0?7,

% hea:
BEA WeDbLogic
Server-
Programming WebLogic
XML

Documen t Revised: December 9, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in wholeor in part,
be copied photocopied, reproduced, trandlated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth inthe BEA SystemsLicense
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
Enterprise, BEA WebL ogic Enterprise Platform, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Platform, BEA WebL ogic Portal, BEA WebL ogic Server, BEA
WebL ogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic XML

Part Number Date Software Version

N/A December 9, 2002 BEA WebL ogic Server
Version 8.1

Contents

About This Document

U 0 [1= o TSRS X
E-UOCSWED STt s r e ereens X
How to Print the DOCUMENTcoviiieeiecece ettt e X
Related INfOrMELioN........ccoiieiecicecee e e Xi
[0 1 r=ox A U LSS Xi
Documentation CONVENLIONS.........ceceeieiieiireeitesteeseestee e esreereesbesreesresnesreeeens Xii

XML Overview

WAL IS XML 2.ttt sttt s r et et ne s 1-2
How Do You Describe an XML DOCUMENE?.......coveiuieieieereeteeee e 1-3
WHY USE XML ..ttt sttt st e sne e enensesnennesnens 1-5
What Are XSL ant XSLT 2 ..cciieiecee et sttt s st 1-5
What Ar@ DOM aN0 SAX 2.ttt st sve e sre e e st saaesresanens 1-6
SAX ettt ettt e et beete ettt e tentestentenbene et et eneneeneereetes 1-6
DOM ...ttt sttt et be st be s ae b et et st ene et e e e e teeaeaneerens 1-6
What IS XML SErEaMINGT? ...ccooviririeiieierieie ettt e sre e 1-7
WHEL IS JAXP? ettt sttt sttt s ra e et e ae e sbesaeesaesanesresnnens 1-8
JAXP PaCKAOESc.ecuveuieriiiite sttt st s e 1-8
Common Uses of XML and XSLTooieieiieiieeee ettt 1-9
Using XML and XSLT to Separate Content from Presentation................. 1-9
XML as aMessage Format for Business-to-Business Communication... 1-10
WebLogiC Server XML FEaIUIESooveereeieriee et 1-11
XML DOCUMENE PaISErS....ccccveiiieeeestieeesieeeseeeesneeeessseeessseeeessseeessenesnees 1-12
XML Document TransfOrMErccvveeceeieese e 1-12
Difference in Built-In Transformer Between Versions 8.1 and Previous

Of WEDLOGIC SEIVES ..o 1-13

Programming WebL ogic XML iii

WebLogic XML Streaming APlccoo e 1-13

JAXP Pluggability Layer Implementationcoccooeveneienniceiencnicneens 1-14
WebL ogic Serviet AtriDULES..........ooviereer e 1-14
WebLogic XSLT JSP Tag Libraryccocovevencnecnnnenscis 1-15
XML Registry For Configuring Parsers and Transformers...........cccc...... 1-15
XML Registry for Configuring External Entity Resolution..................... 1-16
Code Examples for Parsing and Transforming XML Documents........... 1-16
Editing XML FIlES.....ciiiiiieieitesreiee ettt et 1-17
Learning ADOUE XMLccoouiiiiiineeneene e 1-17

2. Developing XML Applications with WebLogic Server

Developing XML Applications: Main SEEPS........cccoverririreneneenie e 2-1
Parsing XML DOCUMENEScceiveeerieeeireeeseeseseeseesieseseeseeseeseeseeneesessessessessenes 2-2
Parsing XML Documents Using JAXP in SAX Mode.......ccccoeveerenrienens 2-3
Parsing XML Documents Using JAXPin DOM Mode.........cccccveerueneennne. 2-4
Parsing XML DocumentSin @aServI€t........ooovvveneneneneierese e 2-5

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document ...

2-5
Using the org.w3c.dom.Document Attribute to Parse a Document..... 2-6
Validating and Non-Validating Parsers........ocoeveovrienninninnenese e 2-6
Handling Entity Resolution While Parsing an XML Document................ 2-7
General Information About External Entities...........ccoceenninencnnne 2-7
Using the WebL ogic Server Entity Resolution Features..................... 2-8
Using Parsers Other Than the Built-1n Parser.......ccoceeeveeeeveceenesee v 2-9
Using the WebL 0giC FastParsercooceveeveseeie s eieste e s 2-9
Generating New XML DOCUMENLS.ccovrerereereerieeeneeeesieseeeeseseeseeseeeeneenes 2-10
Generating XML from aDOM Document Tree........cceeeevreerenereeneeneenens 2-10
Using the Apache Serialize Class........cccccveeveieeiesesece e 2-10
Using the JAXP Transformer Class........ccoeveeeerenenennsesee s 2-11
Generating XML DocumentSin @JSPcccoveveieeeneneniese e 2-12
Transforming XML DOCUMENES........cccccveierieiesie et 2-13
Using JAXP to Transform XML Data........ccceeveeeeereeennsieserseneseeneeneenens 2-13
Example of Transforming an XML Document Using JAXP............ 2-14
Converting Y our XML Code From Using the Xalan API to JAXP 1.1

AP et ettt eae e 2-14

Programming WebL ogic XML

Using the JSP Tag to Transform XML Data........cccceveverrrvereresienesenennns 2-16

XSLT JSP TG SYNEBX .ttt s 2-17
XSLT ISP TAg USA0Eeeeveieieeieieeeeie ettt 2-18
Transforming XML DocumentsUsing an XSLT JSP Tag............... 2-20
Example of Using the XSLT JSP Tag in @JSP..........ccoceceeiencnnenn. 2-21
Using Transformers Other Than the Built-In Transformer 2-22

3. XML Application Scoping

Overview of Application SCOPING........coerrreerirerrere et 31
The weblogic-application.Xml File.........cooviiiiiniieneeeeeeee e 32
Configuring a Parser or Transformer for an Enterprise Application................. 3-6
Configuring an External Entity for an Enterprise Application............cccceceeuenee. 3-8
Configuring the External Entity Cache for an Enterprise Application.............. 39
4. Using the WebLogic XML Streaming API

Overview of the WebLogic XML Streaming AP ..., 4-1
Javadocs for the WebLogic XML Streaming APl ..o 4-3
Parsing an XML Document: TYpiCal SLEPS.......ccoevrererieirieirieireesie s 4-3
Example of Parsing an XML DOCUMENLccceruerieieererieeineeerieserie e 4-4
Getting an XML INpUL SEreamccoovirinineiesee e 4-7
Getting aBuffered XML INput Streamocoveeveeneinnencenenienens 4-8
Filtering the XML Stream.......cccccooeiieieiecee e 4-8

Creating a Custom Filterooov e 4-9

Iterating OVer the Stream ... 4-10
Determining the Specific XMLEvVENt TYPe.....cccvvvveveevesieeeeeeeee e, 4-11
Getting the Attributes of an Element............ccccooeeie v, 4-15
POSItioNiNG the Stream ... 4-16
GEttiNG @ SUDSLIEAMccveeieiiceeectee e 4-17
Marking and Resetting a Buffered XML Input Stream..........c.cccceveenenee. 4-18
Closing the INPUL SEFEAIM........c.cvuiirire e 4-19
Generating aNew XML Document: Typical StEPSccvvvevvereeveeieeie e 4-19
Example of Generating an XML Documentcccccveeeveeeeneseesennnn, 4-20
Creating an XML OULPUL SErEaMcervreeriireeereee s 4-22
Adding Elements to the Output Stream...........cccveeveceeneneese e 4-23
Adding Attributes to an Element on the Output Streamcccccceee. 4-24

Programming WebL ogic XML \

Vi

5.

6.

7.

Adding an Input Stream to an OUtpUt SErEaMcceevvveerriecere e 4-25

Printing an OULPUL SErEaMcoiiiiiirieiere et e 4-26
Closing the OULPUL SEFEAMc.ooeirirerenere e 4-26
Using the WebLogic XPath API
Overview of the WebLogic XPath APl ... 51
Using the DOMXPath Class........cccuirinrininenrie et 5-2
Example of Using the DOMXPath Class.........ccceveiveireenneninenenesieens 5-2
Main Steps When Using the DOMXPath Class.........cooeieeeineeceneneiens 5-4
Using the StreamXPath Class..........ccocoovviiininneneee e 5-6
Example of Using the StreamXPath Class..........ccoccovviveiniinncneneeene 5-6
Main Steps When Using the StreamXPath Class..........ccocvveiivenicnene. 5-9

XML Programming Best Practices

When to Usethe DOM, SAX, and Streaming APIS.......cccccoovvieriererenesieenesenens 6-1
Increasing Performance of XML Validation...........cccocvininiinnenencceeieenen 6-2
When to Use XML SChemas OF DTDS........ccvierinninnerieeereeeeeseeeeeenens 6-3
Configuring External Entity Resolution for Maximum Performance................ 6-4
USING SAX TNPULSOUICES......cueeuerterierieetenieseesses e seeeeese e sre e seesresbeseeseeseeneenes 6-4
Improving Performance of Transformations...........ccccceeennennienineneneeene 6-5

XML Programming Techniques

Transmitting XML Data Between A Java Client and WebL ogic Server 7-1
Handling XML Documentsin a IMS AppliCationcccceereereneneneneeneeene, 7-3
Accessing External Entities That Do Not Have an HTTP Interface.................. 7-4
Retrieving XML Document Header Informationcccceveevviencenvnennnennnnne 7-5

Administering WebLogic Server XML

Overview of Administering WebLogic Server XMLccoooveveveeve v 8-1
XML AdMiNiStration TasKS......ccccveeeeererererereereeneeeeeseseeseeseeseeseeseeneenenns 8-2
How the XML RegiStry WOIKScoeeveiieeseeseceese et 8-3
Parser Selection Within the XML Registry.....ccccoovvceeveveececeeeeeeeeen, 8-3

XML Parser and Transformer Configuration Tasks..........cccvevrernernerneenennes 8-4
Configuring a Parser or Transformer Other Than the Built-In................... 84
Configuring a Parser for a Particular Document Type........ccccecveeevivineenen. 8-5

External Entity Configuration TasksS.........cocevevrereeneienieieneeree e 8-6

Programming WebL ogic XML

Configuring External Entity RESOIULION.........ccccevierereereeeeere e 8-6

Configuring the External Entity Cache..........cccoeveieirieeinine e 8-7
Monitoring the External Entity Cacheccccoeveinennirnieceeee e 8-8
9. XML Reference

XML APIS ettt sttt 9-1
COdE EXBMPIES ... e 9-2
Related WebL ogic Server DOCUMENEELiON.........coveerieiieeirieereeesee e 9-2
TutorialS and ONliNE COUISES........c.crveirieireeeeieeeree sttt 9-2
Other XML Specifications and INfOrmMationccceceeererrinenensienseseenenne 9-3

Programming WebL ogic XML vii

viii Programming WebL ogic XML

About This Document

This document explains how to use the BEA WebL ogic Server™ XML software. It
defines concepts associated with using the XML software and describes the
development process for XML applications. In addition, the document includes
descriptions of the application programming interfaces (APIs), administrative tasks,
and XML tools.

The document is organized as follows:

m Chapter 1, “XML Overview,” provides a basic description of the XML software
and its components.

m Chapter 2, “Developing XML Applications with WebL ogic Server,” describes
how to develop XML applications using WebL ogic Server and XML tools.

m Chapter 3, “XML Application Scoping,” describes how to configure parsers,
transformers, and external entities for a particular Enterprise application.

m Chapter 4, “Using the WebLogic XML Streaming API,” describesin detail how
to use the WebL ogic XML Streaming API in your Java applications to parse an
XML document.

m Chapter 5, “Using the WebL ogic XPath API,” describes how to use the
WebL ogic XPath API to perform XPath matching against an XML document
represented as a DOM, XMLNode, Or an XMLI nput St r eam

m Chapter 6, “XML Programming Best Practices,” describes some best practicesto
follow when creating Java applications that handle XML documents.

m Chapter 7, “XML Programming Techniques,” describes specific programming
techniques for tasks such as using message-driven beans and JM S queues with
XML documents, and so on.

Programming WebL ogic XML iX

m Chapter 8, “Administering WebL ogic Server XML,” describes the
Administration Console XML Registry and how to perform XML configuration
tasks.

m Chapter 9, “XML Reference,” provides pointers to specifications and application
programming interfaces supported by the XML software.

Audience

This document is written for system administrators and programmers who design,
develop, configure, and manage XML applications. It is assumed that readers know
Web technologies, XML, XSLT, the Java programming |anguage, and the Servlet and
JSP APIs of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File —Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or aportion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

X Programming WebL ogic XML

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

For related information about XML, see “Learning About XML" on page 1-17 and
Chapter 9, “XML Reference.”

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, email address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Programming WebL ogic XML Xi

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Usage
Ctrl+Tab Keysyou press simultaneously.
italics Emphasis and book titles.
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cati ons
.java
config. xm
fl oat
nonospace Variablesin code.
Itt alt e Example:
ex String Customner Nane;
UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.Milticast Test -n name -a address
[-p portnumber] [-t timeout] [-s send]

Programming WebL ogic XML

Convention Usage

[Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [Ilist| depl oy| undepl oy| updat €]
password {application} {source}

Indicates one of the following in a command line:

= Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic XML Xiii

Xiv Programming WebL ogic XML

CHAPTER

1

XML Overview

The following sections provide an overview of XML technology and the WebL ogic
Server XML subsystem:

“What IsXML?" on page 1-2

“How Do You Describe an XML Document?’ on page 1-3
“Why Use XML?" on page 1-5

“What Are XSL and XSLT?’ on page 1-5

“What Are DOM and SAX?" on page 1-6

“What Is XML Streaming?’ on page 1-7

“What Is JAXP?’ on page 1-8

“Common Uses of XML and XSLT” on page 1-9
“WebLogic Server XML Features’ on page 1-11

“Editing XML Files’” on page 1-17

“Learning About XML” on page 1-17

Programming WebL ogic XML

1 xmLoverview

What Is XML?

Extensible Markup Language (XML) is a markup language used to describe the
content and structure of datain adocument. It isasimplified version of Standard
Generalized Markup Language (SGML). XML isanindustry standard for delivering
content on the Internet. Because it provides a facility to define new tags, XML isaso
extensible.

LikeHTML, XML usestagsto describe content. However, rather than focusing on the
presentation of content, the tagsin XML describe the meaning and hierarchical
structure of data. This functionality allows for the sophisticated data types that are
required for efficient data interchange between different programs and systems.
Further, because XML enables separation of content and presentation, the content, or
data, is portable across heterogeneous systems.

The XML syntax uses matching start and end tags (such as <name> and </ nane>) to
mark up information. Information delimited by tagsis called an element. Every XML
document has asingleroot element, which isthe top-level element that containsall the
other elements. Elements that are contained by other elements are often referred to as
sub-elements. An element can optionally have attributes, structured as name-value
pairs, that are part of the element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xm version="1.0"7?>

<addr ess_book>
<person gender="f">
<name>Jane Doe</ nane>
<addr ess>
<street>123 Main St.</street>
<city>San Francisco</city>
<st at e>CA</ st at e>
<zi p>94117</ zi p>
</ addr ess>
<phone area_code=415>555-1212</ phone>
</ person>
<person gender="ni>
<nanme>John Sm t h</ name>
<phone area_code=510>555-1234</ phone>
<emai | > ohnsm t h@onmewher e. conx/ enwi | >
</ person>
</ addr ess_book>

Programming WebL ogic XML

How Do You Describe an XML Document?

The root element of the XML fileisaddr ess_book. The address book currently
contains two entriesin the form of per son elements. Jane Doe and John Smith. Jane
Doe's entry includes her address and phone number; John Smith’sincludes his phone
and email address. Note that the structure of the XML document defines the phone
element as storing the area code using the ar ea_code attribute rather than a
sub-element in the body of the element. Also notethat not all sub-elementsarerequired
for the per son element.

How Do You Describe an XML Document?

There are two ways to describe an XML document: DTDs and XML Schemas.

Document Type Definitions (DTDs) define the basic requirements for the structure of
aparticular XML document. A DTD describes the elements and attributes that are
valid in an XML document, and the contexts in which they are valid. In other words,
aDTD specifies which tags are allowed within certain other tags, and which tags and
attributes are optional .

The following example shows a DTD that describes the preceding address book
sample XML document:

<! DOCTYPE addr ess_book [

<! ELEMENT person (nanme, address?, phone?, email ?)>
<! ELEMENT nane (#PCDATA) >

<I ELEMENT address (street, city, state, zip)>

<! ELEMENT phone (#PCDATA) >

<! ELEMENT emai | (#PCDATA) >

<! ELEMENT street (#PCDATA) >

<l ELEMENT city (#PCDATA) >

<! ELEMENT st ate (#PCDATA) >

<l ELEMENT zi p (#PCDATA) >

<! ATTLI ST person gender CDATA #REQUI RED>
<! ATTLI ST phone area_code CDATA #REQUI RED>
1>

Schemas are arecent development in XML specifications and are intended to
supersede DTDs. They describe XML documentswith moreflexibility and detail than
DTDs do, and are XML documents themselves, which DTDs are not. The schema

Programming WebL ogic XML 1-3

1 xmLoverview

1-4

specification, currently under development, is a product of the World Wide Web
Consortium (W3C) and isintended to address many limitations of DTDs. For detailed
information on XML schemas, see http://www.w3.org/TR/xmlschema-0/.

The following example shows a schema that describes the preceding address book
sample XML document:
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schena" >
<xsd: el enent nane="addr ess_book" type="bookType"/>

<xsd: conpl exType nanme="bookType" >
<xsd: el enent nane=nane="person" t ype="personType"/ >
</ xsd: conpl exType>

<xsd: conpl exType nane="personType">

<xsd: el ement nane="nane" type="xsd:string"/>
<xsd: el enent nane="address" type="addressType"/>
<xsd: el enent nanme="phone" t ype="phoneType"/ >

<xsd: el ement nane="emai | " type="xsd:string"/>
<xsd:attribute nane="gender" type="xsd: string"/>

</ xsd: conpl exType>
<xsd: conpl exType nane="addressType" >

<xsd: el ement nane="street" type="xsd:string"/>

<xsd: el ement nane="city" type="xsd: string"/>
<xsd: el ement nane="st at e" type="xsd: string"/>
<xsd: el enent nane="zi p" type="xsd: string"/>

</ xsd: conpl exType>

<xsd: si npl eType nane="phoneType" >

<xsd:restriction base="xsd:string"/>

<xsd: attribute name="area_code" type="xsd:string"/>
</ xsd: si npl eType>

</ xsd: schema>

An XML document can include aDTD or Schema as part of the document itself,
reference an external DTD or Schemausing the DOCTY PE declaration, or not include
or referenceaDTD or Schemaat all. Thefollowing excerpt from an XML document
shows how to reference an external DTD called addr ess. dt d:

<?xm version=1.0?>
<! DOCTYPE address_book SYSTEM "address. dtd">
<addr ess_book>

XML documents only need to be accompanied by aDTD or Schemaif they need to be
validated by a parser or if they contain complex types. An XML document is
considered valid if 1) it has an associated DTD or Schema, and 2) it complieswith the

Programming WebL ogic XML

http://www.w3.org/TR/xmlschema-0/

Why Use XML?

constraints expressed in the associated DTD or Schema. If, however, an XML
document only needs to be well-formed, then the document does not have to be
accompanied by aDTD or Schema. A document is considered well-formed if it
followsall the rulesin the W3C Recommendation for XML 1.0. For thefull XML 1.0
specification, see http://www.w3.org/XML/.

Why Use XML?

Anindustry typically uses data exchange methods that are meaningful and specific to
that industry. With the advent of e-commerce, businesses conduct an increasing
number of relationshipswith avariety of industries and, therefore, must devel op expert
knowledge of the various protocols used by those industries for electronic
communication.

The extensibility of XML makesit avery effectivetool for standardizing the format of
data interchange among various industries. For example, when message brokers and
workflow engines must coordinate transactions among multiple industries or
departments within an enterprise, they can use XML to combine data from disparate
sources into aformat that is understandable by al parties.

What Are XSL and XSLT?

The Extensible Stylesheet Language (XSL) isaW3C standard for describing
presentation rules that apply to XML documents. X SL includes both atransformation
language, (XSLT), and aformatting language. These two languages function
independently of each other. XSLT isan XM L-based language and W3C specification
that describes how to transform an XML document into another XML document, or
into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document.
The template rules contained in an XSLT document include patterns that specify the
XML treeto which therule applies. The XSLT transformer scansthe XML document
for patterns that match the rule, and then it applies the template to the appropriate
section of the original XML document.

Programming WebL ogic XML 1-5

http://www.w3.org/XML/

1 xmLoverview

What Are DOM and SAX?

SAX

DOM

1-6

DOM and SAX are two standard Java application programming interfaces (APIs) for
parsing XML data. Both are supported by the WebL ogic Server built-in parser. The
two APIs differ in their approach to parsing, with each APl having its strengths and
weaknesses.

SAX standsfor the Smple API for XML. It isaplatform-independent language neutral
standard interface for event-based XML parsing. SAX defines eventsthat can occur as
aparser isreading through an XML document, such as the start or the end of an
element. Programmers provide handlers to deal with different events as the document
is parsed.

Programmers that use the SAX API to parse XML documents have full control over
what happens when these events occur and can, as aresult, customize the parsing
process extensively. For example, aprogrammer might decideto stop parsingan XML
document as soon as the parser encounters an error that indicates that the document is
invalid, rather than waiting until the entire document is parsed, thus improving
performance.

