0?7,

r
S’ 7
L/

BEA WeDbLogic
Server-

Developing WebLogic
Server Applications

Release 8.1
Document Revised: October 29, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Developing WebL ogic Server Applications

Part Number Document Revised Software Version

N/A October 29, 2002 BEA WebL ogic Server
Version 8.1

Contents

About This Document

U 0 [1= o TSRS X
E-UOCSWED STt s r e ereens X
How to Print the DOCUMENTcoviiieeiecece ettt e X
Related INfOrMELioN........ccoiieiecicecee e e Xi
[0 1 r=ox A U LSS Xi
Documentation CONVENLIONS.........ceceeieiieiireeitesteeseestee e esreereesbesreesresnesreeeens Xii

Understanding WebLogic Server Applications

What Are WebL ogic Server J2EE Applications and Components?.................. 1-2
I 7 =1 o 1-3
Web Application COMPONENESceirerireriee s e 1-3
SEIVIELS. ..o e e 1-4
JAVASEIVES PAJES......c.eoiitiiiiietee e s 1-4
Web Application DireCtory StrUCLUIEcoeevreeerieirieireeseeese s 1-4
More Information on Web Application Componentsc.ccccvevereennne. 1-5
Enterprise JavaBean COMPONENLS.......c.coueuirieireerieerieesieesiesesie s sesseseenes 1-5
EJIB OVEIVIEW ..ottt st ste st eaesnens e e e enessesessessens 1-5
EJB INEEITACES ...ttt e 1-6
EJBS and WeDLOGIC SEIVENc.oiiirieiriieree e e 1-7
CoNNECLOr COMPONENT......cvieereieerereeeere ettt ereeres 1-7
ENnterprise APPIICALIONSccce ettt 1-8
WEDLOGIC WED SENVICES......ciiiiiiieteete ettt 1-8
Client APPIICALIONS.civiiirieirieierir e 1-9
NamMiNG CONVENLIONS.........cceiiiiieiiieesese et e s sre st reenee s 1-10

Developing WebL ogic Server Applications i

2. Developing WebLogic Server Applications

Establishing a Development EnVironmentcocccoevieineinensenesesnennns 2-2
SOFIWEAIE TOOIS. ...ttt e et 2-2
Source Code Editor OF IDE ..o 2-2

DY, o T o S 2-2

APPC COMPITEY ... bbb 2-3
Development WebLOGIC SEIVEr ..o 2-5
Database System and JDBC DIIVESccoeirerirenirese e 2-6

WWED BIOWSEYcviiuitiiiesieneeie ettt st bbb sae b b san 2-6
Third-Party SOftWEare.........ccooeiriririe e 2-6
Application LifeCyCle EVENLS ... 2-7
BasiC FUNCLONALITYoeeueieirieieieseie et s 2-8
Configuring Lifecycle Events: URI Parameterccoovvvvnennennenns 2-10
Creating Web Applications: Main SEEPScoeererereninire e 2-12
Creating Enterprise JavaBeans: Main SEEPS.......ccovereereeenenerenese e 2-14
Creating Resource Adapters: Main SEEPS.......cooevrirerirnenenenire e 2-16
Creating a New Resource Adapter (RAR)oooveienieneeiicireee e 2-16
Modifying an Existing Resource Adapter (RAR)coocevereneienriecnennens 2-18
Creating WebL ogic Server Enterprise Applications: Main Steps................... 2-19
Compiling JAVA COUE.........couereirieiisieie et e 2-22
Creating Compile Scripts Using Apache ANt.........cccoeeerienenieneneseeneenens 2-23
Putting the JavaToolsin Your Search Path ..o 2-24
Setting the Classpath for Compiling Code........cccoevevevvccevcevcee e, 2-24
Setting Target Directories for Compiled Classes.........ccoceeveevceeieveennene, 2-25
Auto-Deployment for Development ENVIFOMENtSc.cceveeereereenieeneennns 2-26
Enabling and Disabling Auto-Deploymentcccocoeveeveviecesceeceeienn, 2-27
Auto-Deploying APPliCaLIiONSccueieeierii e 2-28
Stopping and Redeploying Archived Applications...........ccccovevvenenenns 2-28
Redeploying Applicationsin Exploded Formatc.ccecvveecienieeenee. 2-28

3. WebLogic Server Application Packaging

Packaging OVEIVIBWcc.oiuiuirieie ettt et 32
B8 =S 32
XML Deployment DESCIIPLOIS.......eiveveieereserieseeiesteestesteeseesresseseessesneesnens 34

Automatically Generating Deployment DesCriptors..........ccocveeveereennene 35

iv Developing WebL ogic Server Applications

Editing Deployment DESCIIPLOrS........ccovivverierereeeeereseere e eeenenns 3-6

Using the BEA XML EditOrcooiirieiiine e 37

ADOUL EIBGEN ...ttt 3-7

Using the Administration Console Deployment Descriptor Editor 3-7

Editing EJB Deployment DESCIiPLOrS.......cceveruereeniereereeeeeeie e 3-8

Editing Web Application Deployment Descriptors.........coeerveeneee. 3-10

Editing Resource Adapter Deployment Descriptors.........c.cccceeeeuene. 312

Editing Enterprise Application Deployment Descriptors................. 3-13
Packaging Web ApPliCatIONSccccvieireiniiinereese e 3-16
Packaging Enterprise JavaBeans..........ccccoeieiirieieeenineeere e e 3-17
Staging and Packaging EJBS..........cccooierinenerenene e 3-17
USING G0-ClIENtJaIcvieeeiee s 3-19
Packaging Resource AdapterS..........coevereeeieeenene e 3-20
Packaging Enterprise AppliCatioNnS..........cc.ccueieeieeirenienie e 321
Enterprise Applications Deployment Descriptor Files.........coovverieeneee. 321
Packaging Enterprise Applications: Main StEPS........covverereiecnieeeienene 3-22
Packaging Client AppliCatiONS..........cocceirire e 3-24
Executing a Client Application inan EAR File........ccoveviiininncnnenn, 3-24
Special Considerations for Deploying J2EE Client Applications............ 3-25
Packaging J2EE Applications Using Apache Ant...........cccoererenenenineeninenne 3-27
Packaging J2EE Deployment UNitS..........coeorreriieneinincsenesesines 3-27

L LU0 H T AN | 3-30

4. WebLogic Server Application Classloading

Java Class 08der OVEIVIEW.cuereeeireee et ene e ese e ere s s 4-2
Java Classoader Hierarchy ..o 4-2
(o (110 I W O == 4-3
PreferWeblinfClasses Element..........coovvevvrirereneneeseeeeeee e 4-3
Changing Classesin a RUNNing Program............cocovevrinnienenieneseseesenne 4-4

WebL ogic Server Application Classloader OVErViewcccoceveveveneenieenene, 4-4
Application Clasdoadingccoeorerieireee s 4-5
Application Classdoader Hierarchycccoeveiiininninnncecne 4-6
Custom Module Classloader Hierarchies............ccoooveniinninenienneneeennns 4-7

Declaring the Classloader Hierarchycoccovevveineinenncicnece 4-8
User-defined Classloader ReStHCtionS.cccoevverrenrenneeeneee 4-11

Developing WebL ogic Server Applications \

Individual EJB Class oader for Implementation Classes.........cccovievernnne 4-13

Application Classloading and Pass by Value or Reference...................... 4-15
Resolving Class References Between Components and Applications............ 4-16
About Resource Adapter ClaSSESccvvrieereeereesieeseese e 4-16
Packaging Shared Utility ClasSesS.........coceviiirene e 4-16
Manifest Class-Path..........ccooiririiee e 4-17
Programming Topics
L OQQING MESSAGESccvevertereieeieiee ettt st sae et et et sse b sae b b e 6-2
Using Threads in WebLOgIiC SEIVES ...t 6-2
Using JavaMail with WebLogic Server Applications........c.ccccvevereneeenerenennnn. 6-3
About JavaMail Configuration Fil€S.........c.coiviiiiiirienere e 6-4
Configuring JavaMail for WebLogiC SErVer........ccoveereieneineeereeeneeneas 6-4
Sending Messages with JavaMail ... 6-6
Reading Messages with JavaMallcccceeeinininiiinene e 6-8
Programming Applications for WebLogic Server ClUSters........ccovvvivncvrnennnn 6-9

. Application Deployment Descriptor Elements

application.xml Deployment Descriptor Elements...........coooveeevrienncncnenen. A-1
BPPHICALION ...t bbb e e A-3
o7 OSSR A-3
SMAI-TCON ...ttt et e ebe e sre s A-3
=0 7= oo NSRS A-3
iSPlAY-NAME......coiiieee e e A-3

L0 =S wi] (o] o S A-3
MNOAUIE ...ttt b e bt b e se e e A-4

= o o S A-4
CONMNECLOT ...ttt ettt et se et st sn e b b sbeesresseenr e ae e b e eneeenas A-4

= S A-4

JAVAL e A-4

WED . s A-5

S o b)Y (0] = TSR A-5
ESCIIPLION ...ttt et A-5
FOIE-NAIME.t A-5
weblogic-application.xml Deployment Descriptor Elements............cccccveeeee. A-6

Developing WebL ogic Server Applications

V7S o] oo [T wRr="o] o] 1Yo o] SRR A-6

B0 s A-7
ENLITY-CACNE ...ttt A-7
start-mdbs-with-appliCationcccereereineee e A-9

(1 | USSR A-9
PArSEr-FACLONYocviieiiiieerte s A-9
ENLILY-MBPPING -.c.veiviteiee ettt sae e e A-10

JADC-CONNECEION-POOI ...t e A-11
ata-SOUMCE-NAMEceveeeeee et ete e e te e eeeeeere e esesresaesrensenseneens A-11
CONNECLION-FACLONY ..ot A-12
POOI-PAIAMS..... ettt ettt s be e e A-12
(0| EAVT g 7= 1= 0 SRR A-16
BCL-NAIME......otitt e e sn A-17

APPHCALION-PAIAIM.cvi et e s A-18

Classl0adEr-StIUCIUN........ceeveeeeeecece e A-18
MOTUIETER ... A-18
Class|080Er-SITUCLUNE...........ccvevieceeeeres s A-19

TS TS A-19
[ISEENEI-ClASS.....coi e A-19
[ISEENEI-UIT .ttt A-19

STAITUPD . e e e A-19
LS 0 0 o = ST A-19
LS = i 0o A-20

LS 0101 [0 o R A-20
SNULAOWN-CLESS......ccvieceiceee e A-20
SAULAOWN-UNT et A-20

application-client.xml Deployment Descriptor Elements.........coccovvevvernieene B-2
2o [Tor= 1] g ot ex = o SRS B-4

[Te TSSOSO B-4
iSPlaY-NAME.....c.eitiiiiireie bbb B-4

(0150] o1 RS B-4
EBNV=ENEIY Lo e B-5

B DTER e B-5

Developing WebL ogic Server Applications vii

(S 010 | (ol <. B-6

WebL ogic Run-time Client Application Deployment Descriptor B-7
APPHCALTON-ClIENL ... e B-8
EINV=EINITY o e e e B-8

G 0-TEF e e B-9
FESOUMCE-TER ...ttt e B-9

viii Developing WebL ogic Server Applications

About This Document

This document introduces the BEA WebL ogic Server™ application devel opment
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebL ogic Server platform.

The document is organized as follows:

Chapter 1, “Understanding WebL ogic Server Applications,” describes
components of WebL ogic Server applications.

Chapter 2, “Developing WebL ogic Server Applications,” outlines high-level
procedures for creating WebL ogic Server applications and helps Java
programmers establish their programming environment.

Chapter 3, “WebL ogic Server Application Packaging,” provides procedures for
packaging WebL ogic Server applications.

Chapter 4, “WebL ogic Server Application Classloading,” provides an overview
of Java classloaders, followed by details about WebL ogic Server application
classloading.

Chapter 5, “Programming Topics,” covers general WebL ogic Server application
programming issues, such as logging messages and using threads.

Appendix A, “Application Deployment Descriptor Elements,” is areference for
the standard J2EE Enterprise application deployment descriptor,

appl i cati on. xnl and the WebL ogic-specific application deployment
descriptor webl ogi c- appl i cati on. xni .

Appendix B, “Client Application Deployment Descriptor Elements,” isa
reference for the standard J2EE Client application deployment descriptor,
appl i cation-client.xm ,and the WebL ogic-specific client application
deployment descriptor.

Developing WebL ogic Server Applications

iX

Audience

This document is written for application devel opers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technol ogies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File-Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

X Developing WebL ogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides al documentation for WebL ogic Server. The
following WebL ogic Server documents contain information that isrelevant to creating
WebL ogic Server application components:

m Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html

m Programming WebLogic HTTP Serviets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html

m Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html

m Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81b/webapp/index.html

m Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

m Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81b/webhServices/index.html

m Programming WebLogic J2EE Connectors at
http://e-docs.bea.com/wls/docs81b/jconnector/index.html

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

Developing WebL ogic Server Applications Xi

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html
http://e-docs.bea.com/wls/docs81b/webServices/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitleand document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can al so contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Developing WebL ogic Server Applications

http://www.bea.com

Convention

Usage

nonospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

inmport java.util.Enumeration;

chnod u+w *

confi g/ exanpl es/ appl i cations

.java

config. xm

fl oat

nonospace
italic
t ext

Variablesin code.
Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{1

A set of choicesin asyntax line.

[]

Optional itemsin a syntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. Depl oyer [I|i st|depl oy|undepl oy| updat €]

password {application} {source}

Indicates one of the following in acommand line:

® Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additiona parameters, values, or other information

Developing WebL ogic Server Applications

Xiii

Convention Usage

Indicates the omission of items from a code example or from asyntax line.

Xiv Developing WebL ogic Server Applications

CHAPTER

1

Understanding

WebLogic Server
Applications

The following sections provide an overview of WebL ogic Server J2EE applications
and application components:

m “What Are WebL ogic Server J2EE Applications and Components?’ on page 1-2

“J2EE Platform” on page 1-3

“Web Application Components’ on page 1-3

m “Enterprise JavaBean Components’ on page 1-5
m “Connector Component” on page 1-7

m “Enterprise Applications’ on page 1-8

m “WebLogic Web Services’ on page 1-8

m “Client Applications’ on page 1-9

m “Naming Conventions’

Developing WebL ogic Server Applications 1-1

1 Understanding WebLogic Server Applications

What Are WebLogic Server J2EE
Applications and Components?

1-2

A BEA WebL ogic Server™ J2EE application consists of one of the following
components running on WebL ogic Server:

m Web components—HTML pages, servlets, JavaServer Pages, and related files

m Enterprise Java Beans (EJB) components—entity beans, session beans, and
message-driven beans

= Connector component—resource adapters

Components are packaged in Java ARchive (JAR) files—archives created with the
Javaj ar utility. JAR files bundle all component filesin a directory into asinglefile,
maintaining the directory structure. JAR files also include XML descriptors that
instruct WebL ogic Server how to deploy the components.

Web applications are packaged ina JAR filewith a. war extension. Enterprise beans,
WebL ogic components, and client applications are packaged in JAR fileswith . j ar
extensions. Resource adapters are packaged in aJAR filewith a. r ar extension.

An enterprise application, consisting of assembled Web application components, EJB
components, and resource adapters, isaJAR filewithan . ear extension. AnEARfile
contains al of the JAR, WAR, and RAR component archive files for an application
and an XML descriptor that describes the bundled components.

To deploy acomponent, an application, or aresource adapter, you use the
Administration Console or the webl ogi c. Depl oyer command-line utility to upload
JAR files to the target WebL ogic Server instances.

Client applications that are not Web browsers are Java classes that connect to

WebL ogic Server using Remote Method Invocation (RMI). A Javaclient can remotely
access Enterprise JavaBeans, JDBC connections, JM S messaging, and other services
using access methods such as RMI.

Developing WebL ogic Server Applications

J2EE Platform

J2EE Platform

WebL ogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.3
technologies (htt p: / / j ava. sun. com’ j 2ee/ sdk_1. 3/ i ndex. ht ml). J2EE isthe
standard platform for devel oping multitier enterprise applications based on the Java
programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

J2EE applications are based on standardized, modular components. WebL ogic Server
provides acomplete set of servicesfor those components and handles many details of
application behavior automatically, without requiring programming.

Note: Because J2EE is backward compatible, you can still run J2EE 1.2 on
WebL ogic Server 7.0.

Web Application Components

A Web archive (WAR) filehasa. war extension and contains the components that
make up aWeb application. A WAR file is deployed as a unit on one or more
WebL ogic Servers.

A Web application on WebL ogic Server includes the following files:
m At least one servlet or JSP, along with any helper classes.

m A web. xnl deployment descriptor, a J2EE standard XML document that
describes the contents of a WAR file.

m A webl ogi c. xm deployment descriptor, an XML document containing
WebL ogic Server-specific elements for Web applications.

A Web application might also include HTML and XML pages with supporting files
such asimages and multimediafiles.

Developing WebL ogic Server Applications 1-3

1 Understanding WebLogic Server Applications

Servlets

Servlets are Java classes that execute in WebL ogic Server, accept arequest from a
client, processit, and optionally return aresponse to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HitpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makesiit
possible to embed Java code in aWeb page. JSPs can call custom Java classes, called
taglibs, using HTML-like tags. The WebL ogic JSP compiler, webl ogi c. j spc,
translates JSPs into servlets. WebL ogic Server automatically compiles JSPsif the
servlet classfileis not present or is older than the JSP source file.

Y ou can also precompile JSPs and package the servlet classin aWeb archive (WAR)
file to avoid compiling in the server. Servlets and JSPs may require additional helper
classes that must & so be deployed with the Web application.

Web Application Directory Structure

Y ou assemble Web application components in a directory, then package them into a
WAR file with thej ar command.

HTML pages, JSPs, and the non-Java classfilesthey reference are accessed beginning
in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in aVEB- | NF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSPs.

Theentire directory, once staged, isbundled into aWAR fileusing thej ar command.
Y ou can deploy the WAR file alone or packaged in an Enterprise Archive (EAR file)
with other application components, including other Web Applications, EJB
components, and WebL ogic Server components.

1-4 Developing WebL ogic Server Applications

Enterprise JavaBean Components

See Directory Structure at
http://e-docs.bea.com/wls/docs81b/webapp/basi cs.html#136976 for detailed
information on the Web application directory structure.

More Information on Web Application Components

For more information about creating Web application components, see these
documents:

m Programming WebLogic Server HTTP Serviets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html

m Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html

m Programming JSP Tag Extensions at
http://e-docs.bea.com/wls/docs81b/taglib/index.html

m Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81b/webapp/index.html

Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components that implement a
business task or entity and are written according to the EJB specification. There are
three types of enterprise beans: session beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of asingle client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.

Developing WebL ogic Server Applications 1-5

http://e-docs.bea.com/wls/docs81b/webapp/basics.html#136976
http://e-docs.bea.com/wls/docs81b/webapp/basics.html#136976
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/taglib/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html

1 Understanding WebLogic Server Applications

Entity beans represent business objects in a data store, usually arelational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

A message-driven bean isan enterprise bean that runsin the EJB container and handles
asynchronous messages from a JM S Queue. When amessage isreceived in the IMS
Queue, the message-driven bean assigns an instance of itself from apool to processthe
message. M essage-driven beans are not associated with any client. They simply handle
messages as they arrive. A IMS ServerSessionPool provides a similar capability but
does not run in the EJB container.

Enterprise beans are bundled into aJAR filewith a. j ar extension that containstheir
compiled classes and XML deployment descriptors.

EJB Interfaces

1-6

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean devel oper. (M essage-driven beansdo not
require home or remote interfaces, because they are not accessible outside of the EJB
container.)

The remote interface defines the methods aclient can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accessesinstances of an enterprise bean through the bean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply aJAR
file containing just the compiled EJB interfaces and classes and a depl oyment
descriptor.

Developing WebL ogic Server Applications

Connector Component

EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebL ogic Server requires running the WebL ogic EJB
compiler, webl ogi c. appc, to generate classes that enforce the EJB security,
transaction, and life cycle policies.

The J2EE-specified deployment descriptor, ej b-j ar. xm , describes the enterprise
beans packaged in an EJB JAR file. It definesthe beans' types, names, and the names
of their home and remote interfaces and implementation classes. Theej b-j ar . xni
deployment descriptor defines security rolesfor the beans, and transactional behaviors
for the beans' methods.

Additional deployment descriptors provide WebL ogic-specific deployment
information. A webl ogi c- cnp-rdbmns-j ar. xm deployment descriptor for
container-managed entity beans maps a bean to tablesin a database. The

webl ogi c- ej b-j ar. xm deployment descriptor supplies additional information
specific to the WebL ogic Server environment, such as clustering and cache
configuration.

For help creating and deploying EJBs, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs81b/ejb/index.html.

Connector Component

The WebL ogic Server J2EE Connector architecture enables both Enterprise
Information Systems (EIS) vendors and third-party application developersto develop
resource adapters that can be deployed in any application server supporting the 2EE
1.3 specification from Sun Microsystems. Resource adapters contain the Java, and if
necessary, the native components required to interact with the EIS.

A resource adapter deployed in the WebL ogic Server environment enables J2EE
applications to access aremote EIS system. Devel opers of WebL ogic Server
applications can use HTTP servlets, JavaServer Pages (JSPs), Enterprise Java Beans
(EJBs), and other APIsto develop integrated applications that use the data and
business logic of the EIS.

Developing WebL ogic Server Applications 1-7

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

1 Understanding WebLogic Server Applications

Asis, the basic Resource ARchive (RAR File) or deployment directory cannot be
deployed to WebL ogic Server. You must first create and configure WebL ogic
Server-specific deployment propertiesinthewebl ogi c-ra. xm file, and add that file
to the deployment directory.

To configure and deploy resource adapters, see Programming WebLogic J2EE
Connectors at http://e-docs.bea.com/wls/docs81b/jconnector/index.html.

Enterprise Applications

An enterprise J2EE application contains Web and EJB components, deployment
descriptors, and archive files. These components are packaged in an Enterprise
Archive (EAR) filewith an . ear extension.

The META-1 NF/ appl i cati on. xm deployment descriptor contains an entry for each
Web and EJB component, and additional entries to describe security roles and
application resources such as databases.

From the WebL ogic Administration Server you use the Administration Console or the
webl ogi c. Depl oyer command line utility to deploy an EAR file on one or more
WebL ogic Server instances in a domain.

WebLogic Web Services

1-8

Web services can be shared by and used as components of distributed Web-based
applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on. Web
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

A Web service consists of the following components:

m A Web service implementation hosted by a server on the Web.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Client Applications

WebL ogic Web services are hosted by WebL ogic Server. They are implemented
using standard J2EE components (such as Enterprise Java Beans) and packaged
as standard J2EE Enterprise Applications.

m A standardized way to transmit data and Web service invocation calls between
the Web service and the user of the Web service.

WebL ogic Web Services use Simple Object Access Protocol (SOAP) 1.1 asthe
message format and HTTP as the connection protocol.

m A standard way to describe the Web service to clients so they can invokeit.

WebL ogic Web Services use Web Services Description Language (WSDL) 1.1,
an XML-based specification, to describe themselves.

For information on designing, developing, and invoking WebL ogic Web services, see
Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81b/webServices/index.html.

Client Applications

Java clients that access WebL ogic Server components range from simple command
lineutilitiesthat use standard /O to highly interactive GUI applications built using the
Java Swing/AWT classes. Java clients use WebL ogic Server components indirectly
through HTTP requests or RM1 requests. The components execute in WebL ogic
Server, not in the client.

