
BEAWebLogic
Server®

Understanding
WebLogic Security

Version 9.0
Revised: August 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Understanding WebLogic Security iii

Contents

1. Introduction and Roadmap
Document Scope . 1-1

Document Audience. 1-1

Guide to this Document . 1-2

Related Information . 1-3

Security Samples and Tutorials . 1-4

Security Examples in the WebLogic Server Distribution . 1-4

Additional Examples Available for Download . 1-4

2. Overview of the WebLogic Security Service
Introduction to the WebLogic Security Service. 2-1

Features of the WebLogic Security Service. 2-2

Balancing Ease of Use and Customizability . 2-3

New and Changed Features in This Release . 2-4

Support for Additional Security Standards . 2-4

Single Sign-On Capabilities . 2-4

Support for Certificate Lookup and Validation. 2-5

New SSL Features . 2-5

New Security Providers . 2-5

Authentication Providers . 2-6

Identity Assertion Providers . 2-6

Credential Mapping Providers. 2-7

iv Understanding WebLogic Security

Certificate Lookup and Validation Providers . 2-7

Enhancements to WebLogic Security Providers . 2-8

Enhancements to the Security Service Programming Interfaces (SSPIs) 2-9

3. Security Fundamentals
Auditing. 3-1

Authentication . 3-2

Subjects and Principals . 3-2

Java Authentication and Authorization Service (JAAS) . 3-4

JAAS LoginModules . 3-4

JAAS Control Flags . 3-4

CallbackHandlers . 3-5

Mutual Authentication . 3-6

Identity Assertion Providers and LoginModules . 3-6

Identity Assertion and Tokens . 3-6

Challenge Identity Assertion . 3-7

Servlet Authentication Filters . 3-7

Types of Authentication . 3-8

Username/Password Authentication . 3-9

Certificate Authentication. 3-9

Digest Authentication . 3-9

Perimeter Authentication . 3-10

Security Assertion Markup Language (SAML) . 3-11

Single Sign-On (SSO) . 3-13

Web Browsers and HTTP Clients . 3-13

Desktop Clients . 3-14

Authorization. 3-15

WebLogic Resources . 3-15

Understanding WebLogic Security v

Security Policies . 3-16

ContextHandlers . 3-17

Access Decisions . 3-17

Adjudication . 3-18

Identity and Trust. 3-18

Private Keys . 3-18

Digital Certificates . 3-19

Certificate Authorities . 3-19

Certificate Lookup and Validation . 3-20

Secure Sockets Layer (SSL) . 3-21

SSL Features. 3-22

SSL Tunneling . 3-23

One-way/Two-way SSL Authentication. 3-24

Host Name Verification . 3-25

Trust Managers . 3-25

Asymmetric Key Algorithms . 3-26

Symmetric Key Algorithms . 3-26

Message Digest Algorithms . 3-27

Cipher Suites . 3-27

Firewalls . 3-28

Connection Filters . 3-29

Perimeter Authentication . 3-29

J2EE and WebLogic Security . 3-29

J2SE 5.0 Security Packages . 3-30

The Java Secure Socket Extension (JSSE) . 3-30

Java Authentication and Authorization Services (JAAS) 3-30

The Java Security Manager . 3-31

Java Cryptography Architecture and Java Cryptography Extensions (JCE). . . 3-31

vi Understanding WebLogic Security

Java Authorization Contract for Containers (JACC) . 3-32

Common Secure Interoperability Version 2 (CSIv2) . 3-32

4. Security Realms
Introduction to Security Realms . 4-1

Users . 4-2

Groups . 4-3

Security Roles . 4-3

Security Policies . 4-3

Security Providers . 4-4

Security Provider Databases . 4-4

What Is a Security Provider Database?. 4-4

Security Realms and Security Provider Databases . 4-5

Embedded LDAP Server . 4-6

Types of Security Providers . 4-6

Authentication Providers . 4-7

Identity Assertion Providers . 4-8

Principal Validation Providers . 4-9

Authorization Providers . 4-10

Adjudication Providers . 4-10

Role Mapping Providers . 4-11

Auditing Providers . 4-12

Credential Mapping Providers . 4-12

Certificate Lookup and Validation Providers . 4-13

Keystore Providers . 4-13

Realm Adapter Providers . 4-13

Security Provider Summary . 4-14

Security Providers and Security Realms . 4-15

Understanding WebLogic Security vii

5. WebLogic Security Service Architecture
WebLogic Security Framework. 5-1

The Authentication Process . 5-3

The Identity Assertion Process. 5-4

The Principal Validation Process . 5-4

The Authorization Process . 5-5

The Adjudication Process. 5-6

The Role Mapping Process. 5-7

The Auditing Process . 5-8

The Credential Mapping Process . 5-9

The Certificate Lookup and Validation Process . 5-9

Single Sign-On with the WebLogic Security Framework. 5-10

WebLogic Server Acting a SAML Source Site . 5-11

POST Profile . 5-11

Artifact Profile. 5-12

Weblogic Server Acting as SAML Destination Site . 5-12

POST Profile . 5-13

Artifact Profile. 5-13

Desktop SSO Process . 5-14

SAML Token Profile Support in WebLogic Web Services . 5-15

Sender-Vouches Assertions . 5-16

Holder-of-Key Assertion . 5-17

The Security Service Provider Interfaces (SSPIs) . 5-18

Weblogic Security Providers . 5-18

WebLogic Authentication Provider . 5-20

Alternative Authentication Providers . 5-20

WebLogic Identity Assertion Provider . 5-21

viii Understanding WebLogic Security

SAML Identity Assertion Provider . 5-22

Negotiate Identity Assertion Provider . 5-22

WebLogic Principal Validation Provider . 5-23

WebLogic Authorization Provider . 5-23

WebLogic Adjudication Provider . 5-23

WebLogic Role Mapping Provider . 5-24

WebLogic Auditing Provider . 5-25

WebLogic Credential Mapping Provider . 5-25

SAML Credential Mapping Provider. 5-25

PKI Credential Mapping Provider . 5-26

WebLogic CertPath Provider . 5-26

Certificate Registry . 5-26

WebLogic Keystore Provider . 5-27

WebLogic Realm Adapter Providers . 5-27

6. Terminology

Understanding WebLogic Security 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Understanding
WebLogic Security.

“Document Scope” on page 1-1

“Document Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Information” on page 1-3

“Security Samples and Tutorials” on page 1-4

Document Scope
While other security documents in the BEA WebLogic Server™ documentation set guide users
through specific tasks—such as programming WebLogic® security, developing a custom
security provider, or managing the WebLogic Security Service—this guide is intended for all
users of the WebLogic Security Service. Thus, this document is the starting point for
understanding the WebLogic Security Service.

Note: The WebLogic® Security Service involves many unique terms. Before reading this
manual, familiarize yourself with the terms in Chapter 6, “Terminology.”

Document Audience
This document is intended for the following audiences:

I n t roduct i on and Roadmap

1-2 Understanding WebLogic Security

Application Architects—Architects who, in addition to setting security goals and designing
the overall security architecture for their organizations, evaluate WebLogic Server security
features and determine how to best implement them. Application Architects have in-depth
knowledge of Java programming, Java security, and network security, as well as knowledge
of security systems and leading-edge, security technologies and tools.

Security Developers—Developers who focus on defining the system architecture and
infrastructure for security products that integrate into WebLogic Server and on developing
custom security providers for use with WebLogic Server. They work with Application
Architects to ensure that the security architecture is implemented according to design and
that no security holes are introduced, and work with Server Administrators to ensure that
security is properly configured. Security Developers have a solid understanding of security
concepts, including authentication, authorization, auditing (AAA), in-depth knowledge of
Java (including Java Management eXtensions (JMX), and working knowledge of
WebLogic Server and security provider functionality.

Application Developers—Developers who are Java programmers that focus on developing
client applications, adding security to Web applications and Enterprise JavaBeans (EJBs),
and working with other engineering, quality assurance (QA), and database teams to
implement security features. Application Developers have in-depth/working knowledge of
Java (including J2EE components such as servlets/JSPs and JSEE) and Java security.

Server Administrators—Administrators work closely with Application Architects to design
a security scheme for the server and the applications running on the server, to identify
potential security risks, and to propose configurations that prevent security problems.
Related responsibilities may include maintaining critical production systems, configuring
and managing security realms, implementing authentication and authorization schemes for
server and application resources, upgrading security features, and maintaining security
provider databases. Server Administrators have in-depth knowledge of the Java security
architecture, including Web services, Web application and EJB security, Public Key
security, SSL, and Security Assertion Markup Language (SAML).

Application Administrators—Administrators who work with Server Administrators to
implement and maintain security configurations and authentication and authorization
schemes, and to set up and maintain access to deployed application resources in defined
security realms. Application Administrators have general knowledge of security concepts
and the Java Security architecture. They understand Java, XML, deployment descriptors,
and can identify security events in server and audit logs.

Guide to this Document
This document is organized as follows:

Related In fo rmat ion

Understanding WebLogic Security 1-3

Chapter 2, “Overview of the WebLogic Security Service” introduces the WebLogic
Security Service, describes the audiences of this document, lists its key features, and gives
a brief list what has changed in this release.

Chapter 3, “Security Fundamentals” describes security concepts as they relate to BEA
WebLogic Server™ security. This section includes discussions of auditing, authentication,
authorization, Secure Sockets Layer (SSL), firewalls, and the relationship between J2EE
and WebLogic security.

Chapter 4, “Security Realms,” describes security realms, which are used to protect
WebLogic resources.

Chapter 5, “WebLogic Security Service Architecture,” describes the WebLogic Server
Security architecture. This section includes discussions of the WebLogic Security
Framework, the Security Service Provider Interfaces (SSPIs), and the WebLogic security
providers that are included as part of the product.

Chapter 6, “Terminology,” defines key terms that you will encounter throughout the
WebLogic Server security documentation.

Related Information
The following BEA WebLogic Server documents contain information that is relevant to the
WebLogic Security Service:

Securing WebLogic Server—This document explains how to configure security for
WebLogic Server and how to use Compatibility security.

Developing Security Providers for WebLogic Server—This document provides security
vendors and application developers with the information needed to develop custom security
providers that can be used with WebLogic Server.

Securing a Production Environment—This document highlights essential security measures
for you to consider before you deploy WebLogic Server into a production environment.

Securing WebLogic Resources—This document introduces the various types of WebLogic
resources, and provides information that allows you to secure these resources using
WebLogic Server. The current version of this document primarily focuses on securing URL
(Web) and Enterprise JavaBean (EJB) resources.

WebLogic Server 9.0 Upgrade Guide—This document provides procedures and other
information you need to upgrade 6.x and earlier versions of WebLogic Server to WebLogic
Server 9.0. It also provides information about moving applications from a 6.x or earlier

http://e-docs.bea.com/wls/docs90/secmanage/index.html
http://e-docs.bea.com/wls/docs90/dvspisec/index.html
http://e-docs.bea.com/wls/docs90/lockdown/index.html
http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/../../common/docs90/upgrade/index.html

I n t roduct i on and Roadmap

1-4 Understanding WebLogic Security

version of WebLogic Server to 9.0. For specific information on upgrading WebLogic
Server security, see Security in the WebLogic Server 9.0 Upgrade Guide.

Javadocs for WebLogic Classes—This document provides reference documentation for the
WebLogic security packages that are provided with and supported by this release of
WebLogic Server.

Security Samples and Tutorials
In addition to the documents listed in Related Information, BEA Systems provides a variety of
code samples for developers.

Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples\security, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples server, and
obtain information about the samples and how to run them from the WebLogic Server Start menu.

The following examples illustrate WebLogic security features:

Java Authentication and Authorization Service

Outbound and Two-way SSL

Additional Examples Available for Download
Additional API examples are available for download at http://dev2dev.bea.com. These examples
are distributed as .zip files that you can unzip into an existing WebLogic Server samples
directory structure.

You build and run the downloadable examples in the same manner as you would an installed
WebLogic Server example. See the download pages of individual examples for more
information.

http://e-docs.bea.com/wls/docs90/javadocs/index.html
http://dev2dev.bea.com/

Understanding WebLogic Security 2-1

C H A P T E R 2

Overview of the WebLogic Security
Service

The following sections introduce the WebLogic Security Service and its features:

“Introduction to the WebLogic Security Service” on page 2-1

“Features of the WebLogic Security Service” on page 2-2

“Balancing Ease of Use and Customizability” on page 2-3

“New and Changed Features in This Release” on page 2-4

Introduction to the WebLogic Security Service
Deploying, managing, and maintaining security is a huge challenge for an information
technology (IT) organization that is providing new and expanded services to customers using the
Web. To serve a worldwide network of Web-based users, an IT organization must address the
fundamental issues of maintaining the confidentiality, integrity and availability of the system and
its data. Challenges to security involve every component of the system, from the network itself
to the individual client machines. Security across the infrastructure is a complex business that
requires vigilance as well as established and well-communicated security policies and
procedures.

WebLogic Server includes a security architecture that provides a unique and secure foundation
for applications that are available via the Web. By taking advantage of the new security features
in WebLogic Server, enterprises benefit from a comprehensive, flexible security infrastructure
designed to address the security challenges of making applications available on the Web.
WebLogic security can be used standalone to secure WebLogic Server applications or as part of

Overv iew o f the WebLog ic Secur i t y Se rv ice

2-2 Understanding WebLogic Security

an enterprise-wide, security management system that represents a best-in-breed, security
management solution.

Features of the WebLogic Security Service
The open, flexible security architecture of WebLogic Server delivers advantages to all levels of
users and introduces an advanced security design for application servers. Companies now have a
unique application server security solution that, together with clear and well-documented security
policies and procedures, can assure the confidentiality, integrity and availability of the server and
its data.

The key features of the WebLogic Security Service include:

A comprehensive and standards-based design.

End-to-end security for WebLogic Server-hosted applications, from the mainframe to the
Web browser.

Legacy security schemes that integrate with WebLogic Server security, allowing companies
to leverage existing investments.

Security tools that are integrated into a flexible, unified system to ease security
management across the enterprise.

Easy customization of application security to business requirements through mapping of
company business rules to security policies.

A consistent model for applying security policies to J2EE and application-defined
resources.

Easy updates to security policies. This release includes usability enhancements to the
process of creating security policies as well as additional expressions that control access to
WebLogic resources.

Easy adaptability for customized security solutions.

A modularized architecture, so that security infrastructures can change over time to meet
the requirements of a particular company.

Support for configuring multiple security providers, as part of a transition scheme or
upgrade path.

A separation between security details and application infrastructure, making security easier
to deploy, manage, maintain, and modify as requirements change.

Balanc ing Ease o f Use and Customizab i l i t y

Understanding WebLogic Security 2-3

Default, WebLogic security providers that provide you with a working security scheme out
of the box. This release supports additional authentication stores such as databases, and
Windows NT account information.

Customization of security schemes using custom security providers

Unified management of security rules, security policies, and security providers through the
WebLogic Server Administration Console.

Support for standard J2EE security technologies such as the Java Authentication and
Authorization Service (JAAS), Java Secure Sockets Extensions (JSSE), Java Cryptography
Extensions (JCE), and Java Authorization Contract for Containers (JACC).

A foundation for web services security including support for SAML.

Capabilities which allow WebLogic Server to participate in single sign-on (SSO) with Web
sites, Web applications, and Desktop clients.

A framework for managing public keys which includes certificate lookup, verification,
validation, and revocation as well as a certificate registry.

Improved performance of the Secure Sockets Layer (SSL) protocol and the LDAP
Authentication providers.

Balancing Ease of Use and Customizability
The components and services of the WebLogic Security Service seek to strike a balance between
ease of use, manageability (for end users and administrators), and customizability (for application
developers and security developers). The following paragraphs highlight some examples:

Easy to use: For the end user, the secure WebLogic Server environment requires only a single
sign-on for user authentication (ascertaining the user’s identity). Users do not have to
re-authenticate within the boundaries of the WebLogic Server domain that contains application
resources. Single sign-on allows users to log on to the domain once per session rather than
requiring them to log on to each resource or application separately.

For the developer and the administrator, WebLogic Server provides a new Domain Configuration
Wizard to help with the creation of new domains with an administration server, managed servers,
and optionally, a cluster, or with extending existing domains by adding individual severs. The
Domain Configuration Wizard also automatically generates a config.xml file and start scripts
for the server(s) you choose to add to the new domain.

Manageable: Administrators who configure and deploy applications in the WebLogic Server
environment can use the WebLogic security providers included with the product. These default

Overv iew o f the WebLog ic Secur i t y Se rv ice

2-4 Understanding WebLogic Security

providers support all required security functions, out of the box. An administrator can store
security data in the WebLogic Server-supplied, security store (an embedded, special-purpose,
LDAP directory server) or use an external LDAP server, database, or user source. To simplify the
configuration and management of security in WebLogic Server, a robust, default security
configuration is provided.

Customizable: For application developers, WebLogic Server supports the WebLogic security
API and J2EE security standards such as JAAS, JSS, JCE, and JACC. Using these APIs and
standards, you can create a fine-grained and customized security environment for applications
that connect to WebLogic Server.

For security developers, the WebLogic Server Security Service Provider Interfaces (SSPIs)
support the development of custom security providers for the WebLogic Server environment.

New and Changed Features in This Release
The following features have been added to the WebLogic Security Service in this release.

Support for Additional Security Standards
Support for the Java Authorization Contract for Containers (JACC) Standard has been added in this
release of WebLogic Server. JACC can be used as a replacement for the EJB and Servlet container
deployment and authorization provided by WebLogic Server.

When JACC is configured for use in a WebLogic Server domain, EJB and servlet authorization
decisions are made by the classes in the JACC framework. All other authorization decisions
within WebLogic Server are still determined by the WebLogic Security Framework.

Single Sign-On Capabilities
Single sign-on (SSO) is the ability to require a user to sign on to an application only once and
gain access to many different application components, even though these components may have
their own authentication schemes. This release of WebLogic Server supports SSO with web
browsers, HTTP clients, and Desktop clients.

SSO with web browsers and HTTP clients can be achieved through the use of the Security
Assertion Markup Language (SAML). WebLogic Server provides a SAML Inter-site
Transfer Service (ITS), an Assertion Consumer Service (ACS), and an Assertion Retrieval
Service (ARS) which allow WebLogic Server to support the SAML POST and Artifact
profiles. The SAML capabilities in WebLogic Server allow SSO between WebLogic
domains as well as between WebLogic Server and other vendor’s SAML-capable servers

New and Changed Features in Th is Re l ease

Understanding WebLogic Security 2-5

or between applications in a single WebLogic domain. WebLogic Server uses a SAML
Credential Mapping and a SAML Identity Assertion provider to generate and consume the
assertions used by the SSO profiles. This release of WebLogic Server supports SAML 1.1.

WebLogic Web services supports the SAML Token profile, both as a web services client
and a web services server.

SSO with Desktop clients is possible using HTTP and Kerberos-based authentication in
conjunction with WebLogic Server. SSO is achieved by implementing the Negotiate
behavior of native Windows-to-Windows authentication services. SSO is accomplished
through the use of a servlet authentication filter that handles the header manipulation
required by the Simple and Protected Negotiate (SPNEGO) and a Negotiate Identity
Assertion provider handles identity assertion based on SPNEGO tokens.

Support for Certificate Lookup and Validation
The WebLogic Security service now provides a framework that finds and validates X509
certificate chains for inbound 2-way SSL, outbound SSL, application code, and WebLogic Web
services. The framework extends and completes the JDK CertPath functionality. The
functionality is exposed through the WebLogic CertPath provider and the Certificate Registry
which can be configured through the WebLogic Administration Console.

New SSL Features
The following SSL features have been added:

SSL attributes for network channels which allow you to specify identity certificates and
private key information and one- and two-way SSL options for individual channels. In
previous releases, network channels used the SSL attributes defined for the SSL port of the
server.

Dynamic SSL attributes for the server. Changes made to the SSL attributes for a particular
server through the WebLogic Server Administration Console will now take effect without
rebooting the server. In addition, SSL server channels can now be restarted using the
WebLogic Server Administration Console. This feature is intended for circumstances when
changes were not made through the console. For example, specifying the keystore used by
the server.

New Security Providers
The following sections describe the new security providers available in this release.

Overv iew o f the WebLog ic Secur i t y Se rv ice

2-6 Understanding WebLogic Security

Authentication Providers
A set of Database Base Management System (DBMS) authentication providers that access
user, password, group, and group membership information stored in databases for
authentication purposes. Optionally, WebLogic Server can be used to manage the user,
password, group, and group membership information. The DBMS Authentication providers
can be used to upgrade from the RDBMS security realm.

The following DBMS Authentication providers are available:

– SQL Authentication provider—A manageable authentication provider that supports the
listing and editing of user, password, group, and group membership information.

– Read-only SQL Authentication provider—An authentication provider that supports
authentication of users in a database and the listing of the contents of the database
through the WebLogic Server Administration Console. The authentication provider
requires a specific set of SQL statements so it might not meet all customer needs.

– Custom DBMS Authentication provider—A run-time authentication provider that only
supports authentication. This provider require customer-written code that handles
querying the database to obtain authentication information.This authentication provider
is a flexible alternative that allows customer to adapt a DBMS Authentication provider
to meet their special database needs.

A Windows NT Authentication provider that enables the use of Windows NT users and
groups for authentication purposes. The Windows NT Authentication provider is the
upgrade path for the Window NT security realm. The Windows NT users and groups are
displayed through the WebLogic Server Administration Console however, they cannot be
managed through the console.

Identity Assertion Providers
An LDAP X509 Identity Assertion provider which receives an X509 certificate, looks up
the LDAP object for the user associated with that certificate, ensures that the certificate in
the LDAP object matches the presented certificate, and then retrieves the name of the user
from the LDAP object for the purpose of authentication.

The Negotiate Identity Assertion provider decodes SPNEGO tokens to obtain Kerberos
tokens, validates the Kerberos tokens, and maps Kerberos tokens to WebLogic users. The
Negotiate Identity Assertion provider utilizes the Java Generic Security Service (GSS)
Application Programming Interface (API) to accept the GSS security context via
Kerberos.The Negotiate Identity Assertion provider is for Windows NT Integrated Login.

New and Changed Features in Th is Re l ease

Understanding WebLogic Security 2-7

The SAML Identity Assertion provider validates SAML 1.1 assertions and verifies the
issuer is trusted. If so, identity is asserted based on the AuthenticationStatement contained
in the assertion.

Credential Mapping Providers
The PKI (Public Key Infrastructure) Credential Mapping provider included in WebLogic
Server maps a WebLogic Server subject (the initiator) and target resource (and an optional
credential action) to a public/private key pair or public certificate that should be used by
the application when using the targeted resource. This provider can also map an alias to a
public/private key pair or public certificate. The PKI Credential Mapping provider uses the
subject and resource name, or the alias, to retrieve the corresponding credential from the
keystore.

The SAML Credential Mapping provider generates SAML 1.1 assertions for authenticated
subjects based on a target site or resource. If the requested target has not been configured
and no defaults are set, an assertion will not be generated. User information and group
membership (if configured as such) are put in the AttributeStatement.

Certificate Lookup and Validation Providers
WebLogic CertPath provider supports the Certificate lookup and validation framework.
This provider completes certificate paths and validates the certificates using the trusted CA
configured for a particular server instance.

The WebLogic CertPath provider also checks the signatures in the chain, ensures that the
chain has not expired, and checks that one of the certificates in the chain is issued by one
of the trusted CAs configured for the server. If any of these checks fail, the chain is not
valid.

Finally, the provider checks that the each certificate's basic constraints (that is, the ability
of the certificate to issue other certificates) are correct.

The WebLogic CertPath provider can be used as the CertPath Builder and CertPath
Validator in a security realm or it can be used only as the CertPath Builder.

The Certificate Registry also supports the Certificate lookup and validation framework.
The registry allows the system administrator to explicitly configure a list of trusted CA
certificates that are allowed access to the server. The Certificate Registry provides an
inexpensive mechanism for performing revocation checking. An administrator revokes a
certificate by removing it from the certificate registry. The registry is stored in the
embedded LDAP server.

The Certificate Registry is both a CertPath Builder and a CertPath Validator.

Overv iew o f the WebLog ic Secur i t y Se rv ice

2-8 Understanding WebLogic Security

– When it is configured as the CertPath Builder in a security realm, the Certificate
Registry it is used as a builder and a validator. In this circumstance, the Certificate
Registry completes the certificate chain and validates the certificates in the chain
against the trusted CA certificates stored in the registry.

– When configured as the CertPath Validator in a security realm, the Certificate Registry
ensures that the client’s certificate is stored in the registry.

Enhancements to WebLogic Security Providers
The following enhancements have been made to the WebLogic security providers:

The WebLogic Auditing provider can now be configured to audit data for many types of
ContextElements. A set of supported context elements (such as HTTP servlet requests or
EJB parameters) have been defined. The WebLogic Auditing provider lists the
ContextElement that is supports and that are enabled. Once configured, the WebLogic
Auditing provider writes the generated data out to the audit log.

In addition, the WebLogic Auditing provider supports a new mixin management interface,
weblogic.management.security.audit.ContextHandler, which indicates whether or
not the WebLogic Auditing provider supports auditing context elements. Custom auditing
providers can also implement this interface.

The WebLogic Credential Mapping provider stores, retrieves, and manages credentials
based on an alias and credential type.

