
BEA
 WebLogic
Server™

Programming WebLogic
Management Services
with JMX
Release 8.1 Beta
Revised: August 23, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Management Services with JMX

Part Number Document Revised Software Version

N/A August 23, 2002 BEA WebLogic Server
Version 8.1 Beta

Contents

About This Document
Audience.. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Overview of WebLogic JMX Services
WebLogic Server Managed Resources and MBeans .. 1-2

Basic Organization of a WebLogic Server Domain................................... 1-3

MBeans for Configuring Managed Resources ... 1-4

Replicating Configuration MBeans .. 1-5

The Lifecycle of Configuration MBeans .. 1-8

Replication of MBeans for Managed Server Independence 1-11

Documentation for Configuration MBean APIs 1-11

MBeans for Viewing the Runtime State of Managed Resources............. 1-12

Documentation for Runtime MBean APIs.. 1-14

Security MBeans .. 1-15

Non-WebLogic Server MBeans ... 1-16

MBean Servers and the MBeanHome Interface.. 1-16

Local MBeanHome and the Administration MBeanHome...................... 1-18

Notifications and Monitoring .. 1-20

The Administration Console and the weblogic.Admin Utility........................ 1-20

The Administration Console .. 1-21

The weblogic.Admin Utility .. 1-23
Programming WebLogic Management Services with JMX iii

2. Accessing WebLogic Server MBeans
Main Steps for Accessing MBeans.. 2-2

Determining Which Interfaces to Use ... 2-2

Accessing an MBeanHome Interface .. 2-4

Using the Helper APIs to Retrieve an MBeanHome Interface................... 2-4

Example: Retrieving a Local MBeanHome Interface 2-5

Using JNDI to Retrieve an MBeanHome Interface.................................... 2-5

Example: Retrieving the Administration MBeanHome from an External
Client .. 2-7

Example: Retrieving a Local MBeanHome from an Internal Client .. 2-9

Using the MBeanServer Interface to Access MBeans..................................... 2-10

Using the Type-Safe Interface to Access MBeans .. 2-12

Retrieving a List of All MBeans .. 2-12

Retrieving MBeans By Type and Selecting From the List....................... 2-13

WebLogicObjectNames for WebLogic Server MBeans 2-16

Using weblogic.Admin to Find the WebLogicObjectName 2-19

3. Accessing and Changing Configuration Information
Example: Using weblogic.Admin to Configure the Message Level for Standard

Out .. 3-3

Example: Using MBeanServer to Configure the Message Level for Standard Out
3-4

Example: Using the Type-Safe Interface to Retrieve Information About a JMS
Configuration.. 3-6

4. Using WebLogic Server MBean Notifications
WebLogic Server Notification Types.. 4-2

WebLogic Server Log Notifications ... 4-2

Listening for Notifications: Main Steps .. 4-3

Creating a Notification Listener ... 4-4

Registering a Notification Listener .. 4-6

5. Accessing Runtime Information
Determining the Active Domain and Servers.. 5-2

Using weblogic.Admin to Determine Active Domains and Servers.......... 5-4
iv Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server
Instance... 5-5

Using a Local MBeanHome and getRuntimeMBean() 5-6

Using the Administration MBeanHome and getMBeansByType() 5-9

Using the Administration MBeanHome and getMBean()........................ 5-11

Using the MBeanServer Interface .. 5-14

Example: Viewing Runtime Information About Clusters 5-16

6. Monitoring WebLogic Server MBeans
Creating a Notification Listener .. 6-2

Choosing a WebLogic Server Monitor Type .. 6-3

Instantiating the Monitor and Listener .. 6-5

Main Steps for Instantiating a Monitor and Listener 6-5

Example: Instantiating a CounterMonitor for a Remote Application 6-7

Configuring CounterMonitor Objects .. 6-9

Configuring GaugeMonitor Objects... 6-11

Configuring StringMonitor Objects ... 6-12

Notification Types ... 6-13

Error Notification Types .. 6-14

Sample Monitoring Scenarios ... 6-14

JDBC Monitoring... 6-15
Programming WebLogic Management Services with JMX v

vi Programming WebLogic Management Services with JMX

About This Document

This document describes how to use the BEA WebLogic Server™ management APIs
to configure and monitor WebLogic Server domains, clusters, and server instances.

The document is organized as follows:

! Chapter 1, “Overview of WebLogic JMX Services,” which describes the
WebLogic Server management interface and provides overviews of WebLogic
Server MBeans, MBean home interfaces, and the distributed management
architecture.

! Chapter 2, “Accessing WebLogic Server MBeans,” which describes how to
access WebLogic Server MBeans from a client application.

! Chapter 3, “Accessing and Changing Configuration Information,” which
provides examples for retrieving and modifying the configuration of WebLogic
Server resources.

! Chapter 4, “Using WebLogic Server MBean Notifications,” which describes how
to listen and respond to WebLogic Server MBean notifications in a client
application.

! Chapter 5, “Accessing Runtime Information,” which provides examples for
retrieving and modifying runtime information about WebLogic Server domains
and server instances.

! Chapter 6, “Monitoring WebLogic Server MBeans,” which describes how to
monitor WebLogic Server MBean attributes from a monitor MBean.

Note: The WebLogic Security Service provides MBeans and tools for generating
additional MBeans that manage security on a WebLogic Server. These
MBeans are called Security MBeans and their usage model is different from
the one described in this document. For information on Security MBeans, refer
to the Developing Security Services for WebLogic Server guide.
Programming WebLogic Management Services with JMX vii

http://e-docs.bea.com/wls/docs81b/dvspisec/index.html

Audience

This document is written for independent software vendors (ISVs) and other
developers who are interested in creating custom applications that use BEA WebLogic
Server facilities to monitor and configure applications and server instances. It assumes
that you are familiar with the BEA WebLogic Server platform and the Java
programming language, but not necessarily with Java Management Extensions (JMX).

While the document describes how to access and use the Managed Beans (MBeans)
that WebLogic Server provides, it does not describe how to create your own, additional
MBeans. For information about creating and using MBeans in addition to the ones that
WebLogic Server provides, refer to the JMX 1.0 specification, which you can
download from http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following BEA WebLogic Server documentation contains information that is relevant
to understanding how to use the WebLogic Server management services.

! BEA WebLogic Server Documentation (available online):

" Administration Guide

" Programming Guides

" WebLogic Server API

! The Sun Microsystems, Inc. Java site at http://java.sun.com/

! The JMX 1.0 specification and API documentation at
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address
Programming WebLogic Management Services with JMX ix

http://e-docs.bea.com/wls/docs81b/adminguide/index.html
http://e-docs.bea.com/wls/docs81b/programming.html
http://e-docs.bea.com/wls/docs81b/javadocs/index.html
http://java.sun.com/
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
mailto:docsupport@bea.com
http://www.bea.com

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
x Programming WebLogic Management Services with JMX

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Programming WebLogic Management Services with JMX xi

xii Programming WebLogic Management Services with JMX

CHAPTER
1 Overview of WebLogic
JMX Services

To provide open and extensible management services, WebLogic Server implements
the Sun Microsystems, Inc. Java Management Extensions (JMX) 1.0 specification. All
WebLogic Server resources are managed through these JMX-based services, and
third-party services and applications that run within WebLogic Server can be managed
through them as well.

The WebLogic Server Administration Console and the weblogic.Admin utility use
WebLogic JMX APIs to implement their management services. You can also use these
APIs to build your own, specialized management utilities. For example, you can build
a management utility that uses JMX APIs to monitor your application’s use of JDBC
connection pools. If usage falls outside a set of allowable parameters, your utility can
use the APIs to adjust the size or configuration of the connection pools. Your utility
could also include code that sends an email to alert a system administrator of the
configuration change.

WebLogic Server implements the JMX 1.0 specification and adds its own set of
convenience methods and other extensions to take advantage of the WebLogic Server
distributed environment. This topic provides an overview of the WebLogic Server
JMX services:

! “WebLogic Server Managed Resources and MBeans” on page 1-2

! “MBean Servers and the MBeanHome Interface” on page 1-16

! “Notifications and Monitoring” on page 1-20

! “The Administration Console and the weblogic.Admin Utility” on page 1-20
Programming WebLogic Management Services with JMX 1-1

1 Overview of WebLogic JMX Services
To view the JMX 1.0 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The API
documentation is included in the archive that you download.

WebLogic Server Managed Resources and
MBeans

Subsystems within WebLogic Server (such as JMS Provider and JDBC Container) and
the items that they control (such as JMS servers and JDBC connection pools) are called
WebLogic Server managed resources. Each managed resource includes a set of
attributes that can be configured and monitored for management purposes. For
example, each JDBC connection pool includes attributes that define its name, the name
of its driver, its initial capacity, and its cache size. Some managed resources provide
additional methods (operations) that can be used for management purposes. The
WebLogic JMX services expose these management attributes and operations through
one or more managed beans (MBeans). An MBean is a concrete Java class that is
developed per JMX specifications. It can provide getter and setter operations for each
management attribute within a managed resource along with additional management
operations that the resource makes available. (See Figure 1-1.)

Figure 1-1 Managed Resources and Managed Beans

WebLogic Server

Managed Resource

*1

ManagementAttribute-A

ManagementOperation-A

ManagementAttribute-B

Managed Bean

getManagementAttribute-A

ManagementOperation-A

getManagementAttribute-B

setManagementAttribute-A

setManagementAttribute-B
1-2 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

WebLogic Server Managed Resources and MBeans
WebLogic Server MBeans that expose attributes and operations for configuration a
managed resource are called Configuration MBeans while MBeans that provide
information about the runtime state of a managed resource are called Runtime
MBeans. The functions of configuring resources and viewing data about the runtime
state of resources are sufficiently different in a WebLogic Server domain that
Configuration MBeans and Runtime MBeans are distributed and maintained
differently.

This section contains the following subsections:

! “Basic Organization of a WebLogic Server Domain” on page 1-3

! “MBeans for Configuring Managed Resources” on page 4

! “MBeans for Viewing the Runtime State of Managed Resources” on page 1-12

! “Security MBeans” on page 1-15

! “Non-WebLogic Server MBeans” on page 1-16

Basic Organization of a WebLogic Server Domain

A WebLogic Server administration domain is a logically related group of WebLogic
Server resources. Domains include a special WebLogic Server instance called the
Administration Server, which is the central point from which you configure and
manage all resources in the domain. Usually, you configure a domain to include
additional WebLogic Server instances called Managed Servers. You deploy
applications, EJBs, and other resources that you develop onto the Managed Servers
and use the Administration Server for configuration and management purposes only.

Using multiple Managed Servers enables you to balance loads and provide failover
protection for critical applications, while using single Administration Server simplifies
the management of the Managed Server instances. For more information about
domains, refer to "Overview of WebLogic System Administration" in the WebLogic
Server Administration Guide.
Programming WebLogic Management Services with JMX 1-3

http://e-docs.bea.com/wls/docs81b/adminguide/overview.html

1 Overview of WebLogic JMX Services
MBeans for Configuring Managed Resources

To support the WebLogic Server model of centralizing management responsibilities
on the Administration Server, the Administration Server hosts Configuration MBeans
for all managed resources on all server instances in the domain. In addition, the
Administration Server saves changes to configuration data so that it is available when
you shutdown and restart a server instance.
1-4 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
This section contains the following subsections:

! “Replicating Configuration MBeans” on page 1-5

! “The Lifecycle of Configuration MBeans” on page 1-8

! “Replication of MBeans for Managed Server Independence” on page 1-11

! “Documentation for Configuration MBean APIs” on page 1-11

Replicating Configuration MBeans

To enhance performance and enable flexibility when configuring distributed
resources, each Managed Server creates local replicas of the Configuration MBeans
for its own managed resources. Objects that interact with MBeans (MBean clients) use
the replicas on the local server instead of initiating remote calls to the Administration
Server. (See Figure 1-2.)
Programming WebLogic Management Services with JMX 1-5

1 Overview of WebLogic JMX Services
Figure 1-2 MBean Replication

The Configuration MBeans on the Administration Server are called Administration
MBeans, and the replicas on the Managed Servers are called Local Configuration
MBeans.

In addition to enhancing performance, this distribution of MBeans enables you to
choose between making permanent or temporary changes to a server’s configuration:

! Changes that you make to an Administration MBean are saved in a configuration
file called config.xml and are available across server sessions. You can change
an Administration MBean through the Administration Console, the
weblogic.Admin command utility, or by using one of the MBean’s setter
methods.

! Changes that you make to a Local Configuration MBean are not saved to
config.xml and apply only to the current server session. You can change a
Local Configuration MBean through the weblogic.Admin command utility, by
using one of the MBean’s setter methods, or by using options of the

Administration Server

MBean

MBean

MBean

Managed
Resources
Managed
Resources
MBean
Client

Managed Servers
replicate the Configuration

MBean clients
use the local replicas.

Managed Server B

Managed Server A

MBean

Managed
Resources
Managed
Resources
MBean
Client

The Administration Server
hosts Configuration MBeans
for all servers in a domain.

MBeans.
1-6 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
weblogic.Server startup command. The weblogic.Server options modify
the values in the Local Configuration MBean, overriding the values from the
Administration MBean. You cannot use the Administration Console to view or
modify Local Configuration MBeans.

While the Administration Server always hosts Administration MBeans, it can
potentially host Local Configuration MBeans as well. For example, if you set up
managed resources on the Administration Server, it must host both the Administration
MBeans for all server instances in the domain along with the Local Configuration
MBeans associated with the resource. MBean clients on the Administration Server use
the Local Configuration MBean. (See Figure 1-3.)

Figure 1-3 Local Configuration MBean on Administration Server

Administration Server

MBean MBean

MBean

Managed
Resources
Managed
Resources
MBean
Client

Managed Server B

Managed Server A

MBean

Managed
Resources
Managed
Resources
MBean
Client

MBean

Managed
Resources
Managed
Resources
MBean
Client

MBean

Local Configuration
MBean

Administration
MBean
Programming WebLogic Management Services with JMX 1-7

1 Overview of WebLogic JMX Services
The Lifecycle of Configuration MBeans

This section describes how Administration MBeans and Local Configuration MBeans
are initialized, how changes to configuration data is propagated throughout the
WebLogic Server system, and how attribute values can be changed so that they are
available when you restart server instances:

1. The lifecycle of a Configuration MBean begins when you start the Administration
Server. During its startup cycle, the Administration Server initializes all the
Administration MBeans for the domain with data from the domain’s config.xml
file. (See Figure 1-4.)

