the cluster, perform a lookup, and receive an object reference from any WebLogic
Server in the cluster that serves the object. A configurable load-balancing algorithm is
used to spread the workload among the servers in the cluster.

JDBC

Java Database Connectivity (JDBC) provides access to backend database resources.
Java applications access JDBC using a JDBC driver, which is a database
vendor-specific interface for a database server. Although any Java application can load
a vendor’s JDBC driver, connect to the database, and perform database operations,
WebLogic Server provides a significant performance advantage by offering JDBC
connection pools.

A JDBC connection pool is a named group of JDBC connections managed through
WebLogic Server. At startup time WebLogic Server opens JDBC connections and
adds them to the pool. When an application requires a JDBC connection, it gets a
connection from the pool, uses it, and then returns it to the pool for use by for other
applications. Establishing a database connection is often a time-consuming,
resource-intensive operation, so a connection pool, which limits the number of
connection operations, improves performance.

WebLogic Server also provides JDBC multipools for achieving load balancing or high
availability capabilities with database connections in single-server configurations.
Multipools are a “pool of pools” that provide a configurable algorithm for choosing
which pool to provide a connection for a given request. Currently, WebLogic Server
provides algorithms to support either high availability or load balancing behavior for
database connections.
1-20 Introduction to WebLogic Server and WebLogic Express

Application Logic Layers
To register a connection pool in the JNDI naming tree, define a DataSource object for
it. Java client applications can then get a connection from the pool by performing a
JNDI lookup on the DataSource name.

Server-side Java classes use the WebLogic JDBC pool driver, which is a generic JDBC
driver that calls through to the vendor-specific JDBC driver. This mechanism makes
application code more portable, even if you change the brand of database used in the
backend tier.

The client-side JDBC driver is the WebLogic JDBC/RMI driver, which is an RMI
interface to the pool driver. Use this driver the same way you use any standard JDBC
driver. When the JDBC/RMI driver is used, Java programs can access JDBC in a
manner consistent with other WebLogic Server distributed objects, and they can keep
database data structures in the middle tier.

WebLogic EJB and WebLogic JMS rely on connections from a JDBC connection pool
to load and save persistent objects. By using EJB and JMS, you can often get a more
useful abstraction than you can get by using JDBC directly in an application. For
example, using an enterprise bean to represent a dataful object allows you to change
the underlying store later without modifying JDBC code. If you use persistent JMS
messages instead of coding database operations with JDBC, it will be easier to adapt
your application to a third-party messaging system later.

JTA

The Java Transaction API (JTA) is the standard interface for managing transactions in
Java applications. By using transactions, you can protect the integrity of the data in
your databases and manage access to that data by concurrent applications or
application instances. Once a transaction begins, all transactional operations must
commit successfully or all of them must be rolled back.

WebLogic Server supports transactions that include EJB, JMS, JCA, and JDBC
operations. Distributed transactions, coordinated with two-phase commit, can span
multiple databases that are accessed with XA-compliant JDBC drivers, such as BEA
WebLogic jDriver for Oracle/XA.

The EJB specification defines bean-managed and container-managed
transactions.When an enterprise bean is deployed with container-managed
transactions, WebLogic Server coordinates the transaction automatically. If an
enterprise bean is deployed with bean-managed transactions, the EJB programmer
must provide transaction code.
Introduction to WebLogic Server and WebLogic Express 1-21

1 Introduction to WebLogic Server
Application code based on the JMS or JDBC API can initiate a transaction, or
participate in a transaction started earlier. A single transaction context is associated
with the WebLogic Server thread executing an application; all transactional operations
performed on the thread participate in the current transaction.

J2EE Connector Architecture

The J2EE Connector Architecture adds simplified Enterprise Information System
(EIS) integration to the J2EE platform. It provides a Java solution to the problem of
connectivity between the multitude of application servers and EISes. By using the
Connector Architecture, it is no longer necessary for EIS vendors to customize their
product for each application server. By conforming to the J2EE Connector
Architecture, BEA WebLogic Server does not require added custom code in order to
extend its support connectivity to a new EIS.

The J2EE Connector Architecture is implemented both in WebLogic Server and in an
EIS-specific resource adapter. A resource adapter is a system library specific to an EIS
and provides connectivity to the EIS. A resource adapter is analogous to a JDBC
driver. The interface between a resource adapter and the EIS is specific to the
underlying EIS, and can be a native interface.