The WebLogic Authentication provider now supports Web Services security username and
password digests.The provider stores this digest in encrypted form. This enhancement
allows WebLogic Web services to specify a username and password via the
UsernameToken element. Note this element does not support HTTP username and
password digest.

The WebLogic Identity Assertion provider supports a Digest token type.

The WebLogic Authorization provider supports new default security predicates for
accessing HTTP Servlet requests, HTTP Session attributes, and any element passed to the
provided in the ContextHandler.In addition, new Date and Time predicates are available.

Attributes which optimize the performance of the WebLogic Authentication provider and
LDAP Authentication providers are now available. Performance can be improved in the
following ways:

– Configure the Active Directory Authentication provider to perform group membership
lookups using the tokenGroups attribute. The tokenGroups attribute holds the entire

New and Changed Features in Th is Re l ease

Understanding WebLogic Security 2-9

flattened group membership for a user as an array of SID values. The SID values are
specially indexed in the Active Directory and yield extremely fast lookup response.

– Optimize the configuration the group membership caches used by the WebLogic and
LDAP Authentication providers.

– Expose the internal PrincipalValidator cache and increase its thresholds.

Enhancements to the Security Service Programming
Interfaces (SSPIs)
The following enhancements were made to the SSPIs:

Additional context handler support

A context handler that contains additional context and container-specific information from
the resource container, and provides that information to the security provider making the
access or role mapping decision. Context handler support is now available for the
following methods:

– Adjudicator.adjudicate()

– LoginModule.login()

– IdentityAsserter.assertIdentity()

– AuditAtnEvent

– CredentialMapper.getCredentials()

Servlet authentication filters

Servlet authentication filters are a new provider type that perform pre and post processing
for identity assertion and authentication functions. Filters provide the ability to encapsulate
recurring tasks in reusable units and can be used to transform the response from a servlet
or JSP page.

Overv iew o f the WebLog ic Secur i t y Se rv ice

2-10 Understanding WebLogic Security

Understanding WebLogic Security 3-1

C H A P T E R 3

Security Fundamentals

The following sections describe security fundamentals as they relate to security in WebLogic
Server:

“Auditing” on page 3-1

“Authentication” on page 3-2

“Security Assertion Markup Language (SAML)” on page 3-11

“Single Sign-On (SSO)” on page 3-13

“Authorization” on page 3-15

“Identity and Trust” on page 3-18

“Secure Sockets Layer (SSL)” on page 3-21

“Firewalls” on page 3-28

“J2EE and WebLogic Security” on page 3-29

Auditing
Auditing is the process whereby information about operating requests and the outcome of those
requests are collected, stored, and distributed for the purposes of non-repudiation. In other words,
auditing provides an electronic trail of computer activity. In the WebLogic Server security
architecture, an Auditing provider is used to provide auditing services.

Secur i t y Fundamenta ls

3-2 Understanding WebLogic Security

If configured, the WebLogic Security Framework will call through to an Auditing provider before
and after security operations (such as authentication or authorization) have been performed, when
changes to the domain configuration are made, or when management operations on any resources
in the domain are invoked. The decision to audit a particular event is made by the Auditing
provider itself and can be based on specific audit criteria and/or severity levels. The records
containing the audit information may be written to output repositories such as an LDAP server,
database, and a simple file.

Authentication
Authentication is the mechanism by which callers prove that they are acting on behalf of specific
users or systems. Authentication answers the question, “Who are you?” using credentials such as
username/password combinations.

In WebLogic Server, Authentication providers are used to prove the identity of users or system
processes. Authentication providers also remember, transport, and make identity information
available to various components of a system (via subjects) when needed. During the
authentication process, a Principal Validation provider provides additional security protections
for the principals (users and groups) contained within the subject by signing and verifying the
authenticity of those principals.

The following sections describe authentication concepts and functionality.

“Subjects and Principals” on page 3-2

“Java Authentication and Authorization Service (JAAS)” on page 3-4

“CallbackHandlers” on page 3-5

“Mutual Authentication” on page 3-6

“Servlet Authentication Filters” on page 3-7

“Identity Assertion Providers and LoginModules” on page 3-6

“Identity Assertion and Tokens” on page 3-6

“Types of Authentication” on page 3-8

Subjects and Principals
Subjects and principals are closely related.

Authent i cat ion

Understanding WebLogic Security 3-3

A principal is an identity assigned to a user or group as a result of authentication. Both users and
groups can be used as principals by application servers such as WebLogic Server. The Java
Authentication and Authorization Service (JAAS) requires that subjects be used as containers for
authentication information, including principals.

Figure 3-1 illustrates the relationships among users, groups, principals, and subjects.

Figure 3-1 Relationships Among Users, Groups, Principals and Subjects

As part of a successful authentication, principals are signed and stored in a subject for future use.
A Principal Validation provider signs principals, and an Authentication provider’s LoginModule
actually stores the principals in the subject. Later, when a caller attempts to access a principal
stored within a subject, a Principal Validation provider verifies that the principal has not been
altered since it was signed, and the principal is returned to the caller (assuming all other security
conditions are met).

Any principal that is going to represent a WebLogic Server user or group needs to implement the
WLSUser and WLSGroup interfaces, which are available in the weblogic.security.spi
package.

WLSUser
"Smith"

Subject

WLSGroup
"Administrators"

WLSGroup
"Developers"

MyPrincipal
"foobar"

Principals

Secur i t y Fundamenta ls

3-4 Understanding WebLogic Security

Java Authentication and Authorization Service (JAAS)
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that requires
authentication, WebLogic Server uses the Java Authentication and Authorization Service (JAAS)
classes to reliably and securely authenticate to the client. JAAS implements a Java version of the
Pluggable Authentication Module (PAM) framework, which permits applications to remain
independent from underlying authentication technologies. Therefore, the PAM framework allows
the use of new or updated authentication technologies without requiring modifications to your
application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and developers of
remote fat client applications need to be involved with JAAS directly. Users of thin clients or
developers of within-container fat client applications (for example, those calling an Enterprise
JavaBean (EJB) from a servlet) do not require the direct use or knowledge of JAAS.

JAAS LoginModules
LoginModules are the work-horses of authentication: all LoginModules are responsible for
authenticating users within the security realm and for populating a subject with the necessary
principals (users/groups). LoginModules that are not used for perimeter authentication also verify
the proof material submitted (for example, a user’s password).

If there are multiple Authentication providers configured in a security realm, each of the
Authentication providers’ LoginModules will store principals within the same subject. Therefore,
if a principal that represents a WebLogic Server user (that is, an implementation of the WLSUser
interface) named “Joe” is added to the subject by one Authentication provider’s LoginModule,
any other Authentication provider in the security realm should be referring to the same person
when they encounter “Joe”. In other words, the other Authentication providers’ LoginModules
should not attempt to add another principal to the subject that represents a WebLogic Server user
(for example, named “Joseph”) to refer to the same person. However, it is acceptable for another
Authentication provider’s LoginModule to add a principal of a type other than WLSUser with the
name “Joseph”.

JAAS Control Flags
If a security realm has multiple Authentication providers configured, the Control Flag attribute
on the Authenticator provider determines the ordered execution of the Authentication providers.
The values for the Control Flag attribute are as follows:

Authent i cat ion

Understanding WebLogic Security 3-5

REQUIRED—This LoginModule must succeed. Even if it fails, authentication proceeds
down the list of LoginModules for the configured Authentication providers. This setting is
the default.

REQUISITE—This LoginModule must succeed. If other Authentication providers are
configured and this LoginModule succeeds, authentication proceeds down the list of
LoginModules. Otherwise, return control to the application.

SUFFICIENT—This LoginModule needs not succeed. If it does succeed, return control to
the application. If it fails and other Authentication providers are configured, authentication
proceeds down the LoginModule list.

OPTIONAL—The user is allowed to pass or fail the authentication test of this
Authentication providers. However, if all Authentication providers configured in a security
realm have the JAAS Control Flag set to OPTIONAL, the user must pass the
authentication test of one of the configured providers.

CallbackHandlers
A CallbackHandler is a highly-flexible JAAS standard that allows a variable number of
arguments to be passed as complex objects to a method. There are three types of
CallbackHandlers: NameCallback, PasswordCallback, and TextInputCallback, all of
which are part of the javax.security.auth.callback package. The NameCallback and
PasswordCallback return the username and password, respectively. TextInputCallback can
be used to access the data users enter into any additional fields on a login form (that is, fields other
than those for obtaining the username and password). When used, there should be one
TextInputCallback per additional form field, and the prompt string of each
TextInputCallback must match the field name in the form. WebLogic Server only uses the
TextInputCallback for form-based Web application login.

An application implements a CallbackHandler and passes it to underlying security services so
that they may interact with the application to retrieve specific authentication data, such as
usernames and passwords, or to display certain information, such as error and warning messages.

CallbackHandlers are implemented in an application-dependent fashion. For example,
implementations for an application with a graphical user interface (GUI) may pop up windows to
prompt for requested information or to display error messages. An implementation may also
choose to obtain requested information from an alternate source without asking the user.

Underlying security services make requests for different types of information by passing
individual Callbacks to the CallbackHandler. The CallbackHandler implementation
decides how to retrieve and display information depending on the Callbacks passed to it. For

Secur i t y Fundamenta ls

3-6 Understanding WebLogic Security

example, if the underlying service needs a username and password to authenticate a user, it uses
a NameCallback and PasswordCallback. The CallbackHandler can then choose to prompt
for a username and password serially, or to prompt for both in a single window.

Mutual Authentication
With mutual authentication, both the client and the server are required to authenticate themselves
to each other. This can be done by means of certificates or other forms of proof material.
WebLogic Server supports two-way SSL authentication, which is a form of mutual
authentication. However, by strict definition, mutual authentication takes place at higher layers
in the protocol stack then does SSL authentication. For more information, see
“One-way/Two-way SSL Authentication” on page 3-24.

Identity Assertion Providers and LoginModules
When used with a LoginModule, Identity Assertion providers support single sign-on. For
example, an Identity Assertion provider can process a SAML assertion so that users are not asked
to sign on more than once.

The LoginModule that an Identity Assertion provider uses can be:

Part of a custom Authentication provider you develop.

Part of the WebLogic Authentication provider that BEA developed and packaged with
WebLogic Server.

Part of a third-party security vendor’s Authentication provider.

Unlike in a simple authentication situation, the LoginModules that Identity Assertion providers
use do not verify proof material such as usernames and passwords; they simply verify that the
user exists.

Identity Assertion and Tokens
Identity Assertion providers support user name mappers, which map a valid token to a WebLogic
Server user. You develop Identity Assertion providers to support the specific types of tokens that
you will be using to assert the identities of users or system processes. You can develop an Identity
Assertion provider to support multiple token types, but the WebLogic Server administrator must
configure the Identity Assertion provider so that it validates only one “active” token type. While
you can have multiple Identity Assertion providers in a security realm with the ability to validate
the same token type, only one Identity Assertion provider can actually perform this validation.

Authent i cat ion

Understanding WebLogic Security 3-7

Note: To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates, you
have the option of using the default user name mapper that is supplied with the WebLogic
Server product (weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. For
more information, see Do I Need to Develop a Custom Identity Assertion Provider? in
Developing Security Providers for WebLogic Server.

Challenge Identity Assertion
Challenge identity assertion schemes provide for multiple challenges, responses messages, and
state. A WebLogic Server security realm can include security providers that support
authentication protocols such as Microsoft's Windows NT Challenge/Response (NTLM), Simple
and Protected GSS-API Negotiation Mechanism (SPNEGO), and other challenge/response
authentication mechanisms. WebLogic Server includes a SPNEGO security provider, named the
Negotiate Identity Assertion provider. You can develop and deploy security providers that
implement NTLM or other challenge/response authentication mechanisms. For more
information, see Developing Security Providers for WebLogic Server.

Servlet Authentication Filters
As defined by the Java Servlet API 2.3 specification, filters are objects that can modify a request
or response. Filters are preprocessors of the request before it reaches the servlet, and/or
postprocessors of the response leaving the servlet. Filters provide the ability to encapsulate
recurring tasks in reusable units.

Filters can be used as a substitute for container-based authentication but there are some
drawbacks to this design:

As specified by the Java Servlet API 2.3 specification, filters are run after authentication
and authorization. If filters are used for authentication, they must also be used for
authorization thereby preventing container-managed authorization from being used. Most
use cases that require extensions to the authentication process in the Servlet container do
not require extensions to the authorization process. Having to implement the authorization
process in a filter is awkward, time consuming, and error-prone.

J2EE filters are defined per Web application. Code for a filter must reside in the WAR file
for the Web application and the configuration must be defined in the web.xml file. An
authentication mechanism is typically determined by the system administrator after an
application is written (not by the programmer who created the WAR file). The mechanism

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#ia300
http://e-docs.bea.com/wls/docs90/dvspisec/index.html

Secur i t y Fundamenta ls

3-8 Understanding WebLogic Security

can be changed during the lifetime of an application, and is desired for all (or at least most)
applications in a site.

Servlet Authentication filters are an extension to of the filter object which overcome these
drawbacks allowing filters to replace container-based authentication.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Servlet Authentication filters enable the LoginModule model
allowing the authentication provider to control the actual conversation with the client.
Customizing the location of the user database, the types of proof material required to execute a
login, or the population of the Subject with groups is implemented via a LoginModule. On the
other hand, redirecting to a remote site to execute the login, extracting login information out of
the query string, and negotiating a login mechanism with a browser is implemented via a Servlet
Authentication filter.

Types of Authentication
WebLogic Server users must be authenticated whenever they request access to a protected
WebLogic resource. For this reason, each user is required to provide a credential (for example, a
password) to WebLogic Server. The following types of authentication are supported by the
WebLogic Authentication provider that is included in the WebLogic Server distribution:

“Username/Password Authentication” on page 3-9

“Certificate Authentication” on page 3-9

“Digest Authentication” on page 3-9

“Perimeter Authentication” on page 3-10

WebLogic Server can use the WebLogic Authentication provider that is provided as part of the
WebLogic Server product or custom security providers to perform the different types of
authentication. For information on the WebLogic Authentication provider and how to configure
authentication, see “The Authentication Process” on page 5-3 and the following sections in
Securing WebLogic Server:

Configuring Security Providers

Configuring SSL

http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html#configureSSL

Authent i cat ion

Understanding WebLogic Security 3-9

Username/Password Authentication
In username/password authentication, a user ID and password are requested from the user and
sent to WebLogic Server. WebLogic Server checks the information and if it is trustworthy, grants
access to the protected WebLogic resource.

Secure Sockets Layer (SSL), or Hyper-Text Transfer Protocol (HTTPS), can be used to provide
an additional level of security to username/password authentication. Because SSL encrypts the
data transferred between the client and WebLogic Server, the user ID and password of the user
do not flow in the clear. Therefore, WebLogic Server can authenticate the user without
compromising the confidentiality of the user’s ID and password.

Certificate Authentication
When an SSL or HTTPS client request is initiated, WebLogic Server responds by presenting its
digital certificate to the client. The client then verifies the digital certificate and an SSL
connection is established. The digital certificate is issued by an entity (a trusted certificate
authority), which validates the identity of WebLogic Server.

You can also use two-way SSL authentication, a form of mutual authentication. With two-way
SSL authentication, both the client and server must present a certificate before the connection
thread is enabled between the two. See “One-way/Two-way SSL Authentication” on page 3-24.

Note: Two-way SSL authentication is supported by the WebLogic Authentication provider that
is provided as part of the WebLogic Server product.

Digest Authentication
When using Digest authentication, the client makes an un-authenticated request to the server, and
the server sends a response with a digest authentication challenge indicating that it supports
Digest authentication. The client generates a nonce and sends it to the server along with a
timestamp, digest, and username. The digest is a cyptographic hash of the password, nonce, and
timestamp. The client requests the resource again this time sending the username and a
cyptographic hash of the password combined with the nonce value. The server generates the hash
itself, and if the generated hash matches the hash in the request, the request is allowed.

The advantage of Digest authentication is it is resistant to replay attacks. The implementation
maintains a cache of used nonces/timestamps for a specified period of time. All requests with a
timestamp older than the specified timestamp are rejected as well as any requests that use the
same timestamp/nonce pair as the most recent timestamp/nonce pair still in the cache. WebLogic
Server stores this cache in a database. A command-line option is available to disable the cache in
order to improve performance.

Secur i t y Fundamenta ls

3-10 Understanding WebLogic Security

Perimeter Authentication
Perimeter authentication is the process of authenticating the identity of a remote user outside of
the application server domain.

The following sections describe perimeter authentication:

“How is Perimeter Authentication Accomplished?” on page 3-10

“How Does WebLogic Server Support Perimeter Authentication?” on page 3-10

How is Perimeter Authentication Accomplished?
Perimeter authentication is typically accomplished by the remote user specifying an asserted
identity and some form of corresponding proof material, normally in the form of a passphrase
(such as a password, a credit card number, Personal Identification Number, or some other form
of personal identification information), which is used to perform the verification.

The authentication agent, the entity that actually vouches for the identity, can take many forms,
such as a Virtual Private Network (VPN), firewall, an enterprise authentication service, or some
other form of global identity service. Each of these forms of authentication agents has a common
characteristic: they all perform an authentication process that results in an artifact or token that
must be presented to determine information about the authenticated user at a later time. Currently,
the format of the token varies from vendor to vendor, but there are efforts to define a standard
token format using XML. In addition, there is a current standard for Attribute Certificates, which
is based on the X.509 standard for digital certificates. But even after all of this, if the applications
and the infrastructure on which they are built are not designed to support this concept, enterprises
are still forced to require that their remote users re-authenticate to the applications within the
network.

How Does WebLogic Server Support Perimeter Authentication?
WebLogic Server is designed to extend the single sign-on concept all the way to the perimeter
through support for identity assertion (see Figure 3-2). Provided as a critical piece of the
WebLogic Security Framework, the concept of identity assertion allows WebLogic Server to use
the authentication mechanism provided by perimeter authentication schemes such as the Security
Assertion Markup Language (SAML), the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO), or enhancements to protocols such as Common Secure Interoperability
(CSI) v2 to achieve this functionality.

Secur i t y Asse r t i on Markup Language (SAML)

Understanding WebLogic Security 3-11

Figure 3-2 Perimeter Authentication

Support for perimeter authentication requires the use of an Identity Assertion provider that is
designed to support one or more token formats. Multiple and different Identity Assertion
providers can be registered for use. The tokens are transmitted as part of any normal business
request, using the mechanism provided by each of the various protocols supported by WebLogic
Server. Once a request is received with WebLogic Server, the entity that handles the processing
of the protocol message recognizes the existence of the token in the message. This information is
used in a call to the WebLogic Security Framework that results in the appropriate Identity
Assertion provider being called to handle the verification of the token. It is the responsibility of
the Identity Assertion provider implementation to perform whatever actions are necessary to
establish validity and trust in the token and to provide the identity of the user with a reasonable
degree of assurance, without the need for the user to re-authenticate to the application.

Security Assertion Markup Language (SAML)
The SAML standard defines a framework for exchanging security information between software
entities on the Web. SAML security is based on the interaction of asserting and relying parties.

The asserting party asserts that a user has been authenticated and given associated
attributes. For example, there is a user Dan Murphy, he has an email address of
dmurphy@company.com and he authenticated to this domain using a password
mechanism. Asserting parties are also known as SAML Authorities.

The relying party determines whether it trusts the assertions provided to it by the asserting
party. SAML defines a number of mechanisms that enable the relying party to trust the
assertions provided to it. Although a relying party may trust the assertions provided to it,

Remote
User

Authentication
Agent

Authentication
Agent

Backend
Database

Passphrase

Token

Perimeter
WebLogic Server

Domain
(Middle Tier)

WebLogic Server

Identtity
Assertion

WebLogic Server

Identtity
Assertion

Secur i t y Fundamenta ls

3-12 Understanding WebLogic Security

local access policy defines whether the subject may access local resources. Therefore, even
if a relying party trusts that a user is Dan Murphy, it does not mean Dan Murphy can
access all the resources in the domain.

The SAML framework is based on the following concepts:

Assertions—An assertion is a package of information that supplies one or more statements
made by a SAML Authority. The following types of statements are supported:

– Authentication statements which say when and how a subject was authenticated.

– Attribute statements which provide specific information about the subject (for example,
what groups the Subject is a member of).

– Authorization statements identity what the Subject is entitled to do.

Note: SAML authorization is not supported in this release of WebLogic Server

Protocol—SAML defines a request/response protocol for obtaining assertions. A SAML
request can ask for a specific known assertion or make authentication or attribute decision
queries, with the SAML response providing back the requested assertions. The XML
format for protocol messages with their allowable extensions is defined in an XML
schema.

Bindings—A binding details exactly how the SAML protocol maps onto transport and
messaging protocols.

Profiles—Technical descriptions of particular flows of assertions and protocol messages
that define how SAML can be used for a particular purpose.

Inter-site transfer service (ITS)—an addressable component that provides a point of
functionality for SAML processing such as artifact and redirect generation

Assertion consumer service (ACS)—an addressable component that receives assertions
and/or artifacts generated by the ITS and uses them to authenticate users at the destination
site.

Assertion receiver service (ARS)—an addressable component that converts artifacts into
SAML assertions.

For a complete description of these concepts and how they apply to the SAML architecture, see
the Technical Overview of the OASIS Security Assertion Markup Language (SAML) V1.1.

SAML is supported in the WebLogic Server in the following ways:

http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf

Sing le S ign-On (SSO)

Understanding WebLogic Security 3-13

Support for WebLogic Server to act as a SAML Authority (meaning an asserting party). A
SAML Authority is know by its Issuer URI (name). The SAML Credential Mapping
provider supplies this functionality in WebLogic Server.

Support for WebLogic Server to act as a relying party. Trust relationships with SAML
Authorities must be established. The SAML Identity Assertion provider supplies this
functionality in WebLogic Server.

Support for WebLogic Server to use of SAML for SSO. WebLogic Server can act as both a
source site and a destination site in both the POST and Artifact profiles. For more
information, see “Web Browsers and HTTP Clients” on page 3-13.

Support for the web services SAML Token profile, both as a web services client and a web
services server. WebLogic Server provides this support by means of SAML services
running in the server and configured through the SAML security provider pages in the
WebLogic Server Administration Console.

Single Sign-On (SSO)
Single Sign-On is the ability to require a user to sign on to an application only once and gain
access to many different application components, even though these components may have their
own authentication schemes. Single sign-on enables users to login securely to all their
applications, web sites and mainframe sessions with just one identity. WebLogic Server provides
single sign-on (SSO) with the following environments:

“Web Browsers and HTTP Clients” on page 3-13

“Desktop Clients” on page 3-14

Web Browsers and HTTP Clients
SAML SSO works as follows:

1. A web user authenticates to a source site.

2. The user then attempts to access a target resource at a destination site.

3. Through one or more steps (for example, redirection), the user arrives at an ITS at the
source site.

4. The ITS generates an assertion.

Secur i t y Fundamenta ls

3-14 Understanding WebLogic Security

5. Information about the SAML assertion provided by the source site and associated with the
user and the desired target is conveyed from the source site to the destination site by the
protocol exchange.

6. The ACS at the destination site examines both the assertion and the target information to
determine whether to allow access to the target resource thereby achieving web SSO for
authenticated users originating from a source site.

For more information, see Bindings and Profiles for the OASIS Security Assertion Markup
Language (SAML) V1.1.

For information about how SSO with web browsers and HTTP clients is implemented in
WebLogic Server, see “WebLogic Server Acting a SAML Source Site” on page 5-11 and
“Weblogic Server Acting as SAML Destination Site” on page 5-12.

Desktop Clients
SSO with Desktop uses HTTP-based authentication with Microsoft clients that have
authenticated in the Windows Active Directory environment. The Windows Active Directory
environment uses Kerberos as its security protocol. Kerberos provides network authentication of
heterogeneous realms. This means a user logged into a Windows domain can access a Web
application running on an application server and use their Windows Active Directory credentials
to authenticate to the server. The application server can run on any platform that supports
Kerberos.

When a Web server receives a request from a browser it can request that the browser use the
Kerberos protocol to authenticate itself. This protocol performs authentication via HTTP, and
allows the browser (in most cases, Internet Explorer) to pass a delegated credential to allow a web
application to log into subsequent Kerberos-based services on the user’s behalf.

When an HTTP server wishes to login a Microsoft client, it returns a 401 Unauthorized
response to the HTTP request with the WWW-Authorization:Negotiate header. The browser
then contacts the Key Distribution Center (KDC)/Ticket Granting Service (TGS) to obtain a
service ticket. It chooses a special Service Principal Name for the ticket request. The returned
ticket is then wrapped in a SPNEGO token which is encoded and sent back to the server using an
HTTP request. The token is unwrapped and the ticket is authenticated. Once authenticated, the
page corresponding to the requested URL is returned.

For information about how SSO with Microsoft clients is implemented in WebLogic Server, see
“Desktop SSO Process” on page 5-14.

http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf
http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-1.1.pdf

Author i zat ion

Understanding WebLogic Security 3-15

Authorization
Authorization is the process whereby the interactions between users and WebLogic resources are
controlled, based on user identity or other information. In other words, authorization answers the
question, “What can you access?” In WebLogic Server, an Authorization provider is used to limit
the interactions between users and WebLogic resources to ensure integrity, confidentiality, and
availability.

