
BEA
 WebLogic
Server™

Developing WebLogic
Server Applications
Release 8.1
Document Revised: October 29, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Developing WebLogic Server Applications

Part Number Document Revised Software Version

N/A October 29, 2002 BEA WebLogic Server
Version 8.1

Contents

About This Document
Audience..x

e-docs Web Site...x

How to Print the Document...x

Related Information... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. Understanding WebLogic Server Applications
What Are WebLogic Server J2EE Applications and Components? 1-2

J2EE Platform.. 1-3

Web Application Components .. 1-3

Servlets ... 1-4

JavaServer Pages .. 1-4

Web Application Directory Structure .. 1-4

More Information on Web Application Components 1-5

Enterprise JavaBean Components ... 1-5

EJB Overview .. 1-5

EJB Interfaces .. 1-6

EJBs and WebLogic Server.. 1-7

Connector Component... 1-7

Enterprise Applications ... 1-8

WebLogic Web Services ... 1-8

Client Applications.. 1-9

Naming Conventions ... 1-10
Developing WebLogic Server Applications iii

2. Developing WebLogic Server Applications
Establishing a Development Environment .. 2-2

Software Tools.. 2-2

Source Code Editor or IDE ... 2-2

XML Editor ... 2-2

appc Compiler ... 2-3

Development WebLogic Server .. 2-5

Database System and JDBC Driver .. 2-6

Web Browser... 2-6

Third-Party Software .. 2-6

Application Lifecycle Events .. 2-7

Basic Functionality... 2-8

Configuring Lifecycle Events: URI Parameter .. 2-10

Creating Web Applications: Main Steps ... 2-12

Creating Enterprise JavaBeans: Main Steps .. 2-14

Creating Resource Adapters: Main Steps .. 2-16

Creating a New Resource Adapter (RAR) ... 2-16

Modifying an Existing Resource Adapter (RAR) 2-18

Creating WebLogic Server Enterprise Applications: Main Steps 2-19

Compiling Java Code... 2-22

Creating Compile Scripts Using Apache Ant... 2-23

Putting the Java Tools in Your Search Path ... 2-24

Setting the Classpath for Compiling Code ... 2-24

Setting Target Directories for Compiled Classes 2-25

Auto-Deployment for Development Enviroments .. 2-26

Enabling and Disabling Auto-Deployment .. 2-27

Auto-Deploying Applications .. 2-28

Stopping and Redeploying Archived Applications 2-28

Redeploying Applications in Exploded Format 2-28

3. WebLogic Server Application Packaging
Packaging Overview.. 3-2

JAR Files ... 3-2

XML Deployment Descriptors .. 3-4

Automatically Generating Deployment Descriptors 3-5
iv Developing WebLogic Server Applications

Editing Deployment Descriptors.. 3-6

Using the BEA XML Editor ... 3-7

About EJBGen .. 3-7

Using the Administration Console Deployment Descriptor Editor 3-7

Editing EJB Deployment Descriptors ... 3-8

Editing Web Application Deployment Descriptors 3-10

Editing Resource Adapter Deployment Descriptors 3-12

Editing Enterprise Application Deployment Descriptors 3-13

Packaging Web Applications .. 3-16

Packaging Enterprise JavaBeans ... 3-17

Staging and Packaging EJBs .. 3-17

Using ejb-client.jar ... 3-19

Packaging Resource Adapters ... 3-20

Packaging Enterprise Applications.. 3-21

Enterprise Applications Deployment Descriptor Files............................. 3-21

Packaging Enterprise Applications: Main Steps 3-22

Packaging Client Applications .. 3-24

Executing a Client Application in an EAR File 3-24

Special Considerations for Deploying J2EE Client Applications 3-25

Packaging J2EE Applications Using Apache Ant... 3-27

Packaging J2EE Deployment Units ... 3-27

Running Ant ... 3-30

4. WebLogic Server Application Classloading
Java Classloader Overview.. 4-2

Java Classloader Hierarchy .. 4-2

Loading a Class .. 4-3

PreferWebInfClasses Element.. 4-3

Changing Classes in a Running Program... 4-4

WebLogic Server Application Classloader Overview 4-4

Application Classloading ... 4-5

Application Classloader Hierarchy .. 4-6

Custom Module Classloader Hierarchies... 4-7

Declaring the Classloader Hierarchy .. 4-8

User-defined Classloader Restrictions .. 4-11
Developing WebLogic Server Applications v

Individual EJB Classloader for Implementation Classes 4-13

Application Classloading and Pass by Value or Reference...................... 4-15

Resolving Class References Between Components and Applications 4-16

About Resource Adapter Classes ... 4-16

Packaging Shared Utility Classes... 4-16

Manifest Class-Path.. 4-17

5. Programming Topics
Logging Messages ... 6-2

Using Threads in WebLogic Server .. 6-2

Using JavaMail with WebLogic Server Applications 6-3

About JavaMail Configuration Files .. 6-4

Configuring JavaMail for WebLogic Server.. 6-4

Sending Messages with JavaMail... 6-6

Reading Messages with JavaMail .. 6-8

Programming Applications for WebLogic Server Clusters............................... 6-9

A. Application Deployment Descriptor Elements
application.xml Deployment Descriptor Elements... A-1

application .. A-3

icon .. A-3

small-icon ... A-3

large-icon.. A-3

display-name.. A-3

description ... A-3

module ... A-4

alt-dd... A-4

connector .. A-4

ejb ... A-4

java ... A-4

web ... A-5

security-role... A-5

description .. A-5

role-name.. A-5

weblogic-application.xml Deployment Descriptor Elements........................... A-6
vi Developing WebLogic Server Applications

weblogic-application .. A-6

ejb .. A-7

entity-cache .. A-7

start-mdbs-with-application ... A-9

xml... A-9

parser-factory ... A-9

entity-mapping ... A-10

jdbc-connection-pool... A-11

data-source-name ... A-11

connection-factory ... A-12

pool-params.. A-12

driver-params ... A-16

acl-name ... A-17

application-param.. A-18

classloader-structure.. A-18

module-ref .. A-18

classloader-structure... A-19

listener ... A-19

listener-class... A-19

listener-uri .. A-19

startup .. A-19

startup-class.. A-19

startup-uri ... A-20

shutdown ... A-20

shutdown-class ... A-20

shutdown-uri .. A-20

B. Client Application Deployment Descriptor Elements
application-client.xml Deployment Descriptor ElementsB-2

application-client ..B-4

icon..B-4

display-name ...B-4

description...B-4

env-entry ...B-5

ejb-ref ..B-5
Developing WebLogic Server Applications vii

resource-ref... B-6

WebLogic Run-time Client Application Deployment Descriptor B-7

application-client ... B-8

env-entry... B-8

ejb-ref ... B-9

resource-ref... B-9
viii Developing WebLogic Server Applications

About This Document

This document introduces the BEA WebLogic Server™ application development
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebLogic Server platform.

The document is organized as follows:

! Chapter 1, “Understanding WebLogic Server Applications,” describes
components of WebLogic Server applications.

! Chapter 2, “Developing WebLogic Server Applications,” outlines high-level
procedures for creating WebLogic Server applications and helps Java
programmers establish their programming environment.

! Chapter 3, “WebLogic Server Application Packaging,” provides procedures for
packaging WebLogic Server applications.

! Chapter 4, “WebLogic Server Application Classloading,” provides an overview
of Java classloaders, followed by details about WebLogic Server application
classloading.

! Chapter 5, “Programming Topics,” covers general WebLogic Server application
programming issues, such as logging messages and using threads.

! Appendix A, “Application Deployment Descriptor Elements,” is a reference for
the standard J2EE Enterprise application deployment descriptor,
application.xml and the WebLogic-specific application deployment
descriptor weblogic-application.xml.

! Appendix B, “Client Application Deployment Descriptor Elements,” is a
reference for the standard J2EE Client application deployment descriptor,
application-client.xml, and the WebLogic-specific client application
deployment descriptor.
Developing WebLogic Server Applications ix

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
x Developing WebLogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following WebLogic Server documents contain information that is relevant to creating
WebLogic Server application components:

! Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html

! Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html

! Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html

! Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81b/webapp/index.html

! Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

! Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81b/webServices/index.html

! Programming WebLogic J2EE Connectors at
http://e-docs.bea.com/wls/docs81b/jconnector/index.html

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.
Developing WebLogic Server Applications xi

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html
http://e-docs.bea.com/wls/docs81b/webServices/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
xii Developing WebLogic Server Applications

http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.Deployer [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

Convention Usage
Developing WebLogic Server Applications xiii

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
xiv Developing WebLogic Server Applications

CHAPTER
1 Understanding
WebLogic Server
Applications

The following sections provide an overview of WebLogic Server J2EE applications
and application components:

! “What Are WebLogic Server J2EE Applications and Components?” on page 1-2

! “J2EE Platform” on page 1-3

! “Web Application Components” on page 1-3

! “Enterprise JavaBean Components” on page 1-5

! “Connector Component” on page 1-7

! “Enterprise Applications” on page 1-8

! “WebLogic Web Services” on page 1-8

! “Client Applications” on page 1-9

! “Naming Conventions”
Developing WebLogic Server Applications 1-1

1 Understanding WebLogic Server Applications
What Are WebLogic Server J2EE
Applications and Components?

A BEA WebLogic Server™ J2EE application consists of one of the following
components running on WebLogic Server:

! Web components—HTML pages, servlets, JavaServer Pages, and related files

! Enterprise Java Beans (EJB) components—entity beans, session beans, and
message-driven beans

! Connector component—resource adapters

Components are packaged in Java ARchive (JAR) files—archives created with the
Java jar utility. JAR files bundle all component files in a directory into a single file,
maintaining the directory structure. JAR files also include XML descriptors that
instruct WebLogic Server how to deploy the components.

Web applications are packaged in a JAR file with a .war extension. Enterprise beans,
WebLogic components, and client applications are packaged in JAR files with .jar

extensions. Resource adapters are packaged in a JAR file with a .rar extension.

An enterprise application, consisting of assembled Web application components, EJB
components, and resource adapters, is a JAR file with an .ear extension. An EAR file
contains all of the JAR, WAR, and RAR component archive files for an application
and an XML descriptor that describes the bundled components.

To deploy a component, an application, or a resource adapter, you use the
Administration Console or the weblogic.Deployer command-line utility to upload
JAR files to the target WebLogic Server instances.

Client applications that are not Web browsers are Java classes that connect to
WebLogic Server using Remote Method Invocation (RMI). A Java client can remotely
access Enterprise JavaBeans, JDBC connections, JMS messaging, and other services
using access methods such as RMI.
1-2 Developing WebLogic Server Applications

J2EE Platform
J2EE Platform

WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.3
technologies (http://java.sun.com/j2ee/sdk_1.3/index.html). J2EE is the
standard platform for developing multitier enterprise applications based on the Java
programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

J2EE applications are based on standardized, modular components. WebLogic Server
provides a complete set of services for those components and handles many details of
application behavior automatically, without requiring programming.

Note: Because J2EE is backward compatible, you can still run J2EE 1.2 on
WebLogic Server 7.0.

Web Application Components

A Web archive (WAR) file has a .war extension and contains the components that
make up a Web application. A WAR file is deployed as a unit on one or more
WebLogic Servers.

A Web application on WebLogic Server includes the following files:

! At least one servlet or JSP, along with any helper classes.

! A web.xml deployment descriptor, a J2EE standard XML document that
describes the contents of a WAR file.

! A weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web application might also include HTML and XML pages with supporting files
such as images and multimedia files.
Developing WebLogic Server Applications 1-3

1 Understanding WebLogic Server Applications
Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, called
taglibs, using HTML-like tags. The WebLogic JSP compiler, weblogic.jspc,
translates JSPs into servlets. WebLogic Server automatically compiles JSPs if the
servlet class file is not present or is older than the JSP source file.

You can also precompile JSPs and package the servlet class in a Web archive (WAR)
file to avoid compiling in the server. Servlets and JSPs may require additional helper
classes that must also be deployed with the Web application.

Web Application Directory Structure

You assemble Web application components in a directory, then package them into a
WAR file with the jar command.

HTML pages, JSPs, and the non-Java class files they reference are accessed beginning
in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a WEB-INF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSPs.

The entire directory, once staged, is bundled into a WAR file using the jar command.
You can deploy the WAR file alone or packaged in an Enterprise Archive (EAR file)
with other application components, including other Web Applications, EJB
components, and WebLogic Server components.
1-4 Developing WebLogic Server Applications

Enterprise JavaBean Components
See Directory Structure at
http://e-docs.bea.com/wls/docs81b/webapp/basics.html#136976 for detailed
information on the Web application directory structure.

More Information on Web Application Components

For more information about creating Web application components, see these
documents:

! Programming WebLogic Server HTTP Servlets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html

! Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html

! Programming JSP Tag Extensions at
http://e-docs.bea.com/wls/docs81b/taglib/index.html

! Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81b/webapp/index.html

Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components that implement a
business task or entity and are written according to the EJB specification. There are
three types of enterprise beans: session beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of a single client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.
Developing WebLogic Server Applications 1-5

http://e-docs.bea.com/wls/docs81b/webapp/basics.html#136976
http://e-docs.bea.com/wls/docs81b/webapp/basics.html#136976
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/taglib/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html

1 Understanding WebLogic Server Applications
Entity beans represent business objects in a data store, usually a relational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

A message-driven bean is an enterprise bean that runs in the EJB container and handles
asynchronous messages from a JMS Queue. When a message is received in the JMS
Queue, the message-driven bean assigns an instance of itself from a pool to process the
message. Message-driven beans are not associated with any client. They simply handle
messages as they arrive. A JMS ServerSessionPool provides a similar capability but
does not run in the EJB container.

Enterprise beans are bundled into a JAR file with a .jar extension that contains their
compiled classes and XML deployment descriptors.

EJB Interfaces

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean developer. (Message-driven beans do not
require home or remote interfaces, because they are not accessible outside of the EJB
container.)

The remote interface defines the methods a client can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accesses instances of an enterprise bean through the bean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply a JAR
file containing just the compiled EJB interfaces and classes and a deployment
descriptor.
1-6 Developing WebLogic Server Applications

Connector Component
EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebLogic Server requires running the WebLogic EJB
compiler, weblogic.appc, to generate classes that enforce the EJB security,
transaction, and life cycle policies.

The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise
beans packaged in an EJB JAR file. It defines the beans’ types, names, and the names
of their home and remote interfaces and implementation classes. The ejb-jar.xml
deployment descriptor defines security roles for the beans, and transactional behaviors
for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment
information. A weblogic-cmp-rdbms-jar.xml deployment descriptor for
container-managed entity beans maps a bean to tables in a database. The
weblogic-ejb-jar.xml deployment descriptor supplies additional information
specific to the WebLogic Server environment, such as clustering and cache
configuration.

For help creating and deploying EJBs, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs81b/ejb/index.html.

Connector Component

The WebLogic Server J2EE Connector architecture enables both Enterprise
Information Systems (EIS) vendors and third-party application developers to develop
resource adapters that can be deployed in any application server supporting the J2EE
1.3 specification from Sun Microsystems. Resource adapters contain the Java, and if
necessary, the native components required to interact with the EIS.

A resource adapter deployed in the WebLogic Server environment enables J2EE
applications to access a remote EIS system. Developers of WebLogic Server
applications can use HTTP servlets, JavaServer Pages (JSPs), Enterprise Java Beans
(EJBs), and other APIs to develop integrated applications that use the data and
business logic of the EIS.
Developing WebLogic Server Applications 1-7

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

1 Understanding WebLogic Server Applications
As is, the basic Resource ARchive (RAR File) or deployment directory cannot be
deployed to WebLogic Server. You must first create and configure WebLogic
Server-specific deployment properties in the weblogic-ra.xml file, and add that file
to the deployment directory.

To configure and deploy resource adapters, see Programming WebLogic J2EE
Connectors at http://e-docs.bea.com/wls/docs81b/jconnector/index.html.

Enterprise Applications

An enterprise J2EE application contains Web and EJB components, deployment
descriptors, and archive files. These components are packaged in an Enterprise
Archive (EAR) file with an .ear extension.

The META-INF/application.xml deployment descriptor contains an entry for each
Web and EJB component, and additional entries to describe security roles and
application resources such as databases.

From the WebLogic Administration Server you use the Administration Console or the
weblogic.Deployer command line utility to deploy an EAR file on one or more
WebLogic Server instances in a domain.

WebLogic Web Services

Web services can be shared by and used as components of distributed Web-based
applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on. Web
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

A Web service consists of the following components:

! A Web service implementation hosted by a server on the Web.
1-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Client Applications
WebLogic Web services are hosted by WebLogic Server. They are implemented
using standard J2EE components (such as Enterprise Java Beans) and packaged
as standard J2EE Enterprise Applications.

! A standardized way to transmit data and Web service invocation calls between
the Web service and the user of the Web service.

WebLogic Web Services use Simple Object Access Protocol (SOAP) 1.1 as the
message format and HTTP as the connection protocol.

! A standard way to describe the Web service to clients so they can invoke it.

WebLogic Web Services use Web Services Description Language (WSDL) 1.1,
an XML-based specification, to describe themselves.

For information on designing, developing, and invoking WebLogic Web services, see
Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81b/webServices/index.html.

Client Applications

Java clients that access WebLogic Server components range from simple command
line utilities that use standard I/O to highly interactive GUI applications built using the
Java Swing/AWT classes. Java clients use WebLogic Server components indirectly
through HTTP requests or RMI requests. The components execute in WebLogic
Server, not in the client.

WebLogic Server supports a variety of Java clients, which vary in terms of protocol
support and the WebLogic Server classes required on the client.

In previous versions of WebLogic Server, a Java client required the full WebLogic
Server jar on the client machine. WebLogic Server 8.1 supports a true J2EE
Application Client, referred to as the thin client. Small footprint standard and JMS
jars—wlclient.jar and wljmsclient.jar respectively—are provided in the
/server/lib subdirectory of the WebLogic Server installation directory. Each jar is
about 400 KB.

A J2EE application client runs on a client machine and can provide a richer user
interface than can be provided by a markup language. Application clients directly
access enterprise beans running in the business tier, and may, as appropriate
Developing WebLogic Server Applications 1-9

http://e-docs.bea.com/wls/docs81b/webserv/index.html

1 Understanding WebLogic Server Applications
communicate via HTTP with servlets running in the Web tier. Although a J2EE
application client is a Java application, it differs from a stand-alone Java application
client because it is a J2EE component, hence it offers the advantages of portability to
other J2EE-compliant servers, and can access J2EE services. For more information
about the thin client, see “Developing a J2EE Application Client (Thin Client)” in
Programming WebLogic RMI over IIOP.

The application developer packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it is a good idea to
package a client-side application in a JAR file that can be added to the client’s
classpath along with the appropriate WebLogic jar file.

For more information about all client types supported by WebLogic Server, see
“Overview of RMI-IIOP Programming Models” in Programming WebLogic RMI over
IIOP.

Naming Conventions

WebLogic Server requires you to adhere to the following programmatic naming
conventions for WAR, EAR, JAR, and RAR archive files and exploded directories.

! Enterprise JavaBean JAR archived files must end with the .jar extension.

! Resource adapter RAR archived files must end with the .rar extension.

! Web application WAR archived files must end with the .war extension.

! Enterprise application EAR archived files must end with the .ear extension.

