0?7,

r
S’ 7
L/

BEA WeDbLogic
Server-

Programming WebLogic
Web Services

Release 8.1
Documen t Revised: December 9, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic Web Services

Part Number Date Software Version

N/A December 9, 2002 BEA WebL ogic Server
Version 8.1

Contents

About This Document

U 0 [1= 0 TSRS XV
E-UOCSWED SITE....cuei et raenreens XV
How to Print the DOCUMENTccviiiieieeiece ettt e XV
(0o 1 r=ox A U LSRR XVi
Documentation CONVENLIONScceeieiiiie e e sesee st Xvii

1. Overview of WebLogic Web Services

What Are WED SEIVICES?.......cieieeereeese et e snens 1-1
Why USE WED SEIVICES? ...ttt e s 1-2
WED Service Standards........c.covevereeiererie e st e e e eesse e seseesnens 1-3
SOAP. ..o b e et e 1-4
WSDL Lde ittt 1-5
JAXRPC ...t e 1-6
UDDI 2.0ttt e b e 1-7
WebLogic WeD Service FEaAUIES..........coviveciiee et 1-7
Examples Of Creating and Invoking a Web Service.........ocovvvennenneninennns 1-10
Creating WebLogic Web Services: Main SIEPS.......cocccverrennennieneeseeee 1-10
UNSUPPOIEd FEALUIES........cveceieciecete et st 1-12
Editing XIML FilES......couiiieiiereeeere ettt srebe e 1-12

2. Architectural Overview

WebL ogic Web Services ArchiteCture..........coovevvieeve e 2-1
Backend Component-Only Operationcccceveeveveeiieseeseseese e see e 2-2
Backend Component and SOAP Message Handler Chain Operation............... 2-3
SOAP Message Handler Chain-Only Operation..........coeeeveeeeieseeseseesesnenns 2-5

Programming WebL ogic Web Services iii

3. Creating a WebLogic Web Service: A Simple Example

Description of the EXaMPIe........ccoviireiiieirere e 31
Example of Creating aWebLogic Web Service: Main Steps........ccoooveveereenenee. 3-2
Writing the Java Code for the EJB ..o 34
Writing the Java Code for the Non-Built-In Data TYPe.....ccovevereeeneeenieecrienene 3-8
Creating EJB Deployment DESCIiPLOIS........ccoveieriereriereeieeeeeeeesiesesiesesie s 39
ASSEMDBIING thE EJB......oiiiee e 311
Creating the build.xml Ant Build File.......cccooi i 311

4. Designing WebLogic Web Services

Choosing Between Synchronous or Asynchronous Operations............ccoue.e.. 4-1
Choosing the Backend Components of Y our Web Service.........cccoeevevrennnnns 4-2

EJB Backend COmMPONENT.........ccceurireeeninienesie e s 4-3

Java Class Backend COmMPONENt..........ccoeereireeneieneneseeee e 4-3
RPC-Oriented or Document-Oriented Web Services?.......cocvvvvvenriennennienens 4-4
DA TYPES ...ttt ettt st b e bbb e e e e e e e sre e e nr e 4-5
Using SOAP Message Handlers to Intercept the SOAP Message..........coeune.. 4-6
Stateful WebLOgIC WED SEIVICEocvveieeere et 4-7

5. Implementing WebLogic Web Services

Overview of Implementing a WebL ogic Web Service..........ccoovvveienenniceenne 51
Implementing a WebLogic Web Service: Main StEPScoeeveerenenereneenene 5-2
Writing the Java Code for the COmMPONENTS.........cccceerererierenene e 5-3
Implementing a Web Service By Writing a Stateless Session EJB........... 54
Implementing a Web Service By Writing aJava Class.........c.coccoccvnvenneee. 5-4
Implementing Non-Built-In Data TYPESccevveieveeceseeee e 55
Implementing a Document-Oriented Web Service........ccoovevveveceeveceennnns 5-6
Generating a Partial Implementation From aWSDL File........cccoceoveenee. 5-6
Running the wsdi2Service Ant TasK........cccoeveveeveviececceseceec e, 57

Sample build.xml Filesfor the wsdl2Service Ant TasK..........cceueuenee 5-8
Implementing Multiple REtUrN ValUES..........ccoociriireereenee e 59
Using Holder Classes to Implement Multiple Return Values........... 5-10
Throwing SOAP Fault EXCEPLIONS.........ccvveeveieece e 5-11
USiNg BUilt-IN Data TYPES.....c.cvvierriiriirerieniriesesieseetesee e 5-12
XML Schema-to-Java Mapping for Built-In Data Types..........ccceveeenene 5-13

iv Programming WebL ogic Web Services

Java-to-XML Mapping for Built-In Data TYPeS......ccccvevvereeveereerenieenennens 5-16

Assembling WebLogic Web Services Using Ant Tasks

Overview of Assembling WebL ogic Web Services Using Ant Tasks.............. 6-2
Assembling WebL ogic Web Services Using the servicegen Ant task............... 6-3
What the servicegen Ant Task DOES.......cccoervrenine i 6-3
Assembling WebL ogic Web Services Automatically: Main Steps............ 6-3
Running the servicegen ANt TasKcccereereereine e 6-4
Assembling WebL ogic Web Services Using Other Ant Tasks.........cccceeveenens 6-6
Running the source2wsdd ANt TasK.........ccoeverereneieneeeee e 6-7
Sample build.xml Filesfor the source2wsdd Ant Taskccccveueneee 6-7
Running the autotype ANt TaSK.......c.cccererererereeerieee e 6-8
Sample build.xml Filesfor the Autotype Ant Taskcoceeeveerenieneae 6-9

Running the clientgen ANt TasK.........ccvereineeneesee e 6-9
Sample build.xml Filesfor the clientgen Ant Taskccccceeeenene. 6-10
Running the wspackage ANt task ... 6-11
Sample build.xml Filesfor the wspackage Ant TasK........c.cccevenenne. 6-11

The Web Service EAR File Package.cocoiveieneiieieneneee s 6-12
Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks. 6-13
Supported XML Non-Built-1n Data TYPESccevrveereiereireereesie e 6-14
Supported Java Non-Built-In Data TYPES.......coereieereneerieeerereeeseee s 6-15
Non-Roundtripping of Generated Data Type COMpONENts...........ccceveerveenes 6-16
Deploying WebLogic WED SErVICES ... 6-17

. Assembling a WebLogic Web Service Manually

Overview of Assembling a WebLogic Web Service Manually 7-1
Assembling a WebL ogic Web Service Manually: Main Steps.........covvevnene 7-2
Overview of the web-serviceSXml File........ccooviiiiinininiree e, 7-3
Creating the web-services.xml File Manually: Main Steps...........ccccovveecveneee. 7-4
Creating the <components> Element ..o 7-6
Creating <operation> EleMents...........ccceceveeiienieiieiese e se e 7-7
Specifying the Type of Operation.............cceeveveeveveececceese e, 7-7
Specifying the Parameters and Return Vaue of the Operation 7-9

Sample web-serviceSXml FilES......ccoevi e 7-10
EJB Component Web Service With Built-In Data Types........ccceeveeueenee. 7-10

Programming WebL ogic Web Services \

Vi

EJB Component Web Service With Non-Built-In Data Types................ 7-12
EJB Component and SOAP Message Handler Chain Web Service......... 7-14
SOAP Message Handler Chain-Only Web Service.........cocooevvenrenennenens 7-15

8. Invoking Web Services

Overview of INnvoking WeD SErviCes.........ooiviiiineiineieeceeeecesene s 81
BT L O L 8-2
Examples of Clients That Invoke Web Services.......ocovvveveeneeneienieens 8-3

Creating Java Client Applicationsto Invoke Web Services: Main Steps.......... 8-4

Getting the Java Client JAR FIlES........ccoiiiiinrerseeeeeeeee e 8-5
Running the clientgen ANt TasK ..o 8-6

Sample build.xml Filefor the clientgen Ant Taskccccocvvevereinne 8-7

Writing Static and Dynamic Java Client Applications.........cccoveenvenneninienenn 8-7
Getting Information about a Web Service..........coeovevvnnnnnncnecne 8-8
Maintaining the HTTP SESSI0Ncccoiiiiiiirie e 8-8
Handling Web Services That Crashccoeiveeviineinecsccseese s 8-9
Writing aSimple Static CHeNt.........oco v 8-9
Writing a Dynamic Client That USeSWSDLc.coveiiienienineneeeeee 8-12
Writing a Dynamic Client That Does Not Use WSDLccccocvvinnene 8-14
Writing a Client that Uses Out or In-Out Parameters..........cccovvvverneenns 8-16

Writing an Asynchronous Clientcccovieeiiieese e 8-17
Description of the Generated Asynchronous Web Service Client Stub... 8-18
Writing the Asynchronous Client Java Code...........ooevrnnrercinnenneeeens 8-19

WHtING @ J2ME ClIENL.....coi et 8-20
Writing @ J2ME Client that USES SSL.....c..oeveirieinieieeieeveeessc s 8-21

Creating and Using Portable StUDS..........cocoieiieieeeee e 8-22

Using the VersionMaker ULtyccocceeveieeie s 8-23

The WebL ogic Web Services Home Page and WSDL URLS..........ccccoeeneee. 8-24

Debugging Errors While Invoking Web Services.........ccoeoviinnnnncnncnn 8-26

WebL ogic Web Services System Properties........ccooecvveeveiceevesceseseeseninens 8-27

Using JMS Transport to Invoke a WebLogic Web Service

Overview of USING IMS TranSport.......ccovvrerirenieeniee e 9-1
Specifying IMS Tranport for aWebL ogic Web Service: Main Steps............... 9-2
Updating the web-services.Xxml File........cccooeve e 9-3

Programming WebL ogic Web Services

Invoking aWeb Service Using IMS TranSportccceeveeeeerereenenseeseneeseneenens 9-4

10. Using Reliable Messaging

Overview of Reliable MeSSagiNgccueerrreerireriere e 10-1
Terminology and ArchiteCtUrecoeeverrenrenre e 10-2
LiMITAEIONS ...cveveeetereer et 10-4

Using Reliable Messaging: Main SEEPS........covereeereieneeireereeeseeesiee e 10-4
Configuring the Sender WebLogiC SErVer ... 10-6
Configuring the Receiver WebLOgiC SErVerccoooveveieceeneecienerieeneeaens 10-8
Writing the Java Code to Invoke an Operation Reliably ... 10-10

Updating the web-services.xml File Manually for Reliable Messaging 10-11

11. Using Non-Built-In Data Types

Overview of Using Non-Built-1n Data TYPESccocvrererereenenie e 11-1
Creating Non-Built-In Data Types Manually: Main Steps........ccccvevvenerenne 11-2
Writing the XML Schema Data Type Representationcccceeeveeeenne. 11-4
Writing the Java Data Type Representation..........c.ccoceevvereveeneneeneenennens 11-5
Writing the Serialization Class..........oovrerrinninnnese s 11-6
Creating the Data Type Mapping File..........cocoiiiniininineceeeee 11-11

Updating the web-services.xml File With XML Schema Information.. 11-12
12. Creating SOAP Message Handlers to Intercept the SOAP

Message

Overview of SOAP Message Handlers and Handler Chains............ccccceveeeee. 12-2
Creating SOAP Message Handlers: Main SEEPSc.ceveeeereincenenesiesiniens 12-3
Designing the SOAP Message Handlers and Handler Chains......................... 12-4
Implementing the Handler Interface..........coooveviennennennceeeee e 12-6
Implementing the Handler.init() Method ..o 12-8
Implementing the Handler.destroy() Method............cccccevveevecicce i, 12-8
Implementing the Handler.getHeaders() Method...........ccoccoveiniiniicns 12-9
Implementing the Handler.handleRequest() Method..........cccccoeveirinennee 12-9
Implementing the Handler.handleResponse() Method................c.......... 12-10
Implementing the Handler.handleFault() Method...........ccccoviireininnne 12-12

The javax.xml.s0ap.SOAPMessage ODject........c.covveenrenncnncrereen 12-13
The SOAPPart ObJECLcveiiirrieererieeeerer e 12-13

Programming WebL ogic Web Services vii

The AttachmentPart Object..........ccovveecieee e, 12-13

Extending the GenericHandler Abstract Class.........ocooeveveieinnieenencneneens 12-14
Updating the web-services.xml File with SOAP Message Handler Information...
12-16

13. Configuring Security

Overview of Configuring SECUNTYccoiiirereriree e 131
Configuring WebL ogic Web Service Data SECUNityccoovevvrvvereereennns 13-1
Configuring WebL ogic Web Service Connection Securitycccceeeeeee. 13-2

Configuring Data Security (Digital Signatures and Encryption): Main Steps 13-2
Configuring Standard WebL ogic Server Security Features With the

Administration CONSOIE..........covveeiririeri e 13-4
Updating the servicegen build.xml File.........cccoereinennennicneeee 13-5
Updating Security Information in the web-servicesxml File.................. 13-6
Updating a Java Client to Invoke a Data- Secured Web Service............... 13-9

Writing the Java Code..........covveiriirecseseseres s 13-10

Running the Client AppliCation............cocvernene e 13-13

Configuring Connection Security: Main SEPS........ccocvevverereinenncnesenens 13-14
Controlling Access to WebL ogic Web Services.......coveeevcennennenenn 13-14

Securing the Web Service Using the Adminstration Console......... 13-15

Securing Web Service URL ..o 13-16

Securing the Stateless Session EJB and Its Methods...................... 13-16
Specifying the HTTPS Protocolcceevveieiiceie e 13-18
Configuring SSL for WebLOgiC SEIVENc..coveireireereesiee e 13-19
Coding a Client Application to Invoke a Secure Web Service............... 13-20
Configuring SSL for aClient Application..........ccccocvevevceeieeciesieeeesiene 13-20

Using the WebL ogic Server-Provided SSL Implementation.......... 13-21

Using a Third-Party SSL Implementation............cccccoeveinninenenenn 13-24

Extending the SSLAdapterFactory Class.........cccccevvvieviecieciennnnnn, 13-25

USING 8 PTOXY SEIVENottt 13-26

14. Using SOAP 1.2
Overview Of USINg SOAP L2 ...ttt 14-1
Specifying SOAP 1.2 for aWebLogic Web Service: Main Steps................... 14-2
Updating the web-services.xml File Manually...........ccoeoevinninnnnnnen. 14-3
Invoking aWeb Service Using SOAP L.2.......ccooiiiieieeiee e 14-3

viii Programming WebL ogic Web Services

15. Creating JMS-Implemented WebLogic Web Services

Overview of IMS-Implemented WebLogic Web Services........ccovveerieenen 15-2
Designing JM S-Implemented WebL ogic Web Services.........cocooeeereeenennen 15-3
ChoosiNg @ QUEUE OF TOPIC...c.vevereeeriireriesiriesieresieeesiesesee st 15-3
Retrieving and Processing MESSAEScoevreerieerieerieesieesie s seseees 15-4
Example of USing IMS COMPONENES.......cocervereeriereinieie e 15-4
Implementing JM S-Implemented WebL ogic Web Services.........ccooeevrenenne. 15-5
Configuring IMS Components for Message-Style Web Services............ 15-6
Assembling JM S-Implemented WebL ogic Web Services Automatically 15-7
Running the servicegen Ant TasK ..o 15-8
Assembling JM S-Implemented WebL ogic Web Services Manualy............ 15-10
Packaging the IM S Message Consumers and Producers............cccceue... 15-10
Updating the web-services.xml File With Component Information...... 15-10
Sample web-services.xml File for IMS Component Web Service........ 15-11
Deploying IM S-Implemented WebL ogic Web Servicescceoeneveneennne 15-13
Invoking JM S-Implemented WebL ogic Web Services........ccovevvecnieene 15-13
Invoking an Asynchronous Web Service Operation to Send Data. 15-14
Invoking a Synchronous Web Service Operation to Send Data..... 15-16
16. Administering WebLogic Web Services
Overview of Administering WebLogic Web Services.........coccovvevinncnnnenn, 16-1
Using the Administration Console to Administer Web Services.................... 16-3
17. Publishing and Finding Web Services Using UDDI
Overview of Publishing and Finding Web Services.............cccocoveiniinininnnnn. 17-1
THE UDDI 2.0 SEIVES ..ottt 17-2
Invoking the UDDI Directory EXPIOFercccceecveeveeiinieese e 17-2
USINg the UDDI CHENE AP ... 17-3
18. Interoperability
Overview of INteroperabilitycccceveeieiieie e 18-1
Avoid Using Vendor-Specific EXIENSIONS........coevreririeieneereeee e 18-2
Stay Current With the Latest Interoperability TestS........covervevrecerecreenn 18-2
Understand the Data Models of Your Applications.........ccccvevveceevenieeinnnnns 18-3
Understand the Interoperability of Various Data TYPeS........ccovvevrernereeenens 18-4
Programming WebL ogic Web Services iX

Results of SOAPBuUIlders Interoperability Lab Round 3 Tests......ccccevevenenee, 18-5

19. Upgrading WebLogic Web Services

Upgrading a 7.0 WebLogic Web Serviceto 8.1........cooeveveniieenienenieceeiens 19-1
Upgrading a6.1 WebLogic Web Serviceto 8.1.......ccccovvvninrennennicnieneene 19-2
Converting a6.1 build.xml fileto 8.1ccuecveieeiie e 19-3
Updating the URL Used to Accessthe Web Service.......ccccovvvnnenene. 19-5

A. WebLogic Web Service Deployment Descriptor Elements

Graphical REPreSENtatioNcccoeriereeinere e A-1
Element REFEIENCE. ..o e A-4
COMPONENES. ...ttt e sr e s n A-4
G -TINK s A-5
ENCTYPLIONKEY .. A-5
7= O A-5
NBNAIEY ... A-6
NANAIEr-CEIN ... e A-6
NaNAIEr-ChaiNS........c.oiiciice e e A-7
(L Th e o= U SOU USROS TRURURURPRIN A-7
INIT-PAIAIMIS. ...ttt sttt bbb e e se e e seebesseeneenens A-7
JAVBECIBSS ...ttt A-7
JMS-TECEIVE-QUEUE. ...ttt sttt sttt bbb e et e A-8
JMS-TECEIVETOPIC ..ttt et A-8
JMS-SENd-AESHNGLTION........oviiiiciee s A-9
L0 7= L= OSSPSR A-10
NBIMIE ...ttt e e A-10
(o]0 1< = o] o [OOSR A-10
(o] o< r= 1o 1TSS A-13
072 =10 TSSOSO A-13
PAIAIMS......eiiiii e e A-15
072 1SS0 o PSSR A-16
FElTADIE-EIVENY ... e A-16
FELIUM=PAIAIM ... e A-17
SECUNILY .veevee ettt ettt ettt re et e e e s teese e s aeesaesre e st enseenaesreeseesneannas A-19
SIGNAEUFEKEY ...ttt e e e reeneesneaneas A-19

Programming WebL ogic Web Services

SPEC: Binary SECUrity TOKENSPECcvvvveeeieeeerieiesieesie sttt A-19

spec:Elementldentifier ..o A-20
SPEC:ENCIYPLIONSPECccviveeeeieeet ettt A-21
SPEC: SECUIMEY SPEC. ..ttt A-22
SPEC: SIGNALUNESPEC.ceeeveeveeititeeiteeteee et reesre e e sae e e see e ensesaeenneereens A-23
SPEC:USErNAMET OKENSPEC ...ttt A-24
SEAE €SS G ... A-25
187 L= 107="0) o1 Lo TR SO SPSTRURR A-25
EYPE-MAPPING-ENEIY ..ttt A-26
17 015 USROS A-27
(U SR U SR USTRUPRN A-27
(TS 0 S = Y/ o= A-28
WED-SEIVICES......cuiitite sttt bttt s A-31

B. Web Service Ant Tasks and Command-Line Utilities
Overview of WebL ogic Web Services Ant Tasks and Command-Line Utilities....

B-2
List of Web Services Ant Tasks and Command-Line Utilities.................. B-3
Using the Web ServiceS ANt TasKS.......coceeererenereniene e B-4
Setting the Classpath for the WebLogic Ant Tasks.......c.ccvvvevereeceenenennn, B-5
Using the Web Services Command-Line Utilities.........cccocvvevvivnieneieccenens B-6
= 01011 o< TSRO PR PR PR PR B-6
ClIENEOEN . B-10
S Vo= L= TSP B-17
LS Y=o (= o T B-19
SEIVICE curvteee st seestesteseee e tesee e sseesesseesestesaestesben e ste e entenae e e e enenrennennens B-21
(ot | S B-26
L= 1= o1 11 SRS B-27
handlerChain..........cooeiiiie e B-28
SECUNTEY ettt sttt sttt st st b et sb et en e B-29
SOUMCE2WSTA ...ttt bbbt b eb e s eneneas B-31
(TS o D2 oo B-33
WSHIGEN ...ttt ettt e B-36
{0 ot 2o [S B-37

Programming WebL ogic Web Services Xi

C. Customizing WebLogic Web Services

Publishing a Static WSDL File........cooiiiiiiirseneereeeee e C-1
Creating a Custom WebL ogic Web Service Home Page............ccoeveeeierccnene C-3
Changing the Default Endpoint of a WebLogic Web Service.........c.ccoveeeeene. C-3

D. Specifications Supported by WebLogic Web Services

Xii Programming WebL ogic Web Services

About This Document

This document describes BEA WebL ogic® Web Services and describes how to
develop them and invoke them from a client application.

The document is organized as follows:

Chapter 1, “Overview of WebL ogic Web Services,” provides conceptual
information about Web Services and the features of WebL ogic Web Services.

Chapter 2, “Architectural Overview,” provides an architectural overview of
WebL ogic Web Services.

Chapter 3, “Creating a WebL ogic Web Service: A Simple Example,” describes
the end-to-end process of creating a simple WebL ogic Web Service based on a
Stateless session EJB.

Chapter 4, “Designing WebL ogic Web Services,” describes the design issues you
should consider before devel oping a WebL ogic Web Service.

Chapter 5, “Implementing WebL ogic Web Services,” describes how to create the
back-end components that implement a Web Service.

Chapter 6, “ Assembling WebL ogic Web Services Using Ant Tasks,” describes
how to use the WebL ogic Web Services Ant tasks to automatically generate the
final parts of a Web Service (such as the serialization information for
non-built-in data types and client JAR file), package them all together into a
deployable EAR file, and deploy the EAR file on WebL ogic Server.

Chapter 7, “Assembling a WebL ogic Web Service Manually,” describes how
assemble a WebL ogic Web Service manually without using the WebL ogic Web
Services Ant tasks.

Chapter 8, “Invoking Web Services,” describes how to write a client application
that invokes WebL ogic Web Services.

Programming WebL ogic Web Services Xiii

Xiv

Chapter 9, “Using IM S Transport to Invoke a WebL ogic Web Service,”
describes how to configure your Web Service so that client applications can use
JMS, rather than the default HTTP/S, as the transport when invoking a Web
Service.

Chapter 10, “Using Reliable Messaging,” describes how you can asynchronously
and reliably invoke a Web Service running on another WebL ogic Server
instance.

Chapter 11, “Using Non-Built-In Data Types,” describes how to create the
serializers and deserializers that convert user-defined data types between their
XML and Java representations.

Chapter 12, “ Creating SOAP Message Handlers to Intercept the SOAP
Message,” describes how to create handlers that intercept a SOAP message for
further processing.

Chapter 13, “Configuring Security,” describes how to configure security for
WebL ogic Web Services.

Chapter 14, “Using SOAP 1.2,” describes how you can use SOAP 1.2, rather
than the default SOAP 1.1. as the message transport when invoking a WebL ogic
Web Service.

Chapter 15, “Creating JM S-Implemented WebL ogic Web Services,” describes
how to create a WebL ogic Web Service that isimplemented with a JIMS message
consumer or producer.

Chapter 16, “Administering WebL ogic Web Services,” describes how to use the
Administration Console to administer WebL ogic Web Services.

Chapter 17, “Publishing and Finding Web Services Using UDDI,” describes how
to use the UDDI features included in WebL ogic Server.

Chapter 18, “Interoperability,” describes what it means for Web Servicesto
interoperate with each other and provides tips for creating highly interoperable
Web Services.

Chapter 19, “Upgrading WebL ogic Web Services,” describes how to upgrade
Web Services created in Version 6.1 or 7.0 of WebL ogic Server to Version 8.1.

Appendix A, “WebL ogic Web Service Deployment Descriptor Elements,”
describes the elements in the Web Services deployment descriptor file,
web- servi ces. xnl .

Programming WebL ogic Web Services

m Appendix B, “Web Service Ant Tasks and Command-Line Utilities,” describes
the Ant tasks, along with their equivalent command-line utilities, used to
assembl e WebL ogic Web Services.

m Appendix C, “Customizing WebL ogic Web Services,” describes how to
customize WebL ogic Web Services by updating the Web application’sweb. xm
deployment descriptor file.

m Appendix D, “ Specifications Supported by WebL ogic Web Services,” provides
information about the specifications supported by WebL ogic Web Services, such
as SOAP 1.1, WSDL 1.1, and so on.

Audience

This document is written for Java devel opers who want to create a Web Service that
runs on WebL ogic Server.

It is assumed that readers know Web technologies, XML, and the Java programming
language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File —Print option on your Web browser.

Programming WebL ogic Web Services XV

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

XVi

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can al so contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

= Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Programming WebL ogic Web Services

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

Ctrl+Tab

Keysyou press simultaneously.

italics

Emphasis and book titles.

nonospace
t ext

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also

indicates text that you enter from the keyboard.
Examples:

inmport java.util.Enumeration;
chrmod u+w *

confi g/ exanpl es/ appl i cations
.java

config.xm

f1 oat

nonospace
italic
t ext

Variablesin code.
Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{1

A set of choicesin asyntax line.

[]

Optional itemsin a syntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t timeout] [-s send]

Programming WebL ogic Web Services

XVii

Convention Usage

| Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c.deploy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from asyntax line.

Xviii Programming WebL ogic Web Services

CHAPTER

1 overview of WebLogic
Web Services

The following sections provide an overview of Web Services, and how they are
implemented in WebL ogic Server:

m “What Are Web Services?’ on page 1-1

m “Why Use Web Services?’ on page 1-2

m “Web Service Standards” on page 1-3

m “WebL ogic Web Service Features’ on page 1-7

m “Examples Of Creating and Invoking a Web Service” on page 1-10
m “Creating WebL ogic Web Services: Main Steps’ on page 1-10

m “Unsupported Features’ on page 1-12

m “Editing XML Files” on page 1-12

What Are Web Services?

Web Services are atype of service that can be shared by and used as components of
distributed Web-based applications. They commonly interface with existing back-end
applications, such as customer relationship management systems, order-processing
systems, and so on.

Programming WebL ogic Web Services 1-1

1 overview of WebLogic Web Services

Traditionally, software application architecture tended to fall into two categories. huge
monolithic systems running on mainframes or client-server applications running on
desktops. Although these architectureswork well for the purpose the applicationswere
built to address, they are closed and can not be easily accessed by the diverse users of
the Web.

Thus the software industry is evolving toward loosely coupled service-oriented
applications that dynamically interact over the Web. The applications break down the
larger software system into smaller modular components, or shared services. These
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

The concept of servicesisnot new—RMI, COM, and CORBA areall service-oriented
technologies. However, applications based on these technol ogies require them to be
written using that particular technology, often from a particular vendor. This
requirement typically hinderswidespread acceptance of an application ontheWeb. To
solve this problem, Web Services are defined to share the following properties that
make them easily accessible from heterogeneous environments:

m Web Services are accessed over the Web.
m Web Services describe themselves using an XML-based description language.

m Web Services communicate with clients (both end-user applications or other
Web Services) through XML messages that are transmitted by standard Internet
protocols, such asHTTP.

Why Use Web Services?

1-2

Major benefits of Web Servicesinclude:

m Interoperability among distributed applications that span diverse hardware and
software platforms

m Easy, widespread access to applications through firewalls using Web protocols

m A cross-platform, cross-language data model (XML) that facilitates devel oping
heterogeneous distributed applications

Programming WebL ogic Web Services

Web Service Standards

Because you access Web Services using standard Web protocols such as XML and
HTTP, the diverse and heterogeneous applications on the Web (which typically
already understand XML and HTTP) can automatically access Web Services, and thus
communicate with each other.

These different systems can be Microsoft SOAP ToolKit clients, J2EE applications,
legacy applications, and so on. They are written in Java, C++, Perl, and other
programming languages. Application interoperability isthe goal of Web Servicesand
depends upon the service provider's adherence to published industry standards.

Web Service Standards

A Web Service consists of the following components:

An implementation hosted by a server on the Web.

WebL ogic Web Services are hosted by WebL ogic Server; are implemented using
standard J2EE components (such as Enterprise Java Beans and IMS) and Java
classes; and are packaged as standard J2EE Enterprise Applications.

A standardized way to transmit data and Web Service invocation calls between
the Web Service and the user of the Web Service.

WebL ogic Web Services use Simple Object Access Protocol (SOAP) 1.1and 1.2
as the message format and HTTP and JM S as the connection protocol. See
“SOAP” on page 1-4.

A standard way to describe the Web Service to clients so they can invoke it.

WebL ogic Web Services use Web Services Description Language (WSDL) 1.1,
an XML -based specification, to describe themselves. See “WSDL 1.1" on page
1-5.

A standard way for client applications to invoke a Web Service.

WebL ogic Web Services implement the Java API for XML-based RPC
(JAX-RPC) as part of aclient JAR that client applications can use to invoke
WebL ogic and non-WebL ogic Web Services. See “JAX-RPC” on page 1-6.

A standard way for client applications to find a registered Web Service and to
register a Web Service.

Programming WebL ogic Web Services 1-3

1 overview of WebLogic Web Services

WebL ogic Web Services implement the Universal Description, Discovery, and
Integration (UDDI) specification. See“UDDI 2.0” on page 1-7.

SOAP

SOAP (Simple Object Access Protocol) is alightweight XML-based protocol used to
exchange information in a decentralized, distributed environment. WebL ogic Server
includesits own implementation of SOAP 1.1, SOAP 1.2, and SOAP With
Attachments specifications. The protocol consists of:

m An envelope that describes the SOAP message. The envelope contains the body
of the message, identifies who should processiit, and describes how to processiit.

m A set of encoding rules for expressing instances of application-specific data
types.

m A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions
(MIME)-encoded package that can be transmitted over HTTP or other Web protocols.
MIME is a specification for formatting non-ASCI1 messages so that they can be sent
over the Internet.

The following example shows a SOAP request for stock trading information
embedded inside an HT TP request:

POST / StockQuote HTTP/ 1.1

Host: www. sanpl e. com

Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

SOAPActi on: "Sone- URl "

<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/"
SOAP- ENV: encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ " >
<SOAP- ENV: Body>
<m Get Last St ockQuot e xmi ns: m=" Sone- URI " >
<synbol >BEAS</ synbol >
</ m Get Last St ockQuot e>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

1-4 Programming WebL ogic Web Services

Web Service Standards

WSDL 1.1

Web Services Description Language (WSDL) is an XML-based specification that
describesaWeb Service. A WSDL document describes Web Service operations, input
and output parameters, and how to connect to the Web Service.

Developers of WebL ogic Web Services do not need to create the WSDL files; you
generate thesefiles automatically as part of the WebL ogic Web Services devel opment

process.

The following example, for informational purposes only, shows aWSDL file that
describes the stock trading Web Service StockQuoteService that contains the method

GetL astStockQuote:
<?xm version="1.0"?>
<defini tions nanme="St ockQuote"
t ar get Nanespace="http://sanpl e. coni st ockquot e. wsdl "
xm ns:tns="http://sanpl e. conf st ockquot e. wsdl "
xm ns: xsd="http://ww. w3. or g/ 2000/ 10/ XM_Schera"
xm ns: xsd1="http://sanpl e. conif st ockquot e. xsd"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"

xm ns=
<message name="
<part nane=
</ nessage>
<message name="
<part nane=
</ nessage>
<port Type name=
<operation

"http://schemas. xm soap. org/ wsdl /">
Get St ockPri cel nput ">
"synbol " el ement ="xsd: string"/>

Get St ockPri ceCQut put " >
"result" type="xsd:float"/>

" St ockQuot ePor t Type" >
nane="CGet Last St ockQuot e" >

<i nput nmessage="tns: CGet St ockPricel nput"/>

<out put
</ operation
</ port Type>
<bi ndi ng name="
<soap: bi ndi

<operation
<soap: op

<i nput >
<soap:

</input >
<out put >
<soap: bo

message="t ns: Get St ockPri ceCQut put"/>
>

St ockQuot eSoapBi ndi ng" type="tns: St ockQuot ePort Type" >
ng style="rpc"
transport="http://schemas. xm soap. org/ soap/ http"/>
nanme="Get Last St ockQuot e" >
eration soapAction="http://sanple.coni Get Last St ockQuote"/>

body use="encoded" nanespace="http://sanple.con st ockquote"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >

dy use="encoded" nanespace="http://sanpl e.conf st ockquote"
encodi ngStyl e="http://schemas. xrm soap. or g/ soap/ encodi ng/ "/ >

Programming WebL ogic Web Services 1-5

1 overview of WebLogic Web Services

</ out put >
</ operati on>>
</ bi ndi ng>
<servi ce nane="St ockQuot eServi ce">
<docunent ati on>My first service</docunentation>
<port nanme="StockQuotePort" bindi ng="t ns: St ockQuot eSoapBi ndi ng" >
<soap: address location="http://sanple.conf stockquote"/>
</ port >
</ servi ce>
</ definitions>

JAX-RPC

The Java API for XML-based RPC (JAX-RPC) is a Sun Microsystems specification
that defines the client API for invoking a Web Service.

The following table briefly describes the core JAX-RPC interfaces and classes.
Table 1-1 JAX-RPC Interfacesand Classes

javaxml.rpc Description
Interface or Class

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory classfor creating Ser vi ce instances.

Stub Representstheclient proxy for invoking the operations of aWeb
Service. Typically used for static invocation of a Web Service.

Call Used to dynamically invoke a Web Service.

JAXRPCEXxception Exception thrown if an error occurs while invoking aWeb
Service.

For detailed information on JAX-RPC, see the following Web site:
http://java.sun.com/xml/jaxrpc/index.html.

For atutorial that describes how to use JAX-RPC to invoke Web Services, see
http://java.sun.com/webservices/docs/eal/tutorial/doc/JAXRPC.html.

1-6 Programming WebL ogic Web Services

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html

WebLogic Web Service Features

UDDI 2.0

The Universal Description, Discovery and Integration (UDDI) specification definesa
standard way to describe a Web Service; register aWeb Service in awell-known
registry; and discover other registered Web Services.

See http://www.uddi.org.

WebLogic Web Service Features

The WebL ogic Web Services subsystem has the following features (new featuresin
Version 8.1 of WebL ogic Server are listed first:

m Digital Signaturesand Encryption - New 8.1 Feature

WebL ogic Server 8.1 Beta enables you to configure data security for a Web
Services and Web Service clients using new elements in the web-services.xml
deployment descriptor. See “Configuring Data Security (Digital Signatures and
Encryption): Main Steps’ on page 13-2.

m Reliable Messaging - New 8.1 Feature

Reliable messaging is a framework whereby an application running in one
WebL ogic Server instance can asynchronously and reliably invoke a Web
Service running on another WebL ogic Server instance. See Chapter 10, “Using
Reliable Messaging.”

m SOAP 1.2 Support - New 8.1 Feature

WebL ogic Server provides support for using SOAP 1.2 as the message transport
when aclient invokes aWeb Service operation. See Appendix 14, “Using SOAP
12

m Asynchronous Client I nvocation of WebL ogic Web Services- New 8.1
Feature

Thecl i ent gen Ant task can how generate stubs for invoking a Web Service
operation asynchronously. The stub contains two methods: the first invokes the
operation with the required parameters but does not wait for the result; later, the

Programming WebL ogic Web Services 1-7

http://www.uddi.org

1 overview of WebLogic Web Services

1-8

second method returns the actual results. Y ou use this asynchronous client when
using reliable messaging. See “Writing an Asynchronous Client” on page 8-17.

JM S Transport Protocol - New 8.1 Feature

Y ou can optionally configure a Web Service to use M S as the transport
protocol (in addition to HTTP/S, the default protocol) when a client accesses the
service. See Chapter 9, “Using JMS Transport to Invoke a WebL ogic Web
Service”

Portable Subs - New 8.1 Feature

Y ou can how use portable stubs (versioned client JAR files used to invoke
WebL ogic Web Services) to avoid class clashes when invoking a Web Service
from within WebL ogic Server. See“Creating and Using Portable Stubs’ on
page 8-22.

Sandard Specifications
See “Web Service Standards’ on page 1-3.

Support for Exposing Standard J2EE Components

WebL ogic Web Services support exposing standard J2EE components, such as
statel ess session EJBs and JM S consumers or producers.

Ant Tasksand Command Line Utilities

Ant tasks facilitate the implementation and packaging of Web Services. See
Appendix B, “Web Service Ant Tasks and Command-Line Utilities.”

UDDI Registry, Directory Explorer, and Client API

WebL ogic Server includes a UDDI registry, aUDDI Directory Explorer, and an
implementation of the UDDI client API. See Chapter 17, “Publishing and
Finding Web Services Using UDDI.”

Support for Both RPC-Oriented and Document-Oriented Oper ations

WebL ogic Web Service operations can be either RPC-oriented (SOAP messages
contain parameters and return values) or document-oriented (SOAP messages
contain documents.) For details, see “RPC-Oriented or Document-Oriented Web
Services?’ on page 4-4.

Support for User-Defined Data Types

Programming WebL ogic Web Services

WebLogic Web Service Features

Y ou can create a WebL ogic Web Service that uses non-built-in data types asits
parameters and returns values. Non-built-in data types are defined as data types
other than the supported built-in data types; examples of built-in data types
includei nt and St ri ng. WebLogic Server Ant tasks can generate the
components needed to use non-built-in data types; this feature isreferred to as
autotyping. Y ou can al so create these components manually. See Appendix B,
“Web Service Ant Tasks and Command-Line Utilities,” and Chapter 11, “Using
Non-Built-In Data Types.”

SOAP Message Handlers to Access SOAP Messages

A SOAP message handler accesses the SOAP message and its attachment in
both the request and response of the Web Service. You can create handlersin
both the Web Serviceitself and the client applications that invoke the Web
Service. See Chapter 12, “Creating SOAP Message Handlers to Intercept the
SOAP Message.”

Java Client to Invoke a Web Service

Developers can use an automatically generated thin Java client to create Java
client applications that invoke WebL ogic and non-WebL ogic Web Services. See
Chapter 8, “Invoking Web Services.”

Note: BEA does not currently license client functionality separately from the
server functionality, so, if needed, you can redistribute this Javaclient JAR
fileto your own customers.

The Web Services Home Web Page

All deployed WebL ogic Web Services automatically have a Home Web Page that
includes links to the WSDL of the Web Service, the client JAR file that you can
download for invoking the Web Service, and a mechanism for testing the Web
Serviceto ensure that it is working as expected. See “ The WebL ogic Web
Services Home Page and WSDL URLS’ on page 8-24.

Point-to-Point Security

WebL ogic Server supports connection oriented point-to-point security for

WebL ogic Web Service operations, as well as authorization and authentication of
Web Service operations. See “ Configuring Connection Security: Main Steps’ on
page 13-14.

I nteroper ability

Programming WebL ogic Web Services 1-9

1 overview of WebLogic Web Services

WebL ogic Web Servicesinteroperate with major Web Service platforms such as
Microsoft .NET.

m Java 2 Platform Micro Edition (J2ME) Clients

The WebL ogic Server thecl i ent gen Ant task can create aclient JAR file that
runs on J2ME. See Chapter 8, “Invoking Web Services.”

Examples Of Creating and Invoking a Web
Service

WebL ogic Server includesthe following example of creating and invoking WebL ogic
Web Servicesinthe W._ HOVE\ sanpl es\ ser ver\ src\ exanpl es\ webser vi ces
directory, where W._HOVE refers to the main WebL ogic Platform directory:

B conpl ex. st at el essSessi on : Uses a statel ess session EJB backend
component with non-built-in data types as its parameters and return value.

For detailed instructions on how to build and run the example, open the following Web
page in your browser:

W._HOVE\ sanpl es\ server\ src\ exanpl es\ webser vi ces\ package- sumrary. ht m

Additional examples of creating and invoking WebL ogic Web Services are listed on
the Web Services Web page on the dev2dev Web site at
http://dev2dev.bea.com/managed_content/direct/webservice/index.html.

Creating WebLogic Web Services: Main Steps

The following procedure describes the high-level stepsto create a WebL ogic Web
Service. Most steps are described in detail in later chapters.

Chapter 3, “ Creating aWebL ogic Web Service: A Simple Example,” briefly describes
an example of creating aWeb Service.

1-10 Programming WebL ogic Web Services

http://dev2dev.bea.com/managed_content/direct/webservice/index.html
http://dev2dev.bea.com/managed_content/direct/webservice/index.html

Creating WebLogic Web Services: Main Steps

. Design the WebL ogic Web Service.

Decide on a synchronous or asynchronous Web Service; the type of back-end
components that implement the service; whether your service uses only built-in
data types or custom data types; whether you need to intercept the incoming or
outgoing SOAP message; and so on.

See Chapter 4, “Designing WebL ogic Web Services.”
. Implement the WebL ogic Web Service.

Write the Java code of the back-end components that make up the Web Service;
optionally create SOAP message handlers that intercept the SOAP messages;
optionally create your own serialization class to convert data between XML and
Java; and so on.

See Chapter 5, “Implementing WebL ogic Web Services.”
. Assemble and package the WebL ogic Web Service.

Gather al the implementation class files into an appropriate directory structure;
create the Web Service deployment descriptor file; create the supporting parts of
the service (such as client JAR file); and package everything into a deployable
EARfile.

If your Web Serviceisfairly simple, usetheser vi cegen Ant task which
performs all the assembly steps for you. If your Web Service is more
complicated, use additional Ant tasks or assemble the Web Service manualy.

See Chapter 6, “Assembling WebL ogic Web Services Using Ant Tasks.”

. Create aclient that accesses the Web Service to test that your Web Serviceis
working as you expect. You can also use the Web Service Home Page to test your
Web Service.

See Chapter 8, “Invoking Web Services.”
. Deploy the WebL ogic Web Service.

Make the service available to remote clients. Because WebL ogic Web Services
are packaged as standard J2EE Enterprise applications, deploying a Web Service
is the same as deploying an Enterprise application.

See Deployment at http://e-docs.bea.com/wls/docs81b/deployment.html.

. Optionally publish your Web Servicein aUDDI registry. See Chapter 17,
“Publishing and Finding Web Services Using UDDI.”

Programming WebL ogic Web Services 1-11

http://e-docs.bea.com/wls/docs81b/deployment.html

1 overview of WebLogic Web Services

Unsupported Features

WebL ogic Server does not support the following WSDL and XML Schema features:
m Overloading operationsin WSDL, due to a SOAP limitation
m XML Schemacomplex datatype inheritance by restriction

m XML Schemaunion simple datatypes

Editing XML Files

When creating or invoking WebL ogic Web Services, you might need to edit XML
files, such asthe web- ser vi ces. xnl Web Services deployment descriptor file, the
EJB deployment descriptors, the Java Ant build files, and so on. Y ou edit these files
with the BEA XML Editor.

Note: This guide describes how to create or update the web- ser vi ces. xni
deployment descriptor manually so that programmers get a better
understanding of the file and how the elements describe a Web Service. You
can also use the BEA XML Editor to update the file.

The BEA XML Editor isasimple, user-friendly Java-based tool for creating and
editing XML files. It displays XML file contents both as a hierarchical XML tree
structure and asraw XML code. Thisdual presentation of the document gives you two
options for editing the XML document:

m The hierarchical tree view allows structured, constrained editing, with a set of
alowable functions at each point in the hierarchical XML tree structure. The
alowable functions are syntactically dictated and in accordance with the XML
document's DTD or schema, if oneis specified.

m Theraw XML code view alows free-form editing of the data.

The BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

1-12 Programming WebL ogic Web Services

Editing XML Files

For detailed information about using the BEA XML Editor, seeits online help.

Y ou can download the BEA XML Editor from dev2dev Online at
http://dev2dev.bea.com/resourcelibrary/utilitiestools.jsp.

Programming WebL ogic Web Services 1-13

http://dev2dev.bea.com/resourcelibrary/utilitiestools.jsp
http://dev2dev.bea.com/resourcelibrary/utilitiestools.jsp

1 overview of WebLogic Web Services

1-14 Programming WebL ogic Web Services

CHAPTER

2 Architectural Overview

The following sections provide an overview of WebL ogic Web Services architecture
and three types of WebL ogic Web Service operations:

m “WebL ogic Web Services Architecture” on page 2-1
m “Backend Component-Only Operation” on page 2-2

m “Backend Component and SOAP Message Handler Chain Operation” on page
2-3

m “SOAP Message Handler Chain-Only Operation” on page 2-5

WebLogic Web Services Architecture

Y ou develop aWebL ogic Web Service, by using standard J2EE components, such as
statel ess session EJBs, and Java classes. Because WebL ogic Web Services are based
on the J2EE platform, they automatically inherit all the standard J2EE benefits, such
asasimple and familiar component-based devel opment model, scalability, support for
transactions, life-cycle management, easy access to existing enterprise systems
through the use of J2EE APIs (such as JDBC and JTA), and asimple and unified
security model.

A single WebL ogic Web Service consists of one or more operations; you can
implement each operation using different backend components and SOAP message
handlers. For example, an operation might be implemented with a single method of a
statel ess session EJB or with a combination of SOAP message handlers and a method
of astateless session EJB.

Programming WebL ogic Web Services 2-1

2 Architectural Overview

Backend Component-Only Operation

Client Application

The following figure describes the architecture of a\WebL ogic Web Service operation
that isimplemented with only a backend component, such as a method of a stateless
session EJB.

Figure2-1 WebLogic Web Service with Backend Component

2-2

4 WebL ogic Server \
© ©) ®
SOAP request SOAP
over HTTP I dentify request Deserialize
L Operation ——®| XML 1o Java
Java arameters
d @
Invoke target
backend
component
Java
- Serialize Java return value
to XML
SOAP response
® overHTTP _ ® -
Here' s what happens when a client application invokes this type of WebL ogic Web
Service operation:
1. Theclient application sends a SOAP message request to WebL ogic Server over
HTTPR. Based on the URI in the request, WebL ogic Server identifies the Web
Service being invoked.
2. The Web Service reads the SOAP message request and identifies the operation
that it needsto run. The operation corresponds to an invoke of a method of a
statel ess session EJB or a Java class.
Programming WebL ogic Web Services

Backend Component and SOAP Message Handler Chain Operation

3. The Web Service converts the operation’s parameters in the SOAP message from
their XML representation to their Java representation using the appropriate
deserializer class. The deserializer classis either one provided by WebL ogic
Server for built-in data types or a user-created one for non-built-in data types.

4. The Web Service invokes the appropriate backend component method, passing it
the Java parameters.

5. The Web Service converts the method's return value from Javato XML using the
appropriate serializer class, and packages it into a SOAP message response.

6. The Web Service sends the SOAP message response back to the client
application that invoked the Web Service.

Backend Component and SOAP Message
Handler Chain Operation

The following figure describes a WebL ogic Web Service operation that is
implemented with both a SOA P message handler chain and a backend component.

Programming WebL ogic Web Services 2-3

2 Architectural Overview

Figure2-2 WebL ogic Web Service Operation With Backend Component and
SOAP Message Handler Chain

© / WebL ogic Server N

SOAP Possibly

request modified

overHTTP | @ ® soap . @
5 Identif SOAP ™ oke request| Deserialize

—Z > enti
S Chain Java a
= parameters (g)
o \
<C‘J:_ Invoke target
— backend
8 component
O Invoke Serilize sl Java

Handler |<—— return value
. to XML
- Chain
@ SOAP ®

Modified response

SOAP respon /

over HTTP

Here's what happens when a client application invokes this type of WebL ogic Web

Service operation:

1. Theclient application sends a SOAP message request to WebL ogic Server over
HTTPR. Based on the URI in the request, WebL ogic Server identifies the Web
Service being invoked.

2. The Web Service reads the SOA P message request and identifies the operation
that it needs to run. The operation in this case corresponds to an invoke of a
SOAP message handler chain followed by an invoke of amethod of a stateless
session EJB or a Java class.

3. The Web Service invokes the appropriate handler chain. The handler chain
accesses the contents of the SOAP message request, possibly changing it in some
way.

2-4 Programming WebL ogic Web Services

SOAP Message Handler Chain-Only Operation

4. The Web Service converts the operation’s parameters in the [possibly modified]
SOAP message from their XML representation to their Java representation using
the appropriate deserializer class. The deserializer class is either one provided by
WebL ogic Server for built-in data types or a user-created one for non-built-in
datatypes.

5. The Web Service invokes the appropriate backend component method, passing it
the Java parameters.

6. The Web Service converts the method's return value from Javato XML using the
appropriate serializer class, and packages it into a SOAP message response.

7. The Web Service invokes the appropriate SOAP message handler chain. The
handler chain accesses the contents of the SOA P message response, possibly
changing it in some way.

8. The Web Service sends the [possibly modified] SOAP message response back to
the client application that invoked the Web Service.

SOAP Message Handler Chain-Only
Operation

The following figure describes the architecture of a\WebL ogic Web Service operation
that isimplemented with only a SOAP message handler chain.

Programming WebL ogic Web Services 2-5

2 Architectural Overview

Client Application

2-6

Figure2-3 WebL ogic Web Service Operation with SOAP M essage Handler

Chain Only
4 WebL ogic Server \
® ©) ®
SOAP request SOAP
over HTTP I dentify request Invoke
- — gl Operation | Handler
Chain
Invoke
- Handler
Chain
® Modified @
SOAP response
over HTTP & /

Here' s what happens when a client application invokes this type of WebL ogic Web
Service operation:

1

The client application sends a SOAP message request to WebL ogic Server over
HTTP. Based on the URI in the request, WebL ogic Server identifies the Web
Service being invoked.

The Web Service reads the SOAP message request and identifies the operation
that it needs to run. The operation in this case corresponds to an invoke of a
SOAP message handler chain.

The Web Service invokes the appropriate handler chain. The handler chain
accesses the contents of the SOAP message request, possibly changing it in some

way.
The Web Service invokes the appropriate handler chain. The handler chain
creates the SOAP message response.

The Web Service sends the SOAP message response back to the client
application that invoked the Web Service.

Programming WebL ogic Web Services

CHAPTER

3 (Creating a WebLogic

Web Service: A Simple
Example

The following sections describe a simple example of creating a WebLogic Web
Service:

m “Description of the Example” on page 3-1

m “Example of Creating a WebL ogic Web Service: Main Steps’ on page 3-2
m “Writing the Java Code for the EJB” on page 3-4

m “Writing the Java Code for the Non-Built-In Data Type” on page 3-8

m “Creating EJB Deployment Descriptors’ on page 3-9

m “Assembling the EJB” on page 3-11

m “Creating the build.xml Ant Build File" on page 3-11

Description of the Example

This exampl e describes the start-to-finish process of implementing, assembling, and
deploying the WebL ogic Web Service provided as a product examplein the directory
W._HOVE\ sanpl es\ server\ src\ exanpl es\ webser vi ces\ conpl ex\ st at el ess
Sessi on, where W._HOVE refers to the main WebL ogic Platform directory.

Programming WebL ogic Web Services 31

3 Creating a WebLogic Web Service: A Simple Example

The example shows how to create a WebL ogic Web Service based on a stateless
session EJB. The example usesthe Tr ader EJB, one of the EJB 2.0 examples located
inthe

W._HOVE\ sanpl es\ server\ src\ exanpl es\ ej b20\ basi c\ st at el essSessi on
directory.

TheTr ader EJB definestwo methods, buy() andsel | () ,thattakeasinputasStri ng
stock symbol and ani nt number of sharesto buy or sell. Both methods return a
non-built-in datatype called Tr adeResul t .

When the Tr ader EJB is converted into a Web Service, the two methods become
public operations defined in the WSDL of the Web Service. Thed i ent . j ava
application usesaJAX-RPC style client API to create SOAP messages that invoke the
operations.

Example of Creating a WebLogic Web
Service: Main Steps

To create the sample Tr ader WebL ogic Web Service, follow these steps:

1. Set up your environment.

On Windows NT, execute the set Exanpl esEnv. cnd command, located in the
directory W._HOVE\ sanpl es\ ser ver\ confi g\ exanpl es, where W._HOME is
the main directory of your WebL ogic Platform.

On UNIX, execute the set Env. sh command, located in the directory
W._HOVE/ sanpl es/ server/ confi g/ exanpl es, where W._HOVE isthe main
directory of your WebL ogic Platform.

2. Write the Javainterfaces and classes for the Tr ader stateless session EJB.
See “Writing the Java Code for the EJB” on page 3-4.

3. Write the Java code for the Tr adeResul t non-built-in data type.
See “Writing the Java Code for the Non-Built-In Data Type” on page 3-8.

4. Compile the Java code into classfiles.

32 Programming WebL ogic Web Services

Example of Creating a WebLogic Web Service: Main Steps

5. Create the EJB deployment descriptors.
See “ Creating EJB Deployment Descriptors’ on page 3-9.

6. Assemble the EJB class files and deployment descriptorsinto at r ader . j ar
archivefile.

See “Assembling the EJB” on page 3-11.

7. Createthebuil d. xmi Ant build file. Thisfilewill executetheser vi cegen Ant
task used to assembl e the WebL ogic Web Service.

See “ Creating the build.xml Ant Build File” on page 3-11.
8. Create a staging directory.
9. CopytheEJB trader.jar fileandthebuil d. xm fileinto the staging directory.

10. Execute the Java Ant utility to assemble the Tr ader Web Serviceinto a
trader. ear archivefile:

$ ant

11. Auto-deploy the Tr ader Web Service to WebL ogic Server for testing purposes
by copying thet r ader . ear archivefiletothedomai n/ appl i cati ons
directory, where domai n refersto the location of your domain.

12. View the Home Page of the Tr ader Web serivce by invoking the following URL
in your browser:

http://1ocal host: port/webservi ce/ Trader Servi ce

where
e | ocal host refersto the machine on which WebL ogic Server is running
e port refersto port on which WebLogic Server islistening

From the Web Service Home Page you can view the generated WSDL and test
the Web Service to make sureit's working correctly.

To invoke the Tr ader Web Service from a Java client application, see the
dient.javafileinthe

W._HOMVE\ sanpl es\ server\ src\ exanpl es\ webser vi ces\ conpl ex\ st at el ess
Sessi on directory.

For instructions for building and running the client application, invoke the
W._HOVE\ sanpl es\ server\ src\ exanpl es\ webser vi ces\ conpl ex\ st at el ess
Sessi on\ package- sunmary. ht M Web page in your browser.

Programming WebL ogic Web Services 33

3 Creating a WebLogic Web Service: A Simple Example

Writing the Java Code for the EJB

The sample Tr ader stateless session EJB contains two public methods: buy() and
sel | (). TheTrader EJB definestwo methods, buy() andsel | (), that take asinput
astring stock symbol and ani nt number of shares to buy or sell. Both methods
return anon-built-in data type called Tr ader Resul t .

The following Java code is the public interface of the Tr ader EJB:

package exanpl es. webservi ces. conpl ex. st at el essSessi on;

i mport java.rm .Renot eException;
i mport javax.ejb. EJBObj ect;

/

L R

-~

*

The nethods in this interface are the public face of TraderBean.

The signatures of the nethods are identical to those of the EJBean, except
that these nmethods throw a java.rm . Renot eExcepti on.

Note that the EJBean does not inplenment this interface. The correspondi ng
code-generat ed EJBOoj ect, TraderBeanE, inplenents this interface and

del egates to the bean.

@ut hor Copyright (c) 1999-2002 by BEA Systens, Inc. Al R ghts Reserved.

public interface Trader extends EJBObject {

/**

* Buys shares of a stock.

*

* @ar am st ockSynbol String Stock synbol

* @aram shares int Number of shares to buy

* @eturn TradeResult Trade Result

* @xception Renot eException if there is

* a communi cations or systens failure
*

/
public TradeResult buy (String stockSymbol, int shares)
t hrows Renot eExcepti on;

/**

* Sells shares of a stock.

*

* @ar am st ockSynbol String Stock synbol

* @aram shares int Number of shares to sell
* @eturn TradeResult Trade Result

* @xception Renot eException if there is
*

a comunications or systens failure

34 Programming WebL ogic Web Services

Writing the Java Code for the EJB

*/
public TradeResult sell (String stockSynbol, int shares)
t hrows Renot eExcepti on;

The following Java code is the actual stateless session EJB class:

package exanpl es. webservi ces. conpl ex. st at el essSessi on;

i mport javax. ej b. Creat eException;

i mport javax. ej b. Sessi onBean;

i mport javax.ejb. Sessi onCont ext;

i nport javax.nam ng. | nitial Context;
i mport j avax. nam ng. Nam ngExcepti on;

/**

* TraderBean is a statel ess Session Bean. This bean illustrates:

*

* No persistence of state between calls to the Session Bean

* <|i> Looking up values fromthe Environnent

* <ful >

*

* @ut hor Copyright (c) 1999-2002 by BEA Systens, Inc. Al R ghts Reserved.
*/

public class TraderBean inplenments SessionBean {

private static final bool ean VERBOCSE = true;
private SessionContext ctx;
private int tradeLinit;

/1 You mght also consider using WebLogic's |og service
private void log(String s) {

if (VERBOSE) System out.println(s);
}

/**

* This nethod is required by the EIJB Specification,

* but is not used by this exanple.
*

*/
public void ejbActivate() {
| og("ej bActivate called");

/**

* This method is required by the EJB Specification,

Programming WebL ogic Web Services 35

3 Creating a WebLogic Web Service: A Simple Example

* but is not used by this exanple.
*/
public void ej bRenove() {
| og("ej bRermove cal | ed");

/**
* This nethod is required by the EJB Specification,
* but is not used by this exanple.
*/
public void ejbPassivate() {
| og("ej bPassi vate call ed");

/**
* Sets the session context.
*
* @aram ct x Sessi onCont ext Context for session
*/
public void set Sessi onCont ext (Sessi onCont ext ctx) {
| og("set Sessi onContext called");
this.ctx = ctx;
}
/**

* This nethod corresponds to the create nmethod in the hone interface
* "Trader Hone. j ava".