The following sections describe authorization concepts and functionality:

“WebLogic Resources” on page 3-15

“Security Policies” on page 3-16

“ContextHandlers” on page 3-17

“Access Decisions” on page 3-17

“Adjudication” on page 3-18

“Java Authorization Contract for Containers (JACC)” on page 3-32

WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic Server
entity, which can be protected from unauthorized access using security roles and security
policies.

WebLogic resources are hierarchical. Therefore, the level at which you define these security roles
and security policies is up to you. For example, you can define security roles and security policies
on: entire enterprise applications (EARs); an Enterprise JavaBean (EJB) JAR containing multiple
EJBs; a particular Enterprise JavaBean (EJB) within that JAR; or a single method within that
EJB.

WebLogic resource implementations are available for:

Administrative resources

Application resources

Common Object Model (COM) resources

Enterprise Information System (EIS) resources

Enterprise JavaBean (EJB) resources

Secur i t y Fundamenta ls

3-16 Understanding WebLogic Security

Java Database Connectivity (JDBC) resources

Java Messaging Service (JMS) resources

Java Naming and Directory Interface (JNDI) resources

Server resources

Web application resources

Web Service resources

Work Context resources

Note: Each of these WebLogic resource implementations is explained in detail in the Javadocs
for WebLogic Classes. For more information, see “Types of WebLogic Resources” in
Securing WebLogic Resources.

Security Policies
Security policies replace access control lists (ACLs) and answer the question “Who has access to
a WebLogic resource?” A security policy is created when you define an association between a
WebLogic resource and one or more users, groups, or security roles. You can optionally define
date and time constraints for a security policy. A WebLogic resource has no protection until you
assign it a security policy.

You assign security policies to any of the defined WebLogic resources (for example, an EJB
resource or a JNDI resource) or to attributes or operations of a particular instance of a WebLogic
resource (an EJB method or a servlet within a Web application). If you assign a security policy
to a type of WebLogic resource, all new instances of that resource inherit that security policy.
Security policies assigned to individual resources or attributes override security policies assigned
to a type of WebLogic resource. For a list of the defined WebLogic resources, see “WebLogic
Resources” on page 3-15.

Security policies are stored in an Authorization provider’s database. By default, the WebLogic
Authorization provider is configured and security policies are stored in the embedded LDAP
server.

To use a user or group to create a security policy, the user or group must be defined in the security
provider database for the Authentication provider that is configured in the default security realm.
To use a security role to create a security policy, the security role must be defined in the security
provider database for the Role Mapping provider that is configured in the default security realm.

http://e-docs.bea.com/wls/docs90/secwlres/types.html

Author i zat ion

Understanding WebLogic Security 3-17

By default, the WebLogic Authentication and Role Mapping providers are configured in the
database in the embedded LDAP server.

By default, security policies are defined in WebLogic Server for the WebLogic resources. These
security policies are based on security roles and default global groups. You also have the option
of basing a security policy on a user. BEA recommends basing security policies on security roles
rather than users or groups. Basing security policies on security roles allows you to manage
access based on a security role that a user or group is granted, which is a more efficient method
of management. For a listing of the default security policies for the WebLogic resources, see
“Default Security Policies” in Securing WebLogic Resources.

ContextHandlers
A ContextHandler is a high-performing WebLogic class that obtains additional context and
container-specific information from the resource container, and provides that information to
security providers making access or role mapping decisions. The ContextHandler interface
provides a way for an internal WebLogic resource container to pass additional information to a
WebLogic Security Framework call, so that a security provider can obtain contextual information
beyond what is provided by the arguments to a particular method. A ContextHandler is
essentially a name/value list and as such, it requires that a security provider know what names to
look for. (In other words, use of a ContextHandler requires close cooperation between the
WebLogic resource container and the security provider.) Each name/value pair in a
ContextHandler is known as a context element, and is represented by a ContextElement object.

Currently, three types of WebLogic resource containers pass ContextHandlers to the WebLogic
Security Framework: the Servlet, EJB, and Web Service containers. Thus, URL (Web), EJB, and
Web Service resource types have different context elements whose values Adjudication,
IdentityAssertion, Authorization Credential Mapping, and Role Mapping providers and the
LoginModules used by an Authentication provider can inspect. An implementation of the
AuditContext interface (used when a security provider is implemented to post audit events)
may also examine the values of context elements.

For more information about the values of particular context elements, see ContextHandlers and
WebLogic Resources in Developing Security Providers for WebLogic Server.

Access Decisions
Like LoginModules for Authentication providers, an Access Decision is the component of an
Authorization provider that actually answers the “is access allowed?” question. Specifically, an
Access Decision is asked whether a subject has permission to perform a given operation on a

http://e-docs.bea.com/wls/docs90/secwlres/sec_poly.html#default_security_policies
http://e-docs.bea.com/wls/docs90/dvspisec/design.html#design680
http://e-docs.bea.com/wls/docs90/dvspisec/design.html#design680

Secur i t y Fundamenta ls

3-18 Understanding WebLogic Security

WebLogic resource, with specific parameters in an application. Given this information, the
Access Decision responds with a result of PERMIT, DENY, or ABSTAIN.

Adjudication
Adjudication involves resolving any authorization conflicts that may occur when more than one
Authorization provider is configured in a security realm, by weighing the result of each
Authorization provider’s Access Decision. In WebLogic Server, an Adjudication provider is used
to tally the results that multiple Access Decisions return, and determines the final PERMIT or DENY
decision. An Adjudication provider may also specify what should be done when an answer of
ABSTAIN is returned from a single Authorization provider’s Access Decision.

Identity and Trust
Private keys, digital certificates, and trusted certificate authority certificates establish and verify
identity and trust in the WebLogic Server environment.

The public key is embedded into a digital certificate. A private key and digital certificate provide
identity. The trusted certificate authority (CA) certificate establishes trust for a certificate.
Certificates and certificate chains need to be validated before a trust relationship is established.

This topic details the concepts associated with identity and trust. For more information, see:

“Private Keys” on page 3-18

“Digital Certificates” on page 3-19

“Certificate Authorities” on page 3-19

“Certificate Lookup and Validation” on page 3-20

Private Keys
WebLogic Server uses public key encryption technology for authentication. With public key
encryption, a public key and a private key are generated for a server. The keys are related such
that data encrypted with the public key can only be decrypted using the corresponding private key
and vice versa. The private key is carefully protected so that only the owner can decrypt messages
that were encrypted using the public key.

Ident i t y and T rust

Understanding WebLogic Security 3-19

Digital Certificates
Digital certificates are electronic documents used to verify the unique identities of principals and
entities over networks such as the Internet. A digital certificate securely binds the identity of a
user or entity, as verified by a trusted third party (known as a certificate authority), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificates enable verification of the claim that a specific public key does in fact belong
to a specific user or entity. A recipient of a digital certificate can use the public key in a digital
certificate to verify that a digital signature was created with the corresponding private key. If such
verification is successful, this chain of reasoning provides assurance that the corresponding
private key is held by the subject named in the digital certificate, and that the digital signature
was created by that subject.

A digital certificate typically includes a variety of information, such as the following:

The name of the subject (holder, owner) and other information required to confirm the
unique identity of the subject, such as the URL of the Web server using the digital
certificate, or an individual’s e-mail address

The subject’s public key

The name of the certificate authority that issued the digital certificate

A serial number

The validity period (or lifetime) of the digital certificate (defined by a start date and an end
date)

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Digital certificates can be read or written by any application complying
with the X.509 standard. The public key infrastructure (PKI) in WebLogic Server recognizes
digital certificates that comply with X.509 version 3, or X.509v3. BEA recommends obtaining
digital certificates from a certificate authority such as Verisign or Entrust.

For more information, see “Configuring SSL” in Securing WebLogic Server.

Certificate Authorities
Digital certificates are issued by certificate authorities. Any trusted, third-party organization or
company that is willing to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates a digital

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html#configureSSL
http://e-docs.bea.com/wls/docs90/secmanage/index.html

Secur i t y Fundamenta ls

3-20 Understanding WebLogic Security

certificate, the certificate authority signs it with its private key, to ensure that any tampering will
be detected. The certificate authority then returns the signed digital certificate to the requesting
party.

The requesting party can verify the signature of the issuing certificate authority by using the
public key of the certificate authority. The certificate authority makes its public key available by
providing a certificate issued from a higher-level certificate authority attesting to the validity of
the public key of the lower-level certificate authority. This scheme gives rise to hierarchies of
certificate authorities. This hierarchy is terminated by a top-level, self-signed certificate known
as the root certificate, because no other public key is needed to certify it. Root certificates are
issued by trusted (root) Certificate Authorities.

If the recipient has a digital certificate containing the public key of the certificate authority signed
by a superior certificate authority who the recipient already trusts, the recipient of an encrypted
message can develop trust in the public key of a certificate authority recursively. In this sense, a
digital certificate is a stepping stone in digital trust. Ultimately, it is necessary to trust only the
public keys of a small number of top-level certificate authorities. Through a chain of certificates,
trust in a large number of users’ digital signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a digital signature
can be trusted only to the extent that the public key for verifying it can be trusted.

For more information, see “Configuring SSL” in Securing WebLogic Server.

Certificate Lookup and Validation
Applications that rely on public key technology for security must be confident that a user’s public
key is genuine. A user may have a chain of certificates which recursively point to the trusted CA
that issued the initial certificate (referred to as the end certificate). A certificate chain must be
validated before it can be used to establish trust. In addition, a user may not have a complete chain
from a trusted CA to the target certificate. Completing a valid chain of certificates from the target
certificate to the trusted CA is another requirement for public key technology.

In WebLogic Server, certificate validation is performed by the Certificate Lookup and Validation
(CLV) framework which completes and validates X509 certificate chains for inbound 2-way
SSL, outbound SSL, application code, and WebLogic Web services. The CLV framework
receives a certificate or certificate chain, completes the chain (if necessary), and lookups and
validates the certificate in the certificate chain. The framework can use the end certificate, the
Subject DN, the Issuer DN plus serial number, and/or the subject key identifier to find and
validate a certificate chain. In addition, the framework can perform additional validation on the
certificate chain such as revocation checking.

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html#configureSSL
http://e-docs.bea.com/wls/docs90/secmanage/index.html

Secure Sockets Laye r (SSL)

Understanding WebLogic Security 3-21

The CLV framework is based on the JDK architecture and plug-in framework for locating and
validating certificate chains. The CLV providers were built using the JDK CertPath Builder and
CertPath Validator API/SPI.

Secure Sockets Layer (SSL)
SSL enables secure communication between applications connected through the Web. For a
discussion of the components of SSL communication and why each component is necessary, see
How SSL Works, published by the Netscape Communications Corporation.

This release of WebLogic Server uses the Certicom SSLPlus Java version 4.0 SSL
implementation. The RSA Cert-J and Crypto-J have been upgraded to Cert-J version 2.1.1 and
Crypto-J version 3.5.

WebLogic Server fully supports SSL communication. By default, WebLogic Server is configured
for one-way SSL authentication, however, the SSL port is disabled. Using the Administration
Console, you can configure WebLogic Server for two-way SSL authentication.

To use one-way SSL from a client to a server: enable the SSL port on the server, configure
identity for the server and trust for the client.

To use two-way SSL between a client and a server: enable two-way SSL on the server,
configure trust for the server, and identity for the server.

In either case, the trusted CA certificates need to include the trusted CA certificate that
issued the peer’s identity certificate. This certificate does not necessarily have to be the
root CA certificate.

To acquire a digital certificate for your server, you generate a public key, private key, and a
Certificate Signature Request (CSR), which contains your public key. You send the CSR request
to a certificate authority and follow their procedures for obtaining a signed digital certificate.

Once you have your private keys, digital certificates, and any additional trusted CA certificates
that you may need, you need to store them so that WebLogic Server can use them to verify
identity. Store private keys and certificates in keystores.

Note: For purposes of backwards compatibility, you may also store your private keys and
certificates in files. For more information about private key, public key, and certificate
requirements and procedures, see Configuring SSL and Securing WebLogic Server.

To use SSL when connecting to a WebLogic server application with your browser, you simply
specify HTTPS and the secure port (port number 7002) in the URL. For example:

https://localhost:7002/examplesWebApp/SnoopServlet.jsp

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html#configureSSL

Secur i t y Fundamenta ls

3-22 Understanding WebLogic Security

Where localhost is the name of the system hosting the Web application.

The following topics are discussed in this section:

“SSL Features” on page 3-22

“SSL Tunneling” on page 3-23

“One-way/Two-way SSL Authentication” on page 3-24

“Host Name Verification” on page 3-25

“Trust Managers” on page 3-25

“Asymmetric Key Algorithms” on page 3-26

“Symmetric Key Algorithms” on page 3-26

“Message Digest Algorithms” on page 3-27

“Cipher Suites” on page 3-27

SSL Features
WebLogic Server provides a pure-Java implementation of SSL. Generally, SSL provides the
following:

A mechanism that the communicating applications can use to authenticate each other’s
identity.

Encryption of the data exchanged by the applications.

When SSL is used, the target (the server) always authenticates itself to the initiator (the client).
Optionally, if the target requests it, the initiator can authenticate itself to the target. Encryption
makes data transmitted over the network intelligible only to the intended recipient. An SSL
connection begins with a handshake during which the applications exchange digital certificates,
agree on the encryption algorithms to be used, and generate the encryption keys to be used for the
remainder of the session.

SSL provides the following security features:

Server authentication—WebLogic Server uses its digital certificate, issued by a trusted
certificate authority, to authenticate to clients. SSL minimally requires the server to
authenticate to the client using its digital certificate. If the client is not required to present a
digital certificate, the connection type is called one-way SSL authentication.

Secure Sockets Laye r (SSL)

Understanding WebLogic Security 3-23

Client Identity Verification—Optionally, clients might be required to present their digital
certificates to WebLogic Server. WebLogic Server then verifies that the digital certificate
was issued by a trusted certificate authority and establishes the SSL connection. An SSL
connection is not established if the digital certificate is not presented and verified. This
type of connection is called two-way SSL authentication, a form of mutual authentication.

Confidentiality—All client requests and server responses are encrypted to maintain the
confidentiality of data exchanged over the network.

Data Integrity—Each SSL message contains a message digest computed from the original
data. On the receiving end, a new digest is computed from the de-crypted data and then
compared with the digest that came with the message. If the data is altered, the digests
don’t match and tampering is detected.

Data that flows between a client and WebLogic Server is protected from tampering by a
third-party validation of user identities.

If you are using a Web browser to communicate with WebLogic Server, you can use the
Hyper-Text Transfer Protocol with SSL (HTTPS) to secure network communications.

SSL Tunneling
WebLogic Server tunnels the HTTP, T3, and IIOP protocols over SSL. SSL can be used by Web
browsers and Java clients as follows:

A Web browser makes a SSL connection to a server over https. The browser then sends
HTTP requests and receives HTTP responses over this SSL connection. For example:
https://myserver.com/mypage.html

WebLogic Server supports SSL versioning which means it can communicate with any
clients over this protocol including Web browsers.

Java clients using HTTP/T3 protocols are tunnelled over SSL. For example:
t3s://myserver.com:7002/mypage.html

Java clients running in WebLogic Server can establish either T3S connections to other
WebLogic Servers, or HTTPS connections to other servers that support SSL, such as Web
servers or secure proxy servers.

Secur i t y Fundamenta ls

3-24 Understanding WebLogic Security

One-way/Two-way SSL Authentication
WebLogic Server supports one-way and two-way SSL authentication.With one-way SSL
authentication, the target (the server) is required to present a digital certificate to the initiator (the
client) to prove its identity. The client performs two checks to validate the digital certificate:

1. The client verifies that the certificate is trusted (meaning, it was issued by the client’s trusted
CA), is valid (not expired), and satisfies the other certificate constraints.

2. The client checks that the certificate Subject’s common name (CN) field value matches the
host name of the server to which the client is trying to connect

If both of the above checks return true, the SSL connection is established.

With two-way SSL authentication, both the client and the server must present digital certificates
before the SSL connection is enabled between the two. Thus, in this case, WebLogic Server not
only authenticates itself to the client (which is the minimum requirement for certificate
authentication), but it also requires authentication from the requesting client. Two-way SSL
authentication is useful when you must restrict access to trusted clients only.

Figure 3-3 illustrates WebLogic Server SSL connections and shows which connections support
one-way SSL, two-way SSL, or both. The Web browser client, Web Server, Fat client, Web
Services client, and SSL server connections can be configured for either one-way or two-way
SSL. WebLogic Server determines whether an SSL connection is configured for one-way or
two-way. Use the Administration Console to configure SSL.

Secure Sockets Laye r (SSL)

Understanding WebLogic Security 3-25

Figure 3-3 How WebLogic Server Supports SSL Connections

Host Name Verification
Host Name verification is the process of verifying that the name of the host to which an SSL
connection is made is the intended or authorized party. Host name verification prevents
man-in-the-middle attacks when a Web client (a Web browser, a WebLogic client, or a WebLogic
Server acting as a client) requests an SSL connection to another application server.

By default, the SSL client, as a function of the SSL handshake, compares the common name in
the SubjectDN of the SSL server’s digital certificate with the host name of the SSL server to
which it is trying to connect. If these names do not match, the SSL connection is dropped.

Trust Managers
The Trust Manager provides a way to override the default SSL trust validation rules. It allows the
server to decide whether or not it trusts the client that is contacting it. Using a Trust Manager you
can perform custom checks before continuing an SSL connection. For example, you can use the
Trust Manager to specify that only users from specific localities, such as towns, states, or
countries, or users with other special attributes, can gain access via the SSL connection.

Admin
Server

Config.xml
Managed
Servers

Managed
Server

Node
Manager

Browser
Client

WebLogic
Server

Fat Client

Web Services
Client

Embedded/
External
LDAP
Server

SSL
Server

1/2-way

1-way

1/2-way

1/2-way

1-way

1-way

1-way

1-way

1/2-way

Default
Providers

App
Code

1-way

WebLogic Server(s)

Web Server

WebLogic
Server

Proxy Plug-in

Note: The SSL server shown in this figure can be any J2EE compliant server.

Secur i t y Fundamenta ls

3-26 Understanding WebLogic Security

WebLogic Server provides the weblogic.security.SSL.TrustManager interface. This
interface allows custom Trust Manager implementations to be called during the SSL handshake.
The custom implementation can override the handshake error detected by the SSL
implementation validation check or raise an error based on its own certification rules.

WebLogic Server also provides the weblogic.security.SSL.CertPath.TrustManager
interface which application and custom code can use to control if outbound SSL uses certificate
lookup and validation.

Note: This interface replaces the weblogic.security.SSL.TrustManagerJSSE interface,
which is being deprecated in this release of WebLogic Server.

Asymmetric Key Algorithms
Asymmetric key (also referred to as public key) algorithms are implemented through a pair of
different, but mathematically related keys: a public key and a private key.

The public key (which is distributed widely) is used for verifying a digital signature or
transforming data into a seemingly unintelligible form.

The private key (which is always kept secret) is used for creating a digital signature or
returning the data to its original form.

The Public Key Infrastructure (PKI) in WebLogic Server also supports digital signature
algorithms. Digital signature algorithms are simply public key algorithms used to generate digital
signatures.

WebLogic Server supports the Rivest, Shamir, and Adelman (RSA) algorithm.

Symmetric Key Algorithms
With symmetric key algorithms, you use the same key to encrypt and decrypt a message. This
common key encryption system uses a symmetric key algorithm to encrypt a message sent
between two communicating entities. Symmetric cryptography tends to be relatively fast
compared to asymmetric cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of plain
text (unencrypted text) data into a block of cipher text (encrypted text) data of the same length.
This transformation takes place in accordance with the value of a randomly generated session
key. The fixed length is called the block size.

The PKI in WebLogic Server supports the following symmetric key algorithms:

Secure Sockets Laye r (SSL)

Understanding WebLogic Security 3-27

DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys. (8 parity bits are stripped from the full 64-bit key.)

Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key).

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

RC4 (Rivest’s Cipher 4)

RC4 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES.

Note: WebLogic Server users cannot expand or modify this list of algorithms.

Message Digest Algorithms
WebLogic Server supports the MD5 and SHA (Secure Hash Algorithm) message digest
algorithms. Both MD5 and SHA are well known, one-way hash algorithms. A one-way hash
algorithm takes a message and converts it into a fixed string of digits, which is referred to as a
message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA offers more
security by using a 160-bit hash, but is slower than MD5.

Cipher Suites
A cipher suite is an SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm. A cipher suite is used to protect
the integrity of a communication. For example, the cipher suite called RSA_WITH_RC4_128_MD5
uses RSA for key exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message
digest.

Check the validation lists at http://csrc.nist.gov/cryptval/ for FIPS140 validation status.

Secur i t y Fundamenta ls

3-28 Understanding WebLogic Security

WebLogic Server supports the RSA cipher suites described in Table 3-1.

Firewalls
A firewall limits traffic between two networks. Firewalls can be a combination of software and
hardware, including routers and dedicated gateway machines. They employ filters that allow or
disallow traffic to pass based on the protocol, the service requested, routing information, and the
origin and destination hosts or networks. They may also allow access for authenticated users.

Figure 3-4 illustrates a typical setup with a firewall that filters traffic destined for a WebLogic
Server cluster.

Table 3-1 SSL Cipher Suites Supported by WebLogic Server

Cipher Suite Symmetric Key Strength

TLS_RSA_WITH_RC4_128_SHA 128

TLS_RSA_WITH_RC4_128_MD5 128

TLS_RSA_WITH_DES_CBC_SHA 56

TLS_RSA_EXPORT_WITH_RC4_40_MD5 40

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA 40

TLS_RSA_WITH_3DES_EDE_CBC_SHA 112

TLS_RSA_WITH_NULL_SHA 0

TLS_RSA_WITH_NULL_MD5 0

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA 56

TLS_RSA_EXPORT1024_WITH_RC4_56_SHA 56

TLS_RSA_WITH_AES_128_CBC_SHA 128

TLS_RSA_WITH_AES_256_CBC_SHA 256

J2EE and WebLogic Secur i t y

Understanding WebLogic Security 3-29

Figure 3-4 Typical Firewall Setup

You can use the following features in WebLogic Server in conjunction with firewalls:

“Connection Filters” on page 3-29

“Perimeter Authentication” on page 3-29

Connection Filters
You can use WebLogic Server connection filters to set up firewalls that filter network traffic
based on protocols, IP addresses, and DNS node names. For more information, see “Using
Network Connection Filters” in Programming WebLogic Security.

Perimeter Authentication
You can use Identity Assertion providers to set up perimeter authentication—a special type of
authentication using tokens. The WebLogic Server security architecture supports Identity
Assertion providers that perform perimeter-based authentication (Web server, firewall, VPN) and
handle multiple security token types/protocols (SOAP, SAML, SPNEGO, IIOP-CSIv2).

J2EE and WebLogic Security
For implementation and use of user authentication and authorization, BEA WebLogic Server
utilizes the security services of the SDK version J2SE 5.0. Like the other J2EE components, the
security services are based on standardized, modular components. BEA WebLogic Server
implements these Java security service methods according to the standard, and adds extensions
that handle many details of application behavior automatically, without requiring additional
programming.

External
Client

WebLogic Server
Cluster

Firewall

External
Client

Network A Network B

http://e-docs.bea.com/wls/docs90/security/con_filtr.html#conn_fitler_chap
http://e-docs.bea.com/wls/docs90/security/con_filtr.html#conn_fitler_chap

Secur i t y Fundamenta ls

3-30 Understanding WebLogic Security

BEA WebLogic Server’s support for J2SE 5.0 security means that application developers can
take advantage of Sun Microsystems’ latest enhancements and developments in the area of
security, thus leveraging a company’s investment in Java programming expertise. By following
the defined and documented Java standard, WebLogic Server’s security support has a common
baseline for Java developers. The innovations that WebLogic Server provides rest on the baseline
support for J2SE 5.0.

The following topics are discussed in this section:

“J2SE 5.0 Security Packages” on page 3-30

“Common Secure Interoperability Version 2 (CSIv2)” on page 3-32

J2SE 5.0 Security Packages
WebLogic Server is compliant with and supports the following J2SE 5.0 security packages:

“The Java Secure Socket Extension (JSSE)” on page 3-30

“Java Authentication and Authorization Services (JAAS)” on page 3-30

“The Java Security Manager” on page 3-31

“Java Cryptography Architecture and Java Cryptography Extensions (JCE)” on page 3-31

“Java Authorization Contract for Containers (JACC)” on page 3-32

The Java Secure Socket Extension (JSSE)
JSSE is a set of packages that support and implement the SSL and TLS v1 protocol, making those
protocols and capabilities programmatically available. WebLogic Server provides Secure
Sockets Layer (SSL) support for encrypting data transmitted across WebLogic Server clients, as
well as other servers.

While JSSE provides a core set of classes for SSL functions, other companies, such as Certicom,
provide extensions to those classes. WebLogic Server uses the Certicom JSSE extensions in its
implementation of SSL.

Java Authentication and Authorization Services (JAAS)
JAAS is a set of packages that provide a framework for user-based authentication and access
control. BEA WebLogic Server uses only the authentication classes of JAAS.

JAAS is used as follows:

J2EE and WebLogic Secur i t y

Understanding WebLogic Security 3-31

For remote Java client authentication

For authentication internally in instances of WebLogic Server in the Web and EJB
containers and in the WebLogic Authentication and Identity Assertion providers.

For more information on JAAS, see “Java Authentication and Authorization Service (JAAS)” on
page 3-4.