The J2EE Connector Architecture comprises the system-level contracts between
WebLogic Server and a given resource adaptor, a common interface for clients to
access the adaptor, and interfaces for packaging and deploying resource adaptors to
J2EE applications. See Programming WebLogic Server J2EE Connectors for more
information.

XML

WebLogic Server consolidates Extensible Markup Language (XML) technologies
applicable to WebLogic Server and XML applications based on WebLogic Server. For
more information, refer to “XML Implementation” on page 1-15.

Messaging Technologies

The J2EE messaging technologies provide standard APIs that WebLogic Server
applications can use to communicate with one another as well as with non-WebLogic
Server applications. The messaging services include the following APIs:

" Java Message Service (JMS)

" JavaMail
1-22 Introduction to WebLogic Server and WebLogic Express

http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Application Logic Layers
The following sections describe these APIs in detail.

JMS

Java Messaging Service (JMS) enables applications to communicate with one another
by exchanging messages. A message is a request, report, and/or event that contains the
information needed to coordinate communication between different applications. A
message provides a level of abstraction, allowing you to separate details about the
destination system from the application code.

WebLogic JMS implements two messaging models: point-to-point (PTP) and
publish/subscribe (pub/sub). The PTP model allows any number of senders to send
messages to a Queue. Each message in the Queue is delivered to a single reader. The
pub/sub model allows any number of senders to send messages to a Topic. Each
message on the Topic is sent to every reader with a subscription to the Topic. Messages
can be delivered to readers synchronously or asynchronously; the particular messaging
mode can be controlled either using the Administration Console or via the method used
to send messages in the JMS application.

JMS messages can be persistent or non-persistent. Persistent messages are stored in a
database and are not lost if WebLogic Server restarts. Non-persistent messages are lost
if WebLogic Server is restarted. Persistent messages sent to a Topic can be retained
until all interested subscribers have received them.

JMS supports several message types that are useful for different types of applications.
The message body can contain arbitrary text, byte streams, Java primitive data types,
name/value pairs, serializable Java objects, or XML content.

JavaMail

WebLogic Server includes the Sun JavaMail reference implementation. JavaMail
allows an application to create e-mail messages and send them through an SMTP
server on the network.
Introduction to WebLogic Server and WebLogic Express 1-23

1 Introduction to WebLogic Server
WebLogic Server Users

The most common WebLogic Server user types are:

! Evaluator—a user who performs product evaluations

! Installer—a user who installs and sets up the WebLogic Server environment

! System Administrator—a user who administers WebLogic Server after it is
installed

! Developer/Engineer—a user who develops applications to run in the WebLogic
Server environment

Evaluator

If you are a product evaluator in charge of evaluating or reviewing the WebLogic
Server product, you will probably be interested in high-level task types that provide an
overview of the product and its key tasks. Evaluators should refer to the following
task-related documents. These documents are located on the BEA Web site. From the
BEA Home page, click on Product Documentation, then click WebLogic Server 7.0.

Table 1-2 Evaluator Tasks

Task Type Related Documentation

! Obtain an overview of WebLogic Server Introduction to BEA WebLogic
Server

! Learn what new features are provided with
this release of WebLogic Server

What’s New?

! Install WebLogic Server Preparing to Install WebLogic Server

! Get started using WebLogic Server

! Configure and run WebLogic Server samples

Samples and Tutorials

! Review frequently asked questions relating to
WebLogic Server

Frequently Asked Questions
1-24 Introduction to WebLogic Server and WebLogic Express

http://e-docs.bea.com/wls/docs81b/intro/index.html
http://e-docs.bea.com/wls/docs81b/notes/new.html
http://e-docs.bea.com/wls/docs81b/install/instpre.html#1066272
http://e-docs.bea.com/wls/docs81b/install/instpre.html#1066272
http://e-docs.bea.com/wls/docs81b/samples.html
http://e-docs.bea.com/wls/docs81b/faq/index.html

WebLogic Server Users
Installer

If you are in charge of installing and setting up the WebLogic Server environment, you
will probably be interested in tasks that help you provide a fully functional system.
Installers should refer to the following task-related documentation. These documents
are located on the BEA Web site. From the BEA Home page, click on Product
Documentation, then click WebLogic Server 7.0.

Table 1-3 Planner/Installer Tasks

Task Type Related Documentation

! Obtain an overview of WebLogic Server Introduction to BEA WebLogic
Server

! Learn what new features are provided with
this release of WebLogic Server

What’s New?

