
BEA
 WebLogic
Server™

Using WebLogic Logging
Services
Release 8.1 Beta
Document Revised: September 20, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using WebLogic Logging Services

Part Number Document Revised Software Version

N/A September 20, 2002 BEA WebLogic Server
Version 8.1 Beta

Contents

About This Document
Audience..v

e-docs Web Site...v

How to Print the Document... vi

Related Information... vi

Contact Us! .. vi

Documentation Conventions .. vii

1. Overview of WebLogic Logging Services

2. Writing Messages to the WebLogic Server Log
Using the I18N Message Catalog Framework: Main Steps 2-2

Step 1: Create Message Catalogs ... 2-2

Step 2: Compile Message Catalogs .. 2-3

Example: Compiling Message Catalogs ... 2-5

Step 3: Use Messages from Compiled Message Catalogs 2-8

Using the NonCatalogLogger APIs... 2-9

Using GenericServlet... 2-13

Writing Messages from a Remote Application ... 2-14

Writing Messages from a Remote JVM to a File..................................... 2-14

Writing Debug Messages .. 2-15

3. Viewing the WebLogic Server Logs

4. Listening for Messages from the WebLogic Server Log
Step 1: Create a Notification Listener ... 4-2

Creating a Notification Listener for an Application that Runs Within a
Using WebLogic Logging Services iii

WebLogic Server JVM.. 4-3

Creating a Notification Listener for a Remote Application 4-4

Step 2: Register the Notification Listener ... 4-6

Using the addNotificationListener API .. 4-7

Examples for Registering a Notification Listener 4-8

Step 3: Create and Register a Notification Filter... 4-11

Creating and Registering a Filter.. 4-11

Adding Filter Classes to the Server Classpath 4-12

WebLogicLogNotification Objects .. 4-13

Example Notification Filter.. 4-15
iv Using WebLogic Logging Services

About This Document

This document describes how your application can write messages to the BEA
WebLogic Server™ log files and listen for the log messages that WebLogic Server
broadcasts. The document also outlines how you can use the WebLogic Server
Administration Console to view log messages.

The document is organized as follows:

! Chapter 1, Writing Messages to the WebLogic Server Log

! Chapter 2, Viewing the WebLogic Server Logs

! Chapter 3, Listening for Messages from the WebLogic Server Log

Audience

This document is written for application developers who want to build Web
applications or other Java 2 Platform, Enterprise Edition (J2EE) components that run
on WebLogic Server. It is assumed that readers know Web technologies,
object-oriented programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.
Using WebLogic Logging Services v

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.
Specifically, “Logging” in the Administration Console Online Help describes how to
configure log files that a WebLogic Server generates, and the Internationalization
Guide describes how to set up message catalogs that your application can use.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
vi Using WebLogic Logging Services

http://www.adobe.com
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html
http://e-docs.bea.com/wls/docs81b/i18n/index.html
http://e-docs.bea.com/wls/docs81b/i18n/index.html
mailto:docsupport@bea.com

WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
Using WebLogic Logging Services vii

http://www.bea.com

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
viii Using WebLogic Logging Services

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using WebLogic Logging Services ix

x Using WebLogic Logging Services

CHAPTER
1 Overview of WebLogic
Logging Services

The WebLogic Server logging services include facilities for writing, viewing, and
listening for log messages. While WebLogic Server subsystems use these services to
provide information about events such as the deployment of new applications or the
failure of one or more subsystems, your application can also use them to communicate
its status and respond to specific events. For example, you can use WebLogic logging
services to keep a record of which user invokes specific application components, to
report error conditions, or to help debug your application before releasing it to a
production environment. In addition, you can configure your application to listen for a
log message from a specific subsystem and to respond appropriately.

Because each WebLogic Server administration domain can run concurrent, multiple
instances of WebLogic Server, the logging services collect messages that are generated
on multiple server instances into a single, domain-wide message log. You can use this
domain-wide message log to see the overall status of the domain.

To provide this overview of a domain’s status, each server instance broadcasts its log
messages as Java Management Extensions (JMX) notifications. A server broadcasts
all messages and message text except for the following:

! Messages of the DEBUG severity level.

! Any stack traces that are included in a message.

The Administration Server listens for a subset of these messages and writes them to the
domain log file. To listen for these messages, the Administration Server registers a
JMX listener with each Managed Server. By default, the listener includes a filter that
allows only messages of severity level ERROR and higher to be forwarded to the
Administration Server. (See Figure 1-1.)
Using WebLogic Logging Services 1-5

1 Overview of WebLogic Logging Services
Figure 1-1 WebLogic Server Logging Services

The remainder of this document describes how your application can write and listen
for messages, and how you can view them through the WebLogic Server
Administration Console.

Managed Server

Log Broadcaster

Log Manager
Local
Log File

Administration Server

Log Broadcaster

Log Manager Local
Log File

Message Listener Domain
Log File

All messages

All messages
except DEBUG

Filter

Filter
1-6 Using WebLogic Logging Services

CHAPTER
2 Writing Messages to
the WebLogic Server
Log

The following sections describe how you can facilitate the management of your
application by writing log messages to the WebLogic Server log files:

! “Using the I18N Message Catalog Framework: Main Steps” on page 2-2

! “Using the NonCatalogLogger APIs” on page 2-9

! “Using GenericServlet” on page 2-13

In addition, this section includes the following sections:

! “Writing Messages from a Remote Application” on page 2-14

! “Writing Debug Messages” on page 2-15
Using WebLogic Logging Services 2-1

2 Writing Messages to the WebLogic Server Log
Using the I18N Message Catalog Framework:
Main Steps

The internationalization (I18N) message catalog framework provides a set of utilities
and APIs that your application can use to send its own set of messages to the WebLogic
Server log. The framework is ideal for applications that need to localize the language
in their log messages, but even for those applications that do not need to localize, it
provides a rich, flexible set of tools for communicating status and output.

To write log messages using the I18N message catalog framework, complete the
following tasks:

! Step 1: Create Message Catalogs

! Step 2: Compile Message Catalogs

! Step 3: Use Messages from Compiled Message Catalogs

Step 1: Create Message Catalogs

A message catalog is an XML file that contains a collection of text messages. Usually,
an application uses one message catalog to contain a set of messages in a default
language and optional, additional catalogs to contain messages in other languages.

