
BEA
 WebLogic
Server™

Programming WebLogic
JMS
Release 8.1
Document Date: December 2002
Revised: December 9, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JMS

Part Number Date Software Version

N/A December 9, 2002 BEA WebLogic Server
Version 8.1 Beta

Contents

About This Document
Audience.. xiv

e-docs Web Site... xiv

How to Print the Document... xiv

Related Information...xv

Contact Us! ..xv

Documentation Conventions ... xvi

1. Introduction to WebLogic JMS
What Is JMS? .. 1-1

Implementation of Java Specifications.. 1-2

J2EE Specification ... 1-2

JMS Specification .. 1-2

WebLogic JMS Features ... 1-3

WebLogic JMS Architecture... 1-3

Major Components... 1-4

Clustering Features... 1-5

WebLogic JMS Extensions ... 1-7

JMS Enhancements in WebLogic Server 8.1 .. 1-8

JMS Thin Client ... 1-8

Accessing Foreign JMS Providers ... 1-8

Accessing JMS via Servlets and EJBs ... 1-9

Better Expired Message Handling.. 1-9

Improved Message Flow Control by Blocking Producers 1-9

2. WebLogic JMS Fundamentals
Messaging Models... 2-2
Programming WebLogic JMS iii

Point-to-Point Messaging ... 2-2

Publish/Subscribe Messaging... 2-3

Message Persistence ... 2-4

WebLogic JMS Classes ... 2-5

ConnectionFactory... 2-6

Connection... 2-7

Session ... 2-8

Non-transacted Session .. 2-9

Transacted Session ... 2-11

Destination... 2-12

Distributed Destination.. 2-13

MessageProducer and MessageConsumer... 2-13

Message ... 2-15

Message Header Fields... 2-15

Message Property Fields... 2-19

Message Body .. 2-20

ServerSessionPoolFactory ... 2-21

ServerSessionPool ... 2-21

ServerSession... 2-22

ConnectionConsumer .. 2-22

3. Managing WebLogic JMS
Configuring WebLogic JMS ... 3-1

Starting WebLogic Server and Configuring JMS 3-3

Starting the Default WebLogic Server .. 3-3

Starting the Administration Console ... 3-3

Configuring a Basic JMS Implementation .. 3-3

Configuring WebLogic JMS Clustering.. 3-7

How JMS Clustering Works... 3-7

JMS Clustering Requirements... 3-8

JMS Distributed Destination within a Cluster..................................... 3-8

JMS as a Migratable Service within a Cluster 3-8

Configuration Steps .. 3-9

What About Failover? .. 3-9

Configuring JMS Migratable Targets.. 3-10
iv Programming WebLogic JMS

How JMS Migration Works ... 3-11

Configuration Steps.. 3-11

Persistent Store Migration... 3-12

Migration Failover .. 3-13

Tuning WebLogic JMS ... 3-13

Monitoring WebLogic JMS... 3-14

Recovering from a WebLogic Server Failure ... 3-15

Programming Considerations... 3-15

Migrating JMS Data to a New Server .. 3-15

4. Developing a WebLogic JMS Application
Application Development Flow .. 4-2

Importing Required Packages.. 4-3

Setting Up a JMS Application... 4-4

Step 1: Look Up a Connection Factory in JNDI .. 4-6

Step 2: Create a Connection Using the Connection Factory...................... 4-7

Create a Queue Connection... 4-7

Create a Topic Connection.. 4-7

Step 3: Create a Session Using the Connection ... 4-8

Create a Queue Session... 4-8

Create a Topic Session.. 4-9

Step 4: Look Up a Destination (Queue or Topic) 4-9

Server Affinity When Looking Up Destinations 4-10

Step 5: Create Message Producers and Message Consumers Using the
Session and Destinations... 4-11

Create QueueSenders and QueueReceivers 4-11

Create TopicPublishers and TopicSubscribers 4-12

Step 6a: Create the Message Object (Message Producers) 4-13

Step 6b: Optionally Register an Asynchronous Message Listener (Message
Consumers) ... 4-15

Step 7: Start the Connection... 4-16

Example: Setting Up a PTP Application.. 4-16

Example: Setting Up a Pub/Sub Application ... 4-19

Sending Messages ... 4-22

Step 1: Create a Message Object.. 4-22
Programming WebLogic JMS v

Step 2: Define a Message ... 4-22

Step 3: Send the Message to a Destination... 4-23

Send a Message Using Queue Sender ... 4-23

Send a Message Using TopicPublisher ... 4-25

Dynamically Configuring Message Producer Configuration Attributes .. 4-26

Example: Sending Messages Within a PTP Application 4-28

Example: Sending Messages Within a Pub/Sub Application................... 4-28

Receiving Messages .. 4-29

Receiving Messages Asynchronously .. 4-30

Receiving Messages Synchronously .. 4-30

Example: Receiving Messages Synchronously Within a PTP Application
4-31

Example: Receiving Messages Synchronously Within a Pub/Sub
Application... 4-31

Recovering Received Messages ... 4-31

Acknowledging Received Messages ... 4-32

Releasing Object Resources .. 4-33

Managing Rolled Back or Recovered Messages ... 4-34

Setting a Redelivery Delay for Messages... 4-34

Setting a Redelivery Delay.. 4-35

Overriding the Redelivery Delay on a Destination 4-35

Setting a Redelivery Limit for Messages ... 4-36

Configuring a Message Redelivery Limit ... 4-36

Configuring an Error Destination for Undelivered Messages........... 4-36

Ordered Redelivery of Rolled Back Messages... 4-37

Single Consumer ... 4-37

Sort Order.. 4-37

Selection .. 4-37

Message Pipeline Size... 4-38

Performance Requirements ... 4-38

Setting Message Delivery Times ... 4-38

Setting a Delivery Time on Producers.. 4-39

Setting a Delivery Time on Messages .. 4-39

Overriding a Delivery Time ... 4-40

Setting a Relative Time-to-Deliver Override 4-40
vi Programming WebLogic JMS

Setting a Scheduled Time-to-Deliver Override 4-40

JMS Schedule Interface .. 4-42

Interaction with the Time-to-Live Value ... 4-43

Managing Connections.. 4-44

Defining a Connection Exception Listener .. 4-44

Accessing Connection Metadata .. 4-45

Starting, Stopping, and Closing a Connection ... 4-46

Managing Sessions .. 4-47

Defining a Session Exception Listener .. 4-47

Closing a Session ... 4-48

Creating Destinations Dynamically... 4-49

Using the JMSHelper Class Methods... 4-50

Deleting Destinations Dynamically... 4-52

Preconditions for Deleting Destinations .. 4-52

Using the JMSHelper Class Methods... 4-52

Semantics When Deleting Destinations ... 4-53

Producer, Consumer, and Browser Creation..................................... 4-53

CLosing of Consumers.. 4-53

Closing of Browsers.. 4-54

Closing of Enumerations... 4-54

Cancelled Blocking Send Operations ... 4-54

Affected Transactions ... 4-55

Physical Deletion of Existing Messages ... 4-55

Statistics .. 4-56

Using Temporary Destinations.. 4-56

Creating a Temporary Queue ... 4-57

Creating a Temporary Topic .. 4-57

Deleting a Temporary Destination ... 4-57

Setting Up Durable Subscriptions ... 4-57

Defining the Client ID.. 4-58

Creating Subscribers for a Durable Subscription..................................... 4-60

Deleting Durable Subscriptions ... 4-61

Modifying Durable Subscriptions .. 4-61

Managing Durable Subscriptions ... 4-62

Setting and Browsing Message Header and Property Fields........................... 4-62
Programming WebLogic JMS vii

Setting Message Header Fields .. 4-63

Setting Message Property Fields .. 4-65

Browsing Header and Property Fields.. 4-68

Filtering Messages ... 4-70

Defining Message Selectors Using SQL Statements................................ 4-71

Defining XML Message Selectors Using XML Selector Method 4-72

Displaying Message Selectors.. 4-73

Defining Server Session Pools .. 4-73

Step 1: Look Up Server Session Pool Factory in JNDI............................ 4-75

Step 2: Create a Server Session Pool Using the Server Session Pool Factory
4-76

Create a Server Session Pool for Queue Connection Consumers 4-76

Create a Server Session Pool for Topic Connection Consumers 4-77

Step 3: Create a Connection Consumer.. 4-77

Create a Connection Consumer for Queues 4-78

Create a Connection Consumer for Topics 4-78

Example: Setting Up a PTP Client Server Session Pool 4-79

Example: Setting Up a Pub/Sub Client Server Session Pool 4-81

Using Multicasting .. 4-83

Step 1: Set Up the JMS Application, Creating Multicast Session and Topic
Subscriber.. 4-85

Step 2: Set Up the Message Listener.. 4-86

Dynamically Configuring Multicasting Configuration Attributes 4-87

Example: Multicast TTL .. 4-88

Using Distributed Destinations.. 4-90

Accessing Distributed Destinations.. 4-90

Looking Up Distributed Queues ... 4-91

Looking Up Distributed Topics... 4-93

Accessing Distributed Destination Members ... 4-95

Load Balancing Messages Across a Distributed Destination................... 4-96

Load Balancing Options.. 4-96

Consumer Load Balancing .. 4-97

Producer Load Balancing .. 4-98

Load Balancing Heuristics .. 4-98

Defeating Load Balancing... 4-99
viii Programming WebLogic JMS

Distributed Destination Migration ... 4-100

Distributed Destination Failover ... 4-101

5. Using Transactions with WebLogic JMS
Overview of Transactions.. 5-1

Using JMS Transacted Sessions.. 5-3

Step 1: Set Up JMS Application, Creating Transacted Session................. 5-4

Step 2: Perform Desired Operations... 5-4

Step 3: Commit or Roll Back the JMS Transacted Session 5-4

Using JTA User Transactions.. 5-5

Step 1: Set Up JMS Application, Creating Non-Transacted Session......... 5-7

Step 2: Look Up User Transaction in JNDI ... 5-7

Step 3: Start the JTA User Transaction.. 5-7

Step 4: Perform Desired Operations... 5-8

Step 5: Commit or Roll Back the JTA User Transaction........................... 5-8

Asynchronous Messaging Within JTA User Transactions Using Message Driven
Beans .. 5-9

Example: JMS and EJB in a JTA User Transaction.. 5-9

6. Using WebLogic JMS with EJBs and Servlets
Overview ... 6-1

J2EE Support for WebLogic JMS ... 6-2

Referencing a JMS Connection Factory... 6-3

Referencing a JMS Destination.. 6-4

Sending a Message ... 6-4

Under the Covers.. 6-5

Automatically Enlisting Transactions ... 6-5

Container-Managed Security .. 6-6

Connection Testing ... 6-7

J2EE Compliance.. 6-7

Pooled Session Objects ... 6-8

Improving Performance.. 6-8

Speeding Up JNDI Lookups ... 6-8

Speeding Up Object Creation ... 6-9

Using the Right Transaction Mode ... 6-9
Programming WebLogic JMS ix

Foreign JMS Provider Support .. 6-10

Examples of JMS Wrapper Functions ... 6-11

ejb-jar.xml .. 6-11

weblogic-ejb-jar.xml .. 6-12

PoolTestCMP.java.. 6-13

PoolTestCMPHome.java .. 6-13

PoolTestCMPBean.java.. 6-13

7. WebLogic JMS Thin Client
Overview ... 7-1

Benefits of Using the JMS Thin Client ... 7-2

Limitations of Using the JMS Thin Client .. 7-3

Deploying the JMS Thin Client... 7-3

8. Porting WebLogic JMS Applications
Existing Feature Functionality Changes.. 8-1

Existing Feature 5.1 to 6.0 Functionality Changes..................................... 8-2

Existing Feature 6.0 to 6.1 Functionality Changes..................................... 8-7

Porting Existing Applications.. 8-8

Before You Begin... 8-8

Porting Steps for 4.5 and 5.1 Applications to 6.x....................................... 8-9

Porting Steps for 6.0 Applications to 6.1 ... 8-11

Porting Steps for 6.x Applications to 7.0 ... 8-11

Deleting JDBC Database Stores .. 8-12

A. Configuration Checklists
Server Clusters.. A-2

JTA User Transactions ... A-2

JMS Transactions ... A-2

Message Delivery ... A-3

Asynchronous Message Delivery ... A-3

Persistent Messages .. A-4

Concurrent Message Processing ... A-4

Multicasting .. A-5

Durable Subscriptions... A-5

Destination Sort Order.. A-6
x Programming WebLogic JMS

Temporary Destinations ... A-6

Thresholds and Quotas ... A-6

B. JDBC Database Utility
Overview ...B-1

About JMS Tables ...B-1

Regenerating JDBC Database Stores ..B-2
Programming WebLogic JMS xi

xii Programming WebLogic JMS

About This Document

This document explains how to use the BEA WebLogic Server™ platform to
implement the Java™ Messaging Service (JMS) API for accessing enterprise
messaging systems.

The document is organized as follows:

! Chapter 1, “Introduction to WebLogic JMS,” provides an overview of WebLogic
Java Message Service (JMS).

! Chapter 2, “WebLogic JMS Fundamentals,” describes WebLogic JMS
components and features.

! Chapter 3, “Managing WebLogic JMS,” provides an overview of configuring
and monitoring WebLogic JMS.

! Chapter 4, “Developing a WebLogic JMS Application,” describes how to
develop a WebLogic JMS application.

! Chapter 5, “Using Transactions with WebLogic JMS,” describes how to use
transactions with WebLogic JMS.

! Chapter 6, “Using WebLogic JMS with EJBs and Servlets,” describes “best
practice” methods that make it easier to use WebLogic JMS in conjunction with
J2EE components, like Enterprise Java Beans and Servlets.

! Chapter 7, “WebLogic JMS Thin Client,” describes how to access and deploy a
small, yet full-featured version of WebLogic Server on the client-side for JMS
applications.

! Chapter 8, “Porting WebLogic JMS Applications,” describes how to port your
WebLogic JMS applications to a new release of WebLogic Server.

! Appendix A, “Configuration Checklists,” provides monitoring checklists for
various WebLogic JMS features.
Programming WebLogic JMS xiii

! Appendix B, “JDBC Database Utility,” describes how to use the JDBC database
utility to generate new JDBC stores and delete existing ones.

Audience

This document is written for application developers who want to design, develop,
configure, and manage JMS applications using the Java 2 Platform, Enterprise Edition
(J2EE) from Sun Microsystems. It is assumed that readers know JMS, JNDI (Java
Naming and Directory Interface), the Java programming language, the Enterprise
JavaBeans™ (EJB™), and the Java Transaction API (JTA) of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation. Or you can go directly to the
WebLogic Server Product Documentation page at http://edocs.bea.com/wls/docs81b.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
xiv Programming WebLogic JMS

http://edocs.bea.com/wls/docs70
http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. For
more information on JMS, access the JMS Specification and Javadoc supplied on Sun
Microsystems’ Java Web site at the follow location:

http://http://java.sun.com/products/jms/docs.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
Programming WebLogic JMS xv

http://java.sun.com/products/jms/docs.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xvi Programming WebLogic JMS

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JMS xvii

xviii Programming WebLogic JMS

CHAPTER
1 Introduction to
WebLogic JMS

The following sections provide an overview of the Java Message Service (JMS) for
BEA WebLogic Server:

! What Is JMS?

! Implementation of Java Specifications

! WebLogic JMS Features

! WebLogic JMS Architecture

! WebLogic JMS Extensions

! JMS Enhancements in WebLogic Server 8.1

What Is JMS?

An enterprise messaging system, also referred to as Message-Oriented Middleware
(MOM), enables applications to communicate with one another through the exchange
of messages. A message is a request, report, and/or event that contains information
needed to coordinate communication between different applications. A message
provides a level of abstraction, allowing you to separate the details about the
destination system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems. Specifically, JMS:
Programming WebLogic JMS 1-1

1 Introduction to WebLogic JMS
! Enables Java applications sharing a messaging system to exchange messages.

! Simplifies application development by providing a standard interface for
creating, sending, and receiving messages.

The following figure illustrates WebLogic JMS messaging.

Figure 1-1 WebLogic JMS Messaging

As illustrated in the figure, WebLogic JMS accepts messages from producer
applications and delivers them to consumer applications.

Implementation of Java Specifications

WebLogic Server is compliant with the following Java specifications.

J2EE Specification

WebLogic Server 8.1 is compliant with Sun Microsystems’ J2EE 1.3 specification.

JMS Specification

WebLogic Server 8.1 is fully compliant with the JMS Specification – version 1.0.2b
and can be used in production.
1-2 Programming WebLogic JMS

http://java.sun.com/products/jms/docs.html

WebLogic JMS Features
WebLogic JMS Features

WebLogic JMS provides a full implementation of the JMS API. Specifically,
WebLogic JMS:

! Provides a single, unified messaging API.

! Strictly adheres to the JMS Specification – version 1.0.2b.

! Supports clustering.

! Supports messaging for applications that span different operating systems and
machine architectures.

! Can be configured by setting attributes from the WebLogic Administration
Console Online Help and/or using the JMS API to override values.

! Allows interoperability between JMS applications and other resource managers
(primarily databases) using the Java Transaction API (JTA) transactions,
including support for distributed transactions and the two-phase commit
protocol. JMS applications can also participate in transactions with other Java
APIs that use JTA, including non-WebLogic XA compliant message brokers.

! Supports messages containing Extensible Markup Language (XML).

! Supports multicasting allowing the delivery of messages to a select group of
hosts using an IP multicast address.

! Can use either a database or a file for persistent message storage.

! Can be used with other WebLogic Server APIs and facilities, such as Enterprise
Java Beans (EJB), JDBC connection pools, servlets, and RMI.

WebLogic JMS Architecture

The following figure illustrates the WebLogic JMS architecture.
Programming WebLogic JMS 1-3

http://java.sun.com/products/jms/docs.html

1 Introduction to WebLogic JMS
Figure 1-2 WebLogic JMS Architecture

Major Components

The major components of the WebLogic JMS Server architecture, as illustrated in the
figure “WebLogic JMS Architecture” on page 1-4, include:

! WebLogic JMS servers implementing the messaging facility

! Client applications

! JNDI (Java Naming and Directory Interface), which provides a server lookup
facility
1-4 Programming WebLogic JMS

WebLogic JMS Architecture
! Persistent storage (file or database) for storing persistent message data

Clustering Features

The WebLogic JMS architecture implements clustering of multiple JMS servers by
supporting cluster-wide, transparent access to destinations from any server in the
cluster. Although WebLogic Server supports distributing JMS destinations and
connection factories throughout a cluster, JMS topics and queues are still managed by
individual WebLogic Server instances in the cluster.

For more information about configuring clustering for WebLogic JMS, see
“Configuring WebLogic JMS Clustering” on page 3-7. For detailed information about
WebLogic Server clustering, see Using WebLogic Server Clusters.

The advantages of clustering include the following:

! Load balancing of destinations across multiple servers in the cluster

" An administrator can establish load balancing of destinations across multiple
servers in the cluster by configuring multiple JMS servers and using targets
to assign them to the defined WebLogic Servers. Each JMS server is
deployed on exactly one WebLogic Server and handles requests for a set of
destinations.

Note: Load balancing is not dynamic. During the configuration phase, the system
administrator defines load balancing by specifying targets for JMS servers.

" An administrator can also configure multiple physical destinations as
members of a single distributed destination set within a cluster. Producers
and consumers are able to send and receive to the distributed destination. In
the event of a single server failure within the cluster, WebLogic JMS then
distributes the load across all available physical destination members within
the distributed destination set.

For more information on distributed destinations, see “Distributed
Destination Tasks” in the Administration Console Online Help.

! Cluster-wide, transparent access to destinations from any server in the cluster

A system administrator can establish cluster-wide, transparent access to
destinations from any server in the cluster by configuring multiple connection
Programming WebLogic JMS 1-5

http://e-docs.bea.com/wls/docs81b/cluster/index.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

1 Introduction to WebLogic JMS
factories and using targets to assign them to WebLogic Servers. Each connection
factory can be deployed on multiple WebLogic Servers.

The application uses the Java Naming and Directory Interface (JNDI) to look up
a connection factory and create a connection to establish communication with a
JMS server. Each JMS server handles requests for a set of destinations. Requests
for destinations not handled by a JMS server are forwarded to the appropriate
server.

Connection factories are described in more detail in “WebLogic JMS
Fundamentals” on page 2-1.

! Scalability

Scalability is provided by:

" Load balancing of destinations across multiple servers in the cluster, as
described previously.

" Distribution of application load across multiple JMS servers via connection
factories, thus reducing the load on any single JMS server and enabling
session concentration by routing connections to specific servers.

" Optional multicast support, reducing the number of messages required to be
delivered by a JMS server. The JMS server forwards only a single copy of a
message to each host group associated with a multicast IP address, regardless
of the number of applications that have subscribed.

! Migratability

As an “exactly-once” service, WebLogic JMS takes advantage of the migration
framework implemented in WebLogic Server for clustered environments. This
allows WebLogic JMS to properly respond to migration requests and bring a
JMS server online and offline in an orderly fashion. This includes both
scheduled migrations as well as migrations in response to a WebLogic Server
failure. For more information, see “Configuring JMS Migratable Targets” on
page 3-10.

Note: Automatic failover is not supported by WebLogic JMS for this release. For
information about performing a manual failover, refer to “Recovering from a
WebLogic Server Failure” on page 3-15.
1-6 Programming WebLogic JMS

WebLogic JMS Extensions
WebLogic JMS Extensions

In addition to the API specified by Sun Microsystems’ JMS Specification, WebLogic
JMS provides a public API, weblogic.jms.extensions, which includes classes and
methods for the extensions described in the following table.

This API also supports NO_ACKNOWLEDGE and MULTICAST_NO_ACKNOWLEDGE

acknowledge modes, and extended exceptions, including throwing an exception:

Extension For more information. . .

Create XML messages Refer to “Step 6a: Create the Message Object (Message
Producers)” on page 4-13

Define a session exception listener Refer to “Defining a Session Exception Listener” on page 4-47

Set or display the maximum number of
pre-fetched asynchronous messages allowed
on the session

Refer to “Dynamically Configuring Multicasting Configuration
Attributes” on page 4-87

Set or display the multicast session overrun
policy that is applied when the message
maximum is reached

Refer to “Dynamically Configuring Multicasting Configuration
Attributes” on page 4-87

Dynamically create permanent queues or
topics

Refer to “Creating Destinations Dynamically” on page 4-49

Dynamically delete permanent queues or
topics

Refer to “Deleting Destinations Dynamically” on page 4-52

Convert between WebLogic JMS 8.1 and
pre-release 6.0 JMSMessageID formats

Refer to “Setting Message Header Fields” on page 4-63

Set a redelivery delay for messages Refer to “Setting a Redelivery Delay for Messages” on page 4-34

Set a message delivery time for producers Refer to “Setting a Delivery Time on Producers” on page 4-39

Set a delivery time for messages Refer to “Setting a Delivery Time on Messages” on page 4-39

Set a scheduled delivery time for messages Refer to “Setting a Scheduled Time-to-Deliver Override” on page
4-40
Programming WebLogic JMS 1-7

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

1 Introduction to WebLogic JMS
! To the session exception listener (if set), when one of its consumers has been
closed by the server as a result of a server failure, or administrative intervention.

! From a multicast session when the number of messages received by the session
but not yet delivered to the messages listener, exceeds the maximum number of
messages allowed for that session.

! From a multicast consumer when it detects a sequence gap (message received
out of sequence) in the data stream.

JMS Enhancements in WebLogic Server 8.1

The following JMS enhancements are new to this release of WebLogic Server.

JMS Thin Client

At approximately 400k, the wljmsclient.jar file provides full WebLogic JMS
functionality, yet greatly reduces the client-side WebLogic footprint by using a smaller
library that contains only the set of supporting files required by client-side programs.
The new client .jar file is available in the WL_HOME/server/lib subdirectory of the
WebLogic Server installation directory (for example,
c:\bea\weblogic81b\server\lib).

This .jar provides for full-featured WebLogic Server clients that can support
clustering, load balancing, transactions, security, and failover. See “WebLogic JMS
Thin Client” on page 7-1 for more information.

Accessing Foreign JMS Providers

Using the Foreign JMS Server node on the Administration Console, you can quickly
map a foreign JMS provider so that its connection factories and destinations appear in
the WebLogic JNDI tree as a local JMS objects. A Foreign JMS Server configuration
1-8 Programming WebLogic JMS

JMS Enhancements in WebLogic Server 8.1
can also be used to reference remote instances of WebLogic Server in another cluster
or domain in the local WebLogic JNDI tree. See “Accessing Foreign JMS Providers”
in the Administration Console Online Help for more information.

Accessing JMS via Servlets and EJBs

New “wrappers” make it easier to use JMS inside a J2EE component. The wrappers
provide features including automatic pooling of JMS Connection and Session objects
(and some pooling of MessageProducer objects as well); automatic transaction
enlistment for JMS providers that support XA; monitoring of the JMS connection and
re-establishment after a failure; and security credentials that are managed by the
container. See “Using WebLogic JMS with EJBs and Servlets” on page 6-1 for more
information.

Better Expired Message Handling

Active message expiration ensures that expired messages are cleaned up immediately.
Moreover, expired message auditing gives you the option of tracking expired
messages, either by logging when a message expires or by redirecting expired
messages to a special destination. See “Handling Expired Messages” in the
Administration Console Online Help for more information.

Improved Message Flow Control by Blocking Producers

The “Blocking Send” features help you to avoid receiving message quota errors by
temporarily blocking message producers from sending messages to a destination
(queue or topic) when the destination has exceeded its specified maximum message
quota. See “Avoiding Quota Exceptions by Blocking Message Producers” in the
Administration Console Online Help for more information.
Programming WebLogic JMS 1-9

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#expiration_policy
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance

1 Introduction to WebLogic JMS
1-10 Programming WebLogic JMS

CHAPTER
2 WebLogic JMS
Fundamentals

The following sections describe WebLogic JMS components and features:

! “Messaging Models” on page 2-2

! “WebLogic JMS Classes” on page 2-5

! “ConnectionFactory” on page 2-6

! “Connection” on page 2-7

! “Session” on page 2-8

! “Destination” on page 2-12

! “Distributed Destination” on page 2-13

! “MessageProducer and MessageConsumer” on page 2-13

! “Message” on page 2-15

! “ServerSessionPoolFactory” on page 2-21

! “ServerSessionPool” on page 2-21

! “ServerSession” on page 2-22

! “ConnectionConsumer” on page 2-22

Note: For more information on the JMS classes described in this section, access the
JMS Specification and Javadoc supplied on the Sun Microsystems’ Java web
site at the following location:
http://java.sun.com/products/jms/docs.html
Programming WebLogic JMS 2-1

http://java.sun.com/products/jms/docs.html

2 WebLogic JMS Fundamentals
Messaging Models

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe
(Pub/sub). The messaging models are very similar, except for the following
differences:

! PTP messaging model enables the delivery of a message to exactly one recipient.

! Pub/sub messaging model enables the delivery of a message to multiple
recipients.

Each model is implemented with classes that extend common base classes. For
example, the PTP class javax.jms.Queue and the Pub/sub class javax.jms.Topic
both extend the class javax.jms.Destination.

Each message model is described in detail in the following sections.

Note: The terms producer and consumer are used as generic descriptions of
applications that send and receive messages, respectively, in either messaging
model. For each specific messaging model, however, unique terms specific to
that model are used when referring to producers and consumers.

Point-to-Point Messaging

The point-to-point (PTP) messaging model enables one application to send a message
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue
receiver (consumer) receives messages from a specific queue.

The following figure illustrates PTP messaging.
2-2 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Queue.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Topic.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Messaging Models
Figure 2-1 Point-to-Point (PTP) Messaging

Multiple queue senders and queue receivers can be associated with a single queue, but
an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebLogic JMS
determines which one will receive the next message on a first come, first serve basis.
If no queue receivers are listening on the queue, messages remain in the queue until a
queue receiver attaches to the queue.

Publish/Subscribe Messaging

The publish/subscribe (Pub/sub) messaging model enables an application to send a
message to multiple applications. Pub/sub messaging applications send and receive
messages by subscribing to a topic. A topic publisher (producer) sends messages to a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

The following figure illustrates Pub/sub messaging.
Programming WebLogic JMS 2-3

2 WebLogic JMS Fundamentals
Figure 2-2 Publish/Subscribe (Pub/Sub) Messaging

Unlike with the PTP messaging model, the Pub/sub messaging model allows multiple
topic subscribers to receive the same message. JMS retains the message until all topic
subscribers have received it.

The Pub/sub messaging model supports durable subscribers, allowing you to assign a
name to a topic subscriber and associate it with a user or application. For more
information about durable subscribers, see “Setting Up Durable Subscriptions” on
page 4-57.

Message Persistence

Messages can be specified as persistent or non-persistent.

A persistent message is guaranteed to be delivered at least once—it is not considered
sent until it has been safely written in the file or database. WebLogic JMS writes
persistent messages to a persistent backing store (file or JDBC database) assigned to
each JMS server during configuration.

Non-persistent messages are not stored. They are guaranteed to be delivered at least
once unless there is a system failure, in which case messages may be lost. If a
connection is closed or recovered, all non-persistent messages that have not yet been
acknowledged will be redelivered. Once a non-persistent message is acknowledged, it
will not be redelivered.
2-4 Programming WebLogic JMS

WebLogic JMS Classes
WebLogic JMS Classes

To create a JMS applications, use the javax.jms API. The API allows you to create
the class objects necessary to connect to the JMS, and send and receive messages. JMS
class interfaces are created as subclasses to provide queue- and topic-specific versions
of the common parent classes.

The following table lists the JMS classes described in more detail in subsequent
sections. For a complete description of all JMS classes, see the javax.jms,
weblogic.jms.ServerSessionPoolFactory, or weblogic.jms.extensions
Javadoc.

Table 2-1 WebLogic JMS Classes

JMS Class Description

ConnectionFactory Encapsulates connection configuration information. A
connection factory is used to create connections. You look
up a connection factory using JNDI.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced and
consumed.

Destination Identifies a queue or topic, encapsulating the address of a
specific provider. Queue and topic destinations manage
the messages delivered from the PTP and Pub/sub
messaging models, respectively.

MessageProducer and
MessageConsumer

Provides the interface for sending and receiving
messages. Message producers send messages to a queue
or topic. Message consumers receive messages from a
queue or topic.

Message Encapsulates information to be sent or received.

ServerSessionPoolFacto

ry1
Encapsulates configuration information for a
server-managed pool of message consumers. The server
session pool factory is used to create server session pools.
Programming WebLogic JMS 2-5

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

2 WebLogic JMS Fundamentals
For information about configuring JMS objects, see “Managing WebLogic JMS” on
page 3-1. The procedure for setting up a JMS application is presented in “Setting Up a
JMS Application” on page 4-4.

ConnectionFactory

A ConnectionFactory object encapsulates connection configuration information,
and enables JMS applications to create a Connection. A system administrator
configures connection factories to create connections with predefined attributes.

A system administrator defines and configures one or more connection factories, and
the WebLogic Server adds them to the JNDI space during startup. The application then
retrieves a connection factory using WebLogic JNDI.

The system administrator can also establish cluster-wide, transparent access to
destinations from any server in the cluster by configuring multiple connection factories
and using targets to assign them to WebLogic Servers. Each connection factory can be
deployed on multiple WebLogic Servers. For more information on JMS clustering,
refer to “Configuring WebLogic JMS Clustering” on page 3-7.

WebLogic JMS defines one default connection factory. It can be looked up using the
JNDI name, weblogic.jms.ConnectionFactory. You only need to define a
connection factory if the default provided by WebLogic JMS is not suitable for your
application. For information on configuring connection factories, see “Configuring
JMS” in the Administration Console Online Help.

ServerSessionPool1 Provides a pool of server sessions that can be used to
process messages concurrently for connection consumers.

ServerSession1 Associates a thread with a JMS session.

ConnectionConsumer1 Specifies a consumer that retrieves server sessions to
process messages concurrently.

1 Supports an optional JMS interface for processing multiple messages concurrently.

Table 2-1 WebLogic JMS Classes

JMS Class Description
2-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

Connection
Notes: For backwards compatibility, WebLogic JMS still supports two deprecated
default connection factories. The JNDI names for these factories are:
javax.jms.QueueConnectionFactory and
javax.jms.TopicConnectionFactory.

For information on migrating to a new default or user-defined connection
factory from a deprecated connection factory, refer to “Porting WebLogic
JMS Applications” on page 8-1.

The ConnectionFactory class does not define methods; however, its subclasses
define methods for the respective messaging models. A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously.

The following table describes the ConnectionFactory subclasses.

To learn how to use the ConnectionFactory class within an application, see
“Developing a WebLogic JMS Application” on page 4-1, or the
javax.jms.ConnectionFactory Javadoc.

Connection

A Connection object represents an open communication channel between an
application and the messaging system, and is used to create a Session for producing
and consuming messages. A connection creates server-side and client-side objects that
manage the messaging activity between an application and JMS. A connection may
also provide user authentication.

A Connection is created by a ConnectionFactory, obtained through a JNDI
lookup.

Table 2-2 ConnectionFactory Subclasses

Subclass. . . In Messaging
Model. . .

Is Used to Create. . .

QueueConnectionFactory PTP QueueConnection to a JMS PTP provider.

TopicConnectionFactory Pub/sub TopicConnection to a JMS Pub/sub provider.
Programming WebLogic JMS 2-7

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionFactory.html

2 WebLogic JMS Fundamentals
Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In
the WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the
client connection to the server. No additional TCP/IP connections are created for JMS.
Servlets and other server-side objects may also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and
when to start a stopped connection, see “Starting, Stopping, and Closing a Connection”
on page 4-46.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

The following table describes the Connection subclasses.

To learn how to use the Connection class within an application, see “Developing a
WebLogic JMS Application” on page 4-1, or the javax.jms.Connection Javadoc.

