‘."

.,
S’ 7
L/

BEA WeDbLogic
Server-and
WebLogic
EXxpress.

Programming WebLogic
HTTP Servlets

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic HTTP Servlets

Part Number Document Revised Software Version

N/A November 28, 2002 BEA WebL ogic Server
Version 8.1

Contents

About This Document

U 0 [1= 3 TS vii
E-AOCSWED STt e viii
How to Print the DOCUMENTcoiiieieiecte ettt ettt viii
Related INfOrMatioN........cc.oceeiiiecece e viii
[0 1 r=ox A U LSRR iX
Documentation CONVENTIONS.........ccceeieieiiieciee e eseesteetee e eresreeresreeseesaeeeesreennens X

1. Overview of HTTP Servlets

WHat IS @ SEIVIEL? ... sttt e r e s reere e ae s 1-1
What You Can DO WIith SENVIELS......c.eeciieeeeeceeecee e 1-2
Overview of Serviet DEVEIOPMENTcccoveiieirerere e 1-3
SErVIEES AN J2EEoouiciecie et s s re s 1-3
HTTP Serviet APl REFEIENCE......eoiicieeceecee ettt 1-4

2. Introduction to Programming

Writing aSImMple HTTP SErVIELc..ovvceee e 2-1
AAVANCED FEBIUIESeeiieiieie ettt st b e sbea 2-4
Complete HelloWorldServiet EXample..........cocenennenniscseseeesee e 2-5

3. Programming Tasks

INIGIAliZING @SEIVIEL ... e e 31
Initializing a Servlet when WebL ogic Server Starts..........ccovveevnnenenas 32
Overriding theinit() Method...........cocooiernineencne e 3-3

Providing an HTTP RESPONSE.......ccuviiiieieire et see sttt 34

Retrieving CHENnt INPUL ... s 3-6
Methods for Using the HTTP ReQUESL.........ccoeireiineinireese e 37

Programming WebL ogic HTTP Servlets i

iv

Example: Retrieving Input by Using Query Parameters..........ccccceevveeveenen. 3-8

Session Tracking from @ SErVIEt.........cooe e 3-10
A History of Session Trackingcccoverrenieineceneeeeeee s 3-10
Tracking a Session with an HttpSession Object..........coeevereveecreecrienene 3-11
Lifetime of @SESSIONcoiiiiiire e e 312
How Session Tracking WOrKS..........ccveeninnrnecs e 313
Detecting the Start of @ SeSSION.........oceiireriireer e 3-13
Setting and Getting Session Name/Value Attributesccoceveeeeeeenenne. 3-14
Logging Out and ENding & SESSIONccveeriirerenerieeseesiees e 3-15

Using session.invalidate() for a Single Web Application.................. 3-15
Implementing Single Sign-On for Multiple Applications................. 3-15
Exempting a Web Application for Single Sign-on..........c.ccceeevene. 3-16
Configuring SeSSION TraCKiNgcccoveeeerieieiereeerere e e 3-16
Using URL Rewriting Instead of COOKIES..........coovervirerierenenenie s 3-16
URL Rewriting and Wireless Access Protocol (WAP) ..., 3-18
Making SeSSIONS PerSiStENtccceviiirireriieie et 3-18
Scenariosto Avoid When USing SESSIONSc.oveveveeneeneeenenenienees 3-19
Use Seridizable Attribute ValUEs..........coee e 3-19
Configuring Session PErSIStENCE........cccovvveeiceeieceese e 3-20

UsSiNg COOKIES TN ASEIVIELeeeeeceee et 3-20
Setting Cookiesin an HTTP SerVIEt ... 3-20
Retrieving Cookiesin an HTTP Serviet ... 321
Using Cookies That Are Transmitted by Both HTTPand HTTPS.......... 3-22
Application Security and COOKIES..........coovuireeeireriieeieeeee s 3-22

ReSPONSE CaChING.....ccuecieie et s 3-23

Initialization Parameters..........ccoveereereineiincseee e 3-24

Using WebLogic Servicesfroman HTTP Servietcccooeivinninncneenn 3-25

ACCESSING DALADASES.ccuveieeiee ettt e 3-25
Connecting to a Database Using a JDBC Connection Pool 3-26

Using a Connection Pool in @ Servlet.........cocveeviennenninnenee 3-26
Connecting to a Database Using a DataSource Objectcccccvevienn. 3-27
Using aDataSource in @ SErVIEL..........cocvveeveneceeseeeece e 3-28
Connecting Directly to a Database Using a JDBC Driverccceceeen.e. 3-28

Threading 1SSUeSIN HTTP SErVIELS......ccocveeeciceee e 3-29

SingleThreadMOodElccooeieee e e 3-29

Programming WebL ogic HTTP Servlets

SharEd RESOUICES ..ottt ettt s sre s sbe s sebessresenee s 3-29

Dispatching Requests to ANOther RESOUICEcveeereeeeereeerie e 3-30
FOrwarding @ REQUESE.........coueirierieerieeee e 331
INCIUAING B REQUESEcooieeeeeereeeeere e et 332

Administration and Configuration

Overview of WebLogic HTTP Serviet Administration............ccoceevvenrernenenn 4-2
Using Deployment Descriptors to Configure and Deploy Servlets........... 4-2
web.xml (Web Application Deployment Descriptor)cccceeeeeneene. 4-2
weblogic.xml (Weblogic-Specific Deployment Descriptor) 4-3

WebL ogic Server Administration CONSOIe.........ccvereererereeneeeeeeeenes 4-4
Directory Structure for Web Applicationscccoeirerninenene e 4-5
Referencing aServletin aWeb Application..........ccoeevevecneinenercce 4-5
URL Pattern MatChingccoeereiniiinereneses e 4-6
SEIVIEL SECUNTY ..ttt e s 4-7
AULNENEICALTON ...ttt 4-7
Authorization (Security CONSLIaINES)cerveerieerieinecreeereeesee e 4-8
Servliet DevEl OPMENE TIPS ..o it s sre s 4-8
ClUSLENTNG SENVIELS....c.ccuiieciirieiesieie bbb s 4-9

Programming WebL ogic HTTP Servlets \

Vi

Programming WebL ogic HTTP Servlets

About This Document

Thisdocument providesinformation on programming and deploying WebL ogicHTTP
Servlets.

The document is organized as follows:

m Chapter 1, “Overview of HTTP Servlets,” provides an overview of Hypertext
Transfer Protocol (HTTP) servlet programming and explains how to use HTTP
servlets with WebL ogic Server.

m Chapter 2, “Introduction to Programming,” introduces basic HTTP servlet
programming.

m Chapter 3, “Programming Tasks,” provides information about writing HTTP
servletsin aWebL ogic Server environment.

m Chapter 4, “Administration and Configuration,” provides information about
writing HTTP servietsin aWebL ogic Server environment.

Audience

This document is written for application devel opers who want to build e-commerce
applications using HTTP servlets and the Java 2 Platform, Enterprise Edition (J2EE)
from Sun Microsystems. It is assumed that readers know Web technologies,
object-oriented programming techniques, and the Java programming language.

Programming WebL ogic HTTP Servlets vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File —Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

viii

m Package javax.serviet
(http://java. sun. com product s/ servl et/ 2. 3/javadoc/
j avax/ servl et/ package- summary. ht m)

m Package javax.servlet.http
(http://java. sun. conm product s/ servl et/ 2. 3/javadoc/
j avax/ servl et/ http/ package- sunmary. ht m)

m Servlet 2.3 specification
(http://java. sun. cont product s/ servl et/ downl oad. ht ml #specs)

Programming WebL ogic HTTP Servlets

http://www.adobe.com
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

m Deploying and Configuring Applications at
http://e-docs. bea. coml W s/ docs81b/ adm ngui de/ confi g_web_app. htm
|

m Writing Web Application Deployment Descriptors at

http://e-docs. bea. coml W s/ docs81b/ progr ami ng/ webappdepl oynent .
ht m

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitleand document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can al so contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Programming WebL ogic HTTP Servlets iX

http://e-docs.bea.com/wls/docs81b/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs81b/programming/webappdeployment.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

Ctrl+Tab

Keysyou press simultaneously.

italics

Emphasis and book titles.

nonospace
t ext

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace
italic
t ext

Variablesin code.
Example:
String Customner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{}

A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.Milticast Test -n name -a address
[-p portnumber] [-t timeout] [-s send]

X Programming WebL ogic HTTP Servlets

Convention Usage

[Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [Ilist| depl oy| undepl oy| updat €]
password {application} {source}

Indicates one of the following in a command line:

= Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic HTTP Servlets Xi

Xii Programming WebL ogic HTTP Servlets

CHAPTER

1 oOverview of HTTP
Serviets

The following sections provide an overview of Hypertext Transfer Protocol (HTTP)
servlet programming and explain how to use HTTP servlets with WebL ogic Server:

m What Isa Servlet?

m What You Can Do with Servlets
m Overview of Servlet Development
m Servletsand J2EE

m HTTP Servlet APl Reference

What Is a Servlet?

A servletisaJavaclassthat runsin aJava-enabled server. ANHTTP servlet isaspecial
type of servlet that handlesan HT TP request and provides an HT TP response, usually
in the form of an HTML page. The most common use of WebLogic HTTP Servletsis
to create interactive applications using standard Web browsers for the client-side
presentation while WebL ogic Server handles the business logic as a server-side
process. WeblL ogic HTTP servlets can access databases, Enterprise JavaBeans,
messaging APIs, HTTP sessions, and other facilities of WebLogic Server.

WebL ogic Server fully supports HTTP servlets as defined in the Serviet 2.3
specification from Sun Microsystems. HTTP servletsform an integral part of the Java
2 Enterprise Edition (J2EE) standard.

Programming WebL ogic HTTP Servlets 1-1

1 overview of HTTP Serviets

What You Can Do with Servlets

1-2

m Create dynamic Web pages that use HTML formsto get end-user input and
provide HTML pages that respond to that input. Examples of this utilization
include online shopping carts, financia services, and personalized content.

m Create collaborative systems such as online conferencing.

m Servlets running in WebL ogic Server have accessto avariety of APIsand
services. For example:

Session tracking—Allows a Web site to track a user’s progress across
multiple Web pages. This functionality supports Web sites such as
e-commerce sites that use shopping carts. WebL ogic Server supports session
persistence to a database, providing fail-over between server down time and
session sharing between clustered servers. For more information see “ Session
Tracking from a Servlet” on page 3-10.

JDBC drivers (including BEA)—JDBC drivers provide basic database
access. With Weblogic Server’s multitier JIDBC implementations, you can
take advantage of connection pools, server-side data caching, and
transactions. For more information see “Accessing Databases’ on page 3-25.

Security—You can apply various types of security to servlets, including
using ACLs for authentication and Secure Sockets Layer (SSL) to provide
secure communications.

Enterprise JavaBeans—Servlets can use Enterprise JavaBeans (EJB) to
encapsul ate sessions, data from databases, and other functionality.

Java Messaging Service (IMS)—JIM S allows your servlets to exchange
messages with other servlets and Java programs.

Java JDK APIs—Servlets can use the standard Java JDK APIs.

Forwarding requests—Servlets can forward a request to another servlet or
other resource.

m Servletswritten for any J2EE-compliant servlet engine can be easily deployed
on WebL ogic Server.

m Servlets and Java Server Pages (JSP) can work together to create an application.

