
Developer’s Guide

Version 4.4

Proprietary and Trademark
Information
Copyright © 1999-2002, PointBase Inc.

All Rights Reserved

Version 4.4

This product and related documentation are protected by copyright and distributed under
license agreement restricting its use, copying, reproduction, distribution, performance, and
decompilation. No part of this product, or any other product of PointBase, Inc. or related
documentation may be stored, transmitted, reproduced or used in any other manner in any form
by any means without prior written authorization from PointBase, Inc.

PointBase™ and UniSync™ are trademarks of PointBase, Inc.

Microsoft, Windows, Windows 95, Windows 98, Windows 2000, and Windows NT are
registered trademarks of Microsoft Corporation. Adobe and Acrobat are registered trademarks
of Adobe Systems, Inc. Java™ is a registered trademark of Sun Microsystems, Inc. Other
brands and products are trademarks of their respective holders.
Version 4.4 PointBase Developer 2

Table of Contents
Preface 7
Purpose 7
Audience 7
Release Notes 7
Document Feedback 8
Document Conventions Used in This Guide 8

Developer’s Overview 9
JDBC and PointBase 9
SQL and PointBase 10
Your Application and PointBase 11
What’s New With PointBase Embedded and PointBase Server 12

PointBase JDBC Basic Tutorial 13
Refreshing the Sample Database 13
Making a Connection to PointBase 14
Creating and Executing Static JDBC Statement 15
Retrieving Row Values From Non-Scrollable Result Sets 16
Closing and Committing Objects 17

PointBase JDBC Advanced Tutorial 18
Creating and Executing a Dynamic JDBC Statement 18
Using Result Sets 20
Flushing the Database Log 28
Performing Batch Operations 28
Retrieving Data From BLOB Columns 29
Retrieving Data From CLOB Columns 29
Creating Functions 30
Creating Stored Procedures 31

Basic SQL Data Objects 35
Data Objects Within PointBase Server and Embedded 35
Database 36
User 37
Schema 38
Table 39
Derived Table 39
Version 4.4 PointBase Developer 3

PointBase
View 40
Temporary Table 40
Column 41

SQL Data Types 43
CHARACTER [(length)] or CHAR [(length)] 44
VARCHAR (length) 44
BOOLEAN 45
SMALLINT 46
INTEGER or INT 46
BIGINT 47
DECIMAL [(p[,s])] or DEC [(p[,s])] 48
NUMERIC [(p[,s])] 48
REAL 49
FLOAT(p) 49
DOUBLE PRECISION 49
DATE 50
TIME 51
TIMESTAMP 51
CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE OB-

JECT [(length)] 52
BLOB [(length)] or BINARY LARGE OBJECT [(length)] 53
Data Conversions and Assignments 53

SQL Scalar and Aggregate Functions 56
SQL Scalar Numeric Functions 56
SQL Scalar Character String Functions 57
SQL Scalar Date/Time Functions 59
SQL Scalar CAST Function 61
SQL Scalar Routine Invocation 62
SQL Aggregate Functions 62
SQL Special Registers 64

Indexes and Constraints 65
Indexes 65
Keys 66
Constraints 67

Index Organized Tables 68

Search Conditions and Predicates 69
Search Conditions 69
Predicates 71

Transactions and Locks 77
Transactions 77
Row Level Locking 78
Transaction Isolation Levels 78

Distributed Transactions 80
PointBase’s Role in a DTP Environment 80
Version 4.4 PointBase Developer 4

PointBase
Java Transaction API (JTA) 82
JDBC 2.0 Optional Package API 82
Implementing javax.sql.XADataSource 83
Using PointBase in a DTP Environment 85
Mixing Global and Local Transactions 89
Unsupported in PointBase 90

SQL Security and Privileges 91
Predefined Users 92
Granting and Revoking Privileges to Users 93
Predefined Roles 96
Granting and Revoking Privileges to Roles 96

Application Programming
Interface Tools 101

Load and Unload API’s 101

Appendix A: SQL Reference 106
Conventions 106

Page Format Conventions 106
Syntax Conventions 107

Data Definition Language 107
CREATE SCHEMA 108
CREATE TABLE 109
CREATE VIEW 120
CREATE USER 122
CREATE ROLE 123
CREATE INDEX 124
CREATE FUNCTION 125
CREATE PROCEDURE 128
CREATE TRIGGER 131
ALTER TABLE 138
ALTER USER 140

Dropping SQL Objects 142
DROP INDEX 142
DROP FUNCTION or DROP PROCEDURE 143
DROP SCHEMA 144
DROP TABLE 144
DROP VIEW 145
DROP TRIGGER 146
DROP USER 147
DROP ROLE 147

Data Manipulation Language and
Data Query Language 148

SELECT 149
INSERT 162
UPDATE 165
DELETE 167

Data Control Language 168
CALL 168
RETURN 169
SET assignment 170
Version 4.4 PointBase Developer 5

PointBase
SET PATH 171
SIGNAL 172
VALUES 173

Transaction Control 174
SAVEPOINT 174
COMMIT 175
RELEASE SAVEPOINT 176
ROLLBACK 177
SET DATALOG 178
START TRANSACTION ISOLATION LEVEL 179

PointBase-Specific SQL 181
SHUTDOWN 181
BACKUP 181

Appendix B: Unsupported JDBC Methods in PointBase 185

Appendix C: Reserved Words 187

Appendix D: SQL Data Type Code 194
Version 4.4 PointBase Developer 6

Preface
Thank you for your interest in Version 4.4 of the PointBase product line.

Purpose
This guide describes how to develop applications using PointBase Server or Embedded. The
following is a list of some things you can expect from this guide.

• PointBase JDBC Tutorials
• Supported SQL Standards and Syntax
• PointBase Database Concepts and Techniques

Audience
This guide is geared towards the Java development community. Because PointBase is the
100% Pure Java Application Database, this guide assumes that you know the following
concepts:

• Have basic knowledge of the Standard Query Language (SQL).
• Have basic knowledge of the Java programming language.
• Have basic knowledge of Java Database Connectivity (JDBC).
• Understand basic database concepts.
• Have knowledge of your operating system and server and client concepts.

Release Notes

The following link displays the most up-to-date information on PointBase products.

www.pointbase.com/support/releasenotes.html
Version 4.4 PointBase Developer 7

http://www.pointbase.com/support/releasenotes.html

PointBase
Document Feedback

Please send comments or suggestions for all PointBase documentation to the following email
address.

pbdocfeedback@pointbase.com

Document Conventions Used in This Guide

Convention Identifies Examples

ALL
UPPERCASE
LETTERS

• Environment variables
• Database table names
• SQL Keywords

• PATH
• S_LST_OF_VAL
• CREATE TABLE

Courier
New font

• Directory, file, folder, and path
names

• Code
• Data you need to type

• c:\pointbase\img.bmp
• Set PointBase =
• Type Your Company

Name Here

Initial
Uppercase
Letters

PointBase names, objects, properties,
windows, screens, dialog boxes,
menus, buttons, tabs, applets, fields,
and icons

PointBase Embedded,
Business Component object,
List Editor window, Main
menu, and Cancel button

Italics • Book titles
• Cross references in an index or

glossary
• Variables
• Arguments to statements of

functions
• First appearance of a new word or

phrase
• Emphasis

• User’s Guide
• see also or see

• APPSRVR_4X_ROOT
• variable, rate, prompt$

• new word or phrase

• Do not do this before you
do that.

[] Optional italicized arguments or
characters inside angle brackets

[caption$]

{ | } Choice from listed arguments; use OR
operator (|) to separate

{Goto label | Resume Next |
Goto 0}
Version 4.4 PointBase Developer 8

mailto:docfeedback@pointbase.com

Developer’s Overview
This chapter outlines the PointBase Relational Database Management System (RDBMS),
referring to PointBase Server and Embedded. It describes the JDBC driver, the JDBC API, and
the SQL standards supported by PointBase. This chapter also describes new features and
changes with PointBase Server and Embedded Version 4.4.

JDBC and PointBase

The core JDBC Application Program Interface (API) consists of a set of call level interfaces
found in the java.sql package. The JDBC API is used by Java applications to access and
manipulate the data stored in a database by invoking SQL commands. For more details on the
JDBC API refer to the Sun Microsystems Inc.’s website: http://java.sun.com/ or the Sun
Microsystems JDBC manual.

PointBase fully supports JDBC 1.x, a subset of JDBC 2.0 API, a subset of JDBC 2.0 Extension
Interfaces, and a subset JDBC 3.0 which Table 1 describes. PointBase also supports additional
JDBC 2.0 Extension Interfaces for “distributed transactions.” (See "JDBC 2.0 Optional
Package API" on page 82.) You can also view any unsupported methods at, "Appendix B:
Unsupported JDBC Methods in PointBase" on page 185.
Version 4.4 PointBase Developer 9

PointBase
The PointBase JDBC Driver

The PointBase JDBC driver provides access to PointBase Server and Embedded. The driver
interprets the database Universal Resource Locator (URL) to connect to the appropriate
database. PointBase implements a “Type 4” JDBC driver, directly accessing PointBase Server
and Embedded using JDBC calls.

To use the PointBase JDBC driver in your application, you must first load and register the
driver with the JDBC DriverManager, and then provide the URL of the database to which you
want to connect. The database URL specifies the connection protocol, database location,
“listener” port, and the database name. Please refer to the basic tutorial chapter in this guide for
a more detailed explanation.

SQL and PointBase

PointBase Server and Embedded adheres to SQL-92 Entry and Transition levels, as defined by
ANSI and ISO standards. PointBase also implements some features defined in the SQL-99
(SQL3) standard.

For more specific information about using SQL with PointBase, please refer to “Appendix A:
SQL Reference,” of this guide and the “SQL Data Types” Chapter, which defines the data type
mappings from SQL to JDBC and Java.

Table 1: JDBC 3.0 API Supported by PointBase

API Description

java.sql.BatchUpdateException Provides information about errors that occurred during batch operations

java.sql.Blob Provides access to and manipulation of Binary Large Object data

java.sql.CallableStatement Provides access to and manipulation of Stored Procedures

java.sql.Clob Provides access to and manipulation of Character Large Object data

java.sql.Connection Constructs and manages the connection to the database

java.sql.DatabaseMetaData Provides metadata information about the database

java.sql.Driver Provides information about and manages the JDBC driver

java.sql.PreparedStatement Manages dynamic SQL statements

java.sql.ResultSet Provides metadata information about the result set

java.sql.ResultSetMetaData Manages result set metadata information

java.sql.Statement Manages static SQL statements

javax.sql.DataSource Provides access to JDBC drivers and manages data sources. [See "Additional
PointBase Methods" on page 85.]
Version 4.4 PointBase Developer 10

PointBase
Your Application and PointBase

This section shows how PointBase Server and Embedded interacts with Java applications to
provide database functionality.

Figure 1.2 shows PointBase Embedded, which is designed to be deployed as an integral part of
your application. Both the Java Application and PointBase Embedded run within the same
JVM. Applications can make multiple database connections to the PointBase database.

Figure 1.2 Using PointBase Embedded

Figure 1.3 shows PointBase Server, which is deployed using the traditional client-server
model. A thin client is deployed as an integral part of the client application that both reside in a
single JVM. This connects over the network to PointBase Server that runs in a second JVM.

Figure 1.3 Using PointBase Server

A diagram displaying a layered view of
a Java application lying on top of a
JDBC driver, which lies on top of
PointBase Embedded, which lies on top
of a Java virtual machine.

Java Application
Java Application

JDBC Driver
JDBC Driver

PointBase Embedded
PointBase Embedded

Java Virtual Machine
Java Virtual Machine

Database
DatabaseI/O

A layered diagram view of a Java application lying on top of a
JDBC driver, which is on top of a PointBase Client, which is on
top of a Java virtual machine. The PointBase Client
communicates with PointBase Server via TCP/IP.

Java Application

JDBC Driver

PointBase Client

Java Virtual Machine

PointBase Server

Java Virtual Machine

TCP/IP Database
Version 4.4 PointBase Developer 11

PointBase
What’s New With PointBase Embedded and PointBase Server

This section describes all of the new features and changes to PointBase Embedded and
PointBase Server.

PointBase Embedded/Server RDBMS Enhancements

Clustered Table Organization

With Release 4.4, PointBase Embedded and PointBase Server support clustered table
organization which allows faster searching and access by key. With a clustered table
organization data is physically ordered by values of the cluster. This results in significantly
increased performance for certain queries, such as retrieving a group of rows restircted
byarange of keys in the cluster index.

Select for Update

Select for Update functionality has been added to allow for the locking of a row selected with
the intent to update. This prevents any other transaction from updating the row until the
transaction that issued the select for update has completed.

User Callable Temporary Tables

User callable temporary tables allows for the creation of a global temporary table. These are
defined once, but materialize only when referenced in an SQL-Session. This temporary table
can be defined to exist for the life of the transaction that references the table, or for the life of
the current SQL-Session.

MOD function

Support for the database function MOD has been added

Parameterized values for LIKE...ESCAPE

Parameterized values for LIKE....ESCAPE have been added in 4.4, to allow the value for the
escape character to be set in a prepared statement.

Best Practices

PointBase requires that you use the same version of the client and server jar files. When
connecting to the PointBase Server, the PointBase Client jar file version must match the
PointBase Server jar file version. For example: use pbserver44GA.jar and pbclient44GA.jar.
Version 4.4 PointBase Developer 12

PointBase JDBC Basic Tutorial
This tutorial is intended as a quick reference to the JDBC API. PointBase recommends that
you consult a JDBC reference manual or http://java.sun.com for more comprehensive and the
most up to date information.

The basic tutorial describes fundamental JDBC operations to access and manipulate data using
the JDBC API with PointBase Server and Embedded. The code snippets in this tutorial are
taken from the sample application included in the
“<install_folder>\samples\server_embedded\” directory of your PointBase installation. The
examples in this tutorial include: connecting to the database, creating executable statements
and closing the connection to the PointBase database.

Each example provides: a brief description of the code snippet illustrated, a code snippet from
the sample application code, and any additional information to explain the code snippet in
more detail.

Refreshing the Sample Database

If you have deleted or overwritten the sample database provided with your PointBase
installation, you must refresh the sample database by using the following steps:

Step 1. Launch the “embedded_commander.exe” file in the “<install
directory>\tools\embedded” directory.

Step 2. Follow the prompts to create a new database called “sample.”

Step 3. Type run sample.sql. You must type the complete path to the
“sample.sql” file, for example,
run c:/pointbase/samples/server_embedded/sample.sql;
Version 4.4 PointBase Developer 13

PointBase
Making a Connection to PointBase

The following section describes the process of connecting to a PointBase database, using the
JDBC API.

Loading the PointBase JDBC Driver

This code snippet instantiates the PointBase JDBC driver:

// The PointBase Universal JDBC Driver
String l_driver = "com.pointbase.jdbc.jdbcUniversalDriver";

// Load the PointBase JDBC Driver
Class.forName(l_driver).newInstance();

Connecting to the PointBase database

This code snippet establishes a connection with the PointBase database by passing the database
URL, a username and password. By connecting with the database you create a connection
object (m_conn in the sample application). The User name and Password both default to
PBPUBLIC if they are not specified explicitly.

// The URL for the sample PointBase database
String l_URL = "jdbc:pointbase://" + p_product + "/sample";

// Database UserID
String l_UID = "pbpublic";

// Database Password
String l_PWD = "pbpublic";

// Establish connection with the database and return a Connection object
m_conn = DriverManager.getConnection(l_URL, l_UID, l_PWD);

The form of the PointBase URL, depends on which PointBase database you are using. The
following gives examples for the PointBase Embedded and Server databases:

• PointBase Embedded
"jdbc:pointbase:embedded:sample"

• PointBase Server
"jdbc:pointbase:server://<server ip address>/sample"

or

"jdbc:pointbase:server://<server name>/sample"

To create a new database, you must use one of the specified PointBase flags. The following
example uses the new flag.

"jdbc:pointbase:server://<server name>/sample,new"

Make sure you refer to the PointBase System Guide before using any flag in the URL. Each
flag adheres to different rules when applied. (See the chapter, “Advanced Tips for Starting
PointBase,” of the PointBase System Guide, and then browse the section, “Variable
Descriptions.”)
Version 4.4 PointBase Developer 14

PointBase
Using DataSource

Instead of using the DriverManager facility to connect to the PointBase database, you may use
a JDBC DataSource by initializing a DataSource object. The following example describes how
to connect to a PointBase database using a DataSource object.

// The URL for the sample PointBase database
String l_URL = "jdbc:pointbase://" + p_product + "/sample";

// Database UserID
String l_UID = "pbpublic";

// Database Password
String l_PWD = "pbpublic";

// Create DataSource object
jdbcDataSource ds = new jdbcDataSource();

ds.setDatabaseName(l_URL);
ds.setUser(l_UID);
ds.setPassword(l_PWD);
ds.setCreateDatabase(true);

// Establish connection with the database and return a Connection object
m_conn = ds.getConnection();

Creating and Executing Static JDBC Statement

The following code snippet gives an example of how to create and execute static JDBC
statements. First, it defines the SQL statement that the statement will execute, a statement is
then created and executed to return a read-only, non-scrollable Result Set object. Updateable
and scrollable result sets are discussed further in the advanced JDBC tutorial.

// Create the SQL Query
String SQL_SELECT = "SELECT customer_tbl.name, customer_tbl.city,"

+ " manufacture_tbl.name, manufacture_tbl.city"
+ " FROM customer_tbl, manufacture_tbl WHERE"

+ " UPPER(customer_tbl.city) = UPPER(manufacture_tbl.city)";

// Create a static JDBC statement
m_stmt = m_conn.createStatement();

// Execute the SQL statement and return a Non-Scrollable Result Set
m_rs = m_stmt.executeQuery(SQL_SELECT);
Version 4.4 PointBase Developer 15

PointBase
Retrieving Row Values From Non-Scrollable Result Sets

A non-scrollable result set only allows you to retrieve the values stored in the result set in
sequential order. The following example describes how to retrieve values from a non-
scrollable result set.

When a result set is returned, the cursor is positioned before the first row of the result set. To
access the first value of the result set you must advance the cursor to the first row using the
resultSet.next() method. This method is used to move the cursor from row to row in
the result set, and returns a Boolean TRUE value if there is data in the row to which the cursor
is pointing.

// Scroll through the result set (top to bottom)

while(p_rs.next())
{

// Loop through the columns
for (int i = 1; i <= rsColumns; i++)
{

// Get the data from the result set
// Place methods to retrieve data here

}

The following code snippets illustrate how to retrieve specific data types from the result set.
These methods would be placed inside the “for” loop of the snippet above.

// Retrieve JDBC Char and Varchar data types
String rsString = p_rs.getString(i);

// Retrieve JDBC Integer data types
Integer rsInt = new Integer(p_rs.getInt(i));

// Retrieve JDBC Smallint data types
Short rsShort = new Short(p_rs.getShort(i));

// Retrieve JDBC Boolean data types
Boolean rsBool = new Boolean(p_rs.getBoolean(i));

// Retrieve Float, Double, Numeric and Decimal JDBC data types
Double rsDouble = new Double(p_rs.getDouble(i));

NOTE: PointBase recommends that you use the ResultSet.getBigDecimal() method
to retrieve Numeric and Decimal JDBC data types. This method is omitted in this
example for JDK 1.1.8 and JView compatibility.

// Retrieve JDBC Real data types
Float rsFloat = new Float(p_rs.getFloat(i));

// Retrieve JDBC Date data types
java.sql.Date rsDate = p_rs.getDate(i);

// Retrieve JDBC Time data types
java.sql.Time rsTime = p_rs.getTime(i);

// Retrieve JDBC Time Stamp data types
java.sql.Timestamp rsTimestamp = p_rs.getTimestamp(i);
Version 4.4 PointBase Developer 16

PointBase
Closing and Committing Objects

The following examples describe how to close result sets, static JDBC statements and finally
database connections. However, before closing a connection to the database or when you have
completed a transaction, you must either commit or rollback any changes made.

Rolling Back or Committing the Transaction

The following code snippet describes how the sample application rolls back all changes made
to the database up to this point. It uses the rollback() method.

// Rollback any changes made to the database
// Use m_conn.commit() if you don't wish to rollback the transaction
m_conn.rollback();

NOTE: If you fail to commit a transaction prior to disconnecting from the database, and you
do not have “auto commit” switched on, the transaction will be rolled back by default
and any changes made will be lost.

Closing the Result Set

When you close a result set, you invalidate the result set. That is, it cannot be used for any
subsequent operations. The following code snippet describes how the sample application
closes the result set object.

// Close the Result Set
m_rs.close();

Closing the JDBC Statement

The following code snippet describes how the sample application closes the JDBC statement
object.

// Close the JDBC statement
m_stmt.close();

Closing the Connection to the Database

The following code snippet describes how the sample application closes the connection object.
This closes the connection to the database.

// Close the connection
m_conn.close();
Version 4.4 PointBase Developer 17

PointBase JDBC Advanced Tutorial
This tutorial is intended as a quick reference to the JDBC API. PointBase recommends that
you consult a JDBC reference manual or http://java.sun.com for more comprehensive and the
most up to date information.

The advanced tutorial describes how to perform more complex operations using the JDBC API
with PointBase Server and Embedded. The code snippets in this tutorial are taken from the
sample application included in the “<install_folder>\samples\server_embedded\src” directory
of your PointBase installation. The examples in this tutorial include returning scrollable result
sets and performing batch updates.

Each example provides: a brief description of the code snippet illustrated, a code snippet from
the sample application code, any additional information to explain the code snippet in more
detail. The examples assume you have already connected to the PointBase sample database.
(Refer to the Basic Tutorial for information about connecting to a PointBase database.)

