0?7,

r
S’ 7
L/

BEA WeDbLogic
Server-

Programming WebLogic
RMI over lIOP

Release 8.1 beta
Document Date: December 2002
Revised: December 9, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic RMI over [1OP

Part Number Date Software Version

N/A December 9, 2002 BEA WebL ogic Server
Version 8.1 beta

Contents

About This Document

AUAIENCE. ...ttt a ettt b e bbbt et ne s %
E-0OCS WED SIte....ceiiiiieiieiie et e et Vi
HOW t0 Print the DOCUMENE.........coiieeeereeeeee s s Vi
Related INFOrMELioN..........cooiiiiie e e s Vi
CONLACE US! ...t bbb e e e ene s Vii
Documentation CONVENLIONS..........cvererereerieeereseeeeseesie e ee e seeseeseeseseesensesseses Vii
1. Overview of RMI over IIOP
What Are RMI and RMI oVEr HHOP?.......cooeiieieieisieesie st s 1-3
Overview of WebLogic RMI-ITOP ...t 1-4
Support for RMI-110P with RMI (Java) Clients........ccccoovneenrinnennenenn 1-5
Support for RMI-110P with CORBA/IDL ClientS.......ccovevvveeiereiesieeenns 1-5
Support for RMI-110P with Tuxedo CHents..........cccooevrevnenniennennenne 1-5
2. Using RMI over IIOP Programming Models to Develop
Applications
Overview of RMI-11OP Programming ModelS ... 2-8
Developing @T3 CHENLccceiieeee e 2-10
Developing @ J2SE CHENt.........ccov e 2-10
When to Use @ J2SE ClieNtccveeiereeeeeeceeee e 2-10
Procedure for Developing J2SE Clientccocveveevevieevevciereeeseeeee 2-11
Developing a J2EE Application Client (Thin Client)...........cccoovveeveveecieenenne 2-16
Procedure for Developing J2EE Application Client (Thin Client) 2-17
Developing @aWLS-TTOP CliEntccoocveieeeecte e 2-21
Developing @ CORBA/IDL CHENtccvceeeeeieceeeeee e 2-22
Guidelines for Developing a CORBA/IDL Clientccccooeeveverecenenennen. 2-22

Programming WebL ogic RMI over 11OP iii

Working with CORBA/IDL Clients........cccoivverereerereeesescese e 2-22

Javato IDL MapPINg......ccooeruererierienieneeieeneeiee e s 2-23
ObJECLS-DY-VAIUE ... 2-24
Procedure for Developing a CORBA/IDL Clientccococeveericenieeneen 2-25
Developing TuXedO CHENLS........cccooiireriiere e e 2-28
WebL ogic TUXEAO CONNECLONcoueuiieeieirieee e 2-28
BEA WebLOgIiC CHt ClENt ..o e 2-29
Using EIBS With RMI-TTOP........ccoiiiiieces e 2-29

3. Configuring WebLogic Server for RMI-IIOP

CoNnfigUIration OVEIVIEWccceuireeuirieiereeesiee sttt st ebe st s 3-25
Using RMI-11OP with SSL and aJava Client..........cccooeeeennenienenine e 3-26
Accessing WebL ogic Server Objects from a CORBA Client through Delegation
3-27
Overview Of DElEGALIONccoeiriirerirere e 3-27
Example of Delegation............ccoeereriineneeereeere e 3-28
Limitations of WebLogiC RMI-TTOP.........ccccviniininninree e 3-30
Limitations Using RMI-11OP on the Client..........cccooveinennincniicneneee 3-30
Limitations Developing Java DL Clients........cccoooveeinenienenene e 331
Limitations of Passing Objectsby Value........cocccveiveiiniencenecneeee 3-31
RMI-11OP Code Examples Package..........cccoueeveereineinencsesesesesesies 3-32
Additional RESOUICES.........cceeirireirirenre sttt 3-32

Programming WebL ogic RMI over 11OP

About This Document

This document explains Remote Method Invocation (RMI) over Internet Inter-ORB
Protocol (110P) and describes how to create RMI over |10OP applications for various
clientstypes. It describes how RMI-110P extends the RMI programming model by
enabling Java clients to access both Java and CORBA remote objectsin the BEA
WebL ogic Server environment.

This document is organized as follows:

m Chapter 1, “Overview of RMI over IIOP,” defines RMI and RMI over 11OP, and
provides general information about the WebL ogic Server RMI-I10P
implementation.

m Chapter 2, “Using RMI over [10P Programming Models to Develop
Applications,” describes how to develop RMI-110P applications using various
client types.

m Chapter 3, “Configuring WebL ogic Server for RMI-110P,” describes concepts,
issues, and procedures related to using WebL ogic Server to support RMI-110P
applications.

Audience

This document is written for application devel opers who want to enable clients to
access Remote Method Invocation (RMI) remote objects using the Internet | nter-ORB
Protocoal (110OP). It assumes a familiarity with the ProductName platform, CORBA,
and Java programming.

Programming WebL ogic RMI over 11OP \

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File —Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

Vi

The BEA corporate Web site provides all documentation for WebL ogic Server.

For more information in genera about RMI over I1OP refer to the following sources.
m The OMG Web Site at http://www.omg.org/

m The Sun Microsystems, Inc. Javasite at http://java.sun.com/

For more information about CORBA and distributed object computing, transaction
processing, and Java, refer to the Bibliography at http://edocs.bea.com/.

Programming WebL ogic RMI over 11OP

http://www.adobe.com

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professional s who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Programming WebL ogic RMI over 11OP vii

mailto:docsupport@bea.com
http://www.bea.com

viii

Convention

Usage

nonospace
t ext

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chrmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config.xn

fl oat

nonospace
italic
t ext

Variablesin code.
Example:
String Customner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{}

A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.Milticast Test -n name -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choices in asyntax line. Example:

java webl ogic.deploy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:

m Anargument can be repeated several times in the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Programming WebL ogic RMI over 11OP

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic RMI over 11OP iX

Programming WebL ogic RMI over 11OP

CHAPTER

1 oOverview of RMI over
1IOP

The following sections provide a high-level view of RMI over 11OP:
m What Are RMI and RMI over I1OP?
m Overview of WebLogic RMI-I10P

What Are RMI and RMI over IIOP?

To understand RMI-110P, you should first have aworking knowledge of RMI. Remote
Method Invocation (RM1) is the standard for distributed object computing in Java.
RMI enables an application to obtain areference to an object that exists elsewhere in
the network, and then invoke methods on that object asthough it existed locally inthe
client's virtual machine. RMI specifies how distributed Java applications should
operate over multiple Java virtual machines. RMI iswritten in Javaand is designed
exclusively for Java programs.

RMI over 110P extends RMI to work across the I11OP protocol. This has two benefits
that you can leverage. In aJavato Java paradigm this allows you to program against
the standardized Internet Interop-Orb-Protocol (I1OP). If you are not working in a
Java-only environment, it allows your Java programsto interact with Common Object
Request Broker Architecture (CORBA) clients and execute CORBA objects. CORBA
clients can be written in avariety of languages (including C++) and use the
Interface-Definition-Language (IDL) to interact with a remote object.

Programming WebL ogic RMI over 11OP 1-3

1 overview of RMI over llOP

Overview of WebLogic RMI-IIOP

1-4

RMI over 11OP is based on the RMI programming model and, to alesser extent, the
Java Naming and Directory Interface (JNDI). For detailed information on WebL ogic
RMI and JNDI, refer to Using WebLogic RMI at

http://e-docs. bea. com w s/ docs81b/ rmi/rni _api . ht M and Programming
with WebLogic INDI at ht t p: / / e- docs. bea. com’ wi s/ docs81b/ j ndi . Both
technologies are crucial to RMI-110P and it is highly recommended that you become
familiar with their general concepts before starting to build an RMI-110P application.

The WebL ogic Server 8.1 implementation of RMI-110P allows you to:

m Connect Java RMI clients to WebL ogic Server using the standardized [10P
protocol

m Connect CORBA/IDL clients, including those written in C++, to WebL ogic
Server

m [nteroperate between WebL ogic Server and Tuxedo clients
m Connect avariety of clients to EJBs hosted on WebL ogic Server

This document describes how to create applications for various clients types that use
RMI and RMI-110P. How you develop your RMI-110P applications depends on what
services and clientsyou are trying to integrate.