* The paraneter sets of the two nmethods are identical. Wen the client calls
* <code>Trader Hone. creat e() </ code>, the container allocates an instance of

* the EJBean and calls <code>ej bCreate() </ code>.

*

* @xception javax. ej b. CreateException if there is

* a communi cations or systens failure

* @Bee exanpl es. ej b11. basi c. st at el essSessi on. Tr ader

*

/
public void ejbCreate () throws CreateException {
| og("ejbCreate called");
try {
Initial Context ic = new Initial Context();
Integer tl = (Integer) ic.lookup("java:/conp/env/tradeLimt");
tradeLimt = tl.intValue();
} catch (Nami ngException ne) {
t hrow new Creat eException("Failed to find environnent val ue "+ne);
}
}

/**

* Buys shares of a stock for a named custoner.

3-6 Programming WebL ogic Web Services

Writing the Java Code for the EJB

*

* @ar am cust omer Nane String Custoner name

* @aram st ockSynbol String Stock synbol

* @aram shares int Nunmber of shares to buy
* @eturn TradeResult Trade Result

*

*

if there is an error while buying the shares
/
public TradeResult buy(String stockSynmbol, int shares) {
if (shares > tradeLimt) {
log("Attenpt to buy "+shares+" is greater than limt of "+tradeLimt);
shares = tradeLinmt;
}
| og("Buying "+shares+" shares of "+stockSynbol);
return new TradeResul t (shares, stockSynbol);

}

/**

* Sells shares of a stock for a nanmed custoner.

*

* @ar am cust omer Nane String Custoner name

* @aram st ockSynbol String Stock synbol

* @aram shares int Nunber of shares to buy

* @eturn TradeResult Trade Result

* if there is an error while selling the shares
*/

public TradeResult sell (String stockSynbol, int shares) {
if (shares > tradeLimt) {
|l og("Attenpt to sell "+shares+" is greater than limt of "+tradeLinmt);
shares = tradeLimt;

| og("Selling "+shares+" shares of "+stockSynbol);

return new TradeResul t (shares, stockSynbol);

}

The following Java code is the Home interface of the Trader EJB:

package exanpl es. webservi ces. conpl ex. st at el essSessi on;

i mport java.rm . RenoteException;
i mport javax. ejb. Creat eException;
i mport javax. ej b. EJBHone;

/

* F * F *

*

This interface is the home interface for the TraderBean.j ava,

which in WebLogic is inplenented by the code-generated container

cl ass TraderBeanC. A hone interface may support one or nore create

met hods, which nust correspond to nmethods named "ej bCreate" in the EJBean.

Programming WebL ogic Web Services 37

3 Creating a WebLogic Web Service: A Simple Example

*

* @uthor Copyright (c) 1998-2002 by BEA Systens, Inc. Al R ghts Reserved.
*/
public interface Trader Honme extends EJBHome {

/**

*

This method corresponds to the ejbCreate nmethod in the bean

* "TraderBean. java".
* The paraneter sets of the two nethods are identical. Wen the client calls
* <code>Tr ader Hone. creat e() </ code>, the container
* allocates an instance of the EJBean and calls <code>ej bCreat e() </ code>.
*
* @eturn Tr ader
* @xception Renot eException if there is
* a communi cations or systens failure
* @xception Cr eat eExcepti on
* if there is a problemcreating the bean
* GBee exanpl es. ej b1l. basi c. st at el essSessi on. Tr ader Bean
*/
Trader create() throws CreateException, RenoteException;

}

Writing the Java Code for the Non-Built-In
Data Type

Thetwo methods of the EJB return anon-built-in datatypecalled Tr ader Resul t . The
following Java code describes this type:

package exanpl es. webservi ces. conpl ex. st at el essSessi on;

i mport java.io.Serializable;
/**

* This class reflects the results of a buy/sell transaction.

*

* @uthor Copyright (c) 1999-2002 by BEA Systens, Inc. All R ghts Reserved.
*/
public final class TradeResult inplenments Serializable {

/1 Nunber of shares really bought or sold.
private int nunber Tr aded,;

private String stockSynbol;

3-8 Programming WebL ogic Web Services

Creating EJB Deployment Descriptors

public TradeResult() {}

public TradeResult(int nt, String ss) {
nunber Traded = nt;
stockSynbol = ss;

}

public int getNunberTraded() { return nunberTraded; }

public void set Nunber Traded(i nt nunber Traded) {
t hi s. nunber Traded = nunber Tr aded;
}

public String get StockSynbol () { return stockSynbol; }

public void setStockSynbol (String stockSynbol) {
this. stockSymbol = stockSynbol;
}

}
Creating EJB Deployment Descriptors

See“Editing XML Files’ on page 1-12 for information on using the BEA XML Editor
to create and edit the ej b-j ar. xml and webl ogi c- ej b-j ar. xni files.

Thefollowing example showstheej b-j ar. xm deployment descriptor that describes
the Trader EJB:

<?xm version="1.0"?>

<! DOCTYPE ej b-j ar PUBLIC
"-//Sun M crosystens, |Inc.//DTD Enterprise JavaBeans 1.1//EN
"http://java.sun.conlfj2ee/dtds/ejb-jar_1_1.dtd"' >

<ej b-jar>
<ent er pri se- beans>
<sessi on>

<ej b- name>Tr ader Ser vi ce</ ej b- nanme>
<honme>exanpl es. webser vi ces. conpl ex. st at el essSessi on. Tr ader Hone</ hone>
<r enot e>exanpl es. webser vi ces. conpl ex. st at el essSessi on. Tr ader </ r enot e>

<ej b- cl ass>exanpl es. webser vi ces. conpl ex. st at el essSessi on. Tr ader Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<env-entry>

Programming WebL ogic Web Services 39

3 Creating a WebLogic Web Service: A Simple Example

<env-entry- name>WEBL</ env- ent r y- nane>
<env-entry-type>j ava. | ang. Doubl e </env-entry-type>
<env-entry-val ue>10. 0</ env-entry-val ue>
</ env-entry>
<env-entry>
<env-entry-name>l NTL</ env- ent ry- nane>
<env-entry-type>j ava.l ang. Doubl e </ env-entry-type>
<env-entry-val ue>15. 0</ env-entry-val ue>
</env-entry>
<env-entry>
<env-entry-name>tradeLi m t</env-entry-nanme>
<env-entry-type>j ava. |l ang. | nteger </env-entry-type>
<env-entry-val ue>500</ env-entry-val ue>
</env-entry>
</ sessi on>
</ enterprise-beans>
<assenbl y-descri pt or>
<cont ai ner-transacti on>
<met hod>
<ej b- name>Tr ader Ser vi ce</ ej b- nane>
<met hod- name>* </ met hod- nane>
</ met hod>
<trans-attribut e>Required</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
</ejb-jar>

The following example shows the webl ogi c- ej b-j ar. xm deployment descriptor
that describes the Trader EJB:

<?xm version="1.0"7?>

<! DOCTYPE webl ogi c-ej b-jar PUBLIC
'-//BEA Systens, Inc.//DTD WebLogic 7.0.0 EJB//EN
"http://ww. bea. conf servers/w s700/ dt d/ webl ogi c700-¢ej b-j ar. dtd" >

<webl ogi c-ej b-j ar>
<webl ogi c- ent er pri se- bean>
<ej b- name>Tr ader Ser vi ce</ ej b- nane>
<j ndi - name>webser vi ces- conpl ex- st at el essessi on</j ndi - name>
</ webl ogi c-enterpri se-bean>
</ webl ogi c-ej b-j ar>

3-10 Programming WebL ogic Web Services

Assembling the EJB

Assembling the EJB

To assemble the EJB class files and deployment descriptorsinto at r ader . j ar
archivefile, follow these steps:

1

Create atemporary staging directory.

2. Copy the compiled Java EJB class filesinto the staging directory.
3.
4

Create a META- | NF subdirectory in the staging directory.

. Copy theej b-j ar.xm and webl ogi c- ej b-j ar. xm deployment descriptors

into the META- | NF subdirectory.
Createthepre_trader. j ar archivefileusingthej ar utility:
jar cvf pre_trader.jar -C staging_dir

Run the webl ogi c. ej bc utility to generate and compile EJB 2.0 and 1.1
container classes and createthefinal t r ader . j ar file:

java webl ogic.ejbc pre_trader.jar trader.jar

Creating the build.xml Ant Build File

The Ant build file, bui | d. xnl , contains a call to the ser vi cegen Ant task that
introspectsthet r ader . j ar EJB file, generates all datatype components (such asthe
serialization class), createsthe web- ser vi ces. xnl deployment descriptor file, and
packagesit all up into adeployabletrader. ear file.

Thefollowing bui | d. xm file contains instructions that will build the EAR fileinto a
temporary bui | d_di r directory :

<proj ect name="webServi cesExanpl e" defaul t="buil d">
<target nanme="build" >
<delete dir="build_dir" />
<nkdir dir="build_dir" />
<copy todir="build dir" file="trader.jar"/>

<servi cegen

dest Ear="buil d_dir/trader. ear"

Programming WebL ogic Web Services 3-11

3 Creating a WebLogic Web Service: A Simple Example

war Narme="t r ader . war "

cont ext URI ="web_servi ces">

<service
ejbJar="build_dir/trader.jar"
t ar get Nanespace="http: // ww. bea. com exanpl es/ Trader"
servi ceNane="Tr ader Servi ce"
servi ceURl ="/ Tr ader Servi ce"
gener at eTypes="Tr ue"
expandMet hods="Tr ue" >

</ servi ce>

</ servi cegen>
</target>
</ pr oj ect >

312 Programming WebL ogic Web Services

CHAPTER

4 Designing WebLogic
Web Services

Thefollowing sections discuss designissuesyou should consider beforeimplementing
WebL ogic Web Services:

“Choosing Between Synchronous or Asynchronous Operations’ on page 4-1
“Choosing the Backend Components of Your Web Service” on page 4-2
“RPC-Oriented or Document-Oriented Web Services?’ on page 4-4

“Data Types’ on page 4-5

“Using SOAP Message Handlers to Intercept the SOAP Message” on page 4-6
“ Stateful WebL ogic Web Service” on page 4-7

Choosing Between Synchronous or
Asynchronous Operations

WebL ogic Web Service operations can be either synchronous request-response or
asynchronous one-way.

Programming WebL ogic Web Services 4-1

4 Designing WebLogic Web Services

Synchronous request-response (the default behavior) means that every time aclient
application invokes aWeb Service operation, it receives a SOAP response, evenif the
method that implements the operation returnsvoi d. Asynchronous one-way means
that the client never receives a SOAP response, even afault or exception.

Y ou specify this type of behavior with thei nvocat i on- st yl e attribute of the
<oper at i on> element in theweb- servi ces. xm file.

Web Service operations are typically synchronous request-response, mirroring typical
RPC-style behavior. Sometimes, however, you might want to implement
asynchronous behavior if your client application has no need for aresponse, even in
the caseof anerror. When designing asynchronous one-way Web Service operations,
keep the following issues in mind:

m The backend component that implements the operation must explicitly return
voi d.

m You cannot specify out or in-out parameters to the operation, you can only
specify in parameters.

Choosing the Backend Components of Your
Web Service

4-2

Y ou implement aWebL ogic Web Service operation with one of thefollowing types of
backend component:

m amethod of a stateless session EJB
m amethod of aJavaclass

® aJMS message consumer or producer. For details, see Chapter 15, “Creating
JIMS-Implemented WebL ogic Web Services.”

Programming WebL ogic Web Services

Choosing the Backend Components of Your Web Service

EJB Backend Component

Web Service operations implemented with a method of a stateless session EJB are
interface driven, which means that the business methods of the underlying stateless
session EJB determine how the Web Service operation works. When clientsinvokethe
Web Service operation, they send parameter valuesto the method, which executes and
sends back the return value.

Use a stateless session EJB backend component if your application has the following
characteristics:

m The behavior of the Web Service can be expressed as an interface.
m The Web Serviceis process-oriented rather than data-oriented.

m The Web Service can benefit from the facilities of EJBs, such as persistence,
security, transactions, and concurrency .

Examples of thistype of Web Service operation implementation include providing the
current weather conditionsin a particular location; returning the current price for a
given stock; or checking the credit rating of apotential trading partner prior to the
completion of abusiness transaction.

Java Class Backend Component

Web Service operations implemented with Java classes are similar to those
implemented with an EJB method. Creating a Java class, however, is often simpler
and faster than creating an EJB. Use a Java class as a backend component when you
do not need overhead of EJB facilities such as persistence, security, transactions, and
concurrency.

There are limitations and restrictions to using a Java class as a backend component,
however. For details, see “Implementing a Web Service By Writing a Java Class’ on

page 5-4.

Programming WebL ogic Web Services 4-3

4 Designing WebLogic Web Services

RPC-Oriented or Document-Oriented Web
Services?

4-4

The operations of a WebL ogic Web Service can be either RPC-oriented or
document-oriented. Asdescribed inthe WSDL 1.1 specification, an RPC-oriented
operation is one in which the SOAP messages contain parameters and return values,
and a document-oriented operation is one in which the SOAP messages contain XML
documents.

The method that implements a document-oriented WebL ogic Web Service operation
can have only one parameter, of any supported datatype. There are no restrictionson
the number of parameters of an RPC-oriented operation.

RPC-oriented WebL ogic Web Service operations use SOAP encoding.
Document-oriented WebL ogic Web Service operations use literal encoding.

All operationsin asingle WebLogic Web Service must be either RPC-oriented or
documented-oriented; WebL ogic Server does not support mixing the two styleswithin
the same Web Service.

By default, the operations of aWebLogic Web Service are RPC-oriented. If you want
to specify that the operations are document-oriented, use the st yl e=" docunent "
atribute of the <ser vi ce> element when assembling a Web Service using the

servi cegen Ant task. The generated web- ser vi ces. xm deployment descriptor
will contain a corresponding st yl e="document " attribute for the appropriate

<web- servi ce> element.

For information on implementing document-oriented WebL ogic Web Services, see
“Implementing a Document-Oriented Web Service” on page 5-6. For detailson using
the ser vi cegen Ant task to assemble a document-oriented Web Service, see

“ Assembling WebL ogic Web Services Using the servicegen Ant task” on page 6-3 and
“servicegen” on page B-17.

Programming WebL ogic Web Services

Data Types

Data Types

WebL ogic Web Services support both built-in and non-built-in data types as
parameters and return values to Web Services operations. This means that WebL ogic
Web Services can handle any type of datathat can be represented using XML Schema.

Built-in data types are those specified by the JAX-RPC specification. If your Web
Service uses only built-in data types, the conversion of the data between its XML and
Javarepresentation is handled automatically by WebL ogic Server. For thefull list of
built-in data types, see “Using Built-In Data Types’ on page 5-12.

If, however, your Web Service operation is more complex and uses anon-built-in data
type as a parameter or return value, you must:

a Create the serialization class that convert the data between its XML and Java
representation

b. Describe the XML representation of the data type (using XML Schema
notation) in the web- ser vi ces. xm file

c. Createthe Javaclassfile of the datatype
d. Describe the datatype mapping in the web- ser vi ces. xni file

WebL ogic Server includes Ant tasks that perform these tasks for many common XML
and Java data types; this feature is called autotyping. For thelist of supported
non-built-in data types, see “Non-Built-1n Data Types Supported by servicegen and
autotype Ant Tasks” on page 6-13. For information on running these Ant tasks, see
Chapter 6, “ Assembling WebL ogic Web Services Using Ant Tasks.”

Note: If you are using the autotyping Ant tasks to generate data type information for
aJavaclass, your class must conform to the guidelines described in
“Implementing Non-Built-In Data Types’ on page 5-5.

If your datatypeis not either built-in or one of the supported non-built-in data types,

then you must create the serialization class, and so on, manually. For details, see
Chapter 11, “Using Non-Built-In Data Types.”

Programming WebL ogic Web Services 4-5

4 Designing WebLogic Web Services

Using SOAP Message Handlers to Intercept
the SOAP Message

4-6

Some Web Services need access to the SOAP message, for which you can create
SOAP message handlers.

A SOAP message handler provides a mechanism for intercepting the SOA P message
in both the request and response of the Web Service. Y ou can create handlersin both
the Web Serviceitself and the client applications that invoke the Web Service.

A simple example of using handlersisto encrypt and decrypt secure datain the body
of a SOAP message. A client application uses a handler to encrypt the data before it
sends the SOAP message request to the Web Service. The Web Service receives the
request and uses a handler to decrypt the data before it sends the data to the back-end
component that implementsthe Web Service. The same steps happen in reversefor the
response SOAP message.

Another example is accessing information in the header part of the SOAP message.
Y ou can use the SOAP header to store Web Service specific information and then use
handlers to manipulate it.

Y ou can a so use SOAP message handlers to improve the performance of your Web
Service. After your Web Service has been deployed for awhile, you might discover
that many consumersinvoke it with the same parameters. Y ou could improve the
performance of your Web Service by caching the results of popular invokes of the Web
Service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the Web
Service. Y ouimplement this performance improvement by using handlersto check the
request SOAP message to seeif it contains the popular parameters.

Programming WebL ogic Web Services

Stateful WebLogic Web Service

Stateful WebLogic Web Service

Y ou implement a WebL ogic Web Service operation using statel ess session EJBs or
Java classes, and thus a WebL ogic Web Service operation is not stateful, or one that
can conduct a back and forth conversation beyond the standard request/response
model.

Y ou can, however, mimic a conversational Web Service by using JDBC or entity
beans. For example, you could design a Web Service so that client applications that
invoke it pass a unique 1D to identify themselves to the statel ess session EJB entry
point. This EJB uses the ID to persist the conversation in some kind of persistent
storage, using either entity beans or JDBC. The next time the same client application
invokes the Web Service, the stateless session EJB can recover the previous state of
the conversation by selecting the persisted data using the unique ID.

For information on programming entity beans, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs81b/ejb/index.html. For information on
JDBC, see WebL ogic jDrivers at http://e-docs.bea.com/wls/docs81b/jdrivers.html.

Programming WebL ogic Web Services 4-7

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jdrivers.html

4 Designing WebLogic Web Services

4-8 Programming WebL ogic Web Services

CHAPTER

5 Implementing
WebLogic Web Services

The following sections describe how to implement WebL ogic Web Services:
m “Overview of Implementing a WebL ogic Web Service” on page 5-1

= “Implementing a WebL ogic Web Service: Main Steps’ on page 5-2

m “Writing the Java Code for the Components’ on page 5-3

m “Using Built-In Data Types’ on page 5-12

Overview of Implementing a WebLogic Web
Service

Implementing aWebL ogic Web Servicerefersto writing the Javacode for the backend
components that make up the Web Service and optionally creating SOAP message
handlers. Backend componentsinclude statel ess session EJBs, Javaclasses, and IMS
message consumers and producers. A Web Service can beimplemented with multiple
combinations of these components.

A single WebL ogic Web Service consists of one or more operations; you can
implement each operation using methods of different backend components and SOAP
message handlers. For example, an operation might be implemented with asingle
method of a stateless session EJB or with a combination of SOAP message handlers
and a method of a statel ess session EJB.

Programming WebL ogic Web Services 51

5

Implementing WebLogic Web Services

If you areimplementing a WebL ogic Web Service from an existing WSDL file, you
can use the WebL ogic Server wsdl 2Ser vi ce Ant task to automatically generate the
Javainterface that represents your Web service, then write the code for the Java
implementation classthat implementsthis generated Web serviceinterfaceto makethe
Web service behave as you want.

It is assumed that you have read and understood the design issues discussed in
Chapter 4, “Designing WebL ogic Web Services,” designed your Web Service and that
you know the types of components you need to create.

Implementing a WebLogic Web Service:
Main Steps

5-2

Thefollowing procedure describesthe high-level stepstoimplement aWebL ogic Web
Service. Later parts of thisdocument describe the stepsin more detail. Although some
of the steps are mandatory, others are optional, depending on the type of Web Service
you are implementing.

1. Write the Java code for the back-end components that make up the Web Service.
See “Writing the Java Code for the Components’ on page 5-3.

2. If you need to process information in the SOAP request or response or access the
SOAP attachments, create SOAP message handlers and handler chains.

See Chapter 12, “ Creating SOAP Message Handlers to Intercept the SOAP
Message.”

3. If your backend components use non-built-in data types as parameters or return
values, generate or create the serialization class that converts the data between
XML and Java.

See “Implementing Non-Built-In Data Types’ on page 5-5.

Programming WebL ogic Web Services

Writing the Java Code for the Components

Writing the Java Code for the Components

When you implement a WebL ogic Web Service, you write Java code for one of these
backend components:

m A stateless session EJB.

See “Implementing a Web Service By Writing a Statel ess Session EJB” on page
5-4 for information on writing the Java code. For an example, see “Writing the
Java Code for the EJB” on page 3-4.

m A Javaclass.

See “Implementing a Web Service By Writing a Java Class’ on page 5-4 for
information on writing the Java code.

m A JMS message consumer or producer, typically a message-driven bean.
See Chapter 15, “Creating IM S-Implemented WebL ogic Web Services.”

If your Web Service operations use non-built-in data types as parameters or return
values, see “Implementing Non-Built-In Data Types’ on page 5-5.

If you areimplementing a Web Servicethat uses document-oriented operations, rather
than RPC-oriented, see “Implementing a Document-Oriented Web Service” on page
5-6.

If you areimplementing a WebL ogic Web Service based on an existing WSDL file,
and you want to implement the Web Service with a Java class, use the WebL ogic
Server wsdl 2Ser vi ce Ant task to generate the Web service interface classto use as
astarting point. For details about using this Ant task, see “Generating a Partial
Implementation From aWSDL File” on page 5-6.

For information on throwing exceptions from your Web Service implementation, see
“Throwing SOAP Fault Exceptions’ on page 5-11.

If you want your Web Service operation to return multiple values, see “ Implementing
Multiple Return Values’ on page 5-9.

Programming WebL ogic Web Services 5-3

5

Implementing WebLogic Web Services

Implementing a Web Service By Writing a Stateless
Session EJB

Writing the Java code for the stateless session EJB for a Web Service is no different
from writing a stand-alone EJB, except for the following issues:

You can specify in theweb- ser vi ces. xm deployment descriptor that a Web
Service operation is one-way, which means that the client application that
invokes the Web Service does not wait for a response. When you write the Java
code for the EJB method that implements this type of operation, you must
specify that it return voi d.

For more information on specifying in the web- ser vi ces. xni file that a Web
Service operation is one-way, see “operation” on page A-10.

If the data type of the parameters or return value of an EJB method are not part
of the set of built-in data types, then you must generate or create the serialization
class that converts these data types between their XML and Java representations.
For the list of built-in data types, see “Using Built-In Data Types’ on page 5-12

See “Implementing Non-Built-In Data Types’ on page 5-5.

For an example of how to write astateless session EJB, see“Writing the Java Code for
the EJB” on page 3-4. For general information, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs81b/ejb/index.html.

Implementing a Web Service By Writing a Java Class

54

Y ou can implement a Web Service operation using a Java class as long as you follow
theserules:

Do not start any threads. This rule appliesto al Java code that runs on
WebL ogic Server.

Define a default no-argument constructor.

Define as public the methods of the Java class that are going to be exposed as
Web Service operations.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

Writing the Java Code for the Components

m Write thread safe Java code, because WebL ogic Server maintains just asingle
instance of a Java class that implements a Web Service operation, and each
invoke of the Web Service uses this same instance.

For an example of implementing a\WebL ogic Web Service operation with a Javaclass,
gotothe

W._HOME\ sanpl es\ server\ src\ exanpl es\ webser vi ces\ basi c\j avacl ass
directory, where W._HOVE refers to the main directory of your WebL ogic Server
installation.

Implementing Non-Built-In Data Types

Statel ess session EJBs or Java classes do not necessarily take built-in data types as
parameters and return values, but rather, might use a Java data type that you create
yourself. An example of anon-built-in datatype is Tr adeResul t , which has two
fields: a String stock symbol and an integer number of shares traded. For the list of
built-in data types, see “Using Built-In Data Types’ on page 5-12.

If your backend components use non-built-in datatypes as parameters or return val ues,
you must generate or create the serialization classthat convertsthe data between XML
and Java.Y ou can do thisin one of two ways:

m UseWebLogic Server ser vi cegen or aut ot ype Ant tasks to introspect your
EJB and automatically generate the serialization class. These Ant tasks also
create the corresponding XML Schemato represent your datain XML format
and update your web- ser vi ces. xnl deployment descriptor file with the
relevant data type mapping information. You will run these Ant tasks as part of
assembling of the Web Service, described in “Running the servicegen Ant Task”
on page 6-4 and “ Running the autotype Ant Task” on page 6-8.

Warning: Theserializer classand Javaand XML representationsgenerated by the
aut ot ype, servi cegen, and cl i ent gen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components’ on page 6-16.

m Create the serialization class and XML and Java representations of your data
type manually. This method is more complex and time-consuming than
generating them using the Ant task. For details on handling non-built-in data
types manually, see Chapter 11, “Using Non-Built-In Data Types.”

Programming WebL ogic Web Services 55

5

Implementing WebLogic Web Services

If you are going to create the XML representation of your Java data type manually,
along with the serialization class, you can code the Java class any way you want,
because you will be writing all the conversion code yourself.

If you are going to usethe ser vi cegen or aut ot ype Ant tasks to automatically
generate the data type components, follow these requirements when writing the Java
class for your data type:

m Define adefault constructor, which is a constructor that takes no parameters.

m Define both get XXX() and set XXX() methods for each member variable which
you want to expose.

m Make the data type of each exposed member variable one of the built-in data
types, or a non-built-in data type that consists of built-in data types and has the
corresponding serialization class and XML Schema representation.

Theser vi cegen andaut ot ype Ant taskscan generate datatype componentsfor most
common XML and Java datatypes. For thelist of supported non-built-in data types,
see “Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks’ on
page 6-13.

Implementing a Document-Oriented Web Service

When creating aWebL ogic Web Service, you can specify whether the Web Serviceis
document-oriented (the SOAP message contains a document) or RPC-oriented (the
SOAP message contains parameters and return values).

If you create a document-oriented Web Service:

m the methods that implement each operation of the Web Service can have only
one parameter. This single parameter can be of any supported data type; see
“Data Types’ on page 4-5 for more information.

m the methods that implement each operation cannot use out and in-out parameters.

Generating a Partial Implementation From a WSDL File

5-6

Thewsdl 2Ser vi ce Ant task takes asinput an existing WSDL file and generates:

Programming WebL ogic Web Services

Writing the Java Code for the Components

m the Javainterface that represents the implementation of your Web Service
m theweb-services. xnl filethat describes the Web Service

The generated Java interface file describes the template for the full Java
class-implemented WebL ogic Web Service. The template includes full method
signatures that correspond to the operations in the WSDL file. Y ou must then write a
Java class that implements this interface so that the methods function as you want,
following the guidelinesin “Implementing aWeb Service By WritingaJavaClass’ on

page 5-4.

Thewsdl 2Ser vi ce Ant task generates a Javainterface for only one Web Serviceina
WSDL file (specified by the <ser vi ce> element.) Usetheser vi ceNane attribute to
specify aparticular service; if you do not specify thisattribute, thewsdl 2Ser vi ce Ant
task generates a Javainterface for thefirst <ser vi ce> element in the WSDL.

Warning: Thewsdl 2Ser vi ce Ant task, when generating the web- ser vi ces. xni
file for your Web Service, assumes you use the following convention
when naming the Java class that implements the generated Javainterface:

packageNane. servi ceNanel npl

where packageNane and ser vi ceNane arethe values of the
similarly-named attributes of thewsdl 2Ser vi ce Ant task. The Ant task
puts this information in the cl ass- nane attribute of the <j ava- cl ass>
element of the web- servi ces. xnl file.

If you name your Java implementation class differently, you must
manually update the generated web- ser vi ces. xm file accordingly.

Running the wsdl2Service Ant Task

Torunthewsdl 2Ser vi ce Ant task, follow these steps:

1. Createafilecaledbuil d. xnl that containsacall tothewsdl 2Ser vi ce Ant task.
For details, see “ Sample build.xml Files for the wsdl2Service Ant Task” on page
5-8.

2. Set your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._ HOVE is the top-level directory of your
WebL ogic Platform installation.

Programming WebL ogic Web Services 57

5

Implementing WebLogic Web Services

On UNIX, execute the set Env. sh command, located in the directory
W._HOME/ ser ver / bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

3. Executethe Ant task or tasks specified in the bui | d. xnl file by typing ant in
the same directory asthe bui | d. xni file:

pronpt > ant

For reference information about the wsdl 2Ser vi ce Ant task, see “wsdl2Service” on
page B-33.

Sample build.xml Files for the wsdI2Service Ant Task

5-8

The following example showsasimple bui | d. xn file:

<proj ect name="buil dWebservi ce" defaul t="generate-from WsDL" >
<target nanme="generate-from WsDL" >
<wsdl 2service
wsdl ="c: \wsdl s\ myServi ce. wsdl "
destDir="c:\nyService\inpl enentation”
t ypeMappi ngFi | e="c: \ aut otype\types. xm "
packageNanme="exanpl e. ws2j . servi ce" />
</target>
</ pr oj ect >

Inthe example, thewsdl 2Ser vi ce Ant task generates a Javainterfacefilefor thefirst
<servi ce> element it findsin the WSDL filec: \ wsdl s\ nyServi ce. wsdl . It uses
data type mapping information for any non-built-in data types from the
c:\autotype\types. xm filg; typically you have previously run the aut ot ype Ant
task to generate thisfile. The Javainterface file and web- ser vi ces. xni fileare
generated into the directory c: \ mySer vi ce\i npl enment ati on.

Assume that value of the name attribute of the first <ser vi ce> element in the WSDL
fileis Super Dooper Servi ce. Thewsdl 2Ser vi ce generates a Javainterface called
exanpl e. ws2j . servi ce.Super Dooper Ser vi ce and assumes that your Java

implementation class will be exanpl e. ws2j . servi ce.Super Dooper Ser vi cel npl .

Programming WebL ogic Web Services

Writing the Java Code for the Components

Implementing Multiple Return Values

WebL ogic Web Service operations typically return asingle value: the return value of
the EJB or Java class method that implements the Web Service operation. If you want
aWeb Service operation to return multiple values, you can:

m define the data type of the return value to be a complex type, such as an object
with multiple parts or an array.

m specify that one or more of the parameters of the Web Service operation be out
or in-out parameters.

Out and in-out parameters are a mechanism whereby parameters to an operation can
act asboth standard in parametersand return values. The Out parameters are undefined
when the operationisinvoked but defined by the method that implementsthe operation
when the operation compl etes; in-out parameters are defined when invoked and when
completed. For example, assume aWeb Service operation contains one out parameter,
and the operation isimplemented with an EJB method. The EJB method setsthe value
of the out parameter and sends this value back to the client application that invoked it.
The client application can then access the value of this out parameter asif it were a
return value. An in-out parameter is one that acts as both a standard input parameter
for sending information to the method and an out parameter. This section discusses
how to implement aWeb Service operation with an EJB or Java class method that uses
out or in-out parameters.

The following example shows a method whose second parameter is an in-out
parameter:

public String myMethod(String parant,
javax.xm . rpc. hol ders. I nt Hol der intHolder) {

Systemout.println ("The input value is: " + intHol der.value);
i nt Hol der.value = 20; // the new value of the out paraneter

return parant;

}

Y ou invoke the method with two parameters, a String and an integer. The method
returns two values: a String (the standard return value) and an integer (viathe
I nt Hol der holder parameter).

Programming WebL ogic Web Services 5-9

5 Implementing WebLogic Web Services

Out and in-out parameters must implement thej avax. xm . r pc. hol der s. Hol der
interface. Use the Hol der . val ue field to first access the input value of an in-out
parameter and then set the value of out and in-out parameters. In the preceding
example, assume the method was invoked with a value of 40 as the second parameter;
when the method compl etes, the value of i nt Hol der isnow 20.

Using Holder Classes to Implement Multiple Return Values

If the out or in-out parameter is a standard datatype, you can use one of the JAX-RPC
Hol der classes, listed in the following table.

Table 5-1 Built-In Holder Classes Provided by WebL ogic Server

Built-In Holder Class Java Data Type That It Holds
javax. xm . rpc. hol der s. Bool eanHol der bool ean
javax. xm . rpc. hol ders. Byt eHol der byt e
javax. xm . rpc. hol ders. Short Hol der short
javax. xm . rpc. hol ders. | nt Hol der int
javax.xm . rpc. hol ders. LongHol der | ong
javax. xm . rpc. hol ders. Fl oat Hol der fl oat
javax. xm . rpc. hol ders. Doubl eHol der doubl e
javax. xm . rpc. hol ders. Bi gDeci mal Hol der j ava. mat h. Bi gDeci mal
javax. xm . rpc. hol ders. Bi gl nt eger Hol der j ava. mat h. Bi gl nt eger
javax. xm . rpc. hol ders. Byt eArrayHol der byt e[]
javax. xm . rpc. hol ders. Cal endar Hol der java.util . Cal endar
javax. xm . rpc. hol ders. haneHol der j avax. xm . nanmespace. QNane
javax. xm . rpc. hol ders. Stri ngHol der java.lang. String
If, however, the data type of the parameter is not provided, you must create your own
implementation.
5-10 Programming WebL ogic Web Services

Writing the Java Code for the Components

To create your own implementation of thej avax. xmi . r pc. hol ders. Hol der
interface, follow these guidelines:

m Name your implementation class TypeHol der , where Type is the name of the
complex type. For example, if your complex typeiscalled Per son, then your
implementation classis called Per sonHol der .

m Createapublicfield called val ue, whose data type is the same as that of the
parameter.

m Create adefault constructor that initializes the val ue field to adefault value.

m Create a constructor that setsthe val ue field to the value of the passed
parameter.

The following example shows the outline of aPer sonHol der implementation class:
package exanpl es. webservi ces. hol ders;

public final class PersonHol der inplenents
javax. xm . rpc. hol ders. Hol der {

public Person val ue;
publ i c PersonHol der () {

// set the value variable to a default val ue

publ i c PersonHol der (Person value) {

/1l set the value variable to the passed in val ue

Throwing SOAP Fault Exceptions

If you throw aj avax. xm . r pc. soap. SOAPFaul t Except i on exception in your
stateless session EJB or Java class, WebL ogic Server mapsit to a SOAP fault and
sends it to the client application that invokes the operation.

The following excerpt describes the SOAPFaul t Except i on class:
public class SOAPFaul t Exception extends java.lang. Runti meException {

publ i c SOAPFaul t Exception (QNarme faul t code,
String faultstring,

Programming WebL ogic Web Services 5-11

5

Implementing WebLogic Web Services

String faul tactor,
javax. xm . soap. Detail detail) {...}
public rane getFaultCode() {...}
public String getFaultString() {...}
public String getFaul tActor() {...}
public javax.xm .soap.Detail getDetail () {...}

If your EJB or Java class throws any other type of Java exception, WebL ogic Server
triesto map it to a SOAP fault as best it can. However, to ensure that the client
application receives the best possible exception information, you should explicitly
throw a SOAPFaul t Except i on exception or one that extends the exception.

Using Built-In Data Types

5-12

The following sections describe the built-in data types supported by WebL ogic Web
Services and the mapping between their XML and Javarepresentations. Aslong asthe
data types of the parameters and return values of the backend components that
implement your Web Service are in the set of built-in data types, WebL ogic Server
automatically converts the data between XML and Java.

If, however, you use non-built-in data types, then you must create the serialization
class to convert the data between XML and Java. WebL ogic Server includes the
servi cegen and aut ot ype Ant tasksthat can generate the serialization classfor most
non-built-in datatypes. See “Non-Built-In Data Types Supported by servicegen and
autotype Ant Tasks’ on page 6-13 for alist of supported XML and Javadatatypes. For
more information about using ser vi cegen and aut ot ype, see Chapter 6,
“Assembling WebL ogic Web Services Using Ant Tasks.”

If your datatypeis not supported, then you must create your serialization class
manually. For details, see Chapter 11, “Using Non-Built-In Data Types.”

Programming WebL ogic Web Services

Using Built-In Data Types

XML Schema-to-Java Mapping for Built-In Data Types

The following table lists the defined mappings for all built-in data types defined by
XML Schema (target namespace ht t p: / / www. w3. or g/ 2001/ XM_Schema) and the
corresponding SOAP data types (target namespace

http://schemas. xnl soap. or g/ soap/ encodi ng/).

For alist of the supported non-built-in XML data types, see “ Supported XML
Non-Built-In Data Types’ on page 6-14.

Table5-2 XML Schema-to-Java Mapping for Built-In Data Types

XML Schema Data Type Equivalent Java Data Type
(lower caseindicates a primitive data type)
boolean boolean
byte byte
short short
int int
long long
float float
double double
integer javamath.Biglnteger
decimal javamath.BigDecimal
string javalang.String
dateTime javauutil.Calendar
base64Binary bytel]
hexBinary byte[]
duration weblogic.xml.schema.binding.util.Duration
time javauutil.Calendar
date java.util.Calendar

Programming WebL ogic Web Services 5-13

5 Implementing WebLogic Web Services

Table5-2 XML Schema-to-Java Mapping for Built-In Data Types

XML Schema Data Type

Equivalent Java Data Type
(lower caseindicates a primitive data type)

gYearMonth

java.util.Caendar

Thej ava. uti |l . Cal endar Javadatatype contains more fields than
thegYear Mont h datatype. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gYear

java.util.Caendar

Thej ava. util. Cal endar Javadatatype contains more fields than
thegYear Mont h datatype. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gMonthDay

java.util.Calendar

Thej ava. uti|l. Cal endar Javadatatype contains more fields than
thegYear Mbnt h datatype. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gDay

java.util.Caendar

Thej ava. util. Cal endar Javadatatype contains more fields than
thegYear Mont h datatype. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gMonth

java.util.Caendar

Thej ava. util. Cal endar Javadatatype contains more fields than
thegYear Mbnt h datatype. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

anyURI

javalang.String

NOTATION

javalang.String

token

javalang.String

normalizedString

javalang.String

language

javalang.String

5-14 Programming WebL ogic Web Services

Using Built-In Data Types

Table5-2 XML Schema-to-Java Mapping for Built-In Data Types

XML Schema Data Type

Equivalent Java Data Type
(lower caseindicates a primitive data type)

Name javalang.String
NMTOKEN javalang.String
NCName javalang.String
NMTOKENS javalang.String[]
ID javalang.String
IDREF javalang.String
ENTITY javalang.String
IDREFS javalang.String[]
ENTITIES javalang.Stringf]

nonPositivel nteger

javamath.Biglnteger

nonNegativel nteger javamath.Biglnteger
negativelnteger javamath.Biglnteger
unsignedLong javamath.Biglnteger

positivel nteger

javamath.Biglnteger

unsignedint long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Programming WebL ogic Web Services

5-15

5 Implementing WebLogic Web Services

Java-to-XML Mapping for Built-In Data Types

For alist of the supported non-built-in Java data types, see “ Supported Java
Non-Built-In Data Types’ on page 6-15.

Table 5-3 Java-to-XML Mapping for Built-In Data Types

JavaDataType(lower caseindicatesa Equivalent XML Data Type
primitive data type)

int int

short short

long long

float float

double double

byte byte

boolean boolean

char string (with facet of length=1)
javalang.Integer int

javalang.Short short

javalang.Long long

javalang.Float float

javalang.Double double

javalang.Byte byte

javalang.Boolean boolean

javalang.Character string (with facet of length=1)
javalang.String string

java.math.Biglnteger integer

java.math.BigDecimal decimal

5-16 Programming WebL ogic Web Services

Using Built-In Data Types

Table 5-3 Java-to-XML Mapping for Built-In Data Types

JavaDataType(lower caseindicatesa Equivalent XML Data Type
primitive data type)

javalang.String string
java.util.Calendar dateTime
javautil.Date dateTime
byte[] base64Binary

weblogic.xml.schemabinding.util.Duration duration

javax.xml.namespace.QName Qname

Programming WebL ogic Web Services 5-17

S Implementing WebLogic Web Services

5-18 Programming WebL ogic Web Services

CHAPTER

6

Assembling WebLogic

Web Services Using Ant
Tasks

Thefollowing sections describe how to assembl e and deploy WebL ogic Web Services
using avariety of Ant tasks:

m “Overview of Assembling WebLogic Web Services Using Ant Tasks’ on page
6-2

m “Assembling WebL ogic Web Services Using the servicegen Ant task” on page
6-3

m “Assembling WebL ogic Web Services Using Other Ant Tasks’ on page 6-6

“The Web Service EAR File Package” on page 6-12

“Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on
page 6-13

m “Non-Roundtripping of Generated Data Type Components’ on page 6-16

“Deploying WebL ogic Web Services’ on page 6-17

Programming WebL ogic Web Services 6-1

6 Assembling WebLogic Web Services Using Ant Tasks

Overview of Assembling WebLogic Web
Services Using Ant Tasks

Assembling a WebL ogic Web Service refers to gathering all the components of the
service (such asthe EJB JAR file, the SOAP message handler classes, and so on),
generating the web- ser vi ces. xn deployment descriptor file, and packaging
everything into an Enterprise Application Archive (EAR) file that can be deployed on
WebL ogic Server.

There are two ways to assemble a WebL ogic Web Service using Ant tasks:

m Using theservi cegen Ant task, which performs all assembly steps for you.

Theser vi cegen Ant takes as input an EJB JAR file (for EJB-implemented Web
Services) or alist of Java classes (for Java class-implemented Web Services),
and based on information after introspecting the Java code and the attributes of
the Ant task, it automatically generates all the components that make up a

WebL ogic Web Service and packages them into an EAR file.

For detailed information, see “Assembling WebL ogic Web Services Using the
servicegen Ant task” on page 6-3.

m Using avariety of narrowly-focused Ant tasks, such as aut ot ype,
sour ce2wsdd, and so on.

Typically, theser vi cegen Ant task is adequate for assembling most WebL ogic
Web Services. If, however, you want more control over how your Web Service
is assembled, you can use a set of narrowly-focused Ant tasks instead. For
example, you can use the sour ce2wsdd to generate the web- ser vi ces. xm
file, and then you can update this file manualy if you want to add more
information.

For detailed information, see “ Assembling WebL ogic Web Services Using Other
Ant Tasks’ on page 6-6.

For detailed reference information on the Web Services Ant tasks, see Appendix B,
“Web Service Ant Tasks and Command-Line Utilities.”

6-2 Programming WebL ogic Web Services

Assembling WebLogic Web Services Using the servicegen Ant task

Assembling WebLogic Web Services Using
the servicegen Ant task

Theser vi cegen Ant task takes asinput an EJB JAR file or list of Java classes and
creates all the needed Web Service components and packages them into a deployable
EARfile.

What the servicegen Ant Task Does

In particular, the ser vi cegen Ant task:

m Introspects the Java code, looking for public methods to convert into Web
Service operations and non-built-in data types used as parameters or return
values of the methods.

m Createsaweb- servi ces. xnl deployment descriptor file, based on the attributes
of theser vi cegen Ant task and introspected EJB or Java class information.

m Optionaly creates the serialization class that convert the non-built-in data
between its XML and Java representations. |t also creates XML Schema
representations of the Java objects and updates the web- ser vi ces. xni file
accordingly. For thelist of supported non-built-in data types, see “Non-Built-In
Data Types Supported by servicegen and autotype Ant Tasks” on page 6-13.

m Packages all the Web Service components into a Web application WAR file, then
packages the WAR and EJB JAR filesinto adeployable EAR file.

Assembling WebLogic Web Services Automatically: Main
Steps

To assemble a Web Service automatically using the ser vi cegen Ant task:

1. Set your environment.

Programming WebL ogic Web Services 6-3

6 Assembling WebLogic Web Services Using Ant Tasks

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

On UNIX, executethe set Env. sh command, located in the directory
W._HOVE/ ser ver/ bi n, where W._HOVE is the top-level directory of your
WebL ogic Platform installation.

2. Create astaging directory to hold the components of your Web Service.

3. If the Web Service operations are implemented with EJBs, package them, along
with any supporting EJBs, into an EJB JAR file. If the operations are
implemented with Java classes, compile them into classfiles.

For detailed information, refer to Devel oping WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81b/programming/packaging.html.

4. Copy the EJB JAR file and/or Java class files to the staging directory.

5. Inthe staging directory, create the Ant build file (called bui | d. xm by default)
that containsa call to the ser vi cegen Ant task.

For details about specifying the ser vi cegen Ant task, see “Running the
servicegen Ant Task” on page 6-4.

For general information about creating Ant build files, see
http://jakarta.apache.org/ant/manual/.

6. Execute the Ant task or tasks specified inthebui | d. xn file by typing ant in
the staging directory, optionally passing the command a target argument:

pronpt > ant

The Ant task generates the Web Services EAR file in the staging directory which
can then deploy on WebL ogic Server.

Running the servicegen Ant Task

The following sample bui | d. xni , file taken from the
exanpl es. webser vi ces. basi c. st at el essessi on product example, specifiesthat
you will run the ser vi cegen Ant task:

<proj ect name="buil dWebservice" default="ear">
<t arget nane="ear">

6-4 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/programming/packaging.html
http://jakarta.apache.org/ant/manual/

Assembling WebLogic Web Services Using the servicegen Ant task

<servi cegen

dest Ear ="ws_basi c_st at el essSessi on. ear"

cont ext URI =" WebSer vi ces" >

<service
ej bJar ="Hel | oWor| dEJB. j ar"
t ar get Nanespace="http://ww. bea. conf webservi ces/ basi ¢/ st at el esSessi on"
servi ceNarme="Hel | oWor | dEJB"
servi ceURl ="/ Hel | oWor | dEJIB"
gener at eTypes="Tr ue"
expandMet hods="Tr ue"
style="rpc" >

</ service>

</ servi cegen>

</target>

</ proj ect >

In the example, the ser vi cegen Ant task creates one Web Service called
Hel | owor | dEJB. The URI to identify this Web Serviceis / Hel | owor | dEJB; the full
URL to access the Web Serviceis

http://host: port/\WbServices/ Hel | owor| dEIJB

Theser vi cegen Ant task packages the Web Service in an EAR file called
ws_basi c_st at el essSessi on. ear. The EAR file containsaWAR file called
web- ser vi ces. war (default name) that contains all the Web Service components,
such astheweb- ser vi ces. xm deployment descriptor file.

Because the gener at eTypes attributeis set to Tr ue, the WAR file also contains the
seriaization class for any non-built-in data types used as parameters or return values
to the EJB methods. The Ant task introspects the EJBs contained in the

Hel | owor | dEJB. j ar file, looking for public operations and non-built-in data types,
and updates the web- ser vi ces. xml operation and data type mapping sections
accordingly. Because the expandMet hods attribute is also set to Tr ue, the Ant task
lists each public EJB method as a separate operation in the web- ser vi ces. xni file.

Thestyl e="rpc" attribute specifies that the operations in the Web Service are all
RPC-oriented. If the operationsin your Web Service are document-oriented, specify
styl e="docunent ".

Programming WebL ogic Web Services 6-5

6 Assembling WebLogic Web Services Using Ant Tasks

Assembling WebLogic Web Services Using
Other Ant Tasks

6-6

Typicaly, theser vi cegen Ant task is adequate for assembling most WebL ogic Web
Services. If, however, you want more control over how your Web Serviceis
assembled, you can use aset of narrowly-focused Ant tasksinstead. For example, you
can usethe sour ce2wsdd to generate the web- ser vi ces. xm file, and then you can
update this file manually if you want to add more information.

To assemble a WebL ogic Web Service using Ant tasks other than ser vi cegen:

1. Package or compile the backend components that implement the Web Serviceinto
their respective packages. For example, package statel ess session EJBsinto an EJB
JAR file and Java classes into class files.

For detailed instructions, see WebLogic Server Application Packaging at
http://e-docs.bea.com/wls/docs81b/programming/packaging.html.

2. Create the Web Service deployment descriptor file (web- ser vi ces. xm).

If you implemented your Web Service with a Java class, you can use the

sour ce2wsdd Ant task to generate aweb- servi ces. xm file. For details, see
“Running the source2wsdd Ant Task” on page 6-7. If you used the

wsdl 2Ser vi ce Ant task to generate a partial implementation of a Web Service
from an existing WSDL file, then the Ant task already generated a

web- servi ces. xn filefor you.

For all other cases, such as EJB-implemented Web Services, you might haveto
createtheweb- servi ces. xnl file manually. See “Creating the
web-services.xml File Manually: Main Steps’ on page 7-4.

3. If your Web Service uses non-built-in data types, create al the needed
components, such as the serialization class, by using the aut ot ype Ant task to
generate these components automatically, as described in “Running the autotype
Ant Task” on page 6-8.

4. Optionally createaclient JAR fileusing thecl i ent gen Ant task.
See “Running the clientgen Ant Task” on page 6-9.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/programming/packaging.html

Assembling WebLogic Web Services Using Other Ant Tasks

5.

Package all components into a deployable EAR file by using the wspackage Ant
task, as described in “ Running the wspackage Ant task” on page 6-11.

Running the source2wsdd Ant Task

Use the sour ce2wsdd Ant task to generate aweb- ser vi ces. xni deployment
descriptor file from the Java source file that implements a Web Service.

Note: You cannot use this Ant task to generate the web- ser vi ces. xm filefor an

EJB-implemented Web Service; you can only useit for Java
class-implemented Web Service.

To run the sour ce2wsdd Ant task, follow these steps:

1

Create afilecalled bui | d. xnl that contains acall to the sour ce2wsdd Ant task.
See “Sample build.xml Files for the source2wsdd Ant Task.”

Set your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

On UNIX, execute the set Env. sh command, located in the directory
W._HOME/ ser ver/ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

Execute the Ant task or tasks specified inthebui | d. xni file by typing ant in
the same directory asthe bui | d. xnl file:

pronpt > ant

For reference information about the sour ce2wsdd Ant task, see “ source2wsdd” on
page B-31.

Sample build.xml Files for the source2wsdd Ant Task

The following example shows asimplebui | d. xni file:

<proj ect name="bui |l dWebservi ce" defaul t="generate-typeinfo">

<t arget nane="generate-typeinfot">
<sour ce2wsdd

Programming WebL ogic Web Services 6-7

6 Assembling WebLogic Web Services Using Ant Tasks

j avaSour ce="c: \ source\ M/Servi ce.java"
typesl nfo="c:\autotype\types. xm "
ddFi | e="c:\ddfil es\web-services.xm"
serviceURl ="/ MyServi ce" />

</ proj ect >

In the example, the sour ce2wsdd Ant task generates aweb- ser vi ces. xnl filefrom
the Java sourcefile called c: \ sour ce\ MySer vi ce. j ava. It uses non-built-in data
typeinformation fromthec: \ aut ot ype\ t ypes. xni file; thisinformation includes
the XML Schemarepresentation of non-built-in datatypes used as parametersor return
valuesin your Web Service, aswell as data type mapping information that specifies
thelocation of the serialization class, and so on. Y ou typically generate thisfile using
the aut ot ype Ant task.

The sour ce2wsdd Ant task outputs the generated deployment descriptor information
into thefilec: \ ddf i | es\ web- servi ces. xnl . The URI of the Web Serviceis
/ W Servi ce, usedinthefull URL that invokesthe Web Service once it is deployed.

Running the autotype Ant Task

6-8

Usetheaut ot ype Ant task to generate non-built-in data type components, such asthe
serialization class. For thelist of supported non-built-in data types, see “Non-Built-In
Data Types Supported by servicegen and autotype Ant Tasks” on page 6-13.

Torunthe aut ot ype Ant task, follow these steps:

1. Createafilecalled bui | d. xmi that contains acall to the aut ot ype Ant task. For
details, see “ Sample build.xml Files for the Autotype Ant Task.”

2. Set your environment.

On Windows NT, execute the set Env. cnmd command, located in the directory
W._HOVE\ ser ver\ bi n, where W._HOVE is the top-level directory of your
WebL ogic Platform installation.

On UNIX, execute the set Env. sh command, located in the directory
WL._HOVE/ ser ver/ bi n, where W._HOVE is the top-level directory of your
WebL ogic Platform installation.

3. Execute the Ant task or tasks specified inthe bui | d. xm file by typing ant in
the same directory asthe bui | d. xn file:

pronpt > ant

Programming WebL ogic Web Services

Assembling WebLogic Web Services Using Other Ant Tasks

For reference information about the aut ot ype Ant task, see “autotype” on page B-6.

Sample build.xml Files for the Autotype Ant Task

The following example showsasimplebui | d. xni file:

<proj ect nane="buil dWebservi ce" defaul t="generate-typei nfo">
<t arget nane="generate-typeinfot">
<autotype javatypes="nypackage. M\yType"
t ar get Nanmespace="http: // ww. f oobar . com aut ot yper "
packageNane="a. package. nane"
destDir="d:\output" />
</target>
</ pr oj ect >

In the example, the aut ot ype Ant task creates the non-built-in data type components
for aJavaclasscaled nypackage. My Type. The package name used in the generated
seriadization classisa. package. nane. Theserialization Javaclassand XML schema
inforamtion isgenerated and placed inthed: \ out put directory. Thegenerated XML
Schema and type-mapping information arein afile called t ypes. xni in this output
directory.

The following excerpt from asample bui | d. xm file shows another way to use the
aut ot ype task:
<autotype wsdl ="file:\wsdl s\ myWsDL"
t ar get Namespace="http: // ww. f oobar . com aut ot yper "
packageNane="a. package. nane"
destDir="d:\output" />

This exampleis similar to the first, except that instead of starting with a Java
representation of a data type, the example starts with an XML Schema representation
embedded within the WSDL of aWeb Service. In this case, the task generates the
corresponding Java representation.

Running the clientgen Ant Task

Torunthecl i ent gen Ant task and automatically generate aclient JAR file:

1. Createafilecalledbui | d. xm that containsacall tothecl i ent gen Ant task. For
details, see “ Sample build.xml Filesfor the clientgen Ant Task.”

2. Set your environment.

Programming WebL ogic Web Services 6-9

6 Assembling WebLogic Web Services Using Ant Tasks

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

On UNIX, executethe set Env. sh command, located in the directory
W._HOVE/ ser ver/ bi n, where W._HOVE is the top-level directory of your
WebL ogic Platform installation.

3. Executethe Ant task or tasks specified in the bui | d. xml file by typing ant in
the same directory asthe bui | d. xni file:

pronpt > ant

For reference information about the cl i ent gen Ant task, see “clientgen” on page
B-10.

Sample build.xml Files for the clientgen Ant Task

The following example showsasimple bui | d. xn file:

<proj ect name="buil dWebservi ce" default="generate-client">
<target nanme="generate-client">
<cli entgen ear="c:/ myapps/ nyapp. ear"
servi ceNane="nyServi ce"
packageName="myapp. myservice.client"
useSer ver Types="Tr ue"
clientJar="c:/nyapps/nyService_client.jar" />
</target>
</ pr oj ect >

In the example, thecl i ent gen Ant task creates the

c:/ myapps/ nyService_client.jar client JAR file that contains the
service-specific client interfaces and stubs and the serialization classused to invokethe
WebL ogic Web Service called nySer vi ce contained in the EAR file

c:/ myapps/ nyapp. ear . It packagesthe client interface and stub filesinto a package
called nyapp. nyservi ce. cl i ent. TheuseSer ver Types attribute specifies that the
cl i ent gen Ant task should get the Javaimplementation of all non-built-in data types
used in the Web Servicefromthec: / nyapps/ nyapp. ear filerather than generating
Java code to implement the data types.

The following excerpt from asamplebui | d. xni file shows another way to use the
cl i ent gen task:

<clientgen wsdl ="http://exanpl e. conl myapp/ myservi ce. wsdl "
packageName="rnyapp. myservi ce.client"

6-10 Programming WebL ogic Web Services

Assembling WebLogic Web Services Using Other Ant Tasks

clientJar="c:/nyapps/ myService_client.jar"
/>

In the example, thecl i ent gen task creates aclient JAR file (called

c: / myapps/ nyServi ce_client.jar) toinvoke the Web Service described in the
http://exanpl e. com nyapp/ nyservi ce. wsdl WSDL file. It packages the
interface and stub filesin the myapp. nyser vi ce. cl i ent package.

Running the wspackage Ant task

Usethewspackage Ant task to package the various components of aWeb Serviceinto
adeployable EAR file.

To run the wspackage Ant task, follow these steps:

1. Createafilecaledbui | d. xm that containsacall to thewspackage Ant task. For
details, see “ Sample build.xml Files for the wspackage Ant Task.”

2. Set your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

On UNIX, execute the set Env. sh command, located in the directory
W._HOMVE/ ser ver/ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

3. Execute the Ant task or tasks specified inthe bui | d. xni file by typing ant in
the same directory asthe bui | d. xnl file:

pronpt > ant

For reference information about the wspackage Ant task, see “wspackage” on page
B-37.
Sample build.xml Files for the wspackage Ant Task

The following example showsasimplebui | d. xm filefor creating adeployable EAR
file for a Java class-implemented Web Service:

<proj ect nane="buil dWebservi ce" defaul t="generate-typei nfo">
<t arget nane="generate-typeinfot">

Programming WebL ogic Web Services 6-11

6 Assembling WebLogic Web Services Using Ant Tasks

<wspackage
out put ="c: \ nyWebServi ce. ear"
cont ext URI ="web_servi ces"
codecDi r="c:\ aut ot ype"
webAppd asses="exanpl e. ws2j . servi ce. Si npl eTest"
ddFi | e="c:\ddfil es\web-services. xm" />

</ proj ect >

In the example, thewspackage Ant task creates an EAR file called

c:\ myWebServi ce. ear. The context URI of the Web Service, used in the full URL
that invokesit, isweb_ser vi ces. Theserializer classthat containsthe serializer class
for the non-built-in datatypesislocated inthec: \ aut ot ype directory. The Javaclass
that implements the Web Serviceis called exanpl e. ws2j . servi ce. Si npl eTest
and will be packaged in the VEB- | NF/ ¢l asses directory of the Web application.
Finally, the existing deployment descriptor fileisc: \ ddf i | es\ web- servi ces. xni .

