
BEA
 WebLogic
Server™

Programming WebLogic
XML
Release 8.1
Document Revised: December 9, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic XML

Part Number Date Software Version

N/A December 9, 2002 BEA WebLogic Server
Version 8.1

Contents

About This Document
Audience..x

e-docs Web Site...x

How to Print the Document...x

Related Information... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. XML Overview
What Is XML?... 1-2

How Do You Describe an XML Document? .. 1-3

Why Use XML? .. 1-5

What Are XSL and XSLT? ... 1-5

What Are DOM and SAX?.. 1-6

SAX.. 1-6

DOM... 1-6

What Is XML Streaming? ... 1-7

What Is JAXP? .. 1-8

JAXP Packages .. 1-8

Common Uses of XML and XSLT ... 1-9

Using XML and XSLT to Separate Content from Presentation................. 1-9

XML as a Message Format for Business-to-Business Communication... 1-10

WebLogic Server XML Features .. 1-11

XML Document Parsers... 1-12

XML Document Transformer .. 1-12

Difference in Built-In Transformer Between Versions 8.1 and Previous
of WebLogic Server... 1-13
Programming WebLogic XML iii

WebLogic XML Streaming API .. 1-13

JAXP Pluggability Layer Implementation ... 1-14

WebLogic Servlet Attributes.. 1-14

WebLogic XSLT JSP Tag Library ... 1-15

XML Registry For Configuring Parsers and Transformers...................... 1-15

XML Registry for Configuring External Entity Resolution..................... 1-16

Code Examples for Parsing and Transforming XML Documents 1-16

Editing XML Files... 1-17

Learning About XML.. 1-17

2. Developing XML Applications with WebLogic Server
Developing XML Applications: Main Steps ... 2-1

Parsing XML Documents .. 2-2

Parsing XML Documents Using JAXP in SAX Mode 2-3

Parsing XML Documents Using JAXP in DOM Mode 2-4

Parsing XML Documents in a Servlet.. 2-5

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document ...
2-5

Using the org.w3c.dom.Document Attribute to Parse a Document 2-6

Validating and Non-Validating Parsers.. 2-6

Handling Entity Resolution While Parsing an XML Document 2-7

General Information About External Entities 2-7

Using the WebLogic Server Entity Resolution Features 2-8

Using Parsers Other Than the Built-In Parser .. 2-9

Using the WebLogic FastParser ... 2-9

Generating New XML Documents.. 2-10

Generating XML from a DOM Document Tree....................................... 2-10

Using the Apache Serialize Class.. 2-10

Using the JAXP Transformer Class .. 2-11

Generating XML Documents in a JSP ... 2-12

Transforming XML Documents .. 2-13

Using JAXP to Transform XML Data.. 2-13

Example of Transforming an XML Document Using JAXP............ 2-14

Converting Your XML Code From Using the Xalan API to JAXP 1.1
API ... 2-14
iv Programming WebLogic XML

Using the JSP Tag to Transform XML Data.. 2-16

XSLT JSP Tag Syntax .. 2-17

XSLT JSP Tag Usage ... 2-18

Transforming XML Documents Using an XSLT JSP Tag 2-20

Example of Using the XSLT JSP Tag in a JSP................................. 2-21

Using Transformers Other Than the Built-In Transformer...................... 2-22

3. XML Application Scoping
Overview of Application Scoping ... 3-1

The weblogic-application.xml File.. 3-2

Configuring a Parser or Transformer for an Enterprise Application................. 3-6

Configuring an External Entity for an Enterprise Application.......................... 3-8

Configuring the External Entity Cache for an Enterprise Application.............. 3-9

4. Using the WebLogic XML Streaming API
Overview of the WebLogic XML Streaming API .. 4-1

Javadocs for the WebLogic XML Streaming API .. 4-3

Parsing an XML Document: Typical Steps... 4-3

Example of Parsing an XML Document .. 4-4

Getting an XML Input Stream ... 4-7

Getting a Buffered XML Input Stream ... 4-8

Filtering the XML Stream... 4-8

Creating a Custom Filter ... 4-9

Iterating Over the Stream ... 4-10

Determining the Specific XMLEvent Type ... 4-11

Getting the Attributes of an Element.. 4-15

Positioning the Stream ... 4-16

Getting a Substream ... 4-17

Marking and Resetting a Buffered XML Input Stream............................ 4-18

Closing the Input Stream.. 4-19

Generating a New XML Document: Typical Steps .. 4-19

Example of Generating an XML Document .. 4-20

Creating an XML Output Stream ... 4-22

Adding Elements to the Output Stream.. 4-23

Adding Attributes to an Element on the Output Stream 4-24
Programming WebLogic XML v

Adding an Input Stream to an Output Stream .. 4-25

Printing an Output Stream.. 4-26

Closing the Output Stream ... 4-26

5. Using the WebLogic XPath API
Overview of the WebLogic XPath API ... 5-1

Using the DOMXPath Class.. 5-2

Example of Using the DOMXPath Class ... 5-2

Main Steps When Using the DOMXPath Class ... 5-4

Using the StreamXPath Class.. 5-6

Example of Using the StreamXPath Class ... 5-6

Main Steps When Using the StreamXPath Class 5-9

6. XML Programming Best Practices
When to Use the DOM, SAX, and Streaming APIs .. 6-1

Increasing Performance of XML Validation ... 6-2

When to Use XML Schemas or DTDs .. 6-3

Configuring External Entity Resolution for Maximum Performance 6-4

Using SAX InputSources... 6-4

Improving Performance of Transformations ... 6-5

7. XML Programming Techniques
Transmitting XML Data Between A Java Client and WebLogic Server 7-1

Handling XML Documents in a JMS Application .. 7-3

Accessing External Entities That Do Not Have an HTTP Interface 7-4

Retrieving XML Document Header Information .. 7-5

8. Administering WebLogic Server XML
Overview of Administering WebLogic Server XML.. 8-1

XML Administration Tasks.. 8-2

How the XML Registry Works .. 8-3

Parser Selection Within the XML Registry.. 8-3

XML Parser and Transformer Configuration Tasks.. 8-4

Configuring a Parser or Transformer Other Than the Built-In................... 8-4

Configuring a Parser for a Particular Document Type............................... 8-5

External Entity Configuration Tasks ... 8-6
vi Programming WebLogic XML

Configuring External Entity Resolution... 8-6

Configuring the External Entity Cache .. 8-7

Monitoring the External Entity Cache ... 8-8

9. XML Reference
XML APIs ... 9-1

Code Examples ... 9-2

Related WebLogic Server Documentation.. 9-2

Tutorials and Online Courses .. 9-2

Other XML Specifications and Information ... 9-3
Programming WebLogic XML vii

viii Programming WebLogic XML

About This Document

This document explains how to use the BEA WebLogic Server™ XML software. It
defines concepts associated with using the XML software and describes the
development process for XML applications. In addition, the document includes
descriptions of the application programming interfaces (APIs), administrative tasks,
and XML tools.

The document is organized as follows:

! Chapter 1, “XML Overview,” provides a basic description of the XML software
and its components.

! Chapter 2, “Developing XML Applications with WebLogic Server,” describes
how to develop XML applications using WebLogic Server and XML tools.

! Chapter 3, “XML Application Scoping,” describes how to configure parsers,
transformers, and external entities for a particular Enterprise application.

! Chapter 4, “Using the WebLogic XML Streaming API,” describes in detail how
to use the WebLogic XML Streaming API in your Java applications to parse an
XML document.

! Chapter 5, “Using the WebLogic XPath API,” describes how to use the
WebLogic XPath API to perform XPath matching against an XML document
represented as a DOM, XMLNode, or an XMLInputStream.

! Chapter 6, “XML Programming Best Practices,” describes some best practices to
follow when creating Java applications that handle XML documents.

! Chapter 7, “XML Programming Techniques,” describes specific programming
techniques for tasks such as using message-driven beans and JMS queues with
XML documents, and so on.
Programming WebLogic XML ix

! Chapter 8, “Administering WebLogic Server XML,” describes the
Administration Console XML Registry and how to perform XML configuration
tasks.

! Chapter 9, “XML Reference,” provides pointers to specifications and application
programming interfaces supported by the XML software.

Audience

This document is written for system administrators and programmers who design,
develop, configure, and manage XML applications. It is assumed that readers know
Web technologies, XML, XSLT, the Java programming language, and the Servlet and
JSP APIs of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.
x Programming WebLogic XML

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

For related information about XML, see “Learning About XML” on page 1-17 and
Chapter 9, “XML Reference.”

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
Programming WebLogic XML xi

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xii Programming WebLogic XML

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic XML xiii

xiv Programming WebLogic XML

CHAPTER
1 XML Overview

The following sections provide an overview of XML technology and the WebLogic
Server XML subsystem:

! “What Is XML?” on page 1-2

! “How Do You Describe an XML Document?” on page 1-3

! “Why Use XML?” on page 1-5

! “What Are XSL and XSLT?” on page 1-5

! “What Are DOM and SAX?” on page 1-6

! “What Is XML Streaming?” on page 1-7

! “What Is JAXP?” on page 1-8

! “Common Uses of XML and XSLT” on page 1-9

! “WebLogic Server XML Features” on page 1-11

! “Editing XML Files” on page 1-17

! “Learning About XML” on page 1-17
Programming WebLogic XML 1-1

1 XML Overview
What Is XML?

Extensible Markup Language (XML) is a markup language used to describe the
content and structure of data in a document. It is a simplified version of Standard
Generalized Markup Language (SGML). XML is an industry standard for delivering
content on the Internet. Because it provides a facility to define new tags, XML is also
extensible.

Like HTML, XML uses tags to describe content. However, rather than focusing on the
presentation of content, the tags in XML describe the meaning and hierarchical
structure of data. This functionality allows for the sophisticated data types that are
required for efficient data interchange between different programs and systems.
Further, because XML enables separation of content and presentation, the content, or
data, is portable across heterogeneous systems.

The XML syntax uses matching start and end tags (such as <name> and </name>) to
mark up information. Information delimited by tags is called an element. Every XML
document has a single root element, which is the top-level element that contains all the
other elements. Elements that are contained by other elements are often referred to as
sub-elements. An element can optionally have attributes, structured as name-value
pairs, that are part of the element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xml version="1.0"?>

<address_book>
<person gender="f">

<name>Jane Doe</name>
<address>
<street>123 Main St.</street>
<city>San Francisco</city>
<state>CA</state>
<zip>94117</zip>

</address>
<phone area_code=415>555-1212</phone>

</person>
<person gender="m">

<name>John Smith</name>
<phone area_code=510>555-1234</phone>
<email>johnsmith@somewhere.com</email>

</person>
</address_book>
1-2 Programming WebLogic XML

How Do You Describe an XML Document?
The root element of the XML file is address_book. The address book currently
contains two entries in the form of person elements: Jane Doe and John Smith. Jane
Doe’s entry includes her address and phone number; John Smith’s includes his phone
and email address. Note that the structure of the XML document defines the phone
element as storing the area code using the area_code attribute rather than a
sub-element in the body of the element. Also note that not all sub-elements are required
for the person element.

How Do You Describe an XML Document?

There are two ways to describe an XML document: DTDs and XML Schemas.

Document Type Definitions (DTDs) define the basic requirements for the structure of
a particular XML document. A DTD describes the elements and attributes that are
valid in an XML document, and the contexts in which they are valid. In other words,
a DTD specifies which tags are allowed within certain other tags, and which tags and
attributes are optional.

The following example shows a DTD that describes the preceding address book
sample XML document:

<!DOCTYPE address_book [
<!ELEMENT person (name, address?, phone?, email?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (street, city, state, zip)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ATTLIST person gender CDATA #REQUIRED>
<!ATTLIST phone area_code CDATA #REQUIRED>
]>

Schemas are a recent development in XML specifications and are intended to
supersede DTDs. They describe XML documents with more flexibility and detail than
DTDs do, and are XML documents themselves, which DTDs are not. The schema
Programming WebLogic XML 1-3

1 XML Overview
specification, currently under development, is a product of the World Wide Web
Consortium (W3C) and is intended to address many limitations of DTDs. For detailed
information on XML schemas, see http://www.w3.org/TR/xmlschema-0/.

The following example shows a schema that describes the preceding address book
sample XML document:

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:element name="address_book" type="bookType"/>

<xsd:complexType name="bookType">
<xsd:element name=name="person" type="personType"/>

</xsd:complexType>

<xsd:complexType name="personType">
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="address" type="addressType"/>
<xsd:element name="phone" type="phoneType"/>
<xsd:element name="email" type="xsd:string"/>
<xsd:attribute name="gender" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="addressType">

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:string"/>

</xsd:complexType>

<xsd:simpleType name="phoneType">
<xsd:restriction base="xsd:string"/>
<xsd:attribute name="area_code" type="xsd:string"/>

</xsd:simpleType>

</xsd:schema>

An XML document can include a DTD or Schema as part of the document itself,
reference an external DTD or Schema using the DOCTYPE declaration, or not include
or reference a DTD or Schema at all. The following excerpt from an XML document
shows how to reference an external DTD called address.dtd:

<?xml version=1.0?>
<!DOCTYPE address_book SYSTEM "address.dtd">
<address_book>
...

XML documents only need to be accompanied by a DTD or Schema if they need to be
validated by a parser or if they contain complex types. An XML document is
considered valid if 1) it has an associated DTD or Schema, and 2) it complies with the
1-4 Programming WebLogic XML

http://www.w3.org/TR/xmlschema-0/

Why Use XML?
constraints expressed in the associated DTD or Schema. If, however, an XML
document only needs to be well-formed, then the document does not have to be
accompanied by a DTD or Schema. A document is considered well-formed if it
follows all the rules in the W3C Recommendation for XML 1.0. For the full XML 1.0
specification, see http://www.w3.org/XML/.

Why Use XML?

An industry typically uses data exchange methods that are meaningful and specific to
that industry. With the advent of e-commerce, businesses conduct an increasing
number of relationships with a variety of industries and, therefore, must develop expert
knowledge of the various protocols used by those industries for electronic
communication.

The extensibility of XML makes it a very effective tool for standardizing the format of
data interchange among various industries. For example, when message brokers and
workflow engines must coordinate transactions among multiple industries or
departments within an enterprise, they can use XML to combine data from disparate
sources into a format that is understandable by all parties.

What Are XSL and XSLT?

The Extensible Stylesheet Language (XSL) is a W3C standard for describing
presentation rules that apply to XML documents. XSL includes both a transformation
language, (XSLT), and a formatting language. These two languages function
independently of each other. XSLT is an XML-based language and W3C specification
that describes how to transform an XML document into another XML document, or
into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document.
The template rules contained in an XSLT document include patterns that specify the
XML tree to which the rule applies. The XSLT transformer scans the XML document
for patterns that match the rule, and then it applies the template to the appropriate
section of the original XML document.
Programming WebLogic XML 1-5

http://www.w3.org/XML/

1 XML Overview
What Are DOM and SAX?

DOM and SAX are two standard Java application programming interfaces (APIs) for
parsing XML data. Both are supported by the WebLogic Server built-in parser. The
two APIs differ in their approach to parsing, with each API having its strengths and
weaknesses.

SAX

SAX stands for the Simple API for XML. It is a platform-independent language neutral
standard interface for event-based XML parsing. SAX defines events that can occur as
a parser is reading through an XML document, such as the start or the end of an
element. Programmers provide handlers to deal with different events as the document
is parsed.

Programmers that use the SAX API to parse XML documents have full control over
what happens when these events occur and can, as a result, customize the parsing
process extensively. For example, a programmer might decide to stop parsing an XML
document as soon as the parser encounters an error that indicates that the document is
invalid, rather than waiting until the entire document is parsed, thus improving
performance.

The WebLogic Server built-in parser (Apache Xerces) supports SAX Version 2.0.
Programmers who have created programs that use Version 1.0 of SAX to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences between the two
versions, refer to http://www.saxproject.org/.

DOM

DOM stands for the Document Object Model. It is platform- and language-neutral
interface that allows programs and scripts to access and update the content, structure,
and style of XML documents dynamically. DOM reads an XML document into
memory and represents it as a tree; each node of the tree represents a particular piece
of data from the original XML document. Because the tree structure is a standard
1-6 Programming WebLogic XML

http://www.saxproject.org/

What Is XML Streaming?
programming mechanism for representing data, traversing and manipulating the tree
using Java is relatively easy, fast, and efficient. The main drawback, however, is that
the entire XML document has to be read into memory for DOM to create the tree,
which might decrease the performance of an application as the XML documents get
larger.

The WebLogic Server built-in parser (Apache Xerces) supports DOM Level 2.0 Core.
Programmers who have created programs that use Level 1.0 of DOM to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences, refer to
http://www.w3.org/DOM/DOMTR.

What Is XML Streaming?

In addition to SAX and DOM, you can also parse an XML document using the XML
streaming API.

The WebLogic XML Streaming API provides an easy and intuitive way to parse and
generate XML documents. It is based upon the SAX API, but enables a procedural,
stream-based handling of XML documents rather than requiring you to write SAX
event handlers, which can get complicated when you work with complex XML
documents. In other words, the streaming API gives you more control over parsing
than the SAX API.

The XML Streaming API uses the WebLogic FastParser when parsing documents.

For detailed information on using the WebLogic XML Streaming API, see Chapter 4,
“Using the WebLogic XML Streaming API.”

Note: Unlike DOM and SAX, XML Streaming is not yet part of the Java API for
XML Processing (JAXP).
Programming WebLogic XML 1-7

http://www.w3.org/DOM/DOMTR

1 XML Overview
What Is JAXP?

The previous section discusses two APIs, SAX and DOM, that programmers can use
to parse XML data. The Java API for XML Processing (JAXP) provides a means to get
to these parsers. JAXP also defines a pluggability layer that allows programmers to use
any compliant parser or transformer.

WebLogic Server implements JAXP to facilitate XML application development and
the work required to move XML applications built on WebLogic Server to other Web
application servers. JAXP was developed by Sun Microsystems to make XML
applications portable; it provides basic support for parsing and transforming XML
documents through a standardized set of Java platform APIs. JAXP 1.1, included in the
WebLogic Server distribution, is configured to use the built-in parser. Therefore, by
default, XML applications built using WebLogic Server use JAXP.

The WebLogic Server distribution contains the interfaces and classes needed for JAXP
1.1. JAXP 1.1 contains explicit support for SAX Version 2 and DOM Level 2. The
Javadoc for JAXP is included with the WebLogic Server online reference
documentation.

