‘."

'l hea

BEA WeDbLogic
Server-

Programming WebLogic
JMS

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic IMS
Part Number Date Software Version
N/A December 9, 2002 BEA WebL ogic Server

Version 8.1 Beta

Contents

About This Document

AUAIENCE. ...ttt e et b et besbe b seen Xiv
E-0OCS WED SIte....ceiieiiiiieesie ettt s s Xiv
HOW tO Print the DOCUMENEccceirieireecriecree et Xiv
Related INFOrMELioN.........cooiiiiie e e XV
CONLACE US! ...t b e se e s e e e sreenne e XV
Documentation CONVENLIONSccurueirieirieirieeeieeeee e seeees XVi
Introduction to WebLogic JMS
WHEL IS IMS? .ttt bbbt 1-1
Implementation of Java SPeCifiCationsS...........cvverrevneneee e 1-2
J2EE SPECITICALION ...ttt e 1-2
JM'S SPECITICALION ... e 1-2
WEDLOGIC IMS FEEIUIES ..ottt e 1-3
WeDLOGIC IMS ArChItECIUN ...ttt e 1-3
M@jOr COMPONENES......cciviiiieieeeete et et sre e e re e e ereenes 1-4
ClUSLENTNG FEALUIES.......coeiieeietieeie ettt 1-5
WEDLOGIC IMS EXLENSIONS ..ottt e 1-7
JMS Enhancementsin WebLogic Server 8.1.......cccocvvveveveeveniese e 1-8
IMS TRIN CHENE .o e 1-8
Accessing Foreign IMS Providerscoeereereeneineseeeseeeseeseieseenes 1-8
Accessing IMSviaServlietsand EJBS........cccocoevevievecieeceeeeeee e, 1-9
Better Expired Message Handling...........cocoueeveireineinicseese e 1-9
Improved Message Flow Control by Blocking Producers...........cccoeeeee. 1-9
WebLogic JMS Fundamentals
MeSSagiNg MOEIS.........cviiice e 2-2

Programming WebL ogic IMS i

POINt-t0-POINt MESSAGINGeiveieerieiesieiesie e s neenes 2-2

Publish/Subscribe MeSSaging.........coererereieerrerre e e 2-3
MESSAgE PErSISIENCE ..ot 2-4
WEDLOGIC IMS ClESSES......coviueiireetireetesietesieeesiei ettt 2-5
CONNECETONFACLONY ...ttt sttt ettt st e be e e san 2-6
(@0 107 1 o o 1P 2-7
0= o] o [P 2-8
NON-traNSACLEd SESSIONciiriiriirierie et et e eaes 29

I 5= o =0 IS S T o o S 2-11
(DS A1 g o] o RSP 2-12
Distributed DeStiNGLiON.cooiterieieeeeee e 2-13
MessageProducer and MesSageCONSUMEYco.eereereereerreesesesesesreseesenes 2-13
IVTESSAGE ...ttt ettt ettt a e e s he et s s e e b e sre e b e eae e b s e e ne e nne s 2-15
Message Header Fields.........coooiiiiiiiiieeeee e 2-15
Message Property FIelds.... ... 2-19
MESSAGE BOGYcovervirieriiriirie sttt e e 2-20
ServerSessiONPOOIFACLONYcoiiiiire e e 2-21
SErVErSESSIONPOOccveieeiiiieie et s 2-21
SEIVEISESSION. ...ttt et 2-22
CONNECEIONCONSUIMESoiueeiineeiieeiere et 2-22

3. Managing WebLogic JMS

Configuring WeDLOGIC IMS ..ot 31
Starting WebL ogic Server and Configuring IMS........ccocovevvveeve e, 33
Starting the Default WebLOgIC SErVErccoviveirenrerseree e 3-3

Starting the Administration CONSOIE.........ccuvvirrernireieneese e 3-3
Configuring aBasic IMS Implementation............cceeeeeveeevieveeviesinnns 33
Configuring WebLogic IMS CIUSLENINGoveririerieierieeniee e 3-7
HOW IMS ClUStEriNg WOTKS.......ccoiiiiirieniriesiee e 3-7

JM S Clustering REQUIFEMENLS........ccccveeeeeeieisie s st 3-8

JM S Distributed Destination within @ ClUSteroooveereenrecen 3-8

IJMS as aMigratable Service within a ClUSErccoveercericenennen. 3-8
CoNfigUIation SEEPS......c.civeeiecieieeeeceee e s 39
What ABOUL FQITOVEI? ..ot 39
Configuring IMS Migratable Targets........courveeirienieiirereereesees e 3-10

Programming WebL ogic IMS

HOW IMS Migration WOFKS........ccoveieiereeeeieeeesesese st eee s 311

Configuration SEEPS.ccceiveeeeriereeie ettt 311
Persistent Store Migration.........c..ceoeoereeneienieieneese e 3-12
Migration FallOVEScooviirirere e 313

TuNiNg WEDLOGIC IMS ...t 3-13
Monitoring WebLOgIC IMS.........oociiiirecreeeseesie e e 3-14
Recovering from aWebL ogic Server Failure ... 3-15

Programming ConSiAerations..........c.cccerererieneneseesiene e 3-15

Migrating IMS Datato a NeW SErvercccveeveereeneenieeneneseeeseens 3-15

Developing a WebLogic JMS Application

Application Development FIOWccooiiriiiniiine e 4-2
Importing Required PaCKages..........cviierierinnirnese s 4-3
Setting Up @aIM S APPHICALION.......ciiiirere e 4-4
Step 1: Look Up aConnection Factory in INDIccoceveiincienniceceee, 4-6
Step 2: Create a Connection Using the Connection Factoryc......... 4-7
Create a QUEUE CONNECLION.......ccueruereeeeiereerereesereeseesteseeseeseeeeseeeenens 4-7
Create a TOPIC CONNECLION........couieeeeeeiiriere et 4-7
Step 3: Create a Session Using the Connection ... 4-8
Create a QUEUE SESSION.....c.coueeeireiriesiereeseeseeseeseesessessessesseseesseseeseeneenens 4-8
Create a TOPIC SESSION......coiriiriiieie et st see e et saa 4-9
Step 4: Look Up a Destination (Queue or TOPIC) ..c.evvveereeereeiereeerieenene 4-9
Server Affinity When Looking Up Destinations...........ccccoveeeveneeen. 4-10
Step 5: Create Message Producers and M essage Consumers Using the
Session and DESHNGLIONS........c..oiverveieeeeieee e 4-11
Create QueueSenders and QUEUERECEIVENS..........ccovvrereeereeeeeeneenns 4-11
Create TopicPublishers and TopiCSUDSCITDESSc.cccvveereierineiene 4-12
Step 6a: Create the Message Object (Message Producers)c.ccveueeee. 4-13
Step 6b: Optionally Register an Asynchronous Message Listener (Message
CONSUIMELS) ...vevenieieeieseeseeseeeeseeeesessestessestessessessenseseensenseseenenseenesseens 4-15
Step 7: Start the CONNECLION........ccooveerirere e 4-16
Example: Setting Up aPTP Application..........ccccoueveniieninencneeeenee 4-16
Example: Setting Up a Pub/Sub Application.........cccccoovveevneneennceccneenns 4-19
SENAING MESSAGESeeeneeeeeneeieeiisiesie et e e seesteseesessee e sseeneseesaeseessenseseeseeneenens 4-22
Step 1: Create aMessage ODJECL.........coereriierinine e 4-22

Programming WebL ogic IMS \

Step 2: DEfINE AMESSAGEcuvevreeeeeriere st e et sreseenees 4-22

Step 3: Send the Message to a Destination............cooeveeenneneneneseeneenens 4-23
Send a Message Using QUEUE SENAESc..ccvveerrereeneeseesieienas 4-23
Send a Message Using TopicPUBIISherccoerverenneenecnees 4-25
Dynamically Configuring Message Producer Configuration Attributes.. 4-26
Example: Sending Messages Within aPTP Applicationccccceeuee.. 4-28
Example: Sending Messages Within a Pub/Sub Application................... 4-28
RECEIVING IMESSAgES ...ttt st sbesb e s see s 4-29
Receiving Messages ASyNChronOUSLYc..ccveereeneenenenenes e 4-30
Receiving Messages Synchronoudly ... veeieienneninesesene s 4-30
Example: Receiving M essages Synchronously Within aPTP Application
4-31

Example: Receiving Messages Synchronously Within a Pub/Sub
APPHCALTON.....cviciee e e 4-31
Recovering RecaiVed MESSAgESccucerirerirenierie e 4-31
Acknowledging ReCalVEd MESSAJEScoureeirerierenerie e e 4-32
Releasing Object RESOUICEScoiiririinrierieeeeeeee s 4-33
Managing Rolled Back or Recovered Messages...........oceeveeererieneneniesieneenns 4-34
Setting aRedelivery Delay for MeSsages........oovvvvvvveveeneccee s see e 4-34
Setting aRedelivery DElay ... 4-35
Overriding the Redelivery Delay on aDestination...........cccccvveueee. 4-35
Setting aRedelivery Limit for MeSSages.........occcvvveceenecieevesee e 4-36
Configuring a Message Redelivery Limit.........cccoeoveiineieneicnnennns 4-36
Configuring an Error Destination for Undelivered Messages........... 4-36
Ordered Redelivery of Rolled Back MesSsages.........cccevveeeveieevievivennene, 4-37
SINGIE CONSUMEToivirerierietererte ettt beneenas 4-37
SOMT OFAEY ...ttt 4-37
SEECHION ...t 4-37
Message PIPEling SIZE......ccoocieiiiinee e 4-38
Performance ReQUIFEMENLSccccuvveeveiee e 4-38
Setting Message Delivery TIMES......ccccuceveeiineee et e 4-38
Setting aDelivery Time on ProduCESS.........coveereerieeneeieneeeeeeesie e 4-39
Setting aDelivery Time on MESSAgES........cccvvveienieereeseeeesesiee e 4-39
Overriding aDeliVEry TIMEocviieeeee et 4-40
Setting a Relative Time-to-Deliver Override.........oooovveeeniinccennes 4-40

Vi Programming WebL ogic IMS

Setting a Scheduled Time-to-Deliver Overrideooovvvvevccennnene 4-40

JMS Schedule INLErfacecoceeererreere e 4-42
Interaction with the Time-to-Live Vauecccceovvevevvcvvvnvereeeeeenn, 4-43
Managing CONNECLIONS.........ccurieierieerieireeree et be s b e seebeseebe e 4-44
Defining a Connection EXCeption LiStenerccoeeevereneneseenesie e 4-44
Accessing Connection Metadata..........ccoerverrenreneneese e 4-45
Starting, Stopping, and Closing @ CoNNECLioNcccoveverereenereeneeneenens 4-46
MaNBGING SESSIONS.....ueiuiriirirterie st eeee ettt sae bt e et e e neeenae e 4-47
Defining a Session EXCeption LISteNerccoveereeneenecnecreecrieiens 4-47
ClOSING @ SESSION ...viieiitenie ettt ettt s et e e saea 4-48
Creating Destinations DynamiCallycouieerrieineni e 4-49
Using the IMSHelper Class Methods...........cccoeeverecncenincnescns 4-50
Deleting Destinations DynamicCallycoccvererrieinenineneese e 4-52
Preconditions for Deleting Destinationscccuererenenenesecsiecee e 4-52
Using the IMSHelper Class Methods...........ccoeereineininiicneneneens 4-52
Semantics When Deleting Destinations...........ccooveevnenieneneese e 4-53
Producer, Consumer, and Browser Creation...........c.covevereereneeennens 4-53
CLOSING Of CONSUMENS......coueuirieiireeerieesieesieesie et 4-53

CloSING Of BrOWSEY'S.......oeciiciieee ettt s 4-54

Closing of ENUMErations.........ccccevceieeienieesesee e e e e eaee s 4-54
Cancelled Blocking Send Operationscccoeeveereeseesieesieneneene 4-54
Affected TranSaClioNSccooveireeireeirereee s 4-55

Physical Deletion of EXisting MesSages........cccvvvveveveeieseeieesieeeeenns 4-55

S [=SS 4-56

Using Temporary DeStiNalioNnS..........cccveeeveeeeie e see s 4-56
Creating a Temporary QUEUE..........cceeveevueeieerieeiesieeiesteeiesseeseessesseseenees 4-57
Creating a TeMPOrary TOPICcveuerueuereeerieerieiesieesie e 4-57
Deleting a Temporary DeStinationcccveeeveeeeeseseeseseeeseesee e 4-57
Setting Up Durable SUDSCHPioNS..........ccoooe e e 4-57
Defining the CHIENt 1D ..o s 4-58
Creating Subscribers for a Durable Subscription...........cccccvevveieceeeenen. 4-60
Deleting Durable SUDSCIIPLIONScoveieeeieiiee e 4-61
Modifying Durable SUDSCIIPLIONS.........ccceerieirrirecrieeeeree s 4-61
Managing Durable SUbSCriptions.........ccccoevive e, 4-62
Setting and Browsing Message Header and Property Fields............ccccevenee 4-62

Programming WebL ogic IMS vii

viii

Setting Message Header FieldsS ..o iine e 4-63

Setting Message Property FieldS..... oo 4-65
Browsing Header and Property FIelds.........ooveeineinennccceeeee 4-68
FIlteriNg MESSA0ES. ..o 4-70
Defining Message Selectors Using SQL Statements..........ccoccveveieeneenns 4-71
Defining XML Message Selectors Using XML Selector Method 4-72
Displaying Message SElECLOrS........cccurerrrerererere e 4-73
Defining Server SESSION POOISc.cviiriierine et 4-73
Step 1: Look Up Server Session Pool Factory in INDI..........cocooveieenee. 4-75
Step 2: Create a Server Session Pool Using the Server Session Pool Factory
4-76
Create a Server Session Pool for Queue Connection Consumers.....4-76
Create a Server Session Pool for Topic Connection Consumers......4-77
Step 3: Create a ConNECtion CONSUMEcoereerieeeneeerieriesresie e seeseenens 4-77
Create a Connection Consumer for QUEUES........cccoceeveeeceereeieesennnnn 4-78
Create a Connection Consumer for TOPICSccovereereiereeierieiereens 4-78
Example: Setting Up a PTP Client Server Session Pool ... 4-79
Example: Setting Up a Pub/Sub Client Server Session Paal 4-81
USING MUITICASIING ...cvvieeeiieiiricieniceneerie e 4-83
Step 1: Set Up the IMS Application, Creating Multicast Session and Topic
SUBSCITDEN ...ttt 4-85
Step 2: Set Up the Message Listener........ccocevveceece e 4-86
Dynamically Configuring Multicasting Configuration Attributes........... 4-87
Example: MUItICESE TTL .ovceeieececeecceee et 4-88
Using Distributed Destinations............ccceeeeveieesesie e seeeesesee e e sneas 4-90
Accessing Distributed Destinations............cccoeerirnennennenee e 4-90
Looking Up Distributed QUEUEScceevueveriecieeeseee e 4-91
Looking Up Distributed TOPICS.......ccccoeevvieereieeie e 4-93
Accessing Distributed Destination Members............ccocvvvvevccnnnceen 4-95
L oad Balancing Messages Across a Distributed Destination................... 4-96
Load Balancing OptioNS..........ccvcuereeeereniee e e esie e ses e e 4-96
Consumer Load BalanCing.........ccceeeeeerenieeneeeneeieseeesieiesiesesieeennas 4-97
Producer Load BalanCing...........cccoeveveieeiesieie e 4-98
Load Balancing HEUNSHICScveveiee e 4-98
Defeating Load BalanCing..........cccveireereeniiinieenienesesesie s 4-99

Programming WebL ogic IMS

Distributed Destination Migrationccceeeeeverieverreesseseesesese s 4-100
Distributed Destination FallOVerccccoeveeeececiece e 4-101

5. Using Transactions with WebLogic JMS

Overview Of TranSaCLiONS.......ccovi e 51
USINg IMS TranSaCtetd SESTIONS........covereerireeeeeeieiese e sbesieseeseeseseesessesseseesnens 5-3
Step 1: Set Up IMS Application, Creating Transacted Session................. 5-4
Step 2: Perform Desired Operations...........coeereereereeeneessieseereseeseseeens 5-4
Step 3: Commit or Roll Back the IMS Transacted Session.........c.ccoceeeeee. 5-4
USING JTA USEr TranSaCtioNS.........coeuevueeerieueriiesieresiesesieseseeseese e seeesenes 55
Step 1: Set Up IMS Application, Creating Non-Transacted Session......... 5-7
Step 2: Look Up User Transaction in INDIccoeiiiiiinincienneeceen, 5-7
Step 3: Start the JTA User TranSaction.........c.coeeveeveeneeneee s 5-7
Step 4: Perform Desired Operations...........coeereeereeresennessiesiseseeneseeens 5-8
Step 5: Commit or Roll Back the JTA User Transaction..........cccceceeeeeeenee. 5-8
Asynchronous Messaging Within JTA User Transactions Using Message Driven
BBANS ... e e e 5-9
Example: IMSand EJB in aJTA User Transaction..........coccoeeeneeneneseninienenns 5-9
6. Using WebLogic JMS with EJBs and Servlets

OVEIVIBIV ..ttt bbb 6-1
J2EE Support for WebLogiC IMS........cco i 6-2
Referencing aJM S Connection Factory..........coceeveveeveviercesecceseese e 6-3
Referencing aJMS DeStiNatioN..........cccccvveeeiiieeree e 6-4
SENAING AMESSAGE......ccueirieiirtieee sttt 6-4
UNAEr the COVENS......ceeiiiiiiisie st 6-5
Automatically Enlisting Transactions...........cccccceveeveenienieesiesieesiesnns 6-5
Container-Managed SECUMLYccoieereireierieereesie e 6-6

(0010101 oo g T I === 1] Vo S 6-7

J2EE COMPlIANCE.....cvieeee ettt 6-7

Pooled SeSSION ODJECES.......cveieeeereeie e 6-8
IMproving PerfOrmMancCe...........ccoceieveieeie e 6-8
Speeding Up INDI LOOKUPS.........ooveieiieresiee ettt 6-8
Speeding Up ObjeCt Creationcoverrererieerieesieeseesieesie s 6-9

Using the Right Transaction MOdE............ccuevveieveeveevecee e 6-9

Programming WebL ogic IMS iX

Foreign IMS Provider SUPPOITccerveeerieeeineereseeesese e e seenee e seeneenens 6-10

Examples of IMS Wrapper FUNCLIONS..........cooieririereee e 6-11
GD-JAN XIMI s 6-11
WEDIOQIC-EJD-Jar XM ... e 6-12
POOI TESLCMPJAVAL ...ttt 6-13
POOI TESICM PHOMEJAVA.ce et e 6-13
POOI TESICMPBEAN.JAVA.cve ittt s 6-13

7. WebLogic JMS Thin Client

OVEIVIBIV ..ottt bbb bbbttt 7-1

Benefits of Using the IMS Thin Client ..o 7-2

Limitations of Using the IMS Thin Clientcccooveienincie e 7-3

Deploying the IMS Thin CHENt ..o e 7-3

8. Porting WebLogic JMS Applications

Existing Feature Functionality Changes...........ccocoeeerrreenenenie e 81
Existing Feature 5.1 to 6.0 Functionality Changes............cccooevvreneneeene. 8-2
Existing Feature 6.0 to 6.1 Functionality Changes...........cccoeererererecnen 8-7

Porting EXisting APPlICaLiONS..........ccoeieriiree et 8-8
BEfOre YOU BEJIN.couiiiiiieiieie et e 8-8
Porting Steps for 4.5 and 5.1 ApplicationS to 6.X.........ceveeeerrererenierrerennnen. 8-9
Porting Stepsfor 6.0 ApplicationSt0 6.1ccceevieeiinineieeee e 8-11
Porting Stepsfor 6.X ApplicationSt0 7.0coeeeiieeiiiineeeee e 8-11

Deleting JDBC Datalase SLOreS........covvierriirnienieienieeieeee s 8-12

A. Configuration Checklists

SEIVEL ClUSLEY'S. ...ttt ettt s e b e b b saen A-2
JTA USEr TranNSaCHiONSccvvveeieieeieeeeeeeeetes ettt e e ene e e A-2
1Y ST = 115 o 1 o A-2
MESSAGE DEIIVENY ...ttt snnens A-3
Asynchronous Message DEIVENYcocvieiieienen e A-3
PErSiStEnt MESSAgESc.oiiiierieteriete ettt et s e A-4
Concurrent Message ProCESSINGc.eeviieereieeieiieseeseesesseesseesesseesseseessesnes A-4
MUITICASEING ..ottt A-5
Durable SUBSCIIPLIONS.........coviiiieiecieceee et A-5
Destination SOrt OFAENcoeeieiririeriere st s e A-6

Programming WebL ogic IMS

Temporary DESHINGLIONScccevrerereriresee s et se e A-6

Thresholds and QUOLES...........ccccieiiii e A-6
. JDBC Database Utility

OVEIVIBIW ...ttt sttt et e et s et ebeebeesbesaeesbeentenbeenbenbeenes B-1

ADBOUL IMS TADIES ..ottt et B-1

Regenerating JDBC Datahase SLOreScouvvereeeireeinieiecreeesee s B-2

Programming WebL ogic IMS Xi

Xii Programming WebL ogic IMS

About This Document

This document explains how to use the BEA WebL ogic Server™ platform to
implement the Java™ Messaging Service (JMS) API for accessing enterprise
messaging systems.

The document is organized as follows:

m Chapter 1, “Introduction to WebL ogic IMS,” provides an overview of WebL ogic
Java Message Service (IMS).

m Chapter 2, “WebL ogic IMS Fundamentals,” describes WebLogic IMS
components and features.

m Chapter 3, “Managing WebLogic IMS,” provides an overview of configuring
and monitoring WebL ogic IMS.

m Chapter 4, “Developing a WebLogic IMS Application,” describes how to
develop a WebLogic IMS application.

m Chapter 5, “Using Transactions with WebL ogic IMS,” describes how to use
transactions with WebL ogic JMS.

m Chapter 6, “Using WebL ogic IMS with EJBs and Servlets,” describes “best
practice” methods that make it easier to use WebLogic IMS in conjunction with
J2EE components, like Enterprise Java Beans and Servlets.

m Chapter 7, “WebLogic IMS Thin Client,” describes how to access and deploy a
small, yet full-featured version of WebL ogic Server on the client-side for IMS
applications.

m Chapter 8, “Porting WebL ogic IMS Applications,” describes how to port your
WebL ogic IMS applications to a new release of WebL ogic Server.

m Appendix A, “Configuration Checklists,” provides monitoring checklists for
various WebL ogic JM S features.

Programming WebL ogic IMS Xiii

= Appendix B, “JDBC Database Utility,” describes how to use the JIDBC database
utility to generate new JDBC stores and delete existing ones.

Audience

This document is written for application devel opers who want to design, develop,
configure, and manage JM S appli cations using the Java 2 Platform, Enterprise Edition
(J2EE) from Sun Microsystems. It is assumed that readers know JM S, INDI (Java
Naming and Directory Interface), the Java programming language, the Enterprise
JavaBeans™ (EJB™), and the Java Transaction API (JTA) of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation. Or you can go directly to the
WebL ogic Server Product Documentation page at http://edocs.bea.com/wls/docs81b.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File —Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Xiv Programming WebL ogic IMS

http://edocs.bea.com/wls/docs70
http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebL ogic Server. For
more information on JIM S, accessthe JM S Specification and Javadoc supplied on Sun
Microsystems' Java Web site at the follow location:

http://http://java.sun.com/products/jms/docs.html

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at

docsupport@bea.com if you have questions or comments. Y our comments will be

reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and

running BEA WebL ogic Server, contact BEA Customer Support through BEA

WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming WebL ogic IMS

XV

http://java.sun.com/products/jms/docs.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

XVi

The following documentation conventions are used throughout this document.

Convention Usage
Ctrl+Tab Keysyou press simultaneously.
italics Emphasis and book titles.
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cati ons
.java
config. xm
fl oat
nonospace Variablesin code.
Itt alt e Example:
ex String Customner Nane;
UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.Milticast Test -n name -a address
[-p portnumber] [-t timeout] [-s send]

Programming WebL ogic IMS

Convention Usage

[Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [Ilist| depl oy| undepl oy| updat €]
password {application} {source}

Indicates one of the following in a command line:

= Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic IMS Xvii

Xviii Programming WebL ogic IMS

CHAPTER

1 Introduction to
WebLogic JMS

The following sections provide an overview of the Java Message Service (JMS) for
BEA WebL ogic Server:

m What IsIMS?

m Implementation of Java Specifications

m WebLogic IMS Features

m WebLogic IMS Architecture

m WeblLogic IMS Extensions

m JMS Enhancements in WebL ogic Server 8.1

What Is JMS?

An enterprise messaging system, also referred to as Message-Oriented Middleware
(MOM), enables applications to communicate with one another through the exchange
of messages. A message is arequest, report, and/or event that contains information
needed to coordinate communication between different applications. A message
provides alevel of abstraction, allowing you to separate the details about the
destination system from the application code.

The JavaMessage Service (IMS) isastandard API for accessing enterprise messaging
systems. Specificaly, IMS:

Programming WebL ogic IMS 1-1

1 introduction to WebLogic JIMS

m Enables Java applications sharing a messaging system to exchange messages.

m Simplifies application development by providing a standard interface for
creating, sending, and receiving messages.

The following figure illustrates WebL ogic IM S messaging.
Figure1-1 WebLogic JM S Messaging

Weblogic JMS

Application A 4@' l J|E - ME'SS&QE.‘ Application B

Message Producer Message Consumer

Asillustrated in the figure, WebL ogic JM S accepts messages from producer
applications and delivers them to consumer applications.

Implementation of Java Specifications

WebL ogic Server is compliant with the following Java specifications.

J2EE Specification

WebL ogic Server 8.1 is compliant with Sun Microsystems J2EE 1.3 specification.

JMS Specification

WebL ogic Server 8.1 is fully compliant with the IMS Specification — version 1.0.2b
and can be used in production.

1-2 Programming WebL ogic IMS

http://java.sun.com/products/jms/docs.html

WebLogic JMS Features

WebLogic JMS Features

WebL ogic IMS provides afull implementation of the IMS API. Specificaly,
WebLogic IMS:

Provides asingle, unified messaging API.
Strictly adheres to the IM S Specification — version 1.0.2b.
Supports clustering.

Supports messaging for applications that span different operating systems and
machine architectures.

Can be configured by setting attributes from the WebL ogic Administration
Console Online Help and/or using the IMS API to override values.

Allows interoperability between JM S applications and other resource managers
(primarily databases) using the Java Transaction APl (JTA) transactions,
including support for distributed transactions and the two-phase commit
protocol. IM S applications can a so participate in transactions with other Java
APIsthat use JTA, including non-WebLogic XA compliant message brokers.

Supports messages containing Extensible Markup Language (XML).

Supports multicasting allowing the delivery of messages to a select group of
hosts using an IP multicast address.

Can use either a database or afile for persistent message storage.

Can be used with other WebL ogic Server APIs and facilities, such as Enterprise
Java Beans (EJB), JDBC connection pools, servlets, and RMI.

WebLogic JMS Architecture

The following figureillustrates the WebL ogic IM S architecture.

Programming WebL ogic IMS 1-3

http://java.sun.com/products/jms/docs.html

1 introduction to WebLogic JIMS

Figure1-2 WebLogic JM S Architecture

WebLogic Server
= Weblogic JMS
- |
Client 1 ai ._LMS Server
1
= 4
e - .
._“‘=EL'.'H:_.-‘ ,_ : -
o
h
»| JNDI »
Al-=A
B1-=B
Bz -i B <
B
Client 2 ; -+
- a7
e
© E—— » JMS Server
Weblogic JMS
WebLogic Server
Major Components

The major components of the WebL ogic IMS Server architecture, asillustrated in the
figure “WebL ogic IMS Architecture’” on page 1-4, include:

m WebLogic IMS serversimplementing the messaging facility
m Client applications

m INDI (Java Naming and Directory Interface), which provides a server lookup
facility

1-4 Programming WebL ogic IMS

WebLogic JMS Architecture

m Persistent storage (file or database) for storing persistent message data

Clustering Features

The WebLogic JM S architecture implements clustering of multiple IM S servers by
supporting cluster-wide, transparent access to destinations from any server in the
cluster. Although WebL ogic Server supports distributing JM S destinations and
connection factories throughout a cluster, JIM S topics and queues are still managed by
individual WebL ogic Server instances in the cluster.

For more information about configuring clustering for WebLogic IMS, see
“Configuring WebL ogic IM S Clustering” on page 3-7. For detailed information about
WebL ogic Server clustering, see Using WebLogic Server Clusters.

The advantages of clustering include the following:

m Load balancing of destinations across multiple serversin the cluster

e Anadministrator can establish load balancing of destinations across multiple
serversin the cluster by configuring multiple IM S servers and using targets
to assign them to the defined WebL ogic Servers. Each IMS server is
deployed on exactly one WebL ogic Server and handles requests for a set of
destinations.

Note: Load balancing isnot dynamic. During the configuration phase, the system
administrator defines|oad balancing by specifying targetsfor IMS servers.

e Anadministrator can also configure multiple physical destinations as
members of a single distributed destination set within a cluster. Producers
and consumers are able to send and receive to the distributed destination. In
the event of a single server failure within the cluster, WebLogic JM S then
distributes the load across al available physical destination members within
the distributed destination set.

For more information on distributed destinations, see “ Distributed
Destination Tasks” in the Administration Console Online Help.

m Cluster-wide, transparent access to destinations from any server in the cluster

A system administrator can establish cluster-wide, transparent accessto
destinations from any server in the cluster by configuring multiple connection

Programming WebL ogic IMS 1-5

http://e-docs.bea.com/wls/docs81b/cluster/index.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

1 introduction to WebLogic JIMS

factories and using targets to assign them to WebL ogic Servers. Each connection
factory can be deployed on multiple WebL ogic Servers.

The application uses the Java Naming and Directory Interface (JNDI) to look up
a connection factory and create a connection to establish communication with a
JMS server. Each IMS server handles requests for a set of destinations. Requests
for destinations not handled by a JMS server are forwarded to the appropriate
Server.

Connection factories are described in more detail in “WebLogic IMS
Fundamentals’ on page 2-1.

m Scalability
Scalability is provided by:

e L oad balancing of destinations across multiple serversin the cluster, as
described previously.

e Distribution of application load across multiple JIMS servers via connection
factories, thus reducing the load on any single IMS server and enabling
session concentration by routing connections to specific servers.

e Optional multicast support, reducing the number of messages required to be
delivered by aJMS server. The IMS server forwards only a single copy of a
message to each host group associated with a multicast | P address, regardless
of the number of applications that have subscribed.

= Migratability

Asan “exactly-once” service, WebLogic IMS takes advantage of the migration
framework implemented in WebL ogic Server for clustered environments. This
allows WebL ogic IM S to properly respond to migration requests and bring a
JMS server online and offline in an orderly fashion. Thisincludes both
scheduled migrations as well as migrations in response to a WebL ogic Server
failure. For moreinformation, see “ Configuring IMS Migratable Targets’ on
page 3-10.

Note: Automatic failover is not supported by WebLogic IMS for this release. For
information about performing a manual failover, refer to “ Recovering from a
WebL ogic Server Failure” on page 3-15.

1-6 Programming WebL ogic IMS

WebLogic JMS Extensions

WebLogic JMS Extensions

In addition to the API specified by Sun Microsystems' JM S Specification, WebL ogic
JMSprovidesapublic APl, webl ogi c. j ns. ext ensi ons, which includes classesand
methods for the extensions described in the following table.

Extension

For moreinformation. . .

Create XML messages

Refer to “ Step 6a: Create the Message Object (Message
Producers)” on page 4-13

Define a session exception listener

Refer to “ Defining a Session Exception Listener” on page 4-47

Set or display the maximum number of
pre-fetched asynchronous messages allowed
on the session

Refer to “Dynamically Configuring Multicasting Configuration
Attributes” on page 4-87

Set or display the multicast session overrun
policy that is applied when the message
maximum is reached

Refer to “ Dynamically Configuring Multicasting Configuration
Attributes” on page 4-87

Dynamically create permanent queues or
topics

Refer to “ Creating Destinations Dynamically” on page 4-49

Dynamically delete permanent queues or
topics

Refer to “ Deleting Destinations Dynamically” on page 4-52

Convert between WebLogic IMS 8.1 and
pre-release 6.0 IMSMessagel Dformats

Refer to “ Setting M essage Header Fields’ on page 4-63

Set aredelivery delay for messages

Refer to “ Setting a Redelivery Delay for Messages’ on page 4-34

Set a message delivery time for producers

Refer to “ Setting a Delivery Time on Producers’ on page 4-39

Set adelivery time for messages

Refer to “ Setting a Delivery Time on Messages” on page 4-39

Set a scheduled delivery time for messages

Refer to “ Setting a Scheduled Time-to-Deliver Override” on page
4-40

This API also supports NO_ACKNOW.EDGE and MULTI CAST_NO_ACKNOW.EDGE
acknowledge modes, and extended exceptions, including throwing an exception:

Programming WebL ogic IMS 1-7

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

1 introduction to WebLogic JIMS

m To the session exception listener (if set), when one of its consumers has been
closed by the server as aresult of aserver failure, or administrative intervention.

m From amulticast session when the number of messages received by the session
but not yet delivered to the messages listener, exceeds the maximum number of
messages allowed for that session.

m From amulticast consumer when it detects a sequence gap (message received
out of sequence) in the data stream.

JMS Enhancements in WebLogic Server 8.1

The following JM S enhancements are new to this release of WebL ogic Server.

JMS Thin Client

At approximately 400k, thew j nscli ent. jar fileprovidesfull WebLogic IMS
functionality, yet greatly reducesthe client-side WebL ogic footprint by using asmaller
library that contains only the set of supporting files required by client-side programs.
Thenew client. j ar fileisavailableinthe W._HOVE/ server/ | i b subdirectory of the
WebL ogic Server installation directory (for example,

c:\ bea\ webl ogi c81b\ server\lib).

This. j ar providesfor full-featured WebL ogic Server clients that can support
clustering, load balancing, transactions, security, and failover. See “WebLogic IMS
Thin Client” on page 7-1 for more information.

Accessing Foreign JMS Providers

Using the Foreign IMS Server node on the Administration Console, you can quickly
map aforeign IMS provider so that its connection factories and destinations appear in
the WebLogic JNDI tree asalocal IMS objects. A Foreign IMS Server configuration

1-8 Programming WebL ogic IMS

JMS Enhancements in WebLogic Server 8.1

can also be used to reference remote instances of WebL ogic Server in another cluster
or domain in the local WebLogic JNDI tree. See“ Accessing Foreign JIMS Providers’
in the Administration Console Online Help for more information.

Accessing JMS via Servlets and EJBs

New “wrappers’ make it easier to use IMS inside a J2EE component. The wrappers
provide features including automatic pooling of JM S Connection and Session objects
(and some pooling of MessagePr oducer objects aswell); automatic transaction
enlistment for IM S providers that support XA; monitoring of the JIM S connection and
re-establishment after afailure; and security credentials that are managed by the
container. See “Using WebL ogic IMS with EJBs and Servlets’ on page 6-1 for more
information.

Better Expired Message Handling

Active message expiration ensures that expired messages are cleaned up immediately.
Moreover, expired message auditing gives you the option of tracking expired
messages, either by logging when a message expires or by redirecting expired
messages to a special destination. See “Handling Expired Messages” in the
Administration Console Online Help for more information.

Improved Message Flow Control by Blocking Producers

The “Blocking Send” features help you to avoid receiving message quota errors by
temporarily blocking message producers from sending messages to a destination
(queue or topic) when the destination has exceeded its specified maximum message
quota. See “Avoiding Quota Exceptions by Blocking Message Producers’ in the
Administration Console Online Help for more information.

Programming WebL ogic IMS 1-9

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#expiration_policy
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance

1 introduction to WebLogic JIMS

1-10 Programming WebL ogic IMS

CHAPTER

2

WebLogic JMS
Fundamentals

The following sections describe WebL ogic IM S components and features:

“Messaging Models’ on page 2-2

“WebL ogic IMS Classes’ on page 2-5
“ConnectionFactory” on page 2-6
“Connection” on page 2-7

“Session” on page 2-8

“Destination” on page 2-12

“Distributed Destination” on page 2-13
“MessageProducer and M essageConsumer” on page 2-13
“Message” on page 2-15

“ ServerSessionPool Factory” on page 2-21
“ServerSessionPool” on page 2-21
“ServerSession” on page 2-22

“ConnectionConsumer” on page 2-22

Note: For moreinformation on the IM S classes described in this section, access the

JM S Specification and Javadoc supplied on the Sun Microsystems Javaweb
site at the following location:
http://java.sun.com/products/jms/docs.html

Programming WebL ogic IMS 2-1

http://java.sun.com/products/jms/docs.html

2 WebLogic JMS Fundamentals

Messaging Models

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe
(Pub/sub). The messaging models are very similar, except for the following
differences:

m PTP messaging model enables the delivery of a message to exactly one recipient.

m Pub/sub messaging model enables the delivery of a message to multiple
recipients.

Each model isimplemented with classes that extend common base classes. For
example, the PTP classj avax. j ms. Queue and the Pub/sub classj avax. j ns. Topi c
both extend the classj avax. j ms. Dest i nat i on.

Each message model is described in detail in the following sections.

Note: Theterms producer and consumer are used as generic descriptions of
applications that send and receive messages, respectively, in either messaging
model. For each specific messaging model, however, unique terms specific to
that model are used when referring to producers and consumers.

Point-to-Point Messaging

The point-to-point (PTP) messaging model enables one application to send amessage
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue
receiver (consumer) receives messages from a specific queue.

The following figure illustrates PTP messaging.

2-2 Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Queue.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Topic.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Messaging Models

Figure2-1 Point-to-Point (PTP) Messaging

: listening i
1
H I
Application Al H‘EDLE:QE ot E Application Al :
= = i
== : i
Application A2 —}— - i‘:]E - ! Application A2 |
== : |
1 I
Application A3 MESEEQE Queue E Application A3 i
i I
Message Producers Message Consumers
(Queue Senders) {Queue Receivers)

Multiple queue senders and queue receivers can be associated with asingle queue, but
an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebL ogic IMS
determines which one will receive the next message on afirst come, first serve basis.
If no queue receivers are listening on the queue, messages remain in the queue until a
gueue receiver attaches to the queue.

Publish/Subscribe Messaging

The publish/subscribe (Pub/sub) messaging model enables an application to send a
message to multiple applications. Pub/sub messaging applications send and receive
messages by subscribing to atopic. A topic publisher (producer) sends messagesto a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

The following figure illustrates Pub/sub messaging.

Programming WebL ogic IMS 2-3

2

WebLogic JMS Fundamentals

Figure2-2 Publish/Subscribe (Pub/Sub) M essaging

WeblLogic JMS

Application Al Application Bl

Application A2 —} -

Application B2

Application A3 MEBSHQE Tﬂf}iﬂ Application B3
Message Producers Message Consumers
(Topic Publishers) {Topic Subscribers)

Unlike with the PTP messaging model, the Pub/sub messaging model allows multiple
topic subscribersto receive the same message. JM S retains the message until all topic
subscribers have received it.