Figure 1-4 Initializing Configuration MBeans

The Administration Server reads data from the config.xml file only during its
startup cycle.

2. When a Managed Server starts, it contacts the Administration Server for its
configuration data. By default, it creates replicas of the Administration MBeans
that configure its local resources. However, you can use arguments in the server’s
startup command to override values of the Administration MBeans.

For example, for Managed Server A, the config.xml file states that its listen
port is 8000. When you use the weblogic.Server command to start Managed
Server A, you include the -Dweblogic.ListenPort=7501 startup option to
change the listen port for the current server session. The Managed Server creates
a replica of the Administration MBeans, but substitutes 7501 as the value of its

Administration Server

<Server

ListenPort="7001"
Name="examplesServer"

>

<?xml version="1.0"
encoding="UTF-8"?>

<Domain>

</Domain>

config.xml

ServerMBean

getListenPort
getName

setListenPort
setName

Name="examplesServer"

</Server>

ListenPort="7001"
1-8 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
listen port. When you restart Managed Server A, it will revert to using the value
from the config.xml file, 8000. (See Figure 1-5.)

Figure 1-5 Overriding Administration MBean Values

Administration Server

MBean

Managed
Resources
Managed
Resources
MBean
Client

2. At startup, Managed Servers
replicate the Administration

Managed Server B

Managed Server A

MBean

config.xml

1. At startup, the Administration
Server initializes Administration
MBeans with data from the
config.xml file.

MBeans.

weblogic.Server
-Dweblogic.ListenPort=7501

Startup options override
the values from the
Administration MBeans.

weblogic.ListenPort=8000

Administration MBean

weblogic.ListenPort=7501

Local Configuration MBean

Managed
Resources
Managed
Resources
MBean
Client
Programming WebLogic Management Services with JMX 1-9

1 Overview of WebLogic JMX Services
When you start an Administration Server, any startup command arguments that
you use to override the values in config.xml affect only the values of the Local
Configuration MBeans on the Administration Server. The command arguments
do not affect the values of the Administration MBeans and therefore do not
affect subsequent server sessions. (See Figure 1-6.)

Figure 1-6 Overriding Values on the Administration Server

3. If you change a value in an Administration MBean, and if the corresponding
Managed Server is running, the Administration Server propagates the change to
the Local Configuration MBean. Depending on the attribute, the underlying
resource might not be able to accept the new value until it restarts. The WebLogic
Server Javadoc indicates whether a managed resource can accept new values for
an attribute during the current session. Even if a managed resource can accept
new values, depending on the frequency with which the resource checks for
configuration changes, the resource might not use the updated value immediately.

Administration Server

weblogic.Server
-Dweblogic.ListenPort=7501

Startup options for
Administration Server
affect only the Local
Configuration MBeans
on the Administration Server

MBean

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBean

MBean

MBean

MBean

Administration
MBean
1-10 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
4. Periodically, the Administration Server determines whether Administration
MBeans have been changed and writes any changes back to config.xml.
Changes also are written to config.xml when the Administration Server shuts
down or when MBean attributes are modified by a WebLogic Server utility such
as the Administration Console or weblogic.Admin.

5. Local Configuration MBeans are destroyed when you shut down Managed
Servers. Administration MBeans are destroyed when you shut down the
Administration Server.

Replication of MBeans for Managed Server Independence

Managed Server Independence (MSI) is a feature that enables a Managed Server to
start if the Administration Server is unavailable. If a Managed Server is configured for
MSI, in addition to its Local Configuration MBeans, it also contains a copy of all
Administration MBeans for the domain.

Do not interact with these Administration MBeans on a Managed Server. They reflect
the last known configuration for the domain and are used only for starting the Managed
Server in MSI mode. Modifying an Administration MBean on a Managed Server can
cause the Managed Server’s configuration to be inconsistent with the Administration
Server, which will lead to unpredictable results. In addition, Managed Servers are not
aware of the Administration MBeans on other Managed Servers.

For more information on MSI, refer to "Starting a Managed Server When the
Administration Server Is Not Accessible" in the Configuring and Managing WebLogic
Server guide.

Documentation for Configuration MBean APIs

To view the documentation for Configuration MBeans, do the following:

1. Open the WebLogic Server Javadoc.

2. In the top left pane of the Web browser, click
weblogic.management.configuration.

The lower left pane displays links for the package.
Programming WebLogic Management Services with JMX 1-11

http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs81b/adminguide/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs81b/javadocs/index.html

1 Overview of WebLogic JMX Services
3. In the lower left pane, click weblogic.management.configuration again.

The right pane displays the package summary. (See Figure 1-7.)

Figure 1-7 Javadoc for the configuration Package

4. Click on an interface name to view its API documentation.

MBeans for Viewing the Runtime State of Managed
Resources

WebLogic Server managed resources provide performance metrics and other
information about their runtime state through one or more Runtime MBeans. Runtime
MBeans are not replicated like Configuration MBeans, and they exist only on the same
server instance as their underlying managed resources.

Because Runtime MBeans contain only transient data, they do not save their data in
the config.xml file. When you shut down a server instance, all runtime statistics and
metrics from the Runtime MBeans are destroyed.
1-12 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
The following figure (Figure 1-8) illustrates how Runtime MBeans, Administration
MBeans, and Local Configuration MBeans are distributed throughout a domain.

Figure 1-8 Distribution of MBeans

Administration Server

Managed
Resources
Managed
Resources
MBean
Client

Managed Server B
Managed Server A

Runtime MBean

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBean

Runtime MBean

Local Configuration
MBean

Administration
MBean

Administration
MBean

Administration
MBean

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBean

Runtime MBean
Programming WebLogic Management Services with JMX 1-13

1 Overview of WebLogic JMX Services
You can use the Administration Console, the weblogic.Admin utility, or MBean APIs
to view the values. (See Figure 1-9.)

Figure 1-9 Viewing Runtime Metrics from the Administration Console

You can also use these interfaces to change some runtime values. For example, the
weblogic.management.runtime.DeployerRuntimeMBean activates and
deactivates a deployed module by changing its runtime state.

Documentation for Runtime MBean APIs

To view the documentation for Runtime MBeans, do the following:

1. Open the WebLogic Server Javadoc.

2. In the top left pane of the Web browser, click weblogic.management.runtime.

The lower left pane displays links for the package.
1-14 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

WebLogic Server Managed Resources and MBeans
3. In the lower left pane, click weblogic.management.runtime again.

The right pane displays the package summary. (See Figure 1-10.)

Figure 1-10 Javadoc for the runtime Package

4. Click on an interface name to view its API documentation.

Security MBeans

The WebLogic Security Service provides MBeans and tools for generating additional
MBeans that manage security on a WebLogic Server. These MBeans are called
Security MBeans and their usage model is different from the one described in this
document. For information on Security MBeans, refer to the Developing Security
Services for WebLogic Server guide.
Programming WebLogic Management Services with JMX 1-15

http://e-docs.bea.com/wls/docs81b/dvspisec/index.html
http://e-docs.bea.com/wls/docs81b/dvspisec/index.html

1 Overview of WebLogic JMX Services
Non-WebLogic Server MBeans

WebLogic Server provides hundreds of MBeans, many of which are used to configure
and monitor EJBs, Web applications, and other deployable J2EE modules. If you want
to use additional MBeans to configure your applications or services, you can create
your own MBeans.

Any MBeans that you create can take advantage of the full set of JMX 1.0 features, as
defined by the JMX specification (which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html).

However, only MBeans that are provided by WebLogic Server can use the WebLogic
Server extensions to JMX. For example, any MBeans that you create for your
applications cannot save data in the config.xml file and they cannot use the type-safe
interface as described in the next section, “MBean Servers and the MBeanHome
Interface.”

MBean Servers and the MBeanHome
Interface

Within a WebLogic Server instance, the actual work of registering and providing
access to MBeans is delegated to an MBean Server subsystem. The MBean Server on
a Managed Server registers and provides access only to the Local Configuration
MBeans and Runtime MBeans on the current Managed Server. The MBean Server on
an Administration Server registers and provides access to the domain’s Administration
MBeans as well as the Local Configuration MBeans and Runtime MBeans on the
Administration Server.

Note: On a Managed Server that is configured for MSI, the MBean Server also
registers the Administration MBean replicas that the server uses to start if the
Administration Server is not available. Do not interact with these
Administration MBean replicas. For more information, refer to “Replication
of MBeans for Managed Server Independence” on page 1-11.
1-16 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

MBean Servers and the MBeanHome Interface
To access the MBean Server subsystem, you use the
weblogic.management.MBeanHome interface. From MBeanHome, you can use any of
the following interfaces to interact with the MBean Server and its MBeans (see
Figure 1-11):

! javax.management.MBeanServer, which is the standard JMX interface for
interacting with MBeans. You can use this interface to look up MBeans that are
registered in an MBean Server, determine the set of operations available for an
MBean, and determine the type of data that each operation returns. If you invoke
MBean operations through the MBeanServer interface, you must use standard
JMX methods. For example:

" MBeanHome.getMBeanServer.getAttribute(MBeanObjectName,

attributeName)

" MBeanHome.getMBeanServer.setAttribute(MBeanObjectName,

attributeName)

" MBeanHome.getMBeanServer.invoke(MBeanObjectName,

operationName, params, signature)

For a complete list of MBeanServer APIs, refer to view the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive
that you download includes the API documentation.

The MBeanServer interface is your only option for interacting with MBeans that
you have created and registered (non-WebLogic MBeans).

! A WebLogic Server type-safe interface that makes it appear as though you can
invoke an MBean’s methods directly. You can use this interface to look up
MBeans that are registered in an MBean Server and invoke get, set, and other
operations on the MBean. For example:

wlMBean = MBeanHome.getMBean(WebLogicObjectName)
wlMBean.getAttribute
wlMBean.setAttribute

wlMBean.operationName
Programming WebLogic Management Services with JMX 1-17

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

1 Overview of WebLogic JMX Services
Figure 1-11 MBeans Servers and Their Interfaces

Local MBeanHome and the Administration MBeanHome

All instances of WebLogic Server provide a local MBeanHome interface through which
you can access the MBeans that are hosted in the server instance’s MBean Server.

For Managed Servers and Administration Servers, the local MBeanHome interface
provides access to the Local Configuration MBeans and Runtime MBeans for the
current server only.

The Administration Server provides an additional instance of the MBeanHome
interface. This Administration MBeanHome provides access to Administration
MBeans along with all other MBeans on all server instances in the domain. While the
Administration MBeanHome provides a single access point for all MBeans in the
domain, you must sort through the lookup results to find an MBean for a specific
WebLogic Server instance. In addition, it uses RMI to contact MBeans on Managed
Servers, which uses more network resources and might take longer than using a local
MBeanServer or MBeanHome interface. (See Figure 1-12.)

WebLogic Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
1-18 Programming WebLogic Management Services with JMX

MBean Servers and the MBeanHome Interface
Figure 1-12 Local and Administration MBeanHome Interfaces

The local MBeanHome and the Administration MBeanHome are two instances of the
same interface class, so the APIs for the two types of MBeanHome differ only in the
name of the MBeanHome instance and in the set of MBeans that you can access.

MBeanHome
Administration

Administration Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Local

Managed Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Local

Type-Safe

MBeanServer

Administration
MBeans

Local Configuration
MBeans

Runtime MBeans

Local Configuration
MBeans

Runtime MBeans
Programming WebLogic Management Services with JMX 1-19

1 Overview of WebLogic JMX Services
Notifications and Monitoring

Depending on your management needs, you can use MBean APIs to view MBean
attributes only upon request, or you can use the WebLogic Server notification and
monitoring facilities, which automatically broadcast reports (JMX notifications) when
MBean attributes change.

To use these facilities, you can do the following:

! Create a JMX listener, which listens for and reports all attribute changes within
an MBean that you specify. For example, you could use a listener with some
additional logic to send an email to a System Administrator any time a user
changes the configuration of a deployed component. For information about using
listeners, refer to Chapter 4, “Using WebLogic Server MBean Notifications.”

! Create a JMX monitor, which listens for and reports only the changes to specific
MBean attributes that fall outside a set of parameters that you set. For example,
you could use a monitor with some additional logic to send an email to a System
Administrator when the number of open thread pools exceeds a specified limit.
For more information, refer to Chapter 6, “Monitoring WebLogic Server
MBeans.”

The Administration Console and the
weblogic.Admin Utility

Even if you are developing applications to use the WebLogic Server JMX
implementation, you will probably use the WebLogic Server Administration Console
and the weblogic.Admin utility for some management tasks. In some cases, you
might use these interfaces to familiarize yourself with some area of WebLogic Server
management services before developing your JMX applications.
1-20 Programming WebLogic Management Services with JMX

The Administration Console and the weblogic.Admin Utility
This section contains the following subsections:

! “The Administration Console” on page 1-21

! “The weblogic.Admin Utility” on page 1-23

The Administration Console

The Administration Console is a Web application with servlets that invoke the
WebLogic Server JMX APIs. Almost all of the values that the Administration Console
presents are attributes of Administration MBeans and Runtime MBeans. Because the
Administration Console does not read or write Local Configuration MBeans, it is
possible that it reports a value that a server instance is not currently using. For example,
if you use a weblogic.Server startup option to override the configured listen port,
the Administration Console reports the value that is in the config.xml file, not the
overriding value.
Programming WebLogic Management Services with JMX 1-21

1 Overview of WebLogic JMX Services
To determine which MBean attribute the Administration Console is presenting, click
the question mark next to a field. A help window displays the associated MBean class,
attribute, and Javadoc description. (See Figure 1-13.)

Figure 1-13 Viewing MBean Associations from the Administration Console

The caution icon (yellow triangle with an exclamation point) indicates that an attribute
is not dynamic. If you modify such an attribute, the underlying managed resource
cannot use the new value until you restart the server.