Programming WebL ogic HTTP Servlets

Overview of Servlet Development

Overview of Servlet Development

m Programmers of HTTP servlets utilize a standard API from JavaSoft,
j avax. servl et . htt p, to create interactive applications.

m HTTP servlets can read HTTP headers and write HTML coding to deliver a
response to abrowser client.

m Servlets are deployed on WebL ogic Server as part of aWeb Application. A Web
Application isagrouping of application components such as servlet classes,
JavaServer Pages (JSP), static HTML pages, images, and security. For more
information see “ Administration and Configuration” on page 4-1.

Servlets and J2EE

The Servlet 2.3 specification (available at

http://java. sun. con product s/ ser vl et/ downl oad. ht nl #specs), part of the
Java 2 Platform, Enterprise Edition, definesthe implementation of the serviet APl and
the method by which servlets are deployed in enterprise applications. Deploying
servlets on a J2EE-compliant server, such as WebL ogic Server, is accomplished by
packaging the servlets and other resources that make up an enterprise application into
asingle unit called aWeb Application. A Web Application utilizes aspecific directory
structure to contain its resources and a deployment descriptor that defines how these
resources interact and how the application is accessed by aclient. A Web Application
may also be deployed as an archivefile called a. war file.

For moreinformation on creating Web Applications, see Assembling and Configuring
Web Applications at

http://e-docs. bea. con W s/ docs81b/ webapp/ i ndex. ht ni . For an overview
of servlet administration and deployment issues, see “ Administration and
Configuration” on page 4-1.

Programming WebL ogic HTTP Servlets 1-3

http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs81b/webapp/index.html
http://e-docs.bea.com/wls/docs81b/webapp/index.html

1 overview of HTTP Serviets

HTTP Serviet API Reference

WebL ogic Server supportsthej avax. servl et . ht t p packagein the Java Servlet 2.3
API. You canfind additional documentation for the package from Sun Microsystems:

m APl documentation

e Packagejavax.servlet
(http://java. sun. com products/servl et/ 2. 3/javadoc/
j avax/ servl et/ package- summary. ht)

e Packagejavax.servlet.http
(http://java.sun. conm products/servlet/2.3/javadoc/
j avax/ servl et/ http/ package- summary. ht m)

m Servlet 2.3 specification
(http://java. sun. con product s/ servl et/ downl oad. ht ml #specs)

1-4 Programming WebL ogic HTTP Servlets

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

CHAPTER

2 Introduction to
Programming

The following sections introduce basic HTTP servlet programming:
m Writinga Simple HTTP Servlet
m Advanced Features

m Complete HelloWorldServlet Example

Writing a Simple HTTP Servlet

The section provides a procedure for writing asimple HTTP servlet, which prints out
themessage Hel | o Wor | d. A complete code example (the Hel | ovor | dSer vl et)
illustrating these stepsisincluded at the end of this section. Additional information
about using various J2EE and Webl ogic Server servicessuch asJDBC, RMI, and IMS,

inyour servlet are discussed later in this document.

1. Import the appropriate package and classes, including the following:

import javax.servlet.*;
inmport javax.servlet.http.*;
inmport java.io.*;

2. Extendj avax.servlet. http. Htt pServl et . For example:
public class Hell oWrl dServlet extends HttpServlet{

3. Implement aservi ce() method.

Programming WebL ogic HTTP Servlets

2

Introduction to Programming

2-2

The main function of a servlet isto accept an HTTP request from aWeb
browser, and return an HTTP response. Thiswork is done by the ser vi ce()
method of your servlet. Service methods include response objects used to create
output and request objects used to receive data from the client.

You may have seen other servlet examples implement the doPost () and/or
doGet () methods. These methods reply only to POST or GET requests; if you
want to handle all request types from a single method, your serviet can simply
implement the ser vi ce() method. (However, if you choose to implement the
servi ce() method, you cannot implement the doPost () or doGet () methods,
unlessyou call super . servi ce() at the beginning of the ser vi ce() method.)
The HTTP servlet specification describes other methods used to handle other
reguest types, but all of these methods are collectively referred to as service
methods.

All the service methods take the same parameter arguments. An

Ht t pSer vl et Request provides information about the request, and your servlet
usesan Ht t pSer vl et Response to reply to the HTTP client. The service method
looks like the following:

public void service(HttpServl et Request req,
Htt pServl et Response res) throws | OException
{

. Set the content type, asfollows:

res. set Content Type("text/htm");

. Get areferencetoaj ava.io. Print Witer object to usefor output, as follows:

PrintWiter out = res.getWiter();

. Create some HTML using thepri nt1 n() method onthePrint Wi ter object,

as shown in the following example:

out.println("<htm ><head><title>Hello Wirld!</title></head>");
out. println("<body><hl1>Hello Worl d! </ hl></body></htm >");

}

. Compile the servlet, asfollows:

a. Set up adevelopment environment shell (see
http://e-docs.bea.com/wls/docs81b/programming/environment.html) with the
correct classpath and path settings.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/programming/environment.html

Writing a Simple HTTP Servlet

b. From the directory containing the Java source code for your servlet, compile
your servlet into the \EB- | NF/ ¢l asses directory of the Web Application that
contains your servlet. For example:

javac -d / myWebApplication/VEB-| NF/ cl asses nyServlet.|ava

8. Deploy the servlet as part of a Web Application hosted on WebL ogic Server. For
an overview of servlet deployment, see “Administration and Configuration” on

page 4-1.
9. Cadll the servlet from abrowser.

The URL you useto call aservlet is determined by: (a) the name of the Web
Application containing the servlet and (b) the name of the servlet as mapped in
the deployment descriptor of the Web Application. Request parameters can also
be included in the URL used to call a servlet.

Generally the URL for a servlet conforms to the following:

http://host: port/webApplicati onNanme/ mappedSer vl et Nare?par anet er
The components of the URL are defined as follows:

e host isthe name of the machine running WebL ogic Server.

e port istheport at which the above machineis listening for HTTP requests.

e webAppl i cati onNane isthe name of the Web Application containing the
servlet.

e parameters are one or more name-value pairs containing information sent
from the browser that can be used in your servlet.

For example, to use a Web browser to call the Hel | owor | dSer vl et (the
example featured in this document), which is deployed in the exanpl esVebApp
and served from a WebL ogic Server running on your machine, enter the
following URL.:

http://1ocal host: 7001/ exanpl esWebApp/ Hel | oWor | dSer vl et

Thehost : port portion of the URL can be replaced by aDNS namethat is
mapped to WebLogic Server.

Programming WebL ogic HTTP Servlets 2-3

2

Introduction to Programming

Advanced Features

2-4

The preceding steps create a basic servlet. Y ou will probably also use more advanced
features of servlets:

Handling HTML form data—HTTP servlets can receive and process data
received from a browser client in HTML forms.

e “Retrieving Client Input” on page 3-6

Application design—HTTP servlets offer many ways to design your application.
The following sections provide detailed information about writing servlets:

e “Providing an HTTP Response” on page 3-4
e “Threading Issuesin HTTP Servlets’ on page 3-29
e “Dispatching Requeststo Another Resource” on page 3-30

Initializing a servlet—if your servlet needsto initialize data, accept initialization
arguments, or perform other actions when the servlet isinitialized, you can
overridethei ni t () method.

e ‘“Initializing a Servlet” on page 3-1

Use of sessions and persistence in your servlet—sessions and persistence allow
you to track your users within and between HT TP sessions. Session management
includes the use of cookies. For more information, see the following sections:

e “Session Tracking from a Servlet” on page 3-10
e “Using Cookiesin a Servlet” on page 3-20
e “Configuring Session Persistence” on page 3-20

Use of WebL ogic servicesin your servlet—WebL ogic Server provides a variety
of services and APIs that you can use in your Web applications. These services
include Java Database Connectivity (JDBC) drivers, JDBC database connection
pools, Java Messaging Service (IMS), Enterprise JavaBeans (EJB), and Remote
Method Invocation (RMI). For more information, see the following sections:

e “Using WebL ogic Services from an HTTP Servlet” on page 3-25
e “Servlet Security” on page 4-7

Programming WebL ogic HTTP Servlets

Complete HelloWorldServiet Example

e “Accessing Databases’ on page 3-25

Complete HelloWorldServiet Example

This section provides the compl ete Java source code for the example used in the
preceding procedure. The example is asimple servlet that provides aresponse to an
HTTP request. Later in this document, this example is expanded to illustrate how to
use HTTP parameters, cookies, and session tracking.

Listing2-1 HelloWorldServlet.java

import javax.servlet.*;
inmport javax.servlet.http.*;
inmport java.io.*;

public class Hell owrl dServl et extends HttpServlet {
public void service(HttpServl et Request req,
Ht t pSer vl et Response res)
throws | OException

{

/1 Must set the content type first

res.set Content Type("text/htm");

// Now obtain a PrintWiter to insert HTM. into

PrintWiter out = res.getWiter();

out.println("<htm ><head><title>" +

"Hello World!</title></head>");

out. println("<body><hl>Hell o Wrl d! </ hl></body></htm >");

}

Y ou can find the source code and instructions for compiling and running all the
examples used in this document in the sanpl es/ exanpl es/ ser vl et s directory of
your WebL ogic Server distribution.

Programming WebL ogic HTTP Servlets 2-5

2 Introduction to Programming

2-6 Programming WebL ogic HTTP Servlets

CHAPTER

3 Programming Tasks

The following sections describe how to write HTTP servlets in a WebL ogic Server
environment:

Initializing a Servlet

Providing an HTTP Response

Retrieving Client Input

Session Tracking from a Servlet

Using Cookiesin a Servlet

Response Caching

Using WebL ogic Services from an HTTP Servlet
Accessing Databases

Threading Issuesin HTTP Servlets

Dispatching Requests to Another Resource

Initializing a Servlet

Normally, WebL ogic Server initializes a servlet when the first request is made for the
servlet. Subsequently, if the servlet is modified, the dest r oy() method is called on
the existing version of the servlet. Then, after arequest is made for the modified
servlet, thei ni t () method of the modified servlet is executed. For moreinformation,
see “ Servlet Development Tips’ on page 4-8.

Programming WebL ogic HTTP Servlets 31

3 Programming Tasks

When aservlet isinitialized, WebL ogic Server executesthei ni t () method of the
servlet. Once the servlet isinitialized, it isnot initialized again until you restart

WebL ogic Server or the servlet code when the servlet is modified. If you choose to
overridethei ni t () method, your servlet can perform certain tasks, such as
establishing database connections, when the servlet isinitialized. (See“ Overriding the
init() Method” on page 3-3)

Initializing a Servlet when WebLogic Server Starts

Rather than having WebL ogic Server initialize aservlet when thefirst request is made
for it, you can first configure WebL ogic Server to initialize a servlet when the server
starts. Y ou do this by specifying the servlet classin the <l oad- on- st art up> element
in the Web Application deployment descriptor. For more information see “ Servlet

Element” at
http://e-docs. bea. com w s/ docs81b/ webapp/ web_xnm . ht m #web_xm _ser
vl et.