The WebL ogic Server built-in parser (Apache Xerces) supports SAX Version 2.0.
Programmers who have created programs that use Version 1.0 of SAX to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences between the two
versions, refer to http://www.saxproject.org/.

DOM stands for the Document Object Model. It is platform- and language-neutral
interface that allows programs and scripts to access and update the content, structure,
and style of XML documents dynamically. DOM reads an XML document into
memory and represents it as a tree; each node of the tree represents a particular piece
of datafrom the original XML document. Because the tree structure is a standard

Programming WebL ogic XML

http://www.saxproject.org/

What Is XML Streaming?

programming mechanism for representing data, traversing and manipulating the tree
using Javaisrelatively easy, fast, and efficient. The main drawback, however, is that
the entire XML document has to be read into memory for DOM to create the tree,
which might decrease the performance of an application as the XML documents get
larger.

The WebL ogic Server built-in parser (Apache Xerces) supports DOM Level 2.0 Core.
Programmers who have created programs that use Level 1.0 of DOM to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences, refer to
http://mwww.w3.0rg/DOM/DOMTR.

What Is XML Streaming?

In addition to SAX and DOM, you can also parse an XML document using the XML
streaming API.

The WebLogic XML Streaming APl provides an easy and intuitive way to parse and
generate XML documents. It isbased upon the SAX API, but enables a procedural,
stream-based handling of XML documents rather than requiring you to write SAX
event handlers, which can get complicated when you work with complex XML
documents. In other words, the streaming APl gives you more control over parsing
than the SAX API.

The XML Streaming API uses the WebL ogic FastParser when parsing documents.

For detailed information on using the WebL ogic XML Streaming API, see Chapter 4,
“Using the WebL ogic XML Streaming API.”

Note: Unlike DOM and SAX, XML Streaming is not yet part of the Java API for
XML Processing (JAXP).

Programming WebL ogic XML 1-7

http://www.w3.org/DOM/DOMTR

1 xmLoverview

What Is JAXP?

The previous section discussestwo APIs, SAX and DOM, that programmers can use
toparse XML data. The Java API for XML Processing (JAXP) providesameansto get
tothese parsers. JAXP aso definesapluggability layer that allows programmersto use
any compliant parser or transformer.

WebL ogic Server implements JAXP to facilitate XML application development and
the work required to move XML applications built on WebL ogic Server to other Web
application servers. JAXP was developed by Sun Microsystems to make XML
applications portable; it provides basic support for parsing and transforming XML
documentsthrough astandardized set of Javaplatform APIs. JAXP 1.1, includedinthe
WebL ogic Server distribution, is configured to use the built-in parser. Therefore, by
default, XML applications built using WebL ogic Server use JAXP.

TheWebL ogic Server distribution containsthe interfacesand classes needed for JAXP
1.1. JAXP 1.1 contains explicit support for SAX Version 2 and DOM Level 2. The
Javadoc for JAXPisincluded with the WebL ogic Server online reference
documentation.

JAXP Packages

1-8

JAXP contains the following two packages.
m javax.xnl.parsers

B javax.xm .transform

Thej avax. xnl . par ser s package contains the classesto parse XML datain SAX
Version 2.0 and DOM Level 2.0 mode. To parse an XML document in SAX mode, a
programmer first instantiates a new SaxPar ser Fact or y object with the

new nst ance() method. This method looks up the specific implementation of the
parser to load based on awell-defined list of locations. The programmer then obtains
aSaxPar ser instance from the SaxPar ser Fact ory and executesits par se()
method, passing it the XML document to be parsed. Parsing an XML document in
DOM modeis similar, except that the programmer uses the Docunent Bui | der and
Docunent Bui | der Fact or y classesinstead.

Programming WebL ogic XML

Common Uses of XML and XSLT

For detailed information on using JAXP to parse XML documents, see “Parsing XML
Documents’ on page 2-2.

Thej avax. xni . t r ansf or mpackage contains classes to transform XML data, such
as an XML document, aDOM tree, or SAX events, into a different format. The
transformer classes work similarly to the parser classes. To transform an XML
document, a programmer first instantiates a Tr ansf or mer Fact or y object with the
new nst ance() method. This method looks up the specific implementation of the
XSLT transformer to load based on awell-defined list of locations. The programmer
then instantiates anew Tr ansf or mer object based on aspecific XSLT style sheet and
executesitst r ansf or n{) method, passing it the XML object to transform. The XML
object might be an XML file, aDOM tree, and so on.

For detailed information on using JAX P to transform XML objects, see “Using JAXP
to Transform XML Data” on page 2-13.

Common Uses of XML and XSLT

How you use XML and XSLT depends on your particular business needs.

Using XML and XSLT to Separate Content from
Presentation

XML and XSLT are often used in applications that support multiple client types. For
exampl e, suppose you have aWeb-based application that supports both browser-based
clients and Wireless Application Protocol (WAP) clients. These clients understand
different markup languages, HTML and Wireless Markup Language (WML),
respectively, but your application must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML
document that represents the data it is sending to the client. Then the application can
transform the XML document that representsthe datainto HTML or WML, depending
on the client’ s browser type. Y our application can determine the client browser type
by examining the User - Agent request header of an HTTP request. Once the
application knows the client browser type, it usesthe appropriate XSLT style sheet to

Programming WebL ogic XML 1-9

1 xmLoverview

transform the document into the correct markup language. See the SnoopServlet
example included in the exanpl es/ ser vl et s directory of your WebL ogic Server
distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages
in respective client types helps concentrate the effort required to support multiple
client typesinto the development of the appropriate XSLT style sheets. Additionally,
it allows your application to adapt to other clients types easily, if necessary.

For additional information about XSL T, see“ Other XML Specifications and
Information” on page 9-3.

XML as a Message Format for Business-to-Business
Communication

1-10

In a business-to-business (B2B) environment, Company A and Company B want to
exchange information about e-commerce transactions in which both are involved.
Company A isamajor e-commerce site. Company B isasmall affiliate that sells
Company A’s products to a niche group of customers. When Company B sends
customersto Company A, Company B is compensated in two ways: it receives, from
Company A, both money and information about other customers that make the same
sort of purchases asthose made by the customersreferred by Company B. To exchange
information, Company A and Company B must agree on adataformat for information
that is machine readable and that operates with systems from both companies easily.
XML isthelogical dataformat to use in thisscenario, but selecting thisformat isonly
thefirst step. The companies must then agree on the format of the XML messages to
be exchanged. Because Company A has a one-to-many relationship with its affiliates,
Company A must define the format of the XML messages that will be exchanged.

To define the format of XML messages, or XML documents, Company A createstwo
document type definitions (DTDs): one that describes the information that A will
provide about customers and onethat describestheinformation that A wantstoreceive
about a newly affiliated company. Company B must also create two DTDs: oneto
process the XML documents received from Company A and one to prepare an XML
document in aformat that can be processed by Company A.

Programming WebL ogic XML

WebLogic Server XML Features

WebLogic Server XML Features

WebL ogic Server consolidates XML technol ogies applicable to WebL ogic Server and
XML applications based on WebL ogic Server. TheWebL ogic Server XML subsystem
allows customers to use standard parsers, the WebL ogic FastParser, XSLT
transformers, and DTDs and XML Schemas to process and convert XML files.

The WebL ogic Server XML subsystem includes the following features:
m XML Document Parsers

m XML Document Transformer

m WebLogic XML Streaming API

m JAXP Pluggability Layer Implementation

m WebLogic Servlet Attributes

m WebLogic XSLT JSP Tag Library

m XML Registry For Configuring Parsers and Transformers

m XML Registry for Configuring External Entity Resolution

m Code Examples for Parsing and Transforming XML Documents

Programming WebL ogic XML 1-11

1 xmLoverview

XML Document Parsers

WebL ogic Server includes the following two parsers:

Table 1-1 Parsersincluded With WebL ogic Server

Par ser

Description

Built-in

A validating parser based on the Apache Xerces parser version 2.1.0.
Y ou can use the built-in parser in either Simple API For XML (SAX)
mode or Document Object Model (DOM) mode using the JAXP API.

The package name of the built-in WebL ogic Server parser is

webl ogi c. apache. xer ces. *. For detailed information on this
parsers, seeits Javadoc.

If you have not used the XML Registry to configure a different built-in
parser for WebL ogic Server, and you use JAXP in your application to
obtain a parser, this built-in parser is the one get.

WebLogic
FastParser

A high-performance non-validating XML parser specifically designed
for processing small to medium size documents, such as SOAP and
WSDL files associated with WebL ogic Web services. The FastParser
supports SAX-style parsing only. Configure WebL ogic Server to use
FastParser if your application mostly handles small to medium size (up
to 10,000 elements) XML documents.

For detailed information on using WebL ogic FastParser, refer to “ Using
the WebL ogic FastParser” on page 2-9.

Y ou can aso use any other XML parser of your choice by using the Administration
Consoleto configureit in the XML Registry. Y ou can configure a single instance of

WebL ogic Server to use one parser for a particular application and use another parser
for a different application.

XML Document Transformer

1-12

The built-in XSLT transformer included in WebL ogic Server isthe same one that is

included in the JDK 1.4.1 that is shipped with WebL ogic Server: Version 2.2.D11 of the

Apache Xalan XSL transformer.

Programming WebL ogic XML

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

WebLogic Server XML Features

If you have not used the XML Registry to configure a different built-in transformer for
WebL ogic Server, and you use JAXP in your application to obtain a transformer, this built-in
transformer isthe one get. The package name of thistransformer isor g. apache. xal an. *.

Y ou can usethisbuilt-in XSLT transformer or other XSLT transformersin your XML
application to transform XML documentsinto other XML documents, HTML, and so
on. For more information about transforming XML documents, see “Using JAXP to
Transform XML Data’ on page 2-13.

Difference in Built-In Transformer Between Versions 8.1 and Previous of
WebLogic Server

The built-in transformer in Versions 7.0 and previous of WebL ogic Server was one
that was based on Apache’ s Xalan X SLT transformer and whose package name started
with webl ogi c. apache. xal an. *. InVersion 8.1 of WebL ogic Server, this
transformer has been deprecated. Instead, the built-in transformer isthe same one that
isshipped in JDK 1.4.1: Apache’'s Xalan 2.2.D11.

For backward compatibility, the webl ogi c. apache. xal an. * transformer is still

availablein Version 8.1 of WebL ogic Server, athough BEA highly recommends you
do not use it since it will not be available in future versions. If, however, you need to
temporarily continue using thistransformer, you must use the Administration Console
to configure atransformer other than the built-in for your WebL ogic Server instance
by updating, or creating anew, XML Registry. Usethefollowing transformer factory:

webl ogi c. apache. xal an. processor. Transf or mer Fact or yl npl

For detailed information on using the Administration Console to configure the XML
Registry for WebLogic Server, see Configuring a Parser or Transformer Other Than
the Built-In at http://e-docs.bea.com/wls/docs81b/ConsoleHel p/xml.html#xml002.

WebLogic XML Streaming API

The WebLogic XML Streaming API provides an easy and intuitive way to parse and
generate XML documents. It isbased upon the SAX API, but provides a more
procedural, stream-based handling of XML documents rather than having to write

Programming WebL ogic XML 1-13

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002

1 xmLoverview

SAX event handlers, which can get complicated when dealing with complex XML
documents. In other words, the streaming API gives you more control over parsing
than the SAX API.

For detailed information on using the WebL ogic XML Streaming API, see Chapter 4,
“Using the WebLogic XML Streaming API.”

JAXP Pluggability Layer Implementation

Java APl for XML Processing (JAXP) 1.1 isaJava-standard, parser-independent API
for XML. For more information on JAXP, see “What |s JAXP?’ on page 1-8.

Note: WebL ogic Server uses the XML Registry, accessed through the
Administration Console, to plug in parsers and transformers. Thisisdifferent
from the JAXP 1.1 specification which specifies the use of system properties
to plug in parsers and transformers.

WebLogic Servlet Attributes

WebL ogic Server supports the following special Servlet attributes:
m org.xn . sax. Handl er Base
m org. xm . sax. hel pers. Def aul t Handl er

® org.w3c. dom Docunent

Callingtheset Attri but e (for SAX parsing) and get At t ri but e (for DOM parsing)
methods on a Ser vI et Request object with the preceding attributes will parse any
given XML document.

The following code sections show an example of how to use these methods:
request.setAttribute("org. xnm .sax. hel pers. Def aul t Handl er", new Def Handl er());

org. w3c. dom Docunent = (Docunent)request.getAttribute("org.w3c.dom Docunment");

Note: Theset Attribute andget Attri but e methodsare provided for
convenience only; they are not required to parse XML from a Servlet.

1-14 Programming WebL ogic XML

WebLogic Server XML Features

WebLogic XSLT JSP Tag Library

The JSP tag library provides a simple tag that enables access to the built-in XSLT
transformer from within a Java Server Page (JSP) running on WebL ogic Server.
Currently, thistag supportsthe built-in XSLT transformer only; you cannot use the tag
to transform an XML document from within a JSP using a different transformer.

TheJSPtag library isincludedinxn x-t ags. j ar, whichisinstalled when you install
your WebL ogic Server distribution.

Note: The JSPtag library is provided for convenience only; it is not required to
access XSLT transformers from within a JSP.

XML Registry For Configuring Parsers and Transformers

The XML Registry simplifies administration and configuration tasks by separating
these tasks from the XML application. Use the Administration Console (a graphical
user interface, or GUI, for WebL ogic Server administration) to configure the parsers
and transformers for an instance of WebL ogic Server.

Note: Each WebLogic Server domain can include any number of registries; each
WebL ogic Server instance in a domain can be assigned zero or one registry.

By using the XML Registry, you:
m Can specify the parser or transformer at deployment time, not only at build time.

m Do not need to include any parser- or transformer- dependent code in your
applications.

m Can support multiple parsers and transformersin a single server more
conveniently.

Y ou can use the XML Registry to perform the following tasks:

m Configure an aternative XML parser instead of the built-in parser shipped in
this version of WebL ogic Server.

m Configure an alternative XSLT transformer instead of the built-in transformer
shipped in this version of WebL ogic Server.

Programming WebL ogic XML 1-15

XML Overview

m Configurean XML parser to process a particular application.

All the preceding capabilities are available if your application uses the standard Java
API for XML Processing (JAXP), which isincluded in this version of WebL ogic
Server. These capabilities are for use on the server side only.

XML Registry for Configuring External Entity Resolution

WebLogic XML supports external entity resolution through the XML Registry.
External entities are chunks of text that are not literally part of an XML document, but
arereferenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. An example of an
external entity isaDTD filethat is used to validate an XML document. To use this
feature, open the Administration Console and use the XML Registry to enter the
Publ i ¢ I Dor Syst eml D associated with the external entity.

In addition to storing external entitieslocally, you can configure WebL ogic Server to
retrieve and cache external entities from external repositories that support an HTTP
interface, such asa URL. Y ou can configure WebL ogic Server to cache the external
entity in memory or on the disk and specify how long the entity should remain cached
before it is considered out of date.

For moreinformation about using the XML Registry for external entity resolution, see
“External Entity Configuration Tasks” on page 8-6.

Code Examples for Parsing and Transforming XML
Documents

1-16

WebL ogic Server includes examples of parsing and transforming XML documents.

The examples are located in the W._HOVE\ sanpl es\ ser ver\ src\ exanpl es\ xni
directory, where W._HOVE refers to the top-level WebL ogic Platform directory.

For detailed instructions on how to build and run the examples, invoke the Web page
WL_HOVE\ sanpl es\ server\ src\ exanpl es\ xm \ package- summary. ht nl inyour
browser.

Programming WebL ogic XML

Editing XML Files

Editing XML Files

Toedit XML files, usethe BEA XML Editor, an entirely Java-based XML stand-alone
editor. It isasimple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
Thus you can choose how to edit the XML document:

m The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
XML tree structure. The allowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

m Theraw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, seeits online help.

Y ou can download BEA XML Editor from dev2dev Online at
http://dev2dev.bea.com/index.jsp.

Learning About XML

Tolearn about XML, seethefollowing online courses and tutorials. Chapter 9, “XML
Reference,” provides links to more information.

m A Technical Introduction to XML at
“http:/mwww.xml.com/pub/a/98/10/guide0.html”

m XML Authoring Tutorial at “http://www.xml.com/pub/r/32.”
m Working with XML and Java at “ http://java.sun.com/xml/tutoria_intro.html.”

m Tutorialsfor using the Java 2 platform and XML technology at
“http://devel operlife.com/.”

Programming WebL ogic XML 1-17

http://dev2dev.bea.com/index.jsp
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/

1 xmLoverview

m XML, Java, and the Future of the Web at
“http://www.xml.com/pub/alw3j/s3.bosak.html.”

m Chapter 14 of The XML Bible: XSL Transformations at
“http://metal ab.unc.edu/xml/books/bible/updates/14.html.”

m XSL Tutoria by Miloslav Nic at
http://zvon.vscht.czZHTM L only/X SLTutorial/Books/Book1/index.html.

m SAX 2.0: The Simple API for XML at “ http://www.saxproject.org/”
m Document Object Model (DOM) at “ http://www.w3.org/DOM/”

1-18 Programming WebL ogic XML

http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.saxproject.org/
http://www.w3.org/DOM/

CHAPTER

2 Developing XML

Applications with
WebLogic Server

The following sections describe how to use the Java programming language and
WebL ogic Server to develop XML applications. It is assumed that you know how to
use Java Servlets and Java Server Pages (JSPs) to write Java applications. For
information about how to write servlet and JSP applications, see Programming
WebLogicHTTP Serviletsat http://e-docs.bea.com/wls/docs81b/serviet/index.html and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs81b/jsp/index.html.

e “Developing XML Applications: Main Steps’ on page 2-1
e “Parsing XML Documents’ on page 2-2

e “Generating New XML Documents’ on page 2-10

e “Transforming XML Documents’ on page 2-13

Developing XML Applications: Main Steps

Programmers using the WebL ogic Server XML subsystem typically perform some or
all of the following programming tasks when developing XML applications:

1. Parsean XML document.

Programming WebL ogic XML 2-1

http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html

2 Developing XML Applications with WebLogic Server

The XML document can originate from a number of sources. For example, a
programmer might develop a servlet to receive an XML document from a client,
write an EJB to receive an XML document from a Servlet or another EJB, and
so on. In each instance, the XML document may have to be parsed so that its
data can be manipulated.

For more information on this task, refer to “Parsing XML Documents’ on page
2-2.

. Generate anew XML document.

After aservlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a
new XML document to send back to the client or to pass on to another EJB.

For more information on this task, refer to “Generating New XML Documents’
on page 2-10.

. Transform XML datainto another format.

After parsing an XML document or generating a new one, the Servlet or EJB
may need to transform it into another format, such asHTML, WML, or plain
text.

For more information on this task, refer to “Using JAXP to Transform XML
Data’ on page 2-13.

Parsing XML Documents

2-2

This section describes how to parse XML documents using JAXP in both DOM and
SAX mode and how to parse XML documents from a servlet.

Note: For detailed instructions on using the WebL ogic XML Streaming AP to parse

XML documents, see Chapter 4, “Using the WebL ogic XML Streaming API.”

As mentioned previoudly, you use the Administration Console XML Registry to
configure the following:

e Per-doctype parsers, which supersede the built-in parser for the specified
doctype

Programming WebL ogic XML

Parsing XML Documents

e External entity resolution, or the process that an XML parser goes through
when requested to find an external file in the course of parsing an XML
document

For detailed information on how to use the Administration Console for these tasks,
refer to Chapter 8, “Administering WebLogic Server XML.”

For a complete example of parsing an XML document in SAX mode, seethe
W._HOME\ sanpl es\ server\ src\ exanpl es\ xm \ sax directory, where W._HOVE
refersto the top-level WebL ogic Platform directory.

Parsing XML Documents Using JAXP in SAX Mode

The following code example shows how to configure a SAX parser factory to create a
validating parser. The example a so shows how to register the MyHandl er classwith
the parser. The MyHandl er class can override any method of the Def aul t Handl er
class to provide custom behavior for SAX parsing events or errors.

import javax.xml . parsers. SAXPar ser;
import javax.xm . parsers. SAXPar ser Fact ory;

i\/.yi—landl er handl er = new MyHandl er();
/1 MyHandl er extends org.xm .sax. hel pers. Def aul t Handl er.

/1 Cbtain an instance of SAXParserFactory.

SAXPar ser Fact ory spf = SAXParser Factory. new nstance();
/1 Specify a validating parser.
spf.setValidating(true); // Requires |oading the DTD.
//Cbtain an instance of a SAX parser fromthe factory.
SAXPar ser sp = spf.newSAXParser();

/| Parse the docummt .
sp.parse("http://server/file.xm", handler);

Note: If you want to use a parser other than the built-in parser, you must use the
WebL ogic Server Administration Console to specify the parser in the XML
Registry; otherwise the SaxPar ser Fact ory. new nst ance method returns
the built-in parser. For instructions about configuring WebL ogic Server to use
aparser other than the built-in parser, see “ Configuring a Parser or
Transformer Other Than the Built-In" on page 8-4.

Programming WebL ogic XML 2-3

2 Developing XML Applications with WebLogic Server

For a complete example of parsing an XML document in SAX mode, seethe
W._HOME\ sanpl es\ server\ src\ exanpl es\ xn \ sax directory, where W._ HOVE
refersto the top-level WebL ogic Platform directory.