If you modify a dynamic value from the Administration Console (such as Startup
Mode in Figure 1-13), the console updates the corresponding Administration MBean
For information on how this change is propagated to the Local Configuration MBean,
refer to “The Lifecycle of Configuration MBeans” on page 1-8.
1-22 Programming WebLogic Management Services with JMX

The Administration Console and the weblogic.Admin Utility
The weblogic.Admin Utility

The weblogic.Admin utility provides several commands that create, get and set
values for, invoke operations on, and delete instances of Administration and
Configuration MBeans. It also provides commands to get values and invoke operations
on Runtime MBeans. You could create shell scripts that use this utility instead of
creating JMX applications to programmatically interact with the WebLogic Server
management services, however, the performance of a JMX application is superior to a
shell script that invoke command-line utilities.

You can also use the weblogic.Admin utility to verify object names of MBeans and
to get and set attributes from a command line before committing to writing JMX code.
Subsequent sections in this document provide examples of using the weblogic.Admin
utility as part of your JMX development.

For more information, refer to "MBean Management Command Reference" in the
WebLogic Server Command Line Reference.
Programming WebLogic Management Services with JMX 1-23

http://e-docs.bea.com/wls/docs81b/admin_ref/cli.html#MBean_Management_Command_Reference

1 Overview of WebLogic JMX Services
1-24 Programming WebLogic Management Services with JMX

CHAPTER
2 Accessing WebLogic
Server MBeans

All JMX tasks—viewing or changing MBean attributes, using notifications, and
monitoring changes—use the same process for accessing MBeans.

This topic contains the following sections:

! “Main Steps for Accessing MBeans” on page 2-2

! “Determining Which Interfaces to Use” on page 2-2

! “Accessing an MBeanHome Interface” on page 2-4

! “Using the MBeanServer Interface to Access MBeans” on page 2-10

! “Using the Type-Safe Interface to Access MBeans” on page 2-12

! “WebLogicObjectNames for WebLogic Server MBeans” on page 2-16
Programming WebLogic Management Services with JMX 2-1

2 Accessing WebLogic Server MBeans
Main Steps for Accessing MBeans

The main steps for accessing MBeans in WebLogic Server are as follows:

1. Use a weblogic.management.MBeanHome interface to access the MBean Server.

You can use the local MBeanHome interface from any instance of WebLogic
Server to access the MBeans that are registered and active on the current server
instance. If you want access to all MBeans in the domain, you can use the
Administration MBeanHome interface on the Administration Server instead of the
local MBeanHome interface.

2. Use one of the following interfaces to retrieve, look up, and invoke operations on
MBeans:

" The standard JMX javax.management.MBeanServer interface, which can
retrieve and invoke operations on WebLogic Server MBeans or on MBeans
that you create.

" A type-safe interface that WebLogic Server provides. This interface, which is
a WebLogic Server extension to JMX, can retrieve and invoke operations
only on the MBeans that WebLogic Server provides.

In most cases, you use these interfaces to retrieve a list of MBeans and then
filter the list to retrieve and invoke operations on a specific MBean. However, if
you know the WebLogicObjectName of an MBean, you can retrieve an MBean
directly by name.

Determining Which Interfaces to Use

When accessing MBeans, you must make two choices about which interfaces you use:

1. Whether to use the MBeanHome interface on a local server instance or the
Administration MBeanHome to access the MBean Server. The MBeanHome interface
that you choose determines the set of MBeans you can access.

The following table lists typical considerations for determining whether to use
the local MBeanHome interface or the Administration MBeanHome interface.
2-2 Programming WebLogic Management Services with JMX

Determining Which Interfaces to Use
2. Whether to use the standard JMX MBeanServer interface or the WebLogic
Server type-safe interface to access and invoke operations on MBeans.

The following table lists typical considerations for determining whether to use
the MBeanServer interface or the type-safe interface.

If your application manages... Retrieve this MBeanHome interface...

Administration MBeans Administration MBeanHome

Multiple WebLogic Server instances
in a domain

Administration MBeanHome

A single WebLogic Server instance in
a domain

Local MBeanHome

Using the local interface saves you the trouble of
filtering MBeans to find those that apply to the single
server. Using the local interface also uses fewer
network hops to access MBeans, because you are
connecting directly to the Managed Server.

If your application... Use this interface...

Interacts only with WebLogic Server
MBeans.

The WebLogic Server type-safe interface

Might need to run on J2EE platforms
other than WebLogic Server

MBeanServer

Interacts with non-WebLogic Server
MBeans

MBeanServer
Programming WebLogic Management Services with JMX 2-3

2 Accessing WebLogic Server MBeans
Accessing an MBeanHome Interface

The simplest process for retrieving a local MBeanHome interface or an Administration
MBeanHome interface is to use the WebLogic Server Helper class. If you are more
comfortable with a standard J2EE approach, you can use the Java Naming and
Directory Interface (JNDI) to retrieve MBeanHome.

This section contains the following subsections:

! Using the Helper APIs to Retrieve an MBeanHome Interface

! Using JNDI to Retrieve an MBeanHome Interface

Using the Helper APIs to Retrieve an MBeanHome
Interface

WebLogic Server provides the weblogic.management.Helper APIs to simplify the
process of retrieving MBeanHome interfaces.

To use the Helper APIs, collect the following information:

! The username and password of a user who has permission to invoke MBean
operations.

! If you are accessing a local MBeanHome interface, the name of the target server
(as defined in the domain configuration) and the URL of the target server.

! If you are accessing the Administration MBeanHome, the URL of the
Administration Server.

After you collect the information, use one of the following APIs:

! To retrieve a local MBeanHome:
Helper.getMBeanHome(java.lang.String user, java.lang.String
password, java.lang.String serverURL, java.lang.String

serverName)
2-4 Programming WebLogic Management Services with JMX

Accessing an MBeanHome Interface
! To retrieve the Administration MBeanHome:
Helper.getAdminMBeanHome(java.lang.String user,

java.lang.String password, java.lang.String adminServerURL)

For more information about the APIs, refer to the Helper Javadoc.

Example: Retrieving a Local MBeanHome Interface

The following example (Listing 2-1) is a class that uses the Helper API to obtain the
local MBeanHome interface for a server named peach.

Listing 2-1 Retrieving a Local MBeanHome Interface

public void find(String host,
int port,

String username
String password){

String url = "t3://" + host +
":" + port;

try {
localHome = (MBeanHome)Helper.getMBeanHome(username,

password,
url,
"peach");

System.out.println("Local MBeanHome " +
"found using the Helper class");

} catch (IllegalArgumentException iae) {
System.out.println("Illegal Argument Exception: " + iae);

}
}

Using JNDI to Retrieve an MBeanHome Interface

While the Helper APIs provide a simple way to obtain an MBeanHome interface, you
might be more familiar with the standard approach of using JNDI to retrieve the
MBeanHome. From the JNDI tree of a Managed Server, you can access the server’s
Programming WebLogic Management Services with JMX 2-5

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/Helper.html

2 Accessing WebLogic Server MBeans
local MBeanHome interface. From the JNDI tree of the Administration Server, you can
access the Administration MBeanHome as well as the local MBeanHome interface for any
server instance in the domain.

To use JNDI to retrieve an MBeanHome interface, do the following:

1. Use weblogic.jndi.Environment methods to set an initial context.

If your application and the MBeanHome that you want to retrieve are running in
the same JVM, the following API is sufficient for setting an initial context:
Environment.getInitialContext()

If your application and the MBeanHome are in different JVMs, you must use
Environment methods to set the initial context with the following properties:

" The URL of the WebLogic Server instance that hosts the MBeanHome you
want to retrieve.

" The username and password of a user who has permission to access the
MBean.

For example, the following lines of code set the initial context to a host named
peach:

Environment env = new Environment();
env.setProviderUrl("t3://peach:7001");
env.setSecurityPrincipal("weblogic");
env.setSecurityCredentials("weblogic");
Context ctx = env.getInitialContext();

For more information about weblogic.jndi.Environment, refer to the
WebLogic Server Javadoc.

2. Use javax.naming.Context.lookup(String name) to retrieve the
MBeanHome interface.

Supply one of the following values for the name argument depending on which
MBeanHome interface you are retrieving:

" To retrieve the local MBeanHome for the current context, use the following
value:
MBeanHome.LOCAL_JNDI_NAME

" If the current context is an Administration Server, you can supply the
following value to retrieve the local MBeanHome of any server instance in the
domain:
weblogic.management.home.relevantServerName
2-6 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/jndi/Environment.html

Accessing an MBeanHome Interface
where relevantServerName is the name of a server as defined in the
domain configuration.

" If the current context is an Administration Server, you can supply the
following value to retrieve the Administration MBeanHome:
MBeanHome.ADMIN_JNDI_NAME

The Administration MBeanHome interface provides access to all Local
Configuration, Administration, and Runtime MBeans in the domain.

For more information about
javax.naming.Context.lookup(String name), refer to the JNDI
Javadoc.

The following sections provide examples for retrieving MBeanHome interfaces:

! Example: Retrieving the Administration MBeanHome from an External Client

! Example: Retrieving a Local MBeanHome from an Internal Client

Example: Retrieving the Administration MBeanHome from an External Client

The following example (Listing 2-2) shows how an application running in a separate
JVM would look up the Administration MBeanHome interface. In the example,
weblogic is a user who has permission to view and modify MBean attributes. For
information about permissions to view and modify MBeans, refer to "Protecting
System Administration Operations" in the WebLogic Server Administration Guide.

Listing 2-2 Retrieving the Administration MBeanHome from an External Client

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.AuthenticationException;
import javax.naming.CommunicationException;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;

...

public static void main(String[] args) {

MBeanHome home = null;
Programming WebLogic Management Services with JMX 2-7

http://java.sun.com/j2se/1.3/docs/api/javax/naming/Context.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/Context.html
http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html

2 Accessing WebLogic Server MBeans
//domain variables
String url = "t3://localhost:7001";

String username = "weblogic";
String password = "weblogic";

//Setting an initial context.
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Retrieving the Administration MBeanHome interface
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the Admin

server");

} catch (Exception e) {
System.out.println("Exception caught: " + e);
}

2-8 Programming WebLogic Management Services with JMX

Accessing an MBeanHome Interface
Example: Retrieving a Local MBeanHome from an Internal Client

If your client application resides in the same JVM as the Administration Server (or the
WebLogic Server instance you want to manage), the JNDI lookup for the MBeanHome
is simpler. Listing 2-3 shows how a servlet running in the same JVM as the
Administration Server would look up the local MBeanHome for a server instance named
melon.

Listing 2-3 Retrieving a Local MBeanHome from an Internal Client

import java.io.PrintWriter;
import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import weblogic.logging.NonCatalogLogger;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import javax.naming.Context;

public class MyServlet extends HttpServlet {

public void findInternal() {
Environment env = new Environment();

try {

//Setting the initial context
ctx = env.getInitialContext();

//Retrieving the server-specific MBeanHome interface
home = (MBeanHome)ctx.lookup(weblogic.management.home.melon);
System.out.println("Got the Server-specific MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);
}

}

Programming WebLogic Management Services with JMX 2-9

2 Accessing WebLogic Server MBeans
Using the MBeanServer Interface to Access
MBeans

A standard JMX approach for interacting with MBeans is to use the
javax.management.MBeanServer interface to look up MBeans that are within the
scope of the MBeanHome interface. Then you use the MBeanServer interface to get or
set MBean attributes or to invoke MBean operations.

The example class in Listing 2-4 uses JNDI to retrieve the Administration MBeanHome
interface. Then it retrieves the MBeanServer interface and uses a query to look up all
instances of JDBCConnectionPoolMBean in the domain.

For the complete list of MBeanServer methods, refer to the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

Listing 2-4 Using the MBeanServer Interface

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.AuthenticationException;
import javax.naming.CommunicationException;
import javax.naming.NamingException;
import javax.management.MBeanServer;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.RemoteMBeanServer;

...

public static void main(String[] args) {

MBeanHome home = null;
RemoteMBeanServer homeServer = null;

//domain variables
String url = "t3://localhost:7001";

String username = "weblogic";
String password = "weblogic";
2-10 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using the MBeanServer Interface to Access MBeans
//Setting an initial context.
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Retrieving the Administration MBeanHome interface
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the Admin

server");

} catch (Exception e) {
System.out.println("Exception caught: " + e);

//Retrieving the MBeanServer interface
homeServer = home.getMBeanServer();

//Retrieving a list of MBeans with object names that include
//"JDBCConnectionPool"
java.util.Set JDBCMBeans = homeServer.queryNames(new

ObjectName("mydomain:Type=JDBCConnectionPool,*"), query);
//where "query" could be any object that implements the JMX
//javax.managementQueryExp

for (Iterator itr = JDBCMBeans.iterator(); itr.hasNext();) {
WebLogicMBean mbean = (WebLogicMBean)itr.next();
System.out.println("Matches to the MBean query:" + mbean);

}
}

Programming WebLogic Management Services with JMX 2-11

2 Accessing WebLogic Server MBeans
Using the Type-Safe Interface to Access
MBeans

A simpler approach for accessing MBeans is to use methods of the MBeanHome
interface. These methods look up WebLogic Server MBeans and return a type-safe
interface that you can use to get and set attributes and invoke MBean operations.

This section contains the following subsections:

! “Retrieving a List of All MBeans” on page 2-12

! “Retrieving MBeans By Type and Selecting From the List” on page 2-13

Retrieving a List of All MBeans

You can use the MBeanHome.getAllMBeans method to look up the object names of
MBeans that are within the scope of the MBeanHome interface that you retrieve. For
example, if you retrieve the Administrative MBeanHome, using getAllMBeans()

returns a list of all MBeans in the domain.
2-12 Programming WebLogic Management Services with JMX

Using the Type-Safe Interface to Access MBeans
The example code in Listing 2-5 retrieves all MBeans in the domain. It then uses
weblogic.management.WebLogicMBean.getName() to retrieve the Name value of
the WebLogicObjectName.

Listing 2-5 Retrieving All MBeans in a Domain

public void displayMBeans() {

Set allMBeans = home.getAllMBeans();
System.out.println("Size: " + allMBeans.size());
for (Iterator itr = allMBeans.iterator(); itr.hasNext();) {

WebLogicMBean mbean = (WebLogicMBean)itr.next();
WebLogicObjectName objectName = mbean.getObjectName();
System.out.println(objectName.getName() +

" is a(n) " +
mbean.getType());

}
}

For more information about the MBeanHome.getAllMBeans method, refer to
WebLogic Server Javadoc.