The Web Service EAR File Package

Web Services are packaged into standard Enterprise Application EAR files that
contain a Web application WAR file along with the EJB JAR files.

6-12 Programming WebL ogic Web Services

Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks

Thefollowing graphic shows the hierarchy of atypical WebL ogic Web ServicesEAR
file.

EARfile

—— META-INF (Directory that contains standard application.xml file)

— WARfile

i:cl ient.jar (Downloadable client JARfile, one per Web Service)
WEB-INF

web-services.xml (Web Services deployment descriptor file)

classes (Directory that contains the serialization class,
handler implementations, Java class components, and all
other supporting classes.)

lib (Directory that contains JAR files of Java classes.)

— EJB JARfTile| (3aRfile containing the EJBs that implement the Web Service.)

Non-Built-In Data Types Supported by
servicegen and autotype Ant Tasks

Thetablesin the following sections list the non-built-in XML and Java data types for
which the ser vi cegen and aut ot ype Ant tasks can generate data type components,
such asthe serializer class, the Java or XML representation, and so on.

If your XML or Javadatatypeis not listed in these tables, and it is not one of the
built-in datatypeslisted in “Using Built-In Data Types’ on page 5-12, then you must
create the non-built-in data type components manually. For details, see Chapter 11,
“Using Non-Built-In Data Types.”

Programming WebL ogic Web Services 6-13

6 Assembling WebLogic Web Services Using Ant Tasks

Warning: The serializer class and Javaand XML representations generated by the
aut ot ype, servi cegen, and cl i ent gen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components’ on page 6-16.

Supported XML Non-Built-In Data Types

The following table lists the supported XML Schema non-built-in data types. If your
XML datatypeislistedinthetable, thentheser vi cegen and aut ot ype Ant taskscan
generate the serializer class to convert the data between its XML and Java
representations, as well as the Java representation and type mapping information for
theweb- ser vi ces. xnl deployment descriptor.

For details and examples of the data types, see the JAX-RPC specification.

Table 6-1 Supported Non-Built-ln XML Schema Data Types

XML Schema Data Type

Equivalent Java Data Type or
Mapping M echanism

Enumeration

Typesafe enumeration pattern. For
details, see Section 4.2.4 of the JAX-RPC
specification.

<xsd: conpl eType> with elements of both JavaBean
simple and complex types.
<xsd:attribute>in Property of a JavaBean

<xsd: conpl exType>

Derivation of new simpletypesby restriction of
an existing simple type.

Equivaent Java data type of smpletype.

Facets used with restriction element.

Note: Thebase primitivetype must be one of
thefollowing: st ri ng, deci mal ,
fl oat,ordoubl e. Patternfacetis
not enforced.

Restriction enforced during serialization
and deserialization.

<xsd: |ist>

6-14 Programming WebL ogic Web Services

Array of thelist datatype.

Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks

Table 6-1 Supported Non-Built-ln XML Schema Data Types

XML Schema Data Type

Equivalent Java Data Type or
Mapping M echanism

Array derived from soapenc: Array by
restriction using thewsdl : arr ayType
attribute.

Array of the Java equivalent of the
ar rayType datatype.

Array derived from soapenc: Array by
restriction.

Array of Java equivalent.

Derivation of acomplex type from asimple
type.

JavaBean with a property called
si npl eCont ent of typeStri ng.

<xsd: anyType>

j ava. | ang. Qoj ect .

<xsd: ni | >and <xsd: ni | | abl e> attribute

Javanul | value.

If the XML datatypeis built-in and
usually mapsto aJavaprimitivedatatype
(suchasi nt orshort), thenthe XML
datatypeis actually mapped to the
equivalent object wrapper type (such as
java. |l ang. I nt eger or

j ava.l ang. Short).

Derivation of complex types by extension

Mapped using Javainheritance.

Abstract types

Abstract Java data type.

Supported Java Non-Built-In Data Types

The following table lists the supported Java non-built-in data types. If your Java data
typeislistedinthetable, then theser vi cegen and aut ot ype Ant tasks can generate
the serializer classto convert the data between its Javaand XML representations.

Table 6-2 Supported Non-Built-In Java Data Types

Java Data Type

Equivalent XML Schema Data
Type

Array of any built-in Java data type.

Programming WebL ogic Web Services

SOAP Array.

6-15

6 Assembling WebLogic Web Services Using Ant Tasks

Table 6-2 Supported Non-Built-In Java Data Types

Java Data Type Equivalent XML Schema Data
Type

JavaBean whosepropertiesareany built-inJava <xsd:sequence>

data type.

javautil.List SOAP Array.

javauutil. ArrayList SOAP Array.

javauutil.LinkedList SOAP Array.

java.util .V ector SOAP Array.

javalang.Object <xsd:anyType>

Note: The datatype of the runtime object
must be aknown type: either abuilt-in
datatype or onethat hastype mapping
information.

Non-Roundtripping of Generated Data Type
Components

6-16

Whenyouusetheser vi cegen or aut ot ype Ant tasksto createthe serializer classand
Javaor XML representation of non-built-in datatypes, it isvery important to note that
the process cannot be round-tripped. This meansthat if, for example, you use the
aut ot ype Ant task to generate the Java representation of an XML Schema datatype,
and then use aut ot ype to create an XML Schema data type from the generated Java
type, the original and generated XML Schema data type will not necessarily ook the
same, although they both describe the same XML data. Thisis aso trueif you start
from Java, generate an XML Schema, then generate a new Java data type from the
generated XML Schema: the origianal and generated Java type will not necessarily
look exactly the same. One possible difference, for example, isthat the origina and
generated Java type might list the parameters of the constructor in adifferent order.

Programming WebL ogic Web Services

Deploying WebLogic Web Services

Thisbehavior hasavariety of repercussions. For example, assume you are devel oping
aWeb Service from an existing statel ess session EJB that uses non-built-in datatypes.
Y ou use the aut ot ype Ant task to generate the serializer class and Javaand XML
representation of the data types and you use this generated code in your server-side
code that implements your Web Service. Later you usethecl i ent gen Ant task to
generatethe Web Service-specific client JARfile, which alsoincludesaserializer class
and the Java representation of the non-built-in data types. However, because

cl i ent gen by default generates these components from the WSDL of the Web
Service (and thus from an XML Schema), thecl i ent gen-generated client-side Java
representation might look different from the aut ot ype-generated server-side Java
code. Thismeansthat you might not necessarily be able to reuse any server-side code
that handles the data typein your client application. If you want thecl i ent gen Ant
task to always use the generated serializer class and code from the WebL ogic Web
Service EAR file, specify the user Ser ver Types attribute.

Deploying WebLogic Web Services

Deploying a WebL ogic Web Service refers to making it available to remote clients.
Because WebL ogic Web Services are packaged as standard J2EE Enterprise
applications, deploying a Web Service isthe same as deploying an Enterprise
application.

For detailed information on deploying Enterprise applications, see Deploying
WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81b/deployment/index.html.

Programming WebL ogic Web Services 6-17

http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

6 Assembling WebLogic Web Services Using Ant Tasks

6-18 Programming WebL ogic Web Services

CHAPTER

{ Assembling aWebLogic
Web Service Manually

The following sections provide information about assembling a WebL ogic Web
Service manually:

m “Overview of Assembling a WebL ogic Web Service Manually” on page 7-1
m “Assembling a WebL ogic Web Service Manually: Main Steps’ on page 7-2

m “Overview of the web-services.xml File” on page 7-3

“Creating the web-services.xml File Manually: Main Steps’ on page 7-4

“Sample web-servicesxml Files’ on page 7-10

Overview of Assembling a WebLogic Web
Service Manually

Assembling a WebL ogic Web Service refers to gathering all the components of the
service (such as the EJB JAR file, the SOAP message handler classes, and so on),
generating the web- ser vi ces. xm deployment descriptor file, and packaging
everything into an Enterprise Application EAR filethat can be deployed on WebL ogic
Server.

Programming WebL ogic Web Services 7-1

I Assembling a WebLogic Web Service Manually

Typically you never assemble a WebL ogic Web Service manually, because the
procedure is complex and time-consuming. Rather, use the WebL ogic Ant tasks such
asser vi cegen, aut ot ype, sour ce2wsdd, and so on to automatically generate all the
needed components and package them into a deployable EAR file.

If, however, your Web Serviceis so complex that the Ant tasks are not ableto generate
the needed components, or you want full control over al aspects of the Web Service
assembly, then use this chapter as a guide to assembling the Web Service manually.

Assembling a WebLogic Web Service
Manually: Main Steps

7-2

1. Package or compile the backend components that implement the Web Serviceinto
their respective packages. For example, package statel ess session EJBsinto an EJB
JAR file and Java classes into classfiles.

For detailed instructions, see WebLogic Server Application Packaging at
http://e-docs.bea.com/wls/docs81b/programming/packaging.html.

2. Create the Web Service deployment descriptor file (web- ser vi ces. xni).

For a description of the web- ser vi ces. xm file, see “Overview of the
web-services.xml File” on page 7-3. For detailed stepsfor creating the file
manually, see “ Creating the web-services.xml File Manually: Main Steps’ on

page 7-4.

3. If your Web Service uses non-built-in data types, create al the needed
components, such as the serialization class.

For detailed information on creating these components manually, see Chapter 11,
“Using Non-Built-In Data Types.”

4. Package all componentsinto a deployable EAR file.

When packaging the EAR file manually, be sure to put the correct Web Service
components into a Web application WAR file. For details about the WAR and
EAR file hierarchy, see “The Web Service EAR File Package” on page 6-12.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/programming/packaging.html

Overview of the web-services.xml File

For instructions on creating WAR and EAR files, see WebL ogic Server
Application Packaging at
http://e-docs.bea.com/wls/docs81b/programming/packaging.html.

Overview of the web-services.xml File

Theweb- servi ces. xm deployment descriptor file contains information that
describes one or more WebL ogic Web Services, such as the backend components that
implement the Web Service; the non-built-in data types used as parameters and return
values; the SOAP message handlers that intercept SOAP messages; and so on. Asis
true for all deployment descriptors, web- servi ces. xml isan XML file.

Based on the contents of the web- ser vi ces. xm deployment descriptor file,

WebL ogic Server dynamically generates the WSDL of a deployed WebL ogic Web
Service. See “The WebL ogic Web Services Home Page and WSDL URLS’ on page
8-24 for details on getting the URL of the dynamically generated WSDL.

A single WebL ogic Web Service consists of one or more operations; you can
implement each operation using methods of different backend components and SOAP
message handlers. For example, an operation might be implemented with asingle
method of a stateless session EJB or with a combination of SOAP message handlers
and amethod of a stateless session EJB.

A singleweb- servi ces. xni file contains a descritpion of at least one, and maybe
more, WebL ogic Web Services.

If you are assembling a Web Service manually (necessary, for example, isthe service
uses SOA P message handlers and handler chains), you need to create the

web- servi ces. xm filemanually. If you assembleaWebL ogic Web Servicewith the
servi cegen Ant task, you do not need to create the web- ser vi ces. xmi file
manually, because the Ant task generates one for you based on its introspection of the
EJBs, the attributes of the Ant task, and so on.

Even if you need to manually assemble a Web Service, you can use the ser vi cegen
Ant task to create a basic template, and then use this document to help you update the
generated web- ser vi ces. xnml with the extrainformation that ser vi cegen does not
provide.

Programming WebL ogic Web Services 7-3

http://e-docs.bea.com/wls/docs81b/programming/packaging.html
http://e-docs.bea.com/wls/docs81b/programming/packaging.html

I Assembling a WebLogic Web Service Manually

Creating the web-services.xml File
Manually: Main Steps

Theweb- servi ces. xnm deployment descriptor file describes one or more WebL ogic
Web Service. Thefileincludesinformation about the operationsthat make up the Web
Services, the backend components that implement the operations, data type mapping
information about non-built-in data types used as parameters and return values of the
operations, and so on. See* Sampleweb-services.xml Files” on page 7-10 for complete
examplesof web- ser vi ces. xm filesthat describe different kinds of WebL ogic Web
Services. You can use any text editor to create the web- ser vi ces. xni file.

For detailed descriptions of each element described in this section, see Appendix A,
“WebL ogic Web Service Deployment Descriptor Elements.”

The following example shows asimple web- ser vi ces. xni file:

<web- servi ces>
<web- servi ce name="st ockquot es" target Namespace="http://exanpl e. cont
uri ="/ mySt ockQuot eServi ce" >
<conponent s>
<st at el ess-ej b nane="si npl eSt ockQuot eBean" >
<ej b-1ink path="stockquot eapp. | ar #St ockQuot eBean" />
</ st atel ess-ej b>
</ conponent s>
<oper ati ons>
<operati on method="get Last TradePrice"
conponent =" si npl eSt ockQuot eBean" />

</ operations>
</ web- servi ce>
</ web-servi ces>
To create theweb- servi ces. xn file manualy:
1. Createtheroot <web- servi ces> element which contains all other elements:
<web- servi ces>
</ web-servives>

2. If one or more of your Web Services include SOAP message handlers to intercept
SOAP messages, create a<handl er - chai ns> child element of the
<web- ser vi ces> root element and include all the relevant child elementsto

7-4 Programming WebL ogic Web Services

Creating the web-services.xml File Manually: Main Steps

describe the handlersin the handler chain, the order in which they should be
invoked, and so on. For details, see “Updating the web-services.xml File with
SOAP Message Handler Information” on page 12-16.

. For each Web Service you want to define, follow these steps:

a

Create a<web- ser vi ce> child element of the <web- ser vi ces> element. Use
the nane, t ar get Nanespace, and ur i attributesto specify the name of the
Web Service, itstarget namespace, and the URI that clients will useto invoke
the Web Service, as shown in the following example:

<web- servi ce nane="st ockquote"
t ar get Nanespace="http:// exanpl e. cont
uri ="nySt ockQuot eServi ce">

</ \./\Eb- servi ce>
To specify that the operationsin your Web Service are all document-oriented,

usethest yl e="docunent " attribute. The default value of thestyl e
attribute isr pc, which means the operations are all RPC-oriented.

Create a<conmponent s> child element of the <web- ser vi ce> element that
lists the backend components that implement the operations of the Web
Service. For details, see “ Creating the <components> Element” on page 7-6.

If the operationsin your Web Service use non-built-in data types as parameters
or return values, add data type mapping information by creating <t ypes> and
<t ype- mappi ng> child elements of the <web- ser vi ce> element. For details,
see “Creating the Data Type Mapping File” on page 11-11.

Note: You do not have to perform this step if the operations of your Web
Service use only built-in datatypes as parameters or return values. See
“Using Built-In Data Types’ on page 5-12 for alist of the supported
built-in data types.

Create an <oper at i ons> child element of the <web- ser vi ce> element that
lists the operations that make up the Web Service:

<operations xm ns:xsd="http://ww. w3. org/ 2001/ XM_Schena" >
</ oper ati ons>

Within the <oper at i ons> element, list the operations defined for the Web
Service. For details, see “ Creating <operation> Elements’ on page 7-7.

Programming WebL ogic Web Services 7-5

I Assembling a WebLogic Web Service Manually

Creating the <components> Element

7-6

Use the <conponent s> child element of the <web- ser vi ce> element to list and
describe the backend components that implement the operations of a\Web Service.
Each backend component has aname attribute that you later use when describing the
operation that the component implements.

Note: If you are creating a SOAP message handler-only type of Web Servicein
which handlers and handler chains do all the work and never execute a
backend component, you do not specify a <conponent s> element in the
web- servi ces. xm file. For all other typesof Web Servicesyou must declare
a<conponent s> element.

Y ou can list one of the following types of backend components:

B <statel ess-ejb>

This element describes a statel ess EJB backend component. Use either the

<ej b- | i nk> child element to specify the name of the EJB and the JAR file
whereit islocated or the <j ndi - name> child element to specify the INDI name
of the EJB, as shown in the following example:

<conponent s>
<statel ess-ej b name="si npl eSt ockQuot eBean" >
<ej b-1ink path="stockquot eapp. j ar#St ockQuot eBean" />
</ st at el ess-ej b>
</ conponent s>

B <java-class>
This element describes a Java class backend component. Use the cl ass- nanme

attribute to specify the fully qualified path name of the Java class, as shownin
the following example:

<conponent s>
<j ava-cl ass nane="cust onC ass"
cl ass- nane="nmnycl asses. VOO ass" />
</ conponent s>

Programming WebL ogic Web Services

Creating the web-services.xml File Manually: Main Steps

Creating <operation> Elements

The <oper at i on> element describes how the public operations of a WebL ogic Web
Service are implemented. (The public operations are those that are listed in the Web
Service's WSDL and are executed by a client application that invokes the Web
Service.) The following example shows an <oper at i on> declaration:

<oper ation nanme="get Quote"
conponent =" si nmpl eSt ockQuot eBean"
nmet hod="get Quot e" >

<par ans>
<par am name="i nl" style="in" type="xsd:string" |ocation="Header"/>
<par am nane="in2" style="in" type="xsd:int" |ocation="Header"/>
<return-param nane="result" type="xsd:string" |ocation="Header"/>
</ par ans>

</ operati on>

Typically, every instance of an <oper at i on> element intheweb- servi ces. xnl file
includes the nane attribute which trandates into the public name of the Web Service
operation. The only exceptioniswhen you use the met hod="*" attribute to specify all
methods of an EJB or Javaclassin asingle <oper at i on> element; in this case, the
public name of the operation is the name of the method.

Use the attributes of the <oper at i on> element in combination to specify different
kinds of operations. For details, see “ Specifying the Type of Operation” on page 7-7.

Use the <par ans> element to optionally group together the parameters and return
value of the operation. For details, see “ Specifying the Parameters and Return Value
of the Operation” on page 7-9.

Specifying the Type of Operation

Usetheattributes of the<oper at i on> element in different combination to identify the
type of operation, the type of component that implementsit, whether it is a one-way
operation, and so on.

Note: For clarity, the examplesin this section do not declare any parameters.

The following examples show how to declare avariety of different operations:

m To specify that an operation is implemented with just a method of a stateless
session EJB, use the nane, conponent , and net hod attributes, as shown in the
following example:

Programming WebL ogic Web Services 7-7

I Assembling a WebLogic Web Service Manually

<operation name="get Quote"
conmponent =" si npl eSt ockQuot eBean"
met hod="get Quot e" >

</ operation>

m To specify with asingle <oper at i on> element that you want to include al the
methods of an EJB or Javaclass, usethe met hod="*"attribute; in this case, the
public name of the operation is the name of the method:

<operation conponent ="si npl eSt ockQuot eBean"
nmet hod="*">
</ operati on>

m To specify that an operation only receives data and does not return anything to
the client application, add thei nvocat i on- st yl e attribute:

<operati on name="get Quote"
conponent =" si npl eSt ockQuot eBean"
met hod="get Quot e(j ava. | ang. String)"
i nvocati on-styl e="one-way" >

</ operation>

The example also shows how to specify the full signature of a method with the
met hod attribute. You only need to specify the full signature of a method if your

EJB or Java class overloads the method and you thus need to unambiguously
declare which method you are exposing as a Web Service operation.

m To specify that an operation is implemented with a SOAP message handler chain
and a method of a statel ess session EJB, use the name, conponent , net hod, and
handl er - chai n attributes:

<operati on name="get Quot e"
conmponent =" si npl eSt ockQuot eBean"
met hod="get Quot e"
handl er - chai n="nyHandl er" >

</ operati on>

m To specify that an operation is implemented with just a SOAP message handler
chain, usejust the name and handl er - chai n attributes:

<operation name="j ust Handl er"
handl er - chai n="rnyHandl er" >

</ operation>

7-8 Programming WebL ogic Web Services

Creating the web-services.xml File Manually: Main Steps

Specifying the Parameters and Return Value of the Operation

Usethe <par ams> element to explicitly declare the parametersand return values of the
operation.

Y ou do not have to explicitly list the parameters or return values of an operation. If an
<oper at i on> element does not have a <par ans> child e ement, WebL ogic Server
introspects the backend component that implements the operation to determine its
parameters and return values. When generating the WSDL of the Web Service,
WebL ogic Server usesthe names of the corresponding method’ sparametersand return
value.

Y ou explicitly list an operation’ s parameters and return values when you need to:

m Make the name of the parameters and return values in the generated WSDL
different from those of the method that implements the operation.

m Map aparameter to aname in the SOAP header request or response.
m Useout or in-out parameters.

Use the <par an child element of the <par ans> element to specify a single input
parameter and the <r et ur n- par ane child element to specify the return value. Y ou
must list theinput parametersin the same order in which they are defined inthe method
that implements the operation. The number of <par anr elements must match the
number of parameters of the method. Y ou can specify only one <r et ur n- par ane
element.

Use the attributes of the <par ane and <r et ur n- par an® elements to specify the part
of the SOAP message where parameter islocated (the body or header), the type of the
parameter (in, out, or in-out), and so on. Y ou must always specify the XML Schema
datatype of the parameter using thet ype attribute. The following examples show a
variety of input and return parameters.

m To specify that a parameter is a standard input parameter, located in the header
of the request SOAP message, usethe st yl e and | ocat i on attributes as shown:

<par am nane="i nparant style="in"
location = "Header" type="xsd:string" />

m Out and in-out parameters enable an operation to return more than one return
value (in addition to using the standard <r et ur n- val ue> element.) The
following sample <par anm> element shows how to specify that a parameter is an
in-out parameter, which meansthat it acts as both an input and output parameter:

Programming WebL ogic Web Services 7-9

I Assembling a WebLogic Web Service Manually

<par am nanme="i nout par ant’ styl e="i nout"
type="xsd:int" />

Because the default value of thel ocat i on attribute is Body, both the input and
output parameter values are found in the body of the SOAP message.

m Thefollowing example shows how to specify a standard return value located in
the header of the response SOAP message:

<return-param nane="result" | ocation="Header"
type="xsd: string" />

Optionally use the <f aul t > child element of the <par ans> element to specify your
own Java exception that is thrown if there is an error while invoking the operation.
This exception will be thrown in addition to thej ava. r mi . Renot eExcept i on
exception. For example:

<fault name="MyServi ceException"
cl ass- nane="ny. exceptions. MyServi ceException" />

Sample web-services.xml Files

The following sections describe sample web- ser vi ces. xm filesfor the following
types of WebL ogic Web Services:

m EJB Component Web Service With Built-In Data Types

m EJB Component Web Service With Non-Built-In Data Types

m EJB Component and SOAP Message Handler Chain Web Service
m SOAP Message Handler Chain-Only Web Service

EJB Component Web Service With Built-In Data Types

One kind of WebL ogic Web Service isimplemented using a stateless session EJB
whose parameters and return values are one of the built-in data types. The following
Javainterface is an example of such an EJB:

7-10 Programming WebL ogic Web Services

Sample web-services.xml Files

public interface SinpleStockQuoteService extends javax.ejb. EJBObj ect {
public float getLastTradePrice(String ticker) throws java.rm .RenoteException;

}

Theweb- ser vi ces. xnl deployment descriptor for aWeb Service implemented with
this sample EJB can be as follows:

<web- servi ces>
<web- servi ce nanme="st ockquotes" target Nanespace="http://exanpl e.cont
uri ="/ mySt ockQuot eServi ce" >
<conponent s>
<statel ess-ej b name="si npl eSt ockQuot eBean" >
<ej b-1ink path="stockquot eapp.j ar#St ockQuot eBean" />
</ statel ess-ej b>
</ conponent s>
<oper ati ons>
<operation method="get Last TradePri ce"
conponent =" si npl eSt ockQuot eBean" />

</ operations>
</ web- servi ce>
</ web- servi ces>

The example shows a Web Service called st ockquot es. The Web Serviceis
implemented with astatel ess session EJB whose <ej b- nane> intheej b-j ar. xn file
isSt ockQuot eBean and ispackaged inthe EJB JAR filecalled st ockquot eapp. j ar .
Theinternal name of this component issi npl eSt ockQuot eBean. The Web Service
has one operation, called get Last Tr adePri ce, the same as the EJB method name.
The input and output parameters are inferred from the method signature and thus do
not need to be explicitly specified in theweb- servi ces. xni file.

Note: Theservi cegen Ant task does not include the methods of EJBObj ect when
generating the list of operationsin the web- servi ces. xni file.

The previous example shows how to explicitly list an operation of aWeb Service. You
can, however, implicitly expose all the public methods of an EJB by including just one
<oper ati on net hod="*"> element, as shown in the following example:

<operations>
<operation method="*"
conponent ="si npl eSt ockQuot eBean" />
</ operations>

If your Web Service supports only HTTPS, then use the pr ot ocol attribute of the
<web- ser vi ce> element, as shown in the following example:

<web- servi ce nane="st ockquot es"
target Nanmespace="htt p: // exanpl e. cont

Programming WebL ogic Web Services 7-11

I Assembling a WebLogic Web Service Manually

uri ="/ mySt ockQuot eServi ce"
protocol ="https" >

</ web-servi ce>

EJB Component Web Service With Non-Built-In Data

Types

A more complex type of Web Service is one whose operations take non-built-in data
types as parameters or return values. Because these non-built-in data types do not
directly map to a XML/SOAP data type, you must describe the datatype in the

web- servi ces. xn file.

For example, the following interface describes an EJB whose two methods return a
TradeResul t object:

public interface Trader extends EJBObject {
public TradeResult buy (String stockSymbol, int shares)
throws Renot eExcepti on;
public TradeResult sell (String stockSynbol, int shares)
throws Renot eExcepti on;

}

The Tr adeResul t classlookslike the following:

public class TradeResult inplenents Serializable {

private int nunber Tr aded;
private String stockSynbol;

public TradeResult() {}

public TradeResult(int nt, String ss) {
nunber Traded = nt;
stockSynbol = ss;

}

public int getNunberTraded() { return nunberTraded; }
public void set Number Traded(i nt nunber Traded) ({
t hi s. nunber Traded = nunber Tr aded; }

public String getStockSynbol () { return stockSynbol; }
public void setStockSynbol (String stockSynbol) {
this. stockSynbol = stockSynbol; }

7-12 Programming WebL ogic Web Services

Sample web-services.xml Files

The following web- ser vi ces. xm file describes a Web Service implemented with
this EJB:

<web- servi ces>

<web- servi ce nane="Trader Servi ce"
uri ="/ Trader Servi ce"
t ar get Nanespace="http://ww. bea. conf exanpl es/ Tr ader " >

<types>
<xsd: schema xm ns: xsd="htt p://ww. w3. org/ 2001/ XM_Scherma"
xm ns: st ns="j ava: exanpl es. webservi ces"
attri but eFor nDef aul t="qual i fied"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="j ava: exanpl es. webservi ces" >
<xsd: conpl exType nanme="TradeResul t">
<xsd: sequence><xsd: el ement nmaxQccurs="1" nane="st ockSynbol "
type="xsd: string" mnCccurs="1">
</ xsd: el enent >
<xsd: el enent nmaxCccurs="1" nanme="nunber Tr aded"
type="xsd:int" mnCccurs="1">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schena>
</types>

<t ype- mappi ng>
<t ype- mappi ng-entry
deseri al i zer =" exanpl es. webser vi ces. TradeResul t Codec"
serializer="exanpl es. webservi ces. TradeResul t Codec"
cl ass- nane="exanpl es. webser vi ces. TradeResul t"
xm ns: pl="j ava: exanpl es. webservi ces"
type="pl: TradeResul t" >
</type- mappi ng-entry>
</ type- mappi ng>

<conponent s>
<statel ess-ej b name="ej bconp" >
<ej b-link path="trader.jar#Trader Service" />
</ st atel ess-ej b>
</ conponent s>

<oper ati ons>
<operation nethod="*" conponent ="ej bconp" >

</ operati on>
</ oper ati ons>

</ web- servi ce>

Programming WebL ogic Web Services ~ 7-13

I Assembling a WebLogic Web Service Manually

</ web-servi ces>

Inthe example, the<t ypes> element uses XML Schemanotation to describethe XML
representation of the Tr adeResul t datatype. The<t ype- mappi ng> element contains
an entry for each datatype described in the <t ypes> element (in this case thereisjust
one: Tr adeResul t .) The <t ype- mappi ng- ent r y> lists the serialization class that
converts the data between XML and Java, as well as the Java class file used to create
the Java object.

EJB Component and SOAP Message Handler Chain Web
Service

Another type of Web Service isimplemented with both a stateless session EJB
backend component and a SOA P message handler chain that interceptsthe request and
response SOAP message. The following sample web- ser vi ces. xni file describes
such aWeb Service:

<web- servi ces>

7-14

<handl er - chai ns>
<handl er - chai n nane="subm t Or der Crypt 0" >

<handl er cl ass-nane="com exanpl e. security. Encrypt Decrypt">
<init-paranms>
<i nit-param nane="el enent ToDecrypt" val ue="credit-info" />
<init-param nane="el ement ToEncrypt" val ue="order-nunber" />
</init-paranms>
</ handl er >
</ handl er - chai n>

</ handl er - chai ns>

<web-servi ce target Nanespace="http://exanpl e.cont’ nane="nyor der proc"

uri ="nyOrder Processi ngServi ce">
<conponent s>
<statel ess-ej b nane="or der bean">
<ej b-1ink path="nyEJB. | ar #Or der Bean" />
</ st at el ess-ej b>
</ conponent s>
<operations xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema" >
<operation name="subm tOrder" method="submt"
conponent =" or der bean"
handl er - chai n="subni t Or der Crypt 0" >
<par ans>
<par am name="purchase-order" style="in" type="xsd:anyType" />
<r et urn- param nane="or der - nunber" type="xsd:string" />

Programming WebL ogic Web Services

Sample web-services.xml Files

</ par ans>
</ operati on>
</ oper ati ons>
</ web- servi ce>
</ web- servi ces>

The example shows aWeb Servicethat includesa SOA P message handler-chain called
subni t Or der Cr ypt o used for decrypting and encrypting information in the SOAP
request and response messages. The handler chain includes one handler, implemented
with thecom exanpl e. security. Encrypt Decr ypt Javaclass. The handler takes
two initialization parameters that specify the elementsin the SOA P message that need
to be decrypted and encrypted.

The Web Service defines one statel ess session EJB backend component called
or der bean.

The subni t O der operation shows how to combine a handler-chain with a backend
component by specifying the et hod, conponent , and handl er - chai n attributesin
combination. When aclient application invokesthe subni t Or der operation, the
submi t Or der Cr ypt o handler chain first processes the SOAP request, decrypting the
credit card information. The handler chain then invokesthe subni t () method of the
or der bean EJB, passing it the modified parameters from the SOA P message,
including the pur chase- or der input parameter. The subni t () method then returns
an or der - number , which is encrypted by the handler chain, and the handler chain
finally sends a SOA P response with the encrypted information to the client application
that originally invoked the subni t Or der operation.

SOAP Message Handler Chain-Only Web Service

Y ou can also implement aWebL ogic Web Service with just a SOAP message handler
chain and never invoke a backend component. This type of Web Service might be
useful, for example, as afront end to an existing workflow processing system. The
handler chain simply takes the SOAP message request and hands it over to the
workflow system, which performs all the further processing.

The following sample web-services.xml file describes such a Web Service:

<web- servi ces>
<handl er - chai ns>
<handl er - chai n nanme="ent er Wr kf | owChai n" >
<handl er cl ass-nane="com exanpl e. Wr KFl owEnt ry" >
<init-paranms>

Programming WebL ogic Web Services 7-15

Assembling a WebLogic Web Service Manually

<i ni t-param nane="wor kf | ow eng-j ndi - nane"
val ue="wor kf | ow. entry" />
</init-paranms>
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>

<web-service target Nanespace="http://exanpl e. cont
name="mywor kf | ow' uri ="nmyWr kf | owSer vi ce" >
<operations xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schenma" >
<operati on nanme="ent er Wr kf | ow'
handl er - chai n="ent er Wr kf | owChai n"
i nvocati on-styl e="one-way" />
</ oper ati ons>
</ web- servi ce>

</ web- servi ces>

7-16

The example shows a Web Service that includes one SOA P message handler chain,
caled ent er Wor kf | owChai n. This handler chain has one handler, implemented with
the Java class com exanpl e. Wor kFl owEnt ry, that takes as an initialization
parameter the INDI name of the existing workflow system.

The Web Service defines one operation called ent er Wor kf | ow. When aclient
application invokes this operation, the ent er Wor kf | owChai n handler chain takesthe
SOAP message request and passes it to the workflow system running on WebL ogic
Server whose JNDI nameiswor kf | ow. ent ry. The operation is defined as
asynchronous one-way, which means that the client application does not receive a
SOAP response.

Note that because the ent er Vor kf | ow operation does not specify the net hod and
conponent attributes, no backend component is ever invoked directly by the Web
Service. Thisalso meansthat theweb- servi ces. xm file does not need to specify a
<comnponent s> element.

Programming WebL ogic Web Services

CHAPTER

8 Invoking Web Services

The following sections describe how to invoke Web Services, both WebL ogic and
non-WebL ogic, from client applications:

m “Overview of Invoking Web Services’ on page 8-1

m “Creating Java Client Applicationsto Invoke Web Services. Main Steps’ on
page 8-4

m “Getting the Java Client JAR Files’ on page 8-5

m “Writing Static and Dynamic Java Client Applications’ on page 8-7

m “Writing an Asynchronous Client” on page 8-17

m “Writing aJ2ME Client” on page 8-20

m “Creating and Using Portable Stubs’ on page 8-22

m “The WebLogic Web Services Home Page and WSDL URLS’ on page 8-24
m “Debugging Errors While Invoking Web Services’ on page 8-26

m “WebL ogic Web Services System Properties’ on page 8-27

Overview of Invoking Web Services

Invoking a Web Service refers to the actions that a client application performsto use
the Web Service. Client applications that invoke Web Services can be written using
any technology: Java, Microsoft SOAP Toolkit, Microsoft .NET, and so on.

Programming WebL ogic Web Services 8-1

8

Invoking Web Services

Note: Thischapter usestheterm client applicationto refer to both astandaloneclient
that uses the WebL ogic thin client to invoke a Web Service, and a client that
runsinside of an EJB running on WebL ogic Server.

The sections that follow describe how to use BEA’ s implementation of the JAX-RPC
specification to invoke a Web Service from a Java client application. It is generally
assumed that you are going to invoke any Web Service rather than one running on
WebL ogic Server, except for those sections that describe the URL s needed to invoke
aWebL ogic Web Service and its Home Page.

WebL ogic Server provides optional Java client JAR filesthat include, for your
convenience, al the classes, interfaces, and stubs you need to invoke a Web Service.
The client JAR files include the client runtime implementation of the JAX-RPC
specification (calledwebser vi cecl i ent . j ar andwebser vi cecl i ent +ssl . j ar)as
well as Web Service-specific implementations to minimize the amount of Java code
needed to invoke a particular Web Service.

JAX-RPC API

8-2

The Java API for XML based RPC (JAX-RPC) isa Sun Microsystems specification
that defines the client API for invoking a Web Service.

The following table briefly describes the core JAX-RPC interfaces and classes.
Table 81 JAX-RPC Interfacesand Classes

javaxml.rpc Description
Interface or Class

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory class for creating Ser vi ce instances.

Stub Representsthe client proxy for invoking the operations of aWeb
Service. Typically used for static invocation of aWeb Service.

Call Used to dynamically invoke a Web Service.

JAXRPCEXxception Exception thrown if an error occurs while invoking a Web
Service.

Programming WebL ogic Web Services

Overview of Invoking Web Services

WebL ogic Server includes an implementation of the JAX-RPC specification.

For detailed information on JAX-RPC, see the following Web site:
http://java.sun.com/xml/jaxrpc/index.html.

For atutorial that describes how to use JAX-RPC to invoke Web Services, see
http://java.sun.com/webservices/docs/eal/tutorial/doc/JAX RPC.html.

Examples of Clients That Invoke Web Services

WebL ogic Server includesthefollowing examplesof creating and invoking WebL ogic
Web Servicesinthe W._HOVE/ sanpl es/ server/ src/ exanpl es/ webser vi ces
directory, where W._HOVE refers to the main WebL ogic Platform directory:

basi c. st at el essSessi on : Uses a stateless session EJB backend component
with built-in data types as its parameters and return value

basi c. j avacl ass : Uses a Java class backend component with built-in data
types as its parameters and return value

conpl ex. st at el essSessi on : Uses a stateless session EJB backend
component with non-built-in data types as its parameters and return value

handl er. | og : Uses both a handler chain and a statel ess session EJB.

handl er . noconponent : Usesonly a handler chain with no backend
component.

client.static : Showshow to create a static client application that invokes a
non-WebL ogic Web Service.

client.static_out : Showshow to create a static client application that
invokes a non-WebL ogic Web Service that uses out parameters.

client.dynani c_wsdl : Shows how to create adynamic client application that
uses WSDL to invoke a non-WebL ogic Web Service.

client.dynanic_no_wsdl : Showshow to create adynamic client application
that does not use WSDL to invoke a non-WebL ogic Web Service.

For detailed instructions on how to build and run the examples, open the following
Web page in your browser:

Programming WebL ogic Web Services 8-3

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html

8 Invoking Web Services

W._HOVE/ sanpl es/ server/ src/ exanpl es/ webser vi ces/ package- summary. ht m

Additiona examples of creating and invoking WebL ogic Web Services are listed on
the Web Services Web page on the dev2dev Web site at
http://dev2dev.bea.com/managed_content/direct/webservice/index.html.

Creating Java Client Applications to Invoke
Web Services: Main Steps

To create a Java client application that invokes a Web Service, follow these steps:

1. Get the Javaclient JAR files provided by WebL ogic Server and add them to your
CLASSPATH.

If your client application is running on WebL ogic Server, you can omit this step.

Note: BEA does not currently license client functionality separately from the
server functionality, so, if needed, you can redistribute these Java client
JAR files to your own customers.

For details, see “Getting the Java Client JAR Files’ on page 8-5.
2. Writethe Javaclient application code.

For details on writing different kinds of client applications (static, dynamic,
asynchronous, and so on), see the following sections:

e “Writing Static and Dynamic Java Client Applications’ on page 8-7
e “Writing an Asynchronous Client” on page 8-17
e “Writing aJ2ME Client” on page 8-20.

3. Compile and run your Java client application.

84 Programming WebL ogic Web Services

http://dev2dev.bea.com/managed_content/direct/webservice/index.html
http://dev2dev.bea.com/managed_content/direct/webservice/index.html

Getting the Java Client JAR Files

Getting the Java Client JAR Files

WebL ogic Server provides the following client JAR files:

A runtime JAR file, called webser vi cecl i ent . j ar, that contains the client
runtime implementation of JAX-RPC. This JAR fileis distributed as part of the
WebL ogic Server product.

A runtime JAR file, called webser vi cecl i ent +ssl . j ar, that contains the
runtime implementation of SSL. This JAR fileis distributed as part of the
WebL ogic Server product.

A runtime JAR file, called webser vi cecl i ent +ssl _pj . j ar, that contains the
runtime implementation of SSL for the CDC profile of 2ME. ThisJAR fileis
distributed as part of the WebL ogic Server product.

A Web Service-specific JAR file that you generate with the cl i ent gen Ant
task. Thisfile contains the Web Service-specific stubs, defined by the JAX-RPC
specification, that client applications use to statically invoke a Web Service
(either WebL ogic or non-WebL ogic), such as St ub and Ser vi ce. Almost all
the code you need is automatically generated for you.

Note: If you are creating dynamic client applications, you do not need to use this
JAR file; BEA Systems provides the file as a convenience when you use
dtatic clients to invoke Web Services.

Because BEA does not currently license client functionality separately from the server
functionality, you can redistribute these Java client JAR files to your own customers
as needed.

To get the client JAR files, follow these steps:

1

Copy thefileWw._HOVE\ server\ | i b\ webservi cecl i ent.jar toyour client
application development computer, where W._ HOVE refers to the top-level
directory of WebL ogic Platform. This client JAR file contains the client runtime
implementation of JAX-RPC.

Note: If you are using SSL to secure your Web Service and you want to use the
WebL ogic Server-provided implementation of the SSL client classes, copy
thefileW._HOVE\ server\ i b\ webservi cecl i ent +ssl . j ar to your
client application development computer. In addition to the SSL

Programming WebL ogic Web Services 8-5

8

Invoking Web Services

implementation, this JAR file includes the same classfilesasin
webserviceclient.jar.

If you are writing a 2ME client that uses SSL, copy the file
W._HOME\ server\ | i b\ webservi cecl i ent +ssl _pj . j ar toyour client
application computer.

2. Generate the Web Service-specific client JAR file by running thecl i ent gen Ant

task.

Specify thewsd! attribute to create aclient JAR file for any Web Service
(including non-WebL ogic ones) or the ear attribute for WebL ogic Web Services
packaged in EAR files.

For details and examples of running the cl i ent gen Ant task, see “Running the
clientgen Ant Task” on page 8-6. For reference information, see Appendix B,
“Web Service Ant Tasks and Command-Line Utilities.”

Note: If youarecreating aclient application to invokeaWebL ogic Web Service,
you can also download the client JAR file from the Home Page. See“ The
WebL ogic Web Services Home Page and WSDL URLS’ on page 8-24 for
more information.

. Put these client JAR files on your client computer and update your CLASSPATH

environment variable to find them.

Running the clientgen Ant Task

8-6

Torunthecl i ent gen Ant task and automatically generate a client JAR file:

1. Createafilecaledbuil d. xm that containsacall tothecl i ent gen Ant task. For

details, see “ Sample build.xml File for the clientgen Ant Task.”

. Set your environment.

On Windows NT, execute the set Env. cnmd command, located in the directory
WL_HOVE\ ser ver\ bi n, where W._HOVE is the top-level directory of your
WebL ogic Platform installation.

On UNIX, execute the set Env. sh command, located in the directory
W._HOVE/ ser ver/ bi n, where W._HOVE is the top-level directory of your
WebL ogic Platform installation.

Programming WebL ogic Web Services

Writing Static and Dynamic Java Client Applications

3. Execute the Ant task or tasks specified inthe bui | d. xni file by typing ant in
the same directory asthe bui | d. xml file:

pronpt > ant

For reference information about the cl i ent gen Ant task, see “clientgen” on page
B-10.

Sample build.xml File for the clientgen Ant Task

The following example showsasimplebui | d. xni file:

<proj ect nane="buil dWebservi ce" defaul t="generate-client">
<target nane="generate-client">
<clientgen wsdl ="http://exanpl e. conl myapp/ myservi ce. wsdl "
packageNane="nyapp. myservice.client"

clientJar="c:/nyapps/ myService_client.jar"
/>

</target>
</ pr oj ect >

In the example, thecl i ent gen task creates aclient JAR file (called

c: / myapps/ nyServi ce_client.jar) toinvoke the Web Service described in the
http://exanpl e. con nyapp/ nyser vi ce. wsdl WSDL file. It packages the
interface and stub filesin the myapp. nyser vi ce. cl i ent package.

Writing Static and Dynamic Java Client
Applications

Thefollowing sections describe how to write different types of Javaclient applications
for invoking Web Services, from the simplest static client that requires almost no Java
code to amore complex client that uses out parameters.

All examples use the JAX-RPC API and assume that you have the necessary
BEA-provided client JAR filesin your CLASSPATH.

Programming WebL ogic Web Services 8-7

8 Invoking Web Services

Getting Information about a Web Service

Y ou usually need to know the name of the Web Service and the signature of its
operations before you write your client code.

Look at the WSDL of the Web Service. The name of the Web Serviceis contained in
the <ser vi ce> element, as shown in the following excerpt of the Tr ader Ser vi ce
WSDL:

<servi ce nanme="Trader Servi ce">
<port name="Trader Servi cePort"
bi ndi ng="t ns: Tr ader Ser vi ceSoapBi ndi ng" >

</ port>
</ service>

The operations defined for this Web Service are listed under the corresponding
<bi ndi ng> element. For example, the following WSDL excerpt shows that the
Tr ader Ser vi ce Web Service has two operations, buy and sel | (for clarity, only
relevant parts of the WSDL are shown):

<bi ndi ng name="Tr ader Ser vi ceSoapBi ndi ng" ...>
<operation nanme="sell">

</ oper ati on>
<operation nanme="buy">
</ oper ati on>

</ bi ndi ng>

To find the full signature of the Web Service operations, un-JAR the Web
Service-specific client JAR file (generated with thecl i ent gen Ant task) and look at
theactual *. j ava files. Thefile Ser vi ceNamePor t . j ava contains the interface
definition of your Web Service, where Ser vi ceNane refers to the name of the Web
Service. For example, look at the Tr ader Ser vi cePor t . j ava filefor the signature of
thebuy and sel | operations.

Maintaining the HTTP Session

Y ou specify whether your client application will participate in an HTTP session with
aWeb Service endpoint by setting the following property in your application:

8-8 Programming WebL ogic Web Services

Writing Static and Dynamic Java Client Applications

javax. xm . rpc. Cal | . SESSI ON_MAI NTAI N_PROPERTY

When aclient application invokes a WebL ogic Web Service, an interna servlet first
handl es the request and creates an Ht t pSessi on object for each client. The lifetime
of thisHt t pSessi on object follows the standard J2EE guideslines. For more
information about Ht t pSessi on objects, see Session Tracking from a Serviet at
http://e-docs.bea.com/wls/docs81b/servlet/progtasks.html#session_tracking.

Handling Web Services That Crash

Thefirst time you invoke a Web Service from a client application that uses the
WebL ogic client JAR files, the client caches the I P address of the computer on which
the Web Service is running, and by default this cache is never refreshed with a new
DNSlookup. Thismeansthat if you invoke aWeb Service, and later the computer on
which the Web Serviceis running crashes, but then another computer with a different
| P address takes over for the crashed computer, a subsequent invoke of the Web
Service from the original client application will fail because the client application
continuesto think that the Web Serviceisrunning on the computer with the old cached
IPaddress. Inother words, it doesnot try to re-resolve the IP addresswith anew DNS
lookup, but rather uses the cached information from the original lookup.

Towork around this problem, update your client application to set the DK 1.4 system
property sun. net . i net addr.tt| tothe number of seconds that you want the
application to cache the IP address.

Writing a Simple Static Client

When you use a static client application to invoke aWeb Service, you use a
strongly-typed Javainterface, in contrast to a dynamic client where you indirectly
reference the Web Service operations and parameters. Using adynamic client is
analogous to looking up and invoking a method using the Javareflection APIs.

Y ou must include the Web Service-specific client JAR filein your CLASSPATH
when statically invoking a Web Service. This JAR fileincludes the following classes
and interfaces:

m A Web Service-specific implementation of the Ser vi ce interface, which actsa
stub factory. The stub factory class uses the value of thewsd! attribute of the

Programming WebL ogic Web Services 8-9

http://e-docs.bea.com/wls/docs81b/servlet/progtasks.html#session_tracking

8

Invoking Web Services

cl i ent gen Ant task used to generate the client JAR filein its default
constructor.

m Aninterface and implementation of each SOAP port in the WSDL.
m Serialization class for non-built-in data types and their Java representations.

The following code shows an example of writing a client application that invokes the
sample Tr ader Ser vi ce Web Service; in the example, Tr ader Ser vi ce isthe stub
factory and Tr ader Ser vi cePor t isthe stub itself:

package exanpl es. webservi ces. conpl ex. st at el essSessi on;

*

/

E I B R I S N N N N

~

This class illustrates how to use the JAX-RPC APl to invoke the Trader Service
Web Service to performthe foll ow ng tasks:

<l'i> Buy 100 shares of sone stocks
 Sell 100 shares of sone stocks
</ ul >

The Trader Service Wb Service is inplenented using the Trader
statel ess session EJB.

@ut hor Copyright (c) 1998-2002 by BEA Systens, Inc. Al R ghts Reserved.

public class Cient {

public static void main(String[] args) throws Exception {

}

/1 Setup the global JAXM nessage factory

System set Property("javax. xm . soap. MessageFact ory",
"webl ogi c. webservi ce. core. soap. MessageFactoryl npl ") ;

/1 Setup the global JAX-RPC service factory

System set Property("javax.xm .rpc. ServiceFactory",
"webl ogi c. webservi ce. core. rpc. Servi ceFactoryl npl");

/] Parse the argument |ist

Cient client = new dient();

String wsdl = (args.length > 0? args[0] : null);
client.exanpl e(wsdl);

public void exanple(String wsdl URI) throws Exception {

Trader Servi cePort trader = null;
if (wsdlUR == null) {

trader = new Trader Service_l npl ().get Trader Servi cePort();
} else {

8-10 Programming WebL ogic Web Services

Writing Static and Dynamic Java Client Applications

trader = new Trader Service_| npl (wsdl URI'). get Tr ader Ser vi cePort ();

}
String [] stocks = {"BEAS', "MSFT", "AMZN', "HW" };

/] execute sone buys
for (int i=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
| og("Buyi ng "+shares+" shares of "+stocks[i]+".");
TradeResult result = trader.buy(stocks[i], shares);
| og("Result traded "+result.getNumber Traded()
+" shares of "+result.getStockSynbol ());
}

/| execute sone sells
for (int i=0; i<stocks.length; i++) {
int shares = (i+1) * 100;
log("Selling "+shares+" shares of "+stocks[i]+".");
TradeResult result = trader.sell (stocks[i], shares);
| og("Result traded "+result.get Nunber Tr aded()
+" shares of "+result.getStockSynbol ());

}

private static void log(String s) {
System out. println(s);

}

The main points to notice about the example are as follows:

m Thefollowing code shows how to create aTr ader Ser vi cePort stub:
trader = new Trader Service_lnpl ().getTrader Servi cePort();

The Tr ader Servi ce_I npl stub implements the JAX-RPC Ser vi ce interface.
The default constructor of Tr ader Ser vi ce_| npl creates a stub based on the
WSDL URI specified when using the cl i ent gen Ant task to create the client
JAR file. The get Tr ader Ser vi cePor t () method implements the

Servi ce. get Port () method, used to return an instance of the Tr ader Ser vi ce
stub implementation.

m Thefollowing code shows how to invoke the buy operation of the
Tr ader Ser vi ce Web Service:

TradeResult result = trader.buy(stocks[i], shares);

Thet rader Web Service has two operations: buy() andsel | (). Both
operations return a non-built-in datatype called Tr adeResul t .

Programming WebL ogic Web Services 8-11

8 Invoking Web Services

Writing a Dynamic Client That Uses WSDL

When you create adynamic client that uses WSDL, you first create a service factory
using the Ser vi ceFact ory. newl nst ance() method, then create aSer vi ce object
from the factory and passit the WSDL and the name of the Web Service you are going
toinvoke. Youthen createacCal | object fromthe Ser vi ce, passing it the name of the
port and the operation you want to execute, and finally usethe Cal | . i nvoke()
method to actually invoke the Web Service operation.

When you write adynamic client, you do not use the Web Service-specific client JAR
file generated with the cl i ent gen Ant task, because this JAR fileis used only for
static clients. Y ou do, however, need to include the JAR file that containsWebL ogic's
implementation of the JAX-RPC specification in your CLASSPATH. For more
information about these JAR files, see“ Getting the JavaClient JAR Files’ on page 8-5.

For example, assume you want to create adynamic client application that uses WSDL
to invoke the Web Service found at the following URL :

http://services. xmet hods. net/ soap/ ur n: xrmet hods- del ayed- quot es. wsdl

/**

The following Java code shows one way to do this:

* This class denonstrates a java client invoking a WbServi ce.

*

* @uthor Copyright (c) 2002 by BEA Systens, Inc. Al R ghts Reserved.

*/

i mport java.net. URL;

i mport javax.
i mport javax.
i mport javax.
i mport javax.

i mport javax.

public class

xm . rpc. Servi ceFact ory;
xm . rpc. Servi ce;

xm . rpc. Call;

xm . rpc. Par amet er Mbde;

xm . namespace. QNane;

Mai n {

public static void main(String[] args) throws Exception {

/'l Setup the global JAXM nessage factory

System set Property("j avax. xm . soap. MessageFactory",
"webl ogi c. webservi ce. core. soap. MessageFactoryl npl ") ;

/1 Setup the global JAX-RPC service factory

System set Property("javax.xm .rpc. ServiceFactory",
"webl ogi c. webservi ce. core. rpc. Servi ceFactoryl npl");

8-12 Programming WebL ogic Web Services

Writing Static and Dynamic Java Client Applications

/1l create service factory
Servi ceFactory factory = Servi ceFactory. new nstance();

/1 define gnanes
String target Nanespace =
"http://ww.them ndel ectric.com "
+ "wsdl / net. xmet hods. servi ces. st ockquot e. St ockQuote/";

QNane servi ceNane =
new QName(t ar get Nanespace,
"net . xmet hods. servi ces. st ockquot e. St ockQuot eServi ce");

ONane port Name =
new QNane(t ar get Nanespace,
"net. xmet hods. servi ces. st ockquot e. St ockQuot ePort ") ;

QNane operati onName = new QNane("urn: xmet hods- del ayed- quot es",
"get Quote");

URL wsdl Location =
new
URL("http://services. xmet hods. net/ soap/ urn: xmet hods- del ayed- quot es. wsdl ") ;

/] create service
Service service = factory. createService(wsdl Locati on, serviceNane);

// create call

Call call = service.createCall (portNanme, operationNane);
/1 invoke the renmpte web service
Float result = (Float) call.invoke(new Object[] {
" BEAS"
1)

Systemout. println("\n");

Systemout. println("This exanpl e shows how to create a dynam c client
application that invokes a non-WbLogic Web Service.");

System out. println("The webservi ce used was:

http://services. xmet hods. net/ soap/ urn: xmet hods- del ayed- quot es. wsdl ") ;
Systemout.println("The quote for BEAS is: ");
Systemout.printin(result);

}

Note: Whenyou usethej avax. xm . rpc. Cal I API to create adynamic client that
uses WSDL, you cannot use the following methods in your client application:

m get Par anet er TypeByNane()

Programming WebL ogic Web Services 8-13

8 Invoking Web Services

m getReturnType()

Additionally, if you want to execute the get Tar get Endpoi nt Addr ess()
method, you must have previously executed the

set Tar get Endpoi nt Addr ess() method, even if the targetEndPointAddress
isavailableinthe WSDL.

Writing a Dynamic Client That Does Not Use WSDL

Dynamic clientsthat do not use WSDL are similar to those that use WSDL except for
having to explicitly set information that is found in the WSDL, such as the parameters
to the operation, the target endpoint address, and so on.

The following example shows how to create a client application that invokes a Web
Service without specifying the WSDL in the client application:

* This class denonstrates a java client invoking a WbServi ce.

* @uthor Copyright (c) 2002 by BEA Systens, Inc. Al R ghts Reserved.

*/

i mport javax.
i mport javax.
i mport javax.
i mport javax.

i mport javax.

public class

xm

.rpc
xm .
xm .
xm .

rpc
rpc
rpc

. Servi ceFact ory;
. Servi ce;

.Call;

. Par anet er Mbde;

xm . namespace. QNane;

Mai n {

public static void main(String[] args) throws Exception {
/1 Setup the global JAX-RPC service factory
System set Property("javax.xm .rpc. ServiceFactory",
"webl ogi c. webservice. core. rpc. Servi ceFactoryl npl");

/'l create service factory
Servi ceFactory factory = Servi ceFactory. newl nstance();

/1 define gnames
String target Namespace =

"http://ww.them ndel ectric.conl”

+ "wsdl / net. xmet hods. servi ces. st ockquot e. St ockQuot e/ ";

8-14 Programming WebL ogic Web Services

Writing Static and Dynamic Java Client Applications

QNane servi ceNane =
new QNanme(t ar get Nanespace,
"net . xmet hods. servi ces. st ockquot e. St ockQuot eServi ce");

QName port Name =
new QNane(t ar get Nanespace,
"net. xmet hods. servi ces. st ockquot e. St ockQuot ePort");

QN\ane operati onName = new QNane("urn: xmet hods- del ayed- quot es",
"get Quote");

/] create service
Service service = factory. createService(servi ceNane);

/] create call
Call call = service.createCall();

/1 set port and operation nane

cal | . set Port TypeNane(port Nane) ;

cal | . set Oper ati onNarme(oper at i onNane) ;

/] add paraneters

cal | . addPar anet er ("synbol ",
new QNarme("http://ww. w3. org/ 2001/ XM_Scherma", "string"),
Par anet er Mode. I N) ;

cal |l .set ReturnType(new QNarme("http://ww. w3. org/ 2001/ XM_.Schema", "float"));

/1 set end point address
cal | . set Tar get Endpoi nt Address("htt p://ww. xmet hods. com 9090/ soap") ;

/1l invoke the renpte web service
Float result = (Float) call.invoke(new Object[] {
" BEAS"

1),

Systemout. println("\n");

Systemout. println("This exanple shows howto create a dynam c client
application that invokes a non-WblLogic Wb Service.");

System out. println("The webservi ce used was:

http://ww.theni ndel ectric.com wsdl/net. xnet hods. servi ces. st ockquot e. St ockQuot e
")

Systemout.println("The quote for BEAS is:");

Systemout.printin(result);

}

Programming WebL ogic Web Services 8-15

8

Invoking Web Services

Note: Indynamic clientsthat do not use WSDL, the get Port s() method aways
returns nul | . This behaviour is different from dynamic clients that do use
WSDL in which the method actually returns the ports.

Writing a Client that Uses Out or In-Out Parameters

Web Services can use out or in-out parameters as away of returning multiple values.

When you write a client application that invokes a Web Service that uses out or in-out
parameters, the data type of the out or in-out parameter must implement the

j avax. xnl . rpc. hol ders. Hol der interface. After the client application invokes
the Web Service, the client can query the out or in-out parametersinthe Hol der object
and treat them as if they were standard return values.