Session

A Session object defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread can
be used for producing and consuming messages. If an application wants to have a
separate thread for producing and consuming messages, the application should create
a separate session for each function.

A Session is created by the Connection.

Table 2-3 Connection Subclasses

Subclass. . . In Messaging
Model. . .

Is Used to Create. . .

QueueConnection PTP QueueSessions, and consists of a connection to a JMS
PTP provider created by QueueConnectionFactory.

TopicConnection Pub/sub TopicSessions, and consists of a connection to a JMS
Pub/sub provider created by
TopicConnectionFactory.
2-8 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html

Session
Note: A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

The following table describes the Session subclasses.

To learn how to use the Session class within an application, see “Developing a
WebLogic JMS Application” on page 4-1, or the javax.jms.Session and
weblogic.jms.extensions.WLSession javadocs.

Non-transacted Session

In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in the following table.

Table 2-4 Session Subclasses

Subclass. . . In Messaging
Model. . .

Provides a Context for. . .

QueueSession PTP Producing and consuming messages for a JMS PTP
provider. Created by QueueConnection.

TopicSession Pub/sub Producing and consuming messages for a JMS Pub/sub
provider. Created by TopicConnection.

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it.
Programming WebLogic JMS 2-9

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html

2 WebLogic JMS Fundamentals
CLIENT_ACKNOWLEDGE The Session object relies on the application to call an acknowledge
method on a received message. Once the method is called, the session
acknowledges all messages received since the last acknowledge.

This mode allows an application to receive, process, and acknowledge
a batch of messages with one call.

Note: In the Administration Console, if the Acknowledge Policy
attribute on the connection factory is set to Previous, but
you want to acknowledge all received messages for a given
session, then use the last message to invoke the acknowledge
method. For more information on the Acknowledge Policy
attribute, see “JMS Connection Factories” in the
Administration Console Online Help.

DUPS_OK_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it;
duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application cannot
handle duplicate messages. Duplicate messages may be sent
if an initial attempt to deliver a message fails.

NO_ACKNOWLEDGE No acknowledge is required. Messages sent to a NO_ACKNOWLEDGE
session are immediately deleted from the server. Messages received in
this mode are not recovered, and as a result messages may be lost
and/or duplicate message may be delivered if an initial attempt to
deliver a message fails.

This mode is supported for applications that do not require the quality
of service provided by session acknowledge, and that do not want to
incur the associated overhead.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode Description
2-10 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

Session
Transacted Session

In a transacted session, only one transaction is active at any given time. Any messages
sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commits a transaction, all the messages that the application received during
the transaction are acknowledged by the messaging system and messages it sent are
accepted for delivery. If an application rolls back a transaction, the messages that the
application received during the transaction are not acknowledged and messages it sent
are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability as the transaction is restricted to accessing the messages associated with that
session. For more information about using JMS with JTA, see “Using JTA User
Transactions” on page 5-5.

MULTICAST_NO_ACKNOWLEDGE Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session share
the same characteristics as NO_ACKNOWLEDGE mode, described
previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided by
session acknowledge. For more information on multicasting, see
“Using Multicasting” on page 4-83.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode Description
Programming WebLogic JMS 2-11

2 WebLogic JMS Fundamentals
Destination

A Destination object can be either a queue or topic, encapsulating the address syntax
for a specific provider. The JMS specification does not define a standard address
syntax due to the variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the destination
and the WebLogic Server adds it to the JNDI space during startup. Applications can
also create temporary destinations that exist only for the duration of the JMS
connection in which they are created.

Note: Administrators can also configure multiple physical destinations as members
of a single distributed destination set within a server cluster. For more
information, see “Distributed Destination” on page 2-13.

On the client side, Queue and Topic objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JMS Queues and Topics extend javax.jms.Destination. The
following table describes the Destination subclasses.

Table 2-6 Destination Subclasses

Subclass. . . In Messaging
Model. . .

Manages Messages for. . .

Queue PTP JMS PTP provider.

TemporaryQueue PTP JMS PTP provider, and exists for the duration of the JMS
connection in which the messages are created. A temporary
queue can be consumed only by the queue connection that
created it.

Topic Pub/sub JMS Pub/sub provider.

TemporaryTopic Pub/sub JMS PTP provider, and exists for the duration of the JMS
connection in which the messages are created. A temporary
topic can be consumed only by the topic connection that
created it.
2-12 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Distributed Destination
Note: An application has the option of browsing queues by creating a
QueueBrowser object in its queue session. This object produces a snapshot of
the messages in the queue at the time the queue browser is created. The
application can view the messages in the queue, but the messages are not
considered read and are not removed from the queue. For more information
about browsing queues, see “Browsing Header and Property Fields” on page
4-68.

To learn how to use the Destination class within an application, see “Developing a
WebLogic JMS Application” on page 4-1, or the javax.jms.Destination Javadoc.

Distributed Destination

Administrators can configure multiple physical destinations as members of a single
distributed destination set within a WebLogic Server cluster. Once properly
configured, your producers and consumers are able to send and receive to the
distributed destination. WebLogic JMS then distributes the messaging load across all
available destination members within the distributed destination.

! For more information on using distributed destinations with your applications,
see “Using Distributed Destinations” on page 4-90.

! For instructions on configuring distributed destinations using the Administration
Console, see “Configuring Distributed Destinations” in the Administration
Console Online Help.

MessageProducer and MessageConsumer

A MessageProducer object sends messages to a queue or topic. A MessageConsumer

object receives messages from a queue or topic. Message producers and consumers
operate independently of one another. Message producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.
Programming WebLogic JMS 2-13

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

2 WebLogic JMS Fundamentals
A Session creates the MessageProducers and MessageConsumers that are attached
to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessageProducer and MessageConsumer classes. The following table describes the
MessageProducer and MessageConsumer subclasses.

The PTP model, as shown in the figure “Point-to-Point (PTP) Messaging” on page 2-3,
allows multiple sessions to receive messages from the same queue. However, a
message can only be delivered to one queue receiver. When there are multiple queue
receivers, WebLogic JMS defines the next queue receiver that will receive a message
on a first-come, first-serve basis.

The Pub/sub model, as shown in the figure “Publish/Subscribe (Pub/Sub) Messaging”
on page 2-4, allows messages to be delivered to multiple topic subscribers. Topic
subscribers can be durable or non-durable, as described in “Setting Up Durable
Subscriptions” on page 4-57.

An application can use the same JMS connection to both publish and subscribe to a
single topic. Because topic messages are delivered to all subscribers, an application
can receive messages it has published itself. To prevent clients from receiving
messages that they publish, a JMS application can set a noLocal attribute on the topic
subscriber, as described in “Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations” on page 4-11.

Table 2-7 MessageProducer and MessageConsumer Subclasses

Subclass. . . In Messaging
Model. . .

Performs the Following Function. . .

QueueSender PTP Sends messages for a JMS PTP provider.

QueueReceiver PTP Receives messages for a JMS PTP provider, and exists
until the JMS connection in which the messages are
created is closed.

TopicPublisher Pub/sub Sends messages for a JMS Pub/sub provider.

TopicSubscriber Pub/sub Receives messages for a JMS Pub/sub provider, and exists
for the duration of the JMS connection in which the
messages are created. Message destinations must be bound
explicitly using the appropriate JNDI interface.
2-14 Programming WebLogic JMS

Message
To learn how to use the MessageProducer and MessageConsumer classes within an
application, see “Setting Up a JMS Application” on page 4-4, or the
javax.jms.MessageProducer and javax.jms.MessageConsumer javadocs.

Message

A Message object encapsulates the information exchanged by applications. This
information includes three components: a set of standard header fields, a set of
application-specific properties, and a message body. The following sections describe
these components.

Message Header Fields

Every JMS message contains a standard set of header fields that is included by default
and available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see “Setting and Browsing
Message Header and Property Fields” on page 4-62, or to the javax.jms.Message
Javadoc.
Programming WebLogic JMS 2-15

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

2 WebLogic JMS Fundamentals
The following table describes the fields in the message headers and shows how values
are defined for each field.

Table 2-8 Message Header Fields

Field Description Defined by

JMSCorrelationID Specifies one of the following: a WebLogic JMSMessageID
(described later in this table), an application-specific string, or a
byte[] array. The JMSCorrelationID is used to correlate
messages.

There are two common applications for this field.

The first application is to link messages by setting up a
request/response scheme, as follows:

1. When an application sends a message, it stores the
JMSMessageID value assigned to it.

2. When an application receives the message, it copies the
JMSMessageID into the JMSCorrelationID field of a
response message that it sends back to the sending application.

The second application is to use the JMSCorrelationID field
to carry any String you choose, enabling a series of messages to be
linked with some application-determined value.

All JMSMessageIDs start with an ID: prefix. If you use the
JMSCorrelationID for some other application-specific string,
it must not begin with the ID: prefix.

Application
2-16 Programming WebLogic JMS

Message
JMSDeliveryMode Specifies PERSISTENT or NON_PERSISTENT messaging.

When a persistent message is sent, WebLogic JMS stores it in the
JMS file or JDBC database. The send() operation is not
considered successful until delivery of the message can be
guaranteed. A persistent message is guaranteed to be delivered at
least once.

WebLogic JMS does not store non-persistent messages in the JMS
database. This mode of operation provides the lowest overhead.
They are guaranteed to be delivered at least once unless there is a
system failure, in which case messages may be lost. If a
connection is closed or recovered, all non-persistent messages that
have not yet been acknowledged will be redelivered. Once a
non-persistent message is acknowledged, it will not be
redelivered.

When a message is sent, this value is ignored. When the message
is received, it contains the delivery mode specified by the sending
method.

send() method

JMSDeliveryTime Defines the earliest absolute time at which a message can be
delivered to a consumer. This field can be used to sort messages in
a destination and to select messages. For purposes of data type
conversion, the JMSDeliveryTime is a long integer.

send() method

JMSDestination Specifies the destination (queue or topic) to which the message is
to be delivered. The application’s message producer sets the value
of this field when the message is sent.

When a message is sent, this value is ignored. When a message is
received, its destination value must be equivalent to the value
assigned when it was sent.

send() method

JMSExpiration Specifies the expiration, or time-to-live value, for a message.

WebLogic JMS calculates theJMSExpiration value as the sum
of the application’s time-to-live and the current GMT. If the
application specifies time-to-live as 0, JMSExpiration is set to
0, which means the message never expires.

WebLogic JMS removes expired messages from the system to
prevent their delivery.

send() method

Table 2-8 Message Header Fields (Continued)

Field Description Defined by
Programming WebLogic JMS 2-17

2 WebLogic JMS Fundamentals
JMSMessageID Contains a string value that uniquely identifies each message sent
by a JMS Provider.

All JMSMessageIDs start with an ID: prefix.

When a message is sent, this value is ignored. When the message
is received, it contains a provider-assigned value.

send() method

JMSPriority Specifies the priority level. This field is set before a message is
sent.

JMS defines ten priority levels, 0 to 9, 0 being the lowest priority.
Levels 0-4 indicate gradations of normal priority, and level 5-9
indicate gradations of expedited priority.

When the message is received, it contains the value specified by
the method sending the message.

You can sort destinations by priority by configuring a destination
key, as described in “Configuing JMS” in the Administration
Console Online Help.

Message
Consumer

JMSRedelivered Specifies a flag set when a message is redelivered because no
acknowledge was received. This flag is of interest to a receiving
application only.

If set, the flag indicates that JMS may have delivered the message
previously because one of the following is true:

! The application has already received the message, but did not
acknowledge it.

! The session's recover() method was called to restart the
session beginning after the last acknowledged message. For
more information about the recover() method, see
“Recovering Received Messages” on page 4-31.

WebLogic JMS

Table 2-8 Message Header Fields (Continued)

Field Description Defined by
2-18 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key

Message
Message Property Fields

The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/value pairs. Property names must
conform to the message selector syntax specifications defined in the
javax.jms.Message Javadoc. The following values are valid: boolean, byte, double,
float, int, long, short, and String.

JMSReplyTo Specifies a queue or topic to which reply messages should be sent.
This field is set by the sending application before the message is
sent.

This feature can be used with the JMSCorrelationID header
field to coordinate request/response messages.

Simply setting the JMSReplyTo field does not guarantee a
response; it enables the receiving application to respond, if it so
chooses.

You may set the JMSReplyTo to null, which may have a
semantic meaning to the receiving application, such as a
notification event.

Application

JMSTimeStamp Contains the time at which the message was sent. WebLogic JMS
writes the timestamp in the message when it accepts the message
for delivery, not when the application sends the message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

Message
Consumer

JMSType Specifies the message type identifier (String) set by the sending
application.

The JMS specification allows some flexibility with this field in
order to accommodate diverse JMS providers. Some messaging
systems allow application-specific message types to be used. For
such systems, the JMSType field could be used to hold a message
type ID that provides access to the stored type definitions.

WebLogic JMS does not restrict the use of this field.

Application

Table 2-8 Message Header Fields (Continued)

Field Description Defined by
Programming WebLogic JMS 2-19

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

2 WebLogic JMS Fundamentals
Although message property fields may be used for application-specific purposes, JMS
provides them primarily for use in message selectors. For more information about
message selectors, see “Filtering Messages” on page 4-70.

For information about setting message property fields, see “Setting and Browsing
Message Header and Property Fields” on page 4-62, or to the javax.jms.Message
Javadoc.

Message Body

A message body contains the content being delivered from producer to consumer.

The following table describes the types of messages defined by JMS. All message
types extend javax.jms.Message, which consists of message headers and properties,
but no message body.

Table 2-9 JMS Message Types

Type Description

javax.jms.BytesMessage Stream of uninterpreted bytes, which must be understood by the sender and
receiver. The access methods for this message type are stream-oriented
readers and writers based on java.io.DataInputStream and
java.io.DataOutputStream.

javax.jms.MapMessage Set of name/value pairs in which the names are strings and the values are
Java primitive types. Pairs can be read sequentially or randomly, by
specifying a name.

javax.jms.ObjectMessage Single serializable Java object.

javax.jms.StreamMessage Similar to a BytesMessage, except that only Java primitive types are written
to or read from the stream.

javax.jms.TextMessage Single String. The TextMessage can also contain XML content.

weblogic.jms.extensions.XMLMe
ssage

XML content. Use of the XMLMessage type facilitates message filtering,
which is more complex when performed on XML content shipped in a
TextMessage.
2-20 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/BytesMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MapMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ObjectMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/StreamMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TextMessage.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/XMLMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

ServerSessionPoolFactory
For more information, see the javax.jms.Message Javadoc. For more information
about the access methods and, if applicable, the conversion charts associated with a
particular message type, see the Javadoc for that message type.

ServerSessionPoolFactory

A server session pool is a WebLogic-specific JMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
ServerSessionPool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.ServerSessionPoolFactory:<name>, where <name> specifies the
name of the JMS server to which the session pool is created. The WebLogic Server
adds the default server session pool factory to the JNDI space during startup and the
application subsequently retrieves the server session pool factory using WebLogic
JNDI.

To learn how to use the server session pool factory within an application, see “Defining
Server Session Pools” on page 4-73, or the
weblogic.jms.ServerSessionPoolFactory Javadoc.

ServerSessionPool

A ServerSessionPool application server object provides a pool of server sessions
that connection consumers can retrieve in order to process messages concurrently.

A ServerSessionPool is created by the ServerSessionPoolFactory object
obtained through a JNDI lookup.

To learn how to use the server session pool within an application, see “Defining Server
Session Pools” on page 4-73, or the javax.jms.ServerSessionPool Javadoc.
Programming WebLogic JMS 2-21

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ServerSessionPool.html

2 WebLogic JMS Fundamentals
ServerSession

A ServerSession application server object enables you to associate a thread with a
JMS session by providing a context for creating, sending, and receiving messages.

A ServerSession is created by a ServerSessionPool object.

To learn how to use the server session within an application, see “Defining Server
Session Pools” on page 4-73, or the javax.jms.ServerSession Javadoc.

ConnectionConsumer

A ConnectionConsumer object uses a server session to process received messages. If
message traffic is heavy, the connection consumer can load each server session with
multiple messages to minimize thread context switching.

A ConnectionConsumer is created by a Connection object.

To learn how to use the connection consumers within an application, see “Defining
Server Session Pools” on page 4-73, or the javax.jms.ConnectionConsumer
Javadoc.

Note: Connection consumer listeners run on the same JVM as the server.
2-22 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ServerSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

CHAPTER
3 Managing WebLogic
JMS

The WebLogic Server Administration Console provides an interface for easily
enabling, configuring, and monitoring the features of the WebLogic Server, including
JMS. To invoke the Administration Console, refer to the procedures described in
“Starting and Stopping Servers” in the Administration Console Online Help.

The following sections provide an overview of configuring and monitoring WebLogic
JMS:

! “Configuring WebLogic JMS” on page 3-1

! “Configuring WebLogic JMS Clustering” on page 3-7

! “Configuring JMS Migratable Targets” on page 3-10

! “Tuning WebLogic JMS” on page 3-13

! “Monitoring WebLogic JMS” on page 3-14

! “Recovering from a WebLogic Server Failure” on page 3-15

Configuring WebLogic JMS

Using the Administration Console, you define configuration attributes to:

! Enable JMS.
Programming WebLogic JMS 3-1

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html

3 Managing WebLogic JMS
! Create JMS servers and target a WebLogic Server instance or a Migratable
Target where the JMS server will be deployed.

! Create and/or customize values for JMS servers, connection factories,
destinations (physical queues and topics), distributed destinations (sets of
physical queue and topic members within a cluster) destination templates,
destination sort ordering (using destination keys), persistent stores, paging stores,
session pools, and connection consumers.

! Set up custom JMS applications.

! Define thresholds and quotas.

! Enable any desired JMS features, such as:

" server clustering using multiple connection factories

" concurrent message processing via session pools

" persistent messages and durable subscribers

" paging out messages during peak loads to free up memory

" controlling message flow during peak loads

WebLogic JMS provides default values for some configuration attributes; you must
provide values for all others. If you specify an invalid value for any configuration
attribute, or if you fail to specify a value for an attribute for which a default does not
exist, WebLogic Server will not boot JMS when you restart it. A sample
examplesJMSServer configuration is provided with the product in the Examples
Server. For more information about starting the Examples Server, see “Starting the
Default, Examples, and Pet Store Servers” in the Installing WebLogic Server.

When migrating from a previous release of Weblogic Server, the configuration
information is converted automatically, as described in “Porting Existing
Applications” on page 8-8.

To configure WebLogic JMS attributes, follow the procedures described in the
“Configuring JMS” section of the Administration Console Online Help, to create and
configure the JMS objects. Once WebLogic JMS is configured, applications can send
and receive messages using the JMS API. For more information about developing
WebLogic JMS applications, refer to “Developing a WebLogic JMS Application” on
page 4-1.
3-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/install/instpos.html
http://e-docs.bea.com/wls/docs81b/install/instpos.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

Configuring WebLogic JMS
Note: Appendix A, “Configuration Checklists,” provides checklists that enable you
to view the attribute requirements and/or options for supporting various JMS
features.

Starting WebLogic Server and Configuring JMS

The following sections review how to start WebLogic Server and the Administration
console, as well as provide a procedure for configuring a basic JMS implementation.

Starting the Default WebLogic Server

The default role for a WebLogic Server is the Administration Server. If a domain
consists of only one WebLogic Server, that server is the Administration Server. If a
domain consists of multiple WebLogic Servers, you must start the Administration
Server first, and then you start the Managed Servers.

For complete information about starting the Administration Server, see “Starting and
Stopping Servers” in the Administration Console Online Help.

Starting the Administration Console

The Administration Console is the Web-based administrator front-end (administrator
client interface) to WebLogic Server. You must start the server before you can access
the Administration Console for a server.

For complete details about using the Administration Console to configure a WebLogic
Server, see “Starting and Using the Administration Console” in Configuring and
Managing a WebLogic Server.

Configuring a Basic JMS Implementation

This section describes how to configure a basic JMS implementation using the
Administration Console.

1. Under the Services node in the left pane, click the JMS node to expand the list.

2. Optionally, create a File Store for storing persistent messages in a flat file, and/or
a Paging Store for swapping messages out to memory:
Programming WebLogic JMS 3-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/adminguide/overview.html

3 Managing WebLogic JMS
a. Click the Stores node in the left pane, and then click the Configure a new JMS
File Store link in the right pane.

b. On the General tab, give the store a name, specify a directory, and then click the
Create button.

c. Repeat these steps to create a Paging Store.

Note: For more information on configuring file stores, see “JMS File Store
Tasks” in the Administration Console Online Help.

3. Optionally, create a JDBC Store for storing persistent messages in a database:

a. Click the JDBC node in the left pane to expand it.

b. Click the Connection Pools node in the left pane, and then click the Configure
a new JDBC Connection Pool link in the right pane.

c. On the Configuration tabs, set the attributes for the connection pool, such as
Name, URL, and database Properties. Click Apply on each tab when you’re
done making changes.

d. On the Target and Deploy tab, target an independent WebLogic Server instance
or a server cluster on which to deploy the connection pool by selecting the
appropriate check box, and then click Apply.

e. Return to the JMS –> Stores node, and then click the Configure a new JMS
JDBC Store link in the right pane.

f. Give the JDBC Store a name, select a connection pool, and a prefix name. Then
click Create.

Note: For more information on configuring JDBC-accessible JMS JDBC stores,
see “JMS JDBC Store Tasks”, “Configuring JDBC Connection Pools,”
“Configuring JDBC Multipools,” and “Configuring JDBC DataSources”
in the Administration Console Online Help.

4. Optionally, create a JMS Template to define multiple destinations with similar
attribute settings. You also need a JMS Template to create temporary queues.

a. Click the Templates node in the left pane, and then click the Configure a new
JMS Template link in the right pane.

b. On the General tab, give the template a name, and then click Create.
3-4 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_multipools.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jdbc_datasources.html

Configuring WebLogic JMS
c. Fill in the Thresholds & Quotas, Override, Expiration Policy, and Redelivery
tabs, as appropriate. Click Apply on each tab when you’re done making
changes.

Note: For more information on configuring a JMS Template, see “JMS Template
Tasks” in the Administration Console Online Help.

5. Configure a JMS Server, as follows:

a. Click the Server node in the left pane, and then click the Configure a new JMS
Server link in the right pane.

b. On the General tab, give the server a name, select a Store if you created one,
select a Paging Store if you created one, and select a Template if you created
one. Then click Create.

c. Fill in the Thresholds & Quotas tab, as appropriate. Click Apply when you’re
done making changes.

d. On the Target and Deploy tab, target an independent WebLogic Server instance
or a Migratable Target server on which to deploy the JMS server by selecting
the appropriate check box, and then click Apply.

Note: For more information on configuring a JMS Server, see “JMS Server
Tasks” in the Administration Console Online Help.

6. Create the JMS Destinations, which are queues (Point-To-Point) or topics
(Pub/Sub):

a. Under the Servers node in the left pane, click your new JMS server instance to
expand the list, and then click the Destinations node.

b. Click either the Configure a new JMS Queue or Configure a new JMS Topic
link in the right pane.

c. On the General tab, give the destination a name and a JNDI name. Fill in the
other attributes, as appropriate, and then click Create.

d. Fill in the Thresholds & Quotas, Override, Redelivery, Expiration Policy, and
Multicast (for topics only) tabs, as appropriate. Click Apply on each tab when
you’re done making changes.

Note: For more information on configuring a Destinations, see “JMS Destination
Tasks” in the Administration Console Online Help.
Programming WebLogic JMS 3-5

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_templates_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_templates_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config

3 Managing WebLogic JMS
7. Create a Connection Factory to enable your JMS clients to create JMS
connections:

a. Click to the expand the Connection Factory node and in the left pane, and then
click the Configure a new JMS Connection Factory link in the right pane.

b. On the General tab, give the connection factory a name and a JNDI name. Fill
in the other attributes, as appropriate, and then click Create.

c. Fill in the Transactions and Flow Control tabs, as appropriate. Click Apply on
each tab when you’re done making changes.

d. On the Target and Deploy tab, target an independent WebLogic Server instance
or a server cluster on which to deploy the connection factory by selecting
selecting the appropriate check box, and then click Apply.

Note: For more information on configuring a Connection Factory, see “JMS
Connection Factory Tasks” in the Administration Console Online Help.

8. Optionally, use the Destination Keys node to define the sort order of messages
that arrive on a specific destination. For more information, see “JMS Destination
Key Tasks” in the Administration Console Online Help.

9. Optionally, use the Distributed Destinations node to make your physical
destinations part of a single distributed destination set within a server cluster. For
more information, see “Distributed Destinations Tasks” in the Administration
Console Online Help.

10. Optionally, create JMS Session Pools, which enable your applications to process
messages concurrently, and Connection Consumers (queues or topics) that
retrieve server sessions and process messages. For more information, see “JMS
Session Pools Tasks” and “JMS Connection Consumers Tasks” in the
Administration Console Online Help.
3-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_consumer_config

Configuring WebLogic JMS Clustering
Configuring WebLogic JMS Clustering

A WebLogic Server cluster is a group of servers that work together to provide a more
scalable, more reliable application platform than a single server. A cluster appears to
its clients as a single server but is in fact a group of servers acting as one. A cluster
provides three key features above a single server:

! Scalability—servers can be added to the cluster dynamically to increase capacity.

! High Availability—redundancy of multiple servers insulates applications from
failures. Redundancy of multiple destinations (queues and topics) as members of
a single distributed destination set within a cluster ensures redistribution of the
messaging load to other available members in the set when one member
becomes unavailable.

! Migratability—respond to migration requests and bring a JMS server online and
offline in an orderly fashion. This includes both scheduled migrations as well as
migrations in response to a WebLogic Server failure.

A clustered service is an API or interface that is available on multiple servers in the
cluster.

Note: JMS clients depend on unique WebLogic Server names to successfully access
a cluster—even when WebLogic Servers reside in different domains.
Therefore, make sure that all WebLogic Servers that JMS clients contact have
unique server names.

For more information about starting WebLogic clusters and its features and benefits,
see “Configuring WebLogic Servers and Clusters” in Using WebLogic Server Clusters.

How JMS Clustering Works

You can establish cluster-wide, transparent access to destinations from any server in
the cluster by configuring multiple connection factories and using targets to assign
them to WebLogic Servers. Each connection factory can be deployed on multiple
WebLogic Servers. The administrator can configure multiple JMS servers on the
various nodes in the cluster—as long as the JMS servers are uniquely named—and can
then assign JMS destinations to the various JMS servers.
Programming WebLogic JMS 3-7

http://e-docs.bea.com/wls/docs81b/cluster/config.html

3 Managing WebLogic JMS
TheapplicationusestheJavaNamingandDirectoryInterface(JNDI)tolookupa
connectionfactoryandcreateaconnectiontoestablishcommunicationwithaJMS
server.Each JMS serverhandles requests for a setofdestinations.Requests for
destinations not handled by a JMS server are forwarded to the appropriate WebLogic
Server.

JMS Clustering Requirements

The following guidelines apply when configuring WebLogic JMS to work in a
clustered environment in a single WebLogic domain or in a multi-domain
environment.

! All WebLogic Servers that JMS clients contact must have unique server names.

! All JMS servers targeted to nodes in the cluster must be uniquely named.

! If persistent messaging is required, all JMS stores must be uniquely named.

JMS Distributed Destination within a Cluster

The WebLogic JMS administrator can also configure multiple destinations as part of a
single distributed destination set within a cluster. Producers and consumers are able to
send and receive to the distributed destination. In the event of a single server failure
within the cluster, WebLogic JMS then distributes the load across all available
physical destinations within the distributed destination set. For more information, see
“Distributed Destination Tasks” in the Administration Console Online Help.

JMS as a Migratable Service within a Cluster

WebLogic JMS takes advantage of the migration framework implemented in the
WebLogic Server core for clustered environments. This allows WebLogic JMS to
properly respond to migration requests and bring a JMS server online and offline in an
orderly fashion. This includes both scheduled migrations as well as migrations in
response to a WebLogic Server failure. For more information, see “Configuring JMS
Migratable Targets” on page 3-10.
3-8 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

Configuring WebLogic JMS Clustering
Configuration Steps

In order to use WebLogic JMS in a clustered environment, you must:

1. Administer WebLogic clusters as described in “Configuring WebLogic Servers
and Clusters” in Using WebLogic Server Clusters.

2. Identify server targets for JMS servers and for connection factories using the
Administration Console:

" For JMS servers, you can identify either a single-server target or a migratable
target, which is a set of WebLogic Server instances in a cluster that can host
an “exactly-once” service like JMS in case of a single server failure. For
more information on migratable targets, see “Configuring JMS Migratable
Targets” on page 3-10.

" For connection factories, you can identify either a single-server target or a
cluster target, which are WebLogic Server instances that are associated with a
connection factory to support clustering.

For more information about these configuration attributes, see “JMS Server
Tasks” or “JMS Connection Factory Tasks” in the Administration Console
Online Help.

Note: You cannot deploy the same destination on more than one JMS server. In
addition, you cannot deploy a JMS server on more than one WebLogic
Server.

3. Optionally, you can configure your physical destinations as part of a single
distributed destination set within a cluster. For more information, see
“Distributed Destination Tasks” in the Administration Console Online Help.

What About Failover?

For WebLogic JMS implementations that are part of a WebLogic 7.0 clustered
environment, JMS offers service continuity in the event of a single Weblogic Server
failure by enabling you to configure multiple physical destinations (queues and topics)
as part of a single distributed destination set. In addition, implementing the Migratable
Service feature, will ensure that pinned “exactly-once” services, like JMS, do not
introduce a single point of failure for dependent applications in the cluster,
Programming WebLogic JMS 3-9

http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config

3 Managing WebLogic JMS
However, automatic failover is not currently supported by WebLogic JMS. For
information about performing a manual failover, refer to “Recovering from a
WebLogic Server Failure” on page 3-15.

Configuring JMS Migratable Targets

As an “exactly-once” service, WebLogic JMS is not active on all WebLogic Server
instances in a cluster. It is instead “pinned” to a single server in the cluster to preserve
data consistency. To ensure that pinned services do not introduce a single point of
failure for dependent applications in the cluster, WebLogic Server can be configured
to migrate exactly-once services to any server in the migratable target list.

WebLogic JMS takes advantage of the migration framework by allowing an
administrator to specify a migratable target for a JMS server in the Administration
Console. Once properly configured, a JMS server and all of its destinations can migrate
to another WebLogic Server within a cluster.

This allows WebLogic JMS to properly respond to migration requests and bring a JMS
server online and offline in an orderly fashion. This includes both scheduled
migrations as well as migrations in response to a WebLogic Server failure with the
cluster.

For more information about defining migratable targets, see “Migration for Pinned
Services” in Using WebLogic Server Clusters.
3-10 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1027954
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1027954

Configuring JMS Migratable Targets
How JMS Migration Works

For implementations that are part of a WebLogic clustered environment, WebLogic
JMS implements the weblogic.cluster.Migratable interface, which allows JMS
servers to respond to activate and deactivate requests.

Configuration Steps

In order to make WebLogic JMS a migratable service in a clustered environment, you
must do the following:

1. Administer WebLogic clusters as described in “Configuring WebLogic Servers
and Clusters” in the Using WebLogic Server Clusters.

2. Configure a migratable target for the cluster as described in “Server -> Control
-> JMS Migration Config. -> ” in the Administration Console Online Help.

Table 3-1 WebLogic JMS Migration Process

Migration state... What takes place...

Initialization Initialization of a JMS server includes processing any configuration
or deployment information and creating the appropriate objects.
Destinations and other JMS resources are unavailable at this time. In
addition, the persistent store is not opened, as this could compromise
the integrity of the store. The JMS server makes itself available to
handle changes in configuration that may occur between
initialization and activation.

Activation When a JMS server is activated, it opens the persistent store,
performs any necessary recovery, reconciles the contents of the store
with the current configuration, and makes the destinations available
for access by applications. In addition, any configured server session
pools begin processing after activation is complete.

Deactivation When a JMS server is deactivated it stops all server session pool
processing, marks all destinations as unavailable, flushes and closes
its persistent stores, purges its destinations, and deletes all objects
for the JMS server.
Programming WebLogic JMS 3-11

http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/cluster/config.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_control_migration-configuration.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_control_migration-configuration.html

3 Managing WebLogic JMS
3. Identify a migratable target server on which to deploy a JMS server as described
in “JMS Server Tasks” in the Administration Console Online Help.

When a migratable target server boots, the JMS server boots as well on the
user-preferred server in the cluster. However, a JMS server and all of its
destinations can migrate to another server within the cluster in response to a
WebLogic Server failure or due to a scheduled migration for maintenance.

Note: A JMS server and all of its destination members can migrate to another
WebLogic Server within a cluster—even when the target WebLogic
Server is already hosting a JMS server with all of its destination members.
Although this can lead to situations where the same WebLogic server hosts
two physical destinations for a single distributed destination, this is
permissible in the short term, since the WebLogic Server can host multiple
physical destinations for that distributed destination. For more information
about JMS distributed destinations, see “Using Distributed Destinations”
on page 4-90.

4. For implementations that use persistent messaging, make sure that the persistent
store is configured such that all the candidate servers in a migratable target share
access to a persistent store. For more information about migrating persistent
stores, see “Persistent Store Migration” on page 3-12.

5. The administrator can manually migrate services before performing server
maintenance or to a healthy server if the host server fails.

Persistent Store Migration

Weblogic JMS persistent stores cannot be migrated along with JMS servers; therefore,
applications that need access to persistent stores from other physical machines after the
migration of a JMS server must implement an alternative solution, as follows:

! Implement a hardware solution, such as a dual-ported SCSI disk or Storage Area
Network (SAN) to make your JMS persistent store available from other
machines.

! Use JDBC to access your JMS JDBC store, which can be on yet another server.
Applications can then take advantage of any high-availability or failover
solutions offered by your database vendor.

