
BEA
 WebLogic
Server™and
WebLogic
Express®

Programming WebLogic
HTTP Servlets
Release 8.1
Document Revised: November 28, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic HTTP Servlets

Part Number Document Revised Software Version

N/A November 28, 2002 BEA WebLogic Server
Version 8.1

Contents

About This Document
Audience... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ...x

1. Overview of HTTP Servlets
What Is a Servlet?.. 1-1

What You Can Do with Servlets ... 1-2

Overview of Servlet Development .. 1-3

Servlets and J2EE .. 1-3

HTTP Servlet API Reference .. 1-4

2. Introduction to Programming
Writing a Simple HTTP Servlet .. 2-1

Advanced Features .. 2-4

Complete HelloWorldServlet Example... 2-5

3. Programming Tasks
Initializing a Servlet .. 3-1

Initializing a Servlet when WebLogic Server Starts 3-2

Overriding the init() Method .. 3-3

Providing an HTTP Response ... 3-4

Retrieving Client Input .. 3-6

Methods for Using the HTTP Request ... 3-7
Programming WebLogic HTTP Servlets iii

Example: Retrieving Input by Using Query Parameters 3-8

Session Tracking from a Servlet.. 3-10

A History of Session Tracking ... 3-10

Tracking a Session with an HttpSession Object....................................... 3-11

Lifetime of a Session .. 3-12

How Session Tracking Works .. 3-13

Detecting the Start of a Session.. 3-13

Setting and Getting Session Name/Value Attributes 3-14

Logging Out and Ending a Session .. 3-15

Using session.invalidate() for a Single Web Application 3-15

Implementing Single Sign-On for Multiple Applications................. 3-15

Exempting a Web Application for Single Sign-on............................ 3-16

Configuring Session Tracking ... 3-16

Using URL Rewriting Instead of Cookies.. 3-16

URL Rewriting and Wireless Access Protocol (WAP)............................ 3-18

Making Sessions Persistent .. 3-18

Scenarios to Avoid When Using Sessions .. 3-19

Use Serializable Attribute Values ... 3-19

Configuring Session Persistence ... 3-20

Using Cookies in a Servlet ... 3-20

Setting Cookies in an HTTP Servlet .. 3-20

Retrieving Cookies in an HTTP Servlet ... 3-21

Using Cookies That Are Transmitted by Both HTTP and HTTPS.......... 3-22

Application Security and Cookies .. 3-22

Response Caching.. 3-23

Initialization Parameters.. 3-24

Using WebLogic Services from an HTTP Servlet .. 3-25

Accessing Databases.. 3-25

Connecting to a Database Using a JDBC Connection Pool 3-26

Using a Connection Pool in a Servlet.. 3-26

Connecting to a Database Using a DataSource Object 3-27

Using a DataSource in a Servlet.. 3-28

Connecting Directly to a Database Using a JDBC Driver 3-28

Threading Issues in HTTP Servlets ... 3-29

SingleThreadModel .. 3-29
iv Programming WebLogic HTTP Servlets

Shared Resources ... 3-29

Dispatching Requests to Another Resource .. 3-30

Forwarding a Request... 3-31

Including a Request .. 3-32

4. Administration and Configuration
Overview of WebLogic HTTP Servlet Administration..................................... 4-2

Using Deployment Descriptors to Configure and Deploy Servlets 4-2

web.xml (Web Application Deployment Descriptor) 4-2

weblogic.xml (Weblogic-Specific Deployment Descriptor) 4-3

WebLogic Server Administration Console .. 4-4

Directory Structure for Web Applications .. 4-5

Referencing a Servlet in a Web Application ... 4-5

URL Pattern Matching ... 4-6

Servlet Security ... 4-7

Authentication .. 4-7

Authorization (Security Constraints) ... 4-8

Servlet Development Tips ... 4-8

Clustering Servlets... 4-9
Programming WebLogic HTTP Servlets v

vi Programming WebLogic HTTP Servlets

About This Document

This document provides information on programming and deploying WebLogic HTTP
Servlets.

The document is organized as follows:

! Chapter 1, “Overview of HTTP Servlets,” provides an overview of Hypertext
Transfer Protocol (HTTP) servlet programming and explains how to use HTTP
servlets with WebLogic Server.

! Chapter 2, “Introduction to Programming,” introduces basic HTTP servlet
programming.

! Chapter 3, “Programming Tasks,” provides information about writing HTTP
servlets in a WebLogic Server environment.

! Chapter 4, “Administration and Configuration,” provides information about
writing HTTP servlets in a WebLogic Server environment.

Audience

This document is written for application developers who want to build e-commerce
applications using HTTP servlets and the Java 2 Platform, Enterprise Edition (J2EE)
from Sun Microsystems. It is assumed that readers know Web technologies,
object-oriented programming techniques, and the Java programming language.
Programming WebLogic HTTP Servlets vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

! Package javax.servlet
(http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/package-summary.html)

! Package javax.servlet.http
(http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/http/package-summary.html)

! Servlet 2.3 specification
(http://java.sun.com/products/servlet/download.html#specs)
viii Programming WebLogic HTTP Servlets

http://www.adobe.com
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

! Deploying and Configuring Applications at
http://e-docs.bea.com/wls/docs81b/adminguide/config_web_app.htm
l

! Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs81b/programming/webappdeployment.
html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
Programming WebLogic HTTP Servlets ix

http://e-docs.bea.com/wls/docs81b/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs81b/programming/webappdeployment.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
x Programming WebLogic HTTP Servlets

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic HTTP Servlets xi

xii Programming WebLogic HTTP Servlets

CHAPTER
1 Overview of HTTP
Servlets

The following sections provide an overview of Hypertext Transfer Protocol (HTTP)
servlet programming and explain how to use HTTP servlets with WebLogic Server:

! What Is a Servlet?

! What You Can Do with Servlets

! Overview of Servlet Development

! Servlets and J2EE

! HTTP Servlet API Reference

What Is a Servlet?

A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is a special
type of servlet that handles an HTTP request and provides an HTTP response, usually
in the form of an HTML page. The most common use of WebLogic HTTP Servlets is
to create interactive applications using standard Web browsers for the client-side
presentation while WebLogic Server handles the business logic as a server-side
process. WebLogic HTTP servlets can access databases, Enterprise JavaBeans,
messaging APIs, HTTP sessions, and other facilities of WebLogic Server.

WebLogic Server fully supports HTTP servlets as defined in the Servlet 2.3
specification from Sun Microsystems. HTTP servlets form an integral part of the Java
2 Enterprise Edition (J2EE) standard.
Programming WebLogic HTTP Servlets 1-1

1 Overview of HTTP Servlets
What You Can Do with Servlets

! Create dynamic Web pages that use HTML forms to get end-user input and
provide HTML pages that respond to that input. Examples of this utilization
include online shopping carts, financial services, and personalized content.

! Create collaborative systems such as online conferencing.

! Servlets running in WebLogic Server have access to a variety of APIs and
services. For example:

" Session tracking—Allows a Web site to track a user’s progress across
multiple Web pages. This functionality supports Web sites such as
e-commerce sites that use shopping carts. WebLogic Server supports session
persistence to a database, providing fail-over between server down time and
session sharing between clustered servers. For more information see “Session
Tracking from a Servlet” on page 3-10.

" JDBC drivers (including BEA)—JDBC drivers provide basic database
access. With Weblogic Server’s multitier JDBC implementations, you can
take advantage of connection pools, server-side data caching, and
transactions. For more information see “Accessing Databases” on page 3-25.

" Security—You can apply various types of security to servlets, including
using ACLs for authentication and Secure Sockets Layer (SSL) to provide
secure communications.

" Enterprise JavaBeans—Servlets can use Enterprise JavaBeans (EJB) to
encapsulate sessions, data from databases, and other functionality.

" Java Messaging Service (JMS)—JMS allows your servlets to exchange
messages with other servlets and Java programs.

" Java JDK APIs—Servlets can use the standard Java JDK APIs.

" Forwarding requests—Servlets can forward a request to another servlet or
other resource.

! Servlets written for any J2EE-compliant servlet engine can be easily deployed
on WebLogic Server.

! Servlets and Java Server Pages (JSP) can work together to create an application.
1-2 Programming WebLogic HTTP Servlets

Overview of Servlet Development
Overview of Servlet Development

! Programmers of HTTP servlets utilize a standard API from JavaSoft,
javax.servlet.http, to create interactive applications.

! HTTP servlets can read HTTP headers and write HTML coding to deliver a
response to a browser client.

! Servlets are deployed on WebLogic Server as part of a Web Application. A Web
Application is a grouping of application components such as servlet classes,
JavaServer Pages (JSP), static HTML pages, images, and security. For more
information see “Administration and Configuration” on page 4-1.

Servlets and J2EE

The Servlet 2.3 specification (available at
http://java.sun.com/products/servlet/download.html#specs), part of the
Java 2 Platform, Enterprise Edition, defines the implementation of the servlet API and
the method by which servlets are deployed in enterprise applications. Deploying
servlets on a J2EE-compliant server, such as WebLogic Server, is accomplished by
packaging the servlets and other resources that make up an enterprise application into
a single unit called a Web Application. A Web Application utilizes a specific directory
structure to contain its resources and a deployment descriptor that defines how these
resources interact and how the application is accessed by a client. A Web Application
may also be deployed as an archive file called a .war file.