! Exploded non-archived versions of all of the above archived files must not end
with the .jar, .rar, .war, or .ear extensions respectively.
1-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/rmi_iiop/rmiiiop2.html#DevelopingThinClient
http://e-docs.bea.com/wls/docs81b/rmi_iiop/rmiiiop2.html#ProgrammingModels

CHAPTER
2 Developing WebLogic
Server Applications

The following sections describe the steps for creating different types of WebLogic
Server J2EE applications, setting up a development environment, and preparing to
compile Java programs.

! “Establishing a Development Environment” on page 2-2

! “Application Lifecycle Events” on page 2-7

! “Creating Web Applications: Main Steps” on page 2-12

! “Creating Enterprise JavaBeans: Main Steps” on page 2-14

! “Creating Resource Adapters: Main Steps” on page 2-16

! “Creating Resource Adapters: Main Steps” on page 2-16

! “Creating WebLogic Server Enterprise Applications: Main Steps” on page 2-19

! “Compiling Java Code” on page 2-22

! “Auto-Deployment for Development Enviroments” on page 2-26

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create components that implement
the business logic and presentation logic for the application. Application assemblers
assemble the components into applications ready to deploy on WebLogic Server.
Developing WebLogic Server Applications 2-1

2 Developing WebLogic Server Applications
Establishing a Development Environment

In preparation for developing WebLogic Server applications, you assemble the
required software tools and set up an environment for creating, compiling, deploying,
testing, and debugging your code.

Software Tools

This section reviews the software required to develop WebLogic Server applications
and describes optional tools for development and debugging.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML
pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor.

Java Interactive Development Environments (IDEs) such as WebGain VisualCafé
usually include a programmer’s editor with custom support for Java. An IDE may also
have support for creating and deploying servlets and Enterprise JavaBeans on
WebLogic Server, which makes it much easier to develop, test, and debug
applications.

You can edit HTML or XML pages and JavaServer Pages with a plain text editor, or
use a Web page editor such as DreamWeaver.

XML Editor

You use an XML editor to edit the XML files used by WebLogic Server, such as the
EJB and Web application deployment descriptors, the config.xml file, and so on.
WebLogic Server includes the following two XML editors:

! Deployment Descriptor Editor, part of the Administration Console

! BEA XML Editor, a stand-alone Java-based editor
2-2 Developing WebLogic Server Applications

Establishing a Development Environment
For detailed information about using these XML editors, see “Deployment Tools
Reference” in Deploying WebLogic Server Applications.

appc Compiler

The appc compiler compiles and generates EJBs and JSPs for deployment. It also
validates the descriptors for compliance with the current specifications at both the
individual module level and the application level. The application level checks include
checks between the application-level deployment descriptors and the individual
modules as well as validation checks across the modules.

The appc compiler reports any warnings or errors encountered in the descriptors.
Finally, the appc compiler compiles all of the relevant modules into an EAR file, which
can be deployed to WebLogic Server.

appc Syntax

Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or
directory>

appc Options

The following are the available appc options:

Option Description

-print Prints the standard usage message.

-version Prints jspc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

-lineNumbers Adds JSP line numbers to generated class files to aid in
debugging.
Developing WebLogic Server Applications 2-3

http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications
-basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.

-idl Generates IDL for EJB remote interfaces.

-idlOverwrite Always overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL generation.

-idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

-idlNoAbstractInte
rfaces

Does not generate abstract interfaces and methods/attributes
that contain them.

-idlFactories Generates factory methods for valuetypes.

-idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

-idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

-idlDirectory <dir> Specifies the directory where IDL files will be created (default
: target directory or JAR)

-idlMethodSignature
s <>

Specifies the method signatures used to trigger IDL code
generation.

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory
<dir>

Specifies the directory where IIOP stub files will be written
(default : target directory or JAR)

-keepgenerated Keeps the generated .java files.

-compiler <javac> Selects the Java compiler to use.

-g Compiles debugging information into a class file.

-O Compiles with optimization on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

-deprecation Warns about deprecated calls.
2-4 Developing WebLogic Server Applications

Establishing a Development Environment
appc Ant Task

You can use the following Ant task to invoke the appc compiler:

<taskdef name="appc"
classname="weblogic.ant.taskdefs.j2ee.Appc"/>

Development WebLogic Server

Never deploy untested code on a WebLogic Server that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server
development location elsewhere on the network.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebLogic Server on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler
needs access to the weblogic.jar file and other JAR files in the distribution
directory. Installing WebLogic Server on your development computer makes these
files available locally.

-normi Passes flags through to Symantec's sj.

-J<option> Passes flags through to Java runtime.

-classpath <path> Selects the classpath to use during compilation.

-advanced Prints advanced usage options.
Developing WebLogic Server Applications 2-5

2 Developing WebLogic Server Applications
Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as
WebLogic Java Message Service (JMS) require a supported JDBC driver for Oracle,
Sybase, Informix, Microsoft SQL Server, IBM DB2, or PointBase. Refer to Platform
Support to find out about supported database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantages that you should
only rarely consider writing an application that uses a two-tier JDBC driver directly.
On a WebLogic Server cluster, be sure to set up a multipool, which provides load
balancing over JDBC connection pools on multiple servers in the cluster.

Web Browser

Most J2EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settings in the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in
various browsers. One solution is to require users to install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

You can use third-party software products, such as WebGain Studio, WebGain
StructureBuilder, and BEA WebLogic Integration Kit for VisualAge for Java, to
enhance your WebLogic Server development environment.

For more information, see BEA WebLogic Developer Tools Resources, which provides
developer tools information for products that support the BEA application servers.
2-6 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/certifications/certifications/index.html
http://e-docs.bea.com/wls/certifications/certifications/index.html
http://www.bea.com/products/weblogic/tools.shtml

Application Lifecycle Events
To download some of these tools, see BEA WebLogic Server Downloads at
http://commerce.bea.com/downloads/weblogic_server_tools.jsp.

Note: Check with the software vendor to verify software compatibility with your
platform and WebLogic Server version.

Application Lifecycle Events

Application lifecycle listener events provide handles on which developers can control
behavior during deployment, undeployment, and redeployment. This section discusses
how you can use the application lifecycle listener events.

Four application lifecycle events are provided with WebLogic Server:

! Prestart—the beginning of the prepare phase. You can use the prestart event to
establish a connection pool.

! Poststart—the end of the activate phase; the application is deployed.

! Prestop—the beginning of the deactivate phase. You can use the prestop event to
disconnect from the database.

! Poststop—the end of the remove phase.

User-defined listeners can be:

! Listeners—attachable to any event. Possible methods for Listeners are:

" public void preStart(ApplicationLifecycleEvent evt) {}

" public void postStart(ApplicationLifecycleEvent evt) {}

" public void preStop(ApplicationLifecycleEvent evt) {}

" public void postStop(ApplicationLifecycleEvent evt) {}

! Startup—attachable to prestart and poststart events.

! Shutdown—attachable to prestop and poststop events.

Note: For Startup and Shutdown classes, you only implement a main{} method. If
you implement any of the methods provided for Listeners, they are ignored.
Developing WebLogic Server Applications 2-7

http://commerce.bea.com/downloads/weblogic_server_tools.jsp

2 Developing WebLogic Server Applications
Note: No remove{} method is provided in the ApplicationLifecycleListener, since
the events are only fired at startup time during deployment (prestart and
poststart) and shutdown during undeployment (prestop and poststop).

Basic Functionality

You create a listener by extending the abstract class (provided with WebLogic Server)
weblogic.application.ApplicationLifecycleListener. The container
then searches for your listener.

You override the following methods provided in the WebLogic Server
ApplicationLifecycleListener abstract classto extend your application and add
any required functionality:

! preStart{}

! postStart{}

! preStop{}

! postStop{}

Listing 2-1 illustrates how you override the ApplicationLifecycleListener. In
this example, the public class MyListener extends
ApplicationLifecycleListener.

Listing 2-1 MyListener

import weblogic.application.ApplicationLifecycleListener;

import weblogic.application.ApplicationLifecycleEvent;

public class MyListener extends ApplicationLifecycleListener {

public void preStart(ApplicationLifecycleEvent evt) {

System.out.println

("MyListener(preStart) -- we should always see you..");

} // preStart

public void postStart(ApplicationLifecycleEvent evt) {
2-8 Developing WebLogic Server Applications

Application Lifecycle Events
System.out.println

("MyListener(postStart) -- we should always see you..");

} // postStart

public void preStop(ApplicationLifecycleEvent evt) {

System.out.println

("MyListener(preStop) -- we should always see you..");

} // preStart

public void postStop(ApplicationLifecycleEvent evt) {

System.out.println

("MyListener(postStop) -- we should always see you..");

} // preStart

public static void main(String[] args) {

System.out.println

("MyListener(main): in main .. we should never see you..");

} // main

}

Listing 2-2 illustrates how you implement the Shutdown class. This class is attachable
to prestop and poststop events. In this example, the public class MyShutdown extends
ApplicationLifecycleListener.

Listing 2-2 MyShutdown

import weblogic.application.ApplicationLifecycleListener;

import weblogic.application.ApplicationLifecycleEvent;

public class MyShutdown extends ApplicationLifecycleListener {

public static void main(String[] args) {

System.out.println
Developing WebLogic Server Applications 2-9

2 Developing WebLogic Server Applications
("MyShutdown(main): in main .. should be for post-stop");

} // main

}

Listing 2-3 illustrates how you implement the Startup class. This class is attachable to
prestart and poststart events.. In this example, the public class MyStartup extends
ApplicationLifecycleListener.

Listing 2-3 MyStartup

import weblogic.application.ApplicationLifecycleListener;

import weblogic.application.ApplicationLifecycleEvent;

public class MyStartup extends ApplicationLifecycleListener {

public static void main(String[] args) {

System.out.println

("MyStartup(main): in main .. should be for pre-start");

} // main

}

Configuring Lifecycle Events: URI Parameter

The following are examples illustrating how you configure the application lifecycle
events in the application.xml deployment descriptor file. The URI parameter is
not required. You can place classes anywhere in the application $CLASSPATH.
However, you must ensure that the class locations are defined in the $CLASSPATH.
You can place listeners in APP-INF/classes or APP-INF/lib, if these directories
are present in the EAR. In this case, they are automatically included in the
$CLASSPATH.
2-10 Developing WebLogic Server Applications

Application Lifecycle Events
The following example illustrates how you configure application lifecycle events
using the URI parameter. In this case, the archive foo.jar contains the classes and
exists at the top level of the EAR file. For example: myEar/foo.jar

Listing 2-4 Configuring Application Lifecycle Events without URI Parameter

<listener>

<listener-class>MyListener</listener-class>

<listener-uri>foo.jar</listener-uri>

</listener>

<startup>

<startup-class>MyStartup</startup-class>

<startup-uri>foo.jar</startup-uri>

</startup>

<shutdown>

<shutdown-class>MyShutdown</shutdown-class>

<shutdown-uri>foo.jar</shutdown-uri>

</shutdown>

The following example illustrates how you configure application lifecycle events
without using the URI parameter.

Listing 2-5 Configuring Application Lifecycle Events without URI Parameter

<listener>

<listener-class>MyListener</listener-class>

</listener>

<startup>

<startup-class>MyStartup</startup-class>
Developing WebLogic Server Applications 2-11

2 Developing WebLogic Server Applications
</startup>

<shutdown>

<shutdown-class>MyShutdown</shutdown-class>

</shutdown>

Creating Web Applications: Main Steps

Here are the main steps for creating a Web application:

1. Create the HTML pages and JavaServer Pages (JSPs) that make up the Web
interface of the Web application. Typically, Web designers create these parts of a
Web application.

For detailed information about creating JSPs, refer to Programming WebLogic
JSP.

2. Write the Java code for the servlets and the JSP taglibs referenced in JSPs.
Typically, Java programmers create these parts of a Web application.

For detailed information about creating servlets, refer to Programming
WebLogic HTTP Servlets.

3. Compile the servlets into class files.

For detailed information about compiling, refer to “Compiling Java Code” on
page 2-22.

4. Arrange the resources (servlets, JSPs, static files, and deployment descriptors) in
the prescribed directory format. For more information on the Web application
directory structure, see “Web Application Basics” in Developing Web
Applications for WebLogic Server.

5. Create the web.xml and weblogic.xml deployment descriptors.

The web.xml file defines each servlet and JSP page and enumerates enterprise
beans referenced in the Web application. The weblogic.xml file adds additional
deployment information for WebLogic Server.
2-12 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/webapp/basics.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html

Creating Web Applications: Main Steps
Create the web.xml and weblogic.xml deployment descriptors manually or
using WebLogic Builder. For detailed information, refer to WebLogic Builder
Online Help. See Developing Web Applications for WebLogic Server for detailed
information on the elements in these deployment descriptors.

6. Package the HTML pages, servlet class files, JSP files, web.xml file, and
weblogic.xml file into a WAR file.

Create a Web application staging directory and save the JSPs, HTML pages, and
multimedia files referenced by the pages in the top level of the staging directory.

Store compiled servlet classes, taglibs, and, if desired, servlets compiled from
JSP pages are stored under a WEB-INF directory in the staging directory. When
the Web application components are all in place in the staging directory, you
create the WAR file with the JAR command.

For detailed information on packaging, refer to “WebLogic Server Application
Packaging” on page 3-1.

7. Auto-deploy the WAR file on WebLogic Server for testing purposes.

For detailed information about auto-deploying components and applications,
refer to “Deployment Tool Reference” in Deploying WebLogic Server
Applications.

While you are testing the Web application, you might need to edit the Web
application deployment descriptors. You can do this manually or use WebLogic
Builder.

For detailed information, refer to WebLogic Builder Online Help. See
Developing Web Applications for WebLogic Server for detailed information on
the elements in these deployment descriptors.

8. Deploy the WAR file on the WebLogic Server for production use or include it in
an Enterprise ARchive (EAR) file to be deployed as part of an enterprise
application.

Refer to Deploying WebLogic Server Applications for detailed information about
deploying components and applications.
Developing WebLogic Server Applications 2-13

http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications
Creating Enterprise JavaBeans: Main Steps

Creating an Enterprise JavaBean requires creating the classes for the particular EJB
(session, entity, or message-driven) and the EJB-specific deployment descriptors, and
then packaging everything into an EAR file to be deployed on WebLogic Server.

Here are the main steps for creating an Enterprise JavaBean:

1. Write the Java code for the various classes required by each type of EJB (session,
entity, or message-driven) in accordance with the EJB specification. For example,
session and entity EJBs require the following three classes:

" An EJB home interface

" A remote interface for the EJB

" An implementation class for the EJB

Message-driven beans, however, require only an implementation class.

2. Compile the Java code using a standard compiler for the interfaces and
implementation into class files.

For instructions on compiling, refer to “Compiling Java Code” on page 2-22.

3. Create the EJB-specific deployment descriptors:

" ejb-jar.xml describes the EJB type and its deployment properties using a
standard DTD from Sun Microsystems.

" weblogic-ejb-jar.xml adds additional WebLogic Server-specific
deployment information.

" weblogic-cmp-rdbms-jar.xml maps a container-managed entity EJB to
tables in a database. This file can must have a different name for each
container-managed persistence (CMP) bean packaged in a JAR file. The
name of the file is specified in the bean’s entry in the weblogic-ejb.jar
file.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebLogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as
ejb-jar.xml and web.xml. Additional deployment descriptors supplement the
2-14 Developing WebLogic Server Applications

Creating Enterprise JavaBeans: Main Steps
J2EE-specified descriptors with information required to deploy components in
WebLogic Server.

Create and edit the XML deployment descriptors manually, or use WebLogic
Builder to automatically generate them. For more information, refer to
Deploying WebLogic Server Applications.

For detailed information about the elements in the EJB-specific deployment
descriptors and how to create the files by hand, refer to Programming WebLogic
Enterprise JavaBeans.

4. Package the class files and deployment descriptors into a JAR file.

Create an EJB staging directory. Place the compiled Java classes in the staging
directory and the deployment descriptors in a subdirectory called META-INF.
Then run the weblogic.ejbc EJB compiler to generate classes that enforce the
EJB security, transaction, and lifecycle policies. Then you create the EJB archive
by executing a jar command like the following in the staging directory:

jar cvf myEJB.jar *

For detailed information about creating the EJB JAR file, refer to “WebLogic
Server Application Packaging” on page 3-1.

5. Auto-deploy the EJB JAR file on WebLogic Server for testing purposes.

For detailed information about auto-deploying components and applications,
refer to “Deployment Tool Reference” in Deploying WebLogic Server
Applications.

While you are testing the EJB, you might need to edit the EJB deployment
descriptors. You can do this manually or use WebLogic Builder.

For detailed information, refer to WebLogic Builder Online Help. See
Developing Web Applications for WebLogic Server for detailed information on
the elements in these deployment descriptors.

6. Deploy the JAR file on WebLogic Server for production use or include it in an
Enterprise ARchive (EAR) file to be deployed as part of an enterprise
application.

Refer to Deploying WebLogic Server Applications for detailed information about
deploying components and applications.
Developing WebLogic Server Applications 2-15

http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications
Creating Resource Adapters: Main Steps

Creating a resource adapter requires creating the classes for a resource adapter and the
connector-specific deployment descriptors, and then packaging everything into a
resource adapter archive (RAR) file to be deployed on WebLogic Server.

Creating a New Resource Adapter (RAR)

The following are the main steps for creating a resource adapter (RAR):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0, Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

When implementing a resource adapter, you must specify classes in the ra.xml
file. For example:

" <managedconnectionfactory-class>com.sun.connector.blackbox.
LocalTxManagedConnectionFactory</managedconnectionfactory-
class>

" <connectionfactory-interface>javax.sql.DataSource</connecti
onfactory-interface>

" <connectionfactory-impl-class>com.sun.connector.blackbox.Jd
bcDataSource</connectionfactory-impl-class>

" <connection-interface>java.sql.Connection</connection-inter
face>

" <connection-impl-class>com.sun.connector.blackbox.JdbcConne
ction</connection-impl-class>

2. Compile the Java code using a standard compiler for the interfaces and
implementation into class files.

For instructions on compiling, refer to “Compiling Java Code” on page 2-22.

3. Create the resource connector-specific deployment descriptors:

" ra.xml describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.
2-16 Developing WebLogic Server Applications

Creating Resource Adapters: Main Steps
" weblogic-ra.xml adds additional WebLogic Server-specific deployment
information.

For detailed information about creating connector-specific deployment
descriptors, refer to Programming WebLogic Server J2EE Connectors.

4. Package the Java classes into a Java archive (JAR) file.

The first step in creating a JAR file is to create a connector staging directory
anywhere on your hard drive. Place the JAR file in the staging directory and the
deployment descriptors in a subdirectory called META-INF.

Then you create the resource adapter archive by executing a jar command
similar to the following in the staging directory:

jar cvf myRAR.rar *

For detailed information about creating the resource adapter RAR archive file,
refer to “WebLogic Server Application Packaging” on page 3-1.

5. Auto-deploy the RAR resource adapter archive file on WebLogic Server for
testing purposes.

For detailed information about auto-deploying components and applications,
refer to “Tools for Deploying” in Deploying WebLogic Server Applications.

While you are testing the resource adapter, you might need to edit the resource
adapter deployment descriptors. You can do this manually or use WebLogic
Builder.

For detailed information, refer to WebLogic Builder Online Help. See
Programming WebLogic Server J2EE Connectors for detailed information on the
elements in these deployment descriptors.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it
in an enterprise archive (EAR) file to be deployed as part of an enterprise
application.

Refer to Deploying WebLogic Server Applications for detailed information about
deploying components and applications.
Developing WebLogic Server Applications 2-17

http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications
Modifying an Existing Resource Adapter (RAR)

The following is an example of how to take an existing resource adapter (RAR) and
modify it for deployment to WebLogic Server. This involves adding the
weblogic-ra.xml deployment descriptor and repacking.