For more information about configuring a JMS JDBC store, see “Configuring
JDBC Stores” in the Administration Console Online Help.
3-12 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

Tuning WebLogic JMS
Migration Failover

For information about procedures for recovering from a WebLogic Server failure, see
“Recovering from a WebLogic Server Failure” on page 3-15.

Tuning WebLogic JMS

The following sections explain how to get the most out of your applications by
implementing the administrative performance tuning features available with
WebLogic JMS.

! Synchronous Write Policies for JMS File Stores—disabling synchronous writes
improves file store performance, often quite dramatically, but at the expense of
possibly losing sent messages or generating duplicate received messages in the
event of an operating system crash or a hardware failure.

For more information, see “Configuring a Synchronous Write Policy for JMS
File Stores” in the Administration Console Online Help.

! Using Message Paging—you can free up valuable virtual memory during peak
message load periods by swapping out messages from memory to persistent
storage whenever your message loads reach a specified threshold. From a
performance perspective, this feature can greatly benefit WebLogic Server
implementations with the large message spaces that are required by today's
enterprise applications.

For more information, see “Using Message Paging” in the Administration
Console Online Help.

! Establishing Message Flow Control—a JMS server or JMS destination (queue or
topic) can be configured to instruct message producers to limit their message
flow when it determines that it is becoming overloaded.

For more information, see “Establishing Message Flow Control” in the
Administration Console Online Help.

! Avoiding Quota Exceptions by Block Message Producers—the “Blocking Send”
features help you to avoid receiving message quota errors by temporarily
blocking message producers from sending messages to a destination (queue or
topic) when it has exceeded its specified maximum message quota.
Programming WebLogic JMS 3-13

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#sync_write_to_filestore
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#sync_write_to_filestore
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#using_message_paging
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_flow_control

3 Managing WebLogic JMS
For more information, see “Avoiding Quota Exceptions by Blocking Message
Producers” in the Administration Console Online Help.

! Active Expired Message Handling—active message expiration ensures that
expired messages are cleaned up immediately. Moreover, expired message
auditing gives you the option of tracking expired messages, either by logging
when a message expires or by redirecting expired messages to a special
destination.

For more information, see “Handling Expired Messages” in the Administration
Console Online Help.

! Tuning Distributed Destinations—the following attributes on the JMS
Connection Factory can be configured to tune your distributed destinations:

" Load Balancing—defines whether WebLogic JMS will spread or balance the
messaging load across distributed destinations.

" Server Affinity—defines whether a WebLogic Server that is attempting to
load balance consumers or producers across multiple physical destinations in
a distributed destination set, will first attempt to load balance across those
physical destinations being served by any JMS servers that are also running
on the same WebLogic Server.

For more information, see “Tuning Distributed Destinations” in the
Administration Console Online Help.

Monitoring WebLogic JMS

Statistics are provided for the following JMS objects: JMS servers, connections,
sessions, destinations, durable subscribers, message producers, message consumers,
and server session pools. You can monitor JMS statistics using the Administration
Console.

JMS statistics continue to increment as long as the server is running. Statistics can only
be reset when the server is rebooted. For more information on configuring and
monitoring WebLogic JMS, see “Monitoring JMS” in the Administration Console
Online Help.
3-14 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#expiration_policy
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#distributed_destination_tuning
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_monitor.html

Recovering from a WebLogic Server Failure
Once WebLogic JMS has been configured, applications can begin sending and
receiving messages through the JMS API, as described in “Developing a WebLogic
JMS Application” on page 4-1.

Recovering from a WebLogic Server Failure

The following sections describe how to terminate a JMS application gracefully if a
server fails and how to migrate JMS data after server failure.

Programming Considerations

You may want to program your JMS application to terminate gracefully in the event
of a WebLogic Server failure. For example:

Migrating JMS Data to a New Server

WebLogic JMS uses the migration framework implemented in the WebLogic Server
core, which allows WebLogic JMS to properly respond to migration requests and bring
a WebLogic JMS server online and offline in an orderly fashion. This includes both
scheduled migrations as well as migrations in response to a WebLogic Server failure.

If a WebLogic Server Instance
Fails and...

Then...

You are connected to the failed
WebLogic Server instance

AJMSException is delivered to the connection exception listener. You
must restart the application once the server is restarted or replaced.

You are not connected to the failed
WebLogic Server instance

You must re-establish everything once the server is restarted or replaced.

A JMS Server is targeted on the failed
WebLogic Server instance

A ConsumerClosedException is delivered to the session exception
listener. You must re-establish any message consumers that have been
lost.
Programming WebLogic JMS 3-15

3 Managing WebLogic JMS
Once properly configured, a JMS server and all of its destination members can migrate
to another WebLogic Server within a cluster.

You can recover JMS data from a failed WebLogic Server by starting a new server and
doing one or more of the tasks in Table 3-2.

Note: There are special considerations when you migrate a service from a server
instance that has crashed or is unavailable to the Administration Server. If the
Administration Server cannot reach the previously active host of the service at
the time you perform the migration, see “Migrating a Service When Currently
Active Host is Unavailable”.

Table 3-2 Migration Task Guide

If your JMS application uses. . . Perform the following task. . .

Persistent messaging—JDBC Store ! If the JDBC database store physically exists on the failed server,
migrate the database to a new server and ensure that the JDBC
connection pool URL attribute reflects the appropriate location
reference.

! If the JDBC database does not physically exist on the failed server,
access to the database has not been impacted, and no changes are
required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the pathname within the
WebLogic Server home directory is the same as it was on the original
server.
3-16 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/cluster/failover.html#SpecialMigrationProcedure
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#SpecialMigrationProcedure

Recovering from a WebLogic Server Failure
Note: JMS persistent stores can increase the amount of memory required during
initialization of WebLogic Server as the number of stored messages increases.
When rebooting WebLogic Server, if initialization fails due to insufficient
memory, increase the heap size of the Java Virtual Machine (JVM)
proportionally to the number of messages that are currently stored in the JMS
persistent store and try the reboot again.

For information about starting a new WebLogic Server, refer to see “Starting and
Stopping Servers” in the Administration Console Online Help. For information about
recovering a failed server, refer to Recovering Failed Servers in the Configuring and
Managing WebLogic Domains guide.

For more information about migratable targets, see “Configuring WebLogic
Migratable Services” in Using WebLogic Server Clusters.

Transactions Migrate the transaction log to the new server by copying all files named
<servername>*.tlog. This can be accomplished by storing the
transaction log files on a dual-ported disk that can be mounted on either
machine, or by manually copying the files.

If the files are located in a different directory on the new server, update
that server’s TransactionLogFilePrefix server configuration
attribute before starting the new server.

Note: If migrating following a system crash, it is very important that
the transaction log files be available when the server is restarted
at its new location. Otherwise, transactions in the process of
being committed at the time of the crash might not be resolved
correctly, resulting in data inconsistencies.

All uncommitted transactions are rolled back.

If your JMS application uses. . . Perform the following task. . .
Programming WebLogic JMS 3-17

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/adminguide/failures.html
http://e-docs.bea.com/wls/docs81b/cluster/setup.html
http://e-docs.bea.com/wls/docs81b/cluster/setup.html

3 Managing WebLogic JMS
3-18 Programming WebLogic JMS

CHAPTER
4 Developing a WebLogic
JMS Application

The following sections describe how to develop a WebLogic JMS application:

! “Application Development Flow” on page 4-2

! “Importing Required Packages” on page 4-3

! “Setting Up a JMS Application” on page 4-4

! “Sending Messages” on page 4-22

! “Receiving Messages” on page 4-29

! “Acknowledging Received Messages” on page 4-32

! “Releasing Object Resources” on page 4-33

! “Managing Rolled Back or Recovered Messages” on page 4-34

! “Setting Message Delivery Times” on page 4-38

! “Managing Connections” on page 4-44

! “Managing Sessions” on page 4-47

! “Creating Destinations Dynamically” on page 4-49

! “Deleting Destinations Dynamically” on page 4-52

! “Using Temporary Destinations” on page 4-56

! “Setting Up Durable Subscriptions” on page 4-57

! “Setting and Browsing Message Header and Property Fields” on page 4-62
Programming WebLogic JMS 4-1

4 Developing a WebLogic JMS Application
! “Filtering Messages” on page 4-70

! “Defining Server Session Pools” on page 4-73

! “Using Multicasting” on page 4-83

! “Using Distributed Destinations” on page 4-90

Note: For more information about the JMS classes described in this section, access
the JMS Javadoc supplied on the Sun Microsystems’ Java web site at the
following location: http://java.sun.com/products/jms/docs.html

Application Development Flow

When developing a WebLogic JMS application, you must perform the steps identified
in the following figure.

Figure 4-1 WebLogic JMS Application Development Flow—Required Steps

In addition to the application development steps defined in the previous figure, you can
also optionally perform any of the following steps during your design development:

! Manage connection and session processing

! Create destinations dynamically

! Create durable subscriptions
4-2 Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html

Importing Required Packages
! Manage message processing by setting and browsing message header and
property fields, filtering messages, and/or processing messages concurrently

! Use multicasting

! Use JMS within transactions (described in “Using Transactions with WebLogic
JMS” on page 5-1)

Except where noted, all application development steps are described in the following
sections.

Importing Required Packages

The following table lists the packages that are commonly used by WebLogic JMS
applications.

Table 4-1 WebLogic JMS Packages

Package Description

javax.jms Sun Microsystems’ JMS API. This package is always
used by WebLogic JMS applications.

java.util Utility API, such as date and time facilities.

java.io System input and output API.

javax.naming

weblogic.jndi

JNDI packages required for server and destination
lookups.

javax.transaction.UserTransaction JTA API required for JTA user transaction support.

weblogic.jms.ServerSessionPoolFactory WebLogic JMS public API for use with server session
pools, an optional application server facility described
in the JMS specification.

weblogic.jms.extensions WebLogic-specific JMS public API that provides
additional classes and methods, as described in
“WebLogic JMS Extensions” on page 1-7.
Programming WebLogic JMS 4-3

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jndi/package-summary.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

4 Developing a WebLogic JMS Application
Include the following package import statements at the beginning of your program:

import javax.jms.*;
import java.util.*;
import java.io.*;
import javax.naming.*;
import javax.transaction.*;

If you implement a server session pool application, also include the following class on
your import list:

import weblogic.jms.ServerSessionPoolFactory;

If you want to utilize any of the WebLogic JMS extension classes described in the
previous table, also include the following statement on your import list:

import weblogic.jms.extensions.*;

Setting Up a JMS Application

Before you can send and receive messages, you must set up a JMS application. The
following figure illustrates the steps required to set up a JMS application.
4-4 Programming WebLogic JMS

Setting Up a JMS Application
Figure 4-2 Setting Up a JMS Application

The setup steps are described in the following sections. Detailed examples of setting
up a Point-to-Point (PTP) and Publish/Subscribe (Pub/Sub) application are also
provided. The examples are excerpted from the examples.jms package provided with
WebLogic Server in the WL_HOME\samples\server\src\examples\jms directory,
where WL_HOME is the top-level directory of your WebLogic Platform installation.
Programming WebLogic JMS 4-5

4 Developing a WebLogic JMS Application
Before proceeding, ensure that the system administrator responsible for configuring
WebLogic Server has configured the required JMS features, including the connection
factories, JMS servers, and destinations. For more information, see “Configuing JMS”
in the Administration Console Online Help.

For more information about the JMS classes and methods described in these sections,
see “WebLogic JMS Classes” on page 2-5, or the javax.jms, or the
weblogic.jms.ServerSessionPoolFactory, or the weblogic.jms.extensions

Javadoc.

For information about setting up transacted applications and JTA user transactions, see
“Using Transactions with WebLogic JMS” on page 5-1.

Step 1: Look Up a Connection Factory in JNDI

Before you can look up a connection factory, it must be defined as part of the
configuration information. WebLogic JMS provides one default connection factory,
that is included as part of the configuration by default. The WebLogic JMS system
administrator may add or update connection factories during configuration. For
information on configuring connection factories and the defaults that are available, see
“Configuring JMS” in the Administration Console Online Help.

Once the connection factory has been defined, you can look it up by first establishing
a JNDI context (context) using the NamingManager.InitialContext() method.
For any application other than a servlet application, you must pass an environment
used to create the initial context. For more information, see the
NamingManager.InitialContext() Javadoc.

Once the context is defined, to look up a connection factory in JNDI, execute one of
the following commands, for PTP or Pub/Sub messaging, respectively:

QueueConnectionFactory queueConnectionFactory =
(QueueConnectionFactory) context.lookup(CF_name);

TopicConnectionFactory topicConnectionFactory =
(TopicConnectionFactory) context.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during
configuration.

For more information about the ConnectionFactory class, see “ConnectionFactory”
on page 2-6 or the javax.jms.ConnectionFactory Javadoc.
4-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionFactory.html

Setting Up a JMS Application
Step 2: Create a Connection Using the Connection Factory

You can create a connection for accessing a queue or topic using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see “Connection” on page 2-7 or
the javax.jms.Connection Javadoc.

Create a Queue Connection

The QueueConnectionFactory provides the following two methods for creating a
queue connection:

public QueueConnection createQueueConnection(
) throws JMSException

public QueueConnection createQueueConnection(
String userName,
String password

) throws JMSException

The first method creates a QueueConnection; the second method creates a
QueueConnection using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in “Step 7: Start the Connection” on page 4-16.

For more information about the QueueConnectionFactory class methods, see the
javax.jms.QueueConnectionFactory Javadoc. For more information about the
QueueConnection class, see the javax.jms.QueueConnection Javadoc.

Create a Topic Connection

The TopicConnectionFactory provides the following two methods for creating a
topic connection:

public TopicConnection createTopicConnection(
) throws JMSException

public TopicConnection createTopicConnection(
String userName,
String password

) throws JMSException
Programming WebLogic JMS 4-7

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnectionFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnection.html

4 Developing a WebLogic JMS Application
The first method creates a TopicConnection; the second method creates a
TopicConnection using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in “Step 7: Start the Connection” on page 4-16.

For more information about the TopicConnectionFactory class methods, see the
javax.jms.TopicConnectionFactory Javadoc. For more information about the
TopicConnection class, see the javax.jms.TopicConnection Javadoc.

Step 3: Create a Session Using the Connection

You can create one or more sessions for accessing a queue or topic using the
Connection methods described in the following sections.

Note: A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

For more information about the Session class, see “Session” on page 2-8 or the
javax.jms.Session Javadoc.

Create a Queue Session

The QueueConnection class defines the following method for creating a queue
session:

public QueueSession createQueueSession(
boolean transacted,
int acknowledgeMode

) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted
(true) or non-transacted (false), and an integer that indicates the acknowledge mode
for non-transacted sessions, as described in Table 2-5, “Acknowledge Modes Used for
Non-Transacted Sessions,” on page 2-9. The acknowledgeMode attribute is ignored
for transacted sessions. In this case, messages are acknowledged when the transaction
is committed using the commit() method.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the
QueueSession class, see the javax.jms.QueueSession Javadoc.
4-8 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnectionFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSession.html

Setting Up a JMS Application
Create a Topic Session

The TopicConnection class defines the following method for creating a topic
session:

public TopicSession createTopicSession(
boolean transacted,
int acknowledgeMode

) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted
(true) or non-transacted (false), and an integer that indicates the acknowledge mode
for non-transacted sessions, as described in “Acknowledge Modes Used for
Non-Transacted Sessions” on page 2-9. The acknowledgeMode attribute is ignored
for transacted sessions. In this case, messages are acknowledged when the transaction
is committed using the commit() method.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the
TopicSession class, see the javax.jms.TopicSession Javadoc.

Step 4: Look Up a Destination (Queue or Topic)

Before you can look up a destination, the destination must be configured by the
WebLogic JMS system administrator, as described in “Configuring JMS” in the
Administration Console Online Help.

Once the destination has been configured, you can look up a destination by
establishing a JNDI context (context), which has already been accomplished in “Step
1: Look Up a Connection Factory in JNDI” on page 4-6, and executing one of the
following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination name defined during configuration.

If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:
Programming WebLogic JMS 4-9

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config

4 Developing a WebLogic JMS Application
public Queue createQueue(
String queueName

) throws JMSException

public Topic createTopic(
String topicName

) throws JMSException

The syntax for the queueName and/or topicName string is
JMS_Server_Name/Destination_Name (for example,
myjmsserver/mydestination). To view source code that uses this syntax, refer to
the findqueue() example in “Creating Destinations Dynamically” on page 4-49.

Note: The createQueue() and createTopic() methods do not create
destinations dynamically; they create only references to destinations that
already exist. For information about creating destinations dynamically, see
“Creating Destinations Dynamically” on page 4-49.

For more information about these methods, see the javax.jms.QueueSession and
javax.jms.TopicSession Javadoc, respectively.

Once the destination has been defined, you can use the following Queue or Topic
method to access the queue or topic name, respectively:

public String getQueueName(
) throws JMSException

public String getTopicName(
) throws JMSException

To ensure that the queue and topic names are returned in printable format, use the
toString() method.

For more information about the Destination class, see “Destination” on page 2-12
or the javax.jms.Destination Javadoc.

Server Affinity When Looking Up Destinations

The createTopic() and createQueue() methods also allow a
"JMS_Server_Name./Destination_Name" syntax to indicate server affinity when
looking up destinations. This way when a destination is locally deployed in the same
JVM as the connection factory, the connection factory will only return names matching
local destinations. If the name is not on the local JVM an exception is thrown, even
though the same name might be deployed on a different JVM.
4-10 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Setting Up a JMS Application
An application might use this convention to avoid hard-coding the server name when
using the createTopic() and createQueue() methods so that the code can be
reused on different JMS servers without requiring any changes.

Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations

You can create message producers and message consumers by passing the destination
reference to the Session methods described in the following sections.

Note: Each consumer receives its own local copy of a message. Once received, you
can modify the header field values; however, the message properties and
message body are read only. (Attempting to modify the message properties or
body at this point will generate a MessageNotWriteableException.) You
can modify the message body by executing the corresponding message type’s
clearbody() method to clear the existing contents and enable write
permission.

For more information about the MessageProducer and MessageConsumer classes,
see “MessageProducer and MessageConsumer” on page 2-13, or the
javax.jms.MessageProducer and javax.jms.MessageConsumer Javadocs,
respectively.

Create QueueSenders and QueueReceivers

The QueueSession object defines the following methods for creating queue senders
and receivers:

public QueueSender createSender(
Queue queue

) throws JMSException

public QueueReceiver createReceiver(
Queue queue

) throws JMSException

public QueueReceiver createReceiver(
Queue queue,
String messageSelector

) throws JMSException
Programming WebLogic JMS 4-11

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html

4 Developing a WebLogic JMS Application
You must specify the queue object for the queue sender or receiver being created. You
may also specify a message selector for filtering messages. Message selectors are
described in more detail in “Filtering Messages” on page 4-70.

If you pass a value of null to the createSender() method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in “Sending Messages” on page 4-22.

Once the queue sender or receiver has been created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueReceiver method:

public Queue getQueue(
) throws JMSException

For more information about the QueueSession class methods, see the
javax.jms.QueueSession Javadoc. For more information about the QueueSender
and QueueReceiver classes, see the javax.jms.QueueSender and
javax.jms.QueueReceiver Javadocs, respectively.

Create TopicPublishers and TopicSubscribers

The TopicSession object defines the following methods for creating topic publishers
and topic subscribers:

public TopicPublisher createPublisher(
Topic topic

) throws JMSException

public TopicSubscriber createSubscriber(
Topic topic

) throws JMSException

public TopicSubscriber createSubscriber(
Topic topic,
String messageSelector,
boolean noLocal

) throws JMSException

Note: The methods described in this section create non-durable subscribers.
Non-durable topic subscribers only receive messages sent while they are
active. For information about the methods used to create durable subscriptions
enabling messages to be retained until all messages are delivered to a durable
4-12 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSender.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueReceiver.html

Setting Up a JMS Application
subscriber, see “Setting Up Durable Subscriptions” on page 4-57. In this case,
durable subscribers only receive messages that are published after the
subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You
may also specify a message selector for filtering messages and noLocal flag
(described later in this section). Message selectors are described in more detail in
“Filtering Messages” on page 4-70.

If you pass a value of null to the createPublisher() method, you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in “Sending Messages” on page 4-22.

An application can have a JMS connection that it uses to both publish and subscribe to
the same topic. Because topic messages are delivered to all subscribers, the application
can receive messages it has published itself. To prevent this behavior, a JMS
application can set a noLocal flag to true.

Once the topic publisher or subscriber has been created, you can access the topic name
associated with the topic publisher or subscriber using the following TopicPublisher
or TopicSubscriber method:

Topic getTopic(
) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic
subscriber using the following TopicSubscriber method:

boolean getNoLocal(
) throws JMSException

For more information about the TopicSession class methods, see the
javax.jms.TopicSession Javadoc. For more information about the
TopicPublisher and TopicSubscriber classes, see the
javax.jms.TopicPublisher and javax.jms.TopicSubscriber Javadocs,
respectively.

Step 6a: Create the Message Object (Message Producers)

Note: This step applies to message producers only.
Programming WebLogic JMS 4-13

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicPublisher.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSubscriber.html

4 Developing a WebLogic JMS Application
To create the message object, use one of the following Session or WLSession class
methods:

! Session Methods

Note: These methods are inherited by both the QueueSession and
TopicSession subclasses.

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage createMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
Serializable object

) throws JMSException

public StreamMessage createStreamMessage(
) throws JMSException

public TextMessage createTextMessage(
) throws JMSException

public TextMessage createTextMessage(
String text

) throws JMSException

! WLSession Method

public XMLMessage createXMLMessage(
String text

) throws JMSException

For more information about the Session and WLSession class methods, see the
javax.jms.Session and weblogic.jms.extensions.WLSession Javadocs,
respectively. For more information about the Message class and its methods, see
“Message” on page 2-15, or the javax.jms.Message Javadoc.
4-14 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Setting Up a JMS Application
Step 6b: Optionally Register an Asynchronous Message
Listener (Message Consumers)

Note: This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement the javax.jms.MessageListener interface, which includes an
onMessage() method.

Note: For an example of the onMessage() method interface, see “Example:
Setting Up a PTP Application” on page 4-16.

If you wish to issue the close() method within an onMessage() method
call, the system administrator must select the Allow Close In OnMessage
check box when configuring the connection factory. For more information
on configuring JMS, see “Configuring JMS” in the Administration
Console Online Help.

2. Set the message listener using the following MessageConsumer method, passing
the listener information as an argument:

public void setMessageListener(
MessageListener listener

) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in “Defining a Session Exception Listener” on page 4-47.

You can unset a message listener by calling the MessageListener() method with a
value of null.

Once a message listener has been defined, you can access it by calling the following
MessageConsumer method:

public MessageListener getMessageListener(
) throws JMSException

Note: WebLogic JMS guarantees that multiple onMessage() calls for the same
session will not be executed simultaneously.
Programming WebLogic JMS 4-15

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

4 Developing a WebLogic JMS Application
If a message consumer is closed by an administrator or as the result of a server failure,
a ConsumerClosedException is delivered to the session exception listener, if one has
been defined. In this way, a new message consumer can be created, if necessary. For
information about defining a session exception listener, see “Defining a Session
Exception Listener” on page 4-47.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer
class methods, see “MessageProducer and MessageConsumer” on page 2-13 or the
javax.jms.MessageConsumer Javadoc.

Step 7: Start the Connection

You start the connection using the Connection class start() method.

For additional information about starting, stopping, and closing a connection, see
“Starting, Stopping, and Closing a Connection” on page 4-46 or the
javax.jms.Connection Javadoc.

Example: Setting Up a PTP Application

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\queue directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. The init() method
shows how to set up and start a QueueSession for a JMS application. The following
shows the init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory,
and queue static variables.

public final static String JNDI_FACTORY=
"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=
"weblogic.examples.jms.QueueConnectionFactory";

public final static String
QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory qconFactory;
4-16 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html

Setting Up a JMS Application
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
.
.
.

private static InitialContext getInitialContext(
String url

) throws NamingException
{
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
env.put(Context.PROVIDER_URL, url);
return new InitialContext(env);

}

Note: When setting up the JNDI initial context for a servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object
is the JNDI initial context passed in by the main() method.

public void init(
Context ctx,
String queueName

) throws NamingException, JMSException
{

Step 1 Look up a connection factory in JNDI.

qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2 Create a connection using the connection factory.

qcon = qconFactory.createQueueConnection();

Step 3 Create a session using the connection. The following code defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about transacted sessions and acknowledge modes, see “Session” on
page 2-8.
Programming WebLogic JMS 4-17

4 Developing a WebLogic JMS Application
qsession = qcon.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

Step 4 Look up a destination (queue) in JNDI.

queue = (Queue) ctx.lookup(queueName);

Step 5 Create a reference to a message producer (queue sender) using the session and
destination (queue).

qsender = qsession.createSender(queue);

Step 6 Create the message object.

msg = qsession.createTextMessage();

Step 7 Start the connection.

qcon.start();
}

The init() method for the examples.jms.queue.QueueReceive example is
similar to the QueueSend init() method shown previously, with the one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

qreceiver = qsession.createReceiver(queue);
qreceiver.setMessageListener(this);

In the first line, instead of calling the createSender() method to create a reference
to the queue sender, the application calls the createReceiver() method to create the
queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage() method. The following code excerpt
shows the onMessage() interface from the QueueReceive example:

public void onMessage(Message msg)
{
try {

String msgText;
if (msg instanceof TextMessage) {

msgText = ((TextMessage)msg).getText();
} else { // If it is not a TextMessage...
msgText = msg.toString();

}

System.out.println("Message Received: "+ msgText);
4-18 Programming WebLogic JMS

Setting Up a JMS Application
if (msgText.equalsIgnoreCase("quit")) {
synchronized(this) {

quit = true;
this.notifyAll(); // Notify main thread to quit

}
}

} catch (JMSException jmse) {
jmse.printStackTrace();

}
}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message is a TextMessage and, if it is, prints the text of
the message. If onMessage() receives a different message type, it uses the message's
toString() method to display the message contents.

Note: It is good practice to verify that the received message is the type expected by
the handler method.

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Application

The following example is excerpted from the examples.jms.topic.TopicSend
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\topic directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. The init() method
shows how to set up and start a topic session for a JMS application. The following
shows the init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory,
and topic static variables.

public final static String JNDI_FACTORY=
"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=
"weblogic.examples.jms.TopicConnectionFactory";

public final static String
TOPIC="weblogic.examples.jms.exampleTopic";

protected TopicConnectionFactory tconFactory;
protected TopicConnection tcon;
Programming WebLogic JMS 4-19

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
protected TopicSession tsession;
protected TopicPublisher tpublisher;
protected Topic topic;
protected TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
.
.
.

private static InitialContext getInitialContext(
String url

) throws NamingException
{

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
env.put(Context.PROVIDER_URL, url);
return new InitialContext(env);

}

Note: When setting up the JNDI initial context for a servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object
is the JNDI initial context passed in by the main() method.

public void init(
Context ctx,
String topicName

) throws NamingException, JMSException
{

Step 1 Look up a connection factory using JNDI.

tconFactory =
(TopicConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2 Create a connection using the connection factory.

tcon = tconFactory.createTopicConnection();

Step 3 Create a session using the connection. The following defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about setting session transaction and acknowledge modes, see
“Session” on page 2-8.
4-20 Programming WebLogic JMS

Setting Up a JMS Application
tsession = tcon.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

Step 4 Look up the destination (topic) using JNDI.

topic = (Topic) ctx.lookup(topicName);

Step 5 Create a reference to a message producer (topic publisher) using the session and
destination (topic).

tpublisher = tsession.createPublisher(topic);

Step 6 Create the message object.

msg = tsession.createTextMessage();

Step 7 Start the connection.

tcon.start();
}

The init() method for the examples.jms.topic.TopicReceive example is
similar to the TopicSend init() method shown previously with on exception. Steps
5 and 6 would be replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);
tsubscriber.setMessageListener(this);

In the first line, instead of calling the createPublisher() method to create a
reference to the topic publisher, the application calls the createSubscriber()
method to create the topic subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage() method. The onMessage()
interface for the TopicReceive example is the same as the QueueReceive
onMessage() interface, as described in “Example: Setting Up a PTP Application” on
page 4-16.

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.
Programming WebLogic JMS 4-21

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
Sending Messages

Once you have set up the JMS application as described in “Setting Up a JMS
Application” on page 4-4, you can send messages. To send a message, you must
perform the following steps:

1. Create a message object.

2. Define a message.

3. Send the message to a destination.

For more information about the JMS classes for sending messages and the message
types, see the javax.jms.Message Javadoc. For information about receiving
messages, see “Receiving Messages” on page 4-29.

Step 1: Create a Message Object

This step has already been accomplished as part of the client setup procedure, as
described in “Step 6a: Create the Message Object (Message Producers)” on page 4-13.

Step 2: Define a Message

This step may have been accomplished when setting up an application, as described in
“Step 6a: Create the Message Object (Message Producers)” on page 4-13. Whether or
not this step has already been accomplished depends on the method that was called to
create the message object. For example, for TextMessage and ObjectMessage types,
when you create a message object, you have the option of defining the message when
you create the message object.

If a value has been specified and you do not wish to change it, you can proceed to step
3.

If a value has not been specified or if you wish to change an existing value, you can
define a value using the appropriate setmethod. For example, the method for defining
the text of a TextMessage is as follows:
4-22 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Sending Messages
public void setText(
String string

) throws JMSException

Note: Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody(
) throws JMSException

For more information about the methods used to define messages, see the
javax.jms.Session Javadoc.

Step 3: Send the Message to a Destination

You can send a message to a destination using a message producer—queue sender
(PTP) or topic publisher (Pub/Sub)—and the methods described in the following
sections. The Destination and MessageProducer objects were created when you
set up the application, as described in “Setting Up a JMS Application” on page 4-4.

Note: If multiple topic subscribers are defined for the same topic, each subscriber
will receive its own local copy of a message. Once received, you can modify
the header field values; however, the message properties and message body are
read only. You can modify the message body by executing the corresponding
message type’s clearbody()method to clear the existing contents and enable
write permission.

For more information about the MessageProducer class, see “MessageProducer and
MessageConsumer” on page 2-13 or the javax.jms.MessageProducer Javadoc.

Send a Message Using Queue Sender

You can send messages using the following QueueSender methods:

public void send(
Message message

) throws JMSException

public void send(
Message message,
int deliveryMode,
Programming WebLogic JMS 4-23

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html

4 Developing a WebLogic JMS Application
int priority,
long timeToLive

) throws JMSException

public void send(
Queue queue,
Message message

) throws JMSException

public void send(
Queue queue,
Message message,
int deliveryMode,
int priority,
long timeToLive

) throws JMSException

You must specify a message. You may also specify the queue name (for anonymous
message producers), delivery mode (DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT), priority (0-9), and time-to-live (in milliseconds).
If not specified, the delivery mode, priority, and time-to-live attributes are set to one
of the following:

! Connection factory or destination override configuration attributes defined for
the producer, as described “Configuring JMS” in the Administration Console
Online Help.

! Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes” on page
4-26.

Note: WebLogic JMS also provides a proprietary TimeToDeliver attribute (that is,
birth time), as described in “Dynamically Configuring Message Producer
Configuration Attributes” on page 4-26.

If you define the delivery mode as PERSISTENT, you should configure a backing store
for the destination, as described in “Configuring JMS” in the Administration Console
Online Help.

Note: If no backing store is configured, then the delivery mode is changed to
NON_PERSISTENT and messages are not written to the persistent store.
4-24 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores

Sending Messages
If the queue sender is an anonymous producer (that is, if when the queue was created,
the name was set to null), then you must specify the queue name (using one of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “Create QueueSenders and QueueReceivers” on
page 4-11.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

QueueSender.send(message, DeliveryMode.PERSISTENT, 4, 3600000);

For additional information about the QueueSender class methods, see the
javax.jms.QueueSender Javadoc.

Send a Message Using TopicPublisher

You can send messages using the following TopicPublisher methods:

public void publish(
Message message

) throws JMSException

public void publish(
Message message,
int deliveryMode,
int priority,
long timeToLive

) throws JMSException

public void publish(
Topic topic,
Message message

) throws JMSException

public void publish(
Topic topic,
Message message,
int deliveryMode,
int priority,
long timeToLive

) throws JMSException

You must provide a message. You may also specify the topic name, delivery mode
(DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT), priority (0-9),
and time-to-live (in milliseconds). If not specified, the delivery mode, priority, and
time-to-live attributes are set to one of the following:
Programming WebLogic JMS 4-25

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSender.html

4 Developing a WebLogic JMS Application
! Connection factory or destination override configuration attributes defined for
the producer, as described “Configuring JMS” in the Administration Console
Online Help.

! Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes” on page
4-26.

Note: WebLogic JMS also provides a proprietary TimeToDeliver attribute (that is,
birth time), as described in “Dynamically Configuring Message Producer
Configuration Attributes” on page 4-26.

If you define the delivery mode as PERSISTENT, you should configure a backing store,
as described in “Configuring JMS” in the Administration Console Online Help.

Note: If no backing store is configured, then the delivery mode is changed to
NON_PERSISTENT and no messages are stored.

If the topic publisher is an anonymous producer (that is, if when the topic was created,
the name was set to null), then you must specify the topic name (using either of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “Create TopicPublishers and TopicSubscribers”
on page 4-12.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

TopicPublisher.publish(message, DeliveryMode.PERSISTENT,
4,3600000);

For more information about the TopicPublisher class methods, see the
javax.jms.TopicPublisher Javadoc.

Dynamically Configuring Message Producer
Configuration Attributes

As described in the previous section, when sending a message, you can optionally
specify the delivery mode, timeout, time-to-live, and time-to-deliver values. If not
specified, the delivery mode, priority, time-to-live, and time-to-deliver attributes are
4-26 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicPublisher.html

Sending Messages
set to the connection factory or destination override configuration attributes defined
for the producer, as described “Configuring JMS” in the Administration Console
Online Help.