For more information on creating Web Applications, see Assembling and Configuring
Web Applications at
http://e-docs.bea.com/wls/docs81b/webapp/index.html. For an overview
of servlet administration and deployment issues, see “Administration and
Configuration” on page 4-1.
Programming WebLogic HTTP Servlets 1-3

http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html

1 Overview of HTTP Servlets
HTTP Servlet API Reference

WebLogic Server supports the javax.servlet.http package in the Java Servlet 2.3
API. You can find additional documentation for the package from Sun Microsystems:

! API documentation

" Package javax.servlet
(http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/package-summary.html)

" Package javax.servlet.http
(http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/http/package-summary.html)

! Servlet 2.3 specification
(http://java.sun.com/products/servlet/download.html#specs)
1-4 Programming WebLogic HTTP Servlets

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

CHAPTER
2 Introduction to
Programming

The following sections introduce basic HTTP servlet programming:

! Writing a Simple HTTP Servlet

! Advanced Features

! Complete HelloWorldServlet Example

Writing a Simple HTTP Servlet

The section provides a procedure for writing a simple HTTP servlet, which prints out
the message Hello World. A complete code example (the HelloWorldServlet)
illustrating these steps is included at the end of this section. Additional information
about using various J2EE and Weblogic Server services such as JDBC, RMI, and JMS,
in your servlet are discussed later in this document.

1. Import the appropriate package and classes, including the following:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

2. Extend javax.servlet.http.HttpServlet. For example:

public class HelloWorldServlet extends HttpServlet{

3. Implement a service() method.
Programming WebLogic HTTP Servlets 2-1

2 Introduction to Programming
The main function of a servlet is to accept an HTTP request from a Web
browser, and return an HTTP response. This work is done by the service()
method of your servlet. Service methods include response objects used to create
output and request objects used to receive data from the client.

You may have seen other servlet examples implement the doPost() and/or
doGet() methods. These methods reply only to POST or GET requests; if you
want to handle all request types from a single method, your servlet can simply
implement the service() method. (However, if you choose to implement the
service() method, you cannot implement the doPost() or doGet() methods,
unless you call super.service() at the beginning of the service() method.)
The HTTP servlet specification describes other methods used to handle other
request types, but all of these methods are collectively referred to as service
methods.

All the service methods take the same parameter arguments. An
HttpServletRequest provides information about the request, and your servlet
uses an HttpServletResponse to reply to the HTTP client. The service method
looks like the following:

public void service(HttpServletRequest req,
HttpServletResponse res) throws IOException

{

4. Set the content type, as follows:

res.setContentType("text/html");

5. Get a reference to a java.io.PrintWriter object to use for output, as follows:

PrintWriter out = res.getWriter();

6. Create some HTML using the println() method on the PrintWriter object,
as shown in the following example:

out.println("<html><head><title>Hello World!</title></head>");
out.println("<body><h1>Hello World!</h1></body></html>");
}

}

7. Compile the servlet, as follows:

a. Set up a development environment shell (see
http://e-docs.bea.com/wls/docs81b/programming/environment.html) with the
correct classpath and path settings.
2-2 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/programming/environment.html

Writing a Simple HTTP Servlet
b. From the directory containing the Java source code for your servlet, compile
your servlet into the WEB-INF/classes directory of the Web Application that
contains your servlet. For example:

javac -d /myWebApplication/WEB-INF/classes myServlet.java

8. Deploy the servlet as part of a Web Application hosted on WebLogic Server. For
an overview of servlet deployment, see “Administration and Configuration” on
page 4-1.

9. Call the servlet from a browser.

The URL you use to call a servlet is determined by: (a) the name of the Web
Application containing the servlet and (b) the name of the servlet as mapped in
the deployment descriptor of the Web Application. Request parameters can also
be included in the URL used to call a servlet.

Generally the URL for a servlet conforms to the following:

http://host:port/webApplicationName/mappedServletName?parameter

The components of the URL are defined as follows:

" host is the name of the machine running WebLogic Server.

" port is the port at which the above machine is listening for HTTP requests.

" webApplicationName is the name of the Web Application containing the
servlet.

" parameters are one or more name-value pairs containing information sent
from the browser that can be used in your servlet.

For example, to use a Web browser to call the HelloWorldServlet (the
example featured in this document), which is deployed in the examplesWebApp
and served from a WebLogic Server running on your machine, enter the
following URL:

http://localhost:7001/examplesWebApp/HelloWorldServlet

The host:port portion of the URL can be replaced by a DNS name that is
mapped to WebLogic Server.
Programming WebLogic HTTP Servlets 2-3

2 Introduction to Programming
Advanced Features

The preceding steps create a basic servlet. You will probably also use more advanced
features of servlets:

! Handling HTML form data—HTTP servlets can receive and process data
received from a browser client in HTML forms.

" “Retrieving Client Input” on page 3-6

! Application design—HTTP servlets offer many ways to design your application.
The following sections provide detailed information about writing servlets:

" “Providing an HTTP Response” on page 3-4

" “Threading Issues in HTTP Servlets” on page 3-29

" “Dispatching Requests to Another Resource” on page 3-30

! Initializing a servlet—if your servlet needs to initialize data, accept initialization
arguments, or perform other actions when the servlet is initialized, you can
override the init() method.

" “Initializing a Servlet” on page 3-1

! Use of sessions and persistence in your servlet—sessions and persistence allow
you to track your users within and between HTTP sessions. Session management
includes the use of cookies. For more information, see the following sections:

" “Session Tracking from a Servlet” on page 3-10

" “Using Cookies in a Servlet” on page 3-20

" “Configuring Session Persistence” on page 3-20

! Use of WebLogic services in your servlet—WebLogic Server provides a variety
of services and APIs that you can use in your Web applications. These services
include Java Database Connectivity (JDBC) drivers, JDBC database connection
pools, Java Messaging Service (JMS), Enterprise JavaBeans (EJB), and Remote
Method Invocation (RMI). For more information, see the following sections:

" “Using WebLogic Services from an HTTP Servlet” on page 3-25

" “Servlet Security” on page 4-7
2-4 Programming WebLogic HTTP Servlets

Complete HelloWorldServlet Example
" “Accessing Databases” on page 3-25

Complete HelloWorldServlet Example

This section provides the complete Java source code for the example used in the
preceding procedure. The example is a simple servlet that provides a response to an
HTTP request. Later in this document, this example is expanded to illustrate how to
use HTTP parameters, cookies, and session tracking.

Listing 2-1 HelloWorldServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorldServlet extends HttpServlet {
public void service(HttpServletRequest req,

HttpServletResponse res)
throws IOException

{
// Must set the content type first
res.setContentType("text/html");
// Now obtain a PrintWriter to insert HTML into
PrintWriter out = res.getWriter();

out.println("<html><head><title>" +
"Hello World!</title></head>");

out.println("<body><h1>Hello World!</h1></body></html>");
}

}

You can find the source code and instructions for compiling and running all the
examples used in this document in the samples/examples/servlets directory of
your WebLogic Server distribution.
Programming WebLogic HTTP Servlets 2-5

2 Introduction to Programming
2-6 Programming WebLogic HTTP Servlets

CHAPTER
3 Programming Tasks

The following sections describe how to write HTTP servlets in a WebLogic Server
environment:

! Initializing a Servlet

! Providing an HTTP Response

! Retrieving Client Input

! Session Tracking from a Servlet

! Using Cookies in a Servlet

! Response Caching

! Using WebLogic Services from an HTTP Servlet

! Accessing Databases

! Threading Issues in HTTP Servlets

! Dispatching Requests to Another Resource

Initializing a Servlet

Normally, WebLogic Server initializes a servlet when the first request is made for the
servlet. Subsequently, if the servlet is modified, the destroy() method is called on
the existing version of the servlet. Then, after a request is made for the modified
servlet, the init() method of the modified servlet is executed. For more information,
see “Servlet Development Tips” on page 4-8.
Programming WebLogic HTTP Servlets 3-1

3 Programming Tasks
When a servlet is initialized, WebLogic Server executes the init() method of the
servlet. Once the servlet is initialized, it is not initialized again until you restart
WebLogic Server or the servlet code when the servlet is modified. If you choose to
override the init() method, your servlet can perform certain tasks, such as
establishing database connections, when the servlet is initialized. (See “Overriding the
init() Method” on page 3-3)

Initializing a Servlet when WebLogic Server Starts

Rather than having WebLogic Server initialize a servlet when the first request is made
for it, you can first configure WebLogic Server to initialize a servlet when the server
starts. You do this by specifying the servlet class in the <load-on-startup> element
in the Web Application deployment descriptor. For more information see “Servlet
Element” at
http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_ser

vlet.

You can pass parameters to an HTTP servlet during initialization by defining these
parameters in the Web Application containing the servlet. You can use these
parameters to pass values to your servlet every time the servlet is initialized without
having to rewrite the servlet. For more information, see Writing Web Application
Deployment Descriptors at
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html.

For example, the following entries in the Web Application deployment descriptor
define two initialization parameters: greeting, which has a value of Welcome and
person, which has a value of WebLogic Developer.

<servlet>
...
<init-param>

<param-name>greeting</param-name>
<param-value>Welcome</param-value>
<description>The salutation</description>

</init-param>
<init-param>

<param-name>person</param-name>
<param-value>WebLogic Developer</param-value>
<description>name</description>

</init-param>
</servlet>
3-2 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_servlet
http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_servlet
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html

Initializing a Servlet
To retrieve initialization parameters, call the getInitParameter(String name)

method from the parent javax.servlet.GenericServlet class. When passed the
name of the parameter, this method returns the parameter’s value as a String.

Overriding the init() Method

You can have your servlet execute tasks at initialization time by overriding the init()
method. The following code fragment reads the <init-param> tags that define a
greeting and a name in the Web Application deployment descriptor:

String defaultGreeting;
String defaultName;

public void init(ServletConfig config)
throws ServletException {

if ((defaultGreeting = getInitParameter("greeting")) == null)
defaultGreeting = "Hello";

if ((defaultName = getInitParameter("person")) == null)
defaultName = "World";

}

The values of each parameter are stored in the class instance variables
defaultGreeting and defaultName. The first code tests whether the parameters
have null values, and if null values are returned, provides appropriate default values.