Creating and Executing a Dynamic JDBC Statement

The following example describes how to create and execute a dynamic JDBC statement. A
dynamic JDBC statement can improve performance of applications relative to static JDBC
statements. Unlike a static JDBC statement, dynamic or prepared statements are only compiled
once, regardless of the number of times that they are used. For example, use a dynamic JDBC
statement is when you need multiple executions of a particular SQL statement that has
changing values associated with it.
Version 4.4 PointBase Developer 18

PointBase
Creating a Prepared Statement

The following code snippet shows an example of an SQL string for use within a prepared
statement. The preparedStatement() method uses this string as its argument. The
prepared statement executes the INSERT statement as many times as required. The question
marks indicate dynamic parameters that will be bound to the prepared statement. The prepared
statement object is created using the Connection.prepareStatement() method.

// Initialize SQL for the prepared statement
String SQL_PREP_INSERT = "INSERT INTO order_tbl (order_num, customer_num,"
+ " rep_num, product_num, sales_tax_st_cd, quantity,"
+ " shipping_cost, sales_date, shipping_date,"
+ " delivery_datetime, freight_company) VALUES"
+ " (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)";

// Create a prepared statement
m_prepStmt = m_conn.prepareStatement(SQL_PREP_INSERT);

Binding the Dynamic Variables to the Prepared Statement

The following code snippet provides an example of binding dynamic variables to the prepared
statement and executing the prepared statement. Bind the variables by using the
preparedStatement.set<DataType> method, for example
preparedStatement.setInt(). The first input argument for this method is the bind parameter
index (i.e. which question mark it represents), the second input argument is the desired value to
be bound. The prepared statement is executed using the
preparedStatement.execute() method.

// Bind the parameters to the prepared statement
m_prepStmt.setInt(1, var1[i]);
m_prepStmt.setInt(2, var2[i]);
m_prepStmt.setInt(3, var3[i]);
m_prepStmt.setInt(4, var4[i]);
m_prepStmt.setString(5, var5[i]);
m_prepStmt.setInt(6, var6[i]);
m_prepStmt.setDouble(7, var7[i]);
m_prepStmt.setDate(8, var8[i]);
m_prepStmt.setDate(9, var9[i]);
m_prepStmt.setTimestamp(10, var10[i]);
m_prepStmt.setString(11, var11[i]);

// Execute the SQL prepared statement and return a result set
m_prepStmt.execute();
Version 4.4 PointBase Developer 19

PointBase
Using Result Sets

This section explains how to create a statement object for returning and manipulating different
types of result sets. By returning a scrollable type of result set, you have the capability to
retrieve result set row values in any order. Conversely, using a non-scrollable result set, you
can only retrieve result set row values as you scroll forward. With scrollable result sets,
however, you can scroll either forward or backward. Additionally, you can also scroll by
specifying a position in the result set.

To begin returning any type of result set, you have the option to specify the result set type,
concurrency, and the holdability type, when you create the SQL statement. Refer to the
ResultSet interface section of Sun Microsystems’ JDBC 2.0 and 3.0 Javadocs for more
information about the following types, concurrencies, and holdability types.

Result Set Types, Concurrency, and Holdability

To create a scrollable result set you must specify its result set type. The following table
describes the different result set types:

In addition to the result set type, you must also specify the result set concurrency. It defines
whether or not the result set is read-only or updateable. In PointBase, you can specify
CONCUR_READ_ONLY or CONCUR_UPDATEABLE. Using CONCUR_UPDATEABLE,
you have the ability to update rows in a result set using methods in the Java programming
language rather than having to update them with an SQL statement.

For example, you can INSERT, UPDATE, or DELETE a result set row, and make your changes
permanent to the database. Using CONCUR_READ_ONLY, you may read the rows in the
result set only; you cannot change them in any way.

Result Set Type Description

TYPE_FORWARD_ONLY Specifies a result set that you can move the cursor
forward only. The default result set type is
TYPE_FORWARD_ONLY.

TYPE_SCROLL_INSENSITIVE Specifies a result set that you can scroll forward,
backward, and to a specified position. You may not see
changes made by other users in the current result set.

TYPE_SCROLL_SENSITIVE Specifies a result set that you can scroll forward,
backward, and to a specified position. It allows you to
see changes made by other users in the current result set.

Result Set Concurrency Description

CONCUR_READ_ONLY Specifies a result set to be read-only. It is the default
concurrency.
Version 4.4 PointBase Developer 20

PointBase
Finally, you may specify the holdability of your result set. The holdability of a result set
defines whether or not the current result set will close after an implicit or explicit transaction
commit. Regardless of holdability, PointBase releases locks once the transaction is committed.

If cursor holdability is specified, locks will be lost for this statement and result set. Since this
result set is still open, locks need to be re-acquired prior to the next operation on this result set.
PointBase automatically re-acquires table locks required for this Statement, but row locks will
not be re-acquired. Row locks on the newly fetched rows will be determined and acquired in
the next operation depending on the transaction-isolation level.

Transaction isolation cannot be preserved for result sets that specify
HOLD_CURSORS_OVER_COMMIT. Non-repeatable_read and phantom phenomenon may
happen even for isolation levels, REPEATABLE_READ and SERIALIZABLE after a
transaction commit.

So, the recommended isolation level for results sets specifying
HOLD_CURSORS_OVER_COMMIT is READ_COMMITED, which gives the most
consistent results when compared to result sets with the holdability type,
CLOSE_CURSORS_AT_COMMIT.

Additionally, result sets with the holdability type, HOLD_CURSORS_OVER_COMMIT, will
be closed after a ROLLBACK.

Note that methods for holdability are only supported in JDBC3.0. You must use JVM 1.4
or above to specify holdability. The following table explains the different holdability types
that PointBase supports:

CONCUR_UPDATEABLE Specifies a result set to be updateable.

Result Set Concurrency Description

Holdability Type Description

HOLD_CURSORS_OVER_COMMIT ResultSet objects are not closed; they are held open
when a commit operation is implicitly or explicitly
performed.

CLOSE_CURSORS_AT_COMMIT ResultSet objects are closed when a commit operation
is implicitly or explicitly performed. The default
holdability of ResultSet objects is implementation
defined. For backward compatibility,
CLOSE_CURSORS_AT_COMMIT is the default for
PointBase.

To change the holdability default, locate the
“pointbase.ini,” and specify the parameter
“cursor.holdAcrossCommit=true” to change the
default to HOLD_CURSORS_OVER_COMMIT.
Version 4.4 PointBase Developer 21

PointBase
Creating Scrollable Result Sets

The following code snippet illustrates how to create a statement object that can return a read-
only scrollable result set that closes after a transaction commit. You may substitute any of the
supported result set types, concurrencies, or holdability types. You may use either the
“createStatement(),” “prepareStatement(),” or “prepareCall()” method from the Connection
interface. The following uses the “createStatement()” method.

// Create a statement and set the Result Set parameters to make it scrollable

m_stmt = m_conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY, ResultSet.CLOSE_CURSORS_AT_COMMIT);

Notes on Scrollable Result Sets

While updating, inserting, or deleting a row in an updateable scrollable result set, PointBase
will change the lock on the row to an exclusive lock. If PointBase cannot acquire the lock, it
will throw an exception.

While using updateable scrollable result sets, you must set autocommit to false. If you set it
to true, PointBase commits the result sets, which invalidates them.

Verification

Before inserting any new rows or updating any row values, PointBase will perform any
necessary checking, including constraints and reference integrities. If a new row or row value
fails to satisfy any of them, PointBase will throw an exception. Also, while inserting a new
row, make sure to define all column values, because PointBase automatically sets undefined
column values to the database default.

Restrictions

PointBase enforces the following restrictions for scrollable result sets specified with the
CONCUR_UPDATEABLE and TYPE SENSITIVE properties:

• A query that returns a result set can select from only a single table, and cannot contain
any join operation.

• A query that returns a result set must select table columns only. It cannot select derived
columns or aggregates.

• A query that returns a result set cannot have ORDER BY, GROUP BY, or HAVING
clause.

Behavior

The PointBase JDBC driver will automatically specify the scrollable result set concurrency or
type, if it observes the following behavior:

• If you specify a result set to be CONCUR_UPDATEABLE and attempt any of the
previously mentioned restrictions, the PointBase JDBC Driver will return a result set of
CONCUR_READ_ONLY.

• If you specify a result set to be TYPE_SENSITIVE and attempt any of the previously
mentioned restrictions, the PointBase JDBC Driver will return a result set of
TYPE_INSENSITIVE.
Version 4.4 PointBase Developer 22

PointBase
Moving the Cursor

After returning a scrollable result set using a statement object, you can move the result set
cursor. The following examples describe how the sample application moves the cursor in a
scrollable result set. Similar to non-scrollable result sets, you access sequential rows of the
result set by using the ResultSet.next() method. You can also move the cursor
anywhere in a scrollable result set using the following methods.

First()

The following code snippet describes the first() method. It moves the cursor to the first
row in the result set.

// Move the cursor to the first entry in the result set - this is the data we just
// inserted
m_rs.first();

Last()

The following code snippet demonstrates the last() method. It moves the cursor to the last
value in the result set m_rs

// Move the cursor to the last entry in the result set
m_rs.last();

Previous()

The following code snippet demonstrates the previous() method. It moves the cursor to
the previous position in the result set m_rs.

// Moving back to the previous entry in the result set
m_rs.previous();

Absolute()

The following code snippet demonstrates the absolute() method. It moves the cursor to a
specific position in the result set. For example, this code snippet describes how to move the
cursor to the first row in the result set.

// Moving to the first entry in the result set using its absolute row reference
m_rs.absolute(1);

BeforeFirst()

The following code snippet demonstrates the beforeFirst() method. It moves the cursor
before the first value in the result set.

// Moving before the first row
m_rs.beforeFirst();

AfterLast()

The following code snippet demonstrates the afterLast() method. It moves the cursor
after the last value in the result set.

// Move after the last row
m_rs.afterLast();
Version 4.4 PointBase Developer 23

PointBase
Relative()

The relative() method moves the cursor to the specified position relative to the current
position of the cursor. This code snippet demonstrates how to move the cursor two rows
forward from the current position of the cursor.

// Move cursor relative to current position
m_rs.relative(2);

Next()

The following code snippet demonstrates the next() method. It moves the cursor to the next
row in the result set m_rs.

// Move the cursor to the next entry in the result set
m_rs.next();

Setting the Direction of the Cursor in Scrollable Result Sets

When you change the direction of the cursor, it effectively reverses all of the previous
methods. To set the direction of the cursor you must use the set.FetchDirection()
method. The fetch direction is set to FETCH_FORWARD by default, and the cursor moves in
the forward direction. PointBase supports the two following fetch directions:

FETCH_REVERSE

The following code snippet demonstrates how to reverse the direction of the cursor in the
scrollable result set.

// Set the cursor to scroll backwards through the Result Set
m_rs.setFetchDirection(ResultSet.FETCH_REVERSE);

As an example of cursor behavior with the fetch direction set to FETCH_REVERSE, if you
call the beforeFirst() method, the cursor is moved after the last row of the result set.

FETCH_FORWARD

The following code snippet demonstrates how to set the fetch direction of the scrollable result
set to FETCH_FORWARD.

// Set the cursor to scroll forwards through the result set
m_rs.setFetchDirection(ResultSet.FETCH_FORWARD);

Retrieving Information About a Result Set

The following examples describe how to retrieve information about a result set. This example
refers to only a few of the methods available for retrieving information about the result set.
Refer to JDBC API documentation at http://java.sun.com or your JDBC reference for a
comprehensive list of the available methods, and “Appendix B: Unsupported JDBC Methods
in PointBase,” for the list of methods that PointBase does not support.
Version 4.4 PointBase Developer 24

PointBase
ResultSet.getType()

The resultSet.getType() method can return TYPE_SCROLL_INSENSITIVE or
TYPE_FORWARD_ONLY. The following code snippet describes how to get the type of the
result set m_rs.

// Check if result set is scroll insensitive
m_rs.getType()

ResultSet.getConcurrency()

The getConcurrency() method can return CONCUR_READ_ONLY or
CONCUR_UPDATEABLE. The following code snippet describes how to get the concurrency
of the result set m_rs.

// Check the concurrency of the result set
m_rs.getConcurrency()

ResultSet.getMetaData()

The getMetaData() method obtains information about the result set, for example, the
column names and column data types. The following code snippet describes how to get the
meta data of the result set m_rs.

// Retrieve Result Set Meta Data to obtain result set properties
m_rsmd = m_rs.getMetaData();

Setting the Number of Returned Rows in Scrollable Result Sets

The following code snippets demonstrate how to set the fetch size or number of returned rows
in a scrollable result set using two different methods. This is applicable to PointBase Server
only. Also note that in most cases the default fetch size is optimal.

ResultSet.setFetchSize(int p_Rows)

The result set can change its default fetch size using this method. It will only affect the
specified result set.

m_rs.setFetchSize(2);:

To set the default fetch size for all result sets created by a statement object, you can use the set
fetch size using the Statment object. This method affects all result sets generated by this
statement. For example:

Statement.setFetchSize(int p_Rows)

Updating Row Values in Scrollable Result Sets

To update a row value in a result set, PointBase provides you with four different methods.
Among their uses, you can set the row value of the result set that you want to update and most
importantly, perform the actual update to the underlying database. PointBase also provides two
additional methods that you can use to perform the following: cancel all updates to a row or
verify a row value you just updated.
Version 4.4 PointBase Developer 25

PointBase
updateXXX()

To update a row value in a result set, you must first set the value using the method,
updateXXX(). It has two different forms:

• update<datatype>(int columnPosition, value)
• update<datatype>(String columnName, value)

This method supports all PointBase data types. The following example sets the quantity
column value in the current row to 150 using the Int data type:

// m_rs.updateInt() method updates the field in question with supplied integer value
m_rs.updateInt("quantity", 150);

updateRow()

To update the row value of the actual underlying database on the next transaction commit, you
use the method, updateRow(). After updating a row value, you will be able to view your
updated row value in the current result set. The following is an example of how to use this
method:

// m_rs.updateRow() method updates the row in the database.
m_rs.updateRow();

rowUpdated()

To verify that you updated the row value in the underlying database, you may use the method,
rowUpdated(). The following is an example of how to use this method:

m_rs.rowUpdated()

cancelRowUpdates()

To cancel the updated row value in the result set, you may use the method,
cancelRowUpdates(). You cannot cancel the update if you have already made the change to
the underlying database; that is, you cannot cancel the update after calling the updateRow()

method. The following is an example of how to use this method:

// m_rs.cancelRowUpdates() cancels in case a wrong update has been made.
m_rs.cancelRowUpdates();

Inserting Rows Into Scrollable Result Sets

To insert a new row into a result set, PointBase provides you with four methods. Using them,
you perform the following things: place the cursor to the insertion row in case it is not
currently on the row, to which you want to insert; set the new values of the row, similar to
updating a row value; and, insert a new row making it permanent to the underlying database.
After inserting a new row, you must use another method to move the cursor from the insertion
row to the current row, a non-insertion row.

moveToInsertRow()

To move the result set cursor to the row into which you want to insert, you must use the
method, moveToInsertRow(). The following is an example of how to use this method:

m_rs.moveToInsertRow();

updateXXX()

You must use the method, updateXXX() to set the row values for the new row, as you similarly
used this method to update a row value. See previous section on updating row values.
Version 4.4 PointBase Developer 26

PointBase
insertRow()

To permanently insert the new row into the underlying database on the next transaction
commit, you use the method, insertRow(). The following is an example of how to use this
method:

m_rs.insertRow();

moveToCurrentRow()

To move the cursor to a non-insertion row, if you do not want to insert another row, you must
use the method, moveToCurrentRow(). The following is an example of how to use this
method.

m_rs.moveToCurrentRow();

Deleting Rows From Scrollable Result Sets

To delete rows from result sets, PointBase provides you with two methods. For example, one
method deletes the row permanently from the underlying database on the next transaction
commit. The second method verifies if the row has been deleted from the database. Please note
that if you try to retrieve a deleted row value from the current result set, PointBase will return
only NULL values.

deleteRow()

To permanently delete a row from the underlying database, use the method, deleteRow(). The
following is an example of how to use this method:

// Deleting currentrow.
m_rs.deleteRow();

rowDeleted()

To verify whether or not a row still exists in the current result set, use the method,
rowDeleted(). The following is an example of how to use this method:

mrs.rowDeleted();

Viewing Changes to Current Result Sets

To view changes made to a row in the current result set by other users, the row must be in a
result set that was defined with the TYPE_SENSITIVE property. All values are also refetched
subject to the transaction-isolation level. If the result set was created with the required
properties, you can call the ResultSet method, “refreshRow().”

It refreshes the current row with its most recent value in the database. This method cannot be
called when the result set cursor is on the insert row, however. The following is an example of
how to use the “refreshRow()” method.

mrs.refreshRow();
Version 4.4 PointBase Developer 27

PointBase
If you also specified the result set with the property, CONCUR_UPDATEABLE, you may
want to use the “refresh()” method before calling the “udpateRow()” method to verify the
newest row values. The following is an example of how to verify the newest row values before
calling the “updateRow()” method.

mrs.refresh();
// Verify row values are correct
mrs.updateRow();

Flushing the Database Log

The following examples describe how to switch to a fresh database log file. The old log file is
deleted as soon as it is no longer required by the DBMS. The database log file is flushed in
different ways for embedded and server. The code snippets below illustrate log file switching
fro both products:

// Switch log file for PointBase Embedded
((com.pointbase.jdbc.jdbcConnection)m_conn).switchLogFile();

// Switch log file for PointBase Server
((com.pointbase.net.netJDBCConnection)m_conn).switchLogFile();

Performing Batch Operations

The following examples demonstrates how to perform batch operations. Batch updates can
improve performance for large numbers of SQL operations. You can use them for any SQL
operation that returns an integer update count, but not a result set for example, INSERT,
UPDATE, or DELETE. You can also use batch operations for any SQL DDL statement, for
example, CREATE TABLE, DROP TABLE, or ALTER TABLE.

NOTE: Batch updates offer the most significant performance improvement when used with
PointBase Server, due to reduced network access.

The following code snippet demonstrates the creation of a prepared statement, binding of
variables, and adding the prepared statement to a batch using the
preparedStatement.addBatch() method. The batch is executed, using the
preparedStatement.executeBatch() method, once all the required prepared
statements have been added.

// Create a SQL statement for the batch update
String SQL_BATCH_UPDATE = "UPDATE sales_tax_code_tbl SET effect_date = ?, rate = ? where
state_code = ?";

// Prepare a statement
m_prepStmt = m_conn.prepareStatement(SQL_BATCH_UPDATE);

for (int i=0; i<=9; i++)
{

// Binding variables to the prepared statement
m_prepStmt.setDate(1, java.sql.Date.valueOf(BATCH_DATA[1][i]));
m_prepStmt.setFloat(2, (float)Float.valueOf(BATCH_DATA[2][i]).floatValue());
m_prepStmt.setString(3, BATCH_DATA[0][i]);

// Adding the prepared statement to the batch
m_prepStmt.addBatch();

}

Version 4.4 PointBase Developer 28

PointBase
// Execute the batch
int[] updateCounts = m_prepStmt.executeBatch();

NOTE: If Auto commit is set ON, the transaction will be committed when the
preparedStatement.executeBatch() method is called.

Retrieving Data From BLOB Columns

The following code snippet shows how the sample application retrieves BLOB values from the
result set using the getBLOB() method to retrieve the column value. The final two operations
create a binary stream from the BLOB object to read it into a byte array. This byte array can
then be used as required by your application.

// Retrieve the BLOB containing the sales rep image from the second column of
// the result set and find out its length

Blob image = m_rs.getBlob(2);
int lob_length = (int)image.length();

// Create a Buffered input stream from the BLOB data and read it into a byte
// array
BufferedInputStream bufferedInStream = new BufferedInputStream(image.getBinaryStream()
);
byte[] byteBuffer = new byte[lob_length];
bufferedInStream.read(byteBuffer, 0, lob_length);
bufferedInStream.close();

Retrieving Data From CLOB Columns

The following code snippet shows how the sample application retrieves CLOB values from the
result set using the getCLOB() method to retrieve the row value. The final two operations
create a character stream from the CLOB object to read it into a character array. This character
array can then be used as required by your application.

// Retrieve the CLOB containing the sales rep resume from the result set and determine
its length
Clob resume = m_rs.getClob(3);
lob_length = (int)resume.length();

// Create a buffered reader to read the character stream into a character array
BufferedReader bufferedReader = new BufferedReader(resume.getCharacterStream());
char[] charBuffer = new char[lob_length];
bufferedReader.read(charBuffer, 0, lob_length);
bufferedReader.close();
Version 4.4 PointBase Developer 29

PointBase
Creating Functions

This section describes functions in PointBase. Using a function, you can transparently convert
data to be stored in a PointBase database. Functions may only return a single value of the type
specified in the CREATE FUNCTION SQL statement. To create a function (stored function),
you must use the CREATE FUNCTION statement and specify an external Java method for the
stored function to invoke. This section explains how to create and use stored functions in
PointBase.

External Java Methods and Functions

In PointBase, functions may be implemented using external Java methods. These user-defined
methods manipulate SQL data when the function is called by the database.