Parsing XML Documents Using JAXP in DOM Mode

2-4

The following code example shows how to parse an XML document and create an
or g. w3c. dom Docunent treefrom aDocunent Bui | der object:

i mport javax.xm . parsers. Docunent Bui | der;
i mport javax.xmnl . parsers. Docunent Bui | der Fact ory;

i nport org.w3c. dom Docurnent ;

//ptain an instance of DocumentBuil der Factory.
Docurent Bui | der Factory dbf =
Docunent Bui | der Fact ory. newl nst ance() ;
// Specify a validating parser.
dbf.setValidating(true); // Requires |oading the DID.
// tain an instance of a DocunentBuil der fromthe factory.
Docunent Bui | der db = dbf. newDocurent Bui | der () ;
// Parse the docunent.
Docunment doc = db. parse(inputFile);

Note: If you want to use a parser other than the built-in parser, you must use the
WebL ogic Server Administration Console to specify it; otherwise the
Docurent Bui | der Fact ory. newl nst ance method returns the built-in
parser. For instructions about configuring WebL ogic Server to use a parser
other than the built-in parser, see “ Configuring a Parser or Transformer Other
Than the Built-In" on page 8-4.

For a complete example of parsing an XML document in DOM mode, see the
W._HOME\ sanpl es\ server\ src\ exanpl es\ xn \ domdirectory, where W._ HOVE
refersto the top-level WebL ogic Platform directory.

Programming WebL ogic XML

Parsing XML Documents

Parsing XML Documents in a Servlet

Support for theset At t ri but e and get At t ri but e methodswas added to version 2.2
of the Java Servlet Specification. Attributes are objects associated with arequest. The
request object encapsulates all information from the client request. Inthe HTTP
protocol, thisinformation is transmitted from the client to the server by the HTTP
headers and message body of the request.

With WebL ogic Server, you can usetheset At t ri but e and get At t ri but e methods
to parse XML documents. Usetheset At t ri but e method for SAX mode parsing and
theget At t ri but e method for DOM mode parsing.

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document

The following code example shows how to usethe set At t ri but e method:

i mport webl ogi c. servl et. XMLProcessi ngExcepti on;
import org.xnl.sax. hel pers. Def aul t Handl er;

public voi d doPost (H t pServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, |OException {

try {
request.setAttribute("org. xnm .sax. hel pers. Def aul t Handl er ",

new Def aul t Handl er ());

} cat ch(XM.Processi ngExcepti on xpe) {
Systemout.println("Error in processing XM.");
xpe. print StackTrace();
return;

You can aso usetheor g. xni . sax. Handl er Base attribute to parse an XML
document, although it is deprecated:

request.setAttribute("org.xm . sax. Handl er Base",
new Handl er Base());

Note: This code example shows asimple way to parse a document using SAX and
theset At t ri but e method. This method of parsing adocument isa
WebL ogic Server convenience feature, and it is not supported by other servlet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Programming WebL ogic XML 2-5

2 Developing XML Applications with WebLogic Server

Using the org.w3c.dom.Document Attribute to Parse a Document

The following code example shows how to usethe get At t r i but e method.

i mport org.w3c. dom Docunent ;
i nport webl ogi c. servl et. XMLProcessi ngExcepti on;

public void doPost (H t pServl et Request request,

Ht t pSer vl et Response response)
throws Servl et Exception, |OException {

try {
Docurment doc = request.getAttribute("org.w3c. dom Docunent");
} catch(XM.Processi ngException xpe) {
Systemout.printin("Error in processing XM.");
xpe. pri ntStackTrace();
return;

Note: This code example shows a simple way to parse a document using DOM and
the get At t ri but e method. This method of parsing a document isa
WebL ogic Server convenience feature, and it is not supported by other servlet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Validating and Non-Validating Parsers

2-6

As previously discussed, awell-formed document is one that is syntactically correct
according to the rules outlined in the W3C Recommendation for XML 1.0. A valid
document is one that follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify
that itisvalid. The WebL ogic FastParser, described in “ For instructions on how to use
the XML Registry to configure parsing options, see “XML Parser and Transformer
Configuration Tasks’ on page 8-4.” on page 2-9, is non-validating.

To turn on validation while parsing a document (assuming you are using a validating
parser), you must:

m Set the SAXPar ser Fact ory. set Val i dat i ng() method to true, as shown in the
following example:

Programming WebL ogic XML

Parsing XML Documents

SAXPar ser Factory factory = SAXParser Factory. newl nstance();
factory. setValidating(true);

m Ensure that the XML document you are parsing includes (either in-line or by
reference) aDTD or a schema.

Handling Entity Resolution While Parsing an XML
Document

This section provides general information about external entities; how they are
identified and resolved by an XML parser; and the features provided by WebL ogic
Server to improve the performance of external entity resolution in your XML
applications.

For a complete example of resolving an external entity while parsing an XML
document, see the

W._HOME\ sanpl es\ server\ src\ exanpl es\xm \ enti tyresol uti on directory,
where W._HOVE refers to the top-level WebL ogic Platform directory.

General Information About External Entities

External entities are chunks of text that are not literally part of an XML document, but
arereferenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. While parsing a
document, if the parser encounters an external entity reference, it fetches the
referenced chunk of text, places the text into the XML document, then continues
parsing. An example of an external entity isa DTD; rather than including the full text
of the DTD inthe XML document, the XML document hasareferencetothe DTD that
isstored in a separatefile.

There are two ways to identify an external entity: a system identifier and a public
identifier. System identifiers use URIs to reference an externa entity based onits
location. Public identifiers use a publicly declared name to refer the information.

The following example shows how apublicidentifier is used to referencethe DTD for
theappl i cation. xm filethat describes a J2EE application archive (*.ear file):

<! DOCTYPE application PUBLIC "-//Sun M crosystens,
Inc.//DTD J2EE Application 1.2//EN'>

Programming WebL ogic XML 2-7

2 Developing XML Applications with WebLogic Server

The following example shows a reference to an external DTD by a system identifier
only:

<! DOCTYPE appl i cati on SYSTEM
"http://java. sun.com j2ee/ dtds/application_1 2.dtd">

Hereis areference that uses both the public and system identifier; note that the
keyword SY STEM is omitted:

<! DOCTYPE appl i cation
PUBLIC "-//Sun M crosystens, Inc.//DITD J2EE Application 1.2//EN'
"http://java.sun.com j 2ee/ dtds/ application_1_2.dtd">

Using the WebLogic Server Entity Resolution Features

2-8

Use the following WebL ogic Server features to improve the performance of external
entity resolution in your XML applications:

m Permanently store a copy of an external entity on the computer that hosts the
WebL ogic Administration Server.

m Specify that WebL ogic Server automatically retrieve and cache an external entity
that resides in an external repository that supports an HTTP interface, such asa
URL. You can specify that WebL ogic Server cache the entity either in memory
or on disk and specify when the cached entry becomes stale, at which point
WebL ogic Server automatically updates the cached entry.

Using the retrieve-and-cache feature, you do not have to actually copy the
external entity to the local computer. The XML application refers to the actual
external entity only at specified time intervals, rather than each time the
document is parsed, thus potentially greatly improving the performance of your
application while a so keeping as up to date with the latest external entity as
desired.

Y ou use the XML Registry to create entity resolution entries to identify where the
external entry islocated (locally or at a URL) and what the caching options are for
entities on the Web. Y ou identify the external entity entry using a system or public
identifier. Then, in your XML document, when you reference this external entity,
WebL ogic Server fetches the local copy or the cached copy (whichever you have
configured) when parsing the document.

For detailed information on creating external entity registrieswith the XML Registry,
refer to “External Entity Configuration Tasks” on page 8-6.

Programming WebL ogic XML

Parsing XML Documents

Using Parsers Other Than the Built-In Parser

If you use JAXP to parse your XML documents, the WebL ogic Server XML Registry
(which is configured through the Administration Console) offers the following
options:

m Accept the built-in parser as the server-wide parser.
m Configure the WebL ogic FastParser as the server-wide parser.

m Configure another parser of your choice (such as a different version of the
Apache Xerces parser) as the server-wide parser.

m Configure aparser for aparticular DTD based on its system or public identifier,
or itsroot tag.

For instructions on how to use the XML Registry to configure parsing options, see
“XML Parser and Transformer Configuration Tasks’ on page 8-4.

Using the WebLogic FastParser

WebL ogic Server includes a high-performance non-validating XML parser (called
WebL ogic FastParser) specifically designed to parse small to medium (up to 10,000
elements) XML documents. For larger documents, the performance of this parser is
comparable to that of other standard parsers, such as Apache Xerces.

Note: WebL ogic FastParser supports only SAX-style parsing.

Y ou can specify that WebL ogic FastParser be used as the WebL ogic Server-wide
parser, or just for a particular DOCTY PE by using the XML Registry as described in
“XML Parser and Transformer Configuration Tasks’ on page 8-4. Set the

SAXPar ser Fact ory field to

webl ogi c. xm . babel . j axp. SAXPar ser Fact oryl npl .

Programming WebL ogic XML 2-9

2 Developing XML Applications with WebLogic Server

Generating New XML Documents

This section describes how to generate XML documents from a DOM document tree
and by using JSP.

Note: For detailed instructions on using the WebLogic XML Streaming API to
generate XML documents, see Chapter 4, “Using the WebL ogic XML
Streaming API.”

Generating XML from a DOM Document Tree

This section describes two waysto create an XML document from a DOM document
tree:

m Usingthe Apacheseri al i ze classes

m Using the JAXP Tr ansf or mer classes

Using the Apache Serialize Class

2-10

To generate an XML document from a DOM document tree, you can use the class
webl ogi c. apache. xm . seri al i ze to convert aDOM document treeto XML text.
For a description of this class, see Javadoc for webl ogi c. apache. xmi . seri al i ze.

The following code example shows how to use this class.

Note: The following example does not use JAXP but rather the Apache proprietary
API directly.

package test;

inport java.io.QutputStreanmWiter;
inport java.util.Date;
i mport java.text.DateFornmat;

i mport org.w3c. dom Docunent ;
i nport org.w3c. dom El enent ;

Programming WebL ogic XML

Generating New XML Documents

i mport webl ogi c. apache. xer ces. dom Docunent | npl ;
i mport webl ogi c. apache. xm . seri al i ze. DOVBeri al i zer;
i mport webl ogi c. apache. xm . serialize. XM.Seri ali zer;

public class WiteXM {
public static void main(String[] args) throws Exception {

// Create a DOMtree.
Docunent doc= new Docunent | npl ();
El ement nmessage = doc. creat eEl enent (" nessage") ;
doc. appendChi | d(nessage) ;
El enent text = doc.createEl enent("text");
t ext . appendChi |l d(doc. creat eText Node("Hello world."));
nmessage. appendChi | d(text);
El enent tinmestanp = doc. createEl ement ("ti nestanmp");
ti nest anp. appendChi | d(

doc. creat eText Node(

Dat eFor mat . get Dat el nst ance().format (new Date()))

)

nmessage. appendChi | d(ti nest anp) ;

// Serialize the DOMto XM. text and output to stdout.
DOVseri al i zer xm Ser =

new XM.Seri al i zer (new Qut put StreamWiter(Systemout),null);
xm Ser. serialize(doc);

Using the JAXP Transformer Class

You can usethej avax. xm . transf orm Transf or mer classto serializea DOM
object into an XML stream, as shown in the following example segment:

import javax.xm . parsers. Docunent Bui | der;
import javax.xm . parsers. Docunent Bui | der Fact ory;

i mport org.w3c.dom Docunent;

import javax.xm .transform Transformer;

import javax.xm .transform TransfornerFactory;
i mport javax.xm .transform dom DOVBour ce;
inmport javax.xm .transform stream StreanResult;

inmport java.io.*;

Programming WebL ogic XML 2-11

2 Developing XML Applications with WebLogic Server

TransfornmerFactory trans_factory =

Transf or ner Fact ory. new nst ance() ;

Transforner xm _out = trans_factory. newlTransformer();
Properties props = new Properties();

props. put (“nethod”, “xm”);

xm _out . set Qut put Properties(props);

xm _out . transforn(new DOVBour ce(doc), new

StreanResul t (System out));

Inthe example, the Tr ansf or mer . t r ansf or () method doesthework of converting
aDOM object into an XML stream. Thet r ansf or m() method takes as input a

j avax. xnl . transf orm dom DOVSour ce object, created from the DOM tree stored
in the doc variable, and convertsit into a

j avax. xnl . transform stream StreanResul t object and writes the resulting
XML document to the standard output.

Generating XML Documents in a JSP

You typically use JSPs to generate HTML, but you can also use a JSP to generate an
XML document.

Using JSPs to generate XML requires that you set the content type of the JSP page as
follows:

<% page content Type="text/xm "%
... XM docunent

The following code shows an example of how to use JSP to generate an XML
document:

<?xm version="1.0">

<%@ page content Type="text/xm"
i mport="java.text.DateFormat,java.util.Date" %

<message>

<text>

Hello World.

</text>

<ti nest anp>
<%
out. print(Dat eFor mat. get Dat el nstance().fornmat(new Date()));
%

</ timestanp>
</ nessage>

2-12 Programming WebL ogic XML

Transforming XML Documents

For more information about using JSP to generate XML, see
http://java. sun. conl products/jsp/htm /JSPXM. htm .

Transforming XML Documents

Transformation refers to converting an XML document (the source of the
transformation) into another format, typically adifferent XML document, HTML,
Wireless Markup Language (WML) (the result of the transformation.) This section
describes how to transform XML documents using JAXP and from within aJSP using
JSP tags.

Using JAXP to Transform XML Data

Version 1.1 of JAXP provides pluggabl e transformation, which meansthat you can use
any JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML datainto a variety of
formats:

m javax.xm .transform This package containsthe generic APIsfor
transforming documents. This package does not have any dependencies on SAX
or DOM and makes the fewest possible assumptions about the format of the
source and result.

m javax.xm .transform stream This package implements stream- and
URI-specific transformation APIs. In particular, it defines the St r eanSour ce
and St reanResul t classes that enable you to specify | nput St reams and URLS
as the source of atransformation and Cut put St r eans and URLSs as the results,
respectively.

m javax. xnl.transform dom This package implements DOM-specific
transformation APIs. In particular, it defines the DOVSour ce and DOVResul t
classes that enable you to specify aDOM tree as either the source or result, or
both, of atransformation.

m javax.xni . transform sax: Thispackage implements SAX-specific
transformation APIs. In particular, it defines the SAXSour ce and SAXResul t

Programming WebL ogic XML 2-13

http://java.sun.com/products/jsp/html/JSPXML.html

Developing XML Applications with WebLogic Server

classes that enable you to specify or g. xm . sax. Cont ent Handl er eventsas
either the source or result, or both, of a transformation.

Transformation encompasses many possible combinations of inputs and outputs.

For a complete example of transforming an XML document, see the
W._HOME\ sanpl es\ server\ src\ exanpl es\ xm \ xs| t directory, where W._HOVE
refersto the top-level WebL ogic Platform directory.

Example of Transforming an XML Document Using JAXP

The following example snippet shows how to use JAXP to transform ny XM.doc. xm
into adifferent XML document using the nyst yl esheet . xs| stylesheet:

i mport javax.xm .transform Transfornmer;

i mport javax.xml .transform TransfornerFactory;
i mport javax.xm .transform stream StreanSource;
i mport javax.xm .transform stream StreanResult;

Transforner trans;

TransfornerFactory factory = TransfornerFactory. newl nstance();
String stylesheet = “file://styl esheets/ nystyl esheet. xsl”;
String xm _doc = “file://xm _docs/ myXM.doc. xm ”;

trans = factory. newlr ansf or mer (new St reanSource(styl esheet));
trans. transform new StreanSource(xm _doc),
new StreanResul t (Systemout));

For an example of how to transform a DOM document into an XML stream, see
“Using the JAXP Transformer Class’ on page 2-11.

Converting Your XML Code From Using the Xalan API to JAXP 1.1 API

2-14

If your application contain Xalan-specific code, BEA recommends that you modify it
to use JAXP instead.

This section briefly describes the changes you must make to your XML application in
order to convert from using the Xalan APl to JAXP. The section compares two code
segments that perform asimilar transformation task: one code segment usesthe Xalan
API directly and the other uses JAXP.

The following Java code segment uses JAXP:

i nport javax.xm .transform Transforner;
i mport javax.xm .transform Transfornmer Fact ory;

Programming WebL ogic XML

Transforming XML Documents

import javax.xm .transform stream StreanfSource;
inmport javax.xm .transform stream StreanResul t;

Transforner trans;

TransfornerFactory factory = TransfornerFactory. newl nstance();
String stylesheet = "file://styl esheets/nystyl esheet. xsl";
String xm _doc = "file://xm _docs/ nyXM.doc. xm ";

trans = factory. newlransforner(new StreanSource(styl esheet));
trans. transfornmnew StreantSource(xm _doc),
new StreanResul t (Systemout));

The following Java code segment uses the Xalan API directly:

/*

* This code exanpl e was taken from code exanpl es provided by the
* Apache Software Foundation. It consists of voluntary
contributions nade by many individuals on behal f of the Apache
Sof t war e Foundation and was originally based on software
copyright (c) 1999, Lotus Devel opnent Corporation.,
http://ww. | otus.com For nore information on the Apache
Sof t war e Foundati on, pl ease see <http://ww. apache. org/ >.

/

E I S T I

i mport org.apache. xal an. xsl t. XSLTProcessor Fact ory;
i mport org. apache. xal an. xsl t. XSLTI nput Sour ce;

i mport org.apache. xal an. xslt. XSLTResul t Tar get ;
import org.apache. xal an. xsl t. XSLTProcessor;

XSLTProcessor processor = XSLTProcessor Factory. get Processor () ;

String stylesheet = "file://styl esheets/nystyl esheet. xsl";
String xm _doc = "file://xm _docs/ nyXM.doc. xm ";

processor. process(new XSLTI nput Sour ce(xm _doc),
new XSLTI nput Sour ce(styl esheet),
new XSLTResul t Target (System out));

The following table summarizes the names of the Xalan and JAXP interfaces and
methods used in the preceding examples to transform XML documents; use thistable
as afirst step toward converting your existing Xalan application to afull JAXP
application.

Programming WebL ogic XML 2-15

2 Developing XML Applications with WebLogic Server

Note: Thistable does not include an entire mapping between Xalan and JAXP, but
rather covers only the main classes and methods used in the preceding
examples. Refer to the Apache and Sun Web sites at http://www.apache.org
and http://java.sun.com/xml/index.html for more detailed information on each
API.

Table 2-1 Equivalent Xalan and JAXP Classes and I nterfaces

Description of Class or Xalan 1.X JAXP 1.1
Interface
Main class used to transform XSLTPr ocessor Tr ansf or mer

XML documents

Factory classused to createthe XSLTPr ocessor Fact ory Transf or mer Fact ory
transformer objects

Method used to creste a new n/a Tr ansf or mer Fact ory. newi ns
instance of the factory tance()

Method used to create a new XSLTProcessor Factory. getP Transformer Fact ory. newTra
transformer object rocessor () nsformer ()

Classthat holdsthe sourceof the XSLTI nput Sour ce St r eanSour ce

transformation, such asthe
XML document or an XSL
stylesheet

Classthat holdstheresult of the XSLTResul t Tar get St reanResul t
transformation

Method that performs the XSLTProcessor. process() Transf ormer. transf or n()
transformation

Using the JSP Tag to Transform XML Data

WebL ogic Server provides a small JSP tag library for convenient accessto an XSLT
transformer from within aJSP. Y ou can use thistag to transform XML documentsinto
HTML, WML, and so on, but it is not required.

The JSP tag library consists of one main tag, x: xsl t , and two subtags you can use
withinthex: xsl t tag: x: styl esheet and x: xni .

2-16 Programming WebL ogic XML

http://www.apache.org
http://java.sun.com/xml/index.html

Transforming XML Documents

XSLT JSP Tag Syntax

Table 2-2 x:xslt JSP Tag Attributes

The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an
optional body, and a matching end tag. The start tag includes the element name and
optiona attributes.

The following syntax describes how to use the three XSLT JSP tags provided by
WebL ogic Server in a JSP. The attributes are optional, as are the subtags

x: styl esheet andx: xm . Thetables following the syntax describe the attributes of
thex: xsl t and x: styl esheet tags, thex: xnl tag does not have any attributes.

<x: xslt

[xm ="uri of XML file"]

[medi a="nedi a type to determ ne styl esheet"]
[styl esheet="uri of stylesheet"]
<x:xm >In-1ine XM. goes here

</ x:xm >

<x:styl esheet [nedia="nedia type to determ ne styl esheet"]

[uri="uri of stylesheet"]

</ x: styl esheet >
</ x:xslt>

The following table describes the attributes of the x: xsI t tag.

x:xdtTag Required Data Description

Attribute Type

xml No String Specifies the location of the XML file that you want to transform.
Thelocation isrelative to the document root of the Web application
in which thetag is used.

media No String Defines the document output type, such asHTML or WML, that

determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the nedi a attribute
of any enclosed x: st yl esheet tagswithin the body of the

x: xsl t tag. Thevalueof thenmedi a attribute of thex: xsl t tagis
compared to the value of the medi a attribute of any enclosed

x: st yl esheet tags. If the values are equal, then the stylesheet
specified by theur i attribute of thex: st yl esheet tagisapplied
to the XML document.

NOTE: Itisan error to set both the nedi a and st yl esheet
attributes within the same x: xsl t tag.

Programming WebL ogic XML 2-17

2 Developing XML Applications with WebLogic Server

Table 2-2 x:xslt JSP Tag Attributes

x:xdtTag Required Data Description
Attribute Type
stylesheet No String Specifies the location of the stylesheet to use to transform the XML

document. Thelocation is relative to the document root of the Web
application in which the tag is used.

NOTE: Itisan error to set both the medi a and st yl esheet
attributes within the same x: xsl t tag.