1. Create a temporary directory anywhere on your hard drive to stage the resource
adapter:

mkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:

cp blackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:

cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:

! A jar file containing Java classes that implement the resource adapter

! A META-INF directory containing the files: Manifest.mf and ra.xml

Execute these commands to see these files:

c:/stagedir> ls

blackbox-notx.rar

META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

4. Create the weblogic-ra.xml file. This file is the WebLogic-specific
deployment descriptor for resource adapters. In this file, you specify parameters
for connection factories, connection pools, and security mappings.

Refer to Programming WebLogic Server J2EE Connectors for more information
on the weblogic-ra.xml DTD.
2-18 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Creating WebLogic Server Enterprise Applications: Main Steps
5. Copy the weblogic-ra.xml file into the temporary directory's META-INF
subdirectory. The META-INF directory is located in the temporary directory
where you extracted the RAR file or in the directory containing a resource
adapter in exploded directory format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

weblogic-ra.xml

6. Create the resource adapter archive:

jar cvf blackbox-notx.rar -C c:/stagedir

7. Deploy the resource adapter to WebLogic Server.

For detailed information about deploying components and applications, refer to
“Tools for Deploying” in Deploying WebLogic Server Applications.

Creating WebLogic Server Enterprise
Applications: Main Steps

Creating a WebLogic Server enterprise application requires creating Web, EJB, and
Connector (Resource Adapter) components, deployment descriptors, and archive files.
The result is an enterprise application archive (EAR file) that can be deployed on
WebLogic Server.

Here are the main steps for creating a WebLogic Server enterprise application:

1. Create Web, EJB, and Connector components for your application.

Programmers create servlets, EJBs, and Connectors using the J2EE APIs for
these components. Web designers create Web pages using HTML/XML and
JavaServer Pages.
Developing WebLogic Server Applications 2-19

http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications
For overview information about creating Web, EJB, and Connector components,
respectively refer to “Creating Web Applications: Main Steps” on page 2-12,
“Creating Enterprise JavaBeans: Main Steps” on page 2-14, and “Creating
Resource Adapters: Main Steps” on page 2-16.

For detailed information about creating the Java code that makes up the Web,
EJB, and Connector components, refer to Programming WebLogic Enterprise
JavaBeans, Programming WebLogic HTTP Servlets, Programming WebLogic
JSP, and Programming WebLogic Server J2EE Connectors.

2. Create Web, EJB, and Connector deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebLogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as
ejb-jar.xml, web.xml, and ra.xml. Additional deployment descriptors
supplement the J2EE-specified descriptors with information required to deploy
components in WebLogic Server.

Create and edit the XML deployment descriptors manually, or use WebLogic
Builder to automatically generate them. For more information, refer to
Deploying WebLogic Server Applications.

For detailed information about the various deployment descriptor elements, refer
to Developing Web Applications for WebLogic Server, Programming WebLogic
Enterprise JavaBeans, and Programming WebLogic Server J2EE Connectors.

3. Package the Web, EJB, and Connector components into their component archive
files.

Component archives are JAR files containing all component files, including
deployment descriptors. You package Web components into a WAR file, EJB
components into an EJB JAR file, and Connector components into a RAR file.

Refer to “WebLogic Server Application Packaging” on page 3-1 for detailed
information for creating component archives.

4. Create the enterprise application deployment descriptor.

The enterprise application deployment descriptor, application.xml, lists
individual components that are assembled together in an application.

Create the application.xml deployment descriptor manually, or use WebLogic
Builder to automatically generate it. For more information, refer to Deploying
WebLogic Server Applications.
2-20 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jconnector/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

Creating WebLogic Server Enterprise Applications: Main Steps
Refer to “application.xml Deployment Descriptor Elements” on page A-1 for
detailed information about the elements of the application.xml file.

5. Package the enterprise application into an EAR file.

Package the Web, EJB, and Connector component archives along with the
enterprise application deployment descriptor into an enterprise archive (.ear
extension) file. This is the file that is deployed on WebLogic Server. WebLogic
Server uses the application.xml deployment descriptor to locate and deploy
the individual components packaged in the EAR file.

For detailed information about creating the EAR file, see “WebLogic Server
Application Packaging” on page 3-1.

6. For testing purposes, auto-deploy the EAR enterprise application on WebLogic
Server.

While you are testing the enterprise application, you might need to edit the
enterprise application deployment descriptor. You can do this manually or use
WebLogic Builder.

For detailed information on WebLogic Builder, refer to WebLogic Builder Online
Help.

Refer to “application.xml Deployment Descriptor Elements” on page A-1 for
detailed information about the elements of the application.xml deployment
descriptor file.

7. For production purposes, deploy the EAR file on WebLogic Server.

For detailed information about deploying components and applications, refer to
“Deployment Tools Reference” in Deploying WebLogic Server Applications.

Figure 2-1 illustrates the process for developing and packaging WebLogic Server
enterprise applications.
Developing WebLogic Server Applications 2-21

http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html
http://e-docs.bea.com/wls/docs81b/deployment/tools.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

2 Developing WebLogic Server Applications
Figure 2-1 Creating Enterprise Applications

Compiling Java Code

Compiling Java code for WebLogic Server is the same as compiling any other Java
code. To compile successfully, you must:

! Place a standard Java compiler in your search path.

! Set your classpath so that the Java compiler can find all of the dependent classes.

! Specify the output directories for the compiled classes.
2-22 Developing WebLogic Server Applications

Compiling Java Code
! Set your environment by creating a command file or script to set variables in
your environment, which you can pass to the compiler.

Creating Compile Scripts Using Apache Ant

The preferred BEA method for compiling is using Apache Ant. Apache Ant is a
Java-based build tool. One of the benefits of using Ant is that is it extended using Java
classes, rather than shell-based commands. Another benefit is that Ant is a cross-plat-
form tool.

Developers write Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

Instead of a model where it is extended with shell-based commands, Ant is extended
using Java classes. Ant libraries are bundled with WebLogic Server to make it easier
for our customers to build Java applications out of the box.

In order to use Ant, you must first set your environment by executing either the
setExamplesEnv.cmd (Windows) or setExamplesEnv.sh (UNIX) commands
located in the samples\server\config\examples directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

For more information on using Ant to compile your cross-platform scripts or using
cross-platform scripts to create XML scripts that can be processed by Ant, refer to any
of the WebLogic Server examples, such as:

samples\server\src\examples\ejb20\basic\beanManaged\build.xml

Also refer to the following WebLogic Server documentation on building examples
using Ant:

samples\server\src\examples\examples.html
Developing WebLogic Server Applications 2-23

http://jakarta.apache.org/ant/manual/index.html

2 Developing WebLogic Server Applications
Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the %PATH% environment variable in your command shell. If you are using the
JDK, the tools are in the bin subdirectory of the JDK directory. To use an alternative
compiler, such as the sj compiler from WebGain VisualCafé, add the directory
containing that compiler to your search path.

For example, if the JDK is installed in \usr\local\java\java141 on your UNIX
file system, use a command such as the following to add javac to your path in a
Bourne shell or shell script:

PATH=\usr\local\java\java141\bin:$PATH; export $PATH

To add the WebGain sj compiler to your path on Windows NT, Windows 2000 or
Windows 2000 XP, use a command such as the following in a command shell or in a
command file:

PATH=c:\VisualCafe\bin;%PATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.

Setting the Classpath for Compiling Code

Most WebLogic services are based on J2EE standards and are accessed through
standard J2EE packages. The Sun, WebLogic, and other Java classes required to
compile programs that use WebLogic services are packaged in the weblogic.jar file
in the lib directory of your WebLogic Server installation. In addition to
weblogic.jar, include the following in your compiler’s CLASSPATH:

! The lib\tools.jar file in the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

! The examples.property file for Apache Ant (for examples environment).
This file is discussed in the WebLogic Server documentation on building
examples using Ant located at:
samples\server\src\examples\examples.html

! Classes for third-party Java tools or services your programs import.
2-24 Developing WebLogic Server Applications

Compiling Java Code
! Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writes the
classes you are compiling so that the compiler can locate all of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler stores the class file in a directory structure that matches the
package name. This allows you to compile Java classes into the correct locations in the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create the JAR file that
contains your packaged component.

J2EE applications consist of modules assembled into an application and deployed on
one or more WebLogic Servers or WebLogic Server clusters. Each module should
have its own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBs in a separate
module, Web components in a separate module, and other server-side classes in
another module.

See the setExamplesEnv scripts in the samples\server\config\examples
directory of the WebLogic Server distribution for an example of setting up target
directories for the compiler. The scripts set the following variables:

CLIENT_CLASSES
samples\server\stage\examples\clientclasses
Directory where compiled client classes are written for the Examples domain.
These classes are usually standalone Java programs that connect to WebLogic
Server.

SERVER_CLASSES

samples\server\stage\examples\serverclasses by default.
Directory where server-side classes are written for the Examples domain.
Include startup classes and other Java classes that must be in the WebLogic
Server CLASSPATH when the server starts up. Application classes usually
should not be compiled into this directory, because the classes in this directory
cannot be redeployed without restarting WebLogic Server.
Developing WebLogic Server Applications 2-25

2 Developing WebLogic Server Applications
EX_WEBAPP_CLASSES
samples\server\stage\examples\applications\examplesWebApp\
WEB-INF\classes
Directory where classes used by a Web Application are written for the
Examples domain.

APPLICATIONS
samples\server\config\examples\applications
Applications directory for the Examples domain. This variable is not used to
specify a target for the Java compiler. It is used as a convenient reference to the
applications directory in copy commands that move files from source
directories into the applications directory. For example, if you have HTML,
JSP, and image files in your source tree, you can use the variable in a copy
command to install them in your development server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d %SERVER_CLASSES% *.java

If you do not use an IDE, consider writing an Apache Ant script to compile and
package your components and applications.

Auto-Deployment for Development
Enviroments

Auto-deployment is a method for quickly deploying an application on the
administration server. It is recommended that this method be used only in a
single-server development environment for testing an application. Use of
auto-deployment in a production environment or for deployment of components on
managed servers is not recommended.

If auto-deployment is enabled, when an application is copied into the \applications
directory of the administration server, the administration server detects the presence of
the new application and deploys it automatically (if the administration server is
running). If WebLogic Server is not running when you copy the application to the
\applications directory, the application is deployed the next time the WebLogic
Server is started. Auto-deployment deploys only to the administration server
2-26 Developing WebLogic Server Applications

Auto-Deployment for Development Enviroments
Note: Due to the strict file locking limitations of Windows NT, if your applications
are exploded, all the components within your applications must also be
exploded. In other words, WebLogic Server cannot support a JAR file within
an exploded application or component.

Enabling and Disabling Auto-Deployment

You can run WebLogic Server in two different modes: development and production.
You use development mode to test your applications. Once they are ready for a
production environment, you deploy your applications on a server that is started in
production mode.

Development mode enables a WebLogic Server to automatically deploy and update
applications that are in the domain_name/applications directory (where domain_name
is the name of a WebLogic Server domain). In other words, development mode lets
you use auto-deploy.

Production mode disables the auto-deployment feature. Instead, you must use the
WebLogic Server Administration Console or the weblogic.Deployer tool.

By default, a WebLogic Server runs in development mode. To specify the mode for a
server, do one of the following:

If you use the startWebLogic startup script, edit the script and set the STARTMODE
variable as follows:

STARTMODE = false enables deployment mode

STARTMODE = true enables production mode

If you start a server entering the weblogic.Server command directly on the
command line, use the -Dweblogic.ProductionModeEnabled option as follows:

-Dweblogic.ProductionModeEnabled=false enables deployment mode

-Dweblogic.ProductionModeEnabled=true enables production mode
Developing WebLogic Server Applications 2-27

2 Developing WebLogic Server Applications
Auto-Deploying Applications

This is a convenience feature for deploying applications during development. It allows
deploying of applications or individual J2EE modules to the administration server just
by copying the deployment into a predefined auto-deployment directory. This
directory is located under the domain directory, e.g., mydomain/applications.

Stopping and Redeploying Archived Applications

An application or its component that was auto-deployed can be dynamically
redeployed while the server is running. To dynamically redeploy a JAR, WAR or EAR
file, simply copy the new version of the file over the existing file in the
\applications directory.

This feature is useful for developers who can simply add the copy to the
\applications directory as the last step in their makefile, and the server will then be
updated.

If you delete the application from the \applications directory, the application will
be stopped and removed from the configuration.

Redeploying Applications in Exploded Format

You can also dynamically redeploy applications or components that have been
auto-deployed in exploded format. When an application has been deployed in
exploded format, the administration server periodically looks for a file named
REDEPLOY in the exploded application directory. If the timestamp on this file changes,
the administration server redeploys the exploded directory.

If you want to update files in an exploded application directory, do the following:

1. When you first deploy the exploded application, create an empty file named
REDEPLOY, and place it in the WEB-INF or META-INF directory, depending on the
application type you are deploying:

An exploded application contains a META-INF top-level directory; this contains
the application.xml file.
2-28 Developing WebLogic Server Applications

Auto-Deployment for Development Enviroments
An exploded Web application contains a WEB-INF top-level directory; this
contains the web.xml file.

An exploded EJB application contains a META-INF F top-level directory; this
contains the ejb-jar.xml file.

An exploded connector contains a META-INF top-level directory; this contains
the ra.xml file.

2. To update the exploded application, copy the updated files over the existing files
in that directory.

3. After copying the new files, modify the REDEPLOY file in the exploded directory
to alter its timestamp.

When the administration server detects the changed timestamp, it redeploys the
contents of the exploded directory.
Developing WebLogic Server Applications 2-29

2 Developing WebLogic Server Applications
2-30 Developing WebLogic Server Applications

CHAPTER
3 WebLogic Server
Application Packaging

The following sections describe how to package WebLogic Server components. You
must package components before you deploy them to WebLogic Server.

! “Packaging Overview” on page 3-2

! “JAR Files” on page 3-2

! “XML Deployment Descriptors” on page 3-4

! “Packaging Web Applications” on page 3-16

! “Packaging Enterprise JavaBeans” on page 3-17

! “Packaging Resource Adapters” on page 3-20

! “Packaging Enterprise Applications” on page 3-21

! “Packaging Client Applications” on page 3-24

! “Packaging J2EE Applications Using Apache Ant” on page 3-27
Developing WebLogic Server Applications 3-1

3 WebLogic Server Application Packaging
Packaging Overview

WebLogic Server J2EE applications are packaged according to J2EE specifications.
J2EE defines component behaviors and packaging in a generic, portable way,
postponing run-time configuration until the component is actually deployed on an
application server.

J2EE includes deployment specifications for Web applications, EJB modules,
enterprise applications, client applications, and resource adapters. J2EE does not
specify how an application is deployed on the target server—only how a standard
component or application is packaged.

For each component type, the specifications define the files required and their location
in the directory structure. Components and applications may include Java classes for
EJBs and servlets, resource adapters, Web pages and supporting files, XML-formatted
deployment descriptors, and JAR files containing other components.

An application that is ready to deploy on WebLogic Server may require
WebLogic-specific deployment descriptors and, possibly, container classes generated
with the WebLogic EJB, RMI, or JSP compilers.

For more information, refer to the J2EE 1.3 specification at:
http://java.sun.com/j2ee/download.html#platformspec

JAR Files

A file created with the Java jar tool bundles the files in a directory into a single Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy J2EE components on WebLogic Server in either an
“exploded” directory or a JAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handles than an exploded directory, and
they can save disk space with file compression. If your Administration Server manages
3-2 Developing WebLogic Server Applications

http://java.sun.com/j2ee/download.html#platformspec

JAR Files
a domain with multiple WebLogic Servers, you can only deploy JAR or EAR files,
because the Administration Console does not copy expanded directories to Managed
Servers.

The jar utility is in the bin directory of your Java Development Kit. If you have
javac in your path, you also have jar in your path. The jar command syntax and
behavior is similar to the UNIX tar command.

The most common usages of the jar command are:

jar cf jar-file files ...

Creates a JAR file named jar-file containing listed files. If you include a
directory in the list of files, all files in that directory and its subdirectories are
added to the JAR file.

jar xf jar-file

Extract (unbundle) a JAR file in the current directory.

jar tf jar-file

List (tell) the contents of a JAR file.

The first flag specifies the operation: create, extract, or list (tell). The f flag must be
followed by a JAR file name. Without the f flag, jar reads or writes JAR file contents
on stdin or stdout which is usually not what you want. See the documentation for
the JDK utilities for more about jar command options.
Developing WebLogic Server Applications 3-3

3 WebLogic Server Application Packaging
XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebLogic-specific deployment descriptors for deploying a component or
application in the WebLogic Server environment.

Table 3-1 lists the types of components and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

When you package a component or application, you create a directory to hold the
deployment descriptors—WEB-INF or META-INF—and then create the XML
deployment descriptors in that directory.

Table 3-1 J2EE and WebLogic Deployment Descriptors

Component or
Application

Scope Deployment Descriptors

Web Application J2EE web.xml

WebLogic weblogic.xml

Enterprise Bean J2EE ejb-jar.xml

WebLogic weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

Resource
Adapter

J2EE ra.xml

WebLogic weblogic-ra.xml

Enterprise
Application

J2EE application.xml

WebLogic weblogic-application.xml

Client
Application

J2EE application-client.xml

WebLogic client-application.runtime.xml
3-4 Developing WebLogic Server Applications

XML Deployment Descriptors
You can create the deployment descriptors manually, or you can use
WebLogic-specific Java-based utilities to automatically generate them for you. For
more information about generating deployment descriptors, see “Automatically
Generating Deployment Descriptors” on page 3-5.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebLogic Server,
you extract the contents of the JAR file into a directory, add the WebLogic-specific
deployment descriptors and any generated container classes, and then create a new
JAR file containing the old and new files. Note that the JAR utility contains a “u”
option, which allows you to change or add files directly to an existing JAR.

Automatically Generating Deployment Descriptors

WebLogic Server includes a set of Java-based utilities that automatically generate the
deployment descriptors for the following J2EE components: Web applications,
Enterprise JavaBeans (version 2.0).

These utilities examine the objects you have assembled in a staging directory and build
the appropriate deployment descriptors based on the servlet classes, EJB classes, and
so on. The utilities generate both the standard J2EE and WebLogic-specific
deployment descriptors for each component.

WebLogic Server includes the following utilities:

! weblogic.marathon.ddinit.WebInit

Creates the deployment descriptors for Web Applications.

! weblogic.marathon.ddinit.EJBInit

Creates the deployment descriptors for Enterprise JavaBeans 2.0.

Note: Although DDInit attempts to create deployment descriptor files that are
complete and accurate for your component or application, the utilities must
guess at the value of many of the required elements. Often this guess is wrong,
causing WebLogic Server to return an error when you deploy the component
or application. In this case, you must undeploy the component or application,
edit the deployment descriptor using the Deployment Descriptor Editor of the
Administration Console, and then redeploy it. For details on using the
Deployment Descriptor Editor, see “Editing Deployment Descriptors.”
Developing WebLogic Server Applications 3-5

3 WebLogic Server Application Packaging
If ejb-jar.xml exists, DDInit uses its deployment information to generate
weblogic-ejb-jar.xml.

For an example of DDInit, assume that you have created a directory called c:\stage
that contains the WEB-INF directory, the JSP files, and other objects that make up a
Web application but you have not yet created the web.xml and weblogic.xml

deployment descriptors. To automatically generate them, execute the following
command:

java weblogic.marathon.DDInit.WebInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and
places them in the WEB-INF directory, which DDInit will create if it does not already
exist.