For example, the Web Service described by the following WSDL has an operation
called echoSt ruct AsSi npl eTypes() that takes one standard input parameter and
three out parameters:

http://soap. 4s4c. conl il ab/ soap. asp?WsDL

Thefollowing static client application shows oneway to invoke thisWeb Service. The
application assumes that you have included the Web Service-specific client JAR file
that contains the Stub classes, generated using thecl i ent gen Ant task, in your
CLASSPATH.

package websvc;

/**

* This class denonstrates a java client invoking a WbServi ce.

*

* @uthor Copyright (c) 2002 by BEA Systens, Inc. Al R ghts Reserved.

*/

public class Main {

public static void main(String[] args) throws Exception {

8-16

/1 Setup the global JAX-RPC service factory
System set Property("javax.xm .rpc. ServiceFactory",
"webl ogi c. webservice. core. rpc. Servi ceFactoryl npl");

InteropLab_Inpl test = new InteropLab_Inpl ();
I nt eropTest 2Port Type soap = test. getinteropTest2Port Type();

org.tenpuri.x4s4c. x1. x3. wsdl . types. SOAPSt ruct inputStruct =
new org.tenpuri.x4s4c. x1. x3. wsdl . types. SOAPSt ruct () ;

Programming WebL ogic Web Services

Writing an Asynchronous Client

i nput Struct. setVarl nt (10);
i nput Struct. set Var Fl oat (10. 1f);
input Struct.setVarString("hi there");

j avax. xm .

rpc. hol ders. StringHol der outputString =

new j avax. xm . rpc. hol ders. Stri ngHol der ();

j avax. xm .

rpc. hol ders. | nt Hol der out put | nt eger

new j avax. xm . rpc. hol ders. | nt Hol der () ;

j avax. xm .

rpc. hol ders. Fl oat Hol der out put Fl oat

new javax.xm . rpc. hol ders. Fl oat Hol der () ;

soap. echoSt ruct AsSi npl eTypes(i nput Struct, outputString, outputlnteger,

Syst em out

System out .
System out .
System out .

System out .
System out .

Writing

out put Fl oat) ;

.println("This exanpl e shows how to create a static client
application that invokes a non-WblLogic Wb Service.");

println("The webservi ce used was:
http://soap. 4s4c.coniil ab/ soap. asp?WsDL") ;
println("This webservice shows how to i nvoke an operation that
uses out paraneters. The set paraneters are below ");
printin("outputString.value: " + outputString.value);
println("outputlnteger.value: " + outputlnteger.val ue);
println("outputFl oat.value: " + outputFloat.val ue);

an Asynchronous Client

The preceding sections describe how to invoke an operation of a Web Service
synchronously whereby a single method call in the client application invokes the
corresponding operation. This section describes how to invoke an operation
asynchronously by splitting the invocation into two methods in the client application:
the first method invokes the operation with the required parameters but does not wait
for the result; | ater, the second method returns the actual results.

To write an asynchronous client, follow these steps:

1. When executing thecl i ent gen Ant task to generate the Web Service-specific
client JAR file that contains the JAX-RPC stub implementation for your service,
specify thegener at eAsyncMet hods=""Tr ue" attribute, asshowninthefollowing
example:

Programming WebL ogic Web Services 8-17

Invoking Web Services

<clientgen
wsdl ="htt p: // ww. mssoapi nt er op. or g/ asnx/ si npl e. asnx?WSDL"
clientJar="echoservice.jar"
packageNanme="exanpl es. async"
gener at eAsynchMet hods="t rue" />

Thecl i ent gen Ant task generates special asynchronous methods in the
JAX-RPC stubs to invoke the operations of the Web Service. See “Description
of the Generated Asynchronous Web Service Client Stub” on page 8-18 for more
details.

Write the Java code using the special asynchronous methods. For examples, see
“Writing the Asynchronous Client Java Code” on page 8-19.

For detailed API referenceinformation about writing asynchronous client applications,
see the webl ogic.webservice.async Javadoc.

Description of the Generated Asynchronous Web Service

Client Stub

8-18

When you specify gener at eAsyncMet hods="Tr ue" when executingthecl i ent gen
Ant task, thetask creates two special methodsin the genrated JAX-RPC stub to invoke
each Web Service operation asynchronously, in addition to the standard methods.
The special methods take the following form:

FutureResult startMethod (parans, Asynclnfo asynclnfo);
result endMethod (FutureResult futureResult);

where:

Met hod isthe name of the standard method used to invoke the Web Service
operation.

par ans isthelist of parametersto the operation.
resul t istheresult of the operation.

Fut ur eResul t isaWebLogic object used as a placeholder for the impending
result.

Asyncl nf o isaWebL ogic object used to pass additional information to
WebL ogic Server.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

Writing an Asynchronous Client

For example, assume the standard generated stub contains the following method to
invoke a Web Service operation called echoSt ri ng:

String echoString (String str);

Thecl i ent gen task generatesthefollowing additional special asynchronous methods
in the generated stub:

FutureResult startEchoString (String str, Asynclnfo asynclnfo);
String endEchoString (FutureResult futureResult);

For detailed API reference information about the Fut ur eResul t interface and the
Asyncl nf o class, see the weblogic.webservice.async Javadoc.

Writing the Asynchronous Client Java Code

When you write a Java client application to asynchronously invoke a Web Service
operation, you must first import the following classes:

i mport webl ogi c. webservi ce. async. FutureResul t;

i mport webl ogi c. webservi ce. async. Asyncl nf o;

i mport webl ogi c. webservi ce. async. Resul t Li st ener;

i mport webl ogi c. webservi ce. async. | nvokeConpl et edEvent ;

Thebasic ideaisto execute one method in the client application to send the parameters
to the method that implements the operation, and then later execute a second method
to get the results.

Assume that your client application usesthe following Java code to get an instance of
the Si npl eTest stub implementation:

Si mpl eTest echoService = new Sinpl eTest _| npl ();
Si npl eTest Soap echoPort = echoServi ce. get Si npl eTest Soap() ;

Further assumethat you want toinvoketheechoSt r i ng operation of the Web Service.
The following paragraphs show a variety of ways you can invoke this operation
asynchronously.

The simplest way isto executethe st art EchoSt ri ng() and endEchoSt ri ng()
client methods right after each other:

FutureResult futureResult = echoPort.startEchoString("94501", null);
String result = echoPort.endEchoString(futureResult);

Programming WebL ogic Web Services 8-19

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

8 Invoking Web Services

You can also usethe Fut ur eResul t . i sConpl et ed() method to test whether the
results have returned from the Web Service, as shown in the following excerpt:

FutureResult futureResult = echoPort.startEchoString("94501", null);
while(!'futureResult.isConpleted()){
Thr ead. sl eep(300);
}
String result = echoPort. endEchoString(futureResult);

Finally, youcanusetheResul t Li st ener and| nvokeConpl et edEvent classesto set
up alistener in your client application that listens for a callback indicating that the
results of the operation have returned, as shown in the following excerpt:

Asyncl nfo asynclnfo = new Asynclnfo();

asyncl nfo. set Resul t Li stener (new Resul tListener(){
public void onConpl etion(InvokeConpl etedEvent event){

Si npl eTest Soap source = (Si npl eTest Soap) event. get Source();

try{
String result = source.endEchoString (event.getFutureResult());

got Cal | back = true;
} catch (RenoteException e){
e.printStackTrace (Systemout);

}
}
1)
echoPort. start EchoString("94501", asynclinfo);

For detailed API reference information about the weblogic.webservice.async classes
and interfaces, see the weblogic.webservice.async Javadoc.

Writing a J2ME Client

Y ou can create a Java 2 Platform, Micro Edition (J2ME) Web Service-specific client
JAR file to use with client applications that run on 2ME.

Note: The specific 2ME environment that we support is the CDC and Foundation
profile.

8-20 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

Writing a J2ME Client

Creating a J2ME client application that invokes a Web Service is dmost the same as
creating anon-J2ME client. For example, you use the same runtime client JAR file as
non-J2ME client applications (W._HOVE\ ser ver\ | i b\ webservi ceclient.jar.)

TowriteaJ2ME client application, follow the steps described in “ Creating Java Client
Applicationsto Invoke Web Services: Main Steps’ on page 8-4 but with thefollowing
changes:

m Whenyourunthecl i ent gen Ant task to generate the Web Service-specific
client JAR file, be sure you specify thej 2me=""Tr ue" attribute, as shown in the
following example:

<clientgen wsdl ="http://exanpl e. conl myapp/ nyservi ce. wsdl "
packageName="nyapp. myservi ce.client"
clientJar="c:/nyapps/ myService_clients.jar"
j 2me="True"

/>

Note: The 2ME Web Service-specific client JAR file generated by cl i ent gen
is not compliant with the JAX-RPC specification in the following ways:

= The methods of the generated stubs do not throw
java. rm . Renot eExcepti on.

m The generated stubs do not extend j ava. r mi . Renot e.

m When you write, compile, and run your Java client application, be sure you use
the 22ME virtual machine and APIs.

For more information about J2ME, see http://java.sun.com/j2me/.

Writing a J2ME Client that Uses SSL

WebL ogic Server includes support for creating 2ME client applicationsthat use SSL.
If you are writing a 2ME client that uses SSL, follow these guidelines in addition to
the guidelines specified in the preceding section:

m You must use the following additional class and package:
e java. math. Bi gl nt eger (class)

e java.util.* (entire package)

Programming WebL ogic Web Services 8-21

http://java.sun.com/j2me/

Invoking Web Services

m Copy thefileW._HOVE\ server\ i b\ webservi cecl i ent +ssl _pj . j ar toyour
client application computer and add it to your CLASSPATH.

Warning: Do not include thewebl ogi c. j ar fileinyour CLASSPATH.

m | your client application uses the WSDL file to invoke a Web Service, you must
use alocal copy of the WSDL file stored on your client computer; you cannot
access the WSDL file using a URLConnect i on object.

Creating and Using Portable Stubs

8-22

If you usethe Web Servicesclient JAR files (both the ones distributed with the product
and the Web Service-specific one generated by thecl i ent gen Ant task) as part of an
application that runsin WebL ogic Server, you might find that the Java classesin the
JAR file collide with the classes of WebLogic Server itself. This problem is more
apparent if the WebL ogic Server in which the client JAR fileis deployed isadifferent
version from that which the client JAR file was generated. To solve this problem, use
portable stubs.

Note: You need to use portable stubs only if your client application is deployed and
running on WebL ogic Server. If your client application is standalone, you do
not need to use portable stubs.

To enable your client application to use portable stubs:

1. UsetheWebL ogic Server release-specific client JARfilecalledwscl i ent 81. j ar
(distributed with WebL ogic Server in the W._HOVE\ ser ver\ | i b directory) with
your client application rather thanthegenericwebser vi cecl i ent . j ar client JAR
file. Thewscli ent 81.j ar file containsthe same classfiles asthe standard client
JAR file, but they are renamed ver 81webl ogi c. *. Because these classfiles are
version-specific, they will not collide with any webl ogi c. * WebL ogic Server
classes.

2. Run the Web-service specific client JAR file you generated with thecl i ent gen
Ant task, as well as any supporting client JAR files, through the Ver si onMaker
utility. Thisutility makes the following changes to the classesin these client JAR
files:

e renamesal webl ogi c. * classestover 81webl ogi c. *.

Programming WebL ogic Web Services

Creating and Using Portable Stubs

e all referencesto webl ogi c. * classes are changed to reference
ver 81webl ogi c. * instead.

Use these new version-specific client JAR files with your client application.

For details on using Ver si onMaker , see “Using the VersionMaker Utility” on
page 8-23.

Using the VersionMaker Utility

Thewebl ogi c. webser vi ce. t ool s. ver si oni ng. Ver si onMaker utility takesthe
following parameters:

dest i nati on_dir : the destination directory that will contain the new
version-specific client JAR files.

client_jar_file:theclient JAR file, generated by thecl i ent gen Ant task,
whose class files are named webl ogi ¢. * and should be renamed
ver 81webl ogi c. *.

other_jar_files :supporting JAR files

Follow these steps to update your client JAR files to use version-specific WebL ogic
Server classes:

1

Set your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

On UNIX, execute the set Env. sh command, located in the directory
W._HOVE/ ser ver / bi n, where W._HOMVE is the top-level directory of your
WebL ogic Platform installation.

Execute the utility
webl ogi c. webser vi ce. t ool s. ver si oni ng. Ver si onMaker, as shown in the
following example:

j ava webl ogi c. webservi ce. t ool s. versi oni ng. Ver si onMaker \
new di rectory myclient.jar supporting.jar

In the example, thewebl ogi c. * classesinthenyclient.jar and
supporting.jar client JAR filesare renamed ver 81webl ogi c. *, and all

Programming WebL ogic Web Services 8-23

8 Invoking Web Services

references to these classes updated accordingly. The new client JAR files are
generated into the directory called new_di r ect or y under the current directory.

The WebLogic Web Services Home Page and
WSDL URLs

Every Web Service deployed on WebL ogic Server has a Home Page. From the Home
page you can:

= View the WSDL that describes the service.

m Download the Web Service-specific client JAR file that contains the interfaces,
classes, and stubs needed to invoke the Web Service from a client application.

Note: A link to download this client JAR file appears on the Home page only if
the name of the client JAR fileisWebSer vi ceName_cl i ent . j ar, where
VebSer vi ceNane refersto the name of the Web Service, specified by the
name attribute of the <web- ser vi ce> element intheweb- ser vi ces. xm
file. If thisisnot true for your Web Service, you must usethecl i ent gen
Ant task to createthe JAR file. For details, see “ Running the clientgen Ant
Task” on page 6-9.

m Test each operation to ensure that it isworking correctly.

As part of testing a Web Service, you can edit the XML in the SOAP regquest
that describes non-built-in data types to debug interoperability conflicts.

m View the SOAP request and response messages from a successful execution of
an operation

The following URLs show first how to invoke the Web Service Home page and then
the WSDL in your browser:

[protocol]://[host]:[port]/[contextURI]/[serviceURI]
[protocol]://[host]:[port]/[contextURI]/[serviceUR] ?WsDL

where:

8-24 Programming WebL ogic Web Services

The WebLogic Web Services Home Page and WSDL URLs

m protocol refersto the protocol over which the serviceisinvoked, either http or
https. This value corresponds to the pr ot ocol attribute of the <web- ser vi ce>
element that describes the Web Servicein theweb- servi cex. xni file. If you
used the ser vi cegen Ant task to assemble your Web Service, this value
correspondsto the pr ot ocol attribute.

m host refers to the computer on which WebL ogic Server is running.

m port refersto the port number on which WebL ogic Server islistening (default
valueis7001).

m contextURI refers to the context root of the Web application, corresponding to
the <cont ext - r oot > element in the appl i cati on. xnl deployment descriptor
of the EAR file. If you used the ser vi cegen Ant task to assemble your Web
Service, this value corresponds to the cont ext URI attribute.

If your appl i cation. xml file does not include the <cont ext - r oot > element,
then the value of cont ext URI isthe name of the Web application archive file or
exploded directory.

m serviceURI refersto the URI of the Web Service. This value correspondsto the
uri attribute of the <web- servi ce> element in the web- ser vi ces. xm file. If
you used the ser vi cegen Ant task to assemble your Web Service, thisvalue
corresponds to the ser vi ceURI attribute.

For example, assume you used thefollowing bui | d. xni fileto assembleaWebLogic
Web Service using the ser vi cegen Ant task:

<proj ect nane="buil dWebservi ce" defaul t="build-ear">
<target nane="buil d-ear">
<servi cegen
dest Ear =" myWebSer vi ce. ear"
war Narme="nyWAR. war "
cont ext URI =" web_servi ces" >
<servi ce
ej bJar="nyEJB.jar"
t ar get Nanespace="htt p: // ww. bea. conf exanpl es/ Trader"
servi ceNane="Tr ader Servi ce"
servi ceURI ="/ Tr ader Servi ce"
gener at eTypes="Tr ue"
expandMet hods="True" >
</ service>
</ servi cegen>
</target>
</ proj ect >

Programming WebL ogic Web Services 8-25

8

Invoking Web Services

The URL to invoke the Web Service Home Page, assuming the service is running on
ahost called ari el at the default port number, is:

http://ariel: 7001/ web_servi ces/ Trader Servi ce
The URL to get the automatically generated WSDL of the Web Serviceis:

http://ariel: 7001/ web_servi ces/ Trader Ser vi ce?WsDL

Debugging Errors While Invoking Web
Services

8-26

If you encounter an error while trying to invoke a Web Service (either WebL ogic or
non-WebL ogic), it isuseful to view the SOAP request and response messages that are
generated because they often point to the problem.

To view the SOAP request and response messages, run your client application with the
- Daebl ogi c. webser vi ce. ver bose=t r ue flag, as shown in the following example
that runs a client application called r unSer vi ce:

pronpt > java - Dwebl ogi c. webservi ce. verbose=true runService

The full SOAP request and response messages are printed in the command window
from which you ran your client application.

Y ou can a'so configure WebL ogic Server to print the SOAP request and response
messages each time a deployed WebL ogic Web Service isinvoked by specifying the
- Dwebl ogi c. webser vi ce. ver bose=t r ue flag when you start WebL ogic Server.
The SOAP messages are printed to the command window from which you started
WebL ogic Server.

Note: Because of possible decreasein performance dueto the extrawork of printing
debugging messages to the command window, BEA recommends you set this
WebL ogic Server flag only during the devel opment phase.

Programming WebL ogic Web Services

WebLogic Web Services System Properties

WebLogic Web Services System Properties

The following table lists the system properties you can set in client applications that
invoke Web Services. UsetheSyst em set Propert y() method to set the properties.

Table 8-2 WebL ogic Web Services System Properties

System Property Description

http.proxyHost (JDK 1.4 system property) If you use a proxy server to make HT TP connections, use
this system property to specify the host name of the proxy
server in your client applications.

http.proxyPort (JDK 1.4 system property) If you use aproxy server to make HTTP connections, use
thissystem property to specify the port of the proxy server
inyour client applications.

weblogic.webservice.transport.https.proxy.host If you use a proxy server to make HTTPS (HTTP over
SSL) connections, use this system property to specify the
host name of the proxy server in your client applications.

weblogic.webservice.transport.https.proxy.port If you use a proxy server to make HTTPS (HTTP over
SSL) connections, use this system property to specify the
port of the proxy server in your client applications.

weblogic.webservice.verbose Enables verbose mode during Web Service invocation so
you can view the SOAP request and response messages.

Valid valuesare Tr ue and Fal se. Default valueis

Fal se.

For details, see “ Debugging Errors While Invoking Web
Services’ on page 8-26.

weblogic.webservice.client.ssl.strictcertchecking Enables or disables strict certificate validation when
using the WebL ogic-provided implementation of
SSL.
Set to Tr ue to enable strict certificate validation, and
Fal se todisable. Default valueisFal se.

For an example, see “Using the WebL ogic
Server-Provided SSL Implementation” on page 13-21.

Programming WebL ogic Web Services 8-27

8 Invoking Web Services

Table 8-2 WebL ogic Web Services System Properties

System Property Description

weblogic.webservice.client.ssl.trustedcertfile The name of the file (located on the client application
computer) that contains the certificates of CA (certificate
authority). The CAsaretrusted toissue WebL ogic Server
certificates. Thefile can also contain certificatesthat you
trust directly.

weblogic.webservice.client.ss.adapterclass Fully qualified name of an adapter class you have
implemented to use a third-party SSL implementation.
For an example, see “Using a Third-Party SSL
Implementation” on page 13-24.

weblogic.http.K eepAliveTimeoutSeconds Number of seconds to maintain HT TP keep-alive before
timing out the request. If you do not want to use HTTP
keep-alive, set this property to 0.

Default value is 30 seconds.

8-28 Programming WebL ogic Web Services

CHAPTER

O Using JMS Transport to

Invoke a WebLogic Web
Service

The following sections provide information about using JM S transport to invoke a
WebL ogic Web Service:

m “Overview of Using JIMS Transport” on page 9-1

m “Specifying JIMS Tranport for a WebL ogic Web Service: Main Steps’ on page
9-2

m “Invoking a Web Service Using JM S Transport” on page 9-4

Overview of Using JMS Transport

By default, client applications use HT TP/S as the connection protocol when invoking
aWebLogic Web Service. You can, however, configure your Web Service so that
client applications can also use JM S as the transport when invoking the Web Service.

When a WebL ogic Web Serviceis configured to also use JMS as the connection
transport:

m The generated WSDL of the Web Service contains two port defintions: one with
an HTTP/S binding and one with a IM S binding.

Programming WebL ogic Web Services 9-1

Using JMS Transport to Invoke a WebLogic Web Service

m Thecl i ent gen Ant task, when generating the Web-service specific client JAR
file for the Web Service, creates a Ser vi ce implementation that contains two
get Port () methods, one for HTTP/S and one for IMS.

Note: You can use JMS transport to invoke only one-way operations.

Specifying JMS Tranport for a WebLogic Web
Service: Main Steps

9-2

The following procedure assumes that you have already implemented and assembled
aWebL ogic Web Service and you want to update it to use IM S transport.

1. Invokethe Administration Consolein your browser, as described in “Overview of
Administering WebL ogic Web Services’ on page 16-1.

2. Usethe Administration Consoleto create (if they do not aready exist) and
configure the following JM S components of WebL ogic Server:

e JIMS Server.

Note: You cannot use aJMS Server that is targeted to a Migratable Target
when configuring theresourcesfor using JM Stransport when invoking
aWebLogic Web Service.

For details, see Creating a JIMS Server at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ms_config.html#ms_server
_Create.

e JMS Connection factory.

You can use the default WebL ogic IM S Connection factory

(webl ogi c. j ms. Connect i onFact ory) or create your own. If you use the
default connection factory, al configuration attributes are set to their default
values.

Note: If you usethe default connection factory, you have no control over the
JMS server on which the connection factory may be deployed. If you
would like to target a particular IMS server, create a new connection
factory and specify the appropriate IM S server target(s).

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_server_create

Specifying JMS Tranport for a WebLogic Web Service: Main Steps

For details, see Creating a JMS Connection Factory at
http://e-docs.bea.com/wls/docs81b/ConsoleHel p/ms_config.html#ms_connec
tion_factory_create.

e JIMSqueue

Note: You can use IMS distributed queues as long as you deploy your Web
Service on each relevant WebL ogic Web Service instance in the
cluster.

For details, see Creating a IMS Queue at
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/ms_config.html#ms_queue
create.

3. Update theweb- servi ces. xn file of your WebL ogic Web Service to specify
that the generated WSDL of the WebL ogic Web Service include a port that uses a
JMS binding.

For details, see “Updating the web-services.xml File” on page 9-3.

4. Re-runthecl i ent gen Ant task to create new stubs that contain the get Por t ()
methods that return a port with a JM S transport binding.

For details, see “Running the clientgen Ant Task” on page 8-6.

See “Invoking a Web Service Using JIMS Transport” on page 9-4 for details about
writing a Java client application that invokes your Web Service.

Updating the web-services.xml File

Theweb- servi ces. xm fileislocated in the VEB- | NF directory of the Web
application of the Web ServicesEAR file. See”The Web Service EAR File Package”
on page 6-12 for more information on locating thefile.

To update the web- ser vi ces. xm fileto specify IMS transport, follow these steps:
1. Openthefileinyour favorite editor.

2. AddthejmsUri attributeto the <web- servi ce> element that describes your
Web Service and set the attribute to the following value:

connecti on-f act ory- nane/ queue- nane

Programming WebL ogic Web Services 9-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_connection_factory_create
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_queue_create

9 Using JMS Transport to Invoke a WebLogic Web Service

where connect i on-f act or y- nanme and queue- nanme are the INDI names of the
JMSS connection factory and JMS queues, respectively, that you previously
created. For example:

<web-servi ce
nanme="nyJMSTr ansport WebSer vi ce"
jmsUri =" JMSTr ansport Fact ory/ JMSTr anspor t Queue”
>

</ Web- service>
3. Ensurethat every operation of your Web Service is one-way.
This meansthat every <oper at i on> child element of this <web- ser vi ce>

element must specify thei nvocat i on- st yl e="one-way" attribute. For
example:

<operation nanme="sendQuote"
conponent =" si npl eSt ockQuot eBean"
i nvocati on-styl e="one-way" >

</ operati on>

Invoking a Web Service Using JMS Transport

94

Invoking a WebL ogic Web Service using the JM S transport is very similar to using
HTTP/S, as described in Chapter 8, “Invoking Web Services,” but with the following
restrictions:

= You caninvoke only one-way operations.

m |naddition to the standard WebL ogic Web Service client classes, your client
application must also update its CLASSPATH variable to include the standard
JMS client classes:

W._HOVE\server\lib\wi client.jar
W._HOVE\ server\lib\wljnsclient.jar

where W._ HOME refers to the main WebL ogic Server installation directory.

For more information on JIMS client classes, see Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs81b/jms/index.html.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/jms/index.html

Invoking a Web Service Using JMS Transport

When writing your client appliction to invoke the JM S-transport-enabled Web
Service, you first usethecl i ent gen Ant task to generate the Web Service-specific
client JAR filethat containsthe generated stubs, asusual. Thecl i ent gen Anttask in
this case generates a JAX-RPC Ser vi ce implementation of your Web Service that
containstwo get Por t () methods: the standard one for HTTP/S, called

get Ser vi ceNanePort (), and asecond one for using JM S transport, called

get Ser vi ceNanePor t JM5() , where Ser vi ceNane refersto the name of your Web
Service. Thesetwo get Port () methods correspond to the two port definitionsin the
generated WSDL of the Web Service, as described in “ Overview of Using IMS
Transport” on page 9-1.

The following example of asimple client application shows how to invoke the

post Wor | d operation of theMy Ser vi ce Web Service using both the HTTP/Stransport
(viathe get Myser vi cePort () method) and the IMS transport (viathe

get MySer vi cePor t JIM3() method):

package exanples.jns.client;
inmport java.io.|CException;
public class Main{
public static void main(String[] args) throws Exception{
MyService service = new MyService_Inpl ();

{ //using HTTP transport
MyServi cePort port = service.get MyServicePort();
port.postWorld("using HTTP");

}

{ //using JMS transport
MyServi cePort port = service.get MyServicePortJMS();
port.postWrld("using JVMS");
}
}

Programming WebL ogic Web Services 9-5

9 Using JMS Transport to Invoke a WebLogic Web Service

9-6 Programming WebL ogic Web Services

CHAPTER

10 Using Reliable
Messaging

The following sections describe how to use reliable messaging, both as asender and a
receiver of a SOAP message:

m “Overview of Reliable Messaging” on page 10-1
m “Using Reliable Messaging: Main Steps” on page 10-4

Overview of Reliable Messaging

Reliable messaging is aframework whereby an application running in one WebL ogic
Server instance can asynchronously and reliably invoke a Web Service running on
another WebL ogic Server instance.

Note: Reliable messaging works only between two WebL ogic Server instances.

One WebL ogic Server, called the sender, has an application that asynchronously
invokes a Web Service operation running on a different WebL ogic Server, called the
receiver, by sending it a SOAP message that hasreliable messaging informationin the
SOAP header. The Web Service operation being invoked has been configured for
reliable messaging. Due to the asynchronous nature of the invoke, the sender does not
immediately know whether the relevant operation has been invoked, but it has the
guarantee that it will get one of two possible notifications:

m The message has been received by the receiver.

Programming WebL ogic Web Services 10-1

10 using Reliable Messaging

Note: Thisdoes not mean that the Web Service operation on the receiver
WebL ogic Server was successfully invoked. For example, it ispossible
that the receiver receives the message and sends the appropriate
notification to the sender, but then the receiver WebL ogic Server crashes
and the operation is never invoked. Because the sender has received
notification that the message wasreceived, it doesnot retry sending it, even
though in this case the operation was never invoked.

The sender was unable to deliver the message.

The sender can either poll the receiver for notification, or register a callback to be
notified. Eventually, either the sender receives a notification that the message was
received, or it receives notification that the message was not delivered.

Reliable SOAP messaging is transport independent. By default, it usesHTTP/S.
However, you can also use IMS if you configure the receiving Web Service
appropriately and use the JIMS port when the sender invokes the Web Service. For
details on using IM S transport, see Chapter 9, “Using JMS Transport to Invoke a
WebL ogic Web Service.”

Terminology and Architecture

The following terms are used in this section:

sender: The WebL ogic Server instance that sends the reliable message.

sender application: The user application running in the sender that reliably
invokes a Web Service operation running on the receiver.

sender runtime: The WebL ogic Server code running on the sender that handles
reliable messaging.

receiver: The WebL ogic Server instance that receives a reliable message.

receiver Web Service: The Web Service running on the receiver that contains the
operation configured to be invoked reliably.

receiver runtime: The WebL ogic Server code running on the receiver that
handles reliable messaging.

The following diagram describes the architecture of the reliable messaging feature.

10-2 Programming WebL ogic Web Services

Overview of Reliable Messaging

@ @
Se:jlder. > genil_er Receiver | .| Receiver
Application| | Runtime Runtime | <¢| Web
Service
®
Sender Weblogic Server Receiver Weblogic Server

1. The sender application invokes areliable operation running on the receiver
WebL ogic Server.

2. The sender runtime saves the message in its persistent JIMS store. The store can
be either aIMS File or JIDBC store.
The sender runtime sends the SOAP message to the receiver WebL ogic Server.

3. Thereceiver runtime receives the message, checks for duplicatesin its persistent
JMS store, and if none are found, saves the message ID in store. If it findsa
duplicate, the receiver ignores the message.
The receiver runtime immediately sends notification back to the sender that the
message was received.

4. Thereceiver runtime invokes the reliable operation.
Because only voi d operations can be invoked reliably, the receiver does not
return any values or exceptions to the sender.

5. The sender runtime removes the message from its persistent store so that the

message does not get sent again.

The sender is configured to retry sending the message if it does not receive
notification of receipt. You configure the number of retries, and amount of time
between retries, of the sender using the Administration Console. Once sender

Programming WebL ogic Web Services 10-3

10 using Reliable Messaging

runtime has resent the message the maximum number of retries, it removes the
message from its store.

6. The sender runtime sends notification to the sender application (either via
callbacks or polling) that either the message was received or that it was never
successfully delivered.

Limitations

The reliable messaging feature has the following limitations:

= Only Web Service operations that return voi d can be configured to be invoked
reliably.

m |f the invoke of the Web Service operation fails, the exception will not be
propagated to the sender application.

Using Reliable Messaging: Main Steps

The following procedure describes the main steps to use reliable messaging when
invoking a WebL ogic Web Service operation. The procedure describes configuration
and code-writing tasksthat take placein both the sender and receiver WebL ogic Server
instances.

Note: It isassumed that you have already implemented and assembled a WebL ogic
Web Service and you want to enable one or more of its operations to be
invoked reliably. Additionaly, it is assumed that you have aready coded a
server-side application (such asaservlet in aWeb application) that invokesthe
Web Service in anon-reliable way and you want to update the application to
invoke the Web Service reliably.

For details about these tasks, see Chapter 5, “Implementing WebL ogic Web
Services,” Chapter 6, “ Assembling WebL ogic Web Services Using Ant
Tasks,” and Chapter 8, “Invoking Web Services.”

10-4 Programming WebL ogic Web Services

Using Reliable Messaging: Main Steps

1. Configure the reliable messaging attributes for the sender WebL ogic Server
instance (the WebL ogic Server instance on which the sender application that will
reliably invoke aWeb Service is deployed.)

See “ Configuring the Sender WebL ogic Server” on page 10-6.

2. Configure the reliable messaging attributes for the receiver WebL ogic Server
instance (the WebL ogic Server instance on which the reliable Web Service being
invoked is deployed.)

See “ Configuring the Receiver WebL ogic Server” on page 10-8.

3. Updatethebui | d. xm filethat containsthe call to theser vi cegen Ant task,
adding the <r el i abi | i t y> child element to the <ser vi ce> element that builds
your Web Service on the receiver WebL ogic Server, as shown in the following
example:

<servi cegen

dest Ear="c:\ nyWebService. ear"

war Narme="nyWAR. war "

cont ext URI ="web_servi ces" >

<service
ej bJar="c:\nyEJB.jar"
t ar get Nanmespace="ht t p: // ww. bea. com exanpl es/ Tr ader "
servi ceNane="Tr ader Servi ce"
servi ceURI ="/ Tr ader Servi ce"
gener at eTypes="Tr ue"
expandMet hods="True" >
<reliability duplicateElimnation="True"

per si st Durati on="60"

/>

</ service>

</ servi cegen>

For more information on the attributes of the <r el i abi | i t y> element, see
“servicegen” on page B-17.

Note: When you regenerate your Web Service using thisbui | d. xni file, every
operation will be enabled for reliable invocation. |f youwant only certain
operationsto beinvoked reliably, or you prefer not to regenerate your Web
Serviceusingser vi cegen, you can updatetheweb- ser vi ces. xm fileof
your WebL ogic Web Service manually. For details, see “Writing the Java
Code to Invoke an Operation Reliably” on page 10-10.

4. Re-runtheservi cegen Ant task to regenerate your Web Service that is running
on the receiver WebL ogic Server.

Programming WebL ogic Web Services 10-5

10 using Reliable Messaging

5. Rerunthecl i ent gen Ant task, specifying the
gener at eAsyncMet hods="Tr ue" attribute, to generate a new Web
Service-specific client JAR file that contains the asynchronous operation
invocations. Thisnew client JAR file will be used with the server-side
application running in the sender WebL ogic Server.

6. Onthe client application running on the sender WebL ogic Server, update the Java
code that invokes the Web Service to invoke it reliably.

See “Writing the Java Code to Invoke an Operation Reliably” on page 10-10.

Configuring the Sender WebLogic Server

10-6

This section describes how to configure reliable messaging attributes for aWebL ogic
Server instance in itsrole as a sender of areliable message.

Note: Part of the reliable messaging configuration involves configuring IMS
components. Thisincludes creating, if they do not already exist, aJM S server
and aJMSFile or IDBC store.

The following table describes the reliable messaging attributes.
Table 10-1 Reliable M essaging Attributesfor a Sender WebL ogic Server

Attribute Description

Store The persistent JIM S store used by WebL ogic Server, inits
role as a sender, to persist the reliable messages that it
sends.

Default Retry Count The default maximum number of times that the sender

runtime should attempt to redeliver a message that the
receiver WebL ogic Server has not yet acknowledged.

Default valueis 10.

Default Retry Interval The default minimum number of seconds that the sender
runtime should wait between retriesif the receiver does
not send an acknowledgement of receiving the message,
or if the sender runtime detects a communications error
while attempting to send a message.

Default value is 600.

Programming WebL ogic Web Services

Using Reliable Messaging: Main Steps

To configure these attributes:

1

Invoke the Administration Console by entering the following URL in your
browser:

http://host:port/consol e
where
e host refersto the computer on which the Administration Server is running.

e port refersto the port number where the Administration Server islistening
for connection requests. The default port number for the Administration
server is 7001.

Create, if one does not already exist, aJM S server. For details, see Configuring a
JMS Server.

Create, if one does not aready exist,aJMS store. Thiscan be either aJMS File
store or aJMS JDBC store. For details, see IMS File Sore Tasks and IMSJDBC
Sore Tasks.

Warning: The JMS Server with which this IMS store is associated cannot be
targetted to a Migratable Target.

Click the Servers node in the | eft pane.

Select the WebL ogic Server for which you want to configure reliable messaging
initsrole as a sender.

In the right pane, select the Servicestab.
Select the Web Services tab.

Select the IM S store from the Store drop-down list that will contain WebL ogic
Server’s reliable messages when acting as a sender.

Enter the default maximum number of times the sender WebL ogic Server should
attempt to resend a message in the Default Retry Count field.

10. Enter the default minimum number of seconds that the sender WebL ogic Server

should wait between retries in the Default Retry Interval field.

11. Enter the default minimum number of seconds that the receiver of thereliable

message should persist the history of the message in its IMS store in the Default
Timeto Livefield

Programming WebL ogic Web Services 10-7

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_server_create
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_server_create
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

10 using Reliable Messaging

Warning: Thisvalue should be larger than the corresponding value of any Web
Service operation being invoked reliably. Later sections describe how
toconfigure hisvalueinthe Web Service sweb- ser vi ces. xm fileby

updating the per si st - dur at i on attribute of the

<rel i abl e- del i ver y> subelement of the invoked <oper at i on>.

12. Click Apply.

Configuring the Receiver WebLogic Server

This section describes how to configure reliable messaging attributes for aWebL ogic

Server instance in itsrole as areceiver of areliable message.

Note: Part of the reliable messaging configuration involves configuring IMS

components. Thisincludes creating, if they do not already exist, aJM S server

and aJM S File or IDBC store.

The following table describes the reliable messaging attributes.

Table 10-2 Reliable M essaging Attributesfor a Receiver WebL ogic Server

Attribute

Description

Store

The persistent IM S store used by the receiver WebL ogic
Server to persist the history of areliable message sent by
asender.

Default Time To Live

The default number of seconds that the receiver of the
reliable message should persist the history of thereliable
message in its store.

If the Default Time to Live number of seconds have
passed sincethe messagewasfirst sent, the sender will not
resend a message with the same message ID.

If asender cannot send a message successfully before the
Default Time To Live number of seconds has passed, the
sender will report adelivery failure.

The receiver, after recovering from acrash, will not
dispatch saved messages that have expired.

To configure these attributes:

10-8 Programming WebL ogic Web Services

Using Reliable Messaging: Main Steps

1. Invoke the Administration Console by entering the following URL in your
browser:

http://host:port/consol e
where
e host refersto the computer on which the Administration Server is running.

e port refersto the port number where the Administration Server islistening
for connection requests. The default port number for the Administration
server is 7001.

2. Create, if one does not already exist, aJMS server. For details, see Configuring a
JMS Server.

3. Create, if one does not already exist, aJMS store. This can be either aJMSFile
store or aJM S JDBC store. For details, see IMS File Sore Tasks and IMS JDBC
Sore Tasks.

Warning: The JMS Server with which this JMS store is associated cannot be
targetted to a Migratable Target.

4. Click the Servers node in the left pane.

5. Select the WebL ogic Server for which you want to configure reliable messaging
initsrole as areceiver.

6. Intheright pane, select the Servicestab.
7. Select the Web Servicestab.

8. Select the IMS store from the Store drop-down list that will contain WebL ogic
Server’s reliable messages when acting as a receiver.

9. Enter the default minimum number of seconds that the receiver of thereliable
message should persist the history of the message in its persistent IMS store in
the Default Timeto Live field.

Note: Later sectionsin this document describe how each Web Service operation
canoverridethisdefault valueinitsweb- ser vi ces. xni fileby setting the
per si st -durati on of the<reliabl e-del i ver y> sublement of the
corresponding <oper at i on> €lement.

10. Click Apply.

Programming WebL ogic Web Services 10-9

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_server_create
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#jms_server_create
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_file_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html#configure_jms_jdbc_stores

10 using Reliable Messaging

Writing the Java Code to Invoke an Operation Reliably

Writing the Java code to invoke a Web Service operation reliably from a sender
application is very similar to invoking an operation asynchronously, as described in
“Writing an Asynchronous Client” on page 8-17. The asynchronous invoke of an
operation is split into two methods: st art Oper ati on() and endQper ati on() .

In addition to the standard asynchronous client Java code, to invoke an operation
reliably you must:

= enablereliable delivery in your client application with the
Asyncl nf o. set Rel i abl eDel i very() method

m create and set alistener to listen for the results of areliable operation invocation
with the Asyncl nf o. set Resul t Li st ener (1 i st ener) method. The listener
classimplementsthe Resul t Li st ener interface, which in turn defines the
onConpl eti on() listener callback method in which you define what happens
when the asynchronous reliable operation invocation completes.

The following example shows a sender application that reliabley invokes the

myMet hod operation of the EchoSer vi ce Web Service. The example shows how to

split the invoke of this operation into two asynchronous invokes using the following

two methods: st art MyMet hod() andendMyMet hod() . Youtéllcl i ent gen Anttask
to generate these two methods in the stubs by specifying thegener at eAsyncMet hods
attribute.

/**

* @uthor Copyright (c) 2002 by BEA Systens. All Rights Reserved.
*/

i mport webl ogi c.utils. Debug;

i mport webl ogi c. webservi ce. async. FutureResul t;

i nport webl ogi c. webservi ce. async. Asyncl nf o;

i mport webl ogi c. webservi ce. async. Resul t Li st ener;

i mport webl ogi c. webservi ce. async. | nvokeConpl et edEvent ;

public final class ReliableSender {

public String echoString(String f) {

try {
EchoServi ce echoService = new EchoService_lnpl ();

EchoServi cePort echoPort = echoServi ce. get EchoServi cePort();

10-10 Programming WebL ogic Web Services

Using Reliable Messaging: Main Steps

/lasync poll style with reliable delivery

Asyncl nfo asyncCtx = new Asynclnfo();

RMLi stener |istener = new RM.istener();

asyncCt x. set Rel i abl eDel i very();

asyncCt x. set Resul tLi stener (listener);

FutureResult futureResult = echoPort.startM/Method(f,
asyncCt x) ;

while(!'futureResult.isConpleted()) {

Debug. say("async polling ")

Thr ead. sl eep(300);
}
String result = echoPort.endM/Met hod(futureResult);
Debug. say("poll result: " + result);

return result;

} catch (Exception e) {
Debug. say("Exception in Reliabl eSender: " + e);

return null;

}

cl ass RMListener inplenents ResultListener {
public void onConpl etion(l nvokeConpl et edEvent event) {
System out. println("onConpl etion called");
}

Updating the web-services.xml File Manually for
Reliable Messaging

If you regenerated your Web Service using theser vi cegen Ant task, every operation
isenabled for reliable invocation. If you want only certain operations to be invoked
reliably, or you prefer not to regenerate your Web Serviceusing ser vi cegen, you can
update the web- ser vi ces. xnl file of your WebL ogic Web Service manually, as
described in this section.

Theweb- servi ces. xm fileislocated in the WVEB- I NF directory of the Web
application of the Web ServicesEAR file. See”The Web Service EAR File Package”
on page 6-12 for more information on locating thefile.

Programming WebL ogic Web Services 10-11

10 using Reliable Messaging

To update the web- ser vi ces. xm file to enable reliable messaging for one or more
operations:

1. Openthefilein your favorite editor.

2. For each operation for which you want to enable reliable messaging, add a
<rel i abl e- del i ver y> subelement. Specify the following optional attributes of
the<rel i abl e- del i ver y> element to configure the specific reliable delivery
features of the operation:

dupl i cat e- el i ni nati on - Boolean that specifies whether the WebL ogic
Web Service should ignore duplicate invokes from the same sender
application. Default valueis Tr ue.

per si st - durat i on - Integer value that specifies the default minimum
number of seconds that the Web Service should persist the history of the
reliable message (received from the sender that invoked the Web Service) in
its storage. When the persist-duration number of seconds have elapsed, the
receiver WebL ogic Server deletes the history of the message from its store.
This attribute overrides the default server value you set in “ Configuring the
Receiver WebL ogic Server” on page 10-8. The default if neither is set is 360
seconds.

The following example shows an operation that can be invoked reliably:

<oper ati on nane="get Quot e"

conponent =" si npl eSt ockQuot eBean"
met hod="get Quot e" >
<reliabl e-delivery persist-duration="80" />

</ operation>

10-12 Programming WebL ogic Web Services

CHAPTER

11 Using Non-Built-In
Data Types

The following sections describe how to use non-built-in datatypesin WebL ogic Web
Services;

m “Overview of Using Non-Built-In Data Types’ on page 11-1
m “Creating Non-Built-In Data Types Manually: Main Steps’ on page 11-2

Overview of Using Non-Built-In Data Types

Y ou can create a WebL ogic Web Service that uses non-built-in data types as the Web
Service parameters and return value. Non-built-in data types are defined as data types
other than the supported built-in data types, such asi nt and St ri ng. For the full list
of built-in types, see “Using Built-In Data Types’ on page 5-12.

WebL ogic Server transparently handles the conversion of the built-in data types
between their XML and Javarepresentation. However, if your Web Service operation
uses non-built-in data types, you must provide the following information so that
WebL ogic Server can perform the conversion:

m Seridization class that converts between the XML and Java representation of the
data.

m A Javaclassto contain the Javarepresentation of the datatype.

m An XML Schema representation of the data type.

Programming WebL ogic Web Services 11-1

11 using Non-Built-In Data Types

m Datatype mapping information in the web- ser vi ces. xn deployment
descriptor file.

WebL ogic Server includesthe ser vi cegen and aut ot ype Ant tasks which
automatically generate the preceding components by introspecting the statel ess session
EJB or Java class backend component for your Web Service. These Ant tasks can
handle many non-built-in datatypes, so most programmerswill not ever haveto create
the components manually.

Sometimes, however, you may need to create the non-built-in data type components
manually. Your datatype may be so complex that the Ant task cannot correctly
generate the components. Or maybe you want more control over how the datais
converted between its XML and Javarepresentations rather than relying on the default
conversion procedure used by WebL ogic Server.

For afull list of the supported non-built-in data types, see “Non-Built-In Data Types
Supported by servicegen and autotype Ant Tasks’ on page 6-13.

For procedural instructions on using ser vi cegen and aut ot ype, see Chapter 6,
“Assembling WebL ogic Web Services Using Ant Tasks.” For reference information,
see Appendix B, “Web Service Ant Tasks and Command-Line Utilities.”

Creating Non-Built-In Data Types Manually:
Main Steps

11-2

The following procedure describes how to create non-built-in data types and use the
servi cegen Ant task to create a deployable Web Service:

1. Writethe XML Schema representation of your data type. See “Writing the XML
Schema Data Type Representation” on page 11-4.

2. Write a Javaclass that represents your datatype. See “Writing the Java Data
Type Representation” on page 11-5.

3. Write aseridlization class that converts the data between its XML and Java
representations. See “Writing the Serialization Class’ on page 11-6.

Programming WebL ogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps

. Compileyour Javacodeinto classes. Ensurethat your CLASSPATH variable can
locate the classes.

. Create atext file that contains the data type mapping information about your
non-built-in data type. See “ Creating the Data Type Mapping File” on page
11-11.

. Assemble your Web Service using the ser vi cegen Ant task as described in

“ Assembling WebL ogic Web Services Using the servicegen Ant task” on page
6-3, with the following addition: when creating the bui | d. xn filethat calls the
servi cegen Ant task, be sure you specify thet ypeMappi ngFi | e attribute of
servi cegen, setting it equal to the name of the data type mapping file you
created in the preceding step.

BEA recommends that you create an exploded directory, rather than an EAR
file, by specifying avauefor the dest Ear attribute of ser vi cegen that does
not have an . ear suffix. You can later package the exploded directory into an
EAR file when you are ready to deploy the Web Service.

. Update theweb- ser vi ces. xm file (which was generated by the ser vi cegen
Ant task), adding the XML Schema representation of your data type that you
created in the first step of this procedure. See *Updating the web-services.xml
File With XML Schema Information” on page 11-12.

. Either deploy the exploded directory as your Web Service, or package the
directory into an EAR file and deploy it on WebL ogic Server.

. If you want to usethecl i ent gen Ant task to generate a Java client, follow the
procedure described in “Running the clientgen Ant Task” on page 6-9 with the
following additions to the bui | d. xm filethat callscl i ent gen:

e Specify theear attribute and set it to the full name of your Web Service
EAR file. Do not specify thewsd! attribute.

e Specify theuseSer ver Types attribute and set it to Tr ue.

Programming WebL ogic Web Services 11-3

11 using Non-Built-In Data Types

Writing the XML Schema Data Type Representation

11-4

Web Services use SOAP as the message format to transmit data between the service
and the client application that invokes the service. Because SOAP is an XML-based
protocol, you must use XML Schema notation to describe the structure of non-built-in
data types used by Web Service operations.

Warning: XML Schemais apowerful and complex data description language, and
its useis not recommended for the faint of heart.

Thefollowing example showsthe XML Schemathat describesanon-built-in datatype
called Enpl oyBean:

<xsd: schema xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: st ns="j ava: exanpl es. newTypes"
attribut eFor mDef aul t="qual i fied"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="j ava: exanpl es. newTypes" >
<xsd: conpl exType nane="Enpl oyeeBean" >
<xsd: sequence>
<xsd: el enent nane="nane"
type="xsd: string"
nillable="true"
m nCccurs="1"
maxCccurs="1">
</ xsd: el enent >
<xsd: el enent nane="id"
type="xsd:int"
m nCccurs="1"
maxQccurs="1">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

The following XML shows an instance of the Enpl oyeeBean datatype:

<Enpl oyeeBean>
<nanme>Bever| ey Tal bott </ nane>
<i d>1234</i d>

</ Enpl oyeeBean>

For detailed information about using XML Schema notation to describe your
non-built-in data type, see the XML Schema specification at
http:/mww.w3.org/TR/xmlschema-0/.

Programming WebL ogic Web Services

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Creating Non-Built-In Data Types Manually: Main Steps

Writing the Java Data Type Representation

Y ou use the Java representation of the non-built-in datatypein your EJB or Javaclass
that implements the Web Service operation.

The following example shows one possible Java representation of the Enpl oyeeBean
data type whose XML representation is described in the preceding section:

package exanpl es. newTypes;
/**

* @ut hor Copyright (c) 2002 by BEA Systenms. Al Rights Reserved.
*/

public final class Enpl oyeeBean {

private String nane = "John Doe";
private int id = -1;

publi c Enpl oyeeBean() {

}

public Enpl oyeeBean(String n, int i) {
name = n;
id=1i;

}

public String getNanme() ({
return nane;

public void setName(String v) {
this.name = v;

}

public int getld() {
return id,

public void setld(int v) {
this.id = v;

}

public bool ean equal s(Ooject obj) {
if (obj instanceof EnployeeBean) {
Enpl oyeeBean e = (Enpl oyeeBean) obj;
return (e.nane. equal s(nane) && (e.id ==1id));

return false;

Programming WebL ogic Web Services 11-5

11 using Non-Built-In Data Types

Writing the Serialization Class

The serialization class performs the actual conversion of your data between its XML
and Java representations. Y ou write only one class that contains methods to serialize
and deserialize your data. In the class you use the WebL ogic XML Streaming API to
process the XML data.

The WebLogic XML Streaming API provides an easy and intuitive way to consume
and generate XML documents. It enablesaprocedural, stream-based handling of XML
documents.

For detailed information on using the WebL ogic XML Streaming API, see
Programming WebLogic XML at
http://e-docs.bea.com/wls/docs81b/xml/xml_stream.html.

The following example shows a class that uses the XML Streaming API to serialize
and deserialize the data type described in “Writing the XML Schema Data Type
Representation” on page 11-4 and “Writing the Java Data Type Representation” on
page 11-5; the procedure after the example lists the main steps to create such a class:

package exanpl es. newTypes;

i mport

i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

11-6

webl ogi c. webservi ce.

webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.

webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.
webl ogi c.

xm
xm
xm
xm
xm
xm

xm
xm
xm
xm
xm
xm
xm
xm
xm

. schema.
. schema.
. schema.
. schema.
. schema.
. schema.

encodi ng. Abst ract Codec;

bi
bi
bi
bi
bi
bi

ndi
ndi
ndi
ndi
ndi
ndi

ng.
ng.
ng.
ng.
ng.
ng.

Deseri al i zati onCont ext ;
Deseri al i zati onExcepti on;
Deseri ali zer;

Seri al i zati onCont ext ;
Serializati onExcepti on;
Serializer;

.stream Attri bute;

. stream Char act er Dat a;

. stream El emrent Fact ory;

. stream EndEl enent ;
.stream Start El enent;
.stream XM.Event ;

. stream XM.I nput St r eam

. stream XM_Narne;

. stream XM.Qut put St ream

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/xml/xml_stream.html

Creating Non-Built-In Data Types Manually: Main Steps

i mport webl ogi c. xm . stream XM.St r eanExcepti on;

public final class Enpl oyeeBeanCodec extends
webl ogi c. webser vi ce. encodi ng. Abst ract Codec

public void serialize(Object obj,

{

}

XM_Nane nane,

XM_CQut put Stream wri ter,

Serializati onContext context)
throws SerializationException

Enpl oyeeBean enp = (Enpl oyeeBean) obj ;

try {

//outer start el ement
writer.add(El enent Factory. createStart El ement (nane));

[/ enpl oyee nane el enent

writer.add(El enent Factory. createStartEl ement ("nane"));
writer.add(El enent Factory. creat eCharact er Dat a(enp. get Nane()));
writer.add(El enent Factory. creat eEndEl enent (" nanme"));

[/ enpl oyee id el ement

writer.add(El ement Factory.createStartEl ement("id"));
String id_string = Integer.toString(enp.getld());
writer.add(El enent Factory. createCharacterData(id_string));
writer.add(El ement Factory. creat eEndEl enent ("id"));

//outer end el ement
writer.add(El enent Factory. creat eEndEl enent (nane)) ;

} catch(XM.StreanExcepti on xse) {
throw new Seri al i zati onException("streamerror", xse);

}

public nject deserialize(XM-Name nane,

XM.I nput St ream r eader,
Deseri al i zati onCont ext context)
throws DeserializationException

/1 extract the desired information out of reader, consum ng the
/] entire element representing the type,

/] construct your object, and return it.

Enmpl oyeeBean enpl oyee = new Enpl oyeeBean();

try {

i f (reader.skip(name, XM.Event. START_ELEMENT)) {
StartEl ement top = (StartEl enent)reader. next();

Programming WebL ogic Web Services 11-7

11 using Non-Built-In Data Types

/I next start elenent should be the enpl oyee nane
if (reader.ski p(XM_.Event. START_ELEMENT)) {
Start El ement enp_nanme = (StartEl enent)reader. next();

//assune that the next element is our name character data
CharacterData cdata = (CharacterData) reader. next();
enpl oyee. set Nane(cdat a. get Content ());
} else {
throw new Deseri al i zati onExcepti on("enpl oyee nane not found");
}

/I next start element should be the enployee id
if (reader.skip(XM.Event. START_ELEMENT)) {
StartEl enent enp_id = (StartEl ement)reader. next();

//assume that the next elenent is our id character data
CharacterData cdata = (CharacterData) reader.next();
enpl oyee. setl d(I nteger. parsel nt(cdata.getContent()));
} else {
throw new Deseri al i zati onExcepti on("enpl oyee id not found");
}

//we must consume our entire elenment to | eave the streamin a
/1 good state for any other deserializer
if (reader.skip(nanme, XM.Event.END ELEMENT)) {
XMLEvent end = reader. next();
} else {
throw new Deseri al i zati onExcepti on("expected end el enent not found");
}

} else {
throw new Deseri al i zati onException("expected start el ement not found");

}
} catch (XM.StreanException xse) {

throw new Deseri alizati onException("streamerror", xse);
}

return enpl oyee;

}

public Object deserialize(XMNanme nane,
Attribute att,
Deseri al i zati onCont ext context)
throws DeserializationException

/I NOTE: not used in this exanple

/1l extract the desired information out of att, consum ng the
/1 entire elenent representing the type,

/1 construct your object, and return it.

return new Enpl oyeeBean();

11-8 Programming WebL ogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps

To create the serialization class using the WebLogic XML Streaming AP, follow
these steps:

1

Import thefollowing classes, which areimplemented by the abstract classthat your
serialization class will extend:

i mport webl ogi c. xm . schena. bi ndi ng. Deseri al i zat i onCont ext ;

i mport webl ogi c. xm . schena. bi ndi ng. Deseri al i zati onExcepti on;
i mport webl ogi c. xm . schema. bi ndi ng. Deseri al i zer;

i mport webl ogi c. xm . schena. bi ndi ng. Seri al i zati onCont ext ;

i mport webl ogi c. xm . schena. bi ndi ng. Seri al i zati onExcepti on;

i mport webl ogi c. xm . schema. bi ndi ng. Seri al i zer;

Import the WebL ogic XML Streaming API classes as needed. The preceding
example imports the following classes:

import weblogic.xm.stream Attri bute;

i mport webl ogi c. xm . stream Char act er Dat a;

i mport webl ogi c. xm . stream El enent Fact ory;

i mport webl ogi c. xm . st ream EndEl enent ;

i mport webl ogi c. xm . stream Start El enent;

i mport webl ogi c. xm . stream XM_Event ;

i mport webl ogi c. xm . stream XM.I nput St ream

i mport webl ogi c. xm . stream XM_Nane;

i mport webl ogi c. xm . stream XM.CQut put St r eam
import webl ogic.xm .stream XM.St reanExcepti on;

Write your Java class to extend the following abstract class:

webl ogi c. webser vi ce. encodi ng. Abst ract Codec

Implement theseri al i ze() method, used to convert the datafrom Javato
XML. The signature of this method is as follows:
voi d serialize(Ooject obj,
XM_.Nane narne,
XMLCut put Stream wri ter,

Seri al i zati onCont ext cont ext)
throws SerializationException;

Your Java object will be contained in the Obj ect parameter. Usethe XML
Streaming API to write the Java object to the XMLQut put St r eamparameter. Use
the XMLName parameter as the name of the resulting element.

Programming WebL ogic Web Services 11-9

11 using Non-Built-In Data Types

5.

Warning: Do not updatethe Seri al i zat i onCont ext parameter; it is used
internally by WebL ogic Server.

Implement thedeseri al i ze() method, used to convert the datafrom XML to
Java. The signature of this method is as follows:

bj ect deserialize(XM_.Nane nane,
XM.I nput St ream r eader,
Deseri al i zati onCont ext context)
throws DeserializationException;

The XML that you want to deserializeis contained in the XMLI nput St r eam
parameter. Usethe WebLogic XML Streaming APl to parse the XML and
convert it into the returned bj ect . The XM_Nane parameter contains the
expected name of the XML element.

Call thedeseri al i ze() method recursively to build contained (oj ect s.

When you use the XML Streaming API to read the stream of events that make
up your XML document, be sure you always finish reading an element al the
way up to and including the EndEl enent event, rather than finish reading once
you haveread al the actual data. If you finish before reaching an EndE!l enent
event, the deserialization of subsequent elements might fail.