Alternatively, you can set the delivery mode, timeout, and time-to-live values
dynamically using the message producers set methods to override the configured
values.

The following table lists the message producer set and get methods for each
dynamically configurable attribute.

Note: The delivery mode, timeout, time-to-live, time-to-deliver attribute settings can
be overridden by the destination using the Delivery Mode Override, Priority
Override, Time To Live Override, and Time To Deliver Override destination
configuration attributes, as described in “Configuring Destinations” in the
Administration Console Online Help.

Note: JMS defines optional MessageProducer methods for disabling the message
ID and timestamp information. However, these methods are ignored by
WebLogic JMS.

For more information about the MessageProducer class methods, see the
javax.jms.MessageProducer Javadoc.

Table 4-2 Message Producer Set and Get Methods

Attribute Set Method Get Method

Delivery Mode public void setDeliveryMode(
int deliveryMode

) throws JMSException

public int getDeliveryMode(
) throws JMSException

Priority public void setPriority(
int defaultPriority

) throws JMSException

public int getPriority(
) throws JMSException

Time-To-Live public void setTimeToLive(
long timeToLive

) throws JMSException

public long getTimeToLive(
) throws JMSException

Time-To-Deliver public void setTimeToDeliver(
long timeToDeliver

) throws JMSException

public long getTimeToDeliver(
) throws JMSException
Programming WebLogic JMS 4-27

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageProducer.html

4 Developing a WebLogic JMS Application
Example: Sending Messages Within a PTP Application

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\queue directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. The example shows
the code required to create a TextMessage, set the text of the message, and send the
message to a queue.

msg = qsession.createTextMessage();
.
.
.

public void send(
String message

) throws JMSException
{
msg.setText(message);
qsender.send(msg);

}

For more information about the QueueSender class and methods, see the
javax.jms.QueueSender Javadoc.

Example: Sending Messages Within a Pub/Sub
Application

The following example is excerpted from the examples.jms.topic.TopicSend
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\topic directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. It shows the code
required to create a TextMessage, set the text of the message, and send the message
to a topic.

msg = tsession.createTextMessage();
.
.
.

public void send(
String message

) throws JMSException
4-28 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueSender.html

Receiving Messages
{
msg.setText(message);
tpublisher.publish(msg);

}

For more information about the TopicPublisher class and methods, see the
javax.jms.TopicPublisher Javadoc.

Receiving Messages

Once you have set up the JMS application as described in “Setting Up a JMS
Application” on page 4-4, you can receive messages.

To receive a message, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously, as described in the
following sections.

The order in which messages are received can be controlled by the following:

! Message delivery attributes (delivery mode and sorting criteria) defined during
configuration, as described in “Configuring JMS” in the Administration Console
Online Help, or as part of the send() method, as described in “Sending
Messages” on page 4-22.

! Destination sort order set using destination keys, as described in “Configuring
JMS” in the Administration Console Online Help.

Once received, you can modify the header field values; however, the message
properties and message body are read-only. You can modify the message body by
executing the corresponding message type’s clearbody() method to clear the
existing contents and enable write permission.

For more information about the JMS classes for receiving messages and the message
types, see the javax.jms.Message Javadoc. For information about sending
messages, see “Sending Messages” on page 4-22.
Programming WebLogic JMS 4-29

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_destinations_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_destination_key
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

4 Developing a WebLogic JMS Application
Receiving Messages Asynchronously

This procedure is described within the context of setting up the application. For more
information, see “Step 6b: Optionally Register an Asynchronous Message Listener
(Message Consumers)” on page 4-15.

Note: You can control the maximum number of messages that may exist for an
asynchronous session and that have not yet been passed to the message listener
by setting the Messages Maximum attribute when configuring the connection
factory.

Receiving Messages Synchronously

To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(
) throws JMSException

public Message receive(
long timeout

) throws JMSException

public Message receiveNoWait(
) throws JMSException

In each case, the application receives the next message produced. If you call the
receive() method with no arguments, the call blocks indefinitely until a message is
produced or the application is closed. Alternatively, you can pass a timeout value to
specify how long to wait for a message. If you call the receive()method with a value
of 0, the call blocks indefinitely. The receiveNoWait() method receives the next
message if one is available, or returns null; in this case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer
class methods, see the javax.jms.MessageConsumer Javadoc.
4-30 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageConsumer.html

Receiving Messages
Example: Receiving Messages Synchronously Within a PTP Application

The following example is excerpted from the examples.jms.queue.QueueReceive
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\queue directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. Rather than set a
message listener, you would call qreceiver.receive() for each message. For
example:

qreceiver = qsession.createReceiver(queue);
qreceiver.receive();

The first line creates the queue receiver on the queue. The second line executes a
receive() method. The receive() method blocks and waits for a message.

Example: Receiving Messages Synchronously Within a Pub/Sub Application

The following example is excerpted from the examples.jms.topic.TopicReceive
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\topic directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. Rather than set a
message listener, you would call tsubscriber.receive() for each message.

For example:

tsubscriber = tsession.createSubscriber(topic);
Message msg = tsubscriber.receive();
msg.acknowledge();

The first line creates the topic subscriber on the topic. The second line executes a
receive() method. The receive() method blocks and waits for a message.

Recovering Received Messages

Note: This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE, as described in Table 2-5,
“Acknowledge Modes Used for Non-Transacted Sessions,” on page 2-9.
Synchronously received AUTO_ACKNOWLEDGE messages may not be
received; they have already been acknowledged.
Programming WebLogic JMS 4-31

4 Developing a WebLogic JMS Application
An application can request that JMS redeliver messages (unacknowledge them) using
the following method:

public void recover(
) throws JMSException

The recover() method performs the following steps:

! Stops message delivery for the session

! Tags all messages that have not been acknowledged (but may have been
delivered) as redelivered

! Resumes sending messages starting from the first unacknowledged message for
that session

Messages in queues are not necessarily redelivered in the same order that they were
originally delivered, nor to the same queue consumers.

Acknowledging Received Messages

Note: This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE, as described in Table 2-5,
“Acknowledge Modes Used for Non-Transacted Sessions,” on page 2-9.

To acknowledge a received message, use the following Message method:

public void acknowledge(
) throws JMSException

The acknowledge() method acknowledges the current message and all previous
messages received since the last client acknowledge. Messages that are not
acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE. Otherwise, the method is ignored.
4-32 Programming WebLogic JMS

Releasing Object Resources
Releasing Object Resources

When you have finished using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of a JMS application, you
should explicitly close them to release the resources.

Enter the close() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

! The call blocks until the method call completes and any outstanding
synchronous applications are cancelled.

! All associated sub-objects are also closed. For example, when closing a session,
all associated message producers and consumers are also closed. When closing a
connection, all associated sessions are also closed.

For more information about the impact of the close()method for each object, see the
appropriate javax.jms Javadoc. In addition, for more information about the
connection or Session close() method, see “Starting, Stopping, and Closing a
Connection” on page 4-46 or “Closing a Session” on page 4-48, respectively.

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the
WL_HOME\samples\server\src\examples\jms\queue directory, where WL_HOME
is the top-level directory of your WebLogic Platform installation. This example shows
the code required to close the message consumer, session, and connection objects.

public void close(
) throws JMSException
{
qreceiver.close();
qsession.close();
qcon.close();

}

In the QueueSend example, the close() method is called at the end of main() to
close objects and free resources.
Programming WebLogic JMS 4-33

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
Managing Rolled Back or Recovered
Messages

The following sections describe how to manage rolled back or recovered messages:

! Setting a Redelivery Delay for Messages

! Setting a Redelivery Limit for Messages

Setting a Redelivery Delay for Messages

You can delay the redelivery of messages when a temporary, external condition
prevents an application from properly handling a message. This allows an application
to temporarily inhibit the receipt of “poison” messages that it cannot currently handle.
When a message is rolled back or recovered, the redelivery delay is the amount of time
a message is put aside before an attempt is made to redeliver the message.

If JMS immediately redelivers the message, the error condition may not be resolved
and the application may still not be able to handle the message. However, if an
application is configured for a redelivery delay, then when it rolls back or recovers a
message, the message is set aside until the redelivery delay has passed, at which point
the messages are made available for redelivery—as long as the error condition has
already been resolved.

All messages consumed and subsequently rolled back or recovered by a session
receive the redelivery delay for that session at the time of rollback or recovery.
Messages consumed by multiple sessions as part of a single user transaction will
receive different redelivery delays as a function of the session that consumed the
individual messages. Messages that are left unacknowledged or uncommitted by a
client, either intentionally or as a result of a failure, are not assigned a redelivery delay.
4-34 Programming WebLogic JMS

Managing Rolled Back or Recovered Messages
Setting a Redelivery Delay

A session inherits the redelivery delay from its connection factory when the session is
created. The RedeliveryDelay attribute of a connection factory is configured using
the Administration Console. For more information, see “JMS Connection Factory
Tasks” in the Administration Console Online Help.

The application that creates the session can then override the connection factory setting
using WebLogic-specific extensions to the javax.jms.Session interface. The
session attribute is dynamic and can be changed at any time. Changing the session
redelivery delay affects all messages consumed and rolled back (or recovered) by that
session after the change.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
javax.jms.Session interface. To define a redelivery delay for a session, use the
following methods:

public void setRedeliveryDelay(
long redeliveryDelay

) throws JMSException;

public long getRedeliveryDelay(
) throws JMSException;

For more information on the WLSession class, refer to the
weblogic.jms.extensions.WLSession Javadoc.

Overriding the Redelivery Delay on a Destination

Regardless of what redelivery delay is set on the session, the destination where a
message is being rolled back or recovered can override the setting. The redelivery
delay override applied to the redelivery of a message is the one in effect at the time a
message is rolled back or recovered.

The RedeliveryDelayOverride attribute of a destination is configured using the
Administration Console. For more information, see “JMS Destination Tasks” in the
Administration Console Online Help.
Programming WebLogic JMS 4-35

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

4 Developing a WebLogic JMS Application
Setting a Redelivery Limit for Messages

You can specify a limit on the number of times that WebLogic JMS will attempt to
redeliver a message to an application. Once WebLogic JMS fails to redeliver a
message to a destination for a specific number of times, the message can be redirected
to an error destination that is associated to the message destination. If no error
destination is configured, then the message is silently deleted.

Configuring a Message Redelivery Limit

When a destination’s attempts to redeliver a message to a consumer reaches a specified
redelivery limit, then the destination deems the message undeliverable. The
RedeliveryLimit attribute is set on a destination and is configurable using the
Administration Console. For more information, see “ JMS Destination Tasks” in the
Administration Console Online Help.

Configuring an Error Destination for Undelivered Messages

If an error destination is configured for undelivered messages, then when a message
has been deemed undeliverable, the message will be redirected to a specified error
destination. The error destination can be either a queue or a topic, and it must be
configured on the same JMS server as the destination for which it is defined. If no error
destination is configured, then undelivered messages are silently deleted.

The ErrorDestination attribute is configured using the Administration Console.
For more information, see “ JMS Destination Tasks” in the Administration Console
Online Help.

If a message redelivery attempt has already reached its specified redelivery limit, but
its error destination has also reached its maximum quota, then the message is deemed
undeliverable and is dropped. Non-persistent messages are deleted, while persistent
messages remain in the store and will reappear in their originating destination (not the
error destination) when the server is restarted. In either case, a log message is
generated. To prevent the log file from becoming clogged, the log message is only
generated once per error destination every five minutes, until the error condition is
resolved.
4-36 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

Managing Rolled Back or Recovered Messages
Ordered Redelivery of Rolled Back Messages

All messages delivered to a consumer from a given producer are guaranteed to arrive
at the consumer in the order in which they were produced. In addition, the “Ordered
Redelivery” feature guarantees ordering of redelivered messages given certain
constraints, like using message selection, having a sorted destination, delays in the
rolling back of messages, and message consumption by other consumers.

Single Consumer

Ordered redelivery is only guaranteed when there is a single consumer. If there are
multiple consumers, then there are no guarantees about the order in which any
individual consumer will receive messages.

Note: With respect to MDBs (message-driven beans), the number of consumers is a
function of the number of MDB instances deployed for a given MDB. The
initial and maximum values for the number of instances must be “1”.
Otherwise no ordering guarantees can be made with respect to redelivered
messages.

Sort Order

If a given destination is sorted, has JMS destination keys defined, and another message
is produced such that the message would be placed at the top of the ordering, then no
guarantee can be made between the redelivery of an existing message and the delivery
of the incoming message.

Selection

If a consumer is using a selector, then ordering on redelivery is only guaranteed
between the message being redelivered and other messages that match the criteria for
that selector. There are no guarantees of order with respect to messages that do not
match the selector.
Programming WebLogic JMS 4-37

4 Developing a WebLogic JMS Application
Message Pipeline Size

For JMS applications using JTA transactions in conjunction with an asynchronous
consumer, the size of the message pipeline must be “1”. Anything value higher than
“1” means there may be additional in-flight messages that may appear ahead of a
redelivered message. The size of the pipeline can be set using the Messages Maximum
attribute on the JMS connection factory used by the sending application. MDB
applications must define an application specific connection factory, set the Messages
Maximum attribute value to “1” on that connection factory, and then reference the
connection factory in the EJB descriptor for their MDB application.

Note: The only application capable of using JTA transactions in conjunction with an
asynchronous consumer are MDBs, and the WebLogic Messaging Bridge.

Performance Requirements

JMS applications that take advantage of this feature will incur performance
degradation for asynchronous consumers using JTA transactions (specifically, MDBs
and the WebLogic Message Bridge). This is caused by a mandatory reduction in the
number of in-flight messages to exactly “1”. This means no messages are aggregated
when sent to the client.

Setting Message Delivery Times

You can schedule message deliveries to an application for specific times in the future.
Message deliveries can be deferred for short periods of time (such as seconds or
minutes) or for long stretches of time (for example, hours later for batch processing).
You can also specify a relative delivery time (in milliseconds), which will then be
computed into an absolute delivery time for a message. Until that delivery time, the
message is essentially invisible until it is delivered, allowing you to schedule work at
a particular time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send
messages on a recurring basis, a received scheduled message must be sent back to its
original destination. Typically, the receive, the send, and any associated work should
be under the same transaction to ensure exactly-once semantics.
4-38 Programming WebLogic JMS

Setting Message Delivery Times
Setting a Delivery Time on Producers

Support for setting and getting a time-to-deliver on an individual producer is provided
through the weblogic.jms.extensions.WLMessageProducer interface, which is
an extension to the javax.jms.MessageProducer interface. To define a
time-to-deliver on an individual producer, use the following methods:

public void setTimeToDeliver(
long timeToDeliver

) throws JMSException;

public long getTimeToDeliver(
) throws JMSException;

For more information on the WLMessageProducer class, refer to the
weblogic.jms.extensions.WLMessageProducer Javadoc.

Setting a Delivery Time on Messages

Note: The message methods described here are similar to other JMS message
methods that are set via the producer. Specifically, the setting of the delivery
time is reserved for JMS providers. An application can set the value on a
message, but the producer will override it when the message is sent or
published.

The DeliveryTime is a JMS message header field that defines the earliest absolute
time at which the message can be delivered. That is, the message is held by the
messaging system and is not given to any consumers until that time.

As a JMS header field, the DeliveryTime can be used to sort messages in a
destination or to select messages. For purposes of data type conversion, the delivery
time is stored as a long integer.

The support for setting and getting the delivery time on a message is provided through
the weblogic.jms.extensions.WLMessage interface, which is an extension to the
javax.jms.Message interface. To define a delivery time on a message, use the
following methods:

public void setJMSDeliveryTime(
long deliveryTime

) throws JMSException;
Programming WebLogic JMS 4-39

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLMessageProducer.html

4 Developing a WebLogic JMS Application
public long getJMSDeliveryTime(
) throws JMSException;

For more information on the WLMessage class, refer to the
weblogic.jms.extensions.WLMessage Javadoc.

Overriding a Delivery Time

When a producer is created it inherits its TimeToDeliver attribute, expressed in
milliseconds, from the connection factory used to create the connection that the
producer is a part of. Regardless of what time-to-deliver is set on the producer, the
destination to which a message is being sent or published can override the setting. An
administrator can set the TimeToDeliverOverride attribute on a destination in either
a relative or scheduled string format.

Setting a Relative Time-to-Deliver Override

A relative TimeToDeliverOverride is a String specified as an integer, and is
configurable using the Administration Console. For more information, see“ JMS
Destination Tasks” in the Administration Console Online Help.

Setting a Scheduled Time-to-Deliver Override

A scheduled TimeToDeliverOverride can also be specified using the
weblogic.jms.extensions.schedule class, which provides methods that take a
schedule and return the next scheduled time for delivering messages. A cron-like string
is used to define the schedule. The format is defined by the following BNF syntax:

schedule := millisecond second minute hour dayOfMonth month
dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList
secondList := secondItem [, secondList]
secondItem := secondValue | secondRange
SecondRange := secondValue - secondValue
4-40 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLMessage.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

Setting Message Delivery Times
Similar BNF statements for milliseconds, minute, hour, day-of-month, month, and
day-of-week can be derived from the second syntax. The values for each field are
defined as non-negative integers in the following ranges:

milliSecondValue := 0-999
milliSecondValue := 0-999
secondValue := 0-59
minuteValue := 0-59
hourValue := 0-23
dayOfMonthValue := 1-31
monthValue := 1-12
dayOfWeekValue := 1-7

Note: These values equate to the same ranges that the java.util.Calendar class
uses, except for monthValue. The java.util.Calendar range for
monthValue is 0-11, rather than 1-12.

Using this syntax, each field can be represented as a range of values indicating all times
between the two times. For example, 2-6 in the dayOfWeek field indicates Monday
through Friday, inclusive. Each field can also be specified as a comma-separated list.
For instance, a minute field of 0,15,30,45 means every quarter hour on the quarter
hour. Lastly, each field can be defined as both a set of individual values and ranges of
values. For example, an hour field of 9-17,0 indicates between the hours of 9 A.M.
and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

! If multiple schedules are supplied (using a semi-colon (;) as the separator), the
next scheduled time for the set is determined using the schedule that returns the
soonest value. One use for this is for specifying schedules that change based on
the day of the week (see the final example below).

! A value of 1 (one) for the dayOfWeek equates to Sunday.

! A value of * means every time for that field. For instance, a * in the Month field
means every month. A * in the Hour field means every hour.

! A value of l or last (not case sensitive) indicates the greatest possible value for
a field.

! If a day-of-month is specified that exceeds the normal maximum for a month,
then the normal maximum for that month will be specified. For example, if it is
February during a leap year and 31 was specified, then the scheduler will
Programming WebLogic JMS 4-41

4 Developing a WebLogic JMS Application
schedule as if 29 was specified instead. This means that setting the month field
to 31 always indicates the last day of the month.

! If milliseconds are specified, they are rounded down to the nearest 50th of a
second. The values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded
to 0-39 and 50-999 gets rounded to 39-999.

Note: When a Calendar is not supplied as a method parameter to one of the static
methods in this class, the calendar used is a
java.util.GregorianCalendarwith a default java.util.TimeZone and
a default java.util.Locale.

JMS Schedule Interface

The weblogic.jms.extensions.schedule class has methods that will return the
next scheduled time that matches the recurring time expression. This expression uses
the same syntax as the TimeToDeliverOverride. The time returned in milliseconds
can be relative or absolute.

For more information on the WLSession class, refer to the
weblogic.jms.extensions.Schedule Javadoc.

Table 4-3 Example Time-to-Deliver Schedules

Example Description

0 0 0,30 * * * * Exact next nearest half-hour

* * 0,30 4-5 * * * Anytime in the first minute of the half hours in the 4 A.M. and 5
A.M. hours

* * * 9-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

* * * * 8-14 * 2 The second Tuesday of the month

* * * 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

* * * * * 31 * The last day of the month

* * * * 15 4 1 The next time April 15th occurs on a Sunday

0 0 0 1 * * 2-6;0 0 0 2 * * 1,7 1 A.M. on weekdays; 2 A.M. on weekends
4-42 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/Schedule.html

Setting Message Delivery Times
You can define the next scheduled time after the given time using the following
method:

public static Calendar nextScheduledTime(
String schedule,
Calendar calendar

) throws ParseException {

You can define the next scheduled time after the current time using the following
method:

public static Calendar nextScheduledTime(
String schedule,
) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds
using the following method:

public static long nextScheduledTimeInMillis(
String schedule,
long timeInMillis

) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
String schedule,
long timeInMillis

) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
String schedule

) throws ParseException {

Interaction with the Time-to-Live Value

If the specified time-to-live value (JMSExpiration) is less than or equal to the
specified time-to-deliver value, then the message delivery succeeds. However, the
message is then silently expired.
Programming WebLogic JMS 4-43

4 Developing a WebLogic JMS Application
Managing Connections

The following sections describe how to manage connections:

! Defining a Connection Exception Listener

! Accessing Connection Metadata

! Starting, Stopping, and Closing a Connection

Defining a Connection Exception Listener

An exception listener asynchronously notifies an application whenever a problem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by
a connection, but to deliver those exceptions that would not be otherwise be
delivered.

You can define an exception listener for a connection using the following Connection
method:

public void setExceptionListener(
ExceptionListener listener

) throws JMSException

You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following ExceptionListener

method:

public void onException(
JMSException exception

)

The JMS Provider specifies the exception that describes the problem when calling the
method.
4-44 Programming WebLogic JMS

Managing Connections
You can access the exception listener for a connection using the following Connection
method:

public ExceptionListener getExceptionListener(
) throws JMSException

Accessing Connection Metadata

You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData(
) throws JMSException

This method returns a ConnectionMetaData object that enables you to access JMS
metadata. The following table lists the various type of JMS metadata and the get
methods that you can use to access them.

JMS Metadata Get Method

Version public String getJMSVersion(
) throws JMSException

Major version public int getJMSMajorVersion(
) throws JMSException

Minor version public int getJMSMinorVersion(
) throws JMSException

Provider name public String getJMSProviderName(
) throws JMSException

Provider version public String getProviderVersion(
) throws JMSException

Provider major version public int getProviderMajorVersion(
) throws JMSException

Provider minor version public int getProviderMinorVersion(
) throws JMSException

JMSX property names public Enumeration getJMSXPropertyNames(
) throws JMSException
Programming WebLogic JMS 4-45

4 Developing a WebLogic JMS Application
For more information about the ConnectionMetaData class, see the
javax.jms.ConnectionMetaData Javadoc.

Starting, Stopping, and Closing a Connection

To control the flow of messages, you can start and stop a connection temporarily using
the start() and stop() methods, respectively, as follows.

The start() and stop() method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection
is started. Typically, other JMS objects are set up to handle messages before the
connection is started, as described in “Setting Up a JMS Application” on page 4-4.
Messages may be produced on a stopped connection, but cannot be delivered to a
stopped connection.

Once started, you can stop a connection using the stop() method. This method
performs the following steps:

! Pauses the delivery of all messages. No applications waiting to receive messages
will return until the connection is restarted or the time-to-live value associated
with the message is reached.

! Waits until all message listeners that are currently processing messages have
completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates
a connection. When a connection is no longer being used, you should close it to free
up resources. A connection can be closed using the following method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

! Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.
4-46 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionMetaData.html

Managing Sessions
! Waits until all message listeners that are currently processing messages have
completed.

! Rolls back in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see “Using JTA User Transactions” on page 5-5.

! Does not force an acknowledge of client-acknowledged sessions. By not forcing
an acknowledge, no messages are lost for queues and durable subscriptions that
require reliable processing.

When you close a connection, all associated objects are also closed. You can continue
to use the message objects created or received via the connection, except the received
message’s acknowledge() method. Closing a closed connection has no effect.

Note: Attempting to acknowledge a received message from a closed connection’s
session throws an IllegalStateException.

Managing Sessions

The following sections describe how to manage sessions, including:

! Defining a Session Exception Listener

! Closing a Session

Defining a Session Exception Listener

An exception listener asynchronously notifies a client in the event a problem occurs
with a session. This is particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by
a session, only to deliver those exceptions that would otherwise be
undelivered.
Programming WebLogic JMS 4-47

4 Developing a WebLogic JMS Application
You can define an exception listener for a session using the following WLSession

method:

public void setExceptionListener(
ExceptionListener listener

) throws JMSException

You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following ExceptionListener

method:

public void onException(
JMSException exception

)

The JMS Provider specifies the exception encountered that describes the problem
when calling the method.

You can access the exception listener for a session using the following WLSession

method:

public ExceptionListener getExceptionListener(
) throws JMSException

Note: Because there can only be one thread per session, an exception listener and
message listener (used for asynchronous message delivery) cannot execute
simultaneously. Consequently, if a message listener is executing at the time a
problem occurs, execution of the exception listener is blocked until the
message listener completes its execution. For more information about message
listeners, see “Receiving Messages Asynchronously” on page 4-30.

Closing a Session

As with connections, a JMS Provider allocates a significant amount of resources when
it creates a session. When a session is no longer being used, it is recommended that it
be closed to free up resources. A session can be closed using the following Session

method:

public void close(
) throws JMSException
4-48 Programming WebLogic JMS

Creating Destinations Dynamically
Note: The close() method is the only Session method that can be invoked from a
thread that is separate from the session thread.

This method performs the following steps to execute an orderly shutdown:

! Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

! Waits until all message listeners that are currently processing messages have
completed.

! Rolls back in-process transactions (unless such transactions are part of external
JTA user transaction). For more information about JTA user transactions, see
“Using JTA User Transactions” on page 5-5.

! Does not force an acknowledge of client acknowledged sessions, ensuring that
no messages are lost for queues and durable subscriptions that require reliable
processing.

When you close a session, all associated producers and consumers are also closed.

Note: If you want to issue the close()method within an onMessage()method call,
the system administrator must select the Allow Close In OnMessage check
box when configuring the connection factory. For more information, see “JMS
Connection Factory Tasks” in the Administration Console Online Help.

Creating Destinations Dynamically

You can create destinations dynamically using:

! weblogic.jms.extensions.JMSHelper class methods

! Temporary destinations

The associated procedures for creating dynamic destinations are described in the
following sections.
Programming WebLogic JMS 4-49

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

4 Developing a WebLogic JMS Application
Using the JMSHelper Class Methods

You can dynamically submit an asynchronous request to create a queue or topic,
respectively, using the following JMSHelper methods available in
weblogic.jms.extensions:

static public void createPermanentQueueAsync(
Context ctx,
String jmsServerName,
String queueName,
String jndiName

) throws JMSException

static public void createPermanentTopicAsync(
Context ctx,
String jmsServerName,
String topicName,
String jndiName

) throws JMSException

You must specify the JNDI initial context, name of the JMS server to be associated
with the destination, name of the destination (queue or topic), and name used to look
up the destination within the JNDI namespace.

Each method updates the following:

! Configuration file associated with the specified domain to include the
dynamically created destination

! JNDI namespace to advertise the destination

Note: Either method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay
increases if the environment contains multiple servers. It is recommended that you test
for the existence of the queue or topic, respectively, using the session createQueue()
or createTopic() method, rather than perform a JNDI lookup. By doing so, you can
avoid some of the propagation-specific delay.

For example, the following method, findQueue(), attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.
4-50 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

Creating Destinations Dynamically
private static Queue findQueue (
QueueSession queueSession,
String jmsServerName,
String queueName,
int retryCount,
long retryInterval

) throws JMSException
{

String wlsQueueName = jmsServerName + “/” + queueName;
String command = “QueueSession.createQueue(“ +

wlsQueueName + “)”;
long startTimeMillis = System.currentTimeMillis();
for (int i=retryCount; i>=0; i--) {

try {
System.out.println(“Trying “ + command);
Queue queue = queueSession.createQueue(wlsQueueName);
System.out.println(command + “succeeded after “ +

(retryCount - i + 1) + “ tries in “ +
(System.currentTimeMillis() - startTimeMillis) +
“ millis.”);

return queue;
} catch (JMSException je) {
if (retryCount == 0) throw je;

}
try {
System.out.println(command + “> failed, pausing “ +

retryInterval + “ millis.”);
Thread.sleep(retryInterval);

} catch (InterruptedException ignore) {}

}
throw new JMSException(“out of retries”);

}

You can then call the findQueue() method after the JMSHelper class method call to
retrieve the dynamically created queue once it becomes available. For example:

JMSHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
queueName, jndiName);

Queue queue = findQueue(qsess, jmsServerName, queueName,
retry_count, retry_interval);

For more information on the JMSHelper class, refer to the
weblogic.jms.extensions.JMSHelper Javadoc.
Programming WebLogic JMS 4-51

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/JMSHelper.html

4 Developing a WebLogic JMS Application
Deleting Destinations Dynamically

You can dynamically delete JMS destinations (queue or topic) using:

! weblogic.jms.extensions.JMSHelper class method

! Administration console

! User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it’s not
necessary to redeploy the JMS server for the deletion to take effect.

The associated procedures for creating dynamic destinations are described in the
following sections.

Preconditions for Deleting Destinations

In order to successfully delete a destination, the following preconditions must be met:

! The destination must not be a member of a distributed destination. For more
information, see “Using Distributed Destinations” on page 4-90.

! The destination must not be the error destination for some other destination. For
more information, see “Configuring an Error Destination for Undelivered
Messages” on page 4-36.

If either of these preconditions cannot be met, then the deletion will not be allowed.

Using the JMSHelper Class Methods

You can dynamically submit a request to delete a destination (queue or topic), using
the following JMSHelper methods available in weblogic.jms.extensions:
4-52 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/package-summary.html

Deleting Destinations Dynamically
static public void deletePermanentQueue(
Context ctx,
String jmsServerName,
String queueName

) throws ConfigurationException

static public void deletePermanentTopic(
Context ctx,
String jmsServerName,
String topicName

) throws ConfigurationException

You must specify the JNDI initial context, name of the JMS server to be associated
with the destination, and the name of the destination (queue or topic).

Semantics When Deleting Destinations

When a destination is deleted using the Administration Console, the JMSHelper
function, or a user-defined JMX application, the following behaviors and semantics
apply.

Producer, Consumer, and Browser Creation

Once a destination is deleted, applications will no longer be able to create producers,
consumers, or browsers for the deleted destination. Any attempt to do so will result in
the application receiving an InvalidDestinationException— as if the destination
does not exist.

CLosing of Consumers

All existing consumers for the deleted destination are closed. The closing of a
consumer generates a ConsumerClosedException, which is delivered to the
ExceptionListener, if any, of the parent session. The message for the exception will
read “Destination was deleted”.

When a consumer is closed, if it has an outstanding receive() operation, then that
operation is cancelled and the caller receives a null indicating that no message is
available. Attempts by an application to do anything but close() a closed consumer
will result in an IllegalStateException.
Programming WebLogic JMS 4-53

4 Developing a WebLogic JMS Application
Closing of Browsers

All browsers for the deleted destination are closed. Attempts by an application to do
anything but close() a closed browser will result in an IllegalStateException.
Closing of a browser implicitly closes all enumerations associated with the browser.

Closing of Enumerations

All enumerations for the deleted destination are closed. The behavior after an
enumeration is closed depends on the last call before the enumeration was closed. If a
call to hasMoreElements() returns a value of true, and no subsequent call to
nextElement() has been made, then the enumeration guarantees that next element
can be enumerated. This produces the specifics.

When the last call before the close was to hasMoreElements(), and the value
returned was true, then the following behaviors apply:

! The first call to nextElement() will return a message.

! Subsequent calls to nextElement() will throw a NoSuchElementException.

! Calls to hasMoreElements() made before the first call to nextElement() will
return true.

! Calls to hasMoreElements() made after the first call to nextElement() will
return false.

If a given enumeration has never been called, or the last call before the close was to
nextElement(), or the last call before the close was to hasMoreElements() and the
value returned was false, then the following behaviors apply:

! Calls to hasMoreElements() will return false.

! Calls to nextElement() will throw a NoSuchElementException.

Cancelled Blocking Send Operations

All blocking send operations posted against the deleted destination are cancelled. Send
operations waiting for quota will receive a ResourceAllocationException.

For more information on using blocking send operations, see “Avoiding Quota
Exceptions by Blocking Message Producers” in the Administration Console Online
Help.
4-54 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_quota_maintenance

Deleting Destinations Dynamically
Affected Transactions

The deletion of a destination does not affect existing uncommitted transactions. Any
uncommitted work associated with a deleted destination is allowed to complete as part
of the transaction. However, since the destination is deleted, the net result of all
operations (rollback, commit, etc.) is the deletion of the associated messages.

Physical Deletion of Existing Messages

Under normal operating circumstances all durable subscribers for the deleted
destination are permanently deleted. All messages, persistent and non-persistent,
stored in the deleted destination are permanently removed from the messaging system.

Timestamps for Troubleshooting Deleted Destinations

If a destination with persistent messages is deleted and then immediately recreated
while the JMS server is not running, the JMS server will compare the version number
of the destination (using the CreationTime field in the configuration config.xml

file) and the version number of the destination in the persistent messages. In this case,
the left over persistent messages for the older destination will have an older version
number than the version number in the config.xml file for the recreated destination,
and when the JMS server is rebooted, the left over persistent messages are simply
discarded.

However, if a persistent message somehow has a version number that is newer than the
version number in the config.xml for the recreated destination, then either the system
clock was rolled back when the destination was deleted and recreated (while the JMS
server was not running), or a different config.xml is being used. In this situation, the
JMS server will fail to boot. To save the persistent message, you can set the version
number (the CreationTime field) in the config.xml to match the version number in
the persistent message. Otherwise, you can change the version number in the
config.xml so that it is newer than the version number in the persistent message; this
way, the JMS server can delete the message when it is rebooted.
Programming WebLogic JMS 4-55

4 Developing a WebLogic JMS Application
Statistics

Statistics for the deleted destination and the hosting JMS server are updated as the
messages are physically deleted. However, the deletion of some messages can be
delayed pending the outcome of some other operation. This includes messages sent
and/or received in a transaction, as well as unacknowledged non-transactional
messages received by a client.