Retrieving MBeans By Type and Selecting From the List

Instead of retrieving a list of all MBeans in the scope of MBeanHome, you can retrieve
only the list of MBeans that match a specific type. Type indicates the type of resource
that the MBean manages and whether the MBean is an Administration, Local
Configuration, or Runtime MBean. For more information about types of MBeans, refer
to the next section, “WebLogicObjectNames for WebLogic Server MBeans” on page
2-16.
Programming WebLogic Management Services with JMX 2-13

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/MBeanHome.html

2 Accessing WebLogic Server MBeans
The example class in Listing 2-6 retrieves a list of all ServerRuntime MBeans in a
domain, and then iterates through the list to select the ServerRuntime for a server
named Server1.

Listing 2-6 Selecting from a List of MBeans

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo3 {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

ServerRuntimeMBean serverRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;

//Setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);

} catch (Exception e) {
2-14 Programming WebLogic Management Services with JMX

Using the Type-Safe Interface to Access MBeans
System.out.println("Exception caught: " + e);
}

/* Here we use the getMBeansByType method to get the set of ServerRuntime mbeans
* Then we iterate through the set. We retrieve the ServerRuntimeMbean we are
* interested in by comparing the name to the name of the server.
*/

try {
mbeanSet = home.getMBeansByType("ServerRuntime");
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
if(serverRuntime.getName().equals(serverName)) {
System.out.println("we have got the serverRuntimembean: " + serverRuntime +
" for: " + serverName);

}
}

For more information about the MBeanHome.getMBeansByType method, refer to
WebLogic Server Javadoc.
Programming WebLogic Management Services with JMX 2-15

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/MBeanHome.html

2 Accessing WebLogic Server MBeans
WebLogicObjectNames for WebLogic Server
MBeans

Each WebLogic Server MBean is registered in the MBean Server under a name that
conforms to the weblogic.management.WebLogicObjectName conventions. If you
know the WebLogicObjectName of an MBean, after you retrieve an MBeanHome

interface, you can retrieve an MBean directly by name.

The MBean’s WebLogicObjectName uses the following conventions to provide a
unique identification for a given MBean across all domains:

domain:Name=name,Type=type[,attr=value]...

The following table describes each name component.

This Component Specifies

domain The name of the WebLogic Server administration domain.

Name=name The string that you provided when you created the associated resource. For
example, when you create a JDBC connection pool, you must provide a
name for that pool, such as MyPool1. The JDBCConnectionPoolMBean
that represents MyPool1 uses Name=MyPool1 in its JMX object name.

The WebLogicObjectName.getName method returns this value for any
given MBean.
2-16 Programming WebLogic Management Services with JMX

WebLogicObjectNames for WebLogic Server MBeans
Type=type Refers to the interface class of which the MBean is an instance. All WebLogic
Server MBeans are an instance of one of the interface classes defined in the
weblogic.management.configuration or
weblogic.management.runtime packages. For Configuration MBeans, type
also refers to whether an instance is an Administration MBean or a Local
Configuration MBean. For a complete list of all WebLogic Server MBean interface
classes, refer to the WebLogic Server Javadoc for the
weblogic.management.configuration or
weblogic.management.runtime packages.

To determine the value that you provide for the Type component, do the following:

1. Find the MBean’s interface class and remove the MBean suffix from the class
name. For example, for an MBean that is an instance of the
weblogic.management.runtime.JDBCConnectionPoolRuntimeM
Bean, use JDBCConnectionPoolRuntime.

2. For a Local Configuration MBean, append Config to the name. For
example, for a Local Configuration MBean that is an instance of the
weblogic.management.configuration.JDBCConnectionPoolMB

ean interface class, use JDBCConnectionPoolConfig. For the
corresponding Administration MBean instance, use
JDBCConnectionPool.

Location=servername All Runtime and Local Configuration MBeans include a Location
component that specifies the name of the server on which that MBean is
located. Administration MBeans do not include this component.

For example, for the ServletRuntime MBean that runs on a server named
myserver, the WebLogicObjectName includes the following components:

mydomain:Name=myServlet,Type=ServletRuntime,Location=myse
rver

The WebLogicObjectName.getLocation method returns this value for any
given MBean.

This Component Specifies
Programming WebLogic Management Services with JMX 2-17

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

2 Accessing WebLogic Server MBeans
TypeOfParentMBean=
NameOfParentMBean

Runtime, Local Configuration, or Administration MBeans that have a child
relationship with a parent MBean use this extra attribute in their object names to
identify the relationship.

Note: With the exception of DomainMBean, all MBeans are direct or indirect
children of the domain’s DomainMBean. Because this parent-child
relationship applies to all MBeans, it is not expressed in
WebLogicObjectName.

For example, an instance of LogMBean is used by a domain to configure the
domain-wide log file. Each WebLogic Server instance also maintains its own
instance of LogMBean to configure its server-specific log file. The LogMBean that
a domain uses does not express a child relationship, while the LogMBean that a
server instance uses expresses its child relationship with the server’s
ServerMBean. (See Figure 2-1.)

To express the name of the Administration LogMBean that examplesServer
uses to maintain its log file, use the following name:

examples:Name=examplesServer,Server=examplesServer,Type=L
og

To express the name of the Local Configuration LogMBean that
examplesServer uses to maintain its log file, use the following name:

examples:Location=examplesServer,Name=examplesServer,Serv
erConfig=examplesServer,Type=LogConfig

By convention, WebLogic Server child MBeans use the same value for the Name
component as the parent MBean. For example, the LogMBean that is a child of the
examplesServer Server MBean uses Name=examplesServer in its
WebLogicObjectName. WebLogic Server cannot follow this convention when a
parent MBean has multiple children of the same type.

To determine whether the WebLogicObjectName of an MBean expresses a
parent-child relations, use the WebLogicObjectName.getParent method or
the weblogic.Admin GET command.

This Component Specifies
2-18 Programming WebLogic Management Services with JMX

WebLogicObjectNames for WebLogic Server MBeans
Figure 2-1 Parent-Child Relation of LogMBean Instances

Using weblogic.Admin to Find the WebLogicObjectName

If you are unsure which values to supply for an MBean’s WebLogicObjectName, you
can use the weblogic.Admin utility to find the WebLogicObjectName. The utility can
return information only for WebLogic Server MBeans that are on an active server
instance.

Administration Server

Administration LogMBean Administration ServerMBean

Administration LogMBean

examples:Name=examplesServer,
Server=examplesServer,Type=Log

examples:Name=examplesServer,
Type=Server

examples:Name=examples,
Type=Log

examples:Name=examples,
Type=Domain

Administration DomainMBean

Implied
relationship

Expressed
relationship
Programming WebLogic Management Services with JMX 2-19

2 Accessing WebLogic Server MBeans
For example, to find the WebLogicObjectName for the Administration instance of the
LogMBean in the examples domain, enter the following command on the
examplesServerAdministration Server, where the Administration Server is listening
on port 8001 and weblogic is the name and password of a user who has permission to
view MBean attributes:

java weblogic.Admin -url http://localhost:8001 -username weblogic

-password weblogic GET -pretty -type Log

The command returns the output in Listing 2-7. Notice that the command returns two
MBeans of type Log on the Administration Server. The first MBean,
examples:Name=examplesServer,Server=examplesServer,Type=Log, has a
child relationship with the ServerMBean of examplesServer; this relationship
indicates that the MBean is the LogMBean that configures the server-specific log file.
The second MBean, examples:Name=examples,Type=Log, has no child
relationship, which indicates that it configures the domain-wide log file.

Listing 2-7 Output from weblogic.Admin

MBeanName:
"examples:Name=examplesServer,Server=examplesServer,Type=Log"

CachingDisabled: true
FileCount: 7
FileMinSize: 500
FileName: examplesServer\examplesServer.log
FileTimeSpan: 24
Name: examplesServer
Notes:
NumberOfFilesLimited: false
ObjectName: examplesServer
Registered: false
RotationTime: 00:00
RotationType: none
Type: Log

MBeanName: "examples:Name=examples,Type=Log"

CachingDisabled: true
FileCount: 7
FileMinSize: 500
FileName: ./logs/wl-domain.log
FileTimeSpan: 24
Name: examples
Notes:
2-20 Programming WebLogic Management Services with JMX

WebLogicObjectNames for WebLogic Server MBeans
NumberOfFilesLimited: false
ObjectName: examples
Registered: false
RotationTime: 00:00
RotationType: none
Type: Log
Programming WebLogic Management Services with JMX 2-21

2 Accessing WebLogic Server MBeans
To view the Local Configuration MBean instances of LogMBean, append Config to
the value of the type argument:

java weblogic.Admin -url http://localhost:8001 -username weblogic

-password weblogic GET -pretty -type LogConfig

The command returns output in Listing 2-8. Notice that the WebLogicObjectName of
the Local Configuration MBeans includes a Location component.

Listing 2-8 Local Configuration MBeans

MBeanName:
"examples:Location=examplesServer,Name=examplesServer,ServerConfi
g=examplesServer,Type=LogConfig"

CachingDisabled: true
FileCount: 7
FileMinSize: 500
FileName: examplesServer\examplesServer.log
FileTimeSpan: 24
Name: examplesServer
Notes:
NumberOfFilesLimited: false
ObjectName: examplesServer
Registered: false
RotationTime: 00:00
RotationType: none
Type: LogConfig

MBeanName:
"examples:Location=examplesServer,Name=examples,Type=LogConfig"

CachingDisabled: true
FileCount: 7
FileMinSize: 500
FileName: ./logs/wl-domain.log
FileTimeSpan: 24
Name: examples
Notes:
NumberOfFilesLimited: false
ObjectName: examples
Registered: false
RotationTime: 00:00
RotationType: none
Type: LogConfig
2-22 Programming WebLogic Management Services with JMX

CHAPTER
3 Accessing and
Changing
Configuration
Information

WebLogic Server managed resources are configured from the values in Local
Configuration MBeans, which are replicas of the Administration MBeans on the
Administration Server.

If you want to programmatically view or change the configuration data for managed
resources, you must first use the MBeanServer interface or the WebLogic Server
type-safe interface to retrieve Local Configuration MBeans or Administration
MBeans. Then you use APIs in the weblogic.management.configuration
package to view or change the configuration data. For information about viewing the
API documentation, refer to “Documentation for Configuration MBean APIs” on page
1-11.

Note: The values in the Local Configuration MBeans can differ from the
Administration MBeans if you use a startup option to override the
Administration MBean values, or if you use an API to change values in a Local
Configuration MBean directly. For more information about the distribution of
configuration data in a WebLogic Server domain, refer to “WebLogic Server
Managed Resources and MBeans” on page 1-2.
Programming WebLogic Management Services with JMX 3-1

3 Accessing and Changing Configuration Information
This topic provides examples for programmatically retrieving and modifying the
configuration of WebLogic Server resources using the weblogic.Admin utility, the
JMX MBeanServer APIs, and the WebLogic Server type-safe interface:

! “Example: Using weblogic.Admin to Configure the Message Level for Standard
Out” on page 3-3

! “Example: Using MBeanServer to Configure the Message Level for Standard
Out” on page 3-4

! “Example: Using the Type-Safe Interface to Retrieve Information About a JMS
Configuration” on page 3-6
3-2 Programming WebLogic Management Services with JMX

Example: Using weblogic.Admin to Configure the Message Level for Standard Out
Example: Using weblogic.Admin to
Configure the Message Level for Standard
Out

This example uses weblogic.Admin to find the WebLogicObjectName of the Local
Configuration MBean instance of
weblogic.management.configuration.ServerMBean. Then it sets the level of
messages that a server instance named peach sends to standard out. Because it sets the
value of a Local Configuration MBean, the updated value applies only to the current
server session.

Listing 3-1 Configuring the Message Level

C:\myWLDomains\mydomain>java weblogic.Admin -url http://peach:8001 -username
weblogic -password weblogic GET -pretty -type ServerConfig

MBeanName: "mydomain:Location=peach,Name=peach,Type=ServerConfig"

AcceptBacklog: 50
AdministrationPort: 0

...

StdoutDebugEnabled: false
StdoutEnabled: true
StdoutFormat: standard
StdoutLogStack: true
StdoutSeverityLevel: 16

C:\myWLDomains\mydomain>java weblogic.Admin -url http://peach:8001 -username
weblogic -password weblogic SET -mbean
mydomain:Location=peach,Name=peach,Type=ServerConfig
-property StdoutSeverityLevel 64

Ok

The weblogic.Admin utility returns the string Ok to indicate that the SET command
succeeded.
Programming WebLogic Management Services with JMX 3-3

3 Accessing and Changing Configuration Information
Example: Using MBeanServer to Configure
the Message Level for Standard Out

The class in this example uses the Local Configuration MBean instance of
weblogic.management.configuration.ServerMBean to temporarily change the
level of messages that a server instance named peach sends to standard out. It uses the
standard JMX MBeanServer interface to change the ServerMBean configuration.

The class as written runs on the Administration Server and uses the Administration
MBeanHome to retrieve the Local Configuration MBean for peach, but you could
modify it to run on a local server and use the local server’s MBeanHome to retrieve
ServerMBean.

Instead of retrieving a list of all MBeans and then filtering the list to find the local
ServerMBean for a specific server instance, this example uses the MBean naming
conventions to construct the WebLogicObjectName for the ServerMBean. For more
information about naming conventions, refer to “WebLogicObjectNames for
WebLogic Server MBeans” on page 2-16.

In the example, weblogic is a user who has permission to view attributes of the
ServerMBean. For information about permissions to view and modify MBeans, refer
to "Protecting System Administration Operations" in the WebLogic Server
Administration Guide.

Listing 3-2 Configuring EJB Deployment Descriptors

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import javax.management.MBeanServer;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;

public class changeStandardOut {
3-4 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html

Example: Using MBeanServer to Configure the Message Level for Standard Out
public static void main(String[] args) {

MBeanHome home = null;
MBeanServer homeServer = null;

//domain variables
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

//setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

// Constructing a WebLogicObjectName for the local ServerMBean
// that is associated with the server instance named peach.

