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About This Document

This document explains how to program with the JNDI feature provided with the BEA
WebLogic Server™ product.

This document is organized as follows:

! Chapter 1, “Introduction to WebLogic JNDI,” provides an overview of the JNDI
capabilities in WebLogic Server.

! Chapter 2, “Programming with WebLogic JNDI,” explains how to program with
the WebLogic JNDI functionality in Java client applications.

Audience

This document is intended for programmers who are developing applications with
WebLogic Server and want to use the JNDI feature.

This document is written for application developers who want to design, develop,
configure, and manage applications using the Java 2 Platform, Enterprise Edition
(J2EE) from Sun Microsystems and want to use the JNDI API to provide a unified
interface to multiple naming and directory services in their enterprise. It is assumed
that readers know JNDI and the Java programming language.
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e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation Or you can go directly to the
WebLogic Server Product Documentation page at http://edocs.bea.com/wls/docs70.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
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WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float
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monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[ ] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
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CHAPTER
1 Introduction to 
WebLogic JNDI

The following sections present an overview of the JNDI implementation in WebLogic
Server including:

! Implementation of Java Specification

! Overview of JNDI in WebLogic Server

Implementation of Java Specification

WebLogic Server is compliant with the following Java specification.

J2EE Specification

WebLogic Server 7.0 is compliant with Sun Microsystems’ J2EE 1.3 specification.
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1 Introduction to WebLogic JNDI
Overview of JNDI in WebLogic Server

In an enterprise, naming services provide a means for your application to locate objects
on the network. A naming service associates names with objects and finds objects
based on their given names. (The RMI registry is a good example of a naming service.)

The Java Naming and Directory Interface (JNDI) is an application programming
interface (API) that provides naming services to Java applications. JNDI is an integral
component of Sun Microsystems’ J2EE technology.

JNDI is defined to be independent of any specific naming or directory service
implementation. It supports the use of a single method for accessing various new and
existing services. This support allows any service-provider implementation to be
plugged into the JNDI framework using the standard service provider interface (SPI)
conventions. In addition, JNDI allows Java applications in WebLogic Server to access
external directory services such as LDAP in a standardized fashion, by plugging in the
appropriate service provider.

The WebLogic Server implementation of JNDI supplies methods that:

! Give clients access to the WebLogic name services

! Make objects available in the WebLogic namespace

! Retrieve objects from the WebLogic namespace

Each WebLogic Server cluster is supported by a replicated cluster-wide JNDI tree that
provides access to both replicated and pinned RMI and EJB objects. While the JNDI
tree representing the cluster appears to the client as a single global tree, the tree
containing the cluster-wide services is actually replicated across each WebLogic
Server in the cluster. For more information, see “Using WebLogic JNDI in a Clustered
Environment” on page 2-8.

The integrated naming service provided by WebLogic Server JNDI may be used by
many other WebLogic services. For example, WebLogic RMI can bind and access
remote objects by both standard RMI methods and JNDI methods.

In addition to the standard Java interfaces for JNDI, WebLogic Server provides its own
implementation, weblogic.jndi.WLInitialContextFactory, that uses the
standard JNDI interfaces.
1-2 Programming WebLogic JNDI
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Overview of JNDI in WebLogic Server
You need not instantiate this class directly. Instead, you can use the
standard javax.naming.InitialContext class and set the appropriate hash table
properties, as documented in the section “Setting Up JNDI Environment Properties for
the InitialContext” on page 2-2. All interaction is done through the
javax.naming.Context interface, as described in the JNDI Javadoc.