Creating an External Function

Suppose you want to INSERT a european formatted date into a table making sure that the date
format is Y2K compatible. The following external Java method, dateConvert, is called from the
stored function in the database. This external Java method converts a date from dd-mm-yyyy to
yyyy-mm-dd, and then converts it to a java.sql.Date type.

public static java.sql.Date dateConvert(String p_value)
{

String l_day = new String(p_value.substring(0,2));
String l_month = new String(p_value.substring(2,6));
String l_year = new String(p_value.substring(6,10));

return(java.sql.Date.valueOf(l_year + l_month + l_day));
}

Specifying the External Function in a Stored Function

To invoke the dateConvert external Java method from a stored function, you must use the
CREATE FUNCTION statement. The dateConvert external Java method is called from the
class, SampleExternalMethods.

In order for the database to access this external Java method, the class SampleExternalMethods
must be included in the database CLASSPATH. For PointBase Server, it must be in the Server
CLASSPATH, but not in the Client CLASSPATH.

// SQL statement to Create a function
String SQL_CREATE_FUNC = "CREATE FUNCTION dateConvert(IN P1 VARCHAR(20))"

+ " RETURNS Date"
+ " LANGUAGE Java"
+ " NO SQL"
+ " EXTERNAL NAME \"SampleExternalMethods::dateConvert\""
+ " PARAMETER STYLE SQL";

// Create a statement and execute the SQL
m_stmt = m_conn.createStatement();
m_stmt.executeUpdate(SQL_CREATE_FUNC);

// Close the statement
m_stmt.close();
Version 4.4 PointBase Developer 30

PointBase
NOTE: The stored function converts the data before inserting it into the database, and after
selecting data from the database.

Using the Function

The following code snippet describes how the dateConvert function is used in a SELECT
statement by the Sample Database Application.

// SQL SELECT using the external function to convert the date in the WHERE clause
String SQL_USE_FUNC = "SELECT city FROM office_tbl WHERE open_date ="

+ " dateConvert('01-02-1993')";

// Create the statement
m_stmt = m_conn.createStatement();

// Execute the statment
m_rs = m_stmt.executeQuery(SQL_USE_FUNC);

Creating Stored Procedures

You can create and use PointBase stored procedures in a similar way to functions. Stored
Procedures may also use external Java methods to perform the procedure action. In addition,
stored procedures may take any number of input parameters and return any number of output
parameters, unlike functions which may only return one parameter. Stored procedures are
invoked explicitly using JDBC callable statements or may be invoked using the CALL
command in a trigger action. However, they cannot be invoked within SQL statements like a
function.

Using INOUT and OUT Parameters

When using a stored procedure with Java external methods, special care must be taken to
properly handle parameters passed to the procedure. Parameters may be of type IN, OUT, or
INOUT. Java passes arguments by value, not by reference; therefore, it is generally impossible
to use stored procedures with argument values that need to be returned through the parameters.
PointBase has added special JDBC Wrapper classes to remedy this issue. This section explains
how you can use this wrapper with INOUT and OUT parameters.
Version 4.4 PointBase Developer 31

PointBase
Using JDBC Wrapper Classes

The jdbcInOut Wrappers are used by the database to enable the database to return values from
Java methods using Callable Statements. They are only required for OUT or INOUT
parameters. Each wrapper class has two constructors, a get and set method, and a toString
method. The wrapper classes are contained in the package "com.pointbase.jdbc" included in
your PointBase jar file.

The wrapper name corresponds to the JAVA data type represented by the wrapper. All
mappings between SQL and JAVA data types are compliant with the JDBC specification. For
the JDBC Binary and BLOB data types, a wrapper is not required, and a Java byte array is
passed as the input argument to your Java method.

• jdbcInOutDateWrapper—>Date Data Type
• jdbcInOutTimeWrapperTime—>Time Data Type
• jdbcInOutTimeStampWrapper—>TimeStamp Data Type
• jdbcInOutBooleanWrapper—>Boolean Data Type
• jdbcInOutLongWrapper—>BigInt Data Type
• jdbcInOutDoubleWrapper—>Double and Float Data Types
• jdbcInOutFloatWrapper—>Real Data Type
• jdbcInOutIntWrapper—>Integer Data Type
• jdbcInOutStringWrapper—>Char, Varchar, Clob Data Types
• jdbcInOutShortWrapper—>SmallInt Data Types
• jdbcInOutBigDecimalWrapper—>Decimal and Numeric Data Types

Creating an External Procedure Using JDBC Wrapper Classes

The code snippet below defines the getCost external procedure found in the class
SampleExternalMethods. Initially, you must first use a constructor to obtain a connection to
the database.

*/

import java.sql.*;
import com.pointbase.jdbc.jdbcInOutDoubleWrapper;

public class SampleExternalMethods
{

// A connection object to allow database callback
private Connection m_conn;

// Constructor accepts a java.sql.Connection object to allow database callback
public SampleExternalMethods(Connection p_conn)
{

m_conn = p_conn;
}

Version 4.4 PointBase Developer 32

PointBase
The following Java method is called as a stored procedure by the database. Procedure uses the
net order cost (INOUT) and state code (IN) to return the net order cost (INOUT). This
particular procedure also makes a callback into the database

NOTE: A jdbcInOutDoubleWrapper is passed into this method as an argument rather than the
FLOAT JDBC data type that was bound to the callable statement.

public static void getCost(String p_productInfo, String p_state, jdbcInOutDoubleWra
pper p_price)

{
try
{

// Query the database for the sales tax rate
Statement l_stmt = l_conn.createStatement();
ResultSet l_rs = l_stmt.executeQuery("SELECT rate FROM public.sales_tax_cod

e_tbl"
+ " WHERE state_code ='" + p_state + "'"

);

// Calculate the totoal cost of the item using the sales tax rate
// obtained from the database.
l_rs.next();
float total_cost = (float)p_price.get() * (1 + (l_rs.getFloat(1)/100));

// Bind the total cost to the INOUT variable to return
p_price.set(total_cost);

// Close the result set
l_rs.close();

// Close the statement
l_stmt.close();

}

Executing a Stored Procedure

To allow a stored procedure to call out from the database system to an external procedure,
follow these two mandatory steps:

Create a stored procedure in the database.

The code snippet below shows how to create stored procedure, getCost in PointBase, where
EXTERNAL NAME refers to the class and the getCost external procedure.

In the following example, getCost is a method contained within the class
SampleExternalMethods.

// SQL statement to create a stored procedure
String SQL_CREATE_PROC = "CREATE PROCEDURE getCost(IN P1 VARCHAR(20), IN P2

VARCHAR (2), INOUT P3 FLOAT)"
+ " LANGUAGE JAVA"
+ " SPECIFIC getCost"
+ " NO SQL"
+ " EXTERNAL NAME \"SampleExternalMethods::getCost\""
+ " PARAMETER STYLE SQL";

// Create a SQL statement
m_stmt = m_conn.createStatement();

// Execute the SQL
Version 4.4 PointBase Developer 33

PointBase
m_stmt.executeUpdate(SQL_CREATE_PROC);

// Close the statement
m_stmt.close();

Create a JDBC CallableStatement that executes the stored procedure.

The code snippet below is an example of how to create a CallableStatement that invokes the
stored procedure.

You must set the appropriate inbound arguments with values. After the execution of the
CallableStatement, you may obtain the values for each applicable outbound argument.

// Create SQL to invoke stored procedures
String SQL_USE_PROC = "{ call getCost(?,?,?) }";

// Create a callable statement with three binding parameters
m_callStmt = m_conn.prepareCall(SQL_USE_PROC);

m_callStmt.setString(1, m_productInfo);
m_callStmt.setString(2, "CA");
m_callStmt.setFloat(3, 449.00F);

m_callStmt.executeQuery();

// Close the callable statement
m_callStmt.close();

For further details on OUT and INOUT parameters, see ‘JDBC API Tutorial and Reference’,
Second Edition, Sun Microsystems, by White, Fisher, Cattell, Hamilton and Harper.
Version 4.4 PointBase Developer 34

Basic SQL Data Objects
This section describes basic data objects relative to PointBase Server and Embedded. It
describes each data object individually and explains how PointBase data objects interact with
one another. Read this chapter before creating a database to fully understand the behavior of
each data object within PointBase Server and Embedded.

Data Objects Within PointBase Server and Embedded

The following diagram illustrates the relationship between basic data objects in PointBase
Server and Embedded. The database itself is a data object that encompasses all other data
objects. A database contains Schema objects, which in turn contain Table objects. Tables
whose values are derived from other tables are called Derived Tables or Views. Finally, a
Column is located within a Table. Columns are the smallest data object within PointBase
Server and Embedded.

Database

Figure 1.1 PointBase Server and Embedded Data Objects

A diagram displaying the
following data objects within a
database: user, schema, table,
column, view.

User

Column

Table

Schema

View
Version 4.4 PointBase Developer 35

PointBase
Database

PointBase Server and Embedded can contain one or more database(s). A database is at the
highest level of abstraction and is simply an operating system file. PointBase stores all data in
dbn files and all log information in wal files. For example, the sample database file is
“sample.dbn” and the sample log file is “sample.wal.” You can locate these files in the
directory, “<install directory>\databases.”

PointBase automatically creates other .dbn or .wal files like sample$$1.dbn or
sample$$1.wal when a .dbn or .wal file reaches its maximum size. All automatically
created .dbn and .wal files have the same page size as the original .dbn or .wal file.

Database Size Limit

For the default page size of 4 K, the database size is limited to 0.5 terabytes. If the default page
size is 1 K, the database size is limited to 128 GB, and for the default page size of 32 K, the
database is limited to 4 terabytes.

Because PointBase supports multiple page sizes for a database, the previous limits are true
assuming that the database does not use additional page sizes. If the database has more than
one page size, the database size limit increases. For example, if the database has two different
page sizes, one page size of 4K (0.5 terabytes), plus another page size of 32K (4 terabytes), the
total database size limit is 4.5 terabytes.

Concurrent Databases

PointBase supports multiple databases, but only one database concurrently. If multiple
connections are made to PointBase Server and Embedded, then each connection needs to
access the same database. When the set of connections to a particular database is completed,
then the next set of connections can be initiated to another database.

Typically, multiple databases separate data for different applications. Schemas can be used to
accomplish the same effect. Refer to “Schemas” in this chapter for more information

Read-Only Support

Using PointBase, you may query a database on a CD. In this section we use the term “read-
only database,” when the database files are on a CD or, when the database files are set to the
operating system property “read-only.” PointBase supports only SELECT statements for read-
only databases. Using any other statements, such as INSERT, CREATE TABLE,... etc. with a
read-only database causes PointBase to throw an exception. The error message states “Invalid
statement.”

To have a database on a CD, you must first create the database on a writable drive. After
creating the database, connect to it using the PointBase Commander or any Java program [see
PointBase System Guide], and then close the connection without performing any other
operations during the connection.
Version 4.4 PointBase Developer 36

PointBase
By performing this step, you ensure that all the data is completely recovered from the log
(.wal) before loading the .dbn and .wal files on a CD. You cannot recover data from a
database on a CD. If the database on a CD needs recovery, the application terminates with the
following message on the screen (standard system output): “Database needs recovery from log.
This version does not support recovery.”

To connect to the database on CD or any other location use the pointbase.ini file’s
"database.home" parameter or the Java command line -D option to specify the location of
the database. See the PointBase System Guide for more information about starting PointBase.

Restrictions

Operations that involve writing to the database (dbn) or log (wal) files are not allowed.
Additionally, PointBase does not allow the following statements, because they use temporary
tables and writes into the database.

• Non-correlated subqueries that are part of IN predicate
• Read-only views
• Scrollable Cursors

User

Databases contain collections of users. Users are a means of providing security at the schema
level. Each schema has explicit user(s) associated with it, one of which must own the schema.
The schema owner has full access to the schema and determines the access privileges of the
other users. To manage users, use the CREATE USER and DROP USER SQL statements.

When you create a PointBase database using PointBase Commander, PointBase Console, or
the JDBC API, the system creates a default user PBPUBLIC with the password PBPUBLIC
who owns the default schema PBPUBLIC. Only the PBSYSADMIN, the database owner, or
users with the PBDBA role may create new users. (See "SQL Security and Privileges" on page
91.)

You cannot connect to a database as a user who does not exist in the SYSUSERS table, which
is one of the system tables in the POINTBASE schema. For a list of predefined system tables
and their attributes within the POINTBASE schema, please refer to “Appendix A: System
Tables” of the PointBase System Guide.
Version 4.4 PointBase Developer 37

PointBase
Schema

Databases contain collections of independent schemas. A schema is a logical grouping of
tables, indexes, triggers, routines, and other data objects under one qualifying name.
Internationalization characteristics and user-level security can also be defined for schema
objects.

When a database is created using PointBase Commander, PointBase Console, or the JDBC
API, PointBase Server and Embedded creates two schemas:

• An internal schema called POINTBASE, in which the system keeps all of the system
catalogs and tables

• A default schema called PBPUBLIC

You cannot create any user-defined data objects within the POINTBASE schema. For a list of
predefined system tables and their attributes within the POINTBASE schema, please refer to
“Appendix A: System Tables” in the PointBase System Guide.

Previous Schema PUBLIC

In versions 4.1 and earlier, PointBase used the default schema, PUBLIC. By default, it also has
the password and user, PUBLIC. These names will still remain effective in versions 4.2 and
later; however, PointBase will now use PUBLIC for superficial purposes only. That is, you
may still connect to the database using PUBLIC. But internally, PointBase converts the user
and the password, PUBLIC, to PBPUBLIC every time you connect, and PointBase recognizes
the schema, PUBLIC as if it were the schema, PBPUBLIC. Additionally, you cannot drop the
superficial schema name, PUBLIC. However, you may create and later drop a new schema
called PUBLIC, and PointBase will not affiliate it with the schema, PBPUBLIC.

Schema Owners

The PointBase predefined user, PBPUBLIC, with the password, PBPUBLIC, is the owner of
the PBPUBLIC schema and has full access to all objects within this schema. The predefined
user, PBSYSADMIN, has access to all objects in the database. (See "Predefined Users" on
page 92.)

Unless you specify a different user explicitly, you automatically become the owner of a schema
if you created it. The schema owner has full access privileges and must grant access privileges
to other users for them to access that schema. PointBase recommends that you create new
schemas with the same name as your user name (if you are the schema owner) or with the same
names as the user who owns the schema. When you access the database, PointBase will
automatically search for the schema with the same name as the current user, making this the
current schema.

Schema Referencing

Data objects are mapped to the current schema by default, without the need for an explicit
reference. The CURRENT_SCHEMA special register contains the name of the current
schema. Please refer to the “SQL Scalar and Aggregate Functions” chapter in this guide for
more information about the CURRENT_SCHEMA special register.
Version 4.4 PointBase Developer 38

PointBase
In databases with multiple schemas, data objects must explicitly reference the schema for
which they are intended. If no explicit reference is made, PointBase automatically tries to
associate the data object with the current schema. If the data object cannot be logically
associated with the current schema, it references the default (PBPUBLIC) schema.

In databases with multiple schemas, when referencing a data object that is not in the current
schema, you must append the schema name to the data object name, separated by a period. For
example, if you have a schema named Employee_Info, which contains a table named
Employees. Then, you must refer to that table in the following way:

Employee_Info.Employees

Managing Schemas

To manage schemas, use the CREATE SCHEMA and DROP SCHEMA SQL statements.
CREATE SCHEMA initially creates a schema and conversely, DROP SCHEMA drops a
schema. The user that creates the schema owns the schema unless the optional
AUTHORIZATION qualifier is used to specify another user. The schema owner can grant
applicable privileges to the appropriate users.

Table
A table is comprised of a number of column objects and contains rows of data. A row is a
nonempty sequence of values that correspond to the column objects in the table. Every row of
the same table has the same number of columns and contains a value for every column of that
table.

The following are three types of tables used in PointBase Server and Embedded:

• Base Table: a table whose data is actually stored in the database.
• Derived Table: a table obtained from other tables directly or indirectly through the

evaluation of a query expression.
• Global Temporary Table: a table that persists data for as long as the current database

connection or transaction exists. The table definition, however, persists until you
manually drop it from the database. Please see sdf for more information about creating
global temporary tables and their behavior.

NOTE: Due to known limitations, it is highly recommended that you always use uppercase
letters when specifying table names or column names wherever applicable.

Derived Table
A derived table is a table derived directly or indirectly from one or more other tables by the
evaluation of a <query expression> whose result has an element type that is a row type. The
values of a derived table are derived from the values of the underlying tables when the <query
expression> is evaluated.

A viewed table is a named derived table defined by a <view definition>. A viewed table is
sometimes

called a view.
Version 4.4 PointBase Developer 39

PointBase
View
A view is a derived table with a name. They provide an alternative way to look at the data of
one or more tables. This view derives its values from the evaluation of a query expression in a
CREATE VIEW statement. The query expression can reference base tables, other views,
aliases, etc. Essentially, a view is a stored SELECT statement, of which you can retrieve the
results at a later time by querying the view as though it were a table. See also "CREATE
VIEW" on page 120. A view can be read-only or updateable. Currently, PointBase supports
Read-Only Views only.

The definition of each view is stored in PointBase’s system catalog SYSVIEWS. If no errors
are encountered, PointBase adds the view name to the SYSVIEWS catalog table. Additionally,
all referenced columns of all referenced tables will be added to the SYSVIEWTABLES
catalog table.

Security for Views

Because a view is a type of table, you can grant privileges on it, and the privileges can be
different than the privileges on any base table from which the view was derived. Unlike base
tables, however, an owner of a view does not automatically have the authority to grant
privileges on the view to others.

To grant privileges on the view to others, you must have grant privileges on every referenced
column and table in the view's query expression. If you have privileges revoked on any of the
referenced columns or tables, you also have the same privileges revoked on the view.

Revoking privileges on a view using the RESTRICT option will raise an error, if any users of
that view had the grant option privilege and they granted that privilege to other users. If you
revoke privileges on a view using the CASCADE option, you will revoke all the users’
privileges on that view. Likewise, you must verify if the view has any dependent views, and
verify the privileges on those as well.

NOTE: Revoking privileges on a view does not affect base table privileges.

Temporary Table
A temporary table is a kind of base table. Temporary table is created by CREATE TABLE
command with TEMPORARY keyword. For temporary table, an indication of whether ON
COMMIT DELETE ROWS or ON COMMIT PRESERVE ROWS needs to be specified.
Temporary table can be global temporary, created local temporary or declared local temporary
table. PointBase only supports global temporary tables. Global temporary table is a named
table defined by a <table definition> that specifies GLOBAL TEMPORARY. Global
temporary table are effectively materialized only when referenced in a SQL-Session. Different
SQL-Sessions cause a distinct instance of that created global temporary table to be
materialized. That is, the contents of global temporary table cannot be shared between SQL-
Sessions.

A global temporary table is like persistent base table. You can insert, update, delete, create
indexes, create constraints or create triggers to a global temporary table.
Version 4.4 PointBase Developer 40

PointBase
Column

Each PointBase table can have a maximum limit of 32,000 columns and a minimum of one. All
values contained within a specific column are of the same data type and every column has an
associated default value. The system uses the default value when data is entered into a table
without specifying a value for the column. The default value for a column is NULL unless the
column specifies the NOT NULL constraint or a different default value. If a column specifies
the NOT NULL constraint and has no default value defined, then you must specify a value for
this column whenever data is inserted or updated in the table.

NOTE: Due to known limitations, it is highly recommended that you always use uppercase
letters when specifying table names or column names wherever applicable.

IDENTITY Property for Autoincrement

PointBase has autoincrement capability using the IDENTITY property. By defining it for a
column (making it an IDENTITY column), PointBase or you can generate values for every
row in a table. You can define it for only a column that has either of the data types:

• INTEGER
• SMALLINT
• NUMERIC
• DECIMAL

You can create a table with an IDENTITY column or you can add an IDENTITY column at a
later time using the ALTER TABLE statement. Please note, however, each table may have only
one IDENTITY column, and once you have created a table with an IDENTITY column or
added it at a later time, you cannot update any values in the IDENTITY column.

PointBase Generated Values

If you create, alter, or insert into a table without specifying a value for the IDENTITY column,
PointBase automatically assigns incremental values to every row in a table. If you allow
PointBase to generate the values, the default value for the first row is 1 (one). By default,
PointBase will also assign increments of 1 to the rows that follow. For example, PointBase
automatically assigns the default value of 1 to the first row of the table and continues to give
the value 2 for the second row, 3 to the third row, and so on. (See “identity_property” on page
112.) If you insert a row value into an IDENTITY column without specifying a value for the
IDENTITY column, PointBase will continue to generate incremental values based on the
highest value assigned for the column—even if the highest value was deleted. (See
“insert_column_list” on page 162.)

User-defined Values

You can also opt to specify the values yourself. If you are creating or adding the IDENTITY
column and specifying its values, you must specify the value of the first row, and you must
specify the incremental value, which affects the rest of the rows in the table. (See
“identity_property” on page 112.) If you are inserting a row value into an IDENTITY column,
you must specify only the column value. PointBase will continue to generate incremental
values based on the highest value assigned for the column—even if the highest value was
deleted. (See “insert_column_list” on page 162.) Please note that PointBase recommends that
you allow PointBase to generate the IDENTITY column values when inserting new rows.
Version 4.4 PointBase Developer 41

PointBase
Deleting Rows

Additionally, PointBase supports deleting rows from an IDENTITY column. However, once
you delete a row value from an IDENTITY column, PointBase will not generate that value
again; PointBase generates only unique values. PointBase will generate incremental values
based on the highest row value assigned for the column—even if the highest value was
deleted.
Version 4.4 PointBase Developer 42

SQL Data Types
This chapter describes all of the SQL data types that PointBase supports. Data types define
what type of data a column can contain. The following sections describe each PointBase data
type in detail and discuss converting data types. Tables are provided at the end of the chapter to
show the mappings between PointBase data types and industry standard and other common
non-standard data types.