The following figure shows an RMI Object Relationships that uses [10P

Client
t WebL ogic
Server
Sub - > RMI | g
¢ object
RMI
ORB -= > runtime

[1OP

Programming WebL ogic RMI over 11OP

http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs81b/jndi/index.html
http://e-docs.bea.com/wls/docs81b/jndi/index.html

Overview of WebLogic RMI-IIOP

Support for RMI-IIOP with RMI (Java) Clients

Y ou can use RMI-110P with Java/RMI clients, taking advantage of the standard 110P
protocol. WebL ogic Server 8.1 provides multiple options for using RMI-1IOPin a
Javarto-Java environment, including the new J2EE Application Client (thin client),
which is based on the new small footprint client jar. To use the new thin client, you
need to havethew cl i ent . j ar (located in W._HOVE/ ser ver /i b) on the client
side’s CLASSPATH. For more information on RMI-110P client options, see
“Overview of RMI-I10P Programming Models’ on page 2-8.

Support for RMI-IIOP with CORBA/IDL Clients

The devel oper community requires the ability to access J2EE services from
CORBA/IDL clients. However, Javaand CORBA are based on very different object
models. Because of this, sharing data between objects created in the two programming
paradigms was, until recently, limited to Remote and CORBA primitive data types.
Neither CORBA structures nor Java objects could be readily passed between disparate
objects. To addressthis limitation, the Object Management Group (OMG) created the
Objects-by-V alue specification . This specification definesthe enabling technol ogy for
exporting the Java object model into the CORBA/IDL programming model--allowing
for the interchange of complex data types between the two models. WebL ogic Server
can support Objects-by-Vaue with any CORBA ORB that correctly implements the
specification.

Support for RMI-IIOP with Tuxedo Clients

WebL ogic Server 8.1 contains an implementation of the WebL ogic Tuxedo
Connector, an underlying technology that enables you to interoperate with Tuxedo
servers. Using WebL ogic Tuxedo Connector, you can leverage Tuxedo as an ORB, or
integrate legacy Tuxedo systems with applications you have devel oped on WebL ogic
Server. For more information, see the WebL ogic Tuxedo Connector Guide at
http://e-docs. bea. com W s/ docs70/wt c. ht m

Programming WebL ogic RMI over 11OP 1-5

http://www.omg.org/
http://www.omg.org/technology/documents/index.htm
http://e-docs.bea.com/wls/docs81b/wtc.html

1 overview of RMI over llOP

1-6 Programming WebL ogic RMI over 11OP

CHAPTER

2

Using RMI over I10P

Programming Models

to Develop
Applications

The following sections describe how to use various programming models to develop
RMI-110OP applications:

Overview of RMI-110P Programming Models
Developing a T3 Client

Developing a J2SE Client

Developing a J2EE Application Client (Thin Client)
Developing aWLS-11OP Client

Developing a CORBA/IDL Client

Developing Tuxedo Clients

Using EJBs with RMI-110P

Programming WebL ogic RMI over 11OP

2 Using RMI over IIOP Programming Models to Develop Applications

Overview of RMI-IIOP Programming Models

IIOP isarobust protocol that is supported by numerous vendors and is designed to
facilitate interoperation between heterogeneous distributed systems. Two basic
programming models are associated with RMI-110P: RMI-110P with RMI clientsand
RMI-11OP with IDL clients. Both models share certain features and concepts,
including the use of a Object Request Broker (ORB) and the Internet InterORB
Protocol (110P). However, the two models are distinctly different approaches to
creating ainteroperable environment between heterogeneous systems. Simply, 110OP
can be atransport protocol for distributed applicationswith interfaces written in either
IDL or Java RMI. When you program, you must decide to use either IDL or RMI
interfaces; you cannot mix them.

Several factors determine how you will create a distributed application environment.
Because the different models for employing RMI-110P share many features and
standards, it is easy to lose sight of which model you are following.

The following table lists the types of clients supported in a WebL ogic Server
environment, and their characteristics, features, and limitations. Thetableincludes T3
and CORBA client options, as well as RMI-110OP alternatives.

Table 2-1 WebL ogic Server Client Types and Features

Client Type Language Protocol Client Class Key Features
Requirements

JEE RMI Java [1OP WLSthinclient Supports WLS clustering.

Application jar Supports many J2EE features,

Client JDK 1.4 including security and

(thin client) transactions.

(NewinWLS Supports SSL.

8.1) Uses CORBA 2.4 ORB.

T3 RMI Java T3 full WebLogic Supports WL S-Specific features.
jar Fast, scalable.

No Corba interoperability.

2-8 Programming WebL ogic RMI over 11OP

Overview of RMI-IIOP Programming Models

Client Type Language Protocol Client Class Key Features
Requirements
J2SE RMI Java 11OP no WebL ogic Provides connectivity to WLS
classes environment.
Does not support WL S-specific
features. Does not support many
J2EE features.
Uses CORBA 2.3 ORB.
WLInitial ContextFactory is
deprecated for thisclient in
WebL ogic Server 8.1. Use of
com.sun.jndi.cosnaming.
CNCitxFactory isrequired.
WLS-1I0P RMI Java I1OP full WebL ogic Supports WL S-Specific features.
(Introducedin lar Supports SSL
WLS7.0) Fast, scalable.
Not ORB-based.
CORBA/IDL CORBA Languages IIOP no WebL ogic Uses CORBA 2.3 ORB.
that OMG Classes Does not support WL S-specific
IDL maps features.
to, such as
C++, C, Does not support Java.
Smalltalk,
COBOL
C++ Client CORBA C++ I1OP Tuxedo libraries Interoperability between WLS
applications and Tuxedo
clients/services.
Supports SSL.
Uses CORBA 2.3 ORB.
Tuxedo CORBA Languages Tuxedo- Tuxedo libraries Interoperability between WLS
Server or RMI that OMG Genera- applications and Tuxedo
IDL maps Inter-Orb- clients/services
to,suchas Protocol Uses CORBA 2.3 ORB.
C++, C, (TGIOP)
Smalltalk,
COBOL

Programming WebL ogic RMI over 11OP 2-9

2

Using RMI over IIOP Programming Models to Develop Applications

Developing a T3 Client

RMI isaJava-to-Java model of distributed computing. RMI enables an application to
obtain areference to an object that exists elsewhere in the network All RMI-110P
models are based on RMI; however, if you follow a plain RMI model without [10P,
you cannot integrate clients written in languages other than Java. Y ou will also be
using T3, a proprietary protocol, and have WebL ogic classes on your client. For
information on developing RMI applications, see Using WebLogic RMI at
http://e-docs. bea. comw s/ docs81b/rm .

Developing a J2SE Client

RMI over 11OP with RMI clients combinesthe features of RMI with the standard 11OP
protocol and alows you to work completely in the Java programming language.
RMI-11OPwith RMI ClientsisaJava-to-Javamodel, wherethe ORB istypically apart
of the JDK running on the client. Objects can be passed both by reference and by value
with RMI-110P.

When to Use a J2SE (lient

2-10

J2SE clientsis oriented towards the J2EE programming model; it combines the
capabilities of RMI with the I1OP protocal. If your applications are being developed in
Javaand you wish to leverage the benefits of 110P, you should use the RMI-110P with
RMI client model. Using RMI-110P, Java users can program with the RMI interfaces
and then use 11OP as the underlying transport mechanism. The RMI client runs an
RMI-110P-enabled ORB hosted by a J2EE or J2SE container, in most casesa 1.3 or
higher JDK. Notethat no WebL ogic classes are required, or automatically downloaded
in this scenario; thisisagood way of having aminimal client distribution. Y ou also do
not have to use the proprietary t3 protocol used in normal WebL ogic RMI, you use
I1OP, which based on an industry, not proprietary, standard.

Programming WebL ogic RMI over 11OP

http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html

Developing a J2SE Client

This client is J2SE-compliant, rather than J2EE-compliant, hence it does not support
many of the features provided for enterprise-strength applications. Depending on
application requirements, thisclient may not providerequired functionality. It doesnot
support security, transactions, or IMS.

Procedure for Developing J2SE Client

To develop an application using RMI-110P with an RMI client:

1. Define your remote object’s public methods in an interface that extends
java.rm . Renote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example,
with the Ping example included in your Weblogic installation

SAMPLES HOME/ server/src/ exanpl es/iiop/rm/server/w s:

public interface Pinger extends java.rm.Renpte {

public void ping() throws java.rm .RenoteException;
public void pingRenpte() throws java.rm .RenoteException;
public void pingCall back(Pi nger toPing) throws

java.rm . Renot eExcepti on;

}

2. Implement the interface in aclass named i nt er f aceNamel npl and bind it into
the INDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this classfile. Typicaly,
you configure your implementation class as a WebL ogic startup class and
include a main method that binds the object into the JINDI tree. Hereis an
excerpt from the implementation class developed from the previous Ping
example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
renot eDomai n = args[0];

Pi nger obj = new Pinglnpl ();

Context initial Nam ngContext = new Initial Context();

i nitial Nam ngCont ext . rebi nd(NAMVE, obj) ;
Systemout.println("Pinglnmpl created and bound to "+ NAME);

Programming WebL ogic RMI over IIOP 2-11

2 Using RMI over IIOP Programming Models to Develop Applications

2-12

}

3. Compile the remote interface and implementation class with ajava compiler.

Developing these classesin a RMI-110P application is no different that doing so
in norma RMI. For more information on developing RMI objects, see Using
WebLogic RMI.