For instructions on using the WebLogic JNDI API for client connections, see
“Programming with WebLogic JNDI”.
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CHAPTER
2 Programming with 
WebLogic JNDI

The following sections describe programming with WebLogic JNDI including:

! Using WebLogic JNDI from a Java Client

! Setting Up JNDI Environment Properties for the InitialContext

! Using the Context to Look Up a Named Object

! Using a Named Object to Get an Object Reference

! Closing the Context

! Using WebLogic JNDI in a Clustered Environment

! Using JNDI from Within J2EE Components

Using WebLogic JNDI from a Java Client

The WebLogic Server JNDI Service Provider Interface (SPI) provides an
InitialContext implementation that allows remote Java clients to connect to
WebLogic Server. The client can specify standard JNDI environment properties that
identify a particular WebLogic Server deployment and related connection properties
for logging in to WebLogic Server.
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2 Programming with WebLogic JNDI
To interact with WebLogic Server, a Java client must be able to get an object reference
for a remote object and invoke operations on the object. To accomplish this, the client
application code must perform the following procedure:

1. Set up JNDI environment properties for the InitialContext.

2. Establish an InitialContext with WebLogic Server.

3. Use the Context to look up a named object in the WebLogic Server namespace.

4. Use the named object to get a reference for the remote object and invoke
operations on the remote object.

5. Close the context.

The following sections discuss JNDI client operations for connecting to a specific
WebLogic Server. For information about using JNDI in a cluster of WebLogic Servers,
see Using WebLogic JNDI from a Client in a Clustered Environment.

Before you can use JNDI to access an object in a WebLogic Server environment, you
must load the object into the WebLogic Server JNDI tree. For instructions on loading
objects in the JNDI tree, see Managing JNDI.

Setting Up JNDI Environment Properties for 
the InitialContext

The first task that must be performed by any Java client application is to create
environment properties. The InitialContext factory uses various properties to
customize the InitialContext for a specific environment. You can set these
properties either by using a hashtable or the set() method of a WebLogic
Environment object. These properties, which are specified name-to-value pairs,
determine how the WLInitialContextFactory creates the Context.

The following properties are used to customize the InitialContext:

! Context.PROVIDER_URL— specifies the URL of the WebLogic Server that
provides the name service. The default is t3://localhost:7001.
2-2 Programming WebLogic JNDI
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Setting Up JNDI Environment Properties for the InitialContext
! Context.SECURITY_PRINCIPAL—specifies the identity of the User (that is, a
User defined in a WebLogic Server security realm) for authentication purposes.
The property defaults to the guest User unless the thread has already been
associated with a WebLogic Server User. For more information, see Associating
a WebLogic User with a Security Context.

! Context.SECURITY_CREDENTIALS—specifies either the password for the User
defined in the Context.SECURITY_PRINCIPAL property or an object that
implements the weblogic.security.acl.UserInfo interface with the
Context.SECURITY_CREDENTIALS property defined. If you pass a UserInfo
object in this property, the Context.PROVIDER_URL property is ignored. The
property defaults to the guest User unless the thread has already been
associated with a User. For more information, see Associating a WebLogic User
with a Security Context.

You can use the same properties on either a client or a server. If you define the
properties on a server-side object, a local Context is used. If you define the properties
on a client or another WebLogic Server, the Context delegates to a remote Context
running on the WebLogic Server specified by the Context.PROVIDER_URL property.

Listing 2-1 shows how to obtain a Context using the properties
Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL.

Listing 2-1 Obtaining a Context

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,

"t3://localhost:7001");

try {
ctx = new InitialContext(ht);
// Use the context in your program

}
catch (NamingException e) {

// a failure occurred
}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred

}

Programming WebLogic JNDI 2-3



2 Programming with WebLogic JNDI
}

Additional WebLogic-specific properties are also available for controlling how objects
are bound into the cluster-wide JNDI tree. Bindings may or may not be replicated
across the JNDI tree of each server within the cluster due to the way these properties
are set. Properties such as these are identified by constants in the
weblogic.jndi.WLContext class. For more information about JNDI-related
clustering issues, see Using WebLogic JNDI from a Client in a Clustered
Environment.

Creating a Context Using a Hashtable

You can create a Context with a hashtable in which you have specified the properties
described in “Setting Up JNDI Environment Properties for the InitialContext” on page
2-2.

To do so, pass the hashtable to the constructor for InitialContext. The property
java.naming.factory.initial is used to specify how the InitialContext is
created. To use WebLogic JNDI, you must always set the
java.naming.factory.initial property to
weblogic.jndi.WLInitialContextFactory. This setting identifies the factory
that actually creates the Context.