To create and edit a properly formatted message catalog, use the WebLogic Message
Editor utility, which is a graphical user interface (GUI) that is installed with WebLogic
Server. To create corresponding messages in local languages, use the Message
Localizer, which is also a GUI that WebLogic Server installs.

To access the Message Editor, do the following from a WebLogic Server host:

1. Set the classpath by entering WL_HOME\server\bin\setWLSEnv.cmd

(setWLSEnv.sh on UNIX), where WL_HOME is the directory in which you installed
WebLogic Server.

2. Enter the following command: java weblogic.MsgEditor

3. To create a new catalog, choose File→New Catalog.
2-2 Using WebLogic Logging Services

Using the I18N Message Catalog Framework: Main Steps
For information on using the Message Editor, refer to the following:

" Using the BEA WebLogic Server Message Editor in the BEA WebLogic
Server Internationalization Guide.

" Using Message Catalogs with BEA WebLogic Server in the BEA WebLogic
Server Internationalization Guide.

4. When you finish adding messages in the Message Editor, select File→Save
Catalog. Then select File→Exit.

To access the Message Localizer, do the following from a WebLogic Server host:

1. Set the classpath by entering WL_HOME\server\bin\setWLSEnv.cmd

(setWLSEnv.sh on UNIX), where WL_HOME is the directory in which you installed
WebLogic Server.

2. Enter the following command: java weblogic.MsgLocalizer

3. Use the Message Localizer GUI to create locale-specific catalogs.

Step 2: Compile Message Catalogs

After you create message catalogs, you use the i18ngen and l10ngen command-line
utilities to generate properties files and to generate and compile Java class files. The
utilities take the message catalog XML files as input and create compiled Java classes.
The Java classes contain methods that correspond to the messages in the XML files.

To compile the message catalogs, do the following:

1. From a command prompt, use WL_HOME\server\bin\setWLSEnv.cmd
(setWLSEnv.sh on UNIX) to set the classpath, where WL_HOME is the directory in
which you installed WebLogic Server.

2. Enter the following command:

java weblogic.i18ngen -build -d targetdirectory source-files

where:

" targetdirectory is the root directory in which you want the i18ngen
utility to locate the generated and compiled files. The Java files are placed in
sub-directories based on the i18n_package and l10n_package values in
the message catalog.
Using WebLogic Logging Services 2-3

http://e-docs.bea.com/wls/docs81b/i18n/msgeditr.html
http://e-docs.bea.com/wls/docs81b/i18n/MssgCats.html

2 Writing Messages to the WebLogic Server Log
The catalog properties file, i18n_user.properties, is placed in the
targetdirectory. The default target directory is the current directory.

" source-files specifies the message catalog files that you want to compile.
If you specify one or more directory names, i18ngen processes all XML
files in the listed directories. If you specify file names, the names of all files
must include an XML suffix. All XML files must conform to the
msgcat.dtd syntax.

Note that when the i18ngen generates the Java files, it appends Logger to the
name of each message catalog file.

3. If you created locale-specific catalogs in Step 1: Create Message Catalogs, do the
following to generate properties files:

a. In the current command prompt, add the targetdirectory that you specified
in step 2. to the CLASSPATH environment variable. To generate locale-specific
properties files, all of the classes that the i18ngen utility generated must be on
the classpath.

b. Enter the following command:
java l10ngen -d targetdirectory source-files

where:

" targetdirectory is the root directory in which you want the l10ngen
utility to locate the generated properties files. Usually this is the same
targetdirectory that you specified in step 2. The properties files are
placed in sub-directories based on the l10n_package values in the message
catalog.

" source-files specifies the message catalogs for which you want to
generate properties files. You must specify top-level catalogs that the
Message Editor creates; you do not specify locale-specific catalogs that the
Message Localizer creates. Usually this is the same set of source-files or
source directories that you specified in step 2.

4. In most cases, the recommended practice is to include the message class files and
properties files in the same package hierarchy as your application.

However, if you do not include the message classes and properties in the
application’s package hierarchy, you must make sure the classes are in the
application’s classpath.
2-4 Using WebLogic Logging Services

Using the I18N Message Catalog Framework: Main Steps
For complete documentation of the i18ngen commands, refer to Using the BEA
WebLogic Server Internationalization Utilities in the BEA WebLogic Server
Internationalization Guide.

Example: Compiling Message Catalogs

In this example, the Message Editor created a message catalog that contains one
message of type loggable. The Message Editor saves the message catalog as the
following file: c:\MyMsgCat\MyMessages.xml.

Listing 2-1 shows the contents of the message catalog.

Listing 2-1 Sample Message Catalog

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls710/dtd/msgcat.dtd">

<message_catalog
i18n_package="com.xyz.msgcat"
l10n_package="com.xyz.msgcat.l10n"
subsystem="MyClient"
version="1.0"
baseid="700000"
endid="800000"
loggables="true"
prefix="XYZ-"

>

<!-- Welcome message to verify that the class has been invoked-->

<logmessage
messageid="700000"
datelastchanged="1039193709347"
datehash="-1776477005"
severity="info"
method="startup()"

>

<messagebody>
The class has been invoked.
</messagebody>

<messagedetail>
Verifies that the class has been invoked
Using WebLogic Logging Services 2-5

http://e-docs.bea.com/wls/docs81b/i18n/utilities.html
http://e-docs.bea.com/wls/docs81b/i18n/utilities.html

2 Writing Messages to the WebLogic Server Log
and is generating log messages
</messagedetail>

<cause>
Someone has invoked the class in a remote JVM.

</cause>

<action> </action>

</logmessage>
</message_catalog>

In addition, the Message Localizer creates a Spanish version of the message in
MyMessages.xml. The Message Localizer saves the Spanish catalog as
c:\MyMsgCat\es\ES\MyMessages.xml.

Listing 2-2 Locale-Specific Catalog for Spanish

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE locale_message_catalog PUBLIC
"weblogic-locale-message-catalog-dtd"
"http://www.bea.com/servers/wls710/dtd/l10n_msgcat.dtd">

<locale_message_catalog
version="1.0"
>

<!-- Mensaje agradable para verificar que se haya invocado la clase.
-->
<logmessage

messageid="700000"
datelastchanged="1039546411623"
>

<messagebody>
La clase se haya invocado.
</messagebody>

<messagedetail>
Verifica que se haya invocado la clase y está
generando mensajes del registro.