. Run the WebL ogic RMI or EJB compiler against the implementation classto

generate the necessary I10OP stub. Note that it is no longer necessary to use the
-i i op option to generate the [1OP stubs:

$ java webl ogic.rmc naneCf | npl enent ati onCl ass

In the case of the Pinger example, the naneO | npl ement ati ond ass is
exanpl es.iiop.rm.server.w s. Pingerlnpl.

A stub isthe client-side proxy for aremote object that forwards each WebL ogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation. Note that the I1OP stubs created by the
WebLogic RMI compiler are intended to be used with the JDK 1.3.1_01 or
higher ORB. If you are using another ORB, consult the ORB vendor’s
documentation to determine whether these stubs are appropriate.

. Make sure that the files you have now created -- the remote interface, the class

that implementsit, and the stub -- arein the CLASSPATH of the WebL ogic
Server.

. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing
alookup (see next step) on the object. The object is then cast to the appropriate

type.

In obtaining an initial context, you must use

com sun. j ndi . cosnam ng. CNCt xFact or y when defining your JNDI context
factory. (WLInitialContextFactory is deprecated for this client in WebLogic Server 8.1)
Usecom sun. j ndi . cosnami ng. CNCt xFact or y when setting the value for the
"Cont ext . | NI TI AL_CONTEXT_FACTORY" property that you supply asa
parameter to new I ni ti al Cont ext () .

Note: The Sun JNDI client supports the capability to read remote object references

from the namespace, but not generic Java serialized objects. This means that
you can read items such as EJBHomes out of the namespace but not
DataSource objects. There is also no support for client-initiated transactions

Programming WebL ogic RMI over 11OP

http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html

Developing a J2SE Client

(the JTA API) inthisconfiguration, and no support for security. Inthe statel ess
session bean RMI Client example, the client obtains an initial context asis
done below:

Obt ai ni ng an I nitial Context:

* Using a Properties object as follows will work on JDK13
* clients.

*
/
private Context getlnitial Context() throws Nam ngException {

try {
/1 Get an Initial Context

Properties h = new Properties();

h. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,

"com sun. j ndi . cosnam ng. CNCt xFact ory") ;

h. put (Cont ext. PROVI DER_URL, wurl);

return new Initial Context(h);
} catch (Nam ngException ne) {

| og("We were unabl e to get a connection to the WeblLogi c server
at "+url);

| og(" Pl ease make sure that the server is running.");

t hr ow ne;

}

/**

* This is another option, using the Java2 version to get an

* Initial Context.

* This version relies on the existence of a jndi.properties file
in

* the application's classpath. See

* Progranmm ng WebLogic JNDI for nore infornation

private static Context getlnitial Context()
t hrows Nami ngException

{

return new Initial Context();

}

Modify the client code to perform the lookup in conjunction with the
j avax. rmi . Port abl eRenpt ebj ect . narrow() method.

RMI over I11OP RMI clients differ from regular RMI clientsin that IIOPis
defined as the protocol when obtaining an initial context. Because of this,
lookups and casts must be performed in conjunction with the

j avax. rmi . Port abl eRenpt e(bj ect . narr ow() method.

Programming WebL ogic RMI over IIOP 2-13

http://e-docs.bea.com/wls/docs81b/jndi/index.html

2 Using RMI over IIOP Programming Models to Develop Applications

For example, in the RMI client statel ess session bean example (the

exanmpl es.iiop.ejb.statel ess.rmiclient packageincludedinyour
distribution), an RMI client creates an initial context, performs alookup on the
EJBean home, obtains a reference to an EJBean, and calls methods on the
EJBean.

You must usethej avax. rni . Port abl eRenot eObj ect . narrow() method in
any situation where you would normally cast an object to a specific classtype. A
CORBA client may return an object that doesn't implement your remote
interface; the narrow method is provided by your orb to convert the object so
that it implements your remote interface. For example, the client code
responsible for looking up the EJBean home and casting the result to the Hore
object must be modified to use the

j avax. rni . Port abl eRenot ebj ect . narrow() asshown below:

Perform ng a | ookup:

/**

* RM/I110OP clients should use this narrow function
*/

private object narrom Object ref, dass c) {
return Portabl eRenpt eCbj ect. narrow(ref, c);

}

/**
* Lookup the EJBs hone in the JND tree
*
/
private TraderHone | ookupHore()
t hrows Nam ngException

/1 Lookup the beans hone using JNDI
Context ctx = getlnitial Context();

try {
bj ect hone = ctx.| ookup(JNDI _NAME) ;

return (TraderHone) narrow hone, TraderHon®. cl ass);
} catch (Nam ngException ne) {
| og("The client was unable to | ookup the EJBHone. Pl ease
make sure ");
| og("that you have deployed the ejb with the JNDI nane
"+JNDI _NAME+" on the WebLogic server at "+url);
t hrow ne;
}
}

/**
* Using a Properties object will work on JDK130
* clients

2-14 Programming WebLogic RMI over [IOP

Developing a J2SE Client

*/
private Context getlnitial Context() throws Nam ngException {

try {
/1l Get an Initial Context

Properties h = new Properties();
h. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . cosnam ng. CNCt xFactory");
h. put (Cont ext. PROVI DER_URL, wurl);
return new I nitial Context(h);
} catch (Nam ngException ne) {
log("We were unable to get a connection to the WbLogic
server at "+url);
| og(" Pl ease make sure that the server is running.");
t hr ow ne;

}
}

Theur | definesthe protocol, hostname, and listen port for the WebL ogic Server
and is passed in as a command-line argument.
public static void main(String[] args) throws Exception {

I og("\ nBegi nni ng statel essSession.Client...\n");

String url = "iiop://local host:7001";

Connect the client to the server over 110P by running the client with a command

like:

$ java

-Dj ava. security. manager -Djava.security.policy=java.policy
exanpl es.iiop.ejb.stateless.rmclient.dient

iiop://local host: 7001

Set the security manager on the client:

java -D ava. security. manager

-D ava. security. policy==java.policy myclient

To narrow an RMI interface on a client the server needs to serve the appropriate
stub for that interface. The loading of this classis predicated on the use of the
JDK network classloader and thisis not enabled by default. To enableit you set
a security manager in the client with an appropriate java policy file. For more
information on Java security, see Sun's site at

http://java. sun. com security/index. ht i . Thefollowing isan example
of aj ava. pol i cy file:

grant {

/1 Al ow everything for now

Programming WebL ogic RMI over IIOP 2-15

http://java.sun.com/security/index.html

2 Using RMI over IIOP Programming Models to Develop Applications

perm ssi on java.security. All Perm ssion;

}

Developing a J2EE Application Client (Thin

Client)

A J2EE application client runs on a client machine and can provide aricher user
interface than can be provided by a markup language. Application clients directly
access enterprise beans running in the business tier, and may, as appropriate,
communicate viaHTTP with servletsrunning in the Web tier. An application client is
typically downloaded from the server, but can be installed on a client machine.

Although a J2EE application client is a Java application, it differs from a stand-alone
Javaapplication client because it is a J2EE component, hence it offers the advantages
of portability to other J2EE-compliant servers, and can access J2EE services.

The WebL ogic Server application client is provided as a standard client and aJM S
client, packaged as two separate jar files—wi client.jar andw j nsclient.jar—
inthe/ server/ i b subdirectory of the WebL ogic Server installation directory. Each
jar isabout 400 KB.

Thethin client is based upon the RMI-11OP protocol stack availablein JDK 1.4.n. The
basics of making RMI requests are handled by the JDK, enabling a significantly
smaller client. Client-side development is performed using standard J2EE APIs,
rather than WebL ogic Server APIs.

The development process for athin client application is the sameis as for other 2EE
applications. The client can leverage standared J2EE artifacts such as Initial Context,
UserTransaction, and EJBs. The WebL ogic Server thin client supportsthesevaluesin
the protocol portion of the URL—iiop, iiops, http, https, t3, and t3s—each of which
can be selected by using a different URL in Initial Context. Regardless of the URL,
IIOPisused. URLswitht3 or t3suseiiop and iiopsrespectively. httpistunnellediiop,
httpsisiiop tunnelled over https.