! Install WebLogic Server Preparing to Install WebLogic Server

! Perform upgrades to WebLogic Server Upgrade Guide for BEA WebLogic
Server 7.0

! Obtain platform-specific information about
using WebLogic Server, including system
requirements, operating system versions,
JDKs, DBMSs, JDBC™ drivers, and more

BEA WebLogic Server Platform
Support

! Get started using WebLogic Server

! Configure and run WebLogic Server samples

Samples and Tutorials

! Learn about assembling, packaging, and
deploying WebLogic Server applications and
components

Deployment
Introduction to WebLogic Server and WebLogic Express 1-25

http://e-docs.bea.com/wls/docs81b/intro/index.html
http://e-docs.bea.com/wls/docs81b/notes/new.html
http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/install/instpre.html#1066272
http://e-docs.bea.com/wls/docs81b/upgrade/index.html
http://e-docs.bea.com/wls/certifications/certifications/index.html
http://e-docs.bea.com/wls/docs81b/samples.html
http://e-docs.bea.com/wls/docs81b/deployment.html

1 Introduction to WebLogic Server
System Administrator

If you are in charge of administering the WebLogic Server environment, you will
probably be interested in tasks that help you maintain a fully functional system. System
Administrators should refer to the following task-related documentation. These
documents are located on the BEA Web site. From the BEA Home page, click on
Product Documentation, then click WebLogic Server 7.0.

Table 1-4 System Administrator Tasks

Task Type Related Documentation

! Obtain an overview of WebLogic Server Introduction to BEA WebLogic
Server

! Learn about WebLogic Server performance
and tuning

Performance and Tuning

! Configure security for WebLogic Server Security

! Obtain platform-specific information about
using WebLogic Server, including system
requirements, operating system versions,
JDKs, DBMSs, JDBC™ drivers, and more

BEA WebLogic Server Platform
Support
1-26 Introduction to WebLogic Server and WebLogic Express

http://e-docs.bea.com/wls/docs81b/intro/index.html
http://e-docs.bea.com/wls/docs81b/perform/index.html
http://e-docs.bea.com/wls/docs81b/security.html
http://e-docs.bea.com/wls/certifications/certifications/index.html

WebLogic Server Users
Developer/Engineer

If you are in charge of developing WebLogic Server applications or components, you
should refer to the following task-related documentation. These documents are located
on the BEA Web site. From the BEA Home page, click on Product Documentation,
then click WebLogic Server 7.0.

Table 1-5 System Administrator Tasks

Task Type Related Documentation

! Obtain an overview of WebLogic Server Introduction to BEA WebLogic
Server

! Learn what new features are provided with
this release of WebLogic Server

What’s New?

! Install WebLogic Server Preparing to Install WebLogic Server

! Perform upgrades to WebLogic Server Upgrade Guide for BEA WebLogic
Server 7.0

! Get started using WebLogic Server

! Configure and run WebLogic Server samples

Samples and Tutorials

! Learn about assembling, packaging, and
deploying WebLogic Server applications and
components

Deployment

! Obtain platform-specific information about
using WebLogic Server, including system
requirements, operating system versions,
JDKs, DBMSs, JDBC™ drivers, and more

BEA WebLogic Server Platform
Support

! Configure security for WebLogic Server Security

! Program WebLogic applications and
components

! Learn about resources for programming
WebLogic J2EE applications

Programming

! Learn about WebLogic Server developer tools Developer Tools
Introduction to WebLogic Server and WebLogic Express 1-27

http://e-docs.bea.com/wls/docs81b/intro/index.html
http://e-docs.bea.com/wls/docs81b/notes/new.html
http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/install/instpre.html#1066272
http://e-docs.bea.com/wls/docs81b/upgrade/index.html
http://e-docs.bea.com/wls/docs81b/samples.html
http://e-docs.bea.com/wls/docs81b/deployment.html
http://e-docs.bea.com/wls/certifications/certifications/index.html
http://e-docs.bea.com/wls/docs81b/security.html
http://e-docs.bea.com/wls/docs81b/programming/index.html
http://e-docs.bea.com/wls/docs81b/toolstable/index.html

1 Introduction to WebLogic Server
1-28 Introduction to WebLogic Server and WebLogic Express

CHAPTER
2 WebLogic Server Services

The following sections describe WebLogic Server services:

! “WebLogic Server as a Web Server” on page 2-1

! “WebLogic Server Security Service” on page 2-4

! “WebLogic Server Clusters” on page 2-6

! “Server Management and Monitoring” on page 2-10

WebLogic Server as a Web Server

WebLogic Server can be used as the primary Web server for advanced Web-enabled
applications. A J2EE Web application is a collection of HTML or XML pages,
JavaServer Pages, servlets, Java classes, applets, images, multimedia files, and other
types of files.