String mbeanName = "examples:Location=peach,Name=peach,Type=ServerConfig";
WebLogicObjectName objName = new WebLogicObjectName(mbeanName);

// Retrieving the MBeanServer interface.
homeServer = home.getMBeanServer();

// Using MBeanServer to set the value of the StdoutSeverityLevel attribute
homeServer.setAttribute(mbeanName,StdoutSeverityLevel,64);

// Providing feedback that operation succeeded.
System.out.println("Changed standard out severity level to: " +
homeServer.getAttribute(mbeanName,StdoutSeverityLevel));

} catch (Exception e) {
System.out.println("Caught exception: " + e);
}

}
}

Programming WebLogic Management Services with JMX 3-5

3 Accessing and Changing Configuration Information
Example: Using the Type-Safe Interface to
Retrieve Information About a JMS
Configuration

The example in this section collects all the JMS-related configuration information in a
domain. To retrieve JMS-related Administration MBeans, it uses the
getMBeansByType method of the Administration MBeanHome.

You could add more functionality to this program by using the get and set methods of
the JMS-related Administration MBeans that the program retrieves.

Listing 3-3 Retrieving Information About a JMS Configuration

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;

public class getJMSInfo {

public static void main(String[] args) {

MBeanHome home = null;
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
WebLogicMBean bean = null;

//setting the initial context
try {
Environment env = new Environment();
3-6 Programming WebLogic Management Services with JMX

Example: Using the Type-Safe Interface to Retrieve Information About a JMS Config-
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
System.out.println("got the IC");

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the MBeanHome " + home);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

/*Getting the Administration MBeans. The getMBeansByType method
* retrieves Administration MBeans because there is no "Config"
* or "Runtime" suffix in the value that is passed.
* For example, "JMSConnectionFactory" retrieves an Administration
* MBean, while "JMSConnectionFactoryConfig" retrieves a Configuration
* MBean.

Set myset = home.getMBeansByType("JMSConnectionFactory");
Iterator iter = myset.iterator();
System.out.println("Iterating over: ");
while(iter.hasNext()) {
bean = (WebLogicMBean) iter.next();
System.out.println("Got the server mbean: " + bean);
}

myset = home.getMBeansByType("JMSServer");
iter = myset.iterator();
System.out.println("Iterating over: ");
while(iter.hasNext()) {
bean = (WebLogicMBean) iter.next();
System.out.println("Got the config mbean: " + bean);
}

myset = home.getMBeansByType("JMSSessionPool");
iter = myset.iterator();
System.out.println("Iterating over: ");
while(iter.hasNext()) {
bean = (WebLogicMBean) iter.next();
System.out.println("Got the runtime mbean: " + bean);
}

myset = home.getMBeansByType("JMSQueue");
iter = myset.iterator();
System.out.println("Iterating over: ");
while(iter.hasNext()) {
bean = (WebLogicMBean) iter.next();
System.out.println("Got the runtime mbean: " + bean);
}

Programming WebLogic Management Services with JMX 3-7

3 Accessing and Changing Configuration Information
myset = home.getMBeansByType("JMSConnectionFactory");
iter = myset.iterator();
System.out.println("Iterating over: ");
while(iter.hasNext()) {
bean = (WebLogicMBean) iter.next();
System.out.println("Got the runtime mbean: " + bean);

}

myset = home.getMBeansByType("JMSConnectionConsumer");
iter = myset.iterator();
System.out.println("Iterating over: ");
while(iter.hasNext()) {
bean = (WebLogicMBean) iter.next();
System.out.println("Got the runtime mbean: " + bean);

}
}

}

3-8 Programming WebLogic Management Services with JMX

CHAPTER
4 Using WebLogic Server
MBean Notifications

To report changes in configuration and runtime information, all WebLogic Server
MBeans emit JMX notifications. A notification is a JMX object that describes a state
change or some other specific condition that has occurred in an underlying resource.

You can create Java classes called listeners that listen for these notifications. For
example, your application can include a listener that receives notifications when
applications are deployed, undeployed, or redeployed.

This topic includes the following sections:

! “WebLogic Server Notification Types” on page 4-2

! “Listening for Notifications: Main Steps” on page 4-3
Programming WebLogic Management Services with JMX 4-1

4 Using WebLogic Server MBean Notifications
WebLogic Server Notification Types

WebLogic Server MBeans implement the
javax.management.NotificationBroadcaster interface to emit different types
of notification objects depending on the type of event that occurs:

! When an MBean’s attribute value changes, it emits a
javax.management.AttributeChangeNotification object.

! When an MBean’s addAttributeName method is called, it emits a
weblogic.management.AttributeAddNotification object.

! When an MBean’s removeAttributeName method is called, it emits a
weblogic.management.AttributeRemoveNotification object.

In addition, when MBeans have been registered or unregistered, the WebLogic Server
JMX services emit notifications of type
javax.management.MBeanServerNotification.

For more information about the javax.management notification types, refer to the
JMX 1.0 API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation..

For more information about the weblogic.management notification types, refer to the
Javadoc for AttributeAddNotification and AttributeRemoveNotification.

WebLogic Server Log Notifications

When a WebLogic Server resource generates a log message, its MBeans emit a
notification of type weblogic.management.WebLogicLogNotification. You can
use the WebLogicLogNotification API to extract parts of the log message,
including the transaction ID, user ID, and version number associated with the message.

For more information about log notifications, refer to the Using WebLogic Logging
Services guide.
4-2 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/AttributeAddNotification.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/AttributeRemoveNotification.html
http://e-docs.bea.com/wls/docs81b/logging/index.html
http://e-docs.bea.com/wls/docs81b/logging/index.html

Listening for Notifications: Main Steps
Listening for Notifications: Main Steps

To listen for the notifications that MBeans emit, do the following:

1. Create a listener class in your application.

2. Register the class with the MBeans whose notifications you want to receive.

3. Optionally implement and register a NotificationFilter class, which
provides additional control over which notifications the listener receives.

Figure 4-1 shows a basic system in which a JSP contains a NotificationListener
that is registered with an MBean’s implementation of the
NotificationBroadcaster interface.

Figure 4-1 Monitoring Notifications from a JSP

This section contains the following subsections:

! Creating a Notification Listener

! Registering a Notification Listener

For a complete explanation of JMX notifications and how they work, download the
JMX 1.0 specification from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.

MBean

NotificationBroadcaster

JSP

NotificationListener

JVM

Register
Programming WebLogic Management Services with JMX 4-3

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

4 Using WebLogic Server MBean Notifications
Creating a Notification Listener

To create a notification listener for a client that runs within the same JVM as
WebLogic Server, create a class that implements
javax.management.NotificationListener. Your implementation must include
the NotificationListener.handleNotification() method.

For more information on NotificationListener, refer to the
javax.management.Notification Javadoc in the JMX 1.0 API documentation,
which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

To create a notification listener for a client that runs in a JVM that is separate from
WebLogic Server, create a class that implements
weblogic.management.RemoteNotificationListener.
RemoteNotificationListener extends
javax.management.NotificationListener and java.rmi.Remote, making
MBean notifications available to external clients via RMI. Your implementation must
include the RemoteNotificationListener.handleNotification() method. For
more information, refer to RemoteNotificationListener Javadoc.
4-4 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/RemoteNotificationListener.html

Listening for Notifications: Main Steps
After you implement RemoteNotificationListener, you register your listener with
MBeans whose notifications you want to receive. (See Figure 4-2.)

Figure 4-2 Monitoring Notifications from a Separate JVM

The following example creates a remote listener that prints output when
NotificationBroadcaster broadcasts a WebLogicLogNotification message
that indicates an application has been deployed or undeployed.

Listing 4-1 Notification Listener

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import javax.management.Notification.*;
import weblogic.management.RemoteNotificationListener;
import weblogic.management.logging.WebLogicLogNotification;

public class myListener implements
RemoteNotificationListener {

public void handleNotification(Notification notification, Object obj) {

WebLogicLogNotification wln = (WebLogicLogNotification)notification;

MBean

NotificationBroadcaster

JSP

NotificationListener

JVM

Java Client

Remote NotificationListener
Programming WebLogic Management Services with JMX 4-5

4 Using WebLogic Server MBean Notifications
/*
* These are all the attributes you can get on a
* WebLogicLogNotification
*/

System.out.println("\n\nmessage id = " + wln.getMessageId());
System.out.println("server name = " + wln.getServername());
System.out.println("machine name = " + wln.getMachineName());
System.out.println("severity = " + wln.getSeverity());
System.out.println("type = " + wln.getType());
System.out.println("timestamp = " + wln.getTimeStamp());
System.out.println("message = " + wln.getMessage());
System.out.println("thread id = " + wln.getThreadId());
System.out.println("user id = " + wln.getUserId());
System.out.println("transaction id = " + wln.getTransactionId());
System.out.println("version = " + wln.getVersion());

int messageId = wln.getMessageId();

/* These are the messageIDs of the messages broadcast when an
* application is deployed/undeployed/redeployed
* 160004 is for undeployment
* 160003 is for deployment
*/

if(messageId == 160004)
System.out.println(\n\nwln.getMessage());

else if (messageId == 160003)
System.out.println(wln.getMessage());

else;

}
}

Registering a Notification Listener

Because all WebLogic Server MBeans implement the
javax.management.NotificationBroadcaster interface, you can register a
NotificationListener with any MBean.

Registering a NotificationListener can be accomplished by calling the MBean’s
addNotificationListener() method. However, in most cases it is preferable to
use the addNotificationListener() method of the MBeanServer interface, which
saves the trouble of looking up a particular MBean simply for registration purposes.
4-6 Programming WebLogic Management Services with JMX

Listening for Notifications: Main Steps
The following example uses MBeanServer.addNotificationListener() to
register the listener from Listing 4-1 with the LogBroadcasterRuntimeMBean.

Listing 4-2 Registering a Listener

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.LogBroadcasterRuntimeMBean;
import weblogic.management.WebLogicObjectName;
import javax.management.*;
import javax.management.Notification;
import weblogic.management.RemoteMBeanServer;

/* This class is to be registered as a startup class with the server that
* receives the Log Notifications
*/

public class logger {

public static void main(String[] args) {

MBeanHome home = null;
LogBroadcasterRuntimeMBean logBroadcaster = null;
RemoteMBeanServer rmbs = null;

//domain variables
String serverName = "MyServer";
String domainName = "myDomain";

try {
Context ctx = new InitialContext();

//Get a local MBeanHome
home = (MBeanHome) ctx.lookup("weblogic.management.home." + serverName);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

//Use MBeanHome to get MBeanServer
try {
Programming WebLogic Management Services with JMX 4-7

4 Using WebLogic Server MBean Notifications
rmbs = home.getMBeanServer();
} catch(Exception e) {
System.out.println("Caught exception: " + e);

}

try {
/* The LogBroadcasterRuntimeMBean is only responsible for emitting
* notifications for log messages. All notifications generated are
* of the type WebLogicLogNotification. There is only one
* LogBroadcasterRuntimeMBean per server.
*/

WebLogicObjectName oname = new WebLogicObjectName(domainName + "
:Name=TheLogBroadcaster,Type=LogBroadcasterRuntime,Location="
+ serverName);

myListener listener = new myListener();

rmbs.addNotificationListener(oname, listener, null, null);
System.out.println("\n[myListener]: Listener registered

for the LogBroadcasterRuntimeMBean ...");
} catch(Exception e) {
System.out.println("Exception: " + e);

}
}

}

4-8 Programming WebLogic Management Services with JMX

CHAPTER
5 Accessing Runtime
Information

WebLogic Server includes a large number of MBeans that provide information about
the runtime state of managed resources. If you want to create applications that view
and modify this runtime data, you must first use the MBeanServer interface or the
WebLogic Server type-safe interface to retrieve Runtime MBeans. Then you use APIs
in the weblogic.management.runtime package to view or change the runtime data.
For information about viewing the API documentation, refer to “Documentation for
Runtime MBean APIs” on page 1-14.

This topic provides examples for retrieving and modifying runtime information about
WebLogic Server domains and server instances:

! “Determining the Active Domain and Servers” on page 5-2

! “Example: Viewing and Changing the Runtime State of a WebLogic Server
Instance” on page 5-5

! “Example: Viewing Runtime Information About Clusters” on page 5-16
Programming WebLogic Management Services with JMX 5-1

5 Accessing Runtime Information
Determining the Active Domain and Servers

The Administration MBeanHome interface includes APIs that you can use to determine
the name of the currently active domain and the name of all server instances that are
currently active.

The example class in Listing 5-1 does the following:

1. Retrieves the Administration MBeanHome interface.

2. Uses MBeanHome.getActiveDomain().getName() to retrieve the name of the
domain.

3. Uses the getMBeansByType method to retrieve the set of all ServerRuntime
MBeans in the domain.

4. Iterates through the set and compares the names of the ServerRuntimeMBean
instances with the name of the WebLogic Server instance. If the instance is
active, it prints the name of the server.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes. For information about permissions
to modify MBeans, refer to "Protecting System Administration Operations" in the
WebLogic Server Administration Guide.

The code in this example must run on the Administration Server.

Listing 5-1 Determining the Active Domain and Servers

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.MBeanHome;
5-2 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html

Determining the Active Domain and Servers
public class getActiveDomainAndServers {

public static void main(String[] args) {

MBeanHome home = null;

//url of the Administration Server
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
ServerRuntimeMBean serverRuntime = null;
int count = 0;

Set mbeanSet = null;
Iterator mbeanIterator = null;

//setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
System.out.println("got the IC");

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

//getting the name of the active domain
try {
System.out.println("Active Domain: " + home.getActiveDomain().getName());

} catch (Exception e) {
System.out.println("Exception: " + e);
}

//getting the names of servers in the domain
System.out.println("Active Severs: ");

mbeanSet = home.getMBeansByType("ServerRuntime");
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
Programming WebLogic Management Services with JMX 5-3

5 Accessing Runtime Information
//printing the names of active servers
if(serverRuntime.getState().equals("Running")) {
System.out.println("Name: " + serverRuntime.getName());
System.out.println("ListenAddress: " + serverRuntime.getListenAddress());
System.out.println("ListenPort: " + serverRuntime.getListenPort());
count++;
}
}
System.out.println("Number of servers active in the domain: " + count);

}
}

Using weblogic.Admin to Determine Active Domains and
Servers

While you can use the example code in Listing 5-1 to determine active domains and
servers from a JMX application, you can use the weblogic.Admin utility to
accomplish a similar task from the command line or a script.