Server-side components are deployed in the usual fashion. Client stubs can be
generated at either deployment time or runtime.To generate stubswhen deploying, run
appc withthe-iiop and-clientJar optionsto produce aclient jar suitable for use

2-16 Programming WebL ogic RMI over 11OP

Developing a J2EE Application Client (Thin Client)

with the thin client. Otherwsie, WebL ogic Server will generate stubs on demand at
runtimeand serve them to the client. Downloading of stubs by the client requires that
a suitable security manager be installed. The thin client provides a default
lightp-weight security manager. For rigorous security requirements, a different
security manager can be installed with the command line options

-Dj ava. securi ty. manager -Djava.security. policy==policyfile. Applets
use adifferent security manager which already allows the downloading of stubs.

The WebL ogic thin client jar leverages features new to J2SE 1.4, sothe JRE 1.4 is
required. Although the thin-client will work with JRE 1.4.0, use of JRE 1.4.1 02 is
recommended, due to bug fixes that affect the thin client.

Note: Long running clients should use JRE 1.4.1 03 when it is released.

Thethin client jar replaces some classesinwebl ogi c. j ar, if both thefull jar and the
thin client jar arein the CLASSPATH, the thin client jar should be first in the path.
Note however that webl ogi c. j ar isnot required to support the thin client. If desired,
you can use this syntax to run with an explicit CLASSPATH:

java -classpath "<W._HOVE>/lib/w client.jar; <CLI ENT_CLASSES>"
your . app. Mai n

Note: w jmsclient.jar hasareferencetow client.jar soitisonly necessary
to put one or the other Jar in the CLASSPATH.

Do not put the thin-client jar in the server-side CLASSPATH.

Thethin client jar containsthe neccessary J2EE interface classes, such asj avax. ej b,
S0 no other jar files are neccessary on the client.

Procedure for Developing J2EE Application Client (Thin
Client)

To develop a J2EE Application Client:

1. Define your remote object’s public methods in an interface that extends
java.rm . Renote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example,
with the Ping example included in your Weblogic installation:

Programming WebL ogic RMI over IIOP 2-17

2 Using RMI over IIOP Programming Models to Develop Applications

SAMPLES HOVE/ server/src/ exanpl es/iiop/rm/server/ws:

public interface Pinger extends java.rm .Renote {

public void ping() throws java.rm .RenpteException;
public void pingRenbte() throws java.rm . RenoteException;
public void pingCall back(Pi nger toPing) throws

java.rm . Renot eExcepti on;

}

2. Implement the interfacein aclass named i nt er f aceNamel npl and bind it into
the INDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this classfile. Typically,
you configure your implementation class as a WebL ogic startup class and
include a main method that binds the object into the JNDI tree. Hereis an
excerpt from the implementation class devel oped from the previous Ping
example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
renmot eDomai n = args[0];
Pi nger obj = new Pi ngl npl ();
Context initial Nam ngContext = new Initial Context();
i ni tial Nam ngCont ext.rebi nd(NAVE, obj) ;
System out. println("Pinglnmpl created and bound to "+ NAME);

}

3. Compile the remote interface and implementation class with ajava compiler.
Developing these classesin a RMI-I10P application is no different that doing so
in normal RMI. For more information on developing RMI objects, see Using
WebLogic RMI.

4. Runthe WebLogic RMI or EJB compiler against the implementation class to
generate the necessary |10P stub.

Note: If you plan on donloading stubs, it is not necessary to runrmi c.

$ java weblogic.rmc -iiop naneCf | npl enent ati onCl ass

In the case of the Pinger example, the nanedf | npl ement ati onCl ass s
exanpl es.iiop.rn.server.w s. Pingerlnpl.

To generate stubs when deploying, run appc withthe-iiop and-cl i ent Jar
options to produce a client jar suitable for use with the thin client.. Otherwise,

2-18 Programming WebL ogic RMI over 11OP

http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html

Developing a J2EE Application Client (Thin Client)

WebL ogic Server will generate stubs on demand at runtime and serve them to
the client.

A stub isthe client-side proxy for a remote object that forwards each WebL ogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation.

. Make sure that the files you have created—the remote interface, the class that
implementsit, and the stub—are in the CLASSPATH of the WebL ogic Server.

. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing
alookup (see next step) on the object. The object isthen cast to the appropriate

type.

In obtaining an initial context, you must use

webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory when defining your JNDI
context factory. Use this class when setting the value for the

"Cont ext . | NI TI AL_CONTEXT_FACTORY" property that you supply asa
parameter to new I ni ti al Cont ext ().

. Madify the client code to perform the lookup in conjunction with the
j avax. rmi . Port abl eRenpt ebj ect . narrow() method.

RMI over 110P RMI clients differ from regular RMI clientsin that [IOP is
defined as the protocol when obtaining an initial context. Because of this,
lookups and casts must be performed in conjunction with the

j avax. rmi . Port abl eRenpt eQbj ect . narrow() method.

For example, in the RMI client statel ess session bean example (the

exanpl es.iiop.ejb.statel ess.rmiclient packageincludedinyour
distribution), an RMI client creates an initial context, performs alookup on the
EJBean home, obtains areference to an EJBean, and calls methods on the
EJBean.

You must usethej avax. rmi . Port abl eRenot eObj ect . narrow() method in
any situation where you would normally cast an object to a specific classtype. A
CORBA client may return an object that doesn't implement your remote
interface; the narrow method is provided by your orb to convert the object so
that it implements your remote interface. For example, the client code
responsible for looking up the EJBean home and casting the result to the Homre
object must be modified to use the

j avax. rmi . Port abl eRenpt eQbj ect . narrow() asshown below:

Programming WebL ogic RMI over IIOP 2-19

2 Using RMI over IIOP Programming Models to Develop Applications

Perform ng a | ookup:

/**

* RM/I10OP clients should use this narrow function
*
/

private object narrom Object ref, dass c) {
return Portabl eRenpt eCbj ect. narrow(ref, c);

}

/**
* Lookup the EJBs hone in the JND tree
*
/
private TraderHone | ookupHore()
throws Nami ngException
{
/1 Lookup the beans hone using JNDI
Context ctx = getlnitial Context();

try {
bj ect hone = ctx.| ookup(JNDI _NAME) ;
return (TraderHone) narrow hone, TraderHon®e. cl ass);
} catch (Nam ngException ne) {
| og("The client was unable to | ookup the EJBHone. Pl ease
make sure ");
| og("that you have deployed the ejb with the JNDI nane
"+JNDI _NAME+" on the WebLogic server at "+url);
t hrow ne;
}
}

/**

* Using a Properties object will work on JDK130

* clients

*/

private Context getlnitial Context() throws Nam ngException {

try {
/1 Get an Initial Context
Properties h = new Properties();
h. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c. j ndi. W.I ni tial Cont ext Factory");
h. put (Cont ext . PROVI DER_URL, url);
return new | nitial Context(h);
} catch (Nam ngException ne) {
| og("We were unable to get a connection to the WebLogic
server at "+url);
| og(" Pl ease make sure that the server is running.");
t hrow ne;
}
}

2-20 Programming WebLogic RMI over [IOP

Developing a WLS-IIOP Client

Theur | definesthe protocol, hostname, and listen port for the WebL ogic Server
and is passed in as a command-line argument.

public static void main(String[] args) throws Exception {

I og("\ nBegi nning statel essSession.Client...\n");

String url = "iiop://local host:7001";
8. Connect the client to the server over |10P by running the client with a command
like:
$ java

-Dj ava. security. manager -Djava.security.policy=java.policy
exanpl es.iiop.ejb.stateless.rmclient.dient
iiop://1ocal host: 7001

Developing a WLS-110P Client

In WebL ogic Server 7.0, support for a“fat” RMI-110OP client—referred to as the
WLS-11OP Client—was introduced. The WLS-I10OP Client supports clustering.

To support WLS-110OP clients, you must:

m havethefull webl ogi c. j ar (located in W._HOVE/ server/1ib) intheclient's
CLASSPATH.

m usewebl ogic. j ndi. W.Initial ContextFactory when defining your JINDI
context factory. Use this class when setting the value for the
"Cont ext . | NI TI AL_CONTEXT_FACTORY" property that you supply asa
parameter to new I ni ti al Cont ext ().