Y ou can pass parameters to an HTTP servlet during initiaization by defining these
parameters in the Web Application containing the servlet. Y ou can use these
parameters to pass values to your servlet every time the servlet isinitialized without
having to rewrite the servlet. For more information, see Writing Web Application
Deployment Descriptors at

http://e-docs. bea. comf wl s/ docs81b/ webapp/ depl oynent. htm .

For exampl e, the following entries in the Web Application deployment descriptor
define two initialization parameters: gr eet i ng, which has a value of Wl come and
per son, which has avalue of WebLogi ¢ Devel oper.

<servl et >

<init-paraner
<par am nanme>gr eet i ng</ par am nane>
<par am val ue>Wel cone</ par am val ue>
<descri pti on>The sal utation</description>
</init-paranp
<init-paranpr
<par am nanme>per son</ par am nanme>
<param val ue>WebLogi ¢ Devel oper </ param val ue>
<descri pti on>nane</ descri ption>
</init-paranpr
</servlet>

32 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_servlet
http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_servlet
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html

Initializing a Servlet

Toretrieve initialization parameters, call the get | ni t Par amet er (St ri ng nane)
method from the parent j avax. ser vl et . Generi cServl et class. When passed the
name of the parameter, this method returns the parameter’svalueasa St ri ng.

Overriding the init() Method

Y ou can have your servlet executetasksat initialization time by overriding thei ni t ()
method. The following code fragment reads the <i ni t - par an tags that define a
greeting and aname in the Web Application deployment descriptor:

String defaultGeeting;
String defaul t Nane;

public void init(ServletConfig config)
throws Servl et Exception {
if ((defaultGreeting = getlnitParaneter("greeting")) == null)
defaul tGeeting = "Hel |l 0";

if ((defaultNane = getlnitParaneter("person")) == null)
defaul t Nane = "World";
}

The values of each parameter are stored in the class instance variables
def aul t Gr eet i ng and def aul t Name. Thefirst code tests whether the parameters
have null values, and if null values are returned, provides appropriate default values.

You can then usethe ser vi ce() method to include these variablesin the response.
For example:

out. print("<body><h1>");
out.println(defaultGeeting + " " + defaultNane + "!");
out. println("</hl></body></htnl>");

The full source code and instructions for compiling, installing, and trying out an
example called Hel | owor | d2. j ava, which illustrates the use of thei ni t () method,
can be found in the sanpl es/ exanpl es/ ser vl et s directory of your WebL ogic
Server distribution.

Programming WebL ogic HTTP Servlets 33

3 Programming Tasks

Providing an HTTP Response

3-4

This section describes how to provide a response to the client in your HTTP servlet.
Deliver al responses by using the Ht t pSer vl et Response object that is passed as a
parameter to the ser vi ce() method of your servlet.

1. Configurethe Ht t pSer vl et Response.

Using the Ht t pSer vI et Response object, you can set several servlet properties
that are trandlated into HT TP header information:

e At aminimum, set the content type using the set Cont ent Type() method
before you obtain the output stream to which you write the page contents.
For HTML pages, set the content typetot ext / ht ml . For example:

res. set Content Type("text/htm");

e (optional) You can also usethe set Cont ent Type() method to set the
character encoding. For example:

res. set Content Type("text/htm ;| SO 88859-4");

e Set header attributes using the set Header () method. For dynamic
responses, it is useful to set the “Pragna” attribute to no- cache, which
causes the browser to always rel oad the page and ensures the data is current.
For example:

res. set Header (" Pragma", "no-cache");
2. Compose the HTML page.

The response that your servlet sends back to the client must look like regular
HTTP content, essentially formatted asan HTML page.Your servlet returns an
HTTP response through an output stream that you obtain using the response
parameter of the ser vi ce() method. To send an HTTP response:

a. Obtain an output stream by using the Ht t pSer vl et Response object and one
of the methods shown in the following two examples:

e PrintWiter out = res.getWiter();

e ServletQutputStreamout = res.getQutputStream);

You can use both Pri nt Wit er and Ser vl et Qut put St r eamin the same
servlet (or in another servlet that isincluded in a servlet). The output of both
iswritten to the same buffer.

Programming WebL ogic HTTP Servlets

Providing an HTTP Response

b. Write the contents of the response to the output stream using the pri nt ()
method. You can use HTML tags in these statements. For example:

out. print(“<htm ><head><title>Wy Servlet</title>");
out. print (“</head><body><h1>");

out.print(“Wel cone”);

out. print (“</hl></body></htni>");

Do not close the output stream by using the cl ose() method, and avoid
flushing the contents of the stream. If you do not close or flush the output
stream, WebL ogic Server can take advantage of persistent HTTP
connections, as described in the next step.

3. Optimize the response.

By default, WebL ogic Server attempts to use HTTP persistent connections
whenever possible. A persistent connection attempts to reuse the sasme HTTP
TCP/IP connection for a series of communications between client and server.
Application performance improves because a new connection need not be
opened for each request. Persistent connections are useful for HTML pages
containing many in-line images, where each requested image would otherwise
require a new TCP/IP connection.

Using the WebL ogic Server Administration Console, you can configure the
amount of time that WebL ogic Server keeps an HT TP connection open.

WebL ogic Server must know the length of the HTTP response in order to
establish a persistent connection and automatically adds a Cont ent - Lengt h
property to the HTTP response header. In order to determine the content length,
WebL ogic Server must buffer the response. However, if your serviet explicitly
flushes the Ser vI et Qut put St r eam WebL ogic Server cannot determine the
length of the response and therefore cannot use persistent connections. For this
reason, you should avoid explicitly flushing the HTTP response in your servlets.

You may decide that, in some cases, it is better to flush the response early to
display information in the client before the page has completed; for example, to
display a banner advertisement while some time-consuming page content is
calculated. Conversely, you may want to increase the size of the buffer used by
the servlet engine to accommodate a larger response before flushing the
response. You can manipulate the size of the response buffer by using the related
methods of the javax.servlet.ServletResponse interface (at

http://java. sun. conl products/servlet/2.3/javadoc/

j avax/ servl et/ Servl et Response. ht n).

Programming WebL ogic HTTP Servlets 35

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html

3 Programming Tasks

The default value of the WebL ogic Server response buffer is 12K and the buffer
sizeisinternally calculated in terms of CHUNK_SI ZE where CHUNK_SI ZE =
4088 or 4Kb; if the user sets 5Kb the server rounds the request up to the
nearest multiple of CHUNK_SI ZE which is 2. and the buffer is set to 8176 or 8Kb.

Retrieving Client Input

3-6

The HTTP servlet API provides ainterface for retrieving user input from Web pages.

AnHTTP request from a Web browser can contain more than the URL, such as
information about the client, the browser, cookies, and user query parameters. Use
query parametersto carry user input from the browser. Use the GET method appends
paramtersto the URL address, and the POST method includes them in the HTTP
request body.

HTTP servlets need not deal with these details; information in arequest is available
through the Ht t pSer v et Request object and can be accessed using the
request . get Par anet er () method, regardless of the send method.

Read the following for more detailed information about the ways to send query
parameters from the client:

m Encode the parameters directly into the URL of alink on a page. This approach
uses the GET method for sending parameters. The parameters are appended to the
URL after a? character. Multiple parameters are separated by a & character.
Parameters are always specified in name=value pairs so the order in which they
arelisted is not important. For example, you might include the following link in
aWeb page, which sends the parameter col or with the value pur pl e to an
HTTP servlet called Col or Ser vl et :

<a href=
"http://1ocal host: 7001/ myWebApp/ Col or Ser vl et ?col or =pur pl e" >
Click Here For Purple!

m Manually enter the URL, with query parameters, into the browser location field.
Thisis equivaent to clicking the link shown in the previous example.

m Query the user for input with an HTML form. The contents of each user input
field on the form are sent as query parameters when the user clicks the form’s
Submit button. Specify the method used by the form to send the query

Programming WebL ogic HTTP Servlets

Retrieving Client Input

parameters (POST or GET) in the <FORM> tag using the METHOD=" GET| POST"
attribute.

Query parameters are always sent in nane=val ue pairs, and are accessed through the
Ht t pSer vl et Request object. You can obtain an Enumer at i on of all parameter
namesin aquery, and fetch each parameter value by using its parameter name. A
parameter usually hasonly onevalue, but it can also hold an array of values. Parameter
values are always interpreted as St r i ngs, SO you may need to cast them to a more
appropriate type.

The following sample from aser vi ce() method examines query parameter names
and their valuesfrom aform. Notethat r equest istheHt t pSer vl et Request object.

Enuner ati on paranms = request. get Par amet er Nanes() ;
String paranName = nul | ;
String[] paranmvalues = null;

whi |l e (parans. hasMoreEl enents()) {
paranmName = (String) parans. nextEl enent();
par anval ues = request. get Par anet er Val ues(par amNane) ;
Systemout. println("\nParaneter nane is " + paranmNane);
for (int i =0; i < paranValues.length; i++) {
Systemout.println(", value " +i + " is " +
paranVal ues[i].toString());

Methods for Using the HTTP Request

This section defines the methods of thej avax. servl et . Ht t pSer vl et Request
interface that you can use to get data from the request object. Y ou should keep the
following limitationsin mind:

m You cannot read request parameters using any of the get Par anet er () methods
described in this section and then attempt to read the request with the
get | nput St r ean() method.

m You cannot read the request with get | nput St r ean() and then attempt to read
request parameters with one of the get Par amet er () methods.

If you attempt either of the preceding procedures, ani | | egal St at eExcepti on is
thrown.

Programming WebL ogic HTTP Servlets 37

3 Programming Tasks

Example:

Y ou can use thefollowing methods of j avax. servl et . Ht t pSer vel et Request to
retrieve data from the request object:

Ht t pSer vl et Request . get Met hod()
Allows you to determine the request method, such as GET or POST.

Ht t pSer vl et Request . get QueryString()
Allows you to access the query string. (The remainder of the requested URL,
following the ? character.)

Ht t pSer vl et Request . get Par anet er ()
Returns the value of a parameter.

Ht t pSer vl et Request . get Par anet er Nanmes()
Returns an array of parameter names.

Ht t pSer vl et Request . get Par anet er Val ues()
Returns an array of values for a parameter.

Ht t pSer vl et Request . get | nput St ream()
Reads the body of the request as binary data. If you call this method after
reading the request parameters with get Par amet er () ,
get Par anet er Nanes(), Or get Par anet er Val ues(), an
i |l egal St at eExcepti on isthrown.

Retrieving Input by Using Query Parameters

In this example, the Hel | oWor | d2. j ava servliet example is modified to accept a
username as a query parameter, in order to display a more personal greeting. (For the
complete code, seethe Hel | oWor | d3. j ava servlet example, located in the

sanpl es/ exanpl es/ ser vl et s directory of your WebL ogic Server distribution.) The
servi ce() method is shown here.

Listing 3-1 Retrieving Input with theser vi ce() Method

public void service(HttpServl et Request req,
Ht t pSer vl et Response res)
throws | OException
{
String nane, paramNane[];
i f ((paramNane = req. get Paranet er Val ues("nane"))
'= null) {

3-8 Programming WebL ogic HTTP Servlets

Retrieving Client Input

nane = paranNane[0] ;
}
el se {

name = def aul t Nane;
}

/1 Set the content type first

res. set Content Type("text/htm");

/] Qotain a PrintWiter as an output stream
PrintWiter out = res.getWiter();

out.print("<htm ><head><title>" +

"Hello World!" + </title></head>");
out. print ("<body><h1>");
out.print(defaultGeeting + " " + name + "!");
out. print("</hl></body></htni>");

Theget Par amet er Val ues() method retrievesthe value of the name parameter from
the HTTP query parameters. Y ou retrieve these valuesin an array of type Stri ng. A
single value for this parameter is returned and is assigned to the first element in the
name array. If the parameter is not present in the query data, nul | isreturned; in this
case, nane is assigned to the default name that was read from the <i ni t - par an» by
thei ni t () method.