PointBase supports the following data types for its column and parameter declarations.

• CHARACTER [(length)] or CHAR [(length)]
• VARCHAR (length)
• BOOLEAN
• SMALLINT
• INTEGER or INT
• DECIMAL [(p[,s])] or DEC [(p[,s])]
• NUMERIC [(p[,s])]
• REAL
• FLOAT(p)
• DOUBLE PRECISION
• DATE
• TIME
• TIMESTAMP
• CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE

OBJECT [(length)]
• BLOB [(length)] or BINARY LARGE OBJECT [(length)]
Version 4.4 PointBase Developer 43

PointBase
CHARACTER [(length)] or CHAR [(length)]

The CHARACTER data type accepts character strings, including Unicode, of a fixed length.
The length of the character string should be specified in the data type declaration; for example,
CHARACTER(n) where n represents the desired length of the character string. If no length is
specified during the declaration, the default length is 1.

The minimum length of the CHARACTER data type is 1 and it can have a maximum length up
to the table page size. Character strings that are larger than the page size of the table can be
stored as a Character Large Object (CLOB).

NOTE: CHARACTER(0) is not allowed and raises an exception.

If you assign a value to a CHARACTER column containing fewer characters than the defined
length, the remaining space is filled with blanks characters. Any comparisons made to a
CHARACTER column must take these trailing spaces into account.

Attempting to assign a value containing more characters than the defined length results in the
truncation of the character string to the defined length. If any of the truncated characters are
not blank, an error is raised.

Character String Examples:

CHAR(10) or CHARACTER(10)

• Valid
’Race car’
’RACECAR’
’24865’
’1998-10-25’
’1998-10-25 ’

• Invalid
24865
1998-10-25
Date: 1998-10-25

VARCHAR (length)

The VARCHAR data type accepts character strings, including Unicode, of a variable length is
up to the maximum length specified in the data type declaration.

A VARCHAR declaration must include a positive integer in parentheses to define the
maximum allowable character string length. For example, VARCHAR(n) can accept any
length of character string up to n characters in length. The length parameter may take any value
from 1, to the current table page size minus 42 bytes. For example, the maximum length
parameter for a page size of 4k (4096) would be 4096 minus 42 bytes, equaling 4054 bytes.
Attempting to assign a value containing more characters than the defined maximum length
results in the truncation of the character string to the defined length. If any of the truncated
characters are not blank, an error is raised.
Version 4.4 PointBase Developer 44

PointBase
NOTE: VARCHAR(0) is not allowed and raises an exception.

If you need to store character strings that are longer than the current table page size, the
Character Large Object (CLOB) data type should be used.

Examples

VARCHAR(10)

• Valid
’Race car’
’RACECAR’
’24865’
’1998-10-25’
’1998-10-25 ’

• Invalid
24865
1998-10-25
Date: 1998-10-25

BOOLEAN

The BOOLEAN data type accepts a single value that can be TRUE or FALSE. No parameters
are required when declaring a BOOLEAN data type.

Use the case insensitive keywords TRUE or FALSE to assign a value to a BOOLEAN data
type. Comparisons using the BOOLEAN data type should also use these keywords. If you
attempt to assign any other value to a BOOLEAN data type, an error is raised.

Examples

BOOLEAN

• Valid
TRUE

true
True
False

• Invalid
1
0
Yes
No
Version 4.4 PointBase Developer 45

PointBase
SMALLINT

The SMALLINT data type accepts a 16 bit signed integer value with an implied scale of zero.
It stores any integer value between the range 2^ -15 and 2^15 -1. Attempting to assign values
outside this range causes an error.

If you assign a numeric value with a precision and scale to a SMALLINT data type, the scale
portion truncates, without rounding.

NOTE: To store values beyond the range (2^-15) to (2^15)-1, use the INTEGER data type.

Examples

SMALLINT

• Valid
-32768
0
-30.3 (digits to the right of the decimal point are trun-

cated)
32767

• Invalid
-33,000,567
-32769
32768
1,897,536,000

INTEGER or INT

The INTEGER data type accepts a 64-bit signed integer value with an implied scale of zero. It
stores any integer value between the range 2^ -31 and 2^31 -1. Attempting to assign values
outside this range causes an error.

If you assign a numeric value with a precision and scale to an INTEGER data type, the scale
portion truncates, without rounding.

NOTE: To store integer values beyond the range (2^-31) to (2^31)-1, use the DECIMAL data
type with a scale of zero.
Version 4.4 PointBase Developer 46

PointBase
Examples

INTEGER or INT

• Valid
-2147483648
-1025
0
1025.98 (digits to the right of the decimal point are

truncated)
2147483647

• Invalid
-1,025,234,000,367
-2147483649
2147483648
1,025,234,000,367

BIGINT

The BIGINT data type can accept numeric values up to 8 bytes. It can be used in place of the
LONG data type. It stores any integer value between the range of 9223372036854775807 and
-9223372036857447808. Attempting to assign values outside this range causes an error.

Examples

BIGINT

• Valid
-3372036857447808
-857447808
0
23372036854775807

• Invalid
-1,025,234,000,367
-2147483649
2147483648
1,025,234,000,367
Version 4.4 PointBase Developer 47

PointBase
DECIMAL [(p[,s])] or DEC [(p[,s])]

The DECIMAL data type accepts fixed-precision decimal values, for which you may define a
precision and a scale in the data type declaration. The precision is a positive integer that
indicates the number of digits that the number will contain. The scale is a positive integer that
indicates the number of these digits that will represent decimal places to the right of the
decimal point. The scale for a DECIMAL cannot be larger than the precision.

DECIMAL data types can be declared in one of three different ways. The declaration of it
controls how the number is presented to an SQL query, but not how it is stored.

• DECIMAL – Precision defaults to 38, Scale defaults to 0
• DECIMAL(p) – Scale defaults to 0
• DECIMAL(p, s) – Precision and Scale are defined by the user

In the above examples, p is an integer representing the precision and s is an integer
representing the scale.

NOTE: If you exceed the number of digits expected to the left of the decimal point, an error is
thrown. If you exceed the number of expected digits to the right of the decimal point,
the extra digits are truncated.

Examples

DECIMAL(10,3)

• Valid
1234567
1234567.123
1234567.1234 (Final digit is truncated)
-1234567
-1234567.123
-1234567.1234 (Final digit is truncated)

• Invalid
12345678
12345678.12
12345678.123
-12345678
-12345678.12
-12345678.123

NUMERIC [(p[,s])]

PointBase treats the NUMERIC data type in exactly the same way as the DECIMAL data type.
Version 4.4 PointBase Developer 48

PointBase
REAL

The REAL data type accepts single-precision floating point number values, up to a precision of
64. No parameters are required when declaring a REAL data type. If you attempt to assign a
value with a precision greater than 64 an error is raised.

Examples

REAL

• Valid
-2345
0
1E-3
1.245
123456789012345678901234567890

• Invalid
123,456,789,012,345,678,901,234,567,890,123

FLOAT(p)

The FLOAT data type accepts a single or double precision floating point number value, for
which you may define a precision up to a maximum of 64. If no precision is specified during
the declaration, the default precision is 64. Attempting to assign a value lager than the declared
precision will cause an error to be raised.

Examples

FLOAT(8)

• Valid
12345678
1.2
123.45678
-12345678
-1.2
-123.45678

• Invalid
123456789
123.456789
-123456789
-123.456789

DOUBLE PRECISION

The DOUBLE PRECISION data type accepts a double precision floating point value, up to a
precision of 64. No parameters are required when declaring a DOUBLE PRECISION data
type. If you attempt to assign a value with a precision greater than 64 an error is raised.
Version 4.4 PointBase Developer 49

PointBase
Examples

DOUBLE PRECISION

• Valid
123456789012345678901234567890123456789012345678901234567890

-123456789012345678901234567890123456789012345678901234567890

• Invalid
123,456,789,012,345,678,901,234,567,890,123,123,456,789,

012,345,678,901,234,567,890

-123,456,789,012,345,678,901,234,567,890,123,123,456,789,

012,345,678,901,234,567,890

DATE

The DATE data type accepts date values, consisting of year, month, and day. No parameters are
required when declaring a DATE data type. Date values should be specified in the form:
YYYY-MM-DD. However, PointBase will also accept single digits entries for month and day
values.

Month values must be between 1 and 12, day values should be between 1 and 31 depending on
the month and year values should be between 0 and 9999.

Values assigned to the DATE data type should be enclosed in single quotes. The case
insensitive keyword, DATE, may or may not precede the value, for example: DATE ‘1999-04-
04’ or ‘1999-04-04.’ Note that, PointBase does not determine the SQL type of the Literal
(keyword + String value) by parsing the String value and checking for DATE patterns. That is,
PointBase determines the SQL type from the operation. For example:

CREATE TABLE T1(C1 VARCHAR(20));
CREATE TABLE T2(C1 DATE);
INSERT INTO T2 SELECT C1 FROM T1

PointBase automatically converts the value from “T1.C1” to the DATE type and inserts it into
the table “T2,” because the column into which it is inserting accepts only DATE types.

Examples

DATE

• Valid
DATE ‘1999-01-01’
DATE ‘2000-2-2’
date ‘0-1-1’
‘1999-01-01’
‘2000-2-2’
‘0-1-1’
Version 4.4 PointBase Developer 50

PointBase
• Invalid
DATE ‘1999-13-1’
date 2000-2-27
date ‘2000-2-50’

TIME

The TIME data type accepts time values, consisting of hours, minutes, and seconds. No
parameters are required when declaring a TIME data type. Date values should be specified in
the form: HH:MM:SS. An optional fractional value can be used to represent nanoseconds.

The minutes and seconds values must be two digits. Hour values should be between zero 0 and
23, minute values should be between 00 and 59 and second values should be between 00 and
61.999999.

Values assigned to the TIME data type should be enclosed in single quotes. The case
insensitive keyword, TIME, may or may not precede the value, for example: TIME ‘00:00:00’
or ‘00:00:00.’ Note that, PointBase does not determine the SQL type of the Literal (keyword +
String value) by parsing the String value and checking for TIME patterns. That is, PointBase
determines the SQL type from the operation. For example:

CREATE TABLE T1(C1 VARCHAR(20));
CREATE TABLE T2(C1 TIME);
INSERT INTO T2 SELECT C1 FROM T1

PointBase automatically converts the value from “T1.C1” to the TIME type and inserts it into
the table “T2,” because the column into which it is inserting accepts only TIME types.

Examples

TIME

• Valid
TIME ‘00:00:00’
TIME ‘1:00:00’
TIME ‘23:59:59’
time ‘23:59:59.99’
‘00:00:00’
‘1:00:00’
‘23:59:59’
‘23:59:59.99’
TIME ‘00:3:00’

• Invalid
TIME ‘00:62:00’
TIME ‘23:01’

TIMESTAMP

The TIMESTAMP data type accepts timestamp values, which are a combination of a DATE
value and a TIME value. No parameters are required when declaring a TIMESTAMP data
type. Timestamp values should be specified in the form: YYYY-MM-DD HH:MM:SS. There
is a space separator between the date and time portions of the timestamp.
Version 4.4 PointBase Developer 51

PointBase
All specifications and restrictions noted for the DATE and TIME data types also apply to the
TIMESTAMP data type.

Values assigned to the TIMESTAMP data type should be enclosed in single quotes. The case
insensitive keyword, TIMESTAMP, may or may not precede the value, for example:
TIMESTAMP ‘1999-04-04 07:30:00’ or ‘1999-04-04 07:30:00.’ Note that, PointBase does not
determine the SQL type of the Literal (keyword + String value) by parsing the String value and
checking for TIMESTAMP patterns. That is, PointBase determines the SQL type from the
operation. For example:

CREATE TABLE T1(C1 VARCHAR(20));
CREATE TABLE T2(C1 TIMESTAMP);
INSERT INTO T2 SELECT C1 FROM T1

PointBase automatically converts the value from “T1.C1” to the TIMESTAMP type and inserts
it into the table “T2,” because the column into which it is inserting accepts only TIMESTAMP
data types.

Examples

TIMESTAMP

• Valid
TIMESTAMP ‘1999-12-31 23:59:59.99’
TIMESTAMP ‘0-01-01 00:00:00’
‘1999-12-31 23:59:59.99’
‘0-01-01 00:00:00’

• Invalid
1999-00-00 00:00:00
TIMESTAMP ‘1999-01-01 00:64:00’

CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR
LARGE OBJECT [(length)]

The Character Large Object (CLOB) data type accepts character strings longer than those that
are allowed in the CHARACTER [(length)] or VARCHAR (length) data types. The CLOB
declaration uses the following syntax to specify the length of the CLOB in bytes:

n [K | M | G]

In the above syntax, n is an unsigned integer that represents the length. K, M, and G
correspond to Kilobytes, Megabytes or Gigabytes, respectively. If K, M, or G is specified in
addition to n, then the actual length of n is the following:

• K = n * 1024
• M = n * 1,048,576
• G = n * 1,073,741,824

The maximum size allowed for CLOB data types is 2 gigabytes. If a length is not specified,
then a default length of one byte is used. CLOB values can vary in length from one byte up to
the specified length.
Version 4.4 PointBase Developer 52

PointBase
NOTE: The CLOB data type supports Unicode data.

BLOB [(length)] or BINARY LARGE OBJECT [(length)]

The Binary Large Object (BLOB) data type accepts binary values. The BLOB declaration uses
the following syntax to specify the length in bytes:

n [K | M | G]

In the above syntax, n is an unsigned integer that represents the length. K, M, and G
correspond to Kilobytes, Megabytes or Gigabytes, respectively. If K, M, or G is specified in
addition to n, then the actual length of n is the following:

• K = n * 1024
• M = n * 1,048,576
• G = n * 1,073,741,824

The maximum size allowed for BLOB data types is 2 gigabytes. If a length is not specified,
then a default length of one byte is used. BLOB values can vary in length from one byte up to
the specified length.

NOTE: BLOB data types cannot be used with SQL scalar functions.

Data Conversions and Assignments

The PointBase database allows two types of data conversions - implicit and explicit. An
implicit data conversion is automatically performed between data types that are in the same
data type family. Table 1 describes the data type families supported by PointBase. Implicit data
conversions are performed as needed and are transparent to the user.

PointBase handles explicit data conversion using the SQL Scalar CAST function. This
function converts a value from one PointBase data type to another in the same data type family.

Table 1: Data Type Families and Data Types

Data Type Family Data Types

Character String CHARACTER, VARCHAR, CLOB

Boolean BOOLEAN

Binary String BLOB

Date Time DATE, TIME, TIMESTAMP

Number SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT, DOUBLE
Version 4.4 PointBase Developer 53

PointBase
Table 2: Mapping Standard Data Types to PointBase SQL Data Types

JDBC Data Types Java Data Types PointBase SQL Data Types

BIT boolean boolean

TINYINT byte smallint

SMALLINT short smallint

INTEGER int integer

BIGINT long numeric/decimal

FLOAT double float

REAL float real

DOUBLE double double

NUMERIC java.math.BigDecimal numeric

DECIMAL java.math.BigDecimal decimal

CHAR String char

VARCHAR String varchar

LONGVARCHAR String clob

DATE java.sql.Date date

TIME java.sql.Time time

TIMESTAMP java.sql.Timestamp timestamp

BINARY byte[] blob

VARBINARY byte[] blob

LONGVARBINARY byte[] blob

BLOB Blob blob

CLOB Clob clob
Version 4.4 PointBase Developer 54

PointBase
PointBase also supports other non-SQL standard data types. Table 3 describes the mapping of
non-SQL standard data types from other database vendors to PointBase data types.

Table 3: Mapping Non-standard Data Types to PointBase SQL Data Types

Oracle
Data Types

Sybase and Microsoft
Data Types

DB2
Data Types

PointBase
Data Types

NUMBER DECIMAL

TINYINT SMALLINT

VARCHAR2 VARCHAR

LONGVARCHAR TEXT CLOB

LONG CLOB

CLOB

RAW BLOB

LONGRAW BLOB

BINARY BLOB

VARBINARY BLOB

IMAGE BLOB

CHAR for
BIT DATA

BLOB

VAR CHAR
for BIT
DATA

BLOB
Version 4.4 PointBase Developer 55

SQL Scalar and Aggregate
Functions
This chapter describes the SQL Scalar Functions supported in PointBase. PointBase provides
these ready to use functions to perform in-statement operations when querying or inserting
data into the database. For example, you can use the CAST function to convert data types to
other data types or use a numeric function to perform calculations. The following sections
describe the behavior of these functions and examples of how to use them.

NOTE: Unless specified otherwise, when applying any of the following functions to a column
containing NULLS, the NULL rows are not counted or used and the following warning
is given:

java.sql.SQLWarning: Warning--null value eliminated in set function

To eliminate this warning and ignore the NULLs in aggregate functions, you can use the
DISTINCT keyword in front of the column reference, for example:

select (count(DISTINCT product_code)) from product_tbl

SQL Scalar Numeric Functions

The Scalar Numeric Function operates on numeric values (i.e. INTEGER, SMALLINT,
DECIMAL, FLOAT, DOUBLE and NUMERIC data types). The PointBase database supports
the following standard Numeric Functions:

• Multiplication
• Division
• Addition
• Subtraction

The numeric functions are evaluated in the following order. Numeric Functions within
parentheses are evaluated from the innermost set of parentheses, following the same rules of
precedence:

1. Multiplication (*) and division (/) from left to right

2. Addition (+) and subtraction (-) from left to right
Version 4.4 PointBase Developer 56

PointBase
Numeric Functions are calculated as floating point numbers with a precision of 17 significant
digits (and a rounding error). However, if you use these functions when inserting or updating
data the accuracy is dependent up on the data type of the column for which the data is intended.

Examples

2 + 3 * 4 / 2 = 8

2 + (3 * 4) / 2 = 8

2 + 3 / 2 = 3.5

100/3 = + 3 / 2 = 33.333333333333333

SQL Scalar Character String Functions

Scalar Character String Functions operate on character strings. These functions all return either
character strings or numeric values. PointBase currently supports the following functions.

CONCATENATION

The concatenation operator (||) joins the values of two or more character strings into a single
string. You may use the concatenated string expression anywhere you would use a character
string and there is no limit to the number of string expressions you can concatenate. The
following is the CONCATENATION Function syntax:

string_value || string_value [{|| string_value}...]

Examples:

’$’ || ’ ’ || ’150’ ----> ’$150’

SELECT order_num, sales_tax_st_cd, 'Shipping Cost', '$' || shipping_cost FROM order_tbl
WHERE shipping_cost > 300 AND UPPER(sales_tax_st_cd) NOT LIKE '%FL' ORDER BY order_num
ASC;

SUBSTRING

The SUBSTRING Function extracts a specified portion of the character string on which it is
operating. The following is the SUBSTRING Function syntax:

SUBSTRING (string_value FROM start [FOR length])
Version 4.4 PointBase Developer 57

PointBase
In the previous syntax, the start variable is an integer that represents the starting position for
the sub string. The first character in a string is considered to be position 1. The length variable
is optional and indicates the length of the sub string; if it is missing, the SUBSTRING Function
returns the characters from the start position to the end of the character string.

Examples

SUBSTRING(’George Valentie’ FROM 3) ----> ’orge Valentine’
SUBSTRING(’George Valentie’ FROM 3 FOR 2) ----> ’or’

CHARACTER_LENGTH

The CHARACTER_LENGTH function returns the length of a character string as the numeric
data type. There are two syntax variations for the CHARACTER_LENGTH function:

1. CHARACTER_LENGTH (string_value)

2. CHAR_LENGTH (string_value).

Examples

CHAR_LENGTH(’George Valentine’) ----> 16
CHARACTER_LENGTH(’$150’) ----> 4

POSITION

The POSITION function searches for a specified string pattern in another string. If the pattern
is found, a value is returned that indicates the beginning position of the location of the pattern.
If the pattern is not found, then a value of zero is returned. If the pattern is a string length of
zero (0, a NULL string), then a value of one is returned. All returned values are of the numeric
data type. The following illustrates the syntax for the POSITION Function:

POSITION (string_pattern IN string_value)

Examples

POSITION(‘Valentine’ IN ‘George Valentine') ----> 8
POSITION(‘’ IN ‘George Valentine’) ----> 1

TRIM

The TRIM function allows you to strip trailing and/or leading characters from a character
string. The following illustrates the syntax for the TRIM Function:

TRIM (LEADING | TRAILING | BOTH 'character' FROM string_value)
Version 4.4 PointBase Developer 58

PointBase
Although it is common only to strip a blank characters (’ ’) from the start and ends of character
strings, using the TRIM function you can strip any character. The character variable, enclosed
in single quotes, represents the character that is to be stripped from the character string. The
keywords LEADING, TRAILING, and BOTH indicate whether you strip the character variable
from the front of the character string, at the end of the character string, or both.

Examples

TRIM (LEADING ‘ ‘ FROM ‘ George Valentine ‘)
----> 'George Valentine '

TRIM (TRAILING ‘ ‘ FROM ‘ George Valentine ‘)
----> ‘ George Valentine ‘

TRIM (BOTH ‘ ‘ FROM ‘ George Valentine ‘)
----> ‘George Valentine’

TRIM (LEADING ‘$’ FROM ‘$150’)
----> ‘150’

UPPER and LOWER

The UPPER function returns the value specified in the character string entirely in upper case
letters, regardless of the initial capitalization of the character string. The LOWER Function
returns the value specified in the character string entirely in lower case letters, regardless of the
initial capitalization of the character string variable. The following syntax is used for the Case
Functions:

UPPER(string_value)
LOWER(string_value)

Examples

LOWER(’George Valentine’) ----> ’george valentine’
UPPER(’George Valentine’) ----> ’GEORGE VALENTINE’

SQL Scalar Date/Time Functions

The SQL Scalar Date Time Functions operate on date/time values and return of date/time
values. PointBase supports the following Date/Time Functions.