How WebLogic Server Functions as a Web Server

A Web application runs in the Web container of a Web server. In a WebLogic Server
environment, a Web server is a logical entity, deployed on one or more WebLogic
Servers in a cluster.

The files in a Web application are stored in a directory structure that, optionally, can
be packed into a single .war (Web ARchive) file using the Java jar utility. A set of
XML deployment descriptors define the components and run-time parameters of an
application, such as security settings. Deployment descriptors make it possible to
Introduction to WebLogic Server and WebLogic Express 2-1

2 WebLogic Server Services
change run-time behaviors without changing the contents of Web application
components, and they make it easy to deploy the same application on multiple Web
servers.

Web Server Features

When used as a Web server, WebLogic Server supports the following functionality:

! Virtual hosting

! Support for proxy server configurations

! Load balancing

! Failover

This section describes how each function is supported by WebLogic Server.

Virtual Hosting

WebLogic Server supports virtual hosting, an arrangement that allows a single
WebLogic Server instance or WebLogic Server cluster to host multiple Web sites.
Each logical Web server has its own host name, but all Web servers are mapped in
DNS to the same cluster IP address. When a client sends an HTTP request to the cluster
address, a WebLogic Server is selected to serve the request. The Web server name is
extracted from the HTTP request headers and is maintained on subsequent exchanges
with the client so that the virtual host name remains constant from the client’s
perspective.

Multiple Web applications can be deployed on a WebLogic Server, and each Web
application can be mapped to a virtual host.

Using Proxy Server Configurations

WebLogic Server can be integrated with existing Web servers. Requests can be
proxied from a WebLogic Server to another Web server or, using a native plug-in
supplied with WebLogic Server, from another Web server to WebLogic Server. BEA
supplies plug-ins for Apache Web Server, Netscape Enterprise Server, and Microsoft
Internet Information Server.
2-2 Introduction to WebLogic Server and WebLogic Express

WebLogic Server as a Web Server
The use of proxy Web servers between clients and a set of independent WebLogic
Servers or a WebLogic Server cluster makes it possible to perform load balancing and
failover for Web requests. To the client, there appears to be only one Web server.

Load Balancing

You can set up multiple WebLogic Servers behind a proxy server to accommodate
large volumes of requests. The proxy server performs load-balancing by distributing
requests across the multiple servers in the tier behind it.

The proxy server can be a WebLogic Server Web server, or it can be an Apache,
Netscape, or Microsoft Web server. WebLogic Server includes native code plug-ins
for some platforms that allow these third-party Web servers to proxy requests to
WebLogic Server.

The proxy server is set up to redirect certain types of requests to the servers behind it.
For example, a common arrangement is to configure the proxy server to handle
requests for static HTML pages and redirect requests for servlets and JavaServer Pages
to a WebLogic Server cluster behind the proxy.

Failover and Replication

When a Web client starts a servlet session, the proxy server may send subsequent
requests that are part of the same session to a different WebLogic Server. WebLogic
Server provides session replication to ensure that a client’s session state remains
available.

There are two types of session replication:

! JDBC session replication is used with a WebLogic Server cluster or with a set of
independent WebLogic Servers. It does not require the WebLogic Server
clustering option.

! In-memory session replication requires the WebLogic Server clustering option.

JDBC session replication writes session data to a database. Once a session has been
started, any WebLogic Server the proxy server selects can continue the session by
retrieving the session data from the database.
Introduction to WebLogic Server and WebLogic Express 2-3

2 WebLogic Server Services
When a WebLogic Server cluster is deployed behind a proxy server, servlet sessions
can be replicated over the network to a secondary WebLogic Server selected by the
cluster, thus avoiding the need to access a database. In-memory replication uses fewer
resources and is much faster than JDBC session replication, so it is the best way to
provide failover for servlets in a WebLogic Server cluster.

WebLogic Server Security Service

The security component of WebLogic Server has been completely redesigned in this
version to offer a level of flexibility and control never before available with any
application server platform. The new security architecture in WebLogic Server isolates
the application developer from the intricacies of security implementation while
allowing the use of the latest security technologies as implemented by a company’s
development staff or a security vendor.