You can then use the service() method to include these variables in the response.
For example:

out.print("<body><h1>");
out.println(defaultGreeting + " " + defaultName + "!");
out.println("</h1></body></html>");

The full source code and instructions for compiling, installing, and trying out an
example called HelloWorld2.java, which illustrates the use of the init() method,
can be found in the samples/examples/servlets directory of your WebLogic
Server distribution.
Programming WebLogic HTTP Servlets 3-3

3 Programming Tasks
Providing an HTTP Response

This section describes how to provide a response to the client in your HTTP servlet.
Deliver all responses by using the HttpServletResponse object that is passed as a
parameter to the service() method of your servlet.

1. Configure the HttpServletResponse.

Using the HttpServletResponse object, you can set several servlet properties
that are translated into HTTP header information:

" At a minimum, set the content type using the setContentType() method
before you obtain the output stream to which you write the page contents.
For HTML pages, set the content type to text/html. For example:

res.setContentType("text/html");

" (optional) You can also use the setContentType() method to set the
character encoding. For example:

res.setContentType("text/html;ISO-88859-4");

" Set header attributes using the setHeader() method. For dynamic
responses, it is useful to set the “Pragma” attribute to no-cache, which
causes the browser to always reload the page and ensures the data is current.
For example:

res.setHeader("Pragma", "no-cache");

2. Compose the HTML page.

The response that your servlet sends back to the client must look like regular
HTTP content, essentially formatted as an HTML page.Your servlet returns an
HTTP response through an output stream that you obtain using the response
parameter of the service() method. To send an HTTP response:

a. Obtain an output stream by using the HttpServletResponse object and one
of the methods shown in the following two examples:

" PrintWriter out = res.getWriter();

" ServletOutputStream out = res.getOutputStream();

You can use both PrintWriter and ServletOutputStream in the same
servlet (or in another servlet that is included in a servlet). The output of both
is written to the same buffer.
3-4 Programming WebLogic HTTP Servlets

Providing an HTTP Response
b. Write the contents of the response to the output stream using the print()
method. You can use HTML tags in these statements. For example:

out.print(“<html><head><title>My Servlet</title>”);
out.print(“</head><body><h1>”);
out.print(“Welcome”);
out.print(“</h1></body></html>”);

Do not close the output stream by using the close() method, and avoid
flushing the contents of the stream. If you do not close or flush the output
stream, WebLogic Server can take advantage of persistent HTTP
connections, as described in the next step.

3. Optimize the response.

By default, WebLogic Server attempts to use HTTP persistent connections
whenever possible. A persistent connection attempts to reuse the same HTTP
TCP/IP connection for a series of communications between client and server.
Application performance improves because a new connection need not be
opened for each request. Persistent connections are useful for HTML pages
containing many in-line images, where each requested image would otherwise
require a new TCP/IP connection.

Using the WebLogic Server Administration Console, you can configure the
amount of time that WebLogic Server keeps an HTTP connection open.

WebLogic Server must know the length of the HTTP response in order to
establish a persistent connection and automatically adds a Content-Length
property to the HTTP response header. In order to determine the content length,
WebLogic Server must buffer the response. However, if your servlet explicitly
flushes the ServletOutputStream, WebLogic Server cannot determine the
length of the response and therefore cannot use persistent connections. For this
reason, you should avoid explicitly flushing the HTTP response in your servlets.

You may decide that, in some cases, it is better to flush the response early to
display information in the client before the page has completed; for example, to
display a banner advertisement while some time-consuming page content is
calculated. Conversely, you may want to increase the size of the buffer used by
the servlet engine to accommodate a larger response before flushing the
response. You can manipulate the size of the response buffer by using the related
methods of the javax.servlet.ServletResponse interface (at
http://java.sun.com/products/servlet/2.3/javadoc/

javax/servlet/ServletResponse.html).
Programming WebLogic HTTP Servlets 3-5

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html

3 Programming Tasks
The default value of the WebLogic Server response buffer is 12K and the buffer
size is internally calculated in terms of CHUNK_SIZE where CHUNK_SIZE =

4088 or 4Kb; if the user sets 5Kb the server rounds the request up to the
nearest multiple of CHUNK_SIZE which is 2. and the buffer is set to 8176 or 8Kb.

Retrieving Client Input

The HTTP servlet API provides a interface for retrieving user input from Web pages.

An HTTP request from a Web browser can contain more than the URL, such as
information about the client, the browser, cookies, and user query parameters. Use
query parameters to carry user input from the browser. Use the GET method appends
paramters to the URL address, and the POST method includes them in the HTTP
request body.

HTTP servlets need not deal with these details; information in a request is available
through the HttpServletRequest object and can be accessed using the
request.getParameter() method, regardless of the send method.

Read the following for more detailed information about the ways to send query
parameters from the client:

! Encode the parameters directly into the URL of a link on a page. This approach
uses the GET method for sending parameters. The parameters are appended to the
URL after a ? character. Multiple parameters are separated by a & character.
Parameters are always specified in name=value pairs so the order in which they
are listed is not important. For example, you might include the following link in
a Web page, which sends the parameter color with the value purple to an
HTTP servlet called ColorServlet:

<a href=
"http://localhost:7001/myWebApp/ColorServlet?color=purple">
Click Here For Purple!

! Manually enter the URL, with query parameters, into the browser location field.
This is equivalent to clicking the link shown in the previous example.

! Query the user for input with an HTML form. The contents of each user input
field on the form are sent as query parameters when the user clicks the form’s
Submit button. Specify the method used by the form to send the query
3-6 Programming WebLogic HTTP Servlets

Retrieving Client Input
parameters (POST or GET) in the <FORM> tag using the METHOD="GET|POST"
attribute.

Query parameters are always sent in name=value pairs, and are accessed through the
HttpServletRequest object. You can obtain an Enumeration of all parameter
names in a query, and fetch each parameter value by using its parameter name. A
parameter usually has only one value, but it can also hold an array of values. Parameter
values are always interpreted as Strings, so you may need to cast them to a more
appropriate type.

The following sample from a service() method examines query parameter names
and their values from a form. Note that request is the HttpServletRequest object.

Enumeration params = request.getParameterNames();
String paramName = null;
String[] paramValues = null;

while (params.hasMoreElements()) {
paramName = (String) params.nextElement();
paramValues = request.getParameterValues(paramName);
System.out.println("\nParameter name is " + paramName);
for (int i = 0; i < paramValues.length; i++) {
System.out.println(", value " + i + " is " +

paramValues[i].toString());
}

}

Methods for Using the HTTP Request

This section defines the methods of the javax.servlet.HttpServletRequest
interface that you can use to get data from the request object. You should keep the
following limitations in mind:

! You cannot read request parameters using any of the getParameter() methods
described in this section and then attempt to read the request with the
getInputStream() method.

! You cannot read the request with getInputStream() and then attempt to read
request parameters with one of the getParameter() methods.

If you attempt either of the preceding procedures, an illegalStateException is
thrown.
Programming WebLogic HTTP Servlets 3-7

3 Programming Tasks
You can use the following methods of javax.servlet.HttpServeletRequest to
retrieve data from the request object:

HttpServletRequest.getMethod()

Allows you to determine the request method, such as GET or POST.

HttpServletRequest.getQueryString()

Allows you to access the query string. (The remainder of the requested URL,
following the ? character.)

HttpServletRequest.getParameter()

Returns the value of a parameter.

HttpServletRequest.getParameterNames()

Returns an array of parameter names.

HttpServletRequest.getParameterValues()

Returns an array of values for a parameter.

HttpServletRequest.getInputStream()

Reads the body of the request as binary data. If you call this method after
reading the request parameters with getParameter(),
getParameterNames(), or getParameterValues(), an
illegalStateException is thrown.

Example: Retrieving Input by Using Query Parameters

In this example, the HelloWorld2.java servlet example is modified to accept a
username as a query parameter, in order to display a more personal greeting. (For the
complete code, see the HelloWorld3.java servlet example, located in the
samples/examples/servlets directory of your WebLogic Server distribution.) The
service() method is shown here.

Listing 3-1 Retrieving Input with the service() Method

public void service(HttpServletRequest req,
HttpServletResponse res)

throws IOException
{
String name, paramName[];
if ((paramName = req.getParameterValues("name"))

!= null) {
3-8 Programming WebLogic HTTP Servlets

Retrieving Client Input
name = paramName[0];
}
else {

name = defaultName;
}

// Set the content type first
res.setContentType("text/html");
// Obtain a PrintWriter as an output stream
PrintWriter out = res.getWriter();

out.print("<html><head><title>" +
"Hello World!" + </title></head>");

out.print("<body><h1>");
out.print(defaultGreeting + " " + name + "!");
out.print("</h1></body></html>");

}

The getParameterValues() method retrieves the value of the name parameter from
the HTTP query parameters. You retrieve these values in an array of type String. A
single value for this parameter is returned and is assigned to the first element in the
name array. If the parameter is not present in the query data, null is returned; in this
case, name is assigned to the default name that was read from the <init-param> by
the init() method.

Do not base your servlet code on the assumption that parameters are included in an
HTTP request. The getParameter() method has been deprecated; as a result, you
might be tempted to shorthand the getParameterValues() method by tagging an
array subscript to the end. However, this method can return null if the specified
parameter is not available, resulting in a NullPointerException.

For example, the following code triggers a NullPointerException:

String myStr = req.getParameterValues("paramName")[0];

Instead, use the following code:

if ((String myStr[] =
req.getParameterValues("paramName"))!=null) {

// Now you can use the myStr[0];
}
else {
// paramName was not in the query parameters!

}

Programming WebLogic HTTP Servlets 3-9

3 Programming Tasks
Session Tracking from a Servlet

Session tracking enables you to track a user’s progress over multiple servlets or HTML
pages, which, by nature, are stateless. A session is defined as a series of related browser
requests that come from the same client during a certain time period. Session tracking
ties together a series of browser requests—think of these requests as pages—that may
have some meaning as a whole, such as a shopping cart application.