Using Temporary Destinations

Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

The WebLogic JMS server can use the JMSReplyTo header field to return a response
to the application. The application may optionally set the JMSReplyTo header field of
its messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the delete() method, described in “Deleting a Temporary
Destination” on page 4-57.

Because messages are never available if the server is restarted, all PERSISTENT
messages are silently made NON_PERSISTENT. As a result, temporary destinations are
not suitable for business logic that must survive a restart.

Note: Before creating a temporary destination (queue or topic), you must use the
Administration Console to configure the JMS server to use temporary
destinations. This is done by using the JMS server’s Temporary Template

attribute to select a JMS template that is configured in the same domain. For
more information about configuring a JMS server, see “JMS Server Tasks” in
the Administration Console Online Help.

The following sections describe how to create a temporary queue (PTP) or temporary
topic (Pub/Sub).
4-56 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsserver_config_general.html

Setting Up Durable Subscriptions
Creating a Temporary Queue

You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue(
) throws JMSException

For example, to create a reference to a TemporaryQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Session.createTemporaryQueue();

Creating a Temporary Topic

You can create a temporary topic using the following TopicSession method:

public TemporaryTopic createTemporaryTopic(
) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the
duration of the current connection, use the following method call:

TopicPublisher = Session.createTemporaryTopic();

Deleting a Temporary Destination

When you finish using a temporary destination, you can delete it (to release associated
resources) using the following TemporaryQueue or TemporaryTopic method:

public void delete(
) throws JMSException

Setting Up Durable Subscriptions

WebLogic JMS supports durable and non-durable subscriptions.
Programming WebLogic JMS 4-57

4 Developing a WebLogic JMS Application
For durable subscriptions, WebLogic JMS stores a message in a persistent file or
database until the message has been delivered to the subscribers or has expired, even
if those subscribers are not active at the time that the message is delivered. A
subscriber is considered active if the Java object that represents it exists. Durable
subscriptions are supported for Pub/Sub messaging only.

Note: Durable subscriptions cannot be created for distributed topics. However, you
can still create a durable subscription on distributed topic member and the
other topic members will forward the messages to the member that has the
durable subscription. For more information on using distributed topics, see
“Using Distributed Destinations” on page 4-90.

For non-durable subscriptions, WebLogic JMS delivers messages only to applications
with an active session. Messages sent to a topic while an application is not listening are
never delivered to that application. In other words, non-durable subscriptions last only
as long as their subscriber objects. By default, subscribers are non-durable.

The following sections describe:

! Defining the Client ID

! Creating Subscribers for a Durable Subscription

! Deleting Durable Subscriptions

! Modifying Durable Subscriptions

! Managing Durable Subscriptions

Defining the Client ID

To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note: The JMS client ID is not necessarily equivalent to the WebLogic Server
username, that is, a name used to authenticate a user in the WebLogic security
realm. You can, of course, set the JMS client ID to the WebLogic Server
username, if it is appropriate for your JMS application.

The client ID can be supplied in two ways:
4-58 Programming WebLogic JMS

Setting Up Durable Subscriptions
! The preferred method, according to the JMS specification, is to configure the
connection factory with the client ID. For WebLogic JMS, this means adding a
separate connection factory definition during configuration for each client ID.
Applications then look up their own topic connection factories in JNDI and use
them to create connections containing their own client IDs. For more
information about configuring a connection factory with a client ID, see “JMS
Connection Factory Tasks” in the Administration Console Online Help.

! Alternatively, an application can set its client ID in the connection after the
connection is created by calling the following connection method:

public void setClientID(
String clientID

) throws JMSException

You must specify a unique client ID. If you use this alternative approach, you
can use the default connection factory (if it is acceptable for your application)
and avoid the need to modify the configuration information. However,
applications with durable subscriptions must ensure that they call
setClientID() immediately after creating their topic connection. For
information on the default connection factory, see “Configuring JMS” in the
Administration Console Online Help.

If a client ID is already defined for the connection, an
IllegalStateException is thrown. If the specified client ID is already defined
for another connection, an InvalidClientIDException is thrown.

Note: When specifying the client ID using the setClientID() method, there is
a risk that a duplicate client ID may be specified without throwing an
exception. For example, if the client IDs for two separate connections are
set simultaneously to the same value, a race condition may occur and the
same value may be assigned to both connections. You can avoid this risk
of duplication by specifying the client ID during configuration.

To display a client ID and test whether or not a client ID has already been
defined, use the following Connection method:

public String getClientID(
) throws JMSException

Note: Support for durable subscriptions is a feature unique to the Pub/Sub messaging
model, so client IDs are used only with topic connections; queue connections
also contain client IDs, but JMS does not use them.
Programming WebLogic JMS 4-59

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

4 Developing a WebLogic JMS Application
Durable subscriptions should not be created for a temporary topic, because a
temporary topic is designed to exist only for the duration of the current
connection.

Creating Subscribers for a Durable Subscription

You can create subscribers for a durable subscription using the following
TopicSession methods:

public TopicSubscriber createDurableSubscriber(
Topic topic,
String name

) throws JMSException

public TopicSubscriber createDurableSubscriber(
Topic topic,
String name,
String messageSelector,
boolean noLocal

) throws JMSException

You must specify the name of the topic for which you are creating a subscriber, and
the name of the durable subscription. You may also specify a message selector for
filtering messages and a noLocal flag (described later in this section). Message
selectors are described in more detail in “Filtering Messages” on page 4-70. If you do
not specify a messageSelector, by default all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, a JMS application can set a
noLocal flag to true. The noLocal value defaults to false.

The durable subscription name must be unique per client ID. For information on
defining the client ID for the connection, see “Defining the Client ID” on page 4-58.

Only one session can define a subscriber for a particular durable subscription at any
given time. Multiple subscribers can access the durable subscription, but not at the
same time. Durable subscriptions are stored within the file or database.
4-60 Programming WebLogic JMS

Setting Up Durable Subscriptions
Deleting Durable Subscriptions

To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe(
String name

) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:

! A TopicSubscriber is still active on the session.

! A message received by the durable subscription is part of a transaction or has
not yet been acknowledged in the session.

Note: You can also delete durable subscriptions from the Administration Console.
For information on managing durable subscriptions, see “Managing Durable
Subscriptions” on page 4-62.

Modifying Durable Subscriptions

To modify a durable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in “Deleting Durable
Subscriptions” on page 4-61.

This step is optional. If not explicitly performed, the deletion will be executed
implicitly when the durable subscription is recreated in the next step.

2. Use the methods described in “Creating Subscribers for a Durable Subscription”
on page 4-60 to recreate a durable subscription of the same name, but specifying
a different topic name, message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: When recreating a durable subscription, be careful to avoid creating a durable
subscription with a duplicate name. For example, if you attempt to delete a
durable subscription from a JMS server that is unavailable, the delete call fails.
If you subsequently create a durable subscription with the same name on a
different JMS server, you may experience unexpected results when the first
Programming WebLogic JMS 4-61

4 Developing a WebLogic JMS Application
JMS server becomes available. Because the original durable subscription has
not been deleted, when the first JMS server again becomes available, there will
be two durable subscriptions with duplicate names.

Managing Durable Subscriptions

You can monitor and delete durable subscriptions from the Administration Console.
For more information, see “Configuring JMS” in the Administration Console Online
Help.

Setting and Browsing Message Header and
Property Fields

WebLogic JMS provides a set of standard header fields that you can define to identify
and route messages. In addition, property fields enable you to include
application-specific header fields within a message, extending the standard set. You
can use the message header and property fields to convey information between
communicating processes.

The primary reason for including data in a property field rather than in the message
body is to support message filtering via message selectors. Data in the message body
cannot be accessed via message selectors. For example, suppose you use a property
field to assign high priority to a message. You can then design a message consumer
containing a message selector that accesses this property field and selects only
messages of expedited priority. For more information about selectors, see “Filtering
Messages” on page 4-70.
4-62 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

Setting and Browsing Message Header and Property Fields
Setting Message Header Fields

JMS messages contain a standard set of header fields that are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. Once a message
is received, its header field values can be modified.

For a description of the standard messages header fields, see “Message Header Fields”
on page 2-15.

The following table lists the Message class set and get methods for each of the
supported data types.

Note: In some cases, the send() method overrides the header field value set using
the set() method, as indicated in the following table.

Header Field Set Method Get Method

JMSCorrelationID public void
setJMSCorrelationID(
String correlationID

) throws JMSException

public String
getJMSCorrelationID(
) throws JMSException

public byte[]
getJMSCorrelationIDAsBytes(
) throws JMSException

JMSDestination1 public void setJMSDestination(
Destination destination

) throws JMSException

public Destination
getJMSDestination(
) throws JMSException

JMSDeliveryMode1 public void
setJMSDeliveryMode(
int deliveryMode

) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSDeliveryTime1 public void
setJMSDeliveryTime(
long deliveryTime

) throws JMSException

public long
getJMSDeliveryTime(
) throws JMSException
Programming WebLogic JMS 4-63

4 Developing a WebLogic JMS Application
JMSDeliveryMode1 public void
setJMSDeliveryMode(
int deliveryMode

) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSMessageID1 public void setJMSMessageID(
String id

) throws JMSException

In addition to the set method, the
weblogic.jms.extensions.JMSHel
per class provides the following methods
to convert between pre-WebLogic JMS 6.0
and 6.1 JMSMessageID formats:
public void
oldJMSMessageIDToNew(
String id,
long timeStamp

) throws JMSException

public void
newJMSMessageIDToOld(
String id,
long timeStamp

) throws JMSException

public String getJMSMessageID(
) throws JMSException

JMSPriority1 public void setJMSPriority(
int priority

) throws JMSException

public int getJMSPriority(
) throws JMSException

JMSRedelivered1 public void setJMSRedelivered(
boolean redelivered

) throws JMSException

public boolean
getJMSRedelivered(
) throws JMSException

JMSReplyTo public void setJMSReplyTo(
Destination replyTo

) throws JMSException

public Destination
getJMSReplyTo(
) throws JMSException

JMSTimeStamp1 public void setJMSTimeStamp(
long timestamp

) throws JMSException

public long getJMSTimeStamp(
) throws JMSException

Header Field Set Method Get Method
4-64 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields
The examples.jms.sender.SenderServlet example, provided with WebLogic
Server in the WL_HOME\samples\server\src\examples\jms\sender directory,
where WL_HOME is the top-level directory of your WebLogic Platform installation,
shows how to set header fields in messages that you send and how to display message
header fields after they are sent.

For example, the following code, which appears after the send()method, displays the
message ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " +
msg.getJMSMessageID() + " to " +
msg.getJMSDestination());

Setting Message Property Fields

To set a property field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get method and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following clearProperties()

method:

public void clearProperties(
) throws JMSException

This method does not clear the message header fields or body.

JMSType public void setJMSType(
String type

) throws JMSException

public String getJMSType(
) throws JMSException

1. The corresponding set() method has no impact on the message header field when the send() method is
executed. If set, this header field value will be overridden during the send() operation.

Header Field Set Method Get Method
Programming WebLogic JMS 4-65

4 Developing a WebLogic JMS Application
Note: The JMSX property name prefix is reserved for JMS. The connection metadata
contains a list of JMSX properties, which can be accessed as an enumerated
list using the getJMSXPropertyNames() method. For more information, see
“Accessing Connection Metadata” on page 4-45.

The JMS_ property name prefix is reserved for provider-specific properties; it
is not intended for use with standard JMS messaging.

The property field can be set to any of the following types: boolean, byte, double, float,
int, long, short, or string. The following table lists the Message class set and get
methods for each of the supported data types.

Table 4-4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

boolean public void setBooleanProperty(
String name,
boolean value

) throws JMSException

public boolean
getBooleanProperty(

String name
) throws JMSException

byte public void setByteProperty(
String name,
byte value

) throws JMSException

public byte getByteProperty(
String name

) throws JMSException

double public void setDoubleProperty(
String name,
double value

) throws JMSException

public double getDoubleProperty(
String name

) throws JMSException

float public void setFloatProperty(
String name,
float value

) throws JMSException

public float getFloatProperty(
String name

) throws JMSException

int public void setIntProperty(
String name,
int value

) throws JMSException

public int getIntProperty(
String name

) throws JMSException

long public void setLongProperty(
String name,

long value) throws
JMSException

public long getLongProperty(
String name

) throws JMSException
4-66 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields
In addition to the set and get methods described in the previous table, you can use the
setObjectProperty() and getObjectProperty() methods to use the objectified
primitive values of the property type. When the objectified value is used, the property
type can be determined at execution time rather than during the compilation. The valid
object types are boolean, byte, double, float, int, long, short, and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames(
) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve
the value of each property field by passing the property field name to the appropriate
get method, as described in the previous table, based on the property field data type.

The following table is a conversion chart for message properties. It allows you to
identify the type that can be read based on the type that has been written.

short public void setShortProperty(
String name,
short value

) throws JMSException

public short getShortProperty(
String name

) throws JMSException

String public void setStringProperty(
String name,
String value

) throws JMSException

public String getStringProperty(
String name

) throws JMSException

Table 4-4 Message Property Set and Get Methods for Data Types (Continued)

Data Type Set Method Get Method

Table 4-5 Message Property Conversion Chart

Property
Written As. .
.

Can Be Read As. . .

boolea
n

byte doubl
e

float int long short Strin
g

boolean X X

byte X X X X X

double X X
Programming WebLogic JMS 4-67

4 Developing a WebLogic JMS Application
You can test whether or not a property value has been set using the following Message
method:

public boolean propertyExists(
String name

) throws JMSException

You specify a property name and the method returns a boolean value indicating
whether or not the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty("User", user);
msg.setStringProperty("Category", category);
msg.setIntProperty("Rating", rating);

For more information about message property fields, see “Message Property Fields”
on page 2-19 or the javax.jms.Message Javadoc.

Browsing Header and Property Fields

Note: Only queue message header and property fields can be browsed. You cannot
browse topic message header and property fields.

float X X X

int X X X

long X X

Object X X X X X X X X

short X X X X

String X X X X X X X X

Table 4-5 Message Property Conversion Chart (Continued)

Property
Written As. .
.

Can Be Read As. . .

boolea
n

byte doubl
e

float int long short Strin
g

4-68 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Setting and Browsing Message Header and Property Fields
You can browse the header and property fields of messages on a queue using the
following QueueSession methods:

public QueueBrowser createBrowser(
Queue queue

) throws JMSException

public QueueBrowser createBrowser(
Queue queue,
String messageSelector

) throws JMSException

You must specify the queue that you wish to browse. You may also specify a message
selector to filter messages that you are browsing. Message selectors are described in
more detail in “Filtering Messages” on page 4-70.

Once you have defined a queue, you can access the queue name and message selector
associated with a queue browser using the following QueueBrowser methods:

public Queue getQueue(
) throws JMSException

public String getMessageSelector(
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBrowser method:

public Enumeration getEnumeration(
) throws JMSException

The examples.jms.queue.QueueBrowser example, provided with WebLogic
Server in the WL_HOME\samples\server\src\examples\jms\queue directory,
where WL_HOME is the top-level directory of your WebLogic Platform installation,
shows how to access the header fields of received messages.

For example, the following code line is an excerpt from the QueueBrowser example
and creates the QueueBrowser object:

qbrowser = qsession.createBrowser(queue);

The following provides an excerpt from the displayQueue() method defined in the
QueueBrowser example. In this example, the QueueBrowser object is used to obtain
an enumeration that is subsequently used to scan the queue’s messages.

public void displayQueue(
) throws JMSException
{

Programming WebLogic JMS 4-69

4 Developing a WebLogic JMS Application
Enumeration e = qbrowser.getEnumeration();
Message m = null;

if (! e.hasMoreElements()) {
System.out.println("There are no messages on this queue.");

} else {

System.out.println("Queued JMS Messages: ");
while (e.hasMoreElements()) {
m = (Message) e.nextElement();
System.out.println("Message ID " + m.getJMSMessageID() +

" delivered " + new Date(m.getJMSTimestamp())
" to " + m.getJMSDestination());

}
}

When a queue browser is no longer being used, you should close it to free up resources.
For more information, see “Releasing Object Resources” on page 4-33.

For more information about the QueueBrowser class, see the
javax.jms.QueueBrowser Javadoc.

Filtering Messages

In many cases, an application does not need to be notified of every message that is
delivered to it. Message selectors can be used to filter unwanted messages, and
subsequently improve performance by minimizing their impact on network traffic.

Message selectors operate as follows:

! The sending application sets message header or property fields to describe or
classify a message in a standardized way.

! The receiving applications specify a simple query string to filter the messages
that they want to receive.

Because message selectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of
XML messages).
4-70 Programming WebLogic JMS

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueBrowser.html

Filtering Messages
You specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSession.createReceiver() or
TopicSession.createSubscriber() methods, respectively. For information about
creating queue receivers and topic subscribers, see “Step 5: Create Message Producers
and Message Consumers Using the Session and Destinations” on page 4-11.

The following sections describe how to define a message selector using SQL
statements and XML selector methods, and how to update message selectors. For more
information about setting header and property fields, see “Setting and Browsing
Message Header and Property Fields” on page 4-62 and “Setting Message Property
Fields” on page 4-65, respectively.

Defining Message Selectors Using SQL Statements

A message selector is a boolean expression. It consists of a String with a syntax similar
to the where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')
and version > 3.0

hireyear between 1990 and 1992
or fireyear is not null

fireyear - hireyear > 4

The following example shows how to set a selector when creating a queue receiver that
filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
qsession.createReceiver(queue, selector);

The following example shows how to set the same selector when creating a topic
subscriber.

String selector = "JMSPriority >= 6";
qsession.createSubscriber(topic, selector);

For more information about the message selector syntax, see the javax.jms.Message
Javadoc.
Programming WebLogic JMS 4-71

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

4 Developing a WebLogic JMS Application
Defining XML Message Selectors Using XML Selector
Method

For XML message types, in addition to using the SQL selector expressions described
in the previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify
the syntax type, which must be set to xpath (XML Path Language) and an XPath
expression. The XML path language is defined in the XML Path Language (XPath)
document, which is available at the XML Path Language Web site at:
http://www.w3.org/TR/xpath

The methods return a null value under the following circumstances:

! The message does not parse.

! The message parses, but the element is not present.

! If a message parses and the element is present, but the message contains no
value (for example, <order></order>).

For example, consider the following XML excerpt:

<order>
<item>

<id>007</id>
<name>Hand-held Power Drill</name>
<description>Compact, assorted colors.</description>
<price>$34.99</price>

</item>
<item>

<id>123</id>
<name>Mitre Saw</name>
<description>Three blades sizes.</description>
<price>$69.99</price>

</item>
<item>

<id>66</id>
<name>Socket Wrench Set</name>
<description>Set of 10.</description>
<price>$19.99</price>

</item>
</order>
4-72 Programming WebLogic JMS

http://www.w3.org/TR/xpath

Defining Server Session Pools
The following example shows how to retrieve the name of the second item in the
previous example. This method call returns the string, Mitre Saw.

String sel = "JMS_BEA_SELECT(‘xpath’,
‘/order/item[2]/name/text()’) = ‘Mitre Saw’”;

Pay careful attention to the use of double and single quotes and spaces. Note the use of
single quotes around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous
example. This method call returns the string, 66.

String sel = "JMS_BEA_SELECT(‘xpath’,
‘/order/item[3]/id/text()’) = ‘66’”;

Displaying Message Selectors

You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector(
) throws JMSException

This method returns either the currently defined message selector or null if a message
selector is not defined.

Defining Server Session Pools

WebLogic JMS implements an optional JMS facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

! Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class
provides an onMessage() method that processes a message.

! Processes messages in parallel by managing a pool of JMS sessions, each of
which executes a single-threaded onMessage() method.
Programming WebLogic JMS 4-73

4 Developing a WebLogic JMS Application
The following figure illustrates the server session pool facility, and the relationship
between the application and the application server components.

Figure 4-3 Server Session Pool Facility

As illustrated in the figure, the application provides a single-threaded message listener.
The connection consumer, implemented by JMS on the application server, performs
the following tasks to process one or more messages:

1. Gets a server session from the server session pool.

2. Gets the server session’s session.

3. Loads the session with one or more messages.

4. Starts the server session to consume messages.

5. Releases the server session back to pool when finished processing messages.

The following figure illustrates the steps required to prepare for concurrent message
processing.
4-74 Programming WebLogic JMS

Defining Server Session Pools
Figure 4-4 Preparing for Concurrent Message Processing

Applications can use other application server providers’ session pool
implementations within this flow. Server session pools can also be
implemented using message-driven beans. For information on using message
driven beans to implement server session pools, see “Designing
Message-Driven Beans” in Programming WebLogic Enterprise JavaBeans.

If the session pool and connection consumer were defined during
configuration, you can skip this section. For more information on configuring
server session pools and connection consumers, see Configuring JMS in the
Administration Console Online Help.

Currently, WebLogic JMS does not support the optional
TopicConnection.createDurableConnectionConsumer() operation.
For more information on this advanced JMS operation, refer to Sun
Microsystems’ JMS Specification.

Step 1: Look Up Server Session Pool Factory in JNDI

You use a server session pool factory to create a server session pool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.ServerSessionPoolFactory:<name>, where <name> specifies the
name of the JMS server to which the session pool is created.
Programming WebLogic JMS 4-75

http://e-docs.bea.com/wls/docs81b/ejb/message_beans.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://www.javasoft.com/products/jms/docs.html
http://www.javasoft.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
Once it has been configured, you can look up a server session pool factory by first
establishing a JNDI context (context) using the
NamingManager.InitialContext() method. For any application other than a
servlet application, you must pass an environment used to create the initial context. For
more information, see the NamingManager.InitialContext() Javadoc.

Once the context is defined, to look up a server session pool factory in JNDI use the
following code:

factory = (ServerSessionPoolFactory) context.lookup(<ssp_name>);

The <ssp_name> specifies a qualified or non-qualified server session pool factory
name.

For more information about server session pool factories, see
“ServerSessionPoolFactory” on page 2-21 or the
weblogic.jms.ServerSessionPoolFactory Javadoc.

Step 2: Create a Server Session Pool Using the Server
Session Pool Factory

You can create a server session pool for use by queue (PTP) or topic (Pub/Sub)
connection consumers, using the ServerSessionPoolFactory methods described in
the following sections.

For more information about server session pools, see “ServerSessionPool” on page
2-21 or the javax.jms.ServerSessionPool Javadoc.

Create a Server Session Pool for Queue Connection Consumers

The ServerSessionPoolFactory provides the following method for creating a
server session pool for queue connection consumers:

public ServerSessionPool getServerSessionPool(
QueueConnection connection,
int maxSessions,
boolean transacted,
int ackMode,
String listenerClassName

) throws JMSException
4-76 Programming WebLogic JMS

http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ServerSessionPool.html

Defining Server Session Pools
You must specify the queue connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.ServerSessionPoolFactory Javadoc. For more information about
the ConnectionConsumer class, see the javax.jms.ConnectionConsumer
Javadoc.

Create a Server Session Pool for Topic Connection Consumers

The ServerSessionPoolFactory provides the following method for creating a
server session pool for topic connection consumers:

public ServerSessionPool getServerSessionPool(
TopicConnection connection,
int maxSessions,
boolean transacted,
int ackMode,
String listenerClassName

) throws JMSException

You must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection (to be
created in step 3), whether or not the sessions are transacted, the acknowledge mode
(applicable for non-transacted sessions only), and the message listener class that is
instantiated and used to receive and process messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.ServerSessionPoolFactory Javadoc. For more information about
the ConnectionConsumer class, see the javax.jms.ConnectionConsumer
Javadoc.

Step 3: Create a Connection Consumer

You can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:
Programming WebLogic JMS 4-77

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

4 Developing a WebLogic JMS Application
! Configuring the server session pool and connection consumer during the
configuration, as described in the “Configuring JMS” in the Administration
Console Online Help

! Including in your application the Connection methods described in the following
sections

For more information about the ConnectionConsumer class, see
“ConnectionConsumer” on page 2-22 or the javax.jms.ConnectionConsumer
Javadoc.

Create a Connection Consumer for Queues

The QueueConnection provides the following method for creating connection
consumers for queues:

public ConnectionConsumer createConnectionConsumer(
Queue queue,
String messageSelector,
ServerSessionPool sessionPool,
int maxMessages

) throws JMSException

You must specify the name of the associated queue, the message selector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneously. For information about message selectors, see “Filtering Messages” on
page 4-70.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the
ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Create a Connection Consumer for Topics

The TopicConnection provides the following two methods for creating
ConnectionConsumers for topics:

public ConnectionConsumer createConnectionConsumer(
Topic topic,
String messageSelector,
ServerSessionPool sessionPool,
int maxMessages

) throws JMSException
4-78 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_sessionpool_config
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

Defining Server Session Pools
public ConnectionConsumer createDurableConnectionConsumer(
Topic topic,
String messageSelector,
ServerSessionPool sessionPool,
int maxMessages

) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing server
sessions, and the maximum number of messages that can be assigned to the server
session simultaneously. For information about message selectors, see “Filtering
Messages” on page 4-70.

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see “Setting Up Durable Subscriptions” on page 4-57.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the
ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Example: Setting Up a PTP Client Server Session Pool

The following example illustrates how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.queue.QueueSend example, as described in “Example: Setting Up a
PTP Application” on page 4-16. This method also sets up the server session pool.

The following illustrates the startup() method, with comments highlighting each
setup step.

Include the following package on the import list to implement a server session pool
application:

import weblogic.jms.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
"weblogic.jms.ServerSessionPoolFactory:examplesJMSServer";

private QueueConnectionFactory qconFactory;
Programming WebLogic JMS 4-79

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionConsumer.html

4 Developing a WebLogic JMS Application
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
String name,
Hashtable args

) throws Exception

{
String connectionFactory = (String)args.get("connectionFactory");
String queueName = (String)args.get("queue");
if (connectionFactory == null || queueName == null) {

throw new
IllegalArgumentException("connectionFactory="+connectionFactory+

", queueName="+queueName);
}

Context ctx = new InitialContext();
qconFactory = (QueueConnectionFactory)

ctx.lookup(connectionFactory);
qcon =qconFactory.createQueueConnection();
qsession = qcon.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
queue = (Queue) ctx.lookup(queueName);
qcon.start();

Step 1 Look up the server session pool factory in JNDI.

sessionPoolFactory = (ServerSessionPoolFactory)
ctx.lookup(SESSION_POOL_FACTORY);

Step 2 Create a server session pool using the server session pool factory, as follows:

sessionPool = sessionPoolFactory.getServerSessionPool(qcon, 5,
false, Session.AUTO_ACKNOWLEDGE,
examples.jms.startup.MsgListener);

The code defines the following:

! qcon as the queue connection associated with the server session pool

! 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)
4-80 Programming WebLogic JMS

Defining Server Session Pools
! Sessions will be non-transacted (false)

! AUTO_ACKNOWLEDGE as the acknowledge mode

! The examples.jms.startup.MsgListener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Step 3 Create a connection consumer, as follows:

consumer = qcon.createConnectionConsumer(queue, “TRUE”,
sessionPool, 10);

The code defines the following:

! queue as the associated queue

! TRUE as the message selector for filtering messages

! sessionPool as the associated server session pool for accessing server sessions

! 10 as the maximum number of messages that can be assigned to the server
session simultaneously

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Client Server Session
Pool

The following example illustrates how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.topic.TopicSend example, as described in “Example: Setting Up a
Pub/Sub Application” on page 4-19. It also sets up the server session pool.

The following illustrates startup() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:

import weblogic.jms.ServerSessionPoolFactory
Programming WebLogic JMS 4-81

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
"weblogic.jms.ServerSessionPoolFactory:examplesJMSServer";

private TopicConnectionFactory tconFactory;
private TopicConnection tcon;
private TopicSession tsession;
private TopicSender tsender;
private Topic topic;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
String name,
Hashtable args

) throws Exception

{
String connectionFactory = (String)args.get("connectionFactory");
String topicName = (String)args.get("topic");
if (connectionFactory == null || topicName == null) {

throw new
IllegalArgumentException("connectionFactory="+connectionFactory+

", topicName="+topicName);
}

Context ctx = new InitialContext();
tconFactory = (TopicConnectionFactory)

ctx.lookup(connectionFactory);
tcon = tconFactory.createTopicConnection();
tsession = tcon.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);
topic = (Topic) ctx.lookup(topicName);
tcon.start();

Step 1 Look up the server session pool factory in JNDI.

sessionPoolFactory = (ServerSessionPoolFactory)
ctx.lookup(SESSION_POOL_FACTORY);

Step 2 Create a server session pool using the server session pool factory, as follows:

sessionPool = sessionPoolFactory.getServerSessionPool(tcon, 5,
false, Session.AUTO_ACKNOWLEDGE,
examples.jms.startup.MsgListener);
4-82 Programming WebLogic JMS

Using Multicasting
The code defines the following:

! tcon as the topic connection associated with the server session pool

! 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

! Sessions will be non-transacted (false)

! AUTO_ACKNOWLEDGE as the acknowledge mode

! The examples.jms.startup.MsgListener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Step 3 Create a connection consumer, as follows:

consumer = tcon.createConnectionConsumer(topic, “TRUE”,
sessionPool, 10);

The code defines the following:

! topic as the associated topic

! TRUE as the message selector for filtering messages

! sessionPool as the associated server session pool for accessing server sessions

! 10 as the maximum number of messages that can be assigned to the server
session simultaneously

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.

Using Multicasting

Multicasting enables the delivery of messages to a select group of hosts that
subsequently forward the messages to subscribers.

The benefits of multicasting include:

! Near real-time delivery of messages to host group
Programming WebLogic JMS 4-83

http://www.java.sun.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
! High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to subscribers

The limitations of multicasting include:

! Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

! For interoperability with different versions of WebLogic Server, clients cannot
have an earlier release of WebLogic Server installled than the host. They must
all have at least the same version or higher.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if all or a portion of the contents is not
delivered, the client can simply request the information to be resent. Clients would not
want to have the information recovered, in this case, as by the time it is redelivered, it
would be out-of-date.

The following figure illustrates the steps required to set up multicasting.

Figure 4-5 Setting Up Multicasting

Note: Multicasting is only supported for the Pub/Sub messaging model, and only for
non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, as follows:

! For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on a multicast session and
whether the most recent or oldest messages are discarded in the event the
4-84 Programming WebLogic JMS

Using Multicasting
maximum is reached. If the message maximum is reached, a
DataOverrunException is thrown, and messages are automatically discarded.
These attributes are also dynamically configurable, as described in “Dynamically
Configuring Multicasting Configuration Attributes” on page 4-87.

! For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live)
attributes are specified. To better understand the TTL attribute setting, see
“Example: Multicast TTL” on page 4-88.

Note: It is strongly recommended that you seek the advice of your network
administrator when configuring the multicast IP address, port, and time-to-live
attributes to ensure that the appropriate values are set.

For more information on the multicasting configuration attributes, see “JMS Topic -->
Configuration --> Multicast” in the Administration Console Online Help. The
multicast configuration attributes are also summarized in Appendix A, “Configuration
Checklists.”

Step 1: Set Up the JMS Application, Creating Multicast
Session and Topic Subscriber

Set up the JMS application as described in “Setting Up a JMS Application” on page
4-4. However, when creating sessions, as described in “Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session would like to receive multicast
messages by setting the acknowledgeMode value to MULTICAST_NO_ACKNOWLEDGE.

Note: Multicasting is only supported for the Pub/Sub messaging model for
non-durable subscribers. An attempt to create a durable subscriber on a
multicast session will cause a JMSException to be thrown.

For example, the following method illustrates how to create a multicast session for the
Pub/Sub messaging model.

tsession = tcon.createTopicSession(
false,
WLSession.MULTICAST_NO_ACKNOWLEDGE

);
Programming WebLogic JMS 4-85

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstopic_config_multicast.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstopic_config_multicast.html

4 Developing a WebLogic JMS Application
Note: On the client side, each multicasting session requires one dedicated thread to
retrieve messages off the socket. Therefore, you should increase the JMS
client-side thread pool size to adjust for this. For more information on
adjusting the thread pool size, see the “Tuning Thread Pools and EJB Pools”
section in the “WebLogic JMS Performance Guide” white paper, at
http://dev2dev.bea.com/resourcelibrary/whitepapers.jsp?high

light=whitepapers, which discusses tuning JMS client-side thread pools.

In addition, create a topic subscriber, as described in “Create TopicPublishers and
TopicSubscribers” on page 4-12.

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber(myTopic);

Note: The createSubscriber() method fails if the specified destination is not
configured to support multicasting.

Step 2: Set Up the Message Listener

Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, a JMSException is thrown.

Set up the message listener for the topic subscriber, as described in “Receiving
Messages Asynchronously” on page 4-30.

For example, the following code illustrates how to establish a message listener:

tsubscriber.setMessageListener(this);

When receiving messages, WebLogic JMS tracks the order in which messages are sent
by the destinations. If a multicast subscriber’s message listener receives the messages
out of sequence, resulting in one or more messages being skipped, a
SequenceGapException will be delivered to the ExceptionListener for the
session(s) present. If a skipped message is subsequently delivered, it will be discarded.
For example, in the following figure, the subscriber is receiving messages from two
destinations simultaneously.
4-86 Programming WebLogic JMS

http://dev2dev.bea.com/resourcelibrary/whitepapers.jsp?highlight=whitepapers

Using Multicasting
Figure 4-6 Multicasting Sequence Gap

Upon receiving the “4” message from Destination 1, a SequenceGapException is
thrown to notify the application that a message was received out of sequence. If
subsequently received, the “3” message will be discarded.

Note: The larger the messages being exchanged, the greater the risk of encountering
a SequenceGapException.

Dynamically Configuring Multicasting Configuration
Attributes

During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

! Messages maximum specifying the maximum number of outstanding messages
that can exist on a multicast session.