Editing Deployment Descriptors

BEA offers two tools for editing the deployment descriptors of WebLogic Server
applications and components:

! BEA XML Editor

! Deployment Descriptor Editor from within the Administration Console

Use either editor to update existing elements in, add new elements to, and delete
existing elements from the following deployment descriptors:

! web.xml

! weblogic.xml

! ejb-jar.xml

! weblogic-ejb-jar.xml

! weblogic-cmp-rdbms-jar.xml

! ra.xml

! weblogic-ra.xml

! application.xml

! weblogic-application.xml

! application-client.xml

! client-application.runtime.xml
3-6 Developing WebLogic Server Applications

XML Deployment Descriptors
Using the BEA XML Editor

To edit XML files, use the BEA XML Editor, an entirely Java-based XML stand-alone
editor. It is a simple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document gives you a choice of editing:

! The hierarchical tree view allows structured, constrained editing, with a set of
allowable functions at each point in the hierarchical XML tree structure. The
allowable functions are syntactically dictated and in accordance with the XML
document's DTD or schema, if one is specified.

! The raw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For more documentation about using the BEA XML Editor and to download it, visit
BEA dev2dev Online at http://developer.bea.com/tools/utilities.jsp.

About EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator or command-line tool that uses
Javadoc markup to generate EJB deployment descriptor files. You annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

For more information about EJBGen, see “EJBGen” in Programming WebLogic
Enterprise JavaBeans.

Using the Administration Console Deployment Descriptor Editor

The Administration Console Deployment Descriptor Editor looks very much like the
main Administration Console: the left pane lists the elements of the deployment
descriptor files in tree form and the right pane contains the form for updating a
particular element.

When you use the editor, you can either update the in-memory deployment descriptor
only, or update both the in-memory and disk files. When you click the Apply button
after updating a particular element, or the Create button to create a new element, only
Developing WebLogic Server Applications 3-7

http://e-docs.bea.com/wls/docs81b/ejb/EJB_tools.html#1086298
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

3 WebLogic Server Application Packaging
the deployment descriptor in WebLogic Server’s memory is updated; the change has
not yet been written to disk. To do this, click the Persist button. If you do not explicitly
persist the changes to disk, the changes are lost when you stop and restart WebLogic
Server.

Editing EJB Deployment Descriptors

This section describes the procedure for editing the following EJB deployment
descriptors using the Administration Console Deployment Descriptor Editor:

! ejb-jar.xml

! weblogic-ejb-jar.xml

! weblogic-cmp-rdbms-jar.xml

For detailed information about the elements in the EJB-specific deployment
descriptors, refer to Programming WebLogic Enterprise JavaBeans.

To edit the EJB deployment descriptors:

1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the EJB node under the Deployments node.

4. Right-click the name of the EJB whose deployment descriptors you want to edit
and choose Edit EJB Descriptor from the drop-down menu. The Administration
Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the three EJB
deployment descriptors and the right pane contains a form for the descriptive
elements of the ejb-jar.xml file.

5. To edit, delete, or add elements in the EJB deployment descriptors, click to
expand the node in the left pane that corresponds to the deployment descriptor
file you want to edit, as described in the following list:

" The EJB JAR node contains the elements of the ejb-jar.xml deployment
descriptor.
3-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/index.html

XML Deployment Descriptors
" The WebLogic EJB Jar node contains the elements of the
weblogic-ejb-jar.xml deployment descriptor.

" The container-managed persistence (CMP) node contains the elements of the
weblogic-cmp-rdbms-jar.xml deployment descriptor.

6. To edit an existing element in one of the EJB deployment descriptors, follow
these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the EJB deployment descriptors, follow these
steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the EJB deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you make all your changes to the EJB deployment descriptors, click the
root element of the tree in the left pane. The root element is the either the name of
the EJB JAR archive file or the display name of the EJB.
Developing WebLogic Server Applications 3-9

3 WebLogic Server Application Packaging
10. Click Validate if you want to ensure that the entries in the EJB deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.

Editing Web Application Deployment Descriptors

This section describes the procedure for editing the web.xml and weblogic.xml Web
application deployment descriptors using the Administration Console Deployment
Descriptor Editor.

See Developing Web Applications for WebLogic Server for detailed information on the
elements in the Web application deployment descriptors.

To edit the Web application deployment descriptors:

1. Invoke the Administration Console in your browser:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Web Applications node under the Deployments node.

4. Right-click the name of the Web application whose deployment descriptors you
want to edit and choose Edit Web Application Descriptor from the drop-down
menu. The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the two Web
application deployment descriptors and the right pane contains a form for the
descriptive elements of the web.xml file.

5. To edit, delete, or add elements in the Web application deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit:

" The Web App Descriptor node contains the elements of the web.xml
deployment descriptor.

" The WebApp Ext node contains the elements of the weblogic.xml
deployment descriptor.
3-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/webapp/index.html

XML Deployment Descriptors
6. To edit an existing element in one of the Web application deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the Web application deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the Web application deployment
descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and choose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you make all your changes to the Web application deployment descriptors,
click the root element of the tree in the left pane. The root element is the either
the name of the Web application WAR archive file or the display name of the
Web application.

10. Click Validate to ensure that the entries in the Web application deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.
Developing WebLogic Server Applications 3-11

3 WebLogic Server Application Packaging
Editing Resource Adapter Deployment Descriptors

This section describes the procedure for editing the ra.xml and weblogic-ra.xml

resource adapter deployment descriptors using the Administration Console
Deployment Descriptor Editor.

For detailed information about the elements in the resource adapter deployment
descriptors, refer to Programming WebLogic J2EE Connectors.

To edit the resource adapter deployment descriptors:

1. Invoke the Administration Console in your browser:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Connectors node under the Deployments node.

4. Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.
The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the two
resource adapter deployment descriptors and the right pane contains a form for
the descriptive elements of the ra.xml file.

5. To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit:

" The RA node contains the elements of the ra.xml deployment descriptor.

" The WebLogic RA node contains the elements of the weblogic-ra.xml
deployment descriptor.

6. To edit an existing element in one of the resource adapter deployment
descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.
3-12 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/jconnector/index.html

XML Deployment Descriptors
c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the resource adapter deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you make all your changes to the resource adapter deployment descriptors,
click the root element of the tree in the left pane. The root element is the either
the name of the resource adapter RAR archive file or the display name of the
resource adapter.

10. Click Validate to ensure that the entries in the resource adapter deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.

Editing Enterprise Application Deployment Descriptors

This section describes the procedure for editing the Enterprise Application deployment
descriptors (application.xml and weblogic-application.xml) using the
Administration Console Deployment Descriptor Editor.
Developing WebLogic Server Applications 3-13

3 WebLogic Server Application Packaging
Refer to “application.xml Deployment Descriptor Elements” in Appendix A,
“Application Deployment Descriptor Elements,” for detailed information about the
application.xml and weblogic-application.xml files.

Note: The following procedure describes only how to edit the application.xml
and weblogic-application.xml files; to edit the deployment descriptors in
the components that make up the Enterprise application, see “Editing EJB
Deployment Descriptors” on page 3-8, “Editing Web Application Deployment
Descriptors” on page 3-10, or “Editing Resource Adapter Deployment
Descriptors” on page 3-12.

To edit the Enterprise Application deployment descriptor:

1. Invoke the Administration Console in your browser:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Applications node under the Deployments node.

4. Right-click the name of the Enterprise Application whose deployment descriptor
you want to edit and choose Edit Application Descriptor from the drop-down
menu. The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the
application.xml file and the right pane contains a form for its descriptive
elements, such as the display name and icon file names.

5. To edit an existing element in the application.xml deployment descriptor,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

6. To add a new element to the application.xml deployment descriptors:
3-14 Developing WebLogic Server Applications

XML Deployment Descriptors
a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and choose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

7. To delete an existing element from the application.xml deployment
descriptor:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

8. Once you make all your changes to the application.xml deployment
descriptor, click the root element of the tree in the left pane. The root element is
the either the name of the Enterprise application EAR archive file or the display
name of the Enterprise application.

9. Click Validate if you want to ensure that the entries in the application.xml
deployment descriptor are valid.

10. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.
Developing WebLogic Server Applications 3-15

3 WebLogic Server Application Packaging
Packaging Web Applications

If your Web application is accessed by a programmatic Java client, see “Packaging
Client Applications” on page 3-24, which describes how WebLogic server loads your
application classes.

To stage and package a Web application:

1. Create a temporary staging directory anywhere on your hard drive. You can name
this directory anything you want.

2. Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has a tag such as
, the pic.gif file must be in the images
subdirectory beneath the HTML file.

3. Create META-INF and WEB-INF/classes subdirectories in the staging directory
to hold deployment descriptors and compiled Java classes.

4. Copy or compile any servlet classes and helper classes into the
WEB-INF/classes subdirectory.

5. Copy the home and remote interface classes for enterprise beans used by the
servlets into the WEB-INF/classes subdirectory.

6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be
installed in a subdirectory beneath WEB-INF; the path to the .tld file is coded in
the .jsp file.)

7. Set up your shell environment.

On Windows NT, execute the setenv.cmd command, located in the directory
server\bin\setenv.cmd, where server is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the setenv.sh command, located in the directory
server/bin/setenv.sh, where server is the top-level directory in which
WebLogic Server is installed.

8. Execute the following command to automatically generate the web.xml and
weblogic.xml deployment descriptors in the WEB-INF subdirectory:
3-16 Developing WebLogic Server Applications

Packaging Enterprise JavaBeans
java weblogic.ant.taskdefs.war.DDInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-5.

Alternatively, you can create the web.xml and weblogic.xml files manually in
the WEB-INF subdirectory manually.

Note: See Developing Web Applications for WebLogic Server for detailed
descriptions of the elements of the web.xml and weblogic.xml files.

9. Bundle the staging directory into a WAR file by executing a jar command such
as:

jar cvf myapp.war -C staging-dir

The resulting WAR file can be added to an Enterprise application (EAR file) or
deployed independently using the Administration Console or the
weblogic.Deployer command-line utility.

Note: Now that you have packaged your Web application, see Deploying
WebLogic Server Applications for instructions on deploying applications
in WebLogic Server.

Packaging Enterprise JavaBeans

You can stage one or more Enterprise JavaBeans (EJBs) in a directory and package
them in an EJB JAR file. If your EJB is accessed by a programmatic Java client, see
“Packaging Client Applications” on page 3-24 which describes how WebLogic Server
loads your EJB classes.

Staging and Packaging EJBs

To stage and package an Enterprise JavaBean (EJB):
Developing WebLogic Server Applications 3-17

http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

3 WebLogic Server Application Packaging
1. Create a temporary staging directory anywhere on your hard drive (for example,
c:\stagedir).

2. Compile or copy the bean’s Java classes into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.

On Windows NT, execute the setenv.cmd command, located in the directory
server\bin\setenv.cmd, where server is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the setenv.sh command, located in the directory
server/bin/setenv.sh, where server is the top-level directory in which
WebLogic Server is installed and domain refers to the name of your domain.

5. If you are using EJB 1.1, e the following command to automatically generate the
ejb-jar.xml, weblogic-ejb-jar.xml, and
weblogic-rdbms-cmp-jar-bean_name.xml (if needed) deployment
descriptors in the META-INF subdirectory:

java weblogic.ant.taskdefs.ejb11.DDInit staging-dir

where staging-dir refers to the staging directory. Use this utility for EJB 1.1.

If you are creating EJB 2.0, execute:

java weblogic.ant.taskdefs.ejb20.DDInit staging-dir

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-5.

Alternatively, you can create the EJB deployment descriptor files manually.
Create an ejb-jar.xml and weblogic-ejb-jar.xml files in the META-INF
subdirectory. If the bean is an entity bean with container-managed persistence,
create a weblogic-rdbms-cmp-jar—bean_name.xml deployment descriptor in
the META-INF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a <type-storage> attribute in the
weblogic-ejb-jar.xml file.

Note: See Programming WebLogic Enterprise JavaBeans for help compiling
enterprise beans and creating EJB deployment descriptors.

6. When all of the enterprise bean classes and deployment descriptors are set up in
the staging directory, create the EJB JAR file with a jar command such as:
3-18 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/index.html

Packaging Enterprise JavaBeans
jar cvf jar-file.jar -C staging-dir

This command creates a JAR file that you can deploy on WebLogic Server.

The -C staging-dir option instructs the jar command to change to the
staging-dir directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebLogic EJB compiler
generates to allow the bean to deploy in a WebLogic Server. The WebLogic EJB
compiler reads the deployment descriptors in the EJB JAR file to determine how
to generate the classes. You can run the WebLogic EJB compiler on the JAR file
before you deploy the beans, or you can let WebLogic Server run the compiler
for you at deployment time. See Programming WebLogic Enterprise JavaBeans
for help with the WebLogic EJB compiler.

Note: Now that you have packaged your EJB, see Deploying WebLogic Server
Applications for instructions on deploying applications in WebLogic
Server.

Using ejb-client.jar

WebLogic Server supports the use of ejb-client.jar files. Create an
ejb-client.jar file by specifying this feature in the bean’s ejb-jar.xml
deployment descriptor file and then generating the ejb-client.jar file using
weblogic.ejbc. An ejb-client.jar contains the class files that a client program
needs to call the EJBs contained in the ejb-jar file. The files are the classes required
to compile the client. If you specify this feature, WebLogic Server automatically
creates the ejb-client.jar.

For more information, refer to “Packaging EJBs for the WebLogic Server Container”
in Programming WebLogic Enterprise JavaBeans.
Developing WebLogic Server Applications 3-19

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

3 WebLogic Server Application Packaging
Packaging Resource Adapters

After you stage one or more resource adapters in a directory, you package them in a
Java Archive (JAR). Before you package your resource adapters, be sure you read and
understand the chapter entitled “WebLogic Server Application Classloading” in this
guide, which describes how WebLogic Server loads classes.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition at:
http://java.sun.com/dtd/connector_1_0.dtd

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory
and add entries for the resource adapter.

Note: Refer to Programming WebLogic Server J2EE Connectors for information
on the weblogic-ra.xml document type definition.

7. When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or
package in an enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the
staging-dir directory so that the directory paths recorded in the JAR are
relative to the directory where you staged the resource adapters.
3-20 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/programming/classloading.html
http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs81b/jconnector/index.html

Packaging Enterprise Applications
Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of a related
application. The EJB and Web modules are bundled together, along with the Enterprise
Application deployment descriptor files, in another JAR file with an EAR extension.

Enterprise Applications Deployment Descriptor Files

The META-INF subdirectory in an EAR file contains an application.xml

deployment descriptor provided by the application assembler; the format definition of
this deployment descriptor is provided by Sun Microsystems. The application.xml
deployment descriptor identifies the modules packaged in the EAR file.

You can find the DTD for the application.xml file at
http://java.sun.com/j2ee/dtds/application_1_2.dtd.

Within application.xml, you define items such as the modules that make up your
application and the security roles used within your application. The following is the
application.xml file from the Pet Store example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
<display-name>estore</display-name>
<description>Application description</description>
<module>

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>
</module>
<module>

<ejb>petStore_EJB.jar</ejb>
</module>
<security-role>

<description>the gold customer role</description>
<role-name>gold_customer</role-name>
Developing WebLogic Server Applications 3-21

http://java.sun.com/j2ee/dtds/application_1_2.dtd

3 WebLogic Server Application Packaging
</security-role>
<security-role>

<description>the customer role</description>
<role-name>customer</role-name>

</security-role>
</application>

A supplemental deployment descriptor, weblogic-application.xml contains
additional WebLogic-specific deployment information. This deployment descriptor is
optional and is only needed if you want to configure application scoping.

Application scoping refers to configuring resources for a particular enterprise
application rather than for an entire WebLogic Server configuration. Examples of
resources include the XML parser used by an application, the EJB entity cache, the
JDBC connection pool, and so on. The main advantage of application scoping is that
it isolates the resources for a given application to the application itself.

Another advantage of using application scoping is that by associating the resources
with the EAR file, you can run this EAR file on another instance of WebLogic Server
without having to configure the resources for that server.

Refer to “weblogic-application.xml Deployment Descriptor Elements” in
Appendix A, “Application Deployment Descriptor Elements,” for
weblogic-application.xml deployment descriptor elements.

Packaging Enterprise Applications: Main Steps

If your enterprise application is accessed by a programmatic Java client, see
“Packaging Client Applications” on page 3-24, which describes how WebLogic Server
loads your enterprise application classes.

To stage and package an Enterprise application:

1. Create a temporary staging directory anywhere on your hard drive.

2. Copy the Web archives (WAR files) and EJB archives (JAR files) into the staging
directory.

3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.
3-22 Developing WebLogic Server Applications

Packaging Enterprise Applications
On Windows NT, execute the setenv.cmd command, located in the directory
server\bin\setenv.cmd, where server is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the setenv.sh command, located in the directory
server/bin/setenv.sh, where server is the directory in which WebLogic
Server is installed.

5. Execute the following command to automatically generate the
application.xml deployment descriptor in the META-INF subdirectory:

java weblogic.ant.taskdefs.ear.DDInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-5.

Alternatively, you can create the application.xml file automatically in the
META-INF directory. See Appendix A, “Application Deployment Descriptor
Elements,” for detailed information about the elements in this file.

6. Optionally create the weblogic-application.xml file manually in the
META-INF directory, as described in Appendix A, “Application Deployment
Descriptor Elements.”

7. Create the Enterprise Archive (EAR file) for the application, using a jar
command such as:

jar cvf application.ear -C staging-dir

The resulting EAR file can be deployed using the Administration Console or the
weblogic.Deployer command-line utility.

Note: Now that you have packaged your enterprise application, see Deploying
WebLogic Server Applications for instructions on deploying applications
in WebLogic Server.
Developing WebLogic Server Applications 3-23

http://e-docs.bea.com/wls/docs81b/deployment/index.html

3 WebLogic Server Application Packaging
Packaging Client Applications

Although not required for WebLogic Server applications, J2EE includes a standard for
deploying client applications. A J2EE client application module is packaged in a JAR
file. This JAR file contains the Java classes that execute in the client JVM (Java Virtual
Machine) and deployment descriptors that describe EJBs (Enterprise JavaBeans) and
other WebLogic Server resources used by the client.

A de-facto standard deployment descriptor application-client.xml from Sun is
used for J2EE clients and a supplemental deployment descriptor contains additional
WebLogic-specific deployment information.

Note: See “application-client.xml Deployment Descriptor Elements” in
Appendix B, “Client Application Deployment Descriptor Elements,” for help
with these deployment descriptors.

Executing a Client Application in an EAR File

In order to simplify distribution of an application, J2EE defines a way to include
client-side components in an EAR file, along with the server-side modules that are
used by WebLogic Server. This enables both the server-side and client-side
components to be distributed as a single unit.

The client JVM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebLogic Server
classes. You stage a client application by copying all of the required files on the client
into a directory and bundling the directory in a JAR file. The top level of the client
application directory can have a batch file or script to start the application. Create a
classes subdirectory to hold Java classes and JAR files, and add them to the client
Class-Path in the startup script. You may also want to package a Java Runtime
Environment (JRE) with a Java client application.

Note: The use of the Class-Path manifest entries in client component JARs is not
portable, because it has not yet been addressed by the J2EE standard.
3-24 Developing WebLogic Server Applications

Packaging Client Applications
The Main-Class attribute of the JAR file manifest defines the main class for the client
application. The client typically uses java:/comp/env JNDI lookups to execute the
Main-Class attribute. As a deployer, you must provide runtime values for the JNDI
lookup entries and populate the component local JNDI tree before calling the client’s
Main-Class attribute. You define JNDI lookup entries in the client deployment
descriptor. (Refer to “Client Application Deployment Descriptor Elements.”)