Warning: Do not update the Deseri al i zati onCont ext parameter; it is used
internaly by WebL ogic Server.

If the data type for which you are creating a serialization classis used as an
attribute value in your XML files, implement the following variation of the
deserial i ze() method:

oj ect deseriali ze(XM_Nane nane,
Attribute att,
Deseri al i zati onCont ext cont ext)
throws DeserializationException;

The At tri but e parameter contains the attribute value to deserialize. The
XM.Nane attribute contains the expected name of the XML element.

Warning: Do not update the Deseri al i zat i onCont ext parameter; itis used
internally by WebL ogic Server.

11-10 Programming WebL ogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps

Creating the Data Type Mapping File

The data type mapping file is asubset of the web- ser vi ces. xm deployment
descriptor file. It centralizes some of the information about non-built-in data types,
such as the name of the Java class that describes the Java representation of the data,
the name of the serialization class that converts the data between XML and Java, and
soon. Theservi cegen Ant task uses this data type mapping file when creating the
web- ser vi ces. xm deployment descriptor for the WebL ogic Web Service that uses
the non-built-in data type.

To create the data type mapping file, follow these steps:

1. Create atext file with any name.

2. Within in thetext file, add a <t ype- mappi ng> root el ement:
<t ype- mappi ng>
</ t ype- mappi ng>

3. For each non-built-in data type for which you have created a serialization class,
add a <t ype- mappi ng- ent r y> child element of the <t ype- mappi ng> element.
Include the following attributes:

e xnl ns: name —Declares a namespace.
e cl ass- name—Specifiesthe fully qualified name of the Java class.

e t ype—Specifiesthe name of XML Schematype for which this data type
mapping entry applies.

e serial i zer—Thefully qualified name of the serialization class that
converts the data from its Javato its XML representation. For details on
creating this class, see “Writing the Serialization Class’ on page 11-6.

e deserial i zer—Thefully qualified name of the serialization class that
converts the data from its XML to its Java representation. For details on
creating this class, see “Writing the Serialization Class’ on page 11-6.

The following example shows a possible data type mapping file with one
<t ype- mappi ng> entry for the XML Schema data type shown in “Updating the
web-services.xml File With XML Schema Information” on page 11-12:

<t ype- mappi ng>

<t ype- mappi ng-entry
xm ns: p2="j ava: exanpl es. newTypes"

Programming WebL ogic Web Services 11-11

11 using Non-Built-In Data Types

cl ass- nane="exanpl es. newTypes. Enpl oyeeBean"
type="p2: Enpl oyeeBean"
seri al i zer =" exanpl es. newTypes. Enpl oyeeBeanCodec" >
deseri al i zer =" exanpl es. newTypes. Enpl oyeeBeanCodec"
</ type- mappi ng-entry>
</ type- mappi ng>

Updating the web-services.xml File With XML Schema
Information

Theweb- servi ces. xm file generated by ser vi cegen will not have the XML
Schema information for the non-built-in data type for which you have created your
own custom serialization class. For this reason, you must manually add the XML
Schema information to the deployment descriptor, as described in the following steps:

1. Intheexistingweb- ser vi ces. xm file generated by the ser vi cegen Ant task,
find the <t ypes> child element of the <web- ser vi ce> element:

<types>
</ t ypes>

2. Merge your XML Schema representation of your non-built-in data type that you
created in “Writing the XML Schema Data Type Representation” on page 11-4

with the any existing information within the <t ypes> element, as shown in the
following example:

<types>
<xsd: schema xnm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: st ns="j ava: exanpl es. newTypes"
attri but eFor mDef aul t="qual i fi ed"
el emrent For mDef aul t =" qual i fi ed"
t ar get Nanespace="j ava: exanpl es. newTypes" >
<xsd: conpl exType nane="Enpl oyeeBean" >
<xsd: sequence>
<xsd: el enent nane="nane"
type="xsd: string"
nillable="true"
m nCccur s="1"
maxCccur s="1">
</ xsd: el enent >
<xsd: el enent nane="id"
type="xsd:int"
m nCccur s="1"

11-12 Programming WebL ogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps

maxQccur s="1">
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>
</types>

Programming WebL ogic Web Services 11-13

11 using Non-Built-In Data Types

11-14 Programming WebL ogic Web Services

CHAPTER

12 Creating SOAP

Message Handlers to
Intercept the SOAP
Message

The following sections discuss how to use SOAP message handlersto intercept the
request and response SOA P messages when developing a WebL ogic Web Service:

m “Overview of SOAP Message Handlers and Handler Chains’ on page 12-2
m “Creating SOAP Message Handlers. Main Steps’ on page 12-3

m “Designing the SOAP Message Handlers and Handler Chains’ on page 12-4
m “Implementing the Handler Interface” on page 12-6

m “Updating the web-services.xml File with SOAP Message Handler Information”
on page 12-16

Note: These sections describes how to create SOAP message handlers that execute
as part of the Web Service running on WebL ogic Server; see the JAX-RPC
specification at http://java.sun.com/xml/jaxrpc/index.html for information on
creating handlers that execute in a client application.

Programming WebL ogic Web Services 12-1

http://java.sun.com/xml/jaxrpc/index.html

12 Creating SOAP Message Handlers to Intercept the SOAP Message

Overview of SOAP Message Handlers and
Handler Chains

A SOAP message handler intercepts the SOAP message in both the request and
response of the Web Service. Y ou can create handlersin both the Web Service itself
and the client applications that invoke the Web Service. Refer to “Using SOAP
Message Handlersto I ntercept the SOAP Message” on page 4-6 for examples of when
to use handlers.

The following table describes the main classes and interfaces of the
j avax. xn . rpc. handl er API; later sectionsinthischapter describe how to usethem
to create handlers.

Table 12-1 JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes Description
and Interfaces

Handl er Main interface that you implement when creating a
handler. Contains methods to handle the SOAP request,
response, and faults.

Handl er I nf o Contains information about the handler, in particular the
initialization parameters, specified in the
web-services.xml file.

MessageCont ext Abstracts the message context processed by the handler.
The MessageContext properties allow the handlersin a
handler chain to share processing state.

soap. SCAPMessageCont ext Sub-interface of the MessageContext interface used to get
at or update the SOAP message.

j avax. xn . soap. SOAPMessage Object that contains the actual request or response SOAP
message, including its header, body, and attachment.

12-2 Programming WebL ogic Web Services

Creating SOAP Message Handlers: Main Steps

Creating SOAP Message Handlers: Main
Steps

The following procedure assumes that you have aready implemented and assembled
aWebL ogic Web Service using theser vi cegen Ant task, and you want to update the
Web Service by adding handlers and handler chains.

1. Design the handlers and handler chains. See “ Designing the SOAP Message
Handlers and Handler Chains’ on page 12-4.

2. For each handler in the handler chain, create a Java class that implements the
j avax. xnl . rpc. handl er . Handl er interface. See “Implementing the Handler
Interface” on page 12-6.

WebL ogic Server includes an extension to the JAX-RPC handler APl which you
can use to simplify the coding of your handler class: an abstract class called

webl ogi c. webser vi ce. Generi cHandl er. See“Extending the GenericHandler
Abstract Class’ on page 12-14.

3. Compilethe Javacodeinto classfiles.

4. Update thebui | d. xni file that containsthe call to theser vi cegen Ant task,
adding the <handl er Chai n> child element to the <ser vi ce> element that builds
your Web Service, as shown in the following example:

<servi cegen
dest Ear="c:\ myWebServi ce. ear"
war Narme="nyWAR. war "
cont ext URI ="web_servi ces" >
<servi ce
ej bJar="c:\nyEJB.jar"
t ar get Nanmespace="htt p: // ww. bea. com exanpl es/ Tr ader "
servi ceNane="Tr ader Servi ce"
servi ceURl ="/ Tr ader Servi ce"
gener at eTypes="Tr ue"
expandMet hods="True" >
<handl er Chai n
nane="myChai n"
handl er s="myHandl er s. handl er One,
nmyHandl er s. handl er Two,
myHandl er s. handl er Thr ee"
/>

Programming WebL ogic Web Services 12-3

12 Creating SOAP Message Handlers to Intercept the SOAP Message

</ service>
</ servi cegen>

For more information on the attributes of the <handl er Chai n> €element, see
“servicegen” on page B-17.

Note: When you regenerate your Web Service using thisbui | d. xnl file, every
operation will be associated with the handler chain. Additionally, thereis
no way to specify input parameters for a handler using ser vi cegen. If
you want only certain operations to be associated with this handler chain,
or you prefer not to regenerate your Web Service using ser vi cegen, you
can update the web- ser vi ces. xni file of your WebL ogic Web Service
manually. For details, see* Updating the web-services.xml Filewith SOAP
Message Handler Information” on page 12-16.

5. Reruntheservi cegen Ant task to regenerate your Web Service.

Designing the SOAP Message Handlers and
Handler Chains

When designing your SOAP message handlers, you must decide:
m The number of handlers needed to perform all the work
m The sequence of execution

m Whether to invoke a backend component or whether the Web Service consists of
only ahandler chain.

Each handler in a handler chain has one method for handling the request SOAP
message and another method for handling the response SOAP message. Y ou specify
the handlersin theweb- ser vi ces. xm deployment descriptor file. An ordered group
of handlersis referred to as ahandler chain.

When invoking a Web Service, WebL ogic Server executes handlers as follows:

1. Thehandl eRequest () methods of the handlers in the handler chain are all
executed, in the order specified in the web- ser vi ces. xm file. Any of these
handl eRequest () methods might change the SOA P message request.

12-4 Programming WebL ogic Web Services

Designing the SOAP Message Handlers and Handler Chains

2. When the handl eRequest () method of the last handler in the handler chain
executes, WebL ogic Server invokes the backend component that implements the
Web Service, passing it the final SOAP message request.

Note: Thisstep only occursif abackend component has actually been defined for the
Web Service; it is possible to develop a Web Service that consists of only a
handler chain.

3. When the backend component has finished executing, the handl eResponse()
methods of the handlers in the handler chain are executed in the reverse order
specified in theweb- servi ces. xnl file. Any of these handl eResponse()
methods might change the SOAP message response.

4. When the handl eResponse() method of the first handler in the handler chain
executes, WebL ogic server returns the final SOAP message response to the client
application that invoked the Web Service.

For exampl e, assume that you have specified a handler chain called nyChai n that
containsthree handlersintheweb- ser vi ces. xm deployment descriptor, asshownin
the following excerpt:

<handl er - chai ns>
<handl er - chai n name="nyChai n" >
<handl er cl ass- name="nyHandl ers. handl er One" />
<handl er cl ass- name="nyHandl ers. handl er Two" />
<handl er cl ass-nane="nyHandl ers. handl er Three" />
</ handl er - chai n>
</ handl er - chai ns>

The following graphic shows the order in which WebL ogic Server executes the
handl eRequest () and handl eResponse() methods of each handler:

handleRequest() handleRequest() handleRequest() \
Backend
Component
(isimmn)
handleResponse() handleResponse() handleResponse()

Programming WebL ogic Web Services 12-5

12 Creating SOAP Message Handlers to Intercept the SOAP Message

Each SOAP message handler has a separate method to process the request and
response SOA P message because the same type of processing typically must happen
in both places. For example, you might design an Encryption handler whose

handl eRequest () method decrypts secure data in the SOAP request and

handl eResponse() method encrypts the SOAP response.

Y ou can, however, design a handler that process only the SOAP request and does no
equivalent processing of the response.

Y ou can also choose not to invoke the next handler in the handler chain and send an
immediate response to the client application at any point. The way to do thisis
discussed in | ater sections.

Finally, you can design a Web Service that contains only handlersin ahandler chain,
and no backend component at all. In thiscase, whenthehand!l eRequest () methodin
thelast handler has executed, the chain of handl eResponse() methodsis
automatically invoked. See* Updating the web-services.xml File with SOAP Message
Handler Information” on page 12-16 for an example of using theweb- ser vi ces. xn
file to specify that only a handler chain, and no backend component, implements a
Web Service.

Implementing the Handler Interface

Y our SOAP message handler class must implement the
j avax. rpc. xn . handl er . Handl er interface, as shown in the following example.
The example demonstrates a simple way to print out the SOAP request and response

messages:

package exanpl es. webservi ces. handl er. | og;

i mport

i mport
i mport
i mport
i mport
i mport
i mport

i mport

12-6

java.util . Map;

j avax.
j avax.
j avax.
j avax.
j avax.
j avax.

xm . rpc. handl er. Handl er;

xm . rpc. handl er. Handl er | nf o;

xm . rpc. handl er. MessageCont ext ;

xm . rpc. handl er. soap. SOAPMessageCont ext ;
xm . rpc. JAXRPCEXxcept i on;

xm . namespace. QNane;

webl ogi c. | oggi ng. NonCat al ogLogger ;

Programming WebL ogic Web Services

Implementing the Handler Interface

/

* %

* @ut hor Copyright (c) 2002 by BEA Systenms. Al Rights Reserved.
*/

public final class LogHandl er

{

}

i mpl enent s Handl er

private NonCat al ogLogger 1 og;
private Handl erl nfo handl erl nfo;

public void init(Handlerlnfo hi) {
| og = new NonCat al ogLogger (" WebSer vi ce- LogHandl er");
handl erlInfo = hi;

}
public void destroy() {}
public QNane[] getHeaders() { return handl erlnfo. get Headers(); }

publ i c bool ean handl eRequest (MessageCont ext nt) {
SOAPMessageCont ext nmessageCont ext = (SOAPMessageCont ext) nt;

Systemout.println("** Request: "+messageContext.get Message().toString());
| og. i nfo(messageCont ext . get Message().toString());
return true;

}
public bool ean handl eResponse(MessageCont ext nt) {
SOAPMessageCont ext nmessageCont ext = (SOAPMessageCont ext) nt;

Systemout.println("** Response: "+nessageContext.getMessage().toString());
| og. i nfo(messageCont ext . get Message().toString());
return true;

}

public bool ean handl eFaul t (MessageCont ext nt) {
SCOAPMessageCont ext messageCont ext = (SOAPMessageCont ext) nt;

Systemout.println("** Fault: "+messageContext.getMessage().toString());
| og. i nfo(messageCont ext . get Message().toString());
}

Thej avax. xni . rpc. handl er . Handl er interface contains the following methods
that you must implement:

m init()

B destroy()

Programming WebL ogic Web Services 12-7

12 Creating SOAP Message Handlers to Intercept the SOAP Message

B get Headers()
® handl eRequest ()
® handl eResponse()

® handl eFaul t ()

The following sections describe how to use each method to code your implementation.

Implementing the Handler.init() Method

TheHandl er . i ni t () method is called to create an instance of aHandl er object and
to enable the instance to initialize itself. Its signatureis:

public void init(Handl erInfo config) throws JAXRPCException {}

The Handl er I nf o object contains information about the SOAP message handler, in
particular the initialization parameters, specified in the web- ser vi ces. xm file. Use
the Handl er | nf 0. get Handl er Confi g() method to get the parameters; the method
returns a Map object that contains name-val ue pairs.

Implement thei ni t () method if you need to process the initialization parameters or
if you have other initialization tasks to perform.

Sample uses of initialization parameters are to turn debugging on or off, specify the
name of alog file to which to write messages or errors, and so on.

Implementing the Handler.destroy() Method

12-8

TheHandl er. dest roy() methodiscalledto destroy aninstanceof aHandl er object.
Itssignatureis:

public void destroy() throws JAXRPCException {}

Implement the dest r oy() method to release any resources acquired throughout the
handler’s lifecycle.

Programming WebL ogic Web Services

Implementing the Handler Interface

Implementing the Handler.getHeaders() Method

The Handl er . get Header s() method gets the header blocks processed by this
Handler instance. Its signatureis:

public QNane[] getHeaders() {}

Implementing the Handler.handleRequest() Method

The Handl er . handl eRequest () method is called to intercept a SOAP message
request beforeit is processed by the back-end component. Its signatureis:

publ i c bool ean handl eRequest (MessageContext nt) throws JAXRPCException {}

Implement this method to decrypt datain the SOAP message beforeit is processed by
the back-end component, to make sure that the request contains the correct number of
parameters, and so on.

The MessageCont ext object abstracts the message context processed by the SOAP
message handler. The MessageCont ext properties allow the handlersin a handler
chain to share processing state.

Usethe SOAPMessageCont ext sub-interface of MessageCont ext to get at or update
the contents of the SOAP message request. The SOA P message request itself is stored
inaj avax. xm . soap. SOAPMessage object. For detailed information on this object,
see “The javax.xml.soap.SOAPM essage Object” on page 12-13.

The SOAPMessageCont ext class defines two methods for processing the SOAP
request:

m SOAPMessageCont ext . get Message() returns a
j avax. xnl . soap. SOAPMessage object that contains the SOAP message
request.

m SOAPMessageCont ext . set Message(j ava. xnl . soap. SOAPMessage) updates
the SOAP message request after you have made changesto it.

After you code all the processing of the SOAP request, do one of the following:

m Invoke the next handler on the handler request chain by returning t r ue.

Programming WebL ogic Web Services 12-9

12 Creating SOAP Message Handlers to Intercept the SOAP Message

The next handler on the request chain is specified as the next <handl er >
subelement of the <handl er - chai n> element in the web- servi ces. xni
deployment descriptor. If there are no more handlers in the chain, the method
either invokes the backend-end component, passing it the final SOAP message
request, or invokes the handl eResponse() method of the last handler,
depending on how you have configured your Web Service.

m Block processing of the handler request chain by returning f al se.

Blocking the handler request chain processing implies that the backend
component does not get executed for thisinvoke of the Web Service. You might
want to do thisif you have cached the results of certain invokes of the Web
Service, and the current invoke is on the list.

Although the handler request chain does not continue processing, WebL ogic
Server does invoke the handler response chain, starting at the current handler.
For example, assume that a handler chain consists of two handlers: handlerA and
handlerB, where the handl eRequest () method of handlerA isinvoked before
that of handlerB. If processing is blocked in handlerA (and thus the

handl eRequest () method of handlerB is not invoked), the handler response
chain starts at handlerA and the handl eRequest () method of handlerB is not
invoked either.

m Throw thej avax. xnl . r pc. soap. SOAPFaul t Except i on to indicate a SOAP
fault.

If the handl eRequest () method throws a SOAPFaul t Except i on, WebL ogic
Server catches the exception, terminates further processing of the handler request
chain, and invokes the handl eFaul t () method of this handler.

m Throw aJAXRPCExcept i on for any handler specific runtime errors.

If the handl eRequest () method throws aJAXRPCExcept i on, WebL ogic
Server catches the exception, terminates further processing of the handler request
chain, logs the exception to the WebL ogic Server logfile, and invokes the

handl eFaul t () method of this handler.

Implementing the Handler.handleResponse() Method

The Handl er . handl eResponse() method is called to intercept a SOAP message
response after it has been processed by the backend component, but before it is sent
back to the client application that invoked the Web Service. Itssignatureis:

12-10 Programming WebL ogic Web Services

Implementing the Handler Interface

publ i c bool ean handl eResponse(MessageCont ext nt) throws JAXRPCException {}

Implement this method to encrypt datain the SOAP message beforeit is sent back to
the client application, to further process returned values, and so on.

The MessageCont ext object abstracts the message context processed by the SOAP
message handler. The MessageCont ext properties allow the handlersin a handler
chain to share processing state.

Usethe SOAPMessageCont ext sub-interface of MessageCont ext to get at or update
the contents of the SOAP message response. The SOAP message response itself is
stored in aj avax. xm . soap. SOAPMessage object. See“The
javax.xml.soap.SOA PM essage Object” on page 12-13.

The SOAPMessageCont ext class defines two methods for processing the SOAP
response:

m SOAPMessageCont ext . get Message() : returns a
j avax. xnl . soap. SOAPMessage object that contains the SOA P message
response.

m SOAPMessageCont ext . set Message(j ava. xm . soap. SOAPMessage) : updates
the SOA P message response after you have made changesto it.

After you code all the processing of the SOAP response, do one of the following:

m Invoke the next handler on the handler response chain by returning t r ue.

The next response on the handler chain is specified as the preceding <handl er >
subelement of the <handl er - chai n> element in the web- ser vi ces. xm
deployment descriptor. (Remember that responses on the handler chain execute
in the reverse order that they are specified in theweb- ser vi ces. xni file. See
“Designing the SOAP Message Handlers and Handler Chains” on page 12-4 for
more information.)

If there are no more handlers in the chain, the method sends the final SOAP
message response to the client application that invoked the Web Service.

m Block processing of the handler response chain by returning f al se.

Blocking the handler response chain processing implies that the remaining
handlers on the response chain do not get executed for thisinvoke of the Web
Service and the current SOAP message is sent back to the client application.

m Throw a JAXRPCExcept i on for any handler specific runtime errors.

Programming WebL ogic Web Services 12-11

12 Creating SOAP Message Handlers to Intercept the SOAP Message

If the handl eRequest () method throws a JAXRPCExcept i on, WebL ogic
Server catches the exception, terminates further processing of the handler request
chain, logs the exception to the WebL ogic Server logfile, and invokes the

handl eFaul t () method of this handler.

Implementing the Handler.handleFault() Method

TheHand! er . handl eFaul t () method processesthe SOA P faultsbased onthe SOAP
message processing model. Its signatureis:

publ i c bool ean handl eFaul t (MessageCont ext nt) throws JAXRPCException {}

Implement this method to handle processing of any SOAP faults generated by the
handl eResponse() and handl eRequest () methods, aswell as faults generated by
the backend component.

The MessageCont ext object abstracts the message context processed by the SOAP
message handler. The MessageCont ext properties allow the handlersin a handler
chain to share processing state.

Use the SOAPMessageCont ext sub-interface of MessageCont ext to get at or update
the contents of the SOAP message. The SOAP messageitself isstored in a

j avax. xnl . soap. SOAPMessage object. See “ The javax.xml.soap.SOAPMessage
Object” on page 12-13.

The SCAPMessageCont ext class defines the following two methods for processing
the SOAP message:

m SOAPMessageCont ext . get Message() : returns a
j avax. xnl . soap. SOAPMessage object that contains the SOAP message.

m SOAPMessageCont ext . set Message(j ava. xnl . soap. SOAPMessage) : updates
the SOAP message after you have made changes to it.

After you code all the processing of the SOAP fault, do one of the following:

m |nvokethe handl eFaul t () method on the next handler in the handler chain by
returning t r ue.

m Block processing of the handler fault chain by returning f al se.

12-12 Programming WebL ogic Web Services

Implementing the Handler Interface

The javax.xml.soap.SOAPMessage Object

Thej avax. xni . soap. SOAPMessage abstract classis part of the Java API for XML
Messaging (JAXM) specification. Y ou use the class to manipul ate request and
response SOA P messages when creating SOAP message handlers. This section
describes the basic structure of a SOAPMessage object and some of the methods you
can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart aobject (which contains the actual
SOAP XML document) and zero or more attachments.

Refer to the JAXM API Javadocs for the full description of the SOAPMessage class.
For more information on JAXM, go to http://java.sun.com/xml/jaxm/index.html.

The SOAPPart Object

The saaPPar t object contains the XML SOAP document inside of a SOAPEnvel ope
object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageCont ext object, provided by the Handl er class, and get at its parts:

SOAPMessage soapMessage = nessageContext. get Request();
SOAPPart soapPart = soapMessage. get SOAPPart () ;
SQAPEnvel ope soapEnvel ope = soapPart. get Envel ope();
SQAPBody soapBody = soapEnvel ope. get Body() ;

SOAPHeader soapHeader = soapEnvel ope. get Header () ;

The AttachmentPart Object

TheAt t achnent Part object containsthe optional attachmentsto the SOAP message.
Unliketherest of a SOAP message, an attachment is not required to bein XML format
and can therefore be anything from simple text to an imagefile.

Use the following methods of the SOAPMessage class to manipul ate the attachments:

B count At t achnment s() : returns the number of attachmentsin this SOAP
message.

m get Attachnment s(): retrieves all the attachments (as At t achnment Part objects)
intoan|terator object.

Programming WebL ogic Web Services 12-13

http://java.sun.com/xml/jaxm/index.html

12 Creating SOAP Message Handlers to Intercept the SOAP Message

m createAttachnent Part (): createan Att achment Part object from another
type of Qvj ect .

m addAttachment Part ():addsan Att achnent Part object, after it has been
created, to the SOAPMessage.

Extending the GenericHandler Abstract Class

WebL ogic Server includes an extension to the JAX-RPC handler API that you can use
to simplify the Java code of your SOAP message handler class. This extension isthe
abstract classwebl ogi c. webser vi ces. Generi cHandl er . It implementsthe
JAX-RPCj avax. xm . rpc. handl er . Handl er interface.

Note: TheGeneri cHandl er abstract classisaWebL ogic Server extension and not
part of the JAX-RPC specification.

Because Gener i cHandl er isan abstract class, you need only implement the methods
that will contain actual code, rather than having to implement every method of the
Handl er interface even if the method does nothing. For example, if your handler does
not use initialization parameters and you do not need to allocate any additional
resources, you do not need to implement thei ni t () method.

The GenericHandler class is defined as follows:

package webl ogi c. webservi ce;

i mport javax.
i mport javax.
i mport javax.
i mport javax.

/**

xm . rpc. handl er. Handl er;

xm . rpc. handl er . Handl er | nf o;
xm . rpc. handl er. MessageCont ext ;
xm . namespace. QNane;

* @uthor Copyright (c) 2002 by BEA Systems. All Rights Reserved.

*/

public abstract class GenericHandl er

i mpl enent s

{

Handl er

private Handl erl nfo handl erl nfo;

12-14 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/pdf/people.html

Extending the GenericHandler Abstract Class

public void init(Handlerlnfo handlerlnfo) {
thi s. handl erl nfo = handl erl nfo;

}
protected Handl erlnfo getHandl erlnfo() { return handlerlnfo; }

publ i c bool ean handl eRequest (MessageCont ext msg) {
return true;

}

publ i c bool ean handl eResponse(MessageCont ext nsg) {
return true;

}
publ i c bool ean handl eFaul t (MessageCont ext nsg) {}

public void destroy() {}
public QNane[] getHeaders() { return handl erlnfo. get Haders(); }

The following sample code, taken from the

exanpl es. webser vi ces. handl er. noconponent product example, shows how to
use the Generi cHandl er abstract classto create your own handler. The example
implements only the handl eRequest () and handl eResponse() methods. It does
not implement (and thus does not include in the code) thei ni t (), dest roy(),

get Header s(), and handl eFaul t () methods.

package exanpl es. webservi ces. handl er. noconponent ;
i mport java.util.Map;

i mport javax.xm .rpc. JAXRPCExcepti on;

i nport javax.xm .rpc. handl er. MessageCont ext ;

i nport javax.xm .rpc. handl er. soap. SOAPMessageCont ext ;
i mport javax.xml .soap.*;

i mport webl ogi c. webservi ce. Generi cHandl er;

i mport webl ogi c.utils. Debug;
/**

* @ut hor Copyright (c) 2002 by BEA Systenms. All Rights Reserved.
*/

public final class EchoStringHandl er
ext ends Ceneri cHandl er
{

private int me = SystemidentityHashCode(this);

Programming WebL ogic Web Services 12-15

12 Creating SOAP Message Handlers to Intercept the SOAP Message

publ i c bool ean handl eRequest (MessageCont ext nmessageCont ext) {
Systemerr.println("** handl eRequest called in: "+ne);
return true;

}

publ i ¢ bool ean handl eResponse(MessageCont ext nmessageCont ext) {

try {
MessageFact ory nmessageFactory = MessageFactory. new nstance();

SOAPMessage m = nessageFactory. creat eMessage();
SOAPEnvel ope env = m get SOAPPart (). get Envel ope();
SOAPBody body = env. get Body();

SOAPEI enent f Response =
body. addBodyEl enent (env. cr eat eNane(" echoResponse")) ;

f Response. addAttri but e(env. creat eName("encodi ngStyl e"),
"http://schemas. xm soap. or g/ soap/ encodi ng/ ") ;

SOAPEl ement result =
f Response. addChi | dEl ement (env. createNane("result"));

resul t.addText Node("Hel o World");
((SOAPMessageCont ext) nessageCont ext) . set Message() ;
return true;

} catch (SOAPException e) {
e.printStackTrace();
t hr ow new JAXRPCException(e);

Updating the web-services.xml File with
SOAP Message Handler Information

Theweb- servi ces. xn deployment descriptor file describes the SOAP message
handlers and handler chains defined for a Web Service and the order in which they
should be executed.

12-16 Programming WebL ogic Web Services

Updating the web-services.xml File with SOAP Message Handler Information

To update the web- ser vi ces. xn file with handler information:

1. Createa<handl er - chai ns> child element of the <web- ser vi ces> root e ement
that will contain alist of all handler chains defined for the Web Service.

2. Createa<handl er - chai n> child element of the <handl er - chai ns> element;
within this element list all the handlersin the handler chain. For each handler, use
thecl ass- name attribute to specify the fully qualified name of the Java class that
implements the handler. Usethe <i ni t - par ans> element to specify any
initialization parameters of the handler.

The following sample excerpt shows a handler chain called nyChai n that
contains three handlers, the first of which has an initialization parameter:

<web- servi ces>
<handl er - chai ns>
<handl er - chai n name="nyChai n" >
<handl er cl ass-nanme="nyHandl ers. handl er One" >
<init-paranms>
<i nit-param nane="debug" val ue="on" />
</init-paranms>
</ handl er >
<handl er cl ass-nane="nyHandl ers. handl er Two" />
<handl er cl ass-nane="nyHandl ers. handl er Three" />
</ handl er - chai n>
</ handl er - chai ns>

</ web- servi ces>

3. Usethe <oper at i on> child element of the <oper at i ons> element (which itself
isachild of the <web- ser vi ce> element) to specify that the handler chain isan
operation of the Web Service. Follow one of the next two scenarios:

e The handler chain executes together with a backend component, such asa
Stateless session EJB.

In this case use the component , et hod, and handl er - chai n attributes of
the <oper at i on> element, as shown in the following partial excerpt of a
web- servi ces. xm file:

<web- servi ce>
<conponent s>
<statel ess-ej b nanme="nyEJB">

</ st at el ess-ej b>
</ conponent s>
<oper ati ons>
<operati on name="get Quote"

Programming WebL ogic Web Services 12-17

12 Creating SOAP Message Handlers to Intercept the SOAP Message

met hod="get Quot e"
conponent =" nyEJB"
handl er - chai n="myChai n" />
</ operations>
</ web- servi ce>

In the example, the request chain of the myChai n handler chain executes
first, then the get Quot e() method of the nyEJB statel ess session EJB
component, and finally the response chain of my Chai n.

e Thehandler chain executes on its own, without a backend component.

In this case use only the handler-chain attribute of the <oper at i on> element
and explicitly do not specify the component or method attributes, as shown
in the following excerpt:

<web- servi ce>
<operati ons>
<operati on nanme="chai nServi ce"
handl er - chai n="myChai n" />
</ operations>
</ web- servi ce>

In the example, the Web Service consists solely of the myChai n handler
chain.

12-18 Programming WebL ogic Web Services

CHAPTER

13 Configuring Security

The following sections describe how to configure security for WebL ogic Web
Services;

m “Overview of Configuring Security” on page 13-1

m “Configuring Data Security (Digital Signatures and Encryption): Main Steps’ on
page 13-2

m “Configuring Connection Security: Main Steps’ on page 13-14
Overview of Configuring Security

When you secure your WebL ogic Web Service, you can configure two conceptually
different types of security:

m Data security, in which datain a SOAP message is digitally signed or encrypted

m Connection security, in which the connection that a client makes to the Web
Service when invoking it is secured.

Configuring WebLogic Web Service Data Security

Data security in WebL ogic Web Services follows the Web Services Security
(WS-Security) specification.

Programming WebL ogic Web Services 13-1

13 configuring Security

This specification provides three main mechanisms: security token propagation,
message integrity, and message confidentiality. These mechanism can be used
independently (such as passing a username security token for user authentication) or
together (such as digitally signing and encrypting a SOAP message and providing a
security token hierarchy associated with the private/public keys used for signing and
encrypting.)

For main steps and details for configuring data security, see “ Configuring Data
Security (Digital Signatures and Encryption): Main Steps’ on page 13-2.

Configuring WebLogic Web Service Connection Security

Configuring connection security for WebL ogic Web Servicesisbasically no different
from securing any other type of application or component that runs on WebL ogic
Server. You can secure the entire Web Service by restricting accessto the URL s that
invokethe Web Service and its WSDL. When you secure the entire Web Service, the
components that make up the Web Service are automatically secured. Or you can
secure individual components of the Web Service, such asthe stateless session EJB, a
selected list of its methods, the Web application that containstheweb- ser vi ces. xm
file, and so on.

After you secure access to the Web Service or some of its components, you configure
client applicationsto use HTTP or SSL to authenticate themselves when they invoke
the Web Service.

For the main steps and details to configure connection security, see “Configuring
Connection Security: Main Steps’ on page 13-14.

Configuring Data Security (Digital
Signatures and Encryption): Main Steps

13-2

To configure data security (such asdigital signatures and encryption) for aWebL ogic
Web Service and aclient that invokes the service, follow these steps. Later sections
describe the stepsin detail.

Programming WebL ogic Web Services

Configuring Data Security (Digital Signatures and Encryption): Main Steps

Note: The following procedure assumes that you have aready implemented and
assembled (withtheser vi cegen Ant task) aWebL ogic Web Service and you
want to update it to use digital signatures and encryption.

1. Create and configure the following standard WebL ogic Server security features
using the Administration Console;
e Create akeystore that contains public keys, private keys, and certificates.

Later sections of this document assume you created a keystore called
server _keyst or e, with akey named nykey with password secr et .

e Configure WebL ogic Server to use the keystore.
e Create users, groups, and global roles for authentication.

Later sections of this document assume you created auser called j ul i et
with password secr et .

For details, see “ Configuring Standard WebL ogic Server Security Features With
the Administration Console” on page 13-4.

2. Create akeystore used by the client application.

Later sections of this document assume you created a client keystore called
client_keystore.

3. Updatethebui | d. xm filethat containsthe call to the ser vi cegen Ant task,
adding the <securi t y> child element to the <ser vi ce> element that builds your
Web Service, specifying information such as the username, password, encryption
key, and so on.

Note: You can specify only a subset of the data security options using the
servi cegen Ant task. In particular, the default information specifiesthat
the entire SOAP body bedigitally signed or encrypted, rather than specific
elements. A later step in this procedure shows you how to configure
additional security features for your Web Service, if needed.

For details, see “Updating the servicegen build.xml File” on page 13-5.

4. Re-runtheservi cegen Ant task to re-assemble your Web Service and
regenerate the web- ser vi ces. xn deployment descriptor.

5. If necessary, update the generated web- ser vi ces. xni file of your Web Service
with additional data security information.

Programming WebL ogic Web Services 13-3

13 configuring Security

For details, see “Updating Security Information in the web-servicesxml File” on
page 13-6.

6. Update your client application to securely invoke the Web Service that using
digital signatures and encryption.

For details, see “Updating a Java Client to Invoke a Data-Secured Web Service”
on page 13-9.

Configuring Standard WebLogic Server Security Features
With the Administration Console

13-4

Web Service data security, such as digital signatures and encryption, uses many
standard security features such as private/public keys and digital certificates. This
section uses the following terms:

m key pairs: pairs of public and private keys.
m digital certificate: binding of a public key to an identity.
m keystore: file that stores private keys securely.

This section describes the tasks you must perform and points you to sectionsin the
general WebL ogic Server security documentation for details.

1. Create akeystorethat contains key pairsand certificates. You can use the keysand
certificates provided in the WebL ogic Server kit, the Cert Gen utility, the
Certificate Request Generator servlet, or Sun Microsystem’s keyt ool utility to
perform this step.

For development purposes, the keyt ool utility isthe easiest way to get started.

For details, see Obtaining Private Keys, Digital Certificates, and Trusted CAs at
http://e-docs.bea.com/wls/docs81b/secmanage/sd .html#get_keys certs trustedca
s.

2. Configure WebL ogic Server to use the keystore. Digital certificates are always
stored in afilein the domain directory of WebL ogic Server. Private keys and
trusted CAs can either be stored in aWebL ogic Server keystore or in afilein the
domain directory.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#get_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#get_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#get_keys_certs_trustedcas

Configuring Data Security (Digital Signatures and Encryption): Main Steps

For details, see Storing Private Keys, Digital Certificates, and Trusted CAs at
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store keys certs trusted
cas.

3. Create auser for authentication. WebL ogic Web Services use this user when
defining the username token section of the security information.

For details, see Defining Users at
http://e-docs.bea.com/wls/docs81b/secmanage/security 7.html#users.

Updating the servicegen build.xml File

Update the bui | d. xni file that contains the call to the ser vi cegen Ant task by
adding a<securi t y> child element to the <ser vi ce> element that builds your Web
Service, asshowninthefollowing example. By default, ser vi cegen specifiesthat the
entire SOAP body will be digitally signed or encrypted, rather than specific elements.
L ater sections describe how to digitally sign or encrypt specific elements.

<servi cegen
dest Ear="c:\ nyWebService. ear"
war Name="nyWAR. war "
cont ext URI ="web_servi ces" >
<service
ej bJar="c:\nyEJB.jar"
t ar get Nanespace="htt p: // ww. bea. conf exanpl es/ Trader"
servi ceNane="Tr ader Servi ce"
servi ceURI ="/ Tr ader Ser vi ce"
gener at eTypes="Tr ue"
expandMet hods="True" >
<security
usernane="juliet"
passwor d="secret"
si gnKeyName="nykey"
si gnKeyPass="secret"
encrypt KeyNanme="nykey"
encrypt KeyPass="secret"
/>
</ service>
</ servi cegen>

The preceding bui | d. xml file specifiesthat ser vi cegen assemble aWeb Service
that includes the following data security information in the web- ser vi ces. xni
deployment descriptor file:

Programming WebL ogic Web Services 13-5

http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#users
http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#users

13 configuring Security

m Theuser nane and passwor d attributes of the <securi t y> element specify
that the username and password in the SOAP message response’s username
token arej ul i et and secr et , respectively.

m Thesi gnKeyName and si gnKeyPass attributes specify that the SOAP body will
be digitally signed. WebL ogic Server usesthe private key and certificate pair,
identified with the name di gSi gkey and password anot her _secr et , from its
keystore to verify the digita signature. Thekey and certificate pair are those
that you added in “ Configuring Standard WebL ogic Server Security Features
With the Administration Console” on page 13-4.

m Theencrypt KeyNanme and encr ypt KeyPass attributes specify that the SOAP
body will be encrypted. WebL ogic Server uses the private key and certificate
pair, identified with the name encr ypt Key and password very_secr et , fromits
keystore to perform the encryption and decryption. The key and certificate pair
are those that you added in “ Configuring Standard WebL ogic Server Security
Features With the Administration Console” on page 13-4.

When you regenerate your Web Service using thisbui | d. xm file, only aminimal
amount of default security information is added to the generated web- ser vi ces. xm
file. See“Updating Security Information in the web-services.xml File€” on page 13-6
for details on the default information that is added to web- ser vi ces. xni . In
particular, if you specify that you want to use digital signatures and encryption by
specifying the si gnKeyNane, si gnKeyPass, encr ypt KeyName, and

encr ypt KeyPass attributes, the entire SOAP body will be encrypted or digitally
signed.

If you want to specify particular elements of the SOAP message to be digitally signed
or encrypted, update the web- ser vi ces. xm file of your WebL ogic Web Service
manually. For details, see “Updating Security Information in the web-services.xml
File” on page 13-6.

Updating Security Information in the web-services.xml

File

13-6

Theservi cegen Ant task adds minimal default data security information to the
generated web- ser vi ces. xnml deployment descriptor file. In particular, the default
information specifies that the entire SOAP body be digitally signed or encrypted,
rather than specific elements. This default behavior is adegquate in many cases;

Programming WebL ogic Web Services

Configuring Data Security (Digital Signatures and Encryption): Main Steps

however, you might sometimes want to specify just a subset of the elementsto be
digitally signed or encrypted. In this case, you must update the web- ser vi ces. xni
file manually.

Warning: BEA highly recommends that you do not change elements of the
generated <securi t y> element in theweb- servi ces. xmi file, other
than those described in this section.

If you usethebui I d. xml filein*“Updating the servicegen build.xml File” on page
13-5to runser vi cegen, the following example shows the resulting <securi t y>
element in the generated web- ser vi ces. xni file:

<web- servi ce>

<security>
<user >
<nane>j ul i et </ nane>
<passwor d>secr et </ passwor d>
</ user >
<si gnat ur eKey>
<nane>nykey</ nane>
<passwor d>secr et </ passwor d>
</ si gnat ur eKey>
<encrypti onKey>
<name>nykey</ name>
<passwor d>secr et </ passwor d>
</ encrypti onKey>
<spec: SecuritySpec
xm ns: spec="http://ww. openuri.org/ 2002/ 11/ wsse/ spec" >
<spec: User nameTokenSpec
xm ns="http://schemas. xm soap. or g/ ws/ 2002/ 07/ secext"
Passwor dType="Passwor dText" />
<spec: Bi narySecurityTokenSpec
xm ns: wsse="http://schemas. xm soap. or g/ ws/ 2002/ 07/ secext "
Encodi ngType="wsse: Base64Bi nary"
Val ueType="wsse: X609v3" />
<spec: Si gnat ur eSpec
Si gnat ur eMet hod="ht t p: / / www. w3. or g/ 2000/ 09/ xm dsi g#r sa- shal"
Si gnBody="t r ue"
Canoni cal i zati onMet hod="htt p: // ww. w3. or g/ TR/ 2001/ REC- xn - c14n- 20010315"
/>
<spec: Encrypti onSpec
Encrypt Body="true"
Encrypti onMet hod="htt p: // www. W3. or g/ 2001/ 04/ xm enc#t ri pl edes- chc"
/>
</ spec: SecuritySpec>

Programming WebL ogic Web Services 13-7

13 configuring Security

</security>
</ web- servi ce>

The Si gnBody="t rue" and Encr pyt Body="t r ue" attributes of the preceding
<spec: Si gnat ur eSpec> and <spec: Encr ypt i onSpec> elements specify that the
entire SOAP body be digitally signed and encrypted. To specify particular elementsto
bedigitally signed or encrypted, add one or more<spec: El emrent | dent i fi er > child
elements.

For example, assume that, in addition to the entire SOAP body, you want to digitally
sign an element in the SOAP header whose local nameisTi mest anp. To specify this
configuration, add a <spec: El ement | dent i fi er > child element to the

<spec: Si gnat ur eSpec> element as shown:

<spec: Si gnat ur eSpec
Canoni cal i zati onMet hod="htt p://ww. w3. or g/ TR/ 2001/ REC- xm - c14n- 20010315"
Si gnat ur eMet hod="htt p: / / www. w3. or g/ 2000/ 09/ xnm dsi g#r sa- shal"
Si gnBody="t rue" >

<spec: El enentl dentifier
Local Part="Ti mest anp"
Nanmespace="htt p://schemas. xrml soap. or g/ ws/ 2002/ 07/ utility"
Restriction="header" />
</ spec: Si ghat ur eSpec>

Warning: If youusetheRestri cti on attribute to restrict the part of the SOAP
message, only the top-level elementsin the relevant SOAP message part
(header or body) are searched for matching element names. If you do not
specify this attribute, all elements, no matter how deeply nested, are
searched.

If you do not want to digitally sign the entire SOAP body, but rather just sign an
element whole local nameis Cr eat ed when it appearsin any part of the SOAP
message, update the <spec: Si gnat ur eSpec> element as shown:

<spec: Si gnhat ur eSpec
Canoni cal i zati onMet hod="htt p://ww. w3. or g/ TR/ 2001/ REC- xm - c14n- 20010315"
Si ghat ur eMet hod="htt p: // www. w3. or g/ 2000/ 09/ xm dsi g#r sa- shal" >

<spec: El enent | dentifier
Local Part =" Cr eat ed"
Nanmespace="htt p://schemas. xm soap. or g/ ws/ 2002/ 07/ utility" />
</ spec: Si gnat ur eSpec>

13-8 Programming WebL ogic Web Services

Configuring Data Security (Digital Signatures and Encryption): Main Steps

Specifying a particular element to be encrypted is very similar. For example, to
encrypt just the element Cr edi t Car dNunber , wherever it appears in the SOAP
message, update the <spec: Encr ypt i onSpec> element as shown:

<spec: Encrypti onSpec
Encrypti onMet hod="htt p://ww. w3. or g/ 2001/ 04/ xm enc#tri pl edes-cbhc" >

<spec: El enent | denti fi er
Local Part ="Credi t Car dNunber"
Nanmespace="htt p: // schemas. xm soap. or g/ ws/ 2002/ 07/ utility" />
</ spec: Encrypti onSpec>

Warning: If you usethe<spec: El enent | dent i fi er > element to specify a
particular element in the SOAP message to be encrypted, do not also
specify the Encr ypt Body="t r ue" attribute of the
<spec: Encr ypt i onSpec> element, or the encryption/decryption process
might become too complex and cause your Web Service security not to
work as you expect.

For details about the <secur i t y> element, and al its child elements discussed in this
section, see Appendix A, “WebL ogic Web Service Deployment Descriptor Elements.”

Updating a Java Client to Invoke a Data-Secured Web
Service

Toupdate aJavaclient application toinvoke aWebL ogic Web Servicethat usesdigital
signatures or encryption, follow these steps:

1. Copy thefilew._HOVE\ server\ | i b\wsse. jar toyour client application
development computer, where W._ HOVE refers to the top-level directory of
WebL ogic Platform. This client JAR file contains BEA's implementation of the
Web Services Security (WS-Security) specification.

2. Rerunthecl i ent gen Ant task to generate a new Web Service-specific client
JAR fileto invoke your Web Service.

3. Update your Java code to load a private key and digital certificate from the
client’s keystore and pass this information, along with a username and password,
to the secure WebL ogic Web Service being invoked.

For details, see “Writing the Java Code” on page 13-10.

Programming WebL ogic Web Services 13-9

13 configuring Security

4.

Run the client application. For details about system properties you can set to get
more information about the digital signatures and encryption, see “Running the
Client Application” on page 13-13.

Writing the Java Code

The following example shows a Java client application that invokes a data-secured
WebL ogic Web Service, with the security-specific code in bold (and described after

the example):
i mport exanpl es. security. basicclient. Basic;
i mport exanpl es. security. basicclient. BasicPort;
i mport exanpl es. security. basicclient.Basic_lnpl;
i nport webl ogi c. webservi ce. cont ext . WbSer vi ceCont ext ;
i mport webl ogi c. webservi ce. cont ext. WbSer vi ceSessi on;
i mport webl ogi c. webservi ce. core. handl er. WSSEC! i ent Handl er;
i mport webl ogi c. xm . security. SecurityAssertion;
i mport webl ogi c. xm .security. Userlnfo;
i mport javax.xm . nanmespace. QNane;
i mport javax.xm .rpc. Servi ceExcepti on;
i nport javax.xm . rpc. handl er. Handl er | nf o;
i mport javax.xm .rpc. handl er. Handl er Regi stry;

i mport java.io.FilelnputStream

i mport java.io. | OException;

security. Key;

security. KeyStore;

security. Privat eKey;
security.cert. X509Certificate;

i mport java.
i mport java.
i mport java.
i mport java.
i mport java.
i mport java.

public

util
util

.Arrayli st;
. List;

class Autodient{

private
private

private
private
private

static final
static final

static final
static final

String CLI ENT_KEYSTORE = "client_keystore";
String KEYSTORE_PASS = "secret";

String KEYNAME = "nykey";
String USERNAME = "juliet";

static String PASSWORD = "secret";

public static void main(String[] args)

t hrows | OExcepti on, Servi ceExcepti on,

Excepti on{

13-10 Programming WebL ogic Web Services

Configuring Data Security (Digital Signatures and Encryption): Main Steps

final long iterations =
(args.length < 1) ? 1 : Integer.parselnt(args[0]);

Basi ¢ service = new
Basi c_Inpl ("http://1ocal host: 7001/ secservi ce/ basi c?WsDL") ;

/1 Get the WebServiceContext of the Wb Service

WebSer vi ceCont ext context = service.context();

Systemout. println("passing context info to the client");
/1 Load X509 digital certificates fromthe |ocal keystore

X509Certificate clientcert;
clientcert = getCertificate(KEYNAVE, CLIENT_KEYSTORE);

/1 Load the private key fromthe |ocal keystore

PrivateKey clientprivate;
clientprivate = (PrivateKey) getPrivateKey(KEYNAME, KEYSTORE_PASS,
CLI ENT_KEYSTORE) ;

/1 Get the WebLogic Wb Service session
WebSer vi ceSessi on session = context. get Session();

/] Pass the private key and digital certificate information to the Wb
/] service by setting the specified WebServi ceSession attributes.

session. set Attribut e(WSSECI i ent Handl er. CERT_ATTRI BUTE, clientcert);
session.set Attri but e(WSSEC i ent Handl er. KEY_ATTRI BUTE, clientprivate);

I/l Create a Userlnfo object, then pass the user information to the Wb
/1 service by setting the specified WbServiceSession attributes.

UserInfo ui = new User | nfo(USERNAME, PASSWORD) ;
session. setAttribute(WSSEC i ent Handl er . REQUEST_USERI NFO, ui) ;

long time = O;
Basi cPort port = service. getbasicPort();
String result =null;
for (int i =0 ; i <iterations+l ; i++) {
if (i ==1) time = SystemcurrentTimeMIlis();
result = port.hell oback();
}
time = SystemcurrentTimeM I 1is() - tinme;
Systemout.printin(iterati ons+" transactions in "+tine/1000.0+" seconds");
Systemout.println(((iterations*1000.0)/(time))+" transaction second");

Programming WebL ogic Web Services 13-11

13 configuring Security

Systemout.printlin(result);

}

private static Key getPrivateKey(String alias, String password, String

keyst ore)

{

}

throws Exception

KeyStore ks = KeyStore. getlnstance("JKS");

ks. | oad(new Fil el nput Strean(keystore), KEYSTORE_PASS.toCharArray());
Key result = ks.getKey(alias, password.toCharArray());

return result;

private static X509Certificate getCertificate(String alias, String keystore)

{

throws Exception

KeyStore ks = KeyStore.getlnstance("JKS");

ks. | oad(new Fil el nput Strean(keystore), KEYSTORE_PASS.toCharArray());
X509Certificate result = (X509Certificate) ks.getCertificate(alias);
return result;

private static Key getPublicKey(String alias, String keystore)
t hrows Exception

KeyStore ks = KeyStore.getlnstance("JKS");

ks.l oad(new Fil el nput St reanm keystore), KEYSTORE_PASS. toCharArray());
X509Certificate cert = (X509Certificate) ks.getCertificate(alias);
if (cert !'=null) return cert.getPublicKey();

return null;

The main points to note about the preceding code are as follows:
m Onceyou have created the JAX-RPC Ser vi ce object, get the WebL ogic Web
Service context:
WebSer vi ceCont ext context = service.context();

Thewebl ogi c. webser vi ce. cont ext . WebSer vi ceCont ext classisa
proprietary WebL ogic Web Service client API.

m L oad the needed private keys and X.509 digital certificates from alocal
keystore:

X509Certificate clientcert;
clientcert = getCertificate(KEYNAMVE, CLI ENT_KEYSTORE);

13-12 Programming WebL ogic Web Services

Configuring Data Security (Digital Signatures and Encryption): Main Steps

PrivateKey clientprivate;
clientprivate = (PrivateKey) getPrivateKey(KEYNAVE,
KEYSTORE_PASS, CLI ENT_KEYSTORE) ;

m From the WebL ogic Web Service context, get the session information:
WebSer vi ceSessi on session = context.get Session();

Thewebl ogi c. webser vi ce. cont ext . WebSer vi ceSessi on classisa
proprietary WebL ogic Web Service client API.

m UseWebSer vi ceSessi on attributesto pass the private key and digital
certificates to the WebL ogic Web Service being invoked:

sessi on. set Attri but e(WSSEQ i ent Handl er . CERT_ATTRI BUTE,
clientcert);

sessi on. set Attri but e(WSSEd i ent Handl er . KEY_ATTRI BUTE,
clientprivate);

m CreateaUser | nf o object that contains the username and password, and use an
attribute of the WvebSer vi ceSessi on to pass the information to the WebL ogic
Web Service being invoked:

UserInfo ui = new User | nfo(USERNAME, PASSWORD) ;
session. set Attribut e(WSSECQ i ent Handl er . REQUEST_USERI NFO, ui) ;

Thewebl ogi c. xmi . security. User | nf o classis aproprietary WebL ogic Web
Serviceclient API.

m Theloca methodsget Pri vat eKey(), get Certificate(),and
get Publ i cKey() are simple examples of how to get information from the
client'slocal keystore. Depending on how you have set up your client keystore,
you will use different ways of getting thisinformation.

Running the Client Application

When you run the client application that uses digital signatures and encryption to
invoke a Web Service, you can set the following system properties to view more
runtime security information:

® webl ogi c. xm . encryption. verbose=true

® webl ogi c. xnl . si ghat ure. ver bose=true

Programming WebL ogic Web Services 13-13

13 configuring Security

Configuring Connection Security: Main

Steps

To configure connection security for aWebL ogic Web Service and a client that
invokes the service, follow these steps. Later sections describe the stepsin detail.

1

Control access to either the entire Web Service or some of its components by
creating roles, mapping therolesto principalsin your realm, then specifying which
components are secured and accessible only by the principalsin the role.

See “ Controlling Access to WebL ogic Web Services’ on page 13-14.

Optionally update the web- ser vi ces. xm file to specify that the Web Service
can be accessed only by HTTPS.

See “ Specifying the HTTPS Protocol” on page 13-18.

If your client application will use SSL to authenticate itself, configure SSL for
WebL ogic Server.

See “ Configuring SSL for WebL ogic Server” on page 13-19.

Code your client to authenticate itself using HTTP or SSL when invoking a
WebL ogic Web Service.

See “Coding a Client Application to Invoke a Secure Web Service” on page
13-20.

If your client application is using SSL, configure SSL on the client-side.

See “Configuring SSL for a Client Application” on page 13-20.

Controlling Access to WebLogic Web Services

As previously discussed, WebL ogic Web Services are packaged as standard J2EE
Enterprise applications. Consequently, to secure accessto the Web Service, you secure
accessto someor al of thefollowing standard J2EE componentsthat make up the Web
Service:

13-14 Programming WebL ogic Web Services

Configuring Connection Security: Main Steps

m The Web Service

m The Web Service URL

m The stateless session EJB that implements the Web Service
m A subset of the methods of the stateless session EJB

Y ou can use basic HTTP authentication or SSL to authenticate aclient that is
attempting to accessaWebL ogic Web Service. Because the preceding components are
standard J2EE components, you secure them by using standard J2EE security
procedures.

Note: If the backend component that implementsyour Web ServiceisaJavaclassor
aJMS listener, the only way to secure the Web Serviceis by adding security
constraints to the URL that invokes the Web Service, as described in the next
section.

For additional and detailed information about configuring, programming, and
managing WebL ogic security, see the security documentation at
http://e-docs.bea.com/wls/docs81b/security.html.

Securing the Web Service Using the Adminstration Console

Y ou secure a Web Service by creating a security policy through the Administration
Console and assigning it to a WebL ogic Web Service. Security policies answer the
question "who has access' to aWebL ogic resource, such asaWeb Service. A security
policy is created when you define an association between a\WebL ogic resource and a
user, group, or role. A WebL ogic resource has no protection until you assign it a
security policy.

Y ou assign security policiesto an individual resource or to attributes or operations of
aresource. If you assign a security policy to atype of resource, al new instances of
that resource inherit that security policy. Security policies assigned to individual
resources or attributes override security policies assigned to atype of resource.

To use auser or group to create a security policy, the user or group must be defined in
the Authentication provider configured in the default security realm. To use aroleto
create a security policy, the role must be defined in the Role Mapping provider
configured in the default security realm. By default, the WebL ogic Authentication and
Role Mapping providers are configured.

Programming WebL ogic Web Services 13-15

http://e-docs.bea.com/wls/docs81b/security.html
http://e-docs.bea.com/wls/docs81b/security.html

13 configuring Security

For more information and procedures about setting protections for WebL ogic Web
Services using the Adminstration Console, see Configuring WebLogic Security at
http://e-docs.bea.com/wl s/docs81b/secmanage/security 7.html#securitypolicies.

Securing Web Service URL

Client applications use a URL to access a Web Service, as described in “ The
WebL ogic Web Services Home Page and WSDL URLS’ on page 8-24. An example
of suchaURL is:

http://ariel: 7001/ web_servi ces/ Trader Servi ce

Y ou can restrict access to the entire Web Service by restricting accesstoitsURL. To
do this, update the web. xmi and webl ogi c. xml deployment descriptor files (in the
Web application that containstheweb- ser vi ces. xni file) with security information.

If you want to restrict access to the Web Service, but allow usersto view its WSDL,
you must remap the WSDL URL to adifferent URL, and then restrict this new URL.
For example, the default WSDL of the Web Service described in the beginning of this
sectionis:

http://ariel: 7001/ web_servi ces/ Trader Ser vi ce?WsDL

Y ou can use the URL mapping elements of theweb. xn deployment descriptor fileto
map this URL to something else, such as:

http://ariel: 7001/ WSDLS/ Tr ader Ser vi ceWSDL
and set different security constraints on it from the security on the Web Service itself.

For detailed information about restricting accessto URLS, remapping the WSDL URL
to adifferent URL, and so on, see Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81b/webapp/security.html.

Securing the Stateless Session EJB and Its Methods

If you secure the statel ess session EJB that implements a Web Service, client
applications that invoke the service have access to the Web application, the WSDL,
and the Web Service Home Page, but might not be able to invoke the actual method
that implements an operation. This type of security is useful if you want to closely
monitor who has accessto the business|ogic of the EJB but do not want to block access
to the entire Web Service.