The following table describes the attributes of the x: st yl esheet tag.

Table 2-3 x:stylesheet JSP Tag Attributes

x:stylesheet Required Data
Tag Attribute Type

Description

media No String

Defines the document output type, suchasHTML or WML,
that determines which stylesheet to use when transforming the
XML document.

Use this attribute in conjunction with the medi a attribute of
enveloping x: xsl t tag. Thevalue of the nedi a attribute of
thex: xsl t tagiscompared to the value of the medi a
attribute of the enclosed x: st yl esheet tags. If the values
are equal, then the stylesheet specified by theur i attribute of
thex: styl esheet tagisapplied to the XML document.

uri No String

Specifiesthelocation of the stylesheet to use when the value of
the medi a attribute matches the value of the nedi a attribute
of the enveloping x: xsl t tag. The location isrelative to the

document root of the Web application in which thetag is used.

XSLT JSP Tag Usage

Thex: xsl t tag can beused with or without abody, and its attributes are optional. This
section describes the rules that dictate how the tag behaves depending on whether you
specify abody or one or more attributes.

If thex: xsl t JSPtag isan empty tag (no body), the following statements apply:

e If no attributes are set, the XML document is processed using the servlet path
and the default media stylesheet. You specify the default media stylesheet in

2-18 Programming WebL ogic XML

Transforming XML Documents

your XML filewith the <?xni - st yl esheet > processing instruction; the
default stylesheet is the one that does not have anedi a attribute.

This type of processing allows you to register the JSP page that contains the
tag extension as afile servlet that performs XSLT processing.

If only the nedi a attribute is set, the XML document is processed using the
servlet path and the specified media type. The value of the nedi a type
attribute of the x: xsl t tag is compared to the value of the medi a attribute of
any <?xn - st yl esheet > processing instructionsin your XML document; if
any match then the corresponding stylesheet is applied. If none match then
the default media stylesheet is used. The mediatype attribute is used to
define the document output type (for example, XML, HTML, postscript, or
WML). This feature enables you to organize stylesheets by document output

type.

If only thexm attributeis set, the specified XML document is processed
using the default media stylesheet.

If themedi a and xm attributes are set, the specified XML document is
processed using the specified media type.

If thest yl esheet attribute is defined, the XML document is processed
using the specified stylesheet.

Caution: Itisan error to set both the nedi a and st yl esheet attributes within the

samex: xsl t tag.

An XSLT JSPtag that hasabody may contain <x: xm > tagsand/or <x: st yl esheet >
tags. The following statements apply:

The <x: xm > tag alows you specify an XML document for inline
processing. This tag has no attributes.

The <x: st yl esheet > tag, when used without any attributes, allows you
specify the default stylesheet inline.

Usetheuri attribute of the <x: st yl esheet > tag to specify the location of
the default stylesheet.

If you want to specify different stylesheets for different mediatypes, you can
use multiple <x: st yl esheet > tags with different values for the nedi a

Programming WebL ogic XML 2-19

2 Developing XML Applications with WebLogic Server

attribute. You can specify a stylesheet for each mediatype in the body of the
tag, or specify the location of the stylesheet withtheuri attribute.

Transforming XML Documents Using an XSLT JSP Tag

Tousean XSLT JSP tag to transform XML documents, perform the following steps:

1. Openthexm x. zi p fileinthe W._HOVE\ ser ver\ ext directory; extract the
xnl x-tags. j ar file;and putitinthe/ i b directory of your Web application,
where BEA Hone isthe top-level directory in which you installed the WebL ogic
Server distribution.

2. Adda<t agl i b> entry to theweb. xni file. For example:

<taglib>
<taglib-uri>xmx.tld</taglib-uri>
<taglib-location> WEB-1NF/I|ib/xm x-tags.jar</taglib-I|ocation>
</taglib>

3. Tousethetags, add the following line to your JSP page:
<y@taglib uri="xmx.tld" prefix="x"%

4. Configure the transformer. The following procedure shows a generic way to
configure the transformer:

a. Enter thefollowing code lineto createan xsl t . j sp file:
<y@taglib uri="xmx.tld" prefix="x"%<x:xslt/>

b. Registerthexslt.jsp fileinyourweb. xnl file, asfollows:

<servl et>
<servl et - nane>nyxsl ti nt ercept or </ servl et - nane>
<jsp-file>xslt.jsp</jsp-file>

</servlet>

<servl et - mappi ng>
<servl et - name>nyxsl ti nt ercept or </ servl et - name>
<url-pattern>/xslt/*</url-pattern>

</ servl et - mappi ng>

¢. Putyour XML, DTD, and XSL documents or servletsin your Web application.

2-20 Programming WebLogic XML

Transforming XML Documents

d. Addanxslt prefix to the pathname for the XML document (for example,
changedocs/ fred. xm toxslt/docs/fred. xn) and then access the
document. Because of the <ur | - pat t er n> entry intheweb. xm file,
WebL ogic Server automatically runsthe XSLT transformer on the XML
document and sets the default stylesheet in the document.

e. To define mediatype, add code to the JSP to determine the media type for the
XML document and the content type for the output.

f. Passthe mediatypeinto the xsl t tag and then set the content type of the
response object.

Note: The other forms of the XSLT JSP tag are used when stylesheets are not
specified in the XML document or your XML stylesheet can be generated
inline.

Example of Using the XSLT JSP Tag in a JSP

The following snippet of code from a JSP shows how to use the XSLT JSP tag to
transform XML intoHTML or WML, depending on the type of client that isrequesting
the JSP. If the client is a browser, the JSP returns HTML; if the client is awireless
device, the JSP returns WML.

First the JSP uses the get Header () method of the Ht t pSer vl et Request object to
determine the type of client that is requesting the JSP and setsthe nyMedi a variableto
wrl or ht mi appropriately. If the JSP set the myMedi a variableto ht ni , then it applies
theht nl . xsl stylesheet to the XML document contained in the cont ent variable.
Similarly, if the JSP set the myMedi a variable to wni , then it appliesthe wni . xsl
stylesheet.

<%
String clientType = request. get Header (" User-Agent");
/1 default to WML client
String nyMedia = "wm";

/1l if client is an HTM. browser

if (clientType.indexOf("Mzilla") = -1) {
nyMedia = "http"
}
%

<x:xslt nedi a="<%nyMedi a%" >

<x: xm ><%cont ent %</ x: xm >
<x:styl esheet nedia="htm" uri="htm.xsl"/>

Programming WebL ogic XML 2-21

2 Developing XML Applications with WebLogic Server

<x:styl esheet nedia="wr" uri="wn.xsl"/>
</ x:xslt>

Using Transformers Other Than the Built-In Transformer

The WebL ogic Server XML Registry (which you configure using the Administration
Console) offers the following options:

e Accept the built-in transformer as the server-wide transformer.

e Configure atransformer other than the built-in transformer as the server-wide
transformer. The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options,
see “ XML Parser and Transformer Configuration Tasks” on page 8-4.

2-22 Programming WebL ogic XML

CHAPTER

3 XML Application
Scoping

The following sections describe how to configure parsers, transformers, external
entities, and the external entity cache for a particular application:

m “Overview of Application Scoping” on page 3-1

m “The weblogic-application.xml File” on page 3-2

m “Configuring a Parser or Transformer for an Enterprise Application” on page 3-6

m “Configuring an External Entity for an Enterprise Application” on page 3-8

m “Configuring the External Entity Cache for an Enterprise Application” on page
3-9

Overview of Application Scoping

Application scoping refers to configuring resources for a particular enterprise
application rather than for an entire WebL ogic Server configuration. In the case of
XML, these resources include parser, transformer, external entity, and external entity
cache configuration. The main advantage of application scoping isthat it isolates the
resources for a given application to the application itself. Using application scoping,
you can configure different parsers for different applications, store the DTDs for an
application within the EAR file or exploded enterprise directory, and so on.

Programming WebL ogic XML 31

3 xmL Application Scoping

Another advantage of using application scoping isthat by associating the resources
with the EAR file, you can run this EAR file on another instance of WebL ogic Server
without having to configure the resources for that server.

To configure XML resources for a particular application, you add information to the
webl ogi c- appl i cation. xm deployment descriptor file located in the META- | NF
directory of the EAR file or exploded enterprise application directory.

Note: You usethe Administration Console to configure parser, transformer, and
external entity resources for aWebL ogic Server instance, as described in
Chapter 8, “Administering WebL ogic Server XML.”

The weblogic-application.xml File

32

Thewebl ogi c-appl i cation. xm fileisthe WebL ogic Server-specific deployment
descriptor for an enterprise application. It contains configuration information about the
XML, JDBC, and EJB resources used by an enterprise application. The standard J2EE
deployment descriptor iscalled appl i cati on. xm .

The following sample webl ogi c- appl i cati on. xm file shows how to configure
XML resources for an enterprise application; the body of the various elements are
shown in bold:
<webl ogi c- appl i cati on>
<xm >
<parser-factory>
<saxpar ser-factory>
webl ogi c. xm . babel . j axp. SAXPar ser Fact or yl npl
</ saxparser-factory>
<docunent - bui | der-factory>
or g. apache. xer ces. j axp. Docunent Bui | der Fact or yl npl
</ document - bui | der - f act ory>
<transforner-factory>
or g. apache. xal an. processor. Tr ansf or mer Fact or yl npl
</transforner-factory>
</ parser-factory>
<entity-mappi ng>
<entity-mappi ng- name>My Mappi ng</entity-mappi ng- nanme>
<public-id>-//BEA Systens, Inc.//DTD for cars//EN</public-id>
<systemid>http://ww. bea. conl dtds/car. dtd</systemid>

Programming WebL ogic XML

The weblogic-application.xml File

<entity-uri>dtds/car.dtd</entity-uri>
</ entity-mappi ng>
</ xm >
</ webl ogi c-appl i cati on>

The main element for configuring XML resourcesis <xm >. The following diagram
describes the sub-elements of the <xn > element; the sections following the diagram
describe each element:

‘ weblogic-application ‘

" xml? |

4{ parser-factory? ‘

4{ saxparser-factory? ‘

4{ document-builder-factory? ‘

|
|
|
|
|
v 4{ transformer-factory? ‘

4{ entity-mapping*

entity-mapping-name |

public-id? |

system-id? ‘

entity-uri? |

when-to-cache? ‘

IR

cache-timeout-interval? |

? = Optional
+ =0ne or more
* = Zero or more

Programming WebL ogic XML 33

3 XML Application Scoping

xml
The main element for configuring XML resources, such as parsers, transformers,
external entities, and the external entity cache for an enterprise application.
parser-factory
The parent element for specifying a particular parser or transformer for an enterprise
application.
saxparser-factory

Element that specifies the factory classto be used for SAX style parsing in this
application. If this element is not specified, the default SAX parser factory specified
for the WebL ogic Server instance is used.

document-builder-factory

Element that specifies the factory class to be used for DOM style parsing in this
application. If this element is not specified, the default DOM parser factory specified
for the WebL ogic Server instance is used.

transformer-factory

Element that specifiesthe factory classto be used when transforming documentsusing
thej avax. xni . t r ansf or mpackagesin this application. If this element is not
specified, the default XSL T transformer factory specified for the WebL ogic Server
instanceis used.

34 Programming WebL ogic XML

The weblogic-application.xml File

entity-mapping

The parent element for mapping an entity declaration in an XML file to aloca copy
of the entity, suchasaDTD or Schema.

entity-mapping-name

Element that specifies the name of the entity mapping declaration.

public-id

Element that specifiesthe public ID of the entity, such as:

-// BEA Systens, Inc.//DTD for cars//EN

system-id

Element that specifies the system ID of the entity, such as:

http://ww. bea. con dtds/car. dtd

entity-uri

Element that specifiesthe URI of the entity. The path isrelative to the main directory
of the EAR archive or the exploded directory.

For example, dt ds/ car . dt d indicatesthat thereisadirectory called dt ds inthemain
EAR archive (parallel tothe META- | NF directory) and it containsafilecalled car . dt d.

Programming WebL ogic XML 35

3 XML Application Scoping

when-to-cache

Element that specifies when you should cache the external entity. Valid values are:

m cache-on-r ef er ence—WebL ogic Server caches the external entity referenced
by a URL thefirst time the entity is referenced in an XML document.

m cache-at-initializati on—WebLogic Server caches the entity when the
server starts.

m cache- never —WebL ogic Server never caches the external entity.

The default valueiscache- on-r ef er ence.

cache-timeout-interval

Element that specifies the number of seconds after which the cached external entity
becomes stale, or out-of-date. WebL ogic Server re-retrieves the external entity from
the specified URL or pathname relative to the main directory of the EAR archive or
exploded directory if the cached copy has been in the cache for longer than this
interval.

The default value for thisfield is 120 seconds.

Configuring a Parser or Transformer for an
Enterprise Application

Y ou can specify that an XML application use aparser or transformer different from the
built-in parser or transformer configured for WebL ogic Server by updating the

webl ogi c-appl i cation. xm fileof the EAR file or exploded directory that contains
the XML application.

To configure a parser or transformer, other than the built-in, for an enterprise
application, follow these steps:

3-6 Programming WebL ogic XML

Configuring a Parser or Transformer for an Enterprise Application

1. Usethe<parser-fact or y> sub-element of the <xnl > element to configure
factory classesfor both SAX and DOM styleparsing and for XSLT transformations
for the enterprise application, as shown in the following example:

<parser-factory>
<saxparser-factory>
webl ogi c. xm . babel . j axp. SAXPar ser Fact or yl npl
</saxparser-factory>
<document-builder-factory>
org.apache.xer ces.jaxp.DocumentBuilder Factorylmpl
</document-builder-factory>
<transformer-factory>
or g.apache.xalan.processor.Transfor mer Factoryl mpl
</transformer-factory>
</parser-factory>

The application corresponding to thiswebl ogi c- appl i cati on. xnl file uses
thewebl ogi c. xni . babel . j axp. SAXPar ser Fact or yI npl factory class for
SAX style parsing, the

or g. apache. xer ces. j axp. Document Bui | der Fact or yl npl factory classfor
DOM style parsing, and the

or g. apache. xal an. processor . Transf or mer Fact oryl npl classfor XSLT
transformations.

2. If you want the parser or transformer classesto be local to the EAR archive, put
the JAR file that contains the classes anywhere you want in the EAR file, then
update the d ass- Pat h variable in the WEB- | NF/ MANI FEST. MF file.

For example, if you put the parser or transformer classesin aJAR file called
mypar ser . j ar inthedirectory 1i b/ xm , update the MANI FEST. MF file as
shown:

Mani f est-Version: 1.0
Created-By: 1.3.1 01 (Sun Mcrosystens Inc.)
G ass-Path: |ib/xm/nyparser.jar

3. If you want to store the parser or transformer classes in alocation other than the
EAR archive, be sure that you update the WebL ogic Server CLASSPATH
variable to include the full pathname of the JAR file that contains the classes.

Programming WebL ogic XML 37

3 XML Application Scoping

Configuring an External Entity for an
Enterprise Application

Y ou can store alocal copy of an external entity, suchasaDTD, inthe EAR archive or
exploded directory rather than always retrieving it from the Web.

To configure an external entity for an enterprise application:

1. Createthedirectory i b/ xm / r egi st ry under the main directory of the EAR
archive,

2. Copy the externa entity, such asaDTD, to the directory.

3. Update thewebl ogi c- appl i cation. xm file, using the <ent i t y- mappi ng>
sub-element of the <xni > element to map the name of the entity to entity
declarations in any XML files processed by the application, as shown in the
following example:

<entity-mappi ng>
<entity- mappi ng- name>My Mappi ng</entity-mappi ng- nane>
<public-id>-//BEA Systens, Inc.//DTD for cars//EN</public-id>
<systemid>http://ww. bea. conl dtds/ car. dtd</systemid>
<entity-uri>dtds/car.dtd</entity-uri>
</entity-nmappi ng>
In the example, alocal copy of aDTD called car. dt d isstored in the
l'i b/ xm /registry/dtds directory under the main directory of the EAR
archive or exploded directory. The public ID of the entity is -// BEA Syst ens,
Inc.//DTD for cars//ENandthesystemidis
http://ww. bea. coni dt ds/ car . dt d. Whenever the application is parsing an
XML file and it encounters an entity declaration using either one of the IDs, it
will subgtitute thecar . dt d file.

Note: Specify an<ent it y- mappi ng> element for each entity declaration for which
you want to map alocal copy of the entity.

3-8 Programming WebL ogic XML

Configuring the External Entity Cache for an Enterprise Application

Configuring the External Entity Cache for an
Enterprise Application

Y ou can specify that WebL ogic Server cache external entitiesthat are referenced with
aURL or a pathname relative to the main directory of the EAR archive, either at
server-startup or when the entity is first referenced.

Caching the external entity saves the remote access time and provides alocal backup
in the event that the Administration Server cannot be accessed while an XML
document isbeing parsed, dueto the network or the Administration server being down.

Y ou can configure the expiration date of a cached entity, at which point WebL ogic
Server re-retrieves the entity from the URL or directory of the EAR and re-cachesiit.

Usethe <when-t 0- cache> and <cache-t i meout - i nt er val > subelements of the
<ent i t y- mappi ng> element to configure external entity caching for an enterprise
application, as shown in the following example:

<entity- mappi ng>
<entity- mappi ng- name>My Mappi ng</entity- mappi ng- name>

<public-id>-//BEA Systens, Inc.//DTD for cars//EN</public-id>
<systemid>http://ww. bea. coni dtds/ car.dtd</systemid>
<entity-uri>dtds/car.dtd</entity-uri>

<when-t o- cache>cache-at-initialization</when-to-cache>

<cache-ti neout-interval >300</ cache-ti meout-interval >

</entity-mappi ng>

In the example, thecar . dt d isstored inthel i b/ xm / r egi st ry/ dt ds directory
under the main directory of the EAR archive or exploded directory. WebL ogic Server
caches a copy of the DTD inits memory when it first starts up, and then refreshesthe
cached copy if it is stored for longer than 300 seconds.

Programming WebL ogic XML 39

3 XML Application Scoping

3-10 Programming WebLogic XML

CHAPTER

4 Using the WebLogic
XML Streaming API

The following sections describe how to use the WebL ogic XML Streaming API to
parse and generate XML documents:

m “Overview of the WebL ogic XML Streaming API” on page 4-1

m “Javadocs for the WebLogic XML Streaming API” on page 4-3

m “Parsing an XML Document: Typical Steps’ on page 4-3

m “Generating aNew XML Document: Typical Steps’ on page 4-19

Overview of the WebLogic XML Streaming
API

The WebLogic XML Streaming APl provides an easy and intuitive way to parse and
generate XML documents. Itissimilar to the SAX AP, but enables aprocedural,
stream-based handling of XML documents rather than requiring you to write SAX
event handlers, which can get complicated when you work with complex XML
documents. In other words, the streaming API gives you more control over parsing
than the SAX API.

When aprogram parses an XML document using SAX, the program must create event
listenersthat listen to parsing events as they occur; the program must react to events
rather than ask for a specific event. By contrast, when you use the streaming API, you

Programming WebL ogic XML 4-1

4 Using the WebLogic XML Streaming API

can methodically step through an XML document, ask for certain types of events (such
asthe start of an element), iterate over the attributes of an element, skip ahead in the

document, stop processing at any time, get sub-elements of a particular element, and

filter out elementsasdesired. Because you are asking for eventsrather than reacting to
them, using the streaming API is often referred to as pull parsing.

Y ou can parse many types of XML documents with the streaming API, such as XML
files on the operating system, DOM trees, and sets of SAX events. Y ou convert these
XML documentsinto a stream of events, or an XM_I nput St r eam and then step
through the stream, pulling events such as the start of an element, the end of the
document, and so on, off the stack as needed.

The WebL ogic Streaming API uses the WebL ogic FastParser as its default parser.

For a complete example of parsing an XML document using the streaming API, see
the W._HOVE\ sanpl es\ ser ver\ src\ exanpl es\ xni \ or der Par ser directory,
where W._HOVE refers to the top-level WebL ogic Platform directory.

The following table describes the main interfaces and classes of the WebL ogic
Streaming API.

Table 4-1 Interfacesand Classes of the XML Streaming API

Interface or Class Description

XML.I nput St r eanfact ory Factory used to create XMLI nput St r eamobjects for
parsing XML documents.

XMLI nput St ream Interface used to contain the input stream of events.

Buf f eredXMLI nput Stream Extension of the XMLI nput St r eaminterfaceto allow
marking and resetting of the stream.

XMLQut put St r eanfact ory Factory used to create XM_Qut put St r eamobjectsfor
generating XML documents.

XM_Qut put St ream Interface used write events.

El enent Fact ory Utility to create instances of the interfaces used in this
API.

XM_Event Base interface for all types of eventsin an XML

document, such asthe start of an element, the end of an
element, and so on.

4-2 Programming WebL ogic XML

Javadocs for the WebLogic XML Streaming API

Table 4-1 Interfacesand Classes of the XML Streaming API

Interface or Class Description

St art El enent Most important of the XMLEvent sub-interfaces. Used
to get information about a start element in an XML
document.

Attributelterator Object used to iterate over the set of attributes of an
element.

Attribute Object that describes a particular attribute of an
element.

Javadocs for the WebLogic XML Streaming
API

The following Javadocs provide reference material for the WebL ogic XML Streaming
API features described in this chapter as well as additional features not explicitly
documented:

m weblogic.xml.stream at
http://e-docs.bea.com/wls/docs81b/javadocs/webl ogic/xml/stream/package-summ
ary.html

m weblogic.xml.stream.util at
http://e-docs.bea.com/wls/docs81b/javadocs/webl ogic/xml/stream/util/package-su
mmary.html

Parsing an XML Document: Typical Steps

The following procedure describes the typical steps for using the WebLogic XML
Streaming API to parse and manipulate an XML document.