</messagedetail>
2-6 Using WebLogic Logging Services

Using the I18N Message Catalog Framework: Main Steps
<cause>Alguien ha invocado la clase en un JVM alejado.</cause>
<action> </action>

</logmessage>

</locale_message_catalog>

To compile the message catalog that the Message Editor created, enter the following
command:

java weblogic.i18ngen -build -d c:\MessageOutput
c:\MyMsgCat\MyMessages.xml

The i18ngen utility creates the following files:

! c:\MessageOutput\i18n_user.properties

! c:\MessageOutput\com\xyz\msgcat\MyMessagesLogger.java

! c:\MessageOutput\com\xyz\msgcat\MyMessagesLogger.class

! c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizer.prop

erties

! c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizerDetai
ls.properties

To create properties files for the Spanish catalog, you do the following:

1. Add the i18n classes to the command prompt’s classpath by entering the
following:
set CLASSPATH=%CLASSPATH%;c:\MessageOutput

2. Enter
java l10ngen -d c:\MessageOutput c:\MyMsgCat\MyMessages.xml

The l10ngen utility creates the following files:

! c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizer_es_E

S.properties

! c:\MessageOutput\com\xyz\msgcat\l10n\MyMessagesLogLocalizerDetai

ls_es_ES.properties
Using WebLogic Logging Services 2-7

2 Writing Messages to the WebLogic Server Log
Step 3: Use Messages from Compiled Message Catalogs

The classes and properties files generated by i18ngen and l10ngen provide the
interface for sending messages to the WebLogic Server log. Within the classes, each
log message is represented by a method that your application calls.

To use messages from compiled message catalogs:

1. In the class files for your application, import the Logger classes that you compiled
in Step 2: Compile Message Catalogs.

To verify the package name, open the message catalog XML file in a text editor
and determine the value of the i18n_package attribute. For example, the
following segment of the message catalog in Listing 2-1 indicates the package
name:

<message_catalog
i18n_package="com.xyz.msgcat"

To import the corresponding class, add the following line:

import com.xyz.msgcat.MyMessagesLogger;

2. Call the method that is associated with a message name.

Each message in the catalog includes a method attribute that specifies the
method you call the display the message. For example, the following segment of
the message catalog in Listing 2-1 shows the name of the method:

<logmessage
messageid="700000"
datelastchanged="1039193709347"
datehash="-1776477005"
severity="info"
method="startup()"

>

Listing 2-3 illustrates a simple class that calls this startup method.

Listing 2-3 Example Class That Uses a Message Catalog

import com.xyz.msgcat.MyMessagesLogger;

public class MyClass {
public static void main (String[] args) {
2-8 Using WebLogic Logging Services

Using the NonCatalogLogger APIs
MyMessagesLogger.startup();
}

}

If the JVM’s system properties specify that the current location is Spain, then the
message is printed in Spanish.

Using the NonCatalogLogger APIs

In addition to using the I18N message catalog framework, your application can use the
weblogic.logging.NonCatalogLogger APIs to send messages to the WebLogic
Server log. With NonCatalogLogger, instead of calling messages from a catalog, you
place the message text directly in your application code. We do not recommended
using this facility as the sole means for logging messages if your application needs to
be internationalized.

NonCatalogLogger is also intended for use by client code that is running in its own
JVM (as opposed to running within a WebLogic Server JVM). A subsequent section
in this topic, “Writing Messages from a Remote Application” on page 2-14, provides
more information.

To use NonCatalogLogger in an application that runs within the WebLogic Server
JVM, add code to your application that does the following:

1. Imports the weblogic.logging.NonCatalogLogger interface.

2. Uses the following constructor to instantiate a NonCatalogLogger object:

NonCatalogLogger(java.lang.String myApplication)

where myApplication is a name that you supply to identify messages that your
application sends to the WebLogic Server log.

3. Calls any of the NonCatalogLogger methods.

Use the following methods to report normal operations:

" info(java.lang.String msg)

" info(java.lang.String msg, java.lang.Throwable t)
Using WebLogic Logging Services 2-9

2 Writing Messages to the WebLogic Server Log
Use the following methods to report a suspicious operation, event, or configuration that
does not affect the normal operation of the server/application:

" warning(java.lang.String msg)

" warning(java.lang.String msg, java.lang.Throwable t)

Use the following methods to report errors that the system/application can handle with no
interruption and with limited degradation in service.

" error(java.lang.String msg)

" error(java.lang.String msg, java.lang.Throwable t)

Use the following methods to provide detailed information about operations or
the state of the application. These debug messages are not broadcast as JMX
notifications. If you use this severity level, we recommend that you create a “debug
mode” for your application. Then, configure your application to output debug messages
only when the application is configured to run in the debug mode. For information
about using debug messages, refer to “Writing Debug Messages” on page 2-15.

" debug(java.lang.String msg)

" debug(java.lang.String msg, java.lang.Throwable t)

All methods that take a Throwable argument can print the stack trace in the error log.
For information on the NonCatalogLogger APIs, refer to the
weblogic.logging.NonCatalogLogger Javadoc.

Listing 2-4 illustrates a servlet that uses NonCatalogLogger APIs to write messages
of various severity levels to the WebLogic Server log.

Listing 2-4 Example NonCatalogLogger Messages

import java.io.PrintWriter;
import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.logging.NonCatalogLogger;

public class MyServlet extends HttpServlet {
2-10 Using WebLogic Logging Services

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/logging/NonCatalogLogger.html

Using the NonCatalogLogger APIs
public void service (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
NonCatalogLogger myLogger = null;

try {

out.println("Testing NonCatalogLogger. See WLS Server log for output
message.");

// Constructing a NonCatalogLogger instance. All messages from this
// instance will include a <MyApplication> string.

myLogger = new NonCatalogLogger("MyApplication");

// Outputting an INFO message to indicate that your application has started.
mylogger.info("Application started.");

// For the sake of providing an example exception message, the next
// lines of code purposefully set an initial context. If you run this
// servlet on a server that uses the default port number (7001), the
// servlet will throw an exception.