13-16 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#securitypolicies
http://e-docs.bea.com/wls/docs81b/webapp/security.html

Configuring Connection Security: Main Steps

Y ou can also use thistype of security to decide at the method-level who has accessto
the various operations of the Web Service. For example, you can specify that any user
can invoke a method that views information, but only a certain subset of users are
allowed to update the information.

To secure the methods of a statel ess session EJB, you must update both the
ej b-jar.xm andwebl ogi c-ej b-jar.xm deployment descriptor files.

Usethe <assenbl y- descri pt or > elementintheej b-j ar. xnl filetolist the
security rolesfor this EJB and the methods which can beinvoked by the security roles,
as shown in the following example:

<?xm version="1.0"7?>

<! DOCTYPE ej b-jar PUBLIC
"-//Sun Mcrosystens, Inc.//DTD Enterprise JavaBeans 2.0//EN'
"http://java.sun.comdtd/ejb-jar_2 0.dtd">

<ej b-jar>

<assenbl y- descri pt or>
<security-rol e>
<description>Secure EJB role has access to all nethods</description>
<r ol e- name>Secur eEJBRol e</ r ol e- nane>
</security-rol e>
<met hod- per m ssi on>
<description>Secure EJBrol e has all access to all nethods</description>
<r ol e- nanme>Secur eEJBRol e</ r ol e- nane>
<met hod>
<ej b- nane>WebSer vi ce</ ej b- nanme>
<met hod- name>* </ met hod- nane>
</ met hod>
</ met hod- per m ssi on>

</ assenbl y-descri ptor>
</ejb-jar>

Then usethe <security-rol e-assi gnment > element in the
webl ogi c-ej b-j ar. xn fileto map the security rolesyoulistedintheej b-j ar. xm
file to actual WebL ogic users, as shown in the following example:

<?xm version="1.0"?>
<! DOCTYPE webl ogi c-ej b-jar PUBLIC
'-//BEA Systens, Inc.//DID WbLogic 6.0.0 EIJB//EN
"http://ww. bea. conf servers/w s600/ dt d/ webl ogi c-ej b-jar.dtd"' >
<webl ogi c-ej b-j ar>

<security-rol e-assi gnment >

Programming WebL ogic Web Services 13-17

13 configuring Security

<r ol e- nane>Secur eEJBRol e</r ol e- nane>
<princi pal - name>user _d1</ pri nci pal - name>
</ security-rol e-assi gnnent >
</ webl ogi c-ej b-j ar>

For additional information about restricting access to EJBs, see Programming
WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html.

Specifying the HTTPS Protocol

Y ou make a Web Service accessible only through HTTPS by updating the pr ot ocol
attribute of the <web- ser vi ce> element intheweb- ser vi ces. xni filethat describes
the Web Service, as shown in the following excerpt:

<web- servi ces>
<web- servi ce name="st ockquot es"
t ar get Nanespace="http:// exanpl e. cont
uri="/nmySt ockQuot eService"
protocol ="https" >

</ web- servi ce>
</ web-servi ces>

Note: If you configure SSL for WebL ogic Server and you do not specify the HTTPS
protocol in theweb- servi ces. xm file, client applications can access the
Web Service using both HTTP and HTTPS. However, if you specify HTTPS
accessintheweb- ser vi ces. xni file, client applications cannot useHTTPto
access the Web Service.

If you usetheser vi cegen Ant task to assemble the Web Service, use the pr ot ocol
attribute of the <ser vi ce> element to specify the HTTPS protocol, as shown in the
following sample bui | d. xm file:

<proj ect nanme="buil dWebservice" default="ear">
<t arget nane="ear">
<servi cegen
dest Ear ="ws_basi c_st at el essSessi on. ear"
cont ext URI =" WebSer vi ces"
<service
ej bJar="Hel | oWorl| dEJB. j ar"
t ar get Nanmespace="htt p: // ww. bea. com webser vi ces/ basi c/ st at el esSessi on"
servi ceNane="Hel | oWwor| dEJB"
servi ceURl ="/ Hel | oWwor | dEJB"

13-18 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

Configuring Connection Security: Main Steps

prot ocol ="htt ps"
gener at eTypes="True"
expandMet hods="Tr ue" >
</ service>
</ servi cegen>

</target>
</ pr oj ect >

Configuring SSL for WebLogic Server

If your client applications are going to use SSL to authenticate themselves, you must
also configure SSL for WebL ogic Server, as described in the following steps:

1

o o > w DN

0.

Invoke the Administration Console by typing the following URL in your browser:
http://host:port/consol e

where host refersto the computer on which WebL ogic Server is running and
port refersto the port on which it islistening.

Expand the Server node in the | eft pane.

Click on the name of the WebL ogic Server for which you want to configure SSL.
Select the Connections tab in the right frame.

Select the SSL tab.

Enter the SSL configuration information, such as Server Certificate File Name.
For online help about the fields and SSL configuration in general, click the online
help icons next to each field or in the top left-hand corner of the console page.

For additional information, see Security at
http://e-docs.bea.com/wls/docs81b/ConsoleHel p/security_7x.html.

Click Apply to save your changes.

Select the SSL Portstab if you want to change the default SSL Ports. Check the
Enable SSL Listen Port checkbox to enable SSL for the port.

Click Apply to save your changes.

10. Restart WebL ogic Server so that your changes take effect.

Programming WebL ogic Web Services 13-19

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/security_7x.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/security_7x.html

13 configuring Security

Coding a Client Application to Invoke a Secure Web
Service

When youwriteaJAX-RPC client application that invokesaWeb Service, you usethe
following two properties to send a user name and password to the service so that the
client can authenticate itself:

B javax.xm .rpc.security.auth. usernamne

B javax.xnm .rpc.security. auth. password

The following example, taken from the JAX-RPC specification, shows how to use
these properties when using the j avax. xm . r pc. St ub interfaces to invoke a secure

Web Service:
St ockQuot eProvi derStub sqp = // ... get the Stub;
sqp. _setProperty ("javax.xm .rpc.security.auth.usernanme", "juliet");
sqp. _setProperty ("javax.xm .rpc.security. auth. password", "mypassword");

float quote sqp.getlLastTradePrice("BEAS");

If you use the WebL ogic-generated client JAR file to invoke a Web Service, the Stub
classes are already created for you, and you can pass the user name and password to
the Service-specific implementation of the get Ser vi cePor t () method, as shownin
the following exampl e taken from the JAX-RPC specification:

St ockQuot eService sqs = // ... Get access to the service;

St ockQuot eProvi der sqp = sgs. get St ockQuot eProvi derPort ("juliet", "mypassword");
float quote = sqgp.getlLastTradePrice ("BEAS");

In this example, the implementation of the get St ockQuot ePr ovi dePor t () method
sets the two authentication properties.

For additional information on writing a client application using JAX-RPC to invoke a
secure Web Service, see http://java.sun.com/xml/jaxrpc/index.html.

Configuring SSL for a Client Application

Configure SSL for your client application by using either:
m The WebL ogic Server-provided SSL implementation

m A third-party SSL implementation

13-20 Programming WebL ogic Web Services

http://java.sun.com/xml/jaxrpc/index.html

Configuring Connection Security: Main Steps

For additional detailed information about the APIs discussed in this section see the
Web Service security Javadocs at

http://e-docs.bea.com/wls/docs81b/javadocs/webl ogic/webservice/client/package-su
mmary.html.

Using the WebLogic Server-Provided SSL Implementation

WebL ogic Server provides an implementation of SSL in the

webservi cecl i ent +ssl . jar client runtime JAR file. In addition to the SSL
implementation, this client JAR file contains the standard client JAX-RPC runtime
classes contained inwebser vi cesclient. jar.

To configure basic SSL support for your client application, follow these steps:

1

Copy thefilew._HOVE\ server\ | i b\ webser vi cecl i ent +ssl . j ar to your
client application devel opment computer, where W._ HOVE refers to the top-level
directory of WebL ogic Platform. This client JAR file contains the client runtime
implementation of JAX-RPC as well as the implementation of SSL.

Add the client JAR fileto the client application’s CLASSPATH variable.

Set the filename of the file containing trusted Certificate Authority (CA)
certificates. Do this by either:

e Setting the Syst emproperty t r ust edf i | e to the name of the file that
contains a collection of PEM-encoded certificates.

e Executing the
BaseW.SSLAdapt er . set TrustedCertificatesFile(String
ca_fil enane) method in your client application.

When you run your client application, set the following Syst emproperties on the
command line:
m bea. hone=license_file_directory

m java. protocol . handl er. pkgs=com certicom net. ssl

wherel i cense_fil e_directory refersto the directory that contains the BEA
licensefilel i cense. bea, as shown in the following example:

java -Dbea. hone=c:\bea_hone \

- D ava. protocol . handl er . pkgs=com certi com net.ssl ny_app

Programming WebL ogic Web Services 13-21

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html

13 configuring Security

5. Todisable strict certificate validation, either set the
webl ogi c. webservi ce. client.ssl.strictcertchecki ng System property
tof al se at the command line when you run the application, or programmatically
use the BaseW.SSLAdapt er . set St ri ngChecki ngDef aul t () method.

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81b/javadocs/webl ogi c/webservice/client/package-su
mmary.html.

Configuring SSL Programatically

Y ou can aso configure the WebL ogic Server-provided SSL implementation
programatically by using the webl ogi c. webser vi ce. cl i ent . W.SSLAdapt er
adapter class. Thisadapter class hold configuration information specific to WebL ogic
Server’s SSL implementation and allows the configuration to be queried and modified.

The following excerpt shows an example of configuring the W.SSLAdapt er classfor
a specific WebL ogic Web Service; the linesin bold are discussed after the example:

/1 instantiate an adapter...
WL.SSLAdapt er adapter = new W.SSLAdapter();
adapter.set TrustedCertifcatesFile("mytrustedcerts. peni);

/1 optionally set the Adapter factory to use this

/'l instance always...

SSLAdapt er Fact ory. get Def aul t Fact ory() . set Def aul t Adapt er (adapter);
SSLAdapt er Fact ory. get Def aul t Fact ory() . set UseDef aul t Adapt er (true);

/lcreate service factory
Servi ceFactory factory = Servi ceFactory. newl nstance();

/lcreate service
Service service = factory. createService(serviceNanme);

/lcreate call
Call call = service.createCall();

cal | . set Property("webl ogi c. webservice. client.ssladapter”,
adapter);

try {

/linvoke the renote web service
String result = (String) call.invoke(new Object[]{ "BEAS" });
Systemout.printin("Result: " +result);

} catch (JAXRPCException jre) {

13-22 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html

Configuring Connection Security: Main Steps

The example first shows how to instantiate an instance of the WebL ogic
Server-provided W.SSLAdapt er class, which supports the SSL implementation
contained in thewebser vi cecl i ent +ssl . j ar file. [t then configures the adapter
instance by setting the name of the file that contains the Certificate Authority
certificatesusingtheset Trust edCer ti fi cat esFi | e(St ri ng) method; inthiscase
thefileiscalled nyt rust edcerts. pem

The example then shows how to set W.SSLAdapt er asthe default adapter of the
adapter factory and configures the factory to always return this default.

Note: Thisstepisoptional; it allowsall Web Servicesto share the same adapter class
along with its associated configuration.

Y ou can al'so set the adapter for a particular Web Service port or call. The preceding
example shows how to do thiswhen using the Cal | classto invoke aWeb Service
dynamically:

cal | . set Property("webl ogi c. webservice.client.ssladapter”, adapter);

Set the property to an object that implements the
webl ogi c. webser vi ce. cl i ent. SSLAdapt er interface (which in this caseisthe
WebL ogic Server-provided W.SSLAdapt er class.)

The following excerpt shows how to set the adapter when using the Stub interface to
statically invoke aWeb Service:

((javax.xm .rpc. Stub)stubCl ass)._set Property("webl ogi c. webservice. client. ssl ada
adapt er | nst ance) ;

Y ou can get the adapter for a specific instance of aWeb Service call or port by using
the following method for dynamic invocations:

cal | . get Property("webl ogi c. webservice. client.ssladapter");

Use the following method for static invocations:

((javax.xm . rpc. Stub)stubCl ass)._get Property("webl ogi c. webservice. client.ssl ada

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81b/javadocs/webl ogi c/webservice/client/package-su
mmary.html.

Programming WebL ogic Web Services 13-23

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html

13 configuring Security

Using a Third-Party SSL Implementation

If you want to use a third-party SSL implementation, you must first implement your
own adapter class. The following example shows asimple class that provides support
for JSSE; the main steps to implementing your own class are discussed after the
example:

i mport java.net. URL;

i mport java.net. Socket;

i mport java.net.URLConnecti on;
i mport java.io. | OException;

public class JSSEAdapter inplenents webl ogi c. webservice. client. SSLAdapter {

j avax. net. Socket Factory factory =
j avax. net . ssl. SSLSocket Fact ory. get Defaul t ();

/1 inplenments webl ogi c. webservice. client.SSLAdapter interface...

public Socket createSocket(String host, int port) throws | OException {
return factory. createSocket (host, port);

}

public URLConnection openConnection(URL url) throws | OException {
/'l assumes you have java. protocol . handl er. pkgs properly set..
return url.openConnection();

}

/1 the configuration interface...

public void setSocket Factory(javax. net.ssl.SSLSocket Factory factory) {
this.factory = factory;

}

public javax. net.ssl.SSLSocket Factory get Socket Factory() {
return (javax.net.ssl.SSLSocket Factory) factory;

}
}

To create your own adapter class, follow these steps:
1. Create aclass that implements the following interface:
webl ogi c. webser vi ce. cl i ent. SSLAdapt er

2. Implement the cr eat eSocket method, whose signatureis:

public Socket createSocket(String host, int port)
throws | CException

13-24 Programming WebL ogic Web Services

Configuring Connection Security: Main Steps

This method returns an object that extends| ava. net . Socket . The object is
connected to the designated hostname and port when a Web Service isinvoked.

3. Implement the openConnect i on method, whose signature is:
publ i ¢ URLConnecti on openConnection(URL url) throws | OException

This method returns an object that extendsthej ava. net . URLConnect i on
class. The object is configured to connect to the designated URL. These
connections are used for infrequent network operations, such as downloading the
Web Service WSDL.

4. When you run your client application, set the following Syst emproperty to the
fully qualified name of your adapter class:

webl ogi c. webservi ce. client.ssl.adapterclass

The default SSLAdapt er Fact or y class loads your adapter class and creates an
instance of the class using the default no-argument constructor.

5. Configure your custom adapter class as shown in “ Configuring SSL
Programatically” on page 13-22, substituting your class for W.SSLAdapt er and
using the configuration methods defined for your adapter.

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81b/javadocs/webl ogic/webservice/client/package-su
mmary.html.

Extending the SSLAdapterFactory Class

Y ou can create your own custom SSL adapter factory class by extending the
SSLAdapt er Fact or y class, whichisused to createinstances of adapters. Onereason
for extending the factory classisto alow custom configuration of each adapter when
itiscreated, prior to use.

To create a custom SSL adapter factory class, follow these steps:

1. Create aclass that extends the following class:
webl ogi c. webser vi ce. cl i ent. SSLAdapt er Fact ory
2. Override the following method of the SSLAdapt er Fact or y class:

publ i ¢ webl ogi c. webservi ce. client. SSLAdapt er createSSLAdapter();

This method is called whenever a new SSLAdapt er, or an adapter that
implements this interface, is created by the adapter factory. By overriding this

Programming WebL ogic Web Services 13-25

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html

13 configuring Security

method, you can perform custom configuration of each new adapter beforeitis
actually used.

3. Inyour client application, create an instance of your factory and set it asthe
default factory by executing the following method:

SSLAdapt er Fact ory. set Def aul t Fact ory(factoryl nstance);

For detailed information, see the Web Service security Javadocs at
http://e-docs.bea.com/wls/docs81b/javadocs/webl ogi c/webservice/client/package-su
mmary.html.

Using a Proxy Server

If your client application is running inside afirewall, for example, and needsto use a
proxy server, set the host name and the port of the proxy server using thefollowing two
System properties:

m weblogic.webservicetransport.https.proxy.host
m weblogic.webservice.transport.https.proxy.port

For more information on these System properties, see “WebL ogic Web Services
System Properties’ on page 8-27.

13-26 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/webservice/client/package-summary.html

CHAPTER

14 Using SOAP 1.2

The following sections provide information about using SOAP 1.2 as the message
transport:

m “Overview of Using SOAP 1.2" on page 14-1
m “Specifying SOAP 1.2 for a WebL ogic Web Service: Main Steps’ on page 14-2
m “Invoking a Web Service Using SOAP 1.2" on page 14-3

Overview of Using SOAP 1.2

By default, a WebL ogic Web Service uses SOAP 1.1 as the message transport when a
client application invokes one of its operations. Y ou can, however, use SOAP 1.2 as
the message transport by updating the web- ser vi ces. xnl file and specifying a
particular attribute in cl i ent gen when you generate the client stubs.

Warning: BEA’s SOAP 1.2 implementation is based on the W3C Working Draft
specification (June 26, 2002). Since this specification is not yet a W3C
Recommendation, BEA’s current implementation is subject to change.
BEA highly recommends that you use the SOAP 1.2 feature included in
this version of WebL ogic Server in a development environment only.

When aWebL ogic Web Serviceis configured to also use SOAP 1.2 as the message
transport:

m The generated WSDL of the Web Service contains two port defintions. one with
a SOAP 1.1 binding, and another with a SOAP 1.2 binding.

Programming WebL ogic Web Services 14-1

14 using SOAP 1.2

m Thecl i ent gen Ant task, when generating the Web-service specific client JAR
file for the Web Service, creates a Ser vi ce implementation that contains two
get Port () methods, one for SOAP 1.1 and another for SOAP 1.2.

Specifying SOAP 1.2 for a WebLogic Web
Service: Main Steps

The following procedure assumes that you have already implemented and assembled
aWebL ogic Web Service using theser vi cegen Ant task, and you want to update the
Web Serviceto use SOAP 1.2 as the message transport.

1. Updatethebuil d. xn filethat containsthe call to theser vi cegen Ant task,
adding the attribute useSoap12=""Tr ue" to the <ser vi ce> element that builds
your Web Service, as shown in the following example:

<servi cegen

dest Ear="c: \ myWebServi ce. ear"

war Name="nyWAR. war "

cont ext URI ="web_servi ces" >

<servi ce
ej bJar="c:\nyEJB.jar"
t ar get Namespace="htt p: // www. bea. conf exanpl es/ Tr ader "
servi ceNanme="Tr ader Ser vi ce"
servi ceURl ="/ Tr ader Ser vi ce"
gener at eTypes="True"
expandMet hods="Tr ue"
useSoapl2="True" >

</ service>

</ servi cegen>

Note: If you prefer not to regenerate your Web Service using ser vi cegen, you
can update the web- ser vi ces. xn file of your WebL ogic Web Service
manually. For details, see“ Updating the web-services.xml File Manually”
on page 14-3.

2. Reruntheservi cegen Ant task to regenerate your Web Service to use SOAP
1.2.

For general details about the ser vi cegen Ant task, see “Running the servicegen
Ant Task” on page 6-4.

14-2 Programming WebL ogic Web Services

Invoking a Web Service Using SOAP 1.2

3. Rerunthecl i ent gen Ant task to create new stubs that contain the get Port ()
methods that return a port with a SOAP 1.2 binding.

For details, see “ Running the clientgen Ant Task” on page 8-6.

See“Invoking aWeb Service Using SOAP 1.2" on page 14-3 for details about writing
aJavaclient application that invokes your Web Service.

Updating the web-services.xml File Manually

Theweb- ser vi ces. xm fileislocated in the WEB- I NF directory of the Web
application of the Web ServicesEAR file. See“The Web Service EAR File Package”
on page 6-12 for more information on locating thefile.

To update the web- ser vi ces. xn fileto specify SOAP 1.2, follow these steps:
1. Openthefilein your favorite editor.

2. AddtheuseSoap12="True" attributeto the <web- ser vi ce> element that
describes your Web Service. For example:

<web- service
nane="nyWbServi ce"
useSoapl2="True"
L >

</ web- servi ce>

Invoking a Web Service Using SOAP 1.2

When writing your client appliction to invoke the SOAP 1.2-enabled WebL ogic Web
Service, you first usethe cl i ent gen Ant task to generate the Web Service-specific
client JAR filethat containsthe generated stubs, asusual. Thecl i ent gen Anttaskin
this case generates a JAX-RPC Ser vi ce implementation of your Web Service that
contains two get Por t () methods:. the standard one for SOAP 1.1, called

get Servi ceNamrePort (), and asecond one for SOAP 1.2, called

get Ser vi ceNanePort Soap12(), where Ser vi ceNamre refers to the name of your

Programming WebL ogic Web Services 14-3

14 using SOAP 1.2

Web Service. Thesetwo get Port () methods correspond to the two port definitions
inthe generated WSDL of the Web Service, asdescribed in“ Overview of Using SOAP
1.2" on page 14-1.

The following example of a simple client application shows how to invoke the

hel | owor | d operation of the MySer vi ce Web Service using both SOAP 1.1 (viathe
get Myser vi cePort () method) and SOAP 1.2 (viathe

get MySer vi cePort Soap12() method):

i mport java.io. | OException;
public class Min{
public static void main(String[] args) throws Exception{
MyServi ce service = new MyService_Inpl ();

MyServi cePort port = service.get MServicePort();
Systemout. println(port.helloWwrld());

port = service. get MyServicePort Soapl2();
Systemout. println(port.hellowrld());

14-4 Programming WebL ogic Web Services

CHAPTER

15 Creating

JMS-Implemented
WebLogic Web Services

The following sections describe how to create JIM S-implemented WebL ogic Web
Services;

m “Designing M S-Implemented WebL ogic Web Services’ on page 15-3

“Implementing JM S-Implemented WebL ogic Web Services’ on page 15-5

m “Assembling IM S-Implemented WebL ogic Web Services Automatically” on
page 15-7

“ Assembling JM S-Implemented WebL ogic Web Services Manually” on page
15-10

m “Deploying IM S-Implemented WebL ogic Web Services’ on page 15-13

“Invoking JM S-Implemented WebL ogic Web Services’ on page 15-13

Programming WebL ogic Web Services 15-1

15 Creating JMS-Implemented WebLogic Web Services

Overview of JMS-Implemented WebLogic
Web Services

15-2

In addition to implementing a\Web Service operation with a stateless session EJB or a
Javaclass, you can use a JM'S message consumer or producer, such as a
message-driven bean.

There are three types of JM S-implemented operations:

m Operationsthat send datato a JM S destination.

You implement this type of operation with a IM'S message consumer. The
message consumer consumes the message after a client that invokes the Web
Service operation sends data to the JIM S destination.

m Operations that receive datafrom a JMS queue.

You implement this type of operation with a JIM S message producer. The
message producer puts a message on the specified IMS queue and a client
invoking this message-style Web Service component polls and receives the

message.
m Operations that receive data from a JIMStopic.

You implement this type of operation with a IM S message producer. The
message producer publishes a message to the specified IMS topic, and aclient
invoking this message-style Web Service component polls and receives the
message.

Note: Receiving datafrom aJM Stopicisdeprecated inthisversion of WebL ogic
Server. This means that although this feature currently works, future
versions of WebL ogic Server might not support it.

When aclient application sends data to a JM S-implemented Web Service operation,
WebL ogic Server first convertsthe XML data to its Java representation using either
the built-in or custom serializers, depending on whether the data type of the datais
built-in or not. WebL ogic Server then wraps the resulting Java object in a

j avax. j ms. Obj ect Message object and putsit on the IMS destination. Y ou can then
write aJMS listener, such as a message-driven bean, to take the Cbj ect Message and
processit. Similar steps happen in reverse when a client application invokes a Web
Service to receive data from a JMS queue.

Programming WebL ogic Web Services

Designing JMS-Implemented WebLogic Web Services

If you are using non-built-in data types, you must update the web- ser vi ces. xm
deployment descriptor file with the correct data type mapping information. If the Web
Service cannot find data type mapping information for the data, then it convertsthe
datato aj avax. xnl . soap. SOAPEl ement datatype, defined by the Java API for
XML Messaging (JAXM).

Note: Input and return parametersto a Web Service operation implemented with a
JMS consumer or producer must implement thej ava. i 0. Seri al i zabl e
interface.

For detailed information about programming message-driven beans, see Programming
WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html.

Designing JMS-Implemented WebLogic Web
Services

This section describes the relationship between IMS and WebL ogic Web Services
operations implemented with aJM S consumer or producer, and design considerations
for devel oping these types of Web Services.

Choosing a Queue or Topic

JMS queues implement a point-to-point messaging model whereby a messageis
delivered to exactly one recipient. M S topics implement a publish/subscribe
messaging model whereby a message is delivered to multiple recipients.

Before you implement a Web Service operation with a JMS consumer or producer as
the backend component, you must decide:

m Whether you want to use a JM S queue or topic.

m Whether the client application that invokes the Web Service sends the message
to or receives the message from the service. The same operation cannot support
both sending and receiving.

Programming WebL ogic Web Services 15-3

http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html

15 Creating JMS-Implemented WebLogic Web Services

Retrieving and Processing Messages

After you decide what type of JM S destination you are going to use, you must decide
what type of J2EE component will retrieve the message from the IM S destination and
processit. Typically thiswill be amessage-driven bean. Thismessage-driven bean can
do all the message-processing work, or it can parcel out someor all of thework to other
EJBs. Once the message-driven bean finishes processing the message, the execution of
the Web Serviceis complete.

Because a single Web Service operation cannot both send and receive data, you must
create two Web Service operations if you want a client application to be able to both
send data and receive data. The sending Web Service operation isrelated to the
receiving one because the original message-driven bean that processed the message
puts the response on the IM S destination corresponding to the receiving Web Service
operation.

Example of Using JMS Components

15-4

Figure 15-1 shows two separate Web Service operations, one for receiving amessage
from aclient and one for sending a message back to the client. The two Web Service
operations have their own JM S destinations. The message-driven bean gets messages
from the first IM S destination, processes the information, then puts a message back
onto the second JM S destination. The client invokesthe first Web Service operation to
send the message to WebL ogic Server and then invokes the second Web Service
operation to receive a message back from WebL ogic Server.

Programming WebL ogic Web Services

Implementing JMS-Implemented WebLogic Web Services

Figure15-1 DataFlow Between JM S-Implemented Web Service Operationsand
JMS

4 WebL ogic Server N

—_—— — — — — — — — — — — — —

Receive Web Service

Operation JMS

Destination

. Send Web Service
 Operation

JMS
Destination

Implementing JMS-Implemented WebLogic
Web Services

Toimplement aWeb Serviceimplemented with aJM S message producer or consumer,
follow these steps:

1. Writethe Javacodefor the 2EE component (typically amessage-driven bean) that
will consume or produce the message from or on the IM S destination.

For detailed information, see Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html.

Programming WebL ogic Web Services 15-5

http://e-docs.bea.com/wls/docs81b/ejb/index.html

15 Creating JMS-Implemented WebLogic Web Services

2.

Use the Administration Console to configure the following JM S components of
WebL ogic Server:

e The JMS destination (queue or topic) that will either receive the XML data
from aclient or send XML datato aclient. Later, when you assemble the
Web Service as described in Chapter 6, “ Assembling WebL ogic Web
Services Using Ant Tasks,” you will use the name of this IMS destination.

e The JMS Connection factory that the WebL ogic Web Service uses to create
JMSS connections.

For more information on this step, see “ Configuring JIM S Components for
Message-Style Web Services’ on page 15-6.

Configuring JMS Components for Message-Style Web
Services

15-6

This section assumes that you have aready configured aJMS server. For information
about configuring IM S servers, and general information about IMS, see IMS
Configuring at http://e-docs.bea.com/wls/docs81b/ConsoleHel p/jms_config.html and
Programming WebLogic JMSat http://e-docs.bea.com/wls/docs81b/jms/index.html.

To configure a M S destination (either queue or topic) and IMS Connection Factory,
follow these steps:

1

Invoke the Administration Consolein your browser. For details, see“ Overview of
Administering WebL ogic Web Services’ on page 16-1.

In the left pane, open Services—JMS.

Right-click the Connection Factories node and choose Configure a new
JM SConnectionFactory from the drop-down list.

Enter a name for the Connection Factory in the Name field.
Enter the INDI name of the Connection Factory in the INDIName field.

Enter valuesin the remaining fields as appropriate. For information on these
fields, see IMS. Configuring at
http://e-docs.bea.com/wls/docs81b/ConsoleHel p/jms_config.html.

Click Create.

Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html
http://e-docs.bea.com/wls/docs81b/jms/index.html
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

Assembling JMS-Implemented WebLogic Web Services Automatically

8. Select the servers or clusters on which you would like to deploy this IMS
connection factory.

9. Click Apply.
10. In the left pane, open Services-M S -Servers.
11. Select the IM S server for which you want to create a JIM S destination.

12. Right-click the Destinations node and choose from the drop-down list:
e Configureanew JMSTopic if you want to create atopic

e Configure anew JM SQueue if you want to create a queue.
13. Enter the name of the IM S destination in the Name text field.
14. Enter the INDI name of the destination in the INDIName text field.

15. Enter values in the remaining fields as appropriate. For information on these
fields, see IMS. Configuring at
http://e-docs.bea.com/wls/docs81b/ConsoleHel p/jms_config.html.

16. Click Create.

Assembling JMS-Implemented WebLogic
Web Services Automatically

You can usetheser vi cegen Ant task to automatically assemble a JIM S-implemented
Web Service. The Ant task createsaweb- ser vi ces. xnl deployment descriptor file
based on the attributes of the bui | d. xni file, optionally creates the non-built-in data
type components (such as serialization class), optionally createsaclient JAR file used
to invoke the Web Service, and packages everything into a deployable EAR file.

To automatically assemble aWeb Service using the ser vi cegen Ant task:
1. Create a staging directory to hold the components of your Web Service.

2. Package your IM S message consumers and producers (such as message-driven
beans) into aJJAR file.

Programming WebL ogic Web Services ~ 15-7

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/jms_config.html

15 Creating JMS-Implemented WebLogic Web Services

For detailed information on this step, refer to Devel oping WebLogic Server
Applications at http://e-docs.bea.com/wls/docs81b/programming/packaging.html.

3. Copy the JAR file to the staging directory.

4. Inthe staging directory, create the Ant build file (called bui | d. xm by default)
that contains acall to theser vi cegen Ant task.

For details about specifying the ser vi cegen Ant task, see “Running the
servicegen Ant Task” on page 15-8.

For genera information about creating Ant build files, see
http://jakarta.apache.org/ant/manual/.

5. Set your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._ HOME is the top-level directory of your
WebL ogic Platform install ation.

On UNIX, executethe set Env. sh command, located in the directory
W._HOME/ ser ver / bi n, where W._HOME is the top-level directory of your
WebL ogic Platform install ation.

6. Execute the Ant task or tasks specified inthe bui | d. xm file by typing ant in
the staging directory, optionally passing the command a target argument:

pronpt > ant

The Ant task generates the Web Services EAR file in the staging directory which
you can then deploy on WebL ogic Server.

Running the servicegen Ant Task

The following samplebui | d. xni , files shows how to runthe ser vi cegen Ant task:

<proj ect nanme="buil dWebservice" default="ear">
<t arget nane="ear">
<servi cegen

dest Ear ="j ns_send_queue. ear"

cont ext URI =" WebSer vi ces" >

<service
JMSDest i nati on="j ns. desti nati on. queuel"
JMBAct i on="send"
JMBDest i nati onType="queue"

15-8 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/programming/packaging.html
http://e-docs.bea.com/wls/docs81b/programming/packaging.html
http://jakarta.apache.org/ant/manual/

Assembling JMS-Implemented WebLogic Web Services Automatically

JMSConnect i onFact ory="j nms. connect i onFact ory. queue"
JMBOper at i onNane="sendNane"
JMBMessageType="t ypes. nyType"
gener at eTypes="Tr ue"
target Nanespace="http://tenpuri.org"
servi ceNane="j neSendQueueSer vi ce"
servi ceURl ="/] neSendQueue"
expandMet hods="Tr ue" >
</ servi ce>
</ servi cegen>
</target>
</ proj ect >

In the example, the ser vi cegen Ant task creates a single Web Service called
j meSendQueuesSer vi ce. The URI to identify thisWeb Serviceis /j nsSendQueue;
the full URL to access the Web Serviceis

http://host: port/WbServices/jnsSendQueue

The ser vi cegen Ant task packages the Web Service in an EAR file called

j ms_send_queue. ear . The EAR file contains aWAR file called

web- ser vi ces. war (default name) that contains all the Web Service components,
such astheweb- ser vi ces. xm deployment descriptor file.

The Web Service exposes asingle operation called sendNane. Client applicationsthat
invoke this Web Service operation send messages to a JM S queue whose JINDI name
isj ms. dest i nati on. queuel. The JMS Connect i onFact ory used to create the
connection to thisqueueisj ms. connect i onFact ory. queue. The datatype of the
single parameter of the sendName operation ist ypes. nyType. Becausethe

gener at eTypes attributeis set to Tr ue, the ser vi cegen Ant task generates the
non-built-in data type components for this data type, such as the serialization class.

Note: Thetypes. nyType Javaclassmust beinservi cegen’s CLASSPATH so
that ser vi cegen can generate appropriate components.

Programming WebL ogic Web Services 15-9

15 Creating JMS-Implemented WebLogic Web Services

Assembling JMS-Implemented WebLogic
Web Services Manually

If you want to assembl e aJM S-implemented WebL ogic Web Service manually, follow
these steps:

1. Read thissection which describes JM S-specific information about assembling Web
Services.

2. Follow the steps described in “ Assembling WebL ogic Web Services Using Other
Ant Tasks” on page 6-6, using the JM S-specific information where appropriate.

The following sections describe JM S-specific information about assembling Web
Services manually.

Packaging the JMS Message Consumers and Producers

Package your JM S message consumers and producers (such as message-driven beans)
into aJAR file.

When you create the EAR file that contains the entire Web Service, put this JAR file
in the top-level directory, in the same location as EJB JAR files.

Updating the web-services.xml File With Component
Information

Use the <conponent s> child element of the <web- ser vi ce> element to list and
describe the IM S backend components that implement the operations of the Web
Service. Each backend component has anane attribute that you later use when
describing the operation that the component implements.

See“ Sample web-services.xml Filefor IMS Component Web Service” on page 15-11
for an example.

15-10 Programming WebL ogic Web Services

Assembling JMS-Implemented WebLogic Web Services Manually

You can list the following types of backend components for IM S-implemented Web
Services:

B <jns-send-destination>

This element describes a IMS backend component to which client applications
send data. The component puts the sent data on to a JM S destination. Use the
connecti on-f act ory attribute of this element to specify the IMS Connection
factory that WebL ogic Server usesto create a JM S Connection object. Use the

<j ndi - nanme> child element to specify the INDI name of the destination, as shownin
the following example:

<conponent s>
<j ms- send-desti nati on name="i nqueue"
connection-factory="nyapp. nyqueueCF" >
<j ndi - name pat h="nyapp. nyqueuel N' />
</j nms- send-desti nati on>
</ conponent s>

B <jnB-receive-queue>, <jns-receive-topic>

These elements describe two JM S backend components in which client
applications receive data, the first from a IMS queue and the second from aJMS
topic. Usetheconnect i on-f act ory attribute to specify the IMS Connection
factory that WebL ogic Server usersto create a JM S Connection object. Use the

<j ndi - nanme> child element to specify the INDI name of either the queue or the topic,
as shown in the following example:

<conponent s>
<j ms-recei ve- queue nane="out queue"
connection-fact ory="nyapp. nyqueueCF" >
<j ndi - name pat h="nyapp. nyqueueQUT" />
</j ns-recei ve- queue>
</ conponent s>

Sample web-services.xml File for JMS Component Web
Service

The following sample web- ser vi ces. xnl file describes aWeb Servicethat is
implemented with a JM S message consumer or producer:

<web- servi ces>

<web- servi ce target Nanespace="http://exanpl e. cont
nane="nyMessageServi ce" uri="MessageService">

Programming WebL ogic Web Services 15-11

15 Creating JMS-Implemented WebLogic Web Services

<conponent s>
<j ms- send-destinati on name="i nqueue"
connecti on-factory="nyapp. nyqueuecf" >
<j ndi - nane pat h="nyapp. nyi nput queue" />
</j ms- send-desti nati on>
<j ms-r ecei ve- queue nane="out queue"
connection-factory="nyapp. nyqueuecf ">
<j ndi - name pat h="nyapp. nyout put queue" />
</j ms-recei ve- queue>
</ conponent s>

<operations xm ns:xsd="http://ww.w3. org/ 2001/ XM_Schenma" >
<operation invocation-styl e="one-way" name="enqueue"
conponent ="i nqueue" />
<par ans>

<par am nane="i nput _payl oad" style="in" type="xsd:anyType"

</ par ans>

</ oper ati on>
<operation invocation-styl e="request-response" name="dequeue"

conponent =" out queue" >

<par ans>
<r et ur n- par am nane="out put _payl oad" type="xsd: anyType"/>

</ par ans>

</ oper ati on>

</ oper ati ons>
</ web- servi ce>
</ web- servi ces>

/>

The example shows two JM S backend components, one called i nqueue in which a
client application sends datato a JM S destination, and one called out queue in which

aclient application receives datafrom a JM S queue.

Two corresponding Web Service operations, enqueue and dequeue, areimplemented

with these backend components.

The enqueue operation isimplemented with thei nqueue component. This operation
is defined to be asynchronous one-way, which means that the client application, after
sending the data to the JIM S destination, does not receive a SOAP response (not even

an exception.) The data sent by the client is contained in thei nput _payl oad
parameter.

The dequeue operation isimplemented with the out queue component. The dequeue
operation is defined as synchronous request-response because the client application

invokes the operation to receive datafrom the IMS queue. The response datais
contained in the output parameter out put _payl oad.

15-12 Programming WebL ogic Web Services

Deploying JMS-Implemented WebLogic Web Services

Deploying JMS-Implemented WebLogic Web
Services

Deploying a WebL ogic Web Service refers to making it available to remote clients.
Because WebL ogic Web Services are packaged as standard J2EE Enterprise
applications, deploying a Web Service is the same as deploying an Enterprise
application.

For detailed information on deploying Enterprise applications, see Deploying
WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81b/deployment/index.html.

Invoking JMS-Implemented WebLogic Web
Services

This section shows two sample client applications that invoke JM S-implemented
WebL ogic Web Services: onethat sends datato a service operation, and oneto receive
data from another operation within the same Web Service. Thefirst operation is
implemented with a IM S destination, the second with a IMS queue, as shown in the
following web- ser vi ces. xnl filethat describes the Web Service:

<web- servi ces xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schenma" >

<web- servi ce
name="BounceSer vi ce"
t ar get Nanespace="http: //ww. f oobar. conm echo"
uri ="/ BounceServi ce">

<conponent s>

<j ms- send-desti nati on name="i nqueue"
connection-factory="webl ogi c.j nms. Connecti onFact ory" >
<j ndi - nane pat h="webl ogi c. j ns. i nqueue" />
</ j ms- send- desti nati on>
<j me-recei ve- queue name="out queue"

Programming WebL ogic Web Services 15-13

http://e-docs.bea.com/wls/docs81b/deployment/index.html
http://e-docs.bea.com/wls/docs81b/deployment/index.html

15 Creating JMS-Implemented WebLogic Web Services

connection-fact ory="webl ogi c. j ns. Connecti onFact ory">
<j ndi - nane pat h="webl ogi c. j ns. out queue" />
</j ms-recei ve- queue>
</ conponent s>

<operations xmns:xsd="http://ww.w3. org/ 2001/ XM_Schema" >
<operation invocation-styl e="one-way" nane="subnmit" conponent="i nqueue" >
</ operati on>

<operation invocation-styl e="request-response"
name="query" conponent ="out queue" >
<par ans>
<r et ur n- par am nane="out put _payl oad" type="xsd:string"/>
</ par ans>
</ operati on>
</ oper ati ons>

</ web- servi ce>

</ web- servi ces>

Invoking an Asynchronous Web Service Operation to Send Data

The following example shows a dynamic client application that invokes the subnmi t
operation, described in the web- ser vi ces. xm filein the preceding section. The
submi t operation sends data from the client application to the

webl ogi c. j ms. i nqueue JMS destination. Because the operation is defined as

one- way, it isasynchronous and does not return any valueto the client application that
invoked it.

i mport java.io. BufferedReader;

i mport java.io.lnputStream

i mport java.io. | nput StreanReader;

i mport javax.xm .rpc. ServiceFactory;
i mport javax.xm .rpc. Servi ce;

i mport javax.xm .rpc. Call;

i mport javax.xm .rpc. Paranet er Mode;

i mport javax.xm . namespace. QNane;

/**

* @ut hor Copyright (c) 2002 by BEA Systens, Inc. All Rights Reserved.

*/

/**

* send2Ws - this nobdule sends to a specific Wb Service connected JM5 queue

* |f the message is 'quit' then the nmodule exits.
*

15-14 Programming WebL ogic Web Services

Invoking JMS-Implemented WebLogic Web Services

* @eturns
* @hrows Exception
*/

public class send2Ws{

public static void main(String[] args) throws Exception {

/1 Setup the global JAX-RPC service factory
System set Property("javax.xm . rpc. Servi ceFactory"
"webl ogi c. webservi ce. core. rpc. Servi ceFact oryl npl

"),

Servi ceFactory factory = Servi ceFactory. new nstance();

/I defi ne gnanes

String target Namespace = "http://ww. foobar. conf echo";

ane serviceNane = new Nane(target Nanespace, "BounceService");
Nane portName = new QNanme(target Nanespace, "BounceServicePort");

//create service

Service service = factory.createService(serviceNane);

/Il create outbound call
Call Ws2JnsCall = service.createCall();

Q\ane operati onNane = new QNane(target Nanmespace,

//set port and operation nane
Ws2JnsCal | . set Port TypeNanme(port Nane);
W2JnmsCal | . set Oper ati onNane(operati onName);

// add paraneters
W2JnmsCal | . addPar anet er (" par ant',

new QNane("http://ww. w3. org/ 2001/ XM_Schema", "string"),

/lset end point address
W2JnmsCal | . set Tar get Endpoi nt Addr ess(

"submit");

"http://1ocal host: 7001/ BounceBean/ BounceServi ce");

/1 get message from user
Buf f eredReader nsgStream =

new Buf f er edReader (new | nput St r eanReader (Systemin));

String line = null;

bool ean quit = fal se;

while (lquit) {
Systemout.print("Enter nmessage (\"quit\" to qui
line = nmsgStream readLi ne();
if (line!=null & line.trim).length() !'= 0) {

t)y: ")

Par anet er Mbde. | N

String result = (String)W2JnsCall.invoke(new Qbject[]{ line });

Programming WebL ogic Web Services 15-15

15 Creating JMS-Implemented WebLogic Web Services

if(line.equal slgnoreCase("quit")) {
quit = true;
System out. print("Done!l");

Invoking a Synchronous Web Service Operation to Send Data

The following example shows a dynamic client application that invokesthe query
operation, described in the web- ser vi ces. xm filein “Invoking JM S-Implemented
WebLogic Web Services” on page 15-13. The client application invoking the query
operation receives data from the webl ogi c. j ns. out queue JM S queue. Because the
operation is defined asr equest - r esponse, it is synchronous and returns the data
from the IM S queue to the client application.

i mport javax.xml .rpc. Servi ceFactory;
i mport javax.xm .rpc. Servi ce;

i mport javax.xm .rpc.Call;

i mport javax.xmnl .rpc. Paranet er Mbde;

i nport javax.xm . namespace. QNang;

/**
* @ut hor Copyright (c) 2002 by BEA Systens, Inc. Al Rights Reserved.
*/

/**
* fromAS - this module receives froma Wb Service associated JM5 queue
* |f the message is 'quit' then the nmodule exits.

*

* @eturns
* @hrows Exception
*/

public class fromis {
public static void main(String[] args) throws Exception {

bool ean quit = fal se;

/1 Setup the global JAX-RPC service factory

System set Property("javax.xm .rpc. Servi ceFactory",
"webl ogi c. webservice. core. rpc. Servi ceFactoryl npl");

ServiceFactory factory = Servi ceFactory. newl nstance();

15-16 Programming WebL ogic Web Services

Invoking JMS-Implemented WebLogic Web Services

/I define gnanes
String target Nanespace = "http://ww. foobar.conf echo";

Mane serviceNane = new QNane(target Nanespace, "BounceService");
Q\ane portName = new QNane(target Nanmespace, "BounceServicePort");

/lcreate service
Service service = factory. createService(serviceNanme);

/Il create outbound call
Cal |l Ws2JnsCall = service.createCall();

Q\ane operati onNane = new QNane(target Namespace, "query");

//set port and operation nane
Ws2JnmsCal | . set Port TypeNane(port Nanme);
Ws2JnsCal | . set Oper ati onNane(operationName);

// add paraneters
Ws2JnmsCal | . addPar anmet er (" out put _payl oad",
new QNanme("http://ww. w3. org/ 2001/ XM_Schema", "string"),
Par anmet er Mode. OQUT) ;
/lset end point address
Ws2JnmsCal | . set Tar get Endpoi nt Addr ess(
"http://1ocal host: 7001/ BounceBean/ BounceServi ce");

Systemout.println("Setup conplete. Witing for a nessage...");

while ('quit) {
String result = (String)W2JnsCall.invoke(new Object[] {});
if(result !'= null) {
Systemout. println("Text Message:" + result);
if (result.equal slgnoreCase("quit")) {
quit = true;
System out. println("Done!");

}

conti nue;

}
try {Thread. sl eep(2000);} catch (Exception ignore) {}
}
}
}

Programming WebL ogic Web Services 15-17

15 Creating JMS-Implemented WebLogic Web Services

15-18 Programming WebL ogic Web Services

CHAPTER

16 Administering
WebLogic Web Services

The following sections describe tasks for administering WebL ogic Web Services:
m “Overview of Administering WebL ogic Web Services’ on page 16-1
m “Using the Administration Console to Administer Web Services’ on page 16-3

Overview of Administering WebLogic Web
Services

Once you develop and assemble a WebL ogic Web Service, you can use the
Administration Console to deploy it on WebL ogic Server. Additionally, you can use
the Administration Consol e to perform standard WebL ogic administration tasks on the
deployed Web Services, such as undeploy, delete, view, and so on.

Typically, aWeb Serviceis packaged asan EARfile. The EAR file consists of aWAR
file that contains the web- ser vi ces. xnl file and optional Java classes (such asthe
Java classes that implement a Web Service, handlers, and serialization classes for
non-built-in datatypes) and a optional EJB JAR filesthat contain the stateless EJBs or
JM'S consumers and producers that implement the Web Service operations. The
servicegen Ant task always packages a Web Service into an EAR file.

You can a'so package a Web Service asjust a Web application WAR fileif the
operations are implemented with only Java classes, and not EJBs.

Programming WebL ogic Web Services 16-1

16 Administering WebLogic Web Services

The Administration ConsoleidentifiesaWeb Service by the contents of the WAR file.
In other words, if the WAR file contained in an EAR file contains a
web- servi ces. xnl file, thenthe Administration ConsoleliststheWAR fileasaWeb

L]
Service. The Administration Consol e uses the = icon to indicate that the WAR file
isin fact aWeb Service.

To invoke the Administration Consolein your browser, enter the following URL:

http://host: port/consol e
where
m host refersto the computer on which the Administration Server is running.

m port referstothe port number where the Administration Server islistening for
connection requests. The default port number for the Administration server is
7001.

The following figure shows the main Administration Console window.

16-2 Programming WebL ogic Web Services

Using the Administration Console to Administer Web Services

Figure 16-1 WebL ogic Server Administration Console Main Window

/] WebLogic Server Conszole - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz Help |

j¢.*.@ﬁ‘@@®%vg.@ »
Back FEarxard Stop Fiefrezh Home Search Favortes History M ail Frint Edit Mezzenger

JAereSS I@ hittp: /Alocalhost: 7001 /console/actions/mbean/tB eanFramesetiction hodyFramel d=wl_console_frame_1 U3?BBBU39485&iSNew=falsj o Go |J Links **

@ Console
= @ examples

O servers
O clusters
O Machines

B3 Deplayments
I:IAppIications
LI EJE Modules
ek Application Modul

3 connector Modules

(3 Startup & Shutdown

Connected to loca

Welcome to BEA WeblLogic Server Home

101

Information and Resources
Helpful Tools
Convert weblogic. properties
Deploy a new Application

Domain Configurations

You're logged in

General Information
Bead the docurmentation
Set your console preferences

;=

Your Application's Security

Pl

Loro 2]
oo,
% bhea

0 Phd PS

-

B 2 Senvices Network Configuration Your Deployed Resources Settings
& SJCOM Daornain Applications Realms
o jagc Servers EJE Modules
(£ Messaging Bridge Clusters YWeb Application Modules
Sl Machines Connector Modules
@ J1a Startup & Shutdown
£ snmP ; :
CawiLec Services Configurations
C2 weblLogic Tuxedo Con JDBC SHMP Other Services
D Jolt Connection Pools Agent #ML Registries
3 virtual Hosts MultiPools Proxies JTA Configuration
3 mail (Data Sources Monitors Yirtual Hosts
CAFileTs | et Cilbmen, P s | corscisers 2
=l R=Prr j ‘I I L4
|@ http: #flocalhost: 70071 /consoled actions/mbean/Lizthd B eansiction YreloadM av=falzefiBeanClazsh Hlogic.management.ccl_l_l_':i,l Local intranet v

Using the Administration Console to
Administer Web Services

Y ou can perform the following tasks using the Administration Console:

m Configure and deploy a new Web Service at
http://e-docs.bea.com/wls/docs81b/Consol eHel p/webservices.html#config_ws

Programming WebL ogic Web Services 16-3

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#config_ws
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#config_ws

16 Administering WebLogic Web Services

m View aDeployed Web Service at
http://e-docs.bea.com/wls/docs81b/Consol eHel p/webservices.html#view_ws

m Undeploy a Deployed Web Service at
http://e-docs.bea.com/wls/docs81b/Consol eHel p/webservices.html#undeploy ws

m Delete aWeb Service at
http://e-docs.bea.com/wls/docs81b/Consol eHel p/webservices.html#delete ws

m View the Web Service Deployment Descriptor at
http://e-docs.bea.com/wls/docs81b/Consol eHel p/webservices.html#view_dd ws

m Configure Reliable Messaging at
http://e-docs.bea.com/wls/docs81b/Consol eHel p/webservices.html#reliable_mess

aging

16-4 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#view_ws
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#undeploy_ws
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#delete_ws
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#view_dd_ws
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#reliable_messaging
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/webservices.html#reliable_messaging

CHAPTER

1 7 Publishing and Finding

Web Services Using
UDDI

The following sections provide information about publishing and finding Web
Servicesusing UDDI:

m “Overview of Publishing and Finding Web Services’ on page 17-1

“The UDDI 2.0 Server” on page 17-2

m “Invoking the UDDI Directory Explorer” on page 17-2

“Using the UDDI Client API” on page 17-3

Overview of Publishing and Finding Web
Services

The Universal Description, Discovery and Integration (UDDI) specification defines a
standard way to describe a Web Service, register a Web Service in awell-known
registry, and discover other registered Web Services.

Weblogic Server provides the following UDDI features:
m A UDDI 2.0 Server

Programming WebL ogic Web Services 17-1

17 Publishing and Finding Web Services Using UDDI

m A UDDI Directory Explorer
m A UDDI registry

m Animplementation of the client-side UDDI API so you can programmatically
search for and publish Web Services

The UDDI Directory Explorer allows authorized users to publish Web Servicesin
private WebL ogic Server UDDI registries and to modify information for previously
published Web Services.

The UDDI Directory Explorer also enables you to search both public and private
UDDI registries for Web Services and information about the companies and
departments that provide these Web Services. The Directory Explorer also provides
access to details about the Web Services and associated WSDL files (if available.)

The UDDI 2.0 Server

To be written.

Points to include:

ispart of WLS
®m jsautomatically started when WLSis started
m implements UDDI 2.0 server specification

m typically folks don’'t have to configure it; however, if you do, goto :
http://localhost: 7001/uddi/admin/index.jsp

Invoking the UDDI Directory Explorer

To invoke the UDDI Directory Explorer in your browser, enter the following URL:

http://host: port/uddi expl orer

17-2 Programming WebL ogic Web Services

Using the UDDI Client API

where
m host refersto the computer on which WebL ogic Server is running.

m port refersto the port number where WebL ogic Server is listening for
connection requests. The default port number is 7001.

Y ou can perform the following tasks with the UDDI Directory Explorer:
m Search public registries

m Search private registries

m Publishto aprivate registry

m Modify private registry details

m Setup UDDI directory explorer

For moreinformation about using the UDDI Directory Explorer, click theHelp link on
the main page.

Using the UDDI Client API

Use the UDDI client API in a Java client application to search for and publish Web
Services.

The two main classes of the UDDI client API are | nqui ry and Publ i sh. Usethe
I nqui ry classto search for Web Servicesin aknown UDDI registry and the Publ i sh
class to add your Web Service to aknown registry.

WebL ogic Server provides an implementation of the following client UDDI API
packages:

m webl ogi c.uddi.client.service

® webl ogi c. uddi.client.structures. datatypes
m webl ogi c.uddi.client.structures. exception
® webl ogi c. uddi.client.structures. request

® webl ogi c. uddi . client.structures. response

Programming WebL ogic Web Services 17-3

17 Publishing and Finding Web Services Using UDDI

For detailed information on using these packages, see the UDDI APl Javadocs at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.

For examples of using the UDDI client API, go to the Web Services dev2dev
Download Page at http://dev2dev.bea.com/direct/webservice/index.html and scroll
down until you find the following examples:

m UDDI Client APl Example
m UDDI Publish Example
m UDDI Inquire Example

17-4 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/javadocs/index.html
http://e-docs.bea.com/wls/docs81b/javadocs/index.html
http://dev2dev.bea.com/direct/webservice/index.html
http://dev2dev.bea.com/direct/webservice/index.html

CHAPTER

18 Interoperability

The following sections provide an overview of what it means for Web Servicesto be
interoperable and tips on creating Web Services that interoperate with each other as
much as possible:

m “Overview of Interoperability” on page 18-1

m “Avoid Using Vendor-Specific Extensions’ on page 18-2

m “Stay Current With the Latest Interoperability Tests” on page 18-2

m “Understand the Data Models of Your Applications’ on page 18-3

m “Understand the Interoperability of Various Data Types’ on page 18-4

m “Results of SOAPBuilders Interoperability Lab Round 3 Tests” on page 18-5

Overview of Interoperability

A fundamental characteristic of Web Servicesisthat they are interoperable. This
means that a client can invoke a Web Service regardless of the client’s hardware or
software. In particular, interoperability demands that the functionality of aWeb
Service application be the same across differing:

m Application platforms, such as BEA WebLogic Server, IBM Websphere, or
Microsoft .NET.

m Programming languages, such as Java, C++, C#, or Visua Basic.
m Hardware, such as mainframes, PCs, or peripheral devices.

m Operating systems, such as different flavors of UNIX or Windows.

Programming WebL ogic Web Services 18-1

18 interoperability

m Application data models.

For example, an interoperable Web Service running on WebL ogic Server on a Sun
Microsystems computer running Solaris can be invoked from aMicrosoft .NET Web
Service client written in Visual Basic.

To ensure the maximum interoperability, WebL ogic Server supports the following
specifications and versions when generating your Web Service:

m HTTP 1.1 for the transport protocol

m XML Schemato describe your data

m WSDL 1.1 to describe your Web Service
m SOAP 1.1 for the message format

Thefollowing sections provide some useful interoperability tipsand information when
writing Web Service applications.

Avoid Using Vendor-Specific Extensions

Avoid using vendor-specific implementation extensions to specifications (such as
SOAP, WSDL, andHTTP) that are used by Web Services. If your Web Servicerelies
on this extension, a client application that invokes it might not use the extension and
theinvoke might fail.

Stay Current With the Latest Interoperability
Tests

Public interoperability tests provide information about how different vendor
implementations of Web Service specifications interoperate with each other. This
information isvery useful if you are creating a Web Service on WebL ogic Server that
hasto, for example, interoperate with Web Servicesfrom other vendors, such as.NET.

18-2 Programming WebL ogic Web Services

Understand the Data Models of Your Applications

The following two Web sites include public interoperability tests:
m SOAPBUIlders Interoperability Lab at http://www.xmethods.net/ilab
m Web Service Interoperability Organization at http://www.ws-i.org/

Y ou can a so use the vendor implementations listed in these Web sitesto exhaustively
test your Web Service for interoperability.

The following links provide additional information about Web Service
interoperability:

m White Mesa Software at http://www.whitemesa.com/

m Microsoft SOAP Interop Server at http://www.mssoapinterop.org/

Understand the Data Models of Your
Applications

A good use of Web Servicesisto provide a cross-platform technology for integrating
existing applications. These applications typically have very different data models
which your Web Service must reconcile.

For exampl e, assume that you are creating a Web Service application to integrate the
two accounting systemsin alarge company. Although the data models of each
accounting system are probably similar, they most likely differ in at least some way,
such asthe name of adatafield, the amount of information stored about each customer,
and so on. It is up to the programmer of the Web Service to understand each data
model, and then create an intermediate data model to reconcile the two. Typically this
intermediate data model is expressed in XML using XML Schema. If you base your
Web Service application on only one of the datamodels, the two applications probably
will not interoperate very well.

Programming WebL ogic Web Services 18-3

http://www.xmethods.net/ilab
http://www.ws-i.org/
http://www.whitemesa.com/
http://www.mssoapinterop.org/

18 interoperability

Understand the Interoperability of Various
Data Types

18-4

The data types of the parameters and return values of your Web Service operations
have a great impact on the interoperability of your Web Service. The following table
describes how interoperable the various types of data types are.

Table 18-1 Interoperability of Various Types of Data Types

Data Type

Description

JAX-RPC built-in
data types

Interoperate with no additional programming.

The JAX-RPC specification defines a subset of the XML Schema
built-in data types that any implementation of JAX-RPC must
support. Because all of these data types map directly to a
SOAP-ENC datatype, they are interoperable.