WebL ogic Server supports a variety of Java clients, which vary in termsof protocol
support and the WebL ogic Server classes required on the client.

In previous versions of WebL ogic Server, a Javaclient required the full WebLogic
Server jar on the client machine. WebL ogic Server 8.1 supports atrue J2EE
Application Client, referred to as the thin client. Small footprint standard and IMS
jars—w client.jar andw j msclient.jar respectively—are provided in the

/ server/|i b subdirectory of the WebL ogic Server installation directory. Each jar is
about 400 KB.

A J2EE application client runs on aclient machine and can provide aricher user
interface than can be provided by a markup language. Application clients directly
access enterprise beans running in the business tier, and may, as appropriate

Developing WebL ogic Server Applications 1-9

http://e-docs.bea.com/wls/docs81b/webserv/index.html

1 Understanding WebLogic Server Applications

communicate via HTTP with servlets running in the Web tier. Although a J2EE
application client is a Java application, it differs from a stand-al one Java application
client because it is a J2EE component, hence it offers the advantages of portability to
other J2EE-compliant servers, and can access J2EE services. For more information
about the thin client, see “ Developing a J2EE Application Client (Thin Client)” in
Programming WebLogic RMI over 110OP.

The application devel oper packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it is agood ideato
package a client-side application in a JAR file that can be added to the client’s
classpath along with the appropriate WebL ogic jar file.

For more information about al client types supported by WebL ogic Server, see
“Overview of RMI-I10P Programming Models” in Programming WebLogic RMI over
I1OP.

Naming Conventions

1-10

WebL ogic Server requires you to adhere to the following programmatic naming
conventions for WAR, EAR, JAR, and RAR archive files and exploded directories.

m Enterprise JavaBean JAR archived files must end with the . j ar extension.

m Resource adapter RAR archived files must end with the . r ar extension.

m Web application WAR archived files must end with the . war extension.

m Enterprise application EAR archived files must end with the . ear extension.

m Exploded non-archived versions of al of the above archived files must not end
withthe.jar,.rar,.war, or. ear extensions respectively.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/rmi_iiop/rmiiiop2.html#DevelopingThinClient
http://e-docs.bea.com/wls/docs81b/rmi_iiop/rmiiiop2.html#ProgrammingModels

CHAPTER

2

Developing WebLogic
Server Applications

The following sections describe the steps for creating different types of WebL ogic
Server J2EE applications, setting up a development environment, and preparing to
compile Java programs.

m “Establishing a Development Environment” on page 2-2
m “Application Lifecycle Events’ on page 2-7
m “Creating Web Applications: Main Steps’ on page 2-12

m “Creating Enterprise JavaBeans: Main Steps’ on page 2-14

“Creating Resource Adapters: Main Steps’ on page 2-16

“Creating Resource Adapters: Main Steps’ on page 2-16

“Creating WebL ogic Server Enterprise Applications: Main Steps’ on page 2-19

“Compiling Java Code” on page 2-22

“ Auto-Deployment for Development Enviroments’ on page 2-26

WebL ogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmersand designers create componentsthat i mplement
the business logic and presentation logic for the application. Application assemblers
assembl e the components into applications ready to deploy on WebL ogic Server.

Developing WebL ogic Server Applications 2-1

2 Developing WebLogic Server Applications

Establishing a Development Environment

In preparation for devel oping WebL ogic Server applications, you assemble the
required software tools and set up an environment for creating, compiling, deploying,
testing, and debugging your code.

Software Tools

This section reviews the software required to develop WebL ogic Server applications
and describes optional tools for development and debugging.

Source Code Editor or IDE

XML Editor

Y ou need atext editor to edit Java source files, configuration files, HTML or XML
pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differencesis preferred, but there are no other special requirements for
your editor.

Java Interactive Devel opment Environments (IDEs) such as WebGain Visual Café
usually include a programmer’ s editor with custom support for Java. An IDE may also
have support for creating and deploying servlets and Enterprise JavaBeans on

WebL ogic Server, which makes it much easier to develop, test, and debug
applications.

You can edit HTML or XML pages and JavaServer Pages with a plain text editor, or
use a Web page editor such as DreamWeaver.

You use an XML editor to edit the XML files used by WebL ogic Server, such asthe
EJB and Web application deployment descriptors, theconfi g. xm file, and so on.
WebL ogic Server includes the following two XML editors:

m Deployment Descriptor Editor, part of the Administration Console
m BEA XML Editor, astand-alone Java-based editor

2-2 Developing WebL ogic Server Applications

Establishing a Development Environment

For detailed information about using these XML editors, see “ Deployment Tools
Reference” in Deploying WebLogic Server Applications.

appc Compiler

appc Syntax

appc Options

The appc compiler compiles and generates EJBs and JSPs for deployment. It also
validates the descriptors for compliance with the current specifications at both the
individual modulelevel and the application level. The application level checksinclude
checks between the application-level deployment descriptors and the individual
modules as well as validation checks across the modul es.

The appc compiler reports any warnings or errors encountered in the descriptors.
Finally, the appc compiler compilesall of therelevant modulesinto an EAR file, which
can be deployed to WebL ogic Server.

Use the following syntax to run appc:

pronpt >j ava webl ogi c. appc [options] <ear, jar, or war file or
directory>

The following are the available appc options:

Option Description

-print Prints the standard usage message.

-version Printsj spc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the

output is placed in the source archive or directory.

-forceGeneration Forcesgeneration of EJB and JSP classes. Without thisflag, the
classes may not be regenerated (if determined to be
unnecessary).

-lineNunbers Adds JSP line numbers to generated classfilesto aid in
debugging.

Developing WebL ogic Server Applications 2-3

http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications

2-4

-basi cC i ent Jar

-idl
-idl Overwite
-idl Ver bose

-i dl NoVal ueTypes

-idl NoAbstractlnte
rfaces

-idl Factories
-idl Vi si br oker

-idl O bix
-idlDirectory <dir>
-idl Met hodSi gnat ure
s <>

-iiop

-iiopDirectory
<dir>

- keepgener at ed
-conpi l er <javac>
-g

-0

- nowar n

-ver bose

- deprecation

Does not include deployment descriptorsin client JARs
generated for EJBs.

Generates IDL for EJB remote interfaces.
Always overwrites existing IDL files.
Displays verbose information for IDL generation.

Does not generate valuetypes and the methods/attributes that
contain them.

Does not generate abstract interfaces and methods/attributes
that contain them.

Generates factory methods for valuetypes.
Generates| DL somewhat compatiblewith Visibroker 4.5 C++.

Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

Specifiesthe directory where IDL fileswill be created (default
: target directory or JAR)

Specifies the method signatures used to trigger IDL code
generation.

Generates CORBA stubs for EJBs.

Specifies the directory where 11OP stub files will be written
(default : target directory or JAR)

Keeps the generated .javafiles.

Selects the Java compiler to use.

Compiles debugging information into a classfile.
Compiles with optimization on.

Compiles without warnings.

Compiles with verbose output.

Warns about deprecated calls.

Developing WebL ogic Server Applications

Establishing a Development Environment

-norm Passes flags through to Symantec's §.
- J<option> Passes flags through to Java runtime.
-cl asspath <pat h> Selects the classpath to use during compilation.

-advanced Prints advanced usage options.

appc Ant Task

Y ou can use the following Ant task to invoke the appc compiler:

<t askdef nanme="appc"
cl assname="webl ogi c. ant . t askdef s. j 2ee. Appc"/ >

Development WebLogic Server

Never deploy untested code on a WebL ogic Server that is serving production
applications. Instead, set up adevelopment WebL ogic Server instance on the same
computer on which you edit and compile, or designate a WebL ogic Server
development location elsewhere on the network.

Javais platform independent, so you can edit and compile code on any platform, and
test your applications on devel opment WebL ogic Servers running on other platforms.
For example, it iscommon to develop WebL ogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebL ogic Server on your development
computer, you must have access to a WebL ogic Server distribution to compile your
programs. To compile any code using WebL ogic or J2EE APIs, the Java compiler
needs accessto the webl ogi c. j ar file and other JAR filesin the distribution
directory. Installing WebL ogic Server on your development computer makes these
filesavailable locally.

Developing WebL ogic Server Applications 2-5

2 Developing WebLogic Server Applications

Database System and JDBC Driver

Web Browser

Nearly all WebLogic Server applications require a database system. Y ou can use any
DBM S that you can access with a standard JDBC driver, but services such as

WebL ogic Java Message Service (IMS) require a supported JDBC driver for Oracle,
Sybase, Informix, Microsoft SQL Server, IBM DB2, or PointBase. Refer to Platform
Support to find out about supported database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantagesthat you should
only rarely consider writing an application that uses atwo-tier JDBC driver directly.
On aWebL ogic Server cluster, be sure to set up a multipool, which provides load
balancing over JDBC connection pools on multiple serversin the cluster.

Most J2EE applications are designed to be executed by Web browser clients.
WebL ogic Server supportsthe HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.

Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settingsin the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differencesin the JVMs embedded in
various browsers. One solution isto require usersto install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

2-6

Y ou can use third-party software products, such as WebGain Studio, WebGain
StructureBuilder, and BEA WebL ogic Integration Kit for VisualAge for Java, to
enhance your WebL ogic Server development environment.

For moreinformation, see BEA WebL ogic Devel oper Tools Resour ces, which provides
developer tools information for products that support the BEA application servers.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/certifications/certifications/index.html
http://e-docs.bea.com/wls/certifications/certifications/index.html
http://www.bea.com/products/weblogic/tools.shtml

Application Lifecycle Events

To download some of these tools, see BEA WebLogic Server Downloads at
http://comerce. bea. com downl oads/ webl ogi c_server _tool s. | sp.

Note: Check with the software vendor to verify software compatibility with your
platform and WebL ogic Server version.

Application Lifecycle Events

Application lifecycle listener events provide handles on which devel opers can control
behavior during deployment, undepl oyment, and redepl oyment. This section discusses
how you can use the application lifecycle listener events.

Four application lifecycle events are provided with WebL ogic Server:

m Prestart—the beginning of the prepare phase. You can use the prestart event to
establish a connection pool.

m Poststart—the end of the activate phase; the application is deployed.

m Prestop—the beginning of the deactivate phase. You can use the prestop event to
disconnect from the database.

m Poststop—the end of the remove phase.

User-defined listeners can be:

m Listeners—attachable to any event. Possible methods for Listeners are:

public
public
public
public

voi d preStart (ApplicationLifecycl eEvent evt) {}
voi d post Start(ApplicationLifecycl eEvent evt) {}
voi d preStop(ApplicationLifecycl eEvent evt) {}
voi d post St op(ApplicationLi fecycl eEvent evt) {}

m Startup—attachable to prestart and poststart events.

m Shutdown—attachabl e to prestop and poststop events.

Note: For Startup and Shutdown classes, you only implement ansi n{} method. If
you implement any of the methods provided for Listeners, they are ignored.

Developing WebL ogic Server Applications 2-7

http://commerce.bea.com/downloads/weblogic_server_tools.jsp

2 Developing WebLogic Server Applications

Note: Norenove{} methodis provided inthe ApplicationLifecycleListener, since
the events are only fired at startup time during deployment (prestart and
poststart) and shutdown during undeployment (prestop and poststop).

Basic Functionality

Y ou create alistener by extending the abstract class (provided with WebL ogic Server)
webl ogi c. appl i cati on. Appl i cati onLi f ecycl eLi st ener. The container
then searches for your listener.

Y ou override the following methods provided in the WebL ogic Server
Appl i cationLifecycl eLi st ener abstract classto extend your application and add
any required functionality:

m preStart{}
m postStart{}
m preStop{}

m post St op{}

Listing 2-1 illustrates how you overridethe Appl i cat i onLi f ecycl eLi st ener. In
this example, the public class MyLi st ener extends
Appl i cationLifecycl eLi st ener.

Listing2-1 MyListener

i mport webl ogi c. application. ApplicationLifecyclelListener;
i mport webl ogi c. application. ApplicationLifecycl eEvent;
public class M/Listener extends ApplicationLifecyclelListener {
public void preStart(ApplicationLifecycl eEvent evt) {
Systemout.println
("MyListener(preStart) -- we should al ways see you..");
} I/ preStart

public void postStart(ApplicationLifecycleEvent evt) {

2-8 Developing WebL ogic Server Applications

Application Lifecycle Events

Systemout.println
("MListener(postStart) -- we should al ways see you..");
} /] postStart
public void preStop(ApplicationLifecycleEvent evt) {
Systemout.println
("MListener(preStop) -- we should al ways see you..");
} I/ preStart
public void postStop(ApplicationLifecycl eEvent evt) {
Systemout.println
("MListener(postStop) -- we should al ways see you..");
} I/ preStart
public static void main(String[] args) {
Systemout.println
("MyListener(rmain): in min .. we should never see you..");

} /1 main

Listing 2-2 illustrates how you implement the Shutdown class. This classis attachable
to prestop and poststop events. In this example, the public class My Shut down extends
Appl i cationLifecycl eLi st ener.

Listing2-2 MyShutdown

i mport webl ogi c. application. ApplicationLifecycl eLi stener;

i mport webl ogi c. appl i cation. ApplicationLifecycl eEvent;

public class MyShutdown extends ApplicationLifecycleListener {

public static void main(String[] args) {

Systemout.println

Developing WebL ogic Server Applications 2-9

Developing WebLogic Server Applications

("MyShutdown(main): in main .. should be for post-stop");

} // main

Listing 2-3illustrates how you implement the Startup class. Thisclassis attachable to
prestart and poststart events.. In this example, the public class My St ar t up extends
Appl i cati onLi f ecycl eLi st ener.

Listing 2-3 MyStartup

i mport webl ogi c. application. Applicati onLi fecycl eLi stener;
i nport webl ogi c. application. ApplicationLifecycl eEvent;
public class MyStartup extends ApplicationLifecycleListener {
public static void main(String[] args) {
Systemout.println
("MyStartup(main): in main .. should be for pre-start");

} // main

Configuring Lifecycle Events: URI Parameter

2-10

The following are examples illustrating how you configure the application lifecycle
eventsintheappl i cati on. xm deployment descriptor file. The URI parameter is
not required. Y ou can place classes anywhere in the application $CLASSPATH.
However, you must ensure that the class locations are defined in the $CLASSPATH.
You can place listenersin APP- | NF/ cl asses or APP- | NF/ | i b, if these directories
are present in the EAR. In this case, they are automatically included in the
$CLASSPATH.

Developing WebL ogic Server Applications

Application Lifecycle Events

The following example illustrates how you configure application lifecycle events
using the URI parameter. In this case, the archivef oo. j ar contains the classes and
exists at the top level of the EAR file. For example: nyEar/ f 0o. j ar

Listing 2-4 Configuring Application Lifecycle Eventswithout URI Parameter

<listener>
<li stener-class>M/Li stener</li stener-class>
<listener-uri>foo.jar</listener-uri>

</listener>

<startup>
<startup-class>M/St art up</ startup-cl ass>
<startup-uri>foo.jar</startup-uri>

</ startup>

<shut down>
<shut down- cl ass>M Shut down</ shut down- cl ass>
<shut down- uri >f 0o. j ar </ shut down- uri >

</ shut down>

The following example illustrates how you configure application lifecycle events
without using the URI parameter.

Listing 2-5 Configuring Application Lifecycle Events without URI Parameter

<li stener>

<l istener-class>M/Li stener</I|istener-class>
</listener>
<startup>

<startup-class>M/St art up</ st artup-cl ass>

Developing WebL ogic Server Applications 2-11

Developing WebLogic Server Applications

</startup>
<shut down>
<shut down- cl ass>MyShut down</ shut down- cl ass>

</ shut down>

Creating Web Applications: Main Steps

2-12

Here are the main steps for creating a Web application:

1

Create the HTML pages and JavaServer Pages (JSPs) that make up the Web
interface of the Web application. Typically, Web designers create these parts of a
Web application.

For detailed information about creating JSPs, refer to Programming WebLogic
JSP.

Write the Java code for the servlets and the JSP taglibs referenced in JSPs.
Typically, Java programmers create these parts of a Web application.

For detailed information about creating servlets, refer to Programming
WebLogic HTTP Servlets.

Compile the servletsinto classfiles.

For detailed information about compiling, refer to “ Compiling Java Code” on
page 2-22.

Arrange the resources (servlets, JSPs, static files, and deployment descriptors) in
the prescribed directory format. For more information on the Web application
directory structure, see “Web Application Basics’ in Developing Web
Applications for WWebLogic Server.

Createtheweb. xml and webl ogi c. xmi deployment descriptors.

Theweb. xn file defines each servlet and JSP page and enumerates enterprise
beans referenced in the Web application. The webl ogi ¢. xni file adds additional
deployment information for WebL ogic Server.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/webapp/basics.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html

Creating Web Applications: Main Steps

Createtheweb. xm and webl ogi c. xm deployment descriptors manually or
using WebL ogic Builder. For detailed information, refer to WebLogic Builder
Online Help. See Developing Web Applications for WebLogic Server for detailed
information on the elements in these deployment descriptors.

. Packagethe HTML pages, servlet classfiles, JSP files, web. xn file, and
webl ogi c. xnl fileintoaWARfile.

Create a Web application staging directory and save the JSPs, HTML pages, and
multimedia files referenced by the pagesin the top level of the staging directory.

Store compiled servlet classes, taglibs, and, if desired, servlets compiled from
JSP pages are stored under a WEB- | NF directory in the staging directory. When
the Web application components are all in place in the staging directory, you
create the WAR file with the JAR command.

For detailed information on packaging, refer to “WebL ogic Server Application
Packaging” on page 3-1.

. Auto-deploy the WAR file on WebL ogic Server for testing purposes.

For detailed information about auto-deploying components and applications,
refer to “ Deployment Tool Reference” in Deploying WebLogic Server
Applications.

While you are testing the Web application, you might need to edit the Web
application deployment descriptors. You can do this manually or use WebL ogic
Builder.

For detailed information, refer to WebLogic Builder Online Help. See
Developing Web Applications for WebLogic Server for detailed information on
the elements in these deployment descriptors.

. Deploy the WAR file on the WebL ogic Server for production use or includeitin
an Enterprise ARchive (EAR) file to be deployed as part of an enterprise
application.

Refer to Deploying WebLogic Server Applications for detailed information about
deploying components and applications.

Developing WebL ogic Server Applications 2-13

http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications

Creating Enterprise JavaBeans: Main Steps

2-14

Creating an Enterprise JavaBean requires creating the classes for the particular EJB
(session, entity, or message-driven) and the EJB-specific deployment descriptors, and
then packaging everything into an EAR file to be deployed on WebL ogic Server.

Here are the main steps for creating an Enterprise JavaBean:

1. Write the Java code for the various classes required by each type of EJB (session,
entity, or message-driven) in accordance with the EJB specification. For example,
session and entity EJBs require the following three classes:

e AnEJB homeinterface
e A remoteinterface for the EJB
e Animplementation class for the EJB

M essage-driven beans, however, require only an implementation class.

2. Compile the Java code using a standard compiler for the interfaces and
implementation into classfiles.

For instructions on compiling, refer to “Compiling Java Code” on page 2-22.

3. Create the EJB-specific deployment descriptors:

e ejb-jar.xm describesthe EJB type and its deployment properties using a
standard DTD from Sun Microsystems.

e webl ogi c-ej b-jar.xnl adds additional WebL ogic Server-specific
deployment information.

e webl ogi c- cnp-rdbms-j ar. xm mMaps a container-managed entity EJB to
tablesin a database. Thisfile can must have a different name for each
contai ner-managed persistence (CMP) bean packaged in aJAR file. The
name of the file is specified in the bean’s entry in the webl ogi c-ej b. j ar
file.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebL ogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as

ej b-jar.xm andweb. xm . Additional deployment descriptors supplement the

Developing WebL ogic Server Applications

Creating Enterprise JavaBeans: Main Steps

J2EE-specified descriptors with information required to deploy componentsin
WebL ogic Server.

Create and edit the XML deployment descriptors manually, or use WebL ogic
Builder to automatically generate them. For more information, refer to
Deploying WebLogic Server Applications.

For detailed information about the elements in the EJB-specific deployment
descriptors and how to create the files by hand, refer to Programming WebLogic
Enterprise JavaBeans.

. Package the class files and deployment descriptorsinto a JAR file.

Create an EJB staging directory. Place the compiled Java classes in the staging
directory and the deployment descriptors in a subdirectory called META- | NF.
Then run the webl ogi c. ej bc EJB compiler to generate classes that enforce the
EJB security, transaction, and lifecycle policies. Then you create the EJB archive
by executing aj ar command like the following in the staging directory:

jar cvf nyEJB.jar *

For detailed information about creating the EJB JAR file, refer to “WebL ogic
Server Application Packaging” on page 3-1.

. Auto-deploy the EJB JAR file on WebL ogic Server for testing purposes.

For detailed information about auto-deploying components and applications,
refer to “ Deployment Tool Reference” in Deploying WebLogic Server
Applications.

While you are testing the EJB, you might need to edit the EJB deployment
descriptors. You can do this manually or use WebL ogic Builder.

For detailed information, refer to WebLogic Builder Online Help. See
Developing Web Applications for WebLogic Server for detailed information on
the elements in these deployment descriptors.

. Deploy the JAR file on WebL ogic Server for production use or includeit in an
Enterprise ARchive (EAR) file to be deployed as part of an enterprise
application.

Refer to Deploying WebLogic Server Applications for detailed information about
deploying components and applications.

Developing WebL ogic Server Applications 2-15

http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications

Creating Resource Adapters: Main Steps

Creating aresource adapter reguires creating the classes for aresource adapter and the
connector-specific deployment descriptors, and then packaging everything into a
resource adapter archive (RAR) file to be deployed on WebL ogic Server.

Creating a New Resource Adapter (RAR)

2-16

The following are the main steps for creating a resource adapter (RAR):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0, Final Release
(http://java.sun.com/j2ee/downl oad.html#connectorspec).

When implementing a resource adapter, you must specify classesin ther a. xml
file. For example:

<managedconnect i onf act ory- cl ass>com sun. connect or . bl ackbox.
Local TxManagedConnect i onFact or y</ nanagedconnecti onf act ory-
cl ass>

<connectionfactory-interface>j avax. sql . Dat aSour ce</ connecti
onfactory-interface>

<connecti onfactory-inpl -cl ass>com sun. connect or. bl ackbox. Jd
bcDat aSour ce</ connecti onfactory-i npl -cl ass>

<connection-interface>j ava. sql . Connecti on</ connection-inter
face>

<connection-i npl - cl ass>com sun. connect or . bl ackbox. JdbcConne
ction</connection-inpl-class>

2. Compile the Java code using a standard compiler for the interfaces and
implementation into classfiles.

For instructions on compiling, refer to “ Compiling Java Code” on page 2-22.

3. Create the resource connector-specific deployment descriptors:

ra. xm describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

Developing WebL ogic Server Applications

Creating Resource Adapters: Main Steps

e webl ogi c-ra. xm adds additional WebL ogic Server-specific deployment
information.

For detailed information about creating connector-specific deployment
descriptors, refer to Programming WebLogic Server J2EE Connectors.

. Package the Java classes into a Java archive (JAR) file.

Thefirst step in creating a JAR file isto create a connector staging directory
anywhere on your hard drive. Place the JAR file in the staging directory and the
deployment descriptorsin a subdirectory called META- I NF.