The Java Security Manager
Developed by Sun Microsystems, Inc., the Java Security Manager is the security manager for the
Java Virtual Machine (JVM). The security manager works with the Java API to define security
boundaries through the java.lang.SecurityManager class. The SecurityManager class
enables programmers to establish a custom security policy for their Java applications.

The Java Security Manager can be used with WebLogic Server to provide additional protection
for WebLogic resources running in the JVM. Use of the Java Security Manager to protect
WebLogic resources in WebLogic Server is an optional security step.

You can use the Java Security Manager to perform the following security tasks to protect
WebLogic resources:

Modify the weblogic.policy file for general use.

Set application-type security policies on EJBs and Resource Adapters.

You use the Java security policy file to perform this task.

Set application-specific security policies on specific EJBs and Resource Adapters.

You use the deployment descriptors (weblogic.xml, weblogic-ejb-jar.xml, and
rar.xml) to perform this task.

For more information on how to use the Java Security Manager to perform these tasks, see Using
the Java Security Manager to Protect WebLogic Resources in Programming WebLogic Security.

Java Cryptography Architecture and Java Cryptography Extensions (JCE)
Developed by Sun Microsystems, Inc., these security APIs provide a framework for accessing
and developing cryptographic functionality for the Java platform and developing
implementations for encryption, key generation and key agreement, and Message Authentication
Code (MAC) algorithms.

WebLogic Server fully supports these security APIs.

http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03
http://e-docs.bea.com/wls/docs90/security/server_prot.html#server_prot_03

Secur i t y Fundamenta ls

3-32 Understanding WebLogic Security

Java Authorization Contract for Containers (JACC)
JACC provides an alternate authorization mechanism for the EJB and Servlet containers in a
WebLogic Server domain. When JACC is configured, the WebLogic Security framework access
decisions, adjudication, and role mapping functions are not used for EJB and Servlet
authorization decisions. The JACC classes are used for role-to-principal mapping as well as for
rendering access decisions. You cannot use the JACC framework in conjunction with the
WebLogic Security framework. The JACC classes used by WebLogic Server do not include an
implementation of a Policy object for rendering decisions but instead rely on the J2SE 1.4
java.security.Policy object.

Common Secure Interoperability Version 2 (CSIv2)
WebLogic Server provides support for the Enterprise JavaBean (EJB) interoperability protocol
that is based on Internet Inter-ORB (IIOP) (GIOP version 1.2) and the CORBA Common Secure
Interoperability version 2 (CSIv2) specification. CSIv2 support in WebLogic Server:

Interoperates with the Java 2 Enterprise Edition (J2EE) version 1.4.1 reference
implementation.

Allows WebLogic Server IIOP clients to specify a username and password in the same
manner as T3 clients.

Supports Generic Security Services Application Programming Interface (GSSAPI) initial
context tokens. For this release, only usernames and passwords and GSSUP (Generic
Security Services Username Password) tokens are supported.

Note: The CSIv2 implementation in WebLogic Server passed Java 2 Enterprise Edition (J2EE)
Compatibility Test Suite (CTS) conformance testing.

The external interface to the CSIv2 implementation is a JAAS LoginModule that retrieves the
username and password of the CORBA object. The JAAS LoginModule can be used in a
WebLogic Java client or in a WebLogic Server instance that acts as a client to another J2EE
application server. The JAAS LoginModule for the CSIv2 support is called
UsernamePasswordLoginModule, and is located in the weblogic.security.auth.login
package.

Note: For information related to load balancing support for CSIv2 in a WebLogic Server cluster, see
“Server Affinity and IIOP Client Authentication Using CSIv2” in Using WebLogic Server Clusters.

http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#ServerAffinityCSIv2

Understanding WebLogic Security 4-1

C H A P T E R 4

Security Realms

This section covers the following topics:

“Introduction to Security Realms” on page 4-1

“Users” on page 4-2

“Groups” on page 4-3

“Security Roles” on page 4-3

“Security Policies” on page 4-3

“Security Providers” on page 4-4

Introduction to Security Realms
A security realm comprises mechanisms for protecting WebLogic resources. Each security realm
consists of a set of configured security providers, users, groups, security roles, and security
policies (see Figure 4-1). A user must be defined in a security realm in order to access any
WebLogic resources belonging to that realm. When a user attempts to access a particular
WebLogic resource, WebLogic Server tries to authenticate and authorize the user by checking
the security role assigned to the user in the relevant security realm and the security policy of the
particular WebLogic resource.

Secur i t y Rea lms

4-2 Understanding WebLogic Security

Figure 4-1 WebLogic Server Security Realm

Users
Users are entities that can be authenticated in a security realm, such as myrealm (see Figure 4-1).
A user can be a person, such as application end user, or a software entity, such as a client
application, or other instances of WebLogic Server. As a result of authentication, a user is
assigned an identity, or principal. Each user is given a unique identity within the security realm.
Users may be placed into groups that are associated with security roles, or be directly associated
with security roles.

When users want to access WebLogic Server, they present proof material (for example, a
password or a digital certificate) typically through a JAAS LoginModule to the Authentication
provider configured in the security realm. If WebLogic Server can verify the identity of the user
based on that username and credential, WebLogic Server associates the principal assigned to the
user with a thread that executes code on behalf of the user. Before the thread begins executing
code, however, WebLogic Server checks the security policy of the WebLogic resource and the
principal (that the user has been assigned) to make sure that the user has the required permissions
to continue.

When you use the WebLogic Authentication provider and you define a user, you also define a
password for that user. WebLogic Server hashes all passwords. Subsequently, when WebLogic
Server receives a client request, the password presented by the client is hashed and WebLogic
Server compares it to the already hashed password to see if it matches.

Note: All user names and groups must be unique within a security realm.

Security
Provider

Databases

Security
Providers

Default Group,
Security Roles,

Security
Polices

Defined Users,
Groups,

Security Roles

Defined Scoped
Security Roles

and
Security Policies

WebLogic
Resources

Defined Global Roles

Default Global Roles and Security Policies

Groups

Understanding WebLogic Security 4-3

Groups
Groups are logically ordered sets of users (see Figure 4-1). Usually, group members have
something in common. For example, a company may separate its sales staff into two groups,
Sales Representatives and Sales Managers. Companies may do this because they want their sales
personnel to have different levels of access to WebLogic resources, depending on their job
functions.

Managing groups is more efficient than managing large numbers of users individually. For
example, an administrator can specify permissions for 50 users at one time by placing the users
in a group, assigning the group to a security role, and then associating the security role with a
WebLogic resource via a security policy.

All user names and groups must be unique within a security realm.

Security Roles
A security role is a privilege granted to users or groups based on specific conditions (see
Figure 4-1). Like groups, security roles allow you to restrict access to WebLogic resources for
several users at once. However, unlike groups, security roles:

Are computed and granted to users or groups dynamically, based on conditions such as
user name, group membership, or the time of day.

Can be scoped to specific WebLogic resources within a single application in a WebLogic
Server domain (unlike groups, which are always scoped to an entire WebLogic Server
domain).

Granting a security role to a user or a group confers the defined access privileges to that user or
group, as long as the user or group is “in” the security role. Multiple users or groups can be
granted a single security role.

Note: In WebLogic Server 6.x, security roles applied to Web applications and Enterprise
JavaBeans (EJBs) only. In this release of WebLogic Server, the use of security roles is
expanded to include all of the defined WebLogic resources.

Security Policies
A security policy is an association between a WebLogic resource and one or more users, groups,
or security roles. Security policies protect the WebLogic resource against unauthorized access. A
WebLogic resource has no protection until you create a security policy for it. A policy condition
is a condition under which a security policy will be created. WebLogic Server provides a set of

Secur i t y Rea lms

4-4 Understanding WebLogic Security

default policy conditions. This release of WebLogic Server adds policy conditions that access the
HTTP Servlet Request and Session attributes and EJB method parameters. In addition, new Date
and Time policy conditions have been added to the Policy Editor.

Note: Security policies replace the access control lists (ACLs) that were used to protect
WebLogic resources in WebLogic Server 6.x.

Security Providers
Security providers are modules that provide security services to applications to protect WebLogic
resources (see Figure 4-1). You can use the security providers that are provided as part of the
WebLogic Server product, purchase custom security providers from third-party security vendors,
or develop your own custom security providers. For information on how to develop custom
security providers, see Developing Security Providers for WebLogic Server.

The following topics are discussed in this section.

“Security Provider Databases” on page 4-4

“Types of Security Providers” on page 4-6

“Security Providers and Security Realms” on page 4-15

Security Provider Databases
The following sections explain what a security provider database is and describe how security
realms affect the use of security provider databases:

“What Is a Security Provider Database?” on page 4-4

“Security Realms and Security Provider Databases” on page 4-5

“Embedded LDAP Server” on page 4-6

What Is a Security Provider Database?
A security provider database contains the users, groups, security roles, security policies, and
credentials used by some types of security providers to provide security services (see Figure 4-1).
For example: an Authentication provider requires information about users and groups; an
Authorization provider requires information about security policies; a Role Mapping provider
requires information about security roles, and a Credential Mapping provider requires
information about credentials to be used to remote applications. These security providers need
this information to be available in a database in order to function properly.

http://e-docs.bea.com/wls/docs90/dvspisec/index.html

Secur i t y P rov ide rs

Understanding WebLogic Security 4-5

The security provider database can be the embedded LDAP server (as used by the WebLogic
security providers), a properties file (as used by the sample custom security providers, available
on the Web), or a production-quality, customer-supplied database that you may already be using.

Note: The sample custom security providers are available at
http://dev2dev.bea.com/code/wls.jsp on the BEA dev2dev Web site.

The security provider database should be initialized the first time security providers are used.
(That is, before the security realm containing the security providers is set as the default (active)
security realm.) This initialization can be done:

When a WebLogic Server instance boots.

When a call is made to one of the security provider’s MBeans.

At minimum, the security provider database is initialized with the default groups, security roles,
security policies provided by WebLogic Server. For more information, see Security Providers
and WebLogic Resources in Developing Security Providers for WebLogic Server.

Security Realms and Security Provider Databases
If you have multiple security providers of the same type configured in the same security realm,
these security providers may use the same security provider database. This behavior holds true
for all of the WebLogic security providers and the sample security providers that are available
http://dev2dev.bea.com/code/wls.jsp on the BEA dev2dev Web site.

For example, if you configure two WebLogic Authentication providers in the default security
realm (called myrealm), both WebLogic Authentication providers will use the same location in
the embedded LDAP server as their security provider database, and thus, will use the same users
and groups. Furthermore, if you or an administrator add a user or group to one of the WebLogic
Authentication providers, you will see that user or group appear for the other WebLogic
Authentication provider as well.

Note: If you have two WebLogic security providers (or two sample security providers) of the
same type configured in two different security realms, each will use its own security
provider database. Only one security realm can be active at a time.

Custom security providers that you develop (or the custom security providers that you obtain
from third-party security vendors) can be designed so that each instance of the security provider
uses its own database or so that all instances of the security provider in a security realm share the
same database. This is a design decision that you need to make based on your existing systems
and security requirements. For more information about design decisions that affect security
providers, see Design Considerations in Developing Security Providers for WebLogic Server.

http://dev2dev.bea.com/code/wls.jsp
http://e-docs.bea.com/wls/docs90/dvspisec/design.html#design600
http://e-docs.bea.com/wls/docs90/dvspisec/design.html#design600
http://dev2dev.bea.com/code/wls.jsp
http://e-docs.bea.com/wls/docs90/dvspisec/design.html

Secur i t y Rea lms

4-6 Understanding WebLogic Security

Embedded LDAP Server
An embedded LDAP server is used as the database that stores user, group, security roles, and
security policies for the WebLogic security providers. The embedded LDAP server is a complete
LDAP server. It supports the following access and storage functions:

Access and modification of entries in the LDAP server

Use of an LDAP browser to import and export security data into and from the LDAP
server.

Read and write access by the WebLogic security providers.

Note: WebLogic Server does not support adding attributes to the embedded LDAP server.

Table 4-1 shows how each of the WebLogic security providers uses the embedded LDAP server.

Types of Security Providers
The following sections describe the types of security providers that you can use with WebLogic
Server:

“Authentication Providers” on page 4-7

Table 4-1 Usage of the Embedded LDAP Server

WebLogic Security Provider Embedded LDAP Server Usage

Authentication Stores user and group information.

Identity Assertion Stores user and group information.

Authorization Stores security roles and security policies.

Adjudication None.

Role Mapping Supports dynamic role associations by obtaining a
computed set of roles granted to a requestor for a given
WebLogic resource.

Auditing None.

Credential Mapping Stores Username-Password credential mapping
information.

Certificate Registry Stores registered end certificates.

Secur i t y P rov ide rs

Understanding WebLogic Security 4-7

“Identity Assertion Providers” on page 4-8

“Principal Validation Providers” on page 4-9

“Authorization Providers” on page 4-10

“Adjudication Providers” on page 4-10

“Role Mapping Providers” on page 4-11

“Auditing Providers” on page 4-12

“Credential Mapping Providers” on page 4-12

“Certificate Lookup and Validation Providers” on page 4-13

“Keystore Providers” on page 4-13

“Realm Adapter Providers” on page 4-13

Note: You cannot develop a single security provider that merges several provider types (for
example, you cannot have one security provider that does authorization and role
mapping).

Authentication Providers
Authentication providers allow WebLogic Server to establish trust by validating a user. The
WebLogic Server security architecture supports Authentication providers that perform:
username/password authentication, certificate and digest authentication directly with WebLogic
Server, and HTTP certificate authentication proxied through an external Web server.

Note: An Identity Assertion provider is a special type of Authentication provider that handles
perimeter-based authentication and multiple security token types/protocols. For more
information, see “Identity Assertion Providers” on page 4-8.

A LoginModule is the part of an Authentication provider that actually performs the authentication
of a user or system. Authentication providers also use Principal Validation providers which
provide additional security by signing and verifying the authenticity of principals (users/groups).
For more information about Principal Validation providers, see Principal Validation Providers in
Developing Security Providers for WebLogic Server.

You must have at least one Authentication provider in a security realm, and you can configure
multiple Authentication providers in a security realm. Having multiple Authentication providers
allows you to have multiple LoginModules, each of which may perform a different kind of
authentication. An administrator configures each Authentication provider to determine how

http://e-docs.bea.com/wls/docs90/dvspisec/pv.html

Secur i t y Rea lms

4-8 Understanding WebLogic Security

multiple LoginModules are called when users attempt to login to the system. Because they add
security to the principals used in authentication, a Principal Validation provider must be
accessible to your Authentication providers.

Authentication providers and LoginModules are discussed in more detail in Authentication
Providers in Developing Security Providers for WebLogic Server.

Identity Assertion Providers
Identity assertion involves establishing a client’s identity using client-supplied tokens that may
exist outside of the request. Thus, the function of an Identity Assertion provider is to validate and
map a token to a username. Once this mapping is complete, an Authentication provider’s
LoginModule can be used to convert the username to principals. Identity Assertion providers
allow WebLogic Server to establish trust by validating a user.

An Identity Assertion provider is a specific form of Authentication provider that allows users or
system processes to assert their identity using tokens (in other words, perimeter authentication).
You can use an Identity Assertion provider in place of an Authentication provider if you create a
LoginModule for the Identity Assertion provider, or in addition to an Authentication provider if
you want to use the Authentication provider’s LoginModule. Identity Assertion providers enable
perimeter authentication and support single sign-on.

WebLogic Server provides Identity Assertion providers that perform perimeter-based
authentication (Web server, firewall, VPN), support token types such as Digest, SPNEGO, and
SAML, and can handle multiple security protocols (Kerberos, SOAP, IIOP-CSIv2). You can also
write custom Identity Assertion providers that support different token types, such as Microsoft
Passport. When used with an Authentication provider’s LoginModule, Identity Assertion
providers support single sign-on. For example, the Identity Assertion provider can generate a
token from a digital certificate, and that token can be passed around the system so that users are
not asked to sign on more than once.

Note: To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates, you
have the option of using the default user name mapper that is supplied with the WebLogic
Server product (weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. For
more information, see Do I Need to Develop a Custom Identity Assertion Provider? in
Developing Security Providers for WebLogic Server.

Multiple Identity Assertion providers can be configured in a security realm, but none are required.
An Identity Assertion provider can support more than one token type, but only one token type at
a time can be active in a particular Identity Assertion provider. For example, a particular Identity

http://e-docs.bea.com/wls/docs90/dvspisec/atn.html
http://e-docs.bea.com/wls/docs90/dvspisec/atn.html
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#ia300

Secur i t y P rov ide rs

Understanding WebLogic Security 4-9

Assertion provider can support both X.509 and SAML, but an administrator configuring the
system must select which token type (X.509 or SAML) is to be active in that Identity Assertion
provider. For example, if there only one Identity Assertion provider configured and it is set to
handle X.509 tokens, but SAML token types must be supported as well, then another Identity
Assertion provider must be configured that can handle SAML tokens and SAML must be set as
its active token type.

Identity Assertion providers are discussed in more detail in Identity Assertion Providers in
Developing Security Providers for WebLogic Server.

Principal Validation Providers
A Principal Validation provider is a special type of security provider that primarily acts as a
"helper" to an Authentication provider. Because some LoginModules can be remotely executed
on behalf of RMI clients, and because the client application code can retain the authenticated
subject between programmatic server invocations, Authentication providers rely on Principal
Validation providers to provide additional security protections for the principals contained within
the subject.

Principal Validation providers provide these additional security protections by signing and
verifying the authenticity of the principals. This principal validation provides an additional level
of trust and may reduce the likelihood of malicious principal tampering. Verification of the
subject’s principals takes place during the WebLogic Server’s demarshalling of RMI client
requests for each invocation. The authenticity of the subject’s principals is also verified when
making authorization decisions.

Because you must have at least one Authentication provider in a security realm, you must also
have one Principal Validation provider in a security realm. If you have multiple Authentication
providers, each of those Authentication providers must have a corresponding Principal
Validation provider.

Note: You cannot use the WebLogic Server Administration Console to configure Principal
Validation providers directly. WebLogic Server configures the required Principal
Validation providers for you when you configure your Authentication providers.

Principal Validation providers are discussed in more detail in Principal Validation Providers in
Developing Security Providers for WebLogic Server.

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html
http://e-docs.bea.com/wls/docs90/dvspisec/pv.html

Secur i t y Rea lms

4-10 Understanding WebLogic Security

Authorization Providers
Authorization providers control access to WebLogic resources based on the security role a user
or group is granted, and the security policy assigned to the requested WebLogic resource. For
more information about WebLogic resources, security roles, and security policies, see Securing
WebLogic Resources.

An Access Decision is the part of the Authorization provider that actually determines whether a
subject has permission to perform a given operation on a WebLogic resource. For more
information about, see Principal Validation Providers in Developing Security Providers for
WebLogic Server.

You must have at least one Authorization provider in a security realm, and you can configure
multiple Authorization providers in a security realm. Having multiple Authorization providers
allows you to follow a more modular design. For example, you may want to have one
Authorization provider that handles Web application and Enterprise JavaBean (EJB) permissions
and another that handles permissions for other types of WebLogic resources. Another example
might be to have one Authorization provider that handles domestic employees, and another that
handles permissions for overseas employees.

Authorization providers and Access Decisions are discussed in more detail in Authorization
Providers in Developing Security Providers for WebLogic Server.

Adjudication Providers
As part of an Authorization provider, an Access Decision determines whether a subject has
permission to access a given WebLogic resource. Therefore, if multiple Authorization providers
are configured, each may return a different answer to the “is access allowed?” question. These
answers may be PERMIT, DENY, or ABSTAIN. Determining what to do if multiple Authorization
providers’ Access Decisions do not agree on an answer is the function of an Adjudication
provider. The Adjudication provider resolves authorization conflicts by weighing each Access
Decision’s answer and returning a final result. If you only have one Authorization provider and
no Adjudication provider, then an ABSTAIN returned from the single Authorization provider’s
Access Decision is treated like a DENY.

Note: The WebLogic Adjudication provider supports the use of the WebLogic Server
Administration Console to control whether an abstain is treated as a permit or a deny.

You must configure an Adjudication provider in a security realm only if you have multiple
Authorization providers configured. You can have only one Adjudication provider in a security
realm.

http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/dvspisec/pv.html
http://e-docs.bea.com/wls/docs90/dvspisec/atz.html
http://e-docs.bea.com/wls/docs90/dvspisec/atz.html

Secur i t y P rov ide rs

Understanding WebLogic Security 4-11

Note: Since the default security realm has only one Authorization provider, it does not require
an Adjudication provider, even though an Adjudication provider is provided. However,
the Compatibility realm has two Authorization providers, so that realm does require an
Adjudication provider.

Adjudication providers are discussed in more detail in Adjudication Providers in Developing
Security Providers for WebLogic Server.

Role Mapping Providers
A Role Mapping provider supports dynamic role associations by obtaining a computed set of
security roles granted to a requestor for a given WebLogic resource. The WebLogic Security
Framework determines which security roles (if any) apply to a particular subject at the moment
that access is required for a given WebLogic resource by:

Obtaining security roles from the J2EE and WebLogic deployment descriptor files.

Using business logic and the current operation parameters to determine security roles.

A Role Mapping provider supplies Authorization providers with this security role information so
that the Authorization provider can answer the “is access allowed?” question for WebLogic
resources that use role-based security (that is, Web application and Enterprise JavaBean container
resources).

You set security roles in J2EE deployment descriptors, or create them using the WebLogic Server
Administration Console. Security roles set in deployment descriptors are applied at deployment
time (unless you specifically choose to ignore deployment descriptors).

You must have at least one Role Mapping provider in a security realm, and you can configure
multiple Role Mapping providers in a security realm. Having multiple Role Mapping providers
allows you to work within existing infrastructure requirements (for example, configuring one
Role Mapping provider for each LDAP server that contains user and security role information),
or follow a more modular design (for example, configuring one Role Mapping provider that
handles mappings for Web applications and Enterprise JavaBeans (EJBs) and another that
handles mappings for other types of WebLogic resources).

Note: If multiple Role Mapping providers are configured, the set of security roles returned by
all Role Mapping providers will be intersected by the WebLogic Security Framework.
That is, security role names from all the Role Mapping providers will be merged into
single list, with duplicates removed.

Role Mapping providers are discussed in more detail in Role Mapping Providers in Developing
Security Providers for WebLogic Server.

http://e-docs.bea.com/wls/docs90/dvspisec/adj.html
http://e-docs.bea.com/wls/docs90/dvspisec/rm.html

Secur i t y Rea lms

4-12 Understanding WebLogic Security

Auditing Providers
An Auditing provider collects, stores, and distributes information about operating requests and
the outcome of those requests for the purposes of non-repudiation. An Auditing provider makes
the decision about whether to audit a particular event based on specific audit criteria, including
audit severity levels. Auditing providers can write the audit information to output repositories
such as an LDAP directory, database, or simple file. Specific actions, such as paging security
personnel, can also be configured as part of an Auditing provider.

Other types of security providers (such as Authentication or Authorization providers) can request
audit services before and after security operations have been performed by calling through the
WebLogic Security Framework. For more information, see Auditing Events From Custom
Security Providers in Developing Security Providers for WebLogic Server.

You can configure multiple Auditing providers in a security realm, but none are required.

Auditing providers are discussed in more detail in Auditing Providers in Developing Security
Providers for WebLogic Server.

Credential Mapping Providers
A credential map is a mapping of credentials used by WebLogic Server to credentials used in a
legacy or remote system, which tell WebLogic Server how to connect to a given resource in that
system. In other words, credential maps allow WebLogic Server to log into a remote system on
behalf of a subject that has already been authenticated.

A Credential Mapping provider can handle several different types of credentials (for example,
username/password combinations, SAML assertions, public key certificates, and alias/credential
type combinations). You can set credential mappings in deployment descriptors or by using the
WebLogic Server Administration Console. These credential mappings are applied at deploy time
(unless you specifically choose to ignore the credential mappings).

You must have at least one Credential Mapping provider in a security realm, and you can
configure multiple Credential Mapping providers in a security realm. If multiple Credential
Mapping providers are configured, then the WebLogic Security Framework calls into each
Credential Mapping provider to find out if they contain the type of credentials requested by the
container. The WebLogic Security Framework then accumulates and returns all the credentials
as a list.

Credential Mapping providers are discussed in more detail in Credential Mapping Providers in
Developing Security Providers for WebLogic Server.

http://e-docs.bea.com/wls/docs90/dvspisec/post_aud.html
http://e-docs.bea.com/wls/docs90/dvspisec/post_aud.html
http://e-docs.bea.com/wls/docs90/dvspisec/aud.html
http://e-docs.bea.com/wls/docs90/dvspisec/credmap.html

Secur i t y P rov ide rs

Understanding WebLogic Security 4-13

Certificate Lookup and Validation Providers
The Certificate Lookup and Validation providers complete certificate paths and validate X509
certificate chains. There are two types of CLV providers:

CertPath Builder—Receives a certificate, a certificate chain, or certificate reference (the
end certificate in a chain or the Subject DN of a certificate) from a web service or
application code. The provider looks up and validates the certificates in the chain.

CertPath Validator—Receives a certificate chain from the SSL protocol, a web service, or
application code and performs extra validation (for example, revocation checking).

There must be at least one CertPath Builder and one CertPath Validator configured in a security
realm. Multiple CertPath Validators can be configured in a security realm. If multiple providers
are configured, a certificate or certificate chain must pass validation with all the CertPath
Validators in order for the certificate or certificate chain to be valid.