Environment env = new Environment();
env.setProviderUrl("t3://localhost:8000");

Context ctx = env.getInitialContext();

}

catch (Exception e){
out.println("Can't set initial context: " + e.getMessage());

// Prints a WARNING message that contains the stack trace.
mylogger.warning("Can't establish connections. ", e);

}

}

}

When the servlet illustrated in the previous example runs on a server that specifies a
listen port other than 8000, the following messages are printed to the WebLogic Server
log file. Note that the message consists of a series of strings, or fields, surrounded by
angle brackets (< >).
Using WebLogic Logging Services 2-11

2 Writing Messages to the WebLogic Server Log
Listing 2-5 NonCatalogLogger Output

####<Jun 26, 2002 12:04:21 PM EDT> <Info> <MyApplication> <MyHost>
<examplesServer> <ExecuteThread: '10' for queue: 'default'> <kernel identity> <>
<000000> <Application started.>

####<Jun 26, 2002 12:04:23 PM EDT> <Warning> <MyApplication> <MyHost>
<examplesServer> <ExecuteThread: '10' for queue: 'default'> <kernel identity> <>
<000000> <Can't establish connections. >

javax.naming.CommunicationException. Root exception is
java.net.ConnectException: t3://localhost:8000: Destination unreachable; nested
exception is:

...

Table 2-1 describes all of the fields that NonCatalogLogger log messages can
contain.

Table 2-1 NonCatalogLogger Log Message Format

Field Description

Localized Timestamp Date and time when message originated, including the year, month, day of month,
hours, minutes and seconds. For example, <Jun 26, 2002 12:04:21 PM EDT>.

Severity One of the following severity values, which corresponds to the type of method that you
used to generate the message:

Info, Warning, Error, Debug

Subsystem Indicates the source of the message. This is the string that you supply for the
NonCatalogLogger constructor.

Server Name
Machine Name
Thread ID

Identify the origins of the message.

Log messages that are generated within a client JVM client do not include these fields.
For example, if your application runs in a client JVM and it uses the WebLogic logging
services, the messages that it generates and sends to the WebLogic Server log files will
not include these fields.

User Id User on behalf of whom the system was executing when the error was reported.

Log messages that are generated within a client JVM client do not include this field.

TransactionId Present only for messages logged within the context of a transaction.
2-12 Using WebLogic Logging Services

Using GenericServlet
Using GenericServlet

The javax.servlet.GenericServlet servlet specification provides the following
APIs that your servlets can use to write a simple message to the WebLogic Server log:

! log(java.lang.String msg)

! log(java.lang.String msg, java.lang.Throwable t)

For more information on using these APIs, refer to the J2EE Javadoc for
javax.servlet.GenericServlet at
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/GenericServlet.html.

JSPs do not extend from GenericServlet and cannot use these APIs. If you want
your JSPs to send messages to a log file, consider using the I18N message catalog
services or NonCatalogLogger APIs.

Message Id A six-digit identifier for the message. The message ID for NonCatalogLogger
messages is always 000000.

Message text The text that you supply for the NonCatalogLogger method.

ExceptionName If the message is logging an Exception, this field contains the name of the Exception.

Table 2-1 NonCatalogLogger Log Message Format

Field Description
Using WebLogic Logging Services 2-13

http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/GenericServlet.html

2 Writing Messages to the WebLogic Server Log
Writing Messages from a Remote
Application

If your application runs in a JVM that is separate from a WebLogic Server, it can use
message catalogs and NonCatalogLogger, but the messages are not written to a
WebLogic Server log. Instead, the application’s messages are written to the remote
JVM’s standard out.

If you want the WebLogic logging service to send these messages to a log file that the
remote JVM maintains, include the following argument in the command that starts the
remote JVM:

-Dweblogic.log.FileName=logfilename

where logfilename is the name that you want to use for the remote log file.

If you want a subset of the message catalog and NonCatalogLogger messages to
standard out as well as the remote JVM log file, include the following additional
startup arguments:

-Dweblogic.StdoutEnabled=true

-Dweblogic.StdoutDebugEnabled=boolean

-Dweblogic.StdoutSeverityLevel = [64 | 32 | 16 | 8 | 4 | 2 | 1]

where boolean is either true or false and the numeric values for
StdoutSeverityLevel correspond to the following severity levels:

INFO(64) WARNING(32), ERROR(16), NOTICE(8), CRITICAL(4), ALERT(2) and
EMERGENCY(1).

Writing Messages from a Remote JVM to a File

A remote JVM can generate its own set of messages that communicate information
about the state of the JVM itself. For example, you can configure a JVM to generate
messages about garbage collection. By default, the JVM sends these messages to
2-14 Using WebLogic Logging Services

Writing Debug Messages
standard out. You cannot redirect these messages to the JVM’s log file, but you can
save them to a separate file. For more information, refer to “Redirecting JVM
Messages to a File” in the Administration Console Online Help.

Writing Debug Messages

While your application is under development, you might find it useful to create and use
messages that provide verbose descriptions of low-level activity within the
application. You can use the DEBUG severity level to categorize these low-level
messages. All DEBUG messages that your application generates are sent to the
WebLogic Server log file. (Unlike Log4j, which is a third-party logging service that
enables you to dynamically exclude log messages based on level of severity, the
WebLogic Server log includes all levels of messages that your application generates.)

You also can configure the WebLogic Server to send DEBUG messages to standard out.
For more information refer to “Specifying Which Messages a Server Sends to Standard
Out” in the Administration Console Online Help.

If you use the DEBUG severity level, we recommend that you create a “debug mode” for
your application. For example, your application can create an object that contains a
boolean value. To enable or disable the debug mode, you toggle the value of the
boolean. Then, for each DEBUG message, you can create a wrapper that outputs the
message only if your application’s debug mode is enabled.

For example, the following code can produce a debug message:

private static boolean debug = Boolean.getBoolean("my.debug.enabled");
if (debug) {

mylogger.debug("Something debuggy happened");
}

You can use this type of wrapper both for messages that use the message catalog
framework and that use the NonCatalogLogger API.