Otherwise, the procedure for developing aWLS-110P Client is the same as the
procedure described in “ Developing a J2SE Client” on page 2-10.

Note: InWebLogic Server 8.1 you do not need to use the
- D webl ogi c. system i i op. enabl ed i ent =t r ue command line option to
to enabl e client access when starting the client. By default, if you use
webl ogi c. j ar, enabl ed i ent issettotrue.

Programming WebL ogic RMI over IIOP 2-21

2

Using RMI over IIOP Programming Models to Develop Applications

Developing a CORBA/IDL Client

RMI over 11OP with CORBA/IDL clientsinvolves an Object Request Broker (ORB)
and a compiler that creates an interoperating language called IDL. C, C++, and
COBOL are examples of languages that ORB’s may compileinto IDL. A CORBA
programmer can use the interfaces of the CORBA Interface Definition Language
(IDL) to enable CORBA objects to be defined, implemented, and accessed from the
Java programming language.

Guidelines for Developing a CORBA/IDL Client

Using RMI-I1OPwithaCORBA/IDL client enablesinteroperability between non-Java
clients and Java objects. If you have existing CORBA applications, you should
program according to the RMI-110P with CORBA/IDL client model. Basically, you
will be generating IDL interfaces from Java. Y our client code will communicate with
WebL ogic Server through these IDL interfaces. Thisis basic CORBA programming.

The following sections provide some guidelines for developing RMI-110P
applications with CORBA/IDL clients.

For further reference see the following Object Management Group (OMG)
specifications:

e Javal anguage Mapping to OMG IDL Specification at
http://cgi.ong. org/cgi-bin/doc?ptc/00-01-06

e CORBA/IIOP 2.4.2 Specification at
http://cgi.ony. org/cgi-bin/doc?formal /99-10-07

Working with CORBA/IDL Clients

2-22

In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to aspecific language, the IDL iscompiled
with an IDL compiler. The IDL compiler generates a number of classes such as stubs
and skeletons that the client and server use to obtain references to remote objects,
forward requests, and marshall incoming calls. Even with IDL clientsit is strongly
recommended that you begin programming with the Java remote interface and
implementation class, then generate the IDL to allow interoperability with WebL ogic

Programming WebL ogic RMI over 11OP

http://cgi.omg.org/cgi-bin/doc?ptc/00-01-06
http://cgi.omg.org/cgi-bin/doc?formal/99-10-07

Developing a CORBA/IDL Client

and CORBA clients, asillustrated in the following sections. Writing code in IDL that
can be then reverse-mapped to create Java code is a difficult and bug-filled enterprise
and WebL ogic does not recommend doing this.

The following figure shows how IDL takes part in a RMI-110P model:

Figure2-1 IDL Client (Corba object) relationships

Client ”?L Server
t l t
Sub < — - IDL compiler- — - = Tie
- |
ORB [oP ORB

Java to IDL Mapping

In WebLogic RMI, interfaces to remote objects are described in a Java remote
interface that extendsj ava. r ni . Renot e. The Java-to-IDL mapping specification
defines how an IDL is derived from a Java remote interface. In the WebL ogic RMI
over [1OP implementation, you run the implementation class through the WebL ogic
RMI compiler or WebL ogic EJB compiler with the-i dI option. This process creates
an IDL equivalent of the remote interface. Y ou then compile the IDL with an IDL
compiler to generate the classes required by the CORBA client.

The client obtains areference to the remote object and forwards method calls through
the stub. WebL ogic Server implements a CosNani ng service that parsesincoming
I1OP requests and dispatches them directly into the RMI runtime environment.

The following figure shows this process.

Programming WebL ogic RMI over IIOP 2-23

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

2 Using RMI over IIOP Programming Models to Develop Applications

Figure2-2 WebLogic RMI over 110P object relationships

Client
WebL ogic
Server
IDL RMI
Sub <& - compiler < |pL - compiler < — — = RMI -
¢ obj ect
RMI
ORB - > runtime
[1OP

Objects-by-Value

The Objects-by-Val ue specification alows complex data types to be passed between
the two programming languages involved. In order for an IDL client to support
Objects-by-Value, you develop the client in conjunction with an Object Request
Broker (ORB) that supports Objects-by-Value. To date, relatively few ORBs support
Objects-by-Value correctly.

When developing an RMI over I1OP application that uses IDL, consider whether your
IDL clients will support Objects-by-Value, and design your RMI interface
accordingly. If your client ORB does not support Objects-by-Value, you must limit
your RMI interface to pass only other interfaces or CORBA primitive datatypes. The
following table lists ORBs that BEA Systems has tested with respect to
Objects-by-Value support:

Table2-2 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value
Inprise VisiBroker 3.3, 3.4 not supported
Inprise VisiBroker 4.x, 5.0 supported

JavaSoft JDK 1.2 not supported
JavaSoft JDK 1.3.1_01 and higher supported

2-24 Programming WebLogic RMI over [IOP

http://www.omg.org/technology/documents/index.htm

Developing a CORBA/IDL Client

Table 2-2 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value

lona Orbix 2000 supported (we have
encountered issues with
this implementation)

For more information on Objects-by-Value, see “Limitations of Passing Objects by
Vaue’ on page 3-31.

Procedure for Developing a CORBA/IDL Client

To develop an RMI over 110OP application with CORBA/IDL.:
1. Follow steps1 through 3in“Procedure for Developing J2SE Client” on page 2-11.

2. Generate an IDL file by running the WebL ogic RMI compiler or WebL ogic EJB
compiler with the-i dl option.

The required stub classes will be generated when you compile the IDL file. For
general information on the these compilers, refer to Using WebL ogic RMI and
BEA WebLogic Server Enterprise JavaBeans. Also reference the Java IDL
specification at Java Language Mapping to OMG IDL Specification at
http://ww. ong. or g/ cgi - bi n/ doc?f ormal / 01- 06- 07.

The following compiler options are specific to RMI over I1OP:

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled

-idlDirectory Target directory where the IDL will be generated

-idl Factories Generate factory methods for value types. Thisis useful if
your client ORB does not support thef act or y valuetype.

-idl NoVal ueTypes Suppresses generation of IDL for value types.

Programming WebL ogic RMI over IIOP 2-25

http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://www.omg.org/cgi-bin/doc?formal/01-06-07

2 Using RMI over IIOP Programming Models to Develop Applications

Option Function

-idl Overwite Causes the compiler to overwrite an existing idl file of the
same name

-idl Strict Createsan IDL that adheres strictly to the Objects-By-Value
specification. (not available with appc)

-idl Ver bose Display verbose information for IDL generation

-idl Vi si broker CGenerate | DL sonewhat conpatible with

Vi si broker 4.1 C++

The options are applied as shown in this example of running the RMI compiler:
> javaweblogic.rmic -idl -idIDirectory /IDL rmi_iiop.Hellol mpl

The compiler generates the IDL file within sub-directories of thei dl Di r ect oy
according to the package of the implementation class. For example, the
preceding command generatesaHel | o. i dl fileinthe/1 DL/ rni _iiop
directory. If thei dI Di rect ory option isnot used, the IDL fileis generated
relative to the location of the generated stub and skeleton classes.

3. Compilethe IDL fileto create the stub classes required by your IDL client to
communicate with the remote class. Your ORB vendor will provide an IDL
compiler.

The IDL file generated by the WebL ogic compilers contains the directives:
#include orb.idl.ThisIDL file should be provided by your ORB vendor. An
orb.idl fileisshippedinthe/Ii b directory of the WebLogic distribution. This
fileis only intended for use with the ORB included in the JDK that comes with
WebL ogic Server.

4. Develop thelDL client.

IDL clients are pure CORBA clients and do not require any WebL ogic classes.
Depending on your ORB vendor, additional classes may be generated to help
resolve, narrow, and obtain a reference to the remote class. In the following
example of aclient developed against a VisiBroker 4.1 ORB, the client
initializes a naming context, obtains a reference to the remote object, and callsa
method on the remote object.