WebLogic Server provides the functionality of the CLV providers in the WebLogic CertPath
provider and the Certificate Registry.

Keystore Providers
With WebLogic Server, a keystore creates and manages password-protected stores of private
keys (and their associated public key certificates) and trusted certificate authorities.

The WebLogic Keystore provider that is included as part of the WebLogic Server product is used
to obtain secured private keys from keystores.

Note: The WebLogic Keystore provider is deprecated in this release of WebLogic Server but
is still supported. The development of custom Keystore providers is not supported. Use
the WebLogic Trust and Identity keystores or the Java KeyStores (JKS) instead. All of
the functionality that was supported by the WebLogic Keystore provider is available
through use of these keystores. The WebLogic Keystore provider is only supported for
backward compatibility. BEA recommends using the WebLogic Keystore provider only
when it is needed to support backward compatibility with a WebLogic Server 7.0
configuration. For information on how to use Java KeyStores, see Configuring Keystores
in Securing WebLogic Server.

Realm Adapter Providers
Realm Adapter providers provide backward-compatibility with 6.x WebLogic security realms by
allowing the use of existing, 6.x security realms with the security features in this release of
WebLogic Server. The Realm Adapter providers map the realm API
(weblogic.security.acl) used in WebLogic Server 6.x to the APIs used in this release of

http://e-docs.bea.com/wls/docs90/secmanage/identity_trust.html#1186338

Secur i t y Rea lms

4-14 Understanding WebLogic Security

WebLogic Server. Figure 4-2 shows a Compatibility realm and the types of security providers
supported.

Figure 4-2 Compatibility Realm

Security Provider Summary

Table 4-2 indicates whether you can configure multiple security providers of the same type in a
security realm.

Users and
Groups

WebLogic
Server 6.x

Config.xml File

Authentication
Provider

Supported 6.x
Realm Types:
File Realm,
Windows NT,
LDAP, UNIX,
RDBMS

ACLS 6.x Authorization
Provider

9.1 Authorization
Provider

Adjudication
provider

Auditing
Provider

WebLogic Compatibility Realm

Table 4-2 Multiple Providers of Same Type in Same Security Realm

Type Multiple Providers Supported?

Authentication provider Yes

Identity Assertion provider Yes

Principal Validation provider Yes

Authorization provider Yes

Adjudication provider No

Role Mapping provider Yes

Auditing provider Yes

Credential Mapping provider Yes

Secur i t y P rov ide rs

Understanding WebLogic Security 4-15

Security Providers and Security Realms
All security providers exist within the context of a security realm. If you are not running a prior,
6.x release of WebLogic Server, the WebLogic Server security realm defined out-of-the-box as
the default realm (that is, the active security realm called myrealm) contains the WebLogic
security providers displayed in Figure 4-3.

Note: If you are upgrading from a 6.x release to this release, your out-of-the-box experience
begins with a Compatibility realm—which is initially defined as the default realm—to
allow you to work with your existing configuration. Because the 6.x model is deprecated,
you need to upgrade your security realm to the security model available in this release of
WebLogic Server.

Certificate Lookup and Validation
provider

One CertPath Builder
Multiple CertPath Validators

Keystore provider Yes

Realm Adapter provider Yes for all types of Realm Adapter
providers supported except the
Adjudication provider. See Figure 4-2
for the supported types.

Table 4-2 Multiple Providers of Same Type in Same Security Realm

Type Multiple Providers Supported?

Secur i t y Rea lms

4-16 Understanding WebLogic Security

Figure 4-3 WebLogic Security Providers in a Security Realm

Because security providers are individual modules or components that are “plugged into” a
WebLogic Server security realm, you can add, replace, or remove a security provider with
minimal effort. You can use the WebLogic security providers, custom security providers you
develop, security providers obtained from third-party security vendors, or a combination of all
three to create a fully-functioning security realm. However, as Figure 4-3 also shows, some types
of security providers are required for a security realm to operate properly. Table 4-3 summarizes
which security providers must be configured for a fully-operational security realm.

Table 4-3 Security Providers in a Security Realm

Type Required?

Authentication provider Yes

Identity Assertion provider Yes, if using perimeter authentication.

Principal Validation provider Yes

Authorization provider Yes

Authentication
Provider

Principal
Validation
Provider

Identity Assertion
Provider

Authorization
Provider

Role Mapping
Provider

Credential
Mapping Provider

Keystore
Provider

(Deprecated)

Adjudication
Provider

Auditing
Provider

Required for
perimeter
authentication.

Required only when there
are multiple Authorization
Providers configured in the
realm.

Optional

Required

Cert Path Builder
Cert Path
Validator

Secur i t y P rov ide rs

Understanding WebLogic Security 4-17

For more information about security realms, see Configuration Steps for Security in Securing
WebLogic Server.

Adjudication provider Yes, if there are multiple Authorization
providers configured.

Role Mapping provider Yes

Auditing provider No

Credential Mapping provider Yes

Certificate Lookup and
Validation providers

Yes

Keystore provider No

Note: The WebLogic Keystore provider
is deprecated in this release of
WebLogic Server but is still
supported. The development of
custom Keystore providers is not
supported. Use Java KeyStores
(JKS) instead. BEA recommends
using the WebLogic Keystore
provider only when it is needed to
support backward compatibility
with a WebLogic Server 7.0
configuration. For information on
how to use Java KeyStores, see
Configuring Keystores in
Securing WebLogic Server.

Table 4-3 Security Providers in a Security Realm

Type Required?

http://e-docs.bea.com/wls/docs90/secmanage/identity_trust.html#1186338
http://e-docs.bea.com/wls/docs90/secmanage/overview.html#security_config_steps

Secur i t y Rea lms

4-18 Understanding WebLogic Security

Understanding WebLogic Security 5-1

C H A P T E R 5

WebLogic Security Service Architecture

This section provides a description of the architecture of the WebLogic Security Service. The
architecture comprises three major components, which are discussed in the following sections:

“WebLogic Security Framework” on page 5-1

“Single Sign-On with the WebLogic Security Framework” on page 5-10

“SAML Token Profile Support in WebLogic Web Services” on page 5-15

“The Security Service Provider Interfaces (SSPIs)” on page 5-18

“Weblogic Security Providers” on page 5-18

WebLogic Security Framework
Figure 5-1 shows a high-level view of the WebLogic Security Framework. The framework
comprises interfaces, classes, and exceptions in the weblogic.security.service package.

WebLogic Secur i t y Se rv ice A rch i tec ture

5-2 Understanding WebLogic Security

Figure 5-1 WebLogic Security Service Architecture

The primary function of the WebLogic Security Framework is to provide a simplified application
programming interface (API) that can be used by security and application developers to define
security services. Within that context, the WebLogic Security Framework also acts as an
intermediary between the WebLogic containers (Web and EJB), the Resource containers, and the
security providers.

The following sections describe the interactions between the WebLogic containers and Resource
containers and each of the security providers via the WebLogic Security Framework:

“The Authentication Process” on page 5-3

“The Identity Assertion Process” on page 5-4

“The Principal Validation Process” on page 5-4

“The Authorization Process” on page 5-5

“The Adjudication Process” on page 5-6

WebLogic Security Service

Customer Applications BEA Layered Products

WebLogic Containers

weblogic.security Protocol Handlers

Security Providers

WebLogic Security Framework

Security Service Provider Interfaces (SSPIs)

Resource Containers

WebLog ic Secur i t y F ramework

Understanding WebLogic Security 5-3

“The Role Mapping Process” on page 5-7

“The Auditing Process” on page 5-8

“The Credential Mapping Process” on page 5-9

“The Certificate Lookup and Validation Process” on page 5-9

The Authentication Process
Figure 5-2 shows the authentication process for a fat-client login. JAAS runs on the server to
perform the login. Even in the case of a thin-client login (that is, a Web browser client) JAAS is
still run on the server.

Figure 5-2 The Authentication Process

Notes: Only developers of custom Authentication providers will be involved with this JAAS
process directly. The client application could either use a JNDI Initial Context or JAAS
to initiate the passing of the username and password.

When a user attempts to log into a system using a username/password combination, WebLogic
Server establishes trust by validating that user’s username and password, and returns a subject
that is populated with principals per JAAS requirements. As Figure 5-2 also shows, this process
requires the use of a LoginModule and a Principal Validation provider. For more information on
Principal Validation providers, see “WebLogic Principal Validation Provider” on page 5-23.

After successfully proving a caller’s identity, an authentication context is established, which
allows an identified user or system to be authenticated to other entities. Authentication contexts
may also be delegated to an application component, allowing that component to call another
application component while impersonating the original caller.

Client
Application

WebLogic
Server

LoginModules

Principal Validation
Provider

Username/password
JAAS Login

Sign

Subject

WebLogic Secur i t y Se rv ice A rch i tec ture

5-4 Understanding WebLogic Security

The Identity Assertion Process
Identity Assertion providers are used as part of perimeter authentication process. When perimeter
authentication is used (see Figure 5-3), a token from outside of the WebLogic Server domain is
passed to an Identity Assertion provider in a security realm that is responsible for validating
tokens of that type and that is configured as “active.” If the token is successfully validated, the
Identity Assertion provider maps the token to a WebLogic Server username, and sends that
username back to WebLogic Server, which then continues the authentication process.
Specifically, the username is sent via a JAAS CallbackHandler and passed to each configured
Authentication provider’s LoginModule, so that the LoginModule can populate the subject with
the appropriate principals.

Note: To use the WebLogic Identity Assertion provider for X.501 and X.509 certificates, you
have the option of using the default user name mapper that is supplied with the WebLogic
Server product (weblogic.security.providers.authentication.
DefaultUserNameMapperImpl) or providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. For
more information, see Do I Need to Develop a Custom Identity Assertion Provider? in
Developing Security Providers for WebLogic Server.

Figure 5-3 Perimeter Authentication

As Figure 5-3 also shows, perimeter authentication requires the same components as the
authentication process, but also adds an Identity Assertion provider.

The Principal Validation Process
As shown in Figure 5-4, a user attempts to log into a system using a username/password
combination. WebLogic Server establishes trust by calling the configured Authentication

Client
Application

WebLogic
Server

Identity
Asssertion
Providers

LoginModulesTokens

Get Identity

JAAS Login

Sign Principal Validation
Provider

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#ia300

WebLog ic Secur i t y F ramework

Understanding WebLogic Security 5-5

provider’s LoginModule, which validates the user's username and password and returns a subject
that is populated with principals per JAAS requirements.

Figure 5-4 The Principal Validation Process

WebLogic Server passes the subject to the specified Principal Validation provider, which signs
the principals and then returns them to the client application via WebLogic Server. Whenever the
principals stored within the subject are required for other security operations, the same Principal
Validation provider will verify that the principals stored within the subject have not been
modified since they were signed.

The Authorization Process
Figure 5-5 illustrates how Authorization providers (and the associated Adjudication and Role
Mapping providers) interact with the WebLogic Security Framework during the authorization
process.

Client
Application

WebLogic
Server

LoginModules

Principal Validation
Provider

Username/password
JAAS Login

Sign

Subject

WebLogic Secur i t y Se rv ice A rch i tec ture

5-6 Understanding WebLogic Security

Figure 5-5 Authorization Process

The authorization process is initiated when a user or system process requests a WebLogic
resource on which it will attempt to perform a given operation. The resource container that
handles the type of WebLogic resource being requested receives the request (for example, the
EJB container receives the request for an EJB resource). The resource container calls the
WebLogic Security Framework and passes in the request parameters, including information such
as the subject of the request and the WebLogic resource being requested. The WebLogic Security
Framework calls the configured Role Mapping providers and passes in the request parameters in
a format that the Role Mapping providers can use. The Role Mapping providers use the request
parameters to compute a list of roles to which the subject making the request is entitled and passes
the list of applicable roles back to the WebLogic Security Framework. The Authorization
provider determines whether the subject is entitled to perform the requested action on the
WebLogic resource, that is, the Authorization provider makes the Access Decision. If there are
multiple Authorization providers configured, the WebLogic Security Framework delegates the
job of reconciling any conflicts in the Access Decisions rendered by the Authorization providers
to the Adjudication provider and the Adjudication provider determines the ultimate outcome of
the authorization decision.

The Adjudication Process
If there are multiple Authorization providers configured (see Figure 5-5), an Adjudication
provider is required to tally the multiple Access Decisions and render a verdict. The Adjudication
provider returns either a TRUE or FALSE verdict to the Authorization providers, which forward it
to the resource container through the WebLogic Security Framework.

– If the decision is TRUE, the resource container dispatches the request to the protected
WebLogic resource.

Resource
Containers

WebLogic
Security

Framework

Request
Request
Parameters

Security
Providers

Role
Mapping

Authorization

Adjudication

Request
Parameters

Roles

Access
Decision

WebLog ic Secur i t y F ramework

Understanding WebLogic Security 5-7

– If the decision is FALSE, the resource container throws a security exception that
indicates that the requestor was not authorized to perform the requested access on the
protected WebLogic resource.

The Role Mapping Process
The WebLogic Security Framework calls each Role Mapping provider that is configured for a
security realm as part of an authorization decision. For related information, see “The
Authorization Process” on page 5-5.

Figure 5-6 shows how the Role Mapping providers interact with the WebLogic Security
Framework to create dynamic role associations.

Figure 5-6 Role Mapping Process

The role mapping process is initiated when a user or system process requests a WebLogic
resource on which it will attempt to perform a given operation. The resource container that
handles the type of WebLogic resource being requested receives the request (for example, the
EJB container receives the request for an EJB resource). The resource container calls the
WebLogic Security Framework and passes in the request parameters, including information such
as the subject of the request and the WebLogic resource being requested. The WebLogic Security
Framework calls each configured Role Mapping provider to obtain a list of the roles that apply.
If a security policy specifies that the requestor is entitled to a particular role, the role is added to
the list of roles that are applicable to the subject. This process continues until all security policies
that apply to the WebLogic resource or the resource container have been evaluated. The list of
roles is returned to the WebLogic Security Framework, where it can be used as part of other
operations, such as access decisions.

The result of the dynamic role association (performed by the Role Mapping providers) is a set of
roles that apply to the principals stored in a subject at a given moment. These roles can then be
used to make authorization decisions for protected WebLogic resources, as well as for resource
container and application code. For example, an Enterprise JavaBean (EJB) could use the Java 2

Resource
Containers

WebLogic
Security

Framework

Request
Request
Parameters

Security
Providers

Role
Mapping

Security
Policies

Request
Parameters

List of
Roles

WebLogic Secur i t y Se rv ice A rch i tec ture

5-8 Understanding WebLogic Security

Enterprise Edition (J2EE) isCallerInRole method to retrieve fields from a record in a
database, without having knowledge of the business policies that determine whether access is
allowed.

The Auditing Process
Figure 5-7 shows how Auditing providers interact with the WebLogic Security Framework and
other types of security providers (using an Authentication provider as an example).

Figure 5-7 Auditing Process

The auditing process is initiated when a resource container passes a user’s authentication
information (for example, a username/password combination) to the WebLogic Security
Framework as part of a login request. The WebLogic Security Framework passes the information
associated with the login request to the configured Authentication provider. If, in addition to
providing authentication services, the Authentication provider is designed to post audit events,
the Authentication provider instantiates an AuditEvent object. The AuditEvent object includes
information such as the event type to be audited and an audit severity level. The Authentication
provider then calls the Auditor Service in the WebLogic Security Framework, passing in the
AuditEvent object. The Auditor Service passes the AuditEvent object to the configured
Auditing providers’ runtime classes, enabling audit event recording. The Auditing providers’
runtime classes use the information obtained from the AuditEvent object to control audit record
content. When the criteria for auditing specified by the Authentication providers in the
AuditEvent object is met, the appropriate Auditing provider’s runtime class writes out audit

Resource
Containers

Request Login
Request

Security
Providers

Authentication
Provider

Audititng
Provider

Login
Request

Audit
Data

Security
Service

Auditor
Service

WebLogic
Security
Framework

AuditEvent
Object

AuditEvent
Object

WebLog ic Secur i t y F ramework

Understanding WebLogic Security 5-9

records. Depending on the Auditing provider implementation, audit records may be written to a
file, a database, or some other persistent storage medium.

The Credential Mapping Process
Figure 5-8 illustrates how Credential Mapping providers interact with the WebLogic Security
Framework during the credential mapping process.

Figure 5-8 Credential Mapping Process

The credential mapping process is initiated when application components, such as JavaServer
Pages (JSPs), servlets, Enterprise JavaBeans (EJBs), or Resource Adapters call into the
WebLogic Security Framework (through the appropriate resource container) to access an
Enterprise Information System (EIS), for example, some relational database like Oracle, SQL
Server, and so on. As part of the call, the application component passes in the subject (that is, the
“who” making the request), the WebLogic resource (that is, the “what” that is being requested)
and information about the type of credentials needed to access the WebLogic resource. The
WebLogic Security Framework sends the application component’s request for credentials to a
configured Credential Mapping provider that handles the type of credentials needed by the
application component. The Credential Mapping provider consults its database to obtain a set of
credentials that match those requested by the application component and returns the credentials
to the WebLogic Security Framework. The WebLogic Security Framework passes the credentials
back to the requesting application component through the resource container. The application
component uses the credentials to access the external system.

The Certificate Lookup and Validation Process
During the certificate lookup and validation process, CertPath Builders, CertPath Validators, and
the Certificate Lookup and Validation (CLV) framework all interact.

WebLogic
Security

Framework

Credentail
Request

Security
Providers

Credential
Mapping
Provider

Database

Credential
Request

Credentials

Resource
Containers

Target
Resource

Components Credentials

Legacy
Systerm

Use Credentials
to Access

WebLogic Secur i t y Se rv ice A rch i tec ture

5-10 Understanding WebLogic Security

The process for building certificate chains works as follows:

1. The CLV framework is passed a certificate chain and a cert path selector (either the end
certificate, the Subject DN, the Issuer DN plus serial number, and/or the subject key
identifier) from either a WebLogic Web service or application code.

2. The CLV framework calls the CertPath Builder to locate the certificate chain and validate it.
When using Web services, the CLV framework passes the server’s list of trusted CAs to the
provider. Application code passes in a list of trusted CAs to the provider.

3. If the certificate chain is found and valid, the CLV framework calls any CertPath Validators
configured in the security realm the order they were configured.

The certificate chain is only valid if the CertPath Builder and all the configured CertPath
Validators successfully validate it.

4. The CLV framework returns the certificate chain to the requesting party.

5. Processing continues.

The process for validating certificate chains works as follows:

1. The CLV framework is passed a certificate chain and a cert path selector (either the end
certificate, the Subject DN, the Issuer DN plus serial number, and/or the subject key
identifier) from the SSL protocol, a WebLogic Web Service, or application code.

2. The CLV framework ensures calls the certificate chain is ordered and each certificate in the
chain signs the next.

3. If the certificate chain is valid, the CLV framework calls any CertPath Validators configured
in the security realm the order they were configured.

The certificate chain is only valid if all the configured CertPath Validators successfully
validate it. Validation stops if an error occurs.

4. The CLV framework returns the certificate chain to the requesting party.

5. Processing continues.

Single Sign-On with the WebLogic Security Framework
The SAML and Windows Integrated Login features provide web-based single sign-on
functionality for WebLogic Server applications. The following sections describe the interactions
between the WebLogic containers, the security providers, and the WebLogic Security
Framework during the single sign-on process.

S ing le S ign-On wi th the WebLog ic Secur i t y F ramework

Understanding WebLogic Security 5-11

“WebLogic Server Acting a SAML Source Site” on page 5-11

“Weblogic Server Acting as SAML Destination Site” on page 5-12

“Desktop SSO Process” on page 5-14

WebLogic Server Acting a SAML Source Site
Acting as a SAML source involves the following:

Generating valid SAML assertions that assert that a source domain has authenticated a user
and provide the name by which the user is known at the SAML source site. Optionally, the
names of the local (source site) groups that the user is a member of are provided.

Providing a SAML ITS and a SAML Assertion Retrieval Service (ARS)

WebLogic Server can act as a SAML ITS and ARS. These services are provided by a servlet that
is deployed based on configuration settings for the SAML Credential Mapping provider. The
SAML ITS service requires separate URLs for the POST and Artifact profiles.

The following sections detail how WebLogic Server is used as a SAML source in the POST and
Artifact profiles.

POST Profile
The POST profile works as follows:

1. The user accesses the web site (www.weblogic.com) for the SAML source site.

2. The SAML ITS servlet calls the SAML Credential Mapping to request an bearer assertion,
passing in the desired assertion type.

3. The SAML Credential Mapping provider uses the assertion type and target URL to
determine the appropriate assertion configuration, generate the assertion, and return it. The
SAML Credential Mapping provider also returns the URL of the SAML destination site and
the path to the appropriate POST form.

4. The SAML ITS servlet generates a signed SAML response containing the generated
assertion, signs it, based64-encodes it, and embeds it in the HTML form (default or
custom).

5. The SAML ITS servlet returns the form to the user’s browser.

6. The user’s browser POSTs the form to the ACS.

WebLogic Secur i t y Se rv ice A rch i tec ture

5-12 Understanding WebLogic Security

Artifact Profile
The Artifact profile works as follows:

1. The user accesses the web site (www.weblogic.com) for the SAML source site.

2. The SAML Inter-site Transfer Service (ITS) servlet calls the SAML Credential Mapping to
request an assertion, passing in the desired assertion type (artifact).

3. The SAML Credential Mapping provider uses the assertion type and target URL to
determine the appropriate assertion configuration, generate the assertion, and return it. The
SAML Credential Mapping provider also returns the destination Assertion Consumer
Service (ACS) URL and the assertion ID.

4. The SAML ITS servlet generates an artifact based on the assertion ID and the source ID of
the SAML source site. (The source ID is defined when configuring the SAML Credential
Mapping provider.)

5. The SAML ITS servlet redirects the user to the Assertion Consumer Service (ACS) of the
SAML source site, passing the artifact as a query parameter.

6. The ACS gets the artifact from the query parameter and decodes it to get the source ID. It
then uses the source ID to look up the URL of the Assertion Retrieval Service (ARS) of the
SAML source site. The ACS then sends a request to the URL of the ARS of the SAML
source site requesting the assertion corresponding to the artifact.

7. The SAML Assertion Retrieval Service (ARS) responds to the incoming assertion request,
using the artifact to locate the corresponding assertion in its assertion store, and if found,
returning the assertion to the SAML destination site.

8. The assertion is validated and if successful, the user is logged in and redirected to the target.

Weblogic Server Acting as SAML Destination Site
When WebLogic Server is acting as a SAML destination site, the main goal is to create a Subject
from a SAML assertion that has been passed in by a web browser or HTTP client. WebLogic
Server acts as a SAML destination site when an unauthenticated Web browser or HTTP client
tries to access a protected WebLogic resource and SAML is configured as the authentication
mechanism in the security realm.

The SAML destination site is implemented as a servlet authentication filter (referred to as the
SAML authentication filter) deployed by the SAML Identity Assertion provider based on its
configuration. The SAML destination site listens for incoming assertions at one or more
configured URLs.These URLs provide the Access Consumer Service (ACS). The SAML

S ing le S ign-On wi th the WebLog ic Secur i t y F ramework

Understanding WebLogic Security 5-13

destination site can also be configured to redirect unauthenticated users to remote SAML source
sites for authentication based on the particular URL they tried to access.

The following sections detail how WebLogic Server is used as a SAML destination in the POST
and Artifact profiles.

POST Profile
The POST profile works as follows:

1. The user accesses the web site (www.weblogic.com) for the SAML source site.

2. The SAML source site authenticates the user, generates an assertion, and returns a POST
form containing the assertion in a signed SAML response to the user’s browser.

3. The user’s browser posts the POST form to the ACS at the SAML destination site.

4. Upon receiving a POST form from the SAML source site, the SAML destination site
extracts the embedded SAML response from the POST form and verifies trust in the
certificate used to sign the response. An optional recipient check may be performed
depending on the configuration.

5. The SAML Authentication filter also ensures that this assertion has not been previously
used. If the one-use check is configured, the filter checks to see if the assertion has already
been used. If so, the filter returns an error. If not, the filter persists the assertion to enable
future checks.

6. One of the following then occurs:

– If the one-use check or any other validity/trust check fails, the login fails and WebLogic
Server returns a 403 Forbidden.

– If the one-use check and any other validity/trust checks are successful, the user is
logged in (by the assertIdentity() call). The SAML authentication filter creates a
session for the user and redirects the now authenticated user to the requested target
URL.

Artifact Profile
The Artifact profile works as follows:

1. The user accesses the web site (www.weblogic.com) for the SAML source site.

2. The request is redirected to the SAML ITS service.

3. The SAML source site authenticates user.

WebLogic Secur i t y Se rv ice A rch i tec ture

5-14 Understanding WebLogic Security

4. After the user is authenticated, the SAML ITS generates an assertion and then generates a
base-64 encoded artifact that contains the assertion ID and the source ID of the SAML ITS.

5. The SAML ITS redirects the user to the Assertion Consumer Service (ACS) of the SAML
destination site, passing the artifact as a query parameter on the redirect URL. The ACS
gets the artifact by looking for the query parameter.