Then you create the resource adapter archive by executing aj ar command
similar to the following in the staging directory:

jar cvf nyRAR rar *

For detailed information about creating the resource adapter RAR archivefile,
refer to “WebL ogic Server Application Packaging” on page 3-1.

. Auto-deploy the RAR resource adapter archive file on WebL ogic Server for
testing purposes.

For detailed information about auto-deploying components and applications,
refer to “Tools for Deploying” in Deploying WebLogic Server Applications.

While you are testing the resource adapter, you might need to edit the resource
adapter deployment descriptors. You can do this manually or use WebL ogic
Builder.

For detailed information, refer to VWebLogic Builder Online Help. See
Programming WebL ogic Server J2EE Connectors for detailed information on the
elements in these deployment descriptors.

. Deploy the RAR resource adapter archive file on WebL ogic Server or includeit
in an enterprise archive (EAR) file to be deployed as part of an enterprise
application.

Refer to Deploying WebLogic Server Applications for detailed information about
deploying components and applications.

Developing WebL ogic Server Applications 2-17

http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications

Modifying an Existing Resource Adapter (RAR)

The following is an example of how to take an existing resource adapter (RAR) and
modify it for deployment to WebL ogic Server. Thisinvolves adding the
webl ogi c-ra. xm deployment descriptor and repacking.

1. Create atemporary directory anywhere on your hard drive to stage the resource
adapter:

nkdir c:/stagedir
2. Copy the resource adapter that you will deploy into the temporary directory:
cp bl ackbox-notx.rar c:/stagedir
3. Extract the contents of the resource adapter archive:
cd c:/stagedir
jar xf blackbox-notx.rar
The staging directory should now contain the following:
m Aj ar file containing Java classes that implement the resource adapter
m A META- | NF directory containing the files: Mani f est . nf andra. xn
Execute these commands to see thesefiles:
c:/stagedir>|s
bl ackbox- not x. r ar
META- | NF
c:/stagedir> s NMETA-INF
Mani f est . nf
ra.xm

4. Createthewebl ogi c-ra. xnl file. Thisfileisthe WebL ogic-specific
deployment descriptor for resource adapters. In thisfile, you specify parameters
for connection factories, connection pools, and security mappings.

Refer to Programming WebLogic Server J2EE Connectors for more information
onthewebl ogi c-ra. xml DTD.

2-18 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Creating WebLogic Server Enterprise Applications: Main Steps

5. Copy thewebl ogi c-ra. xm fileinto the temporary directory's META- | NF
subdirectory. The META- | NF directory islocated in the temporary directory
where you extracted the RAR file or in the directory containing a resource
adapter in exploded directory format. Use the following command:

cp webl ogic-ra.xm c:/stagedir/META- | NF
c:/stagedir> |Is META-INF
Mani f est . nf
ra.xm
webl ogi c-ra. xm
6. Create the resource adapter archive:
jar cvf bl ackbox-notx.rar -C c:/stagedir
7. Deploy the resource adapter to WebL ogic Server.

For detailed information about deploying components and applications, refer to
“Tools for Deploying” in Deploying WebLogic Server Applications.

Creating WebLogic Server Enterprise
Applications: Main Steps

Creating a WebL ogic Server enterprise application requires creating Web, EJB, and
Connector (Resource Adapter) components, deployment descriptors, and archivefiles.
Theresult is an enterprise application archive (EAR file) that can be deployed on
WebL ogic Server.

Here are the main steps for creating a WebL ogic Server enterprise application:

1. Create Web, EJB, and Connector components for your application.

Programmers create servlets, EJBs, and Connectors using the J2EE APIs for
these components. Web designers create Web pages using HTML/XML and
JavaServer Pages.

Developing WebL ogic Server Applications 2-19

http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications

2-20

For overview information about creating Web, EJB, and Connector components,
respectively refer to “ Creating Web Applications: Main Steps’ on page 2-12,
“Creating Enterprise JavaBeans. Main Steps’ on page 2-14, and “ Creating
Resource Adapters: Main Steps’ on page 2-16.

For detailed information about creating the Java code that makes up the Web,
EJB, and Connector components, refer to Programming WebLogic Enterprise
JavaBeans, Programming WebLogic HTTP Servlets, Programming WebLogic
JSP, and Programming WebLogic Server J2EE Connectors.

. Create Web, EJB, and Connector deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebL ogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as

ej b-jar.xm ,web. xm ,and ra. xnl . Additiona deployment descriptors
supplement the J2EE-specified descriptors with information required to deploy
components in WebL ogic Server.

Create and edit the XML deployment descriptors manually, or use WebL ogic
Builder to automatically generate them. For more information, refer to
Deploying WebLogic Server Applications.

For detailed information about the various deployment descriptor elements, refer
to Developing Web Applications for WebLogic Server, Programming WebLogic
Enterprise JavaBeans, and Programming WebLogic Server J2EE Connectors.

. Package the Web, EJB, and Connector components into their component archive

files.

Component archives are JAR files containing all component files, including
deployment descriptors. You package Web componentsinto a WAR file, EJB
componentsinto an EJB JAR file, and Connector components into a RAR file.

Refer to “WebL ogic Server Application Packaging” on page 3-1 for detailed
information for creating component archives.

. Create the enterprise application deployment descriptor.

The enterprise application deployment descriptor, appl i cati on. xni , lists
individual components that are assembled together in an application.

Createtheappl i cati on. xnl deployment descriptor manually, or use WebL ogic
Builder to automatically generateit. For more information, refer to Deploying
WebLogic Server Applications.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

Creating WebLogic Server Enterprise Applications: Main Steps

Refer to “application.xml Deployment Descriptor Elements’ on page A-1 for
detailed information about the elements of the appl i cati on. xni file.

5. Package the enterprise application into an EAR file.

Package the Web, EJB, and Connector component archives along with the
enterprise application deployment descriptor into an enterprise archive (. ear
extension) file. Thisisthefile that is deployed on WebL ogic Server. WebL ogic
Server usesthe appl i cati on. xm deployment descriptor to locate and deploy
the individual components packaged in the EAR file.

For detailed information about creating the EAR file, see “WebL ogic Server
Application Packaging” on page 3-1.

6. For testing purposes, auto-deploy the EAR enterprise application on WebL ogic
Server.

While you are testing the enterprise application, you might need to edit the
enterprise application deployment descriptor. You can do this manually or use
WebL ogic Builder.

For detailed information on WebL ogic Builder, refer to WebLogic Builder Online
Help.

Refer to “application.xml Deployment Descriptor Elements’ on page A-1 for
detailed information about the elements of the appl i cati on. xm deployment
descriptor file.

7. For production purposes, deploy the EAR file on WebL ogic Server.

For detailed information about deploying components and applications, refer to
“Deployment Tools Reference” in Deploying WebLogic Server Applications.

Figure 2-1 illustrates the process for developing and packaging WebL ogic Server
enterprise applications.

Developing WebL ogic Server Applications 2-21

http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications

Figure2-1 Creating Enterprise Applications

. Serviets c t
Create Components Enterprise JSPs (Resospcr:ee;doarsters]
JavaBeans Web Pages R

' } ' ’

Create Component R —
Deployment weblogic-ejb-jar.xml weh..xml ra..xml
Descriptor web logic—cmp-rdbms . xml weblogic.xml weblogic-ra. ¥ml
Create Component EJB Archive Web Archive Resoi{;’,‘cehifl\\igapter
Archive JAR { jar) VWAR {war) RAR (rar)

¥ ‘

Create Application
Deployment

Descriptor application.xml
¢ weblogic-application. xml

'

Enterprise Archive
EAR {.ear)

¥

Package Application

Compiling Java Code

Compiling Java code for WebL ogic Server is the same as compiling any other Java
code. To compile successfully, you must:

m Place a standard Java compiler in your search path.
m Set your classpath so that the Java compiler can find all of the dependent classes.

m Specify the output directories for the compiled classes.

2-22 Developing WebL ogic Server Applications

Compiling Java Code

m Set your environment by creating a command file or script to set variablesin
your environment, which you can pass to the compiler.

Creating Compile Scripts Using Apache Ant

The preferred BEA method for compiling is using Apache Ant. Apache Antisa
Java-based build tool. One of the benefits of using Ant isthat isit extended using Java
classes, rather than shell-based commands. Another benefit isthat Ant is across-plat-
form tool.

Developerswrite Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

Instead of amodel where it is extended with shell-based commands, Ant is extended
using Java classes. Ant libraries are bundled with WebL ogic Server to make it easier
for our customers to build Java applications out of the box.

In order to use Ant, you must first set your environment by executing either the
set Exanpl esEnv. cnd (Windows) or set Exanpl esEnv. sh (UNIX) commands
located in the sanpl es\ server\ confi g\ exanpl es directory.

For a compl ete explanation of ant capabilities, see:
http://jakarta. apache. org/ ant/ manual /i ndex. ht m

For more information on using Ant to compile your cross-platform scripts or using
cross-platform scriptsto create XML scriptsthat can be processed by Ant, refer to any
of the WebL ogic Server examples, such as:

sanpl es\ server\ src\ exanpl es\ ej b20\ basi c\ beanManaged\ bui | d. xm

Also refer to the following WebL ogic Server documentation on building examples
using Ant:

sanpl es\ server\ src\ exanpl es\ exanpl es. ht m

Developing WebL ogic Server Applications 2-23

http://jakarta.apache.org/ant/manual/index.html

2 Developing WebLogic Server Applications

Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the ¥ATHY%environment variable in your command shell. If you are using the
JDK, thetoolsarein the bi n subdirectory of the JDK directory. To use an aternative
compiler, such asthesj compiler from WebGain Visua Café, add the directory
containing that compiler to your search path.

For example, if the DK isinstalled in\ usr\ 1 ocal \ j ava\ j aval41l onyour UNIX
file system, use acommand such as the following to add j avac to your pathin a
Bourne shell or shell script:

PATH=\ usr\ | ocal \ j ava\j aval4i\ bi n: $PATH;, export $PATH

To add the WebGain sj compiler to your path on Windows NT, Windows 2000 or
Windows 2000 XP, use a command such as the following in a command shell orina
command file:

PATH=c: \ Vi sual Caf e\ bi n; %ATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.

Setting the Classpath for Compiling Code

2-24

Most WebL ogic services are based on J2EE standards and are accessed through
standard J2EE packages. The Sun, WebL ogic, and other Java classes required to
compile programsthat use WebL ogic services are packaged inthewebl ogi c. j ar file
inthel i b directory of your WebLogic Server installation. In addition to

webl ogi c. j ar, include the following in your compiler’s CLASSPATH:

m Thelib\tools.jar fileinthe JDK directory, or other standard Java classes
required by the Java Devel opment Kit you use.

m Theexanpl es. property filefor Apache Ant (for examples environment).
Thisfile is discussed in the WebL ogic Server documentation on building
examples using Ant located at:
sanpl es\ server\ src\ exanpl es\ exanpl es. ht n

m Classesfor third-party Javatools or services your programsimport.

Developing WebL ogic Server Applications

Compiling Java Code

m Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writesthe
classes you are compiling so that the compiler can locate all of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler storesthe classfile in adirectory structure that matches the
package name. Thisallowsyou to compile Javaclassesinto the correct locationsin the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create the JAR file that
contains your packaged component.

J2EE applications consist of modules assembled into an application and deployed on
one or more WebL ogic Servers or WebL ogic Server clusters. Each module should
have its own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBsin a separate
module, Web components in a separate module, and other server-side classesin
another module.

See the set Exanpl esEnv scriptsin the sanpl es\ server\ confi g\ exanpl es
directory of the WebL ogic Server distribution for an example of setting up target
directories for the compiler. The scripts set the following variables:

CLI ENT_CLASSES
sanpl es\ server\ st age\ exanpl es\ cl i ent cl asses
Directory where compiled client classes are written for the Examples domain.
These classes are usually standal one Java programs that connect to WebL ogic
Server.

SERVER_CLASSES
sanpl es\ server\ st age\ exanpl es\ server cl asses by default.
Directory where server-side classes are written for the Examples domain.
Include startup classes and other Java classes that must be in the WebL ogic
Server CLASSPATH when the server starts up. Application classes usualy
should not be compiled into this directory, because the classesin this directory
cannot be redeployed without restarting WebL ogic Server.

Developing WebL ogic Server Applications 2-25

2 Developing WebLogic Server Applications

EX_WEBAPP_CLASSES
sanpl es\ server\ st age\ exanpl es\ appl i cati ons\ exanpl es\WebApp\
VEB- | NF\ cl asses

Directory where classes used by a Web Application are written for the
Examples domain.

APPLI CATI ONS
sanpl es\ server\ confi g\ exanpl es\ appl i cations
Applications directory for the Examples domain. This variableis not used to
specify atarget for the Java compiler. It isused asaconvenient reference to the
applications directory in copy commands that move files from source
directoriesinto the applications directory. For example, if you have HTML,
JSP, and image filesin your source tree, you can use the variable in a copy
command to install them in your development server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d %SERVER CLASSES% *.j ava

If you do not use an IDE, consider writing an Apache Ant script to compile and
package your components and applications.

Auto-Deployment for Development
Enviroments

2-26

Auto-deployment is a method for quickly deploying an application on the
administration server. It is recommended that this method be used only in a
single-server development environment for testing an application. Use of
auto-deployment in a production environment or for deployment of components on
managed serversis not recommended.

If auto-deployment is enabled, when an applicationiscopied into the\ appl i cati ons
directory of the administration server, the administration server detectsthe presence of
the new application and deploys it automatically (if the administration server is
running). If WebL ogic Server is nhot running when you copy the application to the

\ appl i cati ons directory, the application is deployed the next time the WebL ogic
Server is started. Auto-deployment deploys only to the administration server

Developing WebL ogic Server Applications

Auto-Deployment for Development Enviroments

Note: Dueto the strict file locking limitations of Windows NT, if your applications
are exploded, all the components within your applications must also be
exploded. In other words, WebL ogic Server cannot support a JAR file within
an exploded application or component.

Enabling and Disabling Auto-Deployment

Y ou can run WebL ogic Server in two different modes: development and production.
Y ou use development mode to test your applications. Once they are ready for a
production environment, you deploy your applications on a server that is started in
production mode.

Development mode enables a WebL ogic Server to automatically deploy and update
applicationsthat arein the domain_name/applicationsdirectory (where domain_name
isthe name of a WebL ogic Server domain). In other words, development mode lets
you use auto-deploy.

Production mode disables the auto-deployment feature. Instead, you must use the
WebL ogic Server Administration Console or the webl ogi c. Depl oyer tool.

By default, a WebL ogic Server runsin development mode. To specify the modefor a
server, do one of the following:

If you use the startWebL ogic startup script, edit the script and set the STARTMODE
variable asfollows:

STARTMODE = fal se enables deployment mode
STARTMCDE = true enables production mode

If you start a server entering the webl ogi c. Ser ver command directly on the
command line, use the -Dwebl ogic.ProductionM odeEnabled option as follows:

- Dwebl ogi c. Product i onMbdeEnabl ed=f al se enabl es depl oynent node

- Dwnebl ogi c. Product i onMbdeEnabl ed=t rue enabl es production node

Developing WebL ogic Server Applications 2-27

2 Developing WebLogic Server Applications

Auto-Deploying Applications

Thisisaconveniencefeature for depl oying applications during development. It allows
deploying of applications or individual J2EE modules to the administration server just
by copying the deployment into a predefined auto-deployment directory. This
directory islocated under the domain directory, e.g., mydomai n/ appl i cati ons.

Stopping and Redeploying Archived Applications

An application or its component that was auto-deployed can be dynamically
redeployed whilethe server isrunning. To dynamically redeploy aJAR, WAR or EAR
file, simply copy the new version of the file over the existing file in the

\appl i cati ons directory.

This feature is useful for devel opers who can simply add the copy to the
\appl i cati ons directory asthelast step in their makefile, and the server will then be
updated.

If you delete the application from the\ appl i cat i ons directory, the application will
be stopped and removed from the configuration.

Redeploying Applications in Exploded Format

2-28

Y ou can also dynamically redeploy applications or components that have been
auto-deployed in exploded format. When an application has been deployed in
exploded format, the administration server periodically looks for afile named
REDEPLOY in the exploded application directory. If the timestamp on thisfile changes,
the administration server redeploys the exploded directory.

If you want to update files in an exploded application directory, do the following:

1. When you first deploy the exploded application, create an empty file named
REDEPLOY, and place it in the WEB- | NF or META- | NF directory, depending on the
application type you are deploying:

An exploded application contains a META- | NF top-level directory; this contains
theappl i cati on. xni file.

Developing WebL ogic Server Applications

Auto-Deployment for Development Enviroments

An exploded Web application contains a WEB- | NF top-level directory; this
containstheweb. xm file.

An exploded EJB application contains a META- | NF F top-level directory; this
containstheej b-j ar. xn file.

An exploded connector contains a META- | NF top-level directory; this contains
thera. xni file.

2. To update the exploded application, copy the updated files over the existing files
in that directory.

3. After copying the new files, modify the REDEPLOY filein the exploded directory
to alter its timestamp.

When the administration server detects the changed timestamp, it redeploys the
contents of the exploded directory.

Developing WebL ogic Server Applications 2-29

2 Developing WebLogic Server Applications

2-30 Developing WebL ogic Server Applications

CHAPTER

3

WebLogic Server
Application Packaging

The following sections describe how to package WebL ogic Server components. Y ou

must package components before you deploy them to WebL ogic Server.
m “Packaging Overview” on page 3-2
m “JARFiles’ on page 3-2

m “XML Deployment Descriptors’ on page 3-4

m “Packaging Web Applications’ on page 3-16

m “Packaging Enterprise JavaBeans’ on page 3-17
m “Packaging Resource Adapters’ on page 3-20

“Packaging Enterprise Applications’ on page 3-21

“Packaging Client Applications’ on page 3-24
m “Packaging J2EE Applications Using Apache Ant” on page 3-27

Developing WebL ogic Server Applications

3 WebLogic Server Application Packaging

Packaging Overview

WebL ogic Server J2EE applications are packaged according to J2EE specifications.
J2EE defines component behaviors and packaging in a generic, portable way,
postponing run-time configuration until the component is actually deployed on an
application server.

J2EE includes deployment specifications for Web applications, EJB modules,
enterprise applications, client applications, and resource adapters. J2EE does not
specify how an application is deployed on the target server—only how a standard
component or application is packaged.

For each component type, the specifications define the files required and their location
in the directory structure. Components and applications may include Java classes for
EJBsand servlets, resource adapters, Web pages and supporting files, XML-formatted
deployment descriptors, and JAR files containing other components.

An application that is ready to deploy on WebLogic Server may require
WebL ogic-specific deployment descriptors and, possibly, container classes generated
with the WebLogic EJB, RMI, or JSP compilers.

For more information, refer to the J2EE 1.3 specification at:
http://java.sun.com/j 2ee/downl oad.html#pl atf ormspec

JAR Files

32

A file created with the Javaj ar tool bundlesthe filesin a directory into asingle Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches adirectory in its classpath. Because the classloader can search adirectory or
aJAR file, you can deploy J2EE components on WebL ogic Server in either an
“exploded” directory or aJAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handles than an exploded directory, and
they can save disk spacewith file compression. If your Administration Server manages

Developing WebL ogic Server Applications

http://java.sun.com/j2ee/download.html#platformspec

JAR Files

a domain with multiple WebL ogic Servers, you can only deploy JAR or EAR files,
because the Administration Console does not copy expanded directories to Managed
Servers.

Thej ar utility isin the bi n directory of your Java Development Kit. If you have
j avac inyour path, you also havej ar inyour path. Thej ar command syntax and
behavior is similar to the UNIX t ar command.

The most common usages of thej ar command are:

jar cf jar-file files ...
Createsa JAR filenamedj ar - fi | e containing listed files. If you include a
directory in thelist of files, all filesin that directory and its subdirectories are
added to the JAR file.

jar xf jar-file
Extract (unbundle) a JAR filein the current directory.

jar tf jar-file
List (tell) the contents of a JAR file.

Thefirst flag specifies the operation: create, extract, or list (tell). Thef flag must be
followed by aJAR file name. Without thef flag, j ar readsor writes JAR file contents
on stdi n or st dout whichis usually not what you want. See the documentation for
the JDK utilities for more about j ar command options.

Developing WebL ogic Server Applications 33

3 WebLogic Server Application Packaging

XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebL ogic-specific deployment descriptors for deploying a component or
application in the WebL ogic Server environment.

Table 3-1 lists the types of components and applications and their J2EE-standard and
WebL ogic-specific deployment descriptors.

Table 3-1 J2EE and WebL ogic Deployment Descriptors

Component or Scope Deployment Descriptors
Application
Web Application J2EE web. xmi

WebLogic webl ogi c. xm

EnterpriseBean J2EE ej b-jar.xm

WebLogic webl ogi c-ej b-jar. xm
webl ogi c- cnp-rdbns-j ar. xm

Resource J2EE ra.xm
Adapter

WebLogic webl ogi c-ra. xm
Enterprise JEE application. xm
Application

WebLogic webl ogi c-application. xm
Client J2EE application-client.xm
Application

WebLogic client-application.runtine.xm

When you package a component or application, you create a directory to hold the
deployment descriptors—WEB- | NF or META- | NF—and then create the XML
deployment descriptorsin that directory.

34 Developing WebL ogic Server Applications

XML Deployment Descriptors

Y ou can create the deployment descriptors manually, or you can use

WebL ogic-specific Java-based utilities to automatically generate them for you. For
more information about generating deployment descriptors, see “Automatically
Generating Deployment Descriptors’ on page 3-5.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebL ogic Server,
you extract the contents of the JAR file into a directory, add the WebL ogi c-specific
deployment descriptors and any generated container classes, and then create a new
JAR file containing the old and new files. Note that the JAR utility containsa“u”
option, which allows you to change or add files directly to an existing JAR.

Automatically Generating Deployment Descriptors

WebL ogic Server includes a set of Java-based utilities that automatically generate the
deployment descriptors for the following J2EE components: Web applications,
Enterprise JavaBeans (version 2.0).

These utilities examine the objects you have assembled in a staging directory and build
the appropriate deployment descriptors based on the servlet classes, EJB classes, and
so on. The utilities generate both the standard J2EE and WebL ogi c-specific
deployment descriptors for each component.

WebL ogic Server includes the following utilities:
® webl ogi c. mar at hon. ddi ni t. Wbl ni t

Creates the deployment descriptors for Web Applications.
® webl ogi c. marat hon. ddi nit. EJBI nit

Creates the deployment descriptors for Enterprise JavaBeans 2.0.

Note: Although DDI ni t attempts to create deployment descriptor filesthat are
complete and accurate for your component or application, the utilities must
guess at the value of many of therequired elements. Often thisguessiswrong,
causing WebL ogic Server to return an error when you deploy the component
or application. In this case, you must undeploy the component or application,
edit the deployment descriptor using the Deployment Descriptor Editor of the
Administration Console, and then redeploy it. For details on using the
Deployment Descriptor Editor, see Editing Deployment Descriptors.”

Developing WebL ogic Server Applications 35

3 WebLogic Server Application Packaging

If ej b-j ar. xm exists, DDI ni t usesits deployment information to generate
webl ogi c-ej b-jar. xm .