The Pub/sub messaging model supports durable subscribers, allowing you to assign a
name to atopic subscriber and associate it with a user or application. For more
information about durable subscribers, see “ Setting Up Durable Subscriptions’ on
page 4-57.

Message Persistence

2-4

M essages can be specified as persistent or non-persistent.

A persistent message is guaranteed to be delivered at least once—it is not considered
sent until it has been safely written in the file or database. WebL ogic IMS writes
persistent messages to a persistent backing store (file or JIDBC database) assigned to
each JM S server during configuration.

Non-persistent messages are not stored. They are guaranteed to be delivered at |east
once unless there is a system failure, in which case messages may belost. If a
connection is closed or recovered, all non-persistent messages that have not yet been
acknowledged will be redelivered. Once anon-persistent message is acknowledged, it
will not be redelivered.

Programming WebL ogic IMS

WebLogic JMS Classes

WebLogic JMS Classes

To create aJMS applications, usethej avax. j ms API. The API allowsyou to create
the class objects necessary to connect to the IM S, and send and receive messages. IMS
classinterfaces are created as subclassesto provide queue- and topic-specific versions

of the common parent classes.

The following table lists the IM S classes described in more detail in subsequent
sections. For a complete description of al JMS classes, seethej avax. j ns,
webl ogi c. j ms. Server Sessi onPool Fact ory, or webl ogi c. j ms. ext ensi ons

Javadoc.

Table2-1 WebL ogic IMS Classes

JMSClass

Description

Connecti onFact ory

Encapsulates connection configuration information. A
connection factory isused to create connections. Y ou look
up a connection factory using JNDI.

Connecti on

Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Sessi on

Defines a serial order for the messages produced and
consumed.

Destination

I dentifies a queue or topic, encapsulating the address of a
specific provider. Queue and topic destinations manage
the messages delivered from the PTP and Pub/sub
messaging models, respectively.

MessagePr oducer and

Provides the interface for sending and receiving

MessageConsumner messages. M essage producers send messages to a queue
or topic. Message consumers receive messages from a
gueue or topic.

Message Encapsulates information to be sent or received.

Ser ver Sessi onPool Fact o
ry1

Encapsulates configuration information for a
server-managed pool of message consumers. The server
session pool factory is used to create server session pools.

Programming WebL ogic IMS 2-5

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

2 WebLogic JMS Fundamentals

Table 2-1 WebL ogic IM S Classes

JMSClass Description

Ser ver Sessi onPool 1 Provides a pool of server sessions that can be used to
process messages concurrently for connection consumers.

Server Sessi on? Associates a thread with a JMS session.

Connect i onConsuner ! Specifies a consumer that retrieves server sessionsto
process messages concurrently.

1 Supports an optional IMS interface for processing multiple messages concurrently.

For information about configuring JM S objects, see “Managing WebLogic IMS’ on
page 3-1. The procedure for setting up aJM S applicationis presented in “ Setting Up a
JMS Application” on page 4-4.

ConnectionFactory

A Connect i onFact or y object encapsul ates connection configuration information,
and enables IM S applications to create a Connect i on. A system administrator
configures connection factories to create connections with predefined attributes.

A system administrator defines and configures one or more connection factories, and
the WebL ogic Server addsthem to the INDI space during startup. The application then
retrieves a connection factory using WebL ogic INDI.

The system administrator can also establish cluster-wide, transparent access to
destinationsfrom any server inthe cluster by configuring multiple connection factories
and using targetsto assign them to WebL ogic Servers. Each connection factory can be
deployed on multiple WebL ogic Servers. For more information on JM S clustering,
refer to “ Configuring WebL ogic IMS Clustering” on page 3-7.

WebL ogic JM S defines one default connection factory. It can be looked up using the
JNDI name, webl ogi c. j ms. Connecti onFact ory. You only need to definea
connection factory if the default provided by WebL ogic IMSis not suitable for your
application. For information on configuring connection factories, see “ Configuring
JMS’ in the Administration Console Online Help.

2-6 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

Connection

Notes: For backwards compatibility, WebL ogic IMS still supports two deprecated
default connection factories. The INDI names for these factories are:
j avax. j ms. QueueConnect i onFact or y and
j avax. j ms. Topi cConnecti onFactory.

For information on migrating to a new default or user-defined connection
factory from a deprecated connection factory, refer to “ Porting WebL ogic
JMS Applications’ on page 8-1.

The Connect i onFact ory class does not define methods; however, its subclasses
define methods for the respective messaging models. A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously.

The following table describes the Connect i onFact or y subclasses.

Table 2-2 ConnectionFactory Subclasses

Subclass. . . In Messaging IsUsed to Create. . .

Model. . .
QueueConnecti onFact ory PTP QueueConnecti on toaJMS PTP provider.
Topi cConnecti onFact ory Pub/sub Topi cConnect i on to aJVIS Pub/sub provider.

Tolearn how to use the Connect i onFact ory classwithin an application, see
“Developing aWebLogic IMS Application” on page 4-1, or the
j avax. j ms. Connect i onFact ory Javadoc.

Connection

A Connect i on object represents an open communication channel between an
application and the messaging system, and is used to create a Sessi on for producing
and consuming messages. A connection creates server-side and client-side objectsthat
manage the messaging activity between an application and IMS. A connection may
also provide user authentication.

A Connect i on iscreated by a Connect i onFact ory, obtained through a JNDI
lookup.

Programming WebL ogic IMS 2-7

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionFactory.html

2 WebLogic JMS Fundamentals

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish asingle connection for all messaging. In
the WebL ogic Server, IM Straffic is multiplexed with other WebL ogic serviceson the
client connection to the server. No additional TCP/IP connections are created for IMS.
Servlets and other server-side objects may also obtain IMS Connections.

By default, a connection is created in stopped mode. For information about how and
whento start astopped connection, see* Starting, Stopping, and Closing aConnection”
on page 4-46.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

The following table describes the Connect i on subclasses.

Table 2-3 Connection Subclasses

Subclass. . . In Messaging IsUsedto Create. . .
Model. . .
QueueConnect i on PTP QueueSessi ons, and consists of aconnectionto aJMS

PTP provider created by QueueConnecti onFactory.

Topi cConnecti on Pub/sub Topi cSessi ons, and consists of aconnectionto aJMS
Pub/sub provider created by
Topi cConnect i onFactory.

To learn how to use the Connect i on class within an application, see “Developing a
WebLogic IMS Application” on page 4-1, or thej avax. j ms. Connect i on Javadoc.

Session

A Session object defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread can
be used for producing and consuming messages. |f an application wantsto have a
separate thread for producing and consuming messages, the application should create
a separate session for each function.

A Session is created by the Connection.

2-8 Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html

Session

Note: A session and its message producers and consumers can only be accessed by
one thread at atime. Their behavior is undefined if multiple threads access
them simultaneously.

The following table describes the Session subclasses.

Table 2-4 Session Subclasses

Subclass. . . In Messaging Provides a Context for. . .
Model. . .
QueueSessi on PTP Producing and consuming messages for aJMS PTP

provider. Created by QueueConnection.

Topi cSessi on Pub/sub Producing and consuming messages for aJJM S Pub/sub
provider. Created by TopicConnection.

To learn how to use the Session class within an application, see “Developing a
WebL ogic IMS Application” on page 4-1, or thej avax. j ms. Sessi on and
webl ogi c. j ms. ext ensi ons. W.Sessi on javadocs.

Non-transacted Session

In anon-transacted session, the application creating the session selects one of thefive
acknowledge modes defined in the following table.

Table2-5 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOW.EDGE The Sessi on object acknowledges receipt of a message once the
receiving application method has returned from processing it.

Programming WebL ogic IMS 2-9

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html

2 WebLogic JMS Fundamentals

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge M ode

Description

CLI ENT_ACKNOW.EDGE

The Sessi on object relies on the application to call an acknowledge
method on areceived message. Once the method is called, the session
acknowledges all messages received since the last acknowledge.

Thismode allows an application to receive, process, and acknowledge
abatch of messages with one call.

Note: Inthe Administration Console, if the Acknowledge Policy
attribute on the connection factory is set to Pr evi ous, but
you want to acknowledge all received messages for a given
session, then use the last message to invoke the acknowledge
method. For more information on the Acknowledge Policy
attribute, see “JM S Connection Factories’ in the
Administration Console Online Help.

DUPS_OK_ACKNOW.EDGE

The Sessi on object acknowledges receipt of a message once the
receiving application method has returned from processing it;
duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.
Note: You should avoid using this mode if your application cannot

handl e duplicate messages. Duplicate messages may be sent
if aninitial attempt to deliver amessage fails.

NO_ACKNOW.EDGE

2-10

Programming WebL ogic IMS

No acknowledge is required. Messages sent to a NO_ACKNOW_EDGE
session areimmediately deleted from the server. Messagesreceived in
this mode are not recovered, and as a result messages may be lost
and/or duplicate message may be delivered if an initial attempt to
deliver amessage fails.

Thismodeis supported for applicationsthat do not require the quality
of service provided by session acknowledge, and that do not want to
incur the associated overhead.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver amessage fails.

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

Session

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode Description

MULTI CAST_NO_ACKNOW.EDGE Multicast mode with no acknowledge required.
Messages sent to a MULTI CAST_NO_ACKNOW.EDGE session share
the same characteristics as NO_ACKNOW.EDGE mode, described
previoudly.
This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided by
session acknowledge. For more information on multicasting, see
“Using Multicasting” on page 4-83.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may
be sent if aninitial attempt to deliver a message fails.

Transacted Session

In atransacted session, only onetransaction is active at any given time. Any messages
sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commitsatransaction, all the messagesthat the application received during
the transaction are acknowledged by the messaging system and messages it sent are
accepted for delivery. If an application rolls back a transaction, the messages that the
application received during the transaction are not acknowledged and messagesit sent
are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability asthetransaction isrestricted to accessing the messages associated with that
session. For more information about using IMS with JTA, see “Using JTA User
Transactions’ on page 5-5.

Programming WebLogic IMS 2-11

2 WebLogic JMS Fundamentals

Destination

A Dest i nat i on object can beeither aqueue or topic, encapsul ating the address syntax
for a specific provider. The IM S specification does not define a standard address
syntax due to the variations in syntax between providers.

Similar to aconnection factory, an administrator defines and configuresthe destination
and the WebL ogic Server adds it to the INDI space during startup. Applications can
also create temporary destinations that exist only for the duration of the IMS
connection in which they are created.

Note: Administrators can also configure multiple physical destinations as members
of asingle distributed destination set within a server cluster. For more
information, see “ Distributed Destination” on page 2-13.

On the client side, Queue and Topi ¢ objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JIMS Queues and Topi cs extendj avax. j ms. Desti nati on. The
following table describes the Dest i nat i on subclasses.

Table 2-6 Destination Subclasses

Subclass. . . In Messaging Manages Messages for. . .
Model. . .
Queue PTP JMS PTP provider.
Tenpor ar yQueue PTP JMS PTP provider, and exists for the duration of the IMS

connection in which the messages are created. A temporary
queue can be consumed only by the queue connection that

created it.
Topi c Pub/sub JM S Pub/sub provider.
Tenpor ar yTopi ¢ Pub/sub JMS PTP provider, and exists for the duration of the IMS

connection in which the messages are created. A temporary
topic can be consumed only by the topic connection that
created it.

2-12 Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Distributed Destination

Note: An application has the option of browsing queues by creating a
QueueBr owser object initsqueue session. Thisobject produces a snapshot of
the messages in the queue at the time the queue browser is created. The
application can view the messages in the queue, but the messages are not
considered read and are not removed from the queue. For more information
about browsing queues, see “Browsing Header and Property Fields’ on page
4-68.

To learn how to use the Dest i nat i on class within an application, see “Developing a
WebL ogic IMS Application” on page 4-1, or thej avax. j ns. Dest i nat i on Javadoc.

Distributed Destination

Administrators can configure multiple physical destinations as members of asingle
distributed destination set within a WebL ogic Server cluster. Once properly
configured, your producers and consumers are able to send and receive to the
distributed destination. WebL ogic JM S then distributes the messaging load across al
available destination members within the distributed destination.

m For more information on using distributed destinations with your applications,
see “Using Distributed Destinations” on page 4-90.

m For instructions on configuring distributed destinations using the Administration
Console, see“ Configuring Distributed Destinations” in the Administration
Console Online Help.

MessageProducer and MessageConsumer

A MessagePr oducer object sends messagesto aqueueor topic. A MessageConsuner
object receives messages from a queue or topic. Message producers and consumers
operate independently of one another. M essage producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.

Programming WebLogic IMS 2-13

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

2 WebLogic JMS Fundamentals

A Sessi on createsthe MessagePr oducer s and MessageConsuner s that are attached
to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessagePr oducer and MessageConsuner classes. Thefollowing table describesthe
MessagePr oducer and MessageConsuner subclasses.

Table 2-7 MessageProducer and M essageConsumer Subclasses

Subclass. . . In Messaging Performsthe Following Function. . .
Moddl. . .

QueueSender PTP Sends messages for aJMS PTP provider.

QueueRecei ver PTP Receives messages for aJMS PTP provider, and exists
until the IM S connection in which the messages are
created is closed.

Topi cPubl i sher Pub/sub Sends messages for a IM'S Pub/sub provider.

Topi cSubscri ber Pub/sub Receives messagesfor aJM S Pub/sub provider, and exists

for the duration of the IM S connection in which the
messages are created. M essage destinations must be bound
explicitly using the appropriate INDI interface.

The PTP model, as shownin thefigure“ Point-to-Point (PTP) Messaging” on page 2-3,
allows multiple sessions to receive messages from the same queue. However, a
message can only be delivered to one queue receiver. When there are multiple queue
receivers, WebLogic JM S defines the next queue receiver that will receive a message
on afirst-come, first-serve basis.

The Pub/sub model, as shown in the figure “ Publish/Subscribe (Pub/Sub) M essaging”
on page 2-4, allows messages to be delivered to multiple topic subscribers. Topic
subscribers can be durable or non-durable, as described in “ Setting Up Durable
Subscriptions’ on page 4-57.

An application can use the same JM S connection to both publish and subscribe to a
single topic. Because topic messages are delivered to all subscribers, an application
can receive messages it has published itself. To prevent clients from receiving
messages that they publish, aJM S application can set anoLocal attribute on the topic
subscriber, as described in “ Step 5: Create Message Producers and M essage
Consumers Using the Session and Destinations” on page 4-11.

2-14 Programming WebLogic IMS

Message

To learn how to usethe MessagePr oducer and MessageConsumer classes within an
application, see “ Setting Up aJMS Application” on page 4-4, or the
j avax. j ms. MessagePr oducer andj avax. j ms. MessageConsuner javadocs.

Message

A Message object encapsulates the information exchanged by applications. This
information includes three components: a set of standard header fields, a set of
application-specific properties, and a message body. The following sections describe
these components.

Message Header Fields

Every JM S message contains a standard set of header fieldsthat isincluded by default
and availableto message consumers. Somefields can be set by the message producers.

For information about setting message header fields, see “ Setting and Browsing
Message Header and Property Fields’ on page 4-62, or to thej avax. j ms. Message
Javadoc.

Programming WebLogic JIMS 2-15

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

2 WebLogic JMS Fundamentals

Thefollowing table describes the fieldsin the message headers and shows how values
are defined for each field.

Table 2-8 Message Header Fields

Field Description Defined by

JMSCorrel ationl D Specifies one of the following: aWebLogic JMSMessagel D Application
(described later in this table), an application-specific string, or a
byt e[] array. TheJMSCor r el at i onl Disused to correlate
messages.

There are two common applications for thisfield.

Thefirst application is to link messages by setting up a

request/response scheme, as follows:

1. When an application sends a message, it stores the
JMBMessagel Dvalue assigned to it.

2. When an application receives the message, it copiesthe
JMBMessagel Dintothe JMSCor r el at i onl Dfield of a
response messagethat it sends back to the sending application.

The second application isto use the IMSCor r el at i onl Dfield

to carry any String you choose, enabling aseries of messagesto be

linked with some application-determined value.

All IMSMessagel Ds start withan | D: prefix. If you use the

JNMBCor r el at i onl Dfor some other application-specific string,

it must not begin with thel D: prefix.

2-16 Programming WebL ogic IMS

Message

Table 2-8 Message Header Fields (Continued)

Field

Description

Defined by

JMBDel i ver yMode

Specifies PERSI STENT or NON_PERSI STENT messaging.

When apersistent message is sent, WebL ogic IMS storesit inthe
JMSfile or IDBC database. Thesend() operation isnot
considered successful until delivery of the message can be
guaranteed. A persistent message is guaranteed to be delivered at
least once.

WebL ogic JM S does not store non-persistent messagesinthe IMS
database. This mode of operation provides the lowest overhead.
They are guaranteed to be delivered at least once unlessthereisa
system failure, in which case messages may be lost. If a
connectionisclosed or recovered, all non-persistent messagesthat
have not yet been acknowledged will be redelivered. Once a
non-persistent message is acknowledged, it will not be
redelivered.

When amessage is sent, this value is ignored. When the message
isreceived, it contains the delivery mode specified by the sending
method.

send() method

IMSDeliveryTime

Defines the earliest absolute time at which a message can be
delivered to aconsumer. Thisfield can be used to sort messagesin
a destination and to select messages. For purposes of data type
conversion, the JMSDel i ver yTi ne isalong integer.

send() method

JMBDest i nati on

Specifies the destination (queue or topic) to which the messageis
to be delivered. The application’ s message producer setsthevalue
of thisfield when the message is sent.

When amessageis sent, thisvalueisignored. When amessageis
received, its destination value must be equivaent to the value
assigned when it was sent.

send() method

JMSEXxpi ration

Specifies the expiration, or time-to-live value, for a message.

WebL ogic IMScalculatesthe IMSExpi r at i on valueasthesum
of the application’ s time-to-live and the current GMT. If the
application specifiestime-to-liveas0, IMSExpi r at i onissetto
0, which means the message never expires.

WebL ogic JMS removes expired messages from the system to
prevent their delivery.

send() method

Programming WebLogic IMS ~ 2-17

2 WebLogic JMS Fundamentals

Table 2-8 Message Header Fields (Continued)

Field

Description

Defined by

JMsMessagel D

Contains astring value that uniquely identifies each message sent
by a JMS Provider.

All JMSMessagel Dsstart withan | D: prefix.

When amessage is sent, this value isignored. When the message
isreceived, it contains a provider-assigned value.

send() method

JMSPriority

Specifies the priority level. Thisfield is set before amessageis
sent.

JMSdefinesten priority levels, 0to 9, 0 being the lowest priority.
Levels 0-4 indicate gradations of normal priority, and level 5-9
indicate gradations of expedited priority.

When the message is received, it contains the value specified by
the method sending the message.

Y ou can sort destinations by priority by configuring a destination

key, as described in “Configuing IMS’ in the Administration
Console Online Help.

Message
Consumer

JMBRedel i ver ed

Specifies aflag set when a message is redelivered because no
acknowledge was received. Thisflag is of interest to areceiving
application only.

If set, theflag indicates that IM S may have delivered the message
previously because one of the following istrue:

m Theapplication has already received the message, but did not
acknowledgeit.

m Thesession'srecover () method was caled to restart the
session beginning after the last acknowledged message. For
more information about the r ecover () method, see
“Recovering Received Messages’ on page 4-31.

2-18 Programming WebL ogic IMS

WebLogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key

Message

Table 2-8 Message Header Fields (Continued)

Field

Description Defined by

JMBRepl yTo

Specifiesaqueue or topic to which reply messages should besent. Application
Thisfield is set by the sending application before the message is
sent.

This feature can be used with the JMSCor r el at i onl D header
field to coordinate request/response messages.

Simply setting the JMSRepl yTo field does not guarantee a
response; it enables the receiving application to respond, if it so
chooses.

Y ou may set the JIMSRepl yTo to null, which may have a

semantic meaning to the receiving application, such asa
notification event.

JMBTi meSt anp

Containsthetime at which the message was sent. WebLogic IMS Message
writes the timestamp in the message when it accepts the message Consumer
for delivery, not when the application sends the message.

When the message is received, it contains the timestamp.
The value stored in the field is a Java millis time value.

JMSType

Specifies the message type identifier (String) set by the sending ~ Application
application.

The IMS specification alows some flexibility with thisfield in

order to accommodate diverse IM S providers. Some messaging

systems allow application-specific message types to be used. For

such systems, the IMSTy pe field could be used to hold amessage

type ID that provides access to the stored type definitions.

WebL ogic IMS does not restrict the use of thisfield.

Message Property Fields

The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/val ue pairs. Property nhames must
conform to the message selector syntax specifications defined in the

j avax. j ms. Message Javadoc. Thefollowing values are valid: boolean, byte, double,
float, int, long, short, and String.

Programming WebLogic JIMS 2-19

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

2 WebLogic JMS Fundamentals

Although message property fields may be used for application-specific purposes, IMS
provides them primarily for use in message selectors. For more information about
message selectors, see “Filtering Messages’ on page 4-70.

For information about setting message property fields, see “ Setting and Browsing
Message Header and Property Fields’ on page 4-62, or to thej avax. j ms. Message

Javadoc.

Message Body

A message body contains the content being delivered from producer to consumer.

The following table describes the types of messages defined by IMS. All message
typesextendj avax. j ms. Message, which consists of message headersand properties,
but no message body.

Table 2-9 JM 'S Message Types

Type

Description

javax.jms.BytesM essage

Stream of uninterpreted bytes, which must be understood by the sender and
receiver. The access methods for this message type are stream-oriented
readers and writersbased on j ava. i 0. Dat al nput St r eamand

j ava. i o. Dat aCQut put St ream

javax.jms.MapMessage

Set of name/value pairs in which the names are strings and the values are
Java primitive types. Pairs can be read sequentially or randomly, by
specifying a name.

javax.jms.ObjectM essage

Single seriaizable Java object.

javax.jms.StreamM essage

Similar to aBytesMessage, except that only Java primitive typesare written
to or read from the stream.

javax.jms.TextM essage

Single String. The TextMessage can also contain XML content.

weblogic,jms.extensions.XMLMe
ssage

XML content. Use of the XMLMessage type facilitates message filtering,
which is more complex when performed on XML content shipped in a
TextMessage.

2-20 Programming WebLogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/BytesMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MapMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ObjectMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/StreamMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TextMessage.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/XMLMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

ServerSessionPoolFactory

For more information, seethej avax. j ns. Message Javadoc. For more information
about the access methods and, if applicable, the conversion charts associated with a
particular message type, see the Javadoc for that message type.

ServerSessionPoolFactory

A server session pool isaWebL ogic-specific IMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
Ser ver Sessi onPool .

WebL ogic IMS defines one Ser ver Sessi onPool Fact ory object, by default:

webl ogi c. j ms. Ser ver Sessi onPool Fact or y: <name>, where <nane> specifiesthe
name of the IMS server to which the session pool is created. The WebL ogic Server
adds the default server session pool factory to the INDI space during startup and the
application subsequently retrieves the server session pool factory using WebL ogic
JNDI.

Tolearn how to usethe server session pool factory within an application, see” Defining
Server Session Pools’ on page 4-73, or the
webl ogi c. j ns. Ser ver Sessi onPool Fact ory Javadoc.

ServerSessionPool

A Server Sessi onPool application server object provides a pool of server sessions
that connection consumers can retrieve in order to process messages concurrently.

A Server Sessi onPool iscreated by the Ser ver Sessi onPool Fact ory object
obtained through a INDI |ookup.

Tolearn how to usethe server session pool within an application, see“ Defining Server
Session Pools’ on page 4-73, or thej avax. j ns. Ser ver Sessi onPool Javadoc.

Programming WebLogic IMS 2-21

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ServerSessionPool.html

2 WebLogic JMS Fundamentals

ServerSession

A Server Sessi on application server object enables you to associate a thread with a
JMSS session by providing a context for creating, sending, and receiving messages.

A Ser ver Sessi on iscreated by a Ser ver Sessi onPool object.

To learn how to use the server session within an application, see “ Defining Server
Session Pools’ on page 4-73, or thej avax. j ms. Ser ver Sessi on Javadoc.

ConnectionConsumer

2-22

A Connect i onConsumer object usesaserver session to process received messages. If
message traffic is heavy, the connection consumer can load each server session with
multiple messages to minimize thread context switching.

A Connect i onConsuner is created by a Connect i on object.

To learn how to use the connection consumers within an application, see “ Defining
Server Session Pools’ on page 4-73, or thej avax. j ms. Connect i onConsumer
Javadoc.

Note: Connection consumer listeners run on the same JVM as the server.

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ServerSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

CHAPTER

3 Managing WebLogic
JMS

The WebL ogic Server Administration Console provides an interface for easily

enabling, configuring, and monitoring the features of the WebL ogic Server, including

JMS. To invoke the Administration Console, refer to the procedures described in

“Starting and Stopping Servers’ in the Administration Console Online Help.

Thefollowing sections provide an overview of configuring and monitoring WebL ogic

JMS:

m “Configuring WebLogic IMS’ on page 3-1

m “Configuring WebLogic JMS Clustering” on page 3-7

m “Configuring IMS Migratable Targets’ on page 3-10

m “Tuning WebLogic IMS’ on page 3-13

m “Monitoring WebLogic IMS’ on page 3-14

m “Recovering from aWebLogic Server Failure” on page 3-15

Configuring WebLogic JMS

Using the Administration Console, you define configuration attributes to:

Enable IMS.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html

3 Managing WebLogic JMS

m Create IMS servers and target a WebL ogic Server instance or a Migratable
Target where the IM S server will be deployed.

m Create and/or customize values for IM S servers, connection factories,
destinations (physical queues and topics), distributed destinations (sets of
physical queue and topic members within a cluster) destination templates,
destination sort ordering (using destination keys), persistent stores, paging stores,
session pools, and connection consumers.

m Set up custom JIMS applications.
m Define thresholds and quotas.
m Enable any desired IM S features, such as:

e server clustering using multiple connection factories

e concurrent message processing via session pools

e persistent messages and durable subscribers

e paging out messages during peak loads to free up memory
e controlling message flow during peak loads

WebL ogic IMS provides default values for some configuration attributes; you must
provide values for all others. If you specify an invalid value for any configuration
attribute, or if you fail to specify avalue for an attribute for which a default does not
exist, WebLogic Server will not boot JIMS when you restart it. A sample

exanpl esJMsSer ver configuration is provided with the product in the Examples
Server. For more information about starting the Examples Server, see “ Starting the
Default, Examples, and Pet Store Servers’ in the Installing WebLogic Server.

When migrating from a previous release of Weblogic Server, the configuration
information is converted automatically, as described in “Porting Existing
Applications’ on page 8-8.

To configure WebL ogic JM S attributes, follow the procedures described in the
“Configuring IMS” section of the Administration Console Online Help, to create and
configure the JIM S objects. Once WebL ogic IMSis configured, applications can send
and receive messages using the IMS API. For more information about developing
WebL ogic IMS applications, refer to “Developing aWebL ogic IMS Application” on

page 4-1.

32 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/install/instpos.html
http://e-docs.bea.com/wls/docs81b/install/instpos.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

Configuring WebLogic JMS

Note: Appendix A, “Configuration Checklists,” provides checklists that enable you
to view the attribute requirements and/or options for supporting various IMS
features.

Starting WebLogic Server and Configuring JMS

The following sections review how to start WebL ogic Server and the Administration
console, as well as provide a procedure for configuring a basic IM S implementation.

Starting the Default WebLogic Server

The default role for aWebLogic Server isthe Administration Server. If adomain
consists of only one WebL ogic Server, that server isthe Administration Server. If a
domain consists of multiple WebL ogic Servers, you must start the Administration
Server firgt, and then you start the Managed Servers.

For complete information about starting the Administration Server, see “ Starting and
Stopping Servers’ in the Administration Console Online Help.

Starting the Administration Console

The Administration Console is the Web-based administrator front-end (administrator
client interface) to WebL ogic Server. Y ou must start the server before you can access
the Administration Console for a server.

For complete detail s about using the Administration Consoleto configureaWebL ogic
Server, see “ Starting and Using the Administration Console” in Configuring and
Managing a WebLogic Server.

Configuring a Basic JMS Implementation

This section describes how to configure a basic IM S implementation using the
Administration Console.

1. Under the Services node in the |eft pane, click the IMS node to expand the list.

2. Optionally, create a File Store for storing persistent messagesin aflat file, and/or
a Paging Store for swapping messages out to memory:

Programming WebL ogic IMS 33

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/adminguide/overview.html

3 Managing WebLogic JMS

3-4

a. Click the Stores nodein the left pane, and then click the Configure anew JMS
File Storelink in the right pane.

b. Onthe General tab, givethe store aname, specify adirectory, and then click the
Create button.

¢. Repeat these steps to create a Paging Store.

Note: For more information on configuring file stores, see “JMS File Store
Tasks’ in the Administration Console Online Help.

. Optionally, create a JDBC Store for storing persistent messages in a database:

a. Click the IDBC node in the left pane to expand it.

b. Click the Connection Pools node in the |eft pane, and then click the Configure
anew JDBC Connection Pool link in the right pane.

c. Onthe Configuration tabs, set the attributes for the connection pool, such as
Name, URL, and database Properties. Click Apply on each tab when you're
done making changes.

d. Onthe Target and Deploy tab, target an independent WebL ogic Server instance
or aserver cluster on which to deploy the connection pool by selecting the
appropriate check box, and then click Apply.

e. Returntothe IMS —> Stores node, and then click the Configure anew JIMS
JDBC Storelink in the right pane.

f. Givethe JDBC Store aname, select aconnection pool, and aprefix name. Then
click Create.

Note: For more information on configuring JDBC-accessible IM S JDBC stores,
see “IMS IDBC Store Tasks’, “Configuring JDBC Connection Pools,”
“Configuring JIDBC Multipooals,” and “ Configuring JDBC DataSources’
in the Administration Console Online Help.

. Optionally, create a JM S Template to define multiple destinations with similar

attribute settings. You also need a JM S Template to create temporary queues.

a. Click the Templates node in the left pane, and then click the Configure a new
JMS Template link in the right pane.

b. Onthe General tab, give the template a name, and then click Create.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_multipools.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_datasources.html

Configuring WebLogic JMS

C.

Fill in the Thresholds & Quotas, Override, Expiration Policy, and Redelivery
tabs, as appropriate. Click Apply on each tab when you' re done making
changes.

Note: For moreinformation on configuring aJM S Template, see“IMS Template

Tasks’ in the Administration Console Online Help.

. Configure a JM S Server, as follows:

a

Click the Server node in the left pane, and then click the Configureanew JIMS
Server link in the right pane.

On the Genera tab, give the server a name, select a Store if you created one,
select a Paging Storeif you created one, and select a Template if you created
one. Then click Create.

Fill in the Thresholds & Quotas tab, as appropriate. Click Apply when you're
done making changes.

Onthe Target and Deploy tab, target an independent WebL ogic Server instance
or aMigratable Target server on which to deploy the IM S server by selecting
the appropriate check box, and then click Apply.

Note: For more information on configuring a JMS Server, see “ JMS Server

Tasks’ in the Administration Console Online Help.

. Create the IMS Destinations, which are queues (Point-To-Point) or topics
(Pub/Suby):

a

Under the Servers node in the left pane, click your new JM S server instance to
expand the list, and then click the Destinations node.

Click either the Configure a new JM S Queue or Configure anew JV'S Topic
link in the right pane.

On the General tab, give the destination a name and a JNDI name. Fill in the
other attributes, as appropriate, and then click Create.

Fill in the Thresholds & Quotas, Override, Redelivery, Expiration Policy, and
Multicast (for topics only) tabs, as appropriate. Click Apply on each tab when
you' re done making changes.

Note: For moreinformation on configuring aDestinations, see“ JM S Destination

Tasks” in the Administration Console Online Help.

Programming WebL ogic IMS 35

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_templates_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_templates_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config

3 Managing WebLogic JMS

3-6

7. Create a Connection Factory to enable your JMS clients to create IMS

connections:

a. Click to the expand the Connection Factory node and in the left pane, and then
click the Configure anew JM S Connection Factory link in the right pane.

b. On the General tab, give the connection factory a name and a JNDI name. Fill
in the other attributes, as appropriate, and then click Create.

c. Fill inthe Transactions and Flow Control tabs, as appropriate. Click Apply on
each tab when you’ re done making changes.

d. Onthe Target and Deploy tab, target an independent WebL ogic Server instance
or aserver cluster on which to deploy the connection factory by selecting
selecting the appropriate check box, and then click Apply.

Note: For more information on configuring a Connection Factory, see “JMS
Connection Factory Tasks’ in the Administration Console Online Help.

. Optionally, use the Destination Keys node to define the sort order of messages

that arrive on a specific destination. For more information, see “JMS Destination
Key Tasks” in the Administration Console Online Help.

. Optionally, use the Distributed Destinations node to make your physical

destinations part of asingle distributed destination set within a server cluster. For
more information, see “Distributed Destinations Tasks” in the Administration
Console Online Help.

10. Optionally, create IM S Session Pools, which enable your applications to process

messages concurrently, and Connection Consumers (queues or topics) that
retrieve server sessions and process messages. For more information, see“JMS
Session Pools Tasks” and “JM S Connection Consumers Tasks” in the
Administration Console Online Help.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_consumer_config

Configuring WebLogic JMS Clustering

Configuring WebLogic JMS Clustering

A WebL ogic Server cluster isagroup of serversthat work together to provide amore
scalable, more reliable application platform than asingle server. A cluster appearsto
itsclients asasingle server but isin fact agroup of servers acting as one. A cluster
provides three key features above a single server:

m Scalability—servers can be added to the cluster dynamically to increase capacity.

m High Availability—redundancy of multiple serversinsulates applications from
failures. Redundancy of multiple destinations (queues and topics) as members of
asingle distributed destination set within a cluster ensures redistribution of the
messaging load to other available membersin the set when one member
becomes unavailable.

m Migratability—respond to migration requests and bring a M S server online and
offlinein an orderly fashion. This includes both scheduled migrations as well as
migrations in response to a WebL ogic Server failure.

A clustered serviceisan APl or interface that is available on multiple serversin the
cluster.

Note: IMS clients depend on unique WebL ogic Server namesto successfully access
a cluster—even when WebL ogic Serversreside in different domains.
Therefore, make surethat all WebL ogic Serversthat IMS clients contact have
unigue server names.

For more information about starting WebL ogic clusters and its features and benefits,
see“ Configuring WebL ogic Serversand Clusters” in Using WebLogic Server Clusters.

How JMS Clustering Works

You can establish cluster-wide, transparent access to destinations from any server in
the cluster by configuring multiple connection factories and using targetsto assign
them to WebL ogic Servers. Each connection factory can be deployed on multiple
WebL ogic Servers. The administrator can configure multiple JMS servers on the
various nodesin the cluster—as|ong asthe IM S servers are uniquely named—and can
then assign JM S destinations to the various IM S servers.

Programming WebL ogic IMS 37

http://e-docs.bea.com/wls/docs81b/cluster/config.html

3

Managing WebLogic JMS

TheapplicationusestheJavaNamingand Directory | nterface(JINDI) tolook upa
connectionfactory andcreateaconnectiontoestablishcommunicationwithaM S
server. Each IM Sserver handlesrequestsfor aset of destinations. Requestsfor
destinations not handled by a IM S server are forwarded to the appropriate WebL ogic
Server.

JMS Clustering Requirements

The following guidelines apply when configuring WebL ogic IMSto work in a
clustered environment in a single WebL ogic domain or in a multi-domain
environment.

m All WebLogic Serversthat JMS clients contact must have unique server names.
m All IMS serverstargeted to nodes in the cluster must be uniquely named.

m |f persistent messaging is reguired, all IMS stores must be uniquely named.

JMS Distributed Destination within a Cluster

TheWebL ogic IM S administrator can a so configure multiple destinations as part of a
single distributed destination set within a cluster. Producers and consumers are ableto
send and receive to the distributed destination. In the event of asingle server failure
within the cluster, WebL ogic IMS then distributes the load across all available
physical destinations within the distributed destination set. For more information, see
“Distributed Destination Tasks” in the Administration Console Online Help.

JMS as a Migratable Service within a Cluster

3-8

WebL ogic JM S takes advantage of the migration framework implemented in the
WebL ogic Server core for clustered environments. This allows WebLogic IMSto
properly respond to migration requests and bring a IM S server online and offlinein an
orderly fashion. Thisincludes both scheduled migrations as well as migrationsin
response to a WebL ogic Server failure. For more information, see “ Configuring IMS
Migratable Targets’ on page 3-10.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

Configuring WebLogic JMS Clustering

Configuration Steps

In order to use WebL ogic IMSin aclustered environment, you must:

1. Administer WebL ogic clusters as described in “ Configuring WebL ogic Servers
and Clusters’ in Using WebLogic Server Clusters.

2. ldentify server targets for IMS servers and for connection factories using the
Administration Console:

e For IMS servers, you can identify either asingle-server target or amigratable
target, which is a set of WebL ogic Server instancesin a cluster that can host
an “exactly-once” servicelike IMS in case of asingle server failure. For
more information on migratable targets, see “ Configuring JIMS Migratable
Targets’ on page 3-10.

e For connection factories, you can identify either asingle-server target or a
cluster target, which are WebL ogic Server instances that are associated with a
connection factory to support clustering.

For more information about these configuration attributes, see “JMS Server
Tasks' or “IM S Connection Factory Tasks’ in the Administration Console
Online Help.

Note: You cannot deploy the same destination on more than one IMS server. In
addition, you cannot deploy a JM S server on more than one WebL ogic
Server.

3. Optionally, you can configure your physical destinations as part of asingle
distributed destination set within a cluster. For more information, see
“Distributed Destination Tasks” in the Administration Console Online Help.

What About Failover?

For WebL ogic IM S implementations that are part of a WebLogic 7.0 clustered
environment, JM S offers service continuity in the event of asingle Weblogic Server
failure by enabling you to configure multiple physical destinations (queues and topics)
aspart of asingle distributed destination set. In addition, implementing the Migratable
Service feature, will ensure that pinned “exactly-once” services, like IMS, do not
introduce a single point of failure for dependent applications in the cluster,

Programming WebL ogic IMS 39

http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

3 Managing WebLogic JMS

However, automatic failover is not currently supported by WebLogic IMS. For
information about performing a manual failover, refer to “Recovering from a
WebL ogic Server Failure” on page 3-15.

Configuring JMS Migratable Targets

3-10

Asan “exactly-once” service, WebLogic IMSis not active on all WebL ogic Server
instancesin acluster. Itisinstead “ pinned” to asingle server in the cluster to preserve
data consistency. To ensure that pinned services do not introduce a single point of
failure for dependent applications in the cluster, WebL ogic Server can be configured
to migrate exactly-once services to any server in the migratable target list.

WebL ogic IM S takes advantage of the migration framework by allowing an
administrator to specify amigratable target for a JM S server in the Administration
Console. Once properly configured, aJM Sserver and all of itsdestinationscan migrate
to another WebL ogic Server within a cluster.

ThisallowsWebL ogic IM Sto properly respond to migration requestsand bringaJM S
server online and offline in an orderly fashion. Thisincludes both scheduled
migrations as well as migrations in response to a WebL ogic Server failure with the
cluster.