6. The SAML authentication filter base64-decodes the artifact to determine the source ID of
the SAML source site and the assertion ID. The source ID is used to look up the Assertion
Retrieval URL for that source site. The filter then makes a SOAP request to the Artifact
Retrieval Service (ARS) at the SAML source site, sending the artifact and requesting the
corresponding assertion.

7. The SAML source site returns an assertion.

8. The SAML authentication filter calls the PrincipalValidator to assert the user’s identity.

9. One of the following then occurs:

– If any validity/trust check fails, the login fails and WebLogic Server returns a 403
Forbidden.

– If all validity/trust checks are successful, the user is logged in (by the
assertIdentity() call). The SAML authentication filter creates a session for the user
and redirects the now authenticated user to the requested target URL.

Desktop SSO Process
The process works as follows:

1. The Negotiate Identity Assertion provider is configured to support the WWW-Authenticate
and Authorization HTTP headers. The Negotiate Identity Assertion provider uses a servlet
authentication filter to generate the appropriate WWW-Authenticate header on unauthorized
responses for the negotiate protocol and handles the Authorization headers on subsequent
requests.

2. A user logs into the Windows 2000 or 2003 domain. The user acquires Kerberos credentials
from the domain.

3. Using a browser that supports the SPNEGO protocol (for example, Internet Explorer or
Mozilla), the user tries to access a Web Application running on an application server. The
application server can be running on a UNIX or Windows 2000/2003 platform.

4. The browser sends a GET request to the application server.

SAML Token Pro f i l e Suppor t in WebLog ic Web Serv ices

Understanding WebLogic Security 5-15

5. The application server sends back an unauthorized response with the appropriate
WWW-Authenticate headers.

6. The Servlet container gets the configured chain of servlet authentication filters from the
WebLogic Security Framework.

7. The Servlet container calls the chain of servlet authentication filters. The Negotiate servlet
authentication filter adds the WWW-Authenticate request header for the negotiate
authentication scheme and calls into the WebLogic Security Framework to get the initial
Negotiate challenge. The following message is sent back:
401 Unauthorized
WWW-Authenticate: Negotiate

8. The browser receives the WWW-Authenticate header and determines whether or not it can
support the Negotiate authentication scheme. The browser then creates a SPNEGO token
containing the supported GSS mechanism token types. It Base64 encodes the token and
sends it back to the application server via an Authorization header on the original GET
message as follows:
GET...
Authorization: Negotiate <Base64 encoded SPNEGO token>

9. Since the request is still unauthorized, the Servlet container calls the servlet authentication
filters. The Negotiate servlet authentication filter handles the Authorization request header
and calls the WebLogic Security Framework. The framework passes the token to the
Negotiate Identity Assertion provider.

10. The Negotiate Identity Assertion provider uses the GSS context to get the name of the
initiating Principal. This name is mapped to a username and passed back to the WebLogic
Security framework via a Callback handler.

The WebLogic Security framework also determines to which groups the user belongs.

11. The authentication is complete and the GET request is processed.

SAML Token Profile Support in WebLogic Web Services
The WebLogic Web Services and the WebLogic Security framework have been enhanced to
support the generation, consumption, and validation of SAML assertions. When using SAML
assertion, a Web Service passes an SAML assertion and the accompanying proof material to the
WebLogic Security framework. If the SAML assertion is valid and trusted, the framework returns
an authenticated Subject with a trusted principal back to the Web service. WebLogic Web
Services and the WebLogic Security framework support the following SAML assertions:

WebLogic Secur i t y Se rv ice A rch i tec ture

5-16 Understanding WebLogic Security

Sender-Vouches—The asserting party (different from the subject) vouches for the
verification of the subject. The receiver must have a trust relationship with the asserting
party.

Holder-of-Key—The asserting entity includes an XML Signature that can be verified with
key information in the subject statements of the SAML assertion.

The following sections describe how the processing of these assertions work.

Sender-Vouches Assertions
All the Sender-Vouches assertions are basically the same, the difference is in how trust is
established (meaning whether or not SSL is used for transport and whether or not the SAML
assertion and the message bodies are signed).

The Sender-Vouches assertions are used in the following manner:

1. A user invokes a WebLogic Web Service.

2. The Web Service requests a SAML assertion from the user.

3. The user generates a SAML assertion and returns it to the Web Service.

4. The Web Service calls the SAML Credential Mapping provider which generates an
appropriate SAML assertion.

5. One of the following occurs:

– The Web Service sends an unsigned assertion and uses a non-SSL transport in a SOAP
message to the destination. With this type of assertion, there is no proof material in the
SOAP message so the assertion cannot be trusted nor can it be assumed that the
assertion came from a trusted party.

– The Web Service uses the SSL protocol to send an unsigned assertion in a SOAP
message to the destination. With this type of assertion, the client certificate is used to
establish trust.

– The Web Service signs the assertion and sends it using a non-SSL transport in a SOAP
message to the destination. With this type of assertion, the signature provides the proof
material for trust but it can’t be assumed that the connection was not compromised.

– The Web Service signs the assertion and uses the SSL protocol to send the signed
assertion in a SOAP message to the destination. With this type of assertion, trust is
established either through the signature or the client certificate.

SAML Token Pro f i l e Suppor t in WebLog ic Web Serv ices

Understanding WebLogic Security 5-17

6. The SAML Identity Assertion provider consumes and validates the assertion, determines if
the assertion is to be trusted (using either the proof material available in the SOAP message,
the client certificate, or some other configuration indicator).

7. If the assertion is to be trusted, the SAML Identity Assertion provider creates a Subject
containing user principals and possibly group principals and returns the Subject with
principals to the Web Service.

8. The Web Service returns the response to the user.

Holder-of-Key Assertion
In the Holder-of-Key assertion, the Web Service client depends on the Web Service server to
ensure that the user is to be trusted.

The Holder-of-Key assertions are used in the following manner:

1. A user authenticates to a Web Service client through some undetermined mechanism. The
Web Service client can be local or remote and may or may not be a WebLogic server instance.

2. The Web Service client trusts the user, generates a SAML assertion containing the
certificate of the user, and signs the SAML assertion with its private key. The Web Service
client returns the SAML assertion to the user.

3. The user inserts the SAML assertion information into a wsse:Security header in a SOAP
message. The message body is signed with the private key of the user.

4. The user invokes a WebLogic Web Service.

5. The Web Service sends the SOAP message to the Web Service server (in this case, a
WebLogic Server instance). The Web Service server makes a trust decision based on
whether or not it trusts the SAML assertion and the SOAP message.

6. The Web Service server consumes and validates the assertion, determines if it trusts the
source site (based on the signature of the source site) and checks to see if it trusts the user.
In most cases, trust will be determined by checking the WebLogic certificate registry. If
both the Web Service client and the user are trusted, the Web Service service returns a
Subject with principals for the SAML assertion to the Web Service.

7. The Web Service client returns the response to the user.

Optionally, the SSL protocol can be used with this assertion. If the SSL protocol is used, the client
certificate can also be used as proof material.

WebLogic Secur i t y Se rv ice A rch i tec ture

5-18 Understanding WebLogic Security

The Security Service Provider Interfaces (SSPIs)
Security in this release of WebLogic Server is based on a set of Security Service Provider
Interfaces (SSPIs). The SSPIs can be used by developers and third-party vendors to develop
security providers for the WebLogic Server environment. SSPIs are available for Adjudication,
Auditing, Authentication, Authorization, Credential Mapping, Identity Assertion, Role Mapping,
and Certificate Lookup and Validation.

Note: The SSPI for Keystore providers is deprecated in this release of WebLogic Server. Use
Java KeyStores (JKS) instead. For information on how to use Java KeyStores, see
Configuring Keystores in Securing WebLogic Server.

The SSPIs allow customers to use custom security providers for securing WebLogic Server
resources. Customers can use the SSPIs to develop custom security providers or they can
purchase customer security providers from third-party vendors.

Note: To assist customers in developing custom security providers, sample custom security
providers are also available from the BEA online dev2dev Web site at
http://dev2dev.bea.com/code/wls.jsp. For more information on developing
custom security providers, see Developing Security Providers for WebLogic Server.

Weblogic Security Providers
This section provides descriptions of the security providers that are included in the WebLogic
Server product for your use. Security providers are modules that “plug into” a WebLogic Server
security realm to provide security services to applications. They call into the WebLogic Security
Framework on behalf of applications.

If the security providers supplied with the WebLogic Server product do not fully meet your
security requirements, you can supplement or replace them with custom security providers. You
develop a custom security provider by:

Implementing the appropriate security service provider interfaces (SSPIs) from the
weblogic.security.spi package to create runtime classes for the security provider.

Creating an MBean Definition File (MDF) and using the WebLogic MBeanMaker utility to
generate an MBean type, which is used to configure and manage the security provider.

For more information, see Developing Security Providers for WebLogic Server.

Figure 5-9 shows the security providers that are required and those that are optional in a
WebLogic security realm.

http://e-docs.bea.com/wls/docs90/secmanage/identity_trust.html#1186338
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html#ConfiguringKeystores
http://dev2dev.bea.com/code/wls.jsp
http://e-docs.bea.com/wls/docs90/dvspisec/index.html
http://e-docs.bea.com/wls/docs90/dvspisec/index.html

Weblog ic Secur i t y P rov ide rs

Understanding WebLogic Security 5-19

Figure 5-9 WebLogic Security Providers

The security providers are described in the following sections:

“WebLogic Authentication Provider” on page 5-20

“Alternative Authentication Providers” on page 5-20

“WebLogic Identity Assertion Provider” on page 5-21

“SAML Identity Assertion Provider” on page 5-22

“Negotiate Identity Assertion Provider” on page 5-22

“WebLogic Principal Validation Provider” on page 5-23

“WebLogic Authorization Provider” on page 5-23

“WebLogic Adjudication Provider” on page 5-23

“WebLogic Role Mapping Provider” on page 5-24

“WebLogic Auditing Provider” on page 5-25

“WebLogic Credential Mapping Provider” on page 5-25

“SAML Credential Mapping Provider” on page 5-25

Authentication
Provider

Principal
Validation
Provider

Identity Assertion
Provider

Authorization
Provider

Role Mapping
Provider

Credential
Mapping Provider

Keystore
Provider

(Deprecated)

Adjudication
Provider

Auditing
Provider

Required for
perimeter
authentication.

Required only when there
are multiple Authorization
Providers configured in the
realm.

Optional

Required

Cert Path Builder
Cert Path
Validator

WebLogic Secur i t y Se rv ice A rch i tec ture

5-20 Understanding WebLogic Security

“WebLogic CertPath Provider” on page 5-26

“WebLogic Keystore Provider” on page 5-27

“WebLogic Realm Adapter Providers” on page 5-27

WebLogic Authentication Provider
The default (active) security realm for WebLogic Server includes a WebLogic Authentication
provider. The WebLogic Authentication provider supports delegated username/password and
WebLogic Server security digest authentication. It utilizes an embedded LDAP server to store
user and group information. This provider allows you to edit, list, and manage users and group
membership.

Note: In conjunction with the WebLogic Authorization provider, the WebLogic Authentication
provider replaces the functionality of the File realm that was available in 6.x releases of
WebLogic Server.

Alternative Authentication Providers
WebLogic Server provides the following additional Authentication providers which can be used
instead of or in conjunction with the WebLogic Authentication provider in the default security
realm:

A set of LDAP Authentication providers that access external LDAP stores (Open LDAP,
Netscape iPlanet, Microsoft Active Directory, and Novell NDS).

A set of Database Base Management System (DBMS) authentication providers that access
user, password, group, and group membership information stored in databases for
authentication purposes. Optionally, WebLogic Server can be used to manage the user,
password, group, and group membership information. The DBMS Authentication provider
are the upgrade path from the RDBMS security realm.

The following DBMS Authentication providers are available:

– SQL Authentication provider—A manageable authentication provider that supports the
listing and editing of user, password, group, and group membership information.

– Read-only SQL Authentication provider—An authentication provider that supports
authentication of users in a database and the listing of the contents of the database
through the WebLogic Server Administration Console. The authentication provider
requires a specific set of SQL statements so it might not meet all customer needs.

Weblog ic Secur i t y P rov ide rs

Understanding WebLogic Security 5-21

– Custom DBMS Authentication provider—A run-time authentication provider that only
supports authentication. This provider require customer-written code that handles
querying the database to obtain authentication information.This authentication provider
is a flexible alternative that allows customer to adapt a DBMS Authentication provider
to meet their special database needs.

A Windows NT Authentication provider that uses Windows NT users and groups for
authentication purposes. The Windows NT Authentication provider is the upgrade path for
the Window NT security realm. The Windows NT users and groups are displayed through
the WebLogic Server Administration Console however, they cannot be managed through
the console.

An LDAP X509 Identity Assertion provider that looks up the LDAP object for the user
associated with an X509 certificate, ensures that the certificate in the LDAP object matches
the presented certificate, and then retrieves the name of the user from the LDAP object for
the purpose of authentication.

Note: By default, these additional Authentication providers are available but not configured in
the WebLogic default security realm.

WebLogic Identity Assertion Provider
The WebLogic Identity Assertion provider supports certificate authentication using X.509
certificates and CORBA Common Secure Interoperability version 2 (CSIv2) identity assertion.
The WebLogic Identity Assertion provider validates the token type, then maps X.509 digital
certificates and X.501 distinguished names to WebLogic users. It also specifies a list of trusted
client principals to use for CSIv2 identity assertion. The wildcard character (*) can be used to
specify that all principals are trusted. If a client is not listed as a trusted client principal, the CSIv2
identity assertion fails and the invoke is rejected.

The WebLogic Identity Assertion provider supports the following token types:

AU_TYPE—for a WebLogic AuthenticatedUser used as a token.

X509_TYPE—for an X.509 client certificate used as a token.

CSI_PRINCIPAL_TYPE—for a CSIv2 principal name identity used as a token.

CSI_ANONYMOUS_TYPE—for a CSIv2 anonymous identity used as a token.

CSI_X509_CERTCHAIN_TYPE—for a CSIv2 X.509 certificate chain identity used as a
token.

WebLogic Secur i t y Se rv ice A rch i tec ture

5-22 Understanding WebLogic Security

CSI_DISTINGUISHED_NAME_TYPE—for a CSIv2 distinguished name identity used as a
token.

WSSE_PASSWORD_DIGEST—for a wsse:UsernameToken with a password type of
wsse:PasswordDigest used as a token.

SAML Identity Assertion Provider
The SAML Identity Assertion provider validates SAML 1.1 assertions and verifies the issuer is
trusted. If so, identity is asserted based on the AuthenticationStatement contained in the assertion.

Provider configuration includes settings that configure and enable SAML source site and
destination site SSO services (such as ITS, ACS, and ARS) to run in the server.

The SAML Identity Assertion provider supports the following SAML Subject confirmation
methods:

artifact

bearer

sender-vouches

holder-of-key

Negotiate Identity Assertion Provider
The Negotiate Identity Assertion provider is used for SSO with Microsoft clients that support the
SPNEGO protocol. Specifically, it decodes SPNEGO tokens to obtain Kerberos tokens, validates
the Kerberos tokens, and maps Kerberos tokens to WebLogic users. The Negotiate Identity
Assertion provider utilizes the Java Generic Security Service (GSS) Application Programming
Interface (API) to accept the GSS security context via Kerberos. For more information about the
Java GSS API, see http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/jgss-features.html.

The Negotiate Identity Assertion provider interacts with the WebLogic Servlet container which
handles WWW-Authenticate and WWW-Authorization headers, adding the appropriate
Negotiate header.

By default, the Negotiate Identity Assertion provider is available but not configured in the
WebLogic default security realm. The Negotiate Identity Assertion provider can be used instead
of or in addition to the WebLogic Identity Assertion provider.

Weblog ic Secur i t y P rov ide rs

Understanding WebLogic Security 5-23

WebLogic Principal Validation Provider
The default (active) security realm for WebLogic Server includes a WebLogic Principal
Validation provider. This provider signs and verifies WebLogic Server principals. In other words,
it signs and verifies principals that represent WebLogic Server users or WebLogic Server groups.

Note: You can use the WLSPrincipals class (located in the weblogic.security package) to
determine whether a principal (user or group) has special meaning to WebLogic Server
(that is, whether it is a predefined WebLogic Server user or WebLogic Server group).
Furthermore, any principal that is going to represent a WebLogic Server user or group
needs to implement the WLSUser and WLSGroup interfaces (available in the
weblogic.security.spi package).

The WebLogic Principal Validation provider includes implementations of the WLSUser and
WLSGroup interfaces, named WLSUserImpl and WLSGroupImpl. These are located in the
weblogic.security.principal package. It also includes an implementation of the
PrincipalValidator SSPI called PrincipalValidatorImpl. For more information about
the PrincipalValidator SSPI, see “Implement the PrincipalValidator SSPI” in Developing
Security Providers for WebLogic Server.

Much as an Identity Assertion provider supports a specific type of token, a Principal Validation
provider signs and verifies the authenticity of a specific type of principal. Therefore, you can use
the WebLogic Principal Validation provider to sign and verify principals that represent
WebLogic Server users or WebLogic Server groups.

WebLogic Authorization Provider
The default (active) security realm for WebLogic Server includes a WebLogic Authorization
provider. This provider supplies the default enforcement of authorization for this version of
WebLogic Server. Using a policy-based authorization engine, the WebLogic Authorization
provider returns an access decision to determine if a particular user is allowed access to a
protected WebLogic resource. The WebLogic Authorization provider also supports the
deployment and undeployment of security policies within the system.

WebLogic Adjudication Provider
The default (active) security realm for WebLogic Server includes a WebLogic Adjudication
provider. This provider would normally be responsible for tallying the potentially differing
results rendered by multiple Authorization providers’ Access Decisions and rendering a final
verdict on whether or not access will be granted to a WebLogic resource. However, because the

http://e-docs.bea.com/wls/docs90/dvspisec/pv.html#pv410

WebLogic Secur i t y Se rv ice A rch i tec ture

5-24 Understanding WebLogic Security

default security realm only has one Authorization provider, only one Access Decision is produced
so the WebLogic Adjudication provider is not used.

Note: The WebLogic Adjudication provider is used in the Compatibility realm, which has two
Authorization providers.

The WebLogic Adjudication provider has an attribute called Require Unanimous Permit that
governs its behavior. By default, the Require Unanimous Permit attribute is set to TRUE, which
causes the WebLogic Adjudication provider to act as follows:

If all the Authorization providers’ Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

If some Authorization providers’ Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

If any of the Authorization providers’ Access Decisions return ABSTAIN or DENY, then
return a final verdict of FALSE (that is, deny access to the WebLogic resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebLogic Adjudication
provider acts as follows:

If all the Authorization providers’ Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

If some Authorization providers’ Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of TRUE (that is, permit access to the WebLogic
resource).

If any of the Authorization providers’ Access Decisions return DENY, then return a final
verdict of FALSE (that is, deny access to the WebLogic resource).

Note: You set the Require Unanimous Permit attributes when you configure the WebLogic
Adjudication provider. For more information about configuring an Adjudication
provider, see “Configuring a WebLogic Adjudication Provider” in Securing WebLogic
Server.

WebLogic Role Mapping Provider
The default (active) security realm for WebLogic Server includes a WebLogic Role Mapping
provider. This provider determines dynamic roles for a specific user (subject) with respect to a
specific protected WebLogic resource for each of the default users and WebLogic resources. The
WebLogic Role Mapping provider supports the deployment and undeployment of roles within

Weblog ic Secur i t y P rov ide rs

Understanding WebLogic Security 5-25

the system. The WebLogic Role Mapping provider uses the same security policy engine as the
WebLogic Authorization provider.

WebLogic Auditing Provider
The default (active) security realm for WebLogic Server includes a WebLogic Auditing provider.
This provider records information from a number of security requests, which are determined
internally by the WebLogic Security Framework. The WebLogic Auditing provider also records
the event data associated with these security requests, and the outcome of the requests.

WebLogic Credential Mapping Provider
The default (active) security realm for WebLogic Server includes a WebLogic Credential
Mapping provider. You use the WebLogic Credential Mapping provider to associate, or map, a
WebLogic Server user to the appropriate credentials to be used with a Resource Adapter to access
an Enterprise Information System (EIS), for example, some relational database like Oracle, SQL
Server, and so on. The provider maps a user’s authentication credentials (username and
password) to those required for legacy applications, so that the legacy application gets the
necessary credential information. For example, the EIS may be a mainframe transaction
processing, database systems, or legacy applications not written in the Java programming
language.

If you only want to map WebLogic Server users and groups to username/password credentials in
another system, then the WebLogic Credential Mapping provider is sufficient.

SAML Credential Mapping Provider
The SAML Credential Mapping provider generates SAML 1.1 assertions for authenticated
subjects based on a target site or resource. If the requested target has not been configured and no
defaults are set, an assertion will not be generated. User information and group membership (if
configured as such) are put in the AttributeStatement.

Provider configuration includes settings that configure and enable SAML source site and
destination site SSO services (such as ITS, ACS, and ARS) to run in the server.

The provider supports the following SAML Subject confirmation methods:

artifact

bearer

sender-vouches

WebLogic Secur i t y Se rv ice A rch i tec ture

5-26 Understanding WebLogic Security

holder-of-key

PKI Credential Mapping Provider
The PKI (Public Key Infrastructure) Credential Mapping provider maps a WebLogic Server
subject (the initiator) and target resource (and an optional credential action) to a public/private
key pair or public certificate that should be used by the application when using the targeted
resource. This provider can also map an alias to a public/private key pair or public certificate. The
PKI Credential Mapping provider uses the subject and resource name, or the alias, to retrieve the
corresponding credential from the keystore.

WebLogic CertPath Provider
The WebLogic CertPath provider is both a CertPath Builder and a CertPath Validator. The
provider completes certificate paths and validates the certificates using the trusted CA configured
for a particular server instance.If a certificate chain cannot be completed, it is invalid.

The WebLogic CertPath provider also checks the signatures in the chain, ensures that the chain
has not expired, and checks that one of the certificates in the chain is issued by one of the trusted
CAs configured for the server. If any of these checks fail, the chain is not valid.

Finally, the provider checks that the each certificate’s basic constraints (that is, the ability of the
certificate to issue other certificates) to ensure the certificate is in the proper place in the chain.

The WebLogic CertPath provider can be used as CertPath Builder or a CertPath Validator in a
security realm.

Certificate Registry
The Certificate Registry allows the system administrator to explicitly configure a list of trusted
CA certificates that are allowed access to the server. The Certificate Registry provides an
inexpensive mechanism for performing revocation checking. An administrator revokes a
certificate by removing it from the certificate registry. The registry is stored in the embedded
LDAP server.

Certificate Registries are configured on a per domain basis rather than a per server basis.

The Certificate Registry is both a CertPath Builder and a CertPath Validator. In either case, the
Certificate Registry ensures that the chain’s end certificate is stored in the registry.

Weblog ic Secur i t y P rov ide rs

Understanding WebLogic Security 5-27

WebLogic Keystore Provider
The WebLogic Keystore provider uses the reference keystore implementation supplied by Sun
Microsystems in the Java Software Development Kit (SDK). It utilizes the standard Java
KeyStore (JKS) keystore type, which implements the keystore as a file (one per machine). It
protects each private key with its individual password. There are two keystore files associated
with the WebLogic Keystore provider:

One keystore file holds the trusted certificate authority (CA) certificates. WebLogic Server
also ships a trusted certificate authority Keystore file that it uses by default to locate the
trusted CA certificates, which are then used in SSL to verify client certificates.

The other keystore file holds the server’s private keys. WebLogic Server retrieves a private
key from this file to initialize SSL. You can use the Sun Microsystems SDK keytool
utility or the WebLogic Server ImportPrivateKey utility to add private keys to this file.
Note that WebLogic Server can retrieve private keys and certificates from this keystore
file.

Note: The WebLogic Keystore provider is deprecated in this release of WebLogic Server but
is still supported. The development of custom Keystore providers is not supported. Use
Java KeyStores (JKS) instead. All of the functionality that was supported by the
WebLogic Keystore provider is available through use of Java KeyStores. The WebLogic
Keystore provider is only supported for backward compatibility. BEA recommends
using the WebLogic Keystore provider only when it is needed to support backward
compatibility with a WebLogic Server 7.0 configuration. For information on how to use
Java KeyStores, see Configuring Keystores in Securing WebLogic Server.

WebLogic Realm Adapter Providers
The WebLogic Realm Adapter providers provide backward-compatibility with 6.x WebLogic
security realms by allowing the use of existing, 6.x security realms with the security features in
this release of WebLogic Server. The WebLogic Realm Adapter providers map the realm API
(weblogic.security.acl) used in WebLogic Server 6.x to the APIs used in this release of
WebLogic Server. The following WebLogic Realm Adapter providers are provided:

Authentication (includes an Identity Assertion provider)

The Realm Adapter Authentication provider allows you to use version 6.x security realms
and their data stores with the WebLogic security providers in WebLogic Server. The Realm
Adapter Authentication provider also allows you to use implementations of the
weblogic.security.acl.CertAuthenticator class with WebLogic Server. The Realm

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html#ConfiguringKeystores

WebLogic Secur i t y Se rv ice A rch i tec ture

5-28 Understanding WebLogic Security

Adapter Authentication provider includes a component that provides identity assertion
based on X.509 tokens.

Authorization

In Compatibility security, two types of Authorization providers are used: the WebLogic
Authorization provider and the Realm Adapter Authorization provider. The WebLogic
Authorization provider is used for new security policies. The Realm Adapter Authorization
provider is used for mapping to WebLogic Server 6.1 access control lists (ACLs).