JAXP Packages

JAXP contains the following two packages:

! javax.xml.parsers

! javax.xml.transform

The javax.xml.parsers package contains the classes to parse XML data in SAX
Version 2.0 and DOM Level 2.0 mode. To parse an XML document in SAX mode, a
programmer first instantiates a new SaxParserFactory object with the
newInstance() method. This method looks up the specific implementation of the
parser to load based on a well-defined list of locations. The programmer then obtains
a SaxParser instance from the SaxParserFactory and executes its parse()
method, passing it the XML document to be parsed. Parsing an XML document in
DOM mode is similar, except that the programmer uses the DocumentBuilder and
DocumentBuilderFactory classes instead.
1-8 Programming WebLogic XML

Common Uses of XML and XSLT
For detailed information on using JAXP to parse XML documents, see “Parsing XML
Documents” on page 2-2.

The javax.xml.transform package contains classes to transform XML data, such
as an XML document, a DOM tree, or SAX events, into a different format. The
transformer classes work similarly to the parser classes. To transform an XML
document, a programmer first instantiates a TransformerFactory object with the
newInstance() method. This method looks up the specific implementation of the
XSLT transformer to load based on a well-defined list of locations. The programmer
then instantiates a new Transformer object based on a specific XSLT style sheet and
executes its transform() method, passing it the XML object to transform. The XML
object might be an XML file, a DOM tree, and so on.

For detailed information on using JAXP to transform XML objects, see “Using JAXP
to Transform XML Data” on page 2-13.

Common Uses of XML and XSLT

How you use XML and XSLT depends on your particular business needs.

Using XML and XSLT to Separate Content from
Presentation

XML and XSLT are often used in applications that support multiple client types. For
example, suppose you have a Web-based application that supports both browser-based
clients and Wireless Application Protocol (WAP) clients. These clients understand
different markup languages, HTML and Wireless Markup Language (WML),
respectively, but your application must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML
document that represents the data it is sending to the client. Then the application can
transform the XML document that represents the data into HTML or WML, depending
on the client’s browser type. Your application can determine the client browser type
by examining the User-Agent request header of an HTTP request. Once the
application knows the client browser type, it uses the appropriate XSLT style sheet to
Programming WebLogic XML 1-9

1 XML Overview
transform the document into the correct markup language. See the SnoopServlet
example included in the examples/servlets directory of your WebLogic Server
distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages
in respective client types helps concentrate the effort required to support multiple
client types into the development of the appropriate XSLT style sheets. Additionally,
it allows your application to adapt to other clients types easily, if necessary.

For additional information about XSLT, see “Other XML Specifications and
Information” on page 9-3.

XML as a Message Format for Business-to-Business
Communication

In a business-to-business (B2B) environment, Company A and Company B want to
exchange information about e-commerce transactions in which both are involved.
Company A is a major e-commerce site. Company B is a small affiliate that sells
Company A’s products to a niche group of customers. When Company B sends
customers to Company A, Company B is compensated in two ways: it receives, from
Company A, both money and information about other customers that make the same
sort of purchases as those made by the customers referred by Company B. To exchange
information, Company A and Company B must agree on a data format for information
that is machine readable and that operates with systems from both companies easily.
XML is the logical data format to use in this scenario, but selecting this format is only
the first step. The companies must then agree on the format of the XML messages to
be exchanged. Because Company A has a one-to-many relationship with its affiliates,
Company A must define the format of the XML messages that will be exchanged.

To define the format of XML messages, or XML documents, Company A creates two
document type definitions (DTDs): one that describes the information that A will
provide about customers and one that describes the information that A wants to receive
about a newly affiliated company. Company B must also create two DTDs: one to
process the XML documents received from Company A and one to prepare an XML
document in a format that can be processed by Company A.
1-10 Programming WebLogic XML

WebLogic Server XML Features
WebLogic Server XML Features

WebLogic Server consolidates XML technologies applicable to WebLogic Server and
XML applications based on WebLogic Server. The WebLogic Server XML subsystem
allows customers to use standard parsers, the WebLogic FastParser, XSLT
transformers, and DTDs and XML Schemas to process and convert XML files.

The WebLogic Server XML subsystem includes the following features:

! XML Document Parsers

! XML Document Transformer

! WebLogic XML Streaming API

! JAXP Pluggability Layer Implementation

! WebLogic Servlet Attributes

! WebLogic XSLT JSP Tag Library

! XML Registry For Configuring Parsers and Transformers

! XML Registry for Configuring External Entity Resolution

! Code Examples for Parsing and Transforming XML Documents
Programming WebLogic XML 1-11

1 XML Overview
XML Document Parsers

WebLogic Server includes the following two parsers:

You can also use any other XML parser of your choice by using the Administration
Console to configure it in the XML Registry. You can configure a single instance of
WebLogic Server to use one parser for a particular application and use another parser
for a different application.

XML Document Transformer

The built-in XSLT transformer included in WebLogic Server is the same one that is
included in the JDK 1.4.1 that is shipped with WebLogic Server: Version 2.2.D11 of the
Apache Xalan XSL transformer.

Table 1-1 Parsers Included With WebLogic Server

Parser Description

Built-in A validating parser based on the Apache Xerces parser version 2.1.0.
You can use the built-in parser in either Simple API For XML (SAX)
mode or Document Object Model (DOM) mode using the JAXP API.

The package name of the built-in WebLogic Server parser is
weblogic.apache.xerces.*. For detailed information on this
parsers, see its Javadoc.

If you have not used the XML Registry to configure a different built-in
parser for WebLogic Server, and you use JAXP in your application to
obtain a parser, this built-in parser is the one get.

WebLogic
FastParser

A high-performance non-validating XML parser specifically designed
for processing small to medium size documents, such as SOAP and
WSDL files associated with WebLogic Web services. The FastParser
supports SAX-style parsing only. Configure WebLogic Server to use
FastParser if your application mostly handles small to medium size (up
to 10,000 elements) XML documents.

For detailed information on using WebLogic FastParser, refer to “Using
the WebLogic FastParser” on page 2-9.
1-12 Programming WebLogic XML

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

WebLogic Server XML Features
If you have not used the XML Registry to configure a different built-in transformer for
WebLogic Server, and you use JAXP in your application to obtain a transformer, this built-in
transformer is the one get. The package name of this transformer is org.apache.xalan.*.

You can use this built-in XSLT transformer or other XSLT transformers in your XML
application to transform XML documents into other XML documents, HTML, and so
on. For more information about transforming XML documents, see “Using JAXP to
Transform XML Data” on page 2-13.

Difference in Built-In Transformer Between Versions 8.1 and Previous of
WebLogic Server

The built-in transformer in Versions 7.0 and previous of WebLogic Server was one
that was based on Apache’s Xalan XSLT transformer and whose package name started
with weblogic.apache.xalan.*. In Version 8.1 of WebLogic Server, this
transformer has been deprecated. Instead, the built-in transformer is the same one that
is shipped in JDK 1.4.1: Apache’s Xalan 2.2.D11.

For backward compatibility, the weblogic.apache.xalan.* transformer is still
available in Version 8.1 of WebLogic Server, although BEA highly recommends you
do not use it since it will not be available in future versions. If, however, you need to
temporarily continue using this transformer, you must use the Administration Console
to configure a transformer other than the built-in for your WebLogic Server instance
by updating, or creating a new, XML Registry. Use the following transformer factory:

weblogic.apache.xalan.processor.TransformerFactoryImpl

For detailed information on using the Administration Console to configure the XML
Registry for WebLogic Server, see Configuring a Parser or Transformer Other Than
the Built-In at http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002.

WebLogic XML Streaming API

The WebLogic XML Streaming API provides an easy and intuitive way to parse and
generate XML documents. It is based upon the SAX API, but provides a more
procedural, stream-based handling of XML documents rather than having to write
Programming WebLogic XML 1-13

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002

1 XML Overview
SAX event handlers, which can get complicated when dealing with complex XML
documents. In other words, the streaming API gives you more control over parsing
than the SAX API.

For detailed information on using the WebLogic XML Streaming API, see Chapter 4,
“Using the WebLogic XML Streaming API.”

JAXP Pluggability Layer Implementation

Java API for XML Processing (JAXP) 1.1 is a Java-standard, parser-independent API
for XML. For more information on JAXP, see “What Is JAXP?” on page 1-8.

Note: WebLogic Server uses the XML Registry, accessed through the
Administration Console, to plug in parsers and transformers. This is different
from the JAXP 1.1 specification which specifies the use of system properties
to plug in parsers and transformers.

WebLogic Servlet Attributes

WebLogic Server supports the following special Servlet attributes:

! org.xml.sax.HandlerBase

! org.xml.sax.helpers.DefaultHandler

! org.w3c.dom.Document

Calling the setAttribute (for SAX parsing) and getAttribute (for DOM parsing)
methods on a ServletRequest object with the preceding attributes will parse any
given XML document.

The following code sections show an example of how to use these methods:

request.setAttribute("org.xml.sax.helpers.DefaultHandler", new DefHandler());

org.w3c.dom.Document = (Document)request.getAttribute("org.w3c.dom.Document");

Note: The setAttribute and getAttribute methods are provided for
convenience only; they are not required to parse XML from a Servlet.
1-14 Programming WebLogic XML

WebLogic Server XML Features
WebLogic XSLT JSP Tag Library

The JSP tag library provides a simple tag that enables access to the built-in XSLT
transformer from within a Java Server Page (JSP) running on WebLogic Server.
Currently, this tag supports the built-in XSLT transformer only; you cannot use the tag
to transform an XML document from within a JSP using a different transformer.

The JSP tag library is included in xmlx-tags.jar, which is installed when you install
your WebLogic Server distribution.

Note: The JSP tag library is provided for convenience only; it is not required to
access XSLT transformers from within a JSP.

XML Registry For Configuring Parsers and Transformers

The XML Registry simplifies administration and configuration tasks by separating
these tasks from the XML application. Use the Administration Console (a graphical
user interface, or GUI, for WebLogic Server administration) to configure the parsers
and transformers for an instance of WebLogic Server.

Note: Each WebLogic Server domain can include any number of registries; each
WebLogic Server instance in a domain can be assigned zero or one registry.

By using the XML Registry, you:

! Can specify the parser or transformer at deployment time, not only at build time.

! Do not need to include any parser- or transformer- dependent code in your
applications.

! Can support multiple parsers and transformers in a single server more
conveniently.

You can use the XML Registry to perform the following tasks:

! Configure an alternative XML parser instead of the built-in parser shipped in
this version of WebLogic Server.

! Configure an alternative XSLT transformer instead of the built-in transformer
shipped in this version of WebLogic Server.
Programming WebLogic XML 1-15

1 XML Overview
! Configure an XML parser to process a particular application.

All the preceding capabilities are available if your application uses the standard Java
API for XML Processing (JAXP), which is included in this version of WebLogic
Server. These capabilities are for use on the server side only.

XML Registry for Configuring External Entity Resolution

WebLogic XML supports external entity resolution through the XML Registry.
External entities are chunks of text that are not literally part of an XML document, but
are referenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. An example of an
external entity is a DTD file that is used to validate an XML document. To use this
feature, open the Administration Console and use the XML Registry to enter the
Public ID or System ID associated with the external entity.

In addition to storing external entities locally, you can configure WebLogic Server to
retrieve and cache external entities from external repositories that support an HTTP
interface, such as a URL. You can configure WebLogic Server to cache the external
entity in memory or on the disk and specify how long the entity should remain cached
before it is considered out of date.

For more information about using the XML Registry for external entity resolution, see
“External Entity Configuration Tasks” on page 8-6.

Code Examples for Parsing and Transforming XML
Documents

WebLogic Server includes examples of parsing and transforming XML documents.

The examples are located in the WL_HOME\samples\server\src\examples\xml
directory, where WL_HOME refers to the top-level WebLogic Platform directory.

For detailed instructions on how to build and run the examples, invoke the Web page
WL_HOME\samples\server\src\examples\xml\package-summary.html in your
browser.
1-16 Programming WebLogic XML

Editing XML Files
Editing XML Files

To edit XML files, use the BEA XML Editor, an entirely Java-based XML stand-alone
editor. It is a simple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
Thus you can choose how to edit the XML document:

! The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
XML tree structure. The allowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

! The raw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its online help.

You can download BEA XML Editor from dev2dev Online at
http://dev2dev.bea.com/index.jsp.

Learning About XML

To learn about XML, see the following online courses and tutorials. Chapter 9, “XML
Reference,” provides links to more information.

! A Technical Introduction to XML at
“http://www.xml.com/pub/a/98/10/guide0.html”

! XML Authoring Tutorial at “http://www.xml.com/pub/r/32.”

! Working with XML and Java at “http://java.sun.com/xml/tutorial_intro.html.”

! Tutorials for using the Java 2 platform and XML technology at
“http://developerlife.com/.”
Programming WebLogic XML 1-17

http://dev2dev.bea.com/index.jsp
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/

1 XML Overview
! XML, Java, and the Future of the Web at
“http://www.xml.com/pub/a/w3j/s3.bosak.html.”

! Chapter 14 of The XML Bible: XSL Transformations at
“http://metalab.unc.edu/xml/books/bible/updates/14.html.”

! XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html.

! SAX 2.0: The Simple API for XML at “http://www.saxproject.org/”

! Document Object Model (DOM) at “http://www.w3.org/DOM/”
1-18 Programming WebLogic XML

http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.saxproject.org/
http://www.w3.org/DOM/

CHAPTER
2 Developing XML
Applications with
WebLogic Server

The following sections describe how to use the Java programming language and
WebLogic Server to develop XML applications. It is assumed that you know how to
use Java Servlets and Java Server Pages (JSPs) to write Java applications. For
information about how to write servlet and JSP applications, see Programming
WebLogic HTTP Servlets at http://e-docs.bea.com/wls/docs81b/servlet/index.html and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs81b/jsp/index.html.

" “Developing XML Applications: Main Steps” on page 2-1

" “Parsing XML Documents” on page 2-2

" “Generating New XML Documents” on page 2-10

" “Transforming XML Documents” on page 2-13

Developing XML Applications: Main Steps

Programmers using the WebLogic Server XML subsystem typically perform some or
all of the following programming tasks when developing XML applications:

1. Parse an XML document.
Programming WebLogic XML 2-1

http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html

2 Developing XML Applications with WebLogic Server
The XML document can originate from a number of sources. For example, a
programmer might develop a servlet to receive an XML document from a client,
write an EJB to receive an XML document from a Servlet or another EJB, and
so on. In each instance, the XML document may have to be parsed so that its
data can be manipulated.

For more information on this task, refer to “Parsing XML Documents” on page
2-2.

2. Generate a new XML document.

After a servlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a
new XML document to send back to the client or to pass on to another EJB.

For more information on this task, refer to “Generating New XML Documents”
on page 2-10.

3. Transform XML data into another format.

After parsing an XML document or generating a new one, the Servlet or EJB
may need to transform it into another format, such as HTML, WML, or plain
text.

For more information on this task, refer to “Using JAXP to Transform XML
Data” on page 2-13.

Parsing XML Documents

This section describes how to parse XML documents using JAXP in both DOM and
SAX mode and how to parse XML documents from a servlet.

Note: For detailed instructions on using the WebLogic XML Streaming API to parse
XML documents, see Chapter 4, “Using the WebLogic XML Streaming API.”

As mentioned previously, you use the Administration Console XML Registry to
configure the following:

" Per-doctype parsers, which supersede the built-in parser for the specified
doctype
2-2 Programming WebLogic XML

Parsing XML Documents
" External entity resolution, or the process that an XML parser goes through
when requested to find an external file in the course of parsing an XML
document

For detailed information on how to use the Administration Console for these tasks,
refer to Chapter 8, “Administering WebLogic Server XML.”

For a complete example of parsing an XML document in SAX mode, see the
WL_HOME\samples\server\src\examples\xml\sax directory, where WL_HOME
refers to the top-level WebLogic Platform directory.

Parsing XML Documents Using JAXP in SAX Mode

The following code example shows how to configure a SAX parser factory to create a
validating parser. The example also shows how to register the MyHandler class with
the parser. The MyHandler class can override any method of the DefaultHandler
class to provide custom behavior for SAX parsing events or errors.

import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

...
MyHandler handler = new MyHandler();
// MyHandler extends org.xml.sax.helpers.DefaultHandler.

//Obtain an instance of SAXParserFactory.
SAXParserFactory spf = SAXParserFactory.newInstance();
//Specify a validating parser.
spf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a SAX parser from the factory.
SAXParser sp = spf.newSAXParser();
//Parse the documnt.
sp.parse("http://server/file.xml", handler);

...

Note: If you want to use a parser other than the built-in parser, you must use the
WebLogic Server Administration Console to specify the parser in the XML
Registry; otherwise the SaxParserFactory.newInstance method returns
the built-in parser. For instructions about configuring WebLogic Server to use
a parser other than the built-in parser, see “Configuring a Parser or
Transformer Other Than the Built-In” on page 8-4.
Programming WebLogic XML 2-3

2 Developing XML Applications with WebLogic Server
For a complete example of parsing an XML document in SAX mode, see the
WL_HOME\samples\server\src\examples\xml\sax directory, where WL_HOME
refers to the top-level WebLogic Platform directory.

Parsing XML Documents Using JAXP in DOM Mode

The following code example shows how to parse an XML document and create an
org.w3c.dom.Document tree from a DocumentBuilder object:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

...
//Obtain an instance of DocumentBuilderFactory.
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
//Specify a validating parser.
dbf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a DocumentBuilder from the factory.
DocumentBuilder db = dbf.newDocumentBuilder();
//Parse the document.
Document doc = db.parse(inputFile);
...

Note: If you want to use a parser other than the built-in parser, you must use the
WebLogic Server Administration Console to specify it; otherwise the
DocumentBuilderFactory.newInstance method returns the built-in
parser. For instructions about configuring WebLogic Server to use a parser
other than the built-in parser, see “Configuring a Parser or Transformer Other
Than the Built-In” on page 8-4.

For a complete example of parsing an XML document in DOM mode, see the
WL_HOME\samples\server\src\examples\xml\dom directory, where WL_HOME
refers to the top-level WebLogic Platform directory.
2-4 Programming WebLogic XML

Parsing XML Documents
Parsing XML Documents in a Servlet

Support for the setAttribute and getAttribute methods was added to version 2.2
of the Java Servlet Specification. Attributes are objects associated with a request. The
request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server by the HTTP
headers and message body of the request.

With WebLogic Server, you can use the setAttribute and getAttribute methods
to parse XML documents. Use the setAttribute method for SAX mode parsing and
the getAttribute method for DOM mode parsing.

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document

The following code example shows how to use the setAttribute method:

import weblogic.servlet.XMLProcessingException;
import org.xml.sax.helpers.DefaultHandler;
...
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
try {

request.setAttribute("org.xml.sax.helpers.DefaultHandler",
new DefaultHandler());

} catch(XMLProcessingException xpe) {
System.out.println("Error in processing XML");
xpe.printStackTrace();
return;

}
...