For an example of DDI ni t , assumethat you have created adirectory caledc: \ st age
that contains the WEB- | NF directory, the JSP files, and other objects that make up a
Web application but you have not yet created the web. xml and webl ogi c. xni
deployment descriptors. To automatically generate them, execute the following
command:

java webl ogi c. marat hon. DDI nit. Weblnit c:\stage

The utility generatestheweb. xm and webl ogi ¢. xm deployment descriptors and
placesthem in the WEB- | NF directory, which DDI ni t will createif it does not aready
exist.

Editing Deployment Descriptors

3-6

BEA offers two tools for editing the deployment descriptors of WebL ogic Server
applications and components:

= BEA XML Editor
m Deployment Descriptor Editor from within the Administration Console

Use either editor to update existing elements in, add new elements to, and delete
existing elements from the following deployment descriptors:

m web. xni

® webl ogi c. xm

m ejb-jar.xm

B webl ogi c-ej b-jar.xm

B webl ogi c- cnp-rdbns-jar. xm
m ra. xn

B webl ogi c-ra. xm

m application. xm

® webl ogi c-application. xm

m application-client.xn

B client-application.runtinme.xn

Developing WebL ogic Server Applications

XML Deployment Descriptors

Using the BEA XML Editor

Toedit XML files, usethe BEA XML Editor, an entirely Java-based XML stand-alone
editor. It isasimple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document gives you a choice of editing:

m The hierarchical tree view allows structured, constrained editing, with a set of
allowable functions at each point in the hierarchical XML tree structure. The
allowable functions are syntactically dictated and in accordance with the XML
document's DTD or schema, if one is specified.

m Theraw XML code view alows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For more documentation about using the BEA XML Editor and to download it, visit
BEA dev2dev Onlineat ht t p: / / devel oper. bea. conmitool s/ utilities.jsp.

About EJBGen

EJBGenisan Enterprise JavaBeans 2.0 code generator or command-linetool that uses
Javadoc markup to generate EJB deployment descriptor files. Y ou annotate your Bean
classfile with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor filesfor an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

For more information about EJBGen, see “EJBGen” in Programming WebLogic
Enter prise JavaBeans.

Using the Administration Console Deployment Descriptor Editor

The Administration Console Deployment Descriptor Editor looks very much like the
main Administration Console: the left pane lists the elements of the deployment
descriptor filesin tree form and the right pane contains the form for updating a
particular element.

When you use the editor, you can either update the in-memory deployment descriptor
only, or update both the in-memory and disk files. When you click the Apply button
after updating a particular element, or the Create button to create a new element, only

Developing WebL ogic Server Applications 37

http://e-docs.bea.com/wls/docs81b/ejb/EJB_tools.html#1086298
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

3 WebLogic Server Application Packaging

the deployment descriptor in WebL ogic Server’s memory is updated; the change has
not yet been written to disk. Todo this, click the Persist button. 1f you do not explicitly
persist the changes to disk, the changes are lost when you stop and restart WebL ogic
Server.

Editing EJB Deployment Descriptors

3-8

This section describes the procedure for editing the following EJB deployment
descriptors using the Administration Console Deployment Descriptor Editor:

m ejb-jar.xm
B webl ogi c-ej b-jar.xm
® webl ogi c-cnp-rdbns-jar. xm

For detailed information about the elementsin the EJB-specific deployment
descriptors, refer to Programming WebLogic Enterprise JavaBeans.

To edit the EJB deployment descriptors:

1. Invoke the Administration Console in your browser using the following URL:
http://host: port/consol e
where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the EJB node under the Deployments node.

4. Right-click the name of the EJB whose deployment descriptors you want to edit
and choose Edit EJB Descriptor from the drop-down menu. The Administration
Console window appearsin anew browser.

The |eft pane contains a tree structure that lists all the elements in the three EJB
deployment descriptors and the right pane contains aform for the descriptive
elements of theej b-j ar. xn file.

5. To edit, delete, or add elements in the EJB deployment descriptors, click to
expand the node in the left pane that corresponds to the deployment descriptor
file you want to edit, as described in the following list:

e The EJB JAR node contains the elements of the ej b-j ar. xm deployment
descriptor.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/index.html

XML Deployment Descriptors

The WebL ogic EJB Jar node contains the elements of the
webl ogi c-ej b-j ar. xm deployment descriptor.

The contai ner-managed persistence (CMP) node contains the el ements of the
webl ogi c- crp-rdbms-j ar. xm deployment descriptor.

6. To edit an existing element in one of the EJB deployment descriptors, follow
these steps:

a

C.

d.

Navigate thetreein the left pane, clicking on parent elements until you find the
element you want to edit.

Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

Edit the text in the form in the right pane.
Click Apply.

7. To add anew element to one of the EJB deployment descriptors, follow these
steps:

a

C.

d.

Navigate the treein the left pane, clicking on parent elements until you find the
name of the element you want to create.

Right-click the element and chose Configure a New Element from the
drop-down menu.

Enter the element information in the form that appears in the right pane.

Click Create.

8. To delete an existing element from one of the EJB deployment descriptors,
follow these steps:

a

b.

C.

Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

Right-click the element and chose Delete Element from the drop-down menu.

Click Yesto confirm that you want to delete the element.

9. Onceyou make al your changes to the EJB deployment descriptors, click the
root element of the tree in the left pane. The root element is the either the name of
the EJB JAR archive file or the display name of the EJB.

Developing WebL ogic Server Applications 39

3 WebLogic Server Application Packaging

10. Click Validate if you want to ensure that the entries in the EJB deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server memory.

Editing Web Application Deployment Descriptors

This section describesthe procedure for editing theweb. xmi andwebl ogi ¢. xm Web
application deployment descriptors using the Administration Console Deployment
Descriptor Editor.

See Devel oping Web Applicationsfor WebLogic Server for detailed information on the
elements in the Web application deployment descriptors.

To edit the Web application deployment descriptors:
1. Invoke the Administration Console in your browser:

http://host:port/consol e

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

2. Click to expand the Deployments node in the left pane.
3. Click to expand the Web Applications node under the Deployments node.

4. Right-click the name of the Web application whose deployment descriptors you
want to edit and choose Edit Web Application Descriptor from the drop-down
menu. The Administration Console window appearsin a new browser.

The |eft pane contains a tree structure that lists all the elements in the two Web
application deployment descriptors and the right pane contains aform for the
descriptive elements of theweb. xm file.

5. To edit, delete, or add elements in the Web application deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit:

e TheWeb App Descriptor node contains the elements of theweb. xm
deployment descriptor.

e The WebApp Ext node contains the elements of the webl ogi c. xmi
deployment descriptor.

3-10 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/webapp/index.html

XML Deployment Descriptors

. To edit an existing element in one of the Web application deployment descriptors:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

c. Edit thetext in the form in the right pane.
d. Click Apply.
. To add anew element to one of the Web application deployment descriptors:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appearsin the right pane.
d. Click Create.

. To delete an existing element from one of the Web application deployment
descriptors:

a. Navigatethetreein theleft pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and choose Delete Element from the drop-down menu.
c. Click Yesto confirm that you want to delete the element.

. Once you make all your changes to the Web application deployment descriptors,
click the root element of the tree in the left pane. The root element is the either
the name of the Web application WAR archive file or the display name of the
Web application.

10. Click Validate to ensure that the entries in the Web application deployment

descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor filesto disk in

addition to WebL ogic Server memory.

Developing WebL ogic Server Applications 3-11

3 WebLogic Server Application Packaging

Editing Resource Adapter Deployment Descriptors

312

This section describes the procedure for editing ther a. xmi and webl ogi c-ra. xni
resource adapter deployment descriptors using the Administration Console
Deployment Descriptor Editor.

For detailed information about the elementsin the resource adapter deployment
descriptors, refer to Programming WebLogic J2EE Connectors.

To edit the resource adapter deployment descriptors:

1

Invoke the Administration Console in your browser:
http://host:port/consol e

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

Click to expand the Deployments node in the Ieft pane.
Click to expand the Connectors node under the Deployments node.

Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.
The Administration Console window appears in a new browser.

The |eft pane contains a tree structure that lists all the elements in the two
resource adapter deployment descriptors and the right pane contains a form for
the descriptive elements of ther a. xni file.

To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit:

e The RA node contains the elements of ther a. xnl deployment descriptor.

e TheWebLogic RA node contains the elements of the webl ogi ¢- ra. xm
deployment descriptor.

To edit an existing element in one of the resource adapter deployment
descriptors:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/jconnector/index.html

XML Deployment Descriptors

c. Edit thetext in the form in the right pane.
d. Click Apply.
7. Toadd anew element to one of the resource adapter deployment descriptors:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appearsin the right pane.
d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.
c. Click Yesto confirm that you want to delete the element.

9. Onceyou make al your changes to the resource adapter deployment descriptors,
click the root element of the tree in the left pane. The root element isthe either
the name of the resource adapter RAR archivefile or the display name of the
resource adapter.

10. Click Validate to ensure that the entries in the resource adapter deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server memory.
Editing Enterprise Application Deployment Descriptors

This section describesthe procedurefor editing the Enterprise A pplication depl oyment
descriptors (appl i cati on. xnl and webl ogi c- appl i cation. xm) using the
Administration Console Deployment Descriptor Editor.

Developing WebL ogic Server Applications 3-13

3 WebLogic Server Application Packaging

314

Refer to “application.xml Deployment Descriptor Elements” in Appendix A,
“Application Deployment Descriptor Elements,” for detailed information about the
appl i cation. xnl and webl ogi c-application.xm files.

Note: The following procedure describes only how to edit the appl i cat i on. xni

andwebl ogi c- appl i cation. xm files; to edit the deployment descriptorsin
the components that make up the Enterprise application, see “Editing EJB
Deployment Descriptors’ on page 3-8, “ Editing Web Application Deployment
Descriptors” on page 3-10, or “Editing Resource Adapter Deployment
Descriptors’ on page 3-12.

To edit the Enterprise Application deployment descriptor:

1

Invoke the Administration Console in your browser:
http://host:port/console

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it is listening.

Click to expand the Deployments node in the |eft pane.
Click to expand the Applications node under the Deployments node.

Right-click the name of the Enterprise Application whose deployment descriptor
you want to edit and choose Edit Application Descriptor from the drop-down
menu. The Administration Console window appearsin a new browser.

The left pane contains a tree structure that lists all the elements in the
appl i cation. xm fileand the right pane contains aform for its descriptive
elements, such as the display name and icon file names.

To edit an existing element in the appl i cati on. xm deployment descriptor,
follow these steps:

a. Navigatethetreeintheleft pane, clicking on parent elements until you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

c. Edit thetext in the form in the right pane.
d. Click Apply.

To add anew element to the appl i cati on. xm deployment descriptors:

Developing WebL ogic Server Applications

XML Deployment Descriptors

a. Navigatethetreeintheleft pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and choose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appearsin the right pane.
d. Click Create.

7. To delete an existing element from the appl i cat i on. xni deployment
descriptor:

a. Navigatethetreein theleft pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.
c. Click Yesto confirm that you want to delete the el ement.

8. Onceyou makeall your changesto the appl i cati on. xnm deployment
descriptor, click the root element of the tree in the left pane. The root element is
the either the name of the Enterprise application EAR archive file or the display
name of the Enterprise application.

9. Click Validateif you want to ensure that the entriesin the appl i cati on. xni
deployment descriptor are valid.

10. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server memory.

Developing WebL ogic Server Applications 3-15

3 WebLogic Server Application Packaging

Packaging Web Applications

3-16

If your Web application is accessed by a programmatic Java client, see “ Packaging
Client Applications’ on page 3-24, which describes how WebL ogic server |oads your
application classes.

To stage and package a Web application:

1

Create atemporary staging directory anywhere on your hard drive. You can name
this directory anything you want.

Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has atag such as
<inmg src="inmages/pic.gif">, thepic.gif filemustbeinthei nages
subdirectory beneath the HTML file.

Create META- | NF and VEB- | NF/ ¢l asses subdirectoriesin the staging directory
to hold deployment descriptors and compiled Java classes.

Copy or compile any servlet classes and helper classesinto the
VEB- | NF/ ¢l asses subdirectory.

Copy the home and remote interface classes for enterprise beans used by the
servletsinto the VEB- | NF/ cl asses subdirectory.

Copy JSP tag libraries into the VEB- | NF subdirectory. (Tag libraries may be
installed in a subdirectory beneath VEB- | NF; the pathtothe . t | d fileis coded in
the. j spfile)

Set up your shell environment.

On Windows NT, execute the set env. cnmd command, located in the directory
server\ bi n\ set env. cnd, whereser ver isthetop-level directory in which
WebL ogic Server isinstalled.

On UNIX, executethe set env. sh command, located in the directory
server/ bin/ setenv. sh, whereser ver isthetop-level directory in which
WebL ogic Server isinstalled.

Execute the following command to automatically generate theweb. xn and
webl ogi c. xn deployment descriptorsin the WEB- | NF subdirectory:

Developing WebL ogic Server Applications

Packaging Enterprise JavaBeans

java webl ogi c. ant.taskdefs.war.DDInit staging-dir
where st agi ng- di r refersto the staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see “ Automatically Generating Deployment
Descriptors’ on page 3-5.

Alternatively, you can create theweb. xmi and webl ogi c. xml filesmanually in
the VEB- | NF subdirectory manually.

Note: See Developing Web Applications for WebLogic Server for detailed
descriptions of the elements of theweb. xn and webl ogi c. xnl files.

9. Bundlethe staging directory into a WAR file by executing aj ar command such
as.
jar cvf nyapp.war -C staging-dir

The resulting WAR file can be added to an Enterprise application (EAR file) or
deployed independently using the Administration Console or the
webl ogi c. Depl oyer command-line utility.

Note: Now that you have packaged your Web application, see Deploying
WebLogic Server Applications for instructions on deploying applications
in WebL ogic Server.

Packaging Enterprise JavaBeans

Y ou can stage one or more Enterprise JavaBeans (EJBS) in adirectory and package
themin an EJB JAR file. If your EJB is accessed by a programmatic Java client, see
“Packaging Client Applications’ on page 3-24 which describes how WebL ogic Server
loads your EJB classes.

Staging and Packaging EJBs

To stage and package an Enterprise JavaBean (EJB):

Developing WebL ogic Server Applications 3-17

http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

3 WebLogic Server Application Packaging

3-18

. Create atemporary staging directory anywhere on your hard drive (for example,

c:\stagedir).

. Compile or copy the bean’s Java classes into the staging directory.
. Create a META- | NF subdirectory in the staging directory.

. Set up your shell environment.

On Windows NT, execute the set env. cnd command, located in the directory
server\bi n\ set env. cmd, where ser ver isthe top-level directory in which
WebL ogic Server isinstalled.

On UNIX, execute the set env. sh command, located in the directory
server/ bi n/ setenv. sh, whereser ver isthetop-level directory in which
WebL ogic Server isinstalled and domai n refersto the name of your domain.

. If you areusing EJB 1.1, e the following command to automatically generate the

ej b-jar.xnl ,webl ogi c-ej b-jar.xn, and
webl ogi c- r dbns- cnp- j ar - bean_nane. xm (if needed) deployment
descriptorsin the META- | NF subdirectory:

java webl ogi c. ant . taskdefs. ej bll. DDl nit staging-dir
where st agi ng- di r refersto the staging directory. Use this utility for EJB 1.1.
If you are creating EJB 2.0, execute:

java webl ogi c. ant . taskdefs. ej b20. DDl nit staging-dir

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see “ Automatically Generating Deployment
Descriptors’ on page 3-5.

Alternatively, you can create the EJB deployment descriptor files manually.
Createanej b-j ar. xm andwebl ogi c-ej b-j ar. xm filesin the META- | NF
subdirectory. If the bean is an entity bean with container-managed persistence,
create awebl ogi c- r doms- cnp- j ar —bean_name. xml deployment descriptor in
the META- | NF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a<t ype- st or age> attribute in the

webl ogi c-ej b-j ar. xm file

Note: See Programming WebLogic Enterprise JavaBeans for help compiling
enterprise beans and creating EJB deployment descriptors.

. When al of the enterprise bean classes and deployment descriptors are set up in

the staging directory, create the EJB JAR filewith aj ar command such as:

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/index.html

Packaging Enterprise JavaBeans

jar cvf jar-file.jar -C staging-dir
This command creates a JAR file that you can deploy on WebL ogic Server.

The - Cst agi ng-di r option instructsthej ar command to change to the
st agi ng- di r directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebLogic EJB compiler
generates to allow the bean to deploy in a WebL ogic Server. The WebL ogic EJB
compiler reads the deployment descriptorsin the EJB JAR file to determine how
to generate the classes. Y ou can run the WebL ogic EJB compiler on the JAR file
before you deploy the beans, or you can let WebL ogic Server run the compiler
for you at deployment time. See Programming WebL ogic Enterprise JavaBeans
for help with the WebL ogic EJB compiler.

Note: Now that you have packaged your EJB, see Deploying WebL ogic Server
Applications for instructions on deploying applicationsin WebL ogic
Server.

Using ejb-client.jar

WebL ogic Server supportsthe use of ej b-cl i ent. j ar files. Create an

ej b-client.jar fileby specifying thisfeaturein the bean’sej b-j ar. xm
deployment descriptor file and then generating the ej b-cl i ent . j ar fileusing

webl ogi c. ej bc. Anej b-client.|ar containsthe classfiles that aclient program
needsto call the EJBs contained intheej b-j ar file. Thefilesare the classes required
to compile the client. If you specify this feature, WebL ogic Server automatically
createstheejb-client.jar.

For more information, refer to “ Packaging EJBs for the WebL ogic Server Container”
in Programming WebLogic Enterprise JavaBeans.

Developing WebL ogic Server Applications 3-19

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

3 WebLogic Server Application Packaging

Packaging Resource Adapters

3-20

After you stage one or more resource adaptersin a directory, you package themin a
JavaArchive (JAR). Before you package your resource adapters, be sure you read and
understand the chapter entitled “WebLogic Server Application Classloading” in this
guide, which describes how WebL ogic Server loads classes.

To stage and package a resource adapter:

1
2.
3.

Create atemporary staging directory anywhere on your hard drive.
Compile or copy the resource adapter Java classes into the staging directory.

Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

Create a META- | NF subdirectory in the staging directory.

Createanra. xm deployment descriptor in the META- | NF subdirectory and add
entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
onthera. xm document type definition at:
http://java. sun. coni dtd/ connector_1_0.dtd

Create awebl ogi c-ra. xm deployment descriptor in the META- I NF subdirectory
and add entries for the resource adapter.

Note: Refer to Programming WebLogic Server J2EE Connector sfor information
onthewebl ogi c-ra. xm document type definition.

When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:
jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebL ogic Server or
package in an enterprise application archive (EAR).

The - Cst agi ng- di r option instructs the JAR command to change to the
st agi ng- di r directory so that the directory paths recorded in the JAR are
relative to the directory where you staged the resource adapters.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/programming/classloading.html
http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Packaging Enterprise Applications

Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of arelated
application. The EJB and Web modul esare bundled together, along with the Enterprise
Application deployment descriptor files, in another JAR file with an EAR extension.

Enterprise Applications Deployment Descriptor Files

The META- | NF subdirectory in an EAR file containsan appl i cati on. xm
deployment descriptor provided by the application assembler; the format definition of
this deployment descriptor is provided by Sun Microsystems. Theappl i cati on. xm
deployment descriptor identifies the modules packaged in the EAR file.

You canfind the DTD for theappl i cati on. xm fileat
http://java. sun.conlj2ee/ dtds/application_1_ 2.dtd.

Within appl i cati on. xnl , you define items such as the modules that make up your
application and the security roles used within your application. The following is the
appl i cation. xm filefrom the Pet Store example:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DTD
J2EE Application 1.2//EN
"http://java.sun.conlj2ee/ dtds/application_1_2.dtd" >

<appl i cati on>
<di spl ay- name>est or e</ di spl ay- nane>
<descri ption>Application description</description>
<nmodul e>
<web>
<web- uri >pet St or e. war </ web-uri >
<cont ext - r oot >est or e</ cont ext - r oot >
</ web>
</ nodul e>
<nmodul e>
<ej b>pet Store_EJB.jar</ej b>
</ nodul e>
<security-rol e>
<description>the gold custoner rol e</description>
<r ol e- nane>gol d_cust oner </ r ol e- nane>

Developing WebL ogic Server Applications 3-21

http://java.sun.com/j2ee/dtds/application_1_2.dtd

3 WebLogic Server Application Packaging

</security-rol e>
<security-rol e>
<description>the custoner rol e</description>
<r ol e- name>cust oner </ r ol e- nane>
</ security-rol e>
</ application>

A supplemental deployment descriptor, webl ogi c- appl i cati on. xml contains
additional WebL ogic-specific deployment information. Thisdeployment descriptor is
optional and is only needed if you want to configure application scoping.

Application scoping refers to configuring resources for a particular enterprise
application rather than for an entire WebL ogic Server configuration. Examples of
resources include the XML parser used by an application, the EJB entity cache, the
JDBC connection pool, and so on. The main advantage of application scoping is that
it isolates the resources for a given application to the application itself.

Another advantage of using application scoping is that by associating the resources
with the EAR file, you can run this EAR file on another instance of WebL ogic Server
without having to configure the resources for that server.

Refer to “weblogic-application.xml Deployment Descriptor Elements” in
Appendix A, “Application Deployment Descriptor Elements,” for
webl ogi c- application. xm deployment descriptor elements.

Packaging Enterprise Applications: Main Steps

3-22

If your enterprise application is accessed by a programmatic Java client, see
“Packaging Client Applications’ on page 3-24, which describes how WebL ogic Server
loads your enterprise application classes.

To stage and package an Enterprise application:
1. Create atemporary staging directory anywhere on your hard drive.

2. Copy the Web archives (WAR files) and EJB archives (JAR files) into the staging
directory.

3. Create a META- | NF subdirectory in the staging directory.

4. Set up your shell environment.

Developing WebL ogic Server Applications

Packaging Enterprise Applications

On Windows NT, execute the set env. cnd command, located in the directory
server\ bi n\'set env. cnd, whereser ver isthe top-level directory in which
WebL ogic Server isinstalled.

On UNIX, executethe set env. sh command, located in the directory
server/ bi n/ setenv. sh, whereser ver isthe directory in which WebL ogic
Server isinstaled.

. Execute the following command to automatically generate the

appl i cati on. xm deployment descriptor in the META- I NF subdirectory:
java webl ogi c. ant.taskdefs. ear. DDl nit staging-dir

where st agi ng- di r refersto the staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see “ Automatically Generating Deployment
Descriptors’ on page 3-5.

Alternatively, you can create the appl i cati on. xm file automatically in the
META- | NF directory. See Appendix A, “Application Deployment Descriptor
Elements,” for detailed information about the elementsin thisfile.

. Optionally create the webl ogi c- appl i cati on. xm file manually in the
META- | NF directory, as described in Appendix A, “Application Deployment
Descriptor Elements.”

. Create the Enterprise Archive (EAR file) for the application, using aj ar
command such as:
jar cvf application.ear -C staging-dir

The resulting EAR file can be deployed using the Administration Console or the
webl ogi c¢. Depl oyer command-line utility.

Note: Now that you have packaged your enterprise application, see Deploying
WebLogic Server Applications for instructions on deploying applications
in WebL ogic Server.