Do not base your servlet code on the assumption that parameters are included in an
HTTP request. The get Par aret er () method has been deprecated; as aresult, you
might be tempted to shorthand the get Par anet er Val ues() method by tagging an
array subscript to the end. However, this method can return nul | if the specified
parameter is not available, resulting in aNul | Poi nt er Except i on.

For example, the following code triggers aNul | Poi nt er Except i on:
String nmyStr = req. get Par anet er Val ues(" par anNane") [0] ;
Instead, use the following code:

if ((String nyStr[] =
req. get Par anet er Val ues(" paramNane"))!=null) {
/1 Now you can use the nyStr[O0];
}
el se {
/1 paranNarme was not in the query paraneters!

}

Programming WebL ogic HTTP Servlets 39

3 Programming Tasks

Session Tracking from a Servlet

Session tracking enablesyouto track auser’ s progressover multiple servietsor HTML
pages, which, by nature, are stateless. A session isdefined asaseriesof related browser
requests that come from the same client during a certain time period. Session tracking
tiestogether a series of browser requests—think of these requests as pages—that may
have some meaning as awhole, such as a shopping cart application.

The following sections discuss various aspets of tracking sessions from an HTTP
servlet:

m A History of Session Tracking

m Tracking a Session with an HttpSession Object

m Lifetime of a Session

m How Session Tracking Works

m Detecting the Start of a Session

m Setting and Getting Session Name/Value Attributes
m Logging Out and Ending a Session

m Configuring Session Tracking

m Using URL Rewriting Instead of Cookies

m URL Rewriting and Wireless Access Protocol (WAP)
m Making Sessions Persistent

A History of Session Tracking

Before session tracking matured conceptually, developerstried to build state into their
pages by stuffing information into hidden fields on a page or embedding user choices
into URLs used in links with along string of appended characters. Y ou can see good
examples of thisat most search engine sites, many of which till depend on CGI. These
sitestrack user choices with URL parameter nane=val ue pairs that are appended to

3-10 Programming WebLogic HTTP Servlets

Session Tracking from a Servlet

the URL, after the reserved HTTP character 2. This practice can result in avery long
URL that the CGI script must carefully parse and manage. The problem with this
approach isthat you cannot pass this information from session to session. Once you
lose control over the URL—that is, once the user leaves one of your pages—the user
information islost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related
information about the client for each server. However, some browsers still do not fully
support cookies, and some users prefer to turn off the cookie option in their browsers.
Another factor that should be considered isthat most browserslimit the amount of data
that can be stored with a cookie.

Unlikethe CGI approach, the HT TP servlet specification defines asolution that allows
the server to store user details on the server bdyond a single session, and protects your
code from the complexities of tracking sessions. Y our servlets can use an

Ht t pSessi on object to track a user’sinput over the span of asingle session and to
share session details among multiple servlets. Session data can be persisted using a
variety of methods available with WebL ogic Service.

Tracking a Session with an HttpSession Object

According to the Java Servlet API, which WebL ogic Server implements and supports,
each servlet can accessaserver-side session by using itsHt t pSessi on object. Y ou can
accessan Ht t pSessi on object intheser vi ce() method of the servlet by using the
Ht t pSer vl et Request object with the variabler equest variable, as shown:

Ht t pSessi on sessi on = request. get Session(true);

AnH t pSessi on object iscreated if one does not already exist for that client whenthe
request . get Sessi on(true) method is called with the argument t r ue. The session
object lives on WebL ogic Server for the lifetime of the session, during which the
session object accumulates information related to that client. Y our servlet adds or
removesinformation from the session object as hecessary. A session isassociated with
aparticular client. Each time the client visits your servlet, the same associated

Ht t pSessi on object isretrieved when the get Sessi on() method iscalled.

For more details on the methods supported by the Ht t pSessi on, refer to the
HttpServliet APl at http: //j ava. sun. com j 2ee/ j 2sdkee/
t echdocs/ api /j avax/ servlet/http/ HtpSession. htm .

Programming WebLogic HTTP Servlets 3-11

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/HttpSession.html

3 Programming Tasks

In the following example, the ser vi ce() method counts the number of times a user
requests the servlet during a session.

public void service(H tpServl et Request request,

Ht t pSer vl et Response, response)
throws | CException

/] Get the session and the counter paramattribute
Ht t pSessi on session = request. get Session (true);

I nteger ival = (Integer)
session.getAttribute("sinplesession.counter");
if (ival == null) // Initialize the counter
ival = new Integer (1);
el se // Increment the counter
ival = new Integer (ival.intValue () + 1);
/1 Set the new attribute value in the session
session. setAttribute("sinplesession.counter", ival);

/1 Qutput the HTM. page

out. print (" <HTM.><body>");

out.print("<center> You have hit this page ");
out.print(ival + " tines!");

out. print("</body></htm >");

Lifetime of a Session

312

A session tracks the selections of a user over a series of pagesin a single transaction.
A singletransaction may consist of several tasks, such as searching for an item, adding
it to ashopping cart, and then processing a payment. A session is transient, and its
lifetime ends when one of the following occurs:

A user leaves your site and the user’s browser does not accept cookies.
A user quits the browser.

The session istimed out due to inactivity.

The session is completed and invalidated by the servlet.

The user logs out and isinvalidated by the servlet.

Programming WebL ogic HTTP Servlets

Session Tracking from a Servlet

For more persistent, long-term storage of data, your servlet should write detailsto a
database using JDBC or EJB and associate the client with this data using along-lived
cookie and/or username and password. Although thisdocument statesthat sessions use
cookiesand persistenceinternally, you should not use sessionsasa general mechanism
for storing data about a user.

How Session Tracking Works

How does WebL ogic Server know which session is associated with each client? When
anHt t pSessi on iscreated in aservlet, it isassociated with aunique ID. The browser
must provide this session ID with itsrequest in order for the server to find the session
data again. The server attempts to store this 1D by setting a cookie on the client. Once
the cookie is set, each time the browser sends a request to the server it includes the
cookie containing the ID. The server automatically parses the cookie and suppliesthe
session data when your servlet callsthe get Sessi on() method.

If the client does not accept cookies, the only aternative isto encode the ID into the
URL linksin the pages sent back to the client. For this reason, you should always use
the encodeURL() method when you include URLs in your servlet response.

WebL ogic Server detects whether the browser accepts cookies and does not
unnecessarily encode URLs. WebL ogic automatically parses the session ID from an
encoded URL and retrieves the correct session datawhen you call the get Sessi on()
method. Using the encodeURL() method ensures no disruption to your servlet code,
regardless of the procedure used to track sessions. For more information, see “Using
URL Rewriting Instead of Cookies’ on page 3-16.

Detecting the Start of a Session

After you obtain asession usingtheget Sessi on(t r ue) method, you can tell whether
the session hasjust been created by callingtheHt t pSessi on. i sNew() method. If this
method returnst r ue, then the client does not already have avalid session, and at this
point it is unaware of the new session. The client does not become aware of the new
session until areply is posted back from the server.

Programming WebLogic HTTP Servlets 3-13

3 Programming Tasks

Design your application to accommodate new or existing sessionsin away that suits
your business logic. For example, your application might redirect the client’s URL to
alogin/password page if you determine that the session has not yet started, as shown
in the following code example:

Ht t pSessi on session = request. get Session(true);
if (session.isNew))

response. sendRedi rect (wel comeURL) ;
}

On the login page, provide an option to log in to the system or create a new account.
Y ou can al so specify alogin pagein your Web Application. For moreinformation, see
login-config at

http://e-docs. bea. com w s/ docs81b/ webapp/ web_xni . ht m #l ogi n-confi
g.

Setting and Getting Session Name/Value Attributes

314

Y ou can storedatain an Ht t pSessi on object using name=val ue pairs. Datastoredin
asession isavailable through the session. To store datain a session, use these methods
from the Ht t pSessi on interface:

getAttribute()

get Attri but eNames()
setAttribute()
renoveAttribute()

The following code fragment shows how to get all the existing nane=val ue pairs:

Enuner ati on sessi onNanes = session. get AttributeNanmes();
String sessionNane = nul|;
(bj ect sessionValue = null;

whi | e (sessi onNanes. hasMor eEl ements()) {
sessionName = (String)sessionNanes. next El enent () ;
sessi onVal ue = session.getAttribute(sessi onNane);
System out.println("Session name is " + sessionName +
value is " + sessionVal ue);

}

To add or overwrite anamed attribute, usetheset At t ri but e() method. To remove
anamed attribute altogether, usether enmoveAt t ri but e() method.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#login-config

Session Tracking from a Servlet

Note: You can add any Java descendant of Qbj ect as a session attribute and
associate it with a name. However, if you are using session persistence, your
attribute val ue objects must implement j ava. i 0. Seri al i zabl e.

Logging Out and Ending a Session

If your application deal swith sensitive information, consider offering the ability to log
out of the session. Thisisacommon feature when using shopping carts and Internet
email accounts. When the same browser returns to the service, the user must log back
in to the system.

Using session.invalidate() for a Single Web Application

User authentication information is stored both in the users's session data and in the
context of a server or virtua host that is targeted by a Web Application. Using the
session. i nval i dat e() method, whichis often used to log out a user, only
invalidates the current session for a user—the user’ s authentication information still
remains valid and is stored in the context of the server or virtual host. If the server or
virtual host is hosting only one Web Application, the

sessi on. i nval i dat e() method, in effect, logs out the user.

Do not reference an invalidated session after calling sessi on. i nval i dat e() . If you
do, anl || egal St at eExcepti on isthrown. The next time a user visits your servlet
from the same browser, the session data will be missing, and a new session will be
created when you call the get Sessi on(t rue) method. At that time you can send the
user to the login page again.

Implementing Single Sign-On for Multiple Applications

If the server or virtual host is targeted by many Web Applications, another meansis
required to log out auser from all Web Applications. Because the Servlet specification
does not provide an API for logging out a user from all Web Applications, the
following methods are provided.

webl ogi c. servl et.security. Servl et Aut henti cati on. | ogout ()
Removes the authentication data from the users' s session data, which logs out
auser but allows the session to remain alive.

Programming WebLogic HTTP Servlets 3-15

3 Programming Tasks

webl ogi c. servl et.security. Servl et Aut hentication.invalidateAll ()
Invalidates all the sessions and removes the authentication data for the current
user. The cookieis also invalidated.

webl ogi c. servl et.security. Servl et Aut henti cati on. ki | | Cooki e()
Invalidates the current cookie by setting the cookie so that it expires
immediately when the responseis sent to the browser. This method dependson
asuccessful response reaching the user’s browser. The session remains alive
until it times out.