The following sections discuss various aspets of tracking sessions from an HTTP
servlet:

! A History of Session Tracking

! Tracking a Session with an HttpSession Object

! Lifetime of a Session

! How Session Tracking Works

! Detecting the Start of a Session

! Setting and Getting Session Name/Value Attributes

! Logging Out and Ending a Session

! Configuring Session Tracking

! Using URL Rewriting Instead of Cookies

! URL Rewriting and Wireless Access Protocol (WAP)

! Making Sessions Persistent

A History of Session Tracking

Before session tracking matured conceptually, developers tried to build state into their
pages by stuffing information into hidden fields on a page or embedding user choices
into URLs used in links with a long string of appended characters. You can see good
examples of this at most search engine sites, many of which still depend on CGI. These
sites track user choices with URL parameter name=value pairs that are appended to
3-10 Programming WebLogic HTTP Servlets

Session Tracking from a Servlet
the URL, after the reserved HTTP character ?. This practice can result in a very long
URL that the CGI script must carefully parse and manage. The problem with this
approach is that you cannot pass this information from session to session. Once you
lose control over the URL—that is, once the user leaves one of your pages—the user
information is lost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related
information about the client for each server. However, some browsers still do not fully
support cookies, and some users prefer to turn off the cookie option in their browsers.
Another factor that should be considered is that most browsers limit the amount of data
that can be stored with a cookie.

Unlike the CGI approach, the HTTP servlet specification defines a solution that allows
the server to store user details on the server bdyond a single session, and protects your
code from the complexities of tracking sessions. Your servlets can use an
HttpSession object to track a user’s input over the span of a single session and to
share session details among multiple servlets. Session data can be persisted using a
variety of methods available with WebLogic Service.

Tracking a Session with an HttpSession Object

According to the Java Servlet API, which WebLogic Server implements and supports,
each servlet can access a server-side session by using its HttpSession object. You can
access an HttpSession object in the service() method of the servlet by using the
HttpServletRequest object with the variable request variable, as shown:

HttpSession session = request.getSession(true);

An HttpSession object is created if one does not already exist for that client when the
request.getSession(true)method is called with the argument true. The session
object lives on WebLogic Server for the lifetime of the session, during which the
session object accumulates information related to that client. Your servlet adds or
removes information from the session object as necessary. A session is associated with
a particular client. Each time the client visits your servlet, the same associated
HttpSession object is retrieved when the getSession() method is called.

For more details on the methods supported by the HttpSession, refer to the
HttpServlet API at http://java.sun.com/j2ee/j2sdkee/
techdocs/api/javax/servlet/http/HttpSession.html.
Programming WebLogic HTTP Servlets 3-11

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/HttpSession.html

3 Programming Tasks
In the following example, the service() method counts the number of times a user
requests the servlet during a session.

public void service(HttpServletRequest request,
HttpServletResponse, response)

throws IOException
{
// Get the session and the counter param attribute
HttpSession session = request.getSession (true);
Integer ival = (Integer)

session.getAttribute("simplesession.counter");
if (ival == null) // Initialize the counter

ival = new Integer (1);
else // Increment the counter

ival = new Integer (ival.intValue () + 1);
// Set the new attribute value in the session
session.setAttribute("simplesession.counter", ival);
// Output the HTML page
out.print("<HTML><body>");
out.print("<center> You have hit this page ");
out.print(ival + " times!");
out.print("</body></html>");

}

Lifetime of a Session

A session tracks the selections of a user over a series of pages in a single transaction.
A single transaction may consist of several tasks, such as searching for an item, adding
it to a shopping cart, and then processing a payment. A session is transient, and its
lifetime ends when one of the following occurs:

! A user leaves your site and the user’s browser does not accept cookies.

! A user quits the browser.

! The session is timed out due to inactivity.

! The session is completed and invalidated by the servlet.

! The user logs out and is invalidated by the servlet.
3-12 Programming WebLogic HTTP Servlets

Session Tracking from a Servlet
For more persistent, long-term storage of data, your servlet should write details to a
database using JDBC or EJB and associate the client with this data using a long-lived
cookie and/or username and password. Although this document states that sessions use
cookies and persistence internally, you should not use sessions as a general mechanism
for storing data about a user.

How Session Tracking Works

How does WebLogic Server know which session is associated with each client? When
an HttpSession is created in a servlet, it is associated with a unique ID. The browser
must provide this session ID with its request in order for the server to find the session
data again. The server attempts to store this ID by setting a cookie on the client. Once
the cookie is set, each time the browser sends a request to the server it includes the
cookie containing the ID. The server automatically parses the cookie and supplies the
session data when your servlet calls the getSession() method.

If the client does not accept cookies, the only alternative is to encode the ID into the
URL links in the pages sent back to the client. For this reason, you should always use
the encodeURL() method when you include URLs in your servlet response.
WebLogic Server detects whether the browser accepts cookies and does not
unnecessarily encode URLs. WebLogic automatically parses the session ID from an
encoded URL and retrieves the correct session data when you call the getSession()
method. Using the encodeURL() method ensures no disruption to your servlet code,
regardless of the procedure used to track sessions. For more information, see “Using
URL Rewriting Instead of Cookies” on page 3-16.

Detecting the Start of a Session

After you obtain a session using the getSession(true)method, you can tell whether
the session has just been created by calling the HttpSession.isNew()method. If this
method returns true, then the client does not already have a valid session, and at this
point it is unaware of the new session. The client does not become aware of the new
session until a reply is posted back from the server.
Programming WebLogic HTTP Servlets 3-13

3 Programming Tasks
Design your application to accommodate new or existing sessions in a way that suits
your business logic. For example, your application might redirect the client’s URL to
a login/password page if you determine that the session has not yet started, as shown
in the following code example:

HttpSession session = request.getSession(true);
if (session.isNew()) {
response.sendRedirect(welcomeURL);

}

On the login page, provide an option to log in to the system or create a new account.
You can also specify a login page in your Web Application. For more information, see
login-config at
http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#login-confi

g.

Setting and Getting Session Name/Value Attributes

You can store data in an HttpSession object using name=value pairs. Data stored in
a session is available through the session. To store data in a session, use these methods
from the HttpSession interface:

getAttribute()
getAttributeNames()
setAttribute()
removeAttribute()

The following code fragment shows how to get all the existing name=value pairs:

Enumeration sessionNames = session.getAttributeNames();
String sessionName = null;
Object sessionValue = null;

while (sessionNames.hasMoreElements()) {
sessionName = (String)sessionNames.nextElement();
sessionValue = session.getAttribute(sessionName);
System.out.println("Session name is " + sessionName +

", value is " + sessionValue);
}

To add or overwrite a named attribute, use the setAttribute() method. To remove
a named attribute altogether, use the removeAttribute() method.
3-14 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#login-config

Session Tracking from a Servlet
Note: You can add any Java descendant of Object as a session attribute and
associate it with a name. However, if you are using session persistence, your
attribute value objects must implement java.io.Serializable.

Logging Out and Ending a Session

If your application deals with sensitive information, consider offering the ability to log
out of the session. This is a common feature when using shopping carts and Internet
email accounts. When the same browser returns to the service, the user must log back
in to the system.

Using session.invalidate() for a Single Web Application

User authentication information is stored both in the users’s session data and in the
context of a server or virtual host that is targeted by a Web Application. Using the
session.invalidate() method, which is often used to log out a user, only
invalidates the current session for a user—the user’s authentication information still
remains valid and is stored in the context of the server or virtual host. If the server or
virtual host is hosting only one Web Application, the
session.invalidate()method, in effect, logs out the user.

Do not reference an invalidated session after calling session.invalidate(). If you
do, an IllegalStateException is thrown. The next time a user visits your servlet
from the same browser, the session data will be missing, and a new session will be
created when you call the getSession(true) method. At that time you can send the
user to the login page again.

Implementing Single Sign-On for Multiple Applications

If the server or virtual host is targeted by many Web Applications, another means is
required to log out a user from all Web Applications. Because the Servlet specification
does not provide an API for logging out a user from all Web Applications, the
following methods are provided.

weblogic.servlet.security.ServletAuthentication.logout()

Removes the authentication data from the users’s session data, which logs out
a user but allows the session to remain alive.
Programming WebLogic HTTP Servlets 3-15

3 Programming Tasks
weblogic.servlet.security.ServletAuthentication.invalidateAll()

Invalidates all the sessions and removes the authentication data for the current
user. The cookie is also invalidated.

weblogic.servlet.security.ServletAuthentication.killCookie()

Invalidates the current cookie by setting the cookie so that it expires
immediately when the response is sent to the browser. This method depends on
a successful response reaching the user’s browser. The session remains alive
until it times out.

Exempting a Web Application for Single Sign-on

If you want to exempt a Web Application from participating in single sign-on, define
a different cookie name for the exempted Web Application. For more information, see
Configuring Session Cookies at
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-co

okie.

Configuring Session Tracking

WebLogic Server provides many configurable attributes that determine how
WebLogic Server handles session tracking. For details about configuring these session
tracking attributes, see “Session descriptor” at
http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#sessio

n-descriptor.

Using URL Rewriting Instead of Cookies

In some situations, a browser may not accept cookies, which means that session
tracking with cookies is not possible. URL rewriting is a workaround to this scenario
that can be substituted automatically when WebLogic Server detects that the browser
does not accept cookies. URL rewriting involves encoding the session ID into the
hyperlinks on the Web pages that your servlet sends back to the browser. When the
user subsequently clicks these links, WebLogic Server extracts the ID from the URL
and finds the appropriate HttpSession. Then you use the getSession() method to
access session data.
3-16 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-cookie
http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#session-descriptor

Session Tracking from a Servlet
To enable URL rewriting in WebLogic Server, set the UrlRewritingEnabled
attribute to true in the “Session descriptor” element of the WebLogic-specific
deployment descriptor (at
http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#sessio

n-descriptor).