Creating a Context Using a WebLogic Environment Object 

You can also create a Context by using a WebLogic environment object implemented
by the weblogic.jndi.environment interface. Although the environment object is
WebLogic-specific, it offers the following advantages:

! A set of defaults which reduces the amount of code you need to write.

! Convenience set() methods that provide compile-time type-safety. The
type-safety set() methods can save you time both writing and debugging code.

The WebLogic Environment object provides the following defaults:
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Setting Up JNDI Environment Properties for the InitialContext
! If you do not specify an InitialContext factory, WLInitialContextFactory
is used.

! If you do not specify a user and password in the
Context.SECURITY_PRINCIPAL and Context.CREDENTIALS properties, the
guest User and password are used unless the thread has already been associated
with a user.

! If you do not specify a Context.PROVIDER_URL property,
t3://localhost:7001 is used.

If you want to create InitialContext with these defaults, write the following code:

Environment env = new Environment();
Context ctx = env.getInitialContext();

If you want to set only a WebLogic Server to a Distributed Name Service (DNS) name
for client cluster access, write the following code:

Environment env = new Environment();
env.setProviderURL("t3://myweblogiccluster.com:7001");
Context ctx = env.getInitialContext();

Note: Every time you create a new JNDI environment object, you are creating a new
security scope. This security scope ends with a context.close() method.

The environment.getInitialContext() method does not work correctly
with the IIOP protocol.

Listing 2-2 illustrates using a JNDI Environment object to create a security context.

Listing 2-2 Creating a Security Context with a JNDI Environment Object

weblogic.jndi.Environment environment = new
weblogic.jndi.Environment();
env.setInitialContextFactory(
weblogic.jndi.Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);

env.setProviderURL(“t3://bross:4441”);
environment.setSecurityPrincipal(“guest”);
environment.setSecurityCrendentials(“guest”);
InitialContext ctx = environment.getInitialContext;
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2 Programming with WebLogic JNDI
Creating a Context from a Server-Side Object

You may also need to create a Context from an object (an Enterprise JavaBean (EJB)
or Remote Method Invocation (RMI) object) that is instantiated in the Java Virtual
Machine (JVM) of WebLogic Server. When using a server-side object, you do not
need to specify the Context.PROVIDER_URL property. Usernames and passwords are
required only if you want to sign in as a specific User.

To create a Context from within a server-side object, you first must create a new
InitialContext, as follows:

Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context is
created as a Context and is connected to the local naming service.

Associating a WebLogic User with a Security Context

BEA recommends using the Java Authentication and Authorization Service (JAAS)
rather than JNDI to associate a User with a security context. For more information, see
Programming WebLogic Security.

Using the Context to Look Up a Named 
Object 

The lookup() method on the Context is used to obtain named objects. The argument
passed to the lookup() method is a string that contains the name of the desired object.
Listing 2-3 shows how to retrieve an EJB named ServiceBean.

Listing 2-3 Looking Up a Named Object

try {
ServiceBean bean = (ServiceBean)ctx.lookup("ejb.serviceBean");
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Using a Named Object to Get an Object Reference
}catch (NameNotFoundException e) {
// binding does not exist

}catch (NamingException e) {
// a failure occurred

}

Using a Named Object to Get an Object 
Reference

EJB client applications get object references to EJB remote objects from EJB Homes.
RMI client applications get object references to other RMI objects from an initial
named object. Both initial named remote objects are known to WebLogic Server as
factories. A factory is any object that can return a reference to another object that is in
the WebLogic namespace.

The client application invokes a method on a factory to obtain a reference to a remote
object of a specific class. The client application then invokes methods on the remote
object, passing any required arguments.

Listing 2-4 contains a code fragment that obtains a remote object and then invokes a
method on it.

Listing 2-4 Using a Named Object to Get an Object Reference

ServiceBean bean = ServiceBean.Home.create("ejb.ServiceBean")

Servicebean.additem(66);
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2 Programming with WebLogic JNDI
Closing the Context

After clients finish working with a Context, BEA Systems recommends that the client
close the Context in order to release resources and avoid memory leaks. BEA
recommends that you use a finally{} block and wrap the close() method in a
try{} block. If you attempt to close a context that was never instantiated because of
an error, the Java client application throws an exception.