The security framework in WebLogic Server is based on a set of Service Provider
Interfaces (SPIs) used to develop security services for the WebLogic Server
environment. SPIs are available for Authentication, Authorization, Auditing, Public
Key Infrastructure (PKI), Credential Mapping, and User Profiles. You now have the
choice of either using the out-of-the-box security services provided by BEA or using
the SPIs to create customized security services for the WebLogic Server. The
customized security services can be integrated into the WebLogic Server management
environment so that all configuration and monitoring can be done through the
WebLogic Server Administration Console.

The open security architecture in WebLogic Server allows you to use existing security
products while taking advantage of new security technologies available in the
marketplace. You also have the choice of security technologies and vendors. Security
products can be “mixed and matched” to create complete custom security solutions.

The security architecture in WebLogic Server uses Java Standards (where applicable)
to create a framework that unifies security enforcement and presents security as a
service to other WebLogic Server components. The following Java security standards
are supported in WebLogic Server:

" The Java Crytography Extension (JCE)—A set of packages that provide a
framework for encryption using strong ciphers, key generation and
agreement, and Message Authentication Code algorithms.
2-4 Introduction to WebLogic Server and WebLogic Express

WebLogic Server Security Service
" The Java Secure Socket Extension (JSSE)—A set of packages that support
and implement SSL and TLS, making those protocols and capabilities
programmatically available.

" Java Authentication and Authorization Services (JAAS)—A set of packages
that provide a framework for user-based authentication and access control.
WebLogic Server uses the authentication classes of JAAS only.

" The Java Security Manager (JSM)—The security manager for the Java
virtual machine (JVM). The security manager works with the Java API to
define security boundaries through the java.lang.SecurityManager class,
enabling programmers to establish a custom security policy for their Java
applications.

Figure 2-1 illustrates the WebLogic Security Service.

Figure 2-1 The WebLogic Security Service

WebLogic Server now offers a dynamic, role-based authorization scheme that can be
applied to all WebLogic Server resources. You are no longer constrained by the
limitations of the declarative security model in J2EE. The Authorization service
Introduction to WebLogic Server and WebLogic Express 2-5

2 WebLogic Server Services
included with WebLogic Server 7.0 includes an embedded entitlement engine that
allows you to create simple prose-based rules for dynamically assigning roles and
calculating access privileges. Application developers are freed from having to write
application code to implement complex business policies because the entitlements
engine separates the tasks of business policy creation and application creation.

All user profile and entitlement data can be stored in the system data store integrated
with WebLogic Server 7.0. The system data store is a scalable data store optimized for
quick data reads. In addition to the system data store, you can configure one or more
LDAP stores to provide a single unified profiling system from multiple back-end
sources.

For more information about the WebLogic Security Service, see Introduction to
WebLogic Security.

WebLogic Server Clusters

A WebLogic Server cluster is a group of WebLogic Server instances that work
together to provide a powerful and reliable Web application platform. A cluster
appears to its clients as a single server but it is, in fact, a group of servers acting as one.
It provides two key benefits that are not provided by a single server: scalability and
availability.

Using WebLogic Server Clusters provides complete information about planning and
configuring WebLogic Server clusters.

Benefits of Using Clusters

WebLogic Server clusters bring scalability and high-availability to J2EE applications
in a way that is transparent to application developers. The benefit of scalability is that
it expands the capacity of the middle tier beyond that of a single instance of WebLogic
Server or a single computer. The only limitation on cluster membership is that all
WebLogic Server instances must be able to communicate by IP multicast. New
WebLogic Servers can be added to a cluster dynamically to increase capacity.
2-6 Introduction to WebLogic Server and WebLogic Express

http://e-docs.bea.com/wls/docs81b/cluster/index.html

WebLogic Server Clusters
A WebLogic Server cluster also guarantees high availability by using the redundancy
of multiple servers to insulate clients from failures. The same service can be provided
on multiple servers in a cluster. If one server fails, another can take over. The ability
to have a functioning server take over from a failed server increases the availability of
the application to clients.

Cluster Architecture

A WebLogic Server cluster consists of a number of WebLogic Server instances
deployed on a network, coordinated with a combination of Domain Name Service
(DNS), JNDI naming tree replication, session data replication, and WebLogic RMI.

Web proxy servers between Web clients and the WebLogic Server cluster coordinate
clustering services for servlets and JavaServer Pages. Web proxy servers can be other
WebLogic Servers, or third-party Web servers from Netscape, Microsoft, or Apache,
used with a plug-in supplied with WebLogic Server.

Web clients connect with a WebLogic Server cluster by directing requests to a proxy
server. Java RMI-based clients connect with a WebLogic Server cluster using a cluster
address defined on the network.