Developing WebL ogic Server Applications 3-23

http://e-docs.bea.com/wls/docs81b/deployment/index.html

3 WebLogic Server Application Packaging

Packaging Client Applications

Although not required for WebL ogic Server applications, J2EE includes astandard for
deploying client applications. A J2EE client application moduleis packaged in aJAR
file. ThisJAR file containsthe Java classesthat executeintheclient WM (JavaVirtual
Machine) and deployment descriptors that describe EJBs (Enterprise JavaBeans) and
other WebL ogic Server resources used by the client.

A de-facto standard deployment descriptor appl i cati on-client.xm from Sunis
used for J2EE clients and a supplemental deployment descriptor contains additional
WebL ogic-specific deployment information.

Note: See “application-client.xml Deployment Descriptor Elements’ in
Appendix B, “Client Application Deployment Descriptor Elements,” for help
with these deployment descriptors.

Executing a Client Application in an EAR File

3-24

In order to simplify distribution of an application, J2EE defines away to include
client-side components in an EAR file, along with the server-side modules that are
used by WebL ogic Server. This enables both the server-side and client-side
components to be distributed as a single unit.

The client VM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebL ogic Server
classes. Y ou stage aclient application by copying all of the required files on the client
into adirectory and bundling the directory in aJAR file. Thetop level of the client
application directory can have a batch file or script to start the application. Create a
cl asses subdirectory to hold Java classes and JAR files, and add them to the client
Cl ass- Pat h in the startup script. Y ou may also want to package a Java Runtime
Environment (JRE) with a Java client application.

Note: Theuseof thed ass- Pat h manifest entriesin client component JARs is hot
portable, because it has not yet been addressed by the J2EE standard.

Developing WebL ogic Server Applications

Packaging Client Applications

TheMai n- O ass attribute of the JAR file manifest definesthe main classfor theclient
application. The client typically usesj ava: / conp/ env JNDI lookups to execute the
Mai n- Cl ass attribute. As a deployer, you must provide runtime values for the INDI
lookup entries and popul ate the component local INDI tree before calling the client’s
Mai n- O ass attribute. Y ou define INDI lookup entriesin the client deployment
descriptor. (Refer to “ Client Application Deployment Descriptor Elements.”)

You usewebl ogi c. d i ent Depl oyer to extract the client-side JAR filefrom a J2EE
EAR file, creating a deployable JAR file. Thewebl ogi c. O i ent Depl oyer classis
executed on the Java command line with the following syntax:

java webl ogi c. CientDeployer ear-file client

Theear - fil e argument is an expanded directory (or Javaarchivefilewith a. ear
extension) that contains one or more client application JAR files.

For example:
javaweblogic.ClientDeployer app.ear myclient

where app. ear isthe EAR filethat contains a J2EE client packaged in
nmyclient.jar.

Oncethe client-side JAR fileis extracted from the EAR file, use the
webl ogi c. j 2eecl i ent . Mai n utility to bootstrap the client-side application and
point it to a WebL ogic Server instance as follows:

javaweblogic.j2eeclient.Main clientjar URL [application args]
For example
javaweblogic.j2eeclient.Main helloWorld.jar t3://localhost: 7001 Greetings

Special Considerations for Deploying J2EE Client
Applications

Thefollowingisalist of specia considerationsfor deploying J2EE client applications:

m Name the WebL ogic Server client deployment file using the suffix
.runtime. xm .

m Thewebl ogi c. O i ent Depl oyer classisresponsible for generating and adding
aclient. properties filetotheclient JAR file. A separate program,

Developing WebL ogic Server Applications 3-25

3 WebLogic Server Application Packaging

3-26

webl ogi c. j 2eecl i ent . Mai n, createsalocal client INDI context and runs the
client from the entry point named in the client manifest file.

Note: To runthe J2EE client application using webl ogi c¢. d i ent Depl oyer,
you need the webl ogi c. j 2eecl i ent . Mai n class (located in the
webl ogi c. j ar file).

If aresource mentioned by theappl i cation-client.xm fileisone of the
following types, thewebl ogi c. j 2eecl i ent . Mai n class attempts to bind it
from the global INDI tree on the server toj ava: conp/ env/ :

ej b-ref

j avax. j ms. QueueConnecti onFactory
j avax. j ms. Topi cConnect i onFact ory
javax. mai | . Sessi on

j avax. sql . Dat aSour ce

Thewebl ogi c. j 2eecl i ent. Mai n classbinds User Tr ansact i on to
j ava: conp/ User Tr ansacti on.

The rest of the client environment isbound fromthecl i ent . properti es file
created by thewebl ogi c. i ent Depl oyer classintoj ava: conp/ env/ . The
webl ogi c. j 2eecl i ent . Mai n class emits error messages for missing or
incomplete bindings.

The <r es- aut h> tag in the application deployment fileis currently ignored and
should be entered as Appl i cat i on. We do not currently support form-based
authentication.

Note: For moreinformation on deploying, refer to Deploying WebLogic Server

Applications.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/deployment/index.html

Packaging J2EE Applications Using Apache Ant

Packaging J2EE Applications Using Apache
Ant

The topicsin this section discuss building and packaging J2EE applications using
Apache Ant, an extensible Java-based tool. Ant is similar to the make command but is
designed for building Java applications. Ant libraries are bundled with WebL ogic
Server to make it easier for our customersto build Java applications out of the box.

Developerswrite Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

For a complete explanation of ant capabilities, see:
http://jakarta. apache. org/ ant/ manual /i ndex. ht m

Packaging J2EE Deployment Units

As previously discussed, J2EE applications are packaged as JAR files containing a
specific file extension depending on the component type:

m EJIBsare packaged as JAR files.

m Web Applications are packaged as WAR files.

m Resource Adapters are packaged as RAR files.

m Enterprise Applications are packaged as EAR files.

These components are structured according to the J2EE specifications. In addition to
the standard XML deployment descriptors, components may also be packaged with
WebL ogic Server-specific XML deployment descriptors.

Ant provides tasks that make the construction of these JAR files easier. In addition to
the features of the JAR command, Ant provides specific tasks for building EAR and
WAR files. Using Ant, you can specify the pathname asit appearsin the JAR archive,
which may differ from the original path in the file system. This ability is useful for
packaging deployment descriptors (in which J2EE specifies an exact location in the

Developing WebL ogic Server Applications 3-27

http://jakarta.apache.org/ant/manual/index.html

3 WebLogic Server Application Packaging

archive), which may not correspond to thelocation in your source tree. Seethe Apache
Ant online documentation pertaining to the Zi pFi | eSet command for related
information.

The following listing shows:

Listing3-1 WAR Task Example

<war warfile="cookie.war" webxm ="web. xm"
mani f est ="mani fest.txt">

<zipfileset dir="." prefix="WEB-1NF" includes="webl ogic.xm"/>
<zipfileset dir="." prefix="imges" includes="*.qgif,*.jpg"/>
<cl asses dir="cl asses" includes="**/Cooki eCounter.cl ass"/>
<fileset dir="." includes="*.jsp,*.htm">

</fileset>

</ war >

Packaging J2EE deployment units requires the following steps:
1. Specify the standard XML deployment descriptor using the webxnl parameter.

2. Thewar task automatically maps XML deployment descriptor to the standard
name in the WAR archive WEB- | NF/ web. xm .

3. Apache Ant storesthe mani f est file, specified using the mani f est parameter,
under the standard name META- | NF/ MANI FEST. M.

4. Usethe Apache Ant Zi pFi | eSet command to define a set of files (in this case,
just the WebL ogic Server-specific deployment descriptor webl ogi c. xn) that
should be stored in the WEB- | NF directory.

5. Useasecond Zi pFi | eSet command to package all theimagesin ani nages
directory.

6. Thecl asses tag packages servlet classesin the WEB- | NF/ ¢l asses directory.
7. Finaly, add all the.jspand. htm filesfrom the current directory to the

archive.

3-28 Developing WebL ogic Server Applications

Packaging J2EE Applications Using Apache Ant

Y ou can achieve the same result by staging the filesin adirectory that directly
corresponds to the structure of the WAR file and creating a JAR file from that
directory. Using special features of the Ant JAR tasks eliminates the need to copy files
into a specific directory hierarchy.

Thefollowing example builds a Web application and an EJB, and then packagesthem
together in an EAR file:

Listing 3-2 Packaging Example

<proj ect nanme="app" defaul t="app.ear">
<property name="w hone" val ue="/bea/W server6.1"/>
<property name="srcdir" val ue="/beal/ myproject/src"/>
<property name="appdi r" val ue="/beal/ nyproj ect/confi g/ nydomai n/ appl i cations"/>
<target nanme="tiner.war">
<nkdir dir="cl asses"/>
<javac srcdir="${srcdir}" destdir="cl asses" includes="nyapp/j2ee/tiner/*.java"/>

<war warfile="tiner.war" webxm ="tinmer/web.xm"
mani f est="ti nmer/ mani fest.txt">

<cl asses dir="cl asses" includes="**/TimerServlet.class"/>
</ war >

</target>
<target nanme="trader.jar">
<mkdi r dir="cl asses"/>
<javac srcdir="${srcdir}" destdir="classes" includes="nyapp/j2ee/trader/*.java"/>
<jar jarfile="traderO.jar" nmanifest="trader/manifest.txt">

<zipfileset dir="trader" prefix="MeTA-INF" includes="*ejb-jar.xm"/>

<fileset dir="classes" includes="**/Trade*.class"/>

</jar>

<ej bc source="traderO.jar" target="trader.jar"/>

</target>

Developing WebL ogic Server Applications 3-29

3 WebLogic Server Application Packaging

<target nanme="app.ear" depends="trader.jar, timer.war">

<jar jarfile="app.ear">

<zipfileset dir="." prefix="META-I NF" includes="application.xm"/>
<fileset dir="." includes="trader.jar, tinmer.war"/>
</jar>
</target>

<target nanme="depl oy" depends="app.ear">
<copy file="app.ear" todir="${appdir}/>
</target>

</ proj ect >

Running Ant

BEA providesasimplescripttorun Antintheser ver/ bi n directory. By default, Ant
loadsthe bui | d. xml build file, but you can override thisusing the - f flag. Use the
following command to build and deploy an application using the build script shown
above:

ant -f yourbuildscript.xml

3-30 Developing WebL ogic Server Applications

CHAPTER

A

WebLogic Server
Application
Classloading

The following sections provide an overview of Java classoaders, followed by details
about WebL ogic Server J2EE application classloading.

m “JavaClassoader Overview” on page 4-2
m “WebLogic Server Application Classloader Overview” on page 4-4

m “Resolving Class References Between Components and Applications’ on page
4-16

Developing WebL ogic Server Applications 4-1

4 WebLogic Server Application Classloading

Java Classloader Overview

Class oadersare afundamental component of the Javalanguage. A classloader isapart
of the Javavirtual machine (JVM) that |oads classes into memory; it is the class
responsible for finding and loading class files at run time. Every successful Java
programmer needsto understand classloadersand their behavior. This section provides
an overview of Java class oaders.

Java Classloader Hierarchy

4-2

Classloaders contain a hierarchy with parent classloaders and child classloaders. The
relationship between parent and child classloaders is analogous to the object
relationship of super classes and subclasses. The bootstrap classloader istheroot of the
Java classloader hierarchy. The Java virtual machine (JV M) creates the bootstrap
classloader, which loads the Java devel opment kit (JDK) internal classesandj ava. *
packagesincluded in the VM. (For example, the bootstrap class oader |oads
java.lang. String.)

The extensions classloader is a child of the bootstrap classloader. The extensions
classloader loads any JAR files placed in the extensions directory of the JDK. Thisis
a convenient means to extending the JDK without adding entries to the classpath.
However, anything in the extensions directory must be self-contained and can only
refer to classes in the extensions directory or JDK classes.

The system classpath classloader extends the JDK extensions class oader. The system
classpath classloader |oads the classes from the classpath of the VM.
Application-specific classloaders (including WebL ogic Server classloaders) are
children of the system classpath classloader.

Note: What BEA refersto as a*“ system classloader” is often referred to as the
“application classloader” in contexts outside of WebLogic Server. When
discussing classloadersin WebL ogic Server, BEA uses the term “system” to
differentiate from clasd oadersrel ated to J2EE applications (which BEA refers
to as “application classloaders’).

Developing WebL ogic Server Applications

Java Classloader Overview

Loading a Class

Classloaders use a del egation model when loading a class. The classloader
implementation first checksto seeif the requested class has already been loaded. This
class verification improves performance in that the cached memory copy is used
instead of repeated loading of a class from disk. If the classis not found in memory,
the current classloader asksits parent for the class. Only if the parent cannot load the
class does the classloader attempt to load the class. If a class exists in both the parent
and child class oaders, the parent version isloaded. This delegation model isfollowed
to avoid multiple copies of the same form being loaded. Multiple copies of the same
classcanleadto aCl assCast Except i on.

Classloaders ask their parent classloader to load a class before attempting to load the
class themselves. Classloadersin WebL ogic Server that are associated with Web
applications can be configured to check locally first before asking their parent for the
class. Thisallows Web applicationsto use their own versions of third-party classes,
which might also be used as part of the WebL ogic Server product. The following
section discusses thisin more detail.

PreferWebInfClasses Element

The WebAppConponent MBean containsa Pr ef er Webl nf Ol asses element. By
default, thiselement is set to Fal se. When you set this element to Tr ue, this subverts
the classloader delegation model so that classdefinitions from the Web application are
loaded in preference to class definitions in higher-level classloaders. Thisalows a
Web application to useits own version of athird-party class, which might also be part
of WebL ogic Server.

When using this feature, you must be careful not to mix instances created from the
Web applications class definition with issuances created from the server’ s definition.
If such instances are mixed, ad assCast Except i on results.

Listing 4-1 PreferWeblnfClasses Element

/**

Developing WebL ogic Server Applications 4-3

4 WebLogic Server Application Classloading

* |f true, classes |located in the WEB-INF directory of a web-app
will be loaded in preference to classes |oaded in the application
or system cl assl oader.

* @efault fal se
*/
bool ean i sPreferWbl nf d asses();

voi d set Pref er Wbl nf Cl asses(bool ean b);

Changing Classes in a Running Program

WebL ogic Server allows you to deploy newer versions of application components
such as EJBs while the server is running. This process is known as hot-deploy or
hot-redeploy and is closely related to classloading

Java classloaders do not have any standard mechanism to undeploy or unload a set of
classes, nor can they load new versions of classes. In order to make updatesto classes
in arunning virtual machine, the classloader that |oaded the changed classes must be
replaced with a new classloader. When a classloader is replaced, all classes that were
loaded from that classloader (or any classloaders that are offspring of that classloader)
must be reloaded. Any instances of these classes must be reinstantiated.

In WebL ogic Server, each application hasahierarchy of classloadersthat are offspring
of the system classloader. These hierarchies allow applications or parts of applications
to beindividually reloaded without affecting the rest of the system. Thisisthe topic of
the next section.

WebLogic Server Application Classloader
Overview

4-4

This section provides an overview of the WebL ogic Server application classloaders.

Developing WebL ogic Server Applications

WebLogic Server Application Classloader Overview

Application Classloading

WebL ogic Server classloading is centered on the concept of an application. An
application is normally packaged in an Enterprise Archive (EAR) file containing
application classes. Everything within an EAR fileis considered part of the same
application. The following may be part of an EAR or can be loaded as standalone
applications:

m An Enterprise JavaBean (EJB) JAR file
m A Web Application WAR file

m A Resource Adapter RAR file

Note: For information on Resource Adapter RAR files and classloading, see* About
Resource Adapter Classes.”

If you deploy an EJB JAR file and a Web Application WAR file separately, they are
considered two applications. If they are deployed together within an EARfile, they are
one application. Y ou deploy components together in an EAR file for them to be
considered part of the same application.

Make sure that no resource-adapter specific classes exist in your WebL ogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in the corresponding component’s archivefile (for example, the JAR file for EJBs or
the WAR file for Web applications).

Every application receives its own classloader hierarchy; the parent of this hierarchy
isthe system classpath classloader. Thisisolates applications so that application A
cannot see the classloaders or classes of application B. In classloaders, no sibling or
friend concepts exist. Application code only has visibility to classes loaded by the
classloader associated with the application (or component) and classes that are loaded
by classloaders that are ancestors of the application (or component) classloader. This
allows WebL ogic Server to host multiple isolated applications within the same JVM.

Developing WebL ogic Server Applications 4-5

4 WebLogic Server Application Classloading

Application Classloader Hierarchy

WebL ogic Server automatically creates a hierarchy of classloaders when an
application isdeployed. Theroot classloader in this hierarchy loads any EJB JAR files
in the application. A child classloader is created for each Web Application WAR file.

Because it is common for Web Applicationsto call EJBs, the WebL ogic Server
application classloader architecture allows JavaServer Page (JSP) files and servletsto
see the EJB interfacesin their parent classloader. This architecture also allows Web
Applications to be redeployed without redeploying the EJB tier. In practice, it ismore
common to change JSP files and servlets than to change the EJB tier.

The following graphic illustrates this WebL ogic Server application classloading
concept:

Figure4-1 WebL ogic Server Classdoading

Systemn Classpath Classloader

Appl

y :

EJB1 EJB2

£
/

WebAppl

If your application includes servlets and JSPs that use EJBs:
m Package the servlets and JSPsin aWAR file

m Package the enterprise beansin an EJB JAR file

4-6 Developing WebL ogic Server Applications

WebLogic Server Application Classloader Overview

m Package the WAR and JAR filesin an EAR file
m Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them
together in an EAR file produces aclass oader arrangement that allowsthe servletsand
JSPs to find the EJB classes. If you deploy the WAR and JAR files separately,
WebL ogic Server creates sibling classloaders for them. This means that you must
include the EJB home and remote interfaces in the WAR file, and WebL ogic Server
must use the RMI stub and skeleton classes for EJB calls, just as it does when EJB
clients and implementation classes are in different JVMs. This concept isdiscussed in
more detail in the next section “Application Classloading and Pass by Value or
Reference” on page 4-15.

Note: The Web application classloader contains all classes for the Web application
except for the JSP class. The JSP class obtainsits own classloader, whichisa
child of the Web application classloader. This allows JSPs to be individually
reloaded.

Custom Module Classloader Hierarchies

Y ou can create custom classloader hierarchies for an application allowing for better
control over class visibility and reloadability. Y ou achieve this by defining a

cl assl oader - st ruct ur e element in the webl ogi c- appl i cati on. xm
deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for
WebL ogic applications. An application level classloader exists where all EJB classes
are loaded. For each Web module, there is a separate child classloader for the classes
of that module.

For simplicity, JSP classloaders are not described in the following diagram.

Developing WebL ogic Server Applications 4-7

4 WebLogic Server Application Classloading

Figure4-2 Standard Classloader Hierarchy

Application Classloader
[EJBE1] [EJBZ]

f]

Web Application 1 Web Application 2
Classloader Classloader

This hierarchy is optimal for most applications, because it allows call-by-reference
semantics when you invoke on EJBs. It also allows Web modules to be independently
rel oaded without affecting other modul es. Further, it allows code running in one of the
Web modulesto load classes from any of the EJB modules. Thisis convenient, as it
can prevent a Web module from including the interfaces for EJBs that is uses. Note
that some of those benefits are not strictly J2EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare
alternate classloader organizations that alow the following:

m Reloading individual EJB modules independently
m Reloading groups of modules to be rel oaded together

m Reversing the parent child relationship between specific Web modules and EJB
modules

m Namespace separation between EJB modules

Declaring the Classloader Hierarchy

Y ou can declare the clasd oader hierarchy in the WebL ogic-specific application
deployment descriptor webl ogi c- appl i cati on. xm . For instructions on how to
edit deployment descriptors, refer to the “WebL ogic Builder Online Help.”

The DTD for thisdeclaration is as follows:

4-8 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html

WebLogic Server Application Classloader Overview

Listing 4-2 Declaring the Classloader Hierarchy

<l ELEMENT cl assl oader-structure (nodul e-ref*,
cl assl oader-structure*)>

<! ELEMENT nodul e-ref (nodul e-uri)>

<! ELEMENT nodul e-uri (#PCDATA) >

The top-level element inwebl ogi c- appl i cati on. xm includes an optional

cl assl oader - st ruct ur e element. If you do not specify this element, then the
standard classloader is used. Also, if you do not include a particular module in the
definition, it is assigned a classloader, as in the standard hierarchy. That is, EJB
modul es are associated with the application Root classloader and Web Modules have
their own classloaders.

Thecl assl oader - st ruct ur e element allows for the nesting of
classloader-structure stanzas, so that you can describe an arbitrary hierarchy of
classloaders. Thereis currently alimitation of three levels. The outermost entry
indicates the application classloader. For any modules not listed, the standard
hierarchy is assumed.

Note: JSP classloaders are not included in this definition scheme. JSPs are always
loaded into a classloader that is achild of the classloader associated with the
Web module to which it belongs.

For more information on the DTD elements, refer to Appendix A, “Application
Deployment Descriptor Elements.”

The following is an example of what a classloader declaration would look like:

Listing 4-3 Example Classloader Declaration

<cl assl oader - st ruct ure>
<nmodul e-ref >
<nodul e-uri >ej bl.jar</nodul e-uri >
</ nodul e-ref >

<nmodul e-ref >

Developing WebL ogic Server Applications 4-9

4 WebLogic Server Application Classloading

<nodul e- uri >web3. war </ nodul e-uri >
</ modul e-ref >
<cl assl oader - struct ure>
<nodul e-ref >
<nodul e- uri >webl. war </ nodul e-uri >
</ modul e-ref >
</ cl assl oader-structure>
<cl assl oader - struct ure>
<nodul e-ref >
<nmodul e-uri >ej bl.jar </ nodul e-uri >
</ modul e-ref >
<nodul e-ref >
<nodul e- uri >web2. war </ nodul e-uri >
</ modul e-uri >
<cl assl oader >
<nodul e-ref >
<nodul e- uri >web4. war </ modul e-uri >
</ modul e-ref >
</ cl assl oader >
<cl assl oader >
<nodul e-ref >
<nmodul e-uri >ej b2.j ar </ nodul e-uri >
</ modul e-ref >
</ cl assl oader >
</ cl assl oader >

</ cl assl oader >

4-10 Developing WebL ogic Server Applications

WebLogic Server Application Classloader Overview

The organization of the nesting indicates the classloader hierarchy. The above stanza
leads to a hierarchy shown in the following diagram:

Figure4-3 Example Classloader Hierarchy

Application Classloader
[EJE1 [MWEE3]

1 t

MWEE 1] [EJB3] WEEZ]

t 1

WEB3] | [EJB2]

User-defined Classloader Restrictions

The purpose of thisfeatureisto provide you with better control over what isreloadable
and provide inter-module class visibility. Thisis primarily intended to be a devel oper
feature. Itisuseful for iterative devel opment, but the rel oading aspect of thisfeatureis
not recommended for production use, sinceit is possible to corrupt arunning
application if an update includes invalid elements. Custom classloader arrangements
for namespace separation and class visibility are acceptable for production use.
However, programmers should be aware that the J2EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave more
like modulesin two separate applications. For example, if you placean EJB initsown
classloader so that it can bereloaded individually, you receive call-by-value semantics
rather than the call-by-reference optimization BEA providesin our standard
classloader hierarchy. Also note that if you use a custom hierarchy, you might end up
with stale references. Therefore, if you reload an EJB module, you should also reload
calling modules.

There are some restrictions to creating user-defined module classloader hierarchies;
these are discussed in the following sections.

Developing WebL ogic Server Applications 4-11

4 WebLogic Server Application Classloading

Servlet Reloading Disabled

If you use a custom classloader hierarchy, servlet reloading is disabled for Web
applications in that particular application.