To make sure your code correctly handles URLs in order to support URL rewriting,
consider the following guidelines:

! You should avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method. For example:

out.println("<a href=\""
+ response.encodeURL("myshop/catalog.jsp")
+ "\">catalog");

! Calling the encodeURL() method determines if the URL needs to be rewritten
and, if necessary, rewrites the URL by including the session ID in the URL.

! Encode URLs that send redirects, as well as URLs that are returned as a
response to WebLogic Server. For example:

if (session.isNew())
response.sendRedirect(response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser
accepts cookies, because the server cannot determine, during the first visit of a session,
whether the browser accepts cookies.

Your servlet may determine whether a given session was returned from a cookie by
checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method. Your
application may respond appropriately, or it may simply rely on URL rewriting by
WebLogic Server.

Note: The CISCO Local Director load balancer expects a question mark "?"
delimiter for URL rewriting. Because the WLS URL-rewriting mechanism
uses a semicolon ";" as the delimiter, our URL re-writing is incompatible with
this load balancer.
Programming WebLogic HTTP Servlets 3-17

http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#session-descriptor

3 Programming Tasks
URL Rewriting and Wireless Access Protocol (WAP)

If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devices impose a
128-character limit (including parameters) on the length of a URL, which limits the
amount of data that can be transmitted using URL rewriting. To allow more space for
parameters, you can limit the size of the session ID that is randomly generated by
WebLogic Server by specifying the number of bytes with the IDLength attribute in the
<session-descriptor> element of the WebLogic-specific deployment descriptor,
weblogic.xml (see
http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#sessio

n-descriptor).

The minimum value is 8 bytes; the default value is 52 bytes; the maximum value is
Integer.MAX_VALUE.

Making Sessions Persistent

You can set up WebLogic Server to record session data in a persistent store. If you are
using session persistence, you can expect the following characteristics:

! Good failover, because sessions are saved when servers fail.

! Better load balancing, because any server can handle requests for any number of
sessions, and use caching to optimize performance. For more information, see
the cacheEntries property, under “Configuring session persistence” at
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-

persistence.

! Sessions can be shared across clustered WebLogic Servers. Note that session
persistence is no longer a requirement in a WebLogic Cluster. Instead, you can
use in-memory replication of state. For more information, see Using WebLogic
Server Clusters at
http://e-docs.bea.com/wls/docs81b/cluster/index.html.

! For customers who want the highest in servlet session persistence, JDBC-based
persistence is the best choice. For customers who want to sacrifice some amount
of session persistence in favor of drastically better performance, in-memory
replication is the appropriate choice. JDBC-based persistence is noticeably
3-18 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-persistence
http://e-docs.bea.com/wls/docs81b/cluster/index.html
http://e-docs.bea.com/wls/docs81b/cluster/index.html

Session Tracking from a Servlet
slower than in-memory replication. In some cases, in-memory replication has
outperformed JDBC-based persistence for servlet sessions by a factor of eight.

! You can put any kind of Java object into a session, but for file, JDBC, and
in-memory replication, only objects that are java.io.Serializable can be
stored in a session. For more information, see “Configuring session persistence”
at
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-
persistence.

Scenarios to Avoid When Using Sessions

Do not use session persistence for storing long-term data between sessions. In other
words, do not rely on a session still being active when a client returns to a site at some
later date. Instead, your application should record long-term or important information
in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store
long-term or limited-term client data in a session. Instead, your application should
create and set its own cookies on the browser. Examples include an auto-login feature
that allows a cookie to live for a long period, or an auto-logout feature that allows a
cookie to expire after a short period of time. Here, you should not attempt to use HTTP
sessions. Instead, you should write your own application-specific logic.

Use Serializable Attribute Values

When you use persistent sessions, all attribute value objects that you add to the
session must implement java.io.Serializable. For more details on writing
serializable classes, refer to the online java tutorial about serializable objects at
http://java.sun.com/docs/books/tutorial/essential/io/

providing.html. If you add your own serializable classes to a persistent session,
make sure that each instance variable of your class is also serializable. Otherwise, you
can declare it as transient, and WebLogic Server does not attempt to save that
variable to persistent storage. One common example of an instance variable that must
be made transient is the HttpSession object. (See the notes on using serialized
objects in sessions in the section “Making Sessions Persistent” on page 3-18.)
Programming WebLogic HTTP Servlets 3-19

http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-persistence
http://java.sun.com/docs/books/tutorial/essential/io/providing.html

3 Programming Tasks
Configuring Session Persistence

For details about setting up persistent sessions, see “Configuring session persistence”
at
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-pe

rsistence.

Using Cookies in a Servlet

A cookie is a piece of information that the server asks the client browser to save locally
on the user’s disk. Each time the browser visits the same server, it sends all cookies
relevant to that server with the HTTP request. Cookies are useful for identifying clients
as they return to the server.

Each cookie has a name and a value. A browser that supports cookies generally allows
each server domain to store up to 20 cookies of up to 4k per cookie.

Setting Cookies in an HTTP Servlet

To set a cookie on a browser, create the cookie, give it a value, and add it to the
HttpServletResponse object that is the second parameter in your servlet’s service
method. For example:

Cookie myCookie = new Cookie("ChocolateChip", "100");
myCookie.setMaxAge(Integer.MAX_VALUE);
response.addCookie(myCookie);

This examples shows how to add a cookie called ChocolateChip with a value of 100
to the browser client when the response is sent. The expiration of the cookie is set to
the largest possible value, which effectively makes the cookie last forever. Because
cookies accept only string-type values, you should cast to and from the desired type
that you want to store in the cookie. When using EJBs, a common practice is to use the
home handle of an EJB instance for the cookie value and to store the user’s details in
the EJB for later reference.
3-20 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-persistence

Using Cookies in a Servlet
Retrieving Cookies in an HTTP Servlet

You can retrieve a cookie object from the HttpServletRequest that is passed to your
servlet as an argument to the service() method. The cookie itself is presented as a
javax.servlet.http.Cookie object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling
the getCookies() method. For example:

Cookie[] cookies = request.getCookies();

This method returns an array of all cookies sent from the browser, or null if no
cookies were sent by the browser. Your servlet must process the array in order to find
the correct named cookie. You can get the name of a cookie using the
Cookie.getName()method. It is possible to have more that one cookie with the same
name, but different path attributes. If your servlets set multiple cookies with the same
names, but different path attributes, you also need to compare the cookies by using the
Cookie.getPath() method. The following code illustrates how to access the details
of a cookie sent from the browser. It assumes that all cookies sent to this server have
unique names, and that you are looking for a cookie called ChocolateChip that may
have been set previously in a browser client.

Cookie[] cookies = request.getCookies();
boolean cookieFound = false;

for(int i=0; i < cookies.length; i++) {
thisCookie = cookies[i];
if (thisCookie.getName().equals("ChocolateChip")) {

cookieFound = true;
break;

}
}

if (cookieFound) {
// We found the cookie! Now get its value
int cookieOrder = String.parseInt(thisCookie.getValue());

}

For more details on cookies, see:

! The Cookie API at http://java.sun.com/j2ee/j2sdkee/
techdocs/api/javax/servlet/http/Cookie.html
Programming WebLogic HTTP Servlets 3-21

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/Cookie.html

3 Programming Tasks
! The Java Tutorial: Using Cookies at
http://java.sun.com/docs/books/tutorial/
servlets/client-state/cookies.html

Using Cookies That Are Transmitted by Both HTTP and
HTTPS

Because HTTP and HTTPS requests are sent to different ports, some browsers may not
include the cookie sent in an HTTP request with a subsequent HTTPS request (or
vice-versa). This may cause new sessions to be created when servlet requests alternate
between HTTP and HTTPS. To ensure that all cookies set by a specific domain are sent
to the server every time a request in a session is made, set the CookieDomain attribute
to the name of the domain. Set the CookieDomain attribute with the
<session-descriptor> element of the WebLogic-specific deployment descriptor
(weblogic.xml) for the Web Application that contains your servlet. For example:

<session-descriptor>
<session-param>

<param-name>CookieDomain</param-name>
<param-value>mydomain.com</param-value>

</session-param>
</session-descriptor>

The CookieDomain attribute instructs the browser to include the proper cookie(s) for
all requests to hosts in the domain specified by mydomain.com. For more information
about this property or configuring session cookies, see “Setting Up Session
Management” at
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-ma

nagement.

Application Security and Cookies

Using cookies that enable automatic account access on a machine is convenient, but
can be undesirable from a security perspective. When designing an application that
uses cookies, follow these guidelines:

! Do not assume that a cookie is always correct for a user. Sometimes machines
are shared or the same user may want to access a different account.
3-22 Programming WebLogic HTTP Servlets

http://java.sun.com/docs/books/tutorial/servlets/client-state/cookies.html
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-management
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-management

Response Caching
! Allow your users to make a choice about leaving cookies on the server. On
shared machines, users may not want to leave automatic logins for their account.
Do not assume that users know what a cookie is; instead, ask a question like:

Automatically login from this computer?

! Always ask for passwords from users logging on to obtain sensitive data. Unless
a user requests otherwise, you can store this preference and the password in the
user’s session data. Configure the session cookie to expire when the user quits
the browser.

Response Caching

The cache filter works similarly to the cache tag with the following exceptions:

! It caches on a page level (or included page) instead of a JSP fragment level.

! Instead of declaring the caching parameters inside the document you can declare
the parameters in the configuration of the web application.

The cache filter has some default behavior that the cache tag does not for pages that
were not included from another page. The cache filter automatically caches the
response headers Content-Type and Last-Modified. When it receives a request that
results in a cached page it compares the If-Modified-Since request header to the
Last-Modified response header to determine whether it needs to actually serve the
content or if it can send an 302 SC_NOT_MODIFED status with an empty content
instead.