You can also use the org.xml.sax.HandlerBase attribute to parse an XML
document, although it is deprecated:

request.setAttribute("org.xml.sax.HandlerBase",
new HandlerBase());

Note: This code example shows a simple way to parse a document using SAX and
the setAttribute method. This method of parsing a document is a
WebLogic Server convenience feature, and it is not supported by other servlet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.
Programming WebLogic XML 2-5

2 Developing XML Applications with WebLogic Server
Using the org.w3c.dom.Document Attribute to Parse a Document

The following code example shows how to use the getAttribute method.

import org.w3c.dom.Document;
import weblogic.servlet.XMLProcessingException;

...

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

try {
Document doc = request.getAttribute("org.w3c.dom.Document");

} catch(XMLProcessingException xpe) {
System.out.println("Error in processing XML");
xpe.printStackTrace();
return;

}
...

Note: This code example shows a simple way to parse a document using DOM and
the getAttribute method. This method of parsing a document is a
WebLogic Server convenience feature, and it is not supported by other servlet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Validating and Non-Validating Parsers

As previously discussed, a well-formed document is one that is syntactically correct
according to the rules outlined in the W3C Recommendation for XML 1.0. A valid
document is one that follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify
that it is valid. The WebLogic FastParser, described in “For instructions on how to use
the XML Registry to configure parsing options, see “XML Parser and Transformer
Configuration Tasks” on page 8-4.” on page 2-9, is non-validating.

To turn on validation while parsing a document (assuming you are using a validating
parser), you must:

! Set the SAXParserFactory.setValidating() method to true, as shown in the
following example:
2-6 Programming WebLogic XML

Parsing XML Documents
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

! Ensure that the XML document you are parsing includes (either in-line or by
reference) a DTD or a schema.

Handling Entity Resolution While Parsing an XML
Document

This section provides general information about external entities; how they are
identified and resolved by an XML parser; and the features provided by WebLogic
Server to improve the performance of external entity resolution in your XML
applications.

For a complete example of resolving an external entity while parsing an XML
document, see the
WL_HOME\samples\server\src\examples\xml\entityresolution directory,
where WL_HOME refers to the top-level WebLogic Platform directory.

General Information About External Entities

External entities are chunks of text that are not literally part of an XML document, but
are referenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. While parsing a
document, if the parser encounters an external entity reference, it fetches the
referenced chunk of text, places the text into the XML document, then continues
parsing. An example of an external entity is a DTD; rather than including the full text
of the DTD in the XML document, the XML document has a reference to the DTD that
is stored in a separate file.

There are two ways to identify an external entity: a system identifier and a public
identifier. System identifiers use URIs to reference an external entity based on its
location. Public identifiers use a publicly declared name to refer the information.

The following example shows how a public identifier is used to reference the DTD for
the application.xml file that describes a J2EE application archive (*.ear file):

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN">
Programming WebLogic XML 2-7

2 Developing XML Applications with WebLogic Server
The following example shows a reference to an external DTD by a system identifier
only:

<!DOCTYPE application SYSTEM
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

Here is a reference that uses both the public and system identifier; note that the
keyword SYSTEM is omitted:

<!DOCTYPE application
PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

Using the WebLogic Server Entity Resolution Features

Use the following WebLogic Server features to improve the performance of external
entity resolution in your XML applications:

! Permanently store a copy of an external entity on the computer that hosts the
WebLogic Administration Server.

! Specify that WebLogic Server automatically retrieve and cache an external entity
that resides in an external repository that supports an HTTP interface, such as a
URL. You can specify that WebLogic Server cache the entity either in memory
or on disk and specify when the cached entry becomes stale, at which point
WebLogic Server automatically updates the cached entry.

Using the retrieve-and-cache feature, you do not have to actually copy the
external entity to the local computer. The XML application refers to the actual
external entity only at specified time intervals, rather than each time the
document is parsed, thus potentially greatly improving the performance of your
application while also keeping as up to date with the latest external entity as
desired.

You use the XML Registry to create entity resolution entries to identify where the
external entry is located (locally or at a URL) and what the caching options are for
entities on the Web. You identify the external entity entry using a system or public
identifier. Then, in your XML document, when you reference this external entity,
WebLogic Server fetches the local copy or the cached copy (whichever you have
configured) when parsing the document.

For detailed information on creating external entity registries with the XML Registry,
refer to “External Entity Configuration Tasks” on page 8-6.
2-8 Programming WebLogic XML

Parsing XML Documents
Using Parsers Other Than the Built-In Parser

If you use JAXP to parse your XML documents, the WebLogic Server XML Registry
(which is configured through the Administration Console) offers the following
options:

! Accept the built-in parser as the server-wide parser.

! Configure the WebLogic FastParser as the server-wide parser.

! Configure another parser of your choice (such as a different version of the
Apache Xerces parser) as the server-wide parser.

! Configure a parser for a particular DTD based on its system or public identifier,
or its root tag.

For instructions on how to use the XML Registry to configure parsing options, see
“XML Parser and Transformer Configuration Tasks” on page 8-4.

Using the WebLogic FastParser

WebLogic Server includes a high-performance non-validating XML parser (called
WebLogic FastParser) specifically designed to parse small to medium (up to 10,000
elements) XML documents. For larger documents, the performance of this parser is
comparable to that of other standard parsers, such as Apache Xerces.

Note: WebLogic FastParser supports only SAX-style parsing.

You can specify that WebLogic FastParser be used as the WebLogic Server-wide
parser, or just for a particular DOCTYPE by using the XML Registry as described in
“XML Parser and Transformer Configuration Tasks” on page 8-4. Set the
SAXParserFactory field to
weblogic.xml.babel.jaxp.SAXParserFactoryImpl.
Programming WebLogic XML 2-9

2 Developing XML Applications with WebLogic Server
Generating New XML Documents

This section describes how to generate XML documents from a DOM document tree
and by using JSP.

Note: For detailed instructions on using the WebLogic XML Streaming API to
generate XML documents, see Chapter 4, “Using the WebLogic XML
Streaming API.”

Generating XML from a DOM Document Tree

This section describes two ways to create an XML document from a DOM document
tree:

! Using the Apache serialize classes

! Using the JAXP Transformer classes

Using the Apache Serialize Class

To generate an XML document from a DOM document tree, you can use the class
weblogic.apache.xml.serialize to convert a DOM document tree to XML text.
For a description of this class, see Javadoc for weblogic.apache.xml.serialize.

The following code example shows how to use this class.

Note: The following example does not use JAXP but rather the Apache proprietary
API directly.

package test;

import java.io.OutputStreamWriter;
import java.util.Date;
import java.text.DateFormat;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
2-10 Programming WebLogic XML

Generating New XML Documents
import weblogic.apache.xerces.dom.DocumentImpl;
import weblogic.apache.xml.serialize.DOMSerializer;
import weblogic.apache.xml.serialize.XMLSerializer;

public class WriteXML {

public static void main(String[] args) throws Exception {

// Create a DOM tree.
Document doc= new DocumentImpl();
Element message = doc.createElement("message");
doc.appendChild(message);
Element text = doc.createElement("text");
text.appendChild(doc.createTextNode("Hello world."));
message.appendChild(text);
Element timestamp = doc.createElement("timestamp");
timestamp.appendChild(
doc.createTextNode(

DateFormat.getDateInstance().format(new Date()))
);
message.appendChild(timestamp);

// Serialize the DOM to XML text and output to stdout.
DOMSerializer xmlSer =
new XMLSerializer(new OutputStreamWriter(System.out),null);

xmlSer.serialize(doc);
}

}

Using the JAXP Transformer Class

You can use the javax.xml.transform.Transformer class to serialize a DOM
object into an XML stream, as shown in the following example segment:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

...
Programming WebLogic XML 2-11

2 Developing XML Applications with WebLogic Server
TransformerFactory trans_factory =
TransformerFactory.newInstance();
Transformer xml_out = trans_factory.newTransformer();
Properties props = new Properties();
props.put(“method”, “xml”);
xml_out.setOutputProperties(props);
xml_out.transform(new DOMSource(doc), new
StreamResult(System.out));

In the example, the Transformer.transform() method does the work of converting
a DOM object into an XML stream. The transform() method takes as input a
javax.xml.transform.dom.DOMSource object, created from the DOM tree stored
in the doc variable, and converts it into a
javax.xml.transform.stream.StreamResult object and writes the resulting
XML document to the standard output.

Generating XML Documents in a JSP

You typically use JSPs to generate HTML, but you can also use a JSP to generate an
XML document.

Using JSPs to generate XML requires that you set the content type of the JSP page as
follows:

<%@ page contentType="text/xml"%>
... XML document

The following code shows an example of how to use JSP to generate an XML
document:

<?xml version="1.0">

<%@ page contentType="text/xml"
import="java.text.DateFormat,java.util.Date" %>

<message>
<text>

Hello World.
</text>
<timestamp>

<%
out.print(DateFormat.getDateInstance().format(new Date()));
%>
</timestamp>

</message>
2-12 Programming WebLogic XML

Transforming XML Documents
For more information about using JSP to generate XML, see
http://java.sun.com/products/jsp/html/JSPXML.html.

Transforming XML Documents

Transformation refers to converting an XML document (the source of the
transformation) into another format, typically a different XML document, HTML,
Wireless Markup Language (WML) (the result of the transformation.) This section
describes how to transform XML documents using JAXP and from within a JSP using
JSP tags.

Using JAXP to Transform XML Data

Version 1.1 of JAXP provides pluggable transformation, which means that you can use
any JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML data into a variety of
formats:

! javax.xml.transform: This package contains the generic APIs for
transforming documents. This package does not have any dependencies on SAX
or DOM and makes the fewest possible assumptions about the format of the
source and result.

! javax.xml.transform.stream: This package implements stream- and
URI-specific transformation APIs. In particular, it defines the StreamSource
and StreamResult classes that enable you to specify InputStreams and URLs
as the source of a transformation and OutputStreams and URLs as the results,
respectively.

! javax.xml.transform.dom: This package implements DOM-specific
transformation APIs. In particular, it defines the DOMSource and DOMResult

classes that enable you to specify a DOM tree as either the source or result, or
both, of a transformation.

! javax.xml.transform.sax: This package implements SAX-specific
transformation APIs. In particular, it defines the SAXSource and SAXResult
Programming WebLogic XML 2-13

http://java.sun.com/products/jsp/html/JSPXML.html

2 Developing XML Applications with WebLogic Server
classes that enable you to specify org.xml.sax.ContentHandler events as
either the source or result, or both, of a transformation.

Transformation encompasses many possible combinations of inputs and outputs.

For a complete example of transforming an XML document, see the
WL_HOME\samples\server\src\examples\xml\xslt directory, where WL_HOME
refers to the top-level WebLogic Platform directory.

Example of Transforming an XML Document Using JAXP

The following example snippet shows how to use JAXP to transform myXMLdoc.xml

into a different XML document using the mystylesheet.xsl stylesheet:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

Transformer trans;
TransformerFactory factory = TransformerFactory.newInstance();
String stylesheet = “file://stylesheets/mystylesheet.xsl”;
String xml_doc = “file://xml_docs/myXMLdoc.xml”;

trans = factory.newTransformer(new StreamSource(stylesheet));
trans.transform(new StreamSource(xml_doc),

new StreamResult(System.out));

For an example of how to transform a DOM document into an XML stream, see
“Using the JAXP Transformer Class” on page 2-11.

Converting Your XML Code From Using the Xalan API to JAXP 1.1 API

If your application contain Xalan-specific code, BEA recommends that you modify it
to use JAXP instead.

This section briefly describes the changes you must make to your XML application in
order to convert from using the Xalan API to JAXP. The section compares two code
segments that perform a similar transformation task: one code segment uses the Xalan
API directly and the other uses JAXP.

The following Java code segment uses JAXP:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
2-14 Programming WebLogic XML

Transforming XML Documents
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

...

Transformer trans;
TransformerFactory factory = TransformerFactory.newInstance();
String stylesheet = "file://stylesheets/mystylesheet.xsl";
String xml_doc = "file://xml_docs/myXMLdoc.xml";

trans = factory.newTransformer(new StreamSource(stylesheet));
trans.transform(new StreamSource(xml_doc),

new StreamResult(System.out));

The following Java code segment uses the Xalan API directly:

/*
* This code example was taken from code examples provided by the
* Apache Software Foundation. It consists of voluntary
* contributions made by many individuals on behalf of the Apache
* Software Foundation and was originally based on software
* copyright (c) 1999, Lotus Development Corporation.,
* http://www.lotus.com. For more information on the Apache
* Software Foundation, please see <http://www.apache.org/>.
*/

import org.apache.xalan.xslt.XSLTProcessorFactory;
import org.apache.xalan.xslt.XSLTInputSource;
import org.apache.xalan.xslt.XSLTResultTarget;
import org.apache.xalan.xslt.XSLTProcessor;

...

XSLTProcessor processor = XSLTProcessorFactory.getProcessor();

String stylesheet = "file://stylesheets/mystylesheet.xsl";
String xml_doc = "file://xml_docs/myXMLdoc.xml";

processor.process(new XSLTInputSource(xml_doc),
new XSLTInputSource(stylesheet),
new XSLTResultTarget(System.out));

The following table summarizes the names of the Xalan and JAXP interfaces and
methods used in the preceding examples to transform XML documents; use this table
as a first step toward converting your existing Xalan application to a full JAXP
application.
Programming WebLogic XML 2-15

2 Developing XML Applications with WebLogic Server
Note: This table does not include an entire mapping between Xalan and JAXP, but
rather covers only the main classes and methods used in the preceding
examples. Refer to the Apache and Sun Web sites at http://www.apache.org
and http://java.sun.com/xml/index.html for more detailed information on each
API.

Using the JSP Tag to Transform XML Data

WebLogic Server provides a small JSP tag library for convenient access to an XSLT
transformer from within a JSP. You can use this tag to transform XML documents into
HTML, WML, and so on, but it is not required.

The JSP tag library consists of one main tag, x:xslt, and two subtags you can use
within the x:xslt tag: x:stylesheet and x:xml.

Table 2-1 Equivalent Xalan and JAXP Classes and Interfaces

Description of Class or
Interface

Xalan 1.X JAXP 1.1

Main class used to transform
XML documents

XSLTProcessor Transformer

Factory class used to create the
transformer objects

XSLTProcessorFactory TransformerFactory

Method used to create a new
instance of the factory

n/a TransformerFactory.newIns
tance()

Method used to create a new
transformer object

XSLTProcessorFactory.getP
rocessor()

TransformerFactory.newTra
nsformer()

Class that holds the source of the
transformation, such as the
XML document or an XSL
stylesheet

XSLTInputSource StreamSource

Class that holds the result of the
transformation

XSLTResultTarget StreamResult

Method that performs the
transformation

XSLTProcessor.process() Transformer.transform()
2-16 Programming WebLogic XML

http://www.apache.org
http://java.sun.com/xml/index.html

Transforming XML Documents
XSLT JSP Tag Syntax

The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an
optional body, and a matching end tag. The start tag includes the element name and
optional attributes.

The following syntax describes how to use the three XSLT JSP tags provided by
WebLogic Server in a JSP. The attributes are optional, as are the subtags
x:stylesheet and x:xml. The tables following the syntax describe the attributes of
the x:xslt and x:stylesheet tags; the x:xml tag does not have any attributes.

<x:xslt [xml="uri of XML file"]
[media="media type to determine stylesheet"]
[stylesheet="uri of stylesheet"]

<x:xml>In-line XML goes here
</x:xml>
<x:stylesheet [media="media type to determine stylesheet"]

[uri="uri of stylesheet"]
</x:stylesheet>

</x:xslt>

The following table describes the attributes of the x:xslt tag.

Table 2-2 x:xslt JSP Tag Attributes

x:xslt Tag
Attribute

Required Data
Type

Description

xml No String Specifies the location of the XML file that you want to transform.
The location is relative to the document root of the Web application
in which the tag is used.

media No String Defines the document output type, such as HTML or WML, that
determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the media attribute
of any enclosed x:stylesheet tags within the body of the
x:xslt tag. The value of the media attribute of the x:xslt tag is
compared to the value of the media attribute of any enclosed
x:stylesheet tags. If the values are equal, then the stylesheet
specified by the uri attribute of the x:stylesheet tag is applied
to the XML document.

NOTE: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.
Programming WebLogic XML 2-17

2 Developing XML Applications with WebLogic Server
The following table describes the attributes of the x:stylesheet tag.

XSLT JSP Tag Usage

The x:xslt tag can be used with or without a body, and its attributes are optional. This
section describes the rules that dictate how the tag behaves depending on whether you
specify a body or one or more attributes.

If the x:xslt JSP tag is an empty tag (no body), the following statements apply:

" If no attributes are set, the XML document is processed using the servlet path
and the default media stylesheet. You specify the default media stylesheet in

stylesheet No String Specifies the location of the stylesheet to use to transform the XML
document. The location is relative to the document root of the Web
application in which the tag is used.

NOTE: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.

Table 2-2 x:xslt JSP Tag Attributes

x:xslt Tag
Attribute

Required Data
Type

Description

Table 2-3 x:stylesheet JSP Tag Attributes

x:stylesheet
Tag Attribute

Required Data
Type

Description

media No String Defines the document output type, such as HTML or WML,
that determines which stylesheet to use when transforming the
XML document.

Use this attribute in conjunction with the media attribute of
enveloping x:xslt tag. The value of the media attribute of
the x:xslt tag is compared to the value of the media
attribute of the enclosed x:stylesheet tags. If the values
are equal, then the stylesheet specified by the uri attribute of
the x:stylesheet tag is applied to the XML document.

uri No String Specifies the location of the stylesheet to use when the value of
the media attribute matches the value of the media attribute
of the enveloping x:xslt tag. The location is relative to the
document root of the Web application in which the tag is used.
2-18 Programming WebLogic XML

Transforming XML Documents
your XML file with the <?xml-stylesheet> processing instruction; the
default stylesheet is the one that does not have a media attribute.

This type of processing allows you to register the JSP page that contains the
tag extension as a file servlet that performs XSLT processing.

" If only the media attribute is set, the XML document is processed using the
servlet path and the specified media type. The value of the media type
attribute of the x:xslt tag is compared to the value of the media attribute of
any <?xml-stylesheet> processing instructions in your XML document; if
any match then the corresponding stylesheet is applied. If none match then
the default media stylesheet is used. The media type attribute is used to
define the document output type (for example, XML, HTML, postscript, or
WML). This feature enables you to organize stylesheets by document output
type.

" If only the xml attribute is set, the specified XML document is processed
using the default media stylesheet.

" If the media and xml attributes are set, the specified XML document is
processed using the specified media type.

" If the stylesheet attribute is defined, the XML document is processed
using the specified stylesheet.

Caution: It is an error to set both the media and stylesheet attributes within the
same x:xslt tag.