Nesting Depth

Nesting is limited to three levels (including the application classloader). Deeper
nestings lead to a deployment exception.

Module Types

Custom classloader hierarchies are currently restricted to Web and EJB modules.

Duplicate Entries

Duplicate entries lead to a deployment exception.

Interfaces

With our standard classloader hierarchy, the interfaces for EJB are availableto all
modulesin the application. This meansthat other modules can invoke on an EJB, even
though they do not include the interface classesin their own module. Thisis possible
since EJBs are always loaded into the root classloader and all other modules either
share that classloader or have a classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that
acallee’sclasses are not visible to the caller. In this case, the calling module must
include the interface classes. Thisis the same requirement that exists when invoking
on modules in a separate application.

Call-by-value Semantics

The standard classloader hierarchy provided with WebL ogic Server allows for calls
between modules within an application to use call-by-reference semantics. Thisis
because the caller is always using the same classloader or a child classloader of the
callee. With thisfeature, it is possibleto configurethe classl oader hierarchy so that two
modules are in separate branches of the clasdoader tree. In this case, call-by-value
semantics are used.

4-12 Developing WebL ogic Server Applications

WebLogic Server Application Classloader Overview

In-flight Work

It isimportant to be aware that the classloader switch required for reloading is not
atomic across modules. In fact, updates to applications are in general not atomic. For
thisreason, it is possible that different in-flight operations might end up accessing
different versions of classes depending on timing.

Development Use Only

Thisfeatureisintended for development use. Since updates are not atomic, thisfeature
isnot suitable for production use.

Individual EJB Classloader for Implementation Classes

WebL ogic Server allowsyou to reload individual EJB modules without forcing other
modul esto be reloaded at the same time and having to redepl oy the entire EJB module.
Thisfeature is similar to how JSPs are currently reloaded in the WebL ogic Server
servlet container.

Since EJB classes are invoked through an interface, it is possible to load individual
EJB implementation classes in their own classloader. This way, these classes can be
reloaded individually without having to redeploy the entire EJB module. Below isa
diagram of what the classloader hierarchy for a single EJB module would look like.
The module containstwo EJBs (Foo and Bar). Thiswould be a sub-tree of the general
application hierarchy described in the previous section.

Developing WebL ogic Server Applications 4-13

4 WebLogic Server Application Classloading

4-14

Figure4-4 Example Classoader Hierarchy for a Single EJB Module

Module Classloader

Foo.class Ear.class
FooHome class FooHome class

[Any other classes either generated or from the JAR file

f t

Foo Classloader Ear Classloader

Foolmpl class Earlmpl class

To perform an incremental update (partial upgrade), use the following command line;

Listing 4-4

j ava webl ogi c. Depl oyer -adm nurl url -user user -password password

-name nyapp -redepl oy nyej b/ foo. cl ass

After the - r edepl oy command, you provide alist of files relative to the root of the
exploded application that you want to update. This might be the path to a specific
element (as above) or amodule (or any set of elements and modules). For example:

Listing 4-5

java webl ogi c. Depl oyer -adminurl url -user user -password password

-nane nyapp -redepl oy nywar nyej b/foo.class anotherejb

Developing WebL ogic Server Applications

WebLogic Server Application Classloader Overview

Given aset of filesto be updated, the system tries to figure out the minimum set of
thingsit needsto redeploy. Redeployingonly an EJB i npl classcausesonly that class
to be redeployed. If you specify the whole EJB (in the above example, anot her ej b)
or if you change and update the EJB home interface, the entire EJB module must be
redeployed.

Depending on the classloader hierarchy, this may lead to other modules being
redeployed. Specificaly, if other modules share the EJB classloader or areloaded into
a classloader that is achild to the EJB's classloader (asin our standard classloader
module) then those modules are also rel oaded.

Application Classloading and Pass by Value or Reference

M odern programming languages use two common parameter passing models: pass by
value and pass by reference. With pass by value, parameters and return values are
copied for each method call. With pass by reference, a pointer (or reference) to the
actual object ispassed to the method. Pass by reference improves performance because
it avoids copying objects, but it also allows a method to modify the state of a passed
parameter.

WebL ogic Server includes an optimization to improve the performance of Remote
Method Interface (RMI) calls within the server. Rather than using pass by value and
the RMI subsystem’s marshalling and unmarshalling facilities, the server makes a
direct Java method call using pass by reference. This mechanism greatly improves
performance and is also used for EJB 2.0 local interfaces.

RMI call optimization and call by reference can only be used when the caller and callee
are within the same application. As usual, thisisrelated to classloaders. Since
applications have their own classloader hierarchy, any application class has a
definition in both classloaders and receives a ClassCastException error if you try to
assign between applications. To work around this, WebL ogic Server uses call by value
between applications, even if they are within the same JVM.

Note: Calls between applications are slower than calls within the same application.
Deploy components together as an EAR file to enable fast RMI calls and use
of the EJB 2.0 local interfaces.

Developing WebL ogic Server Applications 4-15

4 WebLogic Server Application Classloading

Resolving Class References Between
Components and Applications

Y our applications may use many different Java classes, including enterprise beans,
servlets and JavaServer Pages, utility classes, and third-party packages. WebLogic
Server deploys applicationsin separate classloaders to maintain independence and to
facilitate dynamic redeployment and undeployment. Because of this, you need to
package your application classes in such away that each component has accessto the
classesit depends on. In some cases, you may haveto include a set of classesin more
than one application or component. This section describes how WebL ogic Server uses
multiple classloaders so that you can stage your applications successfully.

About Resource Adapter Classes

Make sure that no resource-adapter specific classes exist in your WebL ogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in the corresponding component’ s archivefile (for example, the JAR file for EJBs or
the WAR file for Web applications).

Packaging Shared Utility Classes

WebL ogic Server provides alocation within an EAR file where you can store shared
utility classes. Place utility JAR filesin the APP- 1 NF/ | i b directory and individua
classesinthe APP- | NF/ cl asses directory. (Do not place JARfilesinthe/ cl asses
directory or classesinthe/ I'i b directory.) These classes are |oaded into the root
classloader for the application, making them visibleto all componentswithinthe EAR.

This feature obviates the need to place utility classesin the system classpath or place
classesin an EJB JAR file (which depends on the standard WebL ogic Server

classloader hierarchy). Be aware that using this feature is subtly different from using
the manifest d ass- Pat h described in the following section. With this feature, class

Developing WebL ogic Server Applications

Resolving Class References Between Components and Applications

definitionsare shared acrossthe application. With manifest d ass- Pat h, theclasspath
of thereferencing module is simply extended, which means that separate copies of the
classes exist for each module.

Manifest Class-Path

The J2EE specification provides the manifest 0 ass- Pat h entry as ameansfor a
component to specify that it requiresan auxiliary JAR of classes. Y ou only need to use
thismanifest G ass- Pat h entry if you have additional supporting JAR filesas part of
your EJB JAR or WAR file. In such cases, when you create the JAR or WAR file, you
must include a manifest filewith ad ass- Pat h element that references the required
JAR files.

Thefollowing isasimple manifest filethat referencesautility.jar file

Mani fest-Version: 1.0 [CRLF]
Class-Path: utility.jar [CRLF]

Infirst line of the manifest file, you must always include the Mani f est - Ver si on
attribute, followed by anew line (CR | LF |CRLF) and thenthe Cl ass- Pat h attribute.
More information about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar htmI#JAR

Themanifest d ass- Pat h entriesrefer to other archivesrelativeto the current archive
in which these entries are defined. This structure allows multiple WAR files and EJB
JAR filesto share acommon library JAR. For example, if aWAR file containsa
manifest entry of y. j ar , this entry should be next to the WAR file (not within it) as
follows:

/ <di rectory>/x. war
/<directory>/y.jars
The manifest file itself should be located in the archive at META- | NF/ MANI FEST. IMF.

For more information, see
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

Developing WebL ogic Server Applications 4-17

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

4 WebLogic Server Application Classloading

4-18 Developing WebL ogic Server Applications

CHAPTER

5 Programming Topics

The following sections contain information about programming in the WebL ogic
Server environment, including descriptions of useful WebL ogic Server facilities and
advice about using various programming techniques:

m “Logging Messages’ on page 5-2

m “Using Threadsin WebL ogic Server” on page 5-2

m “Using JavaMail with WebL ogic Server Applications’ on page 5-3

m “Programming Applications for WebL ogic Server Clusters’ on page 5-9

Developing WebL ogic Server Applications 51

S Programming Topics

Logging Messages

Each WebL ogic Server instance has alog file that contains messages generated from
that server. Y our applications can write messages to the log file using
internationalization services that access localized message catalogs. If localization is
not required, you can usethewebl ogi c. | oggi ng. NonCat al ogLogger classtowrite
messagesto thelog. Thisclasscan also be used in client applicationsto write messages
inaclient-sidelog file.

For more information, refer to the Using WebL ogic Logging Services guide.

Using Threads in WebLogic Server

5-2

WebL ogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebL ogic Server's
architecture, construct your application components created according to the standard
J2EE APIs.

In most cases, avoid application designs that require creating new threadsin
server-side components:

m Applications that create their own threads do not scale well. Threads in the VM
are alimited resource that must be allocated thoughtfully. Your applications may
break or cause WebL ogic Server to thrash when the server load increases.
Problems such as deadl ocks and thread starvation may not appear until the
application is under a heavy load.

m Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebL ogic Server threads are
especialy difficult to anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For
example, an application that searches several repositories and returns a combined
result set can return results sooner if the searches are done asynchronously using anew
thread for each repository instead of synchronously using the main client thread.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs81b/logging/index.html

Using JavaMail with WebLogic Server Applications

If you must use threads in your application code, create a pool of threads so that you
can control the number of threads your application creates. Like a JDBC connection
pool, you allocate a given number of threads to a pool, and then obtain an available
thread from the pool for your runnable class. If @l threadsin the pool arein use, wait
until oneisreturned. A thread pool helps avoid performance issues and allows you to
optimize the allocation of threads between WebL ogic Server execution threads and
your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesirable interactions with WebL ogic Server threads, do not let your
threads call into WebL ogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external servicewith aTCP/IP
connection or, with proper locking, reading or writing to files. A short-lived thread that
accomplishes asingle purpose and ends (or returnsto the thread pool) islesslikely to
interfere with other threads.

Be sureto test multithreaded code under increasingly heavy loads, adding clientseven
to the point of failure. Observe the application performance and WebL ogic Server
behavior and then add checks to prevent failures from occurring in production.

Using JavaMail with WebLogic Server
Applications

WebL ogic Server includes the JavaMail APl version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilitiesto
your WebL ogic Server applications. JavaMail provides access from Java applications
to Internet Message Access Protocol (IMAP)- and Simple Mail Transfer Protocol
(SMTP)-capable mail serverson your network or the Internet. It does not provide mail
server functionality; so you must have accessto amail server to use JavaMail.

Compl ete documentation for using the JavaMail APl isavailable on the JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebL ogic Server environment.

Developing WebL ogic Server Applications 5-3

http://java.sun.com/products/javamail/index.html

S Programming Topics

Thewebl ogi c. j ar filecontainsthej avax. mai | andj avax. mail . i nt ernet
packages from Sun. webl ogi c. j ar aso contains the Java Activation Framework
(JAF) package, which JavaMail requires.

Thej avax. mai | package includes providers for Internet Message A ccess protocol
(IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate
POP3 provider for JavaMail, which is not included in webl ogi c. j ar. You can
download the POP3 provider from Sun and add it to the WebL ogic Server classpath if
you want to use it.

About JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. Thewebl ogi c. j ar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail serversfor JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, download JavaMail from Sun and follow Sun’s instructions
for adding your extensions. Then add your extended JavaMail package in the

WebL ogic Server classpath in front of webl ogi c. j ar.

Configuring JavaMail for WebLogic Server

54

To configure JavaMail for use in WebL ogic Server, you create aMail Session in the
WebL ogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with INDI, using Session properties you
preconfigure for them. For example, by creating aMail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because WebL ogic Server
creates a single Session object and makesit available via JNDI to any component that
needsiit.

1. Inthe Administration Console, click on the Mail node in the left pane of the
Administration Console.

Developing WebL ogic Server Applications

Using JavaMail with WebLogic Server Applications

2. Click Create aNew Mail Session.

3. Complete the form in the right pane, as follows:

e [nthe Namefield, enter aname for the new session.

e Inthe JNDINamefield, enter aJNDI lookup name. Your code uses this
string to look up thej avax. mai | . Sessi on object.

e InthePropertiesfield, enter properties to configure the Session. The property
names are specified in the JavaMail APl Design Specification. JavaMail
provides default values for each property, and you can override the valuesin
the application code. The following table lists the properties you can set in

thisfield.
Property Description Default
mai | . store. protocol The protocol to useto retrieve email. The bundled JavaMail
Example: library has support for
mai | . store. protocol =i map IMAP.
mai | . transport. protocol Theprotocol to useto send email. The bundled JavaMail
Example: library has support for
SMTP.

mai | . transport. protocol =sntp

mai | . host The name of the mail host machine. The default isthe local
Example: machine.
mai | . host =mai | server

mai | . user The name of the default user for retrieving The default is the value

email.
Example:

mai | . user =post nast er

of theuser . nanme Java
system property.

Developing WebL ogic Server Applications 55

S Programming Topics

Property

Description

Default

mai | . prot ocol . host

The mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mai | . snt p. host =mai | . mydom com
mai | . i map. host =l ocal host

The value of the
mai | . host property.

mai | . prot ocol . user

The protocol-specific default user name
for logging into a mailer server.

Examples:

mai | . snt p. user =webl ogi ¢

The value of the
mai | . user property.

mai | . i map. user =appuser

mai | . from The default return address. user nane@ost
Examples:
mai | . fromemast er @rydom com

mai | . debug Set to True to enable JavaMail debug False

output.

Y ou can override any properties set in the Mail Session in your code by creating a
Properti es object containing the properties you want to override. Then, after you
lookup the Mail Session object in JNDI, call the Sessi on. get | nst ance() method
with your Pr oper ti es to get a customized Session.

Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebL ogic Server

component:

1. Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
asoneedtoimport j ava. util . Properti es:

import java.util.*;
i mport javax.activation.*;

5-6 Developing WebL ogic Server Applications

Using JavaMail with WebLogic Server Applications

import javax.mail.*;
inmport javax.nmil.internet.*;
i mport javax.nam ng.*;

Look up the Mail Sessionin JNDI:

new I nitial Context();

Initial Context ic =
= (Session) ic.lookup("nyMil Session");

Sessi on session

If you need to override the properties you set for the Session in the
Administration Console, create aPr oper ti es object and add the properties you
want to override. Then call get I nst ance() to get a new Session object with the
new properties.

Properties props = new Properties();

props. put("mail.transport.protocol", "sntp");

props. put("mail.sntp. host", "mailhost");

/1 use mail address fromHTM. formfor from address
props. put("mail.front, email Address);

Sessi on session2 = session. getlnstance(props);

. Construct aM neMessage. In the following example, t o, subj ect , and
messageTxt are String variables containing input from the user.

Message nsg = new M neMessage(sessi on2);
nsg. set From() ;
nsg. set Reci pi ent s(Message. Reci pi ent Type. TQ,
I nt er net Address. parse(to, false));
nsg. set Subj ect (subj ect);
nsg. set Sent Dat e(new Date());
/1 Content is stored in a MM nulti-part nessage
/1 with one body part
M meBodyPart nbp = new M neBodyPart () ;
nbp. set Text (nessageTxt) ;

Multipart mp = new M neMul tipart();
np. addBodyPart (mbp) ;
nsg. set Cont ent (np) ;

. Send the message.

Transport. send(nsg);

The JNDI lookup can throw a Nani ngExcept i on on failure. JavaMail can throw a
Messagi ngExcept i on if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in atry block and
catch these exceptions.

Developing WebL ogic Server Applications 57

S Programming Topics

Reading Messages with JavaMail

5-8

The JavaMail API allows you to connect to a message store, which could bean IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
folders that contain archived messages. With POP3, the server provides afolder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refersto the primary folder for the user, and iswithin the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message humber or range of message numbers, or pre-fetching specific parts of
messages into the folder’ s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within aWebL ogic
Server component:

1. Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
alsoneedto import j ava. util . Properties:

import java.util.*;

i mport javax.activation.*;
import javax. mail.*;

i nport javax.mail.internet.*;
i mport javax.nam ng.*;

2. Look up the Mail Session in JNDI:

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("myMail Session");

3. If you need to override the properties you set for the Session in the
Administration Console, create aPr opert i es object and add the properties you
want to override. Then call get I nst ance() to get anew Session object with the
new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props. put ("mail . pop3. host", "nmailhost");

Sessi on sessi on2 = session. getl nstance(props);

Developing WebL ogic Server Applications

Programming Applications for WebLogic Server Clusters

4. Get astor e object from the Session and call itsconnect () method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store. connect (nai | host, usernane, password);

5. Get the default folder, then use it to get the INBOX folder:

Fol der fol der = store. getDefaul t Fol der();
fol der = fol der. get Fol der ("1 NBOX");

6. Read the messagesin the folder into an array of Messages:

Message[] nessages = fol der. get Messages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement afull-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
viaWebL ogic Server, possibly using a database or file system to represent folders.

Programming Applications for WebLogic
Server Clusters

JSPs and Servlets that will be deployed to a WebL ogic Server cluster must observe
certain requirementsfor preserving session data. See Using WebL ogic Server Clusters
for more information.

EJBs deployed in aWebL ogic Server cluster have certain restrictions based on EJB
type. See"The WebLogic Server EJB Container" in Programming WebLogic
Enterprise JavaBeans for information about the capabilities of different EJB typesin
acluster. EJBs can be deployed to a cluster by setting clustering propertiesin the EJB

Developing WebL ogic Server Applications 5-9

http://e-docs.bea.com/wls/docs81b/cluster/index.html
http://e-docs.bea.com/wls/docs81b/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

S Programming Topics

deployment descriptor. "weblogic-gb-jar.xml Deployment Descriptors” in
Programming WebLogic Enterprise JavaBeans describes the XML deployment
elements relevant for clustering.

If you are developing either EJBs or custom RMI objects for deployment in a cluster,
also refer to "Using WebL ogic INDI in a Clustered Enviroment” in Programming
WebLogic JNDI to understand the implications of binding clustered objects in the
JINDI tree.

5-10 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/reference.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jndi/jndi.html#jndi012
http://e-docs.bea.com/wls/docs81b/jndi/index.html

CHAPTER

A Application

DeploymentDescriptor
Elements

The following sections describe deployment descriptors for J2EE applications on
WebL ogic Server. Two deployment descriptors are required: a J2EE standard
deployment descriptor named appl i cati on. xm , and a WebL ogic-specific
application deployment descriptor named webl ogi c- appl i cati on. xn . The
webl ogi c-appl i cation. xm fileisoptiona if you are not using any WebL ogic
Server extensions.

m “gpplication.xml Deployment Descriptor Elements’ on page A-1

m “weblogic-application.xml Deployment Descriptor Elements’ on page A-6

application.xml Deployment Descriptor
Elements

The following sections describe the appl i cati on. xmi file.

Theappl i cation. xn fileisthe deployment descriptor for Enterprise Application
Archives. Thefileislocated in the META- | NF subdirectory of the application archive.
It must begin with the following DOCTY PE declaration:

Developing WebL ogic Server Applications A-1

A Application Deployment Descriptor Elements

<! DOCTYPE application PUBLIC "-//Sun M crosystens,
Inc.//DTD J2EE Application 1.3//EN'
"http://java.sun.com dtd/ application_1_3.dtd">

The following diagram summarizes the structure of the appl i cat i on. xm
deployment descriptor.

‘ application ‘

4{ icon? ‘
small-icon? ‘
large-icon? ‘

4{ display-name ‘

4{ description? ‘

4{ module+ ‘

alt-dd ‘

connector ‘

4{
“
o]
4{
4{

java |

web |

web-uri |

context-root |

4‘ security-role* |

description? | ? = Optional
+ = One or more
role-name | * = Zero or more

The following sections describe each of the elements that can appear in thefile.

A-2 Developing WebL ogic Server Applications

application

application

appl i cati on istheroot element of the application deployment descriptor. The
elements within the appl i cat i on element are described in the following sections.

icon
Optional. Thei con element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebL ogic Server.

small-icon

Optional. Specifies the location for asmall (16x16 pixel) . gi f or. j pg image used to
represent the applicationinaGUI tool. Currently, thisis not used by WebL ogic Server.

large-icon
Optional. Specifiesthelocation for alarge (32x32 pixel) . gi f or. j pg image used to

represent the application in a GUI tool. Currently, this element is not used by
WebL ogic Server.

display-name

Optional. Thedi spl ay- nanme element specifies the application display name, a short
name that is intended to be displayed by GUI toals.

description

The optional description element provides descriptive text about the application.

Developing WebL ogic Server Applications A-3

A Application Deployment Descriptor Elements

module

alt-dd

connector

ejb

java

Theappl i cati on. xm deployment descriptor contains one modul e element for each
modulein the Enterprise Archivefile. Each nodul e element containsanej b, j ava, or
web element that indicates the module type and location of the module within the
application. An optional al t - dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.

Specifies an optional URI to the post-assembly version of the deployment descriptor
file for aparticular 2EE module. The URI must specify the full pathname of the
deployment descriptor file relative to the application’s root directory. If you do not
specify al t - dd, the deployer must read the deployment descriptor from the default
location and file name required by the respective component specification.

Specifiesthe URI of aresource adapter (connector) archivefile, relativeto thetop level
of the application package.

Defines an EJB module in the application file. Contains the path to an EJB JAR filein
the application.

Example:

<ej b>pet St ore_EJB. j ar </ ej b>

Defines aclient application module in the application file.
Example:

<java>client_app.jar</java>

A-4 Developing WebL ogic Server Applications

application

web
Defines aWeb application module in the appl i cati on. xnl file. Theweb element
containsaweb- uri element and acont ext - r oot element. If you do not declare a
vaue for the cont ext - r oot , then the basename of theweb- uri element is used as
the context path of the Web application. (Note that the context path must be uniquein
agiven Web server. More than one Web application may be using the same Web
server, so you must avoid having context path clashes across multiple applications.)
web-uri
Definesthelocation of aWeb moduleintheappl i cati on. xm file. Thisisthe name
of the WAR file.
context-root
Specifies a context root for the Web application.
Example:
<web>

<web- uri >pet St or e. war </ web- uri >
<cont ext - r oot >est or e</ cont ext - r oot >

</ web>

security-role
Thesecuri ty-rol e element containsthe definition of a security role which isglobal
to the application. Each securi t y-r ol e element contains an optional descri pti on
element, and ar ol e- nane eement.

description
Optional. Text description of the security role.

role-name

Definesthe name of asecurity role or principal that isused for authorization within the
application. Roles are mapped to WebL ogic Server users or groupsin the
webl ogi c- appl i cation. xm deployment descriptor.

Developing WebL ogic Server Applications A-5

A Application Deployment Descriptor Elements

Example:

<security-rol e>
<descri ption>the gold custoner rol e</description>
<r ol e- nane>gol d_cust oner </ r ol e- nane>
</security-rol e>
<security-rol e>
<descri pti on>t he custoner rol e</description>
<r ol e- name>cust oner </ r ol e- nane>
</security-rol e>

weblogic-application.xml Deployment
Descriptor Elements

The following sections describe the webl ogi c- appl i cati on. xnm file. The

webl ogi c- application. xm fileisthe BEA WebL ogic Server-specific
deployment descriptor extension for the appl i cati on. xnl deployment descriptor
from Sun Microsystems. Thisiswhere you configure features such as
application-scoped JDBC Pools and EJB Caching.