CURRENT_DATE

The CURRENT_DATE Function returns the current system date from the machine that is
hosting the PointBase database as a DATE data type. You may use the CURRENT_DATE
Function anywhere you specify a DATE value.
Version 4.4 PointBase Developer 59

PointBase
Example

UPDATE order_tbl SET shipping_date = CURRENT_DATE

If the current date is April 4, 1998, the CURRENT_DATE Function returns: 1998-04-04.

CURRENT_TIME

The CURRENT_TIME Function returns the current system time from the machine that is
hosting the PointBase database as a TIME data type. You may use the CURRENT_TIME
Function anywhere you specify a time value.

Example

if the current time is exactly 9:00 AM, the CURRENT_TIME Function returns: 09:00:00.

CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP Function returns the current system date and time from the
machine that is hosting the PointBase database as a TIMESTAMP data type. You may use the
CURRENT_TIMESTAMP Function anywhere you specify a timestamp value.

Example

UPDATE order_tbl SET delivery_datetime = CURRENT_DATE

If the current date and time is 9:00 AM on April 4, 1998, the CURRENT_TIMESTAMP

Function returns: 1998-04-04 09:00:00.

EXTRACT

The EXTRACT Function returns a portion of a DATE, TIME, or TIMESTAMP value. It
extracts the year, month, or day from a DATE value; an hour, minute, or second from a TIME
value; or any of these intervals from a TIMESTAMP value. The EXTRACT Function always
returns a numeric data type. The following syntax is for the EXTRACT Function.

EXTRACT (extract_field FROM datetime_value)

Use one of the keywords YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND in place of
the extract_field. Format the datetime_value inside the single quotes appropriately, according
to the value the extract_field seeks.
Version 4.4 PointBase Developer 60

PointBase
Examples

EXTRACT(YEAR FROM DATE '1998-04-01') ----> 1998
EXTRACT(MONTH FROM DATE '1998-04-01') ----> 4
EXTRACT(DAY FROM TIMESTAMP '1998-04-01 09:00:00') ----> 1
EXTRACT(HOUR FROM TIMESTAMP '1998-04-01 09:00:00') ----> 9
EXTRACT(MINUTE FROM TIME '09:00:00') ----> 0
EXTRACT(SECOND FROM TIME '09:00:00') ----> 0

SQL Scalar CAST Function

The SQL Scalar CAST Function explicitly converts a value from one PointBase data type to
another. To perform an explicit data conversion, use the following syntax for the SQL Scalar
CAST Function.

CAST (value AS datatype)

Table 1 lists the data types that can be CAST into other data types. If there is a Y in the
intersection of two data types, the CAST Function can perform an explicit conversion from the
data type in the vertical axis to the data type on the horizontal axis.

Table 1: Converting Data Types With the CAST Function

C VC B I SI DEC N R F DB D T TS BB CB

CHARACTER (C) Y Y Y Y Y Y Y Y Y Y Y Y Y N Y

VARCHAR (VC) Y Y Y Y Y Y Y Y Y Y Y Y Y N Y

BOOLEAN (B) Y Y Y N N N N N N N N N N N N

INTEGER (I) Y Y N Y Y Y Y Y Y Y N N N N N

SMALLINT (SI) Y Y N Y Y Y Y Y Y Y N N N N N

DECIMAL (DEC) Y Y N Y Y Y Y Y Y Y N N N N N

NUMERIC (N) Y Y N Y Y Y Y Y Y Y N N N N N

REAL (R) Y Y N Y Y Y Y Y Y Y N N N N N

FLOAT (F) Y Y N Y Y Y Y Y Y Y N N N N N

DOUBLE (DB) Y Y N Y Y Y Y Y Y Y N N N N N

DATE (D) Y Y N N N N N N N N Y N Y N N

TIME (T) Y Y N N N N N N N N N Y Y N N

TIMESTAMP (TS) Y Y N N N N N N N N Y Y Y N N

BLOB (BB) N N N N N N N N N N N N N Y N

CLOB (CB) Y Y N N N N N N N N N N N N Y
Version 4.4 PointBase Developer 61

PointBase
NOTE: A VARCHAR(10) cast to CHAR(5) will be truncated at the 5th character. The system
will display a warning if the truncated characters are nonwhite spaces.

The CAST function throws an exception if the data is not convertible, for example:
CAST(’a’ AS INT) --------> Exception

SQL Scalar Routine Invocation

Using SQL Scalar Routine Invocation, you can call a pre-defined SQL Routine that returns a
scalar value. The Routine Invocation can be used anywhere you use a scalar expression. The
following syntax is for the Routine Invocation Function. For more information about creating
SQL routines (functions and procedures) refer to “Appendix A: SQL Reference.”

routine_name([SQL_argument_list])

Routine_name is the name of the routine (SQL Function or Procedure). SQL_argument_list
consists of expressions separated by commas. Each expression will result in a SQL data type
dependent on the routine called.

NOTE: If you use a Routine Invocation Function as a scalar expression, it must only return a
single value, otherwise an error is raised.

Routine Determination

Routine determination is the process that determines the routine to invoke, based on the routine
name, SQL argument list, and the current path of schemas. The routine name and SQL
arguments make up the signature of the routine. It is possible that more than one routine could
have the same signature. If more than one possible routine has the same signature, then
PointBase uses a precedence list to match each argument of each routine, to determine which
one is the best match.

Examples

DateConvert(’01-02-1993’)

SQL Aggregate Functions

SQL Aggregate Functions operate on complete sets of data and return a single result.
PointBase supports five Aggregate Functions: AVG, COUNT, MAX, MIN, and SUM.
Version 4.4 PointBase Developer 62

PointBase
AVG

The AVG Function returns the average value for the column when applied to a column
containing numeric data. The following is the syntax for the AVG Function.

AVG (column_name)

Example

SELECT AVG(commission_rate) FROM sales_rep_tbl

COUNT

The COUNT Function returns the number of rows in a specified result set. The following
syntax is one form of the COUNT Function:

COUNT(*)

Example

SELECT COUNT(*) FROM sales_rep_tbl

The second form of the COUNT Function returns the number of rows in a result set where the
specified column has a distinct, non-NULL value. The following syntax is the second form of
the COUNT Function.

COUNT(DISTINCT column_name)

MAX

The MAX Function returns the data item with the highest value for a column when applied to a
column containing numeric data. If you apply the MAX Function to a CHARACTER value, it
returns the last value in the sorted values for that column. The following syntax is for the MAX
Function.

MAX(column_name)

Example

SELECT MAX(commission_rate) FROM sales_rep_tbl

MIN

The MIN Function returns the data item with the lowest value for a column when applied to a
column containing numeric data. If you apply the MIN Function to a CHARACTER value, it
returns the first value in the sorted values for that column. The following syntax is for the MIN
Function.

MIN(column_name)
Version 4.4 PointBase Developer 63

PointBase
Example

SELECT MIN(commission_rate) FROM sales_rep_tbl

SUM

The SUM Function returns the sum of all values in the specified column. The result of the
SUM Function has the same precision as the column on which it is operating. The following
syntax is for the SUM Function.

SUM(column_name)

Example

SELECT SUM(ytd_sales) FROM sales_rep_tbl

SQL Special Registers

PointBase Server and Embedded supports the following list as special registers. These can be
used anywhere a scalar/value expression is allowed.

• CURRENT_USER: is the current user on the system and is an SQL varchar data type of
maximal length 128.

• CURRENT_SCHEMA: is the name of the current schema in use and is an SQL varchar
data type of maximal length 128.

• CURRENT_DATABASE: is the name of the database in use and is an SQL varchar data
type of maximal length 128.

• CURRENT_SESSION: gives the current session ID.
• CURRENT_PATH: is the list of schemas in the path of the current user. The return data

type is an SQL varchar of undetermined length. The length depends upon the number of
schema names in the path.
Version 4.4 PointBase Developer 64

Indexes and Constraints
This chapter gives a brief outline of indexes and constraints in PointBase Server and
Embedded. Indexes and constraints are used to reinforce data integrity and increase database
performance. Using indexes and constraints, you can access information from the database
quicker and guarantee the referential integrity of information. The following sections describe
indexes, keys, and constraints.

Indexes

An index is a set of ordered references to rows of a table. It can contain data from one or more
columns of a table. An index improves the performance of data retrieval by reducing the
number of physical pages that the database must access in order to read a row in the database.
Because indexes store data in order, they also eliminate the need to create temporary storage
for the ORDER BY clause if the relevant column is included in an index. Every index has a
header, which contains the following information:

• the depth of the index
• number of leaf pages
• the selectivity factor

PointBase builds and maintains indexes without user intervention and provides current
information to the query optimizer.

NOTE: Whenever you specify a unique constraint, PointBase creates a unique index
automatically.

You can also create and drop an index using the CREATE INDEX and DROP INDEX
statements. For information on the query optimizer refer to “Optimizing Query Expressions,”
in the PointBase System Guide. For CREATE INDEX and DROP INDEX syntax refer to
“SQL Reference” of this guide.
Version 4.4 PointBase Developer 65

PointBase
Keys

In a database, a key consists of one or more columns of a table that have been granted specific
properties. When defining a table or index, you specify the key (primary or foreign). PointBase
supports the following types of keys:

Primary Key

The primary key is used as a master reference for columns defined as foreign keys in other
tables. Foreign keys can only contain values defined in the Primary key to which they refer. A
table can only have one primary key, and the key must contain only unique values without any
NULL values. The table containing the primary key is referred to as the parent table.

Foreign Key

A foreign key associates values contained in one or more columns of a table to primary keys of
other tables. The table containing the foreign key is referred to as the child table.

The child table references a parent table, which must contain a primary key. The values in a
foreign key column must match either all the values, or a subset of the values in the referenced
Primary Key. A foreign key cannot contain values that are not in the primary key to which it
refers. A column defined as a foreign key can contain NULL values.
Version 4.4 PointBase Developer 66

PointBase
Constraints

Constraints are rules that the database enforces to improve data integrity. You can specify all of
the following constraints at either the column level or at the table level in PointBase

Unique Constraint

A unique constraint forces a column to contain only unique values. PointBase allows NULL
values in unique columns, unless you specify NOT NULL when creating or altering a table.
When creating or altering a table, you must define unique constraints. However, you can also
create a unique constraint automatically when you create a primary key. Although a table can
contain any number of unique columns, only one can be the primary key.

NOTE: Whenever you specify a unique constraint, PointBase creates a unique index
automatically.

Referential Constraint

You can use a referential constraint to link foreign key columns with primary key columns.
You can define referential constraints as you create or alter a table.

Check Constraint

The body of a check constraint is a search condition. You can use a check constraint to make
sure that a value going into a column meets the criteria of the search condition. Similar to the
other constraints, you can define a check constraint when creating or altering a table. However,
you can also use this constraint when updating a column(s) of a table. The value being inserted
or modified (through an UPDATE) must cause the search condition to evaluate to TRUE, in
order for the data to be inserted or updated.
Version 4.4 PointBase Developer 67

Index Organized Tables
This chapter gives a brief outline of index organized tables in PointBase Server and Embedded.

The organization of a table refers to the order in which the rows of the table are physically
ordered on disk. In a regular (HEAP) table organization, all rows are stored in no particular
order. Each row has a system generated "row pointer" that identifies the location of the data
for that row. All indexes on the table then contain rows that consist of key values for that index,
followed by the row pointer for the row that contains those values. The row pointer is used to
fetch any non-key values that are needed from the base table.

In an index-organized table, the data for the table is stored directly in the primary key index.
The primary key index contains the primary key values, as in the primary key on a regular
table. But, instead of each row in the primary index being followed by the row pointer, each
row consists of the primary key column values followed by the non-key column values.

Alternate indexes are allowed on index organized tables. Each entry in an alternate index on a
index organized table consists of the alternate index key column values, followed by the
primary key values. The primary key values are used to fetch any non-key values from the
primary key.

Because rows are stored directly in the primary key index, index organized tables provide
faster access for queries involving equality predicates or range predicates on the primary key
columns. For range queries, access time is potentially much faster. This is because rows with
similar primary key values are stored physically close to each other on disk, i.e. the rows are
clustered on the primary key values. Because of this, fewer pages of data need to be read to
fetch all the requested rows, and access times are reduced. In most cases, rows with the same
or similar key values will be on the same page(s). If n is the number of rows that satisfy the
key predicates, then on average, a select from a key sequenced table via the key values will
have to access (n / # of rows/page) pages, instead of n pages.

If no alternate indexes exist, then an index organized table requires less storage space then the
corresponding base table + primary key for a regular table. This is because the primary key
values do not need to be duplicated, and no storage is required for the row pointer values.
However, if many alternate indexes are needed, then the storage requirements can be greater,
because the primary key values must be duplicated in each alternate index row.

Any change to the table, such as inserting, updating or deleting rows, result in changes to the
primary key index and any alternate indexes.
Version 4.4 PointBase Developer 68

Search Conditions and Predicates
This chapter describes search conditions and predicates in PointBase. Search conditions and
predicates help return specific values from the database. To use a search condition, you must
use it with an SQL statement. To use a predicate, you must use it with a search condition. You
can specify certain criteria in a search condition and predicate for an SQL statement to perform
to the database. The following sections describe search conditions and predicates and their
behaviors in PointBase.

Search Conditions

A search condition specifies a condition of “TRUE”, “FALSE”, or “UNKNOWN” about a
specific row. It is comprised of predicates associated with the logical operators: AND, OR, and
NOT. The syntax for a search condition is as follows:

[NOT] {predicate | (search_condition)}
[{AND | OR} [NOT] {predicate | (search_condition)}...]

Search conditions contained within parentheses first reads the values from left to right. The
precedence order for the logical operators are: NOT, AND, and then OR. If more than one
operator of the same precedence is used in a search condition, the optimizer will determine
which one to execute before the other. If a search condition does not comprise any logical
operators, then the result is the result of the predicate specified.

Simple search conditions

A search condition—in its simplest form—is a logical test that can be applied to each row. It
takes the format of two value expressions and an operator and tests the relationship between
the two values, for example:

value 1 > value 2
x > 2
Version 4.4 PointBase Developer 69

PointBase
Values

Any one of the values in a search condition may be one of the following:

• a constant
• the value in a column name that is used in the place of one of the value expressions
• a value derived from either one of these two values, using standard operators and non-

aggregate functions, such as BALANCE + 10.

Operators

PointBase SQL supports all standard relational operators:

• equals (=)
• greater than (>)
• less than (<)
• not equal to (<>)
• less than or equal to (<=)
• greater than or equal to (>=)

Notice in a combined relation, for example, less than or equal to or greater than or equal to, the
equal sign must be the last sign in the relation.

Complex search conditions

A complex search condition can contain multiple boolean expressions, linked by the keywords
AND or OR. A boolean expression uses all the same syntax and operators as a boolean
condition.

The AND keyword returns TRUE if the search conditions on both sides of the AND keyword
return TRUE. If either one of the conditions return FALSE, the joined condition returns
FALSE.

The OR keyword returns TRUE if the expressions on either side of the OR keyword return
TRUE. If both conditions return FALSE, the joined condition returns FALSE.

The search conditions that make up a complex search condition return according to four rules
of precedence:

1. Conditions within parentheses

2. Conditions joined by an AND keyword

3. Conditions joined by an OR keyword

4. Conditions prefixed by a NOT keyword
Version 4.4 PointBase Developer 70

PointBase
Order of Evaluation

Any set of expressions within parentheses return first. If there are more than one set of
conditions within parentheses in a boolean expression, the sets evaluate from right to left. If
sets of conditions within parentheses contain other sets of conditions within parentheses, the
innermost sets evaluate first. Although it is not required that complex search conditions, which
contain multiple sets of search conditions, use parentheses to separate the conditions, it is
highly recommended to improve the readability of the conditions.

The AND, OR, and NOT keywords are reflexive, which means that the ordering of the
expressions in a boolean expression does not matter. Regardless of the order, you receive the
same result. A code optimizing program may execute the AND, OR, and NOT keywords
differently than they appear in a boolean expression, but the boolean expression returns the
same result.

Examples

In the first example below, the statement executes from left to right, because AND has a higher
precedence than OR. In the second example, the search condition in parenthesis executes first.

1. emp_id > 201 AND d_name = ‘engineering’ OR d_name = ‘research’

2. emp_id > 201 AND (d_name = ‘engineering’ OR d_name = ‘research’)

Predicates

A predicate is an SQL expression that evaluates a search condition that is either TRUE,
FALSE or UNKNOWN. TRUE means the expression is correct. FALSE means the expression
is incorrect. UNKNOWN means the expression is neither TRUE nor FALSE. All SQL values
used in a predicate must be of a compatible data type (family) for comparison.

PointBase supports the following types of predicates:

• comparison (=, <>, <, >, <=, >=, !=)
• BETWEEN
• LIKE
• EXITS | NOT EXISTS
• IN | NOT IN
• NULL

NOTE: PointBase does not support multi-valued predicates.
Version 4.4 PointBase Developer 71

PointBase
COMPARISON

The COMPARISON predicates compare two values. If either value is NULL, then the result of
the predicate is UNKNOWN.

NOTE: When comparing two string values, PointBase ignores any spaces that trail after the
string. PointBase ignores trailing spaces in queries and in the table. This behavior
supports the ANSI standard; however, it may vary with other database vendors.

Examples

The following are examples of using the comparison predicates. The results (TRUE, FALSE,
or UNKNOWN) of the predicates are based on the values of the column.

• emp_id = 200 ---> TRUE if emp_id is 200
• emp_manager <> ‘Jones’ ----> TRUE if the manager is not

JONES
• salary > 50000 ----> TRUE if salary is greater than $50,000

BETWEEN

The BETWEEN predicate determines if a value is between a range of values. The BETWEEN
predicate is a short hand notation. It is equivalent to saying the value is greater than or equal to
the beginning range and less than or equal to the ending range. For example, value1
BETWEEN value2 AND value3 is equivalent to the following search_condition:

value1 >= value2 AND value1 <= value3

Table 1: Comparison Predicate Symbols

Comparison Symbol
Symbol
Description

Result
Description

= equal to This symbol results to TRUE if both
values are the same.

<> or != not equal to This symbol results to TRUE if the first
value is equal to the second value.

< less than This symbol results to TRUE if the first
value is less than the second value.

> greater than This symbol results to TRUE if the first
value is greater than the second value.

<= less than or equal to This symbol results to TRUE if the first
value is less than or equal to the second
value.

>= greater than or equal to This symbol results to TRUE if the first
value is greater than or equal to the
second value.
Version 4.4 PointBase Developer 72

PointBase
The following is the syntax for a between predicate:

expression [NOT] BETWEEN literal AND literal

Examples

In the first example below, the system returns TRUE if the emp_deptid is between 200 and
1000. In the second example, the system returns TRUE if emp_managerid is less than 100 or
greater than 400.

1. emp_deptid BETWEEN 200 AND 1000

2. emp_managerid NOT BETWEEN 100 AND 400

LIKE

The LIKE predicate searches a string to determine if the string has a particular pattern. The
pattern is a string with a combination of the following special characters: underscore character,
_ and percent sign, %. If the value of any of the arguments is NULL, then the result is
UNKNOWN. The following is the syntax for the LIKE predicate:

match_expression [NOT] LIKE pattern [ESCAPE escape]

match_expression

The match_expression is a string that will be searched to determine if the pattern specified can
be found. Escape, if specified, represents a character string that evaluates to a single character,
and allows the special interpretation given to the characters "_" and "%" to be disabled by
preceding them with the defined escape character.

NOTE: The LIKE predicate is case-sensitive.

Examples

In the following example, the LIKE predicate looks for any row where the column contains a
pattern of “engineer” as eight characters contained within the column. The percent sign
represents any string of zero or more characters.

1. emp_description LIKE ‘%engineer%’

In the next example, the LIKE predicate looks for all rows that do not contain only a pattern of
some character followed by ‘bc’ value for a column. The underscore character represents a
single character. All other characters in both examples represent themselves.

2. dept_description NOT LIKE ‘_bc’

In the last example, the LIKE predicate looks for all rows where the department name begins
with the underscore character "_", followed by the letter “e” plus zero or more characters. This
disables the special interpretation given to the uncderscore character "_", allowing it to be used
as part of the character pattern to be matched.

3. 3. dept_description LIKE '=_e%' ESCAPE '='

New in version 4.4, PointBase also supports parameterized escape values for LIKE in prepared
statements.
Version 4.4 PointBase Developer 73

PointBase
EXISTS | NOT EXISTS

These quantified operators verifies the existence of rows. The boolean result of an EXISTS or
NOT EXISTS predicate is determined by the number of rows returned by the subquery. For
EXISTS, the boolean result is TRUE if the subquery returns at least one row and FALSE if the
subquery does not return any rows. For NOT EXISTS, the boolean result is TRUE if the
subquery does not return any rows and FALSE if the subquery returns at least one row.

Notes

• PointBase supports any level of nested subqueries.
• PointBase allows a subquery to return multiple values only using EXITS, NOT EXISTS,

IN, or NOT IN.
• Currently, PointBase does not support any form of the quantified operators, ANY or

ALL, for example: =ANY, <=ANY, >=ALL, <>ALL,... etc.

Example

This example retrieves all cities, in which at least one sales representative works.