An XSLT JSP tag that has a body may contain <x:xml> tags and/or <x:stylesheet>
tags. The following statements apply:

" The <x:xml> tag allows you specify an XML document for inline
processing. This tag has no attributes.

" The <x:stylesheet> tag, when used without any attributes, allows you
specify the default stylesheet inline.

" Use the uri attribute of the <x:stylesheet> tag to specify the location of
the default stylesheet.

" If you want to specify different stylesheets for different media types, you can
use multiple <x:stylesheet> tags with different values for the media
Programming WebLogic XML 2-19

2 Developing XML Applications with WebLogic Server
attribute. You can specify a stylesheet for each media type in the body of the
tag, or specify the location of the stylesheet with the uri attribute.

Transforming XML Documents Using an XSLT JSP Tag

To use an XSLT JSP tag to transform XML documents, perform the following steps:

1. Open the xmlx.zip file in the WL_HOME\server\ext directory; extract the
xmlx-tags.jar file; and put it in the /lib directory of your Web application,
where BEA Home is the top-level directory in which you installed the WebLogic
Server distribution.

2. Add a <taglib> entry to the web.xml file. For example:

<taglib>
<taglib-uri>xmlx.tld</taglib-uri>
<taglib-location>/WEB-INF/lib/xmlx-tags.jar</taglib-location>

</taglib>

3. To use the tags, add the following line to your JSP page:

<%@ taglib uri="xmlx.tld" prefix="x"%>

4. Configure the transformer. The following procedure shows a generic way to
configure the transformer:

a. Enter the following code line to create an xslt.jsp file:

<%@ taglib uri="xmlx.tld" prefix="x"%><x:xslt/>

b. Register the xslt.jsp file in your web.xml file, as follows:

<servlet>
<servlet-name>myxsltinterceptor</servlet-name>
<jsp-file>xslt.jsp</jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>myxsltinterceptor</servlet-name>
<url-pattern>/xslt/*</url-pattern>

</servlet-mapping>

c. Put your XML, DTD, and XSL documents or servlets in your Web application.
2-20 Programming WebLogic XML

Transforming XML Documents
d. Add an xslt prefix to the pathname for the XML document (for example,
change docs/fred.xml to xslt/docs/fred.xml) and then access the
document. Because of the <url-pattern> entry in the web.xml file,
WebLogic Server automatically runs the XSLT transformer on the XML
document and sets the default stylesheet in the document.

e. To define media type, add code to the JSP to determine the media type for the
XML document and the content type for the output.

f. Pass the media type into the xslt tag and then set the content type of the
response object.

Note: The other forms of the XSLT JSP tag are used when stylesheets are not
specified in the XML document or your XML stylesheet can be generated
inline.

Example of Using the XSLT JSP Tag in a JSP

The following snippet of code from a JSP shows how to use the XSLT JSP tag to
transform XML into HTML or WML, depending on the type of client that is requesting
the JSP. If the client is a browser, the JSP returns HTML; if the client is a wireless
device, the JSP returns WML.

First the JSP uses the getHeader() method of the HttpServletRequest object to
determine the type of client that is requesting the JSP and sets the myMedia variable to
wml or html appropriately. If the JSP set the myMedia variable to html, then it applies
the html.xsl stylesheet to the XML document contained in the content variable.
Similarly, if the JSP set the myMedia variable to wml, then it applies the wml.xsl
stylesheet.

<%
String clientType = request.getHeader("User-Agent");
// default to WML client
String myMedia = "wml";

// if client is an HTML browser

if (clientType.indexOf("Mozilla") != -1) {
myMedia = "http"

}
%>

<x:xslt media="<%=myMedia%>">
<x:xml><%=content%></x:xml>
<x:stylesheet media="html" uri="html.xsl"/>
Programming WebLogic XML 2-21

2 Developing XML Applications with WebLogic Server
<x:stylesheet media="wml" uri="wml.xsl"/>
</x:xslt>

Using Transformers Other Than the Built-In Transformer

The WebLogic Server XML Registry (which you configure using the Administration
Console) offers the following options:

" Accept the built-in transformer as the server-wide transformer.

" Configure a transformer other than the built-in transformer as the server-wide
transformer. The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options,
see “XML Parser and Transformer Configuration Tasks” on page 8-4.
2-22 Programming WebLogic XML

CHAPTER
3 XML Application
Scoping

The following sections describe how to configure parsers, transformers, external
entities, and the external entity cache for a particular application:

! “Overview of Application Scoping” on page 3-1

! “The weblogic-application.xml File” on page 3-2

! “Configuring a Parser or Transformer for an Enterprise Application” on page 3-6

! “Configuring an External Entity for an Enterprise Application” on page 3-8

! “Configuring the External Entity Cache for an Enterprise Application” on page
3-9

Overview of Application Scoping

Application scoping refers to configuring resources for a particular enterprise
application rather than for an entire WebLogic Server configuration. In the case of
XML, these resources include parser, transformer, external entity, and external entity
cache configuration. The main advantage of application scoping is that it isolates the
resources for a given application to the application itself. Using application scoping,
you can configure different parsers for different applications, store the DTDs for an
application within the EAR file or exploded enterprise directory, and so on.
Programming WebLogic XML 3-1

3 XML Application Scoping
Another advantage of using application scoping is that by associating the resources
with the EAR file, you can run this EAR file on another instance of WebLogic Server
without having to configure the resources for that server.

To configure XML resources for a particular application, you add information to the
weblogic-application.xml deployment descriptor file located in the META-INF
directory of the EAR file or exploded enterprise application directory.

Note: You use the Administration Console to configure parser, transformer, and
external entity resources for a WebLogic Server instance, as described in
Chapter 8, “Administering WebLogic Server XML.”

The weblogic-application.xml File

The weblogic-application.xml file is the WebLogic Server-specific deployment
descriptor for an enterprise application. It contains configuration information about the
XML, JDBC, and EJB resources used by an enterprise application. The standard J2EE
deployment descriptor is called application.xml.

The following sample weblogic-application.xml file shows how to configure
XML resources for an enterprise application; the body of the various elements are
shown in bold:

<weblogic-application>
...
<xml>

<parser-factory>
<saxparser-factory>

weblogic.xml.babel.jaxp.SAXParserFactoryImpl
</saxparser-factory>
<document-builder-factory>

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
</document-builder-factory>
<transformer-factory>

org.apache.xalan.processor.TransformerFactoryImpl
</transformer-factory>

</parser-factory>
<entity-mapping>
<entity-mapping-name>My Mapping</entity-mapping-name>

<public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
<system-id>http://www.bea.com/dtds/car.dtd</system-id>
3-2 Programming WebLogic XML

The weblogic-application.xml File
<entity-uri>dtds/car.dtd</entity-uri>
</entity-mapping>

</xml>
</weblogic-application>

The main element for configuring XML resources is <xml>. The following diagram
describes the sub-elements of the <xml> element; the sections following the diagram
describe each element:

xml?

parser-factory?

saxparser-factory?

document-builder-factory?

? = Optional
+ = One or more
* = Zero or more

transformer-factory?

entity-mapping*

entity-mapping-name

public-id?

system-id?

entity-uri?

weblogic-application

when-to-cache?

cache-timeout-interval?
Programming WebLogic XML 3-3

3 XML Application Scoping
xml

The main element for configuring XML resources, such as parsers, transformers,
external entities, and the external entity cache for an enterprise application.

parser-factory

The parent element for specifying a particular parser or transformer for an enterprise
application.

saxparser-factory

Element that specifies the factory class to be used for SAX style parsing in this
application. If this element is not specified, the default SAX parser factory specified
for the WebLogic Server instance is used.

document-builder-factory

Element that specifies the factory class to be used for DOM style parsing in this
application. If this element is not specified, the default DOM parser factory specified
for the WebLogic Server instance is used.

transformer-factory

Element that specifies the factory class to be used when transforming documents using
the javax.xml.transform packages in this application. If this element is not
specified, the default XSLT transformer factory specified for the WebLogic Server
instance is used.
3-4 Programming WebLogic XML

The weblogic-application.xml File
entity-mapping

The parent element for mapping an entity declaration in an XML file to a local copy
of the entity, such as a DTD or Schema.

entity-mapping-name

Element that specifies the name of the entity mapping declaration.

public-id

Element that specifies the public ID of the entity, such as:

-//BEA Systems, Inc.//DTD for cars//EN.

system-id

Element that specifies the system ID of the entity, such as:

http://www.bea.com/dtds/car.dtd

entity-uri

Element that specifies the URI of the entity. The path is relative to the main directory
of the EAR archive or the exploded directory.

For example, dtds/car.dtd indicates that there is a directory called dtds in the main
EAR archive (parallel to the META-INF directory) and it contains a file called car.dtd.
Programming WebLogic XML 3-5

3 XML Application Scoping
when-to-cache

Element that specifies when you should cache the external entity. Valid values are:

! cache-on-reference—WebLogic Server caches the external entity referenced
by a URL the first time the entity is referenced in an XML document.

! cache-at-initialization—WebLogic Server caches the entity when the
server starts.

! cache-never—WebLogic Server never caches the external entity.

The default value is cache-on-reference.

cache-timeout-interval

Element that specifies the number of seconds after which the cached external entity
becomes stale, or out-of-date. WebLogic Server re-retrieves the external entity from
the specified URL or pathname relative to the main directory of the EAR archive or
exploded directory if the cached copy has been in the cache for longer than this
interval.

The default value for this field is 120 seconds.

Configuring a Parser or Transformer for an
Enterprise Application

You can specify that an XML application use a parser or transformer different from the
built-in parser or transformer configured for WebLogic Server by updating the
weblogic-application.xml file of the EAR file or exploded directory that contains
the XML application.

To configure a parser or transformer, other than the built-in, for an enterprise
application, follow these steps:
3-6 Programming WebLogic XML

Configuring a Parser or Transformer for an Enterprise Application
1. Use the <parser-factory> sub-element of the <xml> element to configure
factory classes for both SAX and DOM style parsing and for XSLT transformations
for the enterprise application, as shown in the following example:

<parser-factory>
<saxparser-factory>
weblogic.xml.babel.jaxp.SAXParserFactoryImpl

</saxparser-factory>
<document-builder-factory>

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
</document-builder-factory>
<transformer-factory>

org.apache.xalan.processor.TransformerFactoryImpl
</transformer-factory>

</parser-factory>

The application corresponding to this weblogic-application.xml file uses
the weblogic.xml.babel.jaxp.SAXParserFactoryImpl factory class for
SAX style parsing, the
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl factory class for
DOM style parsing, and the
org.apache.xalan.processor.TransformerFactoryImpl class for XSLT
transformations.

2. If you want the parser or transformer classes to be local to the EAR archive, put
the JAR file that contains the classes anywhere you want in the EAR file, then
update the Class-Path variable in the WEB-INF/MANIFEST.MF file.

For example, if you put the parser or transformer classes in a JAR file called
myparser.jar in the directory lib/xml, update the MANIFEST.MF file as
shown:

Manifest-Version: 1.0
Created-By: 1.3.1_01 (Sun Microsystems Inc.)
Class-Path: lib/xml/myparser.jar

3. If you want to store the parser or transformer classes in a location other than the
EAR archive, be sure that you update the WebLogic Server CLASSPATH
variable to include the full pathname of the JAR file that contains the classes.
Programming WebLogic XML 3-7

3 XML Application Scoping
Configuring an External Entity for an
Enterprise Application

You can store a local copy of an external entity, such as a DTD, in the EAR archive or
exploded directory rather than always retrieving it from the Web.

To configure an external entity for an enterprise application:

1. Create the directory lib/xml/registry under the main directory of the EAR
archive.

2. Copy the external entity, such as a DTD, to the directory.

3. Update the weblogic-application.xml file, using the <entity-mapping>
sub-element of the <xml> element to map the name of the entity to entity
declarations in any XML files processed by the application, as shown in the
following example:

<entity-mapping>
<entity-mapping-name>My Mapping</entity-mapping-name>

<public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
<system-id>http://www.bea.com/dtds/car.dtd</system-id>
<entity-uri>dtds/car.dtd</entity-uri>

</entity-mapping>

In the example, a local copy of a DTD called car.dtd is stored in the
lib/xml/registry/dtds directory under the main directory of the EAR
archive or exploded directory. The public ID of the entity is -//BEA Systems,

Inc.//DTD for cars//EN and the system id is
http://www.bea.com/dtds/car.dtd. Whenever the application is parsing an
XML file and it encounters an entity declaration using either one of the IDs, it
will substitute the car.dtd file.

Note: Specify an <entity-mapping> element for each entity declaration for which
you want to map a local copy of the entity.
3-8 Programming WebLogic XML

Configuring the External Entity Cache for an Enterprise Application
Configuring the External Entity Cache for an
Enterprise Application

You can specify that WebLogic Server cache external entities that are referenced with
a URL or a pathname relative to the main directory of the EAR archive, either at
server-startup or when the entity is first referenced.

Caching the external entity saves the remote access time and provides a local backup
in the event that the Administration Server cannot be accessed while an XML
document is being parsed, due to the network or the Administration server being down.

You can configure the expiration date of a cached entity, at which point WebLogic
Server re-retrieves the entity from the URL or directory of the EAR and re-caches it.

Use the <when-to-cache> and <cache-timeout-interval> subelements of the
<entity-mapping> element to configure external entity caching for an enterprise
application, as shown in the following example:

<entity-mapping>
<entity-mapping-name>My Mapping</entity-mapping-name>

<public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
<system-id>http://www.bea.com/dtds/car.dtd</system-id>
<entity-uri>dtds/car.dtd</entity-uri>
<when-to-cache>cache-at-initialization</when-to-cache>
<cache-timeout-interval>300</cache-timeout-interval>

</entity-mapping>

In the example, the car.dtd is stored in the lib/xml/registry/dtds directory
under the main directory of the EAR archive or exploded directory. WebLogic Server
caches a copy of the DTD in its memory when it first starts up, and then refreshes the
cached copy if it is stored for longer than 300 seconds.
Programming WebLogic XML 3-9

3 XML Application Scoping
3-10 Programming WebLogic XML

CHAPTER
4 Using the WebLogic
XML Streaming API

The following sections describe how to use the WebLogic XML Streaming API to
parse and generate XML documents:

! “Overview of the WebLogic XML Streaming API” on page 4-1

! “Javadocs for the WebLogic XML Streaming API” on page 4-3

! “Parsing an XML Document: Typical Steps” on page 4-3

! “Generating a New XML Document: Typical Steps” on page 4-19

Overview of the WebLogic XML Streaming
API

The WebLogic XML Streaming API provides an easy and intuitive way to parse and
generate XML documents. It is similar to the SAX API, but enables a procedural,
stream-based handling of XML documents rather than requiring you to write SAX
event handlers, which can get complicated when you work with complex XML
documents. In other words, the streaming API gives you more control over parsing
than the SAX API.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events
rather than ask for a specific event. By contrast, when you use the streaming API, you
Programming WebLogic XML 4-1

4 Using the WebLogic XML Streaming API
can methodically step through an XML document, ask for certain types of events (such
as the start of an element), iterate over the attributes of an element, skip ahead in the
document, stop processing at any time, get sub-elements of a particular element, and
filter out elements as desired. Because you are asking for events rather than reacting to
them, using the streaming API is often referred to as pull parsing.

You can parse many types of XML documents with the streaming API, such as XML
files on the operating system, DOM trees, and sets of SAX events. You convert these
XML documents into a stream of events, or an XMLInputStream, and then step
through the stream, pulling events such as the start of an element, the end of the
document, and so on, off the stack as needed.

The WebLogic Streaming API uses the WebLogic FastParser as its default parser.

For a complete example of parsing an XML document using the streaming API, see
the WL_HOME\samples\server\src\examples\xml\orderParser directory,
where WL_HOME refers to the top-level WebLogic Platform directory.

The following table describes the main interfaces and classes of the WebLogic
Streaming API.

Table 4-1 Interfaces and Classes of the XML Streaming API

Interface or Class Description

XMLInputStreamFactory Factory used to create XMLInputStream objects for
parsing XML documents.

XMLInputStream Interface used to contain the input stream of events.

BufferedXMLInputStream Extension of the XMLInputStream interface to allow
marking and resetting of the stream.

XMLOutputStreamFactory Factory used to create XMLOutputStream objects for
generating XML documents.

XMLOutputStream Interface used write events.

ElementFactory Utility to create instances of the interfaces used in this
API.

XMLEvent Base interface for all types of events in an XML
document, such as the start of an element, the end of an
element, and so on.
4-2 Programming WebLogic XML

Javadocs for the WebLogic XML Streaming API
Javadocs for the WebLogic XML Streaming
API

The following Javadocs provide reference material for the WebLogic XML Streaming
API features described in this chapter as well as additional features not explicitly
documented:

! weblogic.xml.stream at
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/xml/stream/package-summ
ary.html

! weblogic.xml.stream.util at
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/xml/stream/util/package-su
mmary.html

Parsing an XML Document: Typical Steps

The following procedure describes the typical steps for using the WebLogic XML
Streaming API to parse and manipulate an XML document.

StartElement Most important of the XMLEvent sub-interfaces. Used
to get information about a start element in an XML
document.

AttributeIterator Object used to iterate over the set of attributes of an
element.

Attribute Object that describes a particular attribute of an
element.

Table 4-1 Interfaces and Classes of the XML Streaming API

Interface or Class Description
Programming WebLogic XML 4-3

http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/xml/stream/package-summary.html
http://e-docs.bea.com/wls/docs81b/javadocs/weblogic/xml/stream/util/package-summary.html

4 Using the WebLogic XML Streaming API
The first two steps are required. The next steps you take depend on how you want to
process the XML file.

1. Import the weblogic.xml.stream.* classes.

2. Get an XML stream of events from an XML file, a DOM tree, or a set of SAX
events. You can also filter the XML stream to get only certain types of events,
names of specific elements, and so on. See “Getting an XML Input Stream” on
page 4-7.

3. Iterate over the stream, returning generic XMLEvent types. See “Iterating Over
the Stream” on page 4-10.

4. For each generic XMLEvent type, determine the specific event type. Event types
include the start of an XML document, the end of an element, an entity reference,
and so on. See “Determining the Specific XMLEvent Type” on page 4-11.

5. Get the attributes of an element. See “Getting the Attributes of an Element” on
page 4-15.

6. Position the stream by skipping over event, skipping to a particular event, and so
on. See “Positioning the Stream” on page 4-16.

7. Get the children of an element. See “Getting a Substream” on page 4-17.

8. Close the stream. See “Closing the Input Stream” on page 4-19.

Example of Parsing an XML Document

The following program shows an example of using the XML Streaming API to parse
an XML document.