Thefileislocated in the META- I NF subdirectory of the application archive. It must
begin with the following DOCTY PE declaration:

<! DOCTYPE webl ogi c-application PUBLIC "-//BEA Systens, Inc.//DTD
WebLogi ¢ Application 7.1.0//EN'

"http://ww. bea. conf servers/w s710/ dt d/ webl ogi c-application_2 0.d
td"; >

The following sections describe each element that can appear in thefile.
weblogic-application

The webl ogi c- appl i cati on element isthe root element of the application
deployment descriptor.

A-6 Developing WebL ogic Server Applications

http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd
http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd

weblogic-application

ejb

entity-cache

Optional. The ej b element contains information that is specific to the EJB modules
that are part of aWebL ogic application. Currently, one can use the ej b element to
specify one or more application level caches that can be used by the application’s
entity beans.

Oneor more. Theent i t y- cache element isused to define a named application level
cachethat isused to cache entity EJB instances at runtime. Individual entity beansrefer
to the application-level cache that they must use, referring to the cache name. Thereis
no restriction on the number of different entity beans that may reference an individual
cache.

Application-level caching is used by default whenever an entity bean does not specify
itsown cacheinthewebl ogi c- ej b-j ar. xm descriptor. Two default caches named
Excl usi veCache and Mul ti Ver si onCache are used for this purpose. An
application may explicitly define these default cachesto specify non-default valuesfor
their settings. Note that the caching-strategy cannot be changed for the default caches.
By default, a cache uses max- beans- i n- cache with avalue of 1000 to specify its
maximum size.

Example:
<entity-cache>
<entity-cache- nane>Excl usi veCache</ entity- cache- name>
<max- cache-si ze>
<megabyt es>50</ negabyt es>
</ max- cache-si ze>

</entity-cache>

entity-cache-name

Theenti ty-cache- name element specifies a unique name for an entity bean cache.
The name must be unique within an ear file and may not be the empty string.

Developing WebL ogic Server Applications A-7

A Application Deployment Descriptor Elements

Example:

<entity-cache- nanme>Excl usi veCache</ entity- cache- name>

max-beans-in-cache

max-cache-size

Optional. The max- beans- i n- cache element specifies the maximum number of
entity beans that are allowed in the cache. If the limit is reached, beans may be
passivated. If O is specified, then there is no limit. This mechanism does not takeinto
account the actual amount of memory that different entity beans require.

Default Value: 1000

Thenmax- cache- si ze element is used to specify alimit on the size of an entity cache
in terms of memory size—expressed either in terms of bytes or megabytes. A bean
provider should provide an estimate of the average size of abean in the

webl ogi c- ej b-j ar. xm descriptor if the bean uses a cache that specifiesits
maximum size using the max- cache- si ze element. By default, abean is assumed to
have an average size of 100 bytes.

m bytes | negabytes—Thesize of an entity cachein terms of memory size,
expressed in bytes or megabytes. Used in the max- cache- si ze element.

read-timeout-seconds

caching-strategy

Optional. Ther ead- ti meout - seconds element specifies the number of seconds
between ej bLoad callson aread-only entity bean. If r ead- t i meout - seconds isset
to 0, ej bLoad will only be called when the bean is brought into the cache.

Optional. Thecachi ng- st r at egy element specifiesthe general strategy that the EJB
container uses to manage entity bean instances in a particular application level cache.
A cache buffers entity bean instances in memory and associates them with their
primary key value.

The cachi ng- st r at egy element can only have one of the following values:

m Excl usi ve—Caches a single bean instance in memory for each primary key
value. Thisuniqueinstance istypically locked using the EJB container’s

A-8 Developing WebL ogic Server Applications

weblogic-application

exclusive locking when it isin use, so that only one transaction can use the
instance at atime.

m Ml ti Ver si on—Caches multiple bean instances in memory for agiven
primary key value. Each instance can be used by a different transaction
concurrently.

Default Value: Mul ti Ver si on
Example:

<cachi ng- st rat egy>Excl usi ve</ cachi ng- str at egy>

start-mdbs-with-application

Optional. Allows you to configure the EJB container to start Message
Driven BeanS (MDBS) with the application. If set to true, the
container starts MDBS as part of the application. If set to fal se,
the contai ner keeps MDBS in a queue and the server starts them as
soon as it has started listening on the ports.

xml
Optional. Thexm element containsinformation about parsers and entity mappingsfor
XML processing that is specific to this application.

parser-factory
Optional. The par ser - f act or y element contains three elements:
saxpar ser - fact ory?, docunent - bui | der - fact ory?, and
transformer-factory?.

saxparser-factory

Optional. Thesaxpar ser - f act or y element allowsyou to set the SAX Parser Factory
for the XML parsing required in this application only. This element determines the
factory to be used for SAX style parsing. If you do not specify the

saxpar ser - f act ory element setting, the configured SAX Parser Factory stylein the
Server XML Registry is used.

Developing WebL ogic Server Applications A-9

A Application Deployment Descriptor Elements

Default Value: Server XML Registry setting

document-builder-factory

Optional. Thedocunent - bui | der - f act or y element allowsyou to set the Document
Builder Factory for the XML parsing required in this application only. This element
determines the factory to be used for DOM style parsing. If you do not specify the
docunent - bui | der - f act ory element setting, the configured DOM style in the
Server XML Registry is used.

Default Value: Server XML Registry setting

transformer-factory

Optional. Thet r ansf or mer - f act or y element allows you to set the Transformer
Engine for the style sheet processing required in this application only. If you do not
specify avalue for this element, the value configured in the Server XML Registry is
used.

Default value: Server XML Registry setting.
entity-mapping
Zero or more. Theent i ty- mappi ng element is used to specify entity mapping. This

mapping determines the alternative entity URI for agiven public or system ID. The
default placeto look for thisentity URI isthel i b/ xmi / r egi st ry directory.

entity-mapping-name

Theenti ty- mappi ng- name element specifies the name for this entity mapping.

public-id

Optional. The publ i c-i d element specifies the public ID of the mapped entity.

system-id

Optional. Thesyst em i d element specifies the system ID of the mapped entity.

A-10 Developing WebL ogic Server Applications

weblogic-application

entity-uri

Optional. Theentity-uri element specifiesthe entity URI for the mapped entity.

when-to-cache
Optional. Legal values are:
m cache-on-reference
m cache-at-initialization
m cache-never

The default valueiscache- on-r ef er ence.

cache-timeout-interval

Optional. Thecache-ti meout - i nt er val element allowsyou to specify theinteger
value in seconds.

security
Optional. Thesecuri ty element specifies security information for the application.

m real m name—Optiona. Ther eal m name element names a security realm that
will be used by the application. If not specified, the system default realm is used.

jdbc-connection-pool

Zero or more. Thej dbc- connect i on- pool element specifies an application-scoped
JDBC connection pool.u

data-source-name

Thedat a- sour ce- nane element specifiesthe INDI namein the application-specific
JINDI tree.

Developing WebL ogic Server Applications A-11

A Application Deployment Descriptor Elements

connection-factory

Theconnect i on-fact ory element defines the number of physical database

connections to create when the pool isinitialized. The default valueis 1.
factory-name

Thef act ory- name element specifies the name of a

JDBCDat aSour ceFact or yMBean intheconfi g. xnmi file.
connection-properties

Optional. Theconnect i on- pr oper ti es element specifiesthe connection parameters
that define overrides for default connection factory settings.

m user - nane—Optional. Theuser - name element is used to override User Nane
in the JDBCDat aSour ceFact or yMBean.

m ur| —Optiona. Theur| element is used to override URL in the
JDBCDat aSour ceFact or yMBean.

m driver-cl ass-nane—Optional. Thedri ver - cl ass- name element is used to
override Dri ver Nane in the JDBCDat aSour ceFact or yMBean.

® connecti on- par ans—Zero or more.

e paranet er + (par am val ue, par am nanme)—One or more

pool-params

Optional. The pool - par ans element defines parameters that affect the behavior of
the pool.
size-params

Optional. Thesi ze- par ans element defines parameters that affect the number of
connectionsin the pool.

m initial-capacity—Optiona. Theinitial - capaci ty element definesthe
number of physical database connections to create when the pool isinitialized.
The default valueis 1.

A-12 Developing WebL ogic Server Applications

weblogic-application

Xa-params

max- capaci t y—Optional. The max- capaci t y element defines the maximum
number of physical database connections that this pool can contain. Note that the
JDBC Driver may impose further limits on this value. The default valueis 1.

capaci ty-i ncr ement —Optional. Thecapaci t y-i ncr enent element
defines the increment by which the pool capacity is expanded. When there are
no more available physical connections to service requests, the pool creates this
number of additional physical database connections and adds them to the pool.
The pool ensures that it does not exceed the maximum number of physical
connections as set by max- capaci t y. The default valueis 1.

shri nki ng- enabl ed—Optional. The shri nki ng- enabl ed element indicates
whether or not the pool can shrink back toitsi ni ti al - capaci ty when
connections are detected to not be in use.

shri nk- peri od- m nut es—Optional. Theshri nk- peri od- m nut es
element defines the number of minutes to wait before shrinking a connection
pool that has incrementally increased to meet demand. The

shri nki ng- enabl ed element must be set to t r ue for shrinking to take place.

shri nk-frequency-seconds—
hi ghest - num wai t er s—

hi ghest - num avai | abl e—
profiling-enabl ed—
cache-profiling-threshol d—
cache-si ze—

par anet er - | oggi ng- enabl ed—
nmax- par anet er - | engt h—

acl - name—The ACL used to control access to this connection pool.

Optional. The xa- par ans element defines the parameters for the XA DataSources.

m debug- | evel —Optional. Integer. The debug- | evel element definesthe

debugging level for XA operations. The default valueisO.

Developing WebL ogic Server Applications A-13

A Application Deployment Descriptor Elements

A-14

keep-conn-unti | -t x-conpl et e- enabl ed—Optional. Boolean. If you set
thekeep- conn-until -tx-conpl et e- enabl ed element tot r ue, the XA
connection pool associates the same XA connection with the distributed
transaction until the transaction completes.

end- onl y- once- enabl ed—Optional. Boolean. If you set the
end- onl y- once- enabl ed element to t r ue, the XAResour ce. end() method
isonly called once for each pending XAResour ce. st art () method.

recover - onl y- once- enabl ed—Optional. Boolean. If you set the
recover - onl y- once- enabl ed element tot r ue, recover isonly called one
time on aresource.

t x- cont ext - on- cl ose- needed—Optional. Set the

t x- cont ext - on- cl ose- needed element to t r ue if the XA driver requiresa
distributed transaction context when closing various JDBC objects (for example,
result sets, statements, connections, and so on). If settot r ue, the SQL
exceptions that are thrown while closing the JDBC objects in no transaction
context are swallowed.

new conn- f or - conmi t - enabl ed—Optional. Boolean. If you set the
new- conn-f or - conmi t - enabl ed elementtot r ue, adedicated XA
connection is used for commit/rollback processing of a particular distributed
transaction.

pr epar ed- st at enent - cache- si ze—Optional. Use the

pr epar ed- st at enent - cache- si ze element to set the size of the prepared
statement cache. The size of the cache is anumber of prepared statements
created from a particular connection and stored in the cache for further use.
Setting the size of the prepared statement cacheto 0 turnsit off.

keep- | ogi cal - conn- open- on- r el ease—Optional. Boolean. Set the

keep- | ogi cal - conn- open-on-r el ease element tot r ue, to keep the logical
JDBC connection open when the physical XA connection is returned to the XA
connection pool. The default value isf al se.

| ocal -transacti on- support ed—Optional. Boolean. Set the
| ocal -transacti on-supportedtotrue if the XA driver supports SQL with
no global transaction; otherwise, setittof al se. The default valueisf al se.

r esour ce- heal t h- moni t or i ng- enabl ed—Optional. Set the
resour ce- heal t h- noni t ori ng- enabl ed element to t r ue to enable JTA
resource health monitoring for this connection pool.

Developing WebL ogic Server Applications

weblogic-application

login-delay-seconds

Optional. Integer value. Thel ogi n- del ay- seconds element sets the number of
seconds to delay before creating each physical database connection. Some database
servers cannot handle multiple requests for connections in rapid succession. This
property allows you to build in asmall delay to let the database server catch up. This
delay occurs both during initial pool creation and during the lifetime of the pool
whenever aphysical database connection is created.

leak-profiling-enabled

Optional. Thel eak- profi | i ng- enabl ed element enables JDBC connection leak
profiling. A connection leak occurs when a connection from the pool is not closed
explicitly by calling the cl ose() method on that connection. When connection leak
profiling is active, the pool stores the stack trace at the time the connection object is
allocated from the pool and given to the client. When a connection leak is detected
(when the connection object is garbage collected), this stack trace is reported.

This element uses extra resources and will likely slowdown connection pool
operations, so it is not recommended for production use.

connection-check-params

Optional. Theconnect i on- check- par ans element defines whether, when, and
how connectionsin a pool is checked to make sure they are still alive.

m tabl e- name—Optiona. Thet abl e- name element defines atable in the
schemathat can be queried.

m check- on-reserve- enabl ed—Optional. If the
check-on-reserve-enabl ed elementisset tot r ue, then the connection will
be tested each time before it is handed out to a user.

m check- on-rel ease- enabl ed—Optional. If the
check-on-rel ease-enabl ed elementisset tot r ue, then the connection will
be tested each time a user returns a connection to the pool.

m refresh-nmi nut es—Optiondl. If ther ef r esh- mi nut es element is defined, a
trigger isfired periodically (based on the number of minutes specified). This
trigger checks each connection in the pool to make sureit is still valid.

m check- on-creat e- enabl ed—Optional. If settot r ue, then the connection
will be tested when it is created.

Developing WebL ogic Server Applications A-15

A Application Deployment Descriptor Elements

m connection-reserve-timeout - seconds—Optiona. Number of seconds
after which the call to reserve a connection from the pool will timeout.

m connection-creation-retry-frequency-seconds—Optional. The
frequency of retry attempts by the pool to establish connections to the database.

®m inactive-connection-tinmeout-seconds—Optiona. The number of
seconds of inactivity after which reserved connections will forcibly be released
back into the pool.

m test-frequency-seconds—Optiona. The number of seconds between
database connection tests. After every test-frequency-seconds interval, unused
database connections are tested using t abl e- name. Connections that do not
pass the test will be closed and reopened to re-establish avalid physical database
connection. If t abl e- name isnot set, the test will not be performed.

driver-params

Optional. Thedri ver - par ans element sets behavior on WebL ogic Server drivers.

statement
Optional.

m profiling-enabl ed—Optional. profiling-enabl ed boolean. The
profiling-enabl ed element enables the running of JIDBC SQL round-trip
profiling. When enabled, SQL statement text, execution time, and other metrics
are stored externally for further analysis. Thisis aresource-consuming feature,
so it is recommended that you turn it off on a production server. The default
valueisf al se.

prepared-statement

Optional. prof i | i ng- enabl ed boolean. The pr epar ed- st at enent element
enables the running of JDBC prepared statement cache profiling. When enabled,
prepared statement cache profiles are stored in external storage for further analysis.
Thisisaresource-consuming feature, so it is recommended that you turn it off on a
production server. The default valueisf al se.

m profiling-enabl ed—Optional.

A-16 Developing WebL ogic Server Applications

weblogic-application

m cache-profiling-threshol d—Optional. The
cache-profiling-threshol d element defines anumber of statement
requests after which the state of the prepared statement cache islogged. This
element minimizes the output volume. Thisis a resource-consuming feature, so
it is recommended that you turn it off on a production server.

m cache- si ze—Optiona. Thecache- si ze element returns the size of the
prepared statement cache. The size of the cache is anumber of prepared
statements created from a particular connection and stored in the cache for
further use.

m paranet er - | oggi ng- enabl ed—Optional. During SQL roundtrip profiling it
ispossible to store values of prepared statement parameters. The
par amet er - | oggi ng- enabl ed element enables the storing of statement
parameters. Thisis aresource-consuming feature, so it is recommended that you
turn it off on a production server.

m nax- par anet er - | engt h—Optional. During SQL roundtrip profiling it is
possible to store values of prepared statement parameters. The
max- par amet er - | engt h element defines maximum length of the string passed
as aparameter for JDBC SQL roundtrip profiling. Thisis a resource-consuming
feature, so you should limit the length of data for a parameter to reduce the
output volume.

row-prefetch-enabled

Optional

row-prefetch-size

Optional

stream-chunk-size

Optiona

acl-name

Optional

Developing WebL ogic Server Applications A-17

A Application Deployment Descriptor Elements

application-param

Zero or more. Theappl i cat i on- par amelement defines various parameters that
affect container behavior. These parameters are as follows:

® webapp. encodi ng. usevndef aul t
m webapp. encodi ng. def aul t

m webapp. getreal pat h. accept _context _path

classloader-structure

A classloader-structure element allows you to define the organization of classloaders
for this application. The declaration represents a tree structure that represents the
classloader hierarchy and associates specific modules with particular nodes. A
modul€'s classes are loaded by the classloader that its associated with in this structure.

Example:
<cl assl oader - struct ure>

<nmodul e-ref>

<modul e-uri>ej bl.jar</nmodul e-uri>
<nmodul e- uri >ej b2.jar </ nmodul e-uri >
<cl assl oader - struct ure>

<modul e-uri>ej b3. j ar</ nodul e-uri >

</ cl assl oader - struct ure>

</ cl assl oader - structure>

module-ref

Zero or more.

A-18 Developing WebL ogic Server Applications

weblogic-application

module-uri

classloader-structure

Zero or more.

listener
The listener element is used to register user defined application lifecycle listeners.
These are classes that extend the abstract base class
webl ogi c. appl i cation. Appl i cati onLi fecycl eLi stener.
listener-class
Thel i st ener - cl ass element is the name of the users implementation of
ApplicationLifecycl eLi st ener.
listener-uri
Optional. Thel i st ener-uri isaJAR filewithin the EAR that contains the
implementation. If you do not specify thel i st ener - uri , itisassumed that the class
isvisibleto the application.
startup
Usethest art up element to register user-defined startup classes.
startup-class

Usethest art up- cl ass element to define the name of the class to be run when the
application is being deployed.

Developing WebL ogic Server Applications A-19

A Application Deployment Descriptor Elements

startup-uri
Optional. Usethe st art up- uri element to define a JAR file within the EAR that
containsthest art up-cl ass. If st artup-uri isnot defined, then its assumed that
the classis visible to the application.
shutdown
The shut down element is used to register user defined shutdown classes.
shutdown-class
Usethe shut down- cl ass element to define the name of the classto be run when the
application is undeployed.
shutdown-uri

Optional. Theshut down- ur i elementisusedtodefineaJAR filewithinthe EAR that
containstheshut down- ¢l ass. If you do not definetheshut down- uri element, itis
assumed that the class is visible to the application.

A-20 Developing WebL ogic Server Applications

CHAPTER

B

Client Application

DeploymentDescriptor
Elements

The following sections describe deployment descriptors for J2EE client applications
on WebL ogic Server. Often, when it comes to J2EE applications, users are only
concerned with the server-side components (Web Applications, EJBs, Connectors).
Y ou configure these server-side components using the appl i cat i on. xml
deployment descriptor, discussed in Appendix A, “ Application Deployment
Descriptor Elements.”

However, it is also possible to include a client component (aJAR file) in an EAR file.
ThisJARfileisonly used on the client side; you configure this client component using
thecl i ent-application.xm deployment descriptor. This scheme makesit
possible to package both client and server side componentstogether. The server looks
only at the partsit isinterested in (based ontheappl i cati on. xm file) and theclient
looks only at the partsit isinterested in (based onthecl i ent - appl i cati on. xm
file).

For client-side components, two deployment descriptors are required: a J2EE standard
deployment descriptor, appl i cati on-client.xm , and a\WebL ogic-specific
runtime deployment descriptor with a name derived from the client application JAR
file.

m “application-client.xml Deployment Descriptor Elements’ on page B-2

m “WebL ogic Run-time Client Application Deployment Descriptor” on page B-7

Developing WebL ogic Server Applications B-1

B diient Application Deployment Descriptor Elements

application-client.xml Deployment
Descriptor Elements

Theapplication-client.xm fileisthe deployment descriptor for J2EE client
applications. It must begin with the following DOCTY PE declaration:

<! DOCTYPE application-client PUBLIC "-//Sun M crosyst ens,
Inc.//DTD J2EE Application Cient 1.2//EN'

"http://java. sun.con j 2ee/ dtds/ application-client_1 2.dtd">

The following diagram summarizes the structure of the appl i cati on-cl i ent. xni
deployment descriptor.

B-2 Developing WebL ogic Server Applications

application-client.xml Deployment Descriptor Elements

‘ application-client ‘

‘{ icon? ‘

small-icon? ‘
large-icon? ‘

‘{ display-name ‘
‘{ description? ‘

‘{ env-entry* ‘

4{ description?

4{ env-entry-name |

4{ env-entry-type |

4{ env-entry-value? |

‘{ ejb-ref* ‘

_{ description?

_{ ejb-ref-name

_{ ejb-ref-type

_{ home

+ = One or more
* = Zero or more

_{ remote

‘{ ejb-link?

|
|
| ? = Optional
|
|
|

‘{ resource-ref* ‘

4{ description?

4{ res-ref-name

4{ res-type

4{ res-auth

The following sections describe each of the elements that can appear in thefile.

Developing WebL ogic Server Applications

B-3

B diient Application Deployment Descriptor Elements

application-client

icon

small-icon

large-icon

display-name

description

appl i cation-client istheroot element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB
components and other resources used by the client application.

Theelementswithintheappl i cati on-cl i ent element aredescribedinthefollowing
sections.

Optional. Thei con element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebL ogic Server.

Optional. Specifiesthe location for asmall (16x16 pixel) . gi f or. j pg image used to
represent the application in aGUI tool. Currently, thisis not used by WebL ogic Server.

Optional. Specifiesthe location for alarge (32x32 pixel) . gi f or . j pg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebL ogic Server.

Thedi spl ay- name element specifies the application display hame, a short name that
isintended to be displayed by GUI tools.

Optional. Thedescri pti on element provides a description of the client application.

B-4 Developing WebL ogic Server Applications

application-client.xml Deployment Descriptor Elements

env-entry

description

env-entry-name

env-entry-type

env-entry-value

ejb-ref

description

Theenv- ent ry element containsthe declaration of aclient application’ s environment
entries.

Optional. Thedescri pti on element contains a description of the particular
environment entry.

Theenv- ent ry- name element contains the name of aclient application’s
environment entry.

Theenv-entry-type element contains the fully-qualified Javatype of the
environment entry. The possible values are: j ava. | ang. Bool ean,

java.lang. String,java.l ang. | nteger,java.l ang. Doubl e,

java.lang. Byte,java. | ang. Short,j ava. | ang. Long, andj ava. | ang. Fl oat .

Optional. Theenv- ent ry- val ue element contains the value of aclient application’s
environment entry. The value must be a String that is valid for the constructor of the
specified env-ent ry-type.

Theej b-ref element isused for the declaration of areference to an EJB referenced
in the client application.

Optional. Thedescri pti on element provides a description of the referenced EJB.