Programming WebL ogic XML 4-3

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/xml/stream/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/xml/stream/util/package-summary.html

4 Using the WebLogic XML Streaming API

Thefirst two steps are required. The next steps you take depend on how you want to
process the XML file.

1
2.

Import the webl ogi c. xm . stream * classes.

Get an XML stream of events from an XML file, aDOM tree, or aset of SAX
events. You can aso filter the XML stream to get only certain types of events,
names of specific elements, and so on. See “Getting an XML Input Stream” on

page 4-7.

Iterate over the stream, returning generic XMLEvent types. See“Iterating Over
the Stream” on page 4-10.

For each generic XMLEvent type, determine the specific event type. Event types
include the start of an XML document, the end of an element, an entity reference,
and so on. See “Determining the Specific XMLEvent Type” on page 4-11.

Get the attributes of an element. See “ Getting the Attributes of an Element” on
page 4-15.

Position the stream by skipping over event, skipping to a particular event, and so
on. See “Positioning the Stream” on page 4-16.

Get the children of an element. See “ Getting a Substream” on page 4-17.

Close the stream. See “Closing the Input Stream” on page 4-19.

Example of Parsing an XML Document

4-4

The following program shows an example of using the XML Streaming API to parse
an XML document.

The program takes asingle parameter, an XML file, that it convertsinto an XML input
stream. It then iterates over the stream, determining the type of each event, such asthe
start of an XML element, theend of the XML document, and so on. The program prints
out information for three types of events. start elements, end elements, and the
character data that forms the body of an element. The program does nothing when it
encountersthe other types of events, such as comments or start of the XML document.

Note: The codein bold font is described in detail in the sections following the

example.

Programming WebL ogic XML

Parsing an XML Document: Typical Steps

package exanpl es. xnl . stream

i mport webl ogi c.xm .stream Attri bute;

i nport webl ogic.xm .stream Attri butelterator;

i nport webl ogi c. xm . stream ChangePr ef i xMappi ng;

i mport webl ogi c. xm . stream Char act er Dat a;

i nport webl ogi c. xm . stream Comment ;

i nport webl ogi c. xm . stream XM_Event ;

i mport webl ogi c. xm . st ream EndDocunent ;

i nport webl ogi c. xm . stream EndEl enent ;

i nport webl ogi c. xm . stream EntityReference;

i mport webl ogi c. xm . stream Processingl nstruction;
i nport webl ogi c. xm . stream Space;

i nport webl ogi c. xm . stream Start Docunent;

i mport webl ogi c. xm . stream St art Prefi xMappi ng;

i nport webl ogi c. xm . stream Start El enent;

i nport webl ogi c. xm . stream EndPr ef i xMappi ng;

i mport webl ogi c. xm . stream XM.I nput St r eam

i nport webl ogi c. xml . stream XM.I nput St reanfact ory;
i nport webl ogi c. xm . stream XM_Nane;

i mport webl ogi c. xm . stream XM.St r eanExcepti on;

i mport java.io.FilelnputStream
i mport java.io. Fi |l eNot FoundExcepti on;

public class Conpl exParse {
/

*

Hel per method to get a handle on a stream

Takes in a name and returns a stream This

net hod usese the I nputStreanfactory to create an
instance of an XM.I nput Stream

@aram nane The file to parse

@eturn XMl nput Stream the streamto parse

* % X X X X X X

~

public XM.I nput Stream get Strean(Stri ng nane)
t hrows XM.StreanException, FileNotFoundException

{
XM.I nput Streanfactory factory = XM.I nput Streanfact ory. new nst ance();

XMLl nput Stream st ream = factory. newl nput St rean{ new Fi | el nput Stream nane));

return stream

}
/**
* Determnes the type of event, such as the start
* of an elenent, end of a docunent, and so on. |If the
* event is of type START_ELEMENT, END_ELEMENT, or
* CHARACTER_DATA, the nethod prints out appropriate info;
* otherwi se, it does nothing.
*

@ar am event The XM. event that has been parsed

Programming WebL ogic XML

4 Using the WebLogic XML Streaming API

*/
public void parse(XM.Event event)
throws XM.StreanException

switch(event. get Type()) {

case XM.Event. START_ELEMENT:
StartEl enent startEl enment = (StartEl ement) event;
Systemout.print("<" + startEl ement. get Name().get QualifiedName());

Attributelterator attributes = startEl enent.get AttributesAndNanespaces();

whil e(attributes. hasNext ()){
Attribute attribute = attributes. next();
Systemout.print(" " + attribute.getNanme().getQalifiedNane() +
"='" + attribute.getValue() + "'");
}

Systemout.print(">");
br eak;

case XM.Event. END_ELEMENT:
Systemout.print("</" + event.getName().getQualifiedNanme() +">");
br eak;

case XM_Event. SPACE:

case XM.Event. CHARACTER DATA:
CharacterData characterData = (CharacterData) event;
System out . print (characterData. getContent());
br eak;

case XM_Event. COVMENT:
/1 Print coment
br eak;

case XM.Event . PROCESSI NG | NSTRUCTI ON:
/1 Print Processinglnstruction
br eak;

case XM.Event. START_DOCUMENT:
/1 Print StartDocunent
br eak;

case XM.Event. END_DOCUMENT:
/1 Print EndDocurent
br eak;

case XM.Event. START_PREFI X_MAPPI NG
/1 Print StartPrefixMapping
br eak;

case XM.Event. END_PREFI X_MAPPI NG
/1 Print EndPrefixMapping
br eak;

case XM.Event. CHANGE_PREFI X_MAPPI NG
/1 Print ChangePrefixMappi ng
br eak;

case XM.Event . ENTI TY_REFERENCE:
/1 Print EntityReference
br eak;

case XM.Event. NULL_ELEMENT:

4-6 Programming WebL ogic XML

Parsing an XML Document: Typical Steps

t hrow new XM_St reanExcepti on("Attenpt to wite a null event.");
defaul t:
t hrow new XM.St reanException("Attenpt to wite unknown event
["+event. get Type()+"]");
}

}
/**
* Hel per method to iterate over a stream
* @aram nanme The file to parse
*/
public void parse(XM.I nput Stream stream
t hrows XM.StreanExcepti on

whi | e(stream hasNext ()) {
XMLEvent event = stream next();
par se(event);

}
stream cl ose();
}
/** Main nethod. Takes a single argunent: an XM. file
* that will be converted into an XM input stream
*/

public static void main(String args[])
throws Exception

Conpl exParse conpl exParse= new Conpl exPar se();

conpl exPar se. par se(conpl exPar se. get Strean(args[0]));
}

Getting an XML Input Stream

Y ou can use the XML Streaming API to convert avariety of objects, such as XML
files, DOM trees, or SAX events, into a stream of events.

The following example shows how to create a stream of events from an XML file:

XM.I nput St reanfactory factory = XM.I nput St reanfFactory. newl nstance();
XMLl nput St ream stream = factory. new nput Strean(new Fi | el nput St rean(nane)) ;

First you create a new instance of the XMLI nput St r eanfFact or y, then use the factory
to create anew XMLI nput St r eamfrom the XML filereferred to in the nane variable.

The following example shows how to create a stream from a DOM tree:

Programming WebL ogic XML 4-7

4 Using the WebLogic XML Streaming API

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance() ;

dbf . set Val i dati ng(fal se);

dbf . set NanespaceAwar e(true);

Docunent Bui | der db = dbf. newDocunent Bui | der () ;

Docurment doc = db. parse(new java.io.File(file));

XMLl nput St ream stream = XM.I nput St r eanfact ory. newl nst ance() . new nput St rean{ doc) ;

Getting a Buffered XML Input Stream

After you finish iterating over an XMLI nput St r eamobject, you cannot access the
stream again. |f, however, you need to process the stream again, such as send it to
another application or iterate over it again in some other way, use a

Buf f er edXMLI nput St r eamobject rather than aplain XM | nput St r eamobject.

Use the newBuf f er edl nput St r ean({) method of the XM_I nput St r eanFact ory
classto create a buffered XMIL input stream, as shown in the following example:

XMLI nput Streanfactory factory = XM.I nput St reanfact ory. newl nstance();
Buf f er edXMLI nput St r eam buf stream =

factory. newBuf f er edl nput St rean{fact ory. new nput St r eam new

Fi |l el nput Strean(nane)));

You canusethermar k() andreset () methods of the Buf f er edXM_I nput St r eam
object to mark a particular spot in the stream, continue processing the stream, then
reset the stream back to the marked spot. See“Marking and Resetting aBuffered XML
Input Stream” on page 4-18 for more information.

Filtering the XML Stream

Filtering an XML stream refersto creating a stream that contains only specified types
of events. For example, you can create a stream that contains only start elements, end
elements, and the character data that make up the body of an XML element. Another
exampleisfiltering an XML stream so that only elementswith aspecified name appear
in the stream.

Tofilter an XML stream, you specify afilter class as the second parameter to the
XMLI nput St r eanFact ory. newl nput St r ean() method. Y ou specify the eventsthat
you want in the XML stream as parametersto the filter class. The following example
shows how to use the TypeFi | t er classto specify that you want only start and end
XML elements and character datain the resulting XML stream:

i mport weblogic.xm.streamutil. TypeFilter;

4-8 Programming WebL ogic XML

Parsing an XML Document: Typical Steps

XMLl nput Streanfactory factory = XM.I nput Streanfact ory. new nst ance() ;
XMLI nput St ream stream = factory. newl nput St rean{ new Fi | el nput St rean(nane),
new TypeFi | ter (XM.Event . START_ELEMENT |

XM_Event . END_ELEMENT |

XM_Event . CHARACTER DATA)) ;

The following table describes the filters provided by the WebL ogic XML Streaming
API. They are part of thewebl ogi c. xm . stream uti | package.

Table 4-2

Name of Filter

Description

Sample Usage

TypeFilter Filter an XML stream based on new TypeFilter
specified event types, such as (XMLEvent . START_ELEMENT |
XMLEvent . START_ELEMENT, XMLEvent . END_ELEMENT |
XMLEvent . END_ELEMENT,andso ~ XMLEvent . CHARACTER _DATA)
on. See “Determining the Specific
XMLEvent Type” on page 4-11for a
full list of event types.
TypeFilter takesaninteger bitmask as
input; you OR thevaluesto createthis
bitmask, as shown in the sample.

NameFi | t er Filter an XML stream based on the new NaneFilter ("Book")

name of an element in the XML
document.

NameSpaceFi | t er

Filter an XML stream based on the
specified namespace URI.

new NaneSpaceFi | ter
("http://nanespace. org")

NanmespaceTypeFi |l ter

Filter an XML stream based on
specified event types and namespace
URI. Thisfilter combinesthe
functionality of TypeFi | t er and
NameSpaceFi | ter.

new NanmespaceFilter
("http://namespace. org",
XMLEvent . START_ELEMENT)

The example returns a stream where
all start elements have the specified
namespace.

Creating a Custom Filter

Y ou can also create your own filter if the onesincluded in the API do not meet your

needs.

Programming WebL ogic XML 4-9

4 Using the WebLogic XML Streaming API

1. Create aclassthat implementsthe El enent Fi | t er interface and containsa
method called accept (XMLEvent) . This method tells the
XMLI nput St r eanFact ory. new nput St rean() method whether to add a
particular event to the stream or not, as shown in the following example:

package ny.filters;

i nport webl ogi c. xm . stream XM_Nan®;
i mport webl ogi c. xm . stream El enentFil ter;
i mport webl ogi c. xm . stream events. Nul | Event ;

public class SuperDooperFilter inmplements ElenmentFilter {
protected String nane;

publ i ¢ Super DooperFilter(String nane)
{

}

publ i c bool ean accept (XM_LEvent e) {
i f (name. equal s(e. get Nane().getLocal Narme()))
return true;
return fal se;

thi s. nane = nane;

}
}

2. Inyour XML application, be sure to import the new filter class:

import my.filters. SuperDooperFilter

3. Specify thefilter as the second parameter to the newl nput St r ean() method,
passing to the filter class the types of events you want to appear in the XML
stream in whatever format required by your filter class:

XMLI nput Streanfactory factory = XM.I nput St reanfact ory. newl nstance();

XMLl nput Stream stream = factory. new nput St rean(new Fi | el nput St r ean(nane),
new Super Dooper Filter(param);

Iterating Over the Stream

Onceyou have astream of events, the next step isto methodically step through it using
theXMLI nput St ream next () and XM.I nput St r eam hasNext () methods, asshown
in the following example:

4-10 Programming WebLogic XML

Parsing an XML Document: Typical Steps

whi | e(stream hasNext ()) {
XMLEvent event = stream next();
System out. print(event);

}

Determining the Specific XMLEvent Type

The XMLI nput St r eam next () method returns an object of type XM_Event .
XM_Event has subinterfacesthat further classify what this event might be, such asthe
start of the XML document, the end of an element, an entity reference, and so on. The
XM_Event interface also contains corresponding fields, or constants, aswell asa set of
methods that you can use to identify the actual event. The following diagram shows
the hierarchy of the XM_Event interface and its subinterfaces:

— StartElement

— EndElement

— StartDocument

— EndDocument

Comment

L { CharacterData

XMLEvent |<g|

Space

— EntityReference

— Processinglnstruction

— StartPrefixMapping

— ChangePrefixMapping

— EndPrefixMapping

Programming WebL ogic XML 4-11

4 Using the WebLogic XML Streaming API

The following table lists the subclasses and fields of the XM_Event class that you can

use to identify a particular event while parsing the XML stream.

Table 4-3 Subclasses and Fields of the XML Event Class

XML Event
Subclass

Field of the XML Event
Class used to | dentify
Subclass

Method used to
I dentify Subclass

Description of the
Subclass Event

ChangePrefixMapping

CHANGE_PREFX_MAPPING

isChangePrefixMapping

Signals that a prefix
mapping has changed
fromanold namespace
to anew namespace.

CharacterData

CHARACTER_DATA

isCharacterData

Signalsthat the
returned XMLEvent
object contains the
character datafromthe
body of the element.

Comment

COMMENT

isComment

Signalsthat the
returned XMLEvent
object contains an
XML comment.

EndDocument

END_DOCUMENT

isEndDocument

Signalsthe end of the
XML document.

EndElement

END_ELEMENT

isEndElement

Signalsthe end of an
element inthe XML
document.

EndPrefixMapping

END_PREFIX_MAPPING

isEndPrefixMapping

Signals that a prefix
mapping has gone out
of scope.

EntityReference

ENTITY_REFERENCE

isEntityReference

Signals that the
returned XMLEvent
object contains an
entity reference.

Processingl nstruction

4-12

PROCESSING_INSTRUCTION

Programming WebL ogic XML

isProcessingl nstruction

Signals that the
returned XMLEvent
object contains a
processing instruction.

Parsing an XML Document: Typical Steps

Table 4-3 Subclasses and Fields of the XML Event Class

XML Event Field of the XM LEvent Method used to Description of the
Subclass Class used to I dentify Identify Subclass Subclass Event
Subclass

Space SPACE isSpace Signalsthat the
returned XMLEvent
object contains
whitespace.

StartDocument START_DOCUMENT isStartDocument Signalsthe start of an
XML document.

StartElement START_ELEMENT isStartElement Signalsthe start of a
element in the XML
document.

StartPrefixMapping START_PREFIX_MAPPING isStartPrefixMapping Signals that a prefix

mapping hasstartedits
scope.

The following example shows how to use the Javacase statement to determine the
particular type of event that was returned by the XMLI nput St r eam next () method.
For simplicity, the example smply prints that an event has been found; later sections
show further processing of the event.

switch(event. get Type()) {

case XM.Event. START_ELEMENT:
/] Start of an el enent
Systemout.println ("Start El enent\n");

br eak;

case XM_Event.END_ELEMENT:
/1 End of an el ement
Systemout.println ("End El emrent\n");

br eak;

case XM.Event . PROCESSI NG_| NSTRUCTI ON:
/1 Processing Instruction
Systemout.println ("Processing instruction\n");

br eak;

case XM.Event . SPACE:
/1 \Whitespace

Programming WebL ogic XML 4-13

4 Using the WebLogic XML Streaming API

Systemout.println ("Wite space\n");
br eak;

case XM._Event. CHARACTER DATA:
/1 Character data
Systemout.println ("Character data\n");
br eak;

case XM.Event. COVMENT:
/1 Comrent
Systemout.println ("Coment\n");
br eak;

case XM.-Event. START_DOCUMENT:
/1 Start of the XML docunent
Systemout.println ("Start Docunment\n");
br eak;

case XM.Event. END_DOCUMENT:
/1 End of the XM. Docunent
Systemout.println ("End Docunent\n");
br eak;

case XM_Event. START_PREFI X_MAPPI NG
/1 The start of a prefix nmapping scope
Systemout.println ("Start prefix mapping\n");
br eak;

case XM.Event.END_PREFI X_MAPPI NG
/1 The end of a prefix mapping scope
Systemout.println ("End prefix mapping\n");
br eak;

case XM.Event. CHANGE PREFI X_NMAPPI NG
/1 Prefix mappi ng has changed nanmespaces
Systemout.println ("Change prefix mappi ng\n");
br eak;

case XM.Event. ENTI TY_REFERENCE:
/1 An entity reference
Systemout.println ("Entity reference\n");
br eak;

defaul t:

t hrow new XML_StreankException("Attenpt to parse unknown event
[" + event.getType() + "1");

4-14 Programming WebLogic XML

Parsing an XML Document: Typical Steps

Getting the Attributes of an Element

To get the attributes of an element in an XML document, you must first cast the
XM_Event object that was returned by the XMLI nput St r eam next () method to a
St art El ement object.

Because you do not know how many attributes an element might have, you must first
createan Attri but el t er at or object to contain the entirelist of attributes, and then
iterate over thelist until there are no more attributes. The following example describes
how to do this as part of the START_ELEMENT case of the swi t ch statement shown in
“Iterating Over the Stream” on page 4-10:

case XM.Event. START_ELEMENT:

StartEl enent startEl enent = (StartEl ement) event;
Systemout.print("<" + startEl ement. get Name() . get QualifiedNanme());
Attributelterator attributes = startEl ement. get AttributesAndNanespaces();
whil e(attributes. hasNext ()){

Attribute attribute = attributes. next();

Systemout.print(" " + attribute.getNane().getQualifiedNane() +

"='" + attribute.getValue() + "'");

}

Systemout.print(">");
br eak;

The examplefirst createsa st art El enent object by casting the returned XM_LEvent
to Start El ement . It then createsan At tri but el t er at or object using the method
Start El ement . get Att ri but esAndNamespaces() , and iterates over the attributes
usingtheAttri butelterator. hasNext () method. ForeachAt tri but e, it usesthe
Attributes. get Nare(). get Qual i fi edName() and Attri but e. get Val ue()
methods to return the name and value of the attribute.

You can also usetheget Nanespace() andget At t ri but es() methodsto returnjust
the namespaces or attributes on their own.

Programming WebL ogic XML 4-15

4 Using the WebLogic XML Streaming API

Positioning the Stream

The following table describes the methods of the XMLI nput St r eaminterface that you
can use to skip ahead to specific locations in the stream.

Table 4-4 Methods Used to Position the Input Stream

Method of Description
XMLInputStream

ski p() Positions the input stream to the next stream event.

Note: The next event might not necessarily be an actua
element in the XML file; for example, it could be a
comment or white space.

ski p(int) Positions the input stream to the next event of thistype.

Examples of event types are XMLEvent . START_ELEMENT
and XM_LEvent . END_DOCUNMENT. Refer to Table 4-3 for the
full list of event types.

ski p(XMLNane) Positions the input stream to the next event of this name.

ski p(XMLName, int) Positions the input stream to the next event of this name and
type.

ski pEl emrent () Skipsto the next element (does not skip to the sub-elements of
the current element).

peek() Checks the next event without actually reading it from the
stream.

Thefollowing example shows how you can modify the basic codefor iterating over an
input stream to skip over the character datain the body of an XML element:

whi | e(stream hasNext ()) {

XM_LEvent peek = stream peek();

if (peek.getType() == XM.Event. CHARACTER DATA) {
stream ski p();
conti nue;

}

XMLEvent event = stream next();

parse(event);

4-16 Programming WebL ogic XML

Parsing an XML Document: Typical Steps

The example shows how to use the XMLI nput St r eam peek() method to determine
the next event on the stream. If the type of event isXMLEvent . CHARACTER_DATA, then
skip the event and go to the next one.

Getting a Substream

Use the XMLI nput St r eam get SubSt r ean() method to get a copy of the next
element, including all its subelements. The get Subst r ean() method returns an
XMLI nput St r eamobject. Your position in the parent stream (or the stream from
which you called get SubSt r ean()) does not move. Inthe parent stream, if you want
to skip the element you just got with get SubSt r ean() , use the ski pEl enent ()
method.

The get SubSt r ean() method keeps a count of the START_ELEMENT and
END_ELEMENT events it encounters, and as soon as the number is equal (or in other
words, as soon as it finds the compl ete next element) it stops and returns the resulting
substream as an XM_I nput St r eamobject.