! Overrun policy specifying whether recent or older messages are discarded in the
event the messages maximum is reached.

If the messages maximum is reached, a DataOverrunException is thrown and
messages are automatically discarded based on the overrun policy. Alternatively, you
can set the messages maximum and overrun policy using the Session set methods.
Programming WebLogic JMS 4-87

4 Developing a WebLogic JMS Application
The following table lists the Session set and get methods for each dynamically
configurable attribute.

Note: The values set using the set methods take precedence over the configured
values.

For more information about these Session class methods, see the
weblogic.jms.extensions.WLSession Javadoc. For more information on these
multicast configuration attributes, see “JMS Destination Tasks” in the Administration
Console Online Help.

Example: Multicast TTL

Note: The following example is a very simplified illustration of how the Multicast
TTL (time-to-live) destination configuration attribute impacts the delivery of
messages across routers. It is strongly advised that you seek the assistance of
your network administrator when configuring the multicast TTL attribute to
ensure that the appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

The following example illustrates how the Multicast TTL destination configuration
attribute impacts the delivery of messages across routers. For more information on the
multicast configuration attributes, see “JMS Destination Tasks” in the Administration
Console Online Help.

Consider the following network diagram.

Table 4-6 Message Producer Set and Get Methods

Attribute Set Method Get Method

Messages
Maximum

public void setMessagesMaximum(
int messagesMaximum

) throws JMSException

public int getMessagesMaximum(
) throws JMSException

Overrun Policy public void setOverrunPolicy (
int overrunPolicy

) throws JMSException

public int getOverrunPolicy(
) throws JMSException
4-88 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsdestinationtable.html

Using Multicasting
Figure 4-7 Multicast TTL Example

In the figure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each containing one multicast subscriber.

If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast publisher
on Subnet A publishes a message, the message will not be delivered to any of the
multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.
Programming WebLogic JMS 4-89

4 Developing a WebLogic JMS Application
Using Distributed Destinations

By enabling you to configure multiple physical destinations (queues and topics) as
members of a single distributed destination set, WebLogic JMS supports service
continuity in the event of a WebLogic Server failure within a cluster. Once properly
configured, your producers and consumers are able to send and receive messages
through the distributed destination. WebLogic JMS then distributes the messaging
load across all available destination members within the distributed destination. When
a member becomes unavailable due a server failure, traffic is then redirected toward
other available destination members in the set.

For instructions on configuring distributed destinations using the Administration
Console, see “Distributed Destination Tasks” in the Administration Console Online
Help.

The following sections explain how to use distributed destinations with your JMS
applications:

! Accessing Distributed Destinations

! Accessing Distributed Destination Members

! Load Balancing Messages Across a Distributed Destination

! Distributed Destination Migration

Accessing Distributed Destinations

A distributed destination is actually a set of physical JMS destination members (queues
or topics) that is accessed through a single JNDI name. As such, a distributed
destination can be looked up using JNDI. It implements the
javax.jms.Destination interface, and can be used to create producers, consumers,
and browsers.

Because a distributed destination can be served by multiple WebLogic Servers within
a cluster, when creating a reference to a distributed destination by using one of the
createQueue() or createTopic() methods, the name supplied is simply the name
of the JMSDistributedQueueMBean or JMSDistributedTopicMBean configuration
MBean name. No JMS server name or separating forward slash (/) is required.
4-90 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_distributed_destination_config
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Destination.html

Using Distributed Destinations
For example, the following code illustrates how to look up a distributed destination
topic member:

topic = myTopicSession.createTopic("myDistributedTopic");

Note: When calling the createQueue() or createTopic() methods, any string
containing a forward slash (/), is assumed to be the name of a distributed
destination member—not a destination. If no such destination member exists,
then the call will fail with an InvalidDestinationException.

Looking Up Distributed Queues

A distributed queue is a set of physical JMS queue members. As such, a distributed
queue can be used to create a QueueSender, QueueReceiver, and a QueueBrowser.
The fact that a distributed queue represents multiple physical queues is mostly
transparent to your application.

The queue members can be located anywhere, but must all be served by JMS servers
in a single server cluster. When a message is sent to a distributed queue, it is sent to
exactly one of the physical queues in the set of members for the distributed queue.
Once the message arrives at the queue member, it is available for receipt by consumers
of that queue member only.

Note: Queue members can forward messages to other queue members by
configuring the Forward Delay attribute in the Administration Console, which
is disabled by default. This attribute defines the amount of time, in seconds,
that a distributed queue member with messages, but which has no consumers,
will wait before forwarding its messages to other queue members that do have
consumers.

QueueSenders

After creating a queue sender, if the queue supplied at creation time was a distributed
queue, then each time a message is produced using the sender a decision is made as to
which queue member will receive the message. Each message is sent to a single
physical queue member.

The message is not replicated in any way. As such, the message is only available from
the queue member where it was sent. If that physical queue becomes unavailable
before a given message is received, then the message is unavailable until that queue
member comes back online.
Programming WebLogic JMS 4-91

4 Developing a WebLogic JMS Application
It is not enough to send a message to a distributed queue and expect the message to be
received by a queue receiver of that distributed queue. Since the message is sent to only
one physical queue member, there must be a queue receiver receiving or listening on
that queue member.

Note: For information on the load-balancing heuristics for distributed queues with
zero consumers, see “Load Balancing Heuristics” on page 4-98.

QueueReceivers

When creating a queue receiver, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the receiver at creation time. The created
QueueReceiver is pinned to that queue member until the queue receiver loses its
access to the queue member. At that point, the consumer will receive a JMSException,
as follows:

! If the queue receiver is synchronous, then the exception is returned to the user
directly.

! If the queue receiver is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and
recreate it. If any other queue members are available within the distributed queue, then
the creation will succeed and the new queue receiver will be pinned to one of those
queue members. If no other queue member is available, then the application won’t be
able to recreate the queue receiver and will have to try again later.

Note: For information on the load-balancing heuristics for distributed queues with
zero consumers, see “Load Balancing Heuristics” on page 4-98.

QueueBrowsers

When creating a queue browser, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the browser at creation time. The created
queue browser is pinned to that queue member until the receiver loses its access to the
queue member. At that point, any calls to the queue browser will receive a
JMSException. Any calls to the enumeration will return a
NoSuchElementException.
4-92 Programming WebLogic JMS

Using Distributed Destinations
Note: The queue browser can only browse the queue member that it is pinned to.
Even though a distributed queue was specified at creation time, the queue
browser cannot see or browse messages for the other queue members in the
distributed destination.

Looking Up Distributed Topics

A distributed topic is a set of physical JMS topic members. As such, a distributed topic
can be used to create a TopicPublisher and TopicSubscriber. The fact that a
distributed topic represents multiple physical topics is mostly transparent to the
application.

Note: Durable subscribers (DurableTopicSubscriber) cannot be created for
distributed topics. However, you can still create a durable subscription on
distributed topic member and the other topic members will forward the
messages to the topic member that has the durable subscription.

The topic members can be located anywhere but must all be served either by a single
WebLogic Server or any number of servers in a cluster. When a message is sent to a
distributed topic, it is sent to all of the topic members in the distributed topic set. This
allows all subscribers to the distributed topic to receive messages published for the
distributed topic.

A message published directly to a topic member of a distributed destination (that is,
the publisher did not specify the distributed destination) is also forwarded to all the
members of that distributed topic. This includes subscribers that originally subscribed
to the distributed topic, and which happened to be assigned to that particular topic
member. In other words, publishing a message to a specific distributed topic member
automatically forwards it to all the other distributed topic members, just as publishing
a message to a distributed topic automatically forwards it to all of its distributed topic
members. For more information about looking up specific distributed destination
members, see “Accessing Distributed Destination Members” on page 4-95.

Deploying Message-Drive Beans on a Distributed Topic

When an MDB is deployed on a distributed topic and is targeted to a WebLogic Server
instance in a cluster that is hosting two members of the distributed topic on a JMS
server, the MDB gets deployed on both the members of the distributed topic. This
occurs because MDBs are pinned to a distributed topic member’s destination name.
Programming WebLogic JMS 4-93

4 Developing a WebLogic JMS Application
Therefore, you will receive [number of messages sent] * [number of distributed topic
members] more messages per MDB, depending on how may distributed topic members
are deployed on a WebLogic Server instance. For example, if a JMS server contains
two distributed topic members, then two MDBs are deployed, one for each member,
so you will recieve twice as many messages.

TopicPublishers

When creating a topic publisher, if the supplied destination is a distributed destination,
then any messages sent to that distributed destination are sent to all available topic
members for that distributed topic, as follows:

! If one or more of the distributed topic members is not reachable, and the
message being sent is non-persistent, then the message is sent only to the
available topic members.

! If one or more of the distributed topic members is not reachable, and the
message being sent is persistent, then the message is stored and forwarded to the
other topic members when they become reachable. However, the message can
only be persistently stored if the topic member has a JMS store configured.

Note: Every effort is made to first forward the message to distributed members
that utilize a persistent store. However, if none of the distributed members
utilize a store, then the message is still sent to one of the members
according to the selected load-balancing algorithm, as described in “Load
Balancing Messages Across a Distributed Destination” on page 4-96.

! If all of the distributed topic members are unreachable (regardless of whether the
message is persistent or non-persistent), then the publisher receives a
JMSException when it tries to send a message.

TopicSubscribers

When creating a topic subscriber, if the supplied topic is a distributed topic, then the
topic subscriber receives messages published to that distributed topic.

If one or more of the topic members for the distributed topic are not reachable by a
topic subscriber, then depending on whether the messages are persistent or
non-persistent the following occurs:

! Any persistent messages published to one or more unreachable distributed topic
members are eventually received by topic subscribers of those topic members
4-94 Programming WebLogic JMS

Using Distributed Destinations
once they become reachable. However, the messages can only be persistently
stored if the topic member has a JMS store configured.

! Any non-persistent messages published to those unreachable distributed topic
members will not be received by that topic subscriber.

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic
member becomes unavailable, then the topic subscriber will receive a JMSException,
as follows:

! If the topic subscriber is synchronous, then the exception is returned to the user
directly.

! If the topic subscriber is asynchronous, then the exception is delivered inside of
a ConsumerClosedException that is delivered to the ExceptionListener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its topic subscriber and
recreate it. If any other topic member is available within the distributed topic, then the
creation should be successful and the new topic subscriber will be pinned to one of
those topic members. If no other topic member is available, then the application will
not be able to recreate the topic subscriber and will have to try again later.

Accessing Distributed Destination Members

In order to access a destination member within a distributed destination, you must look
up the destination member using the configured JNDI name, or supply the JMS server
name and the JMSQueueMBean or JMSTopicMBean configuration MBean name,
separated by a forward slash (/), to one of the createQueue() or createTopic()
methods.

For example, the following code illustrates how to look up a particular member of a
distributed queue (myQueue), on a JMS server (myServer):

queue = myQueueSession.createQueue("myServer/myQueue");

Note: When calling the createQueue() or createTopic() methods, any string
containing a forward slash (/), is assumed to be the name of a distributed
destination member—not a destination. If no such destination member exists,
then the call will fail with an InvalidDestinationException.
Programming WebLogic JMS 4-95

4 Developing a WebLogic JMS Application
Load Balancing Messages Across a Distributed
Destination

By using distributed destinations, WebLogic JMS can spread or balance the messaging
load across multiple physical destinations, which can result in better use of resources
and improved response times. The WebLogic JMS load-balancing algorithm
determines the physical destinations that messages are sent to, as well as the physical
destinations that consumers are assigned to.

For more information about configuring load balancing for a distributed destination,
see “Configuring Message Load Balancing” in the Administration Console Online
Help.

Load Balancing Options

WebLogic JMS supports two different algorithms for balancing the message load
across multiple physical destinations within a given distributed destination set. You
can select one of these load balancing options configuring a distributed topic or queue
on the Administration Console.

! Round-Robin Distribution

! Random Distribution

Round-Robin Distribution

In the round-robin algorithm, WebLogic JMS maintains an ordering of physical
destinations within the distributed destination. The messaging load is distributed
across the physical destinations one at a time in the order that they are defined in the
WebLogic Server configuration (config.xml) file. Each WebLogic Server maintains
an identical ordering, but may be at a different point within the ordering. Multiple
threads of execution within a single server using a given distributed destination affect
each other with respect to which physical destination a member is assigned to each
time they produce a message. Round-robin is the default algorithm and doesn’t need
to be configured.

If weights are assigned to any of the physical destinations in the set for a given
distributed destination, then those physical destinations appear multiple times in the
ordering. For instance, if the weights of destinations A, B and C are 2, 5, and 3
respectively, then the ordering will be A, B, C, A, B, C, B, C, B, B. That is, a number
4-96 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_load_balancing_config

Using Distributed Destinations
of passes are made through the basic ordering (A, B, C). The number of passes is equal
to the highest weight of the destinations within the set. On each pass, only those
destinations with a weight that is greater than or equal to the ordinal value of the pass
are included in the ordering. Following this logic, this example would produce the
following results:

! A is dropped from the ordering after two passes.

! C is dropped after three passes.

! B is the only one remaining on the fourth and fifth passes.

Random Distribution

The random distribution algorithm uses the weight assigned to the physical
destinations to compute a weighted distribution for the set of physical destinations.
The messaging load is distributed across the physical destinations by pseudo-randomly
accessing the distribution. In the short run, the load will not be directly proportional to
the weight. In the long run, the distribution will approach the limit of the distribution.
A pure random distribution can be achieved by setting all the weights to the same
value, which is typically 1.

Adding or removing a member (either administratively or as a result of a WebLogic
Server shutdown/restart event) requires a recomputation of the distribution. Such
events should be infrequent however, and the computation is generally simple, running
in O(n) time.

Consumer Load Balancing

When an application creates a consumer, it must provide a destination. If that
destination represents a distributed destination, then WebLogic JMS must find a
physical destination that consumer will receive messages from. The choice of which
destination member to use is made by using one of the load-balancing algorithms
described in “Load Balancing Options” on page 4-96. The choice is made only once:
when the consumer is created. From that point on, the consumer gets messages from
that member only.
Programming WebLogic JMS 4-97

4 Developing a WebLogic JMS Application
Producer Load Balancing

When a producer sends a message, WebLogic JMS looks at the destination where the
message is being sent. If the destination is a distributed destination, WebLogic JMS
makes a decision as to where the message will be sent. That is, the producer will send
to one of the destination members according to one of the load-balancing algorithms
described in “Load Balancing Options” on page 4-96.

The producer makes such a decision each time it sends a message. However, there is
no compromise of ordering guarantees between a consumer and producer, because
consumers are load balanced once, and are then pinned to a single destination member.

Note: If a producer attempts to send a persistent message to a distributed destination,
every effort is made to first forward the message to distributed members that
utilize a persistent store. However, if none of the distributed members utilize
a persistent store, then the message will still be sent to one of the members
according to the selected load-balancing algorithm.

Load Balancing Heuristics

In addition to the algorithms described in “Load Balancing Options” on page 4-96,
WebLogic JMS uses the following heuristics when choosing an instance of a
destination.

! Transaction Affinity

! Server Affinity

! Queues with Zero Consumers

Transaction Affinity

When producing multiple messages within a transacted session, an effort is made to
send all messages produced to the same WebLogic Server. Specifically, if a session
sends multiple messages to a single distributed destination, then all of the messages are
routed to the same physical destination. If a session sends multiple messages to
multiple different distributed destinations, an effort is made to choose a set of physical
destinations served by the same WebLogic Server.
4-98 Programming WebLogic JMS

Using Distributed Destinations
Server Affinity

When a WebLogic Server attempts to load balance consumers or producers across
physical destinations in a distributed destination set, it will first attempt to load balance
across any physical destinations that are also running on the same WebLogic Server.

Note: For more information about configuring server affinity for a distributed
destination, see “Configuring Server Affinity” in the Administration Console
Online Help.

Queues with Zero Consumers

When load balancing consumers across multiple remote physical queues, if one or
more of the queues have zero consumers, then those queues alone are considered for
balancing the load. Once all the physical queues in the set have at least one consumer,
the standard algorithms apply.

In addition, when producers are sending messages, queues with zero consumers are not
considered for message production, unless all instances of the given queue have zero
consumers.

Defeating Load Balancing

Applications can defeat load balancing by directly accessing the individual physical
destinations. That is, if the physical destination has no JNDI name, it can still be
referenced using the createQueue() or createTopic() methods.

! JNDI Lookup

! CreateQueue() and CreateTopic()

! Connection Factories

JNDI Lookup

If a physical destination has a JNDI name, then it can be looked up using JNDI. The
returned destination can then be used to create a consumer or receiver.
Programming WebLogic JMS 4-99

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#server_affinity_config

4 Developing a WebLogic JMS Application
CreateQueue() and CreateTopic()

An application can also obtain a reference to a topic or queue using the
createQueue() and createTopic() methods. When using these methods, the
application must supply a vendor-specific string identifying the destination that they
want a reference to. The vendor-specific string for WebLogic JMS is of the form
server/destination, where “server” is the name of a JMS server and “destination” is the
name of a queue or topic on that JMS server.

Connection Factories

Applications that use distributed destinations to distribute or balance their producers
and consumers across multiple physical destinations, but do not want to make a load
balancing decision each time a message is produced, can use a connection factory with
the Load Balancing Enabled attribute disabled (i.e., set to False).

For more information about configuring load balancing for a distributed destination,
see “Enabling Message Load Balancing” in the Administration Console Online Help.

Distributed Destination Migration

For JMS implementations that take use the WebLogic Server 7.0 service migration
feature, when a JMS server fails it can migrate to another WebLogic Server within a
cluster—along with all of its distributed destination members. However, the target
WebLogic Server may already be hosting a JMS server with all of its physical
destinations. This can lead to situations where the same WebLogic Server hosts two
physical destinations for a single distributed destination. This is permissible in the
short term, since a WebLogic Server can host multiple physical destinations for that
distributed destination. However, load balancing in this situation is less effective.

In such a situation, each JMS server on a target WebLogic Server operates
independently. This is necessary to avoid merging of the two destination instances,
and/or disabling of one instance, which can make some messages unavailable for a
prolonged period of time. The long-term intent, however, is to eventually re-migrate
the migrated JMS server to yet another WebLogic Server in the cluster.

For more information about the configuring JMS migratable targets, see “Configuring
JMS Migratable Targets” on page 3-10.
4-100 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_tuning.html#message_load_balancing_config

Using Distributed Destinations
Distributed Destination Failover

When a JMS server migrates to another WebLogic Server due a server failure,
consumers that are pinned to a failed destination member must be closed and recreated.

For more information about procedures for recovering from a WebLogic Server
failure, see “Recovering from a WebLogic Server Failure” on page 3-15.
Programming WebLogic JMS 4-101

4 Developing a WebLogic JMS Application
4-102 Programming WebLogic JMS

CHAPTER
5 Using Transactions
with WebLogic JMS

The following sections describe how to use transactions with WebLogic JMS:

! “Overview of Transactions” on page 5-1

! “Using JMS Transacted Sessions” on page 5-3

! “Using JTA User Transactions” on page 5-5

! “Asynchronous Messaging Within JTA User Transactions Using Message Driven
Beans” on page 5-9

! “Example: JMS and EJB in a JTA User Transaction” on page 5-9

Note: For more information about the JMS classes described in this section, access
the latest JMS Specification and Javadoc supplied on the Sun Microsystems’
Java Web site at the following location:
http://java.sun.com/products/jms/docs.html

Overview of Transactions

A transaction enables an application to coordinate a group of messages for production
and consumption, treating messages sent or received as an atomic unit.
Programming WebLogic JMS 5-1

http://java.sun.com/products/jms/docs.html

5 Using Transactions with WebLogic JMS
When an application commits a transaction, all of the messages it received within the
transaction are removed from the messaging system and the messages it sent within the
transaction are actually delivered. If the application rolls back the transaction, the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When a topic subscriber rolls back a received message, the message is redelivered to
that subscriber. When a queue receiver rolls back a received message, the message is
redelivered to the queue, not the consumer, so that another consumer on that queue
may receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with JMS:

! If you are using only JMS in your transactions, you can create a JMS transacted
session.

! If you are mixing other operations, such as EJB, with JMS operations, you
should use a Java Transaction API (JTA) user transaction in a non-transacted
JMS session.

! Use message driven beans.

To enable multiple JMS servers in the same JTA user transaction, or to combine JMS
operations with non-JMS operations (such as EJB), the two-phase commit license is
required. For more information, see “Using JTA User Transactions” on page 5-5.

The following sections explain how to use a JMS transacted session and JTA user
transaction.

Note: When using transactions, it is recommended that you define a session
exception listener to handle any problems that occur before a transaction is
committed or rolled back, as described in “Defining a Session Exception
Listener” on page 4-47.

If the acknowledge() method is called within a transaction, it is ignored. If
the recover() method is called within a transaction, a JMSException is
thrown.
5-2 Programming WebLogic JMS

Using JMS Transacted Sessions
Using JMS Transacted Sessions

A JMS transacted session supports transactions that are located within the session. A
JMS transacted session’s transaction will not have any effects outside of the session.
For example, rolling back a session will roll back all sends and receives on that session,
but will not roll back any database updates. JTA user transactions are ignored by JMS
transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence
of a send or receive operation, and chained together—whenever you commit or roll
back a transaction, another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment, as described in
“Configuring JMS” in the Administration Console Online Help.

The following figure illustrates the steps required to set up and use a JMS transacted
session.

Figure 5-1 Setting Up and Using a JMS Transacted Session
Programming WebLogic JMS 5-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config

5 Using Transactions with WebLogic JMS
Step 1: Set Up JMS Application, Creating Transacted
Session

Set up the JMS application as described in “Setting Up a JMS Application” on page
4-4, however, when creating sessions, as described in “Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session is to be transacted by setting the
transacted boolean value to true.

For example, the following methods illustrate how to create a transacted session for the
PTP and Pub/sub messaging models, respectively:

qsession = qcon.createQueueSession(
true,
Session.AUTO_ACKNOWLEDGE

);

tsession = tcon.createTopicSession(
true,
Session.AUTO_ACKNOWLEDGE

);

Once defined, you can determine whether or not a session is transacted using the
following session method:

public boolean getTransacted(
) throws JMSException

Note: The acknowledge value is ignored for transacted sessions.

Step 2: Perform Desired Operations

Perform the desired operations assoicated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session

Once you have performed the desired operations, execute one of the following
methods to commit or roll back the transaction.

To commit the transaction, execute the following method:
5-4 Programming WebLogic JMS

Using JTA User Transactions
public void commit(
) throws JMSException

The commit() method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

To roll back the transaction, execute the following method:

public void rollback(
) throws JMSException

The rollback() method cancels any messages sent during the current transaction and
returns any messages received to the messaging system.

If either the commit() or rollback() methods are issued outside of a JMS transacted
session, a IllegalStateException is thrown.

Using JTA User Transactions

The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA is implemented as part of WebLogic Server and provides a standard Java interface
for implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction.UserTransaction object to begin, commit, and roll back the
transactions. When mixing JMS and EJB within a JTA user transaction, you can also
start the transaction from the EJB, as described in “Transactions in EJB Applications”
in Programming WebLogic JTA.

You can start a JTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate a single JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or are fully rolled back out of
all the resource managers, reverting to the state prior to the start of the transaction.
Programming WebLogic JMS 5-5

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs81b/jta/trxejb.html

5 Using Transactions with WebLogic JMS
Note: A separate 2PC transaction license is required to support this protocol. For
transaction migration considerations related to 2PC, see “Porting WebLogic
JMS Applications” on page 8-1.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the User
Transactions Enabled check box, as described in “JMS Connection Factories” in the
Administration Console Online Help.

The following figure illustrates the steps required to set up and use a JTA user
transaction.

Figure 5-2 Setting Up and Using a JTA User Transaction
5-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

Using JTA User Transactions
Step 1: Set Up JMS Application, Creating Non-Transacted
Session

Set up the JMS application as described in “Setting Up a JMS Application” on page
4-4, however, when creating sessions, as described in “Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session is to be non-transacted by setting
the transacted boolean value to false.

For example, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

qsession = qcon.createQueueSession(
false,
Session.AUTO_ACKNOWLEDGE

);

tsession = tcon.createTopicSession(
false,
Session.AUTO_ACKNOWLEDGE

);

Note: When a user transaction is active, the acknowledge mode is ignored.

Step 2: Look Up User Transaction in JNDI

The application uses JNDI to return an object reference to the UserTransaction
object for the WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context
(context) and executing the following code, for example:

UserTransaction xact =
ctx.lookup(“javax.transaction.UserTransaction”);

Step 3: Start the JTA User Transaction

Start the JTA user transaction using the UserTransaction.begin() method. For
example:
Programming WebLogic JMS 5-7

5 Using Transactions with WebLogic JMS
xact.begin();

Step 4: Perform Desired Operations

Perform the desired operations associated with the current transaction.

Step 5: Commit or Roll Back the JTA User Transaction

Once you have performed the desired operations, execute one of the following
methods to commit or roll back the JTA user transaction.

To commit the transaction, execute the following method:

xact.commit();

The commit() method causes WebLogic Server to call the Transaction Manager to
complete the transaction, and commit all operations performed during the current
transaction. The Transaction Manager is responsible for coordinating with the resource
managers to update any databases.

To roll back the transaction, execute the following method:

xact.rollback();

The rollback() method causes WebLogic Server to call the Transaction Manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Once you call the commit() or rollback() method, you can optionally start another
transaction by calling xact.begin().
5-8 Programming WebLogic JMS

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
Asynchronous Messaging Within JTA User
Transactions Using Message Driven Beans

Because JMS cannot determine which, if any, transaction to use for an asynchronously
delivered message, JMS asynchronous message delivery is not supported within JTA
user transactions.

However, message driven beans provide an alternative approach. A message driven
bean can automatically begin a user transaction just prior to message delivery.

For information on using message driven beans to simulate asynchronous message
delivery, see “Designing Message-Driven Beans” in Programming WebLogic EJB.

Example: JMS and EJB in a JTA User
Transaction

The following example shows how to set up an application for mixed EJB and JMS
operations in a JTA user transaction by looking up a
javax.transaction.UserTransaction using JNDI, and beginning and then
committing a JTA user transaction. In order for this example to run, the User
Transactions Enabled check box must be selected when the system administrator
configures the connection factory.

Note: In addition to this simple JTA User Transaction example, refer to the example
provided with WebLogic JTA, located in the
WL_HOME\samples\server\src\examples\jta\jmsjdcb directory,
where where WL_HOME is the top-level directory of your WebLogic Platform
installation.

Import the appropriate packages, including the
javax.transaction.UserTransaction package.
Programming WebLogic JMS 5-9

http://e-docs.bea.com/wls/docs81b/ejb/message_beans.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html

5 Using Transactions with WebLogic JMS
import java.io.*;
import java.util.*;
import javax.transaction.UserTransaction;
import javax.naming.*;
import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=
"javax.transaction.UserTransaction";
.
.
.

Step 1 Set up the JMS application, creating a non-transacted session. For more information
on setting up the JMS application, refer to “Setting Up a JMS Application” on page
4-4.

//JMS application setup steps including, for example:

qsession = qcon.createQueueSession(false,
Session.CLIENT_ACKNOWLEDGE);

Step 2 Look up the UserTransaction using JNDI.

UserTransaction xact = (UserTransaction)
ctx.lookup(JTA_USER_XACT);

Step 3 Start the JTA user transaction.

xact.begin();

Step 4 Perform the desired operations.

// Perform some JMS and EJB operations here.

Step 5 Commit the JTA user transaction.

xact.commit()
5-10 Programming WebLogic JMS

CHAPTER
6 Using WebLogic JMS
with EJBs and Servlets

The following sections describe features in WebLogic Server 8.1 that make it easier to
use WebLogic JMS in conjunction with J2EE components, such as a servlet or an EJB
(Enterprise Java Bean).

! “Overview” on page 6-1

! “J2EE Support for WebLogic JMS” on page 6-2

! “Foreign JMS Provider Support” on page 6-10

! “Examples of JMS Wrapper Functions” on page 6-11

Overview

This release of WebLogic Server makes it easier to use WebLogic JMS in conjunction
with servlets or EJBs. These usability features are generally hidden behind the J2EE
standard, but they have been enhanced for this release. Using this support should be
considered as the “best practice” way to send a WebLogic JMS message from inside
an EJB or servlet.

The “Foreign JMS Provider Support” on page 6-10 section briefly describes the new
console support for foreign JMS providers, as documented in Accessing Foreign JMS
Providers section of the Administration Console Online Help. This feature makes it
Programming WebLogic JMS 6-1

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers

6 Using WebLogic JMS with EJBs and Servlets
possible to map foreign JMS providers — including instances of WebLogic Server in
another cluster or domain — so that they appear in the local JNDI tree as a local JMS
object.

J2EE Support for WebLogic JMS

The WebLogic Server 8.1 makes it easier to use WebLogic JMS inside a J2EE
component by providing usability features, such as:

! Automatic pooling of JMS connection and session objects (and some pooling of
message producer objects as well).

! Automatic transaction enlistment for JMS providers that support XA.

! Testing of the JMS connection and reestablishment after a failure.

! Security credentials that are managed by the container.

These features are accessed from inside an EJB or a servlet by declaring a WebLogic
JMS connection factory as a resource in the deployment descriptors. An example of
this is provided in “Referencing a JMS Connection Factory” on page 6-3. Once a
connection factory is registered as a resource, then the application can look it up from
JNDI using the java:comp/env/ subtree that is created for each EJB or servlet. It is
important to note that these features are only enabled when using a resource inside the
deployment descriptors. Writers of EJBs and servlets still have direct access to the
JMS provider by performing a direct JNDI lookup of the connection factory.

For more information about packaging EJBs, see “Packaging EJBs for the WebLogic
Server Container” in Programming WebLogic Enterprise JavaBeans. For more
information about programming servlets, see “Programming Tasks” in Programming
WebLogic HTTP Servlets.
6-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs81b/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs81b/servlet/progtasks.html

J2EE Support for WebLogic JMS
Referencing a JMS Connection Factory

A JMS connection factory can be registered as part of an EJB or servlet by including
a resource-ref element in the ejb-jar.xml or web.xml file. In other words,
WebLogic Server 8.1 creates a “wrapped” JMS connection factory that provides the
other, more advanced features described in this section.

Here is an example of such an element:

<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

This element declares that a JMS QueueConnectionFactory object will be bound
into JNDI, at the location:

java:comp/env/QCF

(This JNDI name is only valid inside the context of the EJB or servlet where the
resource-ref is declared, which is what the java:comp/env JNDI context is about.)

In addition to this element, there must be a matching resource-description

element in the weblogic-ejb-jar.xml or weblogic.xml file that tells the J2EE
container which JMS connection factory to put in that location. Here is an example:

<resource-description>
<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>weblogic.jms.ConnectionFactory</jndi-name>

</resource-description>

The connection factory specified here must already exist in the global JNDI tree. This
example uses one of JMS connection factories that are automatically created whenever
the built-in WebLogic JMS server is used. To use another WebLogic JMS connection
factory from the same cluster, simply include that connection factory’s JNDI name
inside the jndi-name element. To use a connection factory from another vendor, or
from another WebLogic Server cluster, create a Foreign JMS Server, as described in
“Accessing Foreign JMS Providers” in the Administration Console Online Help.

If the JNDI name specified in the resource-description element is incorrect, then
the application is still deployed. However, you will receive an error when you try to
use the connection factory.
Programming WebLogic JMS 6-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers

6 Using WebLogic JMS with EJBs and Servlets
Referencing a JMS Destination

It is also possible to bind a JMS destination (a queue or topic) into the java:comp/env
JNDI tree. This feature is useful for consistency, and to make an application less
dependent on a particular configuration of WebLogic Server. To do this, there must be
a resource-env-ref element in the weblogic-ejb-jar.xml or web.xml file, as
follows:

<resource-env-ref>
<resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

There must also be a matching resource-env-description element in the
weblogic-ejb-jar.xml or weblogic.xml file, as follows:

<resource-env-description>
<res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
<jndi-name>jmstest.destinations.TESTQUEUE</jndi-name>

</resource-env-description>

Again, if the destination does not exist, then the application is deployed, but there will
be an exception thrown when trying to use the destination.

Sending a Message

Once the resources have been mapped to the java:comp/env JNDI tree, then they can
be used inside an EJB or a servlet. For instance, the following code fragment sends a
message:

InitialContext ic = new InitialContext();
QueueConnectionFactory qcf =
(QueueConnectionFactory)ic.lookup("java:comp/env/jms/QCF");

Queue destQueue =
(Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");

ic.close();
QueueConnection connection = qcf.createQueueConnection();
try {
QueueSession session = connection.createQueueSession(0, false);
QueueSender sender = session.createSender(destQueue);
TextMessage msg = session.createTextMessage("This is a test");
sender.send(msg);

} finally {
6-4 Programming WebLogic JMS

J2EE Support for WebLogic JMS
connection.close();
}

This is standard code that complies with the J2EE specification and which should run
on any EJB product that properly supports J2EE — the difference is that it runs more
efficiently on WebLogic Server 8.1, because under the covers various objects are
pooled, as described in “Pooled Session Objects” on page 6-8.

Note that this code fragment uses a try...finally block to guarantee that the
close() method on the JMS Connection object is executed even if one of the
statements inside the block throws an exception. If no connection pooling were being
done, then this block would be necessary in order to ensure that the connection is
closed, and to prevent server resources from being wasted. But since WebLogic Server
pools some of the objects that are created by this code fragment, it is even more
important that close() be called; otherwise, the container will not know when to
return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are being used in this
code fragment. Instead, the container uses them internally if the JMS code is used
inside a transaction context. But whether XA is being used or not internally, the
user-written code is the same, and does not use any of the JMS XA classes. This is what
is specified by J2EE. By writing EJB code in this way, EJBs can run either in an
environment where transactions are present or in a non-transactional environment, just
by changing the deployment descriptors.