Exempting a Web Application for Single Sign-on

If you want to exempt a Web Application from participating in single sign-on, define
adifferent cookie name for the exempted Web Application. For moreinformation, see
Configuring Session Cookies at

http://e-docs. bea. comf wl s/ docs81b/ webapp/ sessi ons. ht m #sessi on-co
oki e.

Configuring Session Tracking

WebL ogic Server provides many configurable attributes that determine how

WebL ogic Server handles session tracking. For details about configuring these session
tracking attributes, see “ Session descriptor” at

http://e-docs. bea. comw s/ docs81b/ webapp/ webl ogi c_xm . ht m #sessi o
n-descriptor.

Using URL Rewriting Instead of Cookies

3-16

In some situations, a browser may not accept cookies, which means that session
tracking with cookiesis not possible. URL rewriting is aworkaround to this scenario
that can be substituted automatically when WebL ogic Server detects that the browser
does not accept cookies. URL rewriting involves encoding the session ID into the
hyperlinks on the Web pages that your servlet sends back to the browser. When the
user subsequently clicks these links, WebL ogic Server extracts the ID from the URL
and findsthe appropriate Ht t pSessi on. Then you usethe get Sessi on() method to
access session data.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-cookie
http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#session-descriptor

Session Tracking from a Servlet

To enable URL rewriting in WebL ogic Server, set the Url Rewri t i ngEnabl ed
attribute to true in the “ Session descriptor” element of the WebL ogi c-specific
deployment descriptor (at

http://e-docs. bea. com W s/ docs81b/ webapp/ webl ogi c_xm . ht nl #sessi o
n-descriptor).

To make sure your code correctly handles URLs in order to support URL rewriting,
consider the following guidelines:

m You should avoid writing a URL straight to the output stream, as shown here:
out.println("cat al og");
Instead, usethe Ht t pSer vl et Response. encodeURL() method. For example:

out.printin("<a href=\""
+ response. encodeURL(" nyshop/ cat al og. j sp")
+ "\">catal og");

m Calling theencodeURL() method determinesif the URL needs to be rewritten
and, if necessary, rewrites the URL by including the session ID in the URL.

m Encode URLsthat send redirects, aswell as URLs that are returned as a
response to WebL ogic Server. For example:

if (session.isNew())
response. sendRedi rect (response. encodeRedi rect Ur | (wel conmeURL)) ;

WebL ogic Server uses URL rewriting when a session is new, even if the browser
accepts cookies, because the server cannot determine, during thefirst visit of asession,
whether the browser accepts cookies.

Y our servlet may determine whether a given session was returned from a cookie by
checking the Boolean returned from the

Ht t pSer vl et Request . i sRequest edSessi onl dFr onmCooki e() method. Y our
application may respond appropriately, or it may simply rely on URL rewriting by
WebL ogic Server.

Note: The CISCO Local Director load balancer expects a question mark "?"
delimiter for URL rewriting. Because the WL S URL -rewriting mechanism
usesasemicolon ;" asthe delimiter, our URL re-writing isincompatible with
this load balancer.

Programming WebLogic HTTP Servlets 3-17

http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#session-descriptor

3 Programming Tasks

URL Rewriting and Wireless Access Protocol (WAP)

If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devicesimpose a
128-character limit (including parameters) on the length of a URL, which limits the
amount of datathat can be transmitted using URL rewriting. To allow more space for
parameters, you can limit the size of the session ID that is randomly generated by
WebL ogic Server by specifying the number of byteswiththel DLengt h attributein the
<sessi on-descri pt or > element of the WebL ogi c-specific deployment descriptor,
webl ogi c. xm (see

http://e-docs. bea. comf wl s/ docs81b/ webapp/ webl ogi c_xm . ht ml #sessi o
n-descri ptor).

The minimum value is 8 bytes; the default value is 52 bytes; the maximum valueis
I nt eger . MAX_VALUE.

Making Sessions Persistent

Y ou can set up WebL ogic Server to record session datain apersistent store. If you are
using session persistence, you can expect the following characteristics:

m Good failover, because sessions are saved when servers fail.

m Better load balancing, because any server can handle requests for any number of
sessions, and use caching to optimize performance. For more information, see
the cacheEnt ri es property, under “ Configuring session persistence” at
http://e-docs. bea. com W s/ docs81b/ webapp/ sessi ons. ht m #sessi on-
per si st ence.

m Sessions can be shared across clustered WebL ogic Servers. Note that session
persistence is no longer arequirement in a WebL ogic Cluster. Instead, you can
use in-memory replication of state. For more information, see Using WebLogic
Server Clusters at
http://e-docs. bea. com W s/ docs81b/ cl uster/index. htm .

= For customers who want the highest in servlet session persistence, JDBC-based
persistence is the best choice. For customers who want to sacrifice some amount
of session persistence in favor of drastically better performance, in-memory
replication is the appropriate choice. JDBC-based persistence is noticeably

3-18 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-persistence
http://e-docs.bea.com/wls/docs81b/cluster/index.html
http://e-docs.bea.com/wls/docs81b/cluster/index.html

Session Tracking from a Servlet

dlower than in-memory replication. In some cases, in-memory replication has
outperformed JDBC-based persistence for servlet sessions by a factor of eight.

m You can put any kind of Java object into a session, but for file, JDBC, and
in-memory replication, only objectsthat arej ava. i 0. Seri al i zabl e can be
stored in a session. For more information, see “ Configuring session persistence’
at
http://e-docs. bea. comf W s/ docs81b/ webapp/ sessi ons. ht nl #sessi on-
persi stence.

Scenarios to Avoid When Using Sessions

Do not use session persistence for storing long-term data between sessions. In other
words, do not rely on asession still being active when aclient returnsto asite at some
later date. Instead, your application should record long-term or important information
in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store
long-term or limited-term client datain a session. Instead, your application should
create and set its own cookies on the browser. Examples include an auto-login feature
that allows a cookieto live for along period, or an auto-logout feature that allows a
cookieto expire after ashort period of time. Here, you should not attempt touse HTTP
sessions. Instead, you should write your own application-specific logic.

Use Serializable Attribute Values

When you use persistent sessions, all attribute val ue objects that you add to the
session must implement j ava. i o. Seri al i zabl e. For more details on writing
serializable classes, refer to the online javatutorial about serializable objects at
http://java. sun.com docs/ books/tutorial/essential/iol

provi di ng. ht m . If you add your own serializable classes to a persistent session,
make sure that each instance variable of your classisalso serializable. Otherwise, you
can declareit ast r ansi ent , and WebL ogic Server does not attempt to save that
variable to persistent storage. One common example of an instance variable that must
be madet r ansi ent isthe Ht t pSessi on object. (See the notes on using serialized
objects in sessionsin the section “Making Sessions Persistent” on page 3-18.)

Programming WebLogic HTTP Servlets 3-19

http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-persistence
http://java.sun.com/docs/books/tutorial/essential/io/providing.html

3 Programming Tasks

Configuring Session Persistence

For details about setting up persistent sessions, see “ Configuring session persistence’
at

http://e-docs. bea. comw s/ docs81b/ webapp/ sessi ons. ht ml #sessi on- pe
rsistence.

Using Cookies in a Servlet

A cookieisapieceof information that the server asksthe client browser to savelocally
on the user’ s disk. Each time the browser visits the same server, it sends all cookies
relevant to that server with the HT TP request. Cookies are useful for identifying clients
asthey return to the server.

Each cookie has aname and avalue. A browser that supports cookies generally allows
each server domain to store up to 20 cookies of up to 4k per cookie.

Setting Cookies in an HTTP Servlet

3-20

To set acookie on abrowser, create the cookie, give it avalue, and add it to the
Ht t pSer vl et Response object that is the second parameter in your servlet’s service
method. For example:

Cooki e myCooki e = new Cooki e(" Chocol at eChi p", "100");
nmyCooki e. set MaxAge(| nt eger. MAX_VALUE) ;
response. addCooki e(myCooki e) ;

This examples shows how to add a cookie called Chocol at eChi p with avalue of 100
to the browser client when the response is sent. The expiration of the cookieis set to
the largest possible value, which effectively makes the cookie last forever. Because
cookies accept only string-type values, you should cast to and from the desired type
that you want to store in the cookie. When using EJBs, acommon practiceisto usethe
home handle of an EJB instance for the cookie value and to store the user’ s detailsin
the EJB for later reference.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-persistence

Using Cookies in a Servlet

Retrieving Cookies in an HTTP Servlet

Y ou can retrieve acookie object fromtheHt t pSer vl et Request that ispassed to your
servlet as an argument to the ser vi ce() method. The cookieitself is presented as a
j avax. servl et. http. Cooki e object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling
the get Cooki es() method. For example:

Cooki e[] cooki es = request. get Cooki es();

This method returns an array of al cookies sent from the browser, or nul | if no
cookies were sent by the browser. Y our servlet must processthe array in order to find
the correct named cookie. Y ou can get the name of a cookie using the

Cooki e. get Name() method. Itispossible to have morethat one cookiewith the same
name, but different path attributes. If your servlets set multiple cookies with the same
names, but different path attributes, you al so need to compare the cookies by using the
Cooki e. get Pat h() method. The following code illustrates how to access the details
of a cookie sent from the browser. It assumes that all cookies sent to this server have
unique names, and that you are looking for a cookie called Chocol at eChi p that may
have been set previously in a browser client.

Cooki e[] cookies = request. get Cooki es();
bool ean cooki eFound = fal se;

for(int i=0; i < cookies.length; i++) {
t hi sCooki e = cookies[i];
if (thisCookie.getNanme().equal s("Chocol ateChip")) {
cooki eFound = true;
br eak;

}
}

if (cooki eFound) {
/1 W& found the cookie! Now get its value
int cookieOrder = String. parselnt(thisCookie.getValue());

}

For more details on cookies, see:

m TheCookie APl athttp://java. sun. conlj 2ee/ j 2sdkee/
t echdocs/ api /j avax/ servl et/ htt p/ Cooki e. ht m

Programming WebLogic HTTP Servlets 3-21

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/Cookie.html

3 Programming Tasks

m TheJavaTutoria: Using Cookies at
http://java. sun. com docs/ books/tutorial/
servl ets/client-state/cookies. htm

Using Cookies That Are Transmitted by Both HTTP and

HTTPS

Because HTTPand HTTPSrequests are sent to different ports, some browsers may not
include the cookie sent in an HTTP request with a subsequent HTTPS request (or
vice-versa). Thismay cause new sessionsto be created when servlet requests alternate
between HTTPand HTTPS. To ensurethat all cookies set by aspecific domain are sent
to the server every timearequest in asession is made, set the Cooki eDonai n attribute
to the name of the domain. Set the Cooki eDomai n attribute with the

<sessi on- descri pt or > element of the WebL ogic-specific deployment descriptor
(webl ogi c. xm) for the Web Application that contains your servlet. For example:

<sessi on-descri ptor>
<sessi on- par anp
<par am name>Cooki eDonai n</ par am nane>
<par am val ue>nydonai n. conx/ par am val ue>
</ sessi on- par an»>
</ sessi on- descri pt or >

The Cooki eDonai n attribute instructs the browser to include the proper cookie(s) for
all requeststo hostsin the domain specified by mydomai n. com For moreinformation
about this property or configuring session cookies, see “ Setting Up Session
Management” at

http://e-docs. bea. com W s/ docs81b/ webapp/ sessi ons. ht m #sessi on- ma
nagemnent .