To enable your application to print this message, you include the following Java option
when you start the application’s JVM:

-Dmy.debug.enabled=true
Using WebLogic Logging Services 2-15

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#printing_JVM_messages
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#printing_JVM_messages
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#Specifying_Messages_Standard_Out
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#Specifying_Messages_Standard_Out

2 Writing Messages to the WebLogic Server Log
2-16 Using WebLogic Logging Services

CHAPTER
3 Viewing the WebLogic
Server Logs

The WebLogic Server Administration Console provides separate but similar log
viewers for the local server log and the domain-wide message log. The log viewer can
search for messages based on fields within the message. For example, it can find and
display messages based on the severity, time of occurrence, user ID, subsystem, or the
short description. It can also display messages as they are logged, or search for past log
messages. (See Figure 3-1.)
Using WebLogic Logging Services 3-1

3 Viewing the WebLogic Server Logs
Figure 3-1 Log Viewer

In addition to viewing messages from the Administration Console, you can specify
which messages are sent to standard out. By default, only messages of WARNING or
higher are sent to standard out.

For information about viewing, configuring, and searching message logs, refer to the
following topics:

! Viewing Server Logs in the Administration Console Online Help

! Specifying Which Messages a Server Sends to Standard Out in the
Administration Console Online Help

! Viewing the Domain Log in the Administration Console Online Help
3-2 Using WebLogic Logging Services

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#view_server_log
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#Specifying_Messages_Standard_Out
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/logging.html#viewing_domain_log

CHAPTER
4 Listening for Messages
from the WebLogic
Server Log

Each WebLogic Server instance broadcasts its log messages in the form of JMX
notifications. The broadcast includes all messages (except those of the DEBUG severity
level) that the WebLogic Server instance, its subsystems, and any applications write to
the WebLogic Server log. An Administration Server listens for these notifications and
places a subset of them in the domain-wide message log. (See Figure 1-1, “WebLogic
Server Logging Services,” on page 1-6.)

Your application also can listen for log messages that are broadcast from a WebLogic
Server instance. For example, your application can listen for a log message that signals
the failure of a specific subsystem. Then your application can perform actions such as:

! E-mail the log message to the WebLogic Server administrator.

! Shut down or restart itself or its subcomponents.

To listen for these notifications, you create a notification listener and register it with
the WebLogic Server broadcast MBean, LogBroadcasterRuntimeMBean. A
notification listener is an implementation of the JMX NotificationListener

interface. When LogBroadcasterRuntimeMBean emits a notification, it uses the
registered listener’s handleNotification method to pass a
WebLogicLogNotification object. (See Figure 4-1.)
Using WebLogic Logging Services 4-1

4 Listening for Messages from the WebLogic Server Log
Figure 4-1 WebLogic Broadcaster and Your Listener

A subsequent subsection, “WebLogicLogNotification Objects” on page 4-13, provides
more information about WebLogicLogNotification objects

To enable your application to listen for notifications from a WebLogic Server log,
complete the following tasks:

! Step 1: Create a Notification Listener

! Step 2: Register the Notification Listener

! Step 3: Create and Register a Notification Filter

Note: If your application runs outside a WebLogic Server JVM, it can listen for
WebLogic Server log notifications, but it cannot use WebLogic logging
services to broadcast messages.

Step 1: Create a Notification Listener

The steps that you follow to create a notification listener differ depending on whether
your application runs within a WebLogic Server JVM.

This section contains the following subsections:

! Creating a Notification Listener for an Application that Runs Within a WebLogic
Server JVM

MyNotificationListenerLogBroadcasterRuntimeMBean

handleNotification()
Registered listeners:
MyNotificationListener

WebLogicLogNotification
4-2 Using WebLogic Logging Services

Step 1: Create a Notification Listener
! Creating a Notification Listener for a Remote Application

Creating a Notification Listener for an Application that
Runs Within a WebLogic Server JVM

If your application runs within a WebLogic Server JVM, do the following:

1. Import the javax.management.Notification.* interfaces. Because WebLogic
Server already includes these interfaces and requires them to be on the classpath,
you need only to include an import statement in your class.

2. Create a class that implements NotificationListener. Your implementation
must include the NotificationListener.handleNotification() method.

For more information on NotificationListener, refer to the
javax.management.Notification Javadoc, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.

Figure 4-2 shows a system in which a JSP is running within a WebLogic Server JVM.
The JSP listens for notifications from LogBroadcasterRuntimeMBean.

Figure 4-2 Listener for a Local JSP

Listing 4-1 provides an example notification listener for a local client. The listener
uses WebLogicLogNotification getter methods to print all messages that it receives.
For more information, refer to “WebLogicLogNotification Objects” on page 4-13.

JSP

MyNotificationListenerLogBroadcasterRuntimeMBean

MBean

handleNotification()

WebLogic Server JVM
Using WebLogic Logging Services 4-3

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

4 Listening for Messages from the WebLogic Server Log
Listing 4-1 Example Notification Listener for a Local Client

import javax.management.Notification;
import javax.management.NotificationListener;

...

public class MyNotificationListener implements
NotificationListener {

...

public void handleNotification(Notification notification, Object handback) {
WebLogicLogNotification wln = (WebLogicLogNotification)notification;
System.out.println("WebLogicLogNotification");
System.out.println(" type = " + wln.getType());
System.out.println(" message id = " + wln.getMessageId());
System.out.println(" server name = " + wln.getServername());
System.out.println(" timestamp = " + wln.getTimeStamp());
System.out.println(" message = " + wln.getMessage() + "\n");

}

Creating a Notification Listener for a Remote Application

If your application resides outside of the WebLogic Server JVM, do the following:

1. Make sure that WL_HOME/server/lib/weblogic_sp.jar and
WL_HOME/server/lib/weblogic.jar are in the application’s classpath.

2. Import the javax.management.Notification.* interfaces.

3. Create a class that implements
weblogic.management.RemoteNotificationListener.
RemoteNotificationListener MBean makes notifications available to remote
applications via RMI by extending
javax.management.NotificationListener and java.rmi.

Your implementation must include the
RemoteNotificationListener.handleNotification() method. For more
information, refer to the
weblogic.management.RemoteNotificationListener Javadoc.
4-4 Using WebLogic Logging Services

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/RemoteNotificationListener.html

Step 1: Create a Notification Listener
Figure 4-3 shows a system in which a JSP runs in the WebLogic Server JVM and an
application runs in a remote JVM. To listen for notifications, the JSP implements
NotificationListener and the remote application implements
RemoteNotificationListener.

Figure 4-3 Local JSP and Remote Application

Listing 4-2 provides an example notification listener for a remote client.