You use weblogic.ClientDeployer to extract the client-side JAR file from a J2EE
EAR file, creating a deployable JAR file. The weblogic.ClientDeployer class is
executed on the Java command line with the following syntax:

java weblogic.ClientDeployer ear-file client

The ear-file argument is an expanded directory (or Java archive file with a .ear
extension) that contains one or more client application JAR files.

For example:

java weblogic.ClientDeployer app.ear myclient

where app.ear is the EAR file that contains a J2EE client packaged in
myclient.jar.

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and
point it to a WebLogic Server instance as follows:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example

java weblogic.j2eeclient.Main helloWorld.jar t3://localhost:7001 Greetings

Special Considerations for Deploying J2EE Client
Applications

The following is a list of special considerations for deploying J2EE client applications:

! Name the WebLogic Server client deployment file using the suffix
.runtime.xml.

! The weblogic.ClientDeployer class is responsible for generating and adding
a client.properties file to the client JAR file. A separate program,
Developing WebLogic Server Applications 3-25

3 WebLogic Server Application Packaging
weblogic.j2eeclient.Main, creates a local client JNDI context and runs the
client from the entry point named in the client manifest file.

Note: To run the J2EE client application using weblogic.ClientDeployer,
you need the weblogic.j2eeclient.Main class (located in the
weblogic.jar file).

! If a resource mentioned by the application-client.xml file is one of the
following types, the weblogic.j2eeclient.Main class attempts to bind it
from the global JNDI tree on the server to java:comp/env/:

ejb-ref

javax.jms.QueueConnectionFactory

javax.jms.TopicConnectionFactory

javax.mail.Session

javax.sql.DataSource

! The weblogic.j2eeclient.Main class binds UserTransaction to
java:comp/UserTransaction.

! The rest of the client environment is bound from the client.properties file
created by the weblogic.ClientDeployer class into java:comp/env/. The
weblogic.j2eeclient.Main class emits error messages for missing or
incomplete bindings.

! The <res-auth> tag in the application deployment file is currently ignored and
should be entered as Application. We do not currently support form-based
authentication.

Note: For more information on deploying, refer to Deploying WebLogic Server
Applications.
3-26 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/deployment/index.html

Packaging J2EE Applications Using Apache Ant
Packaging J2EE Applications Using Apache
Ant

The topics in this section discuss building and packaging J2EE applications using
Apache Ant, an extensible Java-based tool. Ant is similar to the make command but is
designed for building Java applications. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

Developers write Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

Packaging J2EE Deployment Units

As previously discussed, J2EE applications are packaged as JAR files containing a
specific file extension depending on the component type:

! EJBs are packaged as JAR files.

! Web Applications are packaged as WAR files.

! Resource Adapters are packaged as RAR files.

! Enterprise Applications are packaged as EAR files.

These components are structured according to the J2EE specifications. In addition to
the standard XML deployment descriptors, components may also be packaged with
WebLogic Server-specific XML deployment descriptors.

Ant provides tasks that make the construction of these JAR files easier. In addition to
the features of the JAR command, Ant provides specific tasks for building EAR and
WAR files. Using Ant, you can specify the pathname as it appears in the JAR archive,
which may differ from the original path in the file system. This ability is useful for
packaging deployment descriptors (in which J2EE specifies an exact location in the
Developing WebLogic Server Applications 3-27

http://jakarta.apache.org/ant/manual/index.html

3 WebLogic Server Application Packaging
archive), which may not correspond to the location in your source tree. See the Apache
Ant online documentation pertaining to the ZipFileSet command for related
information.

The following listing shows:

Listing 3-1 WAR Task Example

<war warfile="cookie.war" webxml="web.xml"
manifest="manifest.txt">

<zipfileset dir="." prefix="WEB-INF" includes="weblogic.xml"/>

<zipfileset dir="." prefix="images" includes="*.gif,*.jpg"/>

<classes dir="classes" includes="**/CookieCounter.class"/>

<fileset dir="." includes="*.jsp,*.html">

</fileset>

</war>

Packaging J2EE deployment units requires the following steps:

1. Specify the standard XML deployment descriptor using the webxml parameter.

2. The war task automatically maps XML deployment descriptor to the standard
name in the WAR archive WEB-INF/web.xml.

3. Apache Ant stores the manifest file, specified using the manifest parameter,
under the standard name META-INF/MANIFEST.MF.

4. Use the Apache Ant ZipFileSet command to define a set of files (in this case,
just the WebLogic Server-specific deployment descriptor weblogic.xml) that
should be stored in the WEB-INF directory.

5. Use a second ZipFileSet command to package all the images in an images

directory.

6. The classes tag packages servlet classes in the WEB-INF/classes directory.

7. Finally, add all the .jsp and .html files from the current directory to the
archive.
3-28 Developing WebLogic Server Applications

Packaging J2EE Applications Using Apache Ant
You can achieve the same result by staging the files in a directory that directly
corresponds to the structure of the WAR file and creating a JAR file from that
directory. Using special features of the Ant JAR tasks eliminates the need to copy files
into a specific directory hierarchy.

The following example builds a Web application and an EJB, and then packages them
together in an EAR file:

Listing 3-2 Packaging Example

<project name="app" default="app.ear">

<property name="wlhome" value="/bea/wlserver6.1"/>

<property name="srcdir" value="/bea/myproject/src"/>

<property name="appdir" value="/bea/myproject/config/mydomain/applications"/>

<target name="timer.war">

<mkdir dir="classes"/>

<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>

<war warfile="timer.war" webxml="timer/web.xml"
manifest="timer/manifest.txt">

<classes dir="classes" includes="**/TimerServlet.class"/>

</war>

</target>

<target name="trader.jar">

<mkdir dir="classes"/>

<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>

<jar jarfile="trader0.jar" manifest="trader/manifest.txt">

<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>

<fileset dir="classes" includes="**/Trade*.class"/>

</jar>

<ejbc source="trader0.jar" target="trader.jar"/>

</target>
Developing WebLogic Server Applications 3-29

3 WebLogic Server Application Packaging
<target name="app.ear" depends="trader.jar, timer.war">

<jar jarfile="app.ear">

<zipfileset dir="." prefix="META-INF" includes="application.xml"/>

<fileset dir="." includes="trader.jar, timer.war"/>

</jar>

</target>

<target name="deploy" depends="app.ear">

<copy file="app.ear" todir="${appdir}/>

</target>

</project>

Running Ant

BEA provides a simple script to run Ant in the server/bin directory. By default, Ant
loads the build.xml build file, but you can override this using the -f flag. Use the
following command to build and deploy an application using the build script shown
above:

ant -f yourbuildscript.xml
3-30 Developing WebLogic Server Applications

CHAPTER
4 WebLogic Server
Application
Classloading

The following sections provide an overview of Java classloaders, followed by details
about WebLogic Server J2EE application classloading.

! “Java Classloader Overview” on page 4-2

! “WebLogic Server Application Classloader Overview” on page 4-4

! “Resolving Class References Between Components and Applications” on page
4-16
Developing WebLogic Server Applications 4-1

4 WebLogic Server Application Classloading
Java Classloader Overview

Classloaders are a fundamental component of the Java language. A classloader is a part
of the Java virtual machine (JVM) that loads classes into memory; it is the class
responsible for finding and loading class files at run time. Every successful Java
programmer needs to understand classloaders and their behavior. This section provides
an overview of Java classloaders.

Java Classloader Hierarchy

Classloaders contain a hierarchy with parent classloaders and child classloaders. The
relationship between parent and child classloaders is analogous to the object
relationship of super classes and subclasses. The bootstrap classloader is the root of the
Java classloader hierarchy. The Java virtual machine (JVM) creates the bootstrap
classloader, which loads the Java development kit (JDK) internal classes and java.*
packages included in the JVM. (For example, the bootstrap classloader loads
java.lang.String.)

The extensions classloader is a child of the bootstrap classloader. The extensions
classloader loads any JAR files placed in the extensions directory of the JDK. This is
a convenient means to extending the JDK without adding entries to the classpath.
However, anything in the extensions directory must be self-contained and can only
refer to classes in the extensions directory or JDK classes.

The system classpath classloader extends the JDK extensions classloader. The system
classpath classloader loads the classes from the classpath of the JVM.
Application-specific classloaders (including WebLogic Server classloaders) are
children of the system classpath classloader.

Note: What BEA refers to as a “system classloader” is often referred to as the
“application classloader” in contexts outside of WebLogic Server. When
discussing classloaders in WebLogic Server, BEA uses the term “system” to
differentiate from classloaders related to J2EE applications (which BEA refers
to as “application classloaders”).
4-2 Developing WebLogic Server Applications

Java Classloader Overview
Loading a Class

Classloaders use a delegation model when loading a class. The classloader
implementation first checks to see if the requested class has already been loaded. This
class verification improves performance in that the cached memory copy is used
instead of repeated loading of a class from disk. If the class is not found in memory,
the current classloader asks its parent for the class. Only if the parent cannot load the
class does the classloader attempt to load the class. If a class exists in both the parent
and child classloaders, the parent version is loaded. This delegation model is followed
to avoid multiple copies of the same form being loaded. Multiple copies of the same
class can lead to a ClassCastException.

Classloaders ask their parent classloader to load a class before attempting to load the
class themselves. Classloaders in WebLogic Server that are associated with Web
applications can be configured to check locally first before asking their parent for the
class. This allows Web applications to use their own versions of third-party classes,
which might also be used as part of the WebLogic Server product. The following
section discusses this in more detail.

PreferWebInfClasses Element

The WebAppComponentMBean contains a PreferWebInfClasses element. By
default, this element is set to False. When you set this element to True, this subverts
the classloader delegation model so that class definitions from the Web application are
loaded in preference to class definitions in higher-level classloaders. This allows a
Web application to use its own version of a third-party class, which might also be part
of WebLogic Server.

When using this feature, you must be careful not to mix instances created from the
Web applications class definition with issuances created from the server’s definition.
If such instances are mixed, a ClassCastException results.

Listing 4-1 PreferWebInfClasses Element

/**
Developing WebLogic Server Applications 4-3

4 WebLogic Server Application Classloading
* If true, classes located in the WEB-INF directory of a web-app
will be loaded in preference to classes loaded in the application
or system classloader.

* @default false

*/

boolean isPreferWebInfClasses();

void setPreferWebInfClasses(boolean b);

Changing Classes in a Running Program

WebLogic Server allows you to deploy newer versions of application components
such as EJBs while the server is running. This process is known as hot-deploy or
hot-redeploy and is closely related to classloading

Java classloaders do not have any standard mechanism to undeploy or unload a set of
classes, nor can they load new versions of classes. In order to make updates to classes
in a running virtual machine, the classloader that loaded the changed classes must be
replaced with a new classloader. When a classloader is replaced, all classes that were
loaded from that classloader (or any classloaders that are offspring of that classloader)
must be reloaded. Any instances of these classes must be reinstantiated.

In WebLogic Server, each application has a hierarchy of classloaders that are offspring
of the system classloader. These hierarchies allow applications or parts of applications
to be individually reloaded without affecting the rest of the system. This is the topic of
the next section.

WebLogic Server Application Classloader
Overview

This section provides an overview of the WebLogic Server application classloaders.
4-4 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
Application Classloading

WebLogic Server classloading is centered on the concept of an application. An
application is normally packaged in an Enterprise Archive (EAR) file containing
application classes. Everything within an EAR file is considered part of the same
application. The following may be part of an EAR or can be loaded as standalone
applications:

! An Enterprise JavaBean (EJB) JAR file

! A Web Application WAR file

! A Resource Adapter RAR file

Note: For information on Resource Adapter RAR files and classloading, see “About
Resource Adapter Classes.”

If you deploy an EJB JAR file and a Web Application WAR file separately, they are
considered two applications. If they are deployed together within an EAR file, they are
one application. You deploy components together in an EAR file for them to be
considered part of the same application.

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in the corresponding component’s archive file (for example, the JAR file for EJBs or
the WAR file for Web applications).

Every application receives its own classloader hierarchy; the parent of this hierarchy
is the system classpath classloader. This isolates applications so that application A
cannot see the classloaders or classes of application B. In classloaders, no sibling or
friend concepts exist. Application code only has visibility to classes loaded by the
classloader associated with the application (or component) and classes that are loaded
by classloaders that are ancestors of the application (or component) classloader. This
allows WebLogic Server to host multiple isolated applications within the same JVM.
Developing WebLogic Server Applications 4-5

4 WebLogic Server Application Classloading
Application Classloader Hierarchy

WebLogic Server automatically creates a hierarchy of classloaders when an
application is deployed. The root classloader in this hierarchy loads any EJB JAR files
in the application. A child classloader is created for each Web Application WAR file.

Because it is common for Web Applications to call EJBs, the WebLogic Server
application classloader architecture allows JavaServer Page (JSP) files and servlets to
see the EJB interfaces in their parent classloader. This architecture also allows Web
Applications to be redeployed without redeploying the EJB tier. In practice, it is more
common to change JSP files and servlets than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading
concept:

Figure 4-1 WebLogic Server Classloading

If your application includes servlets and JSPs that use EJBs:

! Package the servlets and JSPs in a WAR file

! Package the enterprise beans in an EJB JAR file
4-6 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
! Package the WAR and JAR files in an EAR file

! Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them
together in an EAR file produces a classloader arrangement that allows the servlets and
JSPs to find the EJB classes. If you deploy the WAR and JAR files separately,
WebLogic Server creates sibling classloaders for them. This means that you must
include the EJB home and remote interfaces in the WAR file, and WebLogic Server
must use the RMI stub and skeleton classes for EJB calls, just as it does when EJB
clients and implementation classes are in different JVMs. This concept is discussed in
more detail in the next section “Application Classloading and Pass by Value or
Reference” on page 4-15.

Note: The Web application classloader contains all classes for the Web application
except for the JSP class. The JSP class obtains its own classloader, which is a
child of the Web application classloader. This allows JSPs to be individually
reloaded.

Custom Module Classloader Hierarchies

You can create custom classloader hierarchies for an application allowing for better
control over class visibility and reloadability. You achieve this by defining a
classloader-structure element in the weblogic-application.xml
deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for
WebLogic applications. An application level classloader exists where all EJB classes
are loaded. For each Web module, there is a separate child classloader for the classes
of that module.

For simplicity, JSP classloaders are not described in the following diagram.
Developing WebLogic Server Applications 4-7

4 WebLogic Server Application Classloading
Figure 4-2 Standard Classloader Hierarchy

This hierarchy is optimal for most applications, because it allows call-by-reference
semantics when you invoke on EJBs. It also allows Web modules to be independently
reloaded without affecting other modules. Further, it allows code running in one of the
Web modules to load classes from any of the EJB modules. This is convenient, as it
can prevent a Web module from including the interfaces for EJBs that is uses. Note
that some of those benefits are not strictly J2EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare
alternate classloader organizations that allow the following:

! Reloading individual EJB modules independently

! Reloading groups of modules to be reloaded together

! Reversing the parent child relationship between specific Web modules and EJB
modules

! Namespace separation between EJB modules

Declaring the Classloader Hierarchy

You can declare the classloader hierarchy in the WebLogic-specific application
deployment descriptor weblogic-application.xml. For instructions on how to
edit deployment descriptors, refer to the “WebLogic Builder Online Help.”

The DTD for this declaration is as follows:
4-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/wlbuilder/index.html

WebLogic Server Application Classloader Overview
Listing 4-2 Declaring the Classloader Hierarchy

<!ELEMENT classloader-structure (module-ref*,
classloader-structure*)>

<!ELEMENT module-ref (module-uri)>

<!ELEMENT module-uri (#PCDATA)>

The top-level element in weblogic-application.xml includes an optional
classloader-structure element. If you do not specify this element, then the
standard classloader is used. Also, if you do not include a particular module in the
definition, it is assigned a classloader, as in the standard hierarchy. That is, EJB
modules are associated with the application Root classloader and Web Modules have
their own classloaders.

The classloader-structure element allows for the nesting of
classloader-structure stanzas, so that you can describe an arbitrary hierarchy of
classloaders. There is currently a limitation of three levels. The outermost entry
indicates the application classloader. For any modules not listed, the standard
hierarchy is assumed.

Note: JSP classloaders are not included in this definition scheme. JSPs are always
loaded into a classloader that is a child of the classloader associated with the
Web module to which it belongs.

For more information on the DTD elements, refer to Appendix A, “Application
Deployment Descriptor Elements.”

The following is an example of what a classloader declaration would look like:

Listing 4-3 Example Classloader Declaration

<classloader-structure>

<module-ref>

<module-uri>ejb1.jar</module-uri>

</module-ref>

<module-ref>
Developing WebLogic Server Applications 4-9

4 WebLogic Server Application Classloading
<module-uri>web3.war</module-uri>

</module-ref>

<classloader-structure>

<module-ref>

<module-uri>web1.war</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>

<module-uri>ejb1.jar</module-uri>

</module-ref>

<module-ref>

<module-uri>web2.war</module-uri>

</module-uri>

<classloader>

<module-ref>

<module-uri>web4.war</module-uri>

</module-ref>

</classloader>

<classloader>

<module-ref>

<module-uri>ejb2.jar</module-uri>

</module-ref>

</classloader>

</classloader>

</classloader>
4-10 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
The organization of the nesting indicates the classloader hierarchy. The above stanza
leads to a hierarchy shown in the following diagram:

Figure 4-3 Example Classloader Hierarchy

User-defined Classloader Restrictions

The purpose of this feature is to provide you with better control over what is reloadable
and provide inter-module class visibility. This is primarily intended to be a developer
feature. It is useful for iterative development, but the reloading aspect of this feature is
not recommended for production use, since it is possible to corrupt a running
application if an update includes invalid elements. Custom classloader arrangements
for namespace separation and class visibility are acceptable for production use.
However, programmers should be aware that the J2EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave more
like modules in two separate applications. For example, if you place an EJB in its own
classloader so that it can be reloaded individually, you receive call-by-value semantics
rather than the call-by-reference optimization BEA provides in our standard
classloader hierarchy. Also note that if you use a custom hierarchy, you might end up
with stale references. Therefore, if you reload an EJB module, you should also reload
calling modules.

There are some restrictions to creating user-defined module classloader hierarchies;
these are discussed in the following sections.
Developing WebLogic Server Applications 4-11

4 WebLogic Server Application Classloading
Servlet Reloading Disabled

If you use a custom classloader hierarchy, servlet reloading is disabled for Web
applications in that particular application.

Nesting Depth

Nesting is limited to three levels (including the application classloader). Deeper
nestings lead to a deployment exception.

Module Types

Custom classloader hierarchies are currently restricted to Web and EJB modules.

Duplicate Entries

Duplicate entries lead to a deployment exception.

Interfaces

With our standard classloader hierarchy, the interfaces for EJB are available to all
modules in the application. This means that other modules can invoke on an EJB, even
though they do not include the interface classes in their own module. This is possible
since EJBs are always loaded into the root classloader and all other modules either
share that classloader or have a classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that
a callee’s classes are not visible to the caller. In this case, the calling module must
include the interface classes. This is the same requirement that exists when invoking
on modules in a separate application.