Application Security and Cookies

3-22

Using cookies that enable automatic account access on amachine is convenient, but
can be undesirable from a security perspective. When designing an application that
uses cookies, follow these guidelines:

m Do not assume that a cookie is always correct for a user. Sometimes machines
are shared or the same user may want to access a different account.

Programming WebL ogic HTTP Servlets

http://java.sun.com/docs/books/tutorial/servlets/client-state/cookies.html
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-management
http://e-docs.bea.com/wls/docs81b/webapp/sessions.html#session-management

Response Caching

m Allow your users to make a choice about |eaving cookies on the server. On
shared machines, users may not want to leave automatic logins for their account.
Do not assume that users know what a cookie is; instead, ask a question like:

Automatically login fromthis conputer?

m Alwaysask for passwords from users logging on to obtain sensitive data. Unless
a user requests otherwise, you can store this preference and the password in the
user’s session data. Configure the session cookie to expire when the user quits
the browser.

Response Caching

The cache filter works similarly to the cache tag with the following exceptions:
m |t caches on apage level (or included page) instead of a JSP fragment level.

m Instead of declaring the caching parameters inside the document you can declare
the parameters in the configuration of the web application.

The cachefilter has some default behavior that the cache tag does not for pages that
were not included from another page. The cachefilter automatically caches the
response headers Content-Type and Last-Modified. When it receives a request that
resultsin a cached page it compares the I1f-Modified-Since request header to the
Last-Modified response header to determine whether it needs to actually serve the
content or if it can send an 302 SC_NOT_MODI FED status with an empty content
instead.

The following example shows how to register a cache filter to cache all the HTML
pagesin aweb app:

<filter>
<filter-name>HTM.</filter-nanme>
<filter-class>webl ogic.cache.filter.CacheFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>HTM.</filter-nanme>
<url-pattern>* htm </url -pattern>
</filter-mappi ng>

Programming WebLogic HTTP Servlets 3-23

3 Programming Tasks

The cache system uses soft references for storing the cache. So the garbage collector
might or might not reclaim the cache depending on how recently the cache was created
or accessed. It will clear the soft referencesin order to avoid throwing an
OutOfMemoryError.

Initialization Parameters

If you wanted to make sure that if the web pages were updated at some point you got
the new copies into the cache, you could add atimeout to the filter. Using the
init-paramsyou can set many of the same parameters that you can set for the cachetag:

Theinitiaization parameters are

m Nane Thisisthe name of the cache. It defaults to the request URI for
compatibility with *.extension URL patterns.

m Tinmeout Thisistheamount of time since the last cache update that the filter
waits until trying to update the content in the cache again. The default unit is
seconds but you can aso specify it in units of ms (milliseconds), s (seconds), m
(minutes), h (hours), or d (days).

m Scope The scope of the cache can be any one of request, session, application,
or cluster. Reguest scope is sometimes useful for looping constructs in the page
and not much else. The scope defaults to application. To use cluster scope you
must set up the Cluster Listener.

m Key Thisspecifiesthat the cacheis further specified not only by the name but
also by values of various entriesin scopes. These are specified just like the keys
in the CacheTag although you do not have page scope available.

m Vars Thesearethe variables calculated by the page that you want to cache.
Typicaly thisis used with servlets that pull information out of the database
based on input parameters.

m Size Thislimitsthe number of different unique key values cached. It defaults
toinfinity.

The following example shows where the init-parameter is located in the filter code.
<filter>
<filter-name>HTM.</filter-nanme>
<filter-class>webl ogic.cache.filter.CacheFilter</filter-class>
<init-parane

3-24 Programming WebLogic HTTP Servlets

Using WebLogic Services from an HTTP Serviet

Using WebLogic Services from an HTTP
Servlet

When you writean HTTP servlet, you have access to many rich features of WebL ogic
Server, such as INDI, EJB, JDBC, and IMS.

The following documents provide additional information about these features:

m Programming WebLogic EJB at
http://e-docs. bea. com W s/ docs81b/ ej b/ i ndex. ht m

m Programming WebLogic JDBC at
http://e-docs. bea. coml W s/ docs81b/j dbc/i ndex. ht m

m Programming WebLogic JNDI at
http://e-docs. bea. comf W s/ docs81b/j ndi /i ndex. ht m

m Programming WebLogic IMS at
http://e-docs. bea. coml W s/ docs81b/j ns/i ndex. ht m

Accessing Databases

WebL ogic Server supports the use of Java Database Connectivity (JDBC) from
server-side Java classes, including serviets. JIDBC allows you to execute SQL queries
from a Java class and to process the results of those queries. For more information on
JDBC and WebL ogic Server, see Using WebLogic JDBC at

http://e-docs. bea. coml W s/ docs81b/j dbc/i ndex. htm .

Y ou can use JDBC in servlets as described in the following sections:
m “Connecting to a Database Using a JDBC Connection Pool” on page 3-26.
m “Connecting to a Database Using a DataSource Object” on page 3-27.

m “Connecting Directly to a Database Using a JDBC Driver” on page 3-28.

Programming WebLogic HTTP Servlets 3-25

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html
http://e-docs.bea.com/wls/docs81b/jndi/index.html
http://e-docs.bea.com/wls/docs81b/jms/index.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

3 Programming Tasks

Connecting to a Database Using a JDBC Connection Pool

A connection pool isanamed group of identical JIDBC connections to a database that
are created when the connection pool is registered, usually when starting WebL ogic
Server. Your servlets“borrow” aconnection from the pool, useit, and then returnit to
the pool by closing it. Thisprocessisfar more efficient than creating anew connection
for every client each time the client needs to access the database. Another advantage
isthat you do not need to include details about the database in your servlet code.

When connecting to aJDBC connection pool, use one of the following multitier JDBC
drivers;

m Pool driver, used for most server-side operations:
e Driver URL: j dbc: webl ogi c: pool
e Driver package name: webl ogi c. j dbc. pool . Dri ver

m JTSpool driver, used when database operations require transactional support.
e Driver URL: j dbc: webl ogic:jts

e Driver package name: webl ogi c. j dbc. jts. Driver

Using a Connection Pool in a Servlet

3-26

The following example demonstrates how to use a database connection pool from a
serviet.

1. Loadthe pool driver and castittoj ava. sql . Dri ver. Thefull pathname of the
driver iswebl ogi c. j dbc. pool . Dri ver. For example:

Driver nyDriver = (Driver)
Cl ass. f or Nane("webl ogi c. j dbc. pool . Driver").new nst ance();

2. Create aconnection using the URL for the driver, plus (optionally) the name of
the registered connection pool. The URL of the pool driver is
j dbc: webl ogi c: pool .

You can identify the pool in either of two ways:

e Specify the name of the connection pool inaj ava. util. Properties
object using the key connect i onPool | D. For example:

Programming WebL ogic HTTP Servlets

Accessing Databases

Properties props = new Properties();
props. put ("connecti onPool | D', "myConnecti onPool ");
Connection conn =

myDriver.connect ("j dbc: webl ogi c: pool ", props);

e Add the name of the pool to the end of the URL. In this case you do not need

aProperties object unless you are setting a username and password for
using a connection from the pool. For example:

Connection conn =
nmyDri ver. connect ("j dbc: webl ogi c¢: pool : myConnect i onPool ",
nul ') ;

Note that the Dri ver . connect () method isused in these examples instead of
the Dri ver Manger . get Connect i on() method. Although you may use

Dri ver Manger . get Connect i on() to obtain a database connection, we
recommend that you use Dr i ver . connect () because this method is not
synchronized and provides better performance.

Note that the Connection returned by connect () isan instance of
webl ogi c. j dbc. pool . Connect i on.

3. Cdl thecl ose() method on the Connect i on object when you finish with your
JDBC calls, so that the connection is properly returned to the pool. A good
coding practice isto create the connectionin at ry block and then close the
connectionin afi nal | y block, to make sure the connection is closed in all
Cases.

conn. cl ose();

Connecting to a Database Using a DataSource Object

A Dat aSour ce isaserver-side object that references a connection pool. The
connection pool registration defines the JDBC driver, database, login, and other
parameters associated with a database connection. Y ou create DataSource objects and
connection pools through the Administration Console. Using a Dat aSour ce object is
recommended when creating J2EE-compliant applications.

Programming WebLogic HTTP Servlets 3-27

3 Programming Tasks

Using a DataSource in a Servlet

1

Register a connection pool using the Administration Console. For more
information, see “Create a Connection Pool” at

http://e-docs. bea. com w s/ docs81b/ Consol eHel p/ dormai n_j dbcconnec
tionpool _config_connections. htmnl .

Register a Dat aSour ce object that points to the connection pool. For more
information, see “JDBC DataSources’ at

http://e-docs. bea. comf w s/ docs81b/ Consol eHel p/ donmai n_j dbcdat aso
urce_config. htnl.

Look up the Dat aSour ce object in the INDI tree. For example:
Context ctx = null;

/1 Get a context for the JNDI | ook up
ctx = new Initial Context(ht);

/1 Look up the DataSource object
j avax. sql . Dat aSour ce ds
= (j avax. sql . Dat aSource) ctx. | ookup ("myDataSource");

Use the Dat aSour ce to create a JDBC connection. For example:
j ava. sqgl . Connecti on conn = ds. get Connection();
Use the connection to execute SQL statements. For example:

Statenment stnmt = conn.createStatenent();
st .execute("select * fromenp");

Connecting Directly to a Database Using a JDBC Driver

3-28

Connecting directly to adatabase is the least efficient way of making a database
connection because a new database connection must be established for each request.
Y ou can use any JDBC driver to connect to your database. BEA provides JDBC drivers
for Oracle and Microsoft SQL Server. For more information, see Programming
WebLogic JDBC at htt p: // e- docs. bea. com’ wi s/ docs81b/ j dbc/ i ndex. ht i .

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_jdbcdatasource_config.html
http://e-docs.bea.com/wls/docs81b/jdbc/index.html

Threading Issues in HTTP Servlets

Threading Issues in HTTP Servlets

When you design a servlet, you should consider how the servlet isinvoked by
WebL ogic Server under high load. It isinevitable that more than one client will hit
your servlet simultaneously. Therefore, write your servlet code to guard against
sharing violations on shared resources or instance variables. The following tips can
help you to design around this issue.

SingleThreadModel

Aninstance of aclassthat implementsthe Si ngl eThr eadMbdel is guaranteed not to
be invoked by multiple threads simultaneously. Multiple instances of a

Si ngl eThr eadMbdel servlet are used to service simultaneous requests, each running
inasingle thread.

To usethe Si ngl eThr eadMbdel efficiently, WebL ogic Server creates a pool of
servlet instances for each servlet that implements Si ngl eThr eadMbdel . WebL ogic
Server createsthe pool of servlet instances when thefirst request is madeto the servlet
and increments the number of servlet instances in the pool as needed.

The attribute Si ngl eThr eaded Servl et Pool Size specifiestheinitial number of
servlet instancesthat are created when the servlet isfirst requested. Set thisattribute to
the average number of concurrent requeststhat you expect your Si ngl eThr eadMbdel
servletsto handle.

When designing your servlet, consider how you use shared resources outside of the
servlet class such asfile and database access. Because multiple instances of identical
servlets exist, and may use exactly the same resources, there are still synchronization
and sharing issues that must be resolved, even if you do implement the

Si ngl eThr eadModel .