Listing 4-2 Example Notification Listener for a Remote Client

import javax.management.Notification;
import javax.management.NotificationListener;

import weblogic.management.RemoteNotificationListener;
import weblogic.management.logging.WebLogicLogNotification;

...

public class MyRemoteNotificationListener implements
RemoteNotificationListener {

JSP

NotificationListener

WebLogic Server JVM

Remote JVM

MyRemoteNotificationListener

LogBroadcasterRuntimeMBean

MBean

handleNotification()

handleNotification()
Using WebLogic Logging Services 4-5

4 Listening for Messages from the WebLogic Server Log
...

public void handleNotification(Notification notification, Object handback) {
WebLogicLogNotification wln = (WebLogicLogNotification)notification;

}

Step 2: Register the Notification Listener

After you implement your notification listener, you must register it with
LogBroadcasterRuntimeMBean on a WebLogic Server instance. Because each
instance broadcasts its own notifications, you must register your notification listener
on each WebLogic Server instance from which you want to receive notifications.

This section describes the code fragment that you use to register a listener. You can
add this fragment to a class that runs when your client application starts, when a
WebLogic Server instance starts, or whenever you want your application to receive
notifications.

To register with the LogBroadcasterRuntimeMBean on a WebLogic Server instance,
the code must do the following:

1. Import the following interfaces:

javax.naming.Context

javax.naming.InitialContext

javax.naming.AuthenticationException

javax.naming.CommunicationException

javax.naming.NamingException
weblogic.jndi.Environment

weblogic.management.MBeanHome

2. Obtain the MBeanServer from MBeanHome. For more information, refer to
Accessing WebLogic Server MBeans in the Using WebLogic JMX Services
Guide.

3. Use the addNotificationListener() method of the MBeanServer to register
your notification listener with LogBroadcasterRuntimeMBean.
4-6 Using WebLogic Logging Services

http://e-docs.bea.com/wls/docs81b/jmx/basics.html

Step 2: Register the Notification Listener
Using the addNotificationListener API

The syntax for the addNotificationListener API is as follows:

MBeanServer.addNotificationListener(ObjectName name,
NotificationListener listener,
NotificationFilter filter,

java.lang.Object handback)

Provide the following values:

! name is the object name of the WebLogic Server instance’s
LogBroadcasterRuntimeMBean. You can obtain the object name by doing one
of the following:

" Creating an instance weblogic.management.WebLogicObjectName. For
more information, refer to the WebLogicObjectName Javadoc.

" Looking up the
weblogic.management.runtime.LogBroadcasterRuntimeMBean at
runtime and calling .getObjectName(). For more information, refer to the
LogBroadcasterRuntimeMBean Javadoc.

" Using the weblogic.Admin GET command. For more information, refer to
the GET command in the WebLogic Server Command Line Reference.

! listener is the instance of the Notification listener you created in “Step 1:
Create a Notification Listener” on page 4-2.

! filter is a filter object. If filter is null, no filtering will be performed before
handling notifications. The next section, “Step 3: Create and Register a
Notification Filter” on page 4-11, describes creating and registering a filter
object.

! handback is the context to be sent to the listener when a notification is
broadcast.

Complete documentation for the addNotificationListener API is available in the
Javadoc for javax.management.MBeanServer, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.
Using WebLogic Logging Services 4-7

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/WebLogicObjectName.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/runtime/LogBroadcasterRuntimeMBean.html
http://e-docs.bea.com/wls/docs81b/admin_ref/cli.html#commands012
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

4 Listening for Messages from the WebLogic Server Log
Examples for Registering a Notification Listener

The following examples register the listener defined in Step 1: Create a Notification
Listener. The examples in Listing 4-3 and Listing 4-4 do the following:

1. Use the weblogic.management.Helper API to obtain the server-specific
MBeanHome interface for a server named peach. For more information about
obtaining the MBeanHome interface, refer to Accessing WebLogic Server MBeans
in the Programming WebLogic Management Services with JMX guide.

2. Use the MBeanHome interface to retrieve the corresponding MBeanServer

interface.

3. Use a different method for retrieving the LogBroadcasterRuntimeMBean object
name.

4. Instantiate the listener object defined in Step 1: Create a Notification Listener.

5. Use the addNotificationListener method of the ServerMBean interface to
register the listener object with the LogBroadcasterRuntimeMBean.

Listing 4-3 uses WebLogicObjectName to construct the
LogBroadcasterRuntimeMBean object name.
4-8 Using WebLogic Logging Services

http://e-docs.bea.com/wls/docs81b/jmx/basics.html

Step 2: Register the Notification Listener
Listing 4-3 Using WebLogicObjectName

public void find(String host, int port, String username, String password,
String hostname, String myDomain, String myServer)

{
String url = "t3://" + host + ":" + port;

//Get the server’s MBeanHome interface.
try {

serverSpecificHome = (MBeanHome)Helper.getMBeanHome(
username, password, url, hostname);

} catch (IllegalArgumentException iae) {
System.out.println("Illegal Argument Exception: " + iae);

}

//Use MBeanHome to get the server’s MBeanServer interface.
MBeanServer mServer = serverSpecificHome.getMBeanServer();

//Construct the WebLogicObjectName of the server’s LogBroadcasterRuntimeMBean.
WebLogicObjectName logBCOname = new WebLogicObjectName(

"WebLogicLogBroadcaster","LogBroadcasterRuntime",myDomain,myServer);

//Instantiate a listener object.
MyRemoteNotificationListener myListener = new MyRemoteNotificationListener();

//Register the listener.
mServer.addNotificationListener(logBCOname,myListener,null,null);

}

Listing 4-4 uses MBeanHome.getMBeanByClass to retrieve the
LogBroadcasterRuntimeMBean object name.

Listing 4-4 Using getObjectName()

public void find(String host, int port, String username, String password,
String hostname, String myDomain, String myServer)

{
String url = "t3://" + host + ":" + port;

//Get the server’s MBeanHome interface.
try {

serverSpecificHome = (MBeanHome)Helper.getMBeanHome(
username, password, url, hostname);

} catch (IllegalArgumentException iae) {
Using WebLogic Logging Services 4-9

4 Listening for Messages from the WebLogic Server Log
System.out.println("Illegal Argument Exception: " + iae);
}

//Use MBeanHome to get the server’s MBeanServer interface.
MBeanServer mServer = serverSpecificHome.getMBeanServer();

//Use getMBeanByClass to retrieve the object name.
LogBroadcasterRuntimeMBean logBCOname = (LogBroadcasterRuntimeMBean)

home.getMBeanByClass(
Class.forName ("weblogic.management.runtime.LogBroadcasterRuntimeMBean")
);

//Instantiate a listener object.
MyRemoteNotificationListener myListener = new MyRemoteNotificationListener();

//Register the listener.
mServer.addNotificationListener(logBCOname,myListener,null,null);

}

Listing 4-5 assumes that you used weblogic.Admin GET to retrieve the
LogBroadcasterRuntimeMBean object name. It also illustrates the format of object
names that weblogic.Admin GET returns.