The following example shows how to register a cache filter to cache all the HTML
pages in a web app:

<filter>
<filter-name>HTML</filter-name>
<filter-class>weblogic.cache.filter.CacheFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>HTML</filter-name>
<url-pattern>*.html</url-pattern>

</filter-mapping>
Programming WebLogic HTTP Servlets 3-23

3 Programming Tasks
The cache system uses soft references for storing the cache. So the garbage collector
might or might not reclaim the cache depending on how recently the cache was created
or accessed. It will clear the soft references in order to avoid throwing an
OutOfMemoryError.

Initialization Parameters

If you wanted to make sure that if the web pages were updated at some point you got
the new copies into the cache, you could add a timeout to the filter. Using the
init-params you can set many of the same parameters that you can set for the cache tag:

The initialization parameters are

! Name This is the name of the cache. It defaults to the request URI for
compatibility with *.extension URL patterns.

! Timeout This is the amount of time since the last cache update that the filter
waits until trying to update the content in the cache again. The default unit is
seconds but you can also specify it in units of ms (milliseconds), s (seconds), m
(minutes), h (hours), or d (days).

! Scope The scope of the cache can be any one of request, session, application,
or cluster. Request scope is sometimes useful for looping constructs in the page
and not much else. The scope defaults to application. To use cluster scope you
must set up the ClusterListener.

! Key This specifies that the cache is further specified not only by the name but
also by values of various entries in scopes. These are specified just like the keys
in the CacheTag although you do not have page scope available.

! Vars These are the variables calculated by the page that you want to cache.
Typically this is used with servlets that pull information out of the database
based on input parameters.

! Size This limits the number of different unique key values cached. It defaults
to infinity.

The following example shows where the init-parameter is located in the filter code.
<filter>
<filter-name>HTML</filter-name>
<filter-class>weblogic.cache.filter.CacheFilter</filter-class>
<init-param>
3-24 Programming WebLogic HTTP Servlets

Using WebLogic Services from an HTTP Servlet
Using WebLogic Services from an HTTP
Servlet

When you write an HTTP servlet, you have access to many rich features of WebLogic
Server, such as JNDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:

! Programming WebLogic EJB at
http://e-docs.bea.com/wls/docs81b/ejb/index.html

! Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

! Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs81b/jndi/index.html

! Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs81b/jms/index.html

Accessing Databases

WebLogic Server supports the use of Java Database Connectivity (JDBC) from
server-side Java classes, including servlets. JDBC allows you to execute SQL queries
from a Java class and to process the results of those queries. For more information on
JDBC and WebLogic Server, see Using WebLogic JDBC at
http://e-docs.bea.com/wls/docs81b/jdbc/index.html.

You can use JDBC in servlets as described in the following sections:

! “Connecting to a Database Using a JDBC Connection Pool” on page 3-26.

! “Connecting to a Database Using a DataSource Object” on page 3-27.

! “Connecting Directly to a Database Using a JDBC Driver” on page 3-28.
Programming WebLogic HTTP Servlets 3-25

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html
http://e-docs.bea.com/wls/docs81b/jndi/index.html
http://e-docs.bea.com/wls/docs81b/jms/index.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

3 Programming Tasks
Connecting to a Database Using a JDBC Connection Pool

A connection pool is a named group of identical JDBC connections to a database that
are created when the connection pool is registered, usually when starting WebLogic
Server. Your servlets “borrow” a connection from the pool, use it, and then return it to
the pool by closing it. This process is far more efficient than creating a new connection
for every client each time the client needs to access the database. Another advantage
is that you do not need to include details about the database in your servlet code.

When connecting to a JDBC connection pool, use one of the following multitier JDBC
drivers:

! Pool driver, used for most server-side operations:

" Driver URL: jdbc:weblogic:pool

" Driver package name: weblogic.jdbc.pool.Driver

! JTS pool driver, used when database operations require transactional support.

" Driver URL: jdbc:weblogic:jts

" Driver package name: weblogic.jdbc.jts.Driver

Using a Connection Pool in a Servlet

The following example demonstrates how to use a database connection pool from a
servlet.

1. Load the pool driver and cast it to java.sql.Driver. The full pathname of the
driver is weblogic.jdbc.pool.Driver. For example:

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.pool.Driver").newInstance();

2. Create a connection using the URL for the driver, plus (optionally) the name of
the registered connection pool. The URL of the pool driver is
jdbc:weblogic:pool.

You can identify the pool in either of two ways:

" Specify the name of the connection pool in a java.util.Properties
object using the key connectionPoolID. For example:
3-26 Programming WebLogic HTTP Servlets

Accessing Databases
Properties props = new Properties();
props.put("connectionPoolID", "myConnectionPool");
Connection conn =
myDriver.connect("jdbc:weblogic:pool", props);

" Add the name of the pool to the end of the URL. In this case you do not need
a Properties object unless you are setting a username and password for
using a connection from the pool. For example:

Connection conn =
myDriver.connect("jdbc:weblogic:pool:myConnectionPool",

null);

Note that the Driver.connect() method is used in these examples instead of
the DriverManger.getConnection() method. Although you may use
DriverManger.getConnection() to obtain a database connection, we
recommend that you use Driver.connect() because this method is not
synchronized and provides better performance.

Note that the Connection returned by connect() is an instance of
weblogic.jdbc.pool.Connection.

3. Call the close() method on the Connection object when you finish with your
JDBC calls, so that the connection is properly returned to the pool. A good
coding practice is to create the connection in a try block and then close the
connection in a finally block, to make sure the connection is closed in all
cases.

conn.close();

Connecting to a Database Using a DataSource Object

A DataSource is a server-side object that references a connection pool. The
connection pool registration defines the JDBC driver, database, login, and other
parameters associated with a database connection. You create DataSource objects and
connection pools through the Administration Console. Using a DataSource object is
recommended when creating J2EE-compliant applications.
Programming WebLogic HTTP Servlets 3-27

3 Programming Tasks
Using a DataSource in a Servlet

1. Register a connection pool using the Administration Console. For more
information, see “Create a Connection Pool” at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jdbcconnec

tionpool_config_connections.html.

2. Register a DataSource object that points to the connection pool. For more
information, see “JDBC DataSources” at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jdbcdataso

urce_config.html.

3. Look up the DataSource object in the JNDI tree. For example:

Context ctx = null;

// Get a context for the JNDI look up
ctx = new InitialContext(ht);

// Look up the DataSource object
javax.sql.DataSource ds

= (javax.sql.DataSource) ctx.lookup ("myDataSource");

4. Use the DataSource to create a JDBC connection. For example:

java.sql.Connection conn = ds.getConnection();

5. Use the connection to execute SQL statements. For example:

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");

. . .

Connecting Directly to a Database Using a JDBC Driver

Connecting directly to a database is the least efficient way of making a database
connection because a new database connection must be established for each request.
You can use any JDBC driver to connect to your database. BEA provides JDBC drivers
for Oracle and Microsoft SQL Server. For more information, see Programming
WebLogic JDBC at http://e-docs.bea.com/wls/docs81b/jdbc/index.html.
3-28 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jdbcdatasource_config.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

Threading Issues in HTTP Servlets
Threading Issues in HTTP Servlets

When you design a servlet, you should consider how the servlet is invoked by
WebLogic Server under high load. It is inevitable that more than one client will hit
your servlet simultaneously. Therefore, write your servlet code to guard against
sharing violations on shared resources or instance variables. The following tips can
help you to design around this issue.

SingleThreadModel

An instance of a class that implements the SingleThreadModel is guaranteed not to
be invoked by multiple threads simultaneously. Multiple instances of a
SingleThreadModel servlet are used to service simultaneous requests, each running
in a single thread.

To use the SingleThreadModel efficiently, WebLogic Server creates a pool of
servlet instances for each servlet that implements SingleThreadModel. WebLogic
Server creates the pool of servlet instances when the first request is made to the servlet
and increments the number of servlet instances in the pool as needed.

The attribute SingleThreaded Servlet Pool Size specifies the initial number of
servlet instances that are created when the servlet is first requested. Set this attribute to
the average number of concurrent requests that you expect your SingleThreadModel
servlets to handle.

When designing your servlet, consider how you use shared resources outside of the
servlet class such as file and database access. Because multiple instances of identical
servlets exist, and may use exactly the same resources, there are still synchronization
and sharing issues that must be resolved, even if you do implement the
SingleThreadModel.

Shared Resources

It is recommended that shared-resource issues be handled on an individual servlet
basis. Consider the following guidelines:
Programming WebLogic HTTP Servlets 3-29

3 Programming Tasks
! Wherever possible, avoid synchronization, because it causes subsequent servlet
requests to bottleneck until the current thread completes.

! Define variables that are specific to each servlet request within the scope of the
service methods. Local scope variables are stored on the stack and, therefore, are
not shared by multiple threads running within the same method, which avoids
the need to be synchronized.

! Access to external resources should be synchronized on a Class level, or
encapsulated in a transaction.

Dispatching Requests to Another Resource

This section provides an overview of commonly used methods for dispatching requests
from a servlet to another resource.

A servlet can pass on a request to another resource, such as a servlet, JSP, or HTML
page. This process is referred to as request dispatching. When you dispatch requests,
you use either the include() or forward() method of the RequestDispatcher
interface. There are limitations regarding when output can be written to the response
object using the forward() or include() methods. These limitations are also
discussed in this section.

For a complete discussion of request dispatching, see section 8.1 of the Servlet 2.3
specification (see http://java.sun.com/products/
servlet/download.html#specs) from Sun Microsystems.

By using the RequestDispatcher, you can avoid sending an HTTP-redirect response
back to the client. The RequestDispatcher passes the HTTP request to the requested
resource.