For more information about defining migratable targets, see “Migration for Pinned
Services’ in Using WebLogic Server Clusters.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1027954
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1027954

Configuring JMS Migratable Targets

How JMS Migration Works

For implementations that are part of a WebL ogic clustered environment, WebL ogic
JMSimplementsthewebl ogi c. cl ust er. M gr at abl e interface, which alows IMS
servers to respond to activate and deactivate requests.

Table 3-1 WebL ogic JMS Migration Process

Migration state...

What takes place...

Initialization

Initialization of aJM S server includes processing any configuration
or deployment information and creating the appropriate objects.
Destinationsand other IMSresources are unavailableat thistime. In
addition, the persistent storeisnot opened, asthiscould compromise
the integrity of the store. The IMS server makes itself available to
handle changes in configuration that may occur between
initidization and activation.

Activation

When a JMS server is activated, it opens the persistent store,
performsany necessary recovery, reconcilesthe contentsof thestore
with the current configuration, and makes the destinations avail able
for accessby applications. |n addition, any configured server session
pools begin processing after activation is complete.

Deactivation

When a JMS server is deactivated it stops all server session pool
processing, marksall destinations as unavailable, flushes and closes
its persistent stores, purges its destinations, and deletes all objects
for the IMS server.

Configuration Steps

In order to make WebL ogic IMS amigratable service in a clustered environment, you

must do the following:

1. Administer WebL ogic clusters as described in “ Configuring WebL ogic Servers
and Clusters’ in the Using WebLogic Server Clusters.

2. Configure amigratable target for the cluster as described in “ Server -> Control
-> JM S Migration Config. -> " in the Administration Console Online Help.

Programming WebLogic JIMS 3-11

http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_control_migration-configuration.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_control_migration-configuration.html

3 Managing WebLogic JMS

3. Identify amigratable target server on which to deploy a IM S server as described
in“JMS Server Tasks” in the Administration Console Online Help.

When amigratable target server boots, the IMS server boots as well on the
user-preferred server in the cluster. However, aJMS server and al of its
destinations can migrate to another server within the cluster in response to a
WebL ogic Server failure or due to a scheduled migration for maintenance.

Note: A JMSserver and al of its destination members can migrate to another
WebL ogic Server within a cluster—even when the target WebL ogic
Server isaready hosting a JM S server with all of its destination members.
Although thiscan lead to situationswhere the same WebL ogic server hosts
two physical destinations for a single distributed destination, thisis
permissiblein the short term, since the WebL ogic Server can host multiple
physical destinationsfor that distributed destination. For moreinformation
about JM S distributed destinations, see “Using Distributed Destinations’
on page 4-90.

4. For implementations that use persistent messaging, make sure that the persistent
storeis configured such that all the candidate serversin a migratable target share
access to a persistent store. For more information about migrating persistent
stores, see “ Persistent Store Migration” on page 3-12.

5. The administrator can manually migrate services before performing server
maintenance or to a healthy server if the host server fails.

Persistent Store Migration

312

Weblogic IM S persistent stores cannot be migrated along with IM S servers; therefore,
applicationsthat need accessto persistent storesfrom other physical machines after the
migration of a IMS server must implement an alternative solution, as follows:

m |mplement a hardware solution, such as a dual-ported SCSI disk or Storage Area
Network (SAN) to make your IMS persistent store avail able from other
machines.

m Use JDBC to access your IMS JDBC store, which can be on yet another server.
Applications can then take advantage of any high-availability or failover
solutions offered by your database vendor.

For more information about configuring aJM S JDBC store, see “ Configuring
JDBC Stores’ in the Administration Console Online Help.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

Tuning WebLogic JMS

Migration Failover

For information about procedures for recovering from aWebL ogic Server failure, see
“Recovering from aWebL ogic Server Failure” on page 3-15.

Tuning WebLogic JMS

The following sections explain how to get the most out of your applications by
implementing the administrative performance tuning features available with
WebLogic IMS.

m Synchronous Write Policies for IMS File Stores—disabling synchronous writes
improves file store performance, often quite dramatically, but at the expense of
possibly losing sent messages or generating duplicate received messagesin the
event of an operating system crash or a hardware failure.

For more information, see “Configuring a Synchronous Write Policy for IMS
File Stores’ in the Administration Console Online Help.

m Using Message Paging—you can free up valuable virtual memory during peak
message |oad periods by swapping out messages from memory to persistent
storage whenever your message |oads reach a specified threshold. From a
performance perspective, this feature can greatly benefit WebL ogic Server
implementations with the large message spaces that are required by today's
enterprise applications.

For more information, see “Using Message Paging” in the Administration
Console Online Help.

m Establishing Message Flow Control—a JM S server or IM S destination (queue or
topic) can be configured to instruct message producers to limit their message
flow when it determines that it is becoming overloaded.

For more information, see “Establishing Message Flow Control” in the
Administration Console Online Help.

m Avoiding Quota Exceptions by Block Message Producers—the “Blocking Send”
features help you to avoid receiving message quota errors by temporarily
blocking message producers from sending messages to a destination (queue or
topic) when it has exceeded its specified maximum message quota.

Programming WebLogic IMS 3-13

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#sync_write_to_filestore
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#sync_write_to_filestore
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#using_message_paging
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_flow_control

3 Managing WebLogic JMS

For more information, see “ Avoiding Quota Exceptions by Blocking Message
Producers’ in the Administration Console Online Help.

m Active Expired Message Handling—active message expiration ensures that
expired messages are cleaned up immediately. Moreover, expired message
auditing gives you the option of tracking expired messages, either by logging
when a message expires or by redirecting expired messages to a specia
destination.

For more information, see “Handling Expired Messages’ in the Administration
Console Online Help.

m Tuning Distributed Destinations—the following attributes on the IM S
Connection Factory can be configured to tune your distributed destinations:

e | oad Balancing—defines whether WebL ogic IM S will spread or balance the
messaging load across distributed destinations.

e Server Affinity—defines whether aWebL ogic Server that is attempting to
load balance consumers or producers across multiple physical destinationsin
adistributed destination set, will first attempt to load balance across those
physical destinations being served by any JM S servers that are also running
on the same WebL ogic Server.

For more information, see “ Tuning Distributed Destinations’ in the
Administration Console Online Help.

Monitoring WebLogic JMS

314

Statistics are provided for the following JM S objects. IMS servers, connections,
sessions, destinations, durable subscribers, message producers, message consumers,
and server session pools. You can monitor JM S statistics using the Administration
Console.

JM S statistics continue to increment aslong asthe server isrunning. Statistics can only
be reset when the server is rebooted. For more information on configuring and
monitoring WebL ogic IMS, see “Monitoring JIMS’ in the Administration Console
Online Help.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#expiration_policy
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#distributed_destination_tuning
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_monitor.html

Recovering from a WebLogic Server Failure

Once WebL ogic IM S has been configured, applications can begin sending and
receiving messages through the IMS AP, as described in “ Developing a WebL ogic
JMS Application” on page 4-1.

Recovering from a WebLogic Server Failure

The following sections describe how to terminate a IM S application gracefully if a
server fails and how to migrate IM S data after server failure.

Programming Considerations

Y ou may want to program your JM S application to terminate gracefully in the event
of aWebL ogic Server failure. For example:

If aWebLogic Server Instance Then...

Failsand...
Y ou are connected to the failed A JVMSExcept i on isdeliveredto the connection exception listener. Y ou
WebL ogic Server instance must restart the application once the server is restarted or replaced.

Y ou are not connected to the failed Y ou must re-establish everything once the server isrestarted or replaced.
WebL ogic Server instance

A IMS Server istargeted onthefailed A Consuner C osedExcept i on isdelivered to the session exception
WebL ogic Server instance listener. Y ou must re-establish any message consumers that have been
lost.

Migrating JMS Data to a New Server

WebL ogic JM S uses the migration framework implemented in the WebL ogic Server
core, which allowsWebL ogic JM Sto properly respond to migration requestsand bring
aWebLogic IMS server online and offline in an orderly fashion. Thisincludes both

scheduled migrations as well as migrationsin response to aWebL ogic Server failure.

Programming WebLogic IMS 3-15

3 Managing WebLogic JMS

Once properly configured, aJM S server and all of its destination members can migrate
to another WebL ogic Server within a cluster.

Y ou can recover IM Sdatafrom afailed WebL ogic Server by starting anew server and
doing one or more of the tasksin Table 3-2.

Note: There are special considerations when you migrate a service from a server
instance that has crashed or is unavailable to the Administration Server. If the
Administration Server cannot reach the previously active host of the service at
the time you perform the migration, see “ Migrating a Service When Currently
Active Host is Unavailable’.

Table 3-2 Migration Task Guide

If your IMSapplication uses... Perform thefollowingtask. . .

Persistent messaging—JDBC Store = If the IDBC database store physically exists on the failed server,
migrate the database to a new server and ensure that the JDBC
connection pool URL attribute reflects the appropriate location
reference.

m |f the IDBC database does not physically exist on the failed server,
access to the database has not been impacted, and no changes are
required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the pathname within the
WebL ogic Server home directory is the same as it was on the original
server.

3-16 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/cluster/failover.html#SpecialMigrationProcedure
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#SpecialMigrationProcedure

Recovering from a WebLogic Server Failure

If your IMSapplicationuses... Perform thefollowingtask. . .

Transactions

Migrate the transaction log to the new server by copying all files named
<server nanme>*. t | og. Thiscan be accomplished by storing the
transaction log files on a dual-ported disk that can be mounted on either
machine, or by manually copying thefiles.

If thefiles are located in a different directory on the new server, update
that server’s Tr ansact i onLogFi | ePr ef i x server configuration
attribute before starting the new server.

Note: If migrating following a system crash, it is very important that
the transaction log files be avail able when the server isrestarted
at its new location. Otherwise, transactions in the process of
being committed at the time of the crash might not be resolved
correctly, resulting in data inconsistencies.

All uncommitted transactions are rolled back.

Note: JMS persistent stores can increase the amount of memory required during
initialization of WebL ogic Server asthe number of stored messagesincreases.
When rebooting WebL ogic Server, if initialization fails due to insufficient
memory, increase the heap size of the Java Virtual Machine (JVM)
proportionally to the number of messages that are currently stored in the IMS
persistent store and try the reboot again.

For information about starting a new WebL ogic Server, refer to see “ Starting and
Stopping Servers’ in the Administration Console Online Help. For information about
recovering afailed server, refer to Recovering Failed Serversin the Configuring and
Managing WebLogic Domains guide.

For more information about migratabl e targets, see “ Configuring WebL ogic
Migratable Services’ in Using WebLogic Server Clusters.

Programming WebLogic IMS 3-17

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/adminguide/failures.html
http://e-docs.bea.com/wls/docs81b/cluster/setup.html
http://e-docs.bea.com/wls/docs81b/cluster/setup.html

3 Managing WebLogic JMS

3-18 Programming WebL ogic IMS

CHAPTER

A

Developing a WebLogic
JMS Application

The following sections describe how to develop a WebL ogic IM S application:
m “Application Development Flow” on page 4-2

m “Importing Required Packages’ on page 4-3

m “Setting Up aJMS Application” on page 4-4

m “Sending Messages’ on page 4-22

m “Receiving Messages’ on page 4-29

m “Acknowledging Received Messages’ on page 4-32

m “Releasing Object Resources’ on page 4-33

m “Managing Rolled Back or Recovered Messages’ on page 4-34

m “Setting Message Delivery Times’ on page 4-38

m “Managing Connections’ on page 4-44

m “Managing Sessions’ on page 4-47

m “Creating Destinations Dynamically” on page 4-49

m “Deleting Destinations Dynamically” on page 4-52

m “Using Temporary Destinations’ on page 4-56

m “Setting Up Durable Subscriptions” on page 4-57

m “Setting and Browsing M essage Header and Property Fields’ on page 4-62

Programming WebL ogic IMS 4-1

4 Developing a WebLogic JMS Application

m “Filtering Messages” on page 4-70
m “Defining Server Session Pools’ on page 4-73
m “Using Multicasting” on page 4-83

m “Using Distributed Destinations” on page 4-90

Note: For more information about the IM S classes described in this section, access
the IM S Javadoc supplied on the Sun Microsystems' Java web site at the
following location: http://java.sun.com/products/jms/docs.html

Application Development Flow

When developing aWebL ogic JM S application, you must perform the stepsidentified
in the following figure.

Figure4-1 WebLogic IMS Application Development Flow—Required Steps

|mport Required Packages

!

Set Up a JMS Application

'

Send, Recewe, andfor
Acknowledge Messages

.

Close and Release Resources

I'n addition to the application devel opment steps defined in the previousfigure, you can
also optionally perform any of the following steps during your design development:

m Manage connection and session processing
m Create destinations dynamically

m Create durable subscriptions

4-2 Programming WebL ogic IMS

http://www.java.sun.com/products/jms/docs.html

Importing Required Packages

m Manage message processing by setting and browsing message header and
property fields, filtering messages, and/or processing messages concurrently

m Use multicasting

m Use IMSwithin transactions (described in “ Using Transactions with WebL ogic
JMS’ on page 5-1)

Except where noted, all application development steps are described in the following
sections.

Importing Required Packages

The following table lists the packages that are commonly used by WebLogic IMS
applications.

Table4-1 WebL ogic JM S Packages

Package Description

javax.jms Sun Microsystems JIMS API. This packageis always
used by WebL ogic IM S applications.

java.util Utility API, such as date and time facilities.

javaio System input and output API.

javax.naming JINDI packages required for server and destination

weblogic,jndi lookups.

javax.transaction.UserTransaction JTA API required for JTA user transaction support.

weblogic.jms.ServerSessionPool Factory WebL ogic IMS public API for use with server session

pools, an optional application server facility described
in the IM S specification.

weblogic.jms.extensions WebL ogic-specific IMS public API that provides
additional classes and methods, as described in
“WebLogic IMS Extensions’ on page 1-7.

Programming WebL ogic IMS 4-3

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jndi/package-summary.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

4 Developing a WebLogic JMS Application

Include the following packagei nport statements at the beginning of your program:
i mport javax.jns.*;

import java.util.*;

import java.io.*;

i mport javax.nam ng.*;

i mport javax.transaction.*;

If you implement aserver session pool application, also include the following classon
your import list:

i mport webl ogi c. j ns. Server Sessi onPool Fact ory;

If you want to utilize any of the WebL ogic IM S extension classes described in the
previous table, also include the following statement on your import list:

i mport webl ogi c. j ns. ext ensi ons. *;

Setting Up a JMS Application

Before you can send and receive messages, you must set up aJM S application. The
following figure illustrates the steps required to set up a JMS application.

4-4 Programming WebL ogic IMS

Setting Up a JMS Application

Figure4-2 Setting Up aJM S Application

Step 1. Look up JMS
Connection Factory
in JNDI

!

Step 2. Create a Connection
Using the
Connection Factory

Step 3. Create a Session
Using the
Connection

.

Step 4. Look up Destinations
(Queues and Topics)
in JNDI

i

Step 5. Create Message Producers
and Message Consumers
Using Session and Destinations

Step 6a. Create the
Message Object

Step 6b. Optionally Register
Asynchronous Message Listener

57

Step 7. Start the Connection

The setup steps are described in the following sections. Detailed examples of setting
up a Point-to-Point (PTP) and Publish/Subscribe (Pub/Sub) application are also
provided. The examplesare excerpted fromtheexanpl es. j ms package provided with
WebL ogic Server inthe W._HOVE\ sanpl es\ ser ver\ src\ exanpl es\ j ns directory,
where W._HOME is the top-level directory of your WebLogic Platform installation.

Programming WebL ogic IMS 4-5

4 Developing a WebLogic JMS Application

Before proceeding, ensure that the system administrator responsible for configuring
WebL ogic Server has configured the required JM S features, including the connection
factories, IMS servers, and destinations. For more information, see“ Configuing JIMS’
in the Administration Console Online Help.

For more information about the IM S classes and methods described in these sections,
see “WebLogic IMS Classes’ on page 2-5, or thej avax. j ms, or the

webl ogi c. j ms. Server Sessi onPool Fact ory, orthe webl ogi c. j ns. ext ensi ons
Javadoc.

For information about setting up transacted applicationsand JTA user transactions, see
“Using Transactions with WebLogic IMS’ on page 5-1.

Step 1: Look Up a Connection Factory in JNDI

4-6

Before you can look up a connection factory, it must be defined as part of the
configuration information. WebLogic JM S provides one default connection factory,
that isincluded as part of the configuration by default. The WebLogic JMS system
administrator may add or update connection factories during configuration. For
information on configuring connection factories and the defaultsthat are available, see
“Configuring IMS” in the Administration Console Online Help.

Once the connection factory has been defined, you can look it up by first establishing
aJNDI context (cont ext) using the Nami ngManager . I ni ti al Cont ext () method.
For any application other than a servlet application, you must pass an environment
used to create the initial context. For more information, see the

Nani ngManager . | ni ti al Cont ext () Javadoc.

Once the context is defined, to ook up a connection factory in INDI, execute one of
the following commands, for PTP or Pub/Sub messaging, respectively:

QueueConnecti onFact ory queueConnectionFactory =
(QueueConnecti onFactory) context.|ookup(CF_nane);

Topi cConnecti onFactory topi cConnecti onFactory =
(Topi cConnecti onFactory) context.| ookup(CF_nane);

The CF_nane argument specifies the connection factory name defined during
configuration.

For moreinformation about the Connect i onFact or y class, see" ConnectionFactory”
on page 2-6 or the j avax. j ms. Connect i onFact ory Javadoc.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionFactory.html

Setting Up a JMS Application

Step 2: Create a Connection Using the Connection Factory

Y ou can create a connection for accessing a queue or topic using the
Connect i onFact or y methods described in the following sections.

For more information about the Connect i on class, see“Connection” on page 2-7 or
thej avax. j ns. Connect i on Javadoc.

Create a Queue Connection

The QueueConnect i onFact or y provides the following two methods for creating a
gueue connection:

publ i ¢ QueueConnection creat eQueueConnecti on(
) throws JMSException

publ i ¢ QueueConnecti on creat eQueueConnecti on(
String userNaneg,
String password

) throws JMSException

The first method creates a QueueConnect i on; the second method creates a
QueueConnect i on using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in “Step 7: Start the Connection” on page 4-16.

For more information about the QueueConnect i onFact ory class methods, see the
j avax. j ms. QueueConnect i onFact or y Javadoc. For more information about the
QueueConnect i on class, seethej avax. j ms. QueueConnect i on Javadoc.

Create a Topic Connection

The Topi cConnect i onFact or y provides the following two methods for creating a
topic connection:

publ i c Topi cConnecti on createTopi cConnecti on(
) throws JMSException

publ i ¢ Topi cConnection createTopi cConnecti on(
String userNane,
String password

) throws JMSException

Programming WebL ogic IMS 4-7

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnectionFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnection.html

4 Developing a WebLogic JMS Application

Thefirst method creates a Topi cConnect i on; the second method creates a

Topi cConnect i on using aspecified user identity. In each case, a connectionis
created in stopped mode and must be started in order to accept messages, as described
in “Step 7: Start the Connection” on page 4-16.

For more information about the Topi cConnect i onFact ory class methods, see the
j avax. j ms. Topi cConnect i onFact or y Javadoc. For more information about the
Topi cConnecti on class, seethej avax. j ms. Topi cConnect i on Javadoc.

Step 3: Create a Session Using the Connection

Y ou can create one or more sessions for accessing a queue or topic using the
Connect i on methods described in the following sections.

Note: A session and its message producers and consumers can only be accessed by
one thread at atime. Their behavior isundefined if multiple threads access
them simultaneously.

For more information about the Sessi on class, see “Session” on page 2-8 or the
j avax. j ms. Sessi on Javadoc.

Create a Queue Session

4-8

The QueueConnect i on class defines the following method for creating a queue
session:
publ i c QueueSessi on creat eQueueSessi on(

bool ean transacted,

i nt acknow edgeMbde
) throws JMSException

Y ou must specify aboolean argument indi cating whether the session will be transacted
(t r ue) or non-transacted (f al se), and aninteger that indicates the acknowledge mode
for non-transacted sessions, asdescribed in Table 2-5, “ Acknowledge M odes Used for
Non-Transacted Sessions,” on page 2-9. The acknow edgeMode attribute isignored
for transacted sessions. In this case, messages are acknowledged when the transaction
is committed using the conmi t () method.

For more information about the QueueConnect i on class methods, see the
j avax. j ms. QueueConnect i on Javadoc. For more information about the
QueueSessi on class, seethej avax. j ms. QueueSessi on Javadoc.

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnectionFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSession.html

Setting Up a JMS Application

Create a Topic Session

The Topi cConnect i on class defines the following method for creating atopic
session:
publ i c Topi cSession createTopi cSessi on(

bool ean transact ed,

int acknow edgeMbde
) throws JMSException

Y ou must specify aboolean argument indicating whether the session will betransacted
(t r ue) or non-transacted (f al se), and an integer that indicates the acknowl edge mode
for non-transacted sessions, as described in “ Acknowledge Modes Used for
Non-Transacted Sessions’ on page 2-9. The acknow edgeMbde attribute isignored
for transacted sessions. In this case, messages are acknowledged when the transaction
iscommitted using the conmi t () method.

For more information about the Topi cConnect i on class methods, see the
j avax. j ms. Topi cConnect i on Javadoc. For more information about the
Topi cSessi on class, seethej avax. j ms. Topi cSessi on Javadoc.

Step 4: Look Up a Destination (Queue or Topic)

Before you can look up a destination, the destination must be configured by the
WebL ogic IMS system administrator, as described in “ Configuring IMS” in the
Administration Console Online Help.

Once the destination has been configured, you can ook up a destination by
establishingaJJNDI context (cont ext), which has already been accomplishedin“ Step
1: Look Up a Connection Factory in JNDI” on page 4-6, and executing one of the
following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.| ookup(Dest_nane);
Topic topic = (Topic) context.| ookup(Dest_nane);
TheDest _name argument specifiesthe destination name defined during configuration.

If you do not use a INDI namespace, you can use the following QueueSessi on or
Topi cSessi on method to reference a queue or topic, respectively:

Programming WebL ogic IMS 4-9

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config

4 Developing a WebLogic JMS Application

public Queue createQueue(
String queueNane
) throws JMSException

public Topic createTopic(
String topi cNane
) throws JMSException

The syntax for the queueNane and/or t opi cNane string is

JMB_Ser ver _Name/ Dest i nati on_Name (for example,

nyj neser ver/ nydesti nati on). To view source code that uses this syntax, refer to
thefi ndqueue() examplein “Creating Destinations Dynamically” on page 4-49.

Note: Thecreat eQueue() andcreat eTopi c() methods do not create
destinations dynamically; they create only references to destinations that
aready exist. For information about creating destinations dynamically, see
“Creating Destinations Dynamically” on page 4-49.

For more information about these methods, seethej avax. j ms. QueueSessi on and
j avax. j ms. Topi cSessi on Javadoc, respectively.

Once the destination has been defined, you can use the following Queue or Topic
method to access the queue or topic name, respectively:

public String get QieueNane(
) throws JMSException

public String getTopi cNane(
) throws JMSException

To ensure that the queue and topic names are returned in printable format, use the
toString() method.

For more information about the Dest i nat i on class, see “Destination” on page 2-12
or thej avax. j ns. Dest i nat i on Javadoc.

Server Affinity When Looking Up Destinations

4-10

Thecr eat eTopi ¢() and cr eat eQueue() methods also allow a

"JMS_Server _Name. / Desti nati on_Nane" syntax to indicate server affinity when
looking up destinations. This way when a destination islocally deployed in the same
JVM asthe connection factory, the connection factory will only return namesmatching
local destinations. If the name is not on the local VM an exception is thrown, even
though the same name might be deployed on a different VM.

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Setting Up a JMS Application

An application might use this convention to avoid hard-coding the server name when
using thecr eat eTopi ¢() and cr eat eQueue() methods so that the code can be
reused on different IMS servers without requiring any changes.

Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations

Y ou can create message producers and message consumers by passing the destination
reference to the Sessi on methods described in the following sections.

Note: Each consumer receivesits own local copy of a message. Once received, you
can modify the header field values, however, the message properties and
message body are read only. (Attempting to modify the message properties or
body at this point will generate a MessageNot W i t eabl eExcept i on.) You
can modify the message body by executing the corresponding message type's
cl ear body() method to clear the existing contents and enable write
permission.

For more information about the MessagePr oducer and MessageConsuner classes,
see “MessageProducer and MessageConsumer” on page 2-13, or the

j avax. j ms. MessagePr oducer andj avax. j ms. MessageConsuner Javadocs,
respectively.

Create QueueSenders and QueueReceivers

The QueueSessi on object defines the following methods for creating queue senders
and receivers:

publ i c QueueSender createSender (
Queue queue
) throws JMSException

publ i c QueueRecei ver createReceiver (
Queue queue
) throws JMSException

publ i c QueueRecei ver createReceiver(
Queue queue,
String nmessageSel ect or

) throws JMSException

Programming WebLogic IMS 4-11

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html

4 Developing a WebLogic JMS Application

Y ou must specify the queue object for the queue sender or receiver being created. Y ou
may a so specify a message selector for filtering messages. Message selectors are
described in more detail in “Filtering Messages’ on page 4-70.

If you pass avalue of null to the cr eat eSender () method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in “ Sending Messages’ on page 4-22.

Once the queue sender or receiver has been created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueRecei ver method:

public Queue get Queue(
) throws JMSException

For more information about the QueueSessi on class methods, see the

j avax. j ms. QueueSessi on Javadoc. For more information about the QueueSender
and QueueRecei ver classes, seethej avax. j ms. QueueSender and

j avax. j ms. QueueRecei ver Javadocs, respectively.

Create TopicPublishers and TopicSubscribers

4-12

TheTopi cSessi on object definesthe following methods for creating topic publishers
and topic subscribers:

publ i c Topi cPubl i sher createPublisher(
Topic topic
) throws JMSException

publ i c Topi cSubscri ber createSubscri ber(
Topic topic
) throws JMSException

publ i c Topi cSubscri ber createSubscri ber(
Topi c topic,
String nmessageSel ect or,
bool ean noLocal

) throws JMSException

Note: The methods described in this section create non-durable subscribers.
Non-durable topic subscribers only receive messages sent while they are
active. For information about the methods used to create durable subscriptions
enabling messages to be retained until all messages are delivered to adurable

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSender.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueReceiver.html

Setting Up a JMS Application

subscriber, see“ Setting Up Durable Subscriptions’ on page 4-57. In this case,
durable subscribers only receive messages that are published after the
subscriber has subscribed.

Y ou must specify the topic object for the publisher or subscriber being created. Y ou
may also specify a message selector for filtering messages and noLocal flag
(described later in this section). M essage selectors are described in more detail in
“Filtering Messages” on page 4-70.

If you passavalue of null to the cr eat ePubl i sher () method, you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in “ Sending Messages” on page 4-22.

An application can have aJM S connection that it usesto both publish and subscribe to
the sametopic. Because topic messages aredelivered to all subscribers, the application
can receive messages it has published itself. To prevent this behavior, aJMS
application can set anoLocal flagtotrue.

Once the topic publisher or subscriber has been created, you can access the topic name
associated with thetopic publisher or subscriber using thefollowing Topi cPubl i sher
or Topi cSubscri ber method:

Topi ¢ get Topi c(
) throws JMSException

In addition, you can accessthe noLocal variable setting associated with the topic
subscriber using the following Topi cSubscri ber method:

bool ean get NoLocal (
) throws JMSException

For more information about the Topi cSessi on class methods, see the

j avax. j ms. Topi cSessi on Javadoc. For more information about the

Topi cPubl i sher and Topi cSubscri ber classes, seethe

j avax. j ms. Topi cPubl i sher andj avax. j ms. Topi cSubscri ber Javadocs,
respectively.

Step 6a: Create the Message Object (Message Producers)

Note: This step applies to message producers only.

Programming WebLogic IMS 4-13

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicPublisher.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSubscriber.html

4 Developing a WebLogic JMS Application

To create the message object, use one of the following Sessi on or W.Sessi on class
methods:

® Sessi on Methods

Note: These methods are inherited by both the QueueSessi on and
Topi cSessi on subclasses.

publ i c Byt esMessage creat eByt esMessage(
) throws JMSException

publ i c MapMessage creat eMapMessage(
) throws JMSException

public Message creat eMessage(
) throws JMSException

publ i c Obj ect Message creat e(bj ect Message(
) throws JMSException

publ i c Obj ect Message creat e(bj ect Message(
Serializabl e object
) throws JMSException

public StreanmVessage createStreanMvessage(
) throws JMSException

publ i c Text Message creat eText Message(
) throws JMSException

publ i c Text Message creat eText Message(
String text
) throws JMSException

® WSessi on Method

public XM_.Message creat eXM_Message(
String text
) throws JMSException

For more information about the Sessi on and W.Sessi on class methods, see the
j avax.j ms. Sessi on and webl ogi c. j ns. ext ensi ons. W.Sessi on Javadocs,

respectively. For more information about the Message class and its methods, see
“Message” on page 2-15, or thej avax. j ms. Message Javadoc.

4-14 Programming WebLogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Setting Up a JMS Application

Step 6b: Optionally Register an Asynchronous Message
Listener (Message Consumers)

Note: This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement thej avax. j ms. MessagelLi st ener interface, which includes an
onMessage() method.

Note: For an example of the onMessage() method interface, see “Example:
Setting Up a PTP Application” on page 4-16.

If youwishtoissuethecl ose() method within an onMessage() method
call, the system administrator must select the Allow Close In OnMessage
check box when configuring the connection factory. For more information
on configuring IMS, see “Configuring IMS” in the Administration
Console Online Help.

2. Set the message listener using the following MessageConsuner method, passing
the listener information as an argument:

public voi d set Messageli st ener(
Messageli st ener |istener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in “ Defining a Session Exception Listener” on page 4-47.

Y ou can unset a message listener by calling the MessagelLi st ener () method with a
value of null.

Once amessage listener has been defined, you can accessit by calling the following
MessageConsunmer method:

publ i c Messageli st ener get Messageli st ener (
) throws JMSException

Note: WebLogic IMS guarantees that multiple onMessage() callsfor the same
session will not be executed simultaneously.

Programming WebLogic IMS 4-15

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

4 Developing a WebLogic JMS Application

If amessage consumer is closed by an administrator or astheresult of aserver failure,
aConsuner d osedExcept i on isdeliveredtothe session exception listener, if onehas
been defined. In this way, a new message consumer can be created, if necessary. For
information about defining a session exception listener, see “ Defining a Session
Exception Listener” on page 4-47.

The MessageConsuner class methods are inherited by the QueueRecei ver and
Topi cSubscri ber classes. For additional information about the MessageConsuner
class methods, see “MessageProducer and MessageConsumer” on page 2-13 or the
j avax. j ms. MessageConsuner Javadoc.

Step 7: Start the Connection

Example:

Y ou start the connection using the Connect i on classst art () method.

For additional information about starting, stopping, and closing a connection, see
“ Starting, Stopping, and Closing a Connection” on page 4-46 or the
j avax. j ms. Connect i on Javadoc.

Setting Up a PTP Application

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebL ogic Server in the

W._HOME\ sanpl es\ server\ src\ exanpl es\ j ns\ queue directory, where W._ HOVE
isthetop-level directory of your WebL ogic Platforminstallation. Thei ni t () method
shows how to set up and start a QueueSessi on for a IMS application. The following
showsthei ni t () method, with comments describing each setup step.

Define the required variables, including the JINDI context, JMS connection factory,
and queue static variables.

public final static String JND _FACTORY=

"webl ogi c.jndi. W.Initial ContextFactory";
public final static String JMS_FACTORY=

"webl ogi c. exanpl es. j ms. QueueConnecti onFact ory";
public final static String

QUEUE="webl ogi c. exanpl es. j ns. exanpl eQueue";

private QueueConnectionFactory gconFactory;

4-16 Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html

Setting Up a JMS Application

Step 1

Step 2

Step 3

private QueueConnecti on gcon;
private QueueSession gsession;
private QueueSender qgsender;
private Queue queue;

private Text Message nsg;

Set up the INDI initial context, as follows:

Initial Context ic = getlnitial Context(args[0]);

private static Initial Context getlnitial Context(
String url
) throws Nam ngException

{
Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, JNDI _FACTORY);
env. put (Cont ext. PROVI DER_URL, wurl);
return new | nitial Context(env);

}

Note: When setting up the INDI initial context for a servlet, use the following
method:

Context ctx = new Initial Context();

Create all the necessary objects for sending messagesto aJM S queue. Thect x object
isthe JNDI initial context passed in by the mai n() method.
public void init(

Cont ext ctx,

String queueNane

) throws Nam ngException, JMSException
{

Look up a connection factory in INDI.

gconFactory = (QueueConnectionFactory) ctx.| ookup(JM5_FACTORY);
Create a connection using the connection factory.

gcon = gconFactory. creat eQueueConnection();

Create a session using the connection. The following code defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about transacted sessions and acknowledge modes, see“ Session” on

page 2-8.

Programming WebLogic IMS 4-17

4 Developing a WebLogic JMS Application

4-18

Step 4

Step 5

Step 6

Step 7

gsessi on = gcon. creat eQueueSessi on(fal se,
Sessi on. AUTO_ACKNOW.EDGE) ;

Look up a destination (queue) in INDI.
queue = (Queue) ctx.|ookup(queueNane);

Create areference to a message producer (queue sender) using the session and
destination (queue).

gsender = gsession. creat eSender (queue);
Create the message object.

nmsg = gsession. creat eText Message() ;
Start the connection.

qgcon.start();

Thei ni t () method for the exanpl es. j ms. queue. QueueRecei ve exampleis
similar to the QueueSend i ni t () method shown previoudly, with the one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

grecei ver = gsession. creat eRecei ver (queue) ;
grecei ver. set MessagelLi stener (this);

Inthefirst ling, instead of calling the cr eat eSender () method to create areference
to the queue sender, the application callsthecr eat eRecei ver () method to createthe
queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When amessage is delivered to the queue session, it is passed to the
exanpl es. j ms. QueueRecei ve. onMessage() method. The following code excerpt
showsthe onMessage() interface from the QueueRecei ve example:

public void onMessage(Message nsgQ)

{
try {
String msgText;
if (nmsg instanceof TextMessage) {
msgText = ((Text Message)nsg). get Text();
} else { // If it is not a Text Message...
negText = msg.toString();
}

System out. println("Mssage Received: "+ msgText);

Programming WebL ogic IMS

Setting Up a JMS Application

Example:

if (megText.equal slgnoreCase("quit")) {
synchroni zed(this) {

quit = true;
this.notifyAll(); // Notify main thread to quit
}

}
} catch (JMSException jnse) {
jmse. print StackTrace();
}

}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message isaText Message and, if it is, prints the text of
the message. If onMessage() receivesadifferent messagetype, it uses the message's
toString() method to display the message contents.

Note: Itisgood practice to verify that the received message is the type expected by
the handler method.

For moreinformation about the IM S classes used in thisexample, see“WebLogic IMS
Classes” on page 2-5 or thej avax. j ms Javadoc.

Setting Up a Pub/Sub Application

The following example is excerpted from the exanpl es. j ms. t opi c. Topi cSend
example, provided with WebL ogic Server in the

W._HOME\ sanpl es\ server\src\ exanpl es\j ns\ t opi c directory, where W._HOVE
isthetop-level directory of your WebL ogic Platforminstallation. Thei ni t () method
shows how to set up and start atopic session for aJM S application. The following
showsthei ni t () method, with comments describing each setup step.

Define the required variables, including the INDI context, JM S connection factory,
and topic static variables.

public final static String JND _FACTORY=

"webl ogi c.jndi . W.Initial ContextFactory";
public final static String JMS_FACTORY=

"webl ogi c. exanpl es. j ms. Topi cConnecti onFact ory";
public final static String

TOPI C="webl ogi c. exanpl es. j ns. exanpl eTopi c";

protected Topi cConnectionFactory tconFactory;
protected Topi cConnection tcon;

Programming WebLogic IMS 4-19

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application

4-20

Step 1

Step 2

Step 3

prot ected Topi cSessi on tsession;
prot ected Topi cPublisher tpublisher;
prot ected Topic topic;

prot ected Text Message nsg;

Set up the INDI initial context, as follows:

Initial Context ic = getlnitial Context(args[0]);

private static Initial Context getlnitial Context(

String url
) throws Nam ngException
{
Hasht abl e env = new Hashtabl e();
env. put (Context. | NI TI AL_CONTEXT_FACTORY, JNDI _FACTORY);
env. put (Cont ext . PROVI DER_URL, wurl);
return new | nitial Context(env);
}
Note: When setting up the JNDI initial context for a servlet, use the following

method:

Context ctx = new Initial Context();

Create all the necessary objects for sending messagesto aJMS queue. Thect x object
isthe JNDI initial context passed in by the nai n() method.

public void init(

Cont ext ctx,

String topi cNane
) throws Nam ngException, JMSException
{

L ook up a connection factory using JNDI.

tconFactory =
(Topi cConnecti onFactory) ctx. | ookup(JMS_FACTCRY);

Create a connection using the connection factory.
tcon = tconFactory. createTopi cConnection();

Create a session using the connection. The following defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about setting session transaction and acknowledge modes, see
“Session” on page 2-8.

Programming WebL ogic IMS

Setting Up a JMS Application

Step 4

Step 5

Step 6

Step 7

tsessi on = tcon. createTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOW.EDGE) ;

Look up the destination (topic) using INDI.
topic = (Topic) ctx.lookup(topicNane);

Create areference to a message producer (topic publisher) using the session and
destination (topic).

t publ i sher = tsession.createPublisher(topic);
Create the message object.

nmsg = tsession. createText Message();
Start the connection.

tcon.start();

}

Thei ni t () method for the exanpl es. j ns. t opi c. Topi cRecei ve exampleis
similar to the Topi cSend i ni t () method shown previously with on exception. Steps
5 and 6 would be replaced by the following code, respectively:

t subscri ber = tsession.createSubscriber(topic);
t subscri ber. set MessagelLi st ener (this);

Inthefirst ling, instead of calling the cr eat ePubl i sher () method to create a
reference to the topic publisher, the application callsthecr eat eSubscri ber ()
method to create the topic subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the

exanpl es. j ms. Topi cSubscri be. onMessage() method. The onMessage()
interface for the Topi cRecei ve example is the same as the QueueReceive
onMessage() interface, asdescribed in “Example: Setting Up aPTP Application” on
page 4-16.

For moreinformation about the IM S classes used in thisexample, see“WebLogic IMS
Classes’ on page 2-5 or thej avax. j ms Javadoc.

Programming WebLogic IMS 4-21

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application

Sending Messages

Once you have set up the IMS application as described in “ Setting Up aJM S
Application” on page 4-4, you can send messages. To send a message, you must
perform the following steps:

1. Create a message object.
2. Define amessage.
3. Send the message to a destination.

For more information about the IM S classes for sending messages and the message
types, seethej avax. j ms. Message Javadoc. For information about receiving
messages, see “ Receiving Messages’ on page 4-29.