Code segment from C++ client of the RMI-I10P example

2-26 Programming WebL ogic RMI over 11OP

Developing a CORBA/IDL Client

/1 string to object
CORBA: : Ooj ect _ptr o;

cout << "CGetting nanme service reference" << endl;
if (argc >= 2 && strncnp (argv[1l], "IOR', 3) == 0)
0 = orb->string_to_object(argv[1]);
el se
0 = orb->resolve_initial _references("NaneService");

/1 obtain a nam ng context

cout << "Narrowing to a nam ng context" << endl;
CosNanmi ng: : Nam ngCont ext _var context =

CosNani ng: : Nam ngCont ext:: _narrow o) ;

CosNanmi ng: : Name nane;

nane. | ength(1);

nane[0] .id = CORBA: :string_dup("Pinger_iiop");
nanme[0] . ki nd = CORBA: :string_dup("");

/1 resolve and narrow to RM object
cout << "Resolving the nanmi ng context" << endl;
CORBA: : Onj ect _var obj ect = context->resol ve(nane);

cout << "Narrowing to the Ping Server" << endl;

crexanples::iiop::rm::server::wWs::Pinger_var ping =
ciexanples::iiop::rm::server::ws::Pinger:: _narrow object);

/1l ping it

cout << "Ping (local) ..." << endl;

pi ng->pi ng();

}

Notice that before obtaining a naming context, initial references were resolved
using the standard Object URL (CORBA/IIOP 2.4.2 Specification, section
13.6.7). Lookups are resolved on the server by awrapper around JNDI that
implements the COS Naming Service API.

The Naming Service allows Weblogic Server applications to advertise object
references using logical names. The CORBA Name Service provides:

e Animplementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

e Application programming interfaces (APIs) for mapping object references
into an hierarchical naming structure (JNDI in this case).

e Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

Programming WebL ogic RMI over IIOP 2-27

http://cgi.omg.org/cgi-bin/doc?formal/99-10-07

2 Using RMI over IIOP Programming Models to Develop Applications

5. IDL client applications can locate an object by asking the CORBA Name Service
to look up the namein the INDI tree of WebL ogic Server. In the example above,
you run the client by using:

Cient.exe -ORBInitRef
NarmeSer vi ce=i i opl oc:/ /| ocal host: 7001/ NanmeSer vi ce.

Developing Tuxedo Clients

WebL ogic Server provides the ability to interoperate between WebL ogic Server
applications and Tuxedo services using RMI-110P. This includes calling EJBs and
other applications on WebL ogic from Tuxedo clients as well as other features.

The RMI-110P examplesincluded in the sanpl es/ exanpl es/ i i op directory of your
installation contain some samples of how to configure and set up your WebL ogic
Server to work with Tuxedo Servers and Tuxedo Clients.

WebLogic Tuxedo Connector

WebL ogic Tuxedo Connector provides interoperability between WebL ogic Server
applications and Tuxedo services. The connector uses an XML configuration file that
alows you to configure the WebL ogic Server to invoke Tuxedo services. It aso
enables Tuxedo to invoke WebL ogic Server Enterprise Java Beans (EJBs) and other
applicationsin response to aservice request. If you have developed applications on
Tuxedo and are moving to WebL ogic Server, or if you are seeking to integrate legacy
Tuxedo systems into your newer WebL ogic environment, the WebL ogic Tuxedo
Connector allows you to leverage Tuxedo’s highly scalable and reliable CORBA
environment.

The following documentation provides information on the Weblogic Tuxedo
Connector, as well as building CORBA applications on Tuxedo:

m The WebLogic Tuxedo Connector Guide

m For Tuxedo, CORBA topics at
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

2-28 Programming WebL ogic RMI over 11OP

http://e-docs.bea.com/wls/docs81b/wtc.html
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

Using EJBs with RMI-IIOP

BEA WebLogic C++ Client

WebL ogic Server 8.1 interoperates with the Tuxedo 8.0 C++ Client ORB. This client
supports object by value and the CORBA Interoperable Naming Service (INS).
Tuxedo release 8.0 RP 56 and above is required. WebL ogic Server users should
contact their BEA Service Representative for information on how to obtain the Tuxedo
C++ Client ORB.

Thefollowing documentation provides information on how to use the WebL ogic C++
Client with the Tuxedo C++ Client ORB:

m For general information on how to create Tuxedo Corba client applications, see
Creating CORBA Client Applications.

m For information on the use of the C++ IDL Compiler, see OMG IDL Syntax and
the C++ IDL Compiler.

m For information on how to use the Interoperable Naming Service to get object
references to initial objects such as NameService, see Interoperable Naming
Service Bootstrapping Mechanism.

Using EJBs with RMI-1IOP

Y ou can implement Enterprise JavaBeans that use RMI over |1OP to provide EJB
interoperability in heterogeneous server environments:

m A JavaRMI client using an ORB can access enterprise beansresiding on a
WebL ogic Server over |1OP.

m A non-Javaplatform CORBA/IDL client can access any enterprise bean object
on WebL ogic Server.

When using CORBA/IDL clients the sources of the mapping information are the EJB
classes as defined in the Java source files. WebL ogic Server provides the

webl ogi c. appc utility for generating reguired IDL files. These files represent the
CORBA view into the state and behavior of the target EJB. Use the webl ogi c. appc
utility to:

m Placethe EJB classes, interfaces, and deployment descriptor filesinto a JAR file.

Programming WebL ogic RMI over IIOP 2-29

http://e-docs.bea.com/tuxedo/tux80/creclien/index.htm
http://e-docs.bea.com/tuxedo/tux80/cref/idlchap.htm
http://e-docs.bea.com/tuxedo/tux80/cref/idlchap.htm
http://e-docs.bea.com/tuxedo/tux80/cref/boot.htm#1076154
http://e-docs.bea.com/tuxedo/tux80/cref/boot.htm#1076154

2 Using RMI over IIOP Programming Models to Develop Applications

2-30

m Generate WebL ogic Server container classes for the EJBs.

m Run each EJB container class through the RMI compiler to create stubs and
skeletons.

m Generate a directory tree of CORBA IDL files describing the CORBA interface
to these classes.

Thewebl ogi c¢. appc utility supportsanumber of command qualifiers. See” Procedure
for Developing a CORBA/IDL Client” on page 2-25.

Resulting files are processed using the compiler, reading source files from the

i dl Sour ces directory and generating CORBA C++ stub and skeleton files. These
generated files are sufficient for all CORBA data types with the exception of value
types (see “Limitations of WebL ogic RMI-110P" on page 3-30 for moreinformation).
Generated IDL filesare placed inthei dl Sour ces directory. The Java-to-IDL process
isfull of pitfalls. Refer to the Java Language Mapping to OMG IDL specification at
http://ww. ong. or g/t echnol ogy/ docunent s/ fornmal /j ava_|l anguage_napp
ing_to_ong_idl.htm Also, Sun has an excellent guide, Enterprise
JavaBeansTM Conponents and CORBA Clients: A Devel oper CQuide a
http://java.sun.conlj2se/ 1.4/ docs/guide/rm-iiop/interop.htm.

Thefollowing is an example of how to generate the IDL from abean you have already
created:

> java webl ogi c. appc -conpiler javac -keepgenerated

-idl -idl Directory idl Sources

buil d\std _ejb_iiop.jar

%APPLI CATI ONS% ej b_ii op.jar

After this step, compile the EJB interfaces and client application (the example here
usesa CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLI ENT_CLASSES% Trader.java Trader Hone. j ava
TradeResult.java Cient.java

Then run the IDL compiler against the IDL files built in the step where you used
webl ogi c. appc, creating C++ sourcefiles:

>4 DL2CPP% i dl Sour ces\ exanpl es\rmi _i i op\ej b\ Trader. i dl
>0 DL2CPP% i dl Sour ces\ j avax\ ej b\ RenoveException.idl

Now you can compile your C++ client.

Programming WebL ogic RMI over 11OP

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html

Using EJBs with RMI-IIOP

For an in-depth look of how EJB’s can be used with RMI-110P see the WebL ogic
Server RMI-110P examples, located in your installation inside the
SAMPLES_HOME/ server/ src/ exanpl es/ i i op directory.

Programming WebL ogic RMI over IIOP 2-31

2 Using RMI over IIOP Programming Models to Develop Applications

2-32 Programming WebL ogic RMI over 11OP

Configuration Overview

3 Configuring WebLogic
Server for RMI-1IOP

The following sections describe concepts and procedures relating to configuring
WebL ogic Server for RMI-110P:

m Configuration Overview

m Using RMI-I1OP with SSL and a Java Client

m Accessing WebLogic Server Objects from a CORBA Client through Delegation
m Limitations of WebLogic RMI-110P

m RMI-11OP Code Examples Package

m Additional Resources

Configuration Overview

Because insufficient standards exist for propagating client identity from a CORBA
client, theidentity of any client connecting over 11OPto WebL ogic Server will default
to "guest.” You can set the user and password inthe confi g. xn fileto establish a
singleidentity for all clients connecting over I1OPto aparticular instance of WebL ogic
Server, as shown in the example below:

<Server
Name="nyserver"

Nat i vel CEnabl ed="t r ue"
Def aul t | | OPUser =" Bob"

Programming WebL ogic RMI over IIOP 3-25

3 Configuring WebLogic Server for RMI-1IOP

Def aul t I | OPPasswor d=" Gunby1234"
Li stenPort="7001">

You can also set the | | OPEnabl ed attributeintheconfi g. xm . Thedefault valueis
"true"; setthisto"fal se" only if you want to disable I1OP support. No additional
server configuration isrequired to use RMI over |10OP beyond ensuring that all remote
objects are bound to the JNDI tree to be made available to clients. RMI objects are
typically bound to the INDI tree by a startup class. EJBean homes are bound to the
JNDI tree at the time of deployment. WebL ogic Server implements a CosNani ng

Ser vi ce by delegating all lookup calls to the INDI tree.