The program takes a single parameter, an XML file, that it converts into an XML input
stream. It then iterates over the stream, determining the type of each event, such as the
start of an XML element, the end of the XML document, and so on. The program prints
out information for three types of events: start elements, end elements, and the
character data that forms the body of an element. The program does nothing when it
encounters the other types of events, such as comments or start of the XML document.

Note: The code in bold font is described in detail in the sections following the
example.
4-4 Programming WebLogic XML

Parsing an XML Document: Typical Steps
package examples.xml.stream;

import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.AttributeIterator;
import weblogic.xml.stream.ChangePrefixMapping;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.Comment;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.EndDocument;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.EntityReference;
import weblogic.xml.stream.ProcessingInstruction;
import weblogic.xml.stream.Space;
import weblogic.xml.stream.StartDocument;
import weblogic.xml.stream.StartPrefixMapping;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.EndPrefixMapping;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLStreamException;

import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class ComplexParse {

/**
* Helper method to get a handle on a stream.
* Takes in a name and returns a stream. This
* method usese the InputStreamFactory to create an
* instance of an XMLInputStream
* @param name The file to parse
* @return XMLInputStream the stream to parse
*/
public XMLInputStream getStream(String name)
throws XMLStreamException, FileNotFoundException

{
XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
return stream;

}

/**
* Determines the type of event, such as the start
* of an element, end of a document, and so on. If the
* event is of type START_ELEMENT, END_ELEMENT, or
* CHARACTER_DATA, the method prints out appropriate info;
* otherwise, it does nothing.
* @param event The XML event that has been parsed
Programming WebLogic XML 4-5

4 Using the WebLogic XML Streaming API
*/
public void parse(XMLEvent event)

throws XMLStreamException
{

switch(event.getType()) {
case XMLEvent.START_ELEMENT:
StartElement startElement = (StartElement) event;
System.out.print("<" + startElement.getName().getQualifiedName());
AttributeIterator attributes = startElement.getAttributesAndNamespaces();
while(attributes.hasNext()){
Attribute attribute = attributes.next();
System.out.print(" " + attribute.getName().getQualifiedName() +

"='" + attribute.getValue() + "'");
}
System.out.print(">");
break;

case XMLEvent.END_ELEMENT:
System.out.print("</" + event.getName().getQualifiedName() +">");
break;

case XMLEvent.SPACE:
case XMLEvent.CHARACTER_DATA:
CharacterData characterData = (CharacterData) event;
System.out.print(characterData.getContent());
break;

case XMLEvent.COMMENT:
// Print comment
break;

case XMLEvent.PROCESSING_INSTRUCTION:
// Print ProcessingInstruction
break;

case XMLEvent.START_DOCUMENT:
// Print StartDocument
break;

case XMLEvent.END_DOCUMENT:
// Print EndDocument
break;

case XMLEvent.START_PREFIX_MAPPING:
// Print StartPrefixMapping
break;

case XMLEvent.END_PREFIX_MAPPING:
// Print EndPrefixMapping
break;

case XMLEvent.CHANGE_PREFIX_MAPPING:
// Print ChangePrefixMapping
break;

case XMLEvent.ENTITY_REFERENCE:
// Print EntityReference
break;

case XMLEvent.NULL_ELEMENT:
4-6 Programming WebLogic XML

Parsing an XML Document: Typical Steps
throw new XMLStreamException("Attempt to write a null event.");
default:

throw new XMLStreamException("Attempt to write unknown event
["+event.getType()+"]");

}
}
/**
* Helper method to iterate over a stream
* @param name The file to parse
*/
public void parse(XMLInputStream stream)
throws XMLStreamException

{
while(stream.hasNext()) {
XMLEvent event = stream.next();
parse(event);

}
stream.close();

}

/** Main method. Takes a single argument: an XML file
* that will be converted into an XML input stream.
*/
public static void main(String args[])
throws Exception

{
ComplexParse complexParse= new ComplexParse();
complexParse.parse(complexParse.getStream(args[0]));

}
}

Getting an XML Input Stream

You can use the XML Streaming API to convert a variety of objects, such as XML
files, DOM trees, or SAX events, into a stream of events.

The following example shows how to create a stream of events from an XML file:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name));

First you create a new instance of the XMLInputStreamFactory, then use the factory
to create a new XMLInputStream from the XML file referred to in the name variable.

The following example shows how to create a stream from a DOM tree:
Programming WebLogic XML 4-7

4 Using the WebLogic XML Streaming API
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setValidating(false);
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(new java.io.File(file));
XMLInputStream stream = XMLInputStreamFactory.newInstance().newInputStream(doc);

Getting a Buffered XML Input Stream

After you finish iterating over an XMLInputStream object, you cannot access the
stream again. If, however, you need to process the stream again, such as send it to
another application or iterate over it again in some other way, use a
BufferedXMLInputStream object rather than a plain XMlInputStream object.

Use the newBufferedInputStream() method of the XMLInputStreamFactory
class to create a buffered XMlL input stream, as shown in the following example:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
BufferedXMLInputStream bufstream =

factory.newBufferedInputStream(factory.newInputStream(new
FileInputStream(name)));

You can use the mark() and reset() methods of the BufferedXMLInputStream
object to mark a particular spot in the stream, continue processing the stream, then
reset the stream back to the marked spot. See “Marking and Resetting a Buffered XML
Input Stream” on page 4-18 for more information.

Filtering the XML Stream

Filtering an XML stream refers to creating a stream that contains only specified types
of events. For example, you can create a stream that contains only start elements, end
elements, and the character data that make up the body of an XML element. Another
example is filtering an XML stream so that only elements with a specified name appear
in the stream.

To filter an XML stream, you specify a filter class as the second parameter to the
XMLInputStreamFactory.newInputStream()method. You specify the events that
you want in the XML stream as parameters to the filter class. The following example
shows how to use the TypeFilter class to specify that you want only start and end
XML elements and character data in the resulting XML stream:

import weblogic.xml.stream.util.TypeFilter;
4-8 Programming WebLogic XML

Parsing an XML Document: Typical Steps
XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name),

new TypeFilter(XMLEvent.START_ELEMENT |
XMLEvent.END_ELEMENT |
XMLEvent.CHARACTER_DATA));

The following table describes the filters provided by the WebLogic XML Streaming
API. They are part of the weblogic.xml.stream.util package.

Creating a Custom Filter

You can also create your own filter if the ones included in the API do not meet your
needs.

Table 4-2

Name of Filter Description Sample Usage

TypeFilter Filter an XML stream based on
specified event types, such as
XMLEvent.START_ELEMENT,
XMLEvent.END_ELEMENT, and so
on. See “Determining the Specific
XMLEvent Type” on page 4-11 for a
full list of event types.

TypeFilter takes an integer bitmask as
input; you OR the values to create this
bitmask, as shown in the sample.

new TypeFilter
(XMLEvent.START_ELEMENT |
XMLEvent.END_ELEMENT |
XMLEvent.CHARACTER_DATA)

NameFilter Filter an XML stream based on the
name of an element in the XML
document.

new NameFilter ("Book")

NameSpaceFilter Filter an XML stream based on the
specified namespace URI.

new NameSpaceFilter
("http://namespace.org")

NamespaceTypeFilter Filter an XML stream based on
specified event types and namespace
URI. This filter combines the
functionality of TypeFilter and
NameSpaceFilter.

new NamespaceFilter
("http://namespace.org",
XMLEvent.START_ELEMENT)

The example returns a stream where
all start elements have the specified
namespace.
Programming WebLogic XML 4-9

4 Using the WebLogic XML Streaming API
1. Create a class that implements the ElementFilter interface and contains a
method called accept(XMLEvent). This method tells the
XMLInputStreamFactory.newInputStream() method whether to add a
particular event to the stream or not, as shown in the following example:

package my.filters;

import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.ElementFilter;
import weblogic.xml.stream.events.NullEvent;

public class SuperDooperFilter implements ElementFilter {

protected String name;

public SuperDooperFilter(String name)
{

this.name = name;
}

public boolean accept(XMLEvent e) {
if (name.equals(e.getName().getLocalName()))
return true;

return false;
}

}

2. In your XML application, be sure to import the new filter class:

import my.filters.SuperDooperFilter

3. Specify the filter as the second parameter to the newInputStream() method,
passing to the filter class the types of events you want to appear in the XML
stream in whatever format required by your filter class:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name),

new SuperDooperFilter(param));

Iterating Over the Stream

Once you have a stream of events, the next step is to methodically step through it using
the XMLInputStream.next() and XMLInputStream.hasNext()methods, as shown
in the following example:
4-10 Programming WebLogic XML

Parsing an XML Document: Typical Steps
while(stream.hasNext()) {
XMLEvent event = stream.next();
System.out.print(event);

}

Determining the Specific XMLEvent Type

The XMLInputStream.next() method returns an object of type XMLEvent.
XMLEvent has subinterfaces that further classify what this event might be, such as the
start of the XML document, the end of an element, an entity reference, and so on. The
XMLEvent interface also contains corresponding fields, or constants, as well as a set of
methods that you can use to identify the actual event. The following diagram shows
the hierarchy of the XMLEvent interface and its subinterfaces:

XMLEvent

ChangePrefixMapping

Comment

Space

CharacterData

EndDocument

EndElement

EndPrefixMapping

EntityReference

ProcessingInstruction

StartDocument

StartElement

StartPrefixMapping
Programming WebLogic XML 4-11

4 Using the WebLogic XML Streaming API
The following table lists the subclasses and fields of the XMLEvent class that you can
use to identify a particular event while parsing the XML stream.

Table 4-3 Subclasses and Fields of the XMLEvent Class

XMLEvent
Subclass

Field of the XMLEvent
Class used to Identify
Subclass

Method used to
Identify Subclass

Description of the
Subclass Event

ChangePrefixMapping CHANGE_PREFIX_MAPPING isChangePrefixMapping Signals that a prefix
mapping has changed
from an old namespace
to a new namespace.

CharacterData CHARACTER_DATA isCharacterData Signals that the
returned XMLEvent
object contains the
character data from the
body of the element.

Comment COMMENT isComment Signals that the
returned XMLEvent
object contains an
XML comment.

EndDocument END_DOCUMENT isEndDocument Signals the end of the
XML document.

EndElement END_ELEMENT isEndElement Signals the end of an
element in the XML
document.

EndPrefixMapping END_PREFIX_MAPPING isEndPrefixMapping Signals that a prefix
mapping has gone out
of scope.

EntityReference ENTITY_REFERENCE isEntityReference Signals that the
returned XMLEvent
object contains an
entity reference.

ProcessingInstruction PROCESSING_INSTRUCTION isProcessingInstruction Signals that the
returned XMLEvent
object contains a
processing instruction.
4-12 Programming WebLogic XML

Parsing an XML Document: Typical Steps
The following example shows how to use the Java case statement to determine the
particular type of event that was returned by the XMLInputStream.next() method.
For simplicity, the example simply prints that an event has been found; later sections
show further processing of the event.

switch(event.getType()) {
case XMLEvent.START_ELEMENT:

// Start of an element
System.out.println ("Start Element\n");
break;

case XMLEvent.END_ELEMENT:
// End of an element
System.out.println ("End Element\n");
break;

case XMLEvent.PROCESSING_INSTRUCTION:
// Processing Instruction
System.out.println ("Processing instruction\n");
break;

case XMLEvent.SPACE:
// Whitespace

Space SPACE isSpace Signals that the
returned XMLEvent
object contains
whitespace.

StartDocument START_DOCUMENT isStartDocument Signals the start of an
XML document.

StartElement START_ELEMENT isStartElement Signals the start of a
element in the XML
document.

StartPrefixMapping START_PREFIX_MAPPING isStartPrefixMapping Signals that a prefix
mapping has started its
scope.

Table 4-3 Subclasses and Fields of the XMLEvent Class

XMLEvent
Subclass

Field of the XMLEvent
Class used to Identify
Subclass

Method used to
Identify Subclass

Description of the
Subclass Event
Programming WebLogic XML 4-13

4 Using the WebLogic XML Streaming API
System.out.println ("White space\n");
break;

case XMLEvent.CHARACTER_DATA:
// Character data
System.out.println ("Character data\n");
break;

case XMLEvent.COMMENT:
// Comment
System.out.println ("Comment\n");
break;

case XMLEvent.START_DOCUMENT:
// Start of the XML document
System.out.println ("Start Document\n");
break;

case XMLEvent.END_DOCUMENT:
// End of the XML Document
System.out.println ("End Document\n");
break;

case XMLEvent.START_PREFIX_MAPPING:
// The start of a prefix mapping scope
System.out.println ("Start prefix mapping\n");
break;

case XMLEvent.END_PREFIX_MAPPING:
// The end of a prefix mapping scope
System.out.println ("End prefix mapping\n");
break;

case XMLEvent.CHANGE_PREFIX_MAPPING:
// Prefix mapping has changed namespaces
System.out.println ("Change prefix mapping\n");
break;

case XMLEvent.ENTITY_REFERENCE:
// An entity reference
System.out.println ("Entity reference\n");
break;

default:

throw new XMLStreamException("Attempt to parse unknown event
[" + event.getType() + "]");

}

4-14 Programming WebLogic XML

Parsing an XML Document: Typical Steps
Getting the Attributes of an Element

To get the attributes of an element in an XML document, you must first cast the
XMLEvent object that was returned by the XMLInputStream.next() method to a
StartElement object.

Because you do not know how many attributes an element might have, you must first
create an AttributeIterator object to contain the entire list of attributes, and then
iterate over the list until there are no more attributes. The following example describes
how to do this as part of the START_ELEMENT case of the switch statement shown in
“Iterating Over the Stream” on page 4-10:

case XMLEvent.START_ELEMENT:

StartElement startElement = (StartElement) event;
System.out.print("<" + startElement.getName().getQualifiedName());
AttributeIterator attributes = startElement.getAttributesAndNamespaces();
while(attributes.hasNext()){

Attribute attribute = attributes.next();
System.out.print(" " + attribute.getName().getQualifiedName() +

"='" + attribute.getValue() + "'");
}
System.out.print(">");
break;

The example first creates a StartElement object by casting the returned XMLEvent

to StartElement. It then creates an AttributeIterator object using the method
StartElement.getAttributesAndNamespaces(), and iterates over the attributes
using the AttributeIterator.hasNext() method. For each Attribute, it uses the
Attributes.getName().getQualifiedName() and Attribute.getValue()

methods to return the name and value of the attribute.

You can also use the getNamespace() and getAttributes() methods to return just
the namespaces or attributes on their own.
Programming WebLogic XML 4-15

4 Using the WebLogic XML Streaming API
Positioning the Stream

The following table describes the methods of the XMLInputStream interface that you
can use to skip ahead to specific locations in the stream.

The following example shows how you can modify the basic code for iterating over an
input stream to skip over the character data in the body of an XML element:

while(stream.hasNext()) {
XMLEvent peek = stream.peek();
if (peek.getType() == XMLEvent.CHARACTER_DATA) {
stream.skip();
continue;

}
XMLEvent event = stream.next();
parse(event);

}

Table 4-4 Methods Used to Position the Input Stream

Method of
XMLInputStream

Description

skip() Positions the input stream to the next stream event.

Note: The next event might not necessarily be an actual
element in the XML file; for example, it could be a
comment or white space.

skip(int) Positions the input stream to the next event of this type.

Examples of event types are XMLEvent.START_ELEMENT
and XMLEvent.END_DOCUMENT. Refer to Table 4-3 for the
full list of event types.

skip(XMLName) Positions the input stream to the next event of this name.

skip(XMLName, int) Positions the input stream to the next event of this name and
type.

skipElement() Skips to the next element (does not skip to the sub-elements of
the current element).

peek() Checks the next event without actually reading it from the
stream.
4-16 Programming WebLogic XML

Parsing an XML Document: Typical Steps
The example shows how to use the XMLInputStream.peek() method to determine
the next event on the stream. If the type of event is XMLEvent.CHARACTER_DATA, then
skip the event and go to the next one.

Getting a Substream

Use the XMLInputStream.getSubStream() method to get a copy of the next
element, including all its subelements. The getSubstream() method returns an
XMLInputStream object. Your position in the parent stream (or the stream from
which you called getSubStream()) does not move. In the parent stream, if you want
to skip the element you just got with getSubStream(), use the skipElement()
method.

The getSubStream() method keeps a count of the START_ELEMENT and
END_ELEMENT events it encounters, and as soon as the number is equal (or in other
words, as soon as it finds the complete next element) it stops and returns the resulting
substream as an XMLInputStream object.

For example, assume that you are using the XML Streaming API to parse the following
XML document, but you are only interested in the substream delineated by the
<content> and </content> tags:

<book>
<title>The History of the World</title>
<author>Juliet Shackell</author>
<publisher>CrazyDays Publishing</publisher>
<content>

<chapter title='Just a Speck of Dust'>
<synopsis>The world as a speck of dust</synopsis>
<para>Once the world was just a speck of dust...</para>

</chapter>
<chapter title='Life Appears'>
<synopsis>Move over dust, here comes life.</synopsis>
<para>Happily, the dust got a companion: life...</para>

</chapter>
</content>

</book>

The following code fragment shows how you can skip to the <content> start element
tag, get the substream, and parse it using a separate ComplexParse object:

if (stream.skip(ElementFactory.createXMLName("content")))
{

Programming WebLogic XML 4-17

4 Using the WebLogic XML Streaming API
ComplexParse complexParse = new ComplexParse();
complexParse.parse(stream.getSubStream());

}

When you call this method on the previous XML document, you get the following
output:

<content>
<chapter title='Just a Speck of Dust'>
<synopsis>The world as a speck of dust</synopsis>
<para>Once the world was just a speck of dust...</para>

</chapter>
<chapter title='Life Appears'>
<synopsis>Move over dust, here comes life.</synopsis>
<para>Happily, the dust got a companion: life...</para>

</chapter>
</content>

Marking and Resetting a Buffered XML Input Stream

If you are using a BufferedXMLInputStream object, you can use the mark() and
reset() methods to mark the stream at a particular spot, process the stream, and then
subsequently reset the stream back to the marked spot. These methods are useful if
you want to further manipulate the stream after initially iterating over it.

Note: If you read a buffered stream without marking it, you cannot access what
you’ve just read. In other words, just because the stream is buffered, it does
not automatically mean you can reread it. You must mark it first.

The following example shows a typical use of the BufferedXMLInputStream object:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
BufferedXMLInputStream bufstream =
factory.newBufferedInputStream(factory.newInputStream(new

FileInputStream(name)));

// mark the start of the stream
bufstream.mark();

// process it locally
bufferedParse.parse(bufstream);

// reset the stream to the mark
bufstream.reset();
4-18 Programming WebLogic XML

Generating a New XML Document: Typical Steps
// send stream off to another application
ComplexParse complexParse = new ComplexParse();
complexParse.parse(bufstream);

Closing the Input Stream

It is good programming practice to explicitly close the XML input stream when you
are finished with it. To close an input stream, use the XMLInputStream.close()
method, as shown in the following example:

// close the input stream
input.close();

Generating a New XML Document: Typical
Steps

The following procedure describes the typical steps for using the WebLogic XML
Streaming API to generate a new XML document.