Call-by-value Semantics

The standard classloader hierarchy provided with WebLogic Server allows for calls
between modules within an application to use call-by-reference semantics. This is
because the caller is always using the same classloader or a child classloader of the
callee. With this feature, it is possible to configure the classloader hierarchy so that two
modules are in separate branches of the classloader tree. In this case, call-by-value
semantics are used.
4-12 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
In-flight Work

It is important to be aware that the classloader switch required for reloading is not
atomic across modules. In fact, updates to applications are in general not atomic. For
this reason, it is possible that different in-flight operations might end up accessing
different versions of classes depending on timing.

Development Use Only

This feature is intended for development use. Since updates are not atomic, this feature
is not suitable for production use.

Individual EJB Classloader for Implementation Classes

WebLogic Server allows you to reload individual EJB modules without forcing other
modules to be reloaded at the same time and having to redeploy the entire EJB module.
This feature is similar to how JSPs are currently reloaded in the WebLogic Server
servlet container.

Since EJB classes are invoked through an interface, it is possible to load individual
EJB implementation classes in their own classloader. This way, these classes can be
reloaded individually without having to redeploy the entire EJB module. Below is a
diagram of what the classloader hierarchy for a single EJB module would look like.
The module contains two EJBs (Foo and Bar). This would be a sub-tree of the general
application hierarchy described in the previous section.
Developing WebLogic Server Applications 4-13

4 WebLogic Server Application Classloading
Figure 4-4 Example Classloader Hierarchy for a Single EJB Module

To perform an incremental update (partial upgrade), use the following command line:

Listing 4-4

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy myejb/foo.class

After the -redeploy command, you provide a list of files relative to the root of the
exploded application that you want to update. This might be the path to a specific
element (as above) or a module (or any set of elements and modules). For example:

Listing 4-5

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy mywar myejb/foo.class anotherejb
4-14 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
Given a set of files to be updated, the system tries to figure out the minimum set of
things it needs to redeploy. Redeploying only an EJB impl class causes only that class
to be redeployed. If you specify the whole EJB (in the above example, anotherejb)
or if you change and update the EJB home interface, the entire EJB module must be
redeployed.

Depending on the classloader hierarchy, this may lead to other modules being
redeployed. Specifically, if other modules share the EJB classloader or are loaded into
a classloader that is a child to the EJB's classloader (as in our standard classloader
module) then those modules are also reloaded.

Application Classloading and Pass by Value or Reference

Modern programming languages use two common parameter passing models: pass by
value and pass by reference. With pass by value, parameters and return values are
copied for each method call. With pass by reference, a pointer (or reference) to the
actual object is passed to the method. Pass by reference improves performance because
it avoids copying objects, but it also allows a method to modify the state of a passed
parameter.

WebLogic Server includes an optimization to improve the performance of Remote
Method Interface (RMI) calls within the server. Rather than using pass by value and
the RMI subsystem’s marshalling and unmarshalling facilities, the server makes a
direct Java method call using pass by reference. This mechanism greatly improves
performance and is also used for EJB 2.0 local interfaces.

RMI call optimization and call by reference can only be used when the caller and callee
are within the same application. As usual, this is related to classloaders. Since
applications have their own classloader hierarchy, any application class has a
definition in both classloaders and receives a ClassCastException error if you try to
assign between applications. To work around this, WebLogic Server uses call by value
between applications, even if they are within the same JVM.

Note: Calls between applications are slower than calls within the same application.
Deploy components together as an EAR file to enable fast RMI calls and use
of the EJB 2.0 local interfaces.
Developing WebLogic Server Applications 4-15

4 WebLogic Server Application Classloading
Resolving Class References Between
Components and Applications

Your applications may use many different Java classes, including enterprise beans,
servlets and JavaServer Pages, utility classes, and third-party packages. WebLogic
Server deploys applications in separate classloaders to maintain independence and to
facilitate dynamic redeployment and undeployment. Because of this, you need to
package your application classes in such a way that each component has access to the
classes it depends on. In some cases, you may have to include a set of classes in more
than one application or component. This section describes how WebLogic Server uses
multiple classloaders so that you can stage your applications successfully.

About Resource Adapter Classes

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in the corresponding component’s archive file (for example, the JAR file for EJBs or
the WAR file for Web applications).

Packaging Shared Utility Classes

WebLogic Server provides a location within an EAR file where you can store shared
utility classes. Place utility JAR files in the APP-INF/lib directory and individual
classes in the APP-INF/classes directory. (Do not place JAR files in the /classes
directory or classes in the /lib directory.) These classes are loaded into the root
classloader for the application, making them visible to all components within the EAR.

This feature obviates the need to place utility classes in the system classpath or place
classes in an EJB JAR file (which depends on the standard WebLogic Server
classloader hierarchy). Be aware that using this feature is subtly different from using
the manifest Class-Path described in the following section. With this feature, class
4-16 Developing WebLogic Server Applications

Resolving Class References Between Components and Applications
definitions are shared across the application. With manifest Class-Path, the classpath
of the referencing module is simply extended, which means that separate copies of the
classes exist for each module.

Manifest Class-Path

The J2EE specification provides the manifest Class-Path entry as a means for a
component to specify that it requires an auxiliary JAR of classes. You only need to use
this manifest Class-Path entry if you have additional supporting JAR files as part of
your EJB JAR or WAR file. In such cases, when you create the JAR or WAR file, you
must include a manifest file with a Class-Path element that references the required
JAR files.

The following is a simple manifest file that references a utility.jar file:

Manifest-Version: 1.0 [CRLF]
Class-Path: utility.jar [CRLF]

In first line of the manifest file, you must always include the Manifest-Version
attribute, followed by a new line (CR | LF |CRLF) and then the Class-Path attribute.
More information about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

The manifest Class-Path entries refer to other archives relative to the current archive
in which these entries are defined. This structure allows multiple WAR files and EJB
JAR files to share a common library JAR. For example, if a WAR file contains a
manifest entry of y.jar, this entry should be next to the WAR file (not within it) as
follows:

/<directory>/x.war

/<directory>/y.jars

The manifest file itself should be located in the archive at META-INF/MANIFEST.MF.

For more information, see
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html
Developing WebLogic Server Applications 4-17

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

4 WebLogic Server Application Classloading
4-18 Developing WebLogic Server Applications

CHAPTER
5 Programming Topics

The following sections contain information about programming in the WebLogic
Server environment, including descriptions of useful WebLogic Server facilities and
advice about using various programming techniques:

! “Logging Messages” on page 5-2

! “Using Threads in WebLogic Server” on page 5-2

! “Using JavaMail with WebLogic Server Applications” on page 5-3

! “Programming Applications for WebLogic Server Clusters” on page 5-9
Developing WebLogic Server Applications 5-1

5 Programming Topics
Logging Messages

Each WebLogic Server instance has a log file that contains messages generated from
that server. Your applications can write messages to the log file using
internationalization services that access localized message catalogs. If localization is
not required, you can use the weblogic.logging.NonCatalogLogger class to write
messages to the log. This class can also be used in client applications to write messages
in a client-side log file.

For more information, refer to the Using WebLogic Logging Services guide.

Using Threads in WebLogic Server

WebLogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebLogic Server’s
architecture, construct your application components created according to the standard
J2EE APIs.

In most cases, avoid application designs that require creating new threads in
server-side components:

! Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause WebLogic Server to thrash when the server load increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

! Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebLogic Server threads are
especially difficult to anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For
example, an application that searches several repositories and returns a combined
result set can return results sooner if the searches are done asynchronously using a new
thread for each repository instead of synchronously using the main client thread.
5-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs81b/logging/index.html

Using JavaMail with WebLogic Server Applications
If you must use threads in your application code, create a pool of threads so that you
can control the number of threads your application creates. Like a JDBC connection
pool, you allocate a given number of threads to a pool, and then obtain an available
thread from the pool for your runnable class. If all threads in the pool are in use, wait
until one is returned. A thread pool helps avoid performance issues and allows you to
optimize the allocation of threads between WebLogic Server execution threads and
your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesirable interactions with WebLogic Server threads, do not let your
threads call into WebLogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external service with a TCP/IP
connection or, with proper locking, reading or writing to files. A short-lived thread that
accomplishes a single purpose and ends (or returns to the thread pool) is less likely to
interfere with other threads.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even
to the point of failure. Observe the application performance and WebLogic Server
behavior and then add checks to prevent failures from occurring in production.

Using JavaMail with WebLogic Server
Applications

WebLogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilities to
your WebLogic Server applications. JavaMail provides access from Java applications
to Internet Message Access Protocol (IMAP)- and Simple Mail Transfer Protocol
(SMTP)-capable mail servers on your network or the Internet. It does not provide mail
server functionality; so you must have access to a mail server to use JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebLogic Server environment.
Developing WebLogic Server Applications 5-3

http://java.sun.com/products/javamail/index.html

5 Programming Topics
The weblogic.jar file contains the javax.mail and javax.mail.internet

packages from Sun. weblogic.jar also contains the Java Activation Framework
(JAF) package, which JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol
(IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate
POP3 provider for JavaMail, which is not included in weblogic.jar. You can
download the POP3 provider from Sun and add it to the WebLogic Server classpath if
you want to use it.

About JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. The weblogic.jar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail servers for JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, download JavaMail from Sun and follow Sun’s instructions
for adding your extensions. Then add your extended JavaMail package in the
WebLogic Server classpath in front of weblogic.jar.

Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebLogic Server, you create a Mail Session in the
WebLogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with JNDI, using Session properties you
preconfigure for them. For example, by creating a Mail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because WebLogic Server
creates a single Session object and makes it available via JNDI to any component that
needs it.

1. In the Administration Console, click on the Mail node in the left pane of the
Administration Console.
5-4 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
2. Click Create a New Mail Session.

3. Complete the form in the right pane, as follows:

" In the Name field, enter a name for the new session.

" In the JNDIName field, enter a JNDI lookup name. Your code uses this
string to look up the javax.mail.Session object.

" In the Properties field, enter properties to configure the Session. The property
names are specified in the JavaMail API Design Specification. JavaMail
provides default values for each property, and you can override the values in
the application code. The following table lists the properties you can set in
this field.

Property Description Default

mail.store.protocol The protocol to use to retrieve email.

Example:

mail.store.protocol=imap

The bundled JavaMail
library has support for
IMAP.

mail.transport.protocol The protocol to use to send email.

Example:

mail.transport.protocol=smtp

The bundled JavaMail
library has support for
SMTP.

mail.host The name of the mail host machine.

Example:

mail.host=mailserver

The default is the local
machine.

mail.user The name of the default user for retrieving
email.

Example:

mail.user=postmaster

The default is the value
of the user.name Java
system property.
Developing WebLogic Server Applications 5-5

5 Programming Topics
You can override any properties set in the Mail Session in your code by creating a
Properties object containing the properties you want to override. Then, after you
lookup the Mail Session object in JNDI, call the Session.getInstance() method
with your Properties to get a customized Session.

Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebLogic Server
component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;

mail.protocol.host The mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mail.smtp.host=mail.mydom.com
mail.imap.host=localhost

The value of the
mail.host property.

mail.protocol.user The protocol-specific default user name
for logging into a mailer server.

Examples:

mail.smtp.user=weblogic
mail.imap.user=appuser

The value of the
mail.user property.

mail.from The default return address.

Examples:

mail.from=master@mydom.com

username@host

mail.debug Set to True to enable JavaMail debug
output.

False

Property Description Default
5-6 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

4. Construct a MimeMessage. In the following example, to, subject, and
messageTxt are String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);

Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);

5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in a try block and
catch these exceptions.
Developing WebLogic Server Applications 5-7

5 Programming Topics
Reading Messages with JavaMail

The JavaMail API allows you to connect to a message store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
folders that contain archived messages. With POP3, the server provides a folder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refers to the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder’s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic
Server component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);
5-8 Developing WebLogic Server Applications

Programming Applications for WebLogic Server Clusters
4. Get a Store object from the Session and call its connect() method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement a full-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
via WebLogic Server, possibly using a database or file system to represent folders.

Programming Applications for WebLogic
Server Clusters

JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe
certain requirements for preserving session data. See Using WebLogic Server Clusters
for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB
type. See "The WebLogic Server EJB Container" in Programming WebLogic
Enterprise JavaBeans for information about the capabilities of different EJB types in
a cluster. EJBs can be deployed to a cluster by setting clustering properties in the EJB
Developing WebLogic Server Applications 5-9

http://e-docs.bea.com/wls/docs81b/cluster/index.html
http://e-docs.bea.com/wls/docs81b/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

5 Programming Topics
deployment descriptor. "weblogic-ejb-jar.xml Deployment Descriptors" in
Programming WebLogic Enterprise JavaBeans describes the XML deployment
elements relevant for clustering.

If you are developing either EJBs or custom RMI objects for deployment in a cluster,
also refer to "Using WebLogic JNDI in a Clustered Enviroment" in Programming
WebLogic JNDI to understand the implications of binding clustered objects in the
JNDI tree.
5-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs81b/ejb/reference.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jndi/jndi.html#jndi012
http://e-docs.bea.com/wls/docs81b/jndi/index.html

CHAPTER
A Application
Deployment Descriptor
Elements

The following sections describe deployment descriptors for J2EE applications on
WebLogic Server. Two deployment descriptors are required: a J2EE standard
deployment descriptor named application.xml, and a WebLogic-specific
application deployment descriptor named weblogic-application.xml. The
weblogic-application.xml file is optional if you are not using any WebLogic
Server extensions.

! “application.xml Deployment Descriptor Elements” on page A-1

! “weblogic-application.xml Deployment Descriptor Elements” on page A-6

application.xml Deployment Descriptor
Elements

The following sections describe the application.xml file.

The application.xml file is the deployment descriptor for Enterprise Application
Archives. The file is located in the META-INF subdirectory of the application archive.
It must begin with the following DOCTYPE declaration:
Developing WebLogic Server Applications A-1

A Application Deployment Descriptor Elements
<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

The following diagram summarizes the structure of the application.xml
deployment descriptor.

The following sections describe each of the elements that can appear in the file.

application

icon?

small-icon?

large-icon?

display-name

description?

module+

security-role*

ejb

java

web

web-uri

context-root

description?

role-name

? = Optional
+ = One or more
* = Zero or more

alt-dd

connector
A-2 Developing WebLogic Server Applications

application
application

application is the root element of the application deployment descriptor. The
elements within the application element are described in the following sections.

icon

Optional. The icon element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

Optional. The display-name element specifies the application display name, a short
name that is intended to be displayed by GUI tools.

description

The optional description element provides descriptive text about the application.
Developing WebLogic Server Applications A-3

A Application Deployment Descriptor Elements
module

The application.xml deployment descriptor contains one module element for each
module in the Enterprise Archive file. Each module element contains an ejb, java, or
web element that indicates the module type and location of the module within the
application. An optional alt-dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.

alt-dd

Specifies an optional URI to the post-assembly version of the deployment descriptor
file for a particular J2EE module. The URI must specify the full pathname of the
deployment descriptor file relative to the application’s root directory. If you do not
specify alt-dd, the deployer must read the deployment descriptor from the default
location and file name required by the respective component specification.

connector

Specifies the URI of a resource adapter (connector) archive file, relative to the top level
of the application package.

ejb

Defines an EJB module in the application file. Contains the path to an EJB JAR file in
the application.

Example:

<ejb>petStore_EJB.jar</ejb>

java

Defines a client application module in the application file.

Example:

<java>client_app.jar</java>
A-4 Developing WebLogic Server Applications

application
web

Defines a Web application module in the application.xml file. The web element
contains a web-uri element and a context-root element. If you do not declare a
value for the context-root, then the basename of the web-uri element is used as
the context path of the Web application. (Note that the context path must be unique in
a given Web server. More than one Web application may be using the same Web
server, so you must avoid having context path clashes across multiple applications.)

web-uri

Defines the location of a Web module in the application.xml file. This is the name
of the WAR file.

context-root

Specifies a context root for the Web application.

Example:

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>

security-role

The security-role element contains the definition of a security role which is global
to the application. Each security-role element contains an optional description
element, and a role-name element.

description

Optional. Text description of the security role.

role-name

Defines the name of a security role or principal that is used for authorization within the
application. Roles are mapped to WebLogic Server users or groups in the
weblogic-application.xml deployment descriptor.
Developing WebLogic Server Applications A-5

A Application Deployment Descriptor Elements
Example:

<security-role>
<description>the gold customer role</description>
<role-name>gold_customer</role-name>

</security-role>
<security-role>
<description>the customer role</description>
<role-name>customer</role-name>

</security-role>

weblogic-application.xml Deployment
Descriptor Elements

The following sections describe the weblogic-application.xml file. The
weblogic-application.xml file is the BEA WebLogic Server-specific
deployment descriptor extension for the application.xml deployment descriptor
from Sun Microsystems. This is where you configure features such as
application-scoped JDBC Pools and EJB Caching.

The file is located in the META-INF subdirectory of the application archive. It must
begin with the following DOCTYPE declaration:

<!DOCTYPE weblogic-application PUBLIC "-//BEA Systems, Inc.//DTD
WebLogic Application 7.1.0//EN"

"http://www.bea.com/servers/wls710/dtd/weblogic-application_2_0.d
td";>

The following sections describe each element that can appear in the file.

weblogic-application

The weblogic-application element is the root element of the application
deployment descriptor.
A-6 Developing WebLogic Server Applications

http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd
http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd

weblogic-application
ejb

Optional. The ejb element contains information that is specific to the EJB modules
that are part of a WebLogic application. Currently, one can use the ejb element to
specify one or more application level caches that can be used by the application’s
entity beans.

entity-cache

One or more. The entity-cache element is used to define a named application level
cache that is used to cache entity EJB instances at runtime. Individual entity beans refer
to the application-level cache that they must use, referring to the cache name. There is
no restriction on the number of different entity beans that may reference an individual
cache.

Application-level caching is used by default whenever an entity bean does not specify
its own cache in the weblogic-ejb-jar.xml descriptor. Two default caches named
ExclusiveCache and MultiVersionCache are used for this purpose. An
application may explicitly define these default caches to specify non-default values for
their settings. Note that the caching-strategy cannot be changed for the default caches.
By default, a cache uses max-beans-in-cache with a value of 1000 to specify its
maximum size.

Example:

<entity-cache>

<entity-cache-name>ExclusiveCache</entity-cache-name>

<max-cache-size>

<megabytes>50</megabytes>

</max-cache-size>

</entity-cache>

entity-cache-name

The entity-cache-name element specifies a unique name for an entity bean cache.
The name must be unique within an ear file and may not be the empty string.
Developing WebLogic Server Applications A-7

A Application Deployment Descriptor Elements
Example:

<entity-cache-name>ExclusiveCache</entity-cache-name>

max-beans-in-cache

Optional. The max-beans-in-cache element specifies the maximum number of
entity beans that are allowed in the cache. If the limit is reached, beans may be
passivated. If 0 is specified, then there is no limit. This mechanism does not take into
account the actual amount of memory that different entity beans require.

Default Value: 1000

max-cache-size

The max-cache-size element is used to specify a limit on the size of an entity cache
in terms of memory size—expressed either in terms of bytes or megabytes. A bean
provider should provide an estimate of the average size of a bean in the
weblogic-ejb-jar.xml descriptor if the bean uses a cache that specifies its
maximum size using the max-cache-size element. By default, a bean is assumed to
have an average size of 100 bytes.

! bytes | megabytes—The size of an entity cache in terms of memory size,
expressed in bytes or megabytes. Used in the max-cache-size element.

read-timeout-seconds

Optional. The read-timeout-seconds element specifies the number of seconds
between ejbLoad calls on a read-only entity bean. If read-timeout-seconds is set
to 0, ejbLoad will only be called when the bean is brought into the cache.

caching-strategy

Optional. The caching-strategy element specifies the general strategy that the EJB
container uses to manage entity bean instances in a particular application level cache.
A cache buffers entity bean instances in memory and associates them with their
primary key value.