Step 1: Create a Message Object

This step has aready been accomplished as part of the client setup procedure, as
described in “ Step 6a: Create the M essage Object (M essage Producers)” on page 4-13.

Step 2: Define a Message

This step may have been accomplished when setting up an application, as described in
“ Step 6a: Create the Message Object (Message Producers)” on page 4-13. Whether or
not this step has already been accomplished depends on the method that was called to
create the message object. For example, for TextM essage and ObjectM essage types,
when you create a message object, you have the option of defining the message when
you create the message object.

If avalue has been specified and you do not wish to changeit, you can proceed to step
3.

If avalue has not been specified or if you wish to change an existing value, you can
defineavalue using the appropriateset method. For example, the method for defining
thetext of a Text Message isasfollows:

4-22 Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Sending Messages

public void set Text (
String string
) throws JMSException

Note: Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void cl earBody(
) throws JMSException

For more information about the methods used to define messages, see the
j avax. j ms. Sessi on Javadoc.

Step 3: Send the Message to a Destination

Y ou can send a message to a destination using a message producer—queue sender
(PTP) or topic publisher (Pub/Sub)—and the methods described in the following
sections. The Dest i nat i on and MessagePr oducer objects were created when you
set up the application, as described in “ Setting Up a IMS Application” on page 4-4.

Note: If multiple topic subscribers are defined for the same topic, each subscriber
will receive its own local copy of a message. Once received, you can modify
the header field values, however, the message properties and message body are
read only. Y ou can modify the message body by executing the corresponding
messagetype’'scl ear body () methodto clear the existing contentsand enable
write permission.

For more information about the MessagePr oducer class, see “MessageProducer and
MessageConsumer” on page 2-13 or thej avax. j ms. MessagePr oducer Javadoc.

Send a Message Using Queue Sender

Y ou can send messages using the following QueueSender methods:

public voi d send(
Message nessage
) throws JMSException

public void send(
Message nessage,
int deliveryMode,

Programming WebLogic IMS 4-23

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html

4 Developing a WebLogic JMS Application

int priority,
| ong timeToLive
) throws JMSException

public void send(
Queue queue,
Message nessage

) throws JMSException

public void send(
Queue queue,
Message nessage,
int deliveryMode,
int priority,
long timeTolLive

) throws JMSException

Y ou must specify amessage. Y ou may also specify the queue name (for anonymous
message producers), delivery mode (Del i ver yMode. PERSI STENT or

Del i ver yMode. NON_PERSI STENT), priority (0- 9), and time-to-live (in milliseconds).
If not specified, the delivery mode, priority, and time-to-live attributes are set to one
of the following:

m Connection factory or destination override configuration attributes defined for
the producer, as described “ Configuring IMS” in the Administration Console
Online Help.

m Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes’ on page
4-26.

Note: WebLogic IMSalso providesaproprietary Ti meToDel i ver attribute (that is,
birth time), as described in “ Dynamically Configuring Message Producer
Configuration Attributes’ on page 4-26.

If you define the delivery mode as PERSI STENT, you should configure abacking store
for the destination, as described in “ Configuring IM S’ in the Administration Console
Online Help.

Note: If no backing storeis configured, then the delivery mode is changed to
NON_PERSI STENT and messages are not written to the persistent store.

4-24 Programming WebLogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores

Sending Messages

If the queue sender is an anonymous producer (that is, if when the queue was created,
the name was set to null), then you must specify the queue name (using one of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “Create QueueSenders and QueueReceivers’ on
page 4-11.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

QueueSender . send(nessage, DeliveryMde. PERSI STENT, 4, 3600000);

For additional information about the QueueSender class methods, see the
j avax. j ms. QueueSender Javadoc.

Send a Message Using TopicPublisher

Y ou can send messages using the following Topi cPubl i sher methods:

public void publish(
Message nessage
) throws JMSException

public void publish(
Message nessage,
int deliveryMode,
int priority,
long timeTolLive

) throws JMSException

public void publish(
Topi c topic,
Message nessage

) throws JMSException

public void publish(
Topi c topic,
Message nessage,
int deliveryMode,
int priority,
long timeTolLive

) throws JMSException

Y ou must provide a message. Y ou may also specify the topic name, delivery mode
(Del i ver yMode. PERSI STENT or Del i ver yMode. NON_PERSI STENT), priority (0- 9),
and time-to-live (in milliseconds). If not specified, the delivery mode, priority, and
time-to-live attributes are set to one of the following:

Programming WebLogic IMS 4-25

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSender.html

4 Developing a WebLogic JMS Application

m Connection factory or destination override configuration attributes defined for
the producer, as described “ Configuring IMS” in the Administration Console
Online Help.

m Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes’ on page
4-26.

Note: WebLogic IMS also providesaproprietary Ti meToDel i ver attribute (that is,
birth time), as described in “Dynamically Configuring Message Producer
Configuration Attributes’ on page 4-26.

If you define the delivery mode as PERSI STENT, you should configure abacking store,
as described in “Configuring IMS” in the Administration Console Online Help.

Note: If no backing storeis configured, then the delivery mode is changed to
NON_PERSI STENT and no messages are stored.

If the topic publisher isan anonymous producer (that is, if when the topic was created,
the name was set to null), then you must specify the topic name (using either of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “ Create TopicPublishers and TopicSubscribers’
on page 4-12.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

Topi cPubl i sher. publ i sh(message, DeliveryMde. PERSI STENT,
4, 3600000) ;

For more information about the Topi cPubl i sher class methods, see the
j avax. j ms. Topi cPubl i sher Javadoc.

Dynamically Configuring Message Producer
Configuration Attributes

As described in the previous section, when sending a message, you can optionally
specify the delivery mode, timeout, time-to-live, and time-to-deliver values. If not
specified, the delivery mode, priority, time-to-live, and time-to-deliver attributes are

4-26 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicPublisher.html

Sending Messages

set to the connection factory or destination override configuration attributes defined
for the producer, as described “Configuring IMS” in the Administration Console
Online Help.

Alternatively, you can set the delivery mode, timeout, and time-to-live values
dynamically using the message producers set methods to override the configured
values.

The following table lists the message producer set and get methods for each
dynamically configurable attribute.

Note: Thedelivery mode, timeout, time-to-live, time-to-deliver attribute settingscan
be overridden by the destination using the Delivery Mode Override, Priority
Override, Time To Live Override, and Time To Deliver Override destination
configuration attributes, as described in “ Configuring Destinations’ in the
Administration Console Online Help.

Table 4-2 Message Producer Set and Get M ethods

Attribute Set Method Get Method
Delivery Mode public void setDeliveryMde(public int getDeliveryMde(
int deliveryMde) throws JMSException

) throws JMSException
Priority public void setPriority(public int getPriority(
int defaultPriority) throws JMSException

) throws JMSException
Time-To-Live public void setTineToLive(public long getTi neToLi ve(
long tinmeToLive) throws JMSException

) throws JMSException
Time-To-Deliver public void setTimeToDel i ver (public | ong getTi meToDel i ver(
| ong tinmeToDeliver) throws JMSException

) throws JMSException

Note: JIMS defines optional MessagePr oducer methods for disabling the message

ID and timestamp information. However, these methods are ignored by
WebL ogic IMS.

For more information about the MessagePr oducer class methods, see the
j avax. j ms. MessagePr oducer Javadoc.

Programming WebLogic IMS 4-27

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html

4 Developing a WebLogic JMS Application

Example: Sending Messages Within a PTP Application

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebL ogic Server in the

W._HOME\ sanpl es\ server\ src\ exanpl es\ j ns\ queue directory, where W._HOVE
isthetop-level directory of your WebL ogic Platform installation. The example shows
the code required to create a Text Message, Set the text of the message, and send the
message to a queue.

nmsg = Qgsession. creat eText Message() ;

publi ¢ void send(
String message

) throws JMSException

{
nsg. set Text (message) ;
gsender. send(nsg);

}

For more information about the QueueSender class and methods, see the
j avax. j ms. QueueSender Javadoc.

Example: Sending Messages Within a Pub/Sub
Application

4-28

The following example is excerpted from the exanpl es. j ms. t opi ¢. Topi cSend
example, provided with WebL ogic Server in the

W._HOME\ sanpl es\ server\ src\ exanpl es\ | ns\t opi c directory, where W._HOVE
isthe top-level directory of your WebL ogic Platform installation. It shows the code
required to create a Text Message, set the text of the message, and send the message
to atopic.

nmeg = tsession. createText Message();

public ;/oi d send(
String nessage
) throws JMSException

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSender.html

Receiving Messages

{

neg. set Text (nessage) ;
t publ i sher. publ i sh(nsg);
}

For more information about the Topi cPubl i sher class and methods, see the
j avax.j ms. Topi cPubl i sher Javadoc.

Receiving Messages

Once you have set up the IMS application as described in “ Setting Up aJM S
Application” on page 4-4, you can receive messages.

To receive a message, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously, as described in the
following sections.

The order in which messages are received can be controlled by the following:

m Message delivery attributes (delivery mode and sorting criteria) defined during
configuration, as described in “ Configuring IMS” in the Administration Console
Online Help, or as part of the send() method, as described in “ Sending
Messages® on page 4-22.

m Destination sort order set using destination keys, as described in “ Configuring
JMS’ in the Administration Console Online Help.

Once received, you can modify the header field values, however, the message
properties and message body are read-only. Y ou can modify the message body by
executing the corresponding message type'scl ear body() method to clear the
existing contents and enable write permission.

For more information about the IM S classes for receiving messages and the message
types, seethej avax. j ms. Message Javadoc. For information about sending
messages, see “ Sending Messages’ on page 4-22.

Programming WebLogic IMS 4-29

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

4 Developing a WebLogic JMS Application

Receiving Messages Asynchronously

This procedure is described within the context of setting up the application. For more
information, see “ Step 6b: Optionally Register an Asynchronous Message Listener
(Message Consumers)” on page 4-15.

Note: You can control the maximum number of messages that may exist for an
asynchronous session and that have not yet been passed to the message listener
by setting the M essages Maximum attribute when configuring the connection
factory.

Receiving Messages Synchronously

4-30

To receive messages synchronously, use the following MessageConsumer methods:

publ ic Message receive(
) throws JMSException

public Message receive(
I ong timeout
) throws JMSException

public Message recei veNoWai t (
) throws JMSException

In each case, the application receives the next message produced. If you call the
recei ve() method with no arguments, the call blocks indefinitely until amessageis
produced or the application is closed. Alternatively, you can pass a timeout value to
specify how long towait for amessage. If you call ther ecei ve() method withavalue
of 0, the call blocksindefinitely. Ther ecei veNowai t () method receives the next
message if oneisavailable, or returns null; in this case, the call does not block.

The MessageConsuner class methods are inherited by the QueueRecei ver and
Topi cSubscri ber classes. For additional information about the MessageConsuner
class methods, seethej avax. j ns. MessageConsuner Javadoc.

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html

Receiving Messages

Example: Receiving Messages Synchronously Within a PTP Application

Thefollowing exampleis excerpted from theexanpl es. j ms. queue. QueueRecei ve
example, provided with WebL ogic Server in the

W._HOME\ sanpl es\ server\ src\ exanpl es\ j ms\ queue directory, where W._ HOVE
isthetop-level directory of your WebL ogic Platform installation. Rather than set a
message listener, you would cal gr ecei ver . recei ve() for each message. For
example:

grecei ver = gsession. creat eRecei ver (queue) ;
grecei ver.receive();

Thefirst line creates the queue receiver on the queue. The second line executes a
recei ve() method. Ther ecei ve() method blocks and waits for a message.

Example: Receiving Messages Synchronously Within a Pub/Sub Application

Thefollowing exampleisexcerpted fromtheexanpl es. j ns. t opi c. Topi cRecei ve
example, provided with WebL ogic Server in the

W._HOME\ sanpl es\ server\ src\ exanpl es\j ms\t opi ¢ directory, where W._ HOVE
isthetop-level directory of your WebL ogic Platform installation. Rather than set a
message listener, you would call t subscri ber . recei ve() for each message.

For example:

t subscri ber = tsession.createSubscriber(topic);
Message nmsg = tsubscriber.receive();
nsg. acknow edge();

Thefirst line creates the topic subscriber on the topic. The second line executes a
recei ve() method. Therecei ve() method blocks and waits for a message.

Recovering Received Messages

Note: This section applies only to non-transacted sessions for which the
acknowledge modeisset to CLI ENT_ACKNOW.EDGE, asdescribed in Table 2-5,
“Acknowledge Modes Used for Non-Transacted Sessions,” on page 2-9.
Synchronously received AUTO_ACKNOWLEDGE messages may not be
received; they have already been acknowledged.

Programming WebLogic IMS 4-31

4 Developing a WebLogic JMS Application

An application can request that JM S redeliver messages (unacknowledge them) using
the following method:

public void recover(
) throws JMSException

Ther ecover () method performsthe following steps:
m Stops message delivery for the session

m Tagsall messages that have not been acknowledged (but may have been
delivered) as redelivered

m Resumes sending messages starting from the first unacknowledged message for
that session

Messages in queues are not necessarily redelivered in the same order that they were
originaly delivered, nor to the same queue consumers.

Acknowledging Received Messages

4-32

Note: This section applies only to non-transacted sessions for which the
acknowledgemodeisset to CLI ENT_ACKNOW.EDGE, asdescribed in Table 2-5,
“Acknowledge Modes Used for Non-Transacted Sessions,” on page 2-9.

To acknowledge a received message, use the following Message method:

public void acknow edge(
) throws JMSException

Theacknow edge() method acknowledges the current message and all previous
messages received since the last client acknowledge. Messages that are not
acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge modeis set to CLI ENT_ACKNOW.EDGE. Otherwise, the method isignored.

Programming WebL ogic IMS

Releasing Object Resources

Releasing Object Resources

When you havefinished using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of aJM S application, you
should explicitly close them to release the resources.

Enter the cl ose() method to close IMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

m The call blocks until the method call completes and any outstanding
synchronous applications are cancelled.

m All associated sub-objects are also closed. For example, when closing a session,
all associated message producers and consumers are also closed. When closing a
connection, all associated sessions are also closed.

For more information about theimpact of thec! ose() method for each object, seethe
appropriate j avax. j ns Javadoc. In addition, for more information about the
connection or Session cl ose() method, see “Starting, Stopping, and Closing a
Connection” on page 4-46 or “Closing a Session” on page 4-48, respectively.

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebL ogic Server in the

W._HOVE\ sanpl es\ server\ src\ exanpl es\j ns\ queue directory, where W._HOVE
isthetop-level directory of your WebL ogic Platform installation. This example shows
the code required to close the message consumer, session, and connection objects.

public void cl ose(
) throws JMSException

{

grecei ver. close();
gsession. cl ose();
gcon. cl ose();

}

In the QueueSend example, thecl ose() method is called at the end of mai n() to
close objects and free resources.

Programming WebLogic IMS 4-33

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application

Managing Rolled Back or Recovered
Messages

The following sections describe how to manage rolled back or recovered messages:
m Setting a Redelivery Delay for Messages
m Setting a Redelivery Limit for Messages

Setting a Redelivery Delay for Messages

4-34

Y ou can delay the redelivery of messages when atemporary, external condition
prevents an application from properly handling amessage. This allows an application
to temporarily inhibit the receipt of “ poison” messagesthat it cannot currently handle.
When amessageisrolled back or recovered, the redelivery delay isthe amount of time
amessage is put aside before an attempt is made to redeliver the message.

If IMS immediately redelivers the message, the error condition may not be resolved
and the application may still not be able to handle the message. However, if an
application is configured for aredelivery delay, then when it rolls back or recoversa
message, the message is set aside until the redelivery delay has passed, at which point
the messages are made available for redelivery—as long as the error condition has
aready been resolved.

All messages consumed and subsequently rolled back or recovered by a session
receive the redelivery delay for that session at the time of rollback or recovery.
Messages consumed by multiple sessions as part of a single user transaction will
receive different redelivery delays as a function of the session that consumed the
individual messages. Messages that are left unacknowledged or uncommitted by a
client, either intentionally or asaresult of afailure, are not assigned aredelivery delay.

Programming WebL ogic IMS

Managing Rolled Back or Recovered Messages

Setting a Redelivery Delay

A session inherits the redelivery delay from its connection factory when the sessionis
created. The Redel i ver yDel ay attribute of a connection factory is configured using
the Administration Console. For more information, see “JM S Connection Factory
Tasks’ in the Administration Console Online Help.

Theapplication that createsthe session can then override the connection factory setting
using WebL ogic-specific extensionsto thej avax. j ns. Sessi on interface. The
session attribute is dynamic and can be changed at any time. Changing the session
redelivery delay affects all messages consumed and rolled back (or recovered) by that
session after the change.

The method for setting the redelivery delay on asession is provided through the
webl ogi c. j ms. ext ensi ons. W.Sessi on interface, which is an extension to the
j avax. j ms. Sessi on interface. To define aredelivery delay for a session, use the
following methods:

public voi d set Redel i veryDel ay(
I ong redeliveryDel ay
) throws JMSExcepti on;

public |1 ong get Redel i veryDel ay(
) throws JMSExcepti on;

For more information on the W.Sessi on class, refer to the
webl ogi c. j ns. ext ensi ons. W.Sessi on Javadoc.

Overriding the Redelivery Delay on a Destination

Regardless of what redelivery delay is set on the session, the destination where a
message is being rolled back or recovered can override the setting. The redelivery
delay override applied to the redelivery of amessageisthe onein effect at thetime a
message is rolled back or recovered.

TheRedel i ver yDel ayOver ri de attribute of a destination is configured using the
Administration Console. For more information, see “JMS Destination Tasks” in the
Administration Console Online Help.

Programming WebLogic IMS 4-35

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

4 Developing a WebLogic JMS Application

Setting a Redelivery Limit for Messages

Y ou can specify alimit on the number of times that WebL ogic IMS will attempt to
redeliver amessage to an application. Once WebLogic IMSfailsto redeliver a
message to adestination for a specific number of times, the message can be redirected
to an error destination that is associated to the message destination. If no error
destination is configured, then the message is silently deleted.

Configuring a Message Redelivery Limit

When adestination’ sattemptsto redeliver amessage to aconsumer reaches aspecified
redelivery limit, then the destination deems the message undeliverable. The

Redel i veryLi mi t attribute is set on adestination and is configurable using the
Administration Console. For more information, see“ JMS Destination Tasks’ in the
Administration Console Online Help.

Configuring an Error Destination for Undelivered Messages

4-36

If an error destination is configured for undelivered messages, then when a message
has been deemed undeliverable, the message will be redirected to a specified error
destination. The error destination can be either a queue or atopic, and it must be
configured on the same JM S server asthe destination for which it isdefined. If no error
destination is configured, then undelivered messages are silently deleted.

TheError Desti nati on attributeis configured using the Administration Console.
For moreinformation, see* JMS Destination Tasks” in the Administration Console
Online Help.

If amessage redelivery attempt has already reached its specified redelivery limit, but
its error destination has also reached its maximum quota, then the message is deemed
undeliverable and is dropped. Non-persistent messages are deleted, while persistent
messages remain in the store and will reappear in their originating destination (not the
error destination) when the server isrestarted. In either case, alog messageis
generated. To prevent the log file from becoming clogged, the log message is only
generated once per error destination every five minutes, until the error condition is
resolved.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

Managing Rolled Back or Recovered Messages

Ordered Redelivery of Rolled Back Messages

All messages delivered to aconsumer from a given producer are guaranteed to arrive
at the consumer in the order in which they were produced. In addition, the “ Ordered
Redelivery” feature guarantees ordering of redelivered messages given certain
congtraints, like using message selection, having a sorted destination, delaysin the
rolling back of messages, and message consumption by other consumers.

Single Consumer

Sort Order

Selection

Ordered redelivery is only guaranteed when there is asingle consumer. If there are
multiple consumers, then there are no guarantees about the order in which any
individual consumer will receive messages.

Note: With respect to MDBs (message-driven beans), the number of consumersisa
function of the number of MDB instances deployed for a given MDB. The
initial and maximum val ues for the number of instances must be “1”.
Otherwise no ordering guarantees can be made with respect to redelivered

messages.

If agiven destination is sorted, has JM S destination keys defined, and another message
is produced such that the message would be placed at the top of the ordering, then no
guarantee can be made between the redelivery of an existing message and the delivery
of the incoming message.

If aconsumer isusing a selector, then ordering on redelivery is only guaranteed
between the message being redelivered and other messages that match the criteriafor
that selector. There are no guarantees of order with respect to messages that do not
match the selector.

Programming WebLogic IMS ~ 4-37

4 Developing a WebLogic JMS Application

Message Pipeline Size

For JMS applications using JTA transactions in conjunction with an asynchronous
consumer, the size of the message pipeline must be “1”. Anything value higher than
“1" means there may be additional in-flight messages that may appear ahead of a
redelivered message. The size of the pipeline can be set using the Messages Maximum
attribute on the JIM S connection factory used by the sending application. MDB
applications must define an application specific connection factory, set the Messages
Maximum attribute value to “1” on that connection factory, and then reference the
connection factory in the EJB descriptor for their MDB application.

Note: Theonly application capable of using JTA transactionsin conjunction with an
asynchronous consumer are MDBSs, and the WebL ogic Messaging Bridge.

Performance Requirements

JMSS applications that take advantage of this feature will incur performance
degradation for asynchronous consumers using JTA transactions (specifically, MDBs
and the WebL ogic Message Bridge). Thisis caused by a mandatory reduction in the
number of in-flight messages to exactly “1”. This means no messages are aggregated
when sent to the client.

Setting Message Delivery Times

4-38

Y ou can schedule message deliveries to an application for specific timesin the future.
Message deliveries can be deferred for short periods of time (such as seconds or
minutes) or for long stretches of time (for example, hours later for batch processing).
Y ou can aso specify arelative delivery time (in milliseconds), which will then be
computed into an absolute delivery time for amessage. Until that delivery time, the
message is essentially invisible until it is delivered, allowing you to schedule work at
aparticular time in the future.

Messages are not sent on arecurring basis, they are sent only once. In order to send
messages on arecurring basis, a received scheduled message must be sent back to its
origina destination. Typically, the receive, the send, and any associated work should
be under the same transaction to ensure exactly-once semantics.

Programming WebL ogic IMS

Setting Message Delivery Times

Setting a Delivery Time on Producers

Support for setting and getting atime-to-deliver on an individual producer is provided
through the webl ogi c. j ms. ext ensi ons. W.MessagePr oducer interface, whichis
an extension to thej avax. j ms. MessagePr oducer interface. To definea
time-to-deliver on an individual producer, use the following methods:

public void setTimeToDeliver (
I ong timeToDeliver
) throws JMSExcepti on;

public |1 ong getTi neToDel i ver (
) throws JMSExcepti on;

For more information on the W.MessagePr oducer class, refer to the
webl ogi c. j ns. ext ensi ons. W.MessagePr oducer Javadoc.

Setting a Delivery Time on Messages

Note: The message methods described here are similar to other IM S message
methods that are set via the producer. Specifically, the setting of the delivery
timeisreserved for IMS providers. An application can set the value on a
message, but the producer will override it when the message is sent or
published.

TheDel i veryTi ne isaJMS message header field that defines the earliest absolute
time at which the message can be delivered. That is, the message is held by the
messaging system and is not given to any consumers until that time.

AsaJMS header field, the Del i ver yTi me can be used to sort messagesin a
destination or to select messages. For purposes of data type conversion, the delivery
timeis stored as along integer.

The support for setting and getting the delivery time on amessageis provided through
thewebl ogi c. j ms. ext ensi ons. W.Message interface, which is an extension to the
j avax. j ms. Message interface. To define adéivery time on amessage, use the
following methods:

public void setJMSDel i veryTi me(

I ong deliveryTime
) throws JMSExcepti on;

Programming WebLogic IMS 4-39

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLMessageProducer.html

4 Developing a WebLogic JMS Application

public |l ong get JVMSDel i veryTi me(
) throws JMSExcepti on;

For more information on the W.Message class, refer to the
webl ogi c. j ms. ext ensi ons. W.Message Javadoc.

Overriding a Delivery Time

When a producer is created it inheritsits Ti neToDel i ver attribute, expressed in
milliseconds, from the connection factory used to create the connection that the
producer is a part of. Regardless of what time-to-deliver is set on the producer, the
destination to which amessage is being sent or published can override the setting. An
administrator can setthe Ti mneToDel i ver Over ri de attribute on adestinationin either
arelative or scheduled string format.

Setting a Relative Time-to-Deliver Override

A relative Ti meToDel i ver Overri de isa String specified as an integer, and is
configurable using the Administration Console. For more information, see” IMS
Destination Tasks” in the Administration Console Online Help.

Setting a Scheduled Time-to-Deliver Override

4-40

A scheduled Ti meToDel i ver Overri de can aso be specified using the

webl ogi c. j ms. ext ensi ons. schedul e class, which provides methods that take a
schedule and return the next scheduled timefor delivering messages. A cron-likestring
is used to define the schedule. The format is defined by the following BNF syntax:

schedule := millisecond second mi nute hour dayOf Month nonth
dayOf \eek

The BNF syntax for specifying the second field is as follows:

second = * | secondLi st

secondLi st = secondltem [, secondLi st]
secondltem := secondVal ue | secondRange
SecondRange : = secondVal ue - secondVal ue

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLMessage.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

Setting Message Delivery Times

Similar BNF statements for milliseconds, minute, hour, day-of-month, month, and
day-of-week can be derived from the second syntax. The values for each field are
defined as non-negative integers in the following ranges:

m | liSecondVal ue : = 0-999
m | |i SecondVal ue : = 0-999
secondVal ue = 0-59
m nut eVal ue = 0-59
hour Val ue = 0-23
dayCOf Mont hval ue = 1-31
nont hVal ue = 1-12
dayOf WeekVal ue =1-7

Note: These values equate to the same ranges that thej ava. uti | . Cal endar class
uses, except for mont hval ue. Thej ava. uti | . Cal endar range for
nmont hVval ue is0-11, rather than 1-12.

Using thissyntax, each field can be represented asarange of valuesindicating all times
between the two times. For example, 2- 6 in the dayOf Week field indicates Monday
through Friday, inclusive. Each field can al so be specified as a comma-separated list.
For instance, aminute field of 0, 15, 30, 45 means every quarter hour on the quarter
hour. Lastly, each field can be defined as both a set of individual values and ranges of
values. For example, an hour field of 9- 17, 0 indicates between the hours of 9 A.M.
and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

m |f multiple schedules are supplied (using a semi-colon (;) as the separator), the
next scheduled time for the set is determined using the schedul e that returns the
soonest value. One use for thisis for specifying schedules that change based on
the day of the week (see the final example below).

m A value of 1 (one) for the dayOf Week equates to Sunday.

m A value of * means every timefor that field. For instance, a* in the Month field
means every month. A * in the Hour field means every hour.

m Avaueof| orlast (notcase sensitive) indicates the greatest possible value for
afield.

m |f aday-of-month is specified that exceeds the normal maximum for a month,
then the normal maximum for that month will be specified. For example, if it is
February during aleap year and 31 was specified, then the scheduler will

Programming WebLogic IMS 4-41

Developing a WebLogic JMS Application

schedule asif 29 was specified instead. This means that setting the month field
to 31 always indicates the last day of the month.

m |f milliseconds are specified, they are rounded down to the nearest 50th of a
second. Thevaluesare0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded
to 0-39 and 50-999 gets rounded to 39-999.

Note: When aCaendar is not supplied as a method parameter to one of the static
methods in this class, the calendar used isa
java.util. G egorianCal endar withadefaultj ava. util . Ti meZone and
adefaultj ava. util . Local e.

Table 4-3 Example Time-to-Deliver Schedules

Example Description

000,30 * * * * Exact next nearest half-hour

* * 0,30 4-5 * * * Anytime in the first minute of the half hoursinthe4 A.M. and 5
A.M. hours

¥ ¥ * 0-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

*oxox x84 * 2 The second Tuesday of the month

*x ox 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

ook ok % 3] % Thelast day of the month

*xox v 1541 The next time April 15th occurs on a Sunday

0001**2-6;,0002* * 1,7 1A.M.onweekdays; 2 A.M. onweekends

JMS Schedule Interface

4-42

Thewebl ogi c. j ms. ext ensi ons. schedul e class has methods that will return the
next scheduled time that matches the recurring time expression. This expression uses
the same syntax asthe Ti meToDel i ver Over ri de. The time returned in milliseconds
can be relative or absolute.

For more information on the W.Sessi on class, refer to the
webl ogi c. j ns. ext ensi ons. Schedul e Javadoc.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/Schedule.html

Setting Message Delivery Times

Y ou can define the next scheduled time after the given time using the following
method:

public static Cal endar next Schedul edTi me(
String schedul e,
Cal endar cal endar
) throws ParseException {

Y ou can define the next scheduled time after the current time using the following
method:

public static Cal endar next Schedul edTi me(
String schedul e,
) throws ParseException {

Y ou can define the next scheduled time after the given time in absolute milliseconds
using the following method:

public static | ong next Schedul edTinel nMI1is(
String schedul e,
long timelnMIlis
) throws ParseException

Y ou can define the next scheduled time after the given time in relative milliseconds
using the following method:

public static | ong nextSchedul edTinelnMIIlisRelative(
String schedul e,
long timelnMIlis
) throws ParseException {

Y ou can define the next scheduled time after the current timein relative milliseconds
using the following method:

public static | ong nextSchedul edTimelnM I 1isRel ative(

String schedul e
) throws ParseException {

Interaction with the Time-to-Live Value

If the specified time-to-live value (JMSExpi r at i on) islessthan or equal to the
specified time-to-deliver value, then the message delivery succeeds. However, the
message is then silently expired.

Programming WebLogic IMS ~ 4-43

4 Developing a WebLogic JMS Application

Managing Connections

The following sections describe how to manage connections:
m Defining a Connection Exception Listener
m Accessing Connection Metadata

m Starting, Stopping, and Closing a Connection

Defining a Connection Exception Listener

An exception listener asynchronously notifies an application whenever a problem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

Note: The purpose of an exception listener isnot to monitor all exceptionsthrown by
aconnection, but to deliver those exceptions that would not be otherwise be
delivered.

Y ou can define an exception listener for aconnection using thefollowing Connect i on
method:

public void set ExceptionLi stener(
Excepti onLi stener |istener
) throws JMSException

Y ou must specify an Except i onLi st ener object for the connection.

The IMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following Except i onLi st ener
method:

public void onExcepti on(
JMSException exception
)

The IMS Provider specifiesthe exception that describes the problem when calling the
method.

4-44 Programming WebLogic IMS

Managing Connections

Y ou can access the exception listener for aconnection using the following Connection
method:

publ i ¢ ExceptionLi stener get Excepti onLi stener(
) throws JMSException

Accessing Connection Metadata

Y ou can access the metadata associ ated with a specific connection using the following
Connect i on method:

publ i c Connecti onMet aDat a get Met aDat a(
) throws JMSException

This method returns aConnect i onMet aDat a object that enables you to access IMS
metadata. The following table lists the various type of IMS metadata and the get
methods that you can use to access them.

JM S Metadata Get Method

Version public String getJMsVersion(
) throws JMSException

Major version public int getJMSMaj orVersion(
) throws JMSException

Minor version public int getJMSM nor Versi on(
) throws JMSException

Provider name public String get JVMSProvi der Nanmg(
) throws JMSException

Provider version public String getProviderVersion(
) throws JMSException

Provider mgjor version public int getProviderMaj or Versi on(
) throws JMSException

Provider minor version public int getProviderM norVersion(
) throws JMSException

JMSX property names public Enumeration getJM SX PropertyNames(
) throws JM SException

Programming WebLogic IMS 4-45

4 Developing a WebLogic JMS Application

For more information about the Connect i onMet aDat a class, see the
j avax. j ms. Connect i onMet aDat a Javadoc.

Starting, Stopping, and Closing a Connection

4-46

To control the flow of messages, you can start and stop a connection temporarily using
thestart () and st op() methods, respectively, as follows.

Thestart () andstop() method details are asfollows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection
is started. Typically, other IMS objects are set up to handle messages before the
connection is started, as described in “ Setting Up aJM S Application” on page 4-4.
Messages may be produced on a stopped connection, but cannot be delivered to a
stopped connection.

Once started, you can stop a connection using the st op() method. This method
performs the following steps:

m Pausesthe delivery of all messages. No applications waiting to receive messages
will return until the connection is restarted or the time-to-live value associated
with the message is reached.

m Waitsuntil all message listeners that are currently processing messages have
completed.

Typically, aJMS Provider allocates a significant amount of resources when it creates
aconnection. When a connection is no longer being used, you should closeit to free
up resources. A connection can be closed using the following method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

m Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionMetaData.html

Managing Sessions

m Waitsuntil all message listeners that are currently processing messages have
compl eted.

m Rollsback in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see “Using JTA User Transactions’ on page 5-5.

m Does not force an acknowledge of client-acknowledged sessions. By not forcing
an acknowledge, no messages are lost for queues and durabl e subscriptions that
require reliable processing.

When you close a connection, all associated objects are also closed. Y ou can continue
to use the message objects created or received viathe connection, except the received
message’ sacknow edge() method. Closing aclosed connection has no effect.

Note: Attempting to acknowledge a received message from a closed connection’s
sessionthrowsan | | | egal St at eExcept i on.

Managing Sessions

The following sections describe how to manage sessions, including:
m Defining a Session Exception Listener
m Closing a Session

Defining a Session Exception Listener

An exception listener asynchronously notifies a client in the event a problem occurs
with asession. Thisis particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note: The purpose of an exception listener isnot to monitor all exceptionsthrown by

asession, only to deliver those exceptions that would otherwise be
undelivered.

Programming WebLogic IMS ~ 4-47

4 Developing a WebLogic JMS Application

Y ou can define an exception listener for a session using the following W.Sessi on
method:

public void set Excepti onLi stener (
Excepti onLi stener |istener
) throws JMSException

Y ou must specify an Except i onLi st ener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following Except i onLi st ener
method:

public void onExcepti on(
JMSException exception

)

The IM S Provider specifies the exception encountered that describes the problem
when calling the method.

Y ou can access the exception listener for a session using the following W.Sessi on
method:

publ i c ExceptionLi stener get Excepti onLi stener(
) throws JMSException

Note: Because there can only be one thread per session, an exception listener and
message listener (used for asynchronous message delivery) cannot execute
simultaneoudly. Consequently, if a message listener is executing at thetime a
problem occurs, execution of the exception listener is blocked until the
message listener compl etesitsexecution. For moreinformation about message
listeners, see “Receiving Messages Asynchronously” on page 4-30.

Closing a Session

4-48

Aswith connections, aJM S Provider all ocates asignificant amount of resourceswhen
it creates a session. When a session is no longer being used, it isrecommended that it
be closed to free up resources. A session can be closed using the following Sessi on
method:

public void close(
) throws JMSException

Programming WebL ogic IMS

Creating Destinations Dynamically

Note: Thecl ose() method istheonly Sessi on method that can beinvoked from a
thread that is separate from the session thread.

This method performs the following steps to execute an orderly shutdown:

m Terminates the receipt of all pending messages. Applications may return a
message or null if amessage was not available at the time of the close.

m Waitsuntil all message listeners that are currently processing messages have
compl eted.

m Rolls back in-process transactions (unless such transactions are part of external
JTA user transaction). For more information about JTA user transactions, see
“Using JTA User Transactions’ on page 5-5.

m Does not force an acknowledge of client acknowledged sessions, ensuring that
no messages are lost for queues and durable subscriptions that require reliable
processing.

When you close a session, all associated producers and consumers are al so closed.

Note: If youwanttoissuethecl ose() methodwithinanonMessage() method call,
the system administrator must select the Allow Close In OnMessage check
box when configuring the connection factory. For moreinformation, see“IJMS
Connection Factory Tasks’ in the Administration Console Online Help.

Creating Destinations Dynamically

Y ou can create destinations dynamically using:
m webl ogi c. j ms. ext ensi ons. JMSHel per class methods
m Temporary destinations

The associated procedures for creating dynamic destinations are described in the
following sections.

Programming WebLogic IMS ~ 4-49

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

4 Developing a WebLogic JMS Application

Using the JMSHelper Class Methods

4-50

Y ou can dynamically submit an asynchronous request to create a queue or topic,
respectively, using the following JMSHel per methods availablein
webl ogi c. j nms. ext ensi ons:

static public void createPernmanent QueueAsync(
Cont ext ctx,
String jmsServer Nane,
String queueNare,
String jndi Nane
) throws JMSException

static public void createPernmanent Topi cAsync(
Cont ext ctx,
String jnmsServer Nane,
String topicNare,
String jndi Nanme
) throws JMSException

Y ou must specify the INDI initial context, name of the JIMS server to be associated
with the destination, name of the destination (queue or topic), and name used to look
up the destination within the INDI namespace.

Each method updates the following:

m Configuration file associated with the specified domain to include the
dynamically created destination

m JINDI namespace to advertise the destination

Note: Either method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

The time required to create the destination on the JIM S server and propagate the
information to the INDI namespace can be significant. The propagation delay
increasesif the environment contains multiple servers. It isrecommended that you test
for the existence of the queue or topic, respectively, using the session cr eat eQueue()
or creat eTopi c() method, rather than perform a JINDI lookup. By doing so, you can
avoid some of the propagation-specific delay.

For exampl e, the following method, f i ndQueue() , attempts to access adynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

Creating Destinations Dynamically

private static Queue findQueue (
QueueSessi on queueSessi on,
String jmsServer Nane,
String queueNane,
int retryCount,
long retrylnterval

) throws JMSException

{
String W sQueueNane = jnsServerNane + “/” + queueNane;
String command = “ QueueSessi on. creat eQueue(“ +
w sQueueNane + “)7;
long startTimeMIlis = SystemcurrentTineMI1is();
for (int i=retryCount; i>=0; i--) {
try {
Systemout.printIn(“Trying “ + comuand);
Queue queue = queueSessi on. cr eat eQueue(w sQueueNane) ;
System out. println(comand + “succeeded after “ +
(retryCount - i + 1) + “ tries in*“ +
(SystemcurrentTineMIlis() - startTimeMIlis) +
“mllis.”);
return gqueue;
} catch (JMsException je) {
if (retryCount == 0) throw je;
}
try {
System out.println(conmand + “> failed, pausing “ +
retrylnterval + “ mllis.”);
Thread. sl eep(retrylnterval);
} catch (InterruptedException ignore) {}
}
t hrow new JMSException(“out of retries”);
}

Y ou can then call thef i ndQueue() method after the IMsHel per class method call to
retrieve the dynamically created queue once it becomes available. For example:

JMBHel per. cr eat ePer manent QueueAsync(ct x, donmin, jnsServer Nane,
gueueNare, jndi Nane);

Queue queue = findQueue(gsess, jnsServerName, queueNane,
retry_count, retry_interval);

For more information on the JMsSHel per class, refer to the
webl ogi c. j ns. ext ensi ons. JMSHel per Javadoc.

Programming WebLogic IMS ~ 4-51

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/JMSHelper.html

4 Developing a WebLogic JMS Application

Deleting Destinations Dynamically

Y ou can dynamically delete JIM S destinations (queue or topic) using:
® webl ogi c. j . ext ensi ons. JMSHel per class method

m Administration console

m User-defined IMX application

The JM S server removes the deleted destination in real time, therefore, it's not
necessary to redeploy the IMS server for the deletion to take effect.