To dispatch a request to a particular resource:

1. Get a reference to a ServletContext:

ServletContext sc = getServletConfig().getServletContext();

2. Look up the RequestDispatcher object using one of the following methods:

" RequestDispatcher rd = sc.getRequestDispatcher(String path);
3-30 Programming WebLogic HTTP Servlets

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

Dispatching Requests to Another Resource
path should be relative to the root of the Web Application.

" RequestDispatcher rd = sc.getNamedDispatcher(String name);

Replace name with the name assigned to the servlet in a Web Application
deployment descriptor with the <servlet-name> element. For details, see
“Servlet element” at http://e-docs.bea.com/wls/docs81b/webapp/
web_xml.html#web_xml_servlet.

" RequestDispatcher rd =
ServletRequest.getRequestDispatcher(String path);

This method returns a RequestDispatcher object and is similar to the
ServletContext.getRequestDispatcher(String path) method except
that it allows the path specified to be relative to the current servlet. If the
path begins with a / character it is interpreted to be relative to the Web
Application.

You can obtain a RequestDispatcher for any HTTP resource within a Web
Application, including HTTP Servlets, JSP pages, or plain HTML pages by
requesting the appropriate URL for the resource in the
getRequestDispatcher() method. Use the returned RequestDispatcher

object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:

" rd.forward(request,response);

" rd.include(request,response);

These methods are discussed in the next two sections.

Forwarding a Request

Once you have the correct RequestDispatcher, your servlet forwards a request using
the RequestDispatcher.forward() method, passing HTTPServletRequest and
HTTPServletResponse as arguments. If you call this method when output has already
been sent to the client an IllegalStateException is thrown. If the response buffer
contains pending output that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the servlet
retrieves the ServletOutputStream or the PrintWriter for the response before
forwarding the request, an IllegalStateException is thrown.
Programming WebLogic HTTP Servlets 3-31

http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_servlet

3 Programming Tasks
All other output from the original servlet is ignored after the request has been
forwarded.

If you are using any type of authentication, a forwarded request, by default, does not
require the user to be re-authenticated. You can change this behavior to require
authentication of a forwarded request by adding the <check-auth-on-forward/>
element to the <container-descriptor> element of the WebLogic-specific
deployment descriptor, weblogic.xml. For example:

<container-descriptor>
<check-auth-on-forward/>

</container-descriptor>

Note that the default behavior has changed with the release of the Servlet 2.3
specification, which states that authentication is not required for forwarded requests.

For information on editing the WebLogic-specific deployment descriptor, see Writing
the WebLogic-Specific Deployment Descriptor at
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic

-xml.

Including a Request

Your servlet can include the output from another resource by using the
RequestDispatcher.include() method, and passing HTTPServletRequest and
HTTPServletResponse as arguments. When you include output from another
resource, the included resource has access to the request object.

The included resource can write data back to the ServletOutputStream or Writer
objects of the response object and then can either add data to the response buffer or call
the flush() method on the response object. Any attempt to set the response status
code or to set any HTTP header information from the included servlet response is
ignored.

In effect, you can use the include() method to mimic a “server-side-include” of
another HTTP resource from your servlet code.
3-32 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml

CHAPTER
4 Administration and
Configuration

The following sections provide an overview of administration and configuration tasks
for WebLogic HTTP servlets. For a complete discussion of servlet administration and
configuration see Configuring Servlets at
http://e-docs.bea.com/wls/docs81b/webapp/components.html#configur

ing-servlets.

This section discusses the following topics:

! Overview of WebLogic HTTP Servlet Administration

! Referencing a Servlet in a Web Application

! Directory Structure for Web Applications

! Servlet Security

! Servlet Development Tips

! Clustering Servlets
Programming WebLogic HTTP Servlets 4-1

http://e-docs.bea.com/wls/docs81b/webapp/components.html#configuring-servlets

4 Administration and Configuration
Overview of WebLogic HTTP Servlet
Administration

Consistent with the Java 2 Enterprise Edition standard, HTTP servlets are deployed as
part of a Web Application. A Web Application is a grouping of application
components, such as servlet classes, JavaServer Pages (JSP), static HTML pages,
images, and utility classes.

In a Web Application the components are deployed using a standard directory
structure. This directory structure can be archived into a file called a .war file and then
deployed on WebLogic Server. Information about the resources and operating
parameters of a Web Application are defined using two deployment descriptors, which
are packaged with the Web Application.

Using Deployment Descriptors to Configure and Deploy
Servlets

The first deployment descriptor, web.xml, is defined in the Servlet 2.3 specification
from Sun Microsystems and provides a standardized format that describes the Web
Application. The second deployment descriptor, weblogic.xml, is a
WebLogic-specific deployment descriptor that maps resources defined in the web.xml
file to resources available in WebLogic Server, defines JSP behavior, and defines
HTTP session parameters.

web.xml (Web Application Deployment Descriptor)

In the Web Application deployment descriptor you define the following attributes for
HTTP servlets:

! Servlet name

! Java class of the servlet

! Servlet initialization parameters
4-2 Programming WebLogic HTTP Servlets

Overview of WebLogic HTTP Servlet Administration
! Whether or not the init() method of the servlet is executed when WebLogic
Server starts

! URL pattern which, if matched, will call this servlet

! Security

! MIME type

! Error pages

! References to EJBs

! References to other resources

For a complete discussion of creating the web.xml file, see Writing Web Application
Deployment Descriptors at
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#web-xml.

weblogic.xml (Weblogic-Specific Deployment Descriptor)

In the WebLogic-specific deployment descriptor you define the following attributes
for HTTP servlets:

! HTTP session configuration

! Cookie configuration

! URL pattern which, if matched, will call this servlet using a URL matching
utility such as the The SimpleApacheURLMatchMap Utility included with
WebLogic Server.

! EJB resource mapping

! JSP Configuration

For a complete discussion of creating the weblogic.xml file, see “Writing Web
Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic

-xml.
Programming WebLogic HTTP Servlets 4-3

http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#web-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#web-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml

4 Administration and Configuration
WebLogic Server Administration Console

Use the WebLogic Server Administration Console to set the following parameters:

! HTTP parameters

! Log files

! URL rewriting

! Keep alive

! Default MIME types

! Clustering parameters

! URL mapping for virtual hosting

For more information see the following resources:

! Administration Console: “Web Applications” at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_webappcomp
onent_config_files.html.

! Administration Console: “Virtual Hosts” at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/virtual_hosts.htm
l.
4-4 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_webappcomponent_config_files.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/virtual_hosts.html

Directory Structure for Web Applications
Directory Structure for Web Applications

Use the following directory structure for all Web Applications:

Default WebApp/(Publicly available files, such as
| .jsp, .html, .jpg, .gif)
|
+WEB-INF/-+

|
+ classes/(directory containing
| Java classes including
| servlets used by the
| Web Application)
|
+ lib/(directory containing
| jar files used by the
| Web Application)
|
+ web.xml
|
+ weblogic.xml

Referencing a Servlet in a Web Application

The URL used to reference a servlet in a Web Application is constructed as follows:

http://myHostName:port/myContextPath/myRequest/?myRequestParameters

The components of this URL are defined as follows:

myHostName

The DNS name mapped to the Web Server defined in the WebLogic Server
Administration Console.

This portion of the URL can be replaced with host:port, where host is the
name of the machine running WebLogic Server and port is the port at which
WebLogic Server is listening for requests.
Programming WebLogic HTTP Servlets 4-5

4 Administration and Configuration
port

The port at which WebLogic Server is listening for requests. The Servlet can
communicate with the proxy only through the listenPort on the Server mBean
and the SSL mBean.

myContextPath

The name of the context root which is specified in the weblogic.xml file,
or the uri of the web module which is specified in the config.xml file.

myRequest

The name of the servlet as defined in the web.xml file.

myRequestParameters

Optional HTTP request parameters encoded in the URL, which can be read by
an HTTP servlet.

URL Pattern Matching

WebLogic Server provides the user with the ability to implement a URL matching
utility which does not conform to the J2EE rules for matching. The utility must be
configured in the weblogic.xml deployment descriptor rather than the web.xml
deployment descriptor used for the configuration of the default implementation of
URLMatchMap.

To be used with WebLogic Server, the URL matching utility must implement the
following interface:

Package weblogic.servlet.utils;

public interface URLMapping {

public void put(String pattern, Object value);

public Object get(String uri);

public void remove(String pattern)

public void setDefault(Object defaultObject);

public Object getDefault();

public void setCaseInsensitive(boolean ci);

public boolean isCaseInsensitive();

public int size();
4-6 Programming WebLogic HTTP Servlets

Servlet Security
public Object[] values();

public String[] keys();

}

The SimpleApacheURLMatchMap Utility

The included SimpleApacheURLMatchMap utility is not J2EE specific. It can be
configured in the weblogic.xml deployment descriptor file and allows the user to
specify Apache style pattern matching rather than the default URL pattern matching
provided in the web.xml deployment descriptor.

Servlet Security

Security for servlets is defined in the context of the Web Application containing the
servlet. Security can be handled by WebLogic Server, or it can be incorporated
programmatically into your servlet classes.

For more information see “Configuring Security in Web Applications” at
http://e-docs.bea.com/wls/docs81b/webapp/security.html.

Authentication

You can incorporate user authentication into your servlets using any of the following
three techniques:

! BASIC—Uses the browser to collect a username and password.

! FORM—Uses HTML forms to collect a username and password.

! Client Certificate—Uses digital certificates to authenticate the user. For more
information, see “Digital Certificates” at
http://e-docs.bea.com/wls/docs81b/security/concepts.html#concep

ts008.
Programming WebLogic HTTP Servlets 4-7

http://e-docs.bea.com/wls/docs81b/webapp/security.html

4 Administration and Configuration
The BASIC and FORM techniques call into a security role that contains user and
password information. You can use a default role provided with WebLogic Server, or
a variety of existing roles, including roles for Windows NT, UNIX, RDBMS, and
user-defined roles. For more information about security roles, see “Security
Fundamentals” at
http://e-docs.bea.com/wls/docs81b/security/concepts.html.