The caching-strategy element can only have one of the following values:

! Exclusive—Caches a single bean instance in memory for each primary key
value. This unique instance is typically locked using the EJB container’s
A-8 Developing WebLogic Server Applications

weblogic-application
exclusive locking when it is in use, so that only one transaction can use the
instance at a time.

! MultiVersion—Caches multiple bean instances in memory for a given
primary key value. Each instance can be used by a different transaction
concurrently.

Default Value: MultiVersion

Example:

<caching-strategy>Exclusive</caching-strategy>

start-mdbs-with-application

Optional. Allows you to configure the EJB container to start Message
Driven BeanS (MDBS) with the application. If set to true, the
container starts MDBS as part of the application. If set to false,
the container keeps MDBS in a queue and the server starts them as
soon as it has started listening on the ports.

xml

Optional. The xml element contains information about parsers and entity mappings for
XML processing that is specific to this application.

parser-factory

Optional. The parser-factory element contains three elements:
saxparser-factory?, document-builder-factory?, and
transformer-factory?.

saxparser-factory

Optional. The saxparser-factory element allows you to set the SAXParser Factory
for the XML parsing required in this application only. This element determines the
factory to be used for SAX style parsing. If you do not specify the
saxparser-factory element setting, the configured SAXParser Factory style in the
Server XML Registry is used.
Developing WebLogic Server Applications A-9

A Application Deployment Descriptor Elements
Default Value: Server XML Registry setting

document-builder-factory

Optional. The document-builder-factory element allows you to set the Document
Builder Factory for the XML parsing required in this application only. This element
determines the factory to be used for DOM style parsing. If you do not specify the
document-builder-factory element setting, the configured DOM style in the
Server XML Registry is used.

Default Value: Server XML Registry setting

transformer-factory

Optional. The transformer-factory element allows you to set the Transformer
Engine for the style sheet processing required in this application only. If you do not
specify a value for this element, the value configured in the Server XML Registry is
used.

Default value: Server XML Registry setting.

entity-mapping

Zero or more. The entity-mapping element is used to specify entity mapping. This
mapping determines the alternative entity URI for a given public or system ID. The
default place to look for this entity URI is the lib/xml/registry directory.

entity-mapping-name

The entity-mapping-name element specifies the name for this entity mapping.

public-id

Optional. The public-id element specifies the public ID of the mapped entity.

system-id

Optional. The system-id element specifies the system ID of the mapped entity.
A-10 Developing WebLogic Server Applications

weblogic-application
entity-uri

Optional. The entity-uri element specifies the entity URI for the mapped entity.

when-to-cache

Optional. Legal values are:

! cache-on-reference

! cache-at-initialization

! cache-never

The default value is cache-on-reference.

cache-timeout-interval

Optional. The cache-timeout-interval element allows you to specify the integer
value in seconds.

security

Optional. The security element specifies security information for the application.

! realm-name—Optional. The realm-name element names a security realm that
will be used by the application. If not specified, the system default realm is used.

jdbc-connection-pool

Zero or more. The jdbc-connection-pool element specifies an application-scoped
JDBC connection pool.u

data-source-name

The data-source-name element specifies the JNDI name in the application-specific
JNDI tree.
Developing WebLogic Server Applications A-11

A Application Deployment Descriptor Elements
connection-factory

The connection-factory element defines the number of physical database
connections to create when the pool is initialized. The default value is 1.

factory-name

The factory-name element specifies the name of a
JDBCDataSourceFactoryMBean in the config.xml file.

connection-properties

Optional. The connection-properties element specifies the connection parameters
that define overrides for default connection factory settings.

! user-name—Optional. The user-name element is used to override UserName
in the JDBCDataSourceFactoryMBean.

! url—Optional. The url element is used to override URL in the
JDBCDataSourceFactoryMBean.

! driver-class-name—Optional. The driver-class-name element is used to
override DriverName in the JDBCDataSourceFactoryMBean.

! connection-params—Zero or more.

" parameter+ (param-value, param-name)—One or more

pool-params

Optional. The pool-params element defines parameters that affect the behavior of
the pool.

size-params

Optional. The size-params element defines parameters that affect the number of
connections in the pool.

! initial-capacity—Optional. The initial-capacity element defines the
number of physical database connections to create when the pool is initialized.
The default value is 1.
A-12 Developing WebLogic Server Applications

weblogic-application
! max-capacity—Optional. The max-capacity element defines the maximum
number of physical database connections that this pool can contain. Note that the
JDBC Driver may impose further limits on this value. The default value is 1.

! capacity-increment—Optional. The capacity-increment element
defines the increment by which the pool capacity is expanded. When there are
no more available physical connections to service requests, the pool creates this
number of additional physical database connections and adds them to the pool.
The pool ensures that it does not exceed the maximum number of physical
connections as set by max-capacity. The default value is 1.

! shrinking-enabled—Optional. The shrinking-enabled element indicates
whether or not the pool can shrink back to its initial-capacity when
connections are detected to not be in use.

! shrink-period-minutes—Optional. The shrink-period-minutes
element defines the number of minutes to wait before shrinking a connection
pool that has incrementally increased to meet demand. The
shrinking-enabled element must be set to true for shrinking to take place.

! shrink-frequency-seconds—

! highest-num-waiters—

! highest-num-available—

! profiling-enabled—

! cache-profiling-threshold—

! cache-size—

! parameter-logging-enabled—

! max-parameter-length—

! acl-name—The ACL used to control access to this connection pool.

xa-params

Optional. The xa-params element defines the parameters for the XA DataSources.

! debug-level—Optional. Integer. The debug-level element defines the
debugging level for XA operations. The default value is 0.
Developing WebLogic Server Applications A-13

A Application Deployment Descriptor Elements
! keep-conn-until-tx-complete-enabled—Optional. Boolean. If you set
the keep-conn-until-tx-complete-enabled element to true, the XA
connection pool associates the same XA connection with the distributed
transaction until the transaction completes.

! end-only-once-enabled—Optional. Boolean. If you set the
end-only-once-enabled element to true, the XAResource.end() method
is only called once for each pending XAResource.start() method.

! recover-only-once-enabled—Optional. Boolean. If you set the
recover-only-once-enabled element to true, recover is only called one
time on a resource.

! tx-context-on-close-needed—Optional. Set the
tx-context-on-close-needed element to true if the XA driver requires a
distributed transaction context when closing various JDBC objects (for example,
result sets, statements, connections, and so on). If set to true, the SQL
exceptions that are thrown while closing the JDBC objects in no transaction
context are swallowed.

! new-conn-for-commit-enabled—Optional. Boolean. If you set the
new-conn-for-commit-enabled element to true, a dedicated XA
connection is used for commit/rollback processing of a particular distributed
transaction.

! prepared-statement-cache-size—Optional. Use the
prepared-statement-cache-size element to set the size of the prepared
statement cache. The size of the cache is a number of prepared statements
created from a particular connection and stored in the cache for further use.
Setting the size of the prepared statement cache to 0 turns it off.

! keep-logical-conn-open-on-release—Optional. Boolean. Set the
keep-logical-conn-open-on-release element to true, to keep the logical
JDBC connection open when the physical XA connection is returned to the XA
connection pool. The default value is false.

! local-transaction-supported—Optional. Boolean. Set the
local-transaction-supported to true if the XA driver supports SQL with
no global transaction; otherwise, set it to false. The default value is false.

! resource-health-monitoring-enabled—Optional. Set the
resource-health-monitoring-enabled element to true to enable JTA
resource health monitoring for this connection pool.
A-14 Developing WebLogic Server Applications

weblogic-application
login-delay-seconds

Optional. Integer value. The login-delay-seconds element sets the number of
seconds to delay before creating each physical database connection. Some database
servers cannot handle multiple requests for connections in rapid succession. This
property allows you to build in a small delay to let the database server catch up. This
delay occurs both during initial pool creation and during the lifetime of the pool
whenever a physical database connection is created.

leak-profiling-enabled

Optional. The leak-profiling-enabled element enables JDBC connection leak
profiling. A connection leak occurs when a connection from the pool is not closed
explicitly by calling the close() method on that connection. When connection leak
profiling is active, the pool stores the stack trace at the time the connection object is
allocated from the pool and given to the client. When a connection leak is detected
(when the connection object is garbage collected), this stack trace is reported.

This element uses extra resources and will likely slowdown connection pool
operations, so it is not recommended for production use.

connection-check-params

Optional. The connection-check-params element defines whether, when, and
how connections in a pool is checked to make sure they are still alive.

! table-name—Optional. The table-name element defines a table in the
schema that can be queried.

! check-on-reserve-enabled—Optional. If the
check-on-reserve-enabled element is set to true, then the connection will
be tested each time before it is handed out to a user.

! check-on-release-enabled—Optional. If the
check-on-release-enabled element is set to true, then the connection will
be tested each time a user returns a connection to the pool.

! refresh-minutes—Optional. If the refresh-minutes element is defined, a
trigger is fired periodically (based on the number of minutes specified). This
trigger checks each connection in the pool to make sure it is still valid.

! check-on-create-enabled—Optional. If set to true, then the connection
will be tested when it is created.
Developing WebLogic Server Applications A-15

A Application Deployment Descriptor Elements
! connection-reserve-timeout-seconds—Optional. Number of seconds
after which the call to reserve a connection from the pool will timeout.

! connection-creation-retry-frequency-seconds—Optional. The
frequency of retry attempts by the pool to establish connections to the database.

! inactive-connection-timeout-seconds—Optional. The number of
seconds of inactivity after which reserved connections will forcibly be released
back into the pool.

! test-frequency-seconds—Optional. The number of seconds between
database connection tests. After every test-frequency-seconds interval, unused
database connections are tested using table-name. Connections that do not
pass the test will be closed and reopened to re-establish a valid physical database
connection. If table-name is not set, the test will not be performed.

driver-params

Optional. The driver-params element sets behavior on WebLogic Server drivers.

statement

Optional.

! profiling-enabled—Optional. profiling-enabled boolean. The
profiling-enabled element enables the running of JDBC SQL round-trip
profiling. When enabled, SQL statement text, execution time, and other metrics
are stored externally for further analysis. This is a resource-consuming feature,
so it is recommended that you turn it off on a production server. The default
value is false.

prepared-statement

Optional. profiling-enabled boolean. The prepared-statement element
enables the running of JDBC prepared statement cache profiling. When enabled,
prepared statement cache profiles are stored in external storage for further analysis.
This is a resource-consuming feature, so it is recommended that you turn it off on a
production server. The default value is false.

! profiling-enabled—Optional.
A-16 Developing WebLogic Server Applications

weblogic-application
! cache-profiling-threshold—Optional. The
cache-profiling-threshold element defines a number of statement
requests after which the state of the prepared statement cache is logged. This
element minimizes the output volume. This is a resource-consuming feature, so
it is recommended that you turn it off on a production server.

! cache-size—Optional. The cache-size element returns the size of the
prepared statement cache. The size of the cache is a number of prepared
statements created from a particular connection and stored in the cache for
further use.

! parameter-logging-enabled—Optional. During SQL roundtrip profiling it
is possible to store values of prepared statement parameters. The
parameter-logging-enabled element enables the storing of statement
parameters. This is a resource-consuming feature, so it is recommended that you
turn it off on a production server.

! max-parameter-length—Optional. During SQL roundtrip profiling it is
possible to store values of prepared statement parameters. The
max-parameter-length element defines maximum length of the string passed
as a parameter for JDBC SQL roundtrip profiling. This is a resource-consuming
feature, so you should limit the length of data for a parameter to reduce the
output volume.

row-prefetch-enabled

Optional

row-prefetch-size

Optional

stream-chunk-size

Optional

acl-name

Optional
Developing WebLogic Server Applications A-17

A Application Deployment Descriptor Elements
application-param

Zero or more. The application-param element defines various parameters that
affect container behavior. These parameters are as follows:

! webapp.encoding.usevmdefault

! webapp.encoding.default

! webapp.getrealpath.accept_context_path

classloader-structure

A classloader-structure element allows you to define the organization of classloaders
for this application. The declaration represents a tree structure that represents the
classloader hierarchy and associates specific modules with particular nodes. A
module's classes are loaded by the classloader that its associated with in this structure.

Example:

<classloader-structure>

<module-ref>

<module-uri>ejb1.jar</module-uri>

<module-uri>ejb2.jar</module-uri>

<classloader-structure>

<module-uri>ejb3.jar</module-uri>

</classloader-structure>

</classloader-structure>

module-ref

Zero or more.
A-18 Developing WebLogic Server Applications

weblogic-application
module-uri

classloader-structure

Zero or more.

listener

The listener element is used to register user defined application lifecycle listeners.
These are classes that extend the abstract base class
weblogic.application.ApplicationLifecycleListener.

listener-class

The listener-class element is the name of the users implementation of
ApplicationLifecycleListener.

listener-uri

Optional. The listener-uri is a JAR file within the EAR that contains the
implementation. If you do not specify the listener-uri, it is assumed that the class
is visible to the application.

startup

Use the startup element to register user-defined startup classes.

startup-class

Use the startup-class element to define the name of the class to be run when the
application is being deployed.
Developing WebLogic Server Applications A-19

A Application Deployment Descriptor Elements
startup-uri

Optional. Use the startup-uri element to define a JAR file within the EAR that
contains the startup-class. If startup-uri is not defined, then its assumed that
the class is visible to the application.

shutdown

The shutdown element is used to register user defined shutdown classes.

shutdown-class

Use the shutdown-class element to define the name of the class to be run when the
application is undeployed.

shutdown-uri

Optional. The shutdown-uri element is used to define a JAR file within the EAR that
contains the shutdown-class. If you do not define the shutdown-uri element, it is
assumed that the class is visible to the application.
A-20 Developing WebLogic Server Applications

CHAPTER
B Client Application
Deployment Descriptor
Elements

The following sections describe deployment descriptors for J2EE client applications
on WebLogic Server. Often, when it comes to J2EE applications, users are only
concerned with the server-side components (Web Applications, EJBs, Connectors).
You configure these server-side components using the application.xml
deployment descriptor, discussed in Appendix A, “Application Deployment
Descriptor Elements.”

However, it is also possible to include a client component (a JAR file) in an EAR file.
This JAR file is only used on the client side; you configure this client component using
the client-application.xml deployment descriptor. This scheme makes it
possible to package both client and server side components together. The server looks
only at the parts it is interested in (based on the application.xml file) and the client
looks only at the parts it is interested in (based on the client-application.xml
file).

For client-side components, two deployment descriptors are required: a J2EE standard
deployment descriptor, application-client.xml, and a WebLogic-specific
runtime deployment descriptor with a name derived from the client application JAR
file.

! “application-client.xml Deployment Descriptor Elements” on page B-2

! “WebLogic Run-time Client Application Deployment Descriptor” on page B-7
Developing WebLogic Server Applications B-1

B Client Application Deployment Descriptor Elements
application-client.xml Deployment
Descriptor Elements

The application-client.xml file is the deployment descriptor for J2EE client
applications. It must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

The following diagram summarizes the structure of the application-client.xml
deployment descriptor.
B-2 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
The following sections describe each of the elements that can appear in the file.

application-client

icon?

small-icon?

large-icon?

display-name

description?

env-entry*

description?

env-entry-name

env-entry-type

? = Optional
+ = One or more
* = Zero or more

env-entry-value?

ejb-ref*

description?

ejb-ref-name

ejb-ref-type

home

remote

ejb-link?

resource-ref*

description?

res-ref-name

res-type

res-auth
Developing WebLogic Server Applications B-3

B Client Application Deployment Descriptor Elements
application-client

application-client is the root element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB
components and other resources used by the client application.

The elements within the application-client element are described in the following
sections.

icon

Optional. The icon element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

The display-name element specifies the application display name, a short name that
is intended to be displayed by GUI tools.

description

Optional. The description element provides a description of the client application.
B-4 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
env-entry

The env-entry element contains the declaration of a client application’s environment
entries.

description

Optional. The description element contains a description of the particular
environment entry.

env-entry-name

The env-entry-name element contains the name of a client application’s
environment entry.

env-entry-type

The env-entry-type element contains the fully-qualified Java type of the
environment entry. The possible values are: java.lang.Boolean,
java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

env-entry-value

Optional. The env-entry-value element contains the value of a client application’s
environment entry. The value must be a String that is valid for the constructor of the
specified env-entry-type.

ejb-ref

The ejb-ref element is used for the declaration of a reference to an EJB referenced
in the client application.

description

Optional. The description element provides a description of the referenced EJB.
Developing WebLogic Server Applications B-5

B Client Application Deployment Descriptor Elements
ejb-ref-name

The ejb-ref-name element contains the name of the referenced EJB. Typically the
name is prefixed by ejb/, such as ejb/Deposit.

ejb-ref-type

The ejb-ref-type element contains the expected type of the referenced EJB, either
Session or Entity.

home

The home element contains the fully-qualified name of the referenced EJB’s home
interface.

remote

The remote element contains the fully-qualified name of the referenced EJB’s remote
interface.

ejb-link

The ejb-link element specifies that an EJB reference is linked to an enterprise
JavaBean in the J2EE application package. The value of the ejb-link element must
be the name of the ejb-name of an EJB in the same J2EE application.

resource-ref

The resource-ref element contains a declaration of the client application’s reference
to an external resource.

description

Optional. The description element contains a description of the referenced external
resource.
B-6 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
res-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the client application’s
environment entry whose value contains the JNDI name of the data source.

res-type

The res-type element specifies the type of the data source. The type is specified by
the Java interface or class expected to be implemented by the data source.

res-auth

The res-auth element specifies whether the EJB code signs on programmatically to
the resource manager, or whether the Container will sign on to the resource manager
on behalf of the EJB. In the latter case, the Container uses information that is supplied
by the Deployer. The res-auth element can have one of two values: Application or
Container.

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory as the client application JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension .runtime.xml. For example, if the client application is packaged in a file
named c:/applications/ClientMain.jar, the run-time deployment descriptor is
in the file named c:/applications/ClientMain.runtime.xml.
Developing WebLogic Server Applications B-7

B Client Application Deployment Descriptor Elements
The following diagram shows the structure of the elements in the run-time deployment
descriptor.

application-client

The application-client element is the root element of a WebLogic-specific
run-time client deployment descriptor.

env-entry

The env-entry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name

The env-entry-name element contains the name of an application client's
environment entry.

Example:

application-client

env-entry

env-entry-name

env-entry-value

ejb-ref

ejb-ref-name

jndi-name

resource-ref

resource-ref-name

jndi-name

? = Optional
+ = One or more
* = Zero or more
B-8 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
<env-entry-name>EmployeeAppDB</env-entry-name>

env-entry-value

The env-entry-value element contains the value of an application client’s
environment entry. The value must be a string valid for the constructor of the specified
type that takes a single string parameter.

ejb-ref

The ejb-ref element specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

ejb-ref-name

The ejb-ref-name element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
name is prefixed with ejb/.