The following command returns the name of the currently active domain, where peach
hosts the domain’s Administration Server and weblogic is the name and password of
a user who has permission to view MBean attributes:

java weblogic.Admin -url peach:8001 -username weblogic -password

weblogic GET -type DomainRuntime -property Name

The command output includes the WebLogicObjectName of the
DomainRuntimeMBean and the value of its Name attribute:

{MBeanName="examplesDomain:Location=peach,Name=examplesDomain,Ser
verRuntime=peach,Type=DomainRuntime"{Name=examplesDomain}}
5-4 Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
To see a list of all server instances that are currently active, you use ask the
Administration Server to retrieve all ServerRuntimeMBeans that are registered in its
Administration MBeanHome interface. (Only active server instances register
ServerRuntime MBeans with the Administration MBeanHome interface.)

You must specify the -adminurl argument to instruct the GET command to use the
Administration Server’s Administration MBeanHome interface:

java weblogic.Admin -adminurl peach:8001 -username weblogic
-password weblogic GET -type ServerRuntime -property State

The command output includes the WebLogicObjectName of all ServerRuntime
MBeans and the value of each State attribute:

MBeanName:
"MedRec:Location=MedRecMS2,Name=MedRecMS2,Type=ServerRuntime"

State: RUNNING

MBeanName:
"MedRec:Location=MedRecServer,Name=MedRecServer,Type=ServerRuntim
e"

State: RUNNING

MBeanName:
"MedRec:Location=MedRecMS1,Name=MedRecMS1,Type=ServerRuntime"

State: RUNNING

Example: Viewing and Changing the
Runtime State of a WebLogic Server
Instance

The weblogic.management.runtime.ServerRuntimeMBean interface provides
runtime information about a WebLogic Server instance. For example, it indicates
which listen ports and addresses a server is using. It also includes operations that
change the lifecycle state of a server. (For information about server states, refer to
"Server Lifecycle" in the Configuring and Managing WebLogic Server guide.)
Programming WebLogic Management Services with JMX 5-5

http://e-docs.bea.com/wls/docs81b/adminguide/overview_lifecycle.html

5 Accessing Runtime Information
This section provides examples of finding ServerRuntimeMBean and using it to
change the state of a server instance. Each example illustrates a different way of
retrieving ServerRuntimeMBean:

! “Using a Local MBeanHome and getRuntimeMBean()” on page 5-6

! “Using the Administration MBeanHome and getMBean()” on page 5-11

! “Using the Administration MBeanHome and getMBeansByType()” on page 5-9

! “Using the MBeanServer Interface” on page 5-14

You cannot use the weblogic.Admin utility to change the value of Runtime MBean
attributes.

Using a Local MBeanHome and getRuntimeMBean()

Each WebLogic Server instance hosts its own MBeanHome interface, which provides
access to the Local Configuration and Runtime MBeans on the server instance. As
opposed to using the Administration MBeanHome interface, using the local MBeanHome
saves you the trouble of filtering MBeans to find those that apply to the current server.
It also uses fewer network hops to access MBeans, because you are connecting directly
to the server (instead of routing requests through the Administration Server).

The MBeanHome interface includes the getRuntimeMBean() method, which returns
only Runtime MBeans that reside on the current WebLogic Server. If you invoke
MBeanHome.getRuntimeMBean()on the Administration Server, it returns only the
Runtime MBeans that are on the Administration Server.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes and Server1 is the name of the
WebLogic Server instance for which you want to view and change status. For
information about permissions to modify MBeans, refer to "Protecting System
Administration Operations" in the WebLogic Server Administration Guide.

Listing 5-2 Using a Local MBeanHome and getRuntimeMBean()

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
5-6 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo1 {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7003";
String serverName = "Server1";

String username = "weblogic";
String password = "weblogic";

ServerRuntimeMBean serverRuntime = null;
ServerRuntimeMBean serverRuntimeM = null;

//setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the local MBeanHome
home = (MBeanHome) ctx.lookup("weblogic.management.home." + serverName);
System.out.println("Got the MBeanHome: " + home + " for server: " +

serverName);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

/* Here we use the getRuntimeMBean method to access the ServerRuntimeMbean
* of the server instance.
*/

try {
serverRuntime =
(ServerRuntimeMBean)home.getRuntimeMBean(serverName,"ServerRuntime");

System.out.println("Got serverRuntimeMBean: " + serverRuntime);
} catch (javax.management.InstanceNotFoundException e) {
Programming WebLogic Management Services with JMX 5-7

5 Accessing Runtime Information
System.out.println("Caught exception: " + e);
}

System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Suspending the server ...");
serverRuntime.suspend();
System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Stopping the server ...");

//changing the state to SHUTDOWN
serverRuntime.shutdown();
System.out.println("Current state: " + serverRuntime.getState());

}
}

5-8 Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
Using the Administration MBeanHome and
getMBeansByType()

Like the example in Listing 5-1, “Determining the Active Domain and Servers,” on
page 5-2, the example class in this section uses the Administration MBeanHome

interface to retrieve a ServerRuntime MBean. The Administration MBeanHome

provides a single access point for all MBeans in the domain, but it requires you to
either construct the WebLogicObjectName of the MBean you want to retrieve or to
filter MBeans to find those that apply to a specific current server.

This example class uses MBeanHome.getMBeansByType method to retrieve the set of
all ServerRuntime MBeans in the domain. It then iterates through the set and
compares the names of the ServerRuntimeMBean instances with the name of a
WebLogic Server instance. When it finds a specific server instance, the class changes
the state of the server to SHUTDOWN.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes, Server1 is the name of the
WebLogic Server instance for which you want to view and change status, and
mihirDomain is the name of the WebLogic Server administration domain.

For information about permissions to modify MBeans, refer to "Protecting System
Administration Operations" in the WebLogic Server Administration Guide.

Listing 5-3 Using the Administration MBeanHome and getMBeansByType()

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;
Programming WebLogic Management Services with JMX 5-9

http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html

5 Accessing Runtime Information
public class serverRuntimeInfo3 {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

ServerRuntimeMBean serverRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;

//Setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);
}

/* Here we use the getMBeansByType method to get the set of ServerRuntime mbeans
* Then we iterate through the set. We retrieve the ServerRuntimeMbean we are
* interested in by comparing the name to the value of serverName.
*/

try {
mbeanSet = home.getMBeansByType("ServerRuntime");
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {
serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
if(serverRuntime.getName().equals(serverName)) {
System.out.println("we have got the serverRuntimembean: " + serverRuntime +
" for: " + serverName);

System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Suspending the server ...");
System.out.println("Stopping the server ...");
5-10 Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
//changing the state to SHUTDOWN
serverRuntime.shutdown();
System.out.println("Current state: " + serverRuntime.getState());

} catch (javax.management.InstanceNotFoundException e) {
System.out.println("Caught exception: " + e);

}
}

Using the Administration MBeanHome and getMBean()

Instead of retrieving a list of all MBeans and then filtering the list to find the
ServerRuntimeMBean for a specific server, this example uses the MBean naming
conventions to construct the WebLogicObjectName for the ServerRuntimeMBean on
a server instance named Server1. For information about constructing a
WebLogicObjectName, refer to “WebLogicObjectNames for WebLogic Server
MBeans” on page 2-16.

To make sure that you supply the correct object name, you can use the
weblogic.Admin GET command. For example, the following command returns the
object name and list of attributes of the ServerRuntimeMBean for a server instance
named Server1:

java weblogic.Admin -url http://Server1:7001 -username weblogic

-password weblogic GET -pretty -type ServerRuntime

For more information about using the weblogic.Admin utility to find information
about MBeans, refer to "MBean Management Command Reference" in the WebLogic
Server Command Line Reference.
Programming WebLogic Management Services with JMX 5-11

http://e-docs.bea.com/wls/docs81b/admin_ref/cli.html#MBean_Management_Command_Reference

5 Accessing Runtime Information
In Listing 5-4, weblogic is the username and password for a user who has permission
to view and modify MBean attributes, Server1 is the name of the WebLogic Server
instance for which you want to view and change status, and mihirDomain is the name
of the WebLogic Server administration domain.

Listing 5-4 Using the Administration MBeanHome and getMBean()

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo2 {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables

String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

ServerRuntimeMBean serverRuntime = null;

//setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

/* Getting the Administration MBeanHome.
* Note: Looking up MBeanHome.ADMIN_JNDI_NAME returns the Administration
* MBeanHome interface. It provides access to all MBeans in the domain.
* Looking up "weblogic.management.home.<AdminServerName>" returns the
* local MBeanHome for the Administration Server. It provides
5-12 Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
* to the Configuration and Runtime MBeans on the Administration Server.
*/

home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the

Admin server");
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

try {

/* Creating the mbean object name.
* The serverName refers to the name of the Managed Server that hosts
* the ServerRuntimeMBean.
*/
String name = "mihirDomain:Location=" + serverName + ",Name=" +
serverName + ",Type=ServerRuntime" ;
WebLogicObjectName objName = new WebLogicObjectName(name);
System.out.println("Created WebLogicObjectName: " + name);

serverRuntime = (ServerRuntimeMBean)home.getMBean(objName);
System.out.println("Got the serverRuntime using the adminHome: " +

serverRuntime);
} catch(Exception e) {

System.out.println("Exception: " + e);
}

System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Suspending the server ...");
serverRuntime.suspend();
System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Stopping the server ...");

//changing the state to SHUTDOWN
serverRuntime.shutdown();
System.out.println("Current state: " + serverRuntime.getState());

}
}

Programming WebLogic Management Services with JMX 5-13

5 Accessing Runtime Information
Using the MBeanServer Interface

The example in this section uses a standard JMX approach for interacting with
MBeans. It uses the Administration MBeanHome interface to retrieve the
javax.management.MBeanServer interface and then uses MBeanServer to retrieve
the value of the ListenPort attribute of the ServerRuntimeMBean for a server
instance named Server1.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes and mihirDomain is the name of the
WebLogic Server administration domain.

Listing 5-5 Using the Administration MBeanHome and getMBean()

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import javax.management.ObjectName;
import javax.management.MBeanServer;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo3 {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables

String url = "t3://adminserver:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
String ListenPort = "7001";

ServerRuntimeMBean serverRuntime = null;

//setting the initial context
try {
5-14 Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the

Admin server");
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

try {

/* Creating the mbean object name.
* The serverName refers to the name of the Managed Server that hosts
* the ServerRuntimeMBean.
*/
String name = "mihirDomain:Location=" + serverName + ",Name=" +
serverName + ",Type=ServerRuntime" ;
WebLogicObjectName objName = new WebLogicObjectName(name);
System.out.println("Created WebLogicObjectName: " + name);

//Retrieving the MBeanServer interface
homeServer = home.getMBeanServer();

//Retrieving the ListenPort attribute of ServerRuntimeMBean
attributeValue = homeServer.getAttribute(objName, ListenPort);
System.out.println("ListenPort for " + serverName + " is:" + attributeValue);

} catch(Exception e) {
System.out.println("Exception: " + e);

}

}

Programming WebLogic Management Services with JMX 5-15

5 Accessing Runtime Information
Example: Viewing Runtime Information
About Clusters

The example in this section retrieves the number and names of WebLogic Server
instances currently running in a cluster. It uses
weblogic.management.runtime.ClusterRuntimeMBean, which provides
information about a single Managed Server’s view of the members of a WebLogic
cluster.

Only Managed Servers host instances of ClusterRuntimeMBean, and you must
retrieve the ClusterRuntimeMBean instance from a Managed Server that is actively
participating in a cluster.

To make sure that it retrieves a ClusterRuntimeMBean from an active Managed
Server that is in a cluster, this example does the following:

1. Retrieves the Administration MBeanHome, which runs on the Administration Server
and can provide access to all ClusterRuntimeMBeans in the domain.

2. Retrieves all ClusterRuntimeMBeans and determines whether they belong to a
specific domain.

3. Finds one ClusterRuntimeMBean for a Managed Server in the domain of
interest.

4. Uses the ClusterRuntimeMBean APIs on the Managed Server to determine the
number and name of active servers in the cluster.
5-16 Programming WebLogic Management Services with JMX

Example: Viewing Runtime Information About Clusters
In the example, weblogic is the username and password for a user who has permission
to view and modify MBean attributes. For information about permissions to modify
MBeans, refer to "Protecting System Administration Operations" in the WebLogic
Server Administration Guide.

Listing 5-6 Retrieving a List of Servers Running in a Cluster

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.runtime.ClusterRuntimeMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.MBeanHome;

public class getRunningServersInCluster {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001"; //url of the Administration Server

/* If you have more than one cluster in your domain, define a list of all the
* servers in the cluster. You compare the servers in the domain with this list
* to determine which servers are in a specific cluster.
*/

String server1 = "cs1"; // name of server in the cluster
String server2 = "cs2"; // name of server in the cluster

String username = "weblogic";
String password = "weblogic";

ClusterRuntimeMBean clusterRuntime = null;

Set mbeanSet = null;
Iterator mbeanIterator = null;
String name = "";

String[] aliveServerArray = null;
Programming WebLogic Management Services with JMX 5-17

http://e-docs.bea.com/wls/docs81b/adminguide/secsysadm.html

5 Accessing Runtime Information
//Setting the initial context
try {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

} catch (Exception e) {
System.out.println("Exception caught: " + e);
}

// Retrieving a list of ClusterRuntime MBeans in the domain.
try {
mbeanSet = home.getMBeansByType("ClusterRuntime");
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

// Retrieving one ClusterRuntime MBean from the list.
clusterRuntime = (ClusterRuntimeMBean)mbeanIterator.next();

// Getting the name of the ClusterRuntime MBean.
name = clusterRuntime.getName();

// Determining if the current ClusterRuntimeMBean belongs to a
// server in the cluster of interest.
if(name.equals(server1) || name.equals(server2)) {

// Using the current ClusterRuntimeMBean to retrieve the number of
// servers in the cluster.
System.out.println("\nNumber of active servers in the cluster: " +
clusterRuntime.getAliveServerCount());

// Retrieving the names of servers in the cluster.
aliveServerArray = clusterRuntime.getServerNames();

break;
}
}
} catch (Exception e) {

System.out.println("Caught exception: " + e);
}

if(aliveServerArray == null) {
System.out.println("\nThere are no running servers in the cluster");
System.exit(1);
}

5-18 Programming WebLogic Management Services with JMX

Example: Viewing Runtime Information About Clusters
System.out.println("\nThe running servers in the cluster are: ");
for (int i=0; i < aliveServerArray.length; i++) {
System.out.println("server " + i + " : " + aliveServerArray[i]);
}

}
}

Programming WebLogic Management Services with JMX 5-19

5 Accessing Runtime Information
5-20 Programming WebLogic Management Services with JMX

CHAPTER
6 Monitoring WebLogic
Server MBeans

WebLogic Server includes a set of monitor MBeans that emit JMX notifications only
when specific MBean attributes change beyond a specific threshold. A monitor MBean
observes the attribute of another MBean (the observed MBean) at specific intervals.
The monitor derives a value from this observation, called the derived gauge. This
derived gauge is either the exact value of the observed attribute, or optionally, the
difference between two consecutive observed values of a numeric attribute.