Server-side code also benefits from the load-balancing and failover services provided
by a WebLogic Cluster. In J2EE applications, most application code runs in the middle
tier and can use services distributed among several WebLogic Servers. For example, a
servlet running on WebLogic Server A could use an enterprise bean on WebLogic
Server B and read messages from a JMS Queue on WebLogic Server C.

How a WebLogic Server Cluster Is Defined in a Network

WebLogic Server services are accessed through DNS, the standard naming service for
resources on a network, including the Internet. DNS maps IP addresses, such as
170.0.20.1, to names, such as mycomputer.mydomain.com or www.bea.com. Each
instance of WebLogic Server runs on the network at a unique IP address. A client
connects to a WebLogic Server by encoding in a URL its name and the number of the
port where it is listening for connections.
Introduction to WebLogic Server and WebLogic Express 2-7

2 WebLogic Server Services
For example, a WebLogic Server instance running on a computer named onyx,
configured to listen on port 7701, can be accessed with a Web browser using the
following URL: http://onyx:7701. For this connection to succeed, the name server on
the network must be able to resolve the name onyx in the local domain. If the
destination server is in another domain on the Internet, the full domain name, for
example, http://onyx.bea.com:7701, must be supplied.

An additional DNS entry maps the names of all WebLogic Server instances
participating in a cluster to a single cluster name. Clients connect to the cluster using
the cluster name or through a Web proxy server that directs requests into the cluster.
When DNS performs a lookup on a cluster name, it returns a list of all the servers that
belong to the cluster. A client usually selects the first server in the list, and if it gets no
response, tries the second server, working its way through the list until it gets a
response.

DNS provides the initial load-balancing service that distributes requests across the
servers in the cluster. Each DNS responds to a lookup on the cluster name, by rotating
the list of servers by one, so that eventually each server gets a turn.

An intelligent router, proxy server, firewall, or other software operating on the network
may override DNS and select the initial server based on machine load, network traffic,
or other dynamic load-balancing criteria.

The initial WebLogic Server connection provides the naming service for the client. It
looks up the service requested by the client and chooses a server from the cluster to
handle the request, using a load-balancing algorithm configured in WebLogic Server.

How WebLogic Servers in a Cluster Communicate

WebLogic Servers in a cluster communicate with each other using IP multicast to
replicate certain classes of information to all servers in the cluster. A common
multicast address is configured for each server instance in the cluster. When one server
sends a message to the cluster’s multicast address, all servers receive the message. This
process is much more efficient than having servers send point-to-point messages.
However, it does require all the servers in a cluster to be on a network with multicast
support. Multicast does not work on the Internet, so a cluster cannot traverse the
Internet.
2-8 Introduction to WebLogic Server and WebLogic Express

WebLogic Server Clusters
For some services, the cluster selects primary and secondary WebLogic Servers. If the
primary WebLogic Server starts processing a request and then becomes unavailable,
the secondary server can take over processing of the request without interruption. The
primary server replicates state to the secondary server using a server-to-server
connection.

Most services can be deployed on any number of WebLogic Servers in a cluster. As
each service is deployed, the WebLogic Server uses IP multicast to add the service to
a cluster-wide naming tree. Any server in the cluster can find a WebLogic Server to
provide a given service by looking up the service in the cluster-wide naming tree.
When more than one server can provide a service, the cluster uses a configurable
load-balancing algorithm to choose a server.

Clustered Services

Most WebLogic Server services can be clustered; that is, they can be deployed on an
unlimited number of servers in the cluster. The cluster selects the WebLogic Server
instance that will provide a service. Once that server has been selected and stateful
objects have been instantiated on the server, the client is pinned to that WebLogic
Server until it has finished with the service. If a WebLogic Server hosting a pinned
object fails, the client must detect the failure and create another instance on another
server in the cluster.

To provide more resilient failover, a WebLogic Server cluster avoids pinning an object
to a server unless absolutely necessary. In some cases the cluster replicates the stateful
object to a backup server to enable failover for the service.

Web applications can be clustered, as described in the section “WebLogic Server as a
Web Server” on page 2-1. Servlet sessions are replicated to a secondary server,
allowing the cluster to recover from a failure transparently.