For example, assumethat you areusing the XML Streaming AP to parsethefollowing
XML document, but you are only interested in the substream delineated by the
<cont ent > and </ cont ent > tags:

<book>
<title>The Hi story of the World</title>
<aut hor >Jul i et Shackel | </ aut hor >
<publ i sher >CrazyDays Publ i shi ng</ publ i sher >
<cont ent >
<chapter title="Just a Speck of Dust'>
<synopsi s>The worl d as a speck of dust</synopsis>
<para>Once the world was just a speck of dust...</para>
</ chapt er >
<chapter title="Life Appears'>
<synopsi s>Move over dust, here cones |ife.</synopsis>
<par a>Happi |y, the dust got a conpanion: life...</para>
</ chapt er >
</ cont ent >
</ book>

Thefollowing code fragment shows how you can skip to the <cont ent > start element
tag, get the substream, and parse it using a separate Conpl exPar se object:

if (stream skip(El ement Factory. createXMName("content")))

{

Programming WebL ogic XML 4-17

Using the WebLogic XML Streaming API

Conpl exParse conpl exParse = new Conpl exParse();
conpl exPar se. par se(stream get SubStream());

When you call this method on the previous XML document, you get the following
output:

<cont ent >
<chapter title=" Just a Speck of Dust'>
<synopsi s>The worl d as a speck of dust</synopsis>
<para>Once the world was just a speck of dust...</para>
</ chapt er >
<chapter title='Life Appears'>
<synopsi s>Move over dust, here cones life.</synopsis>
<para>Happily, the dust got a conpanion: life...</para>
</ chapt er >
</ cont ent >

Marking and Resetting a Buffered XML Input Stream

4-18

If you are using aBuf f er edXM_I nput St r eamobject, you can use the mar k() and
reset () methodsto mark the stream at a particular spot, process the stream, and then
subsequently reset the stream back to the marked spot. These methods are useful if
you want to further manipulate the stream after initialy iterating over it.

Note: If you read a buffered stream without marking it, you cannot access what
you've just read. In other words, just because the stream is buffered, it does
not automatically mean you can reread it. 'Y ou must mark it first.

The following example shows atypical use of the Buf f er edXM_I nput St r eamobject:

XM.I nput Streanfactory factory = XM.I nput Streanfact ory. new nst ance();
Buf f er edXMLI nput St r eam buf st ream =
fact ory. newBuf f er edl nput St rean(factory. new nput St rean(hew

Fi | el nput Stream nane)));

/1l mark the start of the stream
buf st ream mar k() ;

/1 process it locally
buf f er edPar se. par se(buf streanj;

/] reset the streamto the mark
buf streamreset();

Programming WebL ogic XML

Generating a New XML Document: Typical Steps

/1 send stream of f to another application
Conpl exPar se conpl exParse = new Conpl exParse();
conpl exPar se. par se(buf strean);

Closing the Input Stream

It is good programming practice to explicitly close the XML input stream when you
arefinished with it. To close an input stream, use the XM_I nput St r eam cl ose()
method, as shown in the following example:

/1 close the input stream
i nput.close();

Generating a New XML Document: Typical
Steps

The following procedure describes the typical steps for using the WebLogic XML
Streaming API to generate anew XML document.

Thefirst two steps are required. The next steps you take depend on how you want to
generate the XML file.

1. Import thewebl ogi c. xni . stream * classes.

2. Create an XML output stream to which to write the XML document. See
“Creating an XML Output Stream” on page 4-22.

3. Add eventsto the XML output stream. See “Adding Elements to the Output
Stream” on page 4-23.

4. Add attributes to the XML output stream. See “ Adding Attributes to an Element
on the Output Stream” on page 4-24.

5. Add an input stream to the output stream. See “ Adding an Input Stream to an
Output Stream” on page 4-25.

6. Print the output stream. See “Printing an Output Stream” on page 4-26.

Programming WebL ogic XML 4-19

4 Using the WebLogic XML Streaming API

7. Closethe output stream. See “ Closing the Output Stream” on page 4-26.

Example of Generating an XML Document

The following program shows an example of using the XML Streaming API to
generate an XML document.

The program first creates an output stream based onaPri nt Wi t er object, then adds
elements to the output stream to create asimple XML purchase order, described in the
comments of the program. The program also shows how to add an input stream based
on aseparate XML file to the output stream.

Note: The topics following the example describe it in more detail.

package exanpl es. xnl . stream

i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi
i mport webl ogi

.xm . stream XM.I nput St r eam

.xm . stream XM_Qut put St r eam

.xm . stream XM.I nput St r eanfFact ory;
.xm . stream XM_Nane;

.xm . stream XM_.Event ;

.xm . stream Start El enent ;

. xm . stream EndEl enent ;

.xm . stream Attri bute;

.xm . stream El ement Fact ory;

.xm . stream XM.St r eanExcepti on;
.xm . stream XM_Qut put St r eanfact ory;

OO0O000O00000O0

i mport java.io.FilelnputStream
i mport java.io. Fil eNot FoundExcepti on;
inmport java.io.PrintWiter;

/**

* Programthat prints out a very sinple purchase order that |ooks
* like the fol |l owi ng:

<pur chase_or der >
<nanme>Jul i et Shackel | </ name>
<itemid="1234" quantity="2">Fabul ous Chair</itenpr
<l-- this is a conment-->
<anot her_file>
This comes fromanother file called "another_file.xm"
</ anot her file>
</ pur chase_or der >

E T I R

4-20 Programming WebLogic XML

Generating a New XML Document: Typical Steps

In the preceding XM_ file, the <another_file> element is actually another
XML file that is passed as an argunent to the program converted into an
XMLl nput Stream then added to the output stream
/
public class PrintPurchaseOrder {

* F F * *

*

/
Hel per nmethod to get a handle on a stream
Takes in a name and returns a stream This

net hod uses the InputStreanfFactory to create an
instance of an XM.I nput Stream

@aram nane The file to parse

@eturn XMl nput Stream the streamto parse

E R I I S I

-

public XM.I nput Stream get | nput Strean(Stri ng nanme)
t hrows XM.StreanException, FileNotFoundException
{
XMLl nput Streanfactory factory = XM.I nput St reanfact ory. newl nstance();
XMLl nput Stream st ream = factory. newl nput St rean{ new Fi | el nput Stream nane)) ;
return stream
}
public static void main(String args[])
t hrows Exception

{
Print PurchaseOrder printer = new PrintPurchaseOrder();
11
/1 Create an output stream
I

XM_CQut put St reanfactory factory = XM.Qut put St reanfact ory. newl nstance() ;
XM_CQut put St ream out put = factory. newQut put St r ean(new
PrintWiter(Systemout,true));

/1 add the <purchase_order> root el enent
out put . add(El ement Factory. createStart El ement (" purchase_order"));
out put . add(El enent Fact ory. creat eCharacterData("\n"));

/'l add the <nane> el ement

out put . add(El ement Fact ory. createStart El enment ("nane"));

out put . add(El ement Fact ory. cr eat eCharacterData("Jul i et Shackell"));
out put . add(El enent Fact ory. cr eat eEndEl enent (" nane")) ;

out put . add(El ement Fact ory. creat eCharacterData("\n"));

/] add the <itemr elenment along with the id and quantity attributes
out put . add(El enent Factory. createStartEl ement("itent));

out put . add(El enent Factory.createAttribute("id","1234"));

out put . add(El enent Factory.createAttribute("quantity","2"));

out put . add(El enent Fact ory. cr eat eChar act er Dat a(" Fabul ous Chair"));
out put . add(El ement Fact ory. creat eEndEl enent ("itent'));

out put . add(El enent Fact ory. creat eCharacterData("\n"));

Programming WebL ogic XML 4-21

4 Using the WebLogic XML Streaming API

/1 add a comment
output.add("<!-- this is a coment-->");
out put . add(El enent Fact ory. creat eCharacterData("\n"));

/] create an input streamfromeach XM. file argunment then add it to the output

for (int i=0; i < args.length; i++)

I

/1 Get an input streamand add it to the output stream
I

out put. add(printer.getlnputStrean{args[i]));

/1 Finally, end the root "purchase_order" el ement
out put . add(El enment Fact ory. cr eat eEndEl ement (" purchase_order"));

/1

// Print the results to the screen
/1

out put. flush();

/1l O ose the output streans
out put. cl ose();

}
}

The preceding program produces the following output:

<pur chase_or der >
<nane>Jul i et Shackel | </ name>
<itemid="1234" quantity="2">Fabul ous Chair</itenp
<l-- this is a comment-->
<anot her _fil e>
This is fromanother file.
</ anot her _fil e>
</ pur chase_or der >

Creating an XML Output Stream

One of thefirst steps in generating an XML document using the Weblogic XML
Streaming API isto create an output stream which holds the document as it is being
built. Creating an XML output stream is similar to creating an input stream: you first
create an instance of the XMLQut put St r eanFact or y and then create an output stream
with the XM_Qut put St r eanfFact ory. newQut put St r ean() method, as shownin the
following example:

4-22 Programming WebL ogic XML

Generating a New XML Document: Typical Steps

XM_CQut put St reanfactory factory = XM.Qut put St reanfact ory. newl nstance() ;
XM_Qut put St ream out put = factory. newQut put St r ean(new
PrintWiter(Systemout,true));

The following example shows how to create an XM_Cut put St r eambased on a DOM
tree:

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance();
dbf . set Val i dati ng(fal se);
dbf . set NanmespaceAwar e(true);
Docunent doc = dbf. newDocurent Bui | der (). newDocunent () ;
XMLQut put St ream out =
XM_CQut put St r eanfact ory. newl nst ance() . newQut put St rean{ doc) ;

Y ou can usethe XM_Qut put St r eanfFact or y. newQut put St r ean() method to create
an output stream based on the following four Java objects, depending on what the final
form of the XML document will be (such as afile on the operating system, aDOM
tree, and so on):

m java.io.QutputStream
m java.io.Witer
m org. xn . sax. Cont ent Handl er

® org. w3c. dom Docunent

Adding Elements to the Output Stream

Use the XMLQut put St ream add(XM_Event) method to add elements to the output
stream. Use the El enent Fact or y to create the particular element.

The El ement Fact or y interface includes methods to create each type of element; the
general format iSEl ement Fact ory. cr eat eXXX() where XxX refersto the particular
element, such ascreat eSt art El ement (), cr eat eChar act er Dat a() , and so on.
Y ou can create most elements by passing thenameasast ri ng or as an XM_Nane.

Warning: TheXM.Qut put St r eamdoes not validate your XML.

Note: Each timeyou create a start element, you must explicitly also create an end
element at some point. The same rule applies to creating a start document.

For example, assume you want to create the following snippet of XML:

<nanme>Jul i et Shackel | </ nanme>

Programming WebL ogic XML 4-23

4 Using the WebLogic XML Streaming API

The Java code to add this element to an output stream is as follows:

out put . add(El enent Fact ory. createStart El ement ("nane"));

out put . add(El ement Fact ory. creat eChar act er Data("Jul i et Shackel | "));
out put . add(El ement Fact ory. cr eat eEndEl enent (" nane"));

out put . add(El ement Fact ory. creat eCharacterData("\n"));

Thefinal creat eChar act er Dat a() method adds a newline character to the output
stream. Thisis optional, but useful if you want to create human-readable XML.

Adding Attributes to an Element on the Output Stream

Use the XM_Qut put St ream add(At tri but e) to add attributes to an element you
have just created. Usethe El ement Fact ory. creat eAttri but e() method to create
aparticular attribute.

For example, assume you want to create the following snippet of XML:
<itemid="1234" quantity="2">Fabul ous Chair</itenpr
The Java code to add this element to an output stream is as follows:

out put. add(El ement Factory. createStartEl ement("itent));

out put. add(El ement Factory. createAttribute("id", "1234"));

out put . add(El ement Factory. createAttribute("quantity","2"));

out put . add(El ement Fact ory. cr eat eChar act er Dat a(" Fabul ous Chair"));
out put . add(El enent Fact ory. creat eEndEl enrent ("itent'));

out put . add(El ement Fact ory. creat eCharacterData("\n"));

Note: Besure you add attributes to an element after you create the start element but
before you create the corresponding end element. Otherwise, although your
code will compile successfully, you will get aruntime error when you try to
run the program. For exampl e, the following code returns an error because the
attributes are added to the <i t en> element after the element has been
explicitly ended:

out put. add(El ement Factory.createStartEl ement ("itent'));

out put . add(El ement Fact ory. creat eEndEl ement ("itent));

out put. add(El ement Factory. createAttribute("id", "1234"));

out put . add(El ement Factory. createAttribute("quantity","2"));

out put . add(El ement Fact ory. cr eat eChar act er Dat a(" Fabul ous Chair"));
out put. add(El ement Fact ory. creat eCharacterData("\n"));

4-24 Programming WebLogic XML

Generating a New XML Document: Typical Steps

Adding an Input Stream to an Output Stream

When creating an XML output stream, you might want to add an existing XML
document, such asan XML fileor aDOM tree, to the output stream. To do this, you
must first convert the XML document to an XML input stream, then use

XM_Qut put St r eam add(XMLI nput St r ean) method to add the input stream to the
output stream.

The following example first shows a method called getl nputStream() that creates an
XML input stream from an XML file and then how to use the method to add the created
input stream to an output stream:

*

Hel per method to get a handle on a stream
Takes in a name and returns a stream This

net hod uses the InputStreanfFactory to create an
instance of an XM.I nput Stream

@aram nane The file to parse

@eturn XM.I nput Stream the streamto parse

* % X X X X X X

~

public XM.I nput Stream get | nput Strean(Stri ng nanme)
t hrows XM.StreankException, FileNotFoundException
{
XMLl nput Streanfactory factory = XM.I nput St reanfact ory. newl nstance();

XMl nput Stream stream = factory. newl nput Strean(new Fi | el nput St reanm(nane)) ;
return stream

/1 create an input streamfromeach XM. fil e argurment then add it to the output
for (int i=0; i < args.length; i++)
I

/] Get an input streamand add it to the output stream
11

out put. add(printer.getlnputStrean(args[i]));

Programming WebL ogic XML 4-25

4 Using the WebLogic XML Streaming API

Printing an Output Stream

Use the XM_Qut put St ream f | ush() method to print out the XML output stream to
whatever object you created it from. For example, if you created an XML output
stream fromaPri nt Wi t er object, thenthef | ush() method printsthe stream to the
standard output.

Note: If you are writing to an XML OutputStream based on a DOM tree, you must
execute thef 1 ush() method before you can manipulate the DOM.

The following example shows how to print an output stream:

/1

/1l Print the results to the screen
/1

out put. flush();

Closing the Output Stream

4-26

It is good programming practice to explicitly close the XML output stream when you
arefinished withit. To close an output stream, use the XMLQut put St r eam cl ose()
method, as shown in the following example:

/1 close the output stream
out put. cl ose();

Programming WebL ogic XML

CHAPTER

5 Using the WebLogic
XPath API

The following sections provide information about the WebL ogic X Path API:
m “Overview of the WebL ogic XPath API” on page 5-1

m “Using the DOMXPath Class’ on page 5-2

m “Using the StreamXPath Class’ on page 5-6

Overview of the WebLogic XPath API

The WebLogic XPath API contains all of the classes required to perform XPath
matching against a document represented as a DOM, XM_Node, or against an

XMLI nput St ream Usethe API if you want to identify a subset of XML elements
within an XML document that conform to a given pattern.

For additional API reference information about the WebL ogic XPath API, see the
weblogic.xml.xpath Javadoc at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.

Programming WebL ogic XML 51

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

5 Using the WebLogic XPath API

Using the DOMXPath Class

This section describes how to use the DOVXPat h class of the WebL ogic XPath API to
perform X Path matching against an XML document represented asaDOM The section
first provides an example and then adescription of the main steps used in the example.

Example of Using the DOMXPath Class

The sample Java program at the end of this section usesthe following XML document
in its matching:

<?xm version='"1.0" encodi ng='us-ascii'?>
<l-- "Purchaseorder". -->

<pur chaseor der

depart ment =" Sal es"

dat e="01-11-2001"

r ai sedby="Pi cachu"

>

<item
| D="101">
<title>Laptop</title>
<quantity>5</quantity>
<make>Del | </ make>

<litenpr

<item
| D="102">
<title>Desktop</title>
<quantity>15</quantity>
<make>Del | </ make>

<litenpr

<item
| D="103">
<title>Ofice Software</title>
<quantity>10</quantity>
<make>M cr osof t </ make>

<litenpr

</ pur chaseor der >

The Java code example is as follows:

5-2 Programming WebL ogic XML

Using the DOMXPath Class

package exanpl es. xnl . xpat h;

i mport java.io. | OException;

inmport java.util.lterator;

inport java.util. Set;

i mport javax.xml . parsers. Docunent Bui | der;

i mport javax.xmnl . parsers. Docunent Bui | der Fact ory;
i mport javax.xmnl . parsers. Parser ConfigurationException;
i mport org.w3c. dom Docunent ;

i nport org.w3c. dom Node;

i mport org.xnm . sax. SAXExcepti on;

i mport webl ogi c. xm . xpat h. DOMXPat h;

i nport webl ogi c. xm . xpat h. XPat hExcept i on;

/**

* This class provides a sinple exanple of how to use the DOWPat h
* API.

*

* @ut hor Copyright (c) 2002 by BEA Systens, Inc. Al Rights Reserved.
*/

public abstract class DOWXPat hExanpl e {
public static void main(String[] ignored)
t hrows XPat hException, Parser Confi gurati onExcepti on,

SAXExcepti on, | OException

/1l create a domrepresentation of the docunent
String file = "purchaseorder.xm";
Docunent Bui | der Factory factory = Docunent Bui | der Fact ory. newl nst ance();
factory. set NanespaceAware(true); // doesn't matter for this exanple
Docunent Bui | der buil der = factory. newDocunent Bui | der () ;
Docunment doc = buil der. parse(file);
/1l create sone instances of DOWPath to eval uate agai nst the
/1 document .
DOMXPat h totalltens = // count nunber of itens
new DOMXPat h(" count (purchaseorder/item");

DOWXPat h atLeast10 = // titles of items with quantity >= 10

Programming WebL ogic XML 5-3

5 Using the WebLogic XPath API

new DOWMXPat h(" pur chaseorder/itenfquantity >= 10]/title");
/1 eval uate them agai nst the docunent
doubl e count = totalltens. eval uat eAsNunber (doc);
Set nodeset = at Least 10. eval uat eAsNodeset (doc);
/] output results
Systemout.println(file+" contains "+count+" total itens.");
Systemout.println("The followi ng itens have quantity >= 10:");
if (nodeset !'= null) {
Iterator i = nodeset.iterator();
whi | e(i.hasNext()) {
Node node = (Node)i.next();
System out.printIn(" "+node. get NodeNane() +

": "+node. get Fi rst Chil d(). get NodeVal ue());

}
/1 note that at this point we are free to continue using eval uate

/] atlLeast10 and totalltens agai nst ot her docunents

Main Steps When Using the DOMXPath Class

The following procedure describes the main steps to use the DOMXPat h class to
perform XPath matching against an XML document represented as a DOVt

1. Createanorg. wdc. dom Docunent object from an XML document, as shownin
the following code excerpt:

String file = "purchaseorder.xm";
Docunent Bui | der Factory factory =
Docurnent Bui | der Fact ory. new nst ance() ;

54 Programming WebL ogic XML

Using the DOMXPath Class

Docunent Bui | der buil der = factory. newDocunent Bui | der () ;
Docurment doc = buil der.parse(file);

2. Create a DOVXPat h object to represent the X Path expression you want to evaluate
against the DOM.

The following example shows an X Path expression that counts the itemsin a
purchase order:

DOMXPath totalltens =
new DOMXPat h("count (purchaseorder/item");

The following example shows an X Path expression that returns the titles of
items whose quantity is greater or equal to 10:

DOMXPat h at Least 10 =
new DOMXPat h(" purchaseorder/itenfquantity >= 10]/title");

3. Evalute the XPath expression using one of the DOVXPat h. eval uat eAs XXX()
methods, where XXX refers to the data type of the returned data, such as Bool ean,
Nodeset , Nunber, Or Stri ng.

The following example shows how to use the eval uat eAsNunber () method to
evaluatethet ot al I t ens XPath expression:

doubl e count = total ltens. eval uat eAsNunber (doc) ;
Systemout.println(file+" contains "+count+" total itens.");

The following example shows how to use the eval uat eAsNodeset () method to
return aSet of or g. w3c. dom Nodes which you can iterate through in the
standard way:

Set nodeset = atlLeast 10. eval uat eAsNodeset (doc) ;

Systemout.printIn("The foll owing itens have quantity >= 10:");
if (nodeset != null) {
Iterator i = nodeset.iterator();
whi | e(i. hasNext ()) {
Node node = (Node)i.next();
Systemout. println(" "+node. get NodeNane() +
": "+node. get First Chil d(). get NodeVal ue());

}

For additional API reference information about the WebL ogic XPath API, see the
weblogic.xml.xpath Javadoc at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.

Programming WebL ogic XML 55

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

5 Using the WebLogic XPath API

Using the StreamXPath Class

The examplein this section showshow to usethe St r eanXPat h class of the WebL ogic
XPath API to perform X Path matching against an XMLI nput St ream The section first
provides an example and then a description of the main steps used in the example.