SELECT a.city
FROM office_tbl a
WHERE EXISTS
(SELECT *
FROM sales_rep_tbl b
WHERE a.office_num = b.office_num);

Results:

CITY

Miami

Atlanta

San Mateo

San Francisco

San Diego

Oakland

Detroit

New York
Version 4.4 PointBase Developer 74

PointBase
IN | NOT IN

You can use these predicate keywords to return a value list or a subquery.

Value List

The IN predicate determines if a value is TRUE for a list of values. The following is the syntax
for an IN predicate. The NOT IN predicate also follows the same format as the IN predicate.

SELECT|UPDATE|DELETE FROM table
WHERE expression [NOT] IN (list_of_values)

The list_of_values can be represented only by literals with the IN predicate. The NOT IN
predicate returns a TRUE value only when it does not find the list_of_values specified.

Example

In the following example, the IN predicate returns TRUE if the “emp_deptid” is any of the
values 10, 100, or 1000.

emp_deptid IN (10,100,1000)

Subquery

IN or NOT IN can compare a single value of each row of a table to a value from potentially
multiple result rows from a subquery. IN returns TRUE, if at least one of the resultant subquery
row values is equal to the expression; it returns FALSE otherwise. NOT IN returns TRUE if all
of the resultant subquery row values are not equal to the expression.

Example

This example retrieves the names of all sales reps working in the western region.

SELECT a.first_name, a.last_name
FROM sales_rep_tbl a
WHERE a.office_num IN
(SELECT b.office_num
FROM office_tbl b
WHERE b.region = 'Western');

Results:

FIRST_NAME LAST_NAME

Heather Smith

George Valentine

Raymond Brown

Jack Smith
Version 4.4 PointBase Developer 75

PointBase
NULL

The NULL predicate determines if a column in a selected row contains the SQL value: NULL.
If the column value is NULL, then PointBase returns TRUE. The following is the syntax for
the NULL predicate:

column_name IS [NOT] NULL

Examples

In the first example, the NULL predicate looks for any row where the column contains a
NULL value. In the second example, the NULL predicate looks for all rows that do not contain
a NULL value for a column.

1. emp_dept IS NULL

2. emp_manager IS NOT NULL
Version 4.4 PointBase Developer 76

Transactions and Locks
This chapter describes the behavior and usage of transactions and locks in PointBase. By
understanding how transactions and locks work in PointBase, you can maximize concurrent
database utilization while maintaining appropriate data integrity for your application. The
following sections describe transactions, locking concepts, and the different isolation levels
that PointBase supports.

Transactions

A transaction is the primary mechanism used by PointBase to protect the integrity of data that
can be accessed from the database. All of the changes (INSERT, UPDATE, DELETE) made to
a database during a transaction are added to the database when the transaction commits.

A transaction implicitly starts if any Data Manipulation Language (DML) statement is
executed, such as SELECT, INSERT, UPDATE, and DELETE, or if any Data Definition
Language (DDL) statement is executed, such as CREATE TABLE, CREATE INDEX, etc. A
transaction can be explicitly started by executing a START TRANSACTION ISOLATION
LEVEL statement.

A transaction commits, when you issue a COMMIT statement. An application can also cancel
all the changes made within a transaction by rolling back the transaction. A transaction rolls
back when you issue a ROLLBACK statement or when an exception occurs.

If you set AUTOCOMMIT to on, a transaction will automatically commit after each statement
(INSERT, UPDATE, DELETE) is completed. For example, a statement is completed when all
result sets and/or update counts have been retrieved. To bound transactions explicitly,
AUTOCOMMIT must be set to off.

A transaction is associated with a connection to the database. If multiple statements or threads
use the same connection, they are part of the same transaction. If you decide to allow multiple
threads to share one connection, you must synchronize all threads in order to commit the
transaction.

For example, if one thread in a transaction issues commit, all the threads within the same
transaction will be committed, invalidating threads that have not finished executing. PointBase
recommends that you use one connection per thread.
Version 4.4 PointBase Developer 77

PointBase
Row Level Locking

When multiple connections or threads access the database concurrently, PointBase ensures the
integrity of the data using row level locking. PointBase locks only the rows affected by an SQL
statement rather than pages or tables, to ensure maximum concurrent activity. For example,
when transaction T1 is updating row 10 in page 100, transaction T2 is able to update row 20 in
the same page (100) or to read other rows in page 100.

Locks and Memory

PointBase stores all locks in memory. For efficient use of memory, you can limit the number of
locks a single transaction can hold. The default limit is 2000, but you can change this using the
locks.maxCount property in the pointbase.ini file. (Refer to the PointBase System Guide
for more information about the pointbase.ini file, which you can use to configure the system
properties.)

When a transaction reaches the specified limit of locks, PointBase automatically converts all of
the row-level locks, to a table-level lock, reducing concurrency as a consequence. If the system
cannot convert the row level locks to the table level lock within a reasonable time, the
transaction is aborted. This may happen, if other transactions hold row-level locks on the same
table.

Transaction Isolation Levels

The following section describes the transaction-isolation levels that PointBase supports. The
transaction-isolation level defines the rules for releasing locks, allowing other users access to
the row or table. By understanding PointBase isolation levels, you can understand how the
system locking mechanism behaves.

NOTE: For all isolation levels, PointBase holds locks on rows that are modified until the end
of the transaction.

READ_COMMITTED

When the transaction-isolation level is set to READ_COMMITTED, PointBase releases the
lock on a row as soon it returns the row data to the user. For example, if a query returns 100
rows, the system locks the first row, reads the data and returns it to the user. Before locking and
reading from the second row, PointBase releases the lock on the first row to minimize resource
usage and maximize concurrency. After all the reads are complete, no locks are held.
Version 4.4 PointBase Developer 78

PointBase
SERIALIZABLE and REPEATABLE_READ

When the isolation level is set to SERIALIZABLE or REPEATABLE_READ, PointBase does
not release locks on rows read until the end of the transaction. For example, if a query returns
100 rows, the system applies the lock on each row as it reads them. The system releases the
locks only when it returns the data from all 100 rows to the user and the transaction is
complete.

Recommended Isolation Level

The READ_COMMITTED isolation level gives maximum concurrency and minimum
resource usage while providing the required data integrity for most applications. The default
isolation level is READ_COMMITTED.
Version 4.4 PointBase Developer 79

Distributed Transactions
This chapter summarizes distributed transaction processing (DTP) environments and how to
use PointBase Embedded or Server in a DTP environment. Following the section, “PointBase’s
Role in a DTP Environment,” this chapter briefly describes Sun’s Java Transaction API (JTA),
the Java mapping for X/Open’s XA Specification, and also the JDBC API Extensions for
distributed transactions. Finally, this chapter describes how to use PointBase Embedded or
Server in a DTP environment by providing code snippets, explaining important restrictions,
and supplying specific java classes that PointBase Embedded and Server implements for
distributed transactions.

Although this chapter summarizes DTP concepts, it is only a summary, and it pertains
specifically to PointBase Embedded and Server. For more information about the topics
discussed in this chapter, PointBase recommends reading the following books or documents:

• X/Open’s Distributed Transaction Processing: The XA Specification
• Sun Microsystem’s JDBC API 2.0
• Sun Microsystem’s Java Transaction API (JTA) 1.0.1

Important Note

To successfully run your XA application with PointBase, you must obtain the following two
JAR files from the Sun Microsystem’s website, “jta.jar” and “jdbc2_0-stdext.jar” and, include
them in your classpath with the PointBase JAR’s.

• Download the “jta.jar “at http://java.sun.com/products/jta/index.html
• Download the “jdbc2_0-stdext.jar” at http://java.sun.com/products/jdbc/

download.html#corespec21.

PointBase’s Role in a DTP Environment

According to the X/Open’s Distributed Transaction Processing (DTP) Model, a DTP
environment specifies that application programs can use Resource Managers and a
Transaction Manager to access multiple data sources through one global transaction.
PointBase acts as a resource manager (RM) in a DTP environment.
Version 4.4 PointBase Developer 80

http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html
http://java.sun.com/products/jta/

PointBase
You can use PointBase in a DTP environment to write Enterprise JavaBeans that are
transactional across multiple PointBase Servers. Workgroup environments, such as J2EE and
J2SE where the data extends across multiple databases can benefit using PointBase, because
the PointBase JDBC driver supports the 2-phase commit protocol used by the Java
Transactional API (JTA).

Transaction Managers, Resource Managers, and Global Transactions

A transaction manager (TM) manages global transactions by ultimately deciding to commit, to
rollback, or to recover global transactions. A global transaction is known as a unit of work. For
example, an application can group multiple updates to several different data sources into one
unit of work—a global transaction. A TM also associates resource managers with global
transactions.

Each resource manager (RM) involved in a global transaction is unaware of any other RMs
involved besides itself. For this reason, each RM requests and receives “permission” from the
TM before it performs any work requested by an application. The RM also communicates all
work it completes for a global transaction to the TM—whether it successfully completes or
fails. With this information, the TM decides how to handle the global transaction.

NOTE: If any RM fails to successfully complete its part of a global transaction, all RMs
involved in that global transaction must rollback the work for that particular global
transaction.

Interaction Among DTP Components

The following illustration shows PointBase interacting with the application program and the
transaction manager. Notice that the application program also interacts with the transaction
manager. In this interaction, the application program defines the transaction boundaries or
rules with the transaction manager. This guide, however, does not discuss this interaction. For
more information about this topic, please refer to the relevant application program
documentation. The following list describes the interaction flow among the application
program (AP), the resource manager (RM), and the transaction manager (TM).

A simple diagram displaying the interaction
among DTP components.

Application Program (AP)

Transaction Manager (TM)Resource Manager (RM)
PointBase Server
or Embedded
Version 4.4 PointBase Developer 81

PointBase
Java Transaction API (JTA)

The Java Transaction API (JTA) is part of the Sun J2EE standard which deals with distributed
transactions. JTA defines a high-level transaction management interface intended for resource
managers and transactional applications in DTP environments. PointBase implements the
XAResource and Xid Interface of JTA, which maps the industry standard, X/Open XA
Interface, to Java. The interface, X/Open XA Interface allows a transaction manager to manage
operations performed by multiple resource managers, using the two-phase commit X/Open XA
protocol.

JDBC 2.0 Optional Package API

Sun Microsystems created the JDBC API 2.0 Extensions, java.sql.XAConnection and
javax.sql.XADataSource, so that JDBC drivers can support distributed transactions
using the Java Transaction API’s XAResource Interface. Refer to the JDBC 2.0 Standard
Extension Specification for more details on JDBC API 2.0 Extensions (http://java.sun.com/
products/ jdbc).

The PointBase JDBC driver supports distributed transactions by implementing the following
interfaces. For unsupported methods, you can view both, “Appendix B: Unsupported JDBC
2.0 Methods in PointBase” and the section, “Unsupported in PointBase” at the end of this
chapter.

API Description

javax.transaction.xa.XAResource This interface maps the industry standard X/Open XA
Interface to Java. It defines APIs between the transaction
manager and the resource manager. PointBase implements
the JDBC standard for this interface. For more information
about this interface, refer to http://java.sun.com/products/
jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html.

javax.transaction.xa.Xid This interface defines the global transaction identification
structure of the X/Open XA Interface. PointBase
implements the JDBC standard for this interface. For more
information about this interface, refer to http://
java.sun.com/products/jta/javadocs-1.0.1/javax/
transaction/xa/Xid.html.
Version 4.4 PointBase Developer 82

http://java.sun.com/products/ jdbc
http://java.sun.com/products/ jdbc
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html

PointBase
Implementing javax.sql.XADataSource

The class, com.pointbase.xa.xaDataSource is the PointBase implementation of the
JDBC Extension Interface, javax.sql.XADataSource. It is normally used with the Java
Naming and Directory Interface (JNDI) for defining data sources in a DTP environment.

Because database vendors may support different data source properties, this section describes
what PointBase supports. And, in addition to the standard JDBC Extension methods of
javax.sql.XADataSource, PointBase has created its own methods, which this section
also describes.

XADataSource and JNDI

Using com.pointbase.xa.xaDataSource to initialize an XADataSource object, is the
first step to distributed transactions with PointBase. To initialize an XADataSource object, for
example, you provide the database URL information, password, user name, etc., to get a
connection with a database. However, you can also use JNDI.

Using JNDI, an application can find and access remote services, such as a database service
across a network. After registering an XADataSource object with a JNDI naming service, an
application can access that object to connect to the data source it represents.

javax.sql.XADataSource This is the JDBC Extension DataSource Interface for
JTA’s XAResource Interface. PointBase implements the
class, com.pointbase.xa.xaDataSource for this
interface. In addition to the JDBC standard methods,
PointBase implements some of its own methods.

For more information about PointBase’s implementation
of this interface, see the section, "Implementing
javax.sql.XADataSource" on page 83.
For more information about the standard JDBC interface,
javax.sql.XADataSource, refer to http://
java.sun.com/products/jdbc/jdbc20.stdext.javadoc/.

javax.sql.XAConnection This interface is the JDBC Extension Connection Interface
for JTA’s XAResource Interface. PointBase uses the JDBC
standard for this interface. For more information about this
interface, refer to http://java.sun.com/products/jdbc/
jdbc20.stdext.javadoc/.

API Description
Version 4.4 PointBase Developer 83

http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

PointBase

X

s

S

s

S

s

S

s

S

With PointBase, you can use a JNDI naming service to manage data sources and connections.
JNDI adds portability to the application code, for example, you do not have to include data
source properties in the application code, such as the database name or the password. Also, you
do not have to change the application code if you want to change a data source property. For
example, instead of changing the application code to reflect a new user name, you can change
the user name with the JNDI naming service.

Support for XADataSource Properties

Database vendors may vary when it comes to supporting XADataSource properties. For every
supported XADataSource property, the database vendor must provide set and get methods.
PointBase supports the following XADataSource methods for their respective XADataSource
properties:

ADataSource Method Description

etDatabaseName(String url) Sets the databaseName property, defining the name of a
particular database on a server. In PointBase, this defines the
URL.

tring getDatabaseName() Returns the URL of a particular database on a server

etDescription(String description) Sets the description property, defining a description of this data
source

tring getDescription() Returns a description of this data source

etPassword(String password) Sets the password property, defining the user’s database
password

tring getPassword() Returns the user’s database password

etUser(String user) Sets the user property, defining the user name

tring getUser() Returns the user name
Version 4.4 PointBase Developer 84

PointBase

XA

se .

Bo
Additional PointBase Methods

In addition to the standard methods of the javax.sql.XADataSource interface and
javax.sql.DataSource for that matter, PointBase provides the following methods.

Using PointBase in a DTP Environment

This section describes how to use PointBase in a DTP environment. PointBase acts as the
resource manager (RM) in a DTP environment, which reads or writes the data requested by an
application in a global transaction. The following sections describe step-by-step how to use
PointBase in a DTP environment.

Getting the XAResource Object

First, the transaction manager (TM) must get an XAResource object to start and end the
association between an XAConnection object and a global transaction. To get an XAResource
object, you must do the following:

Initialize XADataSource

Create a DataSource object to produce an XAConnection object. An XAConnection object is
similar to a typical Connection object; however, an XAConnection object can obtain an
XAResource object, which you need to perform a global transaction.

xaDataSource xads = new com.pointbase.xa.xaDataSource();
xads.setDatabaseName(url);

NOTE: Initializing a JNDI XADataSource compared to a JDBC XADataSource is similar.
The following example initializes a JNDI XADataSource—assuming the
XADataSource object has been stored with a JNDI naming service previously.

xaDataSource xads = (xaDataSource)ctx.lookup(“pointbase/datasource1”);

Get XAConnection Object

Get an XAConnection to “datasource1,” using the getXAConnection method. You need an
XAConnection object to obtain an XAResource object.

XAConnection conxa = xads.getXAConnection();

DataSource Method Description

tCreateDatabase(boolean p_Create) Sets TRUE or FALSE. If set to TRUE, it creates a new database
Default is FALSE.

olean getCreateDatabase() Returns TRUE if database exists and FALSE if it does not exist.
Version 4.4 PointBase Developer 85

http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

PointBase
Get Connection Object

Get a connection to the data source that “datsource1” represents, using the getConnection
method. The application involved with the global transaction uses this connection to perform
necessary work with the data source.

Connection con = conxa.getConnection();

Get XAResource Object

Get an XAResource object from the XAConnection object, using the getXAResource method.
The TM uses the XAResource object to manage a global transaction and its association with an
XAConnection object.

xaResource xrs = conxa.getXAResource();

NOTE: Only one XAResource object may exist for each XAConnection object. For example,
if you call a second getXAResource method on the same XAConnection object, you
obtain the same XAResource object.

Using the XAResource Object

Obtaining an XAResource object prepares you for starting and ending the association between
a global transaction and an XAConnection object. The following examples describe the syntax
that starts and ends the association between an XAConnection and a global transaction; “xrs”
is the XAResource object:

• Start
xrs.start(Xid, Flag);

• End
xrs.end(Xid, Flag);

Xid

The TM assigns Xids to identify a global transaction. Xid consists of two parts, GTRID
(transaction ID) and BQUAL (branch ID); both can be a maximum of 64 bytes. PointBase uses
a constructor that requires the following parameters:

The following example describes the syntax that a TM can use to define an Xid using the
PointBase class, com.pointbase.xa.xaXid:

Xid xid1 = new com.pointbase.xa.xaXid (formatId, trId , brId);

Parameter Name Parameter Type

formatId int

trId byte[]

brId byte[]
Version 4.4 PointBase Developer 86

PointBase
Flags

The following “Flags” help start and end the association between a global transaction and an
XAConnection object.

• TMNOFLAGS: indicates the start of a new global transaction. If you try to start a global
transaction with an Xid that is currently in use, you receive the error, XAER_DUPID.

xrs.start(xid1, TMNOFLAGS);

• TMJOIN: indicates the joining of another existing global transaction branch. If you try to
start a global transaction with an Xid that is currently in use, you receive the error,
XAER_PROTO.

xrs.start(xid1, TMJOIN);

• TMRESUME: indicates resuming a suspended global transaction, which must have been
previously suspended using the TMSUSPEND flag. You can use the TMRESUME flag
in a different thread than the thread that suspended the global transaction, but it must use
the same XAConnection.

xrs.start(xid1, TMRESUME);

• TMSUCCESS: indicates that a global transaction has completed successfully.
xrs.end(xid1, TMSUCCESS);

• TMFAIL: indicates that a global transaction failed. You must rollback this global
transaction.

xrs.end(xid1, TMFAIL);

• TMSUSPEND: indicates suspending a global transaction. You must continue this global
transaction with the flag, TMRESUME, within the same XAConnection.

xrs.end(xid1, TMSUSPEND);

Committing Global Transactions

Starting and ending a global transaction is similar to committing one, because you must
commit a global transaction, using the XAResource object. After calling the
XAResource.end(Xid, TMSUCCESS) method, you may commit the global transaction.
The beginning of this chapter mentioned that TMs ultimately decide to commit a global
transaction. TMs have the choice to use a “Two Phase Commit” or a “One Phase Commit”
protocol. PointBase (the RM) supports both protocols.

One Phase Commit

A TM can use the one phase commit protocol, if it knows that only one RM in the DTP
environment made changes to the shared data sources.

The following example describes the syntax for committing a global transaction using the one
phase commit protocol; “xrs” is the XAResource object:

xrs.commit(xid1, true);
Version 4.4 PointBase Developer 87

PointBase
Two Phase Commit

A TM uses the two phase commit protocol, if multiple RMs made changes to shared data
sources. In the first phase, (absent in the one phase commit protocol), the TM must confirm
that all RMs involved in the global transaction have completed the necessary work
successfully. If one RM does not complete its work successfully, the TM must rollback the
global transaction. If the TM received a successful response from all RMs, however, the TM
proceeds to phase two, committing the global transaction.

The following example describes the syntax for committing a global transaction using the two
phase commit protocol; “xrs” is the XAResource object:

• Phase One
xrs.prepare(xid1);

• Phase Two
xrs.commit(xid1, false);

Rolling Back Global Transactions

The TM must rollback a global transaction if any RM does not complete its work successfully
or if the application requests that the TM rollback the global transaction. The following
example describes the syntax for rolling back a global transaction; “xrs” is the XAResource
object:

xrs.rollback(xid1);

Recovering Global Transactions

A DTP environment or system may need to recover after a storage, connection path, or
program failure. PointBase (the RM) provides the TM a list of Xids that it has prepared for
commitment by the two phase commit protocol. The TM must recover the Xids by either
committing them or rolling them back. The following example describes the syntax for
recovering a global transaction; “xrs” is the XAResource object:

Xid[] xids = xrs.recover(Flags);

Flags

• TMSTARTSCAN: indicates the start of a new recovery process.

Xid[] xids = xrs.recover(TMSTARTSCAN);

• TMENDSCAN: indicates the end of a recovery process.

Xid[] xids = xrs.recover(TMENDSCAN);

• TMNOFLAGS: indicates that no other flags are specified. Use this flag only after you
started the recovery scan.

Xid[] xids = xrs.recover(TMNOFLAGS);

• TMSTARTSCAN | TMENDSCAN: indicates the retrieval of all pending Xids.

Xid[] xids = xrs.recover(TMSTARTSCAN|TMENDSCAN);
Version 4.4 PointBase Developer 88

PointBase
Example

The following example describes a global transaction using a single thread and a single
resource manager.