When the value of the derived gauge satisfies a set of conditions, the monitor MBean
emits a specific notification type. Monitors can also send notifications when certain
error cases are encountered while monitoring an attribute value.

The process for monitoring an attribute of an MBean is as follows:

1. Create a listener class that can listen for notifications from monitor MBeans.

2. Choose a monitor MBean type that matches the type of data you want to observe.

3. Configure and instantiate a monitor MBean.

4. Instantiate the listener class.

This topic contains the following sections:

! “Creating a Notification Listener” on page 6-2

! “Choosing a WebLogic Server Monitor Type” on page 6-3

! “Instantiating the Monitor and Listener” on page 6-5

! “Notification Types” on page 6-13

! “Sample Monitoring Scenarios” on page 6-14
Programming WebLogic Management Services with JMX 6-1

6 Monitoring WebLogic Server MBeans
Creating a Notification Listener

As any other MBean, monitor MBeans emit notifications by implementing
javax.management.NotificationBroadcaster. To create a listener for
notifications from a monitor MBean, create a class that does the following:

1. Implements NotificationBroadcaster or
weblogic.management.RemoteNotificationListener.

2. Includes the NotificationListener.handleNotification() or the
RemoteNotificationListener.handleNotification() method.

You can register the same notification listener with instances of
LogBroadcasterMBean, monitor MBeans, or any other MBean.

The example below creates a listener object for an application that runs in a JVM
outside the WebLogic Server JVM. It includes logic that outputs additional messages
when it receives notifications from monitor MBeans.

Listing 6-1 Listener for Monitor Notifications

import java.rmi.Remote;
import javax.management.Notification;
import javax.management.monitor.MonitorNotification;
import weblogic.management.RemoteNotificationListener;

public class CounterListener
implements RemoteNotificationListener {

public void handleNotification(Notification notification ,Object obj) {

System.out.println("\n\n Notification Received ...");
System.out.println("Type=" + notification.getType());
System.out.println("SequenceNumber=" + notification.getSequenceNumber());
System.out.println("Source=" + notification.getSource());
System.out.println("Timestamp=" + notification.getTimeStamp() + "\n");

if(notification instanceof MonitorNotification) {

MonitorNotification monitorNotification = (MonitorNotification) notification;
System.out.println("This notification is a MonitorNotification");
System.out.println("Observed Attribute: " +

monitorNotification.getObservedAttribute());
6-2 Programming WebLogic Management Services with JMX

Choosing a WebLogic Server Monitor Type
System.out.println("Observed Object: " +
monitorNotification.getObservedObject());

System.out.println("Trigger value: " + monitorNotification.getTrigger());
}
}
}

Choosing a WebLogic Server Monitor Type

Monitor MBeans are specialized to observe changes in specific data types. You must
instantiate the type of monitor MBean that matches the type of the object that an
MBean returns for an attribute value. For example, a monitor MBean based on the
StringMonitor type can observe an attribute that is declared as an Object as long as
actual values of the attributes are String instances, as determined by the instanceof
operator.

To choose a monitor type, do the following:

1. Determine the type of object that is returned by the MBean attribute that you want
to observe by doing any of the following:

" Refer to the WebLogic Server Javadoc.

" Use the weblogic.Admin GET command, which provides information about
the MBean that you specify. For more information, refer to "MBean
Management Command Reference" in the WebLogic Server Administration
Guide.

" Use the javap command on the MBean you are monitoring. The javap
command is a standard Java utility that disassembles a class file.

2. Choose a monitor type from the following table.

A Monitor MBean of This
Type

Observes This Object Type

CounterMonitor Integer
Programming WebLogic Management Services with JMX 6-3

6 Monitoring WebLogic Server MBeans
For more information about monitor types, refer to the JMX 1.0 specification, which
you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

GaugeMonitor Integer or floating-point (Byte, Integer, Short,
Long, Float, Double)

StringMonitor String

A Monitor MBean of This
Type

Observes This Object Type
6-4 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Instantiating the Monitor and Listener
Instantiating the Monitor and Listener

After you determine which type of monitor to instantiate, you create a class that
instantiates and configures the monitor, and instantiates and registers the listener.

This section contains the following subsections:

! “Main Steps for Instantiating a Monitor and Listener” on page 6-5

! “Example: Instantiating a CounterMonitor for a Remote Application” on page
6-7

! “Configuring CounterMonitor Objects” on page 6-9

! “Configuring GaugeMonitor Objects” on page 6-11

! “Configuring StringMonitor Objects” on page 6-12

Main Steps for Instantiating a Monitor and Listener

To instantiate a monitor MBean and listener object, create a class that does the
following:

1. Creates a monitor object. The example in Listing 6-2 creates a CounterMonitor
object using the default constructor of
javax.management.monitor.CounterMonitor.

2. Configures the monitor object by doing the following:

a. Constructs a JMX object name for the monitor object. Listing 6-2 uses
WebLogicObjectName(), but you can use javax.management.ObjectName
for the monitor object. The object name must be unique throughout the entire
WebLogic Server domain, and it must follow the JMX conventions:

domain name:Name=name,Type=type[,attr=value]...

b. Constructs a JMX object name for the observed MBean using
WebLogicObjectName().

If the observed MBean is a WebLogic Server MBean, you must use
WebLogicObjectName() instead of javax.management.ObjectName. You
Programming WebLogic Management Services with JMX 6-5

6 Monitoring WebLogic Server MBeans
can also use MBeanHome.getMBeansByType() or other WebLogic Server
APIs to get the name of the observed MBean object. For examples of
different methods of retrieving MBeans, refer to “Accessing WebLogic
Server MBeans” on page 2-1.

c. Sets values for the monitor’s threshold parameters. The set of available
parameters varies, depending on whether you are instantiating a
CounterMonitor, GaugeMonitor, or StringMonitor.

For more information about the parameters that you pass to configure a
monitor argument, refer to “Configuring CounterMonitor Objects” on page
6-9, “Configuring GaugeMonitor Objects” on page 6-11, and “Configuring
StringMonitor Objects” on page 6-12.

d. Configures the monitor object using the monitor’s APIs.

3. Instantiates the listener object that you created in “Creating a Notification
Listener” on page 6-2.

4. Registers the listener object using the monitor’s addNotificationListener()
method.

5. (This step is needed only if your monitor class runs in a JVM that is outside the
WebLogic Server JVM.) Initializes a reference to the monitor object within the
MBean Server by doing the following:

a. Retrieving the MBeanServer interface using the Administration MBeanHome

interface.

b. Using the monitor’s preRegister() method

6. Starts the monitor using the monitor’s start() method.
6-6 Programming WebLogic Management Services with JMX

Instantiating the Monitor and Listener
Example: Instantiating a CounterMonitor for a Remote
Application

The following example creates a monitor for the ServicedRequestTotalCount
attribute of the ExecuteQueRuntimeMBean, which returns the number (int) of
requests that have been processed by the corresponding execution queue.

Listing 6-2 Instantiating the Monitor and Listener

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.*;
import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.*;
import weblogic.management.monitor.*;
import javax.management.*;
import javax.management.monitor.CounterMonitor;

public class clientMonitor {

public static void main (String Args[]) {

try {

//Instantiate a CounterMonitor
CounterMonitor monitor = new CounterMonitor();

// construct the objectName for your CounterMonitor object
WebLogicObjectName monitorObjectName = new
WebLogicObjectName("mydomain:Type=CounterMonitor,Name=MyCounter");

// Construct the objectName for the observed MBean
WebLogicObjectName qObjectName = new

WebLogicObjectName("mihirDomain:Location=MyServer,Name=default,
ServerRuntime=MyServer,Type=ExecuteQueueRuntime");

// Define variables to be used when configuring your CounterMonitor
// object.

Integer threshold = new Integer(1000);
Integer offset = new Integer(2000);
Programming WebLogic Management Services with JMX 6-7

6 Monitoring WebLogic Server MBeans
//Configure your monitor object using the CounterMonitor APIs
monitor.setThreshold(threshold);
monitor.setNotify(true);
monitor.setOffset(offset);
monitor.setObservedObject(qObjectName);
monitor.setObservedAttribute("ServicedRequestTotalCount");

//Instantiate and register your listener with the monitor
CounterListener listener = new CounterListener();
monitor.addNotificationListener(listener, null, null);

//Use the Administration MBeanHome API to get the MBeanServer interface.
// this is needed when you are registering a monitor from the
// client side.

String url = "t3://localhost:7001"; //URL of the Administration server
String username = "weblogic";
String password = "weblogic";

MBeanHome home = null;

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
home = (MBeanHome) ctx.lookup(weblogic.management.adminhome);
RemoteMBeanServer rmbs = home.getMBeanServer();

monitor.preRegister(rmbs, monitorObjectName);

//start the monitor
monitor.start();

}
catch (Exception e) { e.printStackTrace(); } }

}

6-8 Programming WebLogic Management Services with JMX

Instantiating the Monitor and Listener
Configuring CounterMonitor Objects

CounterMonitor objects observe changes in MBean attributes that are expressed as
integers. The following list describes groups of CounterMonitor operations that you
use to achieve typical configurations of a CounterMonitor instance:

! Sends a notification when the observed attribute exceeds the threshold.

setThreshold(int threshold);
setNotify(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

! Sends a notification when the observed attribute exceeds the threshold. Then it
increases the threshold by the offset value. Each time the observed attribute
exceeds the new threshold, the threshold is increased by the offset value. For
example, if you set Threshold to 1000 and Offset to 2000, when the observed
attribute exceeds 1000, the CounterMonitor object sends a notification and
increases the threshold to 3000. When the observed attribute exceeds 3000, the
CounterMonitor object sends a notification and increases the threshold again to
5000.

setThreshold(int threshold);
setNotify(true);
setOffset(int offset);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

! Sends a notification when the observed attribute exceeds the threshold, and
increases the threshold by the offset value. When the threshold reaches the value
specified by the modulus, the threshold is returned to the value that was
specified through the latest call to the monitor’s setThreshold method, before
any offsets were applied. For example, if the original Threshold is set to 1000

and the Modulus is set to 5000, when the Threshold exceeds 5000, the monitor
sends a notification and resets the Threshold to 1000.

setThreshold(int threshold);
setNotify(true);
setOffset(int offset);
setModulus(int modulus);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");
Programming WebLogic Management Services with JMX 6-9

6 Monitoring WebLogic Server MBeans
! Sends a notification when the difference between two consecutive observations
exceeds the threshold. For example, the Threshold is 20 and the monitor
observes an attribute value of 2. If the next observation is greater than 22, then
the monitor sends a notification. However, if the value is 10 at the next
observation, and 25 at the following observation, then the monitor does not send
a notification because the value has not changed by more than 20 for any two
consecutive observations.

setThreshold(int threshold);
setNotify(true);
setDifferenceMode(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

! Sends a notification when the difference between two consecutive observations
exceeds the threshold, and increases the threshold by the offset value. When the
threshold reaches the value specified by the modulus, the threshold is returned to
the value that was specified through the latest call to the monitor’s
setThreshold method, before any offsets were applied.

setThreshold(int threshold);
setNotify(true);
setOffset(int offset);
setModulus(int modulus);
setDifferenceMode(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

To see all possible configurations of a CounterMonitor instance, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.
6-10 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Instantiating the Monitor and Listener
Configuring GaugeMonitor Objects

GaugeMonitor objects observe changes in MBean attributes that are expressed as
integers or floating-point. The following list describes groups of GaugeMonitor
operations that you use to achieve typical configurations of a GaugeMonitor instance:

! Sends a notification when the observed attribute is beyond the high threshold.

setHighThreshold(int Highthreshold);
setNotifyHigh(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

! Sends a notification when the observed attribute is outside the range of the high
or low threshold.

setThresholds(int Highthreshold, Lowthreshold);
setNotifyHigh(true);
setNotifyLow(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

! Sends a notification when the difference between two consecutive observations
is outside the range of the high or low threshold.

setThresholds(int Highthreshold, Lowthreshold);
setNotifyHigh(true);
setNotifyLow(true);
setDifferenceMode(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

GaugeMonitor does not support an offset or modulus.

To see all possible configurations of a GaugeMonitor instance, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.
Programming WebLogic Management Services with JMX 6-11

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

6 Monitoring WebLogic Server MBeans
Configuring StringMonitor Objects

StringMonitor objects observe changes in MBean attributes that are expressed as
strings. The following list describes groups of StringMonitor operations that you use
to achieve typical configurations of a StringMonitor instance:

! Sends a notification when the observed attribute matches the string specified in
StringToCompare.

setStringToCompare(String);
setNotifyMatch(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

! Sends a notification when the observed attribute differs from the string
specified in StringToCompare.

setStringToCompare(String);
setNotifyDiffer(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

To see all possible configurations of a StringMonitor instance, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.
6-12 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Notification Types
Notification Types

Each type of monitor MBean emits specific types of notifications. The following table
describes the type of notifications that monitor MBeans emit.

A Monitor MBean of This
Type

Emits This Notification Type

CounterMonitor A counter monitor emits a jmx.monitor.counter.threshold when the
value of the counter reaches or exceeds a threshold known as the comparison level.