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

jndi-name

The jndi-name element specifies the JNDI name for the EJB.

resource-ref

The resource-ref element declares an application client’s reference to an external
resource. It contains the resource factory reference name, an indication of the resource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi-name>

</resource-ref>
Developing WebLogic Server Applications B-9

B Client Application Deployment Descriptor Elements
resource-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the JNDI name of the data source.

jndi-name

The jndi-name element specifies the JNDI name for the resource.
B-10 Developing WebLogic Server Applications

Index

Symbols
.ear file 1-8, 2-14, 2-15
.jar file 2-15
.rar file 1-8, 2-16

modifying an existing 2-18
.war file 1-3

A
Administration Console

creating a Mail Session 6-4
editing deployment descriptors 3-6

application components 1-2
application element A-3, A-6
application.xml file

application element A-3, A-6
deployment descriptor elements A-1
description element A-3, A-5
display-name element A-3
ejb element A-4
icon element A-3
java element A-4
large-icon element A-3
module element A-4
role-name element A-5
security-role A-5
small-icon element A-3
web element A-5

application-client element B-4, B-8
application-client.xml

application-client element B-4

deployment descriptor elements B-1
description element B-4, B-5, B-6
display-name element B-4
ejb-link element B-6
ejb-ref element B-5
ejb-ref-name element B-6
ejb-ref-type element B-6
env-entry element B-5
env-entry-name B-5
env-entry-type element B-5
env-entry-value element B-5
home element B-6
icon element B-4
large-icon element B-4
remote element B-6
res-auth element B-7
resource-ref element B-6
res-ref-name element B-7
res-type element B-7
small-icon element B-4

applications 1-2
and threads 6-2

auto-deployment 2-26
enabling 2-27

B
BEA XML Editor 3-7

C
class references
Developing WebLogic Server Applications I-i

resolving between components 4-16
classes

resource adapter 4-16
classpath setting 2-24
client applications 1-2, 1-9

deployment descriptor B-7
deployment descriptor elements B-1
packaging and deploying 3-24

ClientMain.runtime.xml file
application-client element B-8
ejb-ref element B-9
ejb-ref-name element B-9
env-entry element B-8
env-entry-name B-8
env-entry-value element B-9
jndi-name element B-9, B-10
resource-ref element B-9
resource-ref-name element B-10

common utilities in packaging 4-16
compiled classes, setting target directories

for 2-25
compiling

putting the Java tools in your search path
2-22

setting target directories for compiled
classes 2-25

setting the classpath 2-24
components 1-2

Connector 1-2
connector 1-7
EJB 1-2, 1-5
Enterprise JavaBean 1-5
packaging 1-2
Web 1-2
Web application 1-3
WebLogic Server 1-2

configuration
modifying an existing resource adapter

2-18
configuration files, JavaMail 6-4
connector components 1-2, 1-7

connectors
developing, main steps 2-16
modifying existing 2-19
packaging 3-20
XML deployment descriptors 3-4

customer support contact information xi

D
database system 2-6
deploying

client applications 3-24
enterprise applications 2-21
Web applications 2-13, 2-15

deployment descriptors
application.xml elements A-1
automatically generating 3-5
client application elements B-1
editing connector 3-12
editing EJB 3-8
editing enterprise application 3-13
editing resource adapter 3-12
editing using the Administration

Console 3-6
editing Web application 3-10
WebLogic run-time client application

B-7
description element A-3, A-5, B-4, B-5, B-6
developing

connectors, main steps 2-16
enterprise applications 2-16
Enterprise JavaBeans, main steps 2-14
establishing a development environment

2-19
resource adapters, main steps 2-16
Web applications 2-12

development environment 2-19
development WebLogic Server 2-5
software tools 2-2
third-party software 2-6

display-name element A-3, B-4
I-ii Developing WebLogic Server Applications

documentation, where to find it x

E
editing

connector deployment descriptors 3-12
deployment descriptors 3-6
EJB deployment descriptors 3-8
enterprise application deployment

descriptors 3-13
resource adapter deployment descriptors

3-12
Web application deployment descriptors

3-10
EJB components 1-2
ejb element A-4
ejb-link element B-6
ejb-ref element B-5, B-9
ejb-ref-name element B-6, B-9
ejb-ref-type element B-6
EJBs 1-5

and WebLogic Server 1-7
compiling Java code 2-14, 2-16
deployment descriptor 1-7, 2-14, 2-16
developing 2-14
interfaces 1-6
overview 1-5
packaging 2-15, 3-17
XML deployment descriptors 3-4

enterprise applications 1-2, 1-8
archives A-1
deploying 2-21
deployment descriptor 2-20
developing, main steps 2-16
packaging 2-20, 2-21, 3-21

Enterprise JavaBeans 1-5
and WebLogic Server 1-7
compiling Java code 2-14, 2-16
deployment descriptor 1-7
deployment descriptors 2-14, 2-16
developing 2-14

interfaces 1-6
overview 1-5
packaging 2-15, 3-17
XML deployment descriptors 3-4

entity beans 1-6
env-entry element B-5, B-8
env-entry-name element B-5, B-8
env-entry-type element B-5
env-entry-value element B-5, B-9

G
generating deployment descriptors

automatically 3-5

H
home element B-6
home interfaces 1-6

I
icon element A-3, B-4
IDE 2-2
implementation classes 1-6

J
JAR files 1-2
JAR utility 1-2
Java 2 Platform, Enterprise Edition (J2EE)

about 1-3
Java compiler 2-25
java element A-4
Java tools

putting in your search path 2-22
JavaMail

API version 1.1.3 6-3
configuration files 6-4
configuring for WebLogic Server 6-4
reading messages 6-8
sending messages 6-6
Developing WebLogic Server Applications I-iii

using with WebLogic Server
applications 6-3

JavaServer pages 1-4
javax.mail package 6-4
JDBC driver 2-6
jndi-name element B-9, B-10

L
large-icon element A-3, B-4
logging messages 6-2

M
Mail Session

creating in the Console 6-4
message-driven beans 1-6
modifying

existing .rar file 2-19
existing resource adapter 2-19

module element A-4
multithreaded components 6-2

P
packaging

automatically generating deployment
descriptors 3-5

client applications 3-24
connectors 3-20
enterprise application 2-21
enterprise applications 2-20, 3-21
Enterprise JavaBeans 2-15, 3-17
resolving class references between

components 4-16
resource adapters 3-20
Web applications 2-13, 3-16

printing product documentation x
programming

JavaMail configuration files 6-4
logging messages 6-2

reading messages with JavaMail 6-8
sending messages with JavaMail 6-6
topics 6-1
using JavaMail with WebLogic Server

applications 6-3

R
remote element B-6
remote interfaces 1-6
res-auth element B-7
resource adapters 1-2, 1-7

classes 4-16
developing, main steps 2-16
modifying an existing 2-18
modifying existing 2-19
packaging 3-20
XML deployment descriptors 3-4

resource-ref element B-6, B-9
resource-ref-name element B-10
res-ref-name element B-7
res-type element B-7
role-name element A-5
run-time deployment descriptor B-8

S
search path 2-22
security-role element A-5
servlets 1-4

compiling into class files 2-12
session beans 1-5
small-icon element A-3, B-4
software tools

database system 2-6
development WebLogic Server 2-5
IDE 2-2
JDBC driver 2-6
source code editor 2-2
Web browser 2-6

source code editor 2-2
I-iv Developing WebLogic Server Applications

Sun Microsystems 1-3
support

technical xii

T
target directories setting 2-25
third-party software 2-6
threads

and applications 6-2
avoiding undesirable interactions with

WebLogic Server threads 6-3
multithreaded components 6-2
testing multithreaded code 6-3
using in WebLogic Server 6-2

W
Web application components 1-3

directory structure 1-4
JavaServer pages 1-4
servlets 1-4

Web applications 1-2
compiling servlets into class files 2-12
creating HTML pages and JSPs 2-12
deploying 2-13, 2-15
main steps for developing 2-12
packaging 2-13, 3-16
XML deployment descriptors 3-4

Web archive 1-3
Web browser 2-6
Web components 1-2
web element A-5
WebLogic run-time client application

deployment descriptor B-7
WebLogic Server

configuring JavaMail for 6-4
development server 2-5
editing deployment descriptors using the

Console 3-6
EJBs 1-7

using threads in 6-2
WebLogic Server application

components 1-2
WebLogic Server applications 1-2

establishing a developing environment
2-19

programming topics 6-1
using JavaMail with 6-3

X
XML,editing 3-7
Developing WebLogic Server Applications I-v

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server Applications
	What Are WebLogic Server J2EE Applications and Components?
	J2EE Platform
	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	More Information on Web Application Components

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	Connector Component
	Enterprise Applications
	WebLogic Web Services
	Client Applications
	Naming Conventions

	2 Developing WebLogic Server Applications
	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	XML Editor
	appc Compiler
	appc Syntax
	appc Options
	appc Ant Task

	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software
	Application Lifecycle Events
	Basic Functionality
	Listing 2-1 MyListener
	Listing 2-2 MyShutdown
	Listing 2-3 MyStartup

	Configuring Lifecycle Events: URI Parameter
	Listing 2-4 Configuring Application Lifecycle Events without URI Parameter
	Listing 2-5 Configuring Application Lifecycle Events without URI Parameter

	Creating Web Applications: Main Steps
	1. Create the HTML pages and JavaServer Pages (JSPs) that make up the Web interface of the Web ap...
	2. Write the Java code for the servlets and the JSP taglibs referenced in JSPs. Typically, Java p...
	3. Compile the servlets into class files.
	4. Arrange the resources (servlets, JSPs, static files, and deployment descriptors) in the prescr...
	5. Create the web.xml and weblogic.xml deployment descriptors.
	6. Package the HTML pages, servlet class files, JSP files, web.xml file, and weblogic.xml file in...
	7. Auto-deploy the WAR file on WebLogic Server for testing purposes.
	8. Deploy the WAR file on the WebLogic Server for production use or include it in an Enterprise A...

	Creating Enterprise JavaBeans: Main Steps
	1. Write the Java code for the various classes required by each type of EJB (session, entity, or ...
	2. Compile the Java code using a standard compiler for the interfaces and implementation into cla...
	3. Create the EJB-specific deployment descriptors:
	4. Package the class files and deployment descriptors into a JAR file.
	5. Auto-deploy the EJB JAR file on WebLogic Server for testing purposes.
	6. Deploy the JAR file on WebLogic Server for production use or include it in an Enterprise ARchi...

	Creating Resource Adapters: Main Steps
	Creating a New Resource Adapter (RAR)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code using a standard compiler for the interfaces and implementation into cla...
	3. Create the resource connector-specific deployment descriptors:
	4. Package the Java classes into a Java archive (JAR) file.
	5. Auto-deploy the RAR resource adapter archive file on WebLogic Server for testing purposes.
	6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in an enterprise...

	Modifying an Existing Resource Adapter (RAR)
	1. Create a temporary directory anywhere on your hard drive to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter to WebLogic Server.

	Creating WebLogic Server Enterprise Applications: Main Steps
	1. Create Web, EJB, and Connector components for your application.
	2. Create Web, EJB, and Connector deployment descriptors.
	3. Package the Web, EJB, and Connector components into their component archive files.
	4. Create the enterprise application deployment descriptor.
	5. Package the enterprise application into an EAR file.
	6. For testing purposes, auto-deploy the EAR enterprise application on WebLogic Server.
	7. For production purposes, deploy the EAR file on WebLogic Server.
	Figure 2�1 Creating Enterprise Applications

	Compiling Java Code
	Creating Compile Scripts Using Apache Ant
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling Code
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	Auto-Deployment for Development Enviroments
	Enabling and Disabling Auto-Deployment
	Auto-Deploying Applications
	Stopping and Redeploying Archived Applications
	Redeploying Applications in Exploded Format
	1. When you first deploy the exploded application, create an empty file named REDEPLOY, and place...
	2. To update the exploded application, copy the updated files over the existing files in that dir...
	3. After copying the new files, modify the REDEPLOY file in the exploded directory to alter its t...

	3 WebLogic Server Application Packaging
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 3�1 J2EE and WebLogic Deployment Descriptors
	Automatically Generating Deployment Descriptors
	Editing Deployment Descriptors
	Using the BEA XML Editor
	About EJBGen
	Using the Administration Console Deployment Descriptor Editor
	Editing EJB Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the EJB node under the Deployments node.
	4. Right-click the name of the EJB whose deployment descriptors you want to edit and choose Edit ...
	5. To edit, delete, or add elements in the EJB deployment descriptors, click to expand the node i...
	6. To edit an existing element in one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the EJB deployment descriptors, click the root element of th...
	10. Click Validate if you want to ensure that the entries in the EJB deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Web Application Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Web Applications node under the Deployments node.
	4. Right-click the name of the Web application whose deployment descriptors you want to edit and ...
	5. To edit, delete, or add elements in the Web application deployment descriptors, click to expan...
	6. To edit an existing element in one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and choose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the Web application deployment descriptors, click the root e...
	10. Click Validate to ensure that the entries in the Web application deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Resource Adapter Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Connectors node under the Deployments node.
	4. Right-click the name of the resource adapter whose deployment descriptors you want to edit and...
	5. To edit, delete, or add elements in the resource adapter deployment descriptors, click to expa...
	6. To edit an existing element in one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the resource adapter deployment descriptors, click the root ...
	10. Click Validate to ensure that the entries in the resource adapter deployment descriptors are ...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Enterprise Application Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Applications node under the Deployments node.
	4. Right-click the name of the Enterprise Application whose deployment descriptor you want to edi...
	5. To edit an existing element in the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	6. To add a new element to the application.xml deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and choose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	7. To delete an existing element from the application.xml deployment descriptor:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	8. Once you make all your changes to the application.xml deployment descriptor, click the root el...
	9. Click Validate if you want to ensure that the entries in the application.xml deployment descri...
	10. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Packaging Web Applications
	1. Create a temporary staging directory anywhere on your hard drive. You can name this directory ...
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Set up your shell environment.
	8. Execute the following command to automatically generate the web.xml and weblogic.xml deploymen...
	9. Bundle the staging directory into a WAR file by executing a jar command such as:
	Packaging Enterprise JavaBeans
	Staging and Packaging EJBs
	1. Create a temporary staging directory anywhere on your hard drive (for example, c:\stagedir).
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. If you are using EJB 1.1, e the following command to automatically generate the ejb-jar.xml, w...
	6. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Using ejb-client.jar

	Packaging Resource Adapters
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Compile or copy the resource adapter Java classes into the staging directory.
	3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the ...
	4. Create a META-INF subdirectory in the staging directory.
	5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	7. When the resource adapter classes and deployment descriptors are set up in the staging directo...
	Packaging Enterprise Applications
	Enterprise Applications Deployment Descriptor Files
	Packaging Enterprise Applications: Main Steps
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Copy the Web archives (WAR files) and EJB archives (JAR files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the application.xml deployment descrip...
	6. Optionally create the weblogic-application.xml file manually in the META-INF directory, as des...
	7. Create the Enterprise Archive (EAR file) for the application, using a jar command such as:

	Packaging Client Applications
	Executing a Client Application in an EAR File
	Special Considerations for Deploying J2EE Client Applications

	Packaging J2EE Applications Using Apache Ant
	Packaging J2EE Deployment Units
	Listing 3-1 WAR Task Example
	1. Specify the standard XML deployment descriptor using the webxml parameter.
	2. The war task automatically maps XML deployment descriptor to the standard name in the WAR arch...
	3. Apache Ant stores the manifest file, specified using the manifest parameter, under the standar...
	4. Use the Apache Ant ZipFileSet command to define a set of files (in this case, just the WebLogi...
	5. Use a second ZipFileSet command to package all the images in an images directory.
	6. The classes tag packages servlet classes in the WEB-INF/classes directory.
	7. Finally, add all the .jsp and .html files from the current directory to the archive.

	Listing 3-2 Packaging Example
	<project name="app" default="app.ear">
	<property name="wlhome" value="/bea/wlserver6.1"/>
	<property name="srcdir" value="/bea/myproject/src"/>
	<property name="appdir" value="/bea/myproject/config/mydomain/applications"/>
	<target name="timer.war">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>
	<war warfile="timer.war" webxml="timer/web.xml" manifest="timer/manifest.txt">
	<classes dir="classes" includes="**/TimerServlet.class"/>
	</war>
	</target>
	<target name="trader.jar">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>
	<jar jarfile="trader0.jar" manifest="trader/manifest.txt">
	<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>
	<fileset dir="classes" includes="**/Trade*.class"/>
	</jar>
	<ejbc source="trader0.jar" target="trader.jar"/>
	</target>
	<target name="app.ear" depends="trader.jar, timer.war">
	<jar jarfile="app.ear">
	<zipfileset dir="." prefix="META-INF" includes="application.xml"/>
	<fileset dir="." includes="trader.jar, timer.war"/>
	</jar>
	</target>
	<target name="deploy" depends="app.ear">
	<copy file="app.ear" todir="${appdir}/>
	</target>
	</project>

	Running Ant

	4 WebLogic Server Application Classloading
	Java Classloader Overview
	Java Classloader Hierarchy
	Loading a Class
	PreferWebInfClasses Element
	Listing 4-1 PreferWebInfClasses Element

	Changing Classes in a Running Program
	WebLogic Server Application Classloader Overview
	Application Classloading
	Application Classloader Hierarchy
	Figure 4�1 WebLogic Server Classloading

	Custom Module Classloader Hierarchies
	Figure 4�2 Standard Classloader Hierarchy
	Declaring the Classloader Hierarchy
	Listing 4-2 Declaring the Classloader Hierarchy
	Listing 4-3 Example Classloader Declaration
	Figure 4�3 Example Classloader Hierarchy

	User-defined Classloader Restrictions
	Servlet Reloading Disabled
	Nesting Depth
	Module Types
	Duplicate Entries
	Interfaces
	Call-by-value Semantics
	In-flight Work
	Development Use Only

	Individual EJB Classloader for Implementation Classes
	Figure 4�4 Example Classloader Hierarchy for a Single EJB Module
	Listing 4-4
	Listing 4-5

	Application Classloading and Pass by Value or Reference

	Resolving Class References Between Components and Applications
	About Resource Adapter Classes
	Packaging Shared Utility Classes
	Manifest Class-Path

	5 Programming Topics
	Logging Messages
	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	Programming Applications for WebLogic Server Clusters

	A Application Deployment Descriptor Elements
	application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	alt-dd
	connector
	ejb
	java
	web
	web-uri
	context-root

	security-role
	description
	role-name

	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	entity-cache
	entity-cache-name
	max-beans-in-cache
	max-cache-size
	read-timeout-seconds
	caching-strategy

	start-mdbs-with-application

	xml
	parser-factory
	saxparser-factory
	document-builder-factory
	transformer-factory

	entity-mapping
	entity-mapping-name
	public-id
	system-id
	entity-uri
	when-to-cache
	cache-timeout-interval
	security

	jdbc-connection-pool
	data-source-name
	connection-factory
	factory-name
	connection-properties

	pool-params
	size-params
	xa-params
	login-delay-seconds
	leak-profiling-enabled
	connection-check-params

	driver-params
	statement
	prepared-statement
	row-prefetch-enabled
	row-prefetch-size
	stream-chunk-size

	acl-name

	application-param
	classloader-structure
	module-ref
	module-uri

	classloader-structure

	listener
	listener-class
	listener-uri

	startup
	startup-class
	startup-uri

	shutdown
	shutdown-class
	shutdown-uri

	B Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client
	icon
	small-icon
	large-icon

	display-name
	description
	env-entry
	description
	env-entry-name
	env-entry-type
	env-entry-value

	ejb-ref
	description
	ejb-ref-name
	ejb-ref-type
	home
	remote
	ejb-link

	resource-ref
	description
	res-ref-name
	res-type
	res-auth

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry
	env-entry-name
	env-entry-value

	ejb-ref
	ejb-ref-name
	jndi-name

	resource-ref
	resource-ref-name
	jndi-name

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	W
	X