Example of Using the StreamXPath Class

The sample Java program at the end of this section usesthe following XML document
in its matching:

<?xm version='"1.0" encodi ng='us-ascii'?>
<l-- "Stock Quotes". -->

<st ock_quot es>
<stock_quot e synbol =" BEAS' >
<when>
<dat e>01/ 27/ 2001</ dat e>
<tinme>3: 40PNk/ti me>

</ when>
<price type="ask" val ue="65.1875"/ >
<price type="open" val ue="64. 00"/ >

<price type="dayhi gh" val ue="66.6875"/>
<price type="dayl ow' value="64.75"/>
<change>+2. 1875</ change>
<vol ume>7050200</ vol ume>
</ st ock_quot e>
<stock_quote synbol =" MSFT' >
<when>
<dat e>01/ 27/ 2001</ dat e>
<time>3: 40PMWc/ ti me>

</ when>
<price type="ask" val ue="55.6875"/>
<price type="open" val ue="50. 25"/ >

<price type="dayhi gh" val ue="56"/>
<price type="dayl ow' value="52.9375"/>
<change>+5. 25</ change>
<vol ume>64282200</ vol une>
</ st ock_quot e>
</ st ock_quot es>

5-6 Programming WebL ogic XML

Using the StreamXPath Class

The Java code for the example is as follows:

package exanpl es. xmnl . xpat h;

inport java.io.File;

i mport webl ogi c. xm .stream Attri bute;

i nport webl ogi c. xm . stream Start El enent;

i nport webl ogi c. xm . stream XM_Event ;

i mport webl ogi c. xm . stream XM.I nput St r eam

i nport webl ogi c. xml . stream XM.I nput St reanfact ory;
i nport webl ogi c. xm . stream XM.St r eanExcepti on;
i mport webl ogi c. xm . xpat h. St reanXPat h;

i nport webl ogi c. xm . xpat h. XPat hExcept i on;

i nport webl ogi c. xml . xpat h. XPat hSt r eanfact ory;

i mport webl ogi c. xm . xpat h. XPat hSt r eamCbser ver;
/**

* This class provides a sinple exanple of how to use the StreamXPath
* APl .

*

* @ut hor Copyright (c) 2002 by BEA Systens, Inc. Al Rights Reserved.
*/

public abstract class StreanXPat hExanpl e {
public static void main(String[] ignored)

t hrows XPat hException, XM.StreanException

/]l Create instances of StreamXPath for two xpaths we want to match
/1 against this tream
StreamXPat h synbol s =

new StreanmXPat h("stock_quot es/ st ock_quote");
St reamXPat h openi ngPrices =

new StreamXPat h("stock_quot es/ stock_quote/ price[@ype='"open']");
/1l Create an XPat hStreanfactory.
XPat hStreanfactory factory = new XPat hStreanfactory();
/1 Create and install two XPathStreamtbservers. |In this case, we
/] just use to anonynous classes to print a nmessage when a

/1 callback is received. Note that a given observer can observe

Programming WebL ogic XML 5-7

5 Using the WebLogic XPath API

/1 nore than one xpath, and a given xpath can be observed by
/1 mutliple observers.
factory.install (synbols, new XPat hStreambserver () {
public void observe(XM.Event event) {
Systemout.println("Matched a quote: "+event);
}
public void observeAttribute(StartEl ement e, Attribute a) {} //ignore
public voi d observeNanespace(StartEl ement e, Attribute a) {} //ignore
1
/1 Note that we get matches for both a start and an end el enents,
/1 even in the case of <price/> which is an enpty elenent - this
/1 is the behavior of the underlying stream ng parser.
factory.install (openingPrices, new XPat hStreantbserver () {
public void observe(XM_.Event event) {
System out. println("Matched an opening price: "+event);
}
public void observeAttribute(StartEl ement e, Attribute a) {} //ignore
public voi d observeNanespace(StartEl ement e, Attribute a) {} //ignore
1
/1 get an XM.I nput Stream on the docunent
String file = "stocks. xm";
XMLI nput St ream sour ceStream = XM.I| nput St r eanfact ory. newi nst ance().
newl nput Stream new File(file));
/1 use the factory to create an XM.InputStreamthat will do xpath
/1 matchi ng agai nst the source stream
XMLl nput Stream mat chi ngStream = factory. createStrean(sourceStrean;

/1l now iterate through the stream

5-8 Programming WebL ogic XML

Using the StreamXPath Class

System out. println("Mtching against xml streamfrom"+file);
whi | e(mat chi ngSt ream hasNext ()) {
/1l we don't do anything with the events in our exanple - the
/1 XPat hStreanCbserver instances that we installed in the
/] factory will get call backs for appropriate events

XMLEvent event = matchi ngStream next();

Main Steps When Using the StreamXPath Class

The following procedure describes the main steps to use the St r eanXPat h class to
perform XPath matching against an XML document represented as an
XMLI nput St r eamnt

1. Createa St r eanXPat h object to represent the XPath expression you want to
evaluate against the XMLI nput St r eam

The following example shows an X Path expression that searches for stock
guotesin an XML document:

StreanXPat h synbols =
new StreanmXPat h("stock_quot es/stock_quote");

The following example shows an X Path expression that matches stock quotes
using their opening price:

St reamXPat h openi ngPri ces = new

St reamXPat h(" st ock_quot es/ st ock_quot e/ pri ce[@ype='open']");

2. Create an XPat hSt r eanfact ory. Use thisfactory class to specify the set of
St r eanXPat h objects that you want to evaluate against an XMLI nput St r eamand
to create observers (using the XPat hSt r eanObser ver interface) used to register
a callback whenever an XPath match occurs. The following example shows how
to create the XPat hSt r eanfact or y:

XPat hStreanfactory factory = new XPat hStreanfact ory();

Programming WebL ogic XML 5-9

5 Using the WebLogic XPath API

5-10

3. Create and install the observers using the XPat hSt r eanfact ory. i nstal | ()
method, specifying the X Path expression with thefirst St r eamXPat h parameter,
and an observer with the second XPat hSt r eanObser ver parameter. The
following example shows how to use an anonymous class to implement the
XPat hSt r eanbser ver interface. The implementation of the obser ve()
method simply prints a message when a callback isreceived. Inthe example, the
observeAttribute() andobser veNamespace() methodsdo nothing.

factory.install (synbols, new XPat hStreambserver () {
public void observe(XM.Event event) {
System out. println("Matched a quote: "+event);

public void observeAttribute(StartEl ement e, Attribute a) {}
public void observeNanespace(StartEl ement e, Attribute a) {}

}
)

4. Create an XMLI nput St r eamfrom an XML document:
String file = "stocks.xm";

XMLl nput St ream sour ceStream =
XM.I nput St r eanfact ory. newl nst ance() . newl nput St r ean(new
File(file));

5. Usethecreat eSt rean() method of the XPat hSt r eanFact ory to create a new
XMLI nput St r eamthat will perform XPath matching against the original
XMLI nput St ream

XMLI nput St ream nat chi ngSt ream =
factory. createStrean(sourceStrean;

6. lterate over the new XMLInputStream. During the iteration, if an XPath match
occurs, the registered observer is notified:

whi | e(mat chi ngSt ream hasNext ()) {
XMLEvent event = matchi ngStream next();

}

For additional API reference information about the WebL ogic XPath API, seethe
weblogic.xml.xpath Javadoc at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.

Programming WebL ogic XML

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

CHAPTER

© XML Programming
Best Practices

The following sections discuss best programming practices when creating Java
applications that process XML data:

m “Whento Usethe DOM, SAX, and Streaming APIS’ on page 6-1

m “Increasing Performance of XML Validation” on page 6-2

m “Whento Use XML Schemasor DTDS’ on page 6-3

m “Configuring External Entity Resolution for Maximum Performance” on page
6-4

m “Using SAX InputSources’ on page 6-4

m “Improving Performance of Transformations’ on page 6-5

When to Use the DOM, SAX, and Streaming
APIs

Y ou can parsean XML document withthe DOM, SAX, or Streaming API. Thissection
describes the pros and cons of each API.

The DOM API is good for small documents, or those that contain under a thousand
elements. Because DOM constructs atree of your XML data, it isideal for editing the
structure of your XML document by adding or deleting elements.

Programming WebL ogic XML 6-1

6 xmL Programming Best Practices

The DOM API parses the entire XML document and convertsit into aDOM tree
before you can begin processing it. This cost might be beneficial if you know that you
need to access the entire document. If you occasionally need to access only part of the
XML document, the cost could decrease the performance of your application with no
added benefit. In this case the SAX or streaming API is preferable.

The SAX API isthe most lightweight of the APIs. It isideal for parsing shallow
documents (documents that do not contain much nesting of elements) with unique
element names. SAX uses a callback structure; this means that programmers handle
parsing events asthe APl isreading an XML document, which isarelatively efficient
and quick way to parse.

However, the callback nature of SAX also meansthat it is not the best API to useif
you want to modify the structure of your XML data. Additionally, programming your
application to handle callbacks is not always straight-forward and intuitive.

The streaming APl isbased on SAX, so all thereasonsfor using SAX also apply to the
streaming API. In addition, the streaming API is more intuitive to use than SAX,
because programmers ask for events rather than react to them as they happen. The
streaming APl isalso best if you plan to passtheentire XML document asaparameter;
it iseasier to passan input stream than it isto pass SAX events. Finally, the streaming
API was designed to be used when binding XML data to Java objects.

Increasing Performance of XML Validation

6-2

If the performance of your XML application decreases dueto a parser validation issue,
and you need to validate your XML documents, you might improve the performance
of your application by writing your own customized code that validates the data as it
is being received or parsed, rather than using the set val i dat i ng() method of the
Docunent Bui | der Fact ory or SaxPar ser Fact ory.

When you turn on validation while parsing an XML document with SAX or DOM, the
parser might do more validation of the document than you really need, thus decreasing
the overall performance of the application. Instead, consider choosing certain points
during the parsing of the document when you want to check that the XML document
isvalid, and add your own Java code at those points.

Programming WebL ogic XML

When to Use XML Schemas or DTDs

For example, assume you are writing an application that uses the WebL ogic XML
Streaming API to processes an XML purchase order. Because you know that the first
element of the document should be <pur chase_or der >, you can quickly verify that
the document appears to be valid by pulling the first element off the stream and
checking its name. This check does not ensure that the entire XML document isvalid,
of course, but you can continue checking for known elements as you pull el ements
from the stream. These quick checks are much faster than using the standard

set Val i dat i ng() methods.

When to Use XML Schemas or DTDs

There are two ways to describe the structure of an XML document: DTDs and XML
Schemas.

The current trend is to use Schemas to describe XML documents. Schemas are much
more expressive than DTDs because the set of available data types to describe XML

elementsismuch richer and you can describe mor spedifically what isvalidinan XML
document. In addition, you can only use Schemas, and not DTDs, in SOAP messages.
Because SOAP isthe main messaging protocol used in Web services, consider using
Schemas to describe any XML documents that might be used as either input or output
parameters to Web services.

Still, DTDs have afew advantages. DTDs are more widely supported than Schemas,
although that is changing rapidly. Because DTDs are less expressive than Schemas,
they are easier to write and manage.

However, BEA Systems recommends that you use Schemas to describe your XML
documents.

Programming WebL ogic XML 6-3

6 xmL Programming Best Practices

Configuring External Entity Resolution for
Maximum Performance

BEA Systems highly recommends you store external entities locally whenever
possible rather than always retrieving the entity over the network. Storage improves
the performance of your applications because it is much faster to look up an entity on
the same machine as WebL ogic Server than it isto look it up over a network
connection.

For detailed information on configuring external entity resolution for WebLogic
Server, see “External Entity Configuration Tasks’ on page 8-6.

Using SAX InputSources

6-4

When you use the SAX API to parse an XML document, you first create an

I nput Sour ce object from the XML document and then passthel nput Sour ce object
to the par se() method. You can create the | nput Sour ce object from either a
java.io.lnputStream orjava.io. Reader object based on your XML data.

BEA recommends that you create an | nput Sour ce from aj ava. i o. I nput St ream
object whenever possible. When passed an | nput St r eamobject, the SAX parser
auto-detects the character encoding of the XML dataand automatically instantiates an
I nput St reanReader object for you, using the correct character encoding. In other
words, the parser doesall the character encoding work for you, whichismorelikely to
be error-free at runtime than if you decide to specify the character encoding yourself.

Programming WebL ogic XML

Improving Performance of Transformations

Improving Performance of Transformations

XSLT isalanguage for transforming an XML document into a different format, such
as another XML document, HTML, WML, and so on. To use XSL T, you create a
stylesheet that defines how each element in the input XML document should be
transformed in the output document.

Although XSLT is apowerful language, creating stylesheets for complex
transformations can be very complicated. In addition, the actual transformation
requires alot of resources and might decrease the performance of your application.

Therefore, if your transformations are complex, consider writing your own
transformation code in your application rather than using XSLT stylesheets. Also
consider usingthe DOM API. First parsethe XML document, manipulate theresulting
DOM tree as needed, then write out the new document, using custom Java code to
transform it into its final format.

Programming WebL ogic XML 6-5

6 xmL Programming Best Practices

6-6 Programming WebL ogic XML

CHAPTER

{ XML Programming
Techniques

The following sections provide information about specific XML programming
techniques for devel oping a J2EE application that processes XML data:

m “Transmitting XML Data Between A Java Client and WebL ogic Server” on page
7-1

m “Handling XML Documentsin aJMS Application” on page 7-3
m “Accessing External Entities That Do Not Have an HTTP Interface” on page 7-4
m “Retrieving XML Document Header Information” on page 7-5

Transmitting XML Data Between A Java
Client and WebLogic Server

Inatypical J2EE application, aclient application sends XML datato aservlet or a JSP
that processesthe XML data. The servlet or JISPthen either sendsthe dataon to another
J2EE component, such as a IMS destination or an EJB, or sends the processed XML
data back to the client in the form of another XML document.

Programming WebL ogic XML 7-1

{ XML Programming Techniques

i mport
i mport
i mport

public

To send XML datafrom a Java client to a WebL ogic Server-hosted serviet or JSP
which then returns the data to the client, use thej ava. net . URLConnect i on class.
This class represents the communication link between an application and an URL,
which in this case is the URL that invokes the servlet or JSP. Instances of the
URLConnect i on class send the XML document using the HTTP POST method.

The following Java client program from the WebL ogic XML examples shows how to
transmit XML data between the program and a JSP:

java. net.*;

java.io.*;

java.util.*;

class dient {

public static void main(String[] args) throws Exception {

if

}

(args.length < 2) {

Systemout.println("Usage: java exanples.xm .Client URL Filenane");

el se {

try {

URL url = new URL(args[0]);

String docunment = args[1];

Fi | eReader fr = new Fi | eReader (docunent);

char[] buffer = new char[1024*10];

int bytes_read = 0;

if ((bytes_read = fr.read(buffer)) != -1)
{

URLConnection urlc = url.openConnection();

url c. set Request Property("Content-Type", "text/xm");

url c. set DoCut put (true);

url c. set Dol nput (true);

PrintWiter pw = new PrintWiter(urlc.getQutputStream());

/1 send xm to jsp
pw.wite(buffer, 0, bytes_ read);
pw. cl ose();

Buf f eredReader in = new BufferedReader (new

| nput StreanmReader (url c. getlnputStrean()));

7-2

String inputlLine;
while ((inputLine = in.readLine()) != null)
System out . println(inputLine);

in.close();
}

}
catch (Exception e) {
e.printStackTrace();

Programming WebL ogic XML

Handling XML Documents in a JMS Application

The example shows how to open a URL connection to the JSP by using a URL from
the argument list; obtain the output stream from the connection; and print the XML
document provided in the argument list to the output stream, thus sending the XML
data to the JSP. The example then shows how to usetheget | nput St r ean{) method
of the URLConnect i on classto read the XML datathat the JSAP returns to the client
application.

Thefollowing code segments from asampl e JSP show how the JSP receives XML data
from the client application, parses the XML document, and sends XML data back:

Buf f eredReader br = new BufferedReader (request. get Reader());
Docurent Bui | der Factory fact = Docunent Bui | der Fact ory. newl nst ance();
Docunent Bui | der db = fact. newDocunent Bui | der () ;

Docunent doc = db. parse(new | nput Source(br));

PrintWiter responseWiter = response.getWiter();
responseWiter.println("<?xm version="1.0"?>");

For detailed information on programming WebL ogic servlets and JSPs, see
Programming WebLogic HTTP Serviets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html and Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs81b/jsp/index.html

Handling XML Documents in a JMS
Application

WebL ogic Server provides the following extensions to some Java Message Service
(IMS) classes to handle XML documentsin a JM S application:

B webl ogi c. j ms. ext ensi ons. W.Sessi on, which extends the IMS class
j avax. j ms. Sessi on

Programming WebL ogic XML 7-3

http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html

{ XML Programming Techniques

® webl ogi c. j ms. ext ensi ons. W.QueueSessi on, which extends the IMS class
j avax.j ms. QueueSessi on

® webl ogi c. j ms. ext ensi ons. W.Topi cSessi on, which extends the IMS class
j avax. j ns. Topi cSessi on

® webl ogi c. j . ext ensi ons. XM_Message, which extends the IMS class
j avax. j ms. Text Message

If you use the XM_Message class to send and receive XML documentsinaJMS
application, rather than the more generic Text Message class, you can use
XML-specific message selectorsto filter unwanted messages. In particular, you can
use the method JMS_BEA_SELECT to specify an XPath query to search for an XML
fragment in the XML document. Based on the results of the query, a message
consumer might decide not to receive the message, thus possibly reducing network
traffic and improving performance of the IM S application.

To use the XM_Message classto contain XML messagesin a JM S application, you
must create either aW.QueueSessi on or W.Topi cSessi on object, depending on
whether you want to use JIM S queues or topics, rather than the generic QueueSessi on
or Topi cSessi on objects, after you have created aJMS Connect i on. Then use the
creat eXM_Message() method of the W.Sessi on interface to create an XM_Message
object.

For detailed information on using XM_Message objectsin your JM S application, see
Programming WebLogic JMSat http://e-docs.bea.com/wls/docs81b/jms/index.html.

Accessing External Entities That Do Not Have
an HTTP Interface

7-4

WebL ogic Server can retrieve and cache external entities that reside in external
repositories, aslong asthey have an HTTP interface, such asa URL, that returns the
entity. See* External Entity Configuration Tasks” on page 8-6 for detailed information
on using the XML Registry to configure external entities.

If you want to access an external entity that is stored in arepository that does not have
an HTTP interface, you must create an interface. For example, assume you store the
DTDsfor your XML documentsin a database table, with columns for the systemid,

Programming WebL ogic XML

http://e-docs.bea.com/wls/docs81b/jms/index.html

Retrieving XML Document Header Information

public id, and text of the DTD. To accessthe DTD as an external entity from a
WebL ogic XML application, you could create a servlet that uses JDBC to access the
DTDsin the database.

Because you invoke servlets with URLs, you now have an HTTP interface to the
external entity. When you create the entity registry entry in the XML Registry, you
specify the URL that invokes the servlet as the location of the external entity. When
WebL ogic Server isparsing an XML document that contains areference to this
external entity, it invokesthe servlet, passing it the public and system id, which the
servlet can internally use to query the database.

Retrieving XML Document Header
Information

Suppose you want only XML document header information, such asthe root element,
system ID, or public ID, instead of all the actual data within the document. Fully
parsing the document is unnecessary and might decrease the performance of your
application if the XML document is very large.

Instead of parsing the XML document, you can get header information by using the
webl ogi c. xm . sax. XM.I nput Sour ce class, which is Weblogic Server's extension
totheor g. xm . sax. | nput Sour ce class. Thefollowing example segment shows how
to use this class:

i mport webl ogi c. xm . sax. XMLI nput Sour ce;

String input XM = “file://xm _docs/ myXmM.doc. xm ”;
XMLI nput Source xi s = new XM.I nput Sour ce(i nput XM.) ;
String docType = Xxis. get Root Tag();

String publiclD = xis.getPublicld();

String system D = xis.getSystem d();

String namespaceURlI = xis. get NamespaceURI ();

See the WebL ogic Server API Reference for more information on the
webl ogi c. xm . sax. XM_I nput Sour ce class.

Programming WebL ogic XML 7-5

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

7 xmL Programming Techniques

7-6 Programming WebL ogic XML

CHAPTER

8 Administering
WebLogic Server XML

The following sections describe XML administration with WebL ogic Server:
m “Overview of Administering WebL ogic Server XML” on page 8-1

m “XML Parser and Transformer Configuration Tasks’ on page 8-4

m “Externa Entity Configuration Tasks’ on page 8-6

Overview of Administering WebLogic Server
XML

Y ou access the XML Registry through the Administration Console and use it to
configure WebL ogic Server for XML applications.

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/consol e

where

m host refersto the computer on which the WebL ogic Administration Server is
running.

Programming WebL ogic XML 8-1

8 Administering WebLogic Server XML

m port refersto the port number where WebL ogic Administration Server is
listening for connection requests. The default port number for WebL ogic
Administration Server is 7001.

XML Administration Tasks

Y ou create, configure, and usethe XML Registry through the Administration Console.
Using the Administration Console XML Registry has several benefits:

m Configuration of XML Registry changes take effect automatically at run time,
provided you use JAXP in your XML applications.

m When you make changes to the XML Registry, it is not necessary to change your
XML application code.

m Entity resolution is done locally. You can use the XML Registry either to define
alocal copy of an entity or to specify that WebL ogic Server cache an entity from
the Web for a specified duration and use the cached copy rather than the one out
on the Web.

Y ou can usethe XML Registry to specify:

m An aternative server-wide XML parser instead of the built-in parser.

m An XML parser per document type.

m An alternative server-wide transformer instead of the built-in transformer.

m External entitiesthat are to be resolved by using local copies of the entities.
Once you specify these entities, the Administration Server stores local copies of
them in the file system and automatically distributes them to the server’s parser
at parsetime. This feature eliminates the need to construct and set SAX
EntityResolvers.

m Externa entitiesto be cached by WebL ogic Server after retrieval from the Web.
You specify how long these external entities should be cached before WebL ogic
Server re-retrieves them and when WebL ogic should first retrieve the entities,
either at application run time or when WebL ogic Server starts.