The first two steps are required. The next steps you take depend on how you want to
generate the XML file.

1. Import the weblogic.xml.stream.* classes.

2. Create an XML output stream to which to write the XML document. See
“Creating an XML Output Stream” on page 4-22.

3. Add events to the XML output stream. See “Adding Elements to the Output
Stream” on page 4-23.

4. Add attributes to the XML output stream. See “Adding Attributes to an Element
on the Output Stream” on page 4-24.

5. Add an input stream to the output stream. See “Adding an Input Stream to an
Output Stream” on page 4-25.

6. Print the output stream. See “Printing an Output Stream” on page 4-26.
Programming WebLogic XML 4-19

4 Using the WebLogic XML Streaming API
7. Close the output stream. See “Closing the Output Stream” on page 4-26.

Example of Generating an XML Document

The following program shows an example of using the XML Streaming API to
generate an XML document.

The program first creates an output stream based on a PrintWriter object, then adds
elements to the output stream to create a simple XML purchase order, described in the
comments of the program. The program also shows how to add an input stream based
on a separate XML file to the output stream.

Note: The topics following the example describe it in more detail.

package examples.xml.stream;

import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLOutputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.XMLStreamException;
import weblogic.xml.stream.XMLOutputStreamFactory;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.PrintWriter;

/**
* Program that prints out a very simple purchase order that looks
* like the following:
*
* <purchase_order>
* <name>Juliet Shackell</name>
* <item id="1234" quantity="2">Fabulous Chair</item>
* <!-- this is a comment-->
* <another_file>
* This comes from another file called "another_file.xml"
* </another_file>
* </purchase_order>
4-20 Programming WebLogic XML

Generating a New XML Document: Typical Steps
*
* In the preceding XML file, the <another_file> element is actually another
* XML file that is passed as an argument to the program, converted into an
* XMLInputStream, then added to the output stream.
*/
public class PrintPurchaseOrder {

/**
* Helper method to get a handle on a stream.
* Takes in a name and returns a stream. This
* method uses the InputStreamFactory to create an
* instance of an XMLInputStream
* @param name The file to parse
* @return XMLInputStream the stream to parse
*/
public XMLInputStream getInputStream(String name)
throws XMLStreamException, FileNotFoundException

{
XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
return stream;

}
public static void main(String args[])
throws Exception

{
PrintPurchaseOrder printer = new PrintPurchaseOrder();
//
// Create an output stream.
//
XMLOutputStreamFactory factory = XMLOutputStreamFactory.newInstance();
XMLOutputStream output = factory.newOutputStream(new

PrintWriter(System.out,true));

// add the <purchase_order> root element
output.add(ElementFactory.createStartElement("purchase_order"));
output.add(ElementFactory.createCharacterData("\n"));

// add the <name> element
output.add(ElementFactory.createStartElement("name"));
output.add(ElementFactory.createCharacterData("Juliet Shackell"));
output.add(ElementFactory.createEndElement("name"));
output.add(ElementFactory.createCharacterData("\n"));

// add the <item> element along with the id and quantity attributes
output.add(ElementFactory.createStartElement("item"));
output.add(ElementFactory.createAttribute("id","1234"));
output.add(ElementFactory.createAttribute("quantity","2"));
output.add(ElementFactory.createCharacterData("Fabulous Chair"));
output.add(ElementFactory.createEndElement("item"));
output.add(ElementFactory.createCharacterData("\n"));
Programming WebLogic XML 4-21

4 Using the WebLogic XML Streaming API
// add a comment
output.add("<!-- this is a comment-->");
output.add(ElementFactory.createCharacterData("\n"));

// create an input stream from each XML file argument then add it to the output
for (int i=0; i < args.length; i++)
//
// Get an input stream and add it to the output stream
//
output.add(printer.getInputStream(args[i]));

// Finally, end the root "purchase_order" element
output.add(ElementFactory.createEndElement("purchase_order"));

//
// Print the results to the screen
//
output.flush();

// Close the output streams
output.close();
}

}

The preceding program produces the following output:

<purchase_order>
<name>Juliet Shackell</name>
<item id="1234" quantity="2">Fabulous Chair</item>
<!-- this is a comment-->
<another_file>

This is from another file.
</another_file>

</purchase_order>

Creating an XML Output Stream

One of the first steps in generating an XML document using the Weblogic XML
Streaming API is to create an output stream which holds the document as it is being
built. Creating an XML output stream is similar to creating an input stream: you first
create an instance of the XMLOutputStreamFactory and then create an output stream
with the XMLOutputStreamFactory.newOutputStream() method, as shown in the
following example:
4-22 Programming WebLogic XML

Generating a New XML Document: Typical Steps
XMLOutputStreamFactory factory = XMLOutputStreamFactory.newInstance();
XMLOutputStream output = factory.newOutputStream(new

PrintWriter(System.out,true));

The following example shows how to create an XMLOutputStream based on a DOM
tree:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setValidating(false);
dbf.setNamespaceAware(true);
Document doc = dbf.newDocumentBuilder().newDocument();
XMLOutputStream out =

XMLOutputStreamFactory.newInstance().newOutputStream(doc);

You can use the XMLOutputStreamFactory.newOutputStream()method to create
an output stream based on the following four Java objects, depending on what the final
form of the XML document will be (such as a file on the operating system, a DOM
tree, and so on):

! java.io.OutputStream

! java.io.Writer

! org.xml.sax.ContentHandler

! org.w3c.dom.Document

Adding Elements to the Output Stream

Use the XMLOutputStream.add(XMLEvent) method to add elements to the output
stream. Use the ElementFactory to create the particular element.

The ElementFactory interface includes methods to create each type of element; the
general format is ElementFactory.createXXX() where XXX refers to the particular
element, such as createStartElement(), createCharacterData(), and so on.
You can create most elements by passing the name as a String or as an XMLName.

Warning: The XMLOutputStream does not validate your XML.

Note: Each time you create a start element, you must explicitly also create an end
element at some point. The same rule applies to creating a start document.

For example, assume you want to create the following snippet of XML:

<name>Juliet Shackell</name>
Programming WebLogic XML 4-23

4 Using the WebLogic XML Streaming API
The Java code to add this element to an output stream is as follows:

output.add(ElementFactory.createStartElement("name"));
output.add(ElementFactory.createCharacterData("Juliet Shackell"));
output.add(ElementFactory.createEndElement("name"));
output.add(ElementFactory.createCharacterData("\n"));

The final createCharacterData() method adds a newline character to the output
stream. This is optional, but useful if you want to create human-readable XML.

Adding Attributes to an Element on the Output Stream

Use the XMLOutputStream.add(Attribute) to add attributes to an element you
have just created. Use the ElementFactory.createAttribute() method to create
a particular attribute.

For example, assume you want to create the following snippet of XML:

<item id="1234" quantity="2">Fabulous Chair</item>

The Java code to add this element to an output stream is as follows:

output.add(ElementFactory.createStartElement("item"));
output.add(ElementFactory.createAttribute("id","1234"));
output.add(ElementFactory.createAttribute("quantity","2"));
output.add(ElementFactory.createCharacterData("Fabulous Chair"));
output.add(ElementFactory.createEndElement("item"));
output.add(ElementFactory.createCharacterData("\n"));

Note: Be sure you add attributes to an element after you create the start element but
before you create the corresponding end element. Otherwise, although your
code will compile successfully, you will get a runtime error when you try to
run the program. For example, the following code returns an error because the
attributes are added to the <item> element after the element has been
explicitly ended:

output.add(ElementFactory.createStartElement("item"));
output.add(ElementFactory.createEndElement("item"));
output.add(ElementFactory.createAttribute("id","1234"));
output.add(ElementFactory.createAttribute("quantity","2"));
output.add(ElementFactory.createCharacterData("Fabulous Chair"));
output.add(ElementFactory.createCharacterData("\n"));
4-24 Programming WebLogic XML

Generating a New XML Document: Typical Steps
Adding an Input Stream to an Output Stream

When creating an XML output stream, you might want to add an existing XML
document, such as an XML file or a DOM tree, to the output stream. To do this, you
must first convert the XML document to an XML input stream, then use
XMLOutputStream.add(XMLInputStream) method to add the input stream to the
output stream.

The following example first shows a method called getInputStream() that creates an
XML input stream from an XML file and then how to use the method to add the created
input stream to an output stream:

/**
* Helper method to get a handle on a stream.
* Takes in a name and returns a stream. This
* method uses the InputStreamFactory to create an
* instance of an XMLInputStream
* @param name The file to parse
* @return XMLInputStream the stream to parse
*/

public XMLInputStream getInputStream(String name)
throws XMLStreamException, FileNotFoundException

{
XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
return stream;

}

....

// create an input stream from each XML file argument then add it to the output

for (int i=0; i < args.length; i++)
//
// Get an input stream and add it to the output stream
//
output.add(printer.getInputStream(args[i]));
Programming WebLogic XML 4-25

4 Using the WebLogic XML Streaming API
Printing an Output Stream

Use the XMLOutputStream.flush() method to print out the XML output stream to
whatever object you created it from. For example, if you created an XML output
stream from a PrintWriter object, then the flush() method prints the stream to the
standard output.

Note: If you are writing to an XMLOutputStream based on a DOM tree, you must
execute the flush() method before you can manipulate the DOM.

The following example shows how to print an output stream:

//
// Print the results to the screen
//
output.flush();

Closing the Output Stream

It is good programming practice to explicitly close the XML output stream when you
are finished with it. To close an output stream, use the XMLOutputStream.close()
method, as shown in the following example:

// close the output stream
output.close();
4-26 Programming WebLogic XML

CHAPTER
5 Using the WebLogic
XPath API

The following sections provide information about the WebLogic XPath API:

! “Overview of the WebLogic XPath API” on page 5-1

! “Using the DOMXPath Class” on page 5-2

! “Using the StreamXPath Class” on page 5-6

Overview of the WebLogic XPath API

The WebLogic XPath API contains all of the classes required to perform XPath
matching against a document represented as a DOM, XMLNode, or against an
XMLInputStream. Use the API if you want to identify a subset of XML elements
within an XML document that conform to a given pattern.

For additional API reference information about the WebLogic XPath API, see the
weblogic.xml.xpath Javadoc at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.
Programming WebLogic XML 5-1

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

5 Using the WebLogic XPath API
Using the DOMXPath Class

This section describes how to use the DOMXPath class of the WebLogic XPath API to
perform XPath matching against an XML document represented as a DOM. The section
first provides an example and then a description of the main steps used in the example.

Example of Using the DOMXPath Class

The sample Java program at the end of this section uses the following XML document
in its matching:

<?xml version='1.0' encoding='us-ascii'?>

<!-- "Purchaseorder". -->

<purchaseorder
department="Sales"
date="01-11-2001"
raisedby="Picachu"
>
<item

ID="101">
<title>Laptop</title>
<quantity>5</quantity>
<make>Dell</make>

</item>
<item

ID="102">
<title>Desktop</title>
<quantity>15</quantity>
<make>Dell</make>

</item>
<item

ID="103">
<title>Office Software</title>
<quantity>10</quantity>
<make>Microsoft</make>

</item>
</purchaseorder>

The Java code example is as follows:
5-2 Programming WebLogic XML

Using the DOMXPath Class
package examples.xml.xpath;

import java.io.IOException;
import java.util.Iterator;
import java.util.Set;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.xml.sax.SAXException;
import weblogic.xml.xpath.DOMXPath;
import weblogic.xml.xpath.XPathException;

/**
* This class provides a simple example of how to use the DOMXPath
* API.
*
* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
*/

public abstract class DOMXPathExample {

public static void main(String[] ignored)

throws XPathException, ParserConfigurationException,

SAXException, IOException

{

// create a dom representation of the document

String file = "purchaseorder.xml";

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true); // doesn't matter for this example

DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(file);

// create some instances of DOMXPath to evaluate against the

// document.

DOMXPath totalItems = // count number of items

new DOMXPath("count(purchaseorder/item)");

DOMXPath atLeast10 = // titles of items with quantity >= 10
Programming WebLogic XML 5-3

5 Using the WebLogic XPath API
new DOMXPath("purchaseorder/item[quantity >= 10]/title");

// evaluate them against the document

double count = totalItems.evaluateAsNumber(doc);

Set nodeset = atLeast10.evaluateAsNodeset(doc);

// output results

System.out.println(file+" contains "+count+" total items.");

System.out.println("The following items have quantity >= 10:");

if (nodeset != null) {

Iterator i = nodeset.iterator();

while(i.hasNext()) {

Node node = (Node)i.next();

System.out.println(" "+node.getNodeName()+

": "+node.getFirstChild().getNodeValue());

}

}

// note that at this point we are free to continue using evaluate

// atLeast10 and totalItems against other documents

}

}

Main Steps When Using the DOMXPath Class

The following procedure describes the main steps to use the DOMXPath class to
perform XPath matching against an XML document represented as a DOM:

1. Create an org.w3c.dom.Document object from an XML document, as shown in
the following code excerpt:

String file = "purchaseorder.xml";
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
5-4 Programming WebLogic XML

Using the DOMXPath Class
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(file);

2. Create a DOMXPath object to represent the XPath expression you want to evaluate
against the DOM.

The following example shows an XPath expression that counts the items in a
purchase order:

DOMXPath totalItems =
new DOMXPath("count(purchaseorder/item)");

The following example shows an XPath expression that returns the titles of
items whose quantity is greater or equal to 10:

DOMXPath atLeast10 =
new DOMXPath("purchaseorder/item[quantity >= 10]/title");

3. Evalute the XPath expression using one of the DOMXPath.evaluateAsXXX()
methods, where XXX refers to the data type of the returned data, such as Boolean,
Nodeset, Number, or String.

The following example shows how to use the evaluateAsNumber() method to
evaluate the totalItems XPath expression:

double count = totalItems.evaluateAsNumber(doc);
System.out.println(file+" contains "+count+" total items.");

The following example shows how to use the evaluateAsNodeset() method to
return a Set of org.w3c.dom.Nodes which you can iterate through in the
standard way:

Set nodeset = atLeast10.evaluateAsNodeset(doc);

System.out.println("The following items have quantity >= 10:");
if (nodeset != null) {

Iterator i = nodeset.iterator();
while(i.hasNext()) {
Node node = (Node)i.next();
System.out.println(" "+node.getNodeName()+

": "+node.getFirstChild().getNodeValue());
}

}

For additional API reference information about the WebLogic XPath API, see the
weblogic.xml.xpath Javadoc at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.
Programming WebLogic XML 5-5

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

5 Using the WebLogic XPath API
Using the StreamXPath Class

The example in this section shows how to use the StreamXPath class of the WebLogic
XPath API to perform XPath matching against an XMLInputStream. The section first
provides an example and then a description of the main steps used in the example.

Example of Using the StreamXPath Class

The sample Java program at the end of this section uses the following XML document
in its matching:

<?xml version='1.0' encoding='us-ascii'?>

<!-- "Stock Quotes". -->

<stock_quotes>
<stock_quote symbol='BEAS'>

<when>
<date>01/27/2001</date>
<time>3:40PM</time>

</when>
<price type="ask" value="65.1875"/>
<price type="open" value="64.00"/>
<price type="dayhigh" value="66.6875"/>
<price type="daylow" value="64.75"/>
<change>+2.1875</change>
<volume>7050200</volume>

</stock_quote>
<stock_quote symbol='MSFT'>

<when>
<date>01/27/2001</date>
<time>3:40PM</time>

</when>
<price type="ask" value="55.6875"/>
<price type="open" value="50.25"/>
<price type="dayhigh" value="56"/>
<price type="daylow" value="52.9375"/>
<change>+5.25</change>
<volume>64282200</volume>

</stock_quote>
</stock_quotes>
5-6 Programming WebLogic XML

Using the StreamXPath Class
The Java code for the example is as follows:

package examples.xml.xpath;

import java.io.File;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLStreamException;
import weblogic.xml.xpath.StreamXPath;
import weblogic.xml.xpath.XPathException;
import weblogic.xml.xpath.XPathStreamFactory;
import weblogic.xml.xpath.XPathStreamObserver;

/**
* This class provides a simple example of how to use the StreamXPath
* API.
*
* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
*/

public abstract class StreamXPathExample {

public static void main(String[] ignored)

throws XPathException, XMLStreamException

{

// Create instances of StreamXPath for two xpaths we want to match

// against this tream.

StreamXPath symbols =

new StreamXPath("stock_quotes/stock_quote");

StreamXPath openingPrices =

new StreamXPath("stock_quotes/stock_quote/price[@type='open']");

// Create an XPathStreamFactory.