Under the Covers

This section explains what is happening “under the covers” when WebLogic Server
creates a set of wrappers around the JMS objects. For example, in the code fragment
provided in “Sending a Message” on page 6-4, since the JMS connection factory was
looked up from the java:comp/env JNDI tree, the actual JMS connection factory is
not being returned, but an instance of a WebLogic-specific wrapper class. This
wrapper object intercepts certain calls to the JMS provider and inserts the correct J2EE
behavior, as described in the following sections.

Automatically Enlisting Transactions

If a wrapped JMS connection is used to send or receive a message inside a transaction
context, then the JMS session being used to send or receive the message is
automatically enlisted in the transaction using the XA capabilities of the JMS provider.
Programming WebLogic JMS 6-5

6 Using WebLogic JMS with EJBs and Servlets
This is the case whether the transaction was started implicitly because the JMS code
was invoked inside an EJB with container-managed transactions enabled, or if the
transaction was started manually using the UserTransaction interface in a servlet or
an EJB that supports bean-managed transactions.

However, if an EJB or servlet attempts to send or receive a message inside a
transaction context and the JMS provider being used does not support XA, then the
send() or receive() call throws an exception, as follows:

[J2EE:160055] Unable to use a wrapped JMS session in the transaction
because two-phase commit is not available.

In order to send or receive a message inside a transaction using a JMS provider that
does not support XA, either declare the EJB with a transaction mode of
NotSupported, or suspend the transaction using one of the JTA APIs.

For more information on the attributes available when configuring a WebLogic JMS
connection factory that supports transactions, see “JMS Connection Factory -->
Configuration --> Transactions” in the Administration Console Online Help.

Container-Managed Security

WebLogic JMS uses the security credentials that are present on the thread when the
EJB or servlet is invoked. For foreign JMS providers, however, when a JMS
connection factory is declared via a resource-ref element in the
weblogic-ejb-jar.xml or web.xml file, there is an optional sub-element called
res-auth. This may have one of two settings:

Container — When the res-auth element is set to Container, then security to the
JMS provider is managed by the J2EE container. In this case, if the JMS connection
factory was mapped into the JNDI tree using a Foreign JMS Connection Factory
configuration MBean, then the user name and password from that MBean is used (see
“Foreign JMS Provider Support” on page 6-10). Otherwise, WebLogic Server
connects to the provider with no user name or password specified. In this mode, it is
an error to pass a user name and password to the createConnection() method of the
JMS connection factory.

Application — When the res-auth element is set to Application, then any user
name or password on the MBean is ignored. Instead, the application code must specify
a user name and password to the createConnection() method of the JMS
connection factory, or use the version of this function with no user name or password
if none are required.
6-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_transactions.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_transactions.html

J2EE Support for WebLogic JMS
Connection Testing

The JMS wrapper classes monitor each connection that is established to the JMS
provider. They do this in two ways:

! Registering a JMS ExceptionListener object on the connection.

! Testing the connection every two minutes by sending a message to a temporary
queue or topic and then receiving it again.

J2EE Compliance

The J2EE specification states that you should not be allowed to make certain JMS API
calls inside a J2EE application. The JMS wrappers enforce these restrictions by
throwing an exception when they are violated. They are as follows:

! On the connection object, the methods createConnectionConsumer(),
createDurableConnectionConsumer(), setClientID(),
setExceptionListener(), and stop() should not be called.

! On the session object, the methods getMessageListener() and
setMessageListener() should not be called.

! On the consumer object (a QueueReceiver or TopicSubscriber object), the
methods getMessageListener() and setMessageListener() should not be
called.

Furthermore, the createSession() method, and the associated
createQueueSession() and createTopicSession() methods, are handled
differently. This method takes two parameters: an “acknowledgement” mode and a
“transacted” flag. When used inside an EJB, these two parameters are ignored. If a
transaction is present, then the JMS session is enlisted in the transaction as described
in “Automatically Enlisting Transactions” on page 6-5; otherwise, it is not. By default,
the acknowledgement mode is set to “auto acknowledge”. This behavior is expected
by the J2EE specification. (This may make it more difficult to receive messages from
inside an EJB, but the recommended way to receive messages from inside an EJB is to
use a message-driven bean.)

Inside a servlet, however, the parameters to createQueueSession() and
createTopicSession() are handled normally, and users can make use of all the
various message acknowledgement modes.
Programming WebLogic JMS 6-7

6 Using WebLogic JMS with EJBs and Servlets
Pooled Session Objects

The JMS wrappers pool various session objects in order to make code like the example
provided in “Sending a Message” on page 6-4 more efficient. A pooled JMS
connection is a session pool used by EJBs and servlets that use a resource-reference
element in their EJB deployment descriptor to define their JMS connection factories.

Pooled JMS sessions can be monitored using the Server --> Monitoring --> JMS node
on the Administration Console. For more information, see “Server --> Monitoring -->
JMS” in the Administration Console Online Help.

Improving Performance

The automatic pooling of connections and other objects by the JMS wrappers means
that it is efficient to write code as shown in “Sending a Message” on page 6-4.
Although in this example the Connection Factory, Connection, and Session objects are
created every time a message is sent, in reality these three classes work together so that
when used as shown, they do little more than retrieve a Session object from the pool.

Speeding Up JNDI Lookups

The JNDI lookups of the Connection Factory and Destination objects can be
expensive. This is particularly true if the Destination object points to a Foreign JMS
Destination MBean, and therefore, is a lookup on a non-local JNDI provider. Since
both of these objects are thread-safe, they may be looked up once inside an EJB or
servlet at creation time, which saves the time required to perform the lookup each time.

Inside a servlet, these lookups can be performed inside the init() method. The
Connection Factory and Destination objects may then be assigned to an instance
variable and reused whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ejbCreate() method and
assigned to an instance variable. For a session bean, each instance of the bean will then
have its own copy, but this is perfectly fine. Since stateless session beans are pooled,
this is also very efficient, and is perfectly consistent with the J2EE specifications.
(Whereas, caching these objects in a static member of the EJB class may work, but it
is discouraged by the J2EE specification.)
6-8 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_monitoring_jms.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_monitoring_jms.html

J2EE Support for WebLogic JMS
However, if these objects are cached inside the ejbCreate() or init() method, then
the EJB or servlet must have some way to recreate them if there has been a failure. This
is necessary because some JMS providers, like WebLogic JMS, may invalidate a
Destination object after a server failure. So, if the EJB runs on Server A, and JMS runs
on Server B, then the EJB on Server A will have to perform the JNDI lookup of the
objects from Server B again after that server has recovered. The example,
“PoolTestCMPBean.java” on page 6-13 includes a sample EJB that performs this
caching and relookup process correctly.

Speeding Up Object Creation

Once this has been done, it may be tempting to cache other objects, such as the
Connection, Session, and Producer objects, inside the ejbCreate()method. This will
work, but it is not always the most efficient solution. Essentially, by doing this you are
removing a Session object from the cache and permanently assigning it to a particular
EJB, whereas by using the JMS wrappers as designed, that Session object can be
shared by other EJBs and servlets as well. Furthermore, the wrappers attempt to
reestablish a JMS connection and create new session objects if there is a
communications failure with the JMS provider, but this will not work if you cache the
Session object on your own.

However, this technique will improve performance for critical code, since the
management of the JMS session pool does add overhead. If you want to use this
technique, you must make sure that you close and reopen the JMS connection and
session objects after a server failure; otherwise, your EJB or servlet will not be able to
access the JMS provider after it has been restarted.

Using the Right Transaction Mode

When a JMS send() or receive() operation is performed inside a transaction, the
container automatically enlists the provider in the transaction. A transaction can be
started automatically inside an EJB or servlet that has container-managed transactions,
or it can be started explicitly using the UserTransaction interface. In either case, the
container automatically enlists the JMS provider. However, if the underlying JMS
connection factory used by the EJB or servlet does not support XA, then the container
will throw an exception.

However, performing the transaction enlistment has overhead. Furthermore, if an XA
connection factory is used, but the send() or receive() method is invoked outside a
transaction, the container must still create a JTA transaction to wrap the send() or
Programming WebLogic JMS 6-9

6 Using WebLogic JMS with EJBs and Servlets
receive() method in order to ensure that the operation properly takes place no matter
which JMS provider is used. Although this is only a one-phase commit, it can still slow
down the server.

Therefore, when writing an EJB or servlet that uses a JMS resource in a
non-transactional manner, then it is best to use a JMS connection factory that is not
configured to support XA. For more information on configuring a WebLogic JMS
connection factory, see “Configuring a JMS Connection Factory” in the
Administration Console Online Help.

Foreign JMS Provider Support

Another set of features for WebLogic Server 8.1 makes it possible to create a
“symbolic link” between a JMS connection factory or destination object in an external
JNDI provider to an object inside the local WebLogic Server. There are three
configuration MBeans for this task:

! Foreign JMS Server — Contains information about the remote JNDI provider,
including its initial context factory, URL, and additional parameters. It is the
parent of the next two MBeans. It can be targeted to a independent WebLogic
Server or to a cluster.

! Foreign JMS Connection Factory — represents a foreign connection factory. It
contains the name of the connection factory in the remote JNDI provider, the
name to map it to in the server’s JNDI tree, and an optional user name and
password. The user name and password are only used when this is used inside a
resource-reference in an EJB or a servlet, and the “Container” mode of
authentication is used. It creates non-replicated JNDI objects on each WebLogic
Server instance to which the parent MBean is targeted. (To create the JNDI
object on every node in the cluster, target the parent MBean to the cluster.)

! Foreign JMS Destination — represents a foreign JMS destination. It contains the
name to look up on the foreign JNDI provider, and the name to map it to on the
local server.

For instructions on configuring these MBeans with the Administration Console, refer
to “Accessing Foreign JMS Providers” in the Administration Console Online Help.
6-10 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#accessing_foreign_providers

Examples of JMS Wrapper Functions
Once deployed, these MBeans work by creating objects in the server’s JNDI tree,
which perform the lookup of the remote object every time they are looked up. This
means that the local server and the remote JNDI directory are never out of sync.
However, it means that a JNDI lookup of one of these MBeans can potentially be
expensive. The sections on “Pooled Session Objects” on page 6-8 describes some ways
around this.

Examples of JMS Wrapper Functions

The following files comprise a simple stateless EJB session bean that uses the
WebLogic JMS wrapper functions to send a message when an EJB is called. Although
this example uses a session bean, the same XML descriptors and bean class, with very
few changes, may be used for an message-driven bean.

ejb-jar.xml

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>PoolTestCMPBean</ejb-name>
<home>weblogic.jms.pool.test.PoolTestCMPHome</home>
<remote>weblogic.jms.pool.test.PoolTestCMP</remote>
<ejb-class>weblogic.jms.pool.test.PoolTestCMPBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
Programming WebLogic JMS 6-11

6 Using WebLogic JMS with EJBs and Servlets
<resource-env-ref>
<resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>
</session>
</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>

<ejb-name>PoolTestCMPBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

</assembly-descriptor>

</ejb-jar>

weblogic-ejb-jar.xml

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN"
"http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd">

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>PoolTestCMPBean</ejb-name>
<stateless-session-descriptor>
<pool>
<max-beans-in-free-pool>8</max-beans-in-free-pool>
<initial-beans-in-free-pool>2</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>

<reference-descriptor>
<resource-description>
<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>weblogic.jms.XAConnectionFactory</jndi-name>

</resource-description>
<resource-env-description>
<res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
6-12 Programming WebLogic JMS

Examples of JMS Wrapper Functions
<jndi-name>TESTQUEUE</jndi-name>
</resource-env-description>

</reference-descriptor>
<jndi-name>PoolTestCMP</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

PoolTestCMP.java

package weblogic.jms.pool.test;

import java.rmi.*;
import javax.ejb.*;
public interface PoolTestCMP extends EJBObject
{
public String sendXATransactional(String queue,

String text, int count)
throws RemoteException;

}

PoolTestCMPHome.java

package weblogic.jms.pool.test;

import java.rmi.*;
import javax.ejb.*;

public interface PoolTestCMPHome
extends EJBHome

{
PoolTestCMP create()

throws CreateException, RemoteException;
}

PoolTestCMPBean.java

package weblogic.jms.pool.test;

import java.lang.reflect.*;
import java.rmi.*;
Programming WebLogic JMS 6-13

6 Using WebLogic JMS with EJBs and Servlets
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;
import javax.transaction.*;

import weblogic.deployment.jms.*;

public class PoolTestCMPBean
extends PoolTestBeanBase
implements SessionBean

{
private SessionContext context;
private QueueConnectionFactory qcf;
private Queue destination;

public void ejbActivate()
{
}

public void ejbRemove()
{
}

public void ejbPassivate()
{
}

public void setSessionContext(SessionContext ctx)
{

context = ctx;
}

private void lookupJNDIObjects()
throws NamingException

{
InitialContext ic = new InitialContext();
try {
qcf =
(QueueConnectionFactory)context.lookup

("java:comp/env/jms/QCF");
destination =
(Queue)context.lookup("java:comp/env/jms/TESTQUEUE");

} finally {
ic.close();

}
}

public void ejbCreate()
throws CreateException
6-14 Programming WebLogic JMS

Examples of JMS Wrapper Functions
{
try {
lookupJNDIObjects();

} catch (NamingException ne) {
throw new CreateException(ne.toString());

}
}

public String sendXATransactional(String queue,
String text, int count)

throws RemoteException
{

String id = "Not sent yet";
try {
if ((qcf == null) || (destination == null)) {
lookupJNDIObjects();

}
QueueConnection connection = qcf.createQueueConnection();
try {
QueueSession session = connection.createQueueSession

(false, 0);
TextMessage message = session.createTextMessage

("Testing");
QueueSender sender = session.createSender(destination);
sender.send(message);
id = message.getJMSMessageID();

} finally {
connection.close();

}
} catch (Exception e) {
// Invalidate the JNDI objects if there is a failure
// this is necessary because the destination object
// may become invalid if the destination server has
// been shut down
qcf = null;
destination = null;
throw new RemoteException("Failure in EJB: " + e);

}
return id;

}
}

Programming WebLogic JMS 6-15

6 Using WebLogic JMS with EJBs and Servlets
6-16 Programming WebLogic JMS

CHAPTER
7 WebLogic JMS Thin
Client

The following sections describe how to deploy and use the WebLogic JMS thin client:

! “Overview” on page 7-1

! “Benefits of Using the JMS Thin Client” on page 7-2

! “Limitations of Using the JMS Thin Client” on page 7-3

! “Deploying the JMS Thin Client” on page 7-3

Overview

While the size of the weblogic.jar file may not be a problem when running
server-side applications, it does cause a very large footprint for today’s enterprise
client-server applications that may be running thousands of clients. Having to deploy
the full 20+ MB weblogic.jar file along with a client application can significantly
increase the size of the deployed application, possibly making it too big to be practical
(such as the case with a Java applet-based client program).

At around 400 KB, the thin client wljmsclient.jar file provides a smaller client
footprint by using a client-side library that contains only the set of supporting files
required by client-side programs. The JMS thin client also requires using the standard
wlclient.jar (around 300 KB), which has the base client support for clustering,
security, and transactions.
Programming WebLogic JMS 7-1

7 WebLogic JMS Thin Client
The thin client .jar files are supported only with the JRE 1.4.x or later. No classes
other than the JRE and any user-defined classes are required on the client machine. The
thin client is based upon the RMI-IIOP protocol stack available in JRE 1.4.x. The
basics of making RMI requests are handled by the JRE, enabling a significantly
smaller client. Client-side development is performed using standard J2EE APIs, rather
than WebLogic Server APIs.

The thin client .jar files are located in the WL_HOME\server\lib subdirectory of the
WebLogic Server installation directory (for example,
c:\bea\weblogic81b\server\lib).

For more information on using WebLogic Servers client applications, see
“Understanding WebLogic Server Applications” in Developing WebLogic Server
Applications.

Benefits of Using the JMS Thin Client

Although small in size, the WebLogic JMS and standard WebLogic Server thin clients
provides the following functionality to client applications and applets:

! Full WebLogic JMS functionality is available—both standard JMS and
WebLogic Server extensions—except for client-side XML selection for multicast
sessions and the JMSHelper class methods.

! EJB (Enterprise Java Bean) access.

! JNDI access.

! RMI access (indirectly used by JMS).

! SSL access (using JSSE in JRE 1.4.x).

! Transaction capability.

! Clustering capability.

! HTTP/HTTPS tunneling.

! Fully internationalized.
7-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/programming/concepts.html#concepts014

Limitations of Using the JMS Thin Client
Limitations of Using the JMS Thin Client

The WebLogic JMS thin client does not provide all of the functionality of the normal
weblogic.jar, as follows:

! JDBC

! JMX

Deploying the JMS Thin Client

Deployment of the WebLogic JMS thin client depends on the following requirements:

! Each client must have the JRE 1.4.x installed.

! The thin client .jar files are located in the WL_HOME\server\lib subdirectory
of the WebLogic Server installation directory (for example,
c:\bea\weblogic81b\server\lib).

! The thin JMS wljmsclient.jar and standard wlclient.jar files must be in
each client’s classpath and installed somewhere on the client’s file system.

! The WebLogic JMS thin client requires using the RMI over IIOP standard for
communicating between client and server.

" URLs using t3 or t3s will transparently use iiop or iiops

" URLs using http or https will transparantly use iiop tunneling.

! Adhere to J2EE programming guidelines, in particular the use of
PortableRemoteObject.narrow() rather than using casts.
Programming WebLogic JMS 7-3

7 WebLogic JMS Thin Client
7-4 Programming WebLogic JMS

CHAPTER
8 Porting WebLogic JMS
Applications

The following sections describe how to port your WebLogic JMS applications to a
newer version of WebLogic Server:

! “Existing Feature Functionality Changes” on page 8-1

! “Porting Existing Applications” on page 8-8

! “Deleting JDBC Database Stores” on page 8-12

Existing Feature Functionality Changes

Changes in existing feature functionality have been made in order to comply with Sun
Microsystem’s JMS Specification. Therefore, you should check feature functionality
changes in the following tables before beginning any porting procedures:

! Existing Feature 5.1 to 6.0 Functionality Changes

! Existing Feature 6.0 to 6.1 Functionality Changes
Programming WebLogic JMS 8-1

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

8 Porting WebLogic JMS Applications
Existing Feature 5.1 to 6.0 Functionality Changes

The following table lists the changes in existing feature functionality from WebLogic
Server version 5.1, and also indicates any code changes that might be required as a
result. For additional information pertaining to the JMS Specification’s version change
history, refer to Chapter 11, “Change History” in the specification.

Category Description Code Modification

Connection
Factories

Two default connection factories have been
deprecated. The JNDI names for these
factories are:

! javax.jms.QueueConnectionFactory

! javax.jms.TopicConnectionFactory

For backwards compatibility, the JNDI names for
these two connection factories are still defined and
supported.

WebLogic JMS 6.x or later defines one connection
factory, by default:
weblogic.jms.ConnectionFactory

You can also specify user-defined connection
factories using the Administration Console.

Note: Using the default connection factory, you
have no control over the WebLogic
server on which the connection factory
may be deployed. If you would like to
target a particular WebLogic Server,
create a new connection factory and
specify the appropriate WebLogic Server
target(s).

It is recommended that existing code that use
the deprecated classes be modified to use a
new default or user-defined connection
factory class.

For example, if your code specified the
following constant using the default queue
connection factory:

public final static String
JMS_FACTORY=”javax.jms.QueueCon
nectionFactory”

You should modify the constant to use a new
user-defined connection factory, for
example:

public final static String
JMS_FACTORY=”weblogic.jms.Queue
ConnectionFactory”

For true backwards compatibility with
previous releases, you should ensure that you
select the Allow Close In onMessage and
User Transactions Enabled check boxes
when configuring the connection factory.

For more information about defining
connection factories, see “JMS Connection
Factory Tasks” in the Administration
Console Online Help.

In order to instantiate the default connection
factory on a particular WebLogic Server, you must
select the Enable Default JMS Connection
Factories check box when configuring the
WebLogic Server.

None required. This is a configuration
requirement. For more information, see
“Server --> Services --> JMS” in the
Administration Console Online Help.
8-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factories_config
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_server_services_jms.html

Existing Feature Functionality Changes
Connections When closing a connection, the call blocks until
outstanding synchronous calls and asynchronous
listeners have completed.

None required.

Sessions When closing a session, the call blocks until
outstanding synchronous calls and asynchronous
listeners have completed.

None required.

Message
Consumers

If multiple topic subscribers are defined in the
same session for the same topic, each consumer
will receive its own copy of a message.

None required.

When closing a message consumer, the call blocks
until the method call completes and any
outstanding synchronous applications are
cancelled.

None required.

In order to comply with the JMS specification, if
the close() method is called from within an
onMessage() method, the application will hang
unless the Allow Close In OnMessage check box
is selected when configuring the connection
factory. If the acknowledge mode is
AUTO_ACKNOWLEDGE, the current message will
still be automatically acknowledged.

None required. This is a configuration
requirement. For more information, see
“JMS Connection Factory Tasks” in the
Administration Console Online Help.

Category Description Code Modification
Programming WebLogic JMS 8-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

8 Porting WebLogic JMS Applications
Message
Header Field

The JMSMessageID header field format has
changed.

If you wish to access existing messages using
the JMSMessageID, you may need to run
one of the following
weblogic.jms.extensions.JMSHelp
er methods to convert between WebLogic
pre-JMS 5.1 and JMS 6.x JMSMessageID
formats.

To convert from pre-5.1 to 6.x
JMSMessageID format:

public void
oldJMSMessageIDToNew(

String id,
long timeStamp

) throws JMSException

To convert from 6.1 to pre- 6.1
JMSMessageID format:

public void
newJMSMessageIDToOld(

String id,
long timeStamp

) throws JMSException

Category Description Code Modification
8-4 Programming WebLogic JMS

Existing Feature Functionality Changes
Destinations The createQueue() and createTopic()
methods do not create destinations dynamically,
only references to destinations that already exist
given the vendor-specific destination name.

Update any portion of code that uses
createQueue() or createTopic() to
dynamically create destinations using the
following JMSHelper class methods,
respectively:
createPermanentQueueAsync() and
createPermanentTopicAsync().

For example, if your code used the following
method to dynamically create a queue:

queue=qsession.createQueue(queu
eName);

You should modify the code to dynamically
create a queue, as described in the sample
findQueue() method in “Using the
JMSHelper Class Methods” on page 4-50.

For more information, see “Creating
Destinations Dynamically” on page 4-49.

When creating temporary destinations, you must
specify a temporary template.

None required. This is a configuration
requirement. For more information, see
“JMS Template Tasks” in the Administration
Console Online Help.

You must be the owner of the connection in order
to create a message consumer for that temporary
destination.

When creating a message consumer on a
temporary destination, ensure that you are the
owner of the connection.

Durable
Subscribers

You no longer need to manually create JDBC
tables for durable subscribers. They are created
automatically.

None required.

There is no limit on the number of durable
subscribers that can be created.

None required.

When defining a client ID programatically, it must
be defined immediately after creating a
connection. Otherwise, an exception will be
thrown and you will be unable to make any other
JMS calls on that connection.

Ensure that the setClientID() method is
issued immediately after creating the
connection. For more information, refer to
“Defining the Client ID” on page 4-58.

Category Description Code Modification
Programming WebLogic JMS 8-5

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstemplate_config_general.html

8 Porting WebLogic JMS Applications
Session Pools Session pool factories, session pools, referenced
connection factories, referenced destinations, and
associated connection consumers must all be
targeted on the same JMS server.

Ensure that all objects are targeted on the
same JMS server.

The SessionPoolManager and
ConnectionConsumerManager interfaces
that were published as part of the WebLogic JMS
version 5.1 Javadoc have been removed from the
version 6.x and later Javadoc, as they are system
interfaces and should not be used within client
applications.

If used, remove any references to these
objects from the client application.

Transactions To combine JMS and EJB database calls within
the same transaction, a two-phase commit (2PC)
license is required. In previous releases of
WebLogic Server, it was possible to combine
them by using the same database connection pool.

None required.

Recovering or rolling back received queue
messages makes them available to all consumers
on the queue. In previous releases of WebLogic
Server, rolled back messages were only available
to the session that rolled back the message, until
that session was closed.

None required.

Category Description Code Modification
8-6 Programming WebLogic JMS

Existing Feature Functionality Changes
Existing Feature 6.0 to 6.1 Functionality Changes

The following table lists the changes in existing feature functionality from WebLogic
Server 6.0, and also indicates any code changes that might be required as a result. For
additional information pertaining to the JMS Specification’s change history, see
Chapter 11, “Change History,” of Sun Microsystem’s JMS Specification

Category Description Code Modification

Connection
Factories

For the Acknowledge Policy attribute in the
Administration Console, the new default value of
All is a work-around to accommodate a change in
the JMS Specification. This new default setting
represents a change from prior versions of JMS,
which internally defaulted to Previous, and
which did not appear as an option in the
Administration Console.

As the message acknowledge policy for the
connection factory, the Acknowledge Policy
attribute only applies to implementations that use
the CLIENT_ACKNOWLEDGE mode for a
non-transacted session.

! All — acknowledge all messages ever
received by a given session, regardless of
which message calls the acknowledge method.

! Previous — acknowledge all messages
received by a given session, but only up to and
including the message that calls the
acknowledge method.

For more information on message acknowledge
modes, refer to “Non-transacted Session” on page
2-9.

Note: For connection factories used by MDBs
(message-driven beans), always set the
Acknowledge Policy field toPrevious.
Although the default MDB connection
factory already does this, foreign
connection factories may not.

If you want to acknowledge only previously
received messages, up to and including the
message that calls the acknowledge method,
change the default Acknowledge Policy
setting from All to Previous via the JMS
--> Connection Factory --> General tab in the
Administration Console.
Programming WebLogic JMS 8-7

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://java.sun.com/products/jms/docs.html

8 Porting WebLogic JMS Applications
Porting Existing Applications

This release of WebLogic Server supports Sun Microsystem’s JMS Specification. In
order to use your existing JMS applications, you must first confirm your version of
WebLogic server, and then perform the appropriate porting procedures provided in this
section.

! Porting Steps for 4.5 and 5.1 Applications to 6.x

! Porting Steps for 6.0 Applications to 6.1

! Porting Steps for 6.x Applications to 7.0

Before You Begin

Before beginning the porting procedure, you should check the following list to confirm
whether porting is support for your version of WebLogic Server JMS, and to find out
whether special porting rules apply to that release:

! Weblogic Server 4.5.1 — Porting is supported only for SP15. Customers running
all service packs should contact BEA Support.

! Weblogic Server 5.1 — Customers running SP07 or SP08 should contact BEA
Support before porting existing JDBC stores to version 7.0.

Destinations In WLS 6.0, the JMS documentation correctly
specifies values of default, true, and false
for the StoreEnabled attribute of the
JMSDestinationMBean, even though the
software allowed for mixed case characters.
version 6.1 or later, however, requires all
lowercase characters for the StoreEnabled
settings.

None required. This is a configuration
requirement. For more information, see
“JMS Template Tasks” in the Administration
Console Online Help.

Category Description Code Modification
8-8 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jmstemplate_config_general.html
http://java.sun.com/products/jms/docs.html

Porting Existing Applications
" In order to port object messages, the object classes need to be in the
Weblogic Server 7.0 server CLASSPATH.

" For destinations that are not configured in Weblogic Server 7.0, the ported
messages will be dropped and the event will be logged.

! WebLogic Server 6.x — All applications are supported in version 7.0. However,
if you want your applications to take advantage of the new highly available JMS
features, you will need to configure your existing physical destinations (queues
and topics) to be part of a single distributed destination set. For more
information, see “Using Distributed Destinations” in Programming WebLogic
JMS.

Porting Steps for 4.5 and 5.1 Applications to 6.x

Before you can use an existing WebLogic JMS 6.x application, you must port the
WebLogic Server versions 4.5 and 5.1 configuration and message data as follows:

1. Properly shut down the old version of WebLogic Server before beginning the
porting process.

Warning: Abruptly stopping the old version of WebLogic Server while
messaging is still in process may cause problems during porting.
Processing should be inactive before shutting down the old server and
beginning the porting to WebLogic Server 6.x.

2. Upgrade the WebLogic Server environment, as described in Installing WebLogic
Server.

3. Ported configuration information using the configuration conversion facility.

During the configuration porting, the following default queue and topic
connection factories are enabled:

" javax.jms.QueueConnectionFactory

" javax.jms.TopicConnectionFactory

" weblogic.jms.ConnectionFactory

The first two connection factories are deprecated, but they are still defined and
usable for backwards compatibility. For information on the new default
connection factory, see the table “Existing Feature 5.1 to 6.0 Functionality
Changes” on page 8-2.
Programming WebLogic JMS 8-9

http://e-docs.bea.com/wls/docs81b/jms/implement.html#using_distributed_destinations
http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/conversion.html

8 Porting WebLogic JMS Applications
The JMS administrator will need to review the resulting configuration to ensure
that the conversion meets the needs of the application. In this case, all of the
JMS attributes will be mapped to a single node, as in version 5.1.

Note: In versions 6.0 or later, JMS queues are defined during configuration, and
no longer saved within database tables. Message data and durable
subscriptions are stored either in two JDBC tables or via a directory within
the file system.

4. Prepare for automatic porting of existing JDBC database stores.

a. Make a backup of the existing JDBC database.

b. Ensure that the ported configuration information (see step 2) contains a JDBC
database store with exactly the same attributes as the existing store, and that the
new JMS servers that use the store define the same destinations and
corresponding destination attributes as the existing JMS servers.

c. If the new JDBC database store already exists, ensure that it is empty.

The new JDBC database store will be created during the automatic porting, if
required.

d. Ensure that there is twice the amount of disk space required by the JDBC
database store available on the system.

Both the existing and new database information will exist on disk while the
porting is performed, doubling the space requirements. Once porting is
complete, you can delete the old JDBC database stores, as described in
“Deleting JDBC Database Stores” on page 8-12.

5. Update any existing code, as required, to reflect the feature functionality changes
described in “Existing Feature 5.1 to 6.0 Functionality Changes” on page 8-2.

6. Start up the WebLogic Server and the existing JDBC database stores will be
ported automatically.

Note: If the automatic porting fails for any reason, the automatic porting will be
re-attempted the next time the WebLogic Server boots.
8-10 Programming WebLogic JMS

Porting Existing Applications
Porting Steps for 6.0 Applications to 6.1

Before you can use an existing WebLogic JMS 6.x application, you must port the
WebLogic Server 6.0 configuration and message data as follows

1. Check the connection factory configuration for version 6.0. You may need to
modify programs that call the version 6.1 default connection factory so that they
load one of the following connection factories:

" One of the version 6.0 default connection factories.

" A custom connection factory.

2. Properly shut down the version 6.0 WebLogic Server before beginning the
porting process.

Warning: Abruptly stopping the old version of WebLogic Server while
messaging is still in process may cause problems during porting.
Processing should be inactive before shutting down the old server and
beginning the porting to WebLogic Server 6.x.

3. Upgrade the WebLogic Server environment, as described in Installing WebLogic
Server.

4. Update any existing code, as required, to reflect the feature functionality changes
described in “Existing Feature 5.1 to 6.0 Functionality Changes” on page 8-2.

Warning: Before starting the version 6.1 WebLogic Server, you may want to
backup your version 6.0 stores. This is because version 6.0 servers
cannot use 6.1 stores, and any attempts to do so may cause data
corruption.

5. Start the version 6.1 WebLogic Server. This server will continue to use the
previous version 6.0 stores.

Porting Steps for 6.x Applications to 7.0

All WebLogic JMS 6.x applications are supported in version 7.0. However, if you want
your applications to take advantage of the new highly available JMS features, you will
need to configure your existing physical destinations (queues and topics) to be part of
a single distributed destination set.
Programming WebLogic JMS 8-11

http://e-docs.bea.com/wls/docs81b/install/index.html
http://e-docs.bea.com/wls/docs81b/install/index.html

8 Porting WebLogic JMS Applications
For more information on using JMS distributed destinations, see “Using Distributed
Destinations” in Programming WebLogic JMS.

Deleting JDBC Database Stores

Once the porting is complete, the old JDBC database tables should be removed using
the utils.Schema utility, described in detail in Appendix B, “JDBC Database
Utility.”

During porting, a DDL file is generated and stored in the local working directory. The
DDL file is named drop_<jmsServerName>_oldtables.ddl, where
<jmsServerName> specifies the name of the JMS server. To delete the JDBC database
stores, you pass the resulting DDL file as an argument to the utils.Schema utility.

For example, to delete the old JDBC database store from a JMS server named
MyJMSServer, run the following command:

java utils.Schema jdbc:weblogic:oracle weblogic.jdbc.oci.Driver -s
server -u user1 -p foobar -verbose drop_MyJMSServer_oldtables.ddl

For more information on the utils.Schema utility, see Appendix B, “JDBC Database
Utility.”
8-12 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/jms/implement.html#using_distributed_destinations
http://e-docs.bea.com/wls/docs81b/jms/implement.html#using_distributed_destinations

CHAPTER
A Configuration
Checklists

The following sections provide monitoring checklists for various WebLogic JMS
features:

! Server Clusters

! JTA User Transactions

! JMS Transactions

! Message Delivery

! Asynchronous Message Delivery

! Persistent Messages

! Concurrent Message Processing

! Multicasting

! Durable Subscriptions

! Destination Sort Order

! Temporary Destinations

! Thresholds and Quotas

For more information on setting the configuration attributes, see “Configuring JMS”
in the Administration Console Online Help.
Programming WebLogic JMS A-1

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

A Configuration Checklists
Server Clusters

To support server clusters, configure the following:

! WebLogic Server targets under the Targets tab on the Connection Factories node

! WebLogic Server targets under the Targets tab on the JMS Servers node

JTA User Transactions

To support JTA user transactions, configure the following:

! Connection factory JTA user transaction mode by selecting the User
Transactions Enabled check box under the Configuration—Transactions tab on
the Connection Factories node

JMS Transactions

To support JMS transacted sessions, configure the following:

! Connection factory transaction timeout value by setting the Transaction Timeout
attribute under the Configuration—Transactions tab on the Connection Factories
node

! Session pool transaction mode by selecting the Transacted check box under the
Configuration tab on the Session Pools node
A-2 Programming WebLogic JMS

Message Delivery
Message Delivery

To define message delivery attributes, configure the following:

! Connection factory priority, time-to-live, time-to-deliver, and delivery mode
attributes under the Configuration—General tab on the Connection Factories
node

! Destination priority, time-to-live, time-to-deliver, and delivery mode override
attributes under the Configuration—Overrides tab on the Destinations node

! Destination redelivery delay, redelivery limit, and error destination attributes
under the Configuration—Redelivery tab on the Destinations node

Note: These settings can also be set dynamically by the message producer when
sending a message or using the set methods, as described in “Sending
Messages” on page 4-22.