Shared Resources

It is recommended that shared-resource issues be handled on an individual serviet
basis. Consider the following guidelines:

Programming WebLogic HTTP Servlets 3-29

Programming Tasks

m Wherever possible, avoid synchronization, because it causes subsequent servlet
requests to bottleneck until the current thread completes.

m Define variables that are specific to each servlet request within the scope of the
service methods. Local scope variables are stored on the stack and, therefore, are
not shared by multiple threads running within the same method, which avoids
the need to be synchronized.

m Accessto external resources should be synchronized on a Class level, or
encapsulated in a transaction.

Dispatching Requests to Another Resource

3-30

This section providesan overview of commonly used methodsfor dispatching requests
from a servlet to another resource.

A servlet can pass on arequest to another resource, such as a servlet, JSP, or HTML
page. This processis referred to as request dispatching. When you dispatch requests,
you use either thei ncl ude() or f orwar d() method of the Request Di spat cher
interface. There are limitations regarding when output can be written to the response
object using thef orwar d() ori ncl ude() methods. These limitations are also
discussed in this section.

For a complete discussion of request dispatching, see section 8.1 of the Servlet 2.3
specification (seeht t p: //j ava. sun. com product s/
servl et/ downl oad. ht m #specs) from Sun Microsystems.

By usingtheRequest Di spat cher, you can avoid sending an HTTP-redirect response
back totheclient. TheRequest Di spat cher passesthe HT TP request to the requested
resource.

To dispatch arequest to a particular resource:
1. Get areferenceto aSer vl et Cont ext :

Servl et Context sc = get Servl et Config().getServletContext();
2. Look up the Request Di spat cher object using one of the following methods:

e RequestDispatcher rd = sc. get Request Di spat cher (String path);

Programming WebL ogic HTTP Servlets

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

Dispatching Requests to Another Resource

pat h should be relative to the root of the Web Application.
e RequestDi spatcher rd = sc. get NamedDi spat cher (String name);

Replace nane with the name assigned to the servlet in a\Web Application
deployment descriptor with the <ser vl et - name> element. For details, see
“Servlet element” at htt p: // e- docs. bea. coml W s/ docs81b/ webapp/
web_xm . ht m #web_xm _servl et .

e RequestDispatcher rd =
Ser vl et Request . get Request Di spat cher (String path);

This method returns aRequest Di spat cher object and issimilar to the

Ser vl et Cont ext . get Request Di spat cher (String pat h) method except
that it allows the pat h specified to be relative to the current servlet. If the
path begins with a/ character it isinterpreted to be relative to the Web
Application.

You can obtain aRequest Di spat cher for any HTTP resource within a Web
Application, including HTTP Servlets, JSP pages, or plain HTML pages by
requesting the appropriate URL for the resource in the

get Request Di spat cher () method. Use the returned Request Di spat cher
object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:
e rd.forward(request,response);
e rd.include(request,response);

These methods are discussed in the next two sections.

Forwarding a Request

Onceyou havethecorrect Request Di spat cher , your servlet forwardsarequest using
the Request Di spat cher . f orwar d() method, passing HTTPSer vl et Request and
HTTPSer vl et Response asarguments. If you call thismethod when output hasal ready
been sent to theclientan 1 1 | egal St at eExcept i on isthrown. If the response buffer
contains pending output that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the servlet
retrievesthe Ser vl et Qut put St r eamor thePri nt Wi t er for the response before
forwarding therequest, an I I | egal St at eExcept i on isthrown.

Programming WebLogic HTTP Servlets 3-31

http://e-docs.bea.com/wls/docs81b/webapp/web_xml.html#web_xml_servlet

3 Programming Tasks

All other output from the original servlet isignored after the request has been
forwarded.

If you are using any type of authentication, a forwarded request, by default, does not
require the user to be re-authenticated. Y ou can change this behavior to require
authentication of aforwarded request by adding the <check- aut h- on-f or war d/ >
element to the <cont ai ner - descri pt or > element of the WebL ogic-specific
deployment descriptor, webl ogi ¢. xm . For example:

<cont ai ner - descri pt or >
<check- aut h- on-f orwar d/ >
</ cont ai ner-descri ptor>

Note that the default behavior has changed with the release of the Serviet 2.3
specification, which states that authentication is not required for forwarded requests.

For information on editing the WebL ogi c-specific deployment descriptor, see Writing
the WebL ogi c-Specific Deployment Descriptor at

http://e-docs. bea. conf wl s/ docs81b/ webapp/ depl oynent . ht m #webl ogi c
-xm .

Including a Request

3-32

Y our servlet can include the output from another resource by using the

Request Di spat cher. i ncl ude() method, and passing HTTPSer vl et Request and
HTTPSer vl et Response as arguments. When you include output from another
resource, the included resource has access to the request object.

The included resource can write data back to the Ser vl et Qut put St r eamor Wi t er
objects of the response object and then can either add datato the response buffer or call
thef 1 ush() method on the response object. Any attempt to set the response status
code or to set any HTTP header information from the included servlet responseis
ignored.

In effect, you can use thei ncl ude() method to mimic a*“ server-side-include’ of
another HTTP resource from your servlet code.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml

CHAPTER

A

Administration and
Configuration

Thefollowing sections provide an overview of administration and configuration tasks
for WebL ogic HTTP servlets. For acompl ete discussion of servlet administration and
configuration see Configuring Servlets at
http://e-docs. bea. com W s/ docs81b/ webapp/ conponent s. ht m #confi gur
i ng-servlets.

This section discusses the following topics:

Overview of WebLogic HTTP Servlet Administration
Referencing a Servlet in aWeb Application

Directory Structure for Web Applications

Servlet Security

Servlet Development Tips

Clustering Servlets

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/webapp/components.html#configuring-servlets

4 Administration and Configuration

Overview of WebLogic HTTP Serviet
Administration

Consistent with the Java 2 Enterprise Edition standard, HTTP serviets are deployed as
part of a Web Application. A Web Application is a grouping of application
components, such as servlet classes, JavaServer Pages (JSP), static HTML pages,
images, and utility classes.

In aWeb Application the components are deployed using a standard directory
structure. Thisdirectory structure can bearchivedinto afilecalleda. war fileandthen
deployed on WebL ogic Server. Information about the resources and operating
parameters of a\Web Application are defined using two depl oyment descriptors, which
are packaged with the Web Application.

Using Deployment Descriptors to Configure and Deploy
Servlets

The first deployment descriptor, web. xni , is defined in the Servlet 2.3 specification
from Sun Microsystems and provides a standardized format that describes the Web
Application. The second deployment descriptor, webl ogi c. xni , isa

WebL ogic-specific deployment descriptor that maps resources defined in theweb. xm
file to resources available in WebL ogic Server, defines JSP behavior, and defines
HTTP session parameters.

web.xml (Web Application Deployment Descriptor)

In the Web Application deployment descriptor you define the following attributes for
HTTP serviets:

m Servlet name
m Javaclass of the servlet

m Servlet initiaization parameters

4-2 Programming WebL ogic HTTP Servlets

Overview of WebLogic HTTP Serviet Administration

Whether or not thei ni t () method of the servlet is executed when WebL ogic
Server starts

URL pattern which, if matched, will call this servlet
Security

MIME type

Error pages

Referencesto EJBs

References to other resources

For a complete discussion of creating theweb. xm file, see Writing Web Application
Deployment Descriptors at
http://e-docs. bea. coml W s/ docs81b/ webapp/ depl oynent . ht m #web- xm .

weblogic.xml (Weblogic-Specific Deployment Descriptor)

In the WebL ogic-specific deployment descriptor you define the following attributes
for HTTP servlets:

HTTP session configuration
Cookie configuration

URL pattern which, if matched, will call this servlet using a URL matching
utility such as the The SimpleA pacheURLMatchMap Utility included with
WebL ogic Server.

EJB resource mapping

JSP Configuration

For a compl ete discussion of creating thewebl ogi c. xn file, see “Writing Web
Application Deployment Descriptors at

http://e-docs. bea. com W s/ docs81b/ webapp/ depl oynent . ht m #webl ogi ¢
-xm .

Programming WebL ogic HTTP Servlets 4-3

http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#web-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#web-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs81b/webapp/deployment.html#weblogic-xml

4 Administration and Configuration

WebLogic Server Administration Console

4-4

Use the WebL ogic Server Administration Console to set the following parameters:

HTTP parameters
Log files

URL rewriting

Keep alive

Default MIME types
Clustering parameters

URL mapping for virtual hosting

For more information see the following resources:

m Administration Console: “Web Applications” at

http://e-docs. bea. com w s/ docs81b/ Consol eHel p/ dormai n_webappconp
onent _config_files.htnl.

m Administration Console: “Virtual Hosts’ at

http://e-docs. bea. comw s/ docs81b/ Consol eHel p/ vi rtual _hosts. htm
l.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/domain_webappcomponent_config_files.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/virtual_hosts.html

Directory Structure for Web Applications

Directory Structure for Web Applications

Use the following directory structure for all Web Applications:

Def ault WebApp/ (Publicly available files, such as
{ .isp, .htm, .jpg, .gif)
+WEB- | NF/ -

cl asses/(directory containing
Java cl asses incl uding

servlets used by the

+

|

+

|

I . .

[Wb Application)

|

+ lib/(directory containing
[jar files used by the
[Web Application)

|

+ web. xm

|

+

webl ogi c. xnl

Referencing a Servlet in a Web Application

The URL used to reference a servlet in aWeb Application is constructed as follows:
http: // myHost Nane: por t/ myCont ext Pat h/ nyRequest / ?nmyRequest Par anet er s
The components of this URL are defined as follows:

nmyHost Nane
The DNS name mapped to the Web Server defined in the WebL ogic Server
Administration Console.

This portion of the URL can be replaced with host : por t , where host isthe
name of the machine running WebL ogic Server and por t isthe port at which
WebL ogic Server islistening for requests.

Programming WebL ogic HTTP Servlets 4-5

Administration and Configuration

port
The port at which WebL ogic Server is listening for requests. The Servlet can
communicate with the proxy only through the listenPort on the Server mBean
and the SSL mBean.

nmy Cont ext Pat h
The name of the context root which is specified inthewebl ogi c. xm file,
or the uri of the web module which is specified intheconfi g. xn file.

myRequest
The name of the servlet as defined in theweb. xm file.

myRequest Par aneter s
Optional HTTP request parameters encoded in the URL, which can be read by
an HTTP servlet.

URL Pattern Matching

4-6

WebL ogic Server provides the user with the ability to implement a URL matching
utility which does not conform to the J2EE rules for matching. The utility must be
configured in the weblogic.xml deployment descriptor rather than the web.xml
deployment descriptor used for the configuration of the default implementation of
URLMatchMap.

To be used with WebL ogic Server, the URL matching utility must implement the
following interface:

Package webl ogic.servlet.utils;

public interface URLMappi ng {
public void put(String pattern, oject value);
public Object get(String uri);
public void renove(String pattern)
public void setDefault(Object defaultObject);
public Object getDefault();
public void setCasel nsensitive(bool ean ci)

public bool ean isCaselnsensitive();

public int size();

Programming WebL ogic HTTP Servlets

Servlet Security

public Object[] values();
public String[] keys();
}
The SimpleApacheURLMatchMap Utility

Theincluded SimpleApacheURLMatchMap utility is not J2EE specific. It can be
configured in the weblogic.xml deployment descriptor file and allows the user to
specify Apache style pattern matching rather than the default URL pattern matching
provided in the web.xml deployment descriptor.