The associated procedures for creating dynamic destinations are described in the
following sections.

Preconditions for Deleting Destinations

In order to successfully delete a destination, the following preconditions must be met:

m The destination must not be amember of adistributed destination. For more
information, see “Using Distributed Destinations” on page 4-90.

m The destination must not be the error destination for some other destination. For
more information, see “ Configuring an Error Destination for Undelivered
Messages’ on page 4-36.

If either of these preconditions cannot be met, then the deletion will not be allowed.

Using the JMSHelper Class Methods

Y ou can dynamically submit arequest to delete a destination (queue or topic), using
the following JMsHel per methods available in webl ogi c. j ns. ext ensi ons:

4-52 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

Deleting Destinations Dynamically

static public void del et ePer manent Queue(
Cont ext ctx,
String jmsServer Nane,
String queueNane
) throws ConfigurationException

static public void del et ePer manent Topi c(
Cont ext ctx,
String jnmsServer Nane,
String topi cNane
) throws ConfigurationException

Y ou must specify the INDI initial context, name of the IM S server to be associated
with the destination, and the name of the destination (queue or topic).

Semantics When Deleting Destinations

When adestination is deleted using the Administration Console, the JIM SHel per
function, or a user-defined IMX application, the following behaviors and semantics

apply.

Producer, Consumer, and Browser Creation

Once a destination is deleted, applications will no longer be able to create producers,
consumers, or browsersfor the deleted destination. Any attempt to do so will result in
theapplicationreceivingan| nval i dDest i nati onExcept i on — asif thedestination
does not exist.

CLosing of Consumers

All existing consumers for the deleted destination are closed. The closing of a
consumer generates a Consumner C osedExcept i on, which isdelivered to the
Except i onLi st ener, if any, of the parent session. The message for the exception will
read “ Destination was deleted”.

When a consumer is closed, if it has an outstanding r ecei ve() operation, then that
operation is cancelled and the caller receivesanul | indicating that no messageis
available. Attempts by an application to do anything but cl ose() aclosed consumer
will resultinan| 11 egal St at eExcepti on.

Programming WebLogic IMS ~ 4-53

4 Developing a WebLogic JMS Application

Closing of Browsers

All browsers for the deleted destination are closed. Attempts by an application to do
anything but cl ose() aclosed browser will resultinan ||| egal St at eExcept i on.
Closing of a browser implicitly closes all enumerations associated with the browser.

Closing of Enumerations

All enumerations for the deleted destination are closed. The behavior after an
enumeration is closed depends on the last call before the enumeration was closed. If a
call to hasMor eEl ement s() returns avalue of true, and no subsequent call to

next El enent () has been made, then the enumeration guarantees that next element
can be enumerated. This produces the specifics.

When the last call before the close was to hasMor eEl enent s() , and the value
returned was true, then the following behaviors apply:

m Thefirst call to next El ement () will return amessage.
m Subsequent callsto next El enent () will throw aNoSuchEl ement Except i on.

m CadlstohasMr eEl enent s() made before the first call to next El enent () will
return true.

m Cadlsto hasMor eEl ement s() made after the first call to next El ement () will
return false.

If a given enumeration has never been called, or the last call before the close wasto
next El enent (), or thelast call before the close wasto hasMor eEl ement s() and the
value returned was fal se, then the following behaviors apply:

m CalstohasMr eEl ement s() will return false.

m Callstonext El enent () will throw aNoSuchEl ement Except i on.

Cancelled Blocking Send Operations

4-54

All blocking send operations posted agai nst the del eted destination are cancelled. Send
operations waiting for quotawill receive aResour ceAl | ocat i onExcept i on.

For more information on using blocking send operations, see “ Avoiding Quota
Exceptions by Blocking Message Producers’ in the Administration Console Online
Help.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance

Deleting Destinations Dynamically

Affected Transactions

The deletion of a destination does not affect existing uncommitted transactions. Any
uncommitted work associated with adeleted destination is allowed to compl ete as part
of the transaction. However, since the destination is deleted, the net result of all
operations (rollback, commit, etc.) isthe deletion of the associated messages.

Physical Deletion of Existing Messages

Under normal operating circumstances all durable subscribers for the deleted
destination are permanently deleted. All messages, persistent and non-persistent,
stored in the del eted destination are permanently removed from the messaging system.

Timestamps for Troubleshooting Deleted Destinations

If a destination with persistent messages is deleted and then immediately recreated
while the IMS server is not running, the IMS server will compare the version number
of the destination (using the Cr eat i onTi ne field in the configuration confi g. xm
file) and the version number of the destination in the persistent messages. In this case,
the left over persistent messages for the older destination will have an older version
number than the version number intheconfi g. xm filefor the recreated destination,
and when the IM S server isrebooted, the left over persistent messages are simply
discarded.

However, if apersistent message somehow has aversion number that is newer than the
version numberintheconfi g. xn for therecreated destination, then either the system
clock wasrolled back when the destination was deleted and recreated (while the IMS
server was not running), or adifferent conf i g. xnl isbeing used. In thissituation, the
JM S server will fail to boot. To save the persistent message, you can set the version
number (the Cr eat i onTi me field) intheconfi g. xm to match the version number in
the persistent message. Otherwise, you can change the version number in the

confi g. xm sothatitisnewer than the version number in the persistent message; this
way, the IMS server can del ete the message when it is rebooted.

Programming WebLogic IMS ~ 4-55

4 Developing a WebLogic JMS Application

Statistics

Statistics for the deleted destination and the hosting IM S server are updated as the
messages are physically deleted. However, the deletion of some messages can be
delayed pending the outcome of some other operation. This includes messages sent
and/or received in atransaction, as well as unacknowledged non-transactional
messages received by aclient.

Using Temporary Destinations

Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

The WebL ogic IMS server can use the JMSRepl yTo header field to return aresponse
to the application. The application may optionally set the IMSRepl yTo header field of
its messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the del et e() method, described in “ Deleting a Temporary
Destination” on page 4-57.

Because messages are never availableif the server isrestarted, all PERSI STENT
messages are silently made NON_PERSI STENT. Asaresult, temporary destinations are
not suitable for business logic that must survive arestart.

Note: Before creating atemporary destination (queue or topic), you must use the
Administration Console to configure the JIMS server to use temporary
destinations. Thisis done by using the IMS server’s Tenpor ary Tenpl at e
attribute to select a JM S template that is configured in the same domain. For
more information about configuring aJM S server, see“JMS Server Tasks' in
the Administration Console Online Help.

The following sections describe how to create atemporary queue (PTP) or temporary
topic (Pub/Suby).

4-56 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsserver_config_general.html

Setting Up Durable Subscriptions

Creating a Temporary Queue

Y ou can create atemporary queue using the following QueueSessi on method:

publ i ¢ TenporaryQueue createTenporaryQueue(
) throws JMSException

For example, to create areference to a Tenpor ar yQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Sessi on. creat eTenporaryQeue();

Creating a Temporary Topic

Y ou can create atemporary topic using the following Topi cSessi on method:

publ i ¢ TenporaryTopi ¢ createTenporaryTopi c(
) throws JMSException

For example, to create areference to atemporary topic that will exist only for the
duration of the current connection, use the following method call:

Topi cPubl i sher = Sessi on. creat eTenporaryTopic();

Deleting a Temporary Destination

When you finish using atemporary destination, you can deleteit (to release associated
resources) using the following Tenpor ar yQueue or Tenpor ar y Topi ¢ method:

public void del et e(
) throws JMSException

Setting Up Durable Subscriptions

WebL ogic IM S supports durable and non-durable subscriptions.

Programming WebLogic IMS ~ 4-57

4 Developing a WebLogic JMS Application

For durable subscriptions, WebL ogic IMS stores a message in a persistent file or
database until the message has been delivered to the subscribers or has expired, even
if those subscribers are not active at the time that the message is delivered. A
subscriber is considered active if the Java object that represents it exists. Durable
subscriptions are supported for Pub/Sub messaging only.

Note: Durable subscriptions cannot be created for distributed topics. However, you
can still create a durable subscription on distributed topic member and the
other topic members will forward the messages to the member that has the
durable subscription. For more information on using distributed topics, see
“Using Distributed Destinations” on page 4-90.

For non-durable subscriptions, WebL ogic JM S delivers messages only to applications
with an active session. Messages sent to atopic while an applicationisnot listening are
never delivered to that application. In other words, non-durabl e subscriptionslast only
aslong astheir subscriber objects. By default, subscribers are non-durable.

The following sections describe:

m Defining the Client ID

Creating Subscribers for a Durable Subscription

Deleting Durable Subscriptions

Modifying Durable Subscriptions

Managing Durable Subscriptions

Defining the Client ID

4-58

To support durable subscriptions, aclient identifier (client ID) must be defined for the
connection.

Note: TheJMSclient ID is not necessarily equivalent to the WebL ogic Server
username, that is, a name used to authenticate auser in the WebL ogic security
realm. Y ou can, of course, set the IMSclient ID to the WebL ogic Server
username, if it is appropriate for your JIM S application.

The client ID can be supplied in two ways:

Programming WebL ogic IMS

Setting Up Durable Subscriptions

m The preferred method, according to the JIM S specification, isto configure the
connection factory with the client ID. For WebL ogic IMS, this means adding a
separate connection factory definition during configuration for each client ID.
Applications then look up their own topic connection factories in INDI and use
them to create connections containing their own client IDs. For more
information about configuring a connection factory with aclient ID, see“JMS
Connection Factory Tasks’ in the Administration Console Online Help.

m Alternatively, an application can set its client ID in the connection after the
connection is created by calling the following connection method:

public void setdientl D
String clientlD
) throws JMSException

You must specify aunique client ID. If you use this alternative approach, you
can use the default connection factory (if it is acceptable for your application)
and avoid the need to modify the configuration information. However,
applications with durable subscriptions must ensure that they call
setClientl D() immediately after creating their topic connection. For
information on the default connection factory, see “ Configuring JIMS” in the
Administration Console Online Help.

If aclient ID isaready defined for the connection, an
I'l1 egal StateException isthrown. If the specified client ID is aready defined
for another connection, an | nval i dd i ent | DExcept i on isthrown.

Note: When specifying the client ID using theset Cl i ent 1 D() method, thereis
arisk that aduplicate client ID may be specified without throwing an
exception. For example, if the client IDs for two separate connections are
set simultaneously to the same value, arace condition may occur and the
same value may be assigned to both connections. Y ou can avoid this risk
of duplication by specifying the client 1D during configuration.

To display aclient ID and test whether or not aclient ID has aready been
defined, use the following Connection method:

public String getCientl D
) throws JMSException

Note: Support for durable subscriptionsisafeature unique to the Pub/Sub messaging
model, so client IDs are used only with topic connections; queue connections
also contain client IDs, but IMS does not use them.

Programming WebLogic IMS 4-59

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

4 Developing a WebLogic JMS Application

Durabl e subscriptions should not be created for atemporary topic, because a
temporary topic is designed to exist only for the duration of the current
connection.

Creating Subscribers for a Durable Subscription

4-60

Y ou can create subscribers for a durable subscription using the following
Topi cSessi on methods:

publ i c Topi cSubscri ber createDurabl eSubscri ber(
Topi c topic,
String nane

) throws JMSException

publ i ¢ Topi cSubscri ber createDurabl eSubscri ber(
Topi c topic,
String nane,
String messageSel ector,
bool ean noLocal
) throws JMSException

Y ou must specify the name of the topic for which you are creating a subscriber, and
the name of the durable subscription. Y ou may a so specify a message selector for
filtering messages and anoLocal flag (described later in this section). Message
selectors are described in more detail in “Filtering Messages’ on page 4-70. If you do
not specify amessageSel ect or, by default all messages are searched.

An application can use a JM S connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, a JM S application can set a
noLocal flagtotrue. ThenoLocal valuedefaultstof al se.

The durable subscription nane must be unique per client ID. For information on
defining the client ID for the connection, see “Defining the Client ID” on page 4-58.

Only one session can define a subscriber for a particular durable subscription at any
given time. Multiple subscribers can access the durable subscription, but not at the
same time. Durable subscriptions are stored within the file or database.

Programming WebL ogic IMS

Setting Up Durable Subscriptions

Deleting Durable Subscriptions

To delete a durable subscription, you use the following Topi cSessi on method:
public void unsubscri be(
String nane
) throws JMSException
Y ou must specify the name of the durable subscription to be deleted.
Y ou cannot delete a durable subscription if any of the following are true:
m A Topi cSubscri ber istill active on the session.

m A message received by the durable subscription is part of atransaction or has
not yet been acknowledged in the session.

Note: You can aso delete durable subscriptions from the Administration Console.
For information on managing durable subscriptions, see “Managing Durable
Subscriptions’ on page 4-62.

Modifying Durable Subscriptions

To modify adurable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in “Deleting Durable
Subscriptions’ on page 4-61.

This step is optional. If not explicitly performed, the deletion will be executed
implicitly when the durable subscription is recreated in the next step.

2. Use the methods described in “ Creating Subscribers for a Durable Subscription”
on page 4-60 to recreate a durable subscription of the same name, but specifying
adifferent topic name, message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: When recreating adurable subscription, be careful to avoid creating adurable
subscription with a duplicate name. For example, if you attempt to delete a
durabl e subscription from aJM S server that is unavailable, the delete call fails.
If you subsequently create a durable subscription with the same name on a
different IMS server, you may experience unexpected results when the first

Programming WebLogic IMS 4-61

4 Developing a WebLogic JMS Application

JMSS server becomes available. Because the original durable subscription has
not been del eted, when thefirst IM S server again becomesavailabl e, therewill
be two durable subscriptions with duplicate names.

Managing Durable Subscriptions

Y ou can monitor and del ete durabl e subscriptions from the Administration Console.
For more information, see “ Configuring IMS’ in the Administration Console Online
Help.

Setting and Browsing Message Header and
Property Fields

4-62

WebLogic IMS provides a set of standard header fields that you can define to identify
and route messages. |n addition, property fields enable you to include
application-specific header fields within a message, extending the standard set. You
can use the message header and property fields to convey information between
communicating processes.

The primary reason for including datain a property field rather than in the message
body is to support message filtering via message selectors. Data in the message body
cannot be accessed via message selectors. For example, suppose you use a property
field to assign high priority to a message. Y ou can then design a message consumer
containing a message selector that accesses this property field and selects only
messages of expedited priority. For more information about selectors, see “Filtering
Messages” on page 4-70.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

Setting and Browsing Message Header and Property Fields

Setting Message Header Fields

JM S messages contain a standard set of header fields that are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. Once a message
isreceived, its header field values can be modified.

For adescription of the standard messages header fields, see“Message Header Fields”
on page 2-15.

The following table lists the Message class set and get methods for each of the
supported data types.

Note:

In some cases, the send() method overrides the header field value set using
theset () method, asindicated in the following table.

Header Field

Set Method

Get Method

JMBCorrel ationl D

public void

set JMsSCor rel ati onl D(
String correl ationl D

) throws JMSException

public String
get IMSCor rel ati onl I
) throws JMSException

public byte[]
get IMSCor r el ati onl DAsByt es(
) throws JMSException

JNVBDest i nati onl

public void set JMSDesti nati on(
Destination destination
) throws JMSException

public Destination
get JMsDest i nati on(
) throws JMSException

JMVBDel i ver yMode?l

public void

set JMSDel i ver yMbde(
int deliveryMode

) throws JMSException

public int getJMsDeliveryMode(
) throws JMSException

JMBDel i veryTi mel

public void
set JMsDel i veryTi me(
| ong deliveryTinme
) throws JMSException

public |ong
get IMsDel i veryTi me(
) throws JMSException

Programming WebL ogic IMS

4-63

4 Developing a WebLogic JMS Application

Header Field

Set Method

Get Method

J\VsDel i ver yl\/bde1

public void

set JMBDel i ver yMode(
int deliveryMde

) throws JMSException

public int getJWMSDeliveryMode(
) throws JMSException

JMBMessagel D

public void set JMSMessagel D(
String id
) throws JMSException

In addition to the set method, the
webl ogi c. j ns. ext ensi ons. JMsSHel
per class provides the following methods
to convert between pre-WebL ogic IMS 6.0
and 6.1 JMSMessagel Dformats:
public void
ol dJMsMessagel DToNew(

String id,

| ong tinmeStanp
) throws JMSException

public void

newd MsMessagel DTod d(
String id,
long timeStanp

) throws JMSException

public String getJVMBMessagel D(
) throws JMSException

JMBPriorityl

public void set JIMSPriority(
int priority
) throws JMSException

public int getJVMSPriority(
) throws JMSException

JMBRedel i ver ed?

public void set JMSRedel i vered(
bool ean redelivered
) throws JMSException

publ i c bool ean
get IMSRedel i ver ed(
) throws JMSException

JMBRepl yTo

public void set JMSRepl yTo(
Destination replyTo
) throws JMSException

public Destination
get IMSRepl yTo(
) throws JMSException

JMVBTi meSt anp?

public void set JMSTi meSt anp(
I ong timestanp
) throws JMSException

public | ong get JMSTI meSt anp(
) throws JMSException

4-64

Programming WebL ogic IMS

Setting and Browsing Message Header and Property Fields

Header Field Set Method Get Method
JMSType public void set IMSType(public String get IMSType(
String type) throws JMSException

) throws JMSException

1. The corresponding set () method has no impact on the message header field when the send() method is
executed. If set, this header field value will be overridden during the send() operation.

The exanpl es. j ms. sender . Sender Ser vl et example, provided with WebL ogic
Server in the W._HOVE\ sanpl es\ ser ver\ src\ exanpl es\j ms\ sender directory,
where W._HOME is the top-level directory of your WebL ogic Platform installation,
shows how to set header fields in messages that you send and how to display message
header fields after they are sent.

For example, thefollowing code, which appears after thesend() method, displaysthe
message | D that was assigned to the message by WebL ogic IMS:

Systemout.println("Sent nmessage " +
nsg. get IMSMessagel D() + " to " +
nmeg. get JMsDest i nation());

Setting Message Property Fields

To set aproperty field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get method and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following cl ear Proper ti es()
method:

public void cl earProperties(
) throws JMSException

This method does not clear the message header fields or body.

Programming WebLogic IMS ~ 4-65

4 Developing a WebLogic JMS Application

Note: The JMSX property name prefix isreserved for IMS. The connection metadata
contains alist of IMSX properties, which can be accessed as an enumerated
list using the get JVMSXPr oper t yNanes() method. For more information, see
“ Accessing Connection Metadata” on page 4-45.

The JMs_ property name prefix is reserved for provider-specific properties; it
is not intended for use with standard JM S messaging.

The property field can be set to any of thefollowing types: boolean, byte, double, float,
int, long, short, or string. The following table lists the M essage class set and get
methods for each of the supported data types.

Table 4-4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method
boolean public void setBool eanPropert y(public bool ean
String name, get Bool eanPr opert y(
bool ean val ue String name
) throws JMSException) throws JMSException
byte public void setByteProperty(public byte getByteProperty(
String nane, String name
byte val ue) throws JMSException

) throws JMSException
double public void set Doubl eProperty(publ i ¢ doubl e get Doubl eProperty(
String nane, String name
doubl e val ue) throws JMSException

) throws JMSException

float public void setFl oat Property(public float getFl oatProperty(
String nane, String name
fl oat val ue) throws JMSException

) throws JMSException

int public void setlntProperty(public int getlntProperty(
String name, String name
int val ue) throws JMSException

) throws JMSException

long public void setLongProperty(public | ong getLongProperty(
String name, String name
I ong val ue) throws) throws JMSException

JMBException

4-66 Programming WebL ogic IMS

Setting and Browsing Message Header and Property Fields

Table 4-4 Message Property Set and Get Methods for Data Types (Continued)

Data Type Set Method Get Method
short public void setShortProperty(public short get ShortProperty(
String nane, String nane
short val ue) throws JMSException

) throws JMSException
String public void setStringProperty(public String getStringProperty(

String nane, String name
String val ue) throws JMSException
) throws JMSException

In addition to the set and get methods described in the previous table, you can use the
set Obj ect Property() and get Obj ect Property() methods to use the objectified
primitive values of the property type. When the objectified value is used, the property
type can be determined at execution time rather than during the compilation. The valid
object types are boolean, byte, double, float, int, long, short, and string.

Y ou can access all property field names using the following Message method:

publ i c Enuneration getPropertyNanes(
) throws JMSException

This method returnsall property field names as an enumeration. Y ou can then retrieve
the value of each property field by passing the property field name to the appropriate
get method, as described in the previous table, based on the property field data type.

The following table is a conversion chart for message properties. It allows you to
identify the type that can be read based on the type that has been written.

Table 4-5 Message Property Conversion Chart

Property Can BeRead As. ..

Written As. . - -
boolea byte doubl float int long short Strin
n e g

boolean X X

byte X X X X X

double X X

Programming WebLogic IMS 4-67

4 Developing a WebLogic JMS Application

Table 4-5 Message Property Conversion Chart (Continued)

Property Can BeRead As. ..

Written As. . - -
boolea byte doubl float int long short Strin
n e g

float X X X

int X X X

long X X

Object X X X X X X X X

short X X X X

String X X X X X X X X

Y ou can test whether or not a property value has been set using thefollowing Message
method:
publ i c bool ean propertyEXxi sts(
String nane
) throws JMSException

Y ou specify a property hame and the method returns a boolean value indicating
whether or not the property exists.

For exampl e, the following code sets two String properties and an int property:
neg. set StringProperty("User", user);

neg. set Stri ngProperty("Cat egory", category);

nmsg. setlntProperty("Rating", rating);

For more information about message property fields, see “Message Property Fields”
on page 2-19 or thej avax. j ms. Message Javadoc.

Browsing Header and Property Fields

Note: Only queue message header and property fields can be browsed. Y ou cannot
browse topic message header and property fields.

4-68 Programming WebL ogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Setting and Browsing Message Header and Property Fields

Y ou can browse the header and property fields of messages on a queue using the
following QueueSessi on methods:

public QueueBrowser createBrowser (
Queue queue
) throws JMSException

public QueueBrowser createBrowser (
Queue queue,
String nmessageSel ect or

) throws JMSException

Y ou must specify the queue that you wish to browse. Y ou may also specify amessage
selector to filter messages that you are browsing. M essage selectors are described in
more detail in “Filtering Messages” on page 4-70.

Once you have defined a queue, you can access the queue name and message sel ector
associated with a queue browser using the following QueueBr owser methods:

public Queue get Queue(
) throws JMSException

public String get MessageSel ect or (
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBr owser method:

publ i c Enuneration get Enunerati on(
) throws JMSException

The exanpl es. j ms. queue. QueueBr owser example, provided with WebLogic
Server in the W._HOVE\ sanpl es\ ser ver\ src\ exanpl es\j ms\ queue directory,
where W._HOVE is the top-level directory of your WebL ogic Platform installation,
shows how to access the header fields of received messages.

For example, the following code line is an excerpt from the QueueBr owser example
and creates the QueueBr owser object:

gbrowser = gsession. creat eBrowser (queue);

The following provides an excerpt from the di spl ayQueue() method defined in the
QueueBr owser example. In this example, the QueueBr owser object isused to obtain
an enumeration that is subsegquently used to scan the queue’ s messages.

public void displayQueue(

) throws JMSException
{

Programming WebLogic IMS 4-69

4 Developing a WebLogic JMS Application

Enuneration e = gbrowser. get Enuneration();
Message m = nul | ;

if (! e.hasMoreEl enents()) {
Systemout.println("There are no nessages on this queue.");
} else {

System out. println("Qeued JM5 Messages: ");
whi |l e (e. hasMoreEl enents()) {
m = (Message) e.nextEl enent();
Systemout. println("Message ID " + mgetJVMSMessagel D() +
" delivered " + new Date(m get IMSTi nestanp())
"to " + mgetJMsDestination());

}
}

When aqueue browser isno longer being used, you should closeit to free up resources.
For more information, see “Releasing Object Resources’ on page 4-33.

For more information about the QueueBr owser class, seethe
j avax.j ms. QueueBr owser Javadoc.

Filtering Messages

In many cases, an application does not need to be notified of every message that is
delivered to it. Message selectors can be used to filter unwanted messages, and
subsequently improve performance by minimizing their impact on network traffic.

M essage sel ectors operate as follows:

m The sending application sets message header or property fields to describe or
classify amessage in a standardized way.

m Thereceiving applications specify asimple query string to filter the messages
that they want to receive.

Because message sel ectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of
XML messages).

4-70 Programming WebLogic IMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueBrowser.html

Filtering Messages

Y ou specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSessi on. cr eat eRecei ver () or

Topi cSessi on. cr eat eSubscri ber () methods, respectively. For information about
creating queue receivers and topic subscribers, see“ Step 5: Create M essage Producers
and Message Consumers Using the Session and Destinations’ on page 4-11.

The following sections describe how to define a message sel ector using SQL
statementsand XML selector methods, and how to update message sel ectors. For more
information about setting header and property fields, see “ Setting and Browsing

M essage Header and Property Fields’ on page 4-62 and “ Setting M essage Property
Fields’ on page 4-65, respectively.

Defining Message Selectors Using SQL Statements

A message selector isabool ean expression. It consists of a String with asyntax similar
to thewher e clause of an SQL sel ect statement.

The following excerpts provide examples of selector expressions.
salary > 64000 and dept in ('eng','qga')

(product |ike 'WbLogic% or product |like '9%3")
and version > 3.0

hi reyear between 1990 and 1992
or fireyear is not null

fireyear - hireyear > 4

Thefollowing example showshow to set asel ector when creating aqueue receiver that
filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
gsessi on. cr eat eRecei ver (queue, selector);

The following example shows how to set the same selector when creating atopic
subscriber.

String selector = "JMSPriority >= 6";
gsessi on. creat eSubscri ber(topic, selector);

For moreinformation about the message sel ector syntax, seethej avax. j ns. Message
Javadoc.

Programming WebLogic IMS 4-71

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

4 Developing a WebLogic JMS Application

Defining XML Message Selectors Using XML Selector

Method

4-72

For XML message types, in addition to using the SQL selector expressions described
in the previous section to define message sel ectors, you can use the following method:

String JMS_BEA SELECT(String type, String expression)

JMS_BEA_SELECT isabuilt-in function in WebLogic IMS SQL syntax. Y ou specify
the syntax type, which must be set to xpat h (XML Path Language) and an XPath
expression. The XML path language is defined in the XML Path Language (X Path)
document, which is available at the XML Path Language Web site at:

http://ww. w3. or g/ TR/ xpat h

The methods return a null value under the following circumstances:
m The message does not parse.
m The message parses, but the element is not present.

m |f amessage parses and the element is present, but the message contains no
value (for example, <or der ></ or der >).

For example, consider the following XML excerpt:

<order >

<itenr
<i d>007</i d>
<nane>Hand- hel d Power Drill </ nane>
<descri pti on>Conpact, assorted col ors. </description>
<pri ce>$34.99</pri ce>

</itenr

<itenp
<i d>123</i d>
<name>M tre Saw</nhame>
<descri pti on>Three bl ades sizes. </description>
<pri ce>$69. 99</ pri ce>

</itenp

<itenp
<i d>66</i d>
<nane>Socket Wench Set</nane>
<description>Set of 10.</description>
<pri ce>$19. 99</ pri ce>

</itenp

</ or der >

Programming WebL ogic IMS

http://www.w3.org/TR/xpath

Defining Server Session Pools

The following example shows how to retrieve the name of the second item in the
previous example. This method call returnsthe string, M tre Saw.

String sel = "JMS_BEA SELECT(® xpath’,
‘/order/itenf2]/name/text()’) = ‘Mtre Saw ”;

Pay careful attention to the use of double and single quotes and spaces. Note the use of
single quotes around xpat h, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous
example. This method call returns the string, 66.

String sel = "JMS_BEA SELECT(® xpath’,
‘/order/iten{3]/id/text()’) = ‘'66"";

Displaying Message Selectors

Y ou can use the following MessageConsumer method to display a message selector:

public String get MessageSel ect or (
) throws JMSException

This method returns either the currently defined message selector or null if amessage
selector is not defined.

Defining Server Session Pools

WebL ogic IMS implements an optional IMS facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

m Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class
provides an onMessage() method that processes a message.

m Processes messages in parallel by managing apool of IMS sessions, each of
which executes a single-threaded onMessage() method.

Programming WebLogic IMS 4-73

4 Developing a WebLogic JMS Application

The following figure illustrates the server session pool facility, and the relationship
between the application and the application server components.

Figure4-3 Server Session Pool Facility

Application
Message
Producer
i ;
) E
Connection Connection_ Session Destination
Factory > >
|__ 1__._ i ——1 =" =" =" T=" ==
Application Server ¥ .
i Connection |
i Consumer !
! ¥ Y i
| Server M
] Session ettt
: Session > ¥ Listener

| T |

Server Session Server Session |
Pool Factory > Poal -

L P

Asillustrated inthefigure, the application provides asingle-threaded messagelistener.
The connection consumer, implemented by JM S on the application server, performs
the following tasks to process one or more messages.

1. Getsaserver session from the server session pool.

2. Getsthe server session’s session.

3. Loadsthe session with one or more messages.

4, Startsthe server session to consume messages.

5. Releases the server session back to pool when finished processing messages.

The following figure illustrates the steps required to prepare for concurrent message
processing.

4-74 Programming WebLogic IMS

Defining Server Session Pools

Figure4-4 Preparing for Concurrent Message Processing

Step 1: Look up
Server Session Pool Factory
in JNDI

.

Step 2: Create a
Server Session Pool Using the
Server Session Pool Factory

'

Step 3: Create a
Connection Consumer
Using the Connection

Applications can use other application server providers session pool
implementations within this flow. Server session pools can also be
implemented using message-driven beans. For information on using message
driven beans to implement server session pools, see “Designing
Message-Driven Beans” in Programming WebL ogic Enterprise JavaBeans.

If the session pool and connection consumer were defined during
configuration, you can skip this section. For more information on configuring
server session pools and connection consumers, see Configuring IMS in the
Administration Console Online Help.

Currently, WebL ogic IM S does not support the optional

Topi cConnect i on. cr eat eDur abl eConnect i onConsumer () operation.
For more information on this advanced JM S operation, refer to Sun
Microsystems JM S Specification.

Step 1: Look Up Server Session Pool Factory in JNDI

You use a server session pool factory to create a server session pool.

WebL ogic JMS defines one Ser ver Sessi onPool Fact ory object, by default:
webl ogi c. j ms. Ser ver Sessi onPool Fact or y: <nanme>, where<name> specifiesthe
name of the IMS server to which the session pool is created.

Programming WebLogic IMS 4-75

http://e-docs.bea.com/wls/docs81b/ejb/message_beans.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://www.javasoft.com/products/jms/docs.html
http://www.javasoft.com/products/jms/docs.html

4 Developing a WebLogic JMS Application

Once it has been configured, you can look up a server session pool factory by first
establishing a JNDI context (cont ext) using the

Nami ngManager . | ni ti al Cont ext () method. For any application other than a
servlet application, you must passan environment used to createtheinitial context. For
more information, see the Nami ngManager . I ni ti al Cont ext () Javadoc.

Once the context is defined, to look up a server session pool factory in INDI use the
following code:

factory = (Server Sessi onPool Factory) context.| ookup(<ssp_nane>);

The <ssp_nanme> specifies aqualified or non-qualified server session pool factory
name.

For more information about server session pool factories, see
“ ServerSessionPool Factory” on page 2-21 or the
webl ogi c. j ms. Server Sessi onPool Fact ory Javadoc.

Step 2: Create a Server Session Pool Using the Server
Session Pool Factory

Y ou can create a server session pool for use by queue (PTP) or topic (Pub/Sub)
connection consumers, using the Ser ver Sessi onPool Fact or y methodsdescribedin
the following sections.

For more information about server session pools, see “ ServerSessionPool” on page
2-21 or thej avax. j ms. Ser ver Sessi onPool Javadoc.

Create a Server Session Pool for Queue Connection Consumers

The Ser ver Sessi onPool Fact ory provides the following method for creating a
server session pool for queue connection consumers:

publ i c Server Sessi onPool get Server Sessi onPool (
QueueConnecti on connecti on,
i nt naxSessi ons,
bool ean transacted,
i nt ackMode,
String |istenerd assNanme
) throws JMSException

4-76 Programming WebL ogic IMS

http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ServerSessionPool.html

Defining Server Session Pools

Y ou must specify the queue connection associated with the server session pooal, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For moreinformation about the Ser ver Sessi onPool Fact or y class methods, seethe
webl ogi c. j ns. Ser ver Sessi onPool Fact or y Javadoc. For moreinformation about
the Connect i onConsuner class, seethej avax. j ms. Connect i onConsuner
Javadoc.

Create a Server Session Pool for Topic Connection Consumers

The Ser ver Sessi onPool Fact or y provides the following method for creating a
server session pool for topic connection consumers:

publ i ¢ Server Sessi onPool get Server Sessi onPool (
Topi cConnecti on connecti on,
int nmaxSessi ons,
bool ean transact ed,
int ackMode,
String listenerC assNanme
) throws JMSException

Y ou must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessionsthat can beretrieved by the connection (to be
created in step 3), whether or not the sessions are transacted, the acknowledge mode
(applicable for non-transacted sessions only), and the message listener classthat is
instantiated and used to receive and process messages concurrently.

For more information about the Ser ver Sessi onPool Fact ory class methods, seethe
webl ogi c. j ms. Ser ver Sessi onPool Fact ory Javadoc. For moreinformation about
the Connect i onConsuner class, seethej avax. j ms. Connect i onConsuner
Javadoc.

Step 3: Create a Connection Consumer

Y ou can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:

Programming WebLogic IMS ~ 4-77

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

4 Developing a WebLogic JMS Application

m Configuring the server session pool and connection consumer during the
configuration, as described in the “ Configuring IMS” in the Administration
Console Online Help

m Including in your application the Connection methods described in the following
sections

For more information about the Connect i onConsuner class, see
“ConnectionConsumer” on page 2-22 or thej avax. j ms. Connect i onConsumer
Javadoc.

Create a Connection Consumer for Queues

The QueueConnect i on provides the following method for creating connection
consumers for queues:

publ i c Connecti onConsuner createConnecti onConsuner (
Queue queue,
String nmessageSel ect or,
Ser ver Sessi onPool sessi onPool ,
i nt maxMessages
) throws JMSException

Y ou must specify the name of the associated queue, the message selector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneoudly. For information about message selectors, see“ Filtering Messages’ on
page 4-70.

For more information about the QueueConnect i on class methods, see the
j avax. j ms. QueueConnect i on Javadoc. For more information about the
Connect i onConsurrer class, seethej avax. j ms. Connect i onConsuner Javadoc.

Create a Connection Consumer for Topics

The Topi cConnect i on provides the following two methods for creating
Connect i onConsuner s for topics:

publ i ¢ Connecti onConsuner createConnecti onConsuner (
Topi ¢ topic,
String messageSel ector,
Ser ver Sessi onPool sessi onPool ,
i nt maxMessages
) throws JMSException

4-78 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

Defining Server Session Pools

Example:

publ i ¢ Connecti onConsuner createbDurabl eConnecti onConsuner (
Topi ¢ topic,
String nessageSel ector,
Ser ver Sessi onPool sessi onPool ,
int maxMessages
) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing server
sessions, and the maximum number of messages that can be assigned to the server
session simultaneously. For information about message selectors, see “Filtering
Messages’ on page 4-70.

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see “ Setting Up Durable Subscriptions’ on page 4-57.

For more information about the Topi cConnect i on class methods, see the
j avax. j ms. Topi cConnect i on Javadoc. For more information about the
Connect i onConsuner class, seethej avax. j ns. Connect i onConsuner Javadoc.

Setting Up a PTP Client Server Session Pool

Thefollowing exampleillustrates how to set up aserver session pool for aJMSclient.
Thestartup() methodissimilar tothei nit () method inthe

exanpl es. j ms. queue. QueueSend example, asdescribed in “Example: Setting Up a
PTP Application” on page 4-16. This method also sets up the server session pool.

Thefollowing illustrates the st ar t up() method, with comments highlighting each
setup step.

Include the following package on the import list to implement a server session pool
application:

i mport webl ogi c.jns. Server Sessi onPool Fact ory

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSI ON_POOL_FACTORY=
"webl ogi c. j ns. Server Sessi onPool Fact ory: exanpl esJMsSer ver";

private QueueConnecti onFactory qconFactory;

Programming WebLogic IMS 4-79

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

4 Developing a WebLogic JMS Application

private QueueConnection qcon;

private QueueSession gsession;

private QueueSender gsender;

private Queue queue;

private Server Sessi onPool Factory sessi onPool Fact ory;
private Server Sessi onPool sessionPool ;

private ConnectionConsumer consumer;

Create the required JM S objects.

public String startup(
String nane,
Hasht abl e args

) throws Exception

{

String connectionFactory = (String)args. get("connectionFactory");
String queueNarme = (String)args. get("queue");
if (connectionFactory == null || queueNane == null) {
t hrow new
I'I'l egal Argunment Excepti on("connecti onFact ory="+connecti onFact ory+
", queueNanme="+queueNane) ;
}

Context ctx = new Initial Context();
gconFactory = (QueueConnecti onFactory)
ct x. | ookup(connecti onFactory);
gcon =qgconFactory. creat eQueueConnection();
gsessi on = gcon. creat eQueueSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDCE) ;
queue = (Queue) ctx.|ookup(queueNane);
gcon.start();

Step 1 Look up the server session pool factory in INDI.

sessi onPool Factory = (Server Sessi onPool Fact ory)
ct x. | ookup(SESSI ON_POOL_FACTORY) ;

Step2 Create a server session pool using the server session pool factory, as follows:
sessi onPool = sessi onPool Fact ory. get Server Sessi onPool (gcon, 5,
fal se, Session. AUTO ACKNOALEDGE,
exanpl es. j ms. st artup. MsgLi st ener);
The code defines the following:
m con asthe queue connection associated with the server session pool

m 5 asthe maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

4-80 Programming WebLogic IMS

Defining Server Session Pools

Step 3

Example:
Pool

m Sessionswill be non-transacted (f al se)
B AUTO ACKNOW.EDGE as the acknowledge mode

m Theexanpl es. j ns. start up. MsgLi st ener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Create a connection consumer, as follows:

consuner = gcon. creat eConnecti onConsuner (queue, “TRUE",
sessi onPool , 10);

The code defines the following:

m queue asthe associated queue

m TRUE as the message selector for filtering messages

m sessi onPool astheassociated server session pool for accessing server sessions

m 10 asthe maximum number of messages that can be assigned to the server
session simultaneously

For moreinformation about the IM S classes used in thisexample, see“WebLogic IMS
Classes’ on page 2-5 or thej avax. j ms Javadoc.

Setting Up a Pub/Sub Client Server Session

Thefollowing exampleillustrates how to set up a server session pool for aJMSclient.
Thestartup() methodissimilar tothei nit () method inthe

exanpl es. j nms. t opi c. Topi cSend example, asdescribed in “ Example: Setting Up a
Pub/Sub Application” on page 4-19. It also sets up the server session pool.