Auditing

The Realm Adapter Auditing provider allows you to use implementations of the
weblogic.security.audit interface with WebLogic Server deployments using
Compatibility security.

Adjudication

The Realm Adapter Adjudication provider enables both the WebLogic Authorization
provider and the Realm Adapter Authorization provider to be used together for a security
realm in Compatibility security.

Although these security providers are configured using the WebLogic Server Administration
Console, your existing 6.x security realms will continue to use the same MBeans and user
interface present in WebLogic Server 6.1.

Note: The WebLogic Realm Adapter providers are deprecated and should only be used while
upgrading to the security model available in this release of WebLogic Server.

Understanding WebLogic Security 6-1

C H A P T E R 6

Terminology

Key terms that you will encounter throughout the WebLogic Server security documentation
include the following:

access control list (ACL)
In WebLogic 6.x, a data structure used to control access to computer resources. Each entry
on the access control list (ACL) contains a set of permissions associated with a particular
principal that represents an individual user or a group of users. Entries can be positive or
negative. An entry is positive if it grants permission and negative if it denies permission.
In WebLogic Server 7.0 and later, ACLs are deprecated and are replaced by security
policies. To continue to protect WebLogic resources with ACLs, use Compatibility
security. See also Compatibility security, group, principal, security policy, user,
WebLogic resource.

Access Decision
Code that determines whether a subject has permission to perform a given operation on a
WebLogic resource. The result of an Access Decision is to permit, deny, or abstain from
making a decision. An Access Decision is a component of an Authorization provider. See
also Authorization provider, subject, WebLogic resource.

ACL
See access control list (ACL).

Adjudication provider and Adjudicator
A WebLogic security provider that tallies the results that multiple Access Decisions
return, resolves conflicts between the Access Decisions, and determines the final PERMIT
or DENY decision. The Adjudicator is a component of the Adjudication provider. See also
Access Decision, security provider.

Termino logy

6-2 Understanding WebLogic Security

asserting party
When using web SSO, asserts that this user have been authenticated and has given
associated attributes. For example, there is a user Dan Murphy, he has an email address of
dmurphy@company.com and he authenticated to this domain used a password
mechanism. In web SSO, asserting parties are also known as SAML authorities. See also
relying party, Security Assertion Markup Language (SAML), single sign-on.

assertion
An XML statement about whether or not a user has been logged in to a domain. Assertions
can be thought of as XML representations of a Subject containing a username and groups.

Assertion consumer service (ACS)
An addressable component that receives assertions and/or artifacts generated by the ITS
and uses them to authenticate users at the destination site.

Assertion receiver service (ARS)
An addressable component that converts artifacts into SAML assertions.

asymmetric key cryptography
A key-based cryptography that uses an encryption algorithm in which different keys,
private and public, are used to encrypt and decrypt the data. Data that is encrypted with
the public key can be decrypted only with the private key. This asymmetry is the property
that makes public key cryptography so useful. Asymmetric key cryptography is also
called public key cryptography. See also private key, public key, symmetric key
cryptography.

auditing
Process whereby information about operating requests and the outcome of those requests
is collected, stored, and distributed for the purposes of non-repudiation. Auditing provides
an electronic trail of computer activity. See also Auditing provider.

Auditing provider
A security provider that provides auditing services. See also auditing, security provider.

authentication
Process whereby the identity of users or system processes are proved or verified.
Authentication also involves remembering, transporting, and making identity information
available to various components of a system when that information is needed.
Authentication typically involves username/password combinations, but can also be done
using tokens. See also Authentication provider, Identity Assertion, LoginModule,
perimeter authentication, token, user.

Understanding WebLogic Security 6-3

Authentication provider
A security provider that enables WebLogic Server to establish trust by validating a user.
The WebLogic Security Service architecture supports Authentication providers that
perform username/password authentication; certificate-based authentication directly with
WebLogic Server; and HTTP certificate-based authentication proxied through an external
Web server. See also authentication, digital certificate, security provider, user.

authorization
Process whereby a user’s access to a WebLogic resource is permitted or denied based on
the user’s security role and the security policy assigned to the requested WebLogic
resource. See also Authorization provider, security policy, user, WebLogic resource.

Authorization provider
A security provider that controls access to WebLogic resources based on the user’s
security role and the security policy assigned to the requested WebLogic resource. See
also security provider, user, WebLogic resource.

Caching realm
A WebLogic Server 6.x feature that applies to WebLogic Server 7.0 and later only if you
use Compatibility security. A Caching realm is a temporary location in memory that
contains frequently called ACLs, users, groups, and so on, from the primary realm. In
WebLogic Server 6.x, users, groups, and ACL objects are stored in the
filerealm.properties file, and reading from a file can be very slow. The Caching
realm is a communication layer on top of the primary realm and is used for lookups, by
default. If the Caching realm lookup fails, a lookup is performed on the primary realm.
See also access control list (ACL), Compatibility security, group, user.

certificate
See digital certificate.

certificate authentication
Method of providing a confident identification of a client by a server through
the use of digital certificates. Certificate authentication is generally preferred over
password authentication because it is based on what the user has (a private key), as well
as what the user knows (a password that protects the private key). See also authentication,
certificate authority, certificate.

certificate authority
A trusted entity that issues public key certificates. A certificate authority attests to a user's
real-world identity, much as a notary public does. See also certificate chain, digital
certificate, entity, private key, public key, trusted (root) certificate authority.

Termino logy

6-4 Understanding WebLogic Security

certificate chain
An array that contains a private key, the matching public key, and a chain of digital
certificates for trusted certificate authorities, each of which is the issuer of the previous
digital certificate. The certificate for the server, authority, authority2, and authority3,
constitute a chain, where the server certificate is signed by the authority, the authority's
certificate is signed by authority2, and authority2's certificate is signed by authority3. If
the certificate authority for any of these authorities is recognized by the client, the client
authenticates the server. See also trusted (root) certificate authority.

Certificate Lookup and Validation (CLV) framework
A WebLogic Server framework which completes certificate paths and validates X509
certificate chains. The CLV framework receives a certificate or certificate chain,
completes the chain (if necessary), and validates the certificates in the chain.

Certificate Reference
An string that uniquely identifies the certificate chain. For example, a subject DN or an
issuer DN plus a serial number.

Certificate Registry

A list of trusted CA certificates that are allowed to access the servers in a domain. The
Certificate Registry provides a mechanism for revocation checking. Only certificates in
the Certificate Registry are valid.

Certificate Revocation List (CRL)
A list of certificates that a trusted CA has revoked.

CertPath
A JDK class that stores a certificate chain in-memory. Also used to refer to the JDK
architecture and framework used to locate and validate certificate chains.

CertPath Builder
A provider in the Certificate Lookup and Validation (CLV) framework that completes the
certificate path (if necessary) and validates the certificates.

CertPath Validator
A provider in the CLV framework that validates the certificates in a certificate chain.

Compatibility realm
Security realm that is the default (active) security realm if you are using Compatibility
security. The Compatibility realm adapts your existing WebLogic Server 6.x
Authentication and Authorization providers so that you can use them in WebLogic Server
7.x or later. The only security realm available in Compatibility security is the

Understanding WebLogic Security 6-5

Compatibility realm. See also Compatibility security, default realm, security provider,
security realm, WebLogic security provider.

Compatibility security
The capability to run security configurations from WebLogic Server 6.x in later releases
of WebLogic Server. Using Compatibility security in WebLogic Server 7.x or later, you
configure 6.x security realms; define users, groups, and ACLs; manage protection of user
accounts; and install custom auditing providers. The only security realm available in
Compatibility security is the Compatibility realm. The Realm Adapter providers in the
Compatibility realm allow backward compatibility to the authentication and authorization
services in 6.x security realms. See also access control list (ACL), Auditing provider,
Compatibility realm, group, Realm Adapter Authentication provider, Realm Adapter
Authorization provider, security realm, user.

connection filter
A programmable filter that WebLogic Server uses to determine whether the server should
allow incoming connections from a network client. In addition to security policies that
protect WebLogic resources based on user characteristics, you can add another layer of
security by filtering based on network connections. See also security policy, user,
WebLogic resource.

connector
See resource adapter

context handler
A ContextHandler is a high-performing WebLogic class that obtains additional context
and container-specific information from the resource container, and provides that
information to security providers making access or role mapping decisions. The
ContextHandler interface provides a way for an internal WebLogic resource container
to pass additional information to a WebLogic Security Framework call, so that a security
provider can obtain contextual information beyond what is provided by the arguments to
a particular method. A ContextHandler is essentially a name/value list, and as such, it
requires that a security provider know what names to look for. (In other words, use of a
ContextHandler requires close cooperation between the WebLogic resource container and
the security provider.) See also security provider, WebLogic container, WebLogic
Security Framework.

credential
Security-related attribute of a subject, which may contain information used to authenticate
the subject to new services. Types of credentials include username/password
combinations, Kerberos tickets, and public key certificates. See also credential mapping,
Credential Mapping provider, digital certificate, Kerberos ticket, public key, subject.

Termino logy

6-6 Understanding WebLogic Security

credential mapping
The process whereby a legacy system's database is used to obtain an appropriate set of
credentials to authenticate users to a target resource. WebLogic Server uses credential
mapping to map credentials used by WebLogic Server users to credentials used in a legacy
(or any remote) system. WebLogic Server then uses the credential maps to log in to a
remote system on behalf of a subject that has already been authenticated. See also
credential, Credential Mapping provider, resource.

Credential Mapping provider
A security provider that is used to provide credential mapping services and bring new
types of credentials into the WebLogic Server environment. See also credential, credential
mapping, security provider.

Cross-Domain Single Sign-on
WebLogic Server security feature that allows users to authenticate once but access
multiple applications, even if these applications reside in different DNS domains. You can
use this feature to construct a network of affiliates or partners that participate in a Single
Sign-On domain. See also single sign-on.

CSIv2 protocol
A protocol that is based on IIOP (GIOP 1.2) and the CORBA Common Secure
Interoperability version 2 (CSIv2) CORBA specification. The secure interoperability
requirements for EJB2.0 and other J2EE1.4.1 containers correspond to Conformance
Level 0 of the CSIv2 specification. The CORBA Security Attribute Service (SAS) is the
protocol that is used in CSIv2. For more information, see
http://www.omg.org/technology/documents/formal/omg_security.htm.

custom security provider
Security provider written by third-party security vendors or security developers that can
be integrated into the WebLogic Security Service. Custom security providers are
implementations of the Security Service Provider Interfaces (SSPIs) and are not supplied
with the WebLogic Server product. See also security provider, security realm, WebLogic
security provider, WebLogic Security Service.

Custom security realm
In WebLogic Server 7.0 and later, supported only in Compatibility security. In WebLogic
Sever 6.x, you customize authentication by creating your own security realm and
integrating it into the WebLogic Server environment. See also Compatibility security.

database delegator
Intermediary class that mediates initialization calls between a security provider and the
security provider's database. See also security provider database.

http://www.omg.org/technology/documents/formal/omg_security.htm

Understanding WebLogic Security 6-7

Database Management System (DBMS) Authentication provider

A security provider that accesses user, password, group, and group membership
information stored in databases for authentication purposes. Optionally, WebLogic Server
can be used to manage the user, password, group, and group membership information.

declarative security
Security that is defined, or declared, using the application deployment descriptors. For
Web applications, you define the deployment descriptors in the web.xml and
weblogic.xml files. For EJBs, you define the deployment descriptors in the
ejb-jar.xml and weblogic-ejb-jar.xml files.

default realm
The active security realm. In WebLogic Server 7.0 and later, you can configure multiple
security realms in a WebLogic Server domain; however, only one can be the default
(active) security realm. See also Custom security realm, security realm,WebLogic Server
domain.

digest authentication
An authentication mechanism in which a Web application authenticates itself to a Web
service by sending the server a message digest along with its HTTP request message. The
digest is computed by employing a one-way hash algorithm to a concatenation of the
HTTP request message and the client’s password. The digest is typically smaller than the
HTTP request and does not contain the password.

digital certificate
Digital statement that associates a particular public key with a name or other attributes.
The statement is digitally signed by a certificate authority. By trusting that authority to
sign only true statements, you can trust that the public key belongs to the person named in
the certificate. See also certificate authority, digital signature, public key, trusted (root)
certificate authority.

digital signature
String of bits used to protect the security of data being exchanged between two entities by
verifying the identities of those entities. Specifically, this string is used to verify that the
data came from the sending entity of record and was not modified in transit. A digital
signature is computed from an entity's signed data and private key. It can be trusted only
to the extent that the public key used to verify it can be trusted. See also entity, private
key, public key.

Domain Configuration Wizard
An interactive, graphical user interface (GUI) that facilitates the creation of a new
WebLogic Server domain. The wizard can create WebLogic Server domain

Termino logy

6-8 Understanding WebLogic Security

configurations for stand-alone servers, Administration Servers with Node Managers and
Managed Servers, and clustered servers. You can use it to create the appropriate directory
structure for your WebLogic Server domain, a basic config.xml file, and scripts that you
can use to start the servers in your domain.

domain controller
A machine which holds Windows NT domain information. When configuring the
Windows NT Authentication provider, the domain controller needs to be specified. See
also Windows NT Authentication provider.

embedded LDAP server
A server that contains user, group, security role, security policy and credential
information. The WebLogic Authentication, Authorization, Role Mapping, and
Credential Mapping providers use the embedded LDAP server as their security provider
databases. See also credential, group, security policy, security role.

end certificate
The last certificate considered in a certificate chain.

entity
Something that exists independently as a particular and discrete unit. Persons,
corporations, and objects are examples of entities.

File realm
In WebLogic Server 6.x, a realm that stores users, groups, encrypted passwords, and
ACLs in a file. In WebLogic Server 7.0 and later you use a File realm only with
Compatibility security. See also Compatibility security.

filter
As defined by the Java Servlet API 2.3 specification, filters are objects that can transform
a request or modify a response. Filters are not servlets, they do not actually create a
response. They are preprocessors of the request before it reaches the servlet, and/or
postprocessors of the response leaving the servlet. Filters provide the ability to
encapsulate recurring tasks in reusable units and can be used to transform the response
from a servlet or JSP page.

firewall
Software that monitors traffic between an internal network and the Internet, and that
regulates the type of network traffic that can enter and leave the internal network. A
firewall can be connected to the Internet or set up within a company’s network to prevent
unauthorized access to the network. Firewalls protect information on computers and
information that is being carried over the network. Firewalls use various types of filters to

Understanding WebLogic Security 6-9

prevent access, including limiting the types of protocols allowed and restricting access
from network nodes by IP addresses and DNS node names.

global role
A security role that applies to all WebLogic resources within a security realm. For
example, if the WebLogic Role Mapping provider is being used in the default security
realm, global roles can be defined in terms of user, group, and hours of access. See also
Role Mapping provider, scoped role, security realm, security role, WebLogic resource.

group
Collection of users that share some characteristic, such as a department, a job function, or
a job title. Groups are a static identity that a server administrator assigns. Groups are
associated with security roles. Giving permission to a group is the same as giving the
permission to each user who is a member of the group. See also user.

host name verification
The process of verifying that the name of the host to which an SSL connection is made is
the intended or authorized party. See also Host Name Verifier, Secure Sockets Layer
(SSL).

Host Name Verifier
Code that validates that the host to which an SSL connection is made is the intended or
authorized party. A Host Name Verifier is useful when a WebLogic Server client or a
WebLogic Server instance acts as an SSL client to another application server. It helps
prevent man-in-the-middle attacks. By default, WebLogic Server, as a function of the SSL
handshake, compares the common name in the subject distinguished name (DN) of the
SSL server's digital certificate with the host name of the SSL server used to initiate the
SSL connection. If the subject DN and the host name do not match, the SSL connection
is dropped. See also digital certificate, host name verification, Secure Sockets Layer
(SSL), subject.

Identity Assertion
Special type of authentication whereby a client’s identity is established through the use of
client-supplied tokens that are generated from an outside source. Identity is asserted when
these tokens are mapped to usernames. For example, the client’s identity can be
established by using a digital certificate, and that certificate can be passed around the
system so that users are not asked to sign on more than once. Thus, identity assertion can
be used to enable single sign-on. See also authentication, digital certificate, Identity
Assertion provider, single sign-on, SSL tunneling, token.

Termino logy

6-10 Understanding WebLogic Security

Identity Assertion provider

A security provider that performs perimeter authentication—a special type of
authentication using tokens. Identity Assertion providers also allow WebLogic Server to
establish trust by validating a user. Thus, the function of an Identity Assertion provider is
to validate and map a token to a username. See also perimeter authentication, security
provider, token, user.

Intersite Transfer Service (ITS)
An addressable component that provides a point of functionality for SAML processing
such as artifact or redirect generation.

JAAS control flag
If a security realm has multiple Authentication providers configured, the JAAS control
flag determines how the login sequence uses the Authentication providers. See also
Authentication provider.

JAAS LoginModule
Responsible for authenticating users within the security realm and for populating a
subject with the necessary principals (users/groups). A LoginModule is a required
component of an Authentication provider, and can be a component of an Identity
Assertion provider if you want to develop a separate LoginModule for perimeter
authentication. LoginModules that are not used for perimeter authentication also verify
the proof material submitted (for example, a user's password). See also authentication,
group, Identity Assertion provider, perimeter authentication, principal, security realm,
subject.

Java Authentication and Authorization Service (JAAS)
Set of Java packages that enable services to authenticate and enforce access controls upon
users. JAAS implements a Java version of the standard Pluggable Authentication Module
(PAM) framework, and supports user-based authorization. WebLogic Server only
implements the authentication portion of JAAS. See also authentication, authorization,
user.

Java Authorization Contract for Containers (JACC)
A permissions-based security model for EJBs and servlets. JACC can be used as a replacement for
the EJB and Servlet container deployment and authorization provided by WebLogic Server.

Java Cryptography Architecture
A framework for accessing and developing cryptographic functionality for the Java
platform. For a description of the Java Cryptography Architecture provided by Sun
Microsystems, Inc., see

Understanding WebLogic Security 6-11

http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html#Int
roduction. See also Java Cryptography Extensions (JCE)

Java Cryptography Extensions (JCE)
Set of Java packages that extends the Java Cryptography Architecture API to include APIs
for encryption, key exchange, and Message Authentication Code (MAC) algorithms. See
http://java.sun.com/j2se/1.4/docs/guide/security/jce/
JCERefGuide.html for a description of JCE provided by Sun Microsystems, Inc. See
also Java Cryptography Architecture.

Java Naming and Directory Interface (JNDI)

The Java Naming and Directory Interface (JNDI) is an application programming interface
(API) that provides naming services to Java applications. JNDI is an integral component
of the Sun Microsystems J2EE technology and is defined to be independent of any specific
naming or directory service implementation. It supports the use of a single method for
accessing various new and existing services. This support allows any service-provider
implementation to be plugged into the JNDI framework using the standard service
provider interface (SPI) conventions. In addition, JNDI allows Java applications in
WebLogic Server to access external directory services such as LDAP in a standardized
fashion, by plugging in the appropriate service provider.

Java Security Manager
Security manager for the Java virtual machine (JVM). The Java Security Manager works
with the Java API to define security boundaries through the
java.lang.SecurityManager class, thus, enabling developers to establish a custom
security policy for their Java applications.
WebLogic Server supports the use of the Java Security Manager to prevent untrusted code
from performing actions that are restricted by the Java security policy file. The Java
Security Manager uses the Java security policy file to enforce a set of permissions granted
to classes. The permissions allow specified classes running in that instance of the JVM to
permit or deny certain runtime operations. See also Java security policy file, policy
condition.

Java security policy file
File used by the Java Security Manager to enforce a set of permissions granted to specified
classes running in an instance of the WebLogic Server-supported Java Virtual Machine
(JVM). Classes running in that instance of the JVM use the permissions to permit or deny
certain runtime operations. See also Java Security Manager, policy condition.

JNDI
See Java Naming and Directory Interface (JNDI).

http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html#Introduction
http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html#Introduction
http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCERefGuide.html

Termino logy

6-12 Understanding WebLogic Security

KDC/TGS
Key Distribution Center/Ticket Granting Service. In Kerberos authentication, the KDC
maintains a list of user principals and is contacted through the kinit program for the user's
initial ticket. The Ticket Granting Service maintains a list of service principals and is
contacted when a user wants to authenticate to a server providing such a service.

The KDC/TGS is a trusted third party that must run on a secure host. It creates
ticket-granting tickets and service tickets. The KDC and TGS are usually the same entity.

Kerberos
A network authentication service developed under Massachusetts Institute of
Technology's Project Athena that strengthens security in distributed environments.
Kerberos is a trusted third-party authentication system that relies on shared secrets and
assumes that the third party is secure. It provides single sign-on capabilities and database
link authentication (MIT Kerberos only) for users, provides centralized password storage,
and enhances PC security.

Kerberos ticket
A sequence of a few hundred bytes in length that is used to control access to physically
insecure networks. Kerberos tickets are based on the Kerberos protocol. Kerberos is a
network authentication protocol that allows entities (users and services) communicating
over networks to prove their identity to each other, while preventing eavesdropping or
replay attacks. The protocol was designed to provide strong authentication for
client/server applications by using secret-key cryptography. For more information, see
http://web.mit.edu/kerberos/www/. See also private key.

keystore
An in-memory collection of private key and trusted certificate pairs. The information is
protected by a passphrase, such as a password, a credit card number, Personal
Identification Number, or some other form of personal identification information. In the
Administration Console, the keystore is referred to as the Trusted Keystore. For more
information, see SDK 1.4.1 Javadoc produced by Sun Microsystems, Inc., which is
available at http://java.sun.com/j2se/1.4/docs/api/index.html. See also
private key, trusted (root) certificate authority.

LDAP Authentication provider
Authentication provider that uses a Lightweight Data Access Protocol (LDAP) server to
access user and group information, for example, iPlanet’s Active Directory and Novell’s
OpenLDAP. See also group, user.

LDAP security realm
A WebLogic Server 6.x security realm. In WebLogic Server 6.x, security realms provide
authentication and authorization services. The LDAP security realm provides

http://web.mit.edu/kerberos/www/
http://java.sun.com/j2se/1.4/docs/api/index.html

Understanding WebLogic Security 6-13

authentication through an LDAP server. This server allows you to manage all the users for
your organization in one place: the LDAP directory. The LDAP security realm supports
Open LDAP, Netscape iPlanet, Microsoft Site Server, and Novell NDS. In WebLogic
Server 7.x or later, you can only use the LDAP security realm when using Compatibility
security. See also authentication, authorization, Compatibility security, File realm,
security realm, user.

LoginModule
See JAAS LoginModule.

MBean
Short for “managed bean,” a Java object that represents a Java Management eXtensions
(JMX) manageable resource. MBeans are instances of MBean types. MBeans are used to
configure and manage security providers. See also MBean type, security provider.

MBean Definition File (MDF)
An XML file used by the WebLogic MBeanMaker to generate files for an MBean type.
See also MBean type, WebLogic MBeanMaker.

MBean implementation file
One of several intermediate Java files generated by the WebLogic MBeanMaker utility to
create an MBean type for a custom security provider. You edit this file to supply your
specific method implementations. See also MBean information file, MBean interface file,
MBean type, WebLogic MBeanMaker.

MBean information file
One of several intermediate Java files generated by the WebLogic MBeanMaker utility to
create an MBean type for a custom security provider. This file contains mostly metadata
and therefore requires no editing. See also MBean implementation file, MBean interface
file, MBean type, WebLogic MBeanMaker.

MBean interface file
One of several intermediate Java files generated by the WebLogic MBeanMaker utility to
create an MBean type for a custom security provider. This file is the client-side API to the
MBean that your runtime class or your MBean implementation will use to obtain
configuration data, and requires no editing. See also MBean implementation file, MBean
information file, MBean type, runtime class, WebLogic MBeanMaker.

MBean JAR File (MJF)
JAR file that contains the runtime classes and MBean types for a security provider. MJFs
are created by the WebLogic MBeanMaker. See also MBean type, runtime class, security
provider, WebLogic MBeanMaker.

Termino logy

6-14 Understanding WebLogic Security

MBean type
Factory for creating the MBeans used to configure and manage security providers. MBean
types are created by the WebLogic MBeanMaker. See also MBean, security provider,
WebLogic MBeanMaker.

message digest
A digitally created hash, or fingerprint, created from a block of plain text. Even though
the complete message is used to create the hash, the message cannot be recreated from the
hash. Message digests help prevent man-in-the-middle attacks. Because there is only one
digest for any given block of plain text, the digest can be used to verify the authenticity of
the message. Thus, this process results in a digital signature of the message, which can be
used to provide non-repudiation and integrity services. See also message digest algorithm.

message digest algorithm
A computational procedure that is used to produce a message digest from a block of plain
text. Once a message digest is produced, other security mechanisms are used to encrypt
and convey the digest. See also message digest.

mutual authentication
Authentication that requires both client and server to present proof of identity. Two-way
SSL authentication is a form of mutual authentication in that both client and server present
digital certificates to prove their identity. However, with two-way SSL, the authentication
happens at the SSL level, whereas other forms of mutual authentication are executed at
higher levels in the protocol stack. See also authentication, digital certificate, Secure
Sockets Layer (SSL), two-way SSL authentication, trusted (root) certificate authority.

nonce

An opaque token used in Digest authentication.

non-repudiation
Irrefutable evidence that a security event occurred.

one-way SSL authentication
Type of SSL authentication which requires the server to present a certificate to the client,
but the client is not required to present a certificate to the server. The client must
authenticate the server, but the server will accept any client into the connection. Enabled
by default in WebLogic Server. See also mutual authentication, two-way SSL
authentication.

perimeter authentication
Authentication that occurs outside the application server domain. Perimeter
authentication is typically accomplished when a remote user specifies an asserted identity

Understanding WebLogic Security 6-15

and some form of corresponding proof material, normally in the form of a passphrase
(such as a password, a credit card number, Personal Identification Number, or some other
form of personal identification information.), to an authentication server (typically a Web
server) that performs the verification and then passes an artifact, or token, to the
application server domain (for example, a WebLogic Server domain). The application
server can then pass the token around to systems in the domain so that users are not asked
to sign on more than once.