// initialize DataSource
com.pointbase.xa.xaDatasource xads = new com.pointbase.xa.xaDataSource()
xads.setDatabaseName(“jdbc:pointbase:embedded:xyz”);
xads.setCreateDatabase(true);

// get a connection object from DataSource
XAConnection conxa = xads.getXAConnection ();
Connection con = conxa.getConnection();

// get a resource object from Connection
XAResource xrs = conxa.getXAResource ();

// define an Xid
Xid xid = new com.pointbase.xa.xaXid (“tr001” , “br001”);

// start a new transaction
xrs.start (xid, XAResource.TMNOFLAG);

// do something
Statement stmt = con.createStatement ();
stmt.execute (“ create table xxx (c1 int)“);
stmt.execute (“ insert into xxx values (1) “);

…

// end an Xid
xrs.end (xid, XAResource.TMSUCCESS);

// commit the transaction
xrs.prepare (xid);
xrs.commit (xid, false);

//close the connection
con.close();
conxa.close();

Mixing Global and Local Transactions

Using PointBase, you can mix global and local transactions in the same XAConnection. If you
execute an SQL statement and have not started a global transaction, (for example, getting an
XAResource object) PointBase starts a local transaction automatically.

If you execute a local transaction, you must commit or rollback the transaction before you can
start a global transaction.

NOTE: If autocommit is ON, local transactions commit automatically.
Version 4.4 PointBase Developer 89

PointBase
Unsupported in PointBase

PointBase does not support the following for distributed transactions:

• setTransactionTimeout: this method sets the transaction time-out value for this
XAResource instance.

• getTransactionTimeout: this method gets the transaction time-out value set for this
XAResource instance.
Version 4.4 PointBase Developer 90

SQL Security and Privileges
This chapter describes PointBase security and privileges. Schemas are an integral part of
security in PointBase. When creating a PointBase user, they do not have any access privileges
to schemas or other data objects within the database. PointBase only permits the schema or
database owner, PBSYSADMIN, or the PBDBA role to grant privileges to the schema and
data objects within the schema. These users can grant privileges to the following data objects
in the schema:

• Tables
• Columns
• Roles
• SQL Procedures and Functions

Table 1 describes the privileges that the previously mentioned users can grant to other users for
tables and columns:

Table 1: User Privileges for Tables and Columns

Privilege Statements
Privilege
Description

DELETE Allows a user to delete rows from tables within the schema

INSERT Allows a user to insert rows of data into tables within the
schema

REFERENCES Allows a user to set up references to primary keys within
the schema

SELECT Allows a user to select rows from tables within the schema

TRIGGER Allows a user to create triggers on tables within the schema

UPDATE Allows a user to update rows in tables within the schema

EXECUTE Allows users to execute functions or stored procedures
within the schema
Version 4.4 PointBase Developer 91

PointBase
Predefined Users

PointBase provides you with two predefined users. They each have their own purposes for the
database. For example, anyone connected to the database using the predefined user,
PBPUBLIC, has the capability to perform the following:

• connect to the database
• access the PBPUBLIC schema
• alter any objects within the default schema

In addition, PointBase provides one more type of predefined user. It has complete authority
and privileges over all databases in the system. However, it does not have the privilege to
modify or drop the system catalog tables.

Internal_System_Administrator (ISA)

This type of predefined user is for PointBase internal use only.

PBSYSADMIN

This type of predefined user has complete authority and privileges over all objects in the
database, for example, it can create new users in the database. However, it does not have the
privilege to modify or drop the system catalog tables. You may not grant additional
privileges to the predefined user, PBSYSADMIN. To connect using PBSYSADMIN, you will
initially have to use the password, “PBSYSADMIN.” After using it to connect, PointBase
encourages you to change the password immediately.

PBPUBLIC

Another PointBase predefined user is PBPUBLIC. To connect using this type of user, you must
use the default password, PBPUBLIC. With this type of user, you may access objects in the
default schema, PBPUBLIC.

Previous User PUBLIC

In versions 4.1 and earlier, PointBase used the default user, PUBLIC. By default, it also has the
password and schema, PUBLIC. These names will still remain effective in versions 4.3 and
later; however, PointBase will now use PUBLIC for superficial purposes only. That is, you
may still connect to the database using PUBLIC. But internally, PointBase converts the user
and the password, PUBLIC, to PBPUBLIC every time you connect, and PointBase recognizes
the schema, PUBLIC as if it were the schema, PBPUBLIC. Please note that the passwords,
PBPUBLIC and PUBLIC act as the same password, so if you alter either password, it affects
the other.
Version 4.4 PointBase Developer 92

PointBase
Granting and Revoking Privileges to Users

When you initially create a PointBase database, it automatically creates the user, PBPUBLIC
with a password of PBPUBLIC. The PBPUBLIC user owns the default PBPUBLIC schema.
For security reasons, PointBase does not recommend using this schema to store sensitive data.
Like any PointBase user, PBPUBLIC must be granted the appropriate privileges to access data
objects in schemas owned by other users.

PBPUBLIC users will own any new schema that they create unless otherwise specified while
creating the schema. New users are then able to create their own new schema and grant
appropriate privileges on objects in the schema that they own. All new users must be granted
privileges to access the objects in the PBPUBLIC schema if this is required.

To grant the ability for a user to pass a privilege on to other users, you must specify the
optional WITH GRANT OPTION qualifier when granting the privilege.

GRANT Syntax

GRANT <privilege-list>
ON <object>
TO <user> [WITH GRANT OPTION] | PUBLIC]
[GRANTED BY <grantor>]

Use the GRANT statement to grant privileges on a data object. The following describes the
GRANT statement syntax.

GRANT <Privilege-list> Syntax

privilege [, privilege [, privilege]…] | ALL PRIVILEGES

<Privilege> Syntax

SELECT [(column-name [, column-name]…)]
| DELETE
| INSERT [(column-name [, column-name]…)]
| UPDATE [(column-name [, column-name]…)]
| REFERENCES [(column-name [, column-name]…)]
| TRIGGER [(column-name [, column-name]…)]
| EXECUTE

Usage Notes

• If you do not include one or more of these privileges in the GRANT statement, an error
will be raised.

• If the optional “column-names” are not specified for the SELECT, INSERT, UPDATE,
REFERENCES and TRIGGER privileges, the GRANT is a table-level grant that allows
access to all present and future columns of the table.

• If you execute a GRANT statement that contains privileges that you don’t have or for
which you do not have the right to grant, then PointBase raises an error.
Version 4.4 PointBase Developer 93

PointBase
ON <Object> Syntax

[TABLE] table-name
|SPECIFIC routine_type specific_routine-name
|routine_type routine_name (parameter_types_list)
[TRIGGER] trigger-name

Usage Notes

• You may only grant the EXECUTE privilege on an SQL Function or Procedure. The user
cannot access tables that the SQL Function or Procedure uses.

TO <user/role-list> | [WITH GRANT OPTION] | PUBLIC Syntax

user [, user]... [WITH GRANT OPTION] | PUBLIC

Usage Notes

• If you do not specify WITH GRANT OPTION, the user cannot pass the same privilege
on to other users. However, if you do specify WITH GRANT OPTION, you have given
the user permission to pass on the privilege to other users.

• Granting a privilege to PUBLIC grants the privilege to all present and future users.
PUBLIC is a keyword, representing all users in the database.

• If you grant a privilege twice, and one of the times—either first or second—you granted
the optional WITH GRANT OPTION and the other time you granted it without the grant
option, the user will retain the grant option.

[GRANTED BY <grantor>] Syntax

[GRANTED BY CURRENT_USER | user_name]

Usage Notes

• Use this option to indicate whether you want the grant to be from the CURRENT_USER
or the CURRENT_ROLE, or whether you want to revoke authorization records that were
granted from the CURRENT_USER or from the CURRENT_ROLE.

• If GRANTED BY <grantor> is not specified, then the grantor is the CURRENT_USER.
• If GRANTED BY CURRENT_ROLE is specified, then the CURRENT_ROLE must not

be NULL.
• A <grantor> of user_name is not ANSI standard. Only the users, PBSYSADMIN,

database owner, or someone with the PBDBA role can specify a <grantor> of
user_name.

Examples

• The following statement grants the SELECT privilege on the CUSTOMER_TBL table to
the user MARKETING_MGR.

GRANT SELECT
ON customer_tbl
TO marketing_mgr;
Version 4.4 PointBase Developer 94

PointBase
• The following GRANT statement allows the user FINANCIAL_MGR to delete, insert
and update rows from the DISCOUNT_CODE_TBL table; it also allows this user to
grant the same privileges to others.

GRANT DELETE,INSERT,UPDATE
ON discount_code_tbl
TO financial_mgr
WITH GRANT OPTION;

• The following GRANT statement allows the user HR_MGR to have ALL PRIVILEGES
on the table SALES_REP_DATA_TBL. However, the user HR_MGR will only be
granted privileges that the user granting the privileges has the right to grant. For example,
if the user granting the privileges does not have the right to grant DELETE privileges, the
HR_MGR will not have the delete privilege.

GRANT ALL PRIVILEGES
ON sales_rep_data_tbl
TO hr_mgr

REVOKE Syntax

REVOKE [GRANT OPTION FOR] <privilege_list>
ON <object>
FROM <user_name> [RESTRICT | CASCADE]
[GRANTED BY <grantor>]

To revoke a role from a user, use the SQL command, REVOKE. This command revokes only
the privileges that the specified <grantor> granted to the <user_name>. If another <grantor>
granted the same privileges to the <user_name>, then the <user_name> will still have those
privileges.

Please note that the syntax rules for the REVOKE syntax is similar to the GRANT statement.
The major difference is the additional RESTRICT or CASCADE keyword and the GRANT
OPTION FOR clause. The following describes the optional clauses GRANT OPTION FOR
and RESTRICT or CASCADE.

NOTE: You may only revoke privileges, which you have granted.

GRANT OPTION FOR

If the optional GRANT OPTION FOR clause is used, the WITH GRANT OPTION right is
revoked, but the actual privilege itself is not revoked. CASCADE and RESTRICT may be used
in the same way as a normal REVOKE statement.

RESTRICT | CASCADE

If you specify the RESTRICT keyword, only the privilege granted by you, will be revoked
from the specified user. If the specified user had the grant option and granted the same
privilege to other users, then PointBase will raise an error.

If you specify CASCADE, only the privilege granted by you, will be revoked from the
specified user and any other privileges dependent on your grant.

If the optional RESTRICT or CASCADE keywords are not used, PointBase uses CASCADE
by default.
Version 4.4 PointBase Developer 95

PointBase
Predefined Roles

This section describes predefined roles in PointBase. Predefined roles and roles in general can
save you time granting commonly-used privileges to a user, a group of users, or another role.
Predefined roles can provide you some type of authority over databases. Predefined roles and
roles in general are multiple privileges bundled into one object. You can typically use a
predefined role to apply commonly-used privileges to one user or a group of users or another
role. For example, one predefined role gives specified users all the privileges that a database
owner has. The other predefined role gives specified users read authority on all objects in the
database. You may not grant additional privileges to predefined roles. PointBase provides
the following predefined roles:

PBDBA Role

You have complete authority, including all privileges over the database using the PBDBA role.
Please note that it cannot be granted to other roles.

READALL Role

You can grant other users the read or SELECT authority on all objects in the database using the
READALL role. With it, any user can unload the entire database—regardless of who owns the
objects or what privileges have been granted on them.

Granting and Revoking Privileges to Roles

With PointBase, you have the capability to grant or revoke roles. They may contain multiple
privileges, which you can apply towards multiple users, without having to apply each privilege
one user at a time. Any user can grant roles to other users or to other roles if they have the
authority. Any user with the authority may grant additional privileges to roles.

To enable your current role, you must use the SQL command, SET ROLE. PointBase allows
you to enable or set your current role if your current user has been granted that role. A user
may only have one enabled role—one current role, at any given time—though a user may have
been granted several different roles. Please note that at any given time, users’ total privileges
are the sum of all privileges directly granted to them and any privileges or roles granted to their
current role.

The following diagram briefly characterizes roles by illustrating User I granting Role A to
User II and Role B. It also displays User III granting Role C to Role A and how User II and
Role B are affected by this change.
Version 4.4 PointBase Developer 96

PointBase
CREATE ROLE Syntax

CREATE ROLE <role_name> [WITH ADMIN <grantor>]

To create a role that can have privileges granted to it, use the SQL command CREATE ROLE.
The following explains the CREATE ROLE syntax.

<role_name>

It is the name of the role you are creating. For <role_name>, you may use any valid user
name, except PUBLIC, NONE, or the same name as an existing user.

<grantor> = CURRENT_USER | CURRENT_ROLE | user_name

A two-step diagram displaying what was described in the previous
paragraph and, showing User II and Role B acquiring Role C,
which was the result from the User III grant, also described in the
previous paragraph.

User I

Role A

Privilege A
Privilege B

GRANT ROLE A to User II

Role B

User II

Role A

Privilege A
Privilege B

Role B

Role A

Privilege A
Privilege B

User I

Role A

Privilege A
Privilege B

Step 1

Result of Step 1

Step 2

Result of Step 2

Role A

Privilege A
Privilege B

Role A

Privilege A
Privilege B
Role C
Privilege C
Privilege D

GRANT ROLE C to

Role A

Privilege A
Privilege B
Role C
Privilege C
Privilege D

User I
Role A

Privilege A
Privilege B
Role C
Privilege C
Privilege D

Role B
Role A

Privilege A
Privilege B
Role C
Privilege C
Privilege D

User II

User III

Role C
Privilege C
Privilege D
Version 4.4 PointBase Developer 97

PointBase
• If WITH ADMIN <grantor> is not specified, then the grantor is the CURRENT_USER.
• IF WITH ADMIN CURRENT_ROLE is specified, then the CURRENT_ROLE must not

be NULL.
• A <grantor> of user_name is not ANSI standard. Only the PBSYSADMIN, database

owner, or someone in the PBDBA role can specify a <grantor> of user_name.

Examples

If the current user is SALES_MANAGER:
CREATE ROLE SALES WITH ADMIN CURRENT_USER

This will create a role called SALES whose owner is the user SALES_MANAGER. Privileges
can now be granted to the role SALES just as they can to a user. The user SALES_MANAGER
can then grant the role SALES to other users, or to other roles. These users or roles will then
have all the privileges that were granted to the role SALES, the same as if these privileges
were granted to them individually.

ed examples>

GRANT ROLE Syntax

GRANT <role_name> [{ , <role_name> } …]
TO <grantee> [{ , <grantee>} …]
[WITH ADMIN OPTION]
[GRANTED BY <grantor>]

To grant users a role, use the SQL command, GRANT ROLE. The following explains its
syntax.

<role_name>

It is the name of the role you are granting. You may grant more than one role.

<grantee> = PUBLIC | <role_name>

• A role can be granted to users or other roles.
• You cannot grant a role to itself.
• You cannot grant one role to a second role, and then attempt to grant the second role back

to the first. For example, you can grant Role (A) to Role (B) or Role (B) to Role (A), but

not both. Such a series of grants would result in a role grant cycle, which is not allowed.
• Granting to PUBLIC grants the role to all present and future users and roles.

[WITH ADMIN OPTION]

If WITH ADMIN OPTION is specified, then the <grantee> can grant the role to other users or
roles. It also gives the <grantee> the right to drop the role.

<grantor> = CURRENT_USER | CURRENT_ROLE | user_name

• If you do not specify GRANTED BY <grantor>, then the grantor is the
CURRENT_USER.
Version 4.4 PointBase Developer 98

PointBase
• If you specify GRANTED BY CURRENT_ROLE, then the current role must not be
NULL.

• To successfully execute this command, current users must either be the PBSYSADMIN
or the database owner. Or, current users must either have the PBDBA role, or the
<grantor>s must have admin option for every role that they grant.

• A <grantor> of user_name is not ANSI standard. Only the PBSYSADMIN, database
owner, or someone in the PBDBA role can specify a <grantor> of user name.

REVOKE Syntax

REVOKE [ADMIN OPTION FOR] <role_name> [{ , <role_name> } …]
FROM <grantee> [{ , <grantee>} …]
[GRANTED BY <grantor>]
<drop_behavior>

To revoke a role from a user or another role, use the SQL command, REVOKE. This command
revokes only the roles that the specified <grantor> granted to the <grantee>. If another
<grantor> granted the same role the <grantee>, then the <grantee> will still have privileges
to that role.

Please note that the syntax rules for the REVOKE syntax is similar to GRANT ROLE, except
for the following.

NOTE: You may only revoke roles, which you have granted.

[ADMIN OPTION FOR]

If ADMIN OPTION FOR is specified, then only the admin option for the role is revoked.

<drop_behavior> = CASCADE | RESTRICT

• If you specify the RESTRICT keyword, only the role granted by you, will be revoked
from the specified <grantee>. If the specified <grantee> had the ADMIN OPTION and
granted the same privilege to other users, they will retain the privilege.

• If you specify CASCADE, only the role granted by you, will be revoked from the
specified <grantee> and any other roles dependent on your grant.

• If the optional RESTRICT or CASCADE keywords are not used, PointBase uses
CASCADE by default.

DROP ROLE Syntax

DROP ROLE <role_name> [<drop_behavior>]

To successfully execute this command, the current user must be the PBSYSADMIN or the
database owner, or the current role must be PBDBA. If your current user or role has been
granted admin option on the role being dropped, you may also use this command.

<drop_behavior> = CASCADE | RESTRICT
Version 4.4 PointBase Developer 99

PointBase
• If the drop behavior is CASCADE, then all schemas owned by this role will be dropped.
Also, all privilege entries in the catalog tables where this role is the <grantor>, the
<grantee>, or the object being granted will be dropped.

• If the drop behavior is RESTRICT, then an error will be raised if there are any schemas
owned by this role or if there are any privilege entries, where this role is the <grantor>,
the <grantee>, or the object being granted.

• If drop behavior is not specified, then CASCADE is the default.
• You cannot drop the predefined roles: PBDBA and READALL.

SET ROLE Syntax

SET ROLE <role_name> | NONE

Usage Notes

• To successfully execute this command, the current user must be the PBSYSADMIN, the
database owner, or a user granted to use this role. Or, the current role must be PBDBA.

• This statement will set the current role for the current user to either the role specified or
to the null value if NONE is specified.

• If this statement is executed and an SQL transaction is currently active, then an error will
be raised: dbexcpITSActiveSQLX : "Invalid transaction state - active SQL-transaction".
Version 4.4 PointBase Developer 100

Application Programming
Interface Tools
This chapter describes what application programming interface (API) tools PointBase offers
and how to use them. Unlike other PointBase tools, for example, Commander and Console,
you can integrate the API tools explained in this chapter with a Java application. This chapter
will divide each API tool or combination of tools into sections, beginning with the main
purpose for using the tool(s), followed by a description of the Java classes and other
components, accompanied with a brief summary of how the different parts can work together
(if needed), and finally, ending with examples of how to implement the tool(s). After reading
or browsing this chapter, you may find a useful tool(s) that an application can integrate.

Load and Unload API’s

PointBase provides tools that you can use to either load or unload a database, or unload a table
using the load and unload API’s. Using it, you can write your application once and call
methods to unload or load a database without having to write anything on a command line.
However, you can also create a stand-alone tool or a command-line tool using the load and
unload API’s. Either way you choose, PointBase gives you the needed tools to load or unload a
database, or unload a table.

Unload API

To unload a database or table using the unload API, you must use the PointBase class,
“com.pointbase.tools.toolsUnload.” It contains two static methods,
“unloadDatabase(Connection p_conn, String p_filename, boolean p_preserve)” and
“unloadTable(Connection p_conn, String p_filename, String p_tableName).”

unloadDatabase(Connection p_con, String p_filename, boolean p_preserve)

To unload a complete database into directory as a specific .sql file, you must use the static
method, “unloadDatabase(Connection p_conn, String p_filename, boolean p_preserve).” You
need to create the connection and then pass the connection reference to the API. You also need
to provide the file name with the complete path; if you do not provide it, the API will unload
the database into a .sql file located in the directory, where you launched the application.
Version 4.4 PointBase Developer 101

PointBase
The third parameter preserves ownership when unloading. TRUE preserves the ownership of
schemas, grantors in GRANT statements, and create ROLE owners. But, it does not preserve
the DATABASE OWNER. Whoever creates the new database becomes the database owner.
See the example after the unload table method.

unloadTable(Connection p_conn, String p_filename, String p_tableName)

To unload an entire table into a specific .sql file and directory, you must use the static method,
“unloadTable(Connection p_conn, String p_filename, String p_tableName).” You need to
create the connection and then pass the connection reference to the API. You also need to
provide the file name with the complete path; if you do not provide it, the API will unload the
table into a .sql file located in the directory where you launched the application. If you unload
a table, you must provide the complete-qualified name of the table; that is,
“<schema_name>.<tableName>”; if you do not provide it, the API will search for the table
name in the current schema path. For mixed-case-table names, the example describes the
supported syntax.

import com.pointbase.tools.toolsUnload ;
import java.sql.*;

public class test
{

Connection m_con;
public test() throws Exception
{

Class.forName("com.pointbase.jdbc.jdbcUniversalDriver");
m_con = DriverManager.getConnection("jdbc:pointbase:embedded:sample", "pbpublic",

"public");
}
public void unloadDatabase() throws Exception
{

toolsUnload.unloadDatabase(m_con, "e:\\pointbase\\database.sql", true);
toolsUnload.unloadTable(m_con, "e:\\pointbase\\table.sql", "public.t1");
//table names are case-sensitive, see the following:
toolsUnload.unloadTable(m_con, "e:\\pointbase\\table1.sql", "public.ajay");

}
public static void main(String[] args)
{

try
{

test t = new test();
t.unloadDatabase();

}
catch(Exception ex)
{

System.out.println("Exception occurred: " + ex);
}

}
}

Stand-Alone or Command Line Tool

To use the unload tool on the command line, you can use the following example, which
unloads a complete database into the file, “database.sql” in the directory, “e:\.” It also
preserves the ownership of schemas, grantors in GRANT statements, and create ROLE
owners. But, it does not preserve the DATABASE OWNER. Whoever creates the new
database becomes the database owner. You must provide the file name with the complete path;
if you do not provide it, the API will unload the table into a .sql file located in the directory
where you launched the application.
Version 4.4 PointBase Developer 102

PointBase
If you unload a table, you must provide the complete-qualified name of the table; that is,
“<schema_name>.<tableName>”; if you do not provide it, the API will search for the table
name in the current schema path. For mixed-case-table names, the example describes the
supported syntax. It uses the following default options:

• -driver com.pointbase.jdbc.jdbcUniversalDriver
• -url jdbc:pointbase:embedded:sample
• -user PBPUBLIC
• -password PBPUBLIC

java com.pointbase.tools.toolsUnload
–driver com.pointbase.jdbc.jdbcUniversalDriver –url jdbc:pointbase:embedded:sample –
file e:\database.sql -preserve true –user pbpublic –password pbpublic -table null

To unload a table, you can refer to the following example:

java com.pointbase.tools.toolsUnload
–driver com.pointbase.jdbc.jdbcUniversalDriver –url jdbc:pointbase:embedded:sample –
file e:\table.sql –user pbpublic –password pbpublic -table pbpublic.table1

Load API

To load a database using the load API, you must use the PointBase class,

"com.pointbase.tools.toolsLoad." It contains couple of static method, First "load (Connection
p_conn, String p_filename)."

load(Connection p_conn, String p_filename)

Using this method, you must first create the connection and then pass the connection reference
to the API. You must also provide the file name with the complete path, if you do not provide
the complete path, the API will try to load the file from the current location of the application.