GaugeMonitor ! If the observed attribute value is increasing and becomes equal to or greater
than the high threshold value, the monitor emits a notification type of
jmx.monitor.gauge.high. Subsequent crossings of the high threshold
value do not cause further notifications unless the attribute value becomes equal
to or less than the low threshold value.

! If the observed attribute value is decreasing and becomes equal to or less than
the low threshold value, the monitor emits a notification type of
jmx.monitor.gauge.low. Subsequent crossings of the low threshold
value do not cause further notifications unless the attribute value becomes equal
to or greater than the high threshold value.

StringMonitor ! If the observed attribute value matches the string to compare value, the monitor
emits a notification type of jmx.monitor.string.matches. Subsequent
matches of the string to compare values do not cause further notifications unless
the attribute value differs from the string to compare value.

! If the attribute value differs from the string to compare value, the monitor emits
a notification type of jmx.monitor.string.differs. Subsequent
differences from the string to compare value do not cause further notifications
unless the attribute value matches the string to compare value.
Programming WebLogic Management Services with JMX 6-13

6 Monitoring WebLogic Server MBeans
Error Notification Types

All monitors can emit the following notification types to indicate error cases:

! jmx.monitor.error.mbean, which indicates that the observed MBean is not
registered in the MBean Server. The observed object name is provided in the
notification.

! jmx.monitor.error.attribute, which indicates that the observed attribute
does not exist in the observed object. The observed object name and observed
attribute name are provided in the notification.

! jmx.monitor.error.type, which indicates that the object instance of the
observed attribute value is null or not of the appropriate type for the given
monitor. The observed object name and observed attribute name are provided in
the notification.

! jmx.monitor.error.runtime, which contains exceptions that are thrown
while trying to get the value of the observed attribute (for reasons other than the
cases described above).

The counter and the gauge monitors can also emit the following
jmx.monitor.error.threshold notification type under the following
circumstances:

! For a counter monitor, when the threshold, the offset, or the modulus is not of
the same type as the observed counter attribute.

! For a gauge monitor, when the low threshold or high threshold is not of the same type as
the observed gauge attribute.

Sample Monitoring Scenarios

This section outlines some typical MBean attributes that you might consider
monitoring to observe performance and/or resource usage. For more details on
individual MBean attributes or methods, see the appropriate MBean API
documentation.
6-14 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs81b/javadocs/index.html
http://e-docs.bea.com/wls/docs81b/javadocs/index.html

Sample Monitoring Scenarios
JDBC Monitoring

The JDBCConnectionPoolRuntime MBean maintains several attributes that describe
the connections to a deployed JDBC connection pool. Applications may monitor these
attributes to observe the connection delays and connection failures, as well as
connection leaks. The following table outlines those MBean attributes typically used
for JDBC monitoring.

JDBCConnectionPoolRuntime
MBean Attribute

Typical Monitoring Application

LeakedConnectionCount Notify a listener when the total number of
leaked connections reaches a predefined
threshold. Leaked connections are connections
that have been checked out but never returned to
the connection pool via a close() call; it is
important to monitor the total number of leaked
connections, as a leaked connection cannot be
used to fulfill later connection requests.

ActiveConnectionsCurrentCount Notify a listener when the current number of
active connections to a specified JDBC
connection pool reaches a predefined threshold.

ConnectionDelayTime Notify a listener when the average time to
connect to a connection pool exceeds a
predefined threshold.

FailuresToReconnect Notify a listener when the connection pool fails
to reconnect to its datastore. Applications may
notify a listener when this attribute increments,
or when the attribute reaches a threshold,
depending on the level of acceptable downtime.
Programming WebLogic Management Services with JMX 6-15

6 Monitoring WebLogic Server MBeans
6-16 Programming WebLogic Management Services with JMX

Index

A
ADMIN_JNDI_NAME JNDI variable 2-7
Administration Console

defined 1-21
Local Configuration MBeans 1-7

administration domain. See domain 1-3
Administration MBeanHome interface

defined 1-18
determining active domain and servers

5-2
retrieving ClusterRuntimeMBean 5-16
retrieving from an external client 2-7
retrieving ServerRuntimeMBean 5-9,

5-11
retrieving through JNDI 2-7
retrieving with the Helper API 2-5
when to use 2-3

Administration MBeans
accessing from Administration Console

1-21
accessing from type-safe interface 3-6
accessing from weblogic.Admin 1-23
API documentation 1-11
defined 1-6
initializing Local Configuration MBeans

3-1
interfaces for accessing 2-3
lifecycle 1-8–1-11
Managed Server Independence 1-11
retrieving a list of 2-12–2-15
WebLogicObjectName 2-16

Administration Servers 1-5–1-11
accessing MBeans 1-18, 2-2
defined 1-3
JNDI tree 2-6
LogMBeans 2-20
registered MBeans 1-16

AttributeAddNotification object 4-2
AttributeChangeNotification object

4-2
AttributeRemoveNotification object

4-2

C
child relationship with MBeans 2-18
clusters 5-16
config.xml file 1-6–1-11

editing from Administration Console
1-21

no runtime data 1-12
configurable MBean attributes. See dynamic

changes to MBeans
Configuration MBeans

defined 1-3
See also Local Configuration MBeans

and Administration MBeans
CounterMonitor objects

configuring 6-9
instantiating for a remote application 6-7
type of data monitored 6-3
type of notifications emitted 6-13
Programming WebLogic Management Services with JMX I-1

ctx.lookup method 2-9
custom MBeans 1-16

D
derived gauge, defined 6-1
destroying MBeans 1-8
DifferenceMode attribute

for CounterMonitor objects 6-10
for GaugeMonitor objects 6-11

domains
accessing all MBeans 1-18, 2-2
defined 1-3
determining current 5-2
retrieving all MBeans 2-12
saving configuration data in

config.xml 1-6
specified in WebLogicObjectName 2-16

dynamic attributes in the Administration
Console 1-22

dynamic changes to MBeans 1-10

E
error notification types 6-14

G
GaugeMonitor objects

configuring 6-11
type of data monitored 6-4
type of notifications emitted 6-13

getAllMBeans method 2-12
getMBeansByType method 2-15

H
handleNotification method 4-4

for local applications 6-2
for remote applications 4-4, 6-2

Helper API 2-4
hierarchical relationship of MBeans 2-18

I
initial context 2-6
instantiating MBeans 1-8
Integer data type, monitoring 6-3

J
Javadoc

for Configuration MBeans 1-11
for Runtime MBeans 1-14

JDBC monitoring 6-15
JMS configuration data 3-6
JMX object names 2-16
JMX specification 1-2
JNDI tree

Administration Servers 2-6
Managed Servers 2-5

L
lifecycle of MBeans 1-8
lifecycle of servers, changing state 5-5
listen ports, setting 1-9
listeners

creating 4-3, 6-2
defined 4-1
instantiating 6-5
registering 4-6
types of notification objects 6-13

Local Configuration MBeans
accessing from MBeanServer interface

2-2
accessing from weblogic.Admin 1-23
API documentation 1-11
changing with MBeanServer 3-4
changing with weblogic.Admin 3-3
defined 1-6
initialized from Administration MBeans

3-1
interfaces for accessing 2-3
lifecycle 1-8–1-11
I-2 Programming WebLogic Management Services with JMX

no access from Administration Console
1-21

on Administration Server 1-16
retrieving a list of 2-12–2-15
WebLogicObjectName 2-16
WebLogicObjectName, examples 2-22

Local MBeanHome interface
defined 1-18
retrieving from an internal client 2-9
retrieving ServerRuntimeMBean 5-6
retrieving through JNDI 2-6
retrieving with the Helper API 2-4
when to use 2-3

LOCAL_JNDI_NAME JNDI variable 2-6
log messages 4-2
LogMBean on Administration Servers 2-20

M
managed resources, defined 1-2
Managed Server Independence (MSI) 1-11
Managed Servers

defined 1-3
JNDI tree 2-5
local interface, performance of 1-18, 2-3
MBean replicas 1-5, 1-8
MBeans accessible from 1-16, 1-18
propagating changes to Local

Configuration MBeans 1-10
runtime information about clusters 5-16
See also Local MBeanHome interface

MBean types, defined 2-17
MBeanHome interface 1-17

See also Local MBeanHome interface,
Administration MBeanHome

interface, and type-safe
interface

MBeanHome methods. See type-safe interface
MBeans

accessing, main steps 2-2
creating custom 1-16

defined 1-2
notifications generated 4-2
See also Local Configuration MBeans,

Administration MBeans, and
Runtime MBeans

MBeanServer interface
accessing MBeans 2-10
changing configuration data 3-4
defined 1-17
registering listeners 4-6
retrieving and changing runtime data

5-14
when to use 2-3

message level for standard out 3-3
metrics for runtime data 1-12
modulus for CounterMonitor objects 6-9
monitor MBeans

defined 6-1
instantiating 6-5
types 6-3

monitoring attributes of MBeans
comparing changes to MBean attributes

6-12
JDBC example 6-15
main steps 6-1
notification types 6-13

MSI 1-11

N
names of MBeans 2-16
notification listeners. See listeners
notifications

defined 4-1
types 6-13

O
object names for MBeans 2-13, 2-16
overriding values

in config.xml 1-10
Programming WebLogic Management Services with JMX I-3

of Administration MBeans 1-7

P
parent relationship with MBeans 2-18
performance metrics 1-12
persistence

of MBean modifications 1-6
of runtime data 1-12

propagating changes to Local Configuration
MBeans 1-10

R
registering MBeans 1-16
remote applications 6-7
RemoteNotificationListener object 4-4,

6-2
replicas of Administration MBeans 1-8
RMI 1-18
runtime changes to MBeans 1-10, 1-22
Runtime MBeans

API documentation 1-14
defined 1-3
distribution 1-12
interfaces for accessing 2-3
on Administration Server 1-16
persistence 1-12
retrieving a list of 2-12–2-15
retrieving with Administration

MBeanHome.getMBeansByTyp

e 5-9
WebLogicObjectName 2-16

Runtime MBeans, accessing
from Administration Console 1-21
from Administration MBeanHome 2-13,

5-9
from Local MBeanHome 5-6
from MBeanServer 5-14
from weblogic.Admin 1-23

S
saving modifications to MBeans 1-6
security MBeans 1-15
ServerRuntimeMBean interface

accessing from Administration
MBeanHome 5-9

changing with MBeanServer 5-14
defined 5-5

servers
changing state to SHUTDOWN 5-9
determining active 5-2

standard out
configuring message level with

MBeanServer 3-4
configuring message level with

weblogic.Admin 3-3
String data type, monitoring 6-4
StringMonitor objects

configuring 6-12
type of data monitored 6-4
type of notifications emitted 6-13

T
thresholds

for CounterMonitor objects 6-9
for GaugeMonitor objects 6-11

type, MBean 2-17
type-safe interface

accessing MBeans 2-12–2-15
defined 1-17
retrieving configuration data 3-6
when to use 2-3

W
weblogic.Admin utility

changing configuration data 3-3
defined 1-23
determining active domain and servers

5-4
I-4 Programming WebLogic Management Services with JMX

finding WebLogicObjectName 2-19
weblogic.Server startup command 1-7,

1-8
WebLogicObjectName

defined 2-16
examples 2-22
finding with weblogic.Admin 2-19
retrieving with

WebLogicMBean.getName

2-13
using to retrieve ServerRuntimeMBean

5-11
Programming WebLogic Management Services with JMX I-5

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic JMX Services
	WebLogic Server Managed Resources and MBeans
	Basic Organization of a WebLogic Server Domain
	MBeans for Configuring Managed Resources
	Replicating Configuration MBeans
	The Lifecycle of Configuration MBeans
	Replication of MBeans for Managed Server Independence
	Documentation for Configuration MBean APIs

	MBeans for Viewing the Runtime State of Managed Resources
	Documentation for Runtime MBean APIs

	Security MBeans
	Non-WebLogic Server MBeans

	MBean Servers and the MBeanHome Interface
	Local MBeanHome and the Administration MBeanHome

	Notifications and Monitoring
	The Administration Console and the weblogic.Admin Utility
	The Administration Console
	The weblogic.Admin Utility

	2 Accessing WebLogic Server MBeans
	Main Steps for Accessing MBeans
	Determining Which Interfaces to Use
	Accessing an MBeanHome Interface
	Using the Helper APIs to Retrieve an MBeanHome Interface
	Example: Retrieving a Local MBeanHome Interface

	Using JNDI to Retrieve an MBeanHome Interface
	Example: Retrieving the Administration MBeanHome from an External Client
	Example: Retrieving a Local MBeanHome from an Internal Client

	Using the MBeanServer Interface to Access MBeans
	Using the Type-Safe Interface to Access MBeans
	Retrieving a List of All MBeans
	Retrieving MBeans By Type and Selecting From the List

	WebLogicObjectNames for WebLogic Server MBeans
	Using weblogic.Admin to Find the WebLogicObjectName

	3 Accessing and Changing Configuration Information
	Example: Using weblogic.Admin to Configure the Message Level for Standard Out
	Example: Using MBeanServer to Configure the Message Level for Standard Out
	Example: Using the Type-Safe Interface to Retrieve Information About a JMS Configuration

	4 Using WebLogic Server MBean Notifications
	WebLogic Server Notification Types
	WebLogic Server Log Notifications

	Listening for Notifications: Main Steps
	Creating a Notification Listener
	Registering a Notification Listener

	5 Accessing Runtime Information
	Determining the Active Domain and Servers
	Using weblogic.Admin to Determine Active Domains and Servers

	Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
	Using a Local MBeanHome and getRuntimeMBean()
	Using the Administration MBeanHome and getMBeansByType()
	Using the Administration MBeanHome and getMBean()
	Using the MBeanServer Interface

	Example: Viewing Runtime Information About Clusters

	6 Monitoring WebLogic Server MBeans
	Creating a Notification Listener
	Choosing a WebLogic Server Monitor Type
	Instantiating the Monitor and Listener
	Main Steps for Instantiating a Monitor and Listener
	Example: Instantiating a CounterMonitor for a Remote Application
	Configuring CounterMonitor Objects
	Configuring GaugeMonitor Objects
	Configuring StringMonitor Objects

	Notification Types
	Error Notification Types

	Sample Monitoring Scenarios
	JDBC Monitoring

	Index