The destination configuration attributes take precedence over all other
settings.

Asynchronous Message Delivery

To define the maximum number of messages that may exist for an asynchronous
session and that have not yet been passed to the message listener, configure the
following:

! Message maximum attribute under the Configuration—General tab on the
Connection Factories node
Programming WebLogic JMS A-3

A Configuration Checklists
Persistent Messages

Note: Topic destinations are persistent if, and only if they have durable
subscriptions. For more information about durable subscriptions, see “Setting
Up Durable Subscriptions” on page 4-57.

To support persistent messaging, configure the following:

! Create a file or JDBC store using the Stores node

! JMS server backing store by setting the Store attribute under the
Configuration—General tab on the JMS Servers node

Note: No two JMS servers can use the same backing store.

! Default message delivery mode by setting one of the following attributes to
PERSISTENT or NON_PERSISTENT:

" Default Delivery Mode attribute under the Configurations—General tab on
the Connection Factories node

" Delivery Mode Override attribute under the Configurations—Overrides tab
on the Destination node

Note: You can also specify persistent as the delivery mode when sending
messages, as described in “Sending Messages” on page 4-22.

Concurrent Message Processing

To support concurrent message processing, configure the following:

! Server session pool attributes under the Configuration tab on the Session Pools
node

! Connection consumer attributes under the Configuration tab on the Connection
Consumers node
A-4 Programming WebLogic JMS

Multicasting
Note: Server session pool factories, used for concurrent message processing, are not
configurable. WebLogic JMS defines one ServerSessionPoolFactory object,
by default: weblogic.jms.ServerSessionPoolFactory:<name>, where
<name> specifies the name of the JMS server on which the session pool is
created. For more information about using server session pool factories, refer
to “Defining Server Session Pools” on page 4-73.

Multicasting

Note: Multicasting applies to topics only.

To configure multicasting on a topic, configure the following:

! Multicast address, multicast port, and multicast time-to-live (TTL) under the
Configuration—Multicast tab on the Destination node

! Maximum number of outstanding messages by setting the Messages Maximum
attribute under the Configuration—General tab on the Connection Factories node

! Overrun policy used when the number of outstanding messages reaches the
Messages Maximum value by setting the Overrun Policy attribute under the
Configuration—General tab on the Connection Factories node

Durable Subscriptions

To support durable subscriptions, optionally configure the following:

! Client identifier (client ID) that can be used for clients with durable
subscriptions by setting the ClientID attribute under the Configuration—General
tab on the Connection Factories node

Note: Alternatively, clients can set the client ID in the connection after the
connection is created, as described in “Setting Up Durable Subscriptions” on
page 4-57.
Programming WebLogic JMS A-5

A Configuration Checklists
Destination Sort Order

To support destination sort order, configure the following:

! Key attributes under the Configuration tab on Destination Keys node

! Destination Keys under Configuration—General tab on Destinations node

Temporary Destinations

To support temporary destinations (queue or topic), configure the following:

! A JMS template for the JMS server (in the same domain) under the
Configuration—General tab on the Templates node

! A JMS template to be used by the JMS server for temporary destinations by
setting the Temporary Template attribute for the JMS server under the
Configuration—General tab on the JMS Servers node

Thresholds and Quotas

To configure thresholds and quotas, configure the following:

! Message and byte thresholds and quotas (maximum number, and high and low
thresholds) under the Configurations—Thresholds tab on the JMS Server node

! Message and byte thresholds and quotas (maximum number, and high and low
thresholds) under the Configurations—Thresholds tab on the Destination node

! Maximum number of sessions that can be retrieved from a session pool by
setting the Sessions Maximum attribute under the Configurations tab on the
Session Pools node
A-6 Programming WebLogic JMS

Thresholds and Quotas
! Maximum number of messages that can be accumulated by a connection
consumer by setting the Messages Maximum attribute under the Configuration
tab of the Consumers node
Programming WebLogic JMS A-7

A Configuration Checklists
A-8 Programming WebLogic JMS

APPENDIX
B JDBC Database Utility

The following sections describe JDBC database stores for WebLogic JMS, and how to
use the JDBC database utility to regenerate existing JDBC database stores:

! “Overview” on page B-1

! “About JMS Tables” on page B-1

! “Regenerating JDBC Database Stores” on page B-2

Overview

The JDBC utils.Schema utility allows you to regenerate new JDBC database stores
by deleting the existing versions. Running this utility is usually not necessary, since
JMS automatically creates these stores for you. However, if your existing JDBC
database stores somehow become corrupted, you can regenerate them using the
utils.Schema utility.

Caution: Use caution when running the utils.Schema command as it will delete
all existing database tables and then recreate new ones.

About JMS Tables

The JMS database contains two system tables that are generated automatically and are
used internally by JMS, as follows:
Programming WebLogic JMS B-1

B JDBC Database Utility
! <prefix>JMSStore

! <prefix>JMSState

The prefix name uniquely identifies JMS tables in the backing store. Specifying unique
prefixes allows multiple stores to exist in the same database. The prefix is configured
via the Administration Console when configuring the JDBC store. A prefix is
prepended to table names when:

! The DBMS requires fully qualified names.

! You must differentiate between JMS tables for two WebLogic servers, enabling
multiple tables to be stored on a single DBMS.

The prefix should be specified using the following format, which will result in a
valid table name when prepended to the JMS table name:

[[catalog.]schema.]prefix

Note: No two JMS stores should be allowed to use the same database tables, as this
will result in data corruption.

For more information on configuring JDBC database stores for WebLogic JMS, see
“JMS JDBC Store Tasks” in the Administration Console Online Help.

Regenerating JDBC Database Stores

The utils.Schema utility is a Java program that takes command line arguments to
specify the following:

! JDBC driver

! Database connection information

! Name of a file containing the SQL Data Definition Language (DDL) commands
(terminated by semicolons) that create the database tables

By convention, the DDL file has a .ddl extension. DDL files are provided for
Pointbase, Cloudscape, Informix, Sybase, Oracle, MS SQL Server, IBM DB2, and
Times Ten databases.
B-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

Regenerating JDBC Database Stores
To execute utils.Schema, your CLASSPATH must contain the weblogic.jar file.

Enter the utils.Schema command, as follows:

java utils.Schema url JDBC_driver [options] DDL_file

The following table lists the utils.Schema command-line arguments.

For example, the following command recreates the JMS tables in an Oracle server
named DEMO, with the username user1 and password foobar:

java utils.Schema jdbc:weblogic:oracle:DEMO \
weblogic.jdbc.oci.Driver -u user1 -p foobar -verbose \
weblogic/jms/ddl/jms_oracle.ddl

Argument Description

url Database connection URL. This value must be a colon-separated
URL as defined by the JDBC specification.

JDBC_driver Full package name of the JDBC Driver class.

options Optional command options.

If required by the database, you can specify:

! The username and password as follows:
-u <username> -p <password>

! The Domain Name Server (DNS) name of the JDBC
database server as follows:
-s <dbserver>

You can also specify the -verbose option, which causes
utils.Schema to echo SQL commands as they are executed.

DDL_file The full pathname of a text file containing the SQL commands
that you wish to execute. An SQL command can span several
lines and is terminated with a semicolon (;). Lines beginning
with pound signs (#) are comments.

The weblogic/jms/ddl directory within the
weblogic.jar file contains JMS DDL files for Pointbase,
Cloudscape, Informix, Sybase, Oracle, MS SQL Server, IBM
DB2, and Times Ten databases. To use a different database,
copy and edit any one of these files.
Programming WebLogic JMS B-3

B JDBC Database Utility
With the Pointbase demo database that is shipped with WebLogic Server, no username
or password is required. However, you must follow this procedure to create the JMS
tables in a Pointbase server:

1. Set the WLS samples environment:

%SAMPLES_HOME%\server\config\examples\setExamplesEnv.cmd

2. Change to the %WL_HOME%\server\lib\directory, and then extract the
jms_pointbase.ddl file from the weblogic.jar file to the current directory.

3. Execute the following command to create the JMS tables:

java utils.Schema jdbc:pointbase:server://localhost/demo
com.pointbase.jdbc.jdbcUniversalDriver
-u examples -p examples -verbose jms_pointbase.ddl

The Pointbase JDBC URL specifies the demo database, which is included with
the WebLogic JMS samples. For the samples, the JMS tables have already been
created in this database.

4. Start the Pointbase server and open the Pointbase console.

For detailed information on using the Pointbase Server console to monitor and
manipulate the JMS tables, see the Pointbase.html file in the
WL_HOME\samples\server\src\examples directory, where WL_HOME is the
top-level directory of your WebLogic Platform installation.
B-4 Programming WebLogic JMS

Index

A
Acknowledge message 4-32
Acknowledge modes 2-9
Anonymous producer 4-25, 4-26
Application development flow

acknowledging received messages 4-32
importing required packages 4-3
receiving messages 4-29
releasing object resources 4-33
sending messages 4-22
setting up 4-4
steps 4-2

Application setup
creating a connection 4-7
creating a session 4-8
creating message consumers 4-11
creating message object 4-13
creating message producers 4-11
example

PTP 4-16
Pub/sub 4-19

looking up connection factory 4-6
looking up destination 4-9
receiving messages asynchronously 4-15
registering asynchronous message

listener 4-15
starting the connection 4-16
steps 4-4

Asynchronous message, receiving 4-15, 4-30

B
Bytes message

creating 4-14

C
Client ID

defining 4-58
displaying 4-59

Close
connection 4-46
session 4-48

Clusters
configuration checklist A-2
configuring 3-7

Concurrent processing 4-73
Configuration

checklists A-1
clustered JMS 3-7
JMS 3-1
migratable targets 3-10

Connection
closing 4-46
creating 4-7
definition of 2-7
exception listener 4-44
managing 4-44
metadata 4-45
starting 4-16, 4-46
stopping 4-46

Connection consumer
Programming WebLogic JMS I-i

definition of 2-22
queue 4-78
topic 4-78

Connection factory
definition of 2-6
looking up 4-6

customer support contact information xv

D
Delivery mode 4-24, 4-25, 4-27
Delivery time

overriding
on destinations 4-40
relative time-to-deliver 4-40
schedule interface 4-42
scheduled time-to-deliver syntax

4-40
scheduling overview 4-38
setting on messages 4-39
setting on producer 4-39

Destination
creating dynamically 4-49
definition of 2-12
deleting dynamically 4-52
looking up 4-9
sort order 4-29
temporary 4-56

Destination, distributed
definition of 2-13

documentation, where to find it xiv
Durable subscription

client ID 4-58
creating 4-60
deleting 4-61
modifying 4-61
setting up 4-57

E
Error destination for undelivered messages

4-36
Error recovery

connection 4-44
session 4-47

Examples
browse queue 4-69
closing resources 4-33
JMS and EJB in JTA user transaction 5-9
message filtering 4-72
multicast session 4-88
receiving messages synchronously

PTP 4-31
Pub/sub 4-31

sending messages
PTP 4-28
Pub/sub 4-28

server session pool
PTP 4-79
Pub/sub 4-81

setting message header field 4-65
setting up

PTP 4-16
Pub/sub 4-19

Exception listener
connection 4-44
session 4-47

Existing feature functionality changes 8-1

F
Failover procedures 3-15
Failure, server 3-15
Filter message

definition 4-70
example 4-72
SQL statement 4-71
XML selector 4-72

H
Header fields
I-ii Programming WebLogic JMS

browsing 4-69
definition of 2-15
displaying 4-63
setting 4-63

J
JDBC store

automatic porting 8-10
database utility B-1

JMS
architecture 1-3

clustering features 1-5
major components 1-4

classes 2-5
configuring 3-1
configuring clusters 3-7
configuring migratable targets 3-10
definition 1-1
existing feature functionality changes

8-1
features 1-3
monitoring 3-14
tuning 3-13

JMS transacted sessions
commiting or rolling back 5-4
configuration checklist A-2
creating 5-4
displaying 5-4
executing operations 5-4

JMSCorrelationID header field
definition of 2-16
displaying 4-63
setting 4-63

JMSDeliveryMode header field
definition of 2-17
displaying 4-63, 4-64

JMSDeliveryTime header field
definition of 2-17
displaying 4-63

JMSDestination header field

definition of 2-17
displaying 4-63

JMSExpiration header field
definition of 2-17

JMSHelper class methods 4-50, 4-52
JMSMessageID header field

definition of 2-18
displaying 4-64

JMSPriority header field
definition of 2-18
displaying 4-64

JMSRedelivered header field
definition of 2-18
displaying 4-64

JMSReplyTo header field
definition of 2-19
displaying 4-64
setting 4-64

JMSTimestamp header field
definition of 2-19
displaying 4-64
setting 4-64

JMSType header field
definition of 2-19
displaying 4-65
setting 4-65

JTA user transaction
committing or rolling back 5-8
configuration checklist A-2
creating non-transacted session 5-7
example 5-9
looking up user transaction in JNDI 5-7
performing desired operations 5-8
starting 5-7

M
Map message

creating 4-14
Message

acknowledging 4-32
Programming WebLogic JMS I-iii

body 2-20
creating object 4-13, 4-22
defining content 4-22
definition 1-1
definition of 2-15
delivery

configuration checklists A-3
mode 4-24, 4-25, 4-27
times, setting 4-38

filtering
definition 4-70
SQL message selector 4-71
XML message selector 4-72

header fields
browsing 4-69
definition of 2-15
displaying 4-63
setting 4-63

managing
rolled back and recovered 4-34

persistence
configuration checklist A-4
definition of 2-4

priority 4-24, 4-25, 4-27
property fields

browsing 4-69
clearing 4-65
conversion chart 4-67
definition of 2-19
displaying 4-65
displaying all 4-67
setting 4-65

receiving
asynchronous 4-15, 4-30
order control 4-29
synchronous 4-30

recovering 4-31
redelivery delay 4-34
redelivery limit 4-36
sending 4-22
server session pools 4-73

setting delivery times 4-38
time-to-deliver 4-27, 4-40
time-to-live 4-24, 4-25, 4-27
types

definition of 2-20
displaying 4-66
setting 4-14, 4-66

Message consumer
creating 4-11
definition of 2-13

Message driven beans 5-9
Message listener, registering 4-15
Message producer

creating 4-11
creating dynamically 4-26
definition of 2-13

Message selector
defining

SQL 4-71
XML 4-72

displaying 4-73
example 4-72

Messaging models
point-to-point 2-2
publish/subscribe 2-3

Metadata, connection 4-45
Migratable targets

configuring 3-10
Monitor JMS 3-14
Multicast session

creating 4-85
creating topic subscriber 4-85
definition 4-83
dynamically configuring 4-87
example 4-88
messages maximum 4-87
overrun policy 4-87
prerequisites 4-84
setting up message listener 4-86
I-iv Programming WebLogic JMS

N
Non-durable subscription 4-58

O
Object message

creating 4-14
Overriding

delivery time
overview 4-40
relative time-to-deliver 4-40
schedule interface 4-42
scheduled time-to-deliver syntax

4-40
redelivery delay 4-35

P
Packages, required 4-3
Persistent message

configuration checklist A-4
definition of 2-4

Point-to-point messaging
definition of 2-2
example

receiving messages synchronously
4-31

sending messages 4-28
server session pool 4-81
setting up application 4-16

Porting procedures 8-8
steps for 4.5 and 5.1 applications to 6.x

8-9
steps for 6.0 applications to 6.1 8-11
steps for 6.x applications to 7.0 8-11

printing product documentation xiv
Priority, message 4-24, 4-25, 4-27
Property fields

browsing 4-69
clearing 4-65
conversion chart 4-67

displaying 4-65
displaying all 4-67
setting 4-65

Publish/subscribe messaging
definition of 2-3
example

receiving messages synchronously
4-31

sending messages 4-28
setting up application 4-19

Q
Queue

creating 4-10
creating dynamically 4-49
definition of 2-12
deleting dynamically 4-52
displaying 4-10, 4-12
temporary

creating 4-57
definition of 2-12
deleting 4-57

Queue connection
creating 4-7
definition of 2-8

Queue connection factory
creating queue connection 4-7
definition of 2-7
looking up 4-6

Queue receiver
creating 4-11
definition of 2-14
receiving messages 4-30

Queue sender
creating 4-11
definition of 2-14
sending message 4-23

Queue session
creating 4-8
definition of 2-9
Programming WebLogic JMS I-v

R
Receive message

asynchronous 4-15, 4-30
order 4-29
synchronous 4-30

Recover from system failure 3-15
Recover message 4-31, 4-34
Redeliver message 4-31
Redelivery delay

overriding on destination 4-35
overview 4-34
setting for messages 4-35

Redelivery limit
configuring error destination 4-36
configuring limit 4-36
overview 4-36

Release object resources 4-33
Request/response, support of 2-16
Resources, releasing 4-33
Rolled back messages

managing 4-34
redelivery delay 4-34
redelivery limit 4-36

S
Send messages 4-22
Server failure recovery 3-15
Server session

definition of 2-22
retrieving 4-77

Server session pool
creating

queue connection consumers 4-76
topic connection consumers 4-77

definition of 2-21
setting up 4-73

Server session pool factory
creating a server session pool 4-76
definition of 2-21
looking up 4-75

Session
acknowledge modes 2-9
closing 4-48
creating 4-8
definition of 2-8
exception listener 4-47
managing 4-47
non-transacted 2-9
transacted 2-11

SQL message selectors 4-71
Start connection 4-16, 4-46
Stop connection 4-46
Stream message

creating 4-14
support

technical xv
Synchronous receive 4-30

T
Temporary destination

configuring server A-6
creating

queue 4-57
topic 4-57

deleting 4-57
Temporary queue

creating 4-57
definition of 2-12
deleting 4-57

Temporary topic
creating 4-57
definition of 2-12
deleting 4-57

Text message
creating 4-14

Time-to-deliver 4-27, 4-43
Time-to-live 4-24, 4-25, 4-27, 4-43
Topic

creating 4-10
creating dynamically 4-49
I-vi Programming WebLogic JMS

definition of 2-12
deleting dynamically 4-52
displaying 4-10, 4-13
displaying NoLocal variable 4-13
JMSHelper class methods 4-50, 4-52
temporary

creating 4-57
definition of 2-12
deleting 4-57

Topic connection
creating 4-7
definition of 2-8

Topic connection factory
creating topic connection 4-7
definition of 2-7
looking up 4-6

Topic publisher
creating 4-12
definition of 2-14
sending messages 4-25

Topic session
creating 4-9
definition of 2-9

Topic subscriber
creating 4-12
definition of 2-14
durable 4-57

Transactions 5-1
JMS transacted sessions. See JMS

transacted sessions
JTA user transaction. See JTA user

transaction
Tuning JMS 3-13

U
utils.Schema utility 8-12, B-1

X
XML message

class 2-20
creating 4-14
selector 4-72
Programming WebLogic JMS I-vii

	Contents
	About This Document
	1. Introduction to WebLogic JMS
	2. WebLogic JMS Fundamentals
	3. Managing WebLogic JMS
	4. Developing a WebLogic JMS Application
	5. Using Transactions with WebLogic JMS
	6. Using WebLogic JMS with EJBs and Servlets
	7. WebLogic JMS Thin Client
	8. Porting WebLogic JMS Applications
	A. Configuration Checklists
	B. JDBC Database Utility

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic JMS
	What Is JMS?
	Figure 1�1 WebLogic JMS Messaging

	Implementation of Java Specifications
	J2EE Specification
	JMS Specification

	WebLogic JMS Features
	WebLogic JMS Architecture
	Figure 1�2 WebLogic JMS Architecture
	Major Components
	Clustering Features

	WebLogic JMS Extensions
	JMS Enhancements in WebLogic Server 8.1
	JMS Thin Client
	Accessing Foreign JMS Providers
	Accessing JMS via Servlets and EJBs
	Better Expired Message Handling
	Improved Message Flow Control by Blocking Producers

	2 WebLogic JMS Fundamentals
	Messaging Models
	Point-to-Point Messaging
	Figure 2�1 Point-to-Point (PTP) Messaging

	Publish/Subscribe Messaging
	Figure 2�2 Publish/Subscribe (Pub/Sub) Messaging

	Message Persistence

	WebLogic JMS Classes
	Table 2�1 WebLogic JMS Classes

	ConnectionFactory
	Notes: For backwards compatibility, WebLogic JMS still supports two deprecated default connection...
	Table 2�2 ConnectionFactory Subclasses

	Connection
	Table 2�3 Connection Subclasses�

	Session
	Table 2�4 Session Subclasses�
	Non-transacted Session
	Table 2�5 Acknowledge Modes Used for Non-Transacted Sessions�

	Transacted Session

	Destination
	Table 2�6 Destination Subclasses�

	Distributed Destination
	MessageProducer and MessageConsumer
	Table 2�7 MessageProducer and MessageConsumer Subclasses�

	Message
	Message Header Fields
	Table 2�8 Message Header Fields�

	Message Property Fields
	Message Body
	Table 2�9 JMS Message Types�

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	3 Managing WebLogic JMS
	Configuring WebLogic JMS
	Starting WebLogic Server and Configuring JMS
	Starting the Default WebLogic Server
	Starting the Administration Console
	Configuring a Basic JMS Implementation
	1. Under the Services node in the left pane, click the JMS node to expand the list.
	2. Optionally, create a File Store for storing persistent messages in a flat file, and/or a Pagin...
	a. Click the Stores node in the left pane, and then click the Configure a new JMS File Store link...
	b. On the General tab, give the store a name, specify a directory, and then click the Create button.
	c. Repeat these steps to create a Paging Store.
	3. Optionally, create a JDBC Store for storing persistent messages in a database:
	a. Click the JDBC node in the left pane to expand it.
	b. Click the Connection Pools node in the left pane, and then click the Configure a new JDBC Conn...
	c. On the Configuration tabs, set the attributes for the connection pool, such as Name, URL, and ...
	d. On the Target and Deploy tab, target an independent WebLogic Server instance or a server clust...
	e. Return to the JMS –> Stores node, and then click the Configure a new JMS JDBC Store link in th...
	f. Give the JDBC Store a name, select a connection pool, and a prefix name. Then click Create.
	4. Optionally, create a JMS Template to define multiple destinations with similar attribute setti...
	a. Click the Templates node in the left pane, and then click the Configure a new JMS Template lin...
	b. On the General tab, give the template a name, and then click Create.
	c. Fill in the Thresholds & Quotas, Override, Expiration Policy, and Redelivery tabs, as appropri...
	5. Configure a JMS Server, as follows:
	a. Click the Server node in the left pane, and then click the Configure a new JMS Server link in ...
	b. On the General tab, give the server a name, select a Store if you created one, select a Paging...
	c. Fill in the Thresholds & Quotas tab, as appropriate. Click Apply when you’re done making changes.
	d. On the Target and Deploy tab, target an independent WebLogic Server instance or a Migratable T...
	6. Create the JMS Destinations, which are queues (Point-To-Point) or topics (Pub/Sub):
	a. Under the Servers node in the left pane, click your new JMS server instance to expand the list...
	b. Click either the Configure a new JMS Queue or Configure a new JMS Topic link in the right pane.
	c. On the General tab, give the destination a name and a JNDI name. Fill in the other attributes,...
	d. Fill in the Thresholds & Quotas, Override, Redelivery, Expiration Policy, and Multicast (for t...
	7. Create a Connection Factory to enable your JMS clients to create JMS connections:
	a. Click to the expand the Connection Factory node and in the left pane, and then click the Confi...
	b. On the General tab, give the connection factory a name and a JNDI name. Fill in the other attr...
	c. Fill in the Transactions and Flow Control tabs, as appropriate. Click Apply on each tab when y...
	d. On the Target and Deploy tab, target an independent WebLogic Server instance or a server clust...
	8. Optionally, use the Destination Keys node to define the sort order of messages that arrive on ...
	9. Optionally, use the Distributed Destinations node to make your physical destinations part of a...
	10. Optionally, create JMS Session Pools, which enable your applications to process messages conc...

	Configuring WebLogic JMS Clustering
	How JMS Clustering Works
	JMS Clustering Requirements
	JMS Distributed Destination within a Cluster
	JMS as a Migratable Service within a Cluster

	Configuration Steps
	1. Administer WebLogic clusters as described in “Configuring WebLogic Servers and Clusters” in Us...
	2. Identify server targets for JMS servers and for connection factories using the Administration ...
	3. Optionally, you can configure your physical destinations as part of a single distributed desti...

	What About Failover?

	Configuring JMS Migratable Targets
	How JMS Migration Works
	Table 3�1 WebLogic JMS Migration Process

	Configuration Steps
	1. Administer WebLogic clusters as described in “Configuring WebLogic Servers and Clusters” in th...
	2. Configure a migratable target for the cluster as described in “Server -> Control -> JMS Migrat...
	3. Identify a migratable target server on which to deploy a JMS server as described in “JMS Serve...
	4. For implementations that use persistent messaging, make sure that the persistent store is conf...
	5. The administrator can manually migrate services before performing server maintenance or to a h...
	Persistent Store Migration
	Migration Failover

	Tuning WebLogic JMS
	Monitoring WebLogic JMS
	Recovering from a WebLogic Server Failure
	Programming Considerations
	Migrating JMS Data to a New Server
	Table 3�2 Migration Task Guide

	4 Developing a WebLogic JMS Application
	Application Development Flow
	Figure 4�1 WebLogic JMS Application Development Flow—Required Steps

	Importing Required Packages
	Table 4�1 WebLogic JMS Packages�

	Setting Up a JMS Application
	Figure 4�2 Setting Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Create a Queue Connection
	Create a Topic Connection

	Step 3: Create a Session Using the Connection
	Create a Queue Session
	Create a Topic Session

	Step 4: Look Up a Destination (Queue or Topic)
	Server Affinity When Looking Up Destinations

	Step 5: Create Message Producers and Message Consumers Using the Session and Destinations
	Create QueueSenders and QueueReceivers
	Create TopicPublishers and TopicSubscribers

	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
	1. Implement the javax.jms.MessageListener interface, which includes an onMessage() method.
	2. Set the message listener using the following MessageConsumer method, passing the listener info...
	3. Optionally, implement an exception listener on the session to catch exceptions, as described i...

	Step 7: Start the Connection
	Example: Setting Up a PTP Application
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Example: Setting Up a Pub/Sub Application
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Sending Messages
	1. Create a message object.
	2. Define a message.
	3. Send the message to a destination.
	Step 1: Create a Message Object
	Step 2: Define a Message
	Step 3: Send the Message to a Destination
	Send a Message Using Queue Sender
	Send a Message Using TopicPublisher

	Dynamically Configuring Message Producer Configuration Attributes
	Table 4�2 Message Producer Set and Get Methods�

	Example: Sending Messages Within a PTP Application
	Example: Sending Messages Within a Pub/Sub Application

	Receiving Messages
	Receiving Messages Asynchronously
	Receiving Messages Synchronously
	Example: Receiving Messages Synchronously Within a PTP Application
	Example: Receiving Messages Synchronously Within a Pub/Sub Application

	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources
	Managing Rolled Back or Recovered Messages
	Setting a Redelivery Delay for Messages
	Setting a Redelivery Delay
	Overriding the Redelivery Delay on a Destination

	Setting a Redelivery Limit for Messages
	Configuring a Message Redelivery Limit
	Configuring an Error Destination for Undelivered Messages

	Ordered Redelivery of Rolled Back Messages
	Single Consumer
	Sort Order
	Selection
	Message Pipeline Size
	Performance Requirements

	Setting Message Delivery Times
	Setting a Delivery Time on Producers
	Setting a Delivery Time on Messages
	Overriding a Delivery Time
	Setting a Relative Time-to-Deliver Override
	Setting a Scheduled Time-to-Deliver Override
	Table 4�3 Example Time-to-Deliver Schedules�

	JMS Schedule Interface

	Interaction with the Time-to-Live Value

	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Metadata
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Creating Destinations Dynamically
	Using the JMSHelper Class Methods

	Deleting Destinations Dynamically
	Preconditions for Deleting Destinations
	Using the JMSHelper Class Methods
	Semantics When Deleting Destinations
	Producer, Consumer, and Browser Creation
	CLosing of Consumers
	Closing of Browsers
	Closing of Enumerations
	Cancelled Blocking Send Operations
	Affected Transactions
	Physical Deletion of Existing Messages
	Timestamps for Troubleshooting Deleted Destinations

	Statistics

	Using Temporary Destinations
	Creating a Temporary Queue
	Creating a Temporary Topic
	Deleting a Temporary Destination

	Setting Up Durable Subscriptions
	Defining the Client ID
	Creating Subscribers for a Durable Subscription
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions
	1. Optionally, delete the durable subscription, as described in “Deleting Durable Subscriptions” ...
	2. Use the methods described in “Creating Subscribers for a Durable Subscription” on page 4�60 to...

	Managing Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Table 4�4 Message Property Set and Get Methods for Data Types�
	Table 4�5 Message Property Conversion Chart�

	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors

	Defining Server Session Pools
	Figure 4�3 Server Session Pool Facility
	1. Gets a server session from the server session pool.
	2. Gets the server session’s session.
	3. Loads the session with one or more messages.
	4. Starts the server session to consume messages.
	5. Releases the server session back to pool when finished processing messages.

	Figure 4�4 Preparing for Concurrent Message Processing
	Step 1: Look Up Server Session Pool Factory in JNDI
	Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	Create a Server Session Pool for Queue Connection Consumers
	Create a Server Session Pool for Topic Connection Consumers

	Step 3: Create a Connection Consumer
	Create a Connection Consumer for Queues
	Create a Connection Consumer for Topics

	Example: Setting Up a PTP Client Server Session Pool
	Step 1
	Step 2
	Step 3

	Example: Setting Up a Pub/Sub Client Server Session Pool
	Step 1
	Step 2
	Step 3

	Using Multicasting
	Figure 4�5 Setting Up Multicasting
	Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Figure 4�6 Multicasting Sequence Gap

	Dynamically Configuring Multicasting Configuration Attributes
	Table 4�6 Message Producer Set and Get Methods�

	Example: Multicast TTL
	Figure 4�7 Multicast TTL Example

	Using Distributed Destinations
	Accessing Distributed Destinations
	Looking Up Distributed Queues
	QueueSenders
	QueueReceivers
	QueueBrowsers

	Looking Up Distributed Topics
	Deploying Message-Drive Beans on a Distributed Topic
	TopicPublishers
	TopicSubscribers

	Accessing Distributed Destination Members
	Load Balancing Messages Across a Distributed Destination
	Load Balancing Options
	Round-Robin Distribution
	Random Distribution

	Consumer Load Balancing
	Producer Load Balancing
	Load Balancing Heuristics
	Transaction Affinity
	Server Affinity
	Queues with Zero Consumers

	Defeating Load Balancing
	JNDI Lookup
	CreateQueue() and CreateTopic()
	Connection Factories

	Distributed Destination Migration
	Distributed Destination Failover

	5 Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Figure 5�1 Setting Up and Using a JMS Transacted Session
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Figure 5�2 Setting Up and Using a JTA User Transaction
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	6 Using WebLogic JMS with EJBs and Servlets
	Overview
	J2EE Support for WebLogic JMS
	Referencing a JMS Connection Factory
	Referencing a JMS Destination
	Sending a Message
	Under the Covers
	Automatically Enlisting Transactions
	Container-Managed Security
	Connection Testing
	J2EE Compliance
	Pooled Session Objects

	Improving Performance
	Speeding Up JNDI Lookups
	Speeding Up Object Creation
	Using the Right Transaction Mode

	Foreign JMS Provider Support
	Examples of JMS Wrapper Functions
	ejb-jar.xml
	weblogic-ejb-jar.xml
	PoolTestCMP.java
	PoolTestCMPHome.java
	PoolTestCMPBean.java

	7 WebLogic JMS Thin Client
	Overview
	Benefits of Using the JMS Thin Client
	Limitations of Using the JMS Thin Client
	Deploying the JMS Thin Client

	8 Porting WebLogic JMS Applications
	Existing Feature Functionality Changes
	Existing Feature 5.1 to 6.0 Functionality Changes
	Existing Feature 6.0 to 6.1 Functionality Changes

	Porting Existing Applications
	Before You Begin
	Porting Steps for 4.5 and 5.1 Applications to 6.x
	Porting Steps for 6.0 Applications to 6.1
	Porting Steps for 6.x Applications to 7.0

	Deleting JDBC Database Stores

	A Configuration Checklists
	Server Clusters
	JTA User Transactions
	JMS Transactions
	Message Delivery
	Asynchronous Message Delivery
	Persistent Messages
	Concurrent Message Processing
	Multicasting
	Durable Subscriptions
	Destination Sort Order
	Temporary Destinations
	Thresholds and Quotas

	B JDBC Database Utility
	Overview
	About JMS Tables
	Regenerating JDBC Database Stores
	1. Set the WLS samples environment:
	2. Change to the %WL_HOME%\server\lib\directory, and then extract the jms_pointbase.ddl file from...
	3. Execute the following command to create the JMS tables:
	4. Start the Pointbase server and open the Pointbase console.

	Index