XPathStreamFactory factory = new XPathStreamFactory();

// Create and install two XPathStreamObservers. In this case, we

// just use to anonymous classes to print a message when a

// callback is received. Note that a given observer can observe
Programming WebLogic XML 5-7

5 Using the WebLogic XPath API
// more than one xpath, and a given xpath can be observed by

// mutliple observers.

factory.install(symbols, new XPathStreamObserver () {

public void observe(XMLEvent event) {

System.out.println("Matched a quote: "+event);

}

public void observeAttribute(StartElement e, Attribute a) {} //ignore

public void observeNamespace(StartElement e, Attribute a) {} //ignore

});

// Note that we get matches for both a start and an end elements,

// even in the case of <price/> which is an empty element - this

// is the behavior of the underlying streaming parser.

factory.install(openingPrices, new XPathStreamObserver () {

public void observe(XMLEvent event) {

System.out.println("Matched an opening price: "+event);

}

public void observeAttribute(StartElement e, Attribute a) {} //ignore

public void observeNamespace(StartElement e, Attribute a) {} //ignore

});

// get an XMLInputStream on the document

String file = "stocks.xml";

XMLInputStream sourceStream = XMLInputStreamFactory.newInstance().

newInputStream(new File(file));

// use the factory to create an XMLInputStream that will do xpath

// matching against the source stream

XMLInputStream matchingStream = factory.createStream(sourceStream);

// now iterate through the stream
5-8 Programming WebLogic XML

Using the StreamXPath Class
System.out.println("Matching against xml stream from "+file);

while(matchingStream.hasNext()) {

// we don't do anything with the events in our example - the

// XPathStreamObserver instances that we installed in the

// factory will get call backs for appropriate events

XMLEvent event = matchingStream.next();

}

}

}

Main Steps When Using the StreamXPath Class

The following procedure describes the main steps to use the StreamXPath class to
perform XPath matching against an XML document represented as an
XMLInputStream:

1. Create a StreamXPath object to represent the XPath expression you want to
evaluate against the XMLInputStream.

The following example shows an XPath expression that searches for stock
quotes in an XML document:

StreamXPath symbols =
new StreamXPath("stock_quotes/stock_quote");

The following example shows an XPath expression that matches stock quotes
using their opening price:

StreamXPath openingPrices = new
StreamXPath("stock_quotes/stock_quote/price[@type='open']");

2. Create an XPathStreamFactory. Use this factory class to specify the set of
StreamXPath objects that you want to evaluate against an XMLInputStream and
to create observers (using the XPathStreamObserver interface) used to register
a callback whenever an XPath match occurs. The following example shows how
to create the XPathStreamFactory:

XPathStreamFactory factory = new XPathStreamFactory();
Programming WebLogic XML 5-9

5 Using the WebLogic XPath API
3. Create and install the observers using the XPathStreamFactory.install()
method, specifying the XPath expression with the first StreamXPath parameter,
and an observer with the second XPathStreamObserver parameter. The
following example shows how to use an anonymous class to implement the
XPathStreamObserver interface. The implementation of the observe()
method simply prints a message when a callback is received. In the example, the
observeAttribute() and observeNamespace() methods do nothing.

factory.install(symbols, new XPathStreamObserver () {
public void observe(XMLEvent event) {

System.out.println("Matched a quote: "+event);
}
public void observeAttribute(StartElement e, Attribute a) {}
public void observeNamespace(StartElement e, Attribute a) {}
}
);

4. Create an XMLInputStream from an XML document:

String file = "stocks.xml";

XMLInputStream sourceStream =
XMLInputStreamFactory.newInstance().newInputStream(new

File(file));

5. Use the createStream() method of the XPathStreamFactory to create a new
XMLInputStream that will perform XPath matching against the original
XMLInputStream:

XMLInputStream matchingStream =
factory.createStream(sourceStream);

6. Iterate over the new XMLInputStream. During the iteration, if an XPath match
occurs, the registered observer is notified:

while(matchingStream.hasNext()) {
XMLEvent event = matchingStream.next();

}

For additional API reference information about the WebLogic XPath API, see the
weblogic.xml.xpath Javadoc at
http://e-docs.bea.com/wls/docs81b/javadocs/index.html.
5-10 Programming WebLogic XML

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

CHAPTER
6 XML Programming
Best Practices

The following sections discuss best programming practices when creating Java
applications that process XML data:

! “When to Use the DOM, SAX, and Streaming APIs” on page 6-1

! “Increasing Performance of XML Validation” on page 6-2

! “When to Use XML Schemas or DTDs” on page 6-3

! “Configuring External Entity Resolution for Maximum Performance” on page
6-4

! “Using SAX InputSources” on page 6-4

! “Improving Performance of Transformations” on page 6-5

When to Use the DOM, SAX, and Streaming
APIs

You can parse an XML document with the DOM, SAX, or Streaming API. This section
describes the pros and cons of each API.

The DOM API is good for small documents, or those that contain under a thousand
elements. Because DOM constructs a tree of your XML data, it is ideal for editing the
structure of your XML document by adding or deleting elements.
Programming WebLogic XML 6-1

6 XML Programming Best Practices
The DOM API parses the entire XML document and converts it into a DOM tree
before you can begin processing it. This cost might be beneficial if you know that you
need to access the entire document. If you occasionally need to access only part of the
XML document, the cost could decrease the performance of your application with no
added benefit. In this case the SAX or streaming API is preferable.

The SAX API is the most lightweight of the APIs. It is ideal for parsing shallow
documents (documents that do not contain much nesting of elements) with unique
element names. SAX uses a callback structure; this means that programmers handle
parsing events as the API is reading an XML document, which is a relatively efficient
and quick way to parse.

However, the callback nature of SAX also means that it is not the best API to use if
you want to modify the structure of your XML data. Additionally, programming your
application to handle callbacks is not always straight-forward and intuitive.

The streaming API is based on SAX, so all the reasons for using SAX also apply to the
streaming API. In addition, the streaming API is more intuitive to use than SAX,
because programmers ask for events rather than react to them as they happen. The
streaming API is also best if you plan to pass the entire XML document as a parameter;
it is easier to pass an input stream than it is to pass SAX events. Finally, the streaming
API was designed to be used when binding XML data to Java objects.

Increasing Performance of XML Validation

If the performance of your XML application decreases due to a parser validation issue,
and you need to validate your XML documents, you might improve the performance
of your application by writing your own customized code that validates the data as it
is being received or parsed, rather than using the setValidating() method of the
DocumentBuilderFactory or SaxParserFactory.

When you turn on validation while parsing an XML document with SAX or DOM, the
parser might do more validation of the document than you really need, thus decreasing
the overall performance of the application. Instead, consider choosing certain points
during the parsing of the document when you want to check that the XML document
is valid, and add your own Java code at those points.
6-2 Programming WebLogic XML

When to Use XML Schemas or DTDs
For example, assume you are writing an application that uses the WebLogic XML
Streaming API to processes an XML purchase order. Because you know that the first
element of the document should be <purchase_order>, you can quickly verify that
the document appears to be valid by pulling the first element off the stream and
checking its name. This check does not ensure that the entire XML document is valid,
of course, but you can continue checking for known elements as you pull elements
from the stream. These quick checks are much faster than using the standard
setValidating() methods.

When to Use XML Schemas or DTDs

There are two ways to describe the structure of an XML document: DTDs and XML
Schemas.

The current trend is to use Schemas to describe XML documents. Schemas are much
more expressive than DTDs because the set of available data types to describe XML
elements is much richer and you can describe mor spedifically what is valid in an XML
document. In addition, you can only use Schemas, and not DTDs, in SOAP messages.
Because SOAP is the main messaging protocol used in Web services, consider using
Schemas to describe any XML documents that might be used as either input or output
parameters to Web services.

Still, DTDs have a few advantages. DTDs are more widely supported than Schemas,
although that is changing rapidly. Because DTDs are less expressive than Schemas,
they are easier to write and manage.

However, BEA Systems recommends that you use Schemas to describe your XML
documents.
Programming WebLogic XML 6-3

6 XML Programming Best Practices
Configuring External Entity Resolution for
Maximum Performance

BEA Systems highly recommends you store external entities locally whenever
possible rather than always retrieving the entity over the network. Storage improves
the performance of your applications because it is much faster to look up an entity on
the same machine as WebLogic Server than it is to look it up over a network
connection.

For detailed information on configuring external entity resolution for WebLogic
Server, see “External Entity Configuration Tasks” on page 8-6.

Using SAX InputSources

When you use the SAX API to parse an XML document, you first create an
InputSource object from the XML document and then pass the InputSource object
to the parse() method. You can create the InputSource object from either a
java.io.InputStream or java.io.Reader object based on your XML data.

BEA recommends that you create an InputSource from a java.io.InputStream
object whenever possible. When passed an InputStream object, the SAX parser
auto-detects the character encoding of the XML data and automatically instantiates an
InputStreamReader object for you, using the correct character encoding. In other
words, the parser does all the character encoding work for you, which is more likely to
be error-free at runtime than if you decide to specify the character encoding yourself.
6-4 Programming WebLogic XML

Improving Performance of Transformations
Improving Performance of Transformations

XSLT is a language for transforming an XML document into a different format, such
as another XML document, HTML, WML, and so on. To use XSLT, you create a
stylesheet that defines how each element in the input XML document should be
transformed in the output document.

Although XSLT is a powerful language, creating stylesheets for complex
transformations can be very complicated. In addition, the actual transformation
requires a lot of resources and might decrease the performance of your application.

Therefore, if your transformations are complex, consider writing your own
transformation code in your application rather than using XSLT stylesheets. Also
consider using the DOM API. First parse the XML document, manipulate the resulting
DOM tree as needed, then write out the new document, using custom Java code to
transform it into its final format.
Programming WebLogic XML 6-5

6 XML Programming Best Practices
6-6 Programming WebLogic XML

CHAPTER
7 XML Programming
Techniques

The following sections provide information about specific XML programming
techniques for developing a J2EE application that processes XML data:

! “Transmitting XML Data Between A Java Client and WebLogic Server” on page
7-1

! “Handling XML Documents in a JMS Application” on page 7-3

! “Accessing External Entities That Do Not Have an HTTP Interface” on page 7-4

! “Retrieving XML Document Header Information” on page 7-5

Transmitting XML Data Between A Java
Client and WebLogic Server

In a typical J2EE application, a client application sends XML data to a servlet or a JSP
that processes the XML data. The servlet or JSP then either sends the data on to another
J2EE component, such as a JMS destination or an EJB, or sends the processed XML
data back to the client in the form of another XML document.
Programming WebLogic XML 7-1

7 XML Programming Techniques
To send XML data from a Java client to a WebLogic Server-hosted servlet or JSP
which then returns the data to the client, use the java.net.URLConnection class.
This class represents the communication link between an application and an URL,
which in this case is the URL that invokes the servlet or JSP. Instances of the
URLConnection class send the XML document using the HTTP POST method.

The following Java client program from the WebLogic XML examples shows how to
transmit XML data between the program and a JSP:

import java.net.*;
import java.io.*;
import java.util.*;

public class Client {

public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.out.println("Usage: java examples.xml.Client URL Filename");

}
else {
try {
URL url = new URL(args[0]);
String document = args[1];
FileReader fr = new FileReader(document);
char[] buffer = new char[1024*10];
int bytes_read = 0;
if ((bytes_read = fr.read(buffer)) != -1)

{
URLConnection urlc = url.openConnection();
urlc.setRequestProperty("Content-Type","text/xml");
urlc.setDoOutput(true);
urlc.setDoInput(true);
PrintWriter pw = new PrintWriter(urlc.getOutputStream());

// send xml to jsp
pw.write(buffer, 0, bytes_read);
pw.close();

BufferedReader in = new BufferedReader(new
InputStreamReader(urlc.getInputStream()));

String inputLine;
while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();
}

}
catch (Exception e) {
e.printStackTrace();
7-2 Programming WebLogic XML

Handling XML Documents in a JMS Application
}
}

}
}

The example shows how to open a URL connection to the JSP by using a URL from
the argument list; obtain the output stream from the connection; and print the XML
document provided in the argument list to the output stream, thus sending the XML
data to the JSP. The example then shows how to use the getInputStream() method
of the URLConnection class to read the XML data that the JSAP returns to the client
application.

The following code segments from a sample JSP show how the JSP receives XML data
from the client application, parses the XML document, and sends XML data back:

BufferedReader br = new BufferedReader(request.getReader());
DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
DocumentBuilder db = fact.newDocumentBuilder();
Document doc = db.parse(new InputSource(br));

...

PrintWriter responseWriter = response.getWriter();
responseWriter.println("<?xml version='1.0'?>");

...
For detailed information on programming WebLogic servlets and JSPs, see
Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html and Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs81b/jsp/index.html

Handling XML Documents in a JMS
Application

WebLogic Server provides the following extensions to some Java Message Service
(JMS) classes to handle XML documents in a JMS application:

! weblogic.jms.extensions.WLSession, which extends the JMS class
javax.jms.Session
Programming WebLogic XML 7-3

http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html

7 XML Programming Techniques
! weblogic.jms.extensions.WLQueueSession, which extends the JMS class
javax.jms.QueueSession

! weblogic.jms.extensions.WLTopicSession, which extends the JMS class
javax.jms.TopicSession

! weblogic.jms.extensions.XMLMessage, which extends the JMS class
javax.jms.TextMessage

If you use the XMLMessage class to send and receive XML documents in a JMS
application, rather than the more generic TextMessage class, you can use
XML-specific message selectors to filter unwanted messages. In particular, you can
use the method JMS_BEA_SELECT to specify an XPath query to search for an XML
fragment in the XML document. Based on the results of the query, a message
consumer might decide not to receive the message, thus possibly reducing network
traffic and improving performance of the JMS application.

To use the XMLMessage class to contain XML messages in a JMS application, you
must create either a WLQueueSession or WLTopicSession object, depending on
whether you want to use JMS queues or topics, rather than the generic QueueSession
or TopicSession objects, after you have created a JMS Connection. Then use the
createXMLMessage() method of the WLSession interface to create an XMLMessage

object.

For detailed information on using XMLMessage objects in your JMS application, see
Programming WebLogic JMS at http://e-docs.bea.com/wls/docs81b/jms/index.html.

Accessing External Entities That Do Not Have
an HTTP Interface

WebLogic Server can retrieve and cache external entities that reside in external
repositories, as long as they have an HTTP interface, such as a URL, that returns the
entity. See “External Entity Configuration Tasks” on page 8-6 for detailed information
on using the XML Registry to configure external entities.

If you want to access an external entity that is stored in a repository that does not have
an HTTP interface, you must create an interface. For example, assume you store the
DTDs for your XML documents in a database table, with columns for the system id,
7-4 Programming WebLogic XML

http://e-docs.bea.com/wls/docs81b/jms/index.html

Retrieving XML Document Header Information
public id, and text of the DTD. To access the DTD as an external entity from a
WebLogic XML application, you could create a servlet that uses JDBC to access the
DTDs in the database.

Because you invoke servlets with URLs, you now have an HTTP interface to the
external entity. When you create the entity registry entry in the XML Registry, you
specify the URL that invokes the servlet as the location of the external entity. When
WebLogic Server is parsing an XML document that contains a reference to this
external entity, it invokes the servlet, passing it the public and system id, which the
servlet can internally use to query the database.

Retrieving XML Document Header
Information

Suppose you want only XML document header information, such as the root element,
system ID, or public ID, instead of all the actual data within the document. Fully
parsing the document is unnecessary and might decrease the performance of your
application if the XML document is very large.

Instead of parsing the XML document, you can get header information by using the
weblogic.xml.sax.XMLInputSource class, which is Weblogic Server’s extension
to the org.xml.sax.InputSource class. The following example segment shows how
to use this class:

import weblogic.xml.sax.XMLInputSource;
...

String inputXML = “file://xml_docs/myXMLdoc.xml”;
XMLInputSource xis = new XMLInputSource(inputXML);
String docType = xis.getRootTag();
String publicID = xis.getPublicId();
String systemID = xis.getSystemId();
String namespaceURI = xis.getNamespaceURI();

See the WebLogic Server API Reference for more information on the
weblogic.xml.sax.XMLInputSource class.
Programming WebLogic XML 7-5

http://e-docs.bea.com/wls/docs81b/javadocs/index.html

7 XML Programming Techniques
7-6 Programming WebLogic XML

CHAPTER
8 Administering
WebLogic Server XML

The following sections describe XML administration with WebLogic Server:

! “Overview of Administering WebLogic Server XML” on page 8-1

! “XML Parser and Transformer Configuration Tasks” on page 8-4

! “External Entity Configuration Tasks” on page 8-6

Overview of Administering WebLogic Server
XML

You access the XML Registry through the Administration Console and use it to
configure WebLogic Server for XML applications.

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

! host refers to the computer on which the WebLogic Administration Server is
running.
Programming WebLogic XML 8-1

8 Administering WebLogic Server XML
! port refers to the port number where WebLogic Administration Server is
listening for connection requests. The default port number for WebLogic
Administration Server is 7001.

XML Administration Tasks

You create, configure, and use the XML Registry through the Administration Console.
Using the Administration Console XML Registry has several benefits:

! Configuration of XML Registry changes take effect automatically at run time,
provided you use JAXP in your XML applications.

! When you make changes to the XML Registry, it is not necessary to change your
XML application code.

! Entity resolution is done locally. You can use the XML Registry either to define
a local copy of an entity or to specify that WebLogic Server cache an entity from
the Web for a specified duration and use the cached copy rather than the one out
on the Web.

You can use the XML Registry to specify:

! An alternative server-wide XML parser instead of the built-in parser.

! An XML parser per document type.

! An alternative server-wide transformer instead of the built-in transformer.

! External entities that are to be resolved by using local copies of the entities.
Once you specify these entities, the Administration Server stores local copies of
them in the file system and automatically distributes them to the server’s parser
at parse time. This feature eliminates the need to construct and set SAX
EntityResolvers.

! External entities to be cached by WebLogic Server after retrieval from the Web.
You specify how long these external entities should be cached before WebLogic
Server re-retrieves them and when WebLogic should first retrieve the entities,
either at application run time or when WebLogic Server starts.

These capabilities are for use on the server side only.
8-2 Programming WebLogic XML

Overview of Administering WebLogic Server XML
How the XML Registry Works

You can create as many XML Registries as you like; however, you can associate only
one XML Registry with a particular instance of WebLogic Server.

If an instance of WebLogic Server does not have an XML Registry associated with it,
then the built-in parser and transformer are used when parsing or transforming
documents.

Once you associate an XML Registry with an instance of WebLogic Server, all XML
configuration options are available for XML applications that use that server.

You can make the following types of entries for a given XML registry:

! Configure parsers and transformers

! Configure external entity resolution

Note: The XML Registry is case sensitive. For example, if you are configuring a
parser for an XML document type whose root element is <CAR>, you must
enter CAR in the Root Element Tag field and not car or Car.

Parser Selection Within the XML Registry

The XML Registry is automatically consulted whenever you use JAXP to write your
XML applications. WebLogic Server follows an ordered lookup when determining
which parser class to load:

1. Use the parser defined for a particular document type.

2. Use the alternative server-wide parser defined in the XML Registry associated
with the WebLogic Server instance.

3. Use the built-in Xerces parser.

The process is also true for transformers, except for the first step, because you cannot
define a transformer for a particular document type.
Programming WebLogic XML 8-3

8 Administering WebLogic Server XML
Additionally, when WebLogic Server starts, a SAX entity resolver is automatically set
so that it can resolve entities that are declared in the registry. As a result, users are not
required to modify their XML application code to control the parsers used, or to set the
location of local copies of external entities. The parser being used and the location of
the external entity is controlled by the XML Registry.

Note: If you elect to use an API provided by a parser instead of JAXP, the XML
Registry has no effect on the processing of XML documents. For this reason,
it is highly recommended that you always use JAXP in your XML
applications.

XML Parser and Transformer Configuration
Tasks

By default, WebLogic Server is configured to use the built-in parser and transformer
to parse and transform XML documents. In release 8.1, the built-in XML parser is one
based on Apache Xerces (package name weblogic.apache.xerces.*) and the built-in
transformer is the Apache Xalan included in the JDK 1.4.1 (package name
org.apache.xalan.*). As long as you use the default, you do not have to perform
any configuration tasks for your XML applications. If you want to use a parser or
transformer other than the built-in, you must use the XML Registry to configure them,
as described in the following sections.

Configuring a Parser or Transformer Other Than the
Built-In

The following procedure first describes how to create an XML registry that defines
SAX and DOM parsers and transformers. It then describes how to associate the new
XML Registry with an instance of WebLogic Server so that the server starts to use the
new parsers and transformer.