WebL ogic Server 7.0 supportsRMI-I11OP cor baname and cor bal oc JNDI references.
Please refer to the CORBA/IIOP 2.4.2 Specification. One feature of these references
isthat you can make an EJB or other object hosted on one WebL ogic Server available
over I1OP to other Application Servers. So, for instance, you could add the following
toyour ej b-j ar. xn :

<ej b-reference-description>

<ej b-ref - name>W.S</ ej b-r ef - name>

<j ndi - nanme>cor banane: ii op: 1. 2@ ocal host: 7001#ej b/ j 2ee/ i nt er op/ f 0o
</j ndi - nanme>

</ ej b-reference-descripti on>

The reference-description stanza maps a resource reference defined in ej b- j ar . xn

to the INDI name of an actual resource available in WebL ogic Server. The

ej b- r ef - nane specifiesaresource reference name. Thisisthe reference that the EJB
provider placeswithin theej b-j ar. xm deployment file. Thej ndi - name specifies
the INDI name of an actual resource factory available in WebL ogic Server.

Notethei i op: 1. 2 contained in the <j ndi - name> section. WebL ogic Server 7.0
contains an implementation of GIOP (General-1nter-Orb-Protocol) 1.2. The GIOP
specifiesformatsfor messagesthat are exchanged between inter-operating ORBs. This
alows interoperatability with many other ORBs and application servers. The GIOP
version can be controlled by the version number in acor baname or cor bal oc
reference.

Using RMI-IIOP with SSL and a Java Client

The Javaclients that support SSL are the thin client and theWLS-I1OP client. TO use
SSL with these clients, simply specify an sdl url.

3-26 Programming WebL ogic RMI over 11OP

http://cgi.omg.org/cgi-bin/doc?formal/99-10-07

Accessing WebLogic Server Objects from a CORBA Client through Delegation

Accessing WebLogic Server Objects from a
CORBA (Client through Delegation

WebL ogic Server provides services that allow CORBA clients to access RMI remote
objects. As an alternative method, you can also host a CORBA ORB (Object Request
Broker) in WebL ogic Server and delegate incoming and outgoing messages to allow
CORBA clientsto indirectly invoke any object that can be bound in the server.

Overview of Delegation

Here are the main steps to create the objects that work together to delegate CORBA
callsto an object hosted by WebL ogic Server.

1. Create a startup classthat creates and initializes an ORB so that the ORB is
co-located with the VM that is running WebL ogic Server.

2. Createan IDL (Interface Definition Language) that will Create an object to
accept incoming messages from the ORB.

3. Compilethe IDL. Thiswill generate a number of classes, one of which will be
the Tie class. Tie classes are used on the server side to process incoming calls,
and dispatch the calls to the proper implementation class. The implementation
classisresponsible for connecting to the server, looking up the appropriate
object, and invoking methods on the object on behalf of the CORBA client.

Thefollowing isadiagram of a CORBA client invoking an EJBean by delegating the
call to an implementation class that connects to the server and operates upon the
EJBean. Using asimilar architecture, the reverse situation will also work. Y ou can
have a startup class that brings up an ORB and obtains a reference to the CORBA
implementation object of interest. This class can make itself available to other

WebL ogic objects througout the INDI tree and del egate the appropriate callsto the
CORBA object.

Programming WebL ogic RMI over IIOP 3-27

3 Configuring WebLogic Server for RMI-1IOP

WebLogic Server

Startu
class P EJBean

Creates and

initializes Tie CORBA.
class client
ORB I
Delegate architecture

Example of Delegation

The following code example creates an implementation class that connects to the
server, looks up the Foo object in the INDI tree, and callsthe bar method. This
object isalso astartup classthat isresponsiblefor initializing the CORBA environment

by:
m Creating the ORB

m Creating the Tie object

m Associating the implementation class with the Tie object

m Registering the Tie object with the ORB

m Binding the Tie object within the ORB's naming service

i mport org.ong. CosNami ng. *;

i mport org.ong. CosNam ng. Nam ngCont ext Package. *;

i mport org.ong. CORBA. *;

3-28 Programming WebL ogic RMI over 11OP

Accessing WebLogic Server Objects from a CORBA Client through Delegation

inmport java.rm.?*;
i mport javax.nam ng.*;
i mport webl ogi c. j ndi . Envi ronnent;

public class Fool npl inplenents Foo

public Fool npl () throws RenoteException {

}

super () ;

public void bar() throws RenpteException, Nam ngException {

}

/1 1ook up and call the instance to delegate the call to...
webl ogi c. j ndi . Envi ronment env = new Envi ronnent () ;

Context ctx = env.getlnitial Context();

Foo del egate = (Foo)ct x. | ookup("Foo0");

del egate. bar ();

System out. println("del egate Foo.bar called!");

public static void main(String args[]) {

try {
Fool mpl foo = new Fool npl ();

/l Create and initialize the ORB
ORB orb = ORB.init(args, null);

|/l Create and register the tie with the ORB
_Foolnpl _Tie fooTie = new _Fool npl _Tie();

f ooTi e. set Target (f 00) ;

orb. connect (f ooTi e) ;

/1 Get the nami ng context

org. ong. CORBA. Gbject o =\

orb.resolve_initial _references("NanmeService");

Nam ngCont ext ncRef = Nani ngCont ext Hel per. narrow(o) ;

/1 Bind the object reference in nam ng

NameConponent nc = new NaneConponent (" Foo", "");
NameConponent path[] = {nc};

ncRef . rebi nd(path, fooTie);

System out. println("Foolnpl created and bound in the ORB
registry.");

}
catch (Exception e) {

Programming WebL ogic RMI over IIOP 3-29

3 Configuring WebLogic Server for RMI-1IOP

Systemout. println("Fool npl.main: an exception occurred:");
e.printStackTrace();

}

For moreinformation on how to implement a startup class, see Sarting and Sopping
WebLogic Servers.

Limitations of WebLogic RMI-1IOP

The following sections outline various issues relating to WebL ogic RMI-I1OP.

Limitations Using RMI-IIOP on the Client

UseWebL ogic Server withJDK 1.3.1_01or higher. Earlier versionsare not RMI-110P
compliant. Note the following about these earlier JIDKs:

m Send GIOP 1.0 messages and GIOP 1.1 profilesin IORs.

m Do not support the necessary pieces for EJB 2.0 interoperation (GIOP 1.2,
codeset negotiation, UTF-16).

m Have bugsinits treatment of mangled method names.
m Do not correctly unmarshal unchecked exceptions.
m Have subtle bugs relating to the encoding of valuetypes.

Many of these items are impossible to support both ways. Where there was a choice,
WebL ogic supports the spec-compliant option.

3-30 Programming WebLogic RMI over [IOP

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/startstop.html

Limitations of WebLogic RMI-IIOP

Limitations Developing Java IDL Clients

BEA Systems strongly recommends developing Java clients with the RMI client
model if you are going to use RMI-I10OP. Developing a JavaIDL client can cause
naming conflicts and classpath problems, and you are required to keep the server-side
and client-side classes seaparate. Because the RMI object and the IDL client have
different type systems, the class that defines the interface for the server-side will be
very different from the class that defines the interface on the client-side.

Limitations of Passing Objects by Value

To pass objects by value, you need to use value types (see Chapter 5 of the CORBA
specification at ht t p: // cgi . omg. or g/ cgi - bi n/ doc?f or mal / 99- 10- 07 for
further information) Y ou implement value types on each platform on which they are
defined or referenced. This section describes the difficulties of passing complex value
types, referencing the particular case of a C++ client accessing an Entity bean on
WebL ogic Server (seethe

SAMPLES HOVE/ server/src/ exanpl es/iiop/ejb/entity/server/ws and
SAMPLES HOWME/ server/src/ exanpl es/iiop/ejbl/entity/cppclient
directories).