All Enterprise JavaBeans can be clustered. They can be deployed on an unlimited
number of servers in a WebLogic Server cluster. However, not all EJB instances can
be clustered. An application can get the home interface for an EJB from any server
where the bean has been deployed, and it can use that home interface to create bean
instances. If the server that provides the home interface fails, a home interface can be
retrieved from another server without interrupting the application.
Introduction to WebLogic Server and WebLogic Express 2-9

2 WebLogic Server Services
Some types of EJB instances, including stateless session beans and read-only entity
beans, can always be clustered. Stateful session beans can be clustered using
in-memory replication to provide failover. Read-write entity beans are always pinned
to the server where they are instantiated. If the server hosting a read-write entity bean
fails, the entity bean will automatically fail-over if it is safe to do so. Otherwise,
fail-over occurs on the next transaction and the entity bean instance is recreated by the
remote stub on another server in the cluster.

A JDBC metapool provides clustering for JDBC connection pools deployed on
multiple servers in a WebLogic Server cluster. When a client requests a connection
from the metapool, the cluster selects the server that will provide the connection,
allowing load-balancing and protection against server failure. Once a client has a
connection, the state maintained by the JDBC driver makes it necessary to pin the
client to the host WebLogic Server.

JMS objects can be distributed among the servers in a cluster. Connection factories
(which clients use to establish a connection to a destination) and destinations can be
deployed on multiple servers in a cluster. By distributing destinations and connection
factories throughout a cluster, administrators can manually balance the load for JMS
services.

Server Management and Monitoring

WebLogic Server administration is accomplished by setting attributes for the servers
in a domain, using either the Administration Console or the command-line interface.
The Administration Console is a Web browser application that allows you to configure
WebLogic Server services, manage security, deploy applications, and monitor services
dynamically.

Both the Administration Console and the command-line interface connect to the
Administration Server.
2-10 Introduction to WebLogic Server and WebLogic Express

Server Management and Monitoring
Administration Server

The Administration Server is the WebLogic Server used to configure and manage all
the WebLogic Servers in its domain. A domain may include multiple WebLogic Server
clusters and independent WebLogic Server instances. If a domain contains only one
WebLogic Server, then that server is the Administration Server. In a domain with
multiple instances of WebLogic Server, the first instance to start must be the
Administration Server.

Administration Console

The WebLogic Server Administration Console runs in a Web browser. It displays the
components of the domain it administers, including clusters and independent
WebLogic Servers, in a graphical tree in the left pane. The right pane displays details
about the object selected in the left pane. Figure 2-2 is a sample snapshot from an
Administration Console session.

Figure 2-2 Administration Console
Introduction to WebLogic Server and WebLogic Express 2-11

2 WebLogic Server Services
To use the Administration Console to configure a service, select an item in the left
pane, and then choose the Configuration tab in the right pane. The Administration
Console displays the configurable attributes in the right pane. You can use the online
help to find detailed information about the displayed attributes.

The usual process for configuring a service in the Administration Console is to
configure the service and then select the targets (WebLogic Servers) to which you
want to deploy the service.

Each deployed service keeps run-time statistics, which you can view in the Monitoring
tab in the right pane of the Administration Console.
2-12 Introduction to WebLogic Server and WebLogic Express

uIndex

A
Administration Console 2-10
Administration Server 2-11
Apache Web Server 2-2
application logic layers

business components 1-9
presentation layer 1-10

application services 1-15

B
backend tier 1-6, 1-9
BEA JOLT for WebLogic Server 1-9
BEA Tuxedo 1-9
BEA WebLogic Enterprise 1-9
BEA WebLogic jDriver for Oracle/XA 1-21
BEA WebLogic Server

application architecture 1-5
features for e-commerce applications 1-3

business components 1-9

C
client tier 1-6, 1-7
cluster option

architecture 2-7
overview 1-8, 2-6

configuring WebLogic Server 2-10
connection pool 1-20
CORBA 1-15, 1-18
customer support contact information vi

D
Database Management System (DBMS) 1-9
DataSource, JDBC 1-21
deployment descriptors

Web application 2-1
documentation, where to find it vi
domain 2-11
Domain Name Service (DNS), cluster option

2-7

E
EJB

container 1-10
message-driven beans 1-14

encryption, SSL 1-19
Enterprise JavaBeans (EJB)

JTA transactions 1-21
overview 1-13

enterprise resource planning (ERP)
applications 1-6

F
failover 1-8, 1-20

servlet session replication 2-3
firewall 2-8

H
high-availability 2-6
HTTP 1-16
Introduction to WebLogic Server and WebLogic Express I--i

I
Internet Inter-ORB Protocol (RMI-IIOP)