Built-in WebL ogic
Server data types

Interoperate with no additional programming.

WebL ogic Server includes support for all the XML Schemabuilt-in
datatypes. Because al of these data types map directly to a
SOAP-ENC datatype, they are interoperable.

For the full list of built-in WebL ogic Server data types, see “Using
Built-In Data Types’ on page 5-12.

Programming WebL ogic Web Services

Results of SOAPBuilders Interoperability Lab Round 3 Tests

Table 18-1 Interoperability of Various Types of Data Types

Data Type Description
Non-built-in data Interoperate with additiona programming or tools support.
types If your Web Service uses non-built-in data types, you must create

the XML Schemathat describesthe XML representation of the data,
the Java class that describes the Java representation, and the
seriaization class that converts the data between its XML and Java
representation. WebL ogic Server includesthe ser vi cegen and
aut ot ype Ant tasks that automatically generate these objects.
Keepinmind, however, that these Ant tasks might generatean XML
Schemathat does not interoperate well with client applications or it
might not be able to create an XML Schemaat all if the Java data
typeis very complex. In these cases you might need to manually
create the objects needed by non-built-in datatypes, as described in
Chapter 11, “Using Non-Built-In Data Types.”

Additionally, you must ensure that client applications that invoke
your Web Service include the serialization class needed to convert
the data between its XML representation and the language-specific
representation of the client application. WebL ogic Server can
generatethe serialization classfor Webl ogic client applicationswith
thecl i ent gen Ant task. If, however, the client applications that
invoke your Web Service are not written in Java, then you must
create the serialization class manualy.

Results of SOAPBuilders Interoperability
Lab Round 3 Tests

For the results of WebL ogic Web Services' participation in the SOAPBUuilders
Interoperability Lab Round 3 tests, see http://65.193.192.35:7001/index.html. The
tests were run with version 7.0.0.1 of WebL ogic Server.

For more information on the SOAPBUIlder Interoperability tests, see
http://www.whitemesa.com/r3/interop3.html.

Programming WebL ogic Web Services 18-5

http://65.193.192.35:7001/index.html
http://www.whitemesa.com/r3/interop3.html

18 interoperability

18-6 Programming WebL ogic Web Services

CHAPTER

19 upgrading WebLogic
Web Services

The following sections describe how to upgrade WebL ogic Web Servicesto 8.1:
m “Upgrading a 7.0 WebL ogic Web Serviceto 8.1" on page 19-1
m “Upgrading a 6.1 WebL ogic Web Serviceto 8.1" on page 19-2

Upgrading a 7.0 WebLogic Web Service to 8.1

Due to changesin the Web Service runtime system between Versions 7.0 and 8.1 of
WebL ogic Server, you must upgrade Web Services created in version 7.0 to run on
Version 8.1, as described in the following procedure:

1. Setyour 8.1 environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your 8.1
WebL ogic Platform installation.

On UNIX, execute the set Env. sh command, located in the directory
W._HOVE/ ser ver/ bi n, where W._HOVE is the top-level directory of your 8.1
WebL ogic Platform installation.

2. Change to the staging directory that contains the components of your Web
Service, such asthe EJB JAR fileand thebui | d. xm file that contains the call to
theservi cegen Ant task.

Programming WebL ogic Web Services 19-1

19 Upgrading WebLogic Web Services

3. Executetheservi cegen Ant task specified inthebui | d. xn file by typing ant
in the staging directory, optionally passing the command atarget argument:

pronpt > ant

The Ant task generates the 8.1 Web Services EAR file in the staging directory
which can then deploy on WebL ogic Server.

Upgrading a 6.1 WebLogic Web Service to 8.1

Due to changes in the Web Service runtime system between Versions 6.1 and 8.1 of
WebL ogic Server, you must upgrade Web Services created in version 6.1 to run on
version 8.1. This section describes the upgrade process.

Y ou upgrade a 6.1 Web Service manualy, by rewriting the bui | d. xm file you used
to create the 6.1 Web Service to now call theser vi cegen Ant task rather than the
wsgen Ant task. Y ou cannot deploy a 6.1 Web Service on a8.1 WebL ogic Server
instance.

Warning: Thewsgen Ant task was deprecated in Version 7.0 of WebL ogic Server,
and is not supported in Version 8.1.

The WebL ogic Web Services client APl included in version 6.1 of WebLogic Server
has been removed and you cannot use it to invoke 8.1 Web Services. Version 8.1
includes anew client API, based on the Java APl for XML based RPC (JAX-RPC).
Y ou must rewrite client applications that used the 6.1 Web Servicesclient API to now
use the JAX-RPC APIs. For details, see Chapter 8, “Invoking Web Services.”

To upgrade a 6.1 WebL ogic Web Serviceto 8.1, follow these steps:

1. Convertthebui |l d. xml Ant build file used to assemble 6.1 Web Services with the
wsgen Ant task to the 8.1 version that callsthe ser vi cegen Ant task.

For details see “ Converting a 6.1 build.xml fileto 8.1" on page 19-3.

2. Un-jar the 6.1 Web Services EAR file and extract the EJB JAR file that contains
the stateless session EJBs (for 6.1 RPC-style Web Services) or message-driven
beans (for 6.1 message-style Web Services), along with any supporting class
files.

19-2 Programming WebL ogic Web Services

Upgrading a 6.1 WebLogic Web Service to 8.1

3. If your 6.1 Web Service was RPC-style,. see Assembling WebL ogic Web
Services Using the servicegen Ant task” on page 6-3 for instructions on using the
servi cegen Ant task. |If your 6.1 Web Service was message-style, see
“Assembling JM S-Implemented WebL ogic Web Services Automatically” on
page 15-7.

4. Inyour client application, update the URL you use to access the Web Service or
the WSDL of the Web Service from that used in 6.1 to 8.1. For details, see
“Updating the URL Used to Access the Web Service” on page 19-5.

Converting a 6.1 build.xml file to 8.1

The main difference betweenthe6.1and 8.1 bui | d. xm filesused to assembleaWeb
Serviceisthe Ant task: in 6.1 the task was called wsgen and in 8.1 it is called

servi cegen. Theservi cegen Ant task uses many of the same elements and
attributes of wsgen, although some do not apply anymore. The ser vi cegen Ant task
also includes additional configuration options. The table at the end of this section
describes the mapping between the elements and attributes of the two Ant tasks.

Thefollowing bui | d. xm excerpt is from the 6.1 RPC-style Web Services example:

<proj ect nane="nyProject" defaul t="wsgen">
<target nanme="wsgen">
<wsgen dest pat h="weat her. ear"
cont ext ="/ weat her" >
<rpcservi ces pat h="weather.jar">
<rpcservi ce bean="st at el essSessi on"
uri="/weat heruri"/>
</ rpcservices>
</ wsgen>
</target>
</ proj ect >

The following example shows an equivalent 8.1 bui | d. xm file:

<proj ect nane="nyProj ect" default="servicegen">
<target nanme="servicegen">
<servi cegen
dest Ear =" weat her . ear"
cont ext URlI =" weat her" >
<service
ej bJar="weat her.jar"
servi ceURl ="/ weat heruri "
i ncl udeEJBs="st at el essSessi on" >

Programming WebL ogic Web Services 19-3

19 Upgrading WebLogic Web Services

</ service>

</ servi cegen>

</target>
</ pr oj ect >

For detailed information on the WebL ogic Web Service Ant tasks, see Appendix B,

“Web Service Ant Tasks and Command-Line Utilities.”

Thefollowing table mapsthe 6.1 wsgen elementsand attributesto their equivalent 8.1

servi cegen e ements and attributes.

Table0-1 6.1to0 8.1 wsgen Ant Task Mapping

6.1 wsgen Attribute Equivalent 8.1 Attribute

Element servicegen element

wsgen basepath No equivalent. No equivalent
destpath servicegen destEar
context servicegen contextURI
protocol servicegen.service protocol
host No equivalent. No equivalent
port No eqguivalent. No equivalent
webapp servicegen warName
classpath servicegen classpath

rpcservices module No equivalent. No equivalent
path servicegen.service gjbJar

rpcservice bean servicegen.service includeEJBS,

excludeEJBs

uri servicegen.service serviceURI

messageservices N/A No equivalent. No equivalent

19-4 Programming WebL ogic Web Services

Upgrading a 6.1 WebLogic Web Service to 8.1

Table0-1 6.1to 8.1 wsgen Ant Task Mapping

6.1 wsgen Attribute Equivalent 8.1 Attribute

Element servicegen element

messageservice name No equivalent. No equivalent.
destination servicegen.service JMSDestination
destinationtype servicegen.service IM SDestinationType
action servicegen.service JMSAction
connectionfactory servicegen.service JM SConnectionFactory
uri servicegen.service serviceURI

clientjar path servicegen.serviceclient clientJarName

Updating the URL Used to Access the Web Service

The default URL used by client applications to access a WebL ogic Web Service and
its WSDL has changed between versions 6.1 and 8.1 of WebL ogic Server.

InVersion 6.1, the default URL was:

[protocol]://[host]:[port]/[context]/[Wsnane]/[Wsnane] . wsdl

as described in URLs to Invoke WebLogic Web Services and Get the WSDL at
http://e-docs.bea.com/wls/docs61/webServices/client.html#client008.

For example, the URL to invoke a 6.1 Web Service built with the bui | d. xn1 file
shown in “Converting a 6.1 build.xml fileto 8.1" on page 19-3, is:

http://host: port/weat her/stat el essSessi on. Weat her Hone/ st at el essSessi on. \WWeat her H

one. wsdl

In 8.1, the default URL is:

[protocol]://[host]:[port]/[contextURI]/[serviceURI] ?WsDL

asdescribed in “The WebL ogic Web Services Home Page and WSDL URLS’ on page

8-24.

Programming WebL ogic Web Services 19-5

http://e-docs.bea.com/wls/docs61/webServices/client.html#client008

19 Upgrading WebLogic Web Services

For example, the URL to invoke the equivalent 8.1 Web Service after converting the
6.1bui | d. xm fileshownin*“Convertinga6.1 build.xml fileto 8.1 on page 19-3 and
running wsgen is:

http://host: port/weat her/weat heruri ?WsDL

19-6 Programming WebL ogic Web Services

APPENDIX

A WebLogic Web Service

DeploymentDescriptor
Elements

Theweb- ser vi ces. xm deployment descriptor file contains information that
describes one or more WebL ogic Web Services. Thisinformation includes details
about the backend components that implement the operations of a Web Service, the
non-built-in data types used as parameters and return values, the SOAP message
handlers that intercept SOAP messages, and so on. Asistrue for all deployment
descriptors, web- servi ces. xml isan XML file.

The following sections describe the web- ser vi ces. xn file using different formats:
m “Graphical Representation” on page A-1

m “Element Reference” on page A-4

Graphical Representation

The following graphic describes the web- ser vi ces. xm element hierarchy.

Programming WebL ogic Web Services A-1

A WebLogic Web Service Deployment Descriptor Elements

‘ web-services ‘

4{ handler-chains |

_{ handler-chain |
_{ handler |
_{ init-params |

_{ init-param

4{ web-service ‘

“ components ‘

4{ stateless-ejb |

H ejb-link |
jndi-name ‘

4‘ jms-send-destination |
_{ jndi-name |

—| ims-receive-queue |

_{ jndi-name |

—| ims-receive-topic |

L‘ jndi-name ‘
“ java-class ‘
“ types ‘

_{ XML Schema ‘
4{ type-mapping |

_{ type-mapping-entry ‘
V(Continued)

A-2 Programming WebL ogic Web Services

Graphical Representation

A
4{ operations |

_{ operation ‘
‘{ params |

param ‘

return-param ‘

fault ‘

4{ reliable-delivery ‘

4{ security |
4{ user |
4‘ name |

4‘ password |
4‘ encryptionKey ‘
4‘ name ‘
4{ password ‘
“ signatureKey ‘
4{ name |

4{ password |
4{ spec:SecuritySpec ‘

4{ spec:UsernameTokenSpec |

4{ spec:BinarySecurityTokenSpec |

4{ spec:SignatureSpec ‘
L{ spec:Elementldentifier ‘
4‘ spec:EncryptionSpec |

_{ spec:Elementldentifier ‘

Programming WebL ogic Web Services A-3

A WebLogic Web Service Deployment Descriptor Elements

Element Reference

The following sectins, arranged al phabetically, describe each element in the
web- servi ces. xnl file.

See “ Sample web-services.xml Files’ on page 7-10 for sample Web Services
deployment descriptor filesfor avariety of different types of WebL ogic Web Services.

components

Defines the backend components that implement the Web Service.

A WebL ogic Web Service can be implemented using one or more of the following
components:

m Stateless session EJB
m IJMSdestination
m A Javaclass

This element has no attributes.

A-4 Programming WebL ogic Web Services

wsp.html#components

Element Reference

ejb-link

Identifieswhich EJB inan EJB JAR fileisused to implement the statel ess session EJB
backend component.

Attribute

Description Datatype Required?

path

Name of the EJB in the form of: String Yes
j ar - nanme#ej b- nanme

j ar - nane refersto the name of the JAR file, contained

within the Web Service EAR filg, that contains the

statel ess session EJB. The name should include
pathnames relative to the top level of the EAR file.

ej b- name refersto the name of the stateless session
EJB, corresponding to the <ej b- nane> element in the
ej b-jar. xm deployment descriptor filein the EJB
JARfile.

Example: myapp. j ar #St ockQuot eBean

encryptionKey

fault

Specifies the name and password of akey and certificate pair used when encrypting
elements of the SOAP message. Specify the name using the <name> subelement;
specify the password with the <passwor d> subelement.

Note: Create the key and certificate pair in the WebL ogic Server keystore with the
Administration Console. For details, see Storing Private Keys, Digital
Certificates, and Trusted CAs.

This element does not have any attributes.

Specifies the SOAP fault that should be thrown if there isan error invoking this
operation.

Programming WebL ogic Web Services A-5

wsp.html#ejb-link
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas
wsp.html#fault

A WebLogic Web Service Deployment Descriptor Elements

This element is not required.

Attribute Description Datatype Required?
name Name of the fault. String Yes
class-name Fully qualified Javaclassthat implementsthe SOAPfault. String Yes
handler
Describes a SOAP message handler in ahandler chain. A single handler chain can
consist of one or more handlers.
If the Java class that implements the handler expectsinitialization parameters, specify
them using the optional <i ni t - par ans> child element of the <handl er > element.
Attribute Description Datatype Required?
class-name Fully qualified Java class that implements the SOAP String Yes
message handler.
handler-chain
Lists the SOAP message handlers that make up a particular handler chain. A single
WebL ogic Web Service can define zero or more handler chains.
The order in which the handlers (defined by the <handl er > child element) are listed
isimportant. By default, thehandl eRequest () methodsof the handlersexecuteinthe
order that they are listed as child elements of the <handl er - chai n> element. The
handl eResponse() methods of the handlers executein the reverse order that they are
listed.
Attribute Description Datatype Required?
name Name of this handler chain. String Yes

A-6 Programming WebL ogic Web Services

wsp.html#handler
wsp.html#handler-chain

Element Reference

handler-chains

Containsalist of <handl er - chai n> elements that describe the SOAP message
handler chains used in the Web Service described by thisweb- ser vi ces. xn file. A
single WebL ogic Web Service can define zero or more handler chains.

This element does not have any attributes.

init-param
Specifies a name-value pair that represents one of the initialization parameters of a
handler.
Attribute Description Datatype Required?
name Name of the parameter. String Yes
vaue Value of the parameter. String Yes
init-params

Contains the list of initialization parameters that are passed to the Java class that
implements a handler.

This element does not have any attributes.

java-class
Describes the Java class component that implements one or more operations of aWeb
Service.
Attribute Description Datatype Required
name Name of this component. String Yes

Programming WebL ogic Web Services A-7

wsp.html#handler-chains
wsp.html#param
wsp.html#init-params
wsp.html#java-class

A WebLogic Web Service Deployment Descriptor Elements

Attribute Description Datatype Required
class-name Fully qualified name of the Javaclassthat implementsthis String Yes
component.
jms-receive-queue

Specifiesthat one of the operationsin the Web Serviceis mapped to aJM S queue. Use
this element to describe a\Web Service operation that receives datafrom aJM S queue.

Typically, amessage producer puts amessage on the specified JIM S queue, and aclient
invoking this Web Service operation polls and receives the message.

Attribute Description Datatype Required?
name Name of this component. String Yes
connection-factory JNDI name of the IMS Connection factory that String Yes

WebL ogic Server usesto cresteaJMS
Connection object.

provider-url URL used to connect to anon-WebLogic Server String No
JMS implementation.

initial-context-factory Context factory for anon-WebLogic Server IMS String No
implementation.

jms-receive-topic
Specifiesthat one of the operationsin the Web Serviceis mapped to aJM Stopic. Use
this element to describe a Web Service operation that receives data from a IM S topic.

Typically, amessage producer puts amessage on the specified IMStopic, and aclient
invoking this Web Service component polls and receives the message.

Attribute Description Datatype Required?

name Name of this component. String Yes

A-8 Programming WebL ogic Web Services

wsp.html#jms-receive-queue
wsp.html#jms-receive-topic

Element Reference

Attribute Description Datatype Required?
connection-factory JNDI name of the IMS Connection factory that String Yes
WebL ogic Server usesto createaJMS
Connection object.
provider-url URL used to connect to anon-WebL ogic Server String No
JM S implementation.
initial -context-factory Context factory for anon-WebL ogic Server IMS String No

implementation.

jms-send-destination

Specifiesthat one of the operationsin the Web Serviceis mapped to aJM S destination
(either a queue or atopic). Use this element to describe a Web Service operation that

sends data to a JM S destination.

Typically, amessage consumer (such as a message-driven bean) consumes the
message after it is sent to the IM S destination.

Attribute Description Datatype Required?
name Name of this component. String Yes
connection-factory JNDI name of the IMS Connection factory that String Yes

WebL ogic Server usesto createaJMS

Connection object.
provider-url URL used to connect to anon-WebLogic Server String No

JMS implementation.
initial -context-factory Context factory for anon-WebL ogic Server IMS ~ String No

implementation.

Programming WebL ogic Web Services A-9

wsp.html#jms-send-destination

A WebLogic Web Service Deployment Descriptor Elements

jndi-name

Specifies areference to an object bound into a INDI tree. The reference can beto a
statel ess session EJB or to a JM S destination.

Attribute Description Datatype Required?
path Path name to the object from the INDI context root. String Yes
name

Depending on the parent element, the <name> element specifies:

m The username used in the username token in the SOAP response message.
(Parent element is<user >.)

m The name of the key and certificate pair, stored in WebL ogic Server’s keystore,
used to encrypt part of the SOAP message. (Parent element is
<encrypti onKey>.)

m The name of the key and certificate pair, stored in WebL ogic Server’s keystore,
used to digitally sign part of the SOAP message. (Parent element is
<si gnat ur eKey>.)

This element does not have any attributes.

operation

Configures a single operation of a Web Service. Depending on the value and
combination of attributes for this element, you can configure the following types of
operations:

m Aninvoke of amethod of a stateless session EJB or Java class. Specify thistype
of operation by setting the conponent attribute to the name of the stateless
session EJB or Java class component and the net hod attribute to the name of the
method.

A-10 Programming WebL ogic Web Services

wsp.html#jndi-name
wsp.html#operation

Element Reference

m Aninvoke of aJMS backend component. Specify this type of operation by
setting the conponent attribute to the name of the IMS component.

m The sequential invoke of the SOAP message handlers on a handler chain
together with the invoke of a backend component. Specify this type of operation
by setting the conponent attribute to the name of the component, and the
handl er - chai n attribute to the name of the handler chain you want to invoke.

m The sequentia invoke of the SOAP message handlers on a handler chain, but
with no backend component. Specify this type of operation by just setting the
handl er - chai n attribute to the name of the handler chain you want to invoke
and not setting the conponent and et hod attributes.

Usethe <par anms> child element to explicitly specify the parameters and return values
of the operation.

Attribute

Description Datatype Required?

name

Name of the operation that will be used in the String No
generated WSDL.

If you do not specify this attribute, the name of the

operation defaultsto either the name of the method or

the name of the SOAP message handler chain.

component

Name of the component that implements this String No
operation.

The value of this attribute corresponds to the nanme
attribute of the appropriate <conponent > element.

Programming WebL ogic Web Services A-11

A WebLogic Web Service Deployment Descriptor Elements

Attribute

Description Datatype

Required?

method

Name of the method of the EJB or Java class that String
implements the operation if you specify with the

conponent attribute that the operation is

implemented with a stateless session EJB or Java

class.

Y ou can specify all the methods with the asterisk (*)
character.

If your EJB or Java class does not overload the
method, you need only specify the name of the
method, such as:

net hod="sel | "

If, however, the EJB or Java class overloads the
method, then specify the full signature, such as:

net hod="sel | (int)"

No

handler-chain

Name of the SOAP message handler chain that String
implements the operation.

The value of this attribute corresponds to the nane
attribute of the appropriate <handl er - chai n>
element.

No

invocation-style

Specifieswhether the operation both receivesaSOAP String
request and sends a SOAP response, or whether the

operation only receives a SOAP request but does not

send back a SOAP response.

This attribute accepts only two values:
request - r esponse (default value) or one- way.

Note: If the backend component that implements
this operation is amethod of a stateless
session EJB or Java class and you set this
atribute to one- way, the method must
returnvoi d

A-12 Programming WebL ogic Web Services

No

Element Reference

Attribute

Description Datatype Required?

portTypeName

Port type in the WSDL file to which this operation String No
belongs. Y ou can include this operation in multiple

port types by specifying a comma-separated list of

port types. When the WSDL for this Web Serviceis

generated, a separate <por t Type> element is

created for each specified port type.

The default value isthe value of the por t Type

attribute of the <web- ser vi ce> element.

operations

The <oper at i ons> element groups together the explicitly declared operations of this
Web Service.

This element does not have any attributes.

param

The <par an» element specifies a single parameter of an operation.

Y ou must list the parametersin the same order in which they are defined in the method
that implements the operation. The number of <par anr elements must match the
number of parameters of the method.

Attribute

Description Datatype Required?

name

Name of theinput parameter that will beusedinthe String No.
generated WSDL.

If you do not specify this attribute, the parameter
names are based on the data type of the parameter,
such asi nt val uel,i nt val ue2,

traderesul t, and soon.

Programming WebL ogic Web Services A-13

wsp.html#operations
wsp.html#param

A WebLogic Web Service Deployment Descriptor Elements

Attribute

Description

Datatype Required?

location

Part of the request SOAP message (either the
header, the body, or the attachment) that contains
the value of the input parameter.

Validvaluesfor thisattributeare Body, Header , or
at t achnent . The default valueis Body.

If you specify Body, the value of the parameter is
extracted from the SOAP Body, according to
regular SOAP rules for RPC operation invocation.
If you specify Header , the value is extracted from
aSOAP Header element whose nameisthe value of
thet ype attribute.

If you specify at t achment , the value of the
parameter is extracted from the SOAP Attachment
rather than the SOAP envelope. As specified by the
JAX-RPC specification, only the following Java
data types can be extracted from the SOAP
Attachment:

m java.aw .| nage

java.lang. String
javax.mail.internet. M meMil tiport
javax. xm . transform Source

j avax. acti vati on. Dat aHandl er

String No.

style

Style of the input parameter, either a standard input
parameter, an out parameter used as a return value,
or an in-out parameter for both inputting and
outputting values.

Valid valuesfor this attribute arei n, out , and
in-out.

If you specify aparameter asout ori n- out, the
Java class of the parameter in the backend
component’ s method must implement the

javax. xm . rpc. hol der s. Hol der interface.

String Yes.

type

XML Schemadatatype of the parameter.

A-14 Programming WebL ogic Web Services

NMTOKEN Yes

Element Reference

Attribute

Description Datatype Required?

class-name

Java class hame of the Java representation of the NMTOKEN Maybe. See
data type of the parameter. the

If you do not specify this attribute, WebL ogic description
Server introspects the backend component that of the
implements the operation for the Java class of the attribute.
parameter.

Y ou arerequired to specify thisattribute only if you
want the mapping between the XML and Java
representations of the parameter to be different than
the default. For example, xsd: i nt mapsto the
Javaprimitivei nt type by default, so use this
atributetomapittoj ava. | ang. | nt eger
instead.

params

The <par anms> element groups together the explicitly declared parameters and return
values of an operation.

Y ou do not have to explicitly list the parameters or return values of an operation. If an
<oper at i on> element does not have a <par ans> child element, WebL ogic Server
introspects the backend component that implements the operation to determine its
parameters and return values. When generating the WSDL file of the Web Service,
WebL ogic Server usesthe names of the corresponding method’ sparametersand return
value.

Y ou explicitly list an operation’ s parameters and return values when you want:

m The name of the parameters and return values in the generated WSDL to be
different from those of the method that implements the operation.

m To map aparameter to a name in the SOAP header request or response.
m To useout or in-out parameters.
Use the <par ane child element to specify the parameters of the operation.

Use the <r et ur n- par ane child element to specify the return value of the operation.

Programming WebL ogic Web Services A-15

wsp.html#params

A WebLogic Web Service Deployment Descriptor Elements

The <par ans> element does not have any attributes.

password

Depending on the parent element, the <passwor d> element specifies:

m The password used in the username token in the SOAP response message.
(Parent element is <user >.)

m The password of the key and certificate pair, stored in WebL ogic Server's
keystore, used to encrypt part of the SOAP message. (Parent element is
<encrypti onKey>.)

m The password of the key and certificate pair, stored in WebL ogic Server’s
keystore, used to digitally sign part of the SOAP message. (Parent element is
<si gnat ur eKey>.)

This element does not have any attributes.

reliable-delivery

The<reliabl e-del i ver y> element specifies that the operation can be invoked
asynchronously using reliable messaging. Thismeansthat the application that invokes
the Web Service has a guaranteed that the SOAP message was delivered to the Web
Service operation, or it receives an explicit exception saying that the delivery did not
happen.

A-16 Programming WebL ogic Web Services

Element Reference

Y ou can specify only one <rel i abl e- del i ver y> element for a given operation.

Attribute Description Datatype Required?

duplicate-elimination Specifies whether the WebL ogic Web Service Boolean No.
should ignore duplicate invokes from the same
client application.
If this attribute is set to Tr ue, the Web Service
persists the message | Ds from client applications
that invoke the Web Service so that it can eliminate
any duplicate invokes. If thisvaluesis set to
Fal se, the Web Service does not keep track of
duplicate invokes, which meansthat if aclient
retries an invoke, both invokes could return values.

Validvaluesfor thisattributeare Tr ue and Fal se.
The default valueis Tr ue.

persist-duration The default minimum number of secondsthat |nteger No.
the Web Service should persist the history of a
reliable SOAP message (received from the
sender that invoked the Web Service) inits
storage.

The Web Service, after recovering from a
WebL ogic Server crash, does not dispatch
persisted messages that have expired.

The default value of this attribute is 60,000.

return-param

The <r et ur n- par an> element specifies the return value of the Web Service
operation.

Programming WebL ogic Web Services A-17

A WebLogic Web Service Deployment Descriptor Elements

Y ou can specify only one <r et ur n- par an> element for a given operation.

Attribute Description Datatype Required?
name Name of thereturn parameter that will beusedinthe String No.
generated WSDL file.
If you do not specify this attribute, the return
parameter iscaledresul t .
location Part of the response SOAP message (either the String No.
header or the body) that contains the value of the
return parameter.
Valid valuesfor thisattributeare Body or Header .
The default value is Body.
If you specify Body, the value of the return
parameter will be added to the SOAP Body. If you
specify Header , the value will added as a SOAP
Header element whose name is the value of the
t ype attribute.
type XML Schema data type of the return parameter. NMTOKEN Yes.
class-name Java class name of the Java representation of the NMTOKEN Maybe. See
data type of the return parameter. the
If you do not specify this attribute, WebL ogic description
Server introspects the backend component that of the
attribute.

implements the operation for the Java class of the
return parameter.

You arerequired to specify this attribute if:

m The backend component that implements the
operation is either <j ns- r ecei ve- queue>
or<j ms-recei ve-topi c>.

m The mapping between the XML and Java
representations of the return parameter is
ambiguous, such as mapping xsd: i nt to
either thei nt Javaprimitive type or
java. |l ang. | nt eger.

A-18 Programming WebL ogic Web Services

Element Reference

security

Element that containsall the security configuration information about aparticular Web

Service. Thisinformation includes:

m The username and password used in the SOAP response username token
(<user > child element).

m The name of the key in WebL ogic Server’s keystore used for data encryption
and digital signatures (<encr ypt i onKey> and <si gnat ur eKey> child
elements).

m What parts of the SOAP message should be encrypted and digitally signed
(<spec: Securi t ySpec> child element).

Attribute Description Datatype Required?
Name The name of this security element. String Yes.
signatureKey

Specifies the name and password of akey and certificate pair used when digitally
signing elements of the SOAP message. Specify the name using the <nane>
subelement; specify the password with the <passwor d> subelement.

Note: Create the key and certificate pair in the WebL ogic Server keystore with the
Administration Console. For details, see Storing Private Keys, Digital
Certificates, and Trusted CAs.

This element does not have any attributes.

spec:BinarySecurityTokenSpec

Specifies the (binary) non-XM L-based security tokensincluded in the SOAP
messages.

Programming WebL ogic Web Services A-19

http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas
http://e-docs.bea.com/wls/docs81b/secmanage/ssl.html#store_keys_certs_trustedcas

A WebLogic Web Service Deployment Descriptor Elements

Note: You must include the following namespace declaration with this element:

xm ns: wsse="http://schemas. xnm soap. or g/ ws/ 2002/ 07/ secext "

and the value of each attribute of this element should be qualified with the
wsse namespace.

Attribute Description Datatype Required?
VaueType Specifies the value type and space of the encoded binary ~ String Yes

data.

Only onevadid value: wsse: X509v3 (for X.509

certificates)
EncodingType Specifies the encoding format of the binary data. String Yes

Only onevdid value: wsse: Base64Bi nary

spec:Elementldentifier

I dentifiesaparticular element inthe SOA P message (either the header or the body) that
you want to digitally sign or encrypt. You uniquely identify an element in the SOAP
message by itslocal name and its namespace.

Specify this element as the child of either <spec: Si gnat ur eSpec> or
<spec: Encrypti onSpec>.

Attribute Description Datatype Required?

L ocal Part The local name of the element. Do not specify the String Yes.
namespace with this attribute.

Namespace The namespace in which the element is defined. String Yes.

A-20 Programming WebL ogic Web Services

Element Reference

Attribute Description Datatype Required?

Restriction Specifies whether to restrict the identification of the String No.
element to the SOAP header or body.

Validvaduesareheader or body. If thisattributeis not
specified, the entire SOAP message is searched when
identifying the element.

Note: If you specify avalue for this optiona attribute,
only thetop-level elementsintherelevant SOAP
message part (header or body) are searched. If
you do not specify this attribute, then all
elements, no matter how deeply nested, are
searched.

spec:EncryptionSpec

Specifies the elements in the SOAP message that are encrypted and how they are
encrypted.

Y ou can specify that the entire SOAP body be encrypted by setting the attribute
Encr ypt Body="True". You can aso usethe<spec: El enment | denti fi er > child
element to specify particular elements of the SOAP message that are to be encrypted.

Warning: Do not specify both Encr ypt Body="Tr ue" and one or more elements
withthe<spec: El ement | dent i fi er > child element, but rather, usejust
one way to specify the elements of the SOAP message that should be
encrypted.

Usethe Encrypt i onMet hod attribute to specify how to encrypt the SOAP message
elements.

Programming WebL ogic Web Services A-21

A WebLogic Web Service Deployment Descriptor Elements

Attribute Description Data Requir
type ed?

EncryptionMethod ~ Specifiesthe algorithm used to encrypt the specified elements of the
SOAP message.
Valid vaues are:

http://ww. w3. org/ 2001/ 04/ xm enc#tri pl edes- cbc
http://ww. w3. org/ 2001/ 04/ xm enc#kw-tri pl edes

EncryptBody Specifies whether to encrypt the entire SOAP body. String Yes.

Note: Do not specify both Encr ypt Body=""Tr ue" and one or
more elementswiththe<spec: El enent | denti fi er>
child element, but rather, use just one way to specify the
elements of the SOAP message that should be encrypted.

Valid valuesare Tr ue and Fal se.

spec:SecuritySpec

Specifies the set of security-related information associated with this Web Service.
Theinformation in this element can include:

m A security token that specifies the username and password of the client invoking
the Web Service. (<spec: User nameTokenSpec> child element)

m A binary security token that specify non-XML-based security tokens, such as
X.509 certificates. (<spec: Bi nar ySecuri t yTokenSpec> child element)

m A specification for the parts of the SOAP message that are digitally signed.
(<spec: Si gnat ur eSpec> child element)

m A gspecification of the parts of the SOAP message that are encrypted.
(<spec: Encrypti onSpec> child element.)

Theinformation in the <spec: Securi t ySpec> element appears in the generated
WSDL of the Web Service so that client applications that invoke the Web Service
know how to create the SOAP request to comply with all the security specifications.

A-22 Programming WebL ogic Web Services

Element Reference

WebL ogic Server also uses the information in this element to verify that a SOAP
request to invoke a particular Web Service contains all the necessary security
information in the header. For example, if the <spec: Securi t ySpec> element
requiresthat aportion of the SOA P message be digitally signed, then WebL ogic Server
knows to check for thiswhen it receives the SOAP request. WebL ogic Server then
uses the same information to create the security information in the SOAP response

message.
Note: You must include the following namespace declaration with this element:
xm ns: spec="http://ww. openuri.org/ 2002/ 11/ wsse/ spec"

and all child elements of the <spec: Securi t ySpec> element must be
qualified with the spec namespace.

Attribute Description Datatype Required?
Name Name of this security specification. String Yes.
spec:SignatureSpec

Specifiesthe elementsin the SOAP message that are digitally signed and how they are
signed.

Digital signatures are away to determine whether amessage was altered in transit and
to verify that amessage wasreally sent by the possessor of aparticular security token.

Y ou can specify that the entire SOAP body be digitally signed by setting the attribute
Si gnBody=""True". Usethe<spec: El enent | dent i f i er > child element to specify
additional particular elements of the SOAP message that are to be signed.

UsetheCanoni cal i zat i onMet hod and Si gnat ur eMet hod attributesto specify how
to digitally sign the SOAP message elements.

Programming WebL ogic Web Services A-23

A WebLogic Web Service Deployment Descriptor Elements

Attribute

Description Data Requir
type ed?

CanonicalizationMethod Specifies the algorithm used to canonicalize the SOAP String Yes.

message elements being signed.
Only onevalid vaue:
http://ww. w3. org/ 2001/ 10/ xm - exc- cl 4n#

SignatureM ethod

Specifies the cryptographic algorithm used to compute the String Yes.
signature.

Note: Besure that you specify an algorithm that is
compatiblewith the certificatesyou areusing in your
enterprise.

Valid values are:

http://ww. w3. org/ 2000/ 09/ xm dsi g#r sa- shal
http://ww. w3. org/ 2000/ 09/ xm dsi g#dsa- shal

SignBody

Specifies whether to digitally sign the entire SOAP body, in String Yes.
addition to the any specific elements identified with the
optional <spec: El enent | denti fi er > child elements.

Valid values are Tr ue and Fal se.

spec:UsernameTokenSpec

Specifies that the SOAP messages used to invoke and respond to this Web Service
must include a username and password.

WebL ogic Server validates the username and password in a client’s SOAP request
message against the server’s authentication provider.

Note: Define usersfor WebL ogic Server with the Administration Console. For
details, see Defining Users.

WebL ogic Server uses the information in the <user > child element of the
<securi t y> element when creating the security information in a SOAP response

message.

Note: You must include the following namespace declaration with this element:

A-24 Programming WebL ogic Web Services

http://e-docs.bea.com/wls/docs81b/secmanage/security7.html#users

Element Reference

xm ns: wsse="http://schenmas. xm soap. or g/ ws/ 2002/ 07/ secext "

and the value of each attribute of this element should be qualified with the
wsse namespace.

Attribute Description Datatype Required?
PasswordType Specifies how to include the password in the SOAP String Yes.
message.
Only valid valueiswsse: Passwor dText (actud
password for the username.)
stateless-ejb
Describes the statel ess session EJB component that implements one or more
operations of a Web Service.
Attribute Description Datatype Required?
name Name of the stateless EJB component. String Yes.

Note: Thenameisinternal to the
web- servi ces. xm file; it does not refer to
the name of the EJB intheej b-j ar. xm file.

type-mapping

The <t ype- mappi ng> element contains the list of mappings between the XML data
types defined in the <t ypes> element and their Java representations.

For each datatype in the <t ypes> element, there is a corresponding
<t ype- mappi ng- ent r y> element that lists the Java class that implements the data
type, how to serialize and deserialize the data, and so on.

This element has no attributes.

Programming WebL ogic Web Services A-25

wsp.html#stateless-ejb
wsp.html#type-mapping

A WebLogic Web Service Deployment Descriptor Elements

type-mapping-entry

Describes the mapping between a single XML datatypein the <t ypes> element and
its Java representation.

Attribute Description Datatype Required?

class-name Fully qualified name of the Java class that mapsto its String Yes.
corresponding XML data type.

element Name of the XML data type that maps to the Java data NMTOKEN One, but not both,
type. Specify only if the XML Schema definition of the of either el enent
datatype usesthe <el enent > element. ortypeis
required.

type Name of the XML data type that maps to the Java data NMTOKEN One, but not both,
type. Specify only if the XML Schema definition of the of either el enent
data type uses the <t ype> element. ortypeis
required.

serializer Fully qualified name of the Java class that converts the String Only requiredif the
datafrom Javato XML. datatypeisnot one

of the built-in data
dates supported by
theWebL ogicWeb
Services runtime,
listed in “Using
Built-In Data
Types’ on page
5-12.

deserializer Fully qualified name of the Java class that converts the String Only requiredif the
datafrom XML to Java datatypeisnot one

of the built-in data
dates supported by
theWebL ogicWeb
Services runtime,
listed in “Using
Built-In Data
Types’ on page
5-12.

A-26 Programming WebL ogic Web Services

wsp.html#type-mapping-entry

Element Reference

types

user

Describes, using XML Schemanotation, the non-built-in datatypesused as parameters
or return types of the Web Service operations.

For details on using XML Schemato describe the XML representation of a
non-built-in data type, see http://www.w3.org/TR/xmlschema-0/.

The following example shows an XML Schema declaration of a data type called
TradeResul t that contains two elements: st ockSynbol , a string data type, and
nunber Tr aded, an integer.

<types>
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: st ns="j ava: exanpl es. webservi ces"
attri buteFor mDefaul t="qual ified"
el enent For nDef aul t =" qual i fi ed"
t ar get Nanespace="j ava: exanpl es. webservi ces" >
<xsd: conpl exType nanme="TradeResul t">
<xsd: sequence>
<xsd: el ement maxOccurs="1"
nane="st ockSynbol "
type="xsd: string" mnCccurs="1">
</ xsd: el enent >
<xsd: el ement maxCccurs="1"
narme="nunber Tr aded"
type="xsd:int"
m nCccurs="1">
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>
</types>

Specifies the username and password to be used in the SOAP response message.

This element has two child elements:
B <pnane>

m <password>

Programming WebL ogic Web Services A-27

wsp.html#types
http://www.w3.org/TR/xmlschema-0/

A WebLogic Web Service Deployment Descriptor Elements

This element has no attributes.

web-service

Defines asingle Web Service.
The Web Service is defined by the following:

m Backend components that implement an operation, such as a stateless session
EJB, aJavaclass, or aJMS consumer or producer..

m Anoptional set of datatype declarations for non-built-in data types used as
parameters or return values to the Web Service operations.

m Anoptional set of XML to Java data type mappings that specify the serialization
class and Java classes for the non-built-in data types.

m A declaration of the operations supported by the Web Service.

Attribute Description Datatype Required?
name Name of the Web Service. String Yes.
targetNamespace Namespace of this Web Service. String Yes.
uri URI of the Web Service, used subsequently in the URL String Yes.

that invokes the Web Service.

Note: Besureto specify theleading "/*, such as
/ Trader Ser vi ce.

protocol Protocol over which the service is invoked. String No.
Vaidvauesareht t p or htt ps. Defaultisht t p.

A-28 Programming WebL ogic Web Services

wsp.html#web-service

Element Reference

Attribute Description Datatype Required?

style Specifies whether the Web Service has RPC-oriented or ~ String No.
document-oriented operations.
RPC-oriented WebL ogic Web Service operations use
SOAP encoding. Document-oriented WebL ogic Web
Service operations use literal encoding.
Valid valuesarer pc and docunent . Default valueis
rpc.

Warning: If you specify docunent for this
atribute, all the methods that
implement the operations of the Web
Service must have only one parameter.

Note: Becausethest yl e attribute appliesto an entire
Web Service, all operations specified in asingle
<web- ser vi ce> element must be either
RPC-oriented or documented-oriented:;

WebL ogic Server does not support mixing the
two styles within the same Web Service.

Programming WebL ogic Web Services A-29

A WebLogic Web Service Deployment Descriptor Elements

Attribute Description

Datatype

Required?

jmsUri

Specifies that client applications can use the IMS
transport to invoke the Web Service, in addition to the
default HTTP/S transport. The form of this attributeis:

connection_factory_nane/queue_nane

whereconnecti on_f act ory_nane istheJNDI name
of the IMS connection factory and queue_nane isthe
JINDI name of the IM S queuethat you have configured for
the IMS transport. For example:

j msURI =" JMSTr ansFact or y/ JMSTr ansQueue"

If this attribute is set, the generated WSDL of the Web
Service contains an additional port that usesaJMS
binding. Thecl i ent gen Ant task, when generating the
stubs used to invoke this Web Service, generates a

get Ser vi cePor t JMS() method, in addition to the
default get Ser vi cePort () method, used for IMSand
HTTP/S respectively.

Note: If you specify thej msUr i attribute and plan to
always use the IM S transport in your client
applications when invoking the Web Service,
every operation of the Web Service must be
one-way. Thismeansthat every <oper at i on>
child element of this <web- ser vi ce> must
specify the
i nvocati on-styl e="one-way" attribute.

String.

No.

portName Name of the <por t > child element of the<ser vi ce>

element of the dynamically generated WSDL of thisWeb
Service.

The default value isthe nane attribute of this element
with Port appended. For example, if the name of this
Web Serviceis Tr ader Ser vi ce, the port name will be
Tr ader Servi cePort.

String

No

portTypeName Name of the default <por t Type> element in the

A-30

dynamically generated WSDL of this Web Service.

The default value isthe nanre attribute of this element
with Port appended. For example, if the name of this
Web Serviceis Tr ader Ser vi ce, the portType name
will be Tr ader Ser vi cePort .

Programming WebL ogic Web Services

String

No.

Element Reference

Attribute Description Datatype Required?
useSoapl2 Specifieswhether to use SOAP 1.2 asthemessageformat Boolean No.
protocol. By default, WebL ogic Web Services use SOAP
11

If you specify useSoap12=""Tr ue", the generated
WSDL of the deployed WebL ogic Web Service includes
two ports: the standard port that specifies a binding for
SOAP 1.1 as the message format protocol, and a second
port that uses SOAP 1.2. Client applications, when
invoking the Web Service, can use the second port if they
want to use SOAP 1.2 as their message format protocol.

Valid values for this attribute are Tr ue and Fal se. The
default valueisFal se.

web-services

The root element of theweb- ser vi ces. xnml deployment descriptor.

This element does not have any attributes.

Programming WebL ogic Web Services A-31

wsp.html#web-services

A WebLogic Web Service Deployment Descriptor Elements

A-32 Programming WebL ogic Web Services

APPENDIX

B

Web Service Ant Tasks

and Command-Line
Utilities

The following sections describe WebL ogic Web Service Ant tasks and the
command-line utilities based on these Ant tasks:

m “Overview of WebL ogic Web Services Ant Tasks and Command-Line Utilities’
on page B-2

m “autotype’ on page B-6

m “clientgen” on page B-10

m “servicegen’ on page B-17

m “source2wsdd” on page B-31
m “wsdl2Service” on page B-33
m “wsdigen” on page B-36

m “wspackage’ on page B-37

m “Thefollowing table describes the attributes of the wspackage Ant task.” on
page B-39

Programming WebL ogic Web Services B-1

B Web Service Ant Tasks and Command-Line Utilities

Overview of WebLogic Web Services Ant
Tasks and Command-Line Utilities

B-2

Ant isaJava-based build tool, similar to the make command but much more powerful.
Ant uses XML -based configuration files (called bui | d. xm by default) to execute
tasks written in Java

BEA provides anumber of Ant tasksthat help you generate important parts of aWeb
Service (such asthe serialization class, aclient JAR file, and theweb- ser vi ces. xn
file) and to package all the pieces of aWebL ogic Web Serviceinto adeployable EAR
file.

The Apache Web site provides other useful Ant tasksfor packaging EAR, WAR, and
EJB JAR files. For more information, see http://jakarta.apache.org/ant/manual/.

Y ou can also run some of the Ant tasks as a command-line utility, using flags rather
than attributes to specify how the utility works. The description of the flagsis exactly
the same as the description of its corresponding attribute.

Warning: Not al the attributes of the Ant tasks are available as flags to the
equivalent command-line utility. See the sections that describe each Ant
task for alist of the supported flags when using the command-line
equivalent.

For further examples and explanations of using these Ant tasks, see Chapter 6,
“Assembling WebL ogic Web Services Using Ant Tasks.”

Programming WebL ogic Web Services

http://jakarta.apache.org/ant/manual/

Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities

List of Web Services Ant Tasks and Command-Line
Utilities
The following table provides an overview of the Web Service Ant tasks provided by

BEA and the name of the corresponding command-line utility.

Table B-1 WebL ogic Web Services Ant Tasks

Ant Task Corresponding Description
Command-Line Utility

autotype Not available. Generates the serialization class, Java representation,
XML Schema representation, and data type mapping
information for non-built-in datatypes used as parameters
or return values to a WebL ogic Web Service.

clientgen weblogic.webservice.clientgen Generatesaclient JAR filethat contains athin Java client
used to invoke aWeb Service.

servicegen weblogic.webservice.servicegen Main Ant task that performs all the steps needed to
assemble a Web Service. These stepsinclude:

m Creating the Web Service deployment descriptor
(web- servi ces. xm).

m Introspecting EJBs and Java classes and generating
any needed non-built-in data type supporting
components.

m Generating the client JAR file.
m Packaging all the piecesinto a deployable EAR file.

source2wsdd Not available Generatesaweb- ser vi ces. xm deployment
descriptor file from the Java source file for aJava
class-implemented WebL ogic Web Service.

wsdi2Service Not available. Generates the components of a WebL ogic Web Service
fromaWSDL file. The componentsinclude the
web- servi ces. xml deployment descriptor fileand a
Java source file that you can use as a starting point to
implement the Web Service.

wsdlgen Not available. GeneratesaWSDL filefrom the EAR and WAR filesthat
make up the Web Service.

Programming WebL ogic Web Services B-3

B Web Service Ant Tasks and Command-Line Utilities

Table B-1 WebL ogic Web Services Ant Tasks

Ant Task Corresponding Description
Command-Line Utility

wspackage Not available. Packages the components of a WebL ogic Web Service
into adeplorable EAR file.

Using the Web Services Ant Tasks

To use the Ant tasks, follow these steps:

1. Createafilecaledbuil d. xni that containsacall to the Web Services Ant tasks.

The following example showsasimple bui | d. xnl file (with details of the Web
Services Ant tasks ser vi cegen and cl i ent gen omitted for clarity):

<proj ect name="buil dWebservi ce" defaul t="buil d-ear">
<target nane="build-ear">
<servicegen attributes go here...>

</ servi cegen>

</target>

<target nanme="build-client" depends="buil d-ear">
<clientgen attributes go here .../>

</target>

<t arget name="cl ean">
<del et e>

<fileset dir="."
i ncl udes="exanpl e.ear,client.jar" />
</ del et e>
</target>
</ proj ect >
Later sections provide examples of specifying the Ant task in the bui | d. xni
file.

2. Set your environment.

On Windows NT, execute the set Env. cmd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

B-4 Programming WebL ogic Web Services

Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities

On UNIX, execute the set Env. sh command, located in the directory
W._HQOMVE/ ser ver/ bi n, where W._HOME is the top-level directory of your
WebL ogic Platform installation.

3. Execute the Ant task or tasks specified inthebui | d. xni file by typing ant in
the same directory asthe bui | d. xnl file:

pronpt > ant

Setting the Classpath for the WebLogic Ant Tasks

Each WebL ogic Ant task acceptsacl asspat h attribute or element so that you can add
new directories or JAR filesto your current CLASSPATH environment variable.

Thefollowing example shows how to usethecl asspat h attribute of theser vi cegen
Ant task to add to the CLASSPATH variable:

<servi cegen dest Ear="nyEJB. ear"
cl asspat h="%{j ava. cl ass. path}; d:\ny_fab_directory"

</ servi cegen>

The following example shows how to add to the CLASSPATH by using the
<cl asspat h> element:

<servicegen ...>
<cl asspat h>
<pat hel enent pat h="${j ava. cl ass. path}" />
<pat hel enent path="d:\ny_fab directory" />
</ cl asspat h>

</ servi cegen>

The following example shows how you can build your CLASSPATH variable outside
of the WebL ogic Web Service Ant task declarations, then specify the variable from
within the task using the <cl asspat h> element:

<path id="nyid">
<pat hel ement pat h="${j ava. cl ass. path}"/>
<pat hel ement pat h="${addi tional . pathl}"/>
<pat hel ement pat h="${addi tional . path2}"/>
</ pat h>

<servicegen>
<classpath refid="nyid" />

Programming WebL ogic Web Services B-5

B Web Service Ant Tasks and Command-Line Utilities

</ servi cegen>

Using the Web Services Command-Line Utilities

To use the command-line utility equivalents of the Ant tasks, follow these steps:
1. Open acommand shell window.

2. Set your environment.

On Windows NT, execute the set Env. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._ HOME is the top-level directory of your
WebL ogic Platform install ation.

On UNIX, executethe set Env. sh command, located in the directory
W._HOME/ ser ver / bi n, where W._HOME is the top-level directory of your
WebL ogic Platform install ation.

3. Executethe utility using thej ava command, as shown in the following example:
pronpt > java webl ogi c. webservice. clientgen \

-ear c:\nyapps\nyapp.ear \

-servi ceName nyService \

- packageNane nyservice.client \
-clientJar c:/myapps/ nyService_client.jar

Run the command with no arguments to get a usage message.

autotype

The aut ot ype Ant task generates the following components for non-built-in data
types that used as parameters or return values of your Web Service operation:

m Seridization class that converts between the XML and Java representation of the
data.

m Givenan XML Schemaor WSDL file, a Java class to contain the Java
representation of the data type.

B-6 Programming WebL ogic Web Services

autotype

m Given aJavaclass that represents the non-built-in datatype, an XML Schema
representation of the data type.

m Datatype mapping information to be included in the web- ser vi ces. xni
deployment descriptor file.

For thelist of non-built-in data types for which aut ot ype can generate datatype
components, see “ Non-Built-In Data Types Supported by servicegen and autotype Ant
Tasks’ on page 6-13.

Y ou can specify one of the following types of input to the aut ot ype Ant task:

m A Javaclassfile that represents your non-built-in data types by specifying the
j avaTypes attribute. Theaut ot ype Ant task generates the corresponding XML
Schemas, the serializer classes, and the data type mapping information for the
web- ser vi ces. xm file.

m A Javaclassfile that contains a backend component, such as a statel ess session
EJB, by specifying thej avaConponent s attribute. The aut ot ype Ant task
looks for non-built-in data types used in the component, then generates the
corresponding XML Schemas, the serializer classes, and the data type mapping
information for the web- ser vi ces. xm file.

m An XML Schemafile that represents your non-built-in data type by specifying
theschemaFi | e atribute. The aut ot ype Ant task generates the corresponding
Java representations, the serializer classes, and the data type mapping
information for the web- servi ces. xni file.

m A URL toaWSDL filethat contains a description of your non-built-in data type
by specifying thewsd! URI attribute. The aut ot ype Ant task generates the
corresponding Java representations, the serializer classes, and the data type
mapping information for the web- servi ces. xm file.

Usethedest Di r attribute to specify the name of a directory that contains the
generated components. The generated XML Schema and data type mapping
information are generated in afile called t ypes. xni . You can use thisfile to
manually update an existing web- ser vi ces. xni file with non-built-in data type
mapping information, or useit in conjunction with thet ypeMappi ngFi | e attribute of
theservi cegen or cl i ent gen Ant tasks, or thet ypesl nf o attribute of the

sour ce2wsdd Ant task.

Warning: The serializer class and Java and XML representations generated by the
aut ot ype, servi cegen, and cl i ent gen Ant tasks cannot be

Programming WebL ogic Web Services B-7

B Web Service Ant Tasks and Command-Line Utilities

round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components’ on page 6-16.

Note: Thefully qualified name for the aut ot ype Ant task is
webl ogi c. ant . t askdef s. webservi ces. j avaschema. JavaSchena.

Example

The following example shows how to create non-built-in data type components from
aJavaclass.

<autotype |avatypes="nypackage. \yType"
t ar get Nanespace="htt p: // ww. f oobar. conl aut ot yper"
packageNanme="a. package. nanme"
destDir="d:\output" />

The following example shows how to use the autotype Ant task against aWSDL file:
<autotype wsdl="file:\wsdl s\ nyWsDL"
t ar get Nanespace="htt p:// ww. f oobar. conl aut ot yper"

packageNanme="a. package. nane"
destDir="d:\output" />

Attributes

The following table describes the attributes of the aut ot ype Ant task.

Attribute Description Required?
schemaFile Name of afile that containsthe XML Schema Y ou must specify
representation of your non-built-in data types. one, and only one, of
the following
attributes:

schemaFi | e,
wsdl ,j avaTypes,
or

j avaConponent s.

B-8 Programming WebL ogic Web Services

autotype

Attribute Description Required?
wsdl Full path name or URI of the WSDL that containsthe XML Y ou must specify
Schema description of your non-built-in data type. one, and only one, of
the following
attributes:
schemaFi | e,
wsdl ,j avaTypes,
or
j avaConponent s.
javaTypes Comma-separated list of Java class names that represent Y ou must specify
your non-built-in data types. The Java classes must be one, and only one, of
compiled and in your CLASSPATH. the following
For example: attributes:
. T —nv. cl 1, ny. cl o schenaFi | e,
j avaTypes="ny. cl ass1, ny. cl ass wsdl .| avaTypes,
or
j avaConponent s.
javaComponents Comma-separated list of Java class namesthat implement Y ou must specify
the Web Service operation. The Java classes must be one, and only one, of
compiled and in your CLASSPATH. the following
For example: attributes:
. schemaFi | e
Co ts="ny.cl 1 .cl 2" ’
j avaConponent s ny_ cl assl, my. cl ass wsdl | j avaTypes,
Theaut ot ype Ant task introspects the Java classes to or
aJtomamica_JIy_generame the components for al non-built-in j avaConponent s.
datatypesit finds.
destDir Full pathname of the directory that will contain the Yes.
generated components. The generated XML Schema
and data type mapping information are generated in a
filecaledtypes. xm .
typeMappingFile File that contains data type mapping information for No.

non-built-in data types for which have aready generated
needed components. The format of the information isthe
same as the data type mapping information in the

<t ype- mappi ng> element of theweb- ser vi ces. xm
file.

Theaut ot ype Ant task doesnot generate non-built-in data
type components for any data types listed in thisfile.

Programming WebL ogic Web Services B-9

B Web Service Ant Tasks and Command-Line Utilities

Attribute Description Required?
packageBase Base package name of the generated Java classes for any No.
non-built-in data types used as areturn value or parameter | yoy specify this
inaWeb Service. Thismeansthat each generated Javaclass giiribute, you cannot
will be part of the same package name, although the also specify
aut ot ype Ant task generates its own specific name for packageNane.
each Java class which it appends to the specified package
base name.
If you do not specify thisattribute, the aut ot ype Ant task
generates a base package name for you.
Note: BEA recommends you not use this attribute, but
rather, specify the full package name using the
packageNane attribute. The packageBase
attribute is available for JAX-RPC compliance.
packageName Full package name of the generated Java classes for any No.
non-built-in data types used as areturn value or parameter | you specify this
inaWeb Service. attribute, you cannot
If you do not specify thisattribute, the aut ot ype Anttask also specify
generates a package name for you. packageBase.
Note: Although not required, BEA recommends you
specify this attribute.
targetNamespace Namespace URI of the Web Service. Yes.

clientgen

Thecl i ent gen Ant task generates a Web Service-specific client JAR file that client
applications can use to invoke both WebL ogic and non-WebL ogic Web Services.
Typically, you usethecl i ent gen Ant task to generate aclient JAR file from an
existing WSDL file; you can also use it with an EAR file that contains the

implementation of aWebL ogic Web Service.

The contents of the client JAR file includes:

m Client interface and stub files (conforming to the JAX-RPC specification) used

B-10

to invoke a Web Service in static mode.

Programming WebL ogic Web Services

clientgen

m Optiona seriaization class for converting non-built-in data between its XML
and Java representation.

m Optiona client-side copy of the Web Service WSDL file

Youcanusethecl i ent gen Ant task to generateaclient JAR filefromthe WSDL file
of an existing Web Service (not necessarily running on WebL ogic Server) or from an
EAR file that contains a Weblogic Web Service implementation.

The WebL ogic Server distribution includes a client runtime JAR file that contains the
client side classes needed to support the WebL ogic Web Services runtime component.
For more information, see “ Getting the Java Client JAR Files’ on page 8-5.

Warning: Thecl i ent gen Ant task does not support solicit-response or notification
WSDL operations. This meansthat if you attempt to create aclient JAR
filefromaWSDL filethat containsthesetypes of operations, the Ant task
ignores the operations.

Warning: The serializer class and Javaand XML representations generated by the
aut ot ype, servi cegen, and cl i ent gen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components’ on page 6-16.