The authentication agent, the entity that actually vouches for the identity, can take many
forms, such as a Virtual Private Network (VPN), a firewall, an enterprise authentication
service (Web server), or some other form of global identity service.

The WebLogic Server security architecture supports Identity Assertion providers that
perform perimeter authentication (Web server, firewall, VPN) and handle multiple
security token types and protocols (SOAP, IIOP-CSIv2). See also authentication, Identity
Assertion.

policy condition
A condition under which a security policy will be created. Policy conditions, along with
the specific information you supply for the condition (such as an actual user name, group,
security role, or start/stop times), are called expressions. See also policy statement.

policy expression
See policy statement.

policy statement
A policy statement is the collection of expressions that define who is granted access to a
WebLogic resource, and is therefore the main part of any security policy you create.
Policy statements are also referred to as policy expressions. See also policy condition.

principal
The identity assigned to a user, group, or system process as a result of authentication. A
principal can consist of any number of users and groups. Principals are typically stored
within subjects. See also authentication, group, subject, user.

principal validation
The act of signing and later verifying that a principal has not been altered since it was
signed. Principal validation establishes trust of principals. See also principal.

private key
An encryption/decryption key known only to the party or parties that exchange secret
messages. It is called private because it must be kept secret from everyone but the owner.
See also public key.

Termino logy

6-16 Understanding WebLogic Security

private key algorithm
The computational procedure used to encode, or encrypt, ciphertext. Data encrypted with
the private key can only be decrypted by the public key. See also private key, public key,
RDBMS security realm.

programmatic security
Application security that is defined in servlets and EJBs using Java methods.

public key
Value provided by a certificate authority as an encryption/decryption key that, combined
with a private key, can be used to effectively encrypt and decrypt messages and digital
signatures. The key is called public because it can be made available to anyone. Public key
cryptography is also called asymmetric cryptography because different keys are used to
encrypt and decrypt the data. See also asymmetric key cryptography, private key.

public key algorithm
The computational procedure used to encode, or encrypt, plain text. Data encrypted with
the public key can only be decrypted by the private key. See also private key, private key
algorithm, public key.

public key cryptography
See asymmetric key cryptography.

RDBMS security realm
A WebLogic Server 6.x security realm. In WebLogic Server 6.x, security realms provided
authentication and authorization services. The RDBMS security realm stores Users,
Groups, and ACLs in a relational database. In WebLogic Server 7.0 and later, you can
only use the RDMS security realm when using Compatibility security. See also access
control list (ACL), authentication, authorization, Compatibility security, group, security
realm, user.

Realm Adapter Adjudication provider
The Realm Adapter Adjudication provider enables both the WebLogic Authorization
provider and the Realm Adapter Authorization provider to be used together for a security
realm in Compatibility security. See also Compatibility security, Compatibility realm.

Realm Adapter Auditing provider
Auditing provider in the CompatibilityRealm that allows you to use implementations of
the weblogic.security.audit interface with WebLogic Server deployments using
Compatibility security. You must run Compatibility security in order to access the
Compatibility realm and the Realm Adapter providers through the WebLogic Server
Administration Console. See also Compatibility security, Compatibility realm.

Understanding WebLogic Security 6-17

Realm Adapter Authentication provider
Authentication provider in the Compatibility realm that allows backward compatibility to
the authentication services in 6.x security realms. You must run Compatibility security in
order to access the Compatibility realm and the Realm Adapter providers through the
WebLogic Server Administration Console. See also Compatibility security, Compatibility
realm.

Realm Adapter Authorization provider
Authorization provider in the Compatibility realm that allows backward compatibility to
the authorization services in 6.x security realms. You must run Compatibility security in
order to access the Compatibility realm and the Realm Adapter providers through the
WebLogic Server Administration Console. See also Compatibility security, Compatibility
realm.

Realm Adapter provider
Type of security provider used to access WebLogic Server 6.x security services when
using Compatibility security in WebLogic Server 7.0 or later. These providers allow you
to adapt 6.x security providers so that they can be used with WebLogic Server 7.0 and
later. You must run Compatibility security in order to access the Compatibility realm and
the Realm Adapter providers through the WebLogic Server Administration Console. See
also Compatibility security, Compatibility realm.

relying party
In web SSO, determines whether assertions provided to it by an asserting party should be
trusted. SAML defines a number of mechanisms that enable the relying party to trust the
assertions provided to it. Although a relying party may trust the assertions provided to it,
local access policy defines whether the subject may access local resources. Therefore,
even if a relying party trusts that a user is Dan Murphy, it does not mean Dan Murphy can
access all the resources in the domain. See also asserting party, Security Assertion Markup
Language (SAML), single sign-on.

resource
See WebLogic resource.

resource adapter
System-level software driver (also called a connector) used by an application server (such
as WebLogic Server) or an application client to connect to an enterprise information
system (EIS). Resource adapters contain the Java components and, if necessary, the native
components required to interact with the EIS.

The WebLogic J2EE Connector Architecture supports resource adapters developed by
EIS vendors and third-party application developers that can be deployed in any

Termino logy

6-18 Understanding WebLogic Security

application server supporting the Sun Microsystems J2EE Platform Specification, version
1.3.

Responder service
The URL on the SAML source site that will process requests for SAML. See also SAML
source site.

role condition
A condition under which a security role (global or scoped) will be granted to a user or
group. Role conditions, along with the specific information you supply when creating the
condition (such as an actual user name, group, or start/stop times), are called expressions.
See security policy, role mapping.

role expression
Specific information that you supply when creating role conditions. See role condition.

role mapping
Process by which the WebLogic Security Service compares users or groups against a
security role condition to determine whether they should be dynamically granted a
security role. Role mapping occurs at runtime, just prior to when an Access Decision is
rendered for a protected WebLogic resource. See also Access Decision, group, principal,
role condition, security role, user, WebLogic resource, WebLogic Security Service.

Role Mapping provider
A security provider that determines what security roles apply to the principals stored in a
subject when the subject is attempting to perform an operation on a WebLogic resource.
Because this operation usually involves gaining access to the WebLogic resource, Role
Mapping providers are typically used with Authorization providers. See also
Authorization provider, principal, security role, subject, WebLogic resource.

role statement
A collection of expressions that define how a security role is granted, and is therefore the
main part of any security role you create. See role expression.

runtime class
Java class that implements a Security Service Provider Interface (SSPI) and contains the
actual security-related behavior for a security provider. See also security provider,
Security Service Provider Interfaces (SSPIs).

SAML assertion
A package of information that supplies one or more statements made by a SAML
Authority. The following types of statements are supported:

– Authentication statements which say when and how a subject was authenticated.

Understanding WebLogic Security 6-19

– Attribute statements which provide specific information about the subject (for example,
what groups the Subject is a member of).

– Authorization statements identity what the Subject is entitled to do.

SAML authority
An entity that can make authoritatively assert security information in the form of SAML
assertions.

SAML binding
Details exactly how the SAML protocol maps onto transport and messaging protocols.

SAML destination site
The reciever of a SAML assertion.

SAML profile
Technical descriptions of particular flows of assertions and protocol messages that define
how SAML can be used for a particular purpose.

SAML source site
The site that orginates the single sign-on request. A SAML source can be either the site
that authenticates the user or the site that is forwarding identity when acting as a client.

schema
A data structure associated with the data stored in a database. The DBMS Authentication
providers require that the schema used to store data in the database be defined during
configuration. See also Database Management System (DBMS) Authentication provider.

scoped role
A security role that applies to a specific WebLogic resource in a security realm. See also
global role, Role Mapping provider, security role, security realm.

secret key cryptography
See symmetric key cryptography.

Secure Sockets Layer (SSL)
An Internet transport-level technology developed by Netscape to provide data privacy
between applications. Generally, Secure Sockets Layer (SSL) provides (1) a mechanism
that the applications can use to authenticate each other’s identity and (2) encryption of the
data exchanged by the applications. SSL supports the use of public key cryptography for
authentication, and secret key cryptography and digital signatures to provide privacy and
data integrity. See also authentication, digital signature, public key cryptography,
symmetric key cryptography.

Termino logy

6-20 Understanding WebLogic Security

Security Assertion Markup Language (SAML)
An XML-based framework for exchanging security information. SAML implementations
provide an interoperable, XML-based, security solution that allows authentication and
authorization information to be exchanged securely. SAML is the key to enabling single
sign-on capabilities for Web services. For more information, see
http://xml.coverpages.org/saml.html.

You can develop custom Identity Assertion providers for WebLogic Server that support
different token types, including SAML. See also authentication, authorization, Identity
Assertion, perimeter authentication, Cross-Domain Single Sign-on, user.

security policy
An association between a WebLogic resource and a user, group, or security role that
protects the WebLogic resource against unauthorized access. A WebLogic resource has
no protection until you assign it a security policy. You can assign security policies to an
individual WebLogic resource or to components of the WebLogic resource.

In WebLogic Server 7.0 and later, security policies replace access control lists (ACLs),
except when Compatibility security is used. See also access control list (ACL), group,
security role, user, WebLogic resource.

security provider
In WebLogic Server 7.0 and later, software modules that can be “plugged into” a
WebLogic Server security realm to provide security services (such as authentication,
authorization, auditing, and credential mapping) to applications. A security provider
consists of runtime classes and MBeans, which are created from SSPIs and MBean types,
respectively. Security providers are WebLogic security providers (provided with
WebLogic Server) or custom security providers. See also custom security provider,
MBean, MBean type, runtime class, Security Service Provider Interfaces (SSPIs),
WebLogic security provider.

security provider database
Database that contains the users, groups, security policies, roles, and credentials used by
some types of security providers to provide security services. The security provider
database can be the embedded LDAP server (as used by the WebLogic security
providers), a properties file (as used by the sample security providers), or a
production-quality database that you may already be using. See also credential, embedded
LDAP server, group, security role, security policy, WebLogic security provider.

security realm

In WebLogic Server 6.x, security realms provide authentication and authorization
services. You use the File realm or a set of alternative security realms, including the

http://xml.coverpages.org/saml.html

Understanding WebLogic Security 6-21

Lightweight Data Access Protocol (LDAP), Windows NT, Unix, or RDBMS realms. If
you want to customize authentication, you write your own security realm and integrate it
into the WebLogic Server environment. In WebLogic Server 6.x you cannot have multiple
security realms in a domain. See also File realm.

In WebLogic Server 7.0 and later, security realms act as a scoping mechanism. Each
security realm consists of a set of configured security providers, users, groups, roles, and
security policies. You can configure multiple security realms in a domain; however, only
one can be the default (active) security realm. WebLogic Server provides two default
security realms: myrealm and Compatibility realm. You can access an existing 6.x
security configuration through the Compatibility realm. You can no longer write a custom
security realm using the application programming interfaces as you could in WebLogic
Server 6.x; rather, you configure a new security realm (called myrealm by default) to
provide the security services you want and then set the new security realm as the default
security realm. See also Compatibility realm, Custom security realm, default realm,
Domain Configuration Wizard, security provider, WebLogic resource.

security role
A dynamically computed privilege that is granted to users or groups based on specific
conditions. The difference between groups and roles is that a group is a static identity that
a server administrator assigns, while membership in a role is dynamically calculated based
on data such as user name, group membership, or the time of day. Security roles are
granted to individual users or to groups, and multiple roles can be used to create security
policies for a WebLogic resource. Once you create a security role, you define an
association between the role and a WebLogic resource. This association (called a security
policy) specifies who has what access to the WebLogic resource. See also global role,
group, role mapping, scoped role, security policy, user, WebLogic resource.

Security Service Provider Interfaces (SSPIs)
Set of WebLogic packages that enables custom security providers to be developed and
integrated with the WebLogic Server Security Service. These interfaces are implemented
by the WebLogic security providers and custom security providers. The WebLogic
Security Framework calls methods in these interfaces to perform security operations. See
also security provider, WebLogic Security Framework.

Servlet Authentication filter
A unique implementation of the J2EE filter object which replace container-based
authentication. Servlet Authentication filters contol the authentication conversation with
the client redirecting to a remote site to execute the login, extracting login information out
of the query string, and negotiating a login mechanism with the browser.

Termino logy

6-22 Understanding WebLogic Security

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
A protocol that allows participation in a Kerberos SSO environment.

single sign-on
Ability to require a user to sign on to an application only once and gain access to many
different application components, even though these components may have their own
authentication schemes. Single sign-on is achieved using identity assertion,
LoginModules, and tokens. See also authentication, Cross-Domain Single Sign-on,
Identity Assertion, JAAS LoginModule, token, user.

SSL hardware accelerator
A peripheral Secure Sockets Layer (SSL) platform that attaches to a Web switch with the
express purpose of improving SSL performance for a client. For example, the Alteon SSL
Accelerator can be used with WebLogic Server. This accelerator performs a TCP
handshake with the client (in this case, WebLogic Server) through a Web switch and
performs all the SSL encryption and decryption for the session.

SSL tunneling
Tunneling Secure Socket Layer (SSL) over an IP-based protocol. Tunneling means that
each SSL record is encapsulated and packaged with the headers needed to send the record
over another protocol.

SSPI MBean
Interfaces used by BEA to generate MBean types for the WebLogic security providers,
and from which you generate MBean types for custom security providers. SSPI MBeans
may be required (for configuration) or optional (for management). See also custom
security provider, MBean type, WebLogic security provider.

subject
A grouping of related information for a single entity, such as a person, as specified by the
Java Authentication and Authorization Service (JAAS). The related information includes
the Subject's identities, or Principals, as well as its security-related attributes (for example,
passwords and cryptographic keys). A subject can contain any number of Principals. Both
users and groups can be used as Principals by application servers such as WebLogic
Server. In WebLogic security providers (security providers supplied with the WebLogic
Server product), the Subject contains a Principal for the user (WLSUser Principal) and
a Principal for each group of which the user is a member (WLSGroups Principals).
Custom security providers may store identities differently. See also authentication,
custom security provider, group, JAAS control flag, principal, user.

Understanding WebLogic Security 6-23

symmetric key cryptography
A key-based cryptography that uses an encryption algorithm in which the same key is used
both to encrypt and decrypt the data. Symmetric key cryptography is also called secret key
cryptography. See also asymmetric key cryptography.

target URL
The requested URL that initiates the authentication process in web SSO. See also SAML
source site.

token
Artifact generated as part of the authentication process of users or system processes. When
using Identify Assertion, a token is presented to show that the user has been authenticated.
Tokens come in many different types, including Kerberos and Security Assertion Markup
Language (SAML). See also authentication, Security Assertion Markup Language
(SAML), Secure Sockets Layer (SSL), Identity Assertion, SSL tunneling, Security
Assertion Markup Language (SAML), user.

Trust Manager
An interface that enables you to override validation errors in a peer's digital certificate and
continue the SSL handshake. You can also use the interface to discontinue an SSL
handshake by performing additional validation on a server's digital certificate chain.

trusted (root) certificate authority

A well-known and trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The function of
the trusted certificate authority is similar to that of a notary public: to guarantee the
identify of the individual or organization presenting the certificate. Trusted certificate
authorities issue certificates that are used to sign other certificates. Certificate authorities
are referred to as root certificate authorities because their authority is recognized and thus
they do not need anyone to validate their identity. Trusted (root) certificate authority (CA)
certificates are installed into applications that authenticate certificates. For example, Web
browsers are usually distributed with several trusted (root) CA certificates pre-installed.
If the server certificate is not signed by a well-known certificate authority and you want
to ensure that the server’s certificate will be authenticated by the client, it is good practice
for the server to issue a certificate chain that terminates with a certificate that is signed by
a well-known certificate authority. See also certificate chain, private key, public key.

two-way SSL authentication
Authentication that requires both the client and server to present a certificate before the
connection thread is enabled between the two. With two-way SSL authentication,
WebLogic Server not only authenticates itself to the client (which is the minimum
requirement for certificate authentication), it also requires authentication from the

Termino logy

6-24 Understanding WebLogic Security

requesting client. Clients are required to submit digital certificates issued by a trusted
certificate authority. This type of authentication is useful when you must restrict access to
trusted clients only. Two-way SSL authentication is a form of mutual authentication. See
also authentication, digital certificate, mutual authentication, Secure Sockets Layer (SSL),
trusted (root) certificate authority.

UNIX security realm
A WebLogic Server 6.x security realm. The UNIX security realm executes a small native
program, wlauth, to look up Users and Groups and to authenticate users on the basis of
their UNIX login names and passwords. The wlauth program uses PAM (Pluggable
Authentication Modules), which allows you to configure authentication services in the
operating system without altering applications that use the service. In WebLogic Server
7.0 and later, you can only use the UNIX security realm when using Compatibility
security. See also authentication, authorization, Compatibility security, group, security
realm.

user
An entity that can be authenticated. A user can be a person or a software entity, such as a
Java client. Each user is given a unique identity within a security realm. For more efficient
security management, BEA recommends adding users to groups. A group is a collection
of users who usually have something in common, such as working in the same department
in a company. Users can be placed into groups that are associated with security roles, or
be directly associated with security roles. See also entity, group, security role, WebLogic
resource.

WebLogic component
WebLogic Server implements J2EE component technologies, which include servlets, JSP
Pages, and Enterprise JavaBeans. To build a WebLogic Server application, you must
create and assemble components, using the service APIs when necessary. Components are
executed in the WebLogic Server Web container or EJB container. Web components
provide the presentation logic for browser-based J2EE applications. EJB components
encapsulate business objects and processes. See also WebLogic container, Windows NT
security realm.

WebLogic container
To promote fast development and portability, J2EE identifies common services needed by
components and implements them in the container that hosts the component. Containers
provide the life cycle support and services defined by the J2EE specifications so that the
components you build do not have to handle underlying details. A component has only the
code necessary to describe the object or process that it models. It has no code to access its
execution environment or services such as transaction management, access control,
network communications, or persistence mechanisms. These services are provided by the

Understanding WebLogic Security 6-25

container, which is implemented in WebLogic Server. Additionally, WebLogic containers
give applications access to the J2EE application programming interfaces (APIs).
WebLogic containers are available for use once the server is started. This
component/container abstraction allows developers to work within their fields of
expertise. WebLogic Server provides two types of containers: the Web container and the
EJB container. See also WebLogic component, Windows NT security realm.

WebLogic J2EE service
WebLogic Server implements J2EE services, which include access to standard network
protocols, database systems, and messaging systems. To build a WebLogic Server
application, you must create and assemble components, using the service APIs when
necessary. Web applications and EJBs are built on J2EE application services, such as
JDBC, Java Messaging Service (JMS), and Java Transaction API (JTA). See also
WebLogic component.

WebLogic MBeanMaker
Command-line utility that takes an MBean Definition File (MDF) as input and output files
for an MBean type. See also MBean Definition File (MDF), MBean type.

WebLogic resource
Entities that are accessible from WebLogic Server, such as events, servlets, JDBC
connection pools, JMS destinations, JNDI contexts, connections, sockets, files, and
enterprise applications and resources, such as databases. See also entity.

WebLogic Security Framework
Interfaces in the weblogic.security.service package that unify security enforcement
and present security as a service to other WebLogic Server components. Security
providers call into the WebLogic Security Framework on behalf of applications requiring
security services. See also security provider.

WebLogic security provider
Any of the security providers that are supplied by BEA as part of the WebLogic Server
product. These providers were developed using the Security Service Provider Interfaces
(SSPIs) for WebLogic Server. See also custom security provider, security provider,
Security Service Provider Interfaces (SSPIs).

WebLogic Security Service
The WebLogic Server subsystem that implements the security architecture. This
subsystem comprises there major components: the WebLogic Security Framework, the
Security Service Provider Interfaces (SSPIs), and the WebLogic security providers.

Termino logy

6-26 Understanding WebLogic Security

WebLogic Server domain
A collection of servers, services, interfaces, machines, and associated WebLogic resource
managers defined by a single configuration file. See also WebLogic resource.

Windows NT Authentication provider
An authentication provider that uses Windows NT users and groups for authentication
purposes.

Windows NT security realm
A WebLogic Server 6.x security realm. The Windows NT Security realm uses account
information defined for a Windows NT domain to authenticate Users and Groups. In
WebLogic Server 7.0 and later, you can only use the Windows NT security realm when
using Compatibility security. See also authentication, authorization, Compatibility
security, group, security realm, user.

	Introduction and Roadmap
	Document Scope
	Document Audience
	Guide to this Document
	Related Information
	Security Samples and Tutorials
	Security Examples in the WebLogic Server Distribution
	Additional Examples Available for Download

	Overview of the WebLogic Security Service
	Introduction to the WebLogic Security Service
	Features of the WebLogic Security Service
	Balancing Ease of Use and Customizability
	New and Changed Features in This Release
	Support for Additional Security Standards
	Single Sign-On Capabilities
	Support for Certificate Lookup and Validation
	New SSL Features
	New Security Providers
	Authentication Providers
	Identity Assertion Providers
	Credential Mapping Providers
	Certificate Lookup and Validation Providers

	Enhancements to WebLogic Security Providers
	Enhancements to the Security Service Programming Interfaces (SSPIs)

	Security Fundamentals
	Auditing
	Authentication
	Subjects and Principals
	Java Authentication and Authorization Service (JAAS)
	JAAS LoginModules
	JAAS Control Flags

	CallbackHandlers
	Mutual Authentication
	Identity Assertion Providers and LoginModules
	Identity Assertion and Tokens
	Challenge Identity Assertion
	Servlet Authentication Filters
	Types of Authentication
	Username/Password Authentication
	Certificate Authentication
	Digest Authentication
	Perimeter Authentication

	Security Assertion Markup Language (SAML)
	Single Sign-On (SSO)
	Web Browsers and HTTP Clients
	Desktop Clients

	Authorization
	WebLogic Resources
	Security Policies
	ContextHandlers
	Access Decisions
	Adjudication

	Identity and Trust
	Private Keys
	Digital Certificates
	Certificate Authorities
	Certificate Lookup and Validation

	Secure Sockets Layer (SSL)
	SSL Features
	SSL Tunneling
	One-way/Two-way SSL Authentication
	Host Name Verification
	Trust Managers
	Asymmetric Key Algorithms
	Symmetric Key Algorithms
	Message Digest Algorithms
	Cipher Suites

	Firewalls
	Connection Filters
	Perimeter Authentication

	J2EE and WebLogic Security
	J2SE 5.0 Security Packages
	The Java Secure Socket Extension (JSSE)
	Java Authentication and Authorization Services (JAAS)
	The Java Security Manager
	Java Cryptography Architecture and Java Cryptography Extensions (JCE)
	Java Authorization Contract for Containers (JACC)

	Common Secure Interoperability Version 2 (CSIv2)

	Security Realms
	Introduction to Security Realms
	Users
	Groups
	Security Roles
	Security Policies
	Security Providers
	Security Provider Databases
	What Is a Security Provider Database?
	Security Realms and Security Provider Databases
	Embedded LDAP Server

	Types of Security Providers
	Authentication Providers
	Identity Assertion Providers
	Principal Validation Providers
	Authorization Providers
	Adjudication Providers
	Role Mapping Providers
	Auditing Providers
	Credential Mapping Providers
	Certificate Lookup and Validation Providers
	Keystore Providers
	Realm Adapter Providers
	Security Provider Summary

	Security Providers and Security Realms

	WebLogic Security Service Architecture
	WebLogic Security Framework
	The Authentication Process
	The Identity Assertion Process
	The Principal Validation Process
	The Authorization Process
	The Adjudication Process
	The Role Mapping Process
	The Auditing Process
	The Credential Mapping Process
	The Certificate Lookup and Validation Process

	Single Sign-On with the WebLogic Security Framework
	WebLogic Server Acting a SAML Source Site
	POST Profile
	Artifact Profile

	Weblogic Server Acting as SAML Destination Site
	POST Profile
	Artifact Profile

	Desktop SSO Process

	SAML Token Profile Support in WebLogic Web Services
	Sender-Vouches Assertions
	Holder-of-Key Assertion

	The Security Service Provider Interfaces (SSPIs)
	Weblogic Security Providers
	WebLogic Authentication Provider
	Alternative Authentication Providers
	WebLogic Identity Assertion Provider
	SAML Identity Assertion Provider
	Negotiate Identity Assertion Provider
	WebLogic Principal Validation Provider
	WebLogic Authorization Provider
	WebLogic Adjudication Provider
	WebLogic Role Mapping Provider
	WebLogic Auditing Provider
	WebLogic Credential Mapping Provider
	SAML Credential Mapping Provider
	PKI Credential Mapping Provider
	WebLogic CertPath Provider
	Certificate Registry
	WebLogic Keystore Provider
	WebLogic Realm Adapter Providers

	Terminology

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