Warning: In version 8.1 of WebLogic Server, you can plug in only the following
versions of the Apache Xerces parser:
8-4 Programming WebLogic XML

XML Parser and Transformer Configuration Tasks
" Xerces 1.2.2

" Xerces 1.2.3

" Xerces 1.3.0

" Xerces 1.3.1

" Xerces 1.4.0

" Xerces 1.4.1

" Xerces 1.4.2

" Xerces 1.4.3

" Xerces 1.4.4

In addition, you can plug in only those versions of the Apache Xalan transformer
that are compatible with the preceding versions of the Apache Xerces parser.

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser. See “Overview of Administering WebLogic Server XML” on
page 8-1 for information on invoking the Administration Console.

2. Follow the steps outlined in Configuring a Parser or Transformer Other Than
the Built-In of the Administration Console Online Help.

Configuring a Parser for a Particular Document Type

When you configure a parser for a particular document type, you can use the
document’s system id, public id, or root element tag to identify the document type.

Warning: WebLogic Server searches only the first 1000 bytes of an XML document
when attempting to identify its document type. If it does not find a
DOCTYPE identifier in those first 1000 bytes, it stops searching the
document and uses the parser configured for the WebLogic Server
instance to parse the document.

Note: The following procedure assumes that you are going to create a new XML
registry, add the necessary parser registry entries, and associate it with a
server.
Programming WebLogic XML 8-5

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml002

8 Administering WebLogic Server XML
To configure a parser for a particular document type, follow these steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Configuring a Parser for a Particular Document
Type of the Administration Console Online Help.

External Entity Configuration Tasks

Use the XML Registry to configure external entity resolution and to configure and
monitor the external entity cache.

Configuring External Entity Resolution

You can configure external entity resolution with WebLogic Server in the following
two ways:

! Physically copy the entity files to a directory accessible by WebLogic
Administration Server and specify that the Administration Server use the local
copy whenever the external entity is referenced in an XML document.

! Specify that a Managed Server cache external entities that are referenced with a
URL or a pathname relative to the Administration Server, either at server-startup
or when the entity is first referenced.

Caching the external entity in a Managed Server saves the remote access time
and provides a local backup in the event that the Administration Server cannot
be accessed while an XML document is being parsed, due to the network or the
Administration Server being down.

You can configure the expiration date for a cached entity, at which point
WebLogic Server re-retrieves the entity from the URL or Administration Server
and re-caches it.
8-6 Programming WebLogic XML

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml003
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml003

External Entity Configuration Tasks
Note: In the following procedure it is assumed that you are going to create a new
XML registry, add the necessary external entity resolution registry entries, and
associate it with a server.

To configure external entity resolution, perform the following steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Configuring External Entity Resolution of the
Adminsitration Console Online Help.

Configuring the External Entity Cache

You can configure the following properties of the external entity cache:

! Size, in KB, of the cache memory. The default value for this property is 500 KB.

! Size, in MB, of the persistent disk cache. The default value for this property is 5
MB.

! Number of seconds after which external entities in the cache become stale after
they have been cached by WebLogic Server. This is the default value for the
entire server - you can override this value for specific external entities when you
configure the entity. The default value for this property is 120 seconds (2
minutes).

To configure the external entity cache, follow these steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Configuring the External Entity Cache in the
Administration Online Help.
Programming WebLogic XML 8-7

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml004
http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml005

8 Administering WebLogic Server XML
Monitoring the External Entity Cache

A set of statistics that describes the external entity cache is available for you to use to
monitor the effectiveness of the cache. These statistics describe:

! The current state of the cache.

! The cumulative activity for the current session.

! The cumulative activity since the cache was created, typically when WebLogic
Server started.

To monitor the external entity cache, follow these steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 8-1 for
information on invoking the Administration Console.

2. Follow the steps outlined in Monitoring the External Entity Cache in the
Administration Console Online Help.
8-8 Programming WebLogic XML

http://e-docs.bea.com/wls/docs81b/ConsoleHelp/xml.html#xml006

CHAPTER
9 XML Reference

The following sections provide links to additional information about the XML
specifications, application programming interfaces (APIs), and tools supported by
WebLogic Server:

! “XML APIs” on page 9-1

! “Code Examples” on page 9-2

! “Related WebLogic Server Documentation” on page 9-2

! “Tutorials and Online Courses” on page 9-2

! “Other XML Specifications and Information” on page 9-3

XML APIs

! SAX 2.0 API at http://www.saxproject.org/

! DOM (Document Object Model) Level 2 Specification at
http://www.w3.org/TR/DOM-Level-2/

! JAXP API 1.1 specification at http://java.sun.com/xml/

! Apache Xerces Java Parser at http://xml.apache.org/xerces-j/index.html

! Apache Xalan XSLT transformer at http://xml.apache.org/xalan-j/index.html
Programming WebLogic XML 9-1

http://www.saxproject.org/
http://www.w3.org/TR/DOM-Level-2/
http://java.sun.com/xml/
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xalan-j/index.html

9 XML Reference
Code Examples

XML code examples and supporting documentation are included in the WebLogic
Server distribution at WL_HOME\samples\server\src\examples\xml\sax, where
WL_HOME refers to the top-level WebLogic Platform directory.

Related WebLogic Server Documentation

! Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs81b/webServices/index.html

! Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81b/ejb/index.html

! Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs81b/jms/index.html

! Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs81b/jsp/index.html

! Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs81b/servlet/index.html

! Programming WebLogic Server for Wireless Services at
http://e-docs.bea.com/wls/docs81b/wireless/index.html

Tutorials and Online Courses

! A Technical Introduction to XML at
http://www.xml.com/pub/a/98/10/guide0.html.

! XML Authoring Tutorial at http://www.xml.com/pub/r/32.
9-2 Programming WebLogic XML

http://e-docs.bea.com/wls/docs81b/webserv/index.html
http://e-docs.bea.com/wls/docs81b/ejb/index.html
http://e-docs.bea.com/wls/docs81b/jms/index.html
http://e-docs.bea.com/wls/docs81b/jsp/index.html
http://e-docs.bea.com/wls/docs81b/servlet/index.html
http://e-docs.bea.com/wls/docs81b/wireless/index.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32

Other XML Specifications and Information
! Working with XML and Java at http://java.sun.com/xml/tutorial_intro.html.

! Tutorials for using the Java 2 platform and XML technology at
http://developerlife.com/.

! Developing XML Solutions with JavaServer Pages Technology at
http://java.sun.com/products/jsp/html/JSPXML.html.

! XML, Java, and the Future of the Web at
http://www.xml.com/pub/a/w3j/s3.bosak.html.

! Chapter 14 of the XML Bible: XSL Transformations at
http://metalab.unc.edu/xml/books/bible/updates/14.html.

! XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html.

! XML Schema Part 0: Primer at
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/.

Other XML Specifications and Information

! XML 1.0 specification at http://www.w3.org/TR/REC-xml.html

! XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/

! XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/

! W3C XML Namespaces 1.0 Recommendation at
http://www.w3.org/TR/REC-xml-names/

! Extensible Stylesheet Language (XSL) 1.0 Specification at
http://www.w3.org/TR/xsl/

! JSR-000031 XML Data Binding Specification at
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.htm

! XML Path Language (XPath) Version 1.0 Specification at
http://www.w3.org/TR/xpath

! XML Linking Language (XLink) Specification at http://www.w3.org/TR/xlink
Programming WebLogic XML 9-3

http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://java.sun.com/products/jsp/html/JSPXML.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/
http://www.w3.org/TR/REC-XML.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xsl/
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink

9 XML Reference
! XML Pointer Language (XPointer) Specification at
http://www.w3.org/TR/WD-xptr

! W3C (World Wide Web Consortium) at http://www.w3c.org

! XML.com at http://www.xml.com

! XML FAQ at http://www.ucc.ie/xml/

! XML.org, The XML Industry Portal at http://www.xml.org/
9-4 Programming WebLogic XML

http://www.w3.org/TR/WD-xptr
http://www.w3c.org
http://www.xml.com
http://www.ucc.ie/xml/
http://www.xml.org/

Index

A
Administration Console

configuring external entity cache 8-7
configuring external entity resolution

8-6
configuring parsers 8-5
configuring transformers 8-5
invoking 8-1
monitoring external entity cache 8-8

Apache Serialize class 2-10
Apache Xerces 1-12

B
BEA XML Editor 1-17
built-in parser 1-12

C
Classes

DefaultHandler 1-14, 2-3
DocumentBuilder 2-4
HandlerBase 1-14
InputSource 7-5
Serialize 2-10
URLConnection 7-2
WLQueueSession 7-4
WLTopicSession 7-4
XMLInputSource 7-5
XMLMessage 7-4

customer support contact information xi

D
DefaultHandler class 1-14, 2-3
DOCTYPE declaration 1-4, 2-7
Document Object Model 1-6
documentation, where to find it x
DocumentBuilder class 2-4
DOM 1-6
DTDs

definition 1-3
example of 1-3
used when validating 2-6

E
external entities

accessing 7-4
external entity resolution

description 1-16, 2-7
overview 1-16
parsing XML 2-7
WebLogic Server features 2-8

G
generating XML

from a DOM tree 2-10
in a JSP 2-12

getAttribute method 1-14, 2-5

H
HandlerBase class 1-14
Programming WebLogic XML I-i

I
InputSource class 7-5

J
JAXP

definition 1-8
packages 1-8
parsing XML 2-3
transforming XML 2-11, 2-13
WebLogic implementation 1-14

JMS
handling XML documents 7-3

JSP tag library for XSLT 1-15
JSP, sending and receiving XML 7-1

M
Methods

getAttribute 1-14, 2-5
setAttribute 1-14, 2-5
setValidating 2-6

P
parsers

built-in 1-12
non-validating 2-6
using other than built-in 2-9
validating 2-6
WebLogic FastParser 1-12, 2-9

parsing XML
external entity resolution 2-7
in a servlet 2-5
in DOM mode 2-4
in SAX mode 2-3

printing product documentation x
public identifier 2-7, 7-5

R
related information 9-2

S
SAX 1-6, 2-9
schemas

definition 1-3
example 1-4
used when validating 2-6

Serialize class 2-10
servlet attributes 1-14
servlet, sending and receiving XML 7-1
setAttribute method 1-14, 2-5
setValidating method 2-6
SGML 1-2
Simple API for XML 1-6
Specifications

JAXR 9-3
XLink 9-3
XML Schemas 9-3
XPath 9-3
XPointer 9-3
XSL 9-3

support
technical xi

system identifier 2-8, 7-5

T
transformers

using other than the built-in 2-21, 2-22
transforming XML

overview 2-13
using JAXP 2-13
using JSP tag library 2-16

U
URLConnection class 7-2
I-ii Programming WebLogic XML

V
valid XML document 1-4, 2-6

W
WebLogic FastParser 1-12, 2-9
WebLogic Server XML

administering overview 8-1
administration tasks 8-2
features of 1-11

well-formed XML document 1-5, 2-6
WLQueueSession class 7-4
WLSession class

Classes
WLSession 7-3

WLTopicSession class 7-4
WML 1-9

X
Xalan

converting to JAXP 2-14
Xerces

built-in parser 1-12
XML

code examples 1-16
common uses of 1-9
definition 1-2
DOM 1-6
DTD 1-3
editing 1-17
examples 1-2, 9-2
generating 2-10
learning about 1-17
online classes 9-2
parsing 2-2
programming techniques 7-1
SAX 1-6
schema 1-3
sending to and from servlets and jsp 7-1
syntax 1-2

transforming 2-13
tutorials 9-2
valid 1-4, 2-6
well-formed 1-5, 2-6
why use it 1-5

XML applications
steps to develop 2-1

XML Registry
benefits of using 8-2
configuring external entity cache 8-7
configuring external entity resolution

1-16, 2-8, 8-6
configuring parser for document type

8-5
configuring parsers 2-9, 8-3, 8-4
configuring transformers 2-22, 8-3, 8-4
description 1-15, 8-2
how it works 8-3
monitoring external entity cache 8-8

XMLInputSource class 7-5
XMLMessage class 7-4
XMLT JSP tag library

tags 2-16
XSLT

common uses of 1-9
definition 1-5
JSP tag library 1-15

XSLT JSP tags
example of using 2-21
procedure for using 2-20
syntax 2-17
usage 2-18
Programming WebLogic XML I-iii

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 XML Overview
	What Is XML?
	How Do You Describe an XML Document?
	Why Use XML?
	What Are XSL and XSLT?
	What Are DOM and SAX?
	SAX
	DOM

	What Is XML Streaming?
	What Is JAXP?
	JAXP Packages

	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	WebLogic Server XML Features
	XML Document Parsers
	Table 1�1 Parsers Included With WebLogic Server

	XML Document Transformer
	Difference in Built-In Transformer Between Versions 8.1 and Previous of WebLogic Server

	WebLogic XML Streaming API
	JAXP Pluggability Layer Implementation
	WebLogic Servlet Attributes
	request.setAttribute("org.xml.sax.helpers.DefaultHandler", new DefHandler());
	org.w3c.dom.Document = (Document)request.getAttribute("org.w3c.dom.Document");

	WebLogic XSLT JSP Tag Library
	XML Registry For Configuring Parsers and Transformers
	XML Registry for Configuring External Entity Resolution
	Code Examples for Parsing and Transforming XML Documents

	Editing XML Files
	Learning About XML

	2 Developing XML Applications with WebLogic Server
	Developing XML Applications: Main Steps
	1. Parse an XML document.
	2. Generate a new XML document.
	3. Transform XML data into another format.

	Parsing XML Documents
	Parsing XML Documents Using JAXP in SAX Mode
	Parsing XML Documents Using JAXP in DOM Mode
	Parsing XML Documents in a Servlet
	Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document

	Validating and Non-Validating Parsers
	Handling Entity Resolution While Parsing an XML Document
	General Information About External Entities
	Using the WebLogic Server Entity Resolution Features

	Using Parsers Other Than the Built-In Parser
	Using the WebLogic FastParser

	Generating New XML Documents
	Generating XML from a DOM Document Tree
	Using the Apache Serialize Class
	Using the JAXP Transformer Class

	Generating XML Documents in a JSP

	Transforming XML Documents
	Using JAXP to Transform XML Data
	Example of Transforming an XML Document Using JAXP
	Converting Your XML Code From Using the Xalan API to JAXP 1.1 API
	Table 2�1 Equivalent Xalan and JAXP Classes and Interfaces

	Using the JSP Tag to Transform XML Data
	XSLT JSP Tag Syntax
	Table 2�2 x:xslt JSP Tag Attributes
	Table 2�3 x:stylesheet JSP Tag Attributes

	XSLT JSP Tag Usage
	Transforming XML Documents Using an XSLT JSP Tag
	1. Open the xmlx.zip file in the WL_HOME\server\ext directory; extract the xmlx-tags.jar file; an...
	2. Add a <taglib> entry to the web.xml file. For example:
	3. To use the tags, add the following line to your JSP page:
	4. Configure the transformer. The following procedure shows a generic way to configure the transf...
	a. Enter the following code line to create an xslt.jsp file:
	b. Register the xslt.jsp file in your web.xml file, as follows:
	c. Put your XML, DTD, and XSL documents or servlets in your Web application.
	d. Add an xslt prefix to the pathname for the XML document (for example, change docs/fred.xml to ...
	e. To define media type, add code to the JSP to determine the media type for the XML document and...
	f. Pass the media type into the xslt tag and then set the content type of the response object.

	Example of Using the XSLT JSP Tag in a JSP

	Using Transformers Other Than the Built-In Transformer

	3 XML Application Scoping
	Overview of Application Scoping
	The weblogic-application.xml File
	Configuring a Parser or Transformer for an Enterprise Application
	Configuring an External Entity for an Enterprise Application
	Configuring the External Entity Cache for an Enterprise Application

	4 Using the WebLogic XML Streaming API
	Overview of the WebLogic XML Streaming API
	Javadocs for the WebLogic XML Streaming API
	Parsing an XML Document: Typical Steps
	Example of Parsing an XML Document
	Getting an XML Input Stream
	Getting a Buffered XML Input Stream
	Filtering the XML Stream
	Creating a Custom Filter

	Iterating Over the Stream
	Determining the Specific XMLEvent Type
	Getting the Attributes of an Element
	Positioning the Stream
	Getting a Substream
	Marking and Resetting a Buffered XML Input Stream
	Closing the Input Stream

	Generating a New XML Document: Typical Steps
	Example of Generating an XML Document
	Creating an XML Output Stream
	Adding Elements to the Output Stream
	Adding Attributes to an Element on the Output Stream
	Adding an Input Stream to an Output Stream
	Printing an Output Stream
	Closing the Output Stream

	5 Using the WebLogic XPath API
	Overview of the WebLogic XPath API
	Using the DOMXPath Class
	Example of Using the DOMXPath Class
	Main Steps When Using the DOMXPath Class

	Using the StreamXPath Class
	Example of Using the StreamXPath Class
	Main Steps When Using the StreamXPath Class

	6 XML Programming Best Practices
	When to Use the DOM, SAX, and Streaming APIs
	Increasing Performance of XML Validation
	When to Use XML Schemas or DTDs
	Configuring External Entity Resolution for Maximum Performance
	Using SAX InputSources
	Improving Performance of Transformations

	7 XML Programming Techniques
	Transmitting XML Data Between A Java Client and WebLogic Server
	Handling XML Documents in a JMS Application
	Accessing External Entities That Do Not Have an HTTP Interface
	Retrieving XML Document Header Information

	8 Administering WebLogic Server XML
	Overview of Administering WebLogic Server XML
	XML Administration Tasks
	How the XML Registry Works
	Parser Selection Within the XML Registry
	1. Use the parser defined for a particular document type.
	2. Use the alternative server-wide parser defined in the XML Registry associated with the WebLogi...
	3. Use the built-in Xerces parser.

	XML Parser and Transformer Configuration Tasks
	Configuring a Parser or Transformer Other Than the Built-In
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser...
	2. Follow the steps outlined in Configuring a Parser or Transformer Other Than the Built-In of th...

	Configuring a Parser for a Particular Document Type
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Configuring a Parser for a Particular Document Type of the Admini...

	External Entity Configuration Tasks
	Configuring External Entity Resolution
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Configuring External Entity Resolution of the Adminsitration Cons...

	Configuring the External Entity Cache
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Configuring the External Entity Cache in the Administration Onlin...

	Monitoring the External Entity Cache
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Follow the steps outlined in Monitoring the External Entity Cache in the Administration Consol...

	9 XML Reference
	XML APIs
	Code Examples
	Related WebLogic Server Documentation
	Tutorials and Online Courses
	Other XML Specifications and Information
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	J
	M
	P
	R
	S
	T
	U
	V
	W
	X