Thefollowing illustratesst ar t up() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:;

i mport webl ogi c.j ms. Server Sessi onPool Fact ory

Programming WebLogic IMS 4-81

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSI ON_POO._FACTORY=
"webl ogi c. j ns. Ser ver Sessi onPool Fact ory: exanpl esJMsSer ver";

private Topi cConnecti onFactory tconFactory;

private Topi cConnection tcon;

private Topi cSession tsession;

private Topi cSender tsender;

private Topic topic;

private Server Sessi onPool Factory sessi onPool Fact ory;
private Server Sessi onPool sessionPool ;

private ConnectionConsumer consurmer;

Create the required JM S objects.

public String startup(
String nane,
Hasht abl e args

) throws Exception

{

String connectionFactory = (String)args. get("connectionFactory");
String topicName = (String)args.get("topic");
i f (connectionFactory == null || topicNane == null) {
t hrow new
I'I'l egal Argunment Excepti on("connecti onFact or y="+connecti onFact ory+
", topi cNane="+t opi cNan®) ;
}

Context ctx = new Initial Context();
tconFactory = (Topi cConnecti onFactory)
ct x. | ookup(connecti onFactory);
tcon = tconFactory. creat eTopi cConnection();
tsession = tcon. createTopi cSessi on(fal se,
Sessi on. AUTO_ACKNOWLEDCE) ;
topic = (Topic) ctx.|ookup(topicNane);
tcon.start();

Step 1 Look up the server session pool factory in JNDI.

sessi onPool Factory = (Server Sessi onPool Fact ory)
ct x. | ookup(SESSI ON_POCOL_FACTCRY) ;

Step2 Create a server session pool using the server session pool factory, asfollows:
sessi onPool = sessi onPool Fact ory. get Server Sessi onPool (tcon, 5,

fal se, Sessi on. AUTO ACKNOALEDGE,
exanpl es. j ms. st artup. MsgLi st ener);

4-82 Programming WebL ogic IMS

Using Multicasting

The code defines the following:
m t con asthe topic connection associated with the server session pool

m 5 asthe maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

m Sessionswill be non-transacted (f al se)
B AUTO ACKNOW.EDGE as the acknowledge mode

m Theexanpl es. j ns. start up. MsgLi st ener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Step3 Create a connection consumer, as follows:

consumer = tcon. createConnecti onConsuner (topic, “TRUE",
sessi onPool , 10);

The code defines the following:

m topi c astheassociated topic

m TRUE as the message selector for filtering messages

m sessi onPool astheassociated server session pool for accessing server sessions

m 10 asthe maximum number of messages that can be assigned to the server
session simultaneously

For moreinformation about the IM S classes used in thisexample, see“WebLogic IMS
Classes” on page 2-5 or thej avax. j ms Javadoc.

Using Multicasting

Multicasting enables the delivery of messages to a select group of hosts that
subsequently forward the messages to subscribers.

The benefits of multicasting include:
m Near rea-time delivery of messages to host group

Programming WebLogic IMS 4-83

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application

4-84

m High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to subscribers

The limitations of multicasting include:

= Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

m For interoperability with different versions of WebL ogic Server, clients cannot
have an earlier release of WebL ogic Server installled than the host. They must
al have at least the same version or higher.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if all or a portion of the contents is not
delivered, the client can simply request the information to be resent. Clientswould not
want to have the information recovered, in this case, as by thetimeit isredelivered, it
would be out-of -date.

The following figureillustrates the steps required to set up multicasting.

Figure4-5 Setting Up Multicasting

Step 1. Set Up JMS Application,
Creating Multicast Session and
Topic Subscriber

'

Step 2. Set Up Message Listener
to Receive
Messages Ansynchronously

Note: Multicasting isonly supported for the Pub/Sub messaging model, and only for
non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, asfollows:

m For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on amulticast session and
whether the most recent or oldest messages are discarded in the event the

Programming WebL ogic IMS

Using Multicasting

maximum is reached. If the message maximum is reached, a

Dat aOver r unExcept i on isthrown, and messages are automatically discarded.
These attributes are also dynamically configurable, as described in “Dynamically
Configuring Multicasting Configuration Attributes’ on page 4-87.

m For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live)
attributes are specified. To better understand the TTL attribute setting, see
“Example: Multicast TTL” on page 4-88.

Note: It isstrongly recommended that you seek the advice of your network
administrator when configuring themulticast | P address, port, and time-to-live
attributes to ensure that the appropriate values are set.

For more informati on on the multicasting configuration attributes, see“IJMS Topic -->
Configuration --> Multicast” in the Administration Console Online Help. The
multicast configuration attributes are also summarized in Appendix A, “Configuration
Checklists.”

Step 1: Set Up the JMS Application, Creating Multicast
Session and Topic Subscriber

Set up the IMS application as described in “ Setting Up aJM S Application” on page

4-4. However, when creating sessions, as described in “ Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session would like to receive multicast
messages by setting the acknow edgeMode value to MULTI CAST_NO ACKNOW.EDGE.

Note: Multicasting is only supported for the Pub/Sub messaging model for
non-durabl e subscribers. An attempt to create a durable subscriber on a
multicast session will cause a JMSExcept i on to be thrown.

For example, thefollowing method illustrates how to create a multicast session for the
Pub/Sub messaging model.

tsession = tcon. creat eTopi cSessi on(
fal se,
WL.Sessi on. MULTI CAST_NO_ACKNOW.EDGE
)

Programming WebLogic IMS 4-85

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstopic_config_multicast.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstopic_config_multicast.html

4 Developing a WebLogic JMS Application

Note: Onthe client side, each multicasting session requires one dedicated thread to
retrieve messages off the socket. Therefore, you should increase the IMS
client-side thread pool size to adjust for this. For more information on
adjusting the thread pooal size, see the “ Tuning Thread Pools and EJB Pools”
section in the “WebL ogic IMS Performance Guide” white paper, at
http://dev2dev. bea. coniresourcelibrary/whitepapers.jsp?high
I i ght =whi t epaper s, which discusses tuning IM S client-side thread pools.

In addition, create a topic subscriber, as described in “ Create TopicPublishers and
TopicSubscribers’ on page 4-12.

For example, the following code illustrates how to create a topic subscriber:

tsubscri ber = tsession. createSubscriber(myTopic);

Note: ThecreateSubscri ber () method failsif the specified destination is not
configured to support multicasting.

Step 2: Set Up the Message Listener

4-86

Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, a JIMSExcept i on isthrown.

Set up the message listener for the topic subscriber, as described in “ Receiving
Messages Asynchronously” on page 4-30.

For example, the following code illustrates how to establish a message listener:
t subscri ber. set MessagelLi stener (this);

When receiving messages, WebL ogic M Stracksthe order in which messages are sent
by the destinations. If amulticast subscriber’s message listener receives the messages
out of sequence, resulting in one or more messages being skipped, a
SequenceGapExcept i on will be delivered to the Except i onLi st ener for the
session(s) present. If askipped messageis subsequently delivered, it will be discarded.
For example, in the following figure, the subscriber is receiving messages from two
destinations simultaneously.

Programming WebL ogic IMS

http://dev2dev.bea.com/resourcelibrary/whitepapers.jsp?highlight=whitepapers

Using Multicasting

Figure4-6 Multicasting Sequence Gap

Destination 1 Destination 2
[o]
™, I

Fd
. V'
N ¥
[B][«] ...

Subscriber

Upon receiving the “4” message from Destination 1, a SequenceGapExcept i on is
thrown to notify the application that a message was received out of sequence. If
subsequently received, the “ 3" message will be discarded.

Note: Thelarger the messages being exchanged, the greater the risk of encountering
a SequenceGapException.

Dynamically Configuring Multicasting Configuration
Attributes

During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

m Messages maximum specifying the maximum number of outstanding messages
that can exist on a multicast session.

m Overrun policy specifying whether recent or older messages are discarded in the
event the messages maximum is reached.

If the messages maximum is reached, a Dat aOver r unExcept i on isthrown and
messages are automatically discarded based on the overrun policy. Alternatively, you
can set the messages maximum and overrun policy using the Sessi on set methods.

Programming WebLogic IMS ~ 4-87

4 Developing a WebLogic JMS Application

The following table lists the Sessi on set and get methods for each dynamically
configurable attribute.

Table 4-6 Message Producer Set and Get Methods

Attribute Set Method Get Method
Messages public void set MessagesMaxi mun(public int getMessagesMaxi mun(
Maximum i nt messagesMaxi num) throws JMSException

) throws JMSException

Overrun Palicy public void setOverrunPolicy (public int getQverrunPolicy(
int overrunPolicy) throws JMSException
) throws JMSException

Note: The values set using the set methods take precedence over the configured
values.

For more information about these Sessi on class methods, see the

webl ogi c. j ms. ext ensi ons. W.Sessi on Javadoc. For more information on these
multicast configuration attributes, see“ JM S Destination Tasks” in the Administration
Console Online Help.

Example: Multicast TTL

Note: Thefollowing example isavery simplified illustration of how the Multicast
TTL (time-to-live) destination configuration attribute impacts the delivery of
messages across routers. It is strongly advised that you seek the assistance of
your network administrator when configuring the multicast TTL attribute to
ensure that the appropriate valueis set.

The Multicast TTL isindependent of the message time-to-live.

The following example illustrates how the Multicast TTL destination configuration
attribute impacts the delivery of messages across routers. For more information on the
multicast configuration attributes, see“ JM S Destination Tasks” in the Administration
Console Online Help.

Consider the following network diagram.

4-88 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

Using Multicasting

Figure4-7 Multicast TTL Example

TTL Count
Subnet A | |
Multicast Router 0
Pubslisher . .
W LT
. -

Subnet B | | |

m B m =T

T O IR —— T
Multicast Subscriber - -
Subnet C | | l
= = 2
"y ..J'L.-.’::',u..'..-'n. :
F F
Multicast Subscriber

Inthefigure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each containing one multicast subscriber.

If the Multicast TTL attribute is set to O (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast publisher
on Subnet A publishes a message, the message will not be delivered to any of the
multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.

Programming WebLogic IMS ~ 4-89

4 Developing a WebLogic JMS Application

Using Distributed Destinations

By enabling you to configure multiple physical destinations (queues and topics) as
members of a single distributed destination set, WeblL ogic IM S supports service
continuity in the event of aWebL ogic Server failure within a cluster. Once properly
configured, your producers and consumers are able to send and receive messages
through the distributed destination. WebL ogic JM S then distributes the messaging
load across all available destination memberswithin the distributed destination. When
amember becomes unavailable due a server failure, traffic is then redirected toward
other available destination membersin the set.

For instructions on configuring distributed destinations using the Administration
Console, see “Distributed Destination Tasks” in the Administration Console Online
Help.

The following sections explain how to use distributed destinations with your IMS
applications:

m Accessing Distributed Destinations

m Accessing Distributed Destination Members

m | oad Balancing Messages Across a Distributed Destination
m Distributed Destination Migration

Accessing Distributed Destinations

4-90

A distributed destinationisactually aset of physical IM Sdestination members (queues
or topics) that is accessed through a single INDI name. As such, a distributed
destination can be looked up using JNDI. It implements the

j avax. j ms. Dest i nat i on interface, and can be used to create producers, consumers,
and browsers.

Because a distributed destination can be served by multiple WebL ogic Serverswithin
acluster, when creating areference to a distributed destination by using one of the
creat eQueue() or creat eTopi ¢() methods, the name supplied is simply the name
of theJMSDi st ri but edQueueMBean or JVMBDI st ri but edTopi cMBean configuration
MBean name. No JM S server name or separating forward slash (/) is required.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Using Distributed Destinations

For exampl e, the following code illustrates how to look up a distributed destination
topic member:

topi ¢ = myTopi cSessi on. creat eTopi c("nmyDi stributedTopic");

Note: When calling the cr eat eQueue() or cr eat eTopi ¢() methods, any string
containing aforward slash (/), is assumed to be the name of a distributed
destination member—not a destination. If no such destination member exists,
then the call will fail with an| nval i dDest i nati onExcepti on.

Looking Up Distributed Queues

QueueSenders

A distributed queue is a set of physical IMS queue members. As such, a distributed
gueue can be used to create a QueueSender , QueueRecei ver, and aQueueBr owser .
The fact that a distributed queue represents multiple physical queuesis mostly
transparent to your application.

The queue members can be located anywhere, but must all be served by IM S servers
in asingle server cluster. When amessage is sent to a distributed queue, it is sent to
exactly one of the physical queuesin the set of members for the distributed queue.
Once the message arrives at the queue member, it isavailablefor receipt by consumers
of that queue member only.

Note: Queue members can forward messages to other queue members by
configuring the Forward Delay attribute in the Administration Console, which
is disabled by default. This attribute defines the amount of time, in seconds,
that a distributed queue member with messages, but which has no consumers,
will wait before forwarding its messages to other queue membersthat do have
consumers.

After creating a queue sender, if the queue supplied at creation time was a distributed
gueue, then each time amessage is produced using the sender a decision is made asto
which queue member will receive the message. Each messageis sent to asingle
physical queue member.

The message isnot replicated in any way. As such, the message isonly available from
the queue member where it was sent. If that physical queue becomes unavailable
before a given message is received, then the message is unavailable until that queue
member comes back online.

Programming WebLogic IMS 4-91

4 Developing a WebLogic JMS Application

QueueReceivers

QueueBrowsers

It isnot enough to send a message to a distributed queue and expect the messageto be
received by aqueuereceiver of that distributed queue. Sincethe messageissent to only
one physical queue member, there must be a queue receiver receiving or listening on
that queue member.

Note: For information on the load-balancing heuristics for distributed queues with
zero consumers, see “Load Balancing Heuristics’ on page 4-98.

When creating a queue receiver, if the supplied queue is adistributed queue, then a
single physical queue member is chosen for the receiver at creation time. The created
QueueRecei ver ispinned to that queue member until the queue receiver losesits
accessto the queue member. At that point, the consumer will receiveaJVsExcept i on,
asfollows:

m |f the queue receiver is synchronous, then the exception is returned to the user
directly.

m If the queue receiver is asynchronous, then the exception is delivered inside of a
Consumner O osedExcept i on that isdelivered to the Except i onLi st ener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and
recreateit. If any other queue members are avail able within the distributed queue, then
the creation will succeed and the new queue receiver will be pinned to one of those
gueue members. If no other queue member is available, then the application won’t be
able to recreate the queue receiver and will haveto try again later.

Note: For information on the load-balancing heuristics for distributed queues with
zero consumers, see “Load Balancing Heuristics’ on page 4-98.

When creating a queue browser, if the supplied queue is adistributed queue, then a
single physical queue member is chosen for the browser at creation time. The created
gueue browser is pinned to that queue member until the receiver losesits accessto the
gqueue member. At that point, any calls to the queue browser will receive a
JMBExcept i on. Any callsto the enumeration will return a

NoSuchEl enent Except i on.

4-92 Programming WebL ogic IMS

Using Distributed Destinations

Note: The queue browser can only browse the queue member that it is pinned to.
Even though a distributed queue was specified at creation time, the queue
browser cannot see or browse messages for the other queue membersin the
distributed destination.

Looking Up Distributed Topics

A distributed topicisaset of physical IM Stopic members. Assuch, adistributed topic
can be used to create a Topi cPubl i sher and Topi cSubscri ber . Thefact that a
distributed topic represents multiple physical topics is mostly transparent to the
application.

Note: Durable subscribers (Dur abl eTopi cSubscri ber) cannot be created for
distributed topics. However, you can still create a durable subscription on
distributed topic member and the other topic members will forward the
messages to the topic member that has the durabl e subscription.

The topic members can be located anywhere but must all be served either by asingle
WebL ogic Server or any number of serversin acluster. When amessage issent to a
distributed topic, it is sent to al of the topic membersin the distributed topic set. This
allows all subscribers to the distributed topic to receive messages published for the
distributed topic.

A message published directly to atopic member of adistributed destination (that is,
the publisher did not specify the distributed destination) is also forwarded to al the
members of that distributed topic. Thisincludes subscribers that originally subscribed
to the distributed topic, and which happened to be assigned to that particular topic
member. In other words, publishing a message to a specific distributed topic member
automatically forwardsit to all the other distributed topic members, just as publishing
amessage to adistributed topic automatically forwardsit to all of its distributed topic
members. For more information about looking up specific distributed destination
members, see “ Accessing Distributed Destination Members’ on page 4-95.

Deploying Message-Drive Beans on a Distributed Topic

When an MDB isdeployed on adistributed topic and istargeted to aWebL ogic Server
instance in a cluster that is hosting two members of the distributed topic on aJMS
server, the MDB gets deployed on both the members of the distributed topic. This
occurs because MDBs are pinned to a distributed topic member’ s destination name.

Programming WebLogic IMS ~ 4-93

4 Developing a WebLogic JMS Application

TopicPublishers

TopicSubscribers

Therefore, you will receive [number of messages sent] * [number of distributed topic
member s| more messages per M DB, depending on how may distributed topic members
are deployed on aWebL ogic Server instance. For example, if aJMS server contains
two distributed topic members, then two MDBs are deployed, one for each member,
s0 you will recieve twice as many messages.

When creating atopic publisher, if the supplied destination isadistributed destination,
then any messages sent to that distributed destination are sent to all available topic
members for that distributed topic, as follows:

m |f one or more of the distributed topic membersis not reachable, and the
message being sent is non-persistent, then the message is sent only to the
available topic members.

m |f one or more of the distributed topic membersis not reachable, and the
message being sent is persistent, then the message is stored and forwarded to the
other topic members when they become reachable. However, the message can
only be persistently stored if the topic member has a IM S store configured.

Note: Every effort is made to first forward the message to distributed members
that utilize a persistent store. However, if none of the distributed members
utilize a store, then the message is till sent to one of the members
according to the selected |oad-balancing algorithm, as described in “L oad
Balancing Messages Across a Distributed Destination” on page 4-96.

m [f all of the distributed topic members are unreachabl e (regardless of whether the
message is persistent or non-persistent), then the publisher receivesa
JMBExcept i on when it tries to send a message.

When creating atopic subscriber, if the supplied topic is a distributed topic, then the
topic subscriber receives messages published to that distributed topic.

If one or more of the topic members for the distributed topic are not reachable by a
topic subscriber, then depending on whether the messages are persistent or
non-persistent the following occurs:

m Any persistent messages published to one or more unreachabl e distributed topic
members are eventually received by topic subscribers of those topic members

4-94 Programming WebLogic IMS

Using Distributed Destinations

once they become reachable. However, the messages can only be persistently
stored if the topic member has a IM S store configured.

m Any non-persistent messages published to those unreachabl e distributed topic
members will not be received by that topic subscriber.

Ultimately, atopic subscriber is pinned to aphysical topic member. If that topic
member becomes unavailabl e, then the topic subscriber will receiveaJMSExcept i on,
asfollows:

m |f the topic subscriber is synchronous, then the exception is returned to the user
directly.

m |f the topic subscriber is asynchronous, then the exception is delivered inside of
aConsumer d osedExcept i on that isdelivered to the Except i onLi st ener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its topic subscriber and
recreateit. If any other topic member isavailable within the distributed topic, then the
creation should be successful and the new topic subscriber will be pinned to one of
those topic members. If no other topic member is available, then the application will
not be able to recreate the topic subscriber and will have to try again later.

Accessing Distributed Destination Members

In order to access a destination member within adistributed destination, you must look
up the destination member using the configured INDI name, or supply the IMS server
name and the JMsQueueMBean or JMSTopi cMBean configuration MBean name,
separated by aforward slash (/), to one of the cr eat eQueue() or creat eTopi c()
methods.

For example, the following code illustrates how to look up a particular member of a
distributed queue (myQueue), on aJMS server (nmySer ver):

gueue = nyQueueSessi on. creat eQueue(" nyServer/ myQueue");
Note: When caling the cr eat eQueue() or cr eat eTopi ¢c() methods, any string
containing aforward dash (/), is assumed to be the name of a distributed

destination member—not adestination. If no such destination member exists,
then the call will fail with an | nval i dDest i nati onExcepti on.

Programming WebLogic IMS 4-95

4 Developing a WebLogic JMS Application

Load Balancing Messages Across a Distributed
Destination

By using distributed destinations, WebL ogic IM S can spread or balance the messaging
load across multiple physical destinations, which can result in better use of resources
and improved response times. The WebL ogic IM S load-balancing algorithm
determines the physical destinations that messages are sent to, aswell as the physical
destinations that consumers are assigned to.

For more information about configuring load balancing for a distributed destination,
see “ Configuring Message Load Balancing” in the Administration Console Online
Help.

Load Balancing Options

WebL ogic JM S supports two different algorithms for balancing the message load
across multiple physical destinations within a given distributed destination set. Y ou
can select one of these load balancing options configuring a distributed topic or queue
on the Administration Console.

m Round-Robin Distribution

m Random Distribution

Round-Robin Distribution

4-96

In the round-robin algorithm, WebL ogic IM S maintains an ordering of physical
destinations within the distributed destination. The messaging load is distributed
across the physical destinations one at atime in the order that they are defined in the
WebL ogic Server configuration (conf i g. xn) file. Each WebL ogic Server maintains
anidentical ordering, but may be at a different point within the ordering. Multiple
threads of execution within asingle server using a given distributed destination affect
each other with respect to which physical destination a member is assigned to each
time they produce a message. Round-robin is the default algorithm and doesn’t need
to be configured.

If weights are assigned to any of the physical destinationsin the set for agiven
distributed destination, then those physical destinations appear multiple timesin the
ordering. For instance, if the weights of destinations A, B and C are 2, 5, and 3
respectively, then the ordering will be A, B, C, A, B, C, B, C, B, B. That is, anumber

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_load_balancing_config

Using Distributed Destinations

of passes are made through the basic ordering (A, B, C). The number of passesisequal
to the highest weight of the destinations within the set. On each pass, only those
destinations with aweight that is greater than or equal to the ordinal value of the pass
are included in the ordering. Following this logic, this example would produce the
following results:

m A isdropped from the ordering after two passes.
m Cisdropped after three passes.

m B isthe only one remaining on the fourth and fifth passes.

Random Distribution

The random distribution algorithm uses the weight assigned to the physical
destinations to compute a weighted distribution for the set of physical destinations.
The messaging |load isdistributed acrossthe physical destinations by pseudo-randomly
accessing the distribution. In the short run, the load will not be directly proportional to
the weight. In the long run, the distribution will approach the limit of the distribution.
A pure random distribution can be achieved by setting all the weights to the same
value, whichistypically 1.

Adding or removing a member (either administratively or as aresult of aWebLogic
Server shutdown/restart event) requires a recomputation of the distribution. Such
events should beinfrequent however, and the computation isgenerally simple, running
in O(n) time.

Consumer Load Balancing

When an application creates a consumer, it must provide a destination. If that
destination represents a distributed destination, then WebLogic IMS must find a
physical destination that consumer will receive messages from. The choice of which
destination member to use is made by using one of the load-balancing algorithms
described in “Load Balancing Options’ on page 4-96. The choice is made only once:
when the consumer is created. From that point on, the consumer gets messages from
that member only.

Programming WebLogic IMS ~ 4-97

4 Developing a WebLogic JMS Application

Producer Load Balancing

When a producer sends a message, WebL ogic IM S looks at the destination where the
message is being sent. If the destination is adistributed destination, WebLogic IMS
makes a decision as to where the message will be sent. That is, the producer will send
to one of the destination members according to one of the load-balancing a gorithms
described in “Load Balancing Options’ on page 4-96.

The producer makes such a decision each time it sends a message. However, there is
no compromise of ordering guarantees between a consumer and producer, because
consumers are load balanced once, and are then pinned to a single destination member.

Note: If aproducer attemptsto send a persistent message to adistributed destination,
every effort is made to first forward the message to distributed members that
utilize a persistent store. However, if none of the distributed members utilize
a persistent store, then the message will still be sent to one of the members
according to the selected |oad-balancing algorithm.

Load Balancing Heuristics

In addition to the algorithms described in “Load Balancing Options’ on page 4-96,
WebL ogic JMS uses the following heuristics when choosing an instance of a
destination.

m Transaction Affinity
m Server Affinity

m Queues with Zero Consumers

Transaction Affinity

4-98

When producing multiple messages within a transacted session, an effort is made to
send all messages produced to the same WebL ogic Server. Specifically, if asession
sends multiple messagesto asingledistributed destination, then all of the messagesare
routed to the same physical destination. If a session sends multiple messages to
multiple different distributed destinations, an effort is made to choose a set of physical
destinations served by the same WebL ogic Server.

Programming WebL ogic IMS

Using Distributed Destinations

Server Affinity

When aWebL ogic Server attempts to |oad balance consumers or producers across
physical destinationsin adistributed destination set, it will first attempt to load balance
across any physical destinations that are also running on the same WebL ogic Server.

Note: For more information about configuring server affinity for a distributed
destination, see “ Configuring Server Affinity” in the Administration Console
Online Help.

Queues with Zero Consumers

When load balancing consumers across multiple remote physical queues, if one or
more of the queues have zero consumers, then those queues alone are considered for

balancing the load. Once all the physical queuesin the set have at |east one consumer,
the standard algorithms apply.

In addition, when producers are sending messages, queueswith zero consumers are not

considered for message production, unless all instances of the given queue have zero
consumers.

Defeating Load Balancing

JNDI Lookup

Applications can defeat |oad balancing by directly accessing the individual physical
destinations. That is, if the physical destination has no JINDI name, it can till be
referenced using the cr eat eQueue() or cr eat eTopi c() methods.

m JINDI Lookup
m CreateQueue() and CreateTopic()

m Connection Factories

If aphysical destination has a INDI name, then it can be looked up using JNDI. The
returned destination can then be used to create a consumer or receiver.

Programming WebLogic IMS ~ 4-99

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#server_affinity_config

4 Developing a WebLogic JMS Application

CreateQueue() and CreateTopic()

An application can also obtain a reference to a topic or queue using the

creat eQueue() andcreat eTopi c() methods. When using these methods, the
application must supply avendor-specific string identifying the destination that they
want areference to. The vendor-specific string for WebLogic IMSiis of the form
server/destination, where “ server” isthe name of aJM S server and “ destination” isthe
name of a queue or topic on that IMS server.

Connection Factories

Applications that use distributed destinations to distribute or balance their producers
and consumers across multiple physical destinations, but do not want to make aload
bal ancing decision each time amessageis produced, can use aconnection factory with
the Load Balancing Enabled attribute disabled (i.e., set to False).

For more information about configuring load balancing for a distributed destination,
see “Enabling Message Load Balancing” in the Administration Console Online Help.

Distributed Destination Migration

For IMS implementations that take use the WebL ogic Server 7.0 service migration
feature, when a JIM S server failsit can migrate to another WebL ogic Server within a
cluster—along with all of its distributed destination members. However, the target
WebL ogic Server may already be hosting aJJMS server with all of its physical
destinations. This can lead to situations where the same WebL ogic Server hosts two
physical destinations for a single distributed destination. Thisis permissible in the
short term, since aWebL ogic Server can host multiple physical destinations for that
distributed destination. However, load balancing in this situation is less effective.

In such a situation, each JIMS server on atarget WebL ogic Server operates
independently. Thisis necessary to avoid merging of the two destination instances,
and/or disabling of one instance, which can make some messages unavailable for a
prolonged period of time. The long-term intent, however, isto eventually re-migrate
the migrated IM S server to yet another WebL ogic Server in the cluster.

For more information about the configuring JM S migratabl e targets, see“ Configuring
JMS Migratable Targets’ on page 3-10.

4-100 Programming WebLogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_load_balancing_config

Using Distributed Destinations

Distributed Destination Failover

When a JM S server migrates to another WebL ogic Server due a server failure,
consumersthat are pinned to afail ed destination member must be closed and recreated.

For more information about procedures for recovering from a WebL ogic Server
failure, see “ Recovering from a WebL ogic Server Failure” on page 3-15.

Programming WebLogic IMS 4-101

4 Developing a WebLogic JMS Application

4-102 Programming WebLogic IMS

CHAPTER

5 Using Transactions
with WebLogic JMS

The following sections describe how to use transactions with WebL ogic IMS:
m “Overview of Transactions’ on page 5-1

m “Using IMS Transacted Sessions’ on page 5-3

m “Using JTA User Transactions’ on page 5-5

m “Asynchronous Messaging Within JTA User Transactions Using Message Driven
Beans’ on page 5-9

m “Example: IMSand EJB in aJTA User Transaction” on page 5-9

Note: For more information about the IMS classes described in this section, access
the latest IM S Specification and Javadoc supplied on the Sun Microsystems’
Java Web site at the following location:
http://java.sun.com/products/jms/docs.html

Overview of Transactions

A transaction enabl es an application to coordinate a group of messages for production
and consumption, treating messages sent or received as an atomic unit.

Programming WebL ogic IMS 51

http://java.sun.com/products/jms/docs.html

5 Using Transactions with WebLogic JMS

5-2

When an application commits atransaction, all of the messages it received within the
transaction areremoved from the messaging system and the messagesit sent within the
transaction are actually delivered. If the application rolls back the transaction, the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When atopic subscriber rolls back areceived message, the message is redelivered to
that subscriber. When a queue receiver rolls back a received message, the message is
redelivered to the queue, not the consumer, so that another consumer on that queue
may receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with IM S:

m |f you areusing only IMSin your transactions, you can create a JMStransacted
session.

m If you are mixing other operations, such as EJB, with IMS operations, you
should use a Java Transaction API (JTA) user transaction in a non-transacted
JM S session.

m Use message driven beans.

To enable multiple IMS serversin the same JTA user transaction, or to combine JIMS
operations with non-JM S operations (such as EJB), the two-phase commit licenseis
required. For more information, see “Using JTA User Transactions’ on page 5-5.

The following sections explain how to use a IM S transacted session and JTA user
transaction.

Note: When using transactions, it is recommended that you define a session
exception listener to handle any problems that occur before atransaction is
committed or rolled back, as described in “ Defining a Session Exception
Listener” on page 4-47.

If theacknow edge() method iscalled within atransaction, it isignored. If
ther ecover () method is called within atransaction, a JM SException is
thrown.

Programming WebL ogic IMS

Using JMS Transacted Sessions

Using JMS Transacted Sessions

A IMS transacted session supports transactions that are located within the session. A
JM S transacted session’ s transaction will not have any effects outside of the session.

For example, rolling back asession will roll back all sendsand receiveson that session,
but will not roll back any database updates. JTA user transactions areignored by IMS
transacted sessions.

Transactionsin JM Stransacted sessions are started implicitly, after thefirst occurrence
of asend or receive operation, and chained together—whenever you commit or roll
back atransaction, another transaction automatically begins.

Before using a JM S transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment, as described in
“Configuring IMS” in the Administration Console Online Help.

The following figure illustrates the steps required to set up and use a JM S transacted
session.

Figure5-1 Setting Up and Using a JM S Transacted Session

Step 1. Set Up JWMS Application
C reating Transacted Session

'

Step 2. Perform
Desired Operations

.

Step 3. Commit or Roll Back
the JMS Transacted Session

Programming WebL ogic IMS 5-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

5 Using Transactions with WebLogic JMS

Step 1: Set Up JMS Application, Creating Transacted
Session

Set up the IMS application as described in “ Setting Up a JM S Application” on page
4-4, however, when creating sessions, as described in “ Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session isto be transacted by setting the
transact ed boolean valuetot r ue.

For example, the following methodsillustrate how to create atransacted session for the

PTP and Pub/sub messaging models, respectively:
gsessi on = gcon. cr eat eQueueSessi on(
true,

Sessi on. AUTO_ACKNOWN.EDGE
)

t sessi on = tcon. creat eTopi cSessi on(
true,

Sessi on. AUTO_ACKNOWN.EDGE

)

Once defined, you can determine whether or not a session is transacted using the
following session method:

publ i c bool ean get Transact ed(
) throws JMSException

Note: The acknowledge value isignored for transacted sessions.

Step 2: Perform Desired Operations

Perform the desired operations assoi cated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session

Once you have performed the desired operations, execute one of the following
methods to commit or roll back the transaction.

To commit the transaction, execute the following method:

54 Programming WebL ogic IMS

Using JTA User Transactions

public void commt(
) throws JMSException

The commi t () method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

Toroll back the transaction, execute the following method:

public void rollback(
) throws JMSException

Ther ol | back() method cancelsany messages sent during the current transaction and
returns any messages received to the messaging system.

If either theconmi t () orrol | back() methodsareissued outside of aJM Stransacted
session, al | | egal St at eExcept i on isthrown.

Using JTA User Transactions

The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA isimplemented as part of WebL ogic Server and providesastandard Javainterface
for implementing transaction management.

Y ou program your JTA user transaction applications using the

j avax. transacti on. User Transact i on object to begin, commit, and roll back the
transactions. When mixing JIMS and EJB within a JTA user transaction, you can also
start the transaction from the EJB, as described in “ Transactions in EJB Applications’
in Programming WebLogic JTA.

You can start a JTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebL ogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate a single JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or are fully rolled back out of
all the resource managers, reverting to the state prior to the start of the transaction.

Programming WebL ogic IMS 55

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs81b/jta/trxejb.html

5 Using Transactions with WebLogic JMS

Note: A separate 2PC transaction licenseis required to support this protocol. For
transaction migration considerations related to 2PC, see “Porting WebL ogic

JMS Applications’ on page 8-1.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the User
Transactions Enabled check box, as described in “JM S Connection Factories’ in the

Administration Console Online Help.

The following figure illustrates the steps required to set up and use a JTA user
transaction.

Figure5-2 Setting Up and Using a JTA User Transaction

Step 1. Set Up JMS Application,
C reating Non-Transacted Session

!

Step 2. Look up UserTransaction
in JNDI

{

Step 3. Start the JTA
User Transaction

!

Step 4. Perform Desired
Operations

.

Step 5. Commit or Roll Back
the JTA User Tmansaction

5-6 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

Using JTA User Transactions

Step 1: Set Up JMS Application, Creating Non-Transacted
Session

Set up the IM S application as described in “ Setting Up aJM S Application” on page
4-4, however, when creating sessions, asdescribed in “ Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session isto be non-transacted by setting
thet r ansact ed boolean valuetof al se.

For example, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

gsessi on = gcon. cr eat eQueueSessi on(
fal se,
Sessi on. AUTO_ACKNOW.EDGE

)

tsession = tcon. createTopi cSessi on(
fal se,
Sessi on. AUTO_ACKNOW.EDGE

)

Note: When auser transaction is active, the acknowledge mode isignored.

Step 2: Look Up User Transaction in JNDI

The application uses INDI to return an object reference to the User Tr ansact i on
object for the WebL ogic Server domain.

You canlook up the User Tr ansact i on object by establishing a INDI context
(cont ext) and executing the following code, for example:

User Transaction xact =
ct x. | ookup(“javax.transaction. User Transacti on”);

Step 3: Start the JTA User Transaction

Start the JTA user transaction using the User Tr ansact i on. begi n() method. For
example:

Programming WebL ogic IMS 5-7

5

Using Transactions with WebLogic JMS

xact . begi n();

Step 4: Perform Desired Operations

Perform the desired operations associated with the current transaction.

Step 5: Commit or Roll Back the JTA User Transaction

5-8

Once you have performed the desired operations, execute one of the following
methods to commit or roll back the JTA user transaction.

To commit the transaction, execute the following method:
xact.commit();

The conmi t () method causes WebL ogic Server to call the Transaction Manager to
complete the transaction, and commit all operations performed during the current
transaction. The Transaction Manager isresponsiblefor coordinating with theresource
managers to update any databases.

Toroll back the transaction, execute the following method:
xact . rol | back();

Ther ol | back() method causes WebL ogic Server to call the Transaction Manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Onceyou call thecommi t () orrol | back() method, you can optionally start another
transaction by calling xact . begi n() .

Programming WebL ogic IMS

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans

Asynchronous Messaging Within JTA User
Transactions Using Message Driven Beans

Because JM S cannot determine which, if any, transaction to use for an asynchronously
delivered message, JM S asynchronous message delivery is not supported within JTA
user transactions.

However, message driven beans provide an aternative approach. A message driven
bean can automatically begin a user transaction just prior to message delivery.

For information on using message driven beans to simulate asynchronous message
delivery, see " Designing Message-Driven Beans’ in Programming WebLogic EJB.

Example: JMS and EJB in a JTA User
Transaction

The following example shows how to set up an application for mixed EJB and IMS
operationsin a JTA user transaction by looking up a

j avax. transacti on. User Transact i on using JNDI, and beginning and then
committing a JTA user transaction. In order for this exampleto run, the User
Transactions Enabled check box must be selected when the system administrator
configures the connection factory.

Note: Inadditionto thissimple JTA User Transaction example, refer to the example
provided with WebL ogic JTA, located in the
W._HOME\ sanpl es\ server\src\exanpl es\jta\jnsjdcb directory,
where where W._HOVE is the top-level directory of your WebL ogic Platform
installation.

Import the appropriate packages, including the
j avax. transaction. User Transact i on package.

Programming WebL ogic IMS 5-9

http://e-docs.bea.com/wls/docs81b/ejb/message_beans.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html

5 Using Transactions with WebLogic JMS

5-10

Step 1

Step 2

Step 3

Step 4

Step 5

i mport java.io.*;

import java.util.*;

i mport javax.transaction. User Transacti on;

i mport javax.nam ng.*;

i mport javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA USER XACT=
"javax. transaction. User Transacti on";

Set up the IM S application, creating a non-transacted session. For more information
on setting up the IMS application, refer to “ Setting Up a JMS Application” on page
4-4,

/1 IJMS application setup steps including, for exanple:

gsessi on = gcon. creat eQueueSessi on(fal se,
Sessi on. CLI ENT_ACKNOALEDCE) ;

Look up the User Tr ansact i on using JNDI.

User Transaction xact = (UserTransacti on)
ct x. | ookup(JTA_USER_XACT) ;

Start the JTA user transaction.

xact . begi n();

Perform the desired operations.

/1 Perform sone JMS and EJB operations here.
Commit the JTA user transaction.

xact.commit()

Programming WebL ogic IMS

CHAPTER

O Using WebLogic JMS
with EJBs and Serviets

Thefollowing sections describe featuresin WebL ogic Server 8.1 that makeit easier to
use WebL ogic IM Sin conjunction with J2EE components, such asaservlet or an EJB
(Enterprise Java Bean).

m “Overview” on page 6-1
m “J2EE Support for WebLogic IMS’ on page 6-2
m “Foreign JMS Provider Support” on page 6-10

m “Examplesof IMS Wrapper Functions’ on page 6-11

Overview

Thisrelease of WebL ogic Server makesit easier to use WebL ogic IMSin conjunction
with servlets or EJBs. These usability features are generally hidden behind the J2EE
standard, but they have been enhanced for this release. Using this support should be
considered as the “best practice” way to send a WebL ogic IM S message from inside
an EJB or servlet.

The “Foreign IM S Provider Support” on page 6-10 section briefly describes the new
consol e support for foreign IMS providers, as documented in Accessing Foreign IMS
Providers section of the Administration Console Online Help. This feature makes it

Programming WebL ogic IMS 6-1

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers

6 Using WebLogic JMS with EJBs and Servlets

possible to map foreign IM S providers — including instances of WebL ogic Server in
another cluster or domain — so that they appear in the local INDI tree asalocal IMS
object.