Note: Thefully qualified name of thecl i ent gen Ant task is
webl ogi c. ant . t askdef s. webservi ces. cli entgen. dient GenTask.

Example

<clientgen wsdl ="http://exanpl e. conl nyapp/ nyservi ce. wsdl "
packageName="nyapp. nyservi ce.client"
clientJar="c:/nyapps/ nyService_client.jar"

/>

Programming WebL ogic Web Services B-11

B Web Service Ant Tasks and Command-Line Utilities

Attributes

The following table describes the attributes of thecl i ent gen Ant task.

Attribute Description Required?
wsdl Full path name or URL of the WSDL that describes a Web Either wsdl

Service (either WebL ogic or non-WebL ogic) for which aclient or ear must

JAR file should be generated. be specified.

The generated stub factory classesin the client JAR file use the

value of thisattribute in the default constructor.

ear Name of an EAR file or exploded directory that contains the Either wsdl

WebL ogic Web Serviceimplementation for which aclient JAR or ear must

file should be generated. be specified.

Note: If thesaveWSDL attribute of cl i ent gen issetto

Tr ue (the default value), thecl i ent gen Ant task
generates aWSDL file from the information in the
EAR file, and storesit in the generated client JAR file.
Becausecl i ent gen does not know the host name or
port number of the WebLogic Server instance which
will host the Web Service, cl i ent gen usesthe
following endpoint address in the generated WSDL :
http://1ocal host: 7001/ cont ext URI / servi ceURl
wherecont ext URl andser vi ceURI arethesamevalues
as described in “ The WebL ogic Web Services Home Page
and WSDL URLS’ on page 8-24. If thisendpoint addressis
not correct, and your client application usesthe WSDL file
stored in the client JAR file, you must manually update the
WSDL file with the correct endpoint address.
warName Name of the WAR file which contains the Web Service(s). No.

The default valueisweb- ser vi ces. war . You can
specify this
attributeonly
in
combination
withtheear
attribute.

B-12 Programming WebL ogic Web Services

clientgen

Attribute

Description Required?

serviceName

Web Service name for which a corresponding client JAR file No.
should be generated.

If you specify thewsd| attribute, the Web Service name
correspondsto the <ser vi ce> elementsin the WSDL file. If
you specify the ear attribute, the Web Service name
corresponds to the <web- ser vi ce> element in the

web- servi ces. xnl deployment descriptor file.

If you do not specify the ser vi ceNane attribute, the
cl i ent gen task generates client classes for the first service
name found in the WSDL or web- ser vi ces. xni file.

typeMappingFile

File that contains data type mapping information, used by the No.
cl i ent gen task when generating the JAX-RPC stubs. The

format of the information is the same as the data type mapping
information in the <t ype- mappi ng> element of the

web- servi ces. xnl file.

If you specified the ear attribute, the information in thisfile
overrides the data type mapping information found in the
web- servi ces. xnl file.

packageName

Package name into which the generated JAX-RPC client Yes.
interfaces and stub files should be packaged.

autotype

Specifies whether thecl i ent gen task should generate and No.
include in the client JAR file the serialization class for any
non-built-in datatypes used as parametersor return valuesto the

Web Service operations.

Valid valuesare Tr ue and Fal se. Default valueis Tr ue.

clientJar

Name of aJAR file or exploded directory into which the Yes.
cl i ent gen task puts the generated client interface classes,
stub classes, optional seriaization class, and so on.

To create or update a JAR file, usea j ar suffix when
specifying the JAR file, such asnycl i entjar.j ar. If the
attribute value does not have a. j ar suffix, then the

cl i ent gen task assumesyou arereferring to adirectory name.

If you specify aJAR file or directory that does not exist, the
cl i ent gen task creastes anew JAR file or directory.

overwrite

Specifies whether to overwrite an existing client JAR file. No.
Valid valuesare Tr ue and Fal se. Default valueis Tr ue.

Programming WebL ogic Web Services B-13

B Web Service Ant Tasks and Command-Line Utilities

Attribute Description Required?
useServerTypes Specifieswherethecl i ent gen task getstheimplementation No.
of any non-built-in Javadatatypes usedin a\Web Service: éither ygg only in
the task generatesthe Javacode or the task getsitfromthe EAR qgmpination
file that contains the full implementation of the Web Service. \iththeear
Valid values are Tr ue (use the Java code in the EARfile) and attribute.
Fal se. Default valueisFal se.
For thelist of non-built-in data types for which
cl i ent gen can generate data type components, see
“Non-Built-In Data Types Supported by servicegen and
autotype Ant Tasks” on page 6-13.
keepGenerated Specifies whether thecl i ent gen Ant task should keep (and No.

thus include in the generated Web Services EAR fil€) the Java
source code of the seriaization class for any non-built-in data
types used as parameters or return values to the Web Service
operations, or whether thecl i ent gen Ant task shouldinclude
only the compiled classfile.

Valid valuesfor thisattribute are Tr ue and Fal se. Thedefault
valueisTr ue.

B-14 Programming WebL ogic Web Services

clientgen

Attribute

Description Required?

generateA syncMethods

Specifiesthat the cl i ent gen Ant task should generate two No.
special methods used to invoke each Web Service operation
asynchronously, in addition to the standard methods. The

special methods take the following form:

FutureResult startMethod (parans,
Asyncl nfo asyncl nfo);

result endMet hod (FutureResult
futureResult);

where:

m Met hod isthe name of the standard method used to invoke
the Web Service operation.

m par ans isthelist of parameters to the operation.
m result istheresult of the operation.

m FutureResult isaWebLogic object used asa
placeholder for the impending result.

m Asyncl nf o isaWebLogic object used to pass contextual
information.

Valid valuesfor thisattribute are Tr ue and Fal se. The default

valueisFal se.

saveWSDL

When set to Tr ue, specifiesthat the WSDL of the Web Service No.
be saved in the generated client JAR file. This meansthat client
applicationsdo not need to download the WSDL every timethey
create a stub to the Web Service, possibly improving

performance of the client because of reduced network usage.

Validvaluesare Tr ue and Fal se. Default valueis Tr ue.

j2me

Specifies whether thecl i ent gen Ant task should create a No.
J2ME/CDC-compliant client JAR file.

Note: The generated client codeis not JAX-RPC compliant.
Valid valuesare Tr ue and Fal se. Default valueisFal se.

usel owerCaseM ethodNames

When set to true, specifies that the method namesin the No.
generated stubshave alower-casefirst character. Otherwise, all
method names will the same as the operation namesin the

WSDL file.

Validvaluesare Tr ue and Fal se. Default valueisTr ue.

Programming WebL ogic Web Services B-15

B Web Service Ant Tasks and Command-Line Utilities

Attribute Description Required?
typePackageName Specifies the full package name of the generated Javaclassfor No.
any non-built-in data types used as areturn value or parameter
inaWeb Service.
If you specify this attribute, you cannot a so specify
t ypePackageBase.
If you do not specify this attribute, thecl i ent gen Ant task
generates a package name for you.
Note: Although not required, BEA recommends you specify
this attribute.
typePackageBase Specifies the base package name of the generated Javaclassfor No.
any non-built-in data types used as areturn value or parameter
inaWeb Service. This meansthat each generated Java class
will be part of the same package name, although the
cl i ent gen Ant task generatesits own specific name for each
Java class which it appends to the specified package base hame.
If you specify this attribute, you cannot a so specify
t ypePackageNane.
If you do not specify this attribute, the cl i ent gen Ant task
generates a base package name for you.
Note: Rather than using thisattribute, BEA recommends that
you specify the full package name with the
t ypePackageNane attribute. The
t ypePackageBase attribute is available for
JAX-RPC compliance.
usePortNameAsMethodName ~ Specifieswherethecl i ent gen Ant task should get thenames No.

of the operations when generating a client from aWSDL file.

If thisvalueis set to true, then operations take the name
specified by the name attribute of the <por t > element in the
WSDL file (where <por t > isthe child element of the

<servi ce> element). If usePor t NanmreAsMet hodNane is
set to false, then operations take the name specified by the nanme
attribute of the<por t Type> element inthe WSDL file (where
<port Type> isthe child element of the<defi ni ti ons>
element).

Validvaluesare Tr ue and Fal se. Default valueisFal se.

B-16 Programming WebL ogic Web Services

servicegen

Equivalent Command-Line Utility

The equivalent command-line utility of thecl i ent gen Ant task is called
webl ogi c. webser vi ce. cl i ent gen. Thedescription of theflags of the utility isthe
same as the description of the Ant task attributes, described in the preceding section.

Thewebl ogi c. webser vi ce. cl i ent gen utility supportsthe following flags (seethe
equivalent attribute for a description of the flag):

m -wsdl uri
m -ear pat hnane

m -clientJar pathnane

- packageNane nane

® -war Name nane

m -serviceNane nane

m -typeMappi ngs pat hnanme

B -useServer Types

servicegen

Theser vi cegen Ant task takes asinput an EJB JAR file or list of Java classes, and
creates all the needed Web Service components and packages them into a deployable
EAR file.

In particular, the ser vi cegen Ant task:

m Introspects the EJBs and Java classes, looking for public methods to convert into
Web Service operations.

m Createsaweb- servi ces. xnl deployment descriptor file, based on the attributes
of theser vi cegen Ant task and introspected information.

m Optionaly creates the seriadization class that converts the non-built-in data
between its XML and Javarepresentations. It also creates XML Schema

Programming WebL ogic Web Services B-17

B Web Service Ant Tasks and Command-Line Utilities

representations of the Java objects and updates the web- ser vi ces. xm file
accordingly. Thisfeatureis referred to as autotyping.

m Packages all the Web Service components into a Web application WAR file, then
packages the WAR and EJB JAR filesinto a deployable EAR file.

Y ou can also configure default configuration for reliable messaging, handler chains,
and data security (digital signatures and encryption) for aWeb Service using
servi cegen.

Warning: The serializer class and Javaand XML representations generated by the
aut ot ype, servi cegen, and cl i ent gen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components’ on page 6-16.

Note: Thefully qualified name of the ser vi cegen Ant task is
webl ogi c. ant . t askdef s. webser vi ces. servi cegen. Servi ceGenTask.

Example

<servi cegen

dest Ear="c: \ myWebServi ce. ear"

war Narme="nyWAR. war "

cont ext URI ="web_servi ces" >

<service
ej bJar="c:\nyEJB.jar"
t ar get Namespace="htt p: // ww. bea. conf exanpl es/ Tr ader "
servi ceNane="Tr ader Ser vi ce"
servi ceURl ="/ Tr ader Ser vi ce"
gener at eTypes="True"
expandMet hods="True" >

</ service>

</ servi cegen>

Attributes and Child Elements

Theser vi cegen Ant task has four attributes and one child element (<ser vi ce>) for
each Web Service you want to definein asingle EAR file. Y ou must specify at least
one <ser vi ce> element.

B-18 Programming WebL ogic Web Services

servicegen

servicegen

The <ser vi ce> element has four optional elements: <cl i ent>, <rel i ability>,
<handl er Chai n>, and <securi t y>.

The following graphic describes the hierarchy of the ser vi cegen Ant task.

‘ servicegen |

4{

service ‘

4{ client ‘
4{ reliability |
4{ handlerChain |

|

‘{ security

4{

service ‘

4{ client ‘
‘{ reliability ‘
4{ handlerChain |

|

4< security

Theser vi cegen Ant task isthe main task for automatically generating and

assembling all the parts of aWeb Service and packaging it into adeployable EAR file.

Programming WebL ogic Web Services B-19

B Web Service Ant Tasks and Command-Line Utilities

The following table describes the attributes of the ser vi cegen Ant task.

Attribute Description Required?

destEar Pathname of the EAR file or exploded directory which Yes
will contain the Web Service and al its components.

To create or update an EAR file, use a. ear suffix when
specifying the EAR file, such as

c: \ mywebser vi ce. ear . If theattribute value does not
havea. ear suffix,thentheser vi cegen task createsan
exploded directory.

If you specify an EAR file or directory that does not exist,
theser vi cegen task creates anew one.

overwrite Specifieswhether you want the componentsof anexisting No
EAR file or directory to be overwritten. The components
include theweb- ser vi ces. xm file, serialization
class, client JAR files, and so on.
Valid valuesfor this attribute are Tr ue and Fal se. The
default valueis Tr ue.
If you specify Fal se, theser vi cegen Ant task
attempts to merge the contents of the EAR file/directory
and information in theweb- ser vi ces. xm file.

warName Name of the WAR file or exploded directory into which ~ No
the Web Service Web application is written. The WAR
file or directory is created at thetop level of the EAR file.

The default valueisa WAR file called
web- servi ces. war .

To specify aWARfile, usea. war suffix, such as
nmywebser vi ceWAR. war . If the attribute val ue does not
havea. war suffix,thentheser vi cegen task createsan
exploded directory.

contextURI Context root of the Web Service. Youusethisvaluein No.
the URL that invokes the Web Service.

The default value of thecont ext URI attribute isthe
value of thewar Nane attribute.

B-20 Programming WebL ogic Web Services

servicegen

Attribute

Description

Required?

keepGenerated

Specifieswhether theser vi cegen Anttask shouldkeep No.

(and thusincludein thegenerated Web ServicesEARfile)
the Java source code of the serialization class for any
non-built-in datatypesused as parameters or return values
to the Web Service operations, or whether the

ser vi cegen Ant task should include only the compiled
classfile.

Valid values for this attribute are Tr ue and Fal se. The
default valueis Tr ue.

service

The <ser vi ce> element describes a single Web Service implemented with either a
stateless session EJB or a Java class.

The following table describes the attributes of the <ser vi ce> element of the
servi cegen Ant task. Include one <ser vi ce> element for every Web Service you
want to package in asingle EAR file.

Attribute

Description

Required?

ejbdar

JAR file or exploded directory that contains the EJBs that
implement the backend component of a Web Service
operation. Theser vi cegen Ant task introspectsthe EJBsto
automatically generate al the components.

Y ou must specify
either theej bJar,
j avad assConpo
nent s, or JMS*
attribute.

javaClassComponents

Commea-separated list of Java class namesthat implement the
Web Service operation. The Java classes must be compiled
and in your CLASSPATH.

For example:

j avad assConponent s="ny. cl ass1, ny. cl ass2"
Theser vi cegen Ant task introspects the Java classes to
automatically generate al the needed components.

Programming WebL ogic Web Services

Y ou must specify
either theej bJar,
j avad assConpo
nent s, or JV5*
attribute.

B-21

B Web Service Ant Tasks and Command-Line Utilities

Attribute Description Required?
includeEJBs Comma-separated list of EJB names for which non-built-in No.
data type components should be generated. Used only in
If you specify this attribute, theser vi cegen task processes combination with
only those EJBs on the list. theej bJdar
The EJB names correspond to the <ej b- name> element in ~ &tribute.
theej b-j ar. xm deployment descriptorinthe EJB JARfile
(specified with the ej bJar attribute).
excludeEJBs Comma-separated list of EJB names for which non-built-in No.
data type components should not be generated. Used only in
If you specify this attribute, theser vi cegen task processes combination with
all EJBs except those on the list. theej bJdar
The EJB names correspond to the <ej b- nane> elementin ~ atribute.
theej b-j ar. xm deployment descriptorinthe EJB JARfile
(specified with theej bJar attribute).
serviceName Name of the Web Service which will be published in the Yes.

WSDL.

Note: If youspecify morethanone<ser vi ce>elementin
your bui | d. xm filethat callsser vi cegen, and
set the ser vi ceNane attribute for each element to
thesamevalue, ser vi cegen attemptsto mergethe
multiple <ser vi ce> elementsinto asingle Web
Service.

B-22 Programming WebL ogic Web Services

servicegen

Attribute

Description Required?

serviceURI

Web Service URI portion of the URL used by client Yes.
applications to invoke the Web Service.

Note: Besureto specify the leading "/*, such as

/ Tr ader Ser vi ce.
Thefull URL to invoke the Web Service will be:
protocol :// host: port/context URl/servi ceURI
where

m protocol referstotheprotocol attribute of the
<servi ce> element

m host refersto the computer on which WebL ogic Server
isrunning

m port refersto the port on which WebLogic Server is
listening

m cont ext URl referstothecont ext URI attribute of the
mainser vi cegen Ant task

m serviceURl refersto thisattribute

targetNamespace

The namespace URI of the Web Service. Yes.

protocol

Protocol over which this Web Service is deployed. No.
Validvaluesareht t p andht t ps. Thedefault valueisht t p.

expandM ethods

Specifies whether the ser vi cegen task, when generating No.
theweb- servi ces. xm file, should create a separate

<oper at i on> element for each method of the EJB or Java

class, or whether thetask should implicitly refer to al methods

by specifying only one <oper at i on> element that contains

amet hod="*" attribute.

Validvaluesare Tr ue and Fal se. Default valueisFal se.

generateTypes

Specifieswhether the ser vi cegen task should generatethe No.
seriaization class and Java representations for non-built-in

data types used as parameters or return values.

Valid values are Tr ue and Fal se. Default valueisTr ue.

For thelist of non-built-in datatypesfor which servicegen can
generate data type components, see “ Non-Built-In Data

Types Supported by servicegen and autotype Ant

Tasks’ on page 6-13.

Programming WebL ogic Web Services B-23

B Web Service Ant Tasks and Command-Line Utilities

Attribute

Description

Required?

typeMappingFile

File that contains additional XML data type mapping
information. The format of the information is the same asthe
data type mapping information in aweb- ser vi ces. xmn .

Usethis attribute if you want to include extra XML data type
information in the <t ype- mappi ng> element of the

web- servi ces. xm file, in addition to the required XML
descriptions of data types used by the EJB or Java class that
implements an operation. The ser vi cegen task adds the
extrainformation in the specified file to a generated

web- servi ces. xm file.

No.

style

Specifieswhether theser vi cegen Ant task should generate
RPC-oriented or document-oriented Web Service operations.

RPC-oriented WebL ogic Web Service operations use SOAP
encoding. Document-oriented WebL ogic Web Service
operations use literal encoding.

If you specify docunent for this attribute, the methods that
implement the operations of the generated Web Service must
have only one parameter. If servi cegen encounters
methods that have more than one parameter, ser vi cegen
ignores the method and does not generate a corresponding
Web Service operation for it.

Valid values for this attribute arer pc and docunent .
Default valueisr pc.

Note: Becausethest yl e attribute appliesto an entire
Web Service, al operationsin asingle WebL ogic
Web Service must be either RPC-oriented or
documented-oriented; WebL ogic Server does not
support mixing the two styles within the same Web
Service.

B-24 Programming WebL ogic Web Services

No.

servicegen

Attribute

Description

Required?

useSoapl2

Specifies whether to use SOAP 1.2 as the message format

protocol. By default, WebL ogic Web Services use SOAP 1.1.

If you specify useSoapl12=""Tr ue", the generated WSDL
of the deployed WebL ogic Web Service includes two ports:
the standard port that specifies a binding for SOAP 1.1 asthe
message format protocol, and a second port that uses SOAP
1.2. Client applications, when invoking the Web Service, can
use the second port if they want to use SOAP 1.2 as their
message format protocol.

Valid values for this attribute are Tr ue and Fal se. The
default valueisFal se.

No.

JM SDestination

JNDI name of a JM S topic or queue.

Yes, if creating a
JIMS-implemented
Web Service.

JM SDestinationType

Type of IMS destination, either a Queue or a Topic.
Valid valuesaret opi ¢ or queue.

Yes, if creating a
IMS-implemented

Web Service.
JMSAction Specifies whether the client application that invokes this Yes, if creating a
JIM S-implemented Web Service sendsor receivesmessagesto JM S-implemented
or from the IMS destination. Web Service.
Vaidvaluesaresend or r ecei ve.
Specify send if the client sends messagesto the IMS
destinationandr ecei ve if theclient receives messagesfrom
the IM S destination.
JMSConnectionFactory ~ JNDI name of the Connect i onFact ory used to create a Yes, if creating a
connection to the IMS destination. IM S-implemented
Web Service.
JIMSOperationName Name of the operation in the generated WSDL file. No.

Default valueis either send or r ecei ve, depending on the
value of the IM SAction attribute.

Programming WebL ogic Web Services B-25

B Web Service Ant Tasks and Command-Line Utilities

Attribute Description Required?
JM SMessageType Data type of the single parameter to the send or receive No.
operation.

Default valueisj ava. | ang. Stri ng.

If you usethis attribute to specify anon-built-in datatype, and
set thegener at eTypes attribute to Tr ue, be sure the Java
represenation of this non-built-in datatypeisin your
CLASSPATH.

client

The optional <cl i ent > element describes how to create the client JAR file that client
applications use to invoke the Web Service. Specify this element only if you want the
servi cegen Ant task to create aclient JAR file.

Note: You do not have to create the client JAR file when you assemble your Web
Service. You can later usethecl i ent gen Ant task to generate the JAR file.

The following table describes the attributes of the <cl i ent > element.

Attribute Description Required?

clientJarName Name of the generated client JAR file. No.

Whentheser vi cegen task packagesthe Web Service, it puts
theclient JAR filein the top-level directory of the Web Service
WAR file of the EAR file.

Default nameisser vi ceNane_cl i ent . j ar, where
ser vi ceNane refersto the name of the Web Service (the
servi ceNane attribute)

Note: If youwantalink totheclient JAR fileto automatically
appear in the Web Service Home Page, you should not
change its default name.

packageName Package name into which the generated client interfaces and Yes.
stub files are packaged.

B-26 Programming WebL ogic Web Services

servicegen

Attribute

Description Required?

useServerTypes

Specifieswheretheser vi cegen task getstheimplementation No.
of any non-built-in Javadatatypesused in aWeb Service: either

the task generatesthe Java code or thetask getsit from the EAR

file that contains the full implementation of the Web Service.

Valid values are Tr ue (use the Java code in the EAR file) and

Fal se. Default velueisFal se.

For the list of non-built-in data types for which servicegen can
generate data type components, see “ Non-Built-In Data

Types Supported by servicegen and autotype Ant Tasks”

on page 6-13.

saveWSDL

When set to Tr ue, savesthe WSDL file of the Web Servicein No.
thegenerated client JAR file. Thismeansthat client applications

do not need to download the WSDL file every time they create

a stub to the Web Service, possibly improving performance of

the client because of reduced network usage.

Valid valuesare Tr ue and Fal se. Default valueis Tr ue.

reliability

Theoptional <rel i abi | i t y> child element of the<ser vi ce> element specifiesthat
every operation of the Web Service can be invoked asynchronously using reliable
messaging. For more information on reliable messaging, see Chapter 10, “Using
Reliable Messaging.”

Note:

Setting thiselement in ser vi cegen enables reliable messaging for every
operation in your Web Service. If you want only some operations to have
reliable messaging, then you must edit the generated web- ser vi ces. xni file
and removethe <r el i abl e- del i ver y> child element of the corresponding
<oper at i on> element. For details of these elements, see Appendix A,
“WebL ogic Web Service Deployment Descriptor Elements.”

Programming WebL ogic Web Services B-27

B Web Service Ant Tasks and Command-Line Utilities

The following table describes the attributes of the <r el i abi | i t y> element.

Attribute

Description Required?

duplicateElimination

Specifieswhether the WebL ogic Web Serviceoperationsshould No.
ignore duplicate invokes from the same client application.

If this attribute is set to Tr ue, the Web Service persiststhe

message |Ds from client applications that invoke the Web

Service so that it can eliminate any duplicate invokes. If this
valuesis set to Fal se, the Web Service does not keep track of
duplicateinvokes, which meansthat if aclient retriesan invoke,

both invokes could return values.

Validvauesfor thisattributeare Tr ue and Fal se. Thedefault
valueisTr ue.

persistDuration

The default minimum number of seconds that the Web No.
Service should persist the history of areliable SOAP

message (received from the sender that invoked the Web
Service) in its storage.

The Web Service, after recovering from a WebL ogic
Server crash, does not dispatch persisted messages that
have expired.

The default value of this attribute is 60,000.

handlerChain

The optional <handl er Chai n> child element of the <ser vi ce> element adds a
handler chain component to the Web Service, and specifies that the handler chainis
associated with every operation of the Web Service. A handler chain consists of one
or more handlers. For more information on handler chains, see Chapter 12, “ Creating
SOAP Message Handlers to Intercept the SOAP Message.”

Note:

Setting this element in ser vi cegen associates the handler chain with every
operation in your Web Service. If you want only some operations to be
associated with this handler chain, then you must edit the generated

web- servi ces. xnl fileand remove the handl er - chai n attribute of the
corresponding <oper at i on> element. For details of these elements and
attributes, see Appendix A, “WebL ogic Web Service Deployment Descriptor
Elements.”

B-28 Programming WebL ogic Web Services

servicegen

The following table describes the attributes of the <hand! er Chai n> element.

Attribute

Description Required?

name

The name of the handler chain. No.

Default valueisser vi ceNanmeHand| er Chai n, where
servi ceNane isthevalue of theser vi ceNane attribute of
the<ser vi ce> parent element.

handlers

Comma separated fully qualified list of Java class names that Yes.
implement the handlersin the handler chain. Y ou must include
at least one class name.

Note: If the Java class that implements a handler
expectsinitialization parameters, you must edit
the generated web- ser vi ces. xnl fileand add
an <i ni t - par ams> child element to the
<hand| er > element. For details of these
elements, see Appendix A, “WebL ogic Web
Service Deployment Descriptor Elements.”

security

The optional <securi t y> child element of the <ser vi ce> element adds default data
security, such as digital signatures and encryption, to your Web Service. For more
information about data security, see Chapter 13, “ Configuring Security.”.

Note: You can encrypt or digitally sign only the entire SOAP message body when
you configure data security using the ser vi cegen Ant task. If you want to
specify particular elements of the SOA P messagethat areto bedigitally signed
or encrypted, see “Configuring Data Security (Digital Signatures and
Encryption): Main Steps” on page 13-2. This section also describes the
general security configuration tasksyou must perform with the Administration
Console before you can successfully invoke your secure Web Service.

Programming WebL ogic Web Services B-29

B Web Service Ant Tasks and Command-Line Utilities

The following table describes the attributes of the <securi t y> element.

Attribute Description Required?

username Specifiesthe username used in the username token of the SOAP Only if your
response message. SOAP messages
If you do not specify this attribute, the SOAP response message '€duir€a
will not include a username token specification. username token.

password Specifiesthe password used in the username token of the SOAP Only if your
response message. SOAP messages
If you do not specify this attribute, the SOAP response message 'equirea
will not include a username token specification. username token.

signKeyName The name of the key and certificate pair, stored in Only if you want
WebL ogic Server’s keystore, used to digitally signthe todigitally sign
entire SOAP body. the SOAP
If you do not specify thisattribute, no part of the SOAP message message body.
will be digitally signed.

signK eyPass The password of the key and certificate pair, stored in Only if you want
WebL ogic Server's keystore, used to digitally signthe todigitally sign
entire SOAP body. the SOAP
If you do not specify thisattribute, no part of the SOAP message message body.
will be digitally signed.

encryptkeyName The name of the key and certificate pair, stored in Only if you want
WebL ogic Server’s keystore, used to encrypt the entire to encrypt the
SOAP body. SOAP message
If you do not specify thisattribute, no part of the SOAP message body.
will be encrypted.

encryptkeyPass The password of the key and certificate pair, stored in Only if you want
WebL ogic Server’s keystore, used to encrypt theentire to encrypt the
SOAP bodly. SOAP message
If you do not specify thisattribute, no part of the SOAP message body.
will be encrypted.

B-30 Programming WebL ogic Web Services

source2wsdd

Equivalent Command-Line Utility

The equivalent command-line utility of the ser vi cegen Ant task is called

webl ogi c. webser vi ce. servi cegen. The description of the flags of the utility is
the same as the description of the Ant task attributes, described in the preceding
sections.

Warning: If you usethewebl ogi c. webser vi ce. servi cegen command-line
utility to automatically assemble aWeb Service, you can create only one
Web Servicein theweb- servi ces. xni file.

Thewebl ogi c. webser vi ce. ser vi cegen utility supports the following flags (see
the equivalent attribute for a description of the flag):
m -dest Ear pat hnane

® -war Nanme nane

m -ejbJar pathnane

m -javad assConponents |ist_of _cl assnanes
® -serviceNane nane

m -serviceURl wuri

m -target Namespace uri

m -protocol protocol

m - expandMet hods

m -clientPackageNane nane

B -clientJarNane nane

source2wsdd

The sour ce2wsdd Ant task generates aweb- ser vi ces. xm deployment descriptor
file from the Java source file for a Java class-implemented WebL ogic Web Service.

Programming WebL ogic Web Services B-31

B Web Service Ant Tasks and Command-Line Utilities

Example

Thesour ce2wsdd Ant task does not generate data type mapping information for any
non-built-in datatypes used as parameters or return values of the methods of your Java
class If your Java class uses non-built-in data types, you must first run the aut ot ype
Ant task to generate the needed components, then point thet ypesl nf o attribute of the
sour ce2wsdd Ant task to thet ypes. xni file generated by the aut ot ype Ant task.

If your Javaclass refers to other Java class files, be sure to set the sour cePat h
attribute to the directory that contains them.

Note: Thefully qualified name of the sour ce2wsdd Ant task is
webl ogi c. ant . t askdef s. webser vi ces. aut ot ype. JavaSour ce2DD.

<sour ce2wsdd
j avaSour ce="c: \ source\ MyService.java"
typesl nfo="c:\autotype\types. xm "
ddFi I e="c:\ddfil es\ web-services. xm"

servi ceURl ="/ MySer vi ce"
/>

Attributes

The following table describes the attributes of the sour ce2wsdd Ant task.

Attribute Description Required?
javaSource Name of the Java source file that implements your Yes.

Web Service component.
ddFile Full pathname of the Web Services deployment descriptor ~ Yes.

file (web- ser vi ces. xnl) which will contain the
generated deployment descriptor information.

B-32 Programming WebL ogic Web Services

wsdl2Service

Attribute Description Required?

typesinfo Name of the file that contains the XML Schema Yes.
representation and data type mapping information for any
non-built-in datatypes used as parameters or return val ue of
the Web Service.

Theformat of the datatype mapping information isthe same
asthat inthe <t ype- mappi ng> element of the
web- servi ces. xnl file.

Typically you have aready run the aut ot ype Ant task to
generate thisinformation into afile called t ypes. xm .

serviceURI Web Service URI portion of the URL used by client Yes.
applications to invoke the Web Service.

Note: Besureto specify the leading "/*, such as
/ Tr ader Ser vi ce.

The value of this attribute becomes the uri attribute of the
<web- ser vi ce> element in the generated
web-services.xml deployment descriptor.

sourcePath Full pathname of the directory that contains any additional No.
classesreferred to by the Java source file specified with the
javaSource attribute.

wsdl2Service

Thewsdl 2Ser vi ce Ant task takes as input an existing WSDL file and generates:
m the Javainterface that represents the implementation of your Web Service
m theweb- servi ces. xnl filethat describes the Web Service

The generated Java interface file describes the template for the full Java
class-implemented WebL ogic Web Service. The template includes full method
signatures that correspond to the operations in the WSDL file. Y ou must then write a
Java class that implements this interface so that the methods function as you want,
following the guidelinesin “Implementing aWeb Service By WritingaJavaClass’ on

page 5-4.

Programming WebL ogic Web Services B-33

B Web Service Ant Tasks and Command-Line Utilities

Thewsdl 2Ser vi ce Ant task generates a Javainterface for only one Web Serviceina
WSDL file (specified by the <ser vi ce> element.) Usetheser vi ceNane attribute to
specify aparticular service; if you do not specify thisattribute, thewsdl 2Ser vi ce Ant
task generates a Javainterface for thefirst <ser vi ce> element in the WSDL.

Thewsdl 2Ser vi ce Ant task does not generate data type mapping information for any
non-built-in data types used as parameters or return values of the operationsin the
WSDL file. If the WSDL uses non-built-in data types, you must first run the

aut ot ype Ant task to generate the data type mapping information, then point the

t ypeMappi ngFi | e attribute of thewsdl 2Ser vi ce Ant task to thet ypes. xm file
generated by the aut ot ype Ant task.

Warning: Thewsdl 2Ser vi ce Ant task, when generating the web- ser vi ces. xni
file for your Web Service, assumes you use the following convention
when naming the Java class that implements the generated Javainterface:

packageNane. servi ceNanel npl

where packageNane and ser vi ceNane are the values of the
similarly-named attributes of the wsdl 2Ser vi ce Ant task. The Ant task
puts thisinformation in thecl ass- name attribute of the <j ava- cl ass>
element of theweb- servi ces. xm file.

If you name your Javaimplementation class differently, you must
manually update the generated web- ser vi ces. xm file accordingly.

Note: Thefully qualified name of thewsdl 2Ser vi ce Ant task is
webl ogi c. ant . t askdef s. webser vi ces. wsdl 2ser vi ce. WsDL2Ser vi ce.

Example

<wsdl 2servi ce
wsdl ="c: \ wsdl s\ nyServi ce. wsdl "
destDir="c:\nyService\inpl enentation"
t ypeMappi ngFi | e="c: \ aut ot ype\types. xm "
packageNanme="exanpl e. ws2j . servi ce"

/>

B-34 Programming WebL ogic Web Services

wsdl2Service

Attributes

The following table describes the attributes of thewsdl 2Ser vi ce Ant task.

Attribute Description Required?

wsdl The full path name or URL of the WSDL that describesa Yes.
Web Service for which a partial WebLogic Web Service
implementation will be generated.

destDir The full pathname of the directory that will contain the Yes.
generated components(web- ser vi ces. xnl fileand Java
interface file that represents the implementation of your
Web Service.)

packageName The package name for the generated Javainterfacefilethat Yes.
represents the implementation of your Web Service.

serviceName The name of the Web Serviceinthe WSDL filefor whicha No.

partial WebL ogic implementation will be generated. The
name of aWeb Servicein aWSDL fileisthe value of the
nane attribute of the <ser vi ce> element.

If you do not specify thisattribute, thews dl 2Ser vi ce Ant
task generates a partial implementation for the first
<servi ce> element it findsin the WSDL file.

Note: Thewsdl 2Ser vi ce Ant task generates a partial
WebL ogic Web Service implementation for only
one servicein aWSDL file. If your WSDL file
contains more than one Web Service, then you
must runwsdl 2Ser vi ce multiple times,
changing the value of this attribute each time.

Programming WebL ogic Web Services B-35

B Web Service Ant Tasks and Command-Line Utilities

Attribute Description Required?

typeMappingFile File that contains data type mapping information for all Required only if the
non-built-in data types referred to by the operations of the operations of the
Web Servicein the WSDL file. The format of the Web Servicein the
information is the same as the data type mapping WSDL filerefer to
information in the <t ype- mappi ng> element of the any non-built-in data
web- servi ces. xm file. types.

Typicaly, youfirst runtheaut ot ype Ant task (specifying
thewsd| attribute) against the same WSDL file and
generate all the non-built-in data type components. One of
the componentsisafilecalledt ypes. xm that contains
the non-built-in data type mapping information. Set the

t ypeMappi ngFi | e attribute equal to thisfile.

wsdigen

Thewsdl gen Ant task generatesa WSDL file from the EAR and WAR files that
implement your Web Service. The EAR file contains the EJBs that implement your
Web Service and the WAR file contains the web- ser vi ces. xm deployment
descriptor file.

The fully qualified name of thewsdl gen Ant task is
webl ogi c. ant . t askdef s. webser vi ces. wsdl gen. WEDLGen.

Example

<wsdl gen ear="c:\ nyapps\ nyapp. ear"

war Narre="c: \ nyapps\ nyWAR. war "

servi ceNane="nyServi ce"

wsdl Fi | e="c: \wsdl s\ nyService. WSDL"
/>

B-36 Programming WebL ogic Web Services

wspackage

Attributes

The following table describes the attributes of thewsdl gen Ant task.

Attribute Description Required?
ear Name of an EAR file or exploded directory that containsthe Yes.
WebL ogic Web Service implementation for which the
WSDL file should be generated.
warName Name of the WAR file that contains the Yes.
web- servi ces. xm deployment descriptor file of your
Web Service.
serviceName Web Service name for which a corresponding WSDL file No.
should be generated.
The Web Service name corresponds to the
<web- servi ce> element intheweb- servi ces. xn
deployment descriptor file.
If you do not specify the ser vi ceNane attribute, the
wsdl gen task generatesa WSDL file for the first service
name found inthe web- ser vi ces. xn file.
wsdlFile Name of the output file that will contain the generated Yes.
WSDL.
defaultEndpoint Endpoint Web Service URL to beincluded inthe generated No.

WSDL file.
The default valueisht t p: / /1 ocal host: 7001.

wspackage

Thewspackage Ant task packages the various components of a WebL ogic Web
Serviceinto adeployable EAR file. It isassumed that you have already generated
these components, which can include;

m Theweb-services. xnl deployment descriptor file

Programming WebL ogic Web Services B-37

B Web Service Ant Tasks and Command-Line Utilities

m The EJB JAR file that contains the EJBs the implement a Web Service

m The Javaclassfile that implements a Web Service

m A client JAR file that users can download and use to invoke the Web Service
= Implementations of SOAP handlers

m Components for any non-built-in data types used as parameters and return values
for the Web Service. These components include the XML and Java
representations of the data type and the serialization class that converts the data
between its two representations.

Typically you use other Ant tasks, such ascl i ent gen, aut ot ype, sour ce2wsdd, and
wsdl 2Ser vi ce, to generate the preceding components.

Note: Thefully qualified name of thewspackage Ant task is
webl ogi c. ant . t askdef s. webser vi ces. wspackage. WsPackage.

Example

<wspackage
out put ="c: \ nyWebServi ce. ear"
cont ext URI ="web_servi ces"
codecDi r="c: \ aut ot ype"
webAppd asses="exanpl e. ws2j . servi ce. Si npl eTest"
ddFi I e="c:\ddfil es\web-services.xm"
/>

B-38 Programming WebL ogic Web Services

wspackage

Attributes

The following table describes the attributes of the wspackage Ant task.

Attribute

Description Required?

output

Pathname of the EAR file or exploded directory whichwill ~ Yes
contain the Web Service and all its components.

To create or update an EAR file, use a. ear suffix when
specifying the EAR file, such as

c:\ nywebser vi ce. ear . If the attribute value does not
havea. ear suffix, thenthewspackage task creates an
exploded directory.

If you specify an EAR file or directory that does not exist,
thewspackage task creates anew one.

warName

Name of the WAR file into which the Web Serviceis No
written. TheWAR fileis created at thetop level of the EAR
file.

The default valueisweb- ser vi ces. war .

Note: If you specified an exploded directory with the
out put attribute, thewspackage task createsan
exploded Web application directory, even if you
specify a war suffix for the war Nane attribute.

contextURI

Context root of the Web Service. Youusethisvalueinthe No.
URL that invokes the Web Service.

Thedefault value of thecont ext URI attributeisthevalue
of thewar Nane attribute.

ddFile

Full pathname of an existing Web Services deployment Yes.
descriptor file (web- servi ces. xm).

filesToEar

Comma-separated list of files to be packaged in the root No.
directory of the EAR.

Use this attribute to specify the EJB JAR files that
implement a Web Service, aswell as any other supporting
EJB JAR files.

Programming WebL ogic Web Services B-39

B Web Service Ant Tasks and Command-Line Utilities

Attribute

Description

Required?

filesToWar

Comma-separated list of additional files, such asthe client
JAR file, to be packaged in the root directory of the Web
Service’' s Web application.

No.

webAppClasses

Comma-separated list of classfilesthat should be packaged
inthe WEB- | NF/ cl asses directory of the Web Service's
Web application.

Usethisattribute to specify the Java classthat implementsa
Web Service, SOAP handler classes, and so on.

No.

codecDir

Name of the directory that contains the serialization classes
for any non-built-in data types used as parameters or return
valuesin your Web Service.

No.

overwrite

Specifies whether you want the components of an existing
EAR file or directory to be overwritten. The components
includetheweb- ser vi ces. xnl file, serialization class,
client JAR files, and so on.

Valid values for this attribute are Tr ue and Fal se. The
default valueis Tr ue.

If you specify Fal se, the wspackage Ant task attempts
to merge the contents of the EAR file/directory and
information in the web- servi ces. xm file.

No

B-40 Programming WebL ogic Web Services

APPENDIX

C Customizing WebLogic
Web Services

The following sections describe how to customize your WebL ogic Web Service by
updating the Web application deployment descriptor files of your Web Service WAR
file:

m “Publishing a Static WSDL File” on page C-1
m “Creating a Custom WebL ogic Web Service Home Page” on page C-3
m “Changing the Default Endpoint of a WebL ogic Web Service” on page C-3

Publishing a Static WSDL File

By default, WebL ogic Server dynamically generates the WSDL of a WebL ogic Web
Service, based on the contents of itsweb- ser vi ces. xm deployment descriptor file.
See “The WebL ogic Web Services Home Page and WSDL URLS’ on page 8-24 for
details on getting the URL of the dynamically generated WSDL .

Y ou can, however, include astatic version of the WSDL fileinthe Web ServicesEAR
fileand publishits URL asthe public description of your Web Service. Onereason for
publishing a static WSDL isto be able to add more custom documentation than what
the dynamically generated WSDL contains.

Warning: If you publish a static WSDL as the public description of your Web
Service, you must always ensure that it remains up to date with the actual
Web Service. In other words, if you change your Web Service, you must

Programming WebL ogic Web Services C-1

C Customizing WebLogic Web Services

C-2

also manually changethe static WSDL to reflect the changes you madeto
your Web Service. One advantage of using the dynamic
WebL ogic-generated WSDL isthat it is always up to date.

Toinclude astatic WSDL file in your Web Services EAR file and publish it, rather
than the dynamically generated WSDL, to the Web, follow these steps:

1. Un-JAR the WebL ogic Web ServicesEAR file and then the WAR filethat contains
theweb- servi ces. xn file.

2. Put the static WSDL filein adirectory of the exploded Web application. This
procedure assumes you put the file at the top-level directory.

3. Updatetheweb. xni file of the Web application, adding a<mi me- mappi ng>
element to map the extension of your WSDL file to an XML mime type.

For example, if the name of your static WSDL fileisnySer vi ce. wsdl , the
corresponding entry in theweb. xn fileisasfollows:
<m me- mappi ng>
<ext ensi on>wsdl </ ext ensi on>
<m me-type>t ext/xm </ m me-type>
</ m nme- mappi ng>

4, Re-JAR the Web Services WAR and EAR files.

5. Invoke the static WSDL file using the standard URL to invoke a static filein a
Web application.

For example, use the following URL to invoke the nySer vi ce. wsdl fileina
Web application that has a context root of web_ser vi ces:

http://host: port/web_services/ nyServi ce. wsdl

Programming WebL ogic Web Services

Creating a Custom WebLogic Web Service Home Page

Creating a Custom WebLogic Web Service
Home Page

Every WebL ogic Web Service has adefault Home Page that containslinksto view the
WSDL of the Web Service, test the service, download the client JAR file, and view the
SOAP requests and responses of a client application invoking the Web Service. See

“The WebL ogic Web ServicesHome Page and WSDL URLS’ on page 8-24 for details.

WebL ogic Server dynamically generates the Web Services Home page and thus it
cannot be customized. If you want to create your own custom Home Page, add an
HTML or JSP file to the Web Services WAR file. For more information on creating
JSPs, see Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html.

Changing the Default Endpoint of a
WebLogic Web Service

The following URL shows a sample of the default endpoint of a WebL ogic Web
Service:

http://host:port/trader_service/ Trader Servi ce

Y ou can change this default URL by updating theweb. xni file of the Web Services
Web application.

To change the default endpoint of your Web Service, follow these steps:

1. Un-JAR theWebL ogic Web Services EAR file and then the WAR filethat contains
theweb- servi ces. xni file.

2. Updatetheweb. xn file of the Web application, adding a<ser vl et > element to
identify the internal Web Services servlet (called
webl ogi c. webser vi ce. server. servl et. WebSer vi ceSer vl et), asshownin
the following example:

Programming WebL ogic Web Services C-3

http://e-docs.bea.com/wls/docs81b/jsp/index.html

C Customizing WebLogic Web Services

<servl et >
<servl et - nanme>WebSer vi ceSer vl et </ ser vl et - nanme>
<servl et-cl ass>
webl ogi c. webservi ce. server. servl et . WebSer vi ceSer vl et
</ servl et-cl ass>
</servlet>

Warning: BEA Systemsreservestheright to changethe name of theinternal Web
Services servlet in future releases of WebL ogic Server.

3. Updatetheweb. xni file of the Web application, adding a<ser vl et - mappi ng>
element to map the internal Web Services servlet to your own custom URI, as
shown in the following example:

<servl et - mappi hg>
<servl et - name>WebSer vi ceSer vl et </ ser vl et - name>
<url - pattern>/ FabWebServi ces/*</url - pattern>
</ servl et - mappi ng>

4., Re-JAR the Web Services WAR and EAR files.

5. Usethefollowing URL, rather than the one shown in the beginning of this
section, to invoke the Web Service:

http://host: port/trader_servi ce/ FabWebSer vi ces/ Tr ader Ser vi ce

C-4 Programming WebL ogic Web Services

APPENDIX

D

Specifications
Supported by
WebLogic Web Services

WebL ogic Web Services support the following specifications:

JAX-RPC 1.0 at http://java.sun.com/xml/jaxrpc/index.html
SOAP 1.1 at http://www.w3.0rg/ TR/SOAP

SOAP Messages With Attachments at
http://www.w3.0rg/TR/SOA P-attachments

Web Services Description Language (WSDL) 1.1 at http://ww.w3.org/TR/wsdl
UDDI 2.0 at http://www.uddi.org

XML SchemaPart 1. Structures at http://www.w3.0rg/TR/xmlschema-1/

XML Schema Part 2: Data Types at http://www.w3.org/ TR/xmlschema-2/

JSSE at http://java.sun.com/products/jsse

Programming WebL ogic Web Services D-1

http://java.sun.com/xml/jaxrpc/index.html
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/wsdl
http://www.uddi.org
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://java.sun.com/products/jsse

D Specifications Supported by WebLogic Web Services

D-2 Programming WebL ogic Web Services

	Copyright
	About This Document
	1. Overview of WebLogic Web Services
	2. Architectural Overview
	3. Creating a WebLogic Web Service: A Simple Example
	4. Designing WebLogic Web Services
	5. Implementing WebLogic Web Services
	6. Assembling WebLogic Web Services Using Ant Tasks
	7. Assembling a WebLogic Web Service Manually
	8. Invoking Web Services
	9. Using JMS Transport to Invoke a WebLogic Web Service
	10. Using Reliable Messaging
	11. Using Non-Built-In Data Types
	12. Creating SOAP Message Handlers to Intercept the SOAP Message
	13. Configuring Security
	14. Using SOAP 1.2
	15. Creating JMS-Implemented WebLogic Web Services
	16. Administering WebLogic Web Services
	17. Publishing and Finding Web Services Using UDDI
	18. Interoperability
	19. Upgrading WebLogic Web Services
	A. WebLogic Web Service Deployment Descriptor Elements
	B. Web Service Ant Tasks and Command-Line Utilities
	C. Customizing WebLogic Web Services
	D. Specifications Supported by WebLogic Web Services

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Web Services
	What Are Web Services?
	Why Use Web Services?
	Web Service Standards
	SOAP
	WSDL 1.1
	JAX-RPC
	UDDI 2.0

	WebLogic Web Service Features
	Examples Of Creating and Invoking a Web Service
	Creating WebLogic Web Services: Main Steps
	Unsupported Features
	Editing XML Files

	2 Architectural Overview
	WebLogic Web Services Architecture
	Backend Component-Only Operation
	Backend Component and SOAP Message Handler Chain Operation
	SOAP Message Handler Chain-Only Operation

	3 Creating a WebLogic Web Service: A Simple Example
	Description of the Example
	Example of Creating a WebLogic Web Service: Main Steps
	Writing the Java Code for the EJB
	Writing the Java Code for the Non-Built-In Data Type
	Creating EJB Deployment Descriptors
	Assembling the EJB
	Creating the build.xml Ant Build File

	4 Designing WebLogic Web Services
	Choosing Between Synchronous or Asynchronous Operations
	Choosing the Backend Components of Your Web Service
	EJB Backend Component
	Java Class Backend Component

	RPC-Oriented or Document-Oriented Web Services?
	Data Types
	Using SOAP Message Handlers to Intercept the SOAP Message
	Stateful WebLogic Web Service

	5 Implementing WebLogic Web Services
	Overview of Implementing a WebLogic Web Service
	Implementing a WebLogic Web Service: Main Steps
	Writing the Java Code for the Components
	Implementing a Web Service By Writing a Stateless Session EJB
	Implementing a Web Service By Writing a Java Class
	Implementing Non-Built-In Data Types
	Implementing a Document-Oriented Web Service
	Generating a Partial Implementation From a WSDL File
	Running the wsdl2Service Ant Task
	Sample build.xml Files for the wsdl2Service Ant Task

	Implementing Multiple Return Values
	Using Holder Classes to Implement Multiple Return Values

	Throwing SOAP Fault Exceptions

	Using Built-In Data Types
	XML Schema-to-Java Mapping for Built-In Data Types
	Java-to-XML Mapping for Built-In Data Types

	6 Assembling WebLogic Web Services Using Ant Tasks
	Overview of Assembling WebLogic Web Services Using Ant Tasks
	Assembling WebLogic Web Services Using the servicegen Ant task
	What the servicegen Ant Task Does
	Assembling WebLogic Web Services Automatically: Main Steps
	Running the servicegen Ant Task

	Assembling WebLogic Web Services Using Other Ant Tasks
	Running the source2wsdd Ant Task
	Sample build.xml Files for the source2wsdd Ant Task

	Running the autotype Ant Task
	Sample build.xml Files for the Autotype Ant Task

	Running the clientgen Ant Task
	Sample build.xml Files for the clientgen Ant Task

	Running the wspackage Ant task
	Sample build.xml Files for the wspackage Ant Task

	The Web Service EAR File Package
	Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks
	Supported XML Non-Built-In Data Types
	Supported Java Non-Built-In Data Types

	Non-Roundtripping of Generated Data Type Components
	Deploying WebLogic Web Services

	7 Assembling a WebLogic Web Service Manually
	Overview of Assembling a WebLogic Web Service Manually
	Assembling a WebLogic Web Service Manually: Main Steps
	Overview of the web-services.xml File
	Creating the web-services.xml File Manually: Main Steps
	Creating the <components> Element
	Creating <operation> Elements
	Specifying the Type of Operation
	Specifying the Parameters and Return Value of the Operation

	Sample web-services.xml Files
	EJB Component Web Service With Built-In Data Types
	EJB Component Web Service With Non-Built-In Data Types
	EJB Component and SOAP Message Handler Chain Web Service
	SOAP Message Handler Chain-Only Web Service

	8 Invoking Web Services
	Overview of Invoking Web Services
	JAX-RPC API
	Examples of Clients That Invoke Web Services

	Creating Java Client Applications to Invoke Web Services: Main Steps
	Getting the Java Client JAR Files
	Running the clientgen Ant Task
	Sample build.xml File for the clientgen Ant Task

	Writing Static and Dynamic Java Client Applications
	Getting Information about a Web Service
	Maintaining the HTTP Session
	Handling Web Services That Crash
	Writing a Simple Static Client
	Writing a Dynamic Client That Uses WSDL
	Writing a Dynamic Client That Does Not Use WSDL
	Writing a Client that Uses Out or In-Out Parameters

	Writing an Asynchronous Client
	Description of the Generated Asynchronous Web Service Client Stub
	Writing the Asynchronous Client Java Code

	Writing a J2ME Client
	Writing a J2ME Client that Uses SSL

	Creating and Using Portable Stubs
	Using the VersionMaker Utility

	The WebLogic Web Services Home Page and WSDL URLs
	Debugging Errors While Invoking Web Services
	WebLogic Web Services System Properties

	9 Using JMS Transport to Invoke a WebLogic Web Service
	Overview of Using JMS Transport
	Specifying JMS Tranport for a WebLogic Web Service: Main Steps
	Updating the web-services.xml File

	Invoking a Web Service Using JMS Transport

	10 Using Reliable Messaging
	Overview of Reliable Messaging
	Terminology and Architecture
	Limitations

	Using Reliable Messaging: Main Steps
	Configuring the Sender WebLogic Server
	Configuring the Receiver WebLogic Server
	Writing the Java Code to Invoke an Operation Reliably
	Updating the web-services.xml File Manually for Reliable Messaging

	11 Using Non-Built-In Data Types
	Overview of Using Non-Built-In Data Types
	Creating Non-Built-In Data Types Manually: Main Steps
	Writing the XML Schema Data Type Representation
	Writing the Java Data Type Representation
	Writing the Serialization Class
	Creating the Data Type Mapping File
	Updating the web-services.xml File With XML Schema Information

	12 Creating SOAP Message Handlers to Intercept the SOAP Message
	Overview of SOAP Message Handlers and Handler Chains
	Creating SOAP Message Handlers: Main Steps
	Designing the SOAP Message Handlers and Handler Chains
	Implementing the Handler Interface
	Implementing the Handler.init() Method
	Implementing the Handler.destroy() Method
	Implementing the Handler.getHeaders() Method
	Implementing the Handler.handleRequest() Method
	Implementing the Handler.handleResponse() Method
	Implementing the Handler.handleFault() Method
	The javax.xml.soap.SOAPMessage Object
	The SOAPPart Object
	The AttachmentPart Object

	Extending the GenericHandler Abstract Class
	Updating the web-services.xml File with SOAP Message Handler Information

	13 Configuring Security
	Overview of Configuring Security
	Configuring WebLogic Web Service Data Security
	Configuring WebLogic Web Service Connection Security

	Configuring Data Security (Digital Signatures and Encryption): Main Steps
	Configuring Standard WebLogic Server Security Features With the Administration Console
	Updating the servicegen build.xml File
	Updating Security Information in the web-services.xml File
	Updating a Java Client to Invoke a Data-Secured Web Service
	Writing the Java Code
	Running the Client Application

	Configuring Connection Security: Main Steps
	Controlling Access to WebLogic Web Services
	Securing the Web Service Using the Adminstration Console
	Securing Web Service URL
	Securing the Stateless Session EJB and Its Methods

	Specifying the HTTPS Protocol
	Configuring SSL for WebLogic Server
	Coding a Client Application to Invoke a Secure Web Service
	Configuring SSL for a Client Application
	Using the WebLogic Server-Provided SSL Implementation
	Using a Third-Party SSL Implementation
	Extending the SSLAdapterFactory Class
	Using a Proxy Server

	14 Using SOAP 1.2
	Overview of Using SOAP 1.2
	Specifying SOAP 1.2 for a WebLogic Web Service: Main Steps
	Updating the web-services.xml File Manually

	Invoking a Web Service Using SOAP 1.2

	15 Creating JMS-Implemented WebLogic Web Services
	Overview of JMS-Implemented WebLogic Web Services
	Designing JMS-Implemented WebLogic Web Services
	Choosing a Queue or Topic
	Retrieving and Processing Messages
	Example of Using JMS Components

	Implementing JMS-Implemented WebLogic Web Services
	Configuring JMS Components for Message-Style Web Services

	Assembling JMS-Implemented WebLogic Web Services Automatically
	Running the servicegen Ant Task

	Assembling JMS-Implemented WebLogic Web Services Manually
	Packaging the JMS Message Consumers and Producers
	Updating the web-services.xml File With Component Information
	Sample web-services.xml File for JMS Component Web Service

	Deploying JMS-Implemented WebLogic Web Services
	Invoking JMS-Implemented WebLogic Web Services
	Invoking an Asynchronous Web Service Operation to Send Data
	Invoking a Synchronous Web Service Operation to Send Data

	16 Administering WebLogic Web Services
	Overview of Administering WebLogic Web Services
	Using the Administration Console to Administer Web Services

	17 Publishing and Finding Web Services Using UDDI
	Overview of Publishing and Finding Web Services
	The UDDI 2.0 Server
	Invoking the UDDI Directory Explorer
	Using the UDDI Client API

	18 Interoperability
	Overview of Interoperability
	Avoid Using Vendor-Specific Extensions
	Stay Current With the Latest Interoperability Tests
	Understand the Data Models of Your Applications
	Understand the Interoperability of Various Data Types
	Results of SOAPBuilders Interoperability Lab Round 3 Tests

	19 Upgrading WebLogic Web Services
	Upgrading a 7.0 WebLogic Web Service to 8.1
	Upgrading a 6.1 WebLogic Web Service to 8.1
	Converting a 6.1 build.xml file to 8.1
	Updating the URL Used to Access the Web Service

	A WebLogic Web Service Deployment Descriptor Elements
	Graphical Representation
	Element Reference
	components
	ejb-link
	encryptionKey
	fault
	handler
	handler-chain
	handler-chains
	init-param
	init-params
	java-class
	jms-receive-queue
	jms-receive-topic
	jms-send-destination
	jndi-name
	name
	operation
	operations
	param
	params
	password
	reliable-delivery
	return-param
	security
	signatureKey
	spec:BinarySecurityTokenSpec
	spec:ElementIdentifier
	spec:EncryptionSpec
	spec:SecuritySpec
	spec:SignatureSpec
	spec:UsernameTokenSpec
	stateless-ejb
	type-mapping
	type-mapping-entry
	types
	user
	web-service
	web-services

	B Web Service Ant Tasks and Command-Line Utilities
	Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities
	List of Web Services Ant Tasks and Command-Line Utilities
	Using the Web Services Ant Tasks
	Setting the Classpath for the WebLogic Ant Tasks
	Using the Web Services Command-Line Utilities

	autotype
	clientgen
	servicegen
	servicegen
	service
	client
	reliability
	handlerChain
	security

	source2wsdd
	wsdl2Service
	wsdlgen
	wspackage

	C Customizing WebLogic Web Services
	Publishing a Static WSDL File
	Creating a Custom WebLogic Web Service Home Page
	Changing the Default Endpoint of a WebLogic Web Service

	D Specifications Supported by WebLogic Web Services