1-18
IP multicast, cluster option 2-6, 2-8

J
jar utility 2-1
Java 2 Platform, Enterprise Edition (J2EE)

about 1-2
Java and J2EE 1-5
Java Connector Architecture (JCA) 1-9
Java Database Connectivity (JDBC) 1-20
Java Message Service (JMS)

and message-driven beans 1-14
overview 1-23

Java Naming and Directory Interface (JNDI)
1-20

Java Transaction API (JTA) 1-21
JavaMail 1-23
JavaServer Pages (JSP) 1-11

L
legacy applications 1-6
load balancing 1-8, 1-20

for Web requests 2-3

M
message-driven beans 1-14
messaging technologies 1-22
Microsoft Internet Information Server 2-2
middle tier 1-6, 1-8
monitoring WebLogic Server services 2-10
multitier architecture, overview 1-5

N
Netscape Enterprise Server 2-2
network 1-15

cluster configuration 2-7
protocols 1-15
SMTP 1-23

Nokia WAP server 1-8

P
persistence

EJB 1-13
JMS messages 1-23

point-to-point (PTP) messaging 1-23
presentation logic 1-10
printing product documentation vi
protocols, network 1-15
proxy server 2-2, 2-7, 2-8
public key encryption 1-19
publish/subscribe (pub/sub) messaging 1-23

R
remote class, RMI 1-18
Remote Method Invocation (RMI)

overview 1-17
RMI-IIOP protocol 1-18
router 2-8

S
scalability 2-6
Secure Sockets Layer (SSL) 1-19
Server ID 1-19
servlets 1-11
session replication 2-3
skeleton class, RMI 1-18
software components 1-6
stub class 1-17, 1-18
Sun Microsystems 1-2
support

technical vi
I--ii Introduction to WebLogic Server and WebLogic Express

T
transactions, JTA 1-21

with EJB 1-21

U
Uniform Resource Identifier (URI) 1-15
user interface

Web browser 1-11

V
VeriSign 1-19
virtual hosting 2-2

W
Web

application 2-1
container 1-10
URIs and URLs 1-15

Web ARchive file 2-1
Web browser clients 1-11
Web container 2-1
Web server 1-7, 2-1

features 2-2
WebLogic EJB

relationship to RMI 1-18
WebLogic Enterprise Connectivity 1-9
WebLogic JDBC/RMI driver 1-21
Wireless Access Protocol (WAP) 1-8

X
XML 1-15, 1-22
Introduction to WebLogic Server and WebLogic Express I--iii

	Contents
	About This Document
	1. Introduction to WebLogic Server
	2. WebLogic Server Services

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic Server
	The WebLogic Server Solution
	J2EE Platform
	Application Deployment Across Distributed, Heterogeneous Environments
	WebLogic Server provides essential features for developing and deploying mission-critical e-comme...

	About WebLogic Express
	WebLogic Server Application Architecture
	Software Component Tiers
	Figure 1�1 Three-Tier Architecture
	Client Tier Components
	Middle Tier Components
	Backend Tier Components

	Application Logic Layers
	Figure 1�2 Application Logic Layers
	Presentation Logic Layer
	Web Browser Clients
	Non-Browser Clients
	Web Service Clients

	Business Logic Layer
	Entity Beans
	Session Beans
	Message-Driven Beans

	Application Services Layer
	XML Implementation
	Network Communications Technologies
	Table 1�1 Network Protocols
	HTTP
	T3
	RMI
	RMI-IIOP
	SSL
	SOAP

	Data and Access Services
	JNDI
	JDBC
	JTA
	J2EE Connector Architecture
	XML

	Messaging Technologies
	JMS
	JavaMail

	WebLogic Server Users
	Evaluator
	Table 1�2 Evaluator Tasks

	Installer
	Table 1�3 Planner/Installer Tasks

	System Administrator
	Table 1�4 System Administrator Tasks

	Developer/Engineer
	Table 1�5 System Administrator Tasks

	2 WebLogic Server Services
	WebLogic Server as a Web Server
	How WebLogic Server Functions as a Web Server
	Web Server Features
	Virtual Hosting
	Using Proxy Server Configurations
	Load Balancing
	Failover and Replication

	WebLogic Server Security Service
	Figure 2�1 The WebLogic Security Service

	WebLogic Server Clusters
	Benefits of Using Clusters
	Cluster Architecture
	How a WebLogic Server Cluster Is Defined in a Network
	How WebLogic Servers in a Cluster Communicate
	Clustered Services

	Server Management and Monitoring
	Administration Server
	Administration Console
	Figure 2�2 Administration Console

	uIndex