J2EE Support for WebLogic JMS

6-2

The WebL ogic Server 8.1 makesit easier to use WebLogic IMS inside a J2EE
component by providing usability features, such as:

= Automatic pooling of JMS connection and session objects (and some pooling of
message producer objects as well).

m Automatic transaction enlistment for JIMS providers that support XA.
m Testing of the IMS connection and reestablishment after afailure.
m Security credentias that are managed by the container.

These features are accessed from inside an EJB or a servlet by declaring aWebL ogic
JMS connection factory asar esour ce in the deployment descriptors. An example of
thisis provided in “ Referencing a JM S Connection Factory” on page 6-3. Once a
connectionfactory isregistered asar esour ce, thentheapplication canlook it up from
JINDI using thej ava: conp/ env/ subtreethat is created for each EJB or servlet. Itis
important to note that these features are only enabled when using aresource inside the
deployment descriptors. Writers of EJBs and servlets still have direct accessto the
JMS provider by performing a direct INDI lookup of the connection factory.

For moreinformation about packaging EJBs, see “ Packaging EJBs for the WebL ogic
Server Container” in Programming WebLogic Enterprise JavaBeans. For more
information about programming servlets, see “Programming Tasks” in Programming
WebLogic HTTP Serviets.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs81b/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs81b/servlet/progtasks.html

J2EE Support for WebLogic JIMS

Referencing a JMS Connection Factory

A IJMS connection factory can be registered as part of an EJB or servlet by including
aresource-ref elementintheej b-jar.xm orweb. xm file. In other words,
WebL ogic Server 8.1 creates a“wrapped”’ JM S connection factory that provides the
other, more advanced features described in this section.

Here is an example of such an element:

<resource-ref>
<res-ref-nanme>j ns/ QCF</r es-ref - nanme>
<res-type>j avax.j ns. QueueConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ res- aut h>
<r es-shari ng- scope>Shar eabl e</ r es- shari ng- scope>
</resource-ref>

This element declaresthat a JIMS QueueConnect i onFact ory object will be bound
into JNDI, at the location:

j ava: conp/ env/ QCF

(ThisINDI name isonly valid inside the context of the EJB or servlet where the
resour ce-r ef isdeclared, whichiswhat thej ava: conp/ env INDI context isabout.)

In addition to this element, there must be amatching r esour ce- descri pti on
element in thewebl ogi c-ej b-j ar. xm or webl ogi c. xm filethat tells the J2EE
container which JM S connection factory to put in that location. Here is an example;

<resour ce-descri pti on>

<res-ref-nane>j ns/ QCF</r es-ref - nane>

<j ndi - nanme>webl ogi c. j ns. Connecti onFact or y</j ndi - name>
</resource-description>

The connection factory specified here must already exist in the global JNDI tree. This
example uses one of JM S connection factoriesthat are automatically created whenever
the built-in WebLogic JIMS server is used. To use another WebL ogic JMS connection
factory from the same cluster, simply include that connection factory’s INDI name
inside thej ndi - name element. To use a connection factory from another vendor, or
from another WebL ogic Server cluster, create a Foreign IM S Server, as described in
“Accessing Foreign JMS Providers’ in the Administration Console Online Help.

If the INDI name specifiedinther esour ce- descri pt i on element isincorrect, then
the application is still deployed. However, you will receive an error when you try to
use the connection factory.

Programming WebL ogic IMS 6-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers

6 Using WebLogic JMS with EJBs and Servlets

Referencing a JMS Destination

Itisalso possibleto bind aJM S destination (aqueue or topic) intothej ava: conp/ env
JINDI tree. Thisfeature is useful for consistency, and to make an application less
dependent on aparticular configuration of WebL ogic Server. To do this, there must be
aresour ce-env-ref element inthewebl ogi c-ej b-j ar. xm orweb. xm file, as
follows:

<resource-env-ref>
<resour ce- env-r ef - nane>j ns/ TESTQUEUE</ r esour ce- env-r ef - nane>
<resource-env-ref-type>j avax.j ms. Queue</resource-env-ref-type>
</ resource-env-ref>

There must also be amatching r esour ce- env- descri pt i on element in the
webl ogi c-ej b-jar.xm orwebl ogi c. xnl file, asfollows:

<resource- env-description>

<res-env-ref-nane>j ms/ TESTQUEUE</ r es- env-r ef - name>

<j ndi - nane>j st est . desti nati ons. TESTQUEUE</ | ndi - nane>
</ resource-env-description>

Again, if the destination does not exist, then the application is deployed, but there will
be an exception thrown when trying to use the destination.

Sending a Message

6-4

Oncethe resources have been mapped tothej ava: conp/ env INDI tree, then they can
be used inside an EJB or a servlet. For instance, the following code fragment sends a

message:

Initial Context ic = new Initial Context();
QueueConnecti onFactory qcf =
(QueueConnecti onFactory)ic. | ookup("java: conp/ env/jnms/ QCF");
Queue dest Queue =
(Queue)i c. | ookup("j ava: conp/ env/j ms/ TESTQUEUE") ;
ic.close();
QueueConnecti on connection = qcf.createQueueConnection();
try {
QueueSessi on session = connection. creat eQueueSessi on(0, false);
QueueSender sender = session. createSender (dest Queue);
Text Message nmsg = session. creat eText Message("This is a test");
sender. send(nsg) ;
} finally {

Programming WebL ogic IMS

J2EE Support for WebLogic JIMS

connection. cl ose();

}

Thisisstandard code that complies with the J2EE specification and which should run
on any EJB product that properly supports 2EE — the differenceisthat it runs more
efficiently on WebL ogic Server 8.1, because under the covers various objects are
pooled, as described in “Pooled Session Objects’ on page 6-8.

Note that this code fragment usesatry. .. fi nal I y block to guarantee that the

cl ose() method on the IMS Connection object is executed even if one of the
statements inside the block throws an exception. If no connection pooling were being
done, then this block would be necessary in order to ensure that the connection is
closed, and to prevent server resourcesfrom being wasted. But since WebL ogic Server
pools some of the objects that are created by this code fragment, it is even more
important that cl ose() be called; otherwise, the container will not know when to
return the object to the pool.

Also, none of the transactional XA extensions to the IMS API are being used in this
code fragment. Instead, the container uses them internally if the IMS codeis used
inside atransaction context. But whether XA isbeing used or not internally, the
user-written codeisthe same, and does not use any of the IMS XA classes. Thisiswhat
is specified by J2EE. By writing EJB code in this way, EJBs can run either in an
environment where transactions are present or in anon-transactional environment, just
by changing the deployment descriptors.

Under the Covers

This section explains what is happening “under the covers’ when WebL ogic Server
creates a set of wrappers around the IM S objects. For example, in the code fragment
provided in “ Sending aMessage” on page 6-4, since the IMS connection factory was
looked up from thej ava: conp/ env JNDI tree, the actual IM S connection factory is
not being returned, but an instance of a WebL ogic-specific wrapper class. This
wrapper object intercepts certain callsto the JIM S provider and insertsthe correct J2EE
behavior, as described in the following sections.

Automatically Enlisting Transactions
If awrapped JM S connection is used to send or receive a message inside a transaction

context, then the JIMS session being used to send or receive the message is
automatically enlisted in thetransaction using the X A capabilities of the IMS provider.

Programming WebL ogic IMS 6-5

6 Using WebLogic JMS with EJBs and Servlets

This isthe case whether the transaction was started implicitly because the IM S code
was invoked inside an EJB with container-managed transactions enabled, or if the
transaction was started manually using the User Tr ansact i on interfacein aservlet or
an EJB that supports bean-managed transactions.

However, if an EJB or servlet attempts to send or receive amessage inside a
transaction context and the IM S provider being used does not support XA, then the
send() orreceive() cal throws an exception, asfollows:

[J2EE: 160055] Unabl e to use a wapped JMs session in the transaction
because two-phase commit is not avail able.

In order to send or receive a message inside a transaction using a JM S provider that
does not support XA, either declare the EJB with a transaction mode of
Not Suppor t ed, or suspend the transaction using one of the JTA APIs.

For more information on the attributes available when configuring aWebLogic IMS
connection factory that supports transactions, see “ JIM S Connection Factory -->
Configuration --> Transactions’ in the Administration Console Online Help.

Container-Managed Security

6-6

WebL ogic JMS uses the security credentials that are present on the thread when the
EJB or servlet isinvoked. For foreign JM S providers, however, when aJMS
connection factory isdeclared viaar esour ce- ref element in the

webl ogi c-ej b-jar.xm orweb. xnl file, thereisan optional sub-element called

r es- aut h. Thismay have one of two settings:

Container — When ther es- aut h element is set to Cont ai ner , then security to the
JMS provider is managed by the J2EE container. In this case, if the IMS connection
factory was mapped into the INDI tree using a Foreign JM S Connection Factory
configuration MBean, then the user name and password from that MBean is used (see
“Foreign IM S Provider Support” on page 6-10). Otherwise, WebL ogic Server
connects to the provider with no user name or password specified. In thismode, it is
an error to passauser name and password to thecr eat eConnect i on() method of the
JMS connection factory.

Application — When ther es- aut h element is set to Appl i cat i on, then any user
name or password on the MBean isignored. I nstead, the application code must specify
auser name and password to the cr eat eConnect i on() method of the IMS
connection factory, or use the version of this function with no user name or password
if none are required.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_transactions.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_transactions.html

J2EE Support for WebLogic JIMS

Connection Testing

The IMS wrapper classes monitor each connection that is established to the IMS
provider. They do thisin two ways:

m Registering aJMS Except i onLi st ener object on the connection.

m Testing the connection every two minutes by sending a message to atemporary
gueue or topic and then receiving it again.

J2EE Compliance

The J2EE specification states that you should not be allowed to make certain IS API
calsinside a J2EE application. The IM S wrappers enforce these restrictions by
throwing an exception when they are violated. They are as follows:

m On the connection object, the methods cr eat eConnect i onConsurer (),
creat eDur abl eConnecti onConsuner(),setdientl D),
set Except i onLi st ener (), and st op() should not be called.

m Onthe session object, the methods get Messageli st ener () and
set MessagelLi st ener () should not be called.

m Onthe consumer object (aQueueRecei ver or Topi cSubscri ber object), the
methods get MessagelLi st ener () and set Messageli st ener () should not be
caled.

Furthermore, the cr eat eSessi on() method, and the associated

cr eat eQueueSessi on() and cr eat eTopi cSessi on() methods, are handled
differently. This method takes two parameters: an “acknowledgement” mode and a
“transacted” flag. When used inside an EJB, these two parameters are ignored. If a
transaction is present, then the JIM S session is enlisted in the transaction as described
in“Automatically Enlisting Transactions’ on page 6-5; otherwise, itisnot. By default,
the acknowledgement mode is set to “auto acknowledge”. This behavior is expected
by the J2EE specification. (This may make it more difficult to receive messages from
inside an EJB, but the recommended way to receive messages frominsidean EJB isto
use a message-driven bean.)

Inside a servlet, however, the parametersto cr eat eQueueSessi on() and
creat eTopi cSessi on() are handled normally, and users can make use of al the
various message acknowledgement modes.

Programming WebL ogic IMS 6-7

6 Using WebLogic JMS with EJBs and Servlets

Pooled Session Objects

The IM Swrappers pool various session objectsin order to make code like the example
provided in “Sending a Message” on page 6-4 more efficient. A pooled IMS
connection is a session pool used by EJBs and servlets that use a resource-reference
element in their EJB deployment descriptor to define their IM S connection factories.

Pooled JM S sessions can be monitored using the Server --> Monitoring --> JM S node
on the Administration Console. For more information, see “ Server --> Monitoring -->
JMS” in the Administration Console Online Help.

Improving Performance

The automatic pooling of connections and other abjects by the IM S wrappers means
that it is efficient to write code as shown in “ Sending a Message” on page 6-4.
Althoughin this example the Connection Factory, Connection, and Session objectsare
created every time amessageis sent, inreality these three classes work together so that
when used as shown, they do little more than retrieve a Session object from the pool.

Speeding Up JNDI Lookups

6-8

The INDI lookups of the Connection Factory and Destination objects can be
expensive. Thisis particularly true if the Destination object pointsto a Foreign IMS
Destination MBean, and therefore, is alookup on anon-local INDI provider. Since
both of these objects are thread-safe, they may be looked up once inside an EJB or
servlet at creation time, which savesthe timerequired to perform the lookup each time.

Inside a servlet, these lookups can be performed inside thei ni t () method. The
Connection Factory and Destination objects may then be assigned to an instance
variable and reused whenever a message is sent.

Inside an EJB, these |ookups can be performed inside the ej bCr eat e() method and
assigned to an instance variable. For asession bean, each instance of the bean will then
have its own copy, but thisis perfectly fine. Since statel ess session beans are pooled,
thisisalso very efficient, and is perfectly consistent with the J2EE specifications.
(Whereas, caching these objects in a static member of the EJB class may work, but it
is discouraged by the J2EE specification.)

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_monitoring_jms.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_monitoring_jms.html

J2EE Support for WebLogic JIMS

However, if these objectsare cached insidetheej bCreat e() ori ni t () method, then
the EJB or servlet must have someway to recreate them if there hasbeen afailure. This
is necessary because some JMS providers, like WebLogic IMS, may invalidate a
Destination object after aserver failure. So, if the EJB runson Server A, and IMSruns
on Server B, then the EJB on Server A will have to perform the INDI lookup of the
objects from Server B again after that server has recovered. The example,

“Pool TestCMPBean.java’ on page 6-13 includes a sample EJB that performs this
caching and relookup process correctly.

Speeding Up Object Creation

Once this has been done, it may be tempting to cache other objects, such asthe
Connection, Session, and Producer objects, insidetheej bCr eat e() method. Thiswill
work, but it isnot always the most efficient solution. Essentially, by doing thisyou are
removing a Session object from the cache and permanently assigning it to a particular
EJB, whereas by using the IMS wrappers as designed, that Session object can be
shared by other EJBs and servlets as well. Furthermore, the wrappers attempt to
reestablish a JM'S connection and create new session objectsif thereisa
communications failure with the IM S provider, but thiswill not work if you cachethe
Session object on your own.

However, this technique will improve performance for critical code, since the
management of the IMS session pool does add overhead. If you want to use this
technique, you must make sure that you close and reopen the JIM S connection and
session objects after aserver failure; otherwise, your EJB or servlet will not be ableto
accessthe IM S provider after it has been restarted.

Using the Right Transaction Mode

When aJMSsend() orrecei ve() operation is performed inside atransaction, the
container automatically enlists the provider in the transaction. A transaction can be
started automatically inside an EJB or servlet that has contai ner-managed transactions,
or it can be started explicitly usingthe User Tr ansact i on interface. In either case, the
container automatically enlists the IMS provider. However, if the underlying IMS
connection factory used by the EJB or servlet does not support XA, then the contai ner
will throw an exception.

However, performing the transaction enlistment has overhead. Furthermore, if an XA
connection factory isused, but thesend() orrecei ve() methodisinvoked outside a
transaction, the container must till create a JTA transaction to wrap thesend() or

Programming WebL ogic IMS 6-9

6 Using WebLogic JMS with EJBs and Servlets

recei ve() methodin order to ensurethat the operation properly takes place no matter
which IM S provider isused. Although thisisonly aone-phase commit, it can still slow
down the server.

Therefore, when writing an EJB or servlet that usesa JMS resource in a
non-transactional manner, then it is best to use a IMS connection factory that is not
configured to support XA. For more information on configuring a WebLogic IMS
connection factory, see “Configuring a JIMS Connection Factory” in the
Administration Console Online Help.

Foreign JMS Provider Support

6-10

Another set of features for WebL ogic Server 8.1 makes it possible to create a
“symboliclink” between a JM S connection factory or destination object in an external
JINDI provider to an object inside the local WebL ogic Server. There are three
configuration MBeans for this task:

m Foreign JMS Server — Contains information about the remote JNDI provider,
including itsinitia context factory, URL, and additional parameters. It isthe
parent of the next two MBeans. It can be targeted to aindependent WebL ogic
Server or to acluster.

m Foreign JMS Connection Factory — represents a foreign connection factory. It
contains the name of the connection factory in the remote JINDI provider, the
name to map it to in the server’s INDI tree, and an optional user name and
password. The user name and password are only used when thisis used inside a
resour ce-r ef er ence in an EJB or a servlet, and the “ Container” mode of
authentication is used. It creates non-replicated INDI objects on each WebL ogic
Server instance to which the parent MBean is targeted. (To create the INDI
object on every node in the cluster, target the parent MBean to the cluster.)

m Foreign JMS Destination — represents aforeign IM S destination. It contains the
name to look up on the foreign INDI provider, and the name to map it to on the
local server.

For instructions on configuring these M Beans with the Administration Console, refer
to “Accessing Foreign IMS Providers’ in the Administration Console Online Help.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers

Examples of JMS Wrapper Functions

Once deployed, these MBeans work by creating objectsin the server’s INDI tree,
which perform the lookup of the remote object every time they are looked up. This
means that the local server and the remote JINDI directory are never out of sync.
However, it meansthat a INDI lookup of one of these MBeans can potentially be
expensive. The sectionson “Pooled Session Objects’ on page 6-8 describes someways
around this.

Examples of JMS Wrapper Functions

The following files comprise a simple stateless EJB session bean that uses the

WebL ogic IM Swrapper functionsto send a message when an EJB iscalled. Although
this exampl e uses a session bean, the same XML descriptors and bean class, with very
few changes, may be used for an message-driven bean.

ejb-jar.xml

<?xm version="1.0"?>

<! DOCTYPE ej b-j ar PUBLIC
"-//Sun Mcrosystenms, Inc.//DID Enterprise JavaBeans 2.0//EN'
"http://java.sun.com dtd/ejb-jar_2 0.dtd">

<ej b-jar>
<ent erpri se-beans>
<sessi on>
<ej b- name>Pool Test CMPBean</ ej b- nanme>
<horme>webl ogi c. j ms. pool . t est. Pool Test CMPHone</ hone>
<r enot e>webl ogi c. j ms. pool . t est. Pool Test CMP</ r enot e>
<ej b-cl ass>webl ogi c. j ns. pool . t est. Pool Test CMPBean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>

<resource-ref>
<res-ref-name>j ns/ QCF</res-ref - nanme>
<res-type>j avax.j ns. QueueConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<r es-shari ng- scope>Shar eabl e</ r es-shari ng- scope>
</resource-ref>

Programming WebLogic IMS 6-11

6 Using WebLogic JMS with EJBs and Servlets

<resour ce-env-ref>
<resour ce- env-ref - nanme>j ms/ TESTQUEUE</ r esour ce- env-r ef - name>
<resource-env-ref-type>j avax.j ms. Queue</resource-env-ref-type>
</resource-env-ref>

</ sessi on>

</ enterprise-beans>

<assenbl y-descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- name>Pool Test CMPBean</ ej b- nane>
<met hod- name>* </ nmet hod- name>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or>

</ejb-jar>

weblogic-ejb-jar.xml

<?xm version="1.0"7?>

<! DOCTYPE webl ogi c-ej b-jar PUBLIC
"-//BEA Systens, Inc.//DTD WebLogic 7.0.0 EJB//EN'
"http://ww. bea. conf servers/w s700/ dt d/ webl ogi c-ej b-j ar.dtd">

<webl ogi c-ej b-j ar>
<webl ogi c- ent er pri se- bean>
<ej b- name>Pool Test CMPBean</ ej b- nane>
<st at el ess-sessi on-descri ptor>
<pool >
<mex- beans-i n-free- pool >8</ nax- beans-i n-free- pool >
<initial-beans-in-free-pool >2</initial-beans-in-free-pool >
</ pool >
</ st at el ess- sessi on-descri ptor>

<ref erence-descri ptor>
<resource-descripti on>
<res-ref-nanme>j ns/ QCF</res-ref-nanme>
<j ndi - nanme>webl ogi c. j ns. XAConnect i onFact ory</ j ndi - name>
</ resource-description>
<resour ce-env-descri pti on>
<res-env-ref-nane>j ns/ TESTQUEUE</ r es- env-r ef - name>

6-12 Programming WebL ogic IMS

Examples of JMS Wrapper Functions

<j ndi - name>TESTQUEUE</ j ndi - nane>
</ resource-env-description>
</reference-descriptor>
<j ndi - nane>Pool Test CMP</ j ndi - nhanme>
</ webl ogi c-ent erpri se- bean>
</ webl ogi c-ej b-jar>

PoolTestCMP.java

package webl ogi c.j ns. pool . test;

inmport java.rm.*;

inmport javax.ejb.*;

public interface Pool Test CMP ext ends EJBObj ect
{

public String sendXATransactional (String queue,
String text, int count)
t hrows Renot eExcepti on;

PoolTestCMPHome.java

package webl ogi c.j ns. pool . test;

inmport java.rm.?*;
inmport javax.ejb.*;

public interface Pool Test CMPHone
ext ends EJBHone
{

Pool Test CVP creat e()
throws CreateException, RenpteException;

PoolTestCMPBean.java

package webl ogi c.j ns. pool . test;

inmport java.lang.reflect.*;
inmport java.rm.?*;

Programming WebL ogic IMS

6-13

6 Using WebLogic JMS with EJBs and Servlets

i mport javax.ejb.*;

i mport javax.jns.*;

i mport javax.nam ng.*;

i mport javax.transaction.*;

i mport webl ogi c. depl oynent. | ns. *;

public class Pool Test CMPBean
ext ends Pool Test BeanBase
i mpl enents Sessi onBean

private Sessi onContext context;
private QueueConnectionFactory qcf;
private Queue destination;

public void ejbActivate()

{
}

public void ej bRenbve()

{
}

public void ejbPassivate()
{
}

public void setSessi onCont ext (Sessi onCont ext ctx)

{

context = ctx;

}

private void | ookupJNDI Obj ects()
t hrows Nami ngExcepti on

{
Initial Context ic = new Initial Context();
try {
gcf =
(QueueConnecti onFact ory) cont ext. | ookup
("java: conmp/ env/j s/ QCF");
destination =
(Queue) cont ext . | ookup("j ava: conp/ env/j ms/ TESTQUEUE") ;
} finally {
ic.close();
}
}

public void ejbCreate()
t hrows Creat eException

6-14 Programming WebLogic IMS

Examples of JMS Wrapper Functions

{

try {
| ookupJNDI Obj ect s();

} catch (Nam ngException ne) {
t hrow new Creat eException(ne.toString());
}

}

public String sendXATransactional (String queue,
String text, int count)

t hrows Renpt eException
{

String id = "Not sent yet";

try {

if ((gcf == null) || (destination == null)) {
| ookupJNDI Ohj ects();

}
QueueConnecti on connection = qcf.createQueueConnection();
try {
QueueSessi on sessi on = connecti on. creat eQueueSessi on
(false, 0);
Text Message nmessage = session. creat eText Message
("Testing");

QueueSender sender = session. createSender(destination);

sender . send(nmessage) ;
id = message. get IMSMessagel () ;

} finally {
connection. cl ose();

}

} catch (Exception e) {
/1 Invalidate the JNDI objects if there is a failure
/1 this is necessary because the destinati on object
/1 may becore invalid if the destination server has
/1l been shut down

gcf = null;

destination = null;

t hrow new Renot eException("Failure in BEIJB:. " + e);
}
return id;

}
}

Programming WebL ogic IMS

6-15

6 Using WebLogic JMS with EJBs and Servlets

6-16 Programming WebL ogic IMS

CHAPTER

[WebLogic JMS Thin
Client

The following sections describe how to deploy and use the WebL ogic IM Sthin client:
m “Overview” on page 7-1

m “Benefits of Using the IMS Thin Client” on page 7-2

m “Limitations of Using the IMS Thin Client” on page 7-3

m “Deploying the IMS Thin Client” on page 7-3

Overview

While the size of the webl ogi c. j ar file may not be a problem when running
server-side applications, it does cause avery large footprint for today’ s enterprise
client-server applications that may be running thousands of clients. Having to deploy
thefull 20+ MB webl ogi c. j ar file dong with a client application can significantly
increase the size of the deployed application, possibly making it too big to be practical
(such as the case with a Java appl et-based client program).

At around 400 KB, thethin client wl j nscl i ent . j ar file providesasmaller client
footprint by using a client-side library that contains only the set of supporting files
required by client-side programs. The JMS thin client aso requires using the standard
w client.jar (around 300 KB), which has the base client support for clustering,
security, and transactions.

Programming WebL ogic IMS 7-1

[WebLogic JMS Thin Client

Thethinclient . j ar filesare supported only with the JRE 1.4.x or later. No classes
other than the JRE and any user-defined classes are required on the client machine. The
thin client is based upon the RMI-110P protocol stack available in JRE 1.4.x. The
basics of making RMI requests are handled by the JRE, enabling a significantly
smaller client. Client-side development isperformed using standard J2EE APIs, rather
than WebL ogic Server APIs.

Thethinclient. j ar filesarelocated inthewW._HOVE\ ser ver\ | i b subdirectory of the
WebL ogic Server installation directory (for example,
c:\ bea\ webl ogi c81b\server\1lib).

For more information on using WebL ogic Servers client applications, see
“Understanding WebL ogic Server Applications’ in Developing WebLogic Server
Applications.

Benefits of Using the JMS Thin Client

7-2

Although small in size, the WebL ogic IM S and standard WebL ogic Server thin clients
provides the following functionality to client applications and applets:

m Full WebLogic IMS functionality is available—both standard IMS and
WebL ogic Server extensions—except for client-side XML selection for multicast
sessions and the IM SHel per class methods.

m EJB (Enterprise Java Bean) access.

m INDI access.

m RMI access (indirectly used by IMS).
m SSL access (using JSSE in JRE 1.4.x).
m Transaction capability.

m Clustering capability.

m HTTP/HTTPS tunneling.

m Fully internationalized.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/programming/concepts.html#concepts014

Limitations of Using the JMS Thin Client

Limitations of Using the JMS Thin Client

The WebLogic IMS thin client does not provide al of the functionality of the normal
webl ogi c. j ar, asfollows:

= JDOBC

m JMX

Deploying the JMS Thin Client

Deployment of the WebL ogic IM S thin client depends on the following requirements:

Each client must have the JRE 1.4.x installed.

Thethinclient . j ar filesarelocated in the W._HOVE\ ser ver\ | i b subdirectory
of the WebL ogic Server installation directory (for example,
c:\ bea\ webl ogi c81b\server\lib).

Thethin IMSW j nsclient.jar and standardw client.jar filesmust bein
each client’s classpath and installed somewhere on the client’s file system.

The WebL ogic IMS thin client requires using the RM1 over [10OP standard for
communicating between client and server.

e URLsusingt 3 ort3s will transparently usei i op orii ops

e URLsusinghttp or htt ps will transparantly usei i op tunneling.

Adhere to J2EE programming guidelines, in particular the use of
Por t abl eRerot eQbj ect . narrow() rather than using casts.

Programming WebL ogic IMS 7-3

[WebLogic JMS Thin Client

7-4 Programming WebL ogic IMS

CHAPTER

8 Porting WebLogic JMS
Applications

The following sections describe how to port your WebL ogic IMS applications to a
newer version of WebL ogic Server:

m “Existing Feature Functionality Changes’ on page 8-1
m “Porting Existing Applications’ on page 8-8
m “Deleting JDBC Database Stores’ on page 8-12

Existing Feature Functionality Changes

Changesin existing feature functionality have been made in order to comply with Sun
Microsystem’s IM S Specification. Therefore, you should check feature functionality
changes in the following tables before beginning any porting procedures.

m Existing Feature 5.1 to 6.0 Functionality Changes
m Existing Feature 6.0 to 6.1 Functionality Changes

Programming WebL ogic IMS 8-1

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

8 Porting WebLogic JMS Applications

Existing Feature 5.1 to 6.0 Functionality Changes

The following table lists the changesin existing feature functionality from WebL ogic
Server version 5.1, and also indicates any code changes that might be required as a
result. For additional information pertaining to the IM S Specification’ sversion change
history, refer to Chapter 11, “Change History” in the specification.

Category Description Code M odification
Connection Two default connection factories have been It isrecommended that existing code that use
Factories deprecated. The INDI names for these the deprecated classes be modified to use a

factories are:
m javax.]j ms. QueueConnecti onFactory
m javax.]jms. Topi cConnecti onFactory

For backwards compatibility, the INDI names for
thesetwo connection factoriesare still defined and
supported.

WebL ogic IMS6.x or later definesone connection
factory, by default:
webl ogi c. j ms. Connecti onFactory

Y ou can also specify user-defined connection
factories using the Administration Console.

Note: Usingthedefault connectionfactory, you
have no control over the WebLogic
server on which the connection factory
may be deployed. If you would like to
target a particular WebL ogic Server,
create a new connection factory and
specify the appropriate WebL ogic Server
target(s).

new default or user-defined connection
factory class.

For example, if your code specified the
following constant using the default queue
connection factory:

public final static String
JMS_FACTORY="j avax. j ns. QueueCon
necti onFact ory”

Y ou should modify the constant to use anew
user-defined connection factory, for
example:

public final static String
JMS_FACTORY="webl ogi c.] ns. Queue
Connecti onFact ory”

For true backwards compatibility with
previous rel eases, you should ensure that you
select the Allow Close In onMessage and
User Transactions Enabled check boxes
when configuring the connection factory.

For more information about defining
connection factories, see “JM'S Connection
Factory Tasks’ in the Administration
Console Online Help.

In order to instantiate the default connection
factory on aparticular WebL ogic Server, you must
select the Enable Default IM S Connection
Factories check box when configuring the

WebL ogic Server.

None required. Thisis a configuration
requirement. For more information, see
“Server --> Services--> JMS” inthe
Administration Console Online Help.

8-2 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_services_jms.html

Existing Feature Functionality Changes

Category Description Code M odification
Connections ~ When closing a connection, the call blocks until None required.
outstanding synchronous calls and asynchronous
listeners have completed.
Sessions When closing a session, the call blocks until None required.
outstanding synchronous calls and asynchronous
listeners have completed.
Message If multiple topic subscribers are defined in the None required.
Consumers same session for the same topic, each consumer
will receiveits own copy of a message.
When closing amessage consumer, thecall blocks None required.

until the method call completes and any
outstanding synchronous applications are
cancelled.

In order to comply with the IMS specification, if
thecl ose() method is called from within an
onMessage() method, theapplicationwill hang
unless the Allow Close In OnM essage check box
is selected when configuring the connection
factory. If the acknowledge mode is
AUTO_ACKNOWLEDGE, the current message will
still be automatically acknowledged.

None required. Thisis aconfiguration
requirement. For more information, see
“JMS Connection Factory Tasks’ in the
Administration Console Online Help.

Programming WebL ogic IMS 8-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

8 Porting WebLogic JMS Applications

Category Description Code M odification
Message The JMSMessagel D header field format has If you wish to access existing messages using
Header Field changed. the JMSMessagel D, you may need to run

one of the following

webl ogi c. j ms. ext ensi ons. JMSHel p
er methodsto convert between WebL ogic
pre-IMS 5.1 and IMS 6.x IM SMessagel D
formats.

To convert from pre-5.1 to 6.x
JMBMessagel Dformat:

public void

ol dJMsMessagel DToNew(
String id,
long tinmeStanp

) throws JMSException

To convert from 6.1 to pre- 6.1
JMBMessagel Dformat:
public void
newdMsMessagel DToO d(
String id,
long tinmeStanp
) throws JMSException

84 Programming WebL ogic IMS

Existing Feature Functionality Changes

Category Description Code M odification
Destinations Thecr eat eQueue() andcr eat eTopi c() Update any portion of code that uses
methods do not create destinations dynamically, creat eQueue() orcreat eTopic() to
only references to destinations that already exist ~ dynamically create destinations using the
given the vendor-specific destination name. following JM SHel per class methods,
respectively:
cr eat ePer manent QueueAsync() and
cr eat ePer manent Topi cAsync() .
For example, if your code used the following
method to dynamically create a queue:
gueue=gsessi on. cr eat eQueue(queu
eNane) ;
Y ou should modify the code to dynamically
create a queue, as described in the sample
fi ndQueue() method in“Using the
JM SHelper Class Methods’ on page 4-50.
For more information, see “ Creating
Destinations Dynamically” on page 4-49.
When creating temporary destinations, you must ~ None required. Thisis a configuration
specify atemporary template. reguirement. For more information, see
“IMSTemplate Tasks” inthe Administration
Console Online Help.
Y ou must be the owner of the connectioninorder When creating a message consumer on a
to create a message consumer for that temporary temporary destination, ensurethat you arethe
destination. owner of the connection.
Durable Y ou no longer need to manually create JDBC None required.
Subscribers tables for durable subscribers. They are created
automatically.
Thereis no limit on the number of durable None required.

subscribers that can be created.

When defining aclient ID programatically, it must
be defined immediately after creating a
connection. Otherwise, an exception will be
thrown and you will be unable to make any other
JMS calls on that connection.

Ensurethat theset O i ent | D() methodis
issued immediately after creating the
connection. For more information, refer to
“Defining the Client ID” on page 4-58.

Programming WebL ogic IMS 8-5

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstemplate_config_general.html

8 Porting WebLogic JMS Applications

Category

Description

Code Modification

Session Pools

Session pool factories, session pools, referenced
connection factories, referenced destinations, and
associated connection consumers must al be
targeted on the same IM S server.

Ensure that al objects are targeted on the
same JM S server.

The Sessi onPool Manager and

Connect i onConsuner Manager interfaces
that were published as part of the WebLogic IMS
version 5.1 Javadoc have been removed from the
version 6.x and later Javadoc, as they are system
interfaces and should not be used within client
applications.

If used, remove any referencesto these
objects from the client application.

Transactions

To combine IMS and EJB database calls within
the same transaction, a two-phase commit (2PC)
licenseis required. In previous rel eases of
WebLogic Server, it was possible to combine

them by using the same database connection pool.

None required.

Recovering or rolling back received queue
messages makes them available to all consumers
on the queue. In previous releases of WebLogic
Server, rolled back messages were only available
to the session that rolled back the message, until
that session was closed.

None required.

8-6 Programming WebL ogic IMS

Existing Feature Functionality Changes

Existing Feature 6.0 to 6.1 Functionality Changes

The following table lists the changes in existing feature functionality from WebL ogic
Server 6.0, and also indicates any code changes that might be required as aresult. For
additional information pertaining to the IM S Specification’ s change history, see
Chapter 11, “Change History,” of Sun Microsystem’s JM S Specification

Category

Description

Code Modification

Connection
Factories

For the Acknowledge Palicy attribute in the
Administration Console, the new default value of
Al | isawork-around to accommodate achangein
the IMS Specification. This new default setting
represents a change from prior versions of JIMS,
which internally defaulted to Pr evi ous, and
which did not appear as an option in the
Administration Console.

As the message acknowledge policy for the
connection factory, the Acknowledge Policy
attribute only applies to implementations that use
the CLI ENT_ACKNOW.EDGE mode for a
non-transacted session.

m Al |l — acknowledge all messages ever
received by a given session, regardless of

which message call sthe acknowl edge method.

m Previ ous — acknowledge all messages
received by agiven session, but only up to and
including the message that callsthe
acknowledge method.

For more information on message acknowledge
modes, refer to “Non-transacted Session” on page
2-9.

Note: For connection factories used by MDBs
(message-driven beans), always set the
AcknowledgePolicy fieldtoPr evi ous.
Although the default MDB connection
factory aready doesthis, foreign
connection factories may not.

If you want to acknowledge only previously
received messages, up to and including the
message that calls the acknowledge method,
change the default Acknowledge Policy
setting from Al | to Pr evi ous viathe IMS
--> Connection Factory --> Generd tabinthe
Administration Console.

Programming WebL ogic IMS 8-7

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://java.sun.com/products/jms/docs.html

8 Porting WebLogic JMS Applications

Category Description Code M odification

Destinations In WLS 6.0, the IMS documentation correctly None required. Thisis a configuration
specifiesvaluesof def aul t ,true,andf al se requirement. For more information, see
for the St or eEnabl ed attribute of the “IMS Template Tasks” inthe Administration
JMSDest i nat i onMBean, even though the Console Online Help.

software allowed for mixed case characters.
version 6.1 or later, however, requires all
|lowercase characters for the St or eEnabl ed
settings.

Porting Existing Applications

This release of WebL ogic Server supports Sun Microsystem’s JM S Specification. In
order to use your existing JM S applications, you must first confirm your version of
WebL ogic server, and then perform the appropri ate porting procedures provided in this
section.

m Porting Stepsfor 4.5 and 5.1 Applicationsto 6.x
m Porting Stepsfor 6.0 Applicationsto 6.1
m Porting Stepsfor 6.x Applicationsto 7.0

Before You Begin

Before beginning the porting procedure, you should check thefollowing list to confirm
whether porting is support for your version of WebLogic Server M S, and to find out
whether special porting rules apply to that release:

m Weblogic Server 4.5.1 — Porting is supported only for SP15. Customers running
al service packs should contact BEA Support.

m Weblogic Server 5.1 — Customers running SPO7 or SP08 should contact BEA
Support before porting existing JDBC stores to version 7.0.

8-8 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstemplate_config_general.html
http://java.sun.com/products/jms/docs.html

Porting Existing Applications

e |norder to port object messages, the object classes need to be in the
Weblogic Server 7.0 server CLASSPATH.

e For destinations that are not configured in Weblogic Server 7.0, the ported
messages will be dropped and the event will be logged.

m WebLogic Server 6.x — All applications are supported in version 7.0. However,
if you want your applications to take advantage of the new highly available IMS
features, you will need to configure your existing physical destinations (queues
and topics) to be part of a single distributed destination set. For more
information, see “Using Distributed Destinations” in Programming WWebLogic
JMS.

Porting Steps for 4.5 and 5.1 Applications to 6.x

Before you can use an existing WebL ogic IM S 6.x application, you must port the
WebL ogic Server versions 4.5 and 5.1 configuration and message data as follows:

1. Properly shut down the old version of WebL ogic Server before beginning the
porting process.

Warning: Abruptly stopping the old version of WebLogic Server while
messaging is still in process may cause problems during porting.
Processing should be inactive before shutting down the old server and
beginning the porting to WebL ogic Server 6.X.

2. Upgrade the WebL ogic Server environment, as described in Installing WebLogic
Server.

3. Ported configuration information using the configuration conversion facility.

During the configuration porting, the following default queue and topic
connection factories are enabl ed:

e javax.jms. QueueConnecti onFactory
e javax. | ns. Topi cConnecti onFactory

e webl ogi c.j ns. Connecti onFactory

The first two connection factories are deprecated, but they are till defined and
usable for backwards compatibility. For information on the new default
connection factory, see the table “ Existing Feature 5.1 to 6.0 Functionality
Changes’ on page 8-2.

Programming WebL ogic IMS 8-9

http://e-docs.bea.com/wls/docs81b/jms/implement.html#using_distributed_destinations
http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/conversion.html

8 Porting WebLogic JMS Applications

8-10

The IMS administrator will need to review the resulting configuration to ensure
that the conversion meets the needs of the application. In this case, all of the
JMSS attributes will be mapped to asingle node, asin version 5.1.