These capabilities are for use on the server side only.

8-2 Programming WebL ogic XML

Overview of Administering WebLogic Server XML

How the XML Registry Works

Y ou can create as many XML Registries asyou like; however, you can associate only
one XML Registry with a particular instance of WebL ogic Server.

If aninstance of WebL ogic Server does not have an XML Registry associated with it,
then the built-in parser and transformer are used when parsing or transforming
documents.

Once you associate an XML Registry with an instance of WebL ogic Server, all XML
configuration options are available for XML applications that use that server.

Y ou can make the following types of entriesfor agiven XML registry:
m Configure parsers and transformers

m Configure externa entity resolution

Note: The XML Registry is case sensitive. For example, if you are configuring a
parser for an XML document type whose root element is <CAR>, you must
enter CAR in the Root Element Tag field and not car or Car .

Parser Selection Within the XML Registry

The XML Registry is automatically consulted whenever you use JAXP to write your
XML applications. WebL ogic Server follows an ordered lookup when determining
which parser classto load:

1. Usethe parser defined for a particular document type.

2. Usethe dternative server-wide parser defined in the XML Registry associated
with the WebL ogic Server instance.

3. Usethe built-in Xerces parser.

The processis also true for transformers, except for the first step, because you cannot
define atransformer for a particular document type.

Programming WebL ogic XML 8-3

8 Administering WebLogic Server XML

Additionally, when WebL ogic Server starts, a SAX entity resolver isautomatically set
so that it can resolve entities that are declared in the registry. As aresult, users are not
required to modify their XML application codeto control the parsers used, or to set the
location of local copies of external entities. The parser being used and the location of
the external entity is controlled by the XML Registry.

Note: If you elect to use an API provided by a parser instead of JAXP, the XML
Registry has no effect on the processing of XML documents. For this reason,
it is highly recommended that you always use JAXP in your XML
applications.

XML Parser and Transformer Configuration
Tasks

By default, WebL ogic Server is configured to use the built-in parser and transformer
to parse and transform XML documents. In release 8.1, the built-in XML parser isone
based on Apache X erces (package namewebl ogi c. apache. xerces.*) and thebuilt-in
transformer is the Apache Xalan included in the JIDK 1.4.1 (package name

org. apache. xal an. *). Aslong as you use the default, you do not have to perform
any configuration tasks for your XML applications. If you want to use a parser or
transformer other than the built-in, you must usethe XML Registry to configure them,
as described in the following sections.

Configuring a Parser or Transformer Other Than the
Built-In

The following procedure first describes how to create an XML registry that defines
SAX and DOM parsers and transformers. It then describes how to associate the new
XML Registry with an instance of WebL ogic Server so that the server startsto usethe
new parsers and transformer.

Warning: Inversion 8.1 of WebLogic Server, you can plug in only the following
versions of the Apache Xerces parser:

84 Programming WebL ogic XML

XML Parser and Transformer Configuration Tasks

Xerces1.2.2
Xerces1.2.3
Xerces1.3.0
Xerces1.3.1
Xerces1.4.0
Xerces1.4.1
Xerces1.4.2
Xerces1.4.3
Xerces1.4.4

In addition, you can plug in only those versions of the Apache Xalan transformer
that are compatible with the preceding versions of the Apache Xerces parser.

1. Start the WebL ogic Administration Server and invoke the Administration Console
in your browser. See “Overview of Administering WebL ogic Server XML” on
page 8-1 for information on invoking the Administration Console.

2. Follow the steps outlined in Configuring a Parser or Transformer Other Than
the Built-In of the Administration Console Online Help.

Configuring a Parser for a Particular Document Type

When you configure a parser for a particular document type, you can use the
document’s system id, public id, or root element tag to identify the document type.

Warning: WebL ogic Server searches only thefirst 1000 bytes of an XML document

when attempting to identify its document type. If it does not find a
DOCTYPE identifier in those first 1000 bytes, it stops searching the
document and uses the parser configured for the WebL ogic Server
instance to parse the document.

Note: The following procedure assumes that you are going to create anew XML

registry, add the necessary parser registry entries, and associate it with a
server.

Programming WebL ogic XML 8-5

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002

Administering WebLogic Server XML

To configure a parser for a particular document type, follow these steps:

1. Start the WebL ogic Administration Server and invoke the Administration Console

in your browser.

See “Overview of Administering WebL ogic Server XML” on page 8-1 for
information on invoking the Administration Console.

. Follow the steps outlined in Configuring a Parser for a Particular Document

Type of the Administration Console Online Help.

External Entity Configuration Tasks

Use the XML Registry to configure external entity resolution and to configure and
monitor the external entity cache.

Configuring External Entity Resolution

8-6

Y ou can configure external entity resolution with WebL ogic Server in the following
two ways:

m Physicaly copy the entity files to a directory accessible by WebL ogic

Administration Server and specify that the Administration Server use the local
copy whenever the external entity isreferenced in an XML document.

Specify that a Managed Server cache external entities that are referenced with a
URL or a pathname relative to the Administration Server, either at server-startup
or when the entity isfirst referenced.

Caching the external entity in a Managed Server saves the remote access time
and provides alocal backup in the event that the Administration Server cannot
be accessed while an XML document is being parsed, due to the network or the
Administration Server being down.

You can configure the expiration date for a cached entity, at which point
WebL ogic Server re-retrieves the entity from the URL or Administration Server
and re-cachesit.

Programming WebL ogic XML

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml003
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml003

External Entity Configuration Tasks

Note: Inthefollowing procedureit is assumed that you are going to create a new
XML registry, add the necessary external entity resolution registry entries, and
associate it with a server.

To configure external entity resolution, perform the following steps:

1. Start the WebL ogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebL ogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Configuring External Entity Resolution of the
Adminsitration Console Online Help.

Configuring the External Entity Cache

Y ou can configure the following properties of the external entity cache:
m Size, in KB, of the cache memory. The default value for this property is 500 KB.

m Size, in MB, of the persistent disk cache. The default value for this property is5
MB.

m Number of seconds after which external entities in the cache become stale after
they have been cached by WebL ogic Server. Thisisthe default value for the
entire server - you can override this value for specific external entities when you
configure the entity. The default value for this property is 120 seconds (2
minutes).

To configure the external entity cache, follow these steps:

1. Start the WebL ogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebL ogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Configuring the External Entity Cachein the
Administration Online Help.

Programming WebL ogic XML 8-7

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml004
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml005

8 Administering WebLogic Server XML

Monitoring the External Entity Cache

A set of statisticsthat describes the external entity cache isavailable for you to use to
monitor the effectiveness of the cache. These statistics describe:

m The current state of the cache.
m The cumulative activity for the current session.

m The cumulative activity since the cache was created, typically when WebL ogic
Server started.

To monitor the externa entity cache, follow these steps:

1. Start the WebL ogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebL ogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Monitoring the External Entity Cache in the
Administration Console Online Help.

8-8 Programming WebL ogic XML

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml006

CHAPTER

O XML Reference

The following sections provide links to additional information about the XML

specifications, application programming interfaces (APIs), and tool s supported by

WebL ogic Server:

“XML APIS’ on page 9-1

“Code Examples’ on page 9-2

“Related WebL ogic Server Documentation” on page 9-2
“Tutorials and Online Courses’ on page 9-2

“Other XML Specifications and Information” on page 9-3

XML APIs

SAX 2.0 API at http://www.saxproject.org/

DOM (Document Object Model) Level 2 Specification at
http://www.w3.0rg/TR/DOM-L evel-2/

JAXP API 1.1 specification at http://java.sun.com/xml/
Apache Xerces Java Parser at http://xml.apache.org/xerces-j/index.html

Apache Xalan XSLT transformer at http://xml.apache.org/xalan-j/index.html

Programming WebL ogic XML

9-1

http://www.saxproject.org/
http://www.w3.org/TR/DOM-Level-2/
http://java.sun.com/xml/
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xalan-j/index.html

9 xmL Reference

Code Examples

XML code examples and supporting documentation are included in the WebL ogic
Server distribution at W._HOVE\ sanpl es\ server\ src\ exanpl es\ xmi \ sax, where
W._HOME refers to the top-level WebL ogic Platform directory.

Related WebLogic Server Documentation

m Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81b/webServices/index.html

= Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html

m Programming WebLogic IMS at
http://e-docs.bea.com/wls/docs81b/jms/index.html

m Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html

= Programming WebLogic HTTP Serviets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html

m Programming WebLogic Server for Wireless Services at
http://e-docs.bea.com/wls/docs81b/wirel ess/index.html

Tutorials and Online Courses

m A Technical Introduction to XML at
http://mww.xml.com/pub/a/98/10/guide0.html.

m XML Authoring Tutorial at http://www.xml.com/pub/r/32.

9-2 Programming WebL ogic XML

http://e-docs.bea.com/wls/docs81b/webserv/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jms/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/wireless/index.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32

Other XML Specifications and Information

m Working with XML and Java at http://java.sun.com/xml/tutorial_intro.html.

m Tutorialsfor using the Java 2 platform and XML technology at
http://devel operlife.com/.

m Developing XML Solutions with JavaServer Pages Technology at
http://java.sun.com/products/jsp/html/ISPXML.html.

m XML, Java, and the Future of the Web at
http://mww.xml.com/pub/a/w3j/s3.bosak.html.

m Chapter 14 of the XML Bible: XSL Transformations at
http://metal ab.unc.edu/xml/books/bible/updates/14.html.

m XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/ZHTML only/X SLTutorial/Books/Book1/index.html.

m XML SchemaPart O: Primer at
http://ww.w3.0rg/TR/2000/CR-xml schema-0-20001024/.

Other XML Specifications and Information

m XML 1.0 specification at http://www.w3.org/TR/REC-xml.html
m XML Schema Part 1. Structures at http://www.w3.org/TR/xmlschema-1/
m XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/

m W3C XML Namespaces 1.0 Recommendation at
http://www.w3.0rg/ TR/REC-xml-names/

m Extensible Stylesheet Language (XSL) 1.0 Specification at
http://www.w3.org/TR/xsl/

m JSR-000031 XML DataBinding Specification at
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031 xmld.htm

m XML Path Language (XPath) Version 1.0 Specification at
http://www.w3.0rg/TR/xpath

m XML Linking Language (XLink) Specification at http://mww.w3.org/TR/xlink

Programming WebL ogic XML 9-3

http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://java.sun.com/products/jsp/html/JSPXML.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/
http://www.w3.org/TR/REC-XML.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xsl/
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink

9 xmL Reference

m XML Pointer Language (X Pointer) Specification at
http://www.w3.org/ TR/WD-xptr

= W3C (World Wide Web Consortium) at http://www.w3c.org
m XML.com at http://www.xml.com

m XML FAQ at http://www.ucc.ie/xml/

m XML.org, The XML Industry Portal at http://www.xml.org/

9-4 Programming WebL ogic XML

http://www.w3.org/TR/WD-xptr
http://www.w3c.org
http://www.xml.com
http://www.ucc.ie/xml/
http://www.xml.org/

Index

A

Administration Console
configuring externa entity cache 8-7
configuring external entity resolution
8-6
configuring parsers 8-5
configuring transformers 8-5
invoking 8-1
monitoring external entity cache 8-8
Apache Serialize class 2-10
Apache Xerces 1-12

BEA XML Editor 1-17
built-in parser 1-12

C

Classes
DefaultHandler 1-14, 2-3
DocumentBuilder 2-4
HandlerBase 1-14
InputSource 7-5
Serialize 2-10
URL Connection 7-2
WL QueueSession 7-4
WL TopicSession 7-4
XMLInputSource 7-5
XMLMessage 7-4
customer support contact information xi

D

DefaultHandler class 1-14, 2-3
DOCTY PE declaration 1-4, 2-7
Document Object Model 1-6
documentation, whereto find it x
DocumentBuilder class 2-4
DOM 1-6
DTDs

definition 1-3

example of 1-3

used when validating 2-6

E

external entities
accessing 7-4

external entity resolution
description 1-16, 2-7
overview 1-16
parsing XML 2-7
WebL ogic Server features 2-8

G
generating XML
from aDOM tree 2-10
inaJsP 2-12
getAttribute method 1-14, 2-5

H

HandlerBase class 1-14

Programming WebL ogic XML [-i

InputSource class 7-5

J

JAXP
definition 1-8
packages 1-8

parsing XML 2-3

transforming XML 2-11, 2-13

WebL ogic implementation 1-14
JMS

handling XML documents 7-3
JSP tag library for XSLT 1-15
JSP, sending and receiving XML 7-1

M

Methods
getAttribute 1-14, 2-5
setAttribute 1-14, 2-5
setValidating 2-6

P

parsers
built-in 1-12
non-validating 2-6
using other than built-in 2-9
validating 2-6
WebL ogic FastParser 1-12, 2-9
parsing XML
external entity resolution 2-7
inaserviet 2-5
in DOM mode 2-4
in SAX mode 2-3
printing product documentation x
public identifier 2-7, 7-5

I -ii Programming WebL ogic XML

R
related information 9-2

S
SAX 1-6, 2-9
schemas
definition 1-3
example 1-4
used when validating 2-6
Serialize class 2-10
servlet attributes 1-14
servlet, sending and receiving XML 7-1
setAttribute method 1-14, 2-5
setValidating method 2-6
SGML 1-2
Simple API for XML 1-6
Specifications
JAXR 9-3
XLink 9-3
XML Schemas 9-3
XPath 9-3
XPointer 9-3
XSL 9-3
support
technical xi
system identifier 2-8, 7-5

T
transformers

using other than the built-in 2-21, 2-22
transforming XML

overview 2-13

using JAXP 2-13

using JSP tag library 2-16

U

URL Connection class 7-2

Vv
valid XML document 1-4, 2-6

w

WebL ogic FastParser 1-12, 2-9
WebLogic Server XML
administering overview 8-1
administration tasks 8-2
features of 1-11
well-formed XML document 1-5, 2-6
WL QueueSession class 7-4
WL Session class
Classes
WL Session 7-3
WL TopicSession class 7-4
WML 1-9

X

Xaan
converting to JAXP 2-14
Xerces
built-in parser 1-12
XML
code examples 1-16
common uses of 1-9
definition 1-2
DOM 1-6
DTD 1-3
editing 1-17
examples 1-2, 9-2
generating 2-10
learning about 1-17
online classes 9-2
parsing 2-2
programming techniques 7-1
SAX 1-6
schema 1-3

sending to and from servletsand jsp 7-1

syntax 1-2

transforming 2-13
tutorials 9-2
valid 1-4, 2-6
well-formed 1-5, 2-6
why useit 1-5
XML applications
steps to develop 2-1
XML Registry
benefits of using 8-2
configuring external entity cache 8-7
configuring external entity resolution
1-16, 2-8, 8-6
configuring parser for document type
8-5
configuring parsers 2-9, 8-3, 8-4
configuring transformers 2-22, 8-3, 8-4
description 1-15, 8-2
how it works 8-3
monitoring external entity cache 8-8
XMLInputSource class 7-5
XMLMessage class 7-4
XMLT JSPtag library
tags 2-16
XSLT
common uses of 1-9
definition 1-5
JSP tag library 1-15
XSLT JSP tags
example of using 2-21
procedure for using 2-20
syntax 2-17
usage 2-18

Programming WebL ogic XML I-iii

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 XML Overview
	What Is XML?
	How Do You Describe an XML Document?
	Why Use XML?
	What Are XSL and XSLT?
	What Are DOM and SAX?
	SAX
	DOM

	What Is XML Streaming?
	What Is JAXP?
	JAXP Packages

	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	WebLogic Server XML Features
	XML Document Parsers
	Table 1�1 Parsers Included With WebLogic Server

	XML Document Transformer
	Difference in Built-In Transformer Between Versions 8.1 and Previous of WebLogic Server

	WebLogic XML Streaming API
	JAXP Pluggability Layer Implementation
	WebLogic Servlet Attributes
	request.setAttribute("org.xml.sax.helpers.DefaultHandler", new DefHandler());
	org.w3c.dom.Document = (Document)request.getAttribute("org.w3c.dom.Document");

	WebLogic XSLT JSP Tag Library
	XML Registry For Configuring Parsers and Transformers
	XML Registry for Configuring External Entity Resolution
	Code Examples for Parsing and Transforming XML Documents

	Editing XML Files
	Learning About XML

	2 Developing XML Applications with WebLogic Server
	Developing XML Applications: Main Steps
	1. Parse an XML document.
	2. Generate a new XML document.
	3. Transform XML data into another format.

	Parsing XML Documents
	Parsing XML Documents Using JAXP in SAX Mode
	Parsing XML Documents Using JAXP in DOM Mode
	Parsing XML Documents in a Servlet
	Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document

	Validating and Non-Validating Parsers
	Handling Entity Resolution While Parsing an XML Document
	General Information About External Entities
	Using the WebLogic Server Entity Resolution Features

	Using Parsers Other Than the Built-In Parser
	Using the WebLogic FastParser

	Generating New XML Documents
	Generating XML from a DOM Document Tree
	Using the Apache Serialize Class
	Using the JAXP Transformer Class

	Generating XML Documents in a JSP

	Transforming XML Documents
	Using JAXP to Transform XML Data
	Example of Transforming an XML Document Using JAXP
	Converting Your XML Code From Using the Xalan API to JAXP 1.1 API
	Table 2�1 Equivalent Xalan and JAXP Classes and Interfaces

	Using the JSP Tag to Transform XML Data
	XSLT JSP Tag Syntax
	Table 2�2 x:xslt JSP Tag Attributes
	Table 2�3 x:stylesheet JSP Tag Attributes

	XSLT JSP Tag Usage
	Transforming XML Documents Using an XSLT JSP Tag
	1. Open the xmlx.zip file in the WL_HOME\server\ext directory; extract the xmlx-tags.jar file; an...
	2. Add a <taglib> entry to the web.xml file. For example:
	3. To use the tags, add the following line to your JSP page:
	4. Configure the transformer. The following procedure shows a generic way to configure the transf...
	a. Enter the following code line to create an xslt.jsp file:
	b. Register the xslt.jsp file in your web.xml file, as follows:
	c. Put your XML, DTD, and XSL documents or servlets in your Web application.
	d. Add an xslt prefix to the pathname for the XML document (for example, change docs/fred.xml to ...
	e. To define media type, add code to the JSP to determine the media type for the XML document and...
	f. Pass the media type into the xslt tag and then set the content type of the response object.

	Example of Using the XSLT JSP Tag in a JSP

	Using Transformers Other Than the Built-In Transformer

	3 XML Application Scoping
	Overview of Application Scoping
	The weblogic-application.xml File
	Configuring a Parser or Transformer for an Enterprise Application
	Configuring an External Entity for an Enterprise Application
	Configuring the External Entity Cache for an Enterprise Application

	4 Using the WebLogic XML Streaming API
	Overview of the WebLogic XML Streaming API
	Javadocs for the WebLogic XML Streaming API
	Parsing an XML Document: Typical Steps
	Example of Parsing an XML Document
	Getting an XML Input Stream
	Getting a Buffered XML Input Stream
	Filtering the XML Stream
	Creating a Custom Filter

	Iterating Over the Stream
	Determining the Specific XMLEvent Type
	Getting the Attributes of an Element
	Positioning the Stream
	Getting a Substream
	Marking and Resetting a Buffered XML Input Stream
	Closing the Input Stream

	Generating a New XML Document: Typical Steps
	Example of Generating an XML Document
	Creating an XML Output Stream
	Adding Elements to the Output Stream
	Adding Attributes to an Element on the Output Stream
	Adding an Input Stream to an Output Stream
	Printing an Output Stream
	Closing the Output Stream

	5 Using the WebLogic XPath API
	Overview of the WebLogic XPath API
	Using the DOMXPath Class
	Example of Using the DOMXPath Class
	Main Steps When Using the DOMXPath Class

	Using the StreamXPath Class
	Example of Using the StreamXPath Class
	Main Steps When Using the StreamXPath Class

	6 XML Programming Best Practices
	When to Use the DOM, SAX, and Streaming APIs
	Increasing Performance of XML Validation
	When to Use XML Schemas or DTDs
	Configuring External Entity Resolution for Maximum Performance
	Using SAX InputSources
	Improving Performance of Transformations

	7 XML Programming Techniques
	Transmitting XML Data Between A Java Client and WebLogic Server
	Handling XML Documents in a JMS Application
	Accessing External Entities That Do Not Have an HTTP Interface
	Retrieving XML Document Header Information

	8 Administering WebLogic Server XML
	Overview of Administering WebLogic Server XML
	XML Administration Tasks
	How the XML Registry Works
	Parser Selection Within the XML Registry
	1. Use the parser defined for a particular document type.
	2. Use the alternative server-wide parser defined in the XML Registry associated with the WebLogi...
	3. Use the built-in Xerces parser.

	XML Parser and Transformer Configuration Tasks
	Configuring a Parser or Transformer Other Than the Built-In
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser...
	2. Follow the steps outlined in Configuring a Parser or Transformer Other Than the Built-In of th...

	Configuring a Parser for a Particular Document Type
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Configuring a Parser for a Particular Document Type of the Admini...

	External Entity Configuration Tasks
	Configuring External Entity Resolution
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Configuring External Entity Resolution of the Adminsitration Cons...

	Configuring the External Entity Cache
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Configuring the External Entity Cache in the Administration Onlin...

	Monitoring the External Entity Cache
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Monitoring the External Entity Cache in the Administration Consol...

	9 XML Reference
	XML APIs
	Code Examples
	Related WebLogic Server Documentation
	Tutorials and Online Courses
	Other XML Specifications and Information
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	J
	M
	P
	R
	S
	T
	U
	V
	W
	X