Developing WebL ogic Server Applications B-5

B diient Application Deployment Descriptor Elements

ejb-ref-name

ejb-ref-type

home

remote

ejb-link

resource-ref

description

The ej b- r ef - name element contains the name of the referenced EJB. Typically the
name is prefixed by ej b/, such asej b/ Deposi t.

Theej b-ref - t ype element contains the expected type of the referenced EJB, either
SessionoOrEntity.

The home element contains the fully-qualified name of the referenced EJB’ s home
interface.

Ther enot e element contains the fully-qualified name of the referenced EJB’ sremote
interface.

Theej b-1i nk element specifiesthat an EJB reference is linked to an enterprise
JavaBean in the J2EE application package. The value of the ej b- 1 i nk element must
be the name of the ej b- nanme of an EJB in the same J2EE application.

Ther esour ce-ref element containsadeclaration of the client application’ sreference
to an externa resource.

Optional. Thedescri pt i on element contains a description of the referenced external
resource.

B-6 Developing WebL ogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor

res-ref-name

res-type

res-auth

Ther es-r ef - name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the client application’s
environment entry whose value contains the INDI name of the data source.

Ther es-t ype element specifies the type of the data source. The type is specified by
the Javainterface or class expected to be implemented by the data source.

Ther es- aut h element specifies whether the EJB code signs on programmatically to
the resource manager, or whether the Container will sign on to the resource manager
on behalf of the EJB. In the latter case, the Container uses information that is supplied
by the Deployer. The res-auth element can have one of two values: Appl i cati on or
Cont ai ner.

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory asthe client application JAR file.

Thefile name for the deployment descriptor isthe base name of the JAR file, with the
extension . runt i me. xnl . For example, if the client application is packaged in afile
named c: / appl i cations/ d i ent Mai n. j ar, the run-time deployment descriptor is
inthefilenamed c: / appl i cati ons/ d i ent Mai n. runti me. xm .

Developing WebL ogic Server Applications B-7

B diient Application Deployment Descriptor Elements

Thefollowing diagram showsthe structure of the elementsin the run-time deployment
descriptor.

‘ application-client |

4{ env-entry ‘

4{ env-entry-name ‘

4{ env-entry-value ‘

4{ ejb-ref ‘

4{ ejb-ref-name ‘
4{ jndi-name ‘
4{ resource-ref ‘
4{ resource-ref-name ‘ ? = Optional
+ = One or more
4{ jndi-name ‘ * = Zero or more

application-client

Theappl i cation-client elementistheroot element of a WebL ogic-specific
run-time client deployment descriptor.
env-entry

Theenv-ent ry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name

Theenv- ent ry- name element contains the name of an application client's
environment entry.

Example:

B-8 Developing WebL ogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor

env-entry-value

ejb-ref

ejb-ref-name

jndi-name

resource-ref

<env-entry- nanme>Enpl oyeeAppDB</ env- ent ry- nane>

Theenv-entry-val ue element contains the value of an application client’s
environment entry. The value must be astring valid for the constructor of the specified
type that takes a single string parameter.

Theej b-ref element specifies the INDI name for a declared EJB referencein the
deployment descriptor.

Theej b-r ef - nane element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
nameis prefixed with ej b/ .

Example:

<ej b-ref - nanme>ej b/ Payr ol | </ ej b-r ef - nanme>

Thej ndi - name element specifies the INDI name for the EJB.

Theresource-ref element declares an application client’s reference to an external
resource. It contains the resource factory reference name, an indication of the resource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:
<resour ce-ref >
<r es-ref - name>Enpl oyeeAppDB</r es-r ef - name>

<j ndi - name>ent er pri se/ dat abases/ HR1984</ j ndi - nanme>
</resource-ref>

Developing WebL ogic Server Applications B-9

B diient Application Deployment Descriptor Elements

resource-ref-name

Ther es-ref - name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the JINDI name of the data source.

jndi-name

Thej ndi - name element specifies the INDI name for the resource.

B-10 Developing WebL ogic Server Applications

Index

Symbols
.ear file 1-8, 2-14, 2-15
Jar file 2-15
rar file 1-8, 2-16
modifying an existing 2-18
war file 1-3

A

Administration Console

creating aMail Session 6-4

editing deployment descriptors 3-6
application components 1-2
application element A-3, A-6
application.xml file

application element A-3, A-6

deployment descriptor elements A-1

description element A-3, A-5

display-name element A-3

gb element A-4

icon element A-3

javaelement A-4

large-icon element A-3

module element A-4

role-name element A-5

security-role A-5

small-icon element A-3

web element A-5
application-client element B-4, B-8
application-client.xml

application-client element B-4

deployment descriptor elements B-1

description element B-4, B-5, B-6

display-name element B-4

gjb-link element B-6

gjb-ref element B-5

€jb-ref-name element B-6

€jb-ref-type element B-6

env-entry element B-5

env-entry-name B-5

env-entry-type element B-5

env-entry-value element B-5

home element B-6

icon element B-4

large-icon element B-4

remote element B-6

res-auth element B-7

resource-ref element B-6

res-ref-name element B-7

res-type element B-7

small-icon element B-4
applications 1-2

and threads 6-2
auto-deployment 2-26

enabling 2-27

B
BEA XML Editor 3-7

C

class references

Developing WebL ogic Server Applications

resolving between components 4-16
classes
resource adapter 4-16
classpath setting 2-24
client applications 1-2, 1-9
deployment descriptor B-7
deployment descriptor elements B-1
packaging and deploying 3-24
ClientMain.runtime.xml file
application-client element B-8
gjb-ref element B-9
gjb-ref-name element B-9
env-entry element B-8
env-entry-name B-8
env-entry-value element B-9
jndi-name element B-9, B-10
resource-ref element B-9
resource-ref-name element B-10
common utilities in packaging 4-16
compiled classes, setting target directories
for 2-25
compiling
putting the Javatoolsin your search path
2-22
setting target directories for compiled
classes 2-25
setting the classpath 2-24
components 1-2
Connector 1-2
connector 1-7
EJB 1-2, 1-5
Enterprise JavaBean 1-5
packaging 1-2
Web 1-2
Web application 1-3
WebL ogic Server 1-2
configuration
modifying an existing resource adapter
2-18
configuration files, JavaMail 6-4
connector components 1-2, 1-7

I -ii Developing WebL ogic Server Applications

connectors
developing, main steps 2-16
modifying existing 2-19
packaging 3-20
XML deployment descriptors 3-4
customer support contact information xi

D
database system 2-6
deploying
client applications 3-24
enterprise applications 2-21
Web applications 2-13, 2-15
deployment descriptors
application.xml elements A-1
automatically generating 3-5
client application elements B-1
editing connector 3-12
editing EJB 3-8
editing enterprise application 3-13
editing resource adapter 3-12
editing using the Administration
Console 3-6
editing Web application 3-10
WebL ogic run-time client application
B-7
description element A-3, A-5, B-4, B-5, B-6
developing
connectors, main steps 2-16
enterprise applications 2-16
Enterprise JavaBeans, main steps 2-14
establishing adevelopment environment
2-19
resource adapters, main steps 2-16
Web applications 2-12
development environment 2-19
development WebL ogic Server 2-5
software tools 2-2
third-party software 2-6
display-name element A-3, B-4

documentation, whereto find it x

E
editing
connector deployment descriptors 3-12
deployment descriptors 3-6
EJB deployment descriptors 3-8
enterprise application deployment
descriptors 3-13
resource adapter deployment descriptors
312
Web application deployment descriptors
3-10
EJB components 1-2
gjb element A-4
gjb-link element B-6
gjb-ref element B-5, B-9
€jb-ref-name element B-6, B-9
gjb-ref-type element B-6
EJBs1-5
and WebL ogic Server 1-7
compiling Java code 2-14, 2-16
deployment descriptor 1-7, 2-14, 2-16
developing 2-14
interfaces 1-6
overview 1-5
packaging 2-15, 3-17
XML deployment descriptors 3-4
enterprise applications 1-2, 1-8
archives A-1
deploying 2-21
deployment descriptor 2-20
developing, main steps 2-16
packaging 2-20, 2-21, 3-21
Enterprise JavaBeans 1-5
and WebL ogic Server 1-7
compiling Java code 2-14, 2-16
deployment descriptor 1-7
deployment descriptors 2-14, 2-16
developing 2-14

interfaces 1-6

overview 1-5

packaging 2-15, 3-17

XML deployment descriptors 3-4
entity beans 1-6
env-entry element B-5, B-8
env-entry-name element B-5, B-8
env-entry-type element B-5
env-entry-value element B-5, B-9

G

generating deployment descriptors
automatically 3-5

H

home element B-6
home interfaces 1-6

I

icon element A-3, B-4
IDE 2-2

implementation classes 1-6

J

JAR files 1-2
JAR utility 1-2
Java 2 Platform, Enterprise Edition (J2EE)
about 1-3
Java compiler 2-25
javaelement A-4
Javatools
putting in your search path 2-22
JavaMail
API version 1.1.3 6-3
configuration files 6-4
configuring for WebL ogic Server 6-4
reading messages 6-8
sending messages 6-6

Developing WebL ogic Server Applications I-iii

using with WebL ogic Server
applications 6-3
JavaServer pages 1-4
javax.mail package 6-4
JDBC driver 2-6
jndi-name element B-9, B-10

L
large-icon element A-3, B-4
logging messages 6-2

M
Mail Session

creating in the Console 6-4
message-driven beans 1-6
modifying

existing .rar file 2-19

existing resource adapter 2-19
module element A-4
multithreaded components 6-2

P

packaging
automatically generating deployment
descriptors 3-5
client applications 3-24
connectors 3-20
enterprise application 2-21
enterprise applications 2-20, 3-21
Enterprise JavaBeans 2-15, 3-17
resolving class references between
components 4-16
resource adapters 3-20
Web applications 2-13, 3-16
printing product documentation x
programming
JavaMail configuration files 6-4
logging messages 6-2

I-iv Developing WebL ogic Server Applications

reading messages with JavaMail 6-8

sending messages with JavaMail 6-6

topics 6-1

using JavaMail with WebL ogic Server
applications 6-3

R

remote element B-6
remote interfaces 1-6
res-auth element B-7
resource adapters 1-2, 1-7
classes 4-16
developing, main steps 2-16
modifying an existing 2-18
modifying existing 2-19
packaging 3-20
XML deployment descriptors 3-4
resource-ref element B-6, B-9
resource-ref-name element B-10
res-ref-name element B-7
res-type element B-7
role-name element A-5
run-time deployment descriptor B-8

S

search path 2-22
security-role element A-5
serviets 1-4
compiling into class files 2-12
session beans 1-5
small-icon element A-3, B-4
software tools
database system 2-6
development WebL ogic Server 2-5
IDE 2-2
JDBC driver 2-6
source code editor 2-2
Web browser 2-6
source code editor 2-2

Sun Microsystems 1-3
support
technical xii

T
target directories setting 2-25
third-party software 2-6
threads
and applications 6-2
avoiding undesirable interactions with
WebL ogic Server threads 6-3
multithreaded components 6-2
testing multithreaded code 6-3
using in WebL ogic Server 6-2

w

Web application components 1-3
directory structure 1-4
JavaServer pages 1-4
serviets 1-4

Web applications 1-2
compiling servletsinto classfiles 2-12
creating HTML pages and JSPs 2-12
deploying 2-13, 2-15
main steps for developing 2-12
packaging 2-13, 3-16
XML deployment descriptors 3-4

Web archive 1-3

Web browser 2-6

Web components 1-2

web element A-5

WebL ogic run-time client application
deployment descriptor B-7

WebL ogic Server
configuring JavaMail for 6-4
development server 2-5

editing deployment descriptorsusing the

Console 3-6
EJBs 1-7

using threads in 6-2

WebL ogic Server application
components 1-2

WebL ogic Server applications 1-2

establishing a devel oping environment

2-19
programming topics 6-1
using JavaMail with 6-3

X
XML ,editing 3-7

Developing WebL ogic Server Applications

I-v

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server Applications
	What Are WebLogic Server J2EE Applications and Components?
	J2EE Platform
	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	More Information on Web Application Components

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	Connector Component
	Enterprise Applications
	WebLogic Web Services
	Client Applications
	Naming Conventions

	2 Developing WebLogic Server Applications
	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	XML Editor
	appc Compiler
	appc Syntax
	appc Options
	appc Ant Task

	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software
	Application Lifecycle Events
	Basic Functionality
	Listing 2-1 MyListener
	Listing 2-2 MyShutdown
	Listing 2-3 MyStartup

	Configuring Lifecycle Events: URI Parameter
	Listing 2-4 Configuring Application Lifecycle Events without URI Parameter
	Listing 2-5 Configuring Application Lifecycle Events without URI Parameter

	Creating Web Applications: Main Steps
	1. Create the HTML pages and JavaServer Pages (JSPs) that make up the Web interface of the Web ap...
	2. Write the Java code for the servlets and the JSP taglibs referenced in JSPs. Typically, Java p...
	3. Compile the servlets into class files.
	4. Arrange the resources (servlets, JSPs, static files, and deployment descriptors) in the prescr...
	5. Create the web.xml and weblogic.xml deployment descriptors.
	6. Package the HTML pages, servlet class files, JSP files, web.xml file, and weblogic.xml file in...
	7. Auto-deploy the WAR file on WebLogic Server for testing purposes.
	8. Deploy the WAR file on the WebLogic Server for production use or include it in an Enterprise A...

	Creating Enterprise JavaBeans: Main Steps
	1. Write the Java code for the various classes required by each type of EJB (session, entity, or ...
	2. Compile the Java code using a standard compiler for the interfaces and implementation into cla...
	3. Create the EJB-specific deployment descriptors:
	4. Package the class files and deployment descriptors into a JAR file.
	5. Auto-deploy the EJB JAR file on WebLogic Server for testing purposes.
	6. Deploy the JAR file on WebLogic Server for production use or include it in an Enterprise ARchi...

	Creating Resource Adapters: Main Steps
	Creating a New Resource Adapter (RAR)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code using a standard compiler for the interfaces and implementation into cla...
	3. Create the resource connector-specific deployment descriptors:
	4. Package the Java classes into a Java archive (JAR) file.
	5. Auto-deploy the RAR resource adapter archive file on WebLogic Server for testing purposes.
	6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in an enterprise...

	Modifying an Existing Resource Adapter (RAR)
	1. Create a temporary directory anywhere on your hard drive to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter to WebLogic Server.

	Creating WebLogic Server Enterprise Applications: Main Steps
	1. Create Web, EJB, and Connector components for your application.
	2. Create Web, EJB, and Connector deployment descriptors.
	3. Package the Web, EJB, and Connector components into their component archive files.
	4. Create the enterprise application deployment descriptor.
	5. Package the enterprise application into an EAR file.
	6. For testing purposes, auto-deploy the EAR enterprise application on WebLogic Server.
	7. For production purposes, deploy the EAR file on WebLogic Server.
	Figure 2�1 Creating Enterprise Applications

	Compiling Java Code
	Creating Compile Scripts Using Apache Ant
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling Code
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	Auto-Deployment for Development Enviroments
	Enabling and Disabling Auto-Deployment
	Auto-Deploying Applications
	Stopping and Redeploying Archived Applications
	Redeploying Applications in Exploded Format
	1. When you first deploy the exploded application, create an empty file named REDEPLOY, and place...
	2. To update the exploded application, copy the updated files over the existing files in that dir...
	3. After copying the new files, modify the REDEPLOY file in the exploded directory to alter its t...

	3 WebLogic Server Application Packaging
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 3�1 J2EE and WebLogic Deployment Descriptors
	Automatically Generating Deployment Descriptors
	Editing Deployment Descriptors
	Using the BEA XML Editor
	About EJBGen
	Using the Administration Console Deployment Descriptor Editor
	Editing EJB Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the EJB node under the Deployments node.
	4. Right-click the name of the EJB whose deployment descriptors you want to edit and choose Edit ...
	5. To edit, delete, or add elements in the EJB deployment descriptors, click to expand the node i...
	6. To edit an existing element in one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the EJB deployment descriptors, click the root element of th...
	10. Click Validate if you want to ensure that the entries in the EJB deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Web Application Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Web Applications node under the Deployments node.
	4. Right-click the name of the Web application whose deployment descriptors you want to edit and ...
	5. To edit, delete, or add elements in the Web application deployment descriptors, click to expan...
	6. To edit an existing element in one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and choose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the Web application deployment descriptors, click the root e...
	10. Click Validate to ensure that the entries in the Web application deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Resource Adapter Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Connectors node under the Deployments node.
	4. Right-click the name of the resource adapter whose deployment descriptors you want to edit and...
	5. To edit, delete, or add elements in the resource adapter deployment descriptors, click to expa...
	6. To edit an existing element in one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the resource adapter deployment descriptors, click the root ...
	10. Click Validate to ensure that the entries in the resource adapter deployment descriptors are ...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Enterprise Application Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Applications node under the Deployments node.
	4. Right-click the name of the Enterprise Application whose deployment descriptor you want to edi...
	5. To edit an existing element in the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	6. To add a new element to the application.xml deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and choose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	7. To delete an existing element from the application.xml deployment descriptor:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	8. Once you make all your changes to the application.xml deployment descriptor, click the root el...
	9. Click Validate if you want to ensure that the entries in the application.xml deployment descri...
	10. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Packaging Web Applications
	1. Create a temporary staging directory anywhere on your hard drive. You can name this directory ...
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Set up your shell environment.
	8. Execute the following command to automatically generate the web.xml and weblogic.xml deploymen...
	9. Bundle the staging directory into a WAR file by executing a jar command such as:
	Packaging Enterprise JavaBeans
	Staging and Packaging EJBs
	1. Create a temporary staging directory anywhere on your hard drive (for example, c:\stagedir).
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. If you are using EJB 1.1, e the following command to automatically generate the ejb-jar.xml, w...
	6. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Using ejb-client.jar

	Packaging Resource Adapters
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Compile or copy the resource adapter Java classes into the staging directory.
	3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the ...
	4. Create a META-INF subdirectory in the staging directory.
	5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	7. When the resource adapter classes and deployment descriptors are set up in the staging directo...
	Packaging Enterprise Applications
	Enterprise Applications Deployment Descriptor Files
	Packaging Enterprise Applications: Main Steps
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Copy the Web archives (WAR files) and EJB archives (JAR files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the application.xml deployment descrip...
	6. Optionally create the weblogic-application.xml file manually in the META-INF directory, as des...
	7. Create the Enterprise Archive (EAR file) for the application, using a jar command such as:

	Packaging Client Applications
	Executing a Client Application in an EAR File
	Special Considerations for Deploying J2EE Client Applications

	Packaging J2EE Applications Using Apache Ant
	Packaging J2EE Deployment Units
	Listing 3-1 WAR Task Example
	1. Specify the standard XML deployment descriptor using the webxml parameter.
	2. The war task automatically maps XML deployment descriptor to the standard name in the WAR arch...
	3. Apache Ant stores the manifest file, specified using the manifest parameter, under the standar...
	4. Use the Apache Ant ZipFileSet command to define a set of files (in this case, just the WebLogi...
	5. Use a second ZipFileSet command to package all the images in an images directory.
	6. The classes tag packages servlet classes in the WEB-INF/classes directory.
	7. Finally, add all the .jsp and .html files from the current directory to the archive.

	Listing 3-2 Packaging Example
	<project name="app" default="app.ear">
	<property name="wlhome" value="/bea/wlserver6.1"/>
	<property name="srcdir" value="/bea/myproject/src"/>
	<property name="appdir" value="/bea/myproject/config/mydomain/applications"/>
	<target name="timer.war">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>
	<war warfile="timer.war" webxml="timer/web.xml" manifest="timer/manifest.txt">
	<classes dir="classes" includes="**/TimerServlet.class"/>
	</war>
	</target>
	<target name="trader.jar">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>
	<jar jarfile="trader0.jar" manifest="trader/manifest.txt">
	<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>
	<fileset dir="classes" includes="**/Trade*.class"/>
	</jar>
	<ejbc source="trader0.jar" target="trader.jar"/>
	</target>
	<target name="app.ear" depends="trader.jar, timer.war">
	<jar jarfile="app.ear">
	<zipfileset dir="." prefix="META-INF" includes="application.xml"/>
	<fileset dir="." includes="trader.jar, timer.war"/>
	</jar>
	</target>
	<target name="deploy" depends="app.ear">
	<copy file="app.ear" todir="${appdir}/>
	</target>
	</project>

	Running Ant

	4 WebLogic Server Application Classloading
	Java Classloader Overview
	Java Classloader Hierarchy
	Loading a Class
	PreferWebInfClasses Element
	Listing 4-1 PreferWebInfClasses Element

	Changing Classes in a Running Program
	WebLogic Server Application Classloader Overview
	Application Classloading
	Application Classloader Hierarchy
	Figure 4�1 WebLogic Server Classloading

	Custom Module Classloader Hierarchies
	Figure 4�2 Standard Classloader Hierarchy
	Declaring the Classloader Hierarchy
	Listing 4-2 Declaring the Classloader Hierarchy
	Listing 4-3 Example Classloader Declaration
	Figure 4�3 Example Classloader Hierarchy

	User-defined Classloader Restrictions
	Servlet Reloading Disabled
	Nesting Depth
	Module Types
	Duplicate Entries
	Interfaces
	Call-by-value Semantics
	In-flight Work
	Development Use Only

	Individual EJB Classloader for Implementation Classes
	Figure 4�4 Example Classloader Hierarchy for a Single EJB Module
	Listing 4-4
	Listing 4-5

	Application Classloading and Pass by Value or Reference

	Resolving Class References Between Components and Applications
	About Resource Adapter Classes
	Packaging Shared Utility Classes
	Manifest Class-Path

	5 Programming Topics
	Logging Messages
	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	Programming Applications for WebLogic Server Clusters

	A Application Deployment Descriptor Elements
	application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	alt-dd
	connector
	ejb
	java
	web
	web-uri
	context-root

	security-role
	description
	role-name

	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	entity-cache
	entity-cache-name
	max-beans-in-cache
	max-cache-size
	read-timeout-seconds
	caching-strategy

	start-mdbs-with-application

	xml
	parser-factory
	saxparser-factory
	document-builder-factory
	transformer-factory

	entity-mapping
	entity-mapping-name
	public-id
	system-id
	entity-uri
	when-to-cache
	cache-timeout-interval
	security

	jdbc-connection-pool
	data-source-name
	connection-factory
	factory-name
	connection-properties

	pool-params
	size-params
	xa-params
	login-delay-seconds
	leak-profiling-enabled
	connection-check-params

	driver-params
	statement
	prepared-statement
	row-prefetch-enabled
	row-prefetch-size
	stream-chunk-size

	acl-name

	application-param
	classloader-structure
	module-ref
	module-uri

	classloader-structure

	listener
	listener-class
	listener-uri

	startup
	startup-class
	startup-uri

	shutdown
	shutdown-class
	shutdown-uri

	B Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client
	icon
	small-icon
	large-icon

	display-name
	description
	env-entry
	description
	env-entry-name
	env-entry-type
	env-entry-value

	ejb-ref
	description
	ejb-ref-name
	ejb-ref-type
	home
	remote
	ejb-link

	resource-ref
	description
	res-ref-name
	res-type
	res-auth

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry
	env-entry-name
	env-entry-value

	ejb-ref
	ejb-ref-name
	jndi-name

	resource-ref
	resource-ref-name
	jndi-name

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	W
	X