One problem encountered by Java programmersisthe use of derived datatypesthat are
not usually visible. For example, when accessing an EJB finder the Java programmer
will see a Collection or Enumeration, but does not pay attention to the underlying
implementation because the JDK run-time will classload it over the network.
However, the C++, CORBA programmer must know the type that comes across the
wire so that he can register a value type factory for it and the ORB can unmarshall it.

Examples of thisin the sample

SAMPLES HOVE/ server/src/ exanpl es/iiop/ejb/entity/cppclient are
EJBObjectEnum and Vector. Simply running ej bc on the defined EJB interfaces will
not generate these definitions because they do not appear in the interface. For this
reason ej bc will also accept Java classes that are not remote interfaces--specifically
for the purpose of generating IDL for these interfaces. Review the
/iiop/ejblentityl/cppclient exampletoseehow toregister avaluetypefactory.

Programming WebL ogic RMI over IIOP 3-31

http://cgi.omg.org/cgi-bin/doc?formal/99-10-07

Configuring WebLogic Server for RMI-1IOP

Javatypesthat are serializable but that definewr i t eCbj ect () are mapped to custom

valuetypesin IDL. Y ou must write C++ code to unmarshall the value type manually.
See

SAMPLES HOME/ server/src/ exanpl es/iiop/ejbl/enity/tuxclient/ArrayLi
st _i . cpp for an example of how to do so.

Note: When using Tuxedo, you can specify the- i qualifier to direct the IDL
compiler to create implementation filesnamed Fi | eNare_i . h and
Fi | eName_i . cpp. For example, this syntax creates the
TradeResult _i. handTradeResul t _i . cpp implementation files:

idl -1idl Sources -i
i dl Sour ces\ exanpl es\iiop\ejb\iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operations
on avalue type. Implementation files are included in a CORBA client application.

RMI-IIOP Code Examples Package

Theexanpl es. i i op packageisinthe

SAMPLES_HOME/ ser ver/ src/ sanpl es/ exanpl es/ i i op directory and
demonstrates connectivity between numerous clients and applications. The examples
demonstrate using EJB’ s with RMI-110P, connecting to C++ clients, and setting up
interoperability with a Tuxedo Server. Refer to the example documentation for more
details. For examples pertaining specifically to WebL ogic Tuxedo Connector, seethe
/W server 6. 1/ sanpl es/ exanpl es/ wt ¢ directory.

Additional Resources

3-32

WebL ogic RMI-I10P is intended to be a complete implementation of RMI.
Please refer to the rel ease notes for any additional considerations that might
apply to your version.

= Programming with WebLogic INDI at
http://e-docs. bea. coml W s/ docs81b/j ndi .

Programming WebL ogic RMI over 11OP

http://e-docs.bea.com/wls/docs81b/notes
http://e-docs.bea.com/wls/docs81b/jndi/index.html

Additional Resources

Using WebLogic RMI at ht t p: / / e- docs. bea. coml Wl s/ docs81b/rmi .

Java Remote Method Invocation (RMI) Homepage at
http://java. sun.con j2se/ 1. 3/ docs/ guide/rm/index.htm .

Sun’s RMI Specifications at
http://java. sun.conij2se/ 1. 3/ docs/ gui de/rm /spec/rm TOC. htmi .

Sun’'s RMI Tutorials at

http://java. sun.conlj2se/ 1. 3/ docs/guide/rm /getstart.doc. htnl
http://java. sun.conij2se/ 1. 3/ docs/ gui de/ rm /rm socket factory. do
c.htm

http://java. sun.conlj2se/ 1. 3/ docs/ guide/rm /activation.htm .

Sun’s RMI over 11OP documentation at
http://java. sun.com products/rm-iiop/index.htm .

OMG Homepage at ht t p: / / www. ong. or g.

CORBA Language Mapping Specifications at
http://ww. ong. or g/t echnol ogy/ docunent s/i ndex. ht m

CORBA Technology and the Java Platform at
http://java. sun.conij2ee/ corbal.

Sun’s Java IDL page at
http://java. sun.conij2se/ 1. 3/ docs/ gui de/idl/index. htn .

Objects-by-Value Specification at
ftp://ftp.ony. org/ pub/ docs/ orbos/ 98-01-18. pdf.

Programming WebL ogic RMI over IIOP 3-33

http://e-docs.bea.com/wls/docs81b/rmi/rmi_api.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/rmisocketfactory.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/rmisocketfactory.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/activation.html
http://java.sun.com/products/rmi-iiop/index.html
http://www.omg.org
http://www.omg.org/technology/documents/index.htm
http://java.sun.com/j2ee/corba/
http://java.sun.com/j2se/1.3/docs/guide/idl/index.html
ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf

3 Configuring WebLogic Server for RMI-1IOP

3-34 Programming WebLogic RMI over [IOP

	Contents
	About This Document
	1. Overview of RMI over IIOP
	2. Using RMI over IIOP Programming Models to Develop Applications
	3. Configuring WebLogic Server for RMI-IIOP

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of RMI over IIOP
	What Are RMI and RMI over IIOP?
	Overview of WebLogic RMI-IIOP
	Support for RMI-IIOP with RMI (Java) Clients
	Support for RMI-IIOP with CORBA/IDL Clients
	Support for RMI-IIOP with Tuxedo Clients

	2 Using RMI over IIOP Programming Models to Develop Applications
	Overview of RMI-IIOP Programming Models
	Table 2�1 WebLogic Server Client Types and Features

	Developing a T3 Client
	Developing a J2SE Client
	When to Use a J2SE Client
	Procedure for Developing J2SE Client
	1. Define your remote object’s public methods in an interface that extends java.rmi.Remote.
	2. Implement the interface in a class named interfaceNameImpl and bind it into the JNDI tree to b...
	3. Compile the remote interface and implementation class with a java compiler. Developing these c...
	4. Run the WebLogic RMI or EJB compiler against the implementation class to generate the necessar...
	5. Make sure that the files you have now created -- the remote interface, the class that implemen...
	6. Obtain an initial context.
	7. Modify the client code to perform the lookup in conjunction with the javax.rmi.PortableRemoteO...
	8. Connect the client to the server over IIOP by running the client with a command like:
	9. Set the security manager on the client:

	Developing a J2EE Application Client (Thin Client)
	Procedure for Developing J2EE Application Client (Thin Client)
	1. Define your remote object’s public methods in an interface that extends java.rmi.Remote.
	2. Implement the interface in a class named interfaceNameImpl and bind it into the JNDI tree to b...
	3. Compile the remote interface and implementation class with a java compiler. Developing these c...
	4. Run the WebLogic RMI or EJB compiler against the implementation class to generate the necessar...
	5. Make sure that the files you have created—the remote interface, the class that implements it, ...
	6. Obtain an initial context.
	7. Modify the client code to perform the lookup in conjunction with the javax.rmi.PortableRemoteO...
	8. Connect the client to the server over IIOP by running the client with a command like:

	Developing a WLS-IIOP Client
	Developing a CORBA/IDL Client
	Guidelines for Developing a CORBA/IDL Client
	Working with CORBA/IDL Clients
	Figure 2�1 IDL Client (Corba object) relationships

	Java to IDL Mapping
	Figure 2�2 WebLogic RMI over IIOP object relationships

	Objects-by-Value
	Table 2�2 ORBs Tested with Respect to Objects-by-Value Support

	Procedure for Developing a CORBA/IDL Client
	1. Follow steps 1 through 3 in “Procedure for Developing J2SE Client” on page 2�11.
	2. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB compiler with the -i...
	3. Compile the IDL file to create the stub classes required by your IDL client to communicate wit...
	4. Develop the IDL client.
	5. IDL client applications can locate an object by asking the CORBA Name Service to look up the n...

	Developing Tuxedo Clients
	WebLogic Tuxedo Connector
	BEA WebLogic C++ Client

	Using EJBs with RMI-IIOP

	3 Configuring WebLogic Server for RMI-IIOP
	Configuration Overview
	Using RMI-IIOP with SSL and a Java Client
	Accessing WebLogic Server Objects from a CORBA Client through Delegation
	Overview of Delegation
	1. Create a startup class that creates and initializes an ORB so that the ORB is co-located with ...
	2. Create an IDL (Interface Definition Language) that will Create an object to accept incoming me...
	3. Compile the IDL. This will generate a number of classes, one of which will be the Tie class. T...

	Example of Delegation

	Limitations of WebLogic RMI-IIOP
	Limitations Using RMI-IIOP on the Client
	Limitations Developing Java IDL Clients
	Limitations of Passing Objects by Value

	RMI-IIOP Code Examples Package
	Additional Resources