Listing 4-5 Using weblogic.Admin GET

MyRemoteNotificationListener myListener = new MyRemoteNotificationListener();
MBeanServer mServer = home.getMBeanServer();

ObjectName logBCOname = new
ObjectName("mydomain:Location=myserver,Name=TheLogBroadcaster,Type=LogBroadcast
erRuntime");

mServer.addNotificationListener(logBCOname,myListener,null,null);
4-10 Using WebLogic Logging Services

Step 3: Create and Register a Notification Filter
Step 3: Create and Register a Notification
Filter

By default, the notification listener that you registered in the previous section listens
for all notifications from LogBroadcasterRuntimeMBean and sends them to your
application. You can configure the LogBroadcasterRuntimeMBean to send only the
notifications that are pertinent to your application by creating and registering a filter.
The filter determines whether a notification matches a set of criteria that you create,
and the LogBroadcasterRuntimeMBean sends the notification only if the filter
evaluates as true.

This section contains the following subsections:

! Creating and Registering a Filter

! WebLogicLogNotification Objects

! Example Notification Filter

Creating and Registering a Filter

To create and register a filter, do the following:

1. Import the following interfaces:

import javax.management.Notification

import javax.management.NotificationFilter

Optionally import the following interface:
import weblogic.management.logging.WebLogicLogNotification

WebLogicLogNotification provides methods that you can use to get attributes
of WebLogic log messages.

2. Create a serializable object that does the following:

a. Implements javax.management.NotificationFilter.

b. Searches a notification for a string.
Using WebLogic Logging Services 4-11

4 Listening for Messages from the WebLogic Server Log
To search a notification that has been cast as a WebLogicLogNotification
object, you can use WebLogicLogNotification getter methods. For
example, you can use the getter methods to get the message timestamp,
severity, user ID, the name of the subsystem that generated the message, the
message text, and other data. For more information, refer to
WebLogicLogNotification Objects.

c. Uses a boolean to indicate whether the serializable object returns a true value.

d. (Optional) Includes code that carries out an action depending on the value of
the boolean. For example, your filter can use the JavaMail API to send e-mail
to an administrator if a message is of severity WARNING or higher.

3. Use the addNotificationListener API to register the filter. For more
information, refer to “Using the addNotificationListener API” on page 4-7.

Adding Filter Classes to the Server Classpath

If you create a filter for a listener that runs in a remote JVM, you must add the filter’s
classes to the classpath of the server instance from which you are listening for
notifications. Although the listener runs in the remote JVM, to minimize the
transportation of serialized data between the filter and the listener, the filter runs in the
JVM of the server instance. (See Figure 4-4.)
4-12 Using WebLogic Logging Services

Step 3: Create and Register a Notification Filter
Figure 4-4 Filters Run on WebLogic Server

WebLogicLogNotification Objects

All messages that a WebLogic Server generates are cast as
weblogic.management.logging.WebLogicLogNotification objects.
WebLogicLogNotification objects contain the following fields:

! Type—identifies the notification as required by the JMX specification. This field
has the format:

weblogic.log.subSystem.messageID

JSP

NotificationListener

WebLogic Server JVM

Remote JVM

MyRemoteNotificationListener

LogBroadcasterRuntimeMBean

MBean

handleNotification()

handleNotification()

Filter

Filter
Using WebLogic Logging Services 4-13

4 Listening for Messages from the WebLogic Server Log
where subSystem indicates the subsystem or application that issued the log
message this notification contains, and messageID indicates the internal
WebLogic Server message ID.

Note: For NonCatalogLogger messages, the message ID is always 000000. All
log messages that WebLogic Server subsystems generate have a message
ID that begins with the string BEA-.

! Time stamp—indicates the time at which the log message causing this
notification was generated by the server.

! Sequence number.

! Message—contains the log message.

! User data—the user data field is not currently used.

A WebLogicLogNotification inherits getter methods from
javax.management.Notification and it provides one getter method for each field
within the log message. (See Figure 4-5.)

You can use these getter methods to search or print the information within the
WebLogicLogNotification. For more information, refer to the
weblogic.management.logging.WebLogicLogNotification Javadoc.
4-14 Using WebLogic Logging Services

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Step 3: Create and Register a Notification Filter
Figure 4-5 WebLogicLogNotification Getter Methods

Example Notification Filter

Listing 4-6 provides an example NotificationFilter that uses the
WebLogicLogNotification.getType method.

Listing 4-6 Example Notification Filter

import javax.management.Notification;
import javax.management.NotificationFilter;
import weblogic.management.logging.WebLogicLogNotification;

....

public class MyLogNotificationFilter implements NotificationFilter,
java.io.Serializable {

WebLogicLogNotification

getServerName()

Type
TimeStamp
SequenceNumber

Message

UserData

ServerName
ThreadId
UserId
Severity
...

getThreadId()
getUserId()
getSeverity()
...