Note: Inversions 6.0 or later, IM S queues are defined during configuration, and

a

no longer saved within database tables. Message data and durable
subscriptions are stored either in two JDBC tables or viaadirectory within
thefile system.

. Prepare for automatic porting of existing JDBC database stores.

Make a backup of the existing JDBC database.

b. Ensure that the ported configuration information (see step 2) containsa JDBC

database store with exactly the same attributes asthe existing store, and that the
new JMS servers that use the store define the same destinations and
corresponding destination attributes as the existing IM S servers.

If the new JDBC database store aready exists, ensure that it is empty.

The new JDBC database store will be created during the automatic porting, if
reguired.

Ensure that there is twice the amount of disk space required by the JIDBC
database store available on the system.

Both the existing and new database information will exist on disk while the
porting is performed, doubling the space requirements. Once porting is
complete, you can delete the old JDBC database stores, as described in
“Deleting JDBC Database Stores” on page 8-12.

. Update any existing code, as required, to reflect the feature functionality changes

described in “Existing Feature 5.1 to 6.0 Functionality Changes’ on page 8-2.

. Start up the WebL ogic Server and the existing JDBC database stores will be

ported automatically.

Note: If theautomatic porting fails for any reason, the automatic porting will be

re-attempted the next time the WebL ogic Server boots.

Programming WebL ogic IMS

Porting Existing Applications

Porting Steps for 6.0 Applications to 6.1

Before you can use an existing WebL ogic IMS 6.x application, you must port the
WebL ogic Server 6.0 configuration and message data as follows

1

Check the connection factory configuration for version 6.0. You may need to
modify programs that call the version 6.1 default connection factory so that they
load one of the following connection factories:

e Oneof the version 6.0 default connection factories.

e A custom connection factory.

Properly shut down the version 6.0 WebL ogic Server before beginning the
porting process.

Warning: Abruptly stopping the old version of WebLogic Server while
messaging is still in process may cause problems during porting.
Processing should be inactive before shutting down the old server and
beginning the porting to WebL ogic Server 6.x.

Upgrade the WebL ogic Server environment, as described in Installing WebLogic
Server.

Update any existing code, as required, to reflect the feature functionality changes
described in “ Existing Feature 5.1 to 6.0 Functionality Changes’ on page 8-2.

Warning: Before starting the version 6.1 WebL ogic Server, you may want to
backup your version 6.0 stores. This is because version 6.0 servers
cannot use 6.1 stores, and any attempts to do so may cause data
corruption.

Start the version 6.1 WebL ogic Server. This server will continue to use the
previous version 6.0 stores.

Porting Steps for 6.x Applications to 7.0

All WebL ogic IM S 6.x applications are supported in version 7.0. However, if you want
your applicationsto take advantage of the new highly available IM S features, you will
need to configure your existing physical destinations (queues and topics) to be part of
asingle distributed destination set.

Programming WebLogic JIMS 8-11

http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/install/index.html

8 Porting WebLogic JMS Applications

For more information on using JM S distributed destinations, see “Using Distributed
Destinations” in Programming WebLogic JMS.

Deleting JDBC Database Stores

8-12

Once the porting is complete, the old JDBC database tables should be removed using
theutils. Schena utility, described in detail in Appendix B, “JDBC Database
Utility.”

During porting, aDDL fileisgenerated and stored in thelocal working directory. The
DDL fileisnamed dr op_<j nsSer ver Nane>_ol dt abl es. ddI , where

<j ms Ser ver Nane> specifiesthe name of the IMS server. To delete the JIDBC database
stores, you pass the resulting DDL file as an argument to the ut i | s. Schema utility.

For example, to delete the old JDBC database store from a JIM'S server named
MyJM SServer, run the following command:

java utils. Schema j dbc: webl ogi c: oracl e webl ogi c.jdbc. oci.Driver -s
server -u userl -p foobar -verbose drop_M/JMSServer_ol dtabl es. ddl

For moreinformationontheuti | s. Schema utility, see Appendix B, “JDBC Database
Utility.”

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/jms/implement.html#using_distributed_destinations
http://e-docs.bea.com/wls/docs81b/jms/implement.html#using_distributed_destinations

CHAPTER

A

Configuration
Checklists

The following sections provide monitoring checklists for various WebL ogic IMS

features:

Server Clusters

JTA User Transactions

JM S Transactions

Message Delivery
Asynchronous Message Delivery
Persistent Messages

Concurrent Message Processing
Multicasting

Durable Subscriptions
Destination Sort Order
Temporary Destinations
Thresholds and Quotas

For more information on setting the configuration attributes, see “Configuring MM S’

in the Administration Console Online Help.

Programming WebL ogic IMS

A-1

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

A Configuration Checklists

Server Clusters

To support server clusters, configure the following:
m WebL ogic Server targets under the Targets tab on the Connection Factories node

m WebL ogic Server targets under the Targets tab on the IMS Servers node

JTA User Transactions

To support JTA user transactions, configure the following:

m Connection factory JTA user transaction mode by selecting the User
Transactions Enabled check box under the Configuration—Transactions tab on
the Connection Factories node

JMS Transactions

To support IMS transacted sessions, configure the following:

m Connection factory transaction timeout value by setting the Transaction Timeout
attribute under the Configuration—Transactions tab on the Connection Factories
node

m Session pool transaction mode by selecting the Transacted check box under the
Configuration tab on the Session Pools node

A-2 Programming WebL ogic IMS

Message Delivery

Message Delivery

To define message delivery attributes, configure the following:

m Connection factory priority, time-to-live, time-to-deliver, and delivery mode
attributes under the Configuration—General tab on the Connection Factories
node

m Destination priority, time-to-live, time-to-deliver, and delivery mode override
attributes under the Configuration—Overrides tab on the Destinations node

m Destination redelivery delay, redelivery limit, and error destination attributes
under the Configuration—Redelivery tab on the Destinations node

Note: These settings can also be set dynamically by the message producer when
sending a message or using the set methods, as described in “ Sending
Messages” on page 4-22.

The destination configuration attributes take precedence over all other
settings.

Asynchronous Message Delivery

To define the maximum number of messages that may exist for an asynchronous
session and that have not yet been passed to the message listener, configure the
following:

m Message maximum attribute under the Configuration—General tab on the
Connection Factories hode

Programming WebL ogic IMS A-3

A Configuration Checklists

Persistent Messages

Note: Topic destinations are persistent if, and only if they have durable
subscriptions. For moreinformation about durable subscriptions, see “ Setting
Up Durable Subscriptions’ on page 4-57.

To support persistent messaging, configure the following:
m Createafile or IDBC store using the Stores node

m JMS server backing store by setting the Store attribute under the
Configuration—General tab on the IMS Servers node

Note: Notwo JMS servers can use the same backing store.

m Default message delivery mode by setting one of the following attributes to
PERSI STENT or NON_PERSI STENT:

e Default Delivery Mode attribute under the Configurations—General tab on
the Connection Factories node

e Delivery Mode Override attribute under the Configurations—Overrides tab
on the Destination node

Note: You can also specify persistent as the delivery mode when sending
messages, as described in “ Sending Messages” on page 4-22.

Concurrent Message Processing

To support concurrent message processing, configure the following:

m Server session pool attributes under the Configuration tab on the Session Pools
node

m Connection consumer attributes under the Configuration tab on the Connection
Consumers node

Programming WebL ogic IMS

Multicasting

Note: Server session pool factories, used for concurrent message processing, are not
configurable. WebL ogic JM S defines one ServerSessionPool Factory object,
by default: webl ogi c. j ms. Ser ver Sessi onPool Fact ory: <nane>, where
<nane> specifies the name of the JIM S server on which the session pool is
created. For more information about using server session pool factories, refer
to “Defining Server Session Pools’ on page 4-73.

Multicasting

Note: Multicasting applies to topics only.

To configure multicasting on atopic, configure the following:

m Multicast address, multicast port, and multicast time-to-live (TTL) under the
Configuration—M ulticast tab on the Destination node

m Maximum number of outstanding messages by setting the Messages Maximum
attribute under the Configuration—General tab on the Connection Factories node

m Overrun policy used when the number of outstanding messages reaches the
M essages Maximum value by setting the Overrun Policy attribute under the
Configuration—General tab on the Connection Factories node

Durable Subscriptions

To support durable subscriptions, optionally configure the foll owing:

m Client identifier (client ID) that can be used for clients with durable
subscriptions by setting the ClientI D attribute under the Configuration—General
tab on the Connection Factories node

Note: Alternatively, clients can set the client 1D in the connection after the
connection is created, as described in “ Setting Up Durable Subscriptions’ on
page 4-57.

Programming WebL ogic IMS A-5

A Configuration Checklists

Destination Sort Order

To support destination sort order, configure the following:
m Key attributes under the Configuration tab on Destination Keys node

m Destination Keys under Configuration—General tab on Destinations node

Temporary Destinations

To support temporary destinations (queue or topic), configure the following:

m A JMStemplate for the IMS server (in the same domain) under the
Configuration—General tab on the Templates node

m A JMStemplate to be used by the IMS server for temporary destinations by
setting the Temporary Template attribute for the IMS server under the
Configuration—General tab on the IMS Servers node

Thresholds and Quotas

To configure threshol ds and quotas, configure the following:

m Message and byte threshol ds and quotas (maximum number, and high and low
thresholds) under the Configurations—T hresholds tab on the IM S Server node

m Message and byte threshol ds and quotas (maximum number, and high and low
thresholds) under the Configurations—T hreshol ds tab on the Destination node

m Maximum number of sessions that can be retrieved from a session pool by
setting the Sessions Maximum attribute under the Configurations tab on the
Session Pools node

A-6 Programming WebL ogic IMS

Thresholds and Quotas

m Maximum number of messages that can be accumulated by a connection
consumer by setting the Messages Maximum attribute under the Configuration
tab of the Consumers node

Programming WebL ogic IMS A-7

A Configuration Checklists

A-8 Programming WebL ogic IMS

APPENDIX

B JDBC Database Utility

Thefollowing sections describe JDBC database storesfor WebL ogic IM S, and how to
use the JDBC database utility to regenerate existing JDBC database stores:

m “Overview” on page B-1
m “About IMS Tables’” on page B-1
m “Regenerating JDBC Database Stores’ on page B-2

Overview

TheJDBCuti | s. Schena utility allowsyou to regenerate new JDBC database stores
by deleting the existing versions. Running this utility is usually not necessary, since
JM S automatically creates these stores for you. However, if your existing JDBC
database stores somehow become corrupted, you can regenerate them using the
utils. Schema utility.

Caution: Use caution when running theut i I s. Schema command as it will delete
all existing database tables and then recreate new ones.

About JMS Tables

The JM S database contains two system tables that are generated automatically and are
used internally by JIMS, as follows:

Programming WebL ogic IMS B-1

B JDBC Database Utility

B <prefix>JMSStore

m <prefix>JMsSt at e

The prefix name uniquely identifies IM Stablesin the backing store. Specifying unique
prefixes allows multiple stores to exist in the same database. The prefix is configured
viathe Administration Console when configuring the JDBC store. A prefix is
prepended to table names when:

m The DBMS requiresfully qualified names.

® You must differentiate between JIM S tables for two WebL ogic servers, enabling
multiple tables to be stored on asingle DBMS.

The prefix should be specified using thefollowing format, whichwill resultina
valid table name when prepended to the M S table name:

[[catal og.]schena.] prefix

Note: No two JMS stores should be allowed to use the same database tables, as this
will result in data corruption.

For more information on configuring JDBC database stores for WebL ogic IMS, see
“JMS JDBC Store Tasks” in the Administration Console Online Help.

Regenerating JDBC Database Stores

B-2

Theutils. Schema utility is aJava program that takes command line arguments to
specify the following:

m JDBC driver
m Database connection information

m Name of afile containing the SQL Data Definition Language (DDL) commands
(terminated by semicolons) that create the database tables

By convention, the DDL file hasa.ddl extension. DDL files are provided for
Pointbase, Cloudscape, Informix, Sybase, Oracle, MS SQL Server, IBM DB2, and
Times Ten databases.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

Regenerating JDBC Database Stores

Toexecuteuti | s. Schema, your CLASSPATH must contain the webl ogi c. j ar file.

Enter theut i | s. Schema command, as follows:

java utils. Schema url

JDBC_driver [options] DDL_file

Thefollowing table liststhe ut i | s. Schenma command-line arguments.

Argument

Description

url

Database connection URL. Thisvalue must beacolon-separated
URL as defined by the JDBC specification.

JDBC dri ver

Full package name of the JDBC Driver class.

options

Optional command options.

If required by the database, you can specify:

m The username and password as follows:
-u <usernane> -p <password>

m The Domain Name Server (DNS) name of the JIDBC
database server asfollows:
-s <dbserver>

Y ou can also specify the -ver bose option, which causes
utils. Schema toecho SQL commands as they are executed.

DDL file

The full pathname of atext file containing the SQL commands
that you wish to execute. An SQL command can span several
lines and is terminated with a semicolon (;). Lines beginning
with pound signs (#) are comments.

Thewebl ogi ¢/ j s/ ddl directory within the

webl ogi c. j ar file contains IMS DDL filesfor Pointbase,
Cloudscape, Informix, Sybase, Oracle, MS SQL Server, IBM
DB2, and Times Ten databases. To use a different database,

copy and edit any one of these files.

For example, the following command recreates the IMS tablesin an Oracle server
named DEMO, with the username user 1 and password f oobar :

java utils. Schena jdbc: webl ogi c: oracl e: DEMO \
webl ogi c.jdbc.oci.Driver -u userl -p foobar -verbose \
webl ogi c/j ms/ ddl /j ms_oracl e. ddl

Programming WebL ogic IMS B-3

B JDBC Database Utility

With the Pointbase demo database that i s shipped with WebL ogic Server, no username
or password is required. However, you must follow this procedure to create the IMS
tablesin a Pointbase server:

1. Setthe WLS samples environment:
YSAMPLES HOVE% ser ver \ confi g\ exanpl es\ set Exanpl esEnv. cnd

2. Changetothe o\ _HOVE% ser ver\ | i b\ directory, and then extract the
j ms_poi nt base. ddlI filefromthewebl ogi c. j ar filetothe current directory.

3. Execute the following command to create the IM S tables:

java utils. Schema jdbc: poi nt base: server://Ilocal host/denp
com poi nt base. j dbc. j dbcUni ver sal Dri ver
-u exanpl es -p exanples -verbose jns_poi nt base. ddl

The Pointbase JDBC URL specifies the demo database, which is included with
the WebLogic IMS samples. For the samples, the IM S tables have already been
created in this database.

4. Start the Pointbase server and open the Pointbase console.

For detailed information on using the Pointbase Server console to monitor and
manipulate the IM S tables, see the Pointbase.html filein the

W._HOME\ sanpl es\ server\ src\ exanpl es directory, where W._HOMVE isthe
top-level directory of your WebL ogic Platform installation.

B-4 Programming WebL ogic IMS

Index

A

Acknowledge message 4-32
Acknowledge modes 2-9
Anonymous producer 4-25, 4-26
Application development flow
acknowledging received messages 4-32
importing required packages 4-3
receiving messages 4-29
releasing object resources 4-33
sending messages 4-22
setting up 4-4
steps 4-2
Application setup
creating a connection 4-7
creating a session 4-8
creating message consumers 4-11
creating message object 4-13
creating message producers 4-11
example
PTP 4-16
Pub/sub 4-19
looking up connection factory 4-6
looking up destination 4-9
receiving messages asynchronously 4-15
registering asynchronous message
listener 4-15
starting the connection 4-16
steps 4-4
Asynchronous message, receiving 4-15, 4-30

B

Bytes message
creating 4-14

C

Client ID
defining 4-58
displaying 4-59
Close
connection 4-46
session 4-43
Clusters
configuration checklist A-2
configuring 3-7
Concurrent processing 4-73
Configuration
checklists A-1
clustered IMS 3-7
MS3-1
migratabl e targets 3-10
Connection
closing 4-46
creating 4-7
definition of 2-7
exception listener 4-44
managing 4-44
metadata 4-45
starting 4-16, 4-46
stopping 4-46
Connection consumer

Programming WebL ogic IMS I-i

definition of 2-22
queue 4-78
topic 4-78
Connection factory
definition of 2-6
looking up 4-6
customer support contact information xv

D

Delivery mode 4-24, 4-25, 4-27
Délivery time
overriding
on destinations 4-40
relative time-to-deliver 4-40
schedule interface 4-42
scheduled time-to-deliver syntax
4-40
scheduling overview 4-38
setting on messages 4-39
setting on producer 4-39
Destination
creating dynamically 4-49
definition of 2-12
deleting dynamically 4-52
looking up 4-9
sort order 4-29
temporary 4-56
Destination, distributed
definition of 2-13
documentation, where to find it xiv
Durable subscription
client ID 4-58
creating 4-60
deleting 4-61
modifying 4-61
setting up 4-57

E
Error destination for undelivered messages

I -ii Programming WebL ogic IMS

4-36
Error recovery
connection 4-44
session 4-47
Examples
browse queue 4-69
closing resources 4-33
JMSand EJB in JTA user transaction 5-9
message filtering 4-72
multicast session 4-88
receiving messages synchronously
PTP 4-31
Pub/sub 4-31
sending messages
PTP 4-28
Pub/sub 4-28
server session pool
PTP 4-79
Pub/sub 4-81
setting message header field 4-65
setting up
PTP 4-16
Pub/sub 4-19
Exception listener
connection 4-44
session 4-47
Existing feature functionality changes 8-1

F

Failover procedures 3-15
Failure, server 3-15
Filter message
definition 4-70
example 4-72
SQL statement 4-71
XML selector 4-72

H
Header fields

browsing 4-69
definition of 2-15

displaying 4-63
setting 4-63

J

JDBC store

automatic porting 8-10
database utility B-1
MS
architecture 1-3
clustering features 1-5
major components 1-4
classes 2-5
configuring 3-1
configuring clusters 3-7
configuring migratable targets 3-10
definition 1-1
existing feature functionality changes
81
features 1-3
monitoring 3-14
tuning 3-13
JMS transacted sessions
commiting or rolling back 5-4
configuration checklist A-2
creating 5-4
displaying 5-4
executing operations 5-4
JMSCorrelationl D header field
definition of 2-16
displaying 4-63
setting 4-63
IMSDeliveryMode header field
definition of 2-17
displaying 4-63, 4-64
IMSDeliveryTime header field
definition of 2-17
displaying 4-63
JM SDestination header field

definition of 2-17
displaying 4-63
JM SExpiration header field
definition of 2-17
JM SHel per class methods 4-50, 4-52
JM SMessagel D header field
definition of 2-18
displaying 4-64
JM SPriority header field
definition of 2-18
displaying 4-64
JM SReddlivered header field
definition of 2-18
displaying 4-64
JMSReplyTo header field
definition of 2-19
displaying 4-64
setting 4-64
JM STimestamp header field
definition of 2-19
displaying 4-64
setting 4-64
JM SType header field
definition of 2-19
displaying 4-65
setting 4-65
JTA user transaction
committing or rolling back 5-8
configuration checklist A-2
creating non-transacted session 5-7
example 5-9
looking up user transaction in INDI 5-7
performing desired operations 5-8
starting 5-7

M

Map message
creating 4-14

Message
acknowledging 4-32

Programming WebL ogic IMS I-iii

body 2-20
creating object 4-13, 4-22
defining content 4-22
definition 1-1
definition of 2-15
delivery
configuration checklists A-3
mode 4-24, 4-25, 4-27
times, setting 4-38
filtering
definition 4-70
SQL message selector 4-71
XML message selector 4-72
header fields
browsing 4-69
definition of 2-15
displaying 4-63
setting 4-63
managing
rolled back and recovered 4-34
persistence
configuration checklist A-4
definition of 2-4
priority 4-24, 4-25, 4-27
property fields
browsing 4-69
clearing 4-65
conversion chart 4-67
definition of 2-19
displaying 4-65
displaying al 4-67
setting 4-65
receiving
asynchronous 4-15, 4-30
order control 4-29
synchronous 4-30
recovering 4-31
redelivery delay 4-34
redelivery limit 4-36
sending 4-22
server session pools 4-73

Programming WebL ogic IMS

setting delivery times 4-38
time-to-deliver 4-27, 4-40
time-to-live 4-24, 4-25, 4-27
types
definition of 2-20
displaying 4-66
setting 4-14, 4-66
M essage consumer
creating 4-11
definition of 2-13
Message driven beans 5-9
Message listener, registering 4-15
M essage producer
creating 4-11
creating dynamically 4-26
definition of 2-13
M essage sel ector
defining
SQL 4-71
XML 4-72
displaying 4-73
example 4-72
M essaging models
point-to-point 2-2
publish/subscribe 2-3
Metadata, connection 4-45
Migratable targets
configuring 3-10
Monitor IMS 3-14
Multicast session
creating 4-85
creating topic subscriber 4-85
definition 4-83
dynamically configuring 4-87
example 4-88
messages maximum 4-87
overrun policy 4-87
prerequisites 4-84
setting up message listener 4-86

N
Non-durable subscription 4-58

0
Object message
creating 4-14
Overriding
delivery time
overview 4-40
relative time-to-deliver 4-40
schedule interface 4-42
scheduled time-to-deliver syntax
4-40
redelivery delay 4-35

P
Packages, required 4-3
Persistent message
configuration checklist A-4
definition of 2-4
Point-to-point messaging
definition of 2-2
example
receiving messages synchronously
4-31
sending messages 4-28
server session pool 4-81
setting up application 4-16
Porting procedures 8-8
steps for 4.5 and 5.1 applications to 6.x
89
steps for 6.0 applicationsto 6.1 8-11
steps for 6.x applicationsto 7.0 8-11
printing product documentation xiv
Priority, message 4-24, 4-25, 4-27
Property fields
browsing 4-69
clearing 4-65
conversion chart 4-67

displaying 4-65
displaying all 4-67
setting 4-65
Publish/subscribe messaging
definition of 2-3
example
receiving messages synchronously
4-31
sending messages 4-28
setting up application 4-19

Q

Queue
creating 4-10
creating dynamically 4-49
definition of 2-12
deleting dynamically 4-52
displaying 4-10, 4-12
temporary
creating 4-57
definition of 2-12
deleting 4-57
Queue connection
creating 4-7
definition of 2-8
Queue connection factory
creating queue connection 4-7
definition of 2-7
looking up 4-6
Queue receiver
creating 4-11
definition of 2-14
receiving messages 4-30
Queue sender
creating 4-11
definition of 2-14
sending message 4-23
Queue session
creating 4-8
definition of 2-9

Programming WebL ogic IMS I-v

R

Receive message
asynchronous 4-15, 4-30
order 4-29
synchronous 4-30
Recover from system failure 3-15
Recover message 4-31, 4-34
Redeliver message 4-31
Redelivery delay
overriding on destination 4-35
overview 4-34
setting for messages 4-35
Redelivery limit
configuring error destination 4-36
configuring limit 4-36
overview 4-36
Rel ease object resources 4-33
Request/response, support of 2-16
Resources, releasing 4-33
Rolled back messages
managing 4-34
redelivery delay 4-34
redelivery limit 4-36

S

Send messages 4-22
Server failure recovery 3-15
Server session
definition of 2-22
retrieving 4-77
Server session pool
creating

gueue connection consumers 4-76
topic connection consumers 4-77

definition of 2-21
setting up 4-73
Server session pool factory
creating a server session pool 4-76
definition of 2-21
looking up 4-75

I-vi Programming WebL ogic IMS

Session
acknowledge modes 2-9
closing 4-48
creating 4-8
definition of 2-8
exception listener 4-47
managing 4-47
non-transacted 2-9
transacted 2-11
SQL message selectors 4-71
Start connection 4-16, 4-46
Stop connection 4-46
Stream message
creating 4-14
support
technical xv
Synchronous receive 4-30

T
Temporary destination
configuring server A-6
creating
queue 4-57
topic 4-57
deleting 4-57
Temporary queue
creating 4-57
definition of 2-12
deleting 4-57
Temporary topic
creating 4-57
definition of 2-12
deleting 4-57
Text message
creating 4-14
Time-to-deliver 4-27, 4-43
Time-to-live 4-24, 4-25, 4-27, 4-43
Topic
creating 4-10
creating dynamically 4-49

definition of 2-12
deleting dynamically 4-52
displaying 4-10, 4-13
displaying NoLocal variable 4-13
JM SHel per class methods 4-50, 4-52
temporary
creating 4-57
definition of 2-12
deleting 4-57
Topic connection
creating 4-7
definition of 2-8
Topic connection factory
creating topic connection 4-7
definition of 2-7
looking up 4-6
Topic publisher
creating 4-12
definition of 2-14
sending messages 4-25
Topic session
creating 4-9
definition of 2-9
Topic subscriber
creating 4-12
definition of 2-14
durable 4-57
Transactions 5-1
JM S transacted sessions. See IMS
transacted sessions
JTA user transaction. See JTA user
transaction
Tuning IMS 3-13

u
utils.Schema utility 8-12, B-1

X
XML message

class 2-20
creating 4-14
selector 4-72

Programming WebL ogic IMS

I-vii

	Contents
	About This Document
	1. Introduction to WebLogic JMS
	2. WebLogic JMS Fundamentals
	3. Managing WebLogic JMS
	4. Developing a WebLogic JMS Application
	5. Using Transactions with WebLogic JMS
	6. Using WebLogic JMS with EJBs and Servlets
	7. WebLogic JMS Thin Client
	8. Porting WebLogic JMS Applications
	A. Configuration Checklists
	B. JDBC Database Utility

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic JMS
	What Is JMS?
	Figure 1�1 WebLogic JMS Messaging

	Implementation of Java Specifications
	J2EE Specification
	JMS Specification

	WebLogic JMS Features
	WebLogic JMS Architecture
	Figure 1�2 WebLogic JMS Architecture
	Major Components
	Clustering Features

	WebLogic JMS Extensions
	JMS Enhancements in WebLogic Server 8.1
	JMS Thin Client
	Accessing Foreign JMS Providers
	Accessing JMS via Servlets and EJBs
	Better Expired Message Handling
	Improved Message Flow Control by Blocking Producers

	2 WebLogic JMS Fundamentals
	Messaging Models
	Point-to-Point Messaging
	Figure 2�1 Point-to-Point (PTP) Messaging

	Publish/Subscribe Messaging
	Figure 2�2 Publish/Subscribe (Pub/Sub) Messaging

	Message Persistence

	WebLogic JMS Classes
	Table 2�1 WebLogic JMS Classes

	ConnectionFactory
	Notes: For backwards compatibility, WebLogic JMS still supports two deprecated default connection...
	Table 2�2 ConnectionFactory Subclasses

	Connection
	Table 2�3 Connection Subclasses�

	Session
	Table 2�4 Session Subclasses�
	Non-transacted Session
	Table 2�5 Acknowledge Modes Used for Non-Transacted Sessions�

	Transacted Session

	Destination
	Table 2�6 Destination Subclasses�

	Distributed Destination
	MessageProducer and MessageConsumer
	Table 2�7 MessageProducer and MessageConsumer Subclasses�

	Message
	Message Header Fields
	Table 2�8 Message Header Fields�

	Message Property Fields
	Message Body
	Table 2�9 JMS Message Types�

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	3 Managing WebLogic JMS
	Configuring WebLogic JMS
	Starting WebLogic Server and Configuring JMS
	Starting the Default WebLogic Server
	Starting the Administration Console
	Configuring a Basic JMS Implementation
	1. Under the Services node in the left pane, click the JMS node to expand the list.
	2. Optionally, create a File Store for storing persistent messages in a flat file, and/or a Pagin...
	a. Click the Stores node in the left pane, and then click the Configure a new JMS File Store link...
	b. On the General tab, give the store a name, specify a directory, and then click the Create button.
	c. Repeat these steps to create a Paging Store.
	3. Optionally, create a JDBC Store for storing persistent messages in a database:
	a. Click the JDBC node in the left pane to expand it.
	b. Click the Connection Pools node in the left pane, and then click the Configure a new JDBC Conn...
	c. On the Configuration tabs, set the attributes for the connection pool, such as Name, URL, and ...
	d. On the Target and Deploy tab, target an independent WebLogic Server instance or a server clust...
	e. Return to the JMS –> Stores node, and then click the Configure a new JMS JDBC Store link in th...
	f. Give the JDBC Store a name, select a connection pool, and a prefix name. Then click Create.
	4. Optionally, create a JMS Template to define multiple destinations with similar attribute setti...
	a. Click the Templates node in the left pane, and then click the Configure a new JMS Template lin...
	b. On the General tab, give the template a name, and then click Create.
	c. Fill in the Thresholds & Quotas, Override, Expiration Policy, and Redelivery tabs, as appropri...
	5. Configure a JMS Server, as follows:
	a. Click the Server node in the left pane, and then click the Configure a new JMS Server link in ...
	b. On the General tab, give the server a name, select a Store if you created one, select a Paging...
	c. Fill in the Thresholds & Quotas tab, as appropriate. Click Apply when you’re done making changes.
	d. On the Target and Deploy tab, target an independent WebLogic Server instance or a Migratable T...
	6. Create the JMS Destinations, which are queues (Point-To-Point) or topics (Pub/Sub):
	a. Under the Servers node in the left pane, click your new JMS server instance to expand the list...
	b. Click either the Configure a new JMS Queue or Configure a new JMS Topic link in the right pane.
	c. On the General tab, give the destination a name and a JNDI name. Fill in the other attributes,...
	d. Fill in the Thresholds & Quotas, Override, Redelivery, Expiration Policy, and Multicast (for t...
	7. Create a Connection Factory to enable your JMS clients to create JMS connections:
	a. Click to the expand the Connection Factory node and in the left pane, and then click the Confi...
	b. On the General tab, give the connection factory a name and a JNDI name. Fill in the other attr...
	c. Fill in the Transactions and Flow Control tabs, as appropriate. Click Apply on each tab when y...
	d. On the Target and Deploy tab, target an independent WebLogic Server instance or a server clust...
	8. Optionally, use the Destination Keys node to define the sort order of messages that arrive on ...
	9. Optionally, use the Distributed Destinations node to make your physical destinations part of a...
	10. Optionally, create JMS Session Pools, which enable your applications to process messages conc...

	Configuring WebLogic JMS Clustering
	How JMS Clustering Works
	JMS Clustering Requirements
	JMS Distributed Destination within a Cluster
	JMS as a Migratable Service within a Cluster

	Configuration Steps
	1. Administer WebLogic clusters as described in “Configuring WebLogic Servers and Clusters” in Us...
	2. Identify server targets for JMS servers and for connection factories using the Administration ...
	3. Optionally, you can configure your physical destinations as part of a single distributed desti...

	What About Failover?

	Configuring JMS Migratable Targets
	How JMS Migration Works
	Table 3�1 WebLogic JMS Migration Process

	Configuration Steps
	1. Administer WebLogic clusters as described in “Configuring WebLogic Servers and Clusters” in th...
	2. Configure a migratable target for the cluster as described in “Server -> Control -> JMS Migrat...
	3. Identify a migratable target server on which to deploy a JMS server as described in “JMS Serve...
	4. For implementations that use persistent messaging, make sure that the persistent store is conf...
	5. The administrator can manually migrate services before performing server maintenance or to a h...
	Persistent Store Migration
	Migration Failover

	Tuning WebLogic JMS
	Monitoring WebLogic JMS
	Recovering from a WebLogic Server Failure
	Programming Considerations
	Migrating JMS Data to a New Server
	Table 3�2 Migration Task Guide

	4 Developing a WebLogic JMS Application
	Application Development Flow
	Figure 4�1 WebLogic JMS Application Development Flow—Required Steps

	Importing Required Packages
	Table 4�1 WebLogic JMS Packages�

	Setting Up a JMS Application
	Figure 4�2 Setting Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Create a Queue Connection
	Create a Topic Connection

	Step 3: Create a Session Using the Connection
	Create a Queue Session
	Create a Topic Session

	Step 4: Look Up a Destination (Queue or Topic)
	Server Affinity When Looking Up Destinations

	Step 5: Create Message Producers and Message Consumers Using the Session and Destinations
	Create QueueSenders and QueueReceivers
	Create TopicPublishers and TopicSubscribers

	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
	1. Implement the javax.jms.MessageListener interface, which includes an onMessage() method.
	2. Set the message listener using the following MessageConsumer method, passing the listener info...
	3. Optionally, implement an exception listener on the session to catch exceptions, as described i...

	Step 7: Start the Connection
	Example: Setting Up a PTP Application
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Example: Setting Up a Pub/Sub Application
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Sending Messages
	1. Create a message object.
	2. Define a message.
	3. Send the message to a destination.
	Step 1: Create a Message Object
	Step 2: Define a Message
	Step 3: Send the Message to a Destination
	Send a Message Using Queue Sender
	Send a Message Using TopicPublisher

	Dynamically Configuring Message Producer Configuration Attributes
	Table 4�2 Message Producer Set and Get Methods�

	Example: Sending Messages Within a PTP Application
	Example: Sending Messages Within a Pub/Sub Application

	Receiving Messages
	Receiving Messages Asynchronously
	Receiving Messages Synchronously
	Example: Receiving Messages Synchronously Within a PTP Application
	Example: Receiving Messages Synchronously Within a Pub/Sub Application

	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources
	Managing Rolled Back or Recovered Messages
	Setting a Redelivery Delay for Messages
	Setting a Redelivery Delay
	Overriding the Redelivery Delay on a Destination

	Setting a Redelivery Limit for Messages
	Configuring a Message Redelivery Limit
	Configuring an Error Destination for Undelivered Messages

	Ordered Redelivery of Rolled Back Messages
	Single Consumer
	Sort Order
	Selection
	Message Pipeline Size
	Performance Requirements

	Setting Message Delivery Times
	Setting a Delivery Time on Producers
	Setting a Delivery Time on Messages
	Overriding a Delivery Time
	Setting a Relative Time-to-Deliver Override
	Setting a Scheduled Time-to-Deliver Override
	Table 4�3 Example Time-to-Deliver Schedules�

	JMS Schedule Interface

	Interaction with the Time-to-Live Value

	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Metadata
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Creating Destinations Dynamically
	Using the JMSHelper Class Methods

	Deleting Destinations Dynamically
	Preconditions for Deleting Destinations
	Using the JMSHelper Class Methods
	Semantics When Deleting Destinations
	Producer, Consumer, and Browser Creation
	CLosing of Consumers
	Closing of Browsers
	Closing of Enumerations
	Cancelled Blocking Send Operations
	Affected Transactions
	Physical Deletion of Existing Messages
	Timestamps for Troubleshooting Deleted Destinations

	Statistics

	Using Temporary Destinations
	Creating a Temporary Queue
	Creating a Temporary Topic
	Deleting a Temporary Destination

	Setting Up Durable Subscriptions
	Defining the Client ID
	Creating Subscribers for a Durable Subscription
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions
	1. Optionally, delete the durable subscription, as described in “Deleting Durable Subscriptions” ...
	2. Use the methods described in “Creating Subscribers for a Durable Subscription” on page 4�60 to...

	Managing Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Table 4�4 Message Property Set and Get Methods for Data Types�
	Table 4�5 Message Property Conversion Chart�

	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors

	Defining Server Session Pools
	Figure 4�3 Server Session Pool Facility
	1. Gets a server session from the server session pool.
	2. Gets the server session’s session.
	3. Loads the session with one or more messages.
	4. Starts the server session to consume messages.
	5. Releases the server session back to pool when finished processing messages.

	Figure 4�4 Preparing for Concurrent Message Processing
	Step 1: Look Up Server Session Pool Factory in JNDI
	Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	Create a Server Session Pool for Queue Connection Consumers
	Create a Server Session Pool for Topic Connection Consumers

	Step 3: Create a Connection Consumer
	Create a Connection Consumer for Queues
	Create a Connection Consumer for Topics

	Example: Setting Up a PTP Client Server Session Pool
	Step 1
	Step 2
	Step 3

	Example: Setting Up a Pub/Sub Client Server Session Pool
	Step 1
	Step 2
	Step 3

	Using Multicasting
	Figure 4�5 Setting Up Multicasting
	Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Figure 4�6 Multicasting Sequence Gap

	Dynamically Configuring Multicasting Configuration Attributes
	Table 4�6 Message Producer Set and Get Methods�

	Example: Multicast TTL
	Figure 4�7 Multicast TTL Example

	Using Distributed Destinations
	Accessing Distributed Destinations
	Looking Up Distributed Queues
	QueueSenders
	QueueReceivers
	QueueBrowsers

	Looking Up Distributed Topics
	Deploying Message-Drive Beans on a Distributed Topic
	TopicPublishers
	TopicSubscribers

	Accessing Distributed Destination Members
	Load Balancing Messages Across a Distributed Destination
	Load Balancing Options
	Round-Robin Distribution
	Random Distribution

	Consumer Load Balancing
	Producer Load Balancing
	Load Balancing Heuristics
	Transaction Affinity
	Server Affinity
	Queues with Zero Consumers

	Defeating Load Balancing
	JNDI Lookup
	CreateQueue() and CreateTopic()
	Connection Factories

	Distributed Destination Migration
	Distributed Destination Failover

	5 Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Figure 5�1 Setting Up and Using a JMS Transacted Session
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Figure 5�2 Setting Up and Using a JTA User Transaction
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	6 Using WebLogic JMS with EJBs and Servlets
	Overview
	J2EE Support for WebLogic JMS
	Referencing a JMS Connection Factory
	Referencing a JMS Destination
	Sending a Message
	Under the Covers
	Automatically Enlisting Transactions
	Container-Managed Security
	Connection Testing
	J2EE Compliance
	Pooled Session Objects

	Improving Performance
	Speeding Up JNDI Lookups
	Speeding Up Object Creation
	Using the Right Transaction Mode

	Foreign JMS Provider Support
	Examples of JMS Wrapper Functions
	ejb-jar.xml
	weblogic-ejb-jar.xml
	PoolTestCMP.java
	PoolTestCMPHome.java
	PoolTestCMPBean.java

	7 WebLogic JMS Thin Client
	Overview
	Benefits of Using the JMS Thin Client
	Limitations of Using the JMS Thin Client
	Deploying the JMS Thin Client

	8 Porting WebLogic JMS Applications
	Existing Feature Functionality Changes
	Existing Feature 5.1 to 6.0 Functionality Changes
	Existing Feature 6.0 to 6.1 Functionality Changes

	Porting Existing Applications
	Before You Begin
	Porting Steps for 4.5 and 5.1 Applications to 6.x
	Porting Steps for 6.0 Applications to 6.1
	Porting Steps for 6.x Applications to 7.0

	Deleting JDBC Database Stores

	A Configuration Checklists
	Server Clusters
	JTA User Transactions
	JMS Transactions
	Message Delivery
	Asynchronous Message Delivery
	Persistent Messages
	Concurrent Message Processing
	Multicasting
	Durable Subscriptions
	Destination Sort Order
	Temporary Destinations
	Thresholds and Quotas

	B JDBC Database Utility
	Overview
	About JMS Tables
	Regenerating JDBC Database Stores
	1. Set the WLS samples environment:
	2. Change to the %WL_HOME%\server\lib\directory, and then extract the jms_pointbase.ddl file from...
	3. Execute the following command to create the JMS tables:
	4. Start the Pointbase server and open the Pointbase console.

	Index