In Listing 2-5, the client closes the context, releasing the resource being used.

Listing 2-5 Closing the Context

try {
ctx.close();

} catch () {
//a failure occurred
}

Using WebLogic JNDI in a Clustered 
Environment 

The intent of WebLogic JNDI is to provide a naming service for J2EE services,
specifically EJB, RMI, and Java Messaging Service (JMS). Therefore, it is important
to understand the implications of binding an object to the JNDI tree in a clustered
environment.

The following sections discuss how WebLogic JNDI is implemented in a clustered
environment and offer some approaches you can take to make your own objects
available to JNDI clients.
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Using WebLogic JNDI in a Clustered Environment
Using the Relationship of RMI and JNDI to Enable 
WebLogic Clusters 

WebLogic RMI is the enabling technology that allows clients in one JVM to access
EJBs and JMS services from a client in another JVM. RMI stubs marshal incoming
calls from the client to the RMI object. To make J2EE services available to a client,
WebLogic binds an RMI stub for a particular service into its JNDI tree under a
particular name. The RMI stub is updated with the location of other instances of the
RMI object as the instances are deployed to other servers in the cluster. If a server
within the cluster fails, the RMI stubs in the other server’s JNDI tree are updated to
reflect the server failure.

When a client connects to a cluster, it is actually connecting to one of the WebLogic
Servers in the cluster. Because the JNDI tree for this WebLogic Server contains the
RMI stubs for all services offered by the other WebLogic Servers in the cluster in
addition to its own services, the cluster appears to the client as one WebLogic Server
hosting all of the cluster-wide services. When a new WebLogic Server joins a cluster,
each WebLogic Server already in the cluster is responsible for sharing information
about its own services to the new WebLogic Server. With the information collected
from all the other servers in the cluster, the new server will create its own copy of the
cluster-wide JNDI tree.

RMI stubs significantly affect how WebLogic JNDI is implemented in a clustered
environment:

! RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs
across all WebLogic Servers in a cluster with little overhead in terms of
server-to-server cross-talk.

! RMI stubs serve as the mechanism for replication across a cluster. An instance
of a RMI object is deployed to a single WebLogic Server, however, the stub is
replicated across the cluster.
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2 Programming with WebLogic JNDI
Making Custom Objects Available to a WebLogic Server 
Cluster

When you bind a custom object (a non-RMI object) into a JNDI tree in a WebLogic
Server cluster, the object is replicated across all the servers in the cluster. However, if
the host server goes down, the custom object is removed from the cluster’s JNDI tree.
Custom objects are not replicated unless the custom object is bound again. You need
to unbind and rebind a custom object every time you want to propagate changes made
to the custom object. Therefore, WebLogic JNDI should not be used as a distributed
object cache. You can use a third-party solution with WebLogic Server to provide
distributed caches.

Suppose the custom object needs to be accessed only by EJBs that are deployed on
only one WebLogic Server. Obviously it is unnecessary to replicate this custom object
throughout all the WebLogic Servers in the cluster. In fact, you should avoid
replicating the custom object in order to avoid any performance degradation due to
unnecessary server-to-server communication. To create a binding that is not replicated
across WebLogic Servers in a cluster, you must specify the REPLICATE_BINDINGS
property when creating the context that binds the custom object to the namespace.
Listing 2-6 illustrates the use of the REPLICATE_BINDINGS property.

Listing 2-6 Using the REPLICATE_BINDINGS Property

Hashtable ht = new Hashtable();
//turn off binding replication
ht.put(WLContext.REPLICATE_BINDINGS, "false");
try {

Context ctx = new InitialContext(ht);
//bind the object
ctx.bind("my_object", MyObect);

} catch (NamingException ne) {
//failure occured

}

When you are using this technique and you need to use the custom object, you must
explicitly obtain an InitialContext for the WebLogic Server. If you connect to any
other WebLogic Server in the cluster, the binding does not appear in the JNDI tree.
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Using WebLogic JNDI in a Clustered Environment
If you need a custom object accessible from any WebLogic Server in the cluster,
deploy the custom object on each WebLogic Server in the cluster without replicating
the JNDI bindings.