Authorization (Security Constraints)

You can restrict access to servlets and other resources in a Web Application by using
security constraints. Security constraints are defined in the Web Application
deployment descriptor (web.xml). There are three basic types of security constraints:

! Constraining resources by roles and/or resource

! Secure Sockets Layer (SSL) encryption

! Programmatic authorization

Roles can be mapped to a principal. Specific resources can be constrained by matching
a URL pattern to a resource in a Web Application. You can also use Secure Sockets
Layer (SSL) as a security constraint.

You can perform authorization programmatically, using one of the following methods
of the HttpServletRequest interface:

! getRemoteUser()

! isUserInRole()

! getUserPrincipal()

For more information see the javax.servlet API at
http://java.sun.com/products/servlet/2.3/javadoc/index.html.

Servlet Development Tips

Consider the following tips when writing HTTP servlets:
4-8 Programming WebLogic HTTP Servlets

http://java.sun.com/products/servlet/2.2/javadoc/index.html

Clustering Servlets
! Compile your servlet classes into the WEB-INF/classes directory of your Web
Application.

! Make sure your servlet is registered in the Web Applications deployment
descriptor (web.xml).

! When responding to a request for a servlet, WebLogic Server checks the time
stamp of the servlet class file prior to applying any filters associated with the
servlet, and compares it to the servlet instance in memory. If a newer version of
the servlet class is found, WebLogic Server re-loads the servlet class before any
filtering takes place. When a servlet is re-loaded, the init() method of the
servlet is called.

You can set the interval (in seconds) at which WebLogic Server checks the time
stamp with the Servlet Reload attribute. This attribute is set on the Files tab
of your Web Application, in the Administration Console. If you set this attribute
to zero, WebLogic Server checks the time stamp on every request, which can be
useful while developing and testing servlets but is needlessly time consuming in
a production environment. If this attribute is set to -1, WebLogic Server does
not check for modified servlets.

Clustering Servlets

Clustering servlets provides failover and load balancing benefits. To deploy a servlet
in a WebLogic Server cluster, deploy the Web Application containing the servlet on
all servers in the cluster. For instructions, see “Deploying Applications to a Cluster” in
Using WebLogic Server Clusters.

For information on requirements for clustering servlets, and to understand the
connection and failover processes for requests that are routed to clustered servlets, see
“Replication and Failover for Servlets and JSPs” in Using WebLogic Server Clusters.

Note: Automatic failover for servlets requires that the servlet session state be
replicated in memory. For instructions, see “Configure In-Memory HTTP
Replication” in Using WebLogic Server Clusters.
Programming WebLogic HTTP Servlets 4-9

http://e-docs.bea.com/wls/docs81b/cluster/setup.html#734253
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1019188
http://e-docs.bea.com/wls/docs81b/cluster/setup.html#726973
http://e-docs.bea.com/wls/docs81b/cluster/setup.html#726973

4 Administration and Configuration
For information on the load balancing support that a WebLogic Server cluster provides
for servlets, and for related planning and configuration considerations for architects
and administrators, see “Load Balancing for Servlets and JSPs” in Using WebLogic
Server Clusters.
4-10 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/cluster/load_balancing.html#1026940

Index

A
addCookie() 3-20
administration

console 4-4
administration console 4-4
API 1-4
authentication 4-7

C
classpath 2-2
clustering 3-18, 4-9
compiling 2-2
connection pools 3-25

DataSource 3-27
driver 3-26
JDBC 3-26
using 3-26

contentType 2-2
cookies 3-20

and EJB 3-20
and logging in 3-23
and passwords 3-23
domain 3-22
HTTP and HTTPS 3-22
retreiving 3-21
using in servlets 3-20

customer support contact information ix

D
databases 3-25
DataSource 3-25, 3-27
deployment 2-3
deployment descriptor 4-2
Developing 1-3
development

classpath 2-2
compiling 4-8
tips 4-8

development environment 2-2
dispatching 3-30
documentation, where to find it viii

E
EJB 3-25
encodeURL() 3-17
environment, development

environment 2-2

F
forward() 3-30
forwarding 3-30, 3-31

G
getAttribute() 3-14
getAttributeNames() 3-14
getCookies() 3-21
getParameterValues() 3-9
Programming WebLogic HTTP Servlets I-i

getSession() 3-11, 3-13

H
HelloWorldServlet 2-5
HTTP

response 3-4
HttpServletRequest 2-1

methods 3-8
HttpServletResponse 2-1, 3-4
HttpSession object 3-11

I
IDLength 3-18
IllegalStateException 3-15
import 2-1
include() 3-30
including 3-30
including a request 3-32
init parameters 3-2
init() method 3-2, 3-3
initialization

init() method 3-2
parameters 3-2

init-param 3-3
in-memory replication 3-18
input

query paramters 3-8

J
J2EE 1-3
javax.servlet 1-4
JDBC 3-25, 3-28
JDBC session persistence 3-18
JMS 3-25
JNDI 3-25
JTS pool driver 3-26

K
keep alive 3-5

L
logging out 3-15

N
name/value pairs 3-14

P
packages 2-1
Pool driver 3-26
printing product documentation viii
PrintWriter object 2-2

Q
query parameters 3-6, 3-7, 3-8

R
removeAttribute() 3-14
RequestDispatcher() 3-30
requests

dispatching 3-30
forwarding 3-30, 3-31
including 3-30, 3-32

response 3-4
buffer 3-5
optimizing 3-5

Response Caching 3-23
retreiving input 3-6

S
security 4-7

applying programatically 4-8
authentication 4-7
authorization 4-8
I-ii Programming WebLogic HTTP Servlets

constraints 4-8
realms 4-8

security constraints 4-8
service method 2-1
Servlet 2.2 Specification 1-4
servlets

and clustering 4-9
session persistence

JDBC 3-18
sessions

and clusters 3-18
and persistence 3-18
cookies 3-13, 3-16
detecting start of 3-13
encodeURL() method 3-17
ending 3-15
history of tracking 3-10
lifetime 3-12
logging out 3-15
name/value attributes 3-14
tracking 3-10, 3-13
tracking with HttpSession object 3-11
tracking, configuration 3-16
URL rewriting 3-16

setAttribute() 3-14
SingleThreadModel 3-29
SingleThreadModelPoolSize 3-29
support

technical ix

T
The SimpleApacheURLMatchMap Utility

4-7
threading 3-29

SingleThreadModel 3-29

U
URL Pattern Matching 4-6
URL rewriting 3-16

and WAP 3-18
and Wireless Access Protocol 3-18

URLs 4-5

W
WAP 3-18
Web Applications

and security 4-7
deployment descriptor 4-2
directory structure 4-5
URLs 4-5

web.xml 4-2
weblogic.xml 4-2
Wireless Access Protocol 3-18
Programming WebLogic HTTP Servlets I-iii

	Contents
	About This Document
	1. Overview of HTTP Servlets
	2. Introduction to Programming
	3. Programming Tasks
	4. Administration and Configuration

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of HTTP Servlets
	What Is a Servlet?
	What You Can Do with Servlets
	Overview of Servlet Development
	Servlets and J2EE
	HTTP Servlet API Reference

	2 Introduction to Programming
	Writing a Simple HTTP Servlet
	Advanced Features
	Complete HelloWorldServlet Example

	3 Programming Tasks
	Initializing a Servlet
	Initializing a Servlet when WebLogic Server Starts
	Overriding the init() Method

	Providing an HTTP Response
	Retrieving Client Input
	Methods for Using the HTTP Request
	Example: Retrieving Input by Using Query Parameters

	Session Tracking from a Servlet
	A History of Session Tracking
	Tracking a Session with an HttpSession Object
	Lifetime of a Session
	How Session Tracking Works
	Detecting the Start of a Session
	Setting and Getting Session Name/Value Attributes
	Logging Out and Ending a Session
	Using session.invalidate() for a Single Web Application
	Implementing Single Sign-On for Multiple Applications
	Exempting a Web Application for Single Sign-on

	Configuring Session Tracking
	Using URL Rewriting Instead of Cookies
	URL Rewriting and Wireless Access Protocol (WAP)
	Making Sessions Persistent
	Scenarios to Avoid When Using Sessions
	Use Serializable Attribute Values
	Configuring Session Persistence

	Using Cookies in a Servlet
	Setting Cookies in an HTTP Servlet
	Retrieving Cookies in an HTTP Servlet
	Using Cookies That Are Transmitted by Both HTTP and HTTPS
	Application Security and Cookies

	Response Caching
	Initialization Parameters

	Using WebLogic Services from an HTTP Servlet
	Accessing Databases
	Connecting to a Database Using a JDBC Connection Pool
	Using a Connection Pool in a Servlet

	Connecting to a Database Using a DataSource Object
	Using a DataSource in a Servlet

	Connecting Directly to a Database Using a JDBC Driver

	Threading Issues in HTTP Servlets
	SingleThreadModel
	Shared Resources

	Dispatching Requests to Another Resource
	Forwarding a Request
	Including a Request

	4 Administration and Configuration
	Overview of WebLogic HTTP Servlet Administration
	Using Deployment Descriptors to Configure and Deploy Servlets
	web.xml (Web Application Deployment Descriptor)
	weblogic.xml (Weblogic-Specific Deployment Descriptor)

	WebLogic Server Administration Console

	Directory Structure for Web Applications
	Referencing a Servlet in a Web Application
	URL Pattern Matching

	Servlet Security
	Authentication
	Authorization (Security Constraints)

	Servlet Development Tips
	Clustering Servlets

	Index