Servlet Security

Security for servletsis defined in the context of the Web Application containing the
servlet. Security can be handled by WebL ogic Server, or it can be incorporated
programmatically into your servlet classes.

For more information see “ Configuring Security in Web Applications’ at
http://e-docs. bea. coml W s/ docs81b/ webapp/ security. htm .

Authentication

Y ou can incorporate user authentication into your servlets using any of the following
three techniques:

m BASIC—Usesthe browser to collect a username and password.
m FORM—UsesHTML formsto collect a username and password.

m Client Certificate—Uses digital certificates to authenticate the user. For more
information, see “Digital Certificates’ at
http://e-docs. bea. com W s/ docs81b/ security/concepts. htm #concep
t s008.

Programming WebL ogic HTTP Servlets 4-7

http://e-docs.bea.com/wls/docs81b/webapp/security.html

4 Administration and Configuration

The BASIC and FORM techniques call into a security role that contains user and
password information. Y ou can use a default role provided with WebL ogic Server, or
avariety of existing roles, including roles for Windows NT, UNIX, RDBMS, and
user-defined roles. For more information about security roles, see “ Security
Fundamentals’ at

http://e-docs. bea. comf wl s/ docs81b/ security/concepts. htnm.

Authorization (Security Constraints)

Y ou can restrict access to servlets and other resourcesin aWeb Application by using
security constraints. Security constraints are defined in the Web Application
deployment descriptor (web. xn). There are three basic types of security constraints:

m Constraining resources by roles and/or resource
m Secure Sockets Layer (SSL) encryption
m Programmatic authorization

Roles can be mapped to aprincipal . Specific resources can be constrained by matching
aURL patternto aresourcein aWeb Application. Y ou can aso use Secure Sockets
Layer (SSL) as a security constraint.

Y ou can perform authorization programmatically, using one of the following methods
of the Ht t pSer vl et Request interface:

m get Renpt eUser ()
m isUserlnRol e()
m get User Princi pal ()

For more information see the javax.serviet APl at
http://java. sun. conl products/servl et/ 2.3/javadoc/index. htm .

Servlet Development Tips

Consider the following tips when writing HTTP servlets:

4-8 Programming WebL ogic HTTP Servlets

http://java.sun.com/products/servlet/2.2/javadoc/index.html

Clustering Servlets

m Compile your servlet classes into the VEB- | NF/ ¢l asses directory of your Web
Application.

m Make sure your servlet is registered in the Web Applications deployment
descriptor (web. xm).

m When responding to arequest for a servlet, WebL ogic Server checks the time
stamp of the servlet classfile prior to applying any filters associated with the
servlet, and compares it to the servlet instance in memory. If a newer version of
the servlet classisfound, WebL ogic Server re-loads the servlet class before any
filtering takes place. When a servlet is re-loaded, thei ni t () method of the
servietis called.

You can set the interval (in seconds) at which WebL ogic Server checks the time
stamp with the Ser vl et Rel oad attribute. This attribute is set on the Fi | es tab
of your Web Application, in the Administration Console. If you set this attribute
to zero, WebL ogic Server checks the time stamp on every request, which can be
useful while developing and testing servlets but is needlessly time consuming in
a production environment. If this attribute is set to - 1, WebL ogic Server does
not check for modified servlets.

Clustering Servlets

Clustering servlets provides failover and load balancing benefits. To deploy a serviet
inaWebL ogic Server cluster, deploy the Web Application containing the servlet on
al serversinthecluster. For instructions, see“ Deploying Applicationsto aCluster” in
Using WebLogic Server Clusters.

For information on requirements for clustering servlets, and to understand the
connection and failover processes for requeststhat are routed to clustered servlets, see
“Replication and Failover for Servlets and JSPs” in Using WebLogic Server Clusters.

Note: Automatic failover for servlets requires that the servlet session state be
replicated in memory. For instructions, see “Configure In-Memory HTTP
Replication” in Using WebLogic Server Clusters.

Programming WebL ogic HTTP Servlets 4-9

http://e-docs.bea.com/wls/docs81b/cluster/setup.html#734253
http://e-docs.bea.com/wls/docs81b/cluster/failover.html#1019188
http://e-docs.bea.com/wls/docs81b/cluster/setup.html#726973
http://e-docs.bea.com/wls/docs81b/cluster/setup.html#726973

4 Administration and Configuration

For information on theload balancing support that aWebL ogic Server cluster provides
for servlets, and for related planning and configuration considerations for architects
and administrators, see “Load Balancing for Servlets and JSPs’ in Using WebLogic
Server Clusters.

4-10 Programming WebLogic HTTP Servlets

http://e-docs.bea.com/wls/docs81b/cluster/load_balancing.html#1026940

Index

A

addCookieg() 3-20
administration

console 4-4
administration console 4-4
APl 1-4
authentication 4-7

C
classpath 2-2
clustering 3-18, 4-9
compiling 2-2
connection pools 3-25
DataSource 3-27
driver 3-26
JDBC 3-26
using 3-26
contentType 2-2
cookies 3-20
and EJB 3-20
and logging in 3-23
and passwords 3-23
domain 3-22
HTTPand HTTPS 3-22
retreiving 3-21
using in serviets 3-20
customer support contact information ix

D

databases 3-25
DataSource 3-25, 3-27
deployment 2-3
deployment descriptor 4-2
Developing 1-3
development

classpath 2-2

compiling 4-8

tips 4-8
development environment 2-2
dispatching 3-30
documentation, where to find it viii

E

EJB 3-25

encodeURL () 3-17

environment, development
environment 2-2

F

forward() 3-30
forwarding 3-30, 3-31

G

getAttribute() 3-14
getAttributeNames() 3-14
getCookies() 3-21
getParameterValues() 3-9

Programming WebL ogic HTTP Servlets [-i

getSession() 3-11, 3-13

H

HelloworldServiet 2-5
HTTP
response 3-4
HttpServietRequest 2-1
methods 3-8
HttpServletResponse 2-1, 3-4
HttpSession object 3-11

IDLength 3-18
I1legal StateException 3-15
import 2-1
include() 3-30
including 3-30
including arequest 3-32
init parameters 3-2
init() method 3-2, 3-3
initialization
init() method 3-2
parameters 3-2
init-param 3-3
in-memory replication 3-18
input
query paramters 3-8

J

J2EE 1-3

javax.serviet 1-4

JDBC 3-25, 3-28

JDBC session persistence 3-18
JMS 3-25

JINDI 3-25

JTS pool driver 3-26

I -ii Programming WebL ogic HTTP Servlets

K
keep dive 3-5

L
logging out 3-15

name/value pairs 3-14

P

packages 2-1

Pool driver 3-26

printing product documentation viii
PrintWriter object 2-2

Q

query parameters 3-6, 3-7, 3-8

R

removeAttribute() 3-14
RequestDispatcher() 3-30
regquests

dispatching 3-30

forwarding 3-30, 3-31

including 3-30, 3-32
response 3-4

buffer 3-5

optimizing 3-5
Response Caching 3-23
retreiving input 3-6

S

security 4-7
applying programatically 4-8
authentication 4-7
authorization 4-8

constraints 4-8
realms 4-8
security constraints 4-8
service method 2-1
Servlet 2.2 Specification 1-4
serviets
and clustering 4-9
session persistence
JDBC 3-18
sessions
and clusters 3-18
and persistence 3-18
cookies 3-13, 3-16
detecting start of 3-13
encodeURL () method 3-17
ending 3-15
history of tracking 3-10
lifetime 3-12
logging out 3-15
name/value attributes 3-14
tracking 3-10, 3-13
tracking with HttpSession object 3-11
tracking, configuration 3-16
URL rewriting 3-16
setAttribute() 3-14
SingleThreadModel 3-29
SingleThreadM odel Pool Size 3-29
support
technical ix

T
The SimpleApacheURLMatchMap Utility
4-7
threading 3-29
SingleThreadModel 3-29

U

URL Pattern Matching 4-6
URL rewriting 3-16

and WAP 3-18
and Wireless Access Protocol 3-18
URLs 4-5

w

WAP 3-18

Web Applications
and security 4-7
deployment descriptor 4-2
directory structure 4-5
URLs4-5

web.xml 4-2

weblogic.xml 4-2

Wireless Access Protocol 3-18

Programming WebL ogic HTTP Servlets

	Contents
	About This Document
	1. Overview of HTTP Servlets
	2. Introduction to Programming
	3. Programming Tasks
	4. Administration and Configuration

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of HTTP Servlets
	What Is a Servlet?
	What You Can Do with Servlets
	Overview of Servlet Development
	Servlets and J2EE
	HTTP Servlet API Reference

	2 Introduction to Programming
	Writing a Simple HTTP Servlet
	Advanced Features
	Complete HelloWorldServlet Example

	3 Programming Tasks
	Initializing a Servlet
	Initializing a Servlet when WebLogic Server Starts
	Overriding the init() Method

	Providing an HTTP Response
	Retrieving Client Input
	Methods for Using the HTTP Request
	Example: Retrieving Input by Using Query Parameters

	Session Tracking from a Servlet
	A History of Session Tracking
	Tracking a Session with an HttpSession Object
	Lifetime of a Session
	How Session Tracking Works
	Detecting the Start of a Session
	Setting and Getting Session Name/Value Attributes
	Logging Out and Ending a Session
	Using session.invalidate() for a Single Web Application
	Implementing Single Sign-On for Multiple Applications
	Exempting a Web Application for Single Sign-on

	Configuring Session Tracking
	Using URL Rewriting Instead of Cookies
	URL Rewriting and Wireless Access Protocol (WAP)
	Making Sessions Persistent
	Scenarios to Avoid When Using Sessions
	Use Serializable Attribute Values
	Configuring Session Persistence

	Using Cookies in a Servlet
	Setting Cookies in an HTTP Servlet
	Retrieving Cookies in an HTTP Servlet
	Using Cookies That Are Transmitted by Both HTTP and HTTPS
	Application Security and Cookies

	Response Caching
	Initialization Parameters

	Using WebLogic Services from an HTTP Servlet
	Accessing Databases
	Connecting to a Database Using a JDBC Connection Pool
	Using a Connection Pool in a Servlet

	Connecting to a Database Using a DataSource Object
	Using a DataSource in a Servlet

	Connecting Directly to a Database Using a JDBC Driver

	Threading Issues in HTTP Servlets
	SingleThreadModel
	Shared Resources

	Dispatching Requests to Another Resource
	Forwarding a Request
	Including a Request

	4 Administration and Configuration
	Overview of WebLogic HTTP Servlet Administration
	Using Deployment Descriptors to Configure and Deploy Servlets
	web.xml (Web Application Deployment Descriptor)
	weblogic.xml (Weblogic-Specific Deployment Descriptor)

	WebLogic Server Administration Console

	Directory Structure for Web Applications
	Referencing a Servlet in a Web Application
	URL Pattern Matching

	Servlet Security
	Authentication
	Authorization (Security Constraints)

	Servlet Development Tips
	Clustering Servlets

	Index