When using WebLogic JNDI to replicate bindings, the bound object will be handled
as if it is owned by the host WebLogic Server. If the host WebLogic Server fails, the
custom object is removed from all the JNDI trees of all WebLogic Servers in the
cluster. This behavior can have an adverse effect on the availability of the custom
object.

Note: You can not use a / or . character in a JNDI Context.bind(String Name).
If the Binding name string contains a / or . character, a
javax.naming.NameNotFoundException is raised.

Data Caching Design Pattern

A common task in Web applications is to cache data used by multiple objects for a
period of time to avoid the overhead associated with data computation or connecting
to another service.

Suppose you have designed a custom data caching object that performs well on a single
WebLogic Server and you would like to use this same object within a WebLogic
cluster. If you bind the data caching object in the JNDI tree of one of the WebLogic
Servers, WebLogic JNDI will, by default, copy the object to each of the other
WebLogic Servers in the cluster. It is important to note that since this is not an RMI
object, what you are binding into the JNDI tree (and copying to the other WebLogic
Servers) is the object itself, not a stub that refers to a single instance of the object
hosted on one of the WebLogic Servers. Do not assume from the fact that WebLogic
Server copies a custom object between servers that custom objects can be used as a
distributed cache. Remember the custom object is removed from the cluster if the
WebLogic Server to which it was bound fails and changes to the customer object are
not propagated through the cluster unless the object is unbound and rebound to the
JNDI tree.

For the sake of performance and availability, it is often desirable to avoid using
WebLogic JNDI’s binding replication to copy large custom objects with high
availability requirements to all of the WebLogic Servers in a cluster. As an alternative,
you can deploy a separate instance of the custom object on each of the WebLogic
Servers in the cluster. When binding the object to each WebLogic Server’s JNDI tree,
you should make sure to turn off binding replication as described in the Making
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2 Programming with WebLogic JNDI
Custom Objects Available to a WebLogic Server Cluster section. In this design
pattern, each WebLogic Server has a copy of the custom object but you will avoid
copying large amounts of data from server to server.

Regardless of which approach you use, each instance of the object should maintain its
own logic for when it needs to refresh its cache independently of the other data cache
objects in the cluster. For example, suppose a client accesses the data cache on one
WebLogic Server. It is the first time the caching object has been accessed, so it
computes or obtains the information and saves a copy of the information for future
requests. Now suppose another client connects to the cluster to perform the same task
as the first client only this time the connection is made to a different WebLogic Server
in the cluster. If this the first time this particular data caching object has been accessed,
it will need to compute the information regardless of whether other data caching
objects in the cluster already have the information cached. Of course, for any future
requests, this instance of the data cache object will be able to refer to the information
it has saved.

Exactly-Once-Per-Cluster Design Pattern

In some cases, it is desirable to have a service that appears only once in the cluster. This
is accomplished by deploying the service on one machine only. For RMI objects, you
can use the default behavior of WebLogic JNDI to replicate the binding (the RMI stub)
and the single instance of your object will be accessible from all WebLogic Servers in
the cluster. This is referred to as a pinned service. For non-RMI objects, make sure that
you use the REPLICATE_BINDINGS property when binding the object to the
namespace. In this case, you will need to explicitly connect to the host WebLogic
Server to access the object. Alternatively, you can create an RMI object that is
deployed on the same host WebLogic Server that can act as a proxy for your non-RMI
object. The stub for the proxy can be replicated (using the default WebLogic JNDI
behavior) allowing clients connected to any WebLogic Server in the cluster to access
the non-RMI object via the RMI proxy.

This design pattern for an exactly-once-per-cluster service presents an additional
challenge for services with high availability requirements. Since the failover feature of
WebLogic Clusters relies on having multiple deployments of each clustered service,
failover for an exactly-once-per-cluster service will not be available. For services that
require high availability, it is suggested that you implement a hardware,
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High-Availability (HA) framework for the host WebLogic Server. The framework
allows WebLogic Server to be restarted in the event of a failure with a minimal amount
of disruption to availability of the service.