Notification

getTimeStamp()
getSequenceNumber()
getMessage()
getUserData()
...

source
Using WebLogic Logging Services 4-15

4 Listening for Messages from the WebLogic Server Log
public MyLogNotificationFilter() {
subsystem = "";

}

public boolean isNotificationEnabled(Notification notification) {
if (!(notification instanceof WebLogicLogNotification)) {

return false;
}

WebLogicLogNotification wln = (WebLogicLogNotification)notification;

if (subsystem == null || subsystem.equals("")) {
return true;

}

StringTokenizer tokens = new StringTokenizer(wln.getType(), ".");
tokens.nextToken();
tokens.nextToken();
return (tokens.nextToken().equals(subsystem));

}

public void setSubsystemFilter(String newSubsystem) {
subsystem = newSubsystem;

}

}

4-16 Using WebLogic Logging Services

Index

A
addNotificationListener method 4-7
Administration Console 3-1
Administration Server 4-1

notification listener 1-5
ALERT severity level 2-14
arguments for starting a remote JVM 2-14

B
broadcasts

from remote applications 4-2
from WebLogic Servers 4-1, 4-6

C
catalogs, message 2-2–2-8
class files 2-3
classpath 2-2, 2-3, 4-4
client applications. See remote applications
client JVMs. See remote JVMs
Console, Administration 3-1
CRITICAL severity level 2-14
customer support contact information vi

D
debug messages 2-15, 4-1
DEBUG severity level
documentation, where to find it v

E
e-mail 4-1, 4-12
EMERGENCY severity level 2-14
environment, setting 2-2, 2-3
ERROR severity level 2-14
examples

NonCatalogLogger message 2-10
notification filter 4-15
notification listener for a local

application 4-4
notification listener for a remote

application 4-5
registering notification listeners 4-8
using a message catalog 2-8

ExceptionName message field 2-13
excluding log messages 2-15

F
filters. See notification filters
format of messages. See message format

G
garbage collection 2-14
GenericServlet 2-13
getter methods for

WebLogicLogNotification

object 4-15
Using WebLogic Logging Services I-i

H
handleNotification method

defined 4-1
for local applications 4-3
for remote applications 4-4

I
INFO severity level 2-14
interfaces, importing

for NonCatalogLogger APIs 2-9
for notification filters 4-11
for notification listeners 4-3–4-6

internationalization, recommendations 2-2,
2-9

J
Java class files 2-3
Java package names 2-3, 2-4
Java Virtual Machines. See remote JVMs
JMX notifications. See notifications
JSPs

GenericServlet 2-13
NotificationListeners 4-3, 4-5

L
listeners. See notification listeners
localization

recommendations 2-2
LocalizedTimestamp message field 2-12
location of messages for remote applications

2-14
log files

for domains 4-1
for remote applications 2-14
for remote JVMs 2-14

log message format
message catalog 2-2
NonCatalogLogger 2-12

log message ID
for NonCatalogLogger messages 4-13

log message text
filtering 4-11
message catalog 2-2
NonCatalogLogger 2-9, 2-13
searching 4-13

log messages
broadcasting. See broadcasts
excluding debug 2-15
from servlets 2-13
printing 4-3
searching in the log viewer 3-1
See also notifications
viewing 3-1

log messages, broadcasting. See broadcasts
log viewers 3-1
Log4j 2-15
LogBroadcasterRuntimeMBean object

defined 4-1
obtaining object name 4-7

M
MachineName log message attribute 2-12
MachineName message field

getting 4-12
MBeanHome interface 4-6
MBeanServer interface 4-6
message catalogs 2-2–2-8
Message Editor GUI 2-2
Message message field 2-13, 4-14
MessageId message field

defined 2-13
getting 4-12

messages. See log messages
millisecondsFromEpoch message field

2-12
I-ii Using WebLogic Logging Services

N
NonCatalogLogger object

APIs 2-9
example 2-10
message format 2-12
message IDs 4-13
recommendations 2-9

NOTICE severity level 2-14
notification filters

creating and registering 4-11
defined 4-11
example 4-15
specifying in the

addNotificationListener

method 4-7
notification listeners

default behavior 4-11
defined 4-1
example of registering 4-8
for a domain message log 1-5
for a local application, example 4-4
for a remote application, example 4-5
registering 4-6
starting 4-6

notifications
broadcasting defaults 4-11
defined 4-1
See also messages

O
object name for

LogBroadCasterRuntimeMBean

objects 4-7–4-10
options for starting a remote JVM 2-14

P
package names 2-3, 2-4
parameters for starting a remote JVM 2-14
path, setting. See also classpath 2-2, 2-3

printing messages 4-3
printing product documentation vi

R
remote applications 2-14
remote JVMs

log files 2-14
NonCatalogLogger messages 2-9
notification listeners 4-4
startup arguments 2-14
writing to standard out 2-14

RemoteNotificationListener object 4-4
RMI 4-4

S
SequenceNumber message field

defined 4-14
getting 4-12

ServerName log message attribute 2-12
ServerName message field

getting 4-12
servlets 2-13
severity levels

defined 2-14
numerical values 2-14
using to exclude messages 2-15

Severity message field
defined 2-12
getting 4-12

stack traces in log messages 1-5
standard out 2-14, 3-2
starting notification listeners 4-6
startup arguments 2-14
Subsystem message field 2-12
support

technical vi
Using WebLogic Logging Services I-iii

T
ThreadId log message attribute 2-12
ThreadId message field

getting 4-12
Throwable message field 4-12
TimeStamp message field

defined 4-14
getting 4-12

TransactionId message field
defined 2-12
getting 4-12

transmitting messages. See broadcasts
Type message field

defined 4-13
getting 4-12

U
UserData message field 4-14
UserId message field 2-12

V
viewing message logs 3-1

W
WARNING severity level 2-14
weblogic.Admin GET command 4-7
weblogic.MsgEditor command 2-2, 2-3
WebLogicLogNotification object

example of using 4-3
getter methods 4-15
searching 4-13

X
XML 2-2
I-iv Using WebLogic Logging Services

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Logging Services
	2 Writing Messages to the WebLogic Server Log
	Using the I18N Message Catalog Framework: Main Steps
	Step 1: Create Message Catalogs
	Step 2: Compile Message Catalogs
	Example: Compiling Message Catalogs

	Step 3: Use Messages from Compiled Message Catalogs

	Using the NonCatalogLogger APIs
	Using GenericServlet
	Writing Messages from a Remote Application
	Writing Messages from a Remote JVM to a File

	Writing Debug Messages

	3 Viewing the WebLogic Server Logs
	4 Listening for Messages from the WebLogic Server Log
	Step 1: Create a Notification Listener
	Creating a Notification Listener for an Application that Runs Within a WebLogic Server JVM
	Creating a Notification Listener for a Remote Application

	Step 2: Register the Notification Listener
	Using the addNotificationListener API
	Examples for Registering a Notification Listener

	Step 3: Create and Register a Notification Filter
	Creating and Registering a Filter
	Adding Filter Classes to the Server Classpath

	WebLogicLogNotification Objects
	Example Notification Filter
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