Using WebLogic JNDI from a Client in a Clustered 
Environment

The JNDI binding for an object can appear in the JNDI tree for one WebLogic Server
in the cluster, or it can be replicated to all the WebLogic Servers in the cluster. If the
object of interest is bound in only one WebLogic Server, you must explicitly connect
to the host WebLogic Server by setting the Context.PROVIDER_URL property to the
host WebLogic Server’s URL when creating the Initial Context, as described in Using
WebLogic JNDI from a Java Client.

In most cases, however, the object of interest is either a clustered service or a pinned
service. As a result, a stub for the service is displayed in the JNDI tree for each
WebLogic Server in the cluster. In this case, the client does not need to name a specific
WebLogic Server to provide its naming service. In fact, it is best for the client to simply
request that a WebLogic Cluster provide a naming service, in which case the context
factory in WebLogic Server can choose whichever WebLogic Server in the cluster
seems most appropriate for the client. Currently, a naming service provider is chosen
within WebLogic using DNS round-robining.

The context that is returned to a client of clustered services is, in general, implemented
as a failover stub that can transparently change the naming service provider if a failure
(such as a communication failure) with the selected WebLogic Server occurs.

Listing 2-7 shows how a client uses the cluster’s naming service.

Listing 2-7 Using the Naming Service in a WebLogic Cluster

Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL, "t3://acmeCluster:7001");
try {

Context ctx = new InitialContext(ht);
// Do the client's work

}
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catch (NamingException ne) {
// A failure occurred

}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred

}
}

The hostname specified as part of the provider URL is the DNS name for the cluster
that can be defined by the ClusterAddress setting in a Cluster stanza of the
config.xml file. ClusterAddress maps to the list of hosts providing naming
service in this cluster. For more information, see “Understanding Cluster
Configuration and Application Deployment” in Using WebLogic Server Clusters.

In Listing 2-7, the cluster name acmeCluster is used to connect to any of the
WebLogic Servers in the cluster. The resulting Context is replicated so that it can fail
over transparently to any WebLogic Server in the cluster.

An alternative method of specifying the initial point of contact with the WebLogic
Cluster is to supply a comma-delimited list of DNS Server names or IP addresses.

! The following example specifies a list of WebLogic Servers using the same port:

ht.put(Context.PROVIDER_URL,"t3://acme1,acme2,acme3:7001");

All the WebLogic Servers listen on the port specified at the end of the URL.

! The following example specifies a list of WebLogic Servers using the different
ports:

ht.put(Context.PROVIDER_URL,"t3://node1:7001,node2:7002,node3:7003");

For additional information about JNDI and Clusters see “Introduction to WebLogic
Server Clustering.”
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Using JNDI from Within J2EE Components

Although it is possible for J2EE components to use the global environment directly, it
is preferable to use the component environment. Each J2EE component within a J2EE
application had its own component environment which is set up based on information
contained in the component’s deployment descriptors.

J2EE components are able to look up their component environments using the
following code:

Context ctx = new InitailContext();

Context comp_env = (Context)ctx.lookup(“java:comp/env”);

Because you are working within a J2EE component, you do not need to set up the
Hashtable or Environment objects to define the connection information.

This context is used in the same way as the global environment, however, the names
you use are the ones defined in the deployment descriptor for your component. For
example, if you have an ejb-ref in your deployment descriptor that looks like:

<ejb-ref>

...

<ejb-ref-name>ejb1</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>ejb1.EJB1Home</home>

<remote>ejb1.EJB1</remote>

...

</ejb-ref>

you would look up the name defined with the <ejb-ref-name> setting, which in this
case is “ejb1.”

Using the component environment rather than the global environment to set your JNDI
name is advantageous because the name it refers to is resolved during deploynent. This
means that naming conflicts can be resolved without rewriting the code.

For additional information about setting up and using the component environment, see
the J2EE Specification at http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf.
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