The following example describes the connection, "m_con" and the complete path and file
name, "e:\pointbase\database.sql."

import com.pointbase.tools.toolsLoad ;
import java.sql.*;
public class test
{

Connection m_con;
public test() throws Exception
{

Class.forName("com.pointbase.jdbc.jdbcUniversalDriver");
m_con = DriverManager.getConnection("jdbc:pointbase:embedded:sample", "pbpublic",

"pbpublic");

}
public void loadDatabase() throws Exception
{

toolsLoad.load(m_con, "e:\\pointbase\\database.sql");
}
public static void main(String[] args)
{

try
{

test t = new test();
t.loadDatabase();

}
catch(Exception ex)
{

System.out.println("Exception raised: " + ex);
}

}
}

Version 4.4 PointBase Developer 103

PointBase
Second "load (Connection p_conn, InputStream p_in)".

load (Connection p_conn, InputStream p_in)

Using this method, you must first create the connection and then pass the connection reference

to the API. You must also provide the InputStream; if you do not provide it, your program will
not compile. The following example describes the connection, "m_con" and an Input file
Stream to read from a file with the specified name "e:\pointbase\database.sql."

import com.pointbase.tools.toolsLoad ;
import java.sql.*;
import java.io.*;

public class test
{

Connection m_con;
public test() throws Exception
{

Class.forName("com.pointbase.jdbc.jdbcUniversalDriver");
m_con = DriverManager.getConnection("jdbc:pointbase:embedded:sample", "pbpublic",

"pbpublic");

}
public void loadDatabase() throws Exception
{

toolsLoad.load(m_con, new FileInputStream("e:\\pointbase\\database.sql"));
}
public static void main(String[] args)
{

try
{

test t = new test();
t.loadDatabase();

}
catch(Exception ex)
{

System.out.println("Exception raised: " + ex);
}

}
}

Version 4.4 PointBase Developer 104

PointBase
Stand-Alone or Command Line Tool

To use the load tool on the command line, you can use the following example, which loads a
complete database into the file, “database.sql” in the directory, “e:\.” You must provide the
file name with the complete path; if you do not provide it, the API will try to load the file from
the current location of the application. It uses the following default options:

• -driver com.pointbase.jdbc.jdbcUniversalDriver
• -url jdbc:pointbase:embedded:sample
• -user PBPUBLIC
• -password PBPUBLIC

java com.pointbase.tools.toolsLoad –driver com.pointbase.jdbc.jdbcUniversalDriver –
url jdbc:pointbase:embedded:sample –file e:\database.sql –user pbpublic –
password pbpublic –log true
Version 4.4 PointBase Developer 105

Appendix A: SQL Reference
Conventions

This section describes documentation conventions. There are two basic conventions:

1. Page format conventions provide a structure for the organization of individual pages
in the documentation.

2. Syntax conventions convey specific information about keywords and clauses in the
SQL statements described in this document.

Page Format Conventions
Each SQL statement in the data manipulation language, data definition language, and
transaction control sections of the PointBase SQL documentation uses a specific page format.

• Each statement page starts with the primary keyword of the statement, which displays at
the heading of the page; for example, SELECT.

• The statement keyword(s) is followed by the syntax of the statement. The statement
syntax follows the conventions described in “Syntax Conventions,” below.

• Immediately following the statement syntax is a brief description of the overall statement.

• Detailed explanations are then described for each keyword and clause in the statement.
Some clauses may include a more detailed explanation of their own syntax or links to
other documents that describe clauses that are common to more than one SQL statement.
Version 4.4 PointBase Developer 106

PointBase
Syntax Conventions
Each SQL statement uses certain types of capitalization, formatting, and punctuation that
describe the attributes of different portions of the statement.

• If a portion of an SQL statement displays in UPPERCASE, the capitalized words are
keywords, which are generally required in the SQL statement or clause. Keywords are not
case sensitive, and they must be spelled exactly as they display in this document.

• Portions of SQL statements that display in lowercase italic are SQL values. SQL values
used in PointBase SQL can be constants, column names, values formed from
combinations of column values and constants, or the result of any function that returns a
single value. The values for variables in conditional expressions are case sensitive.

• The clauses in an SQL statement that display between [brackets] are optional. If an
optional clause has several components or keywords, they display within the brackets.

• Curly braces {} in SQL statements indicate that one or more clauses are used together.

• Ellipses are sets of periods (such as “...”). Ellipses in an SQL statement have the same
meaning as “etc.”; they denote that the series of keywords, clauses, or variables that
precede the ellipses go on indefinitely.

Data Definition Language

The following section describes the syntax for creating and managing logical data objects. The
Data Definition Language (DDL) is essential to creating a database. Use the following DDL
statements and operations to begin building your PointBase database.

• "CREATE SCHEMA" on page 108
• "CREATE TABLE" on page 109
• "CREATE VIEW" on page 120
• "CREATE USER" on page 122
• "CREATE ROLE" on page 123
• "CREATE INDEX" on page 124
• "CREATE FUNCTION" on page 125
• "CREATE PROCEDURE" on page 128
• "CREATE TRIGGER" on page 131
• "ALTER USER" on page 140
• "ALTER TABLE" on page 138
Version 4.4 PointBase Developer 107

PointBase
CREATE SCHEMA

CREATE SCHEMA schema_name
[AUTHORIZATION user_name]
[COUNTRY country_code [LANGUAGE language_code]]

The CREATE SCHEMA statement creates a schema in a PointBase database.

Syntax

CREATE SCHEMA The CREATE SCHEMA keyword is required as the first words
in a CREATE SCHEMA statement.

schema_namea

a. PointBase recommends to use the same name for both the schema_name and the
user_name. Once you log in, PointBase creates new objects in the schema that has the
same name as your user_name. If no schema has the same name as your user_name,
PointBase creates the new objects in the PBPUBLIC schema.

The name of the schema.

user_name The schema owner name or the role name. If you specify a role
name, any user who enables the specified role can have full
schema ownership privileges. The schema owner name or the
role name must exist in the database or an error is raised. If
user_name is not specified the current user_name is the owner of
the schema.

country_codeb

b. Please refer to Country and Language Codes of the PointBase System Guide for a
list of valid country codes and languages.

Specifies the country code. The default country code is US
English. When this option is used, char data is stored as Unicode.
If this option is NOT used, char, varchar, and CLOB columns use
US ASCII values.

language_code Specifies the language code. The default language code is US
English. When this option is used, char data is stored as Unicode.
If this option is NOT used, char, varchar, and CLOB columns use
US ASCII values.
Version 4.4 PointBase Developer 108

PointBase
Examples

CREATE SCHEMA ORDERS
AUTHORIZATION Orders_Mgr
COUNTRY FR
LANGUAGE FR;

CREATE TABLE

CREATE [GLOBAL TEMPORARY] TABLE table_name (column_definition |
table_constraint_definition
[{, column_definition | table_constraint_definition}...]) [TABLE PAGESIZE size, LOB
PAGESIZE size] [ON COMMIT {PRESERVE|DELETE} ROWS]
[COUNTRY country_code [LANGUAGE language_code]]
[ORGANIZATION {INDEX|HEAP}]

The CREATE TABLE statement creates the table structures for the PointBase database. The
CREATE TABLE statement allows you to define the table by name, to define the columns,
default values, keys, and constraints on the table.

Syntax

CREATE TABLE The CREATE TABLE keywords are required as the first words
in a CREATE TABLE statement.

GLOBAL TEMPORARY The GLOBAL TEMPORARY keyword creates a global
temporary table. Once a global temporary table is defined, the
definition will be persistent in SYSTABLES. Global temporary
table is materialized only when referenced in an SQL-Session.
Each SQL-Session maintains distinct instance of global
temporary table materialized in that session. Hence contents of
global temporary table is not shared between SQL-Sessions. For
global temporary table, ON COMMIT clause must be supplied or
ON COMMIT DELETE ROWS is implicitly implied.

table_name The table_name is the name of the table structure. The table
name cannot be the same as a PointBase keyword. Table names
in the PointBase database are not case sensitive and can be up to
128 characters long.

column_definition The column_definition contains all the information needed to
define the columns that are a part of a table. See the following
pages for the section on column_definition syntax.

table_constraint_definition The table_constraint_definition allows you to define a constraint
that is applicable to the table. Usually this type of constraint is
used when you specify multiple columns for any type of
constraint. See the following pages for the section on
table_constraint_definitions.
Version 4.4 PointBase Developer 109

PointBase
ON COMMIT
{PRESERVE | DELETE}
ROWS

This parameter specifies the lifespan of temporary tables. For on
commit preserve rows, the life of temporary tables is for the
entire session. For on commit delete rows, the life of temporary
tables is only for each transaction.

TABLE PAGESIZE size Use the TABLE PAGESIZE keywords after all the column
definitions and table constraint definitions to define the page size
of the table. If this specification is omitted, the table uses the
default pagesize as set in the database properties file
(pointbase.ini). Size can be one of the following:

• a number, such as 1024
• Kilobytes, such as 1K
• Megabytes, such as 1M

LOB PAGESIZE size Use the LOB PAGESIZE keywords after all the column
definitions and table constraint definitions to define the page size
of the BLOB and CLOB columns. If this specification is omitted,
the LOB uses the default pagesize. If both table and LOB
pagesizes are specified, either the table or the LOB pagesize can
be defined before the other. Size can be the following:

• a number, such as 1024
• Kilobytes, such as 1K
• Megabytes, such as 1M

It is required only if one or more columns in the table contain
LOB characters. You should specify this only once, even if the
table has multiple LOB columns. All LOBs will use pages of this
size for storing LOBs, unless the LOB fits into the data page.

If this specification is omitted, the LOB pages use the default
page size.

COUNTRY country_code Specifies the country code. The default country code is US

Englisha. When this option is used, char data is stored as
Unicode. If this option is NOT used, char, varchar, and CLOB
columns use US ASCII values.
Version 4.4 PointBase Developer 110

PointBase
A table has a given locale property if the following items are fulfilled:

• the country code or language code is explicitly specified in the CREATE TABLE
statement.

• the country code or language code is explicitly specified in the CREATE SCHEMA
statement.

• language and country settings are specified in the pointbase.ini file.

LANGUAGE
language_code

Specifies the language code. The default language code is US
English. When this option is used, char data is stored as Unicode.
If this option is NOT used, char, varchar, and CLOB columns use
US ASCII values.

ORGANIZATION (INDEX |
HEAP)

Specifies how the rows of the table are to be physically stored.
ORGANIZATION HEAP is the default and is sometimes
referred to in this document as a "regular" table organization. In a
regular table organization, all the rows of the table are stored in
no particular order. If ORGANIZATION INDEX is specified,
then the rows are stored in the order of the primary key values.
Therefore, a primary key constraint must be declared if
ORGANIZATION INDEX is specified. The total declared
maximum size of all columns in an index-organized table must
fit within the table page size, including lobs. Dropping a column,
or adding or dropping the primary key via the ALTER TABLE
command is not allowed on an index organized table. Please see
the chapter "Index Organized Tables" for more information about
this type of table organization.

a. Please refer to Country and Language Codes of the PointBase™ System Guide for a list
of valid country codes and languages
Version 4.4 PointBase Developer 111

PointBase
Column_Definition Syntax

column_name data_type [identity_property | default_clause] [column_constraint]

column_name The column_name is the name of the column structure within the
table created with the CREATE TABLE statement. The column
name must be composed of alphanumeric characters or the
equivalent in another language, for example, a word in Japanese
characters and cannot be the same as a PointBase keyword. The
column name must be unique within the table that contains it.
Column names in the PointBase database are not case sensitive
and can be up to 128 characters in length.

data_type The data type describes the type of data that can be stored in the
column.

identity_property IDENTITY [(start_value, increment_value)]

IDENTITY keyword is used to recognize the definition of
IDENTITY property.

start_value is the value of the first row in the table. The value
must be a value greater than zero. If you do not specify this
value, the default is 1 (one).

increment_value is an incremental value based on the
start_value. The value must be a value greater than zero. If you
do not specify this value, the default is 1.

The maximum value for either start_value or increment_value is
equal to the maximum value possible for the data type. For
example, The maximum value possible for NUMERIC (4,0) is
9999. You can have IDENTITY columns with exact numeric
data types and a 0 (zero) scale only. The exact numeric data types
include INTEGER, SMALLINT, NUMERIC, or DECIMAL.
You cannot update IDENTITY columns nor can you specify
NULL for them. Also, you can only have one IDENTITY
column in a table. (See "IDENTITY Property for
Autoincrement" on page 41.)
Version 4.4 PointBase Developer 112

PointBase
Column_Constraints

default_clause The default_clause allows one to specify default values for a
given column. Possible default values and an example are:

• character string literal: ‘abc’
• numeric literal: 123
• datetime literal: time ‘22:45:21’
• binary string literal: X’104dc2’
• boolean literal: TRUE
• NULL value
• datetime value functions: CURRENT_DATE,

CURRENT_TIME, CURRENT_TIMESTAMP
• special registers
• SQL routine

The default value can be used with SQL Insert and Update
statements. Specify either DEFAULT or DEFAULT VALUES or
specify nothing at all and the default value is inserted.

column_constraint The column_constraint is one or more keywords that restricts the
data that can be written to a particular column. The PointBase
database currently supports the following column constraints. All
column constraints are optional.

• NOT NULL
• PRIMARY KEY
• UNIQUE
• FOREIGN KEY
• CHECK

NOT NULL The optional NOT NULL keyword indicates that a particular
column must have a non-NULL value associated with it. If one
performs any action to a table that results in a NOT NULL
column having a NULL value, the PointBase database returns a
runtime error. The syntax for the NOT NULL column constraint
is:

NOT NULL

PRIMARY KEY The optional PRIMARY KEY keyword creates an index for a
column. The syntax for the PRIMARY KEY column constraint
is:

PRIMARY KEY

The PRIMARY KEY column constraint can specify only one
column. To specify a PRIMARY KEY constraint with multiple
columns, use a table_constraint.
Version 4.4 PointBase Developer 113

PointBase
UNIQUE The optional UNIQUE constraint defines a unique key on the
column. All values for this column must be unique.

The syntax for the UNIQUE column constraint is:

UNIQUE

The UNIQUE column constraint can specify only one column.
To specify a UNIQUE constraint with multiple columns, use a
table_constraint.

FOREIGN KEY The optional FOREIGN KEY keyword indicates that a
relationship exists between the column value of this table
(known as the child table) and the primary key of the parent table
referenced in the REFERENCES clause. The syntax for the
FOREIGN KEY constraint is:

FOREIGN KEY
REFERENCES table_name (column_name)
[ON DELETE {NO ACTION | RESTRICT | CASCADE | SET
DEFAULT | SET NULL}]
[ON UPDATE {NO ACTION | RESTRICT |CASCADE | SET
DEFAULT | SET NULL}]

The ON DELETE clause defines the rules for deleting specific
columns on the specified table. To do this, specify either:

NO ACTION, CASCADE, RESTRICT, SET DEFAULT or SET
NULL.

You must specify at least one identifier. NO ACTION omits the
ON DELETE clause. RESTRICT looks to see what objects are
dependent on the object being dropped and if there are dependent
objects, then the dropping of the object does not occur.
CASCADE has the effect of dropping all SQL objects that are
dependent on that object. SET DEFAULT assigns default values
to all components of the target column. SET NULL assigns null
values to all components of the target column.
Version 4.4 PointBase Developer 114

PointBase
Table_Constraint_Definition

The table_constraint_definition allows you to define a constraint that is applicable to the table.
Usually this type of constraint is used when you specify multiple columns for any type of
constraint. There can only be a single column_constraint per column. The
table_constraint_definition uses the syntax of:

[CONSTRAINT constraint_name]
{unique_constraint | referential_constraint | check_constraint}

The ON UPDATE clause defines the rules for updating specific
columns on the specified table. To do this, specify either:

NO ACTION, RESTRICT, CASCADE, SET DEFAULT or SET
NULL.

If the ON DELETE or ON UPDATE clauses are omitted, the
default is NO ACTION.

FOREIGN KEY REFERENCES are required keywords,
table_name is the name of a table that already exists in the
PointBase database, and the column_names are the names of the
columns that define the primary key of the referenced table.

This column and the column in the referenced table must have
exactly the same data type. The referenced table must have a
unique or primary index on the specified column.

A foreign key relationship means that any values written to a
column with an INSERT or UPDATE statement must already
exist as a value in the primary key of the referenced table and
columns.

CHECK The optional CHECK keyword indicates that the value of a
column to be inserted or updated must meet the criteria of the
check constraint. The syntax for the CHECK constraint is:

CHECK (search_condition)

where the search_condition follows the rules of search conditions.

constraint_name The name that one supplied to identify a constraint. Each
constraint_name must be unique for a table. The
constraint_name is optional but if two constraints have the same
definition, then they will each need a name for uniqueness.

unique_constraint The unique_constraint defines an explicitly named primary key
or unique constraint of one or more columns.

The syntax for the unique_constraint is:

{UNIQUE | PRIMARY KEY} (column_name [{,
column_name}...])
Version 4.4 PointBase Developer 115

PointBase
referential_constraint The referential_constraint defines an explicitly named foreign
key constraint of one or more columns.

The syntax for the referential_constraint is:

FOREIGN KEY (column_name [{, column_name}...])
REFERENCES table_name [{column_name,
column_name,...}]
[ON DELETE {NO ACTION | CASCADE | RESTRICT | SET
DEFAULT | SET NULL}]
[ON UPDATE {NO ACTION | CASCADE | RESTRICT | SET
DEFAULT | SET NULL}]
[INDEX PAGESIZE <size>]

A given foreign key and its matching candidate key must contain
the same number of columns, N, such as: the Ith column of the
foreign key corresponds to the Ith column of the matching key (I
= 1 to N), and corresponding columns must have exactly the
same data type.

The referenced table must have a unique or primary index on the
specified columns. Not allowed on a view. PointBase raises an
error if you attempt this on a view.

If the column_name for the referenced table is omitted, it
defaults to the columns in the primary key of the referenced
table.
Version 4.4 PointBase Developer 116

PointBase
ON DELETE The ON DELETE clause defines the rules of behavior when an
attempt is made to delete a row in the parent table that has a
corresponding row in the referencing table that is dependent on
the row in the parent table. The dependency is based on the
columns of the FOREIGN KEY in the parent table and
corresponding columns in the referencing table. The purpose of
this clause is to avoid dangling references.

If the behavior rule is CASCADE, then all dependent or
matching rows in the referencing table are deleted when the row
in the parent table is deleted.

If the behavior rule is NO ACTION, then if an attempt is made to
delete a row in the parent table that has a dependent row in the
referencing table, the row in the parent table will not be deleted.

If the behavior rule is RESTRICT, then if an attempt is made to
delete a row in the parent table that has a dependent row in the
referencing table, the row in the parent table will not be deleted.
The database checks before attempting to delete the row in the
parent table.

If the behavior rule is SET DEFAULT, then the columns of the
rows in the referencing table are set to default values for their
respective columns when the row in the parent table is deleted.
Each column of the referencing table that corresponds to the
FOREIGN KEY in the parent table must have a default value or
an exception will be raised.

If the behavior rule is SET NULL, then the columns of the rows
in the referencing table are set to the SQL NULL value for their
respective columns when the row in the parent table is deleted.
Each column of the referencing table that corresponds to the
Foreign Key in the parent table must allow SQL NULL values or
an exception will be raised.
Version 4.4 PointBase Developer 117

PointBase
NOTE: Creating a table with the CREATE TABLE statement creates the table structures, but
does not add any data to the table. An INSERT statement for a table, or a LOAD via an
IMPORT statement in PointBase Console, or a RUN in PointBase Commander, must
follow the creation of the table.

ON UPDATE The ON UPDATE clauses defines the rules of behavior when an
attempt is made to update the FOREIGN KEY columns in the
parent table that has a corresponding row(s) in the referencing
table that is dependent on the values of the FOREIGN KEY
columns in the parent table.

If the behavior rule is CASCADE, then all dependent or
matching columns of rows in the referencing table are updated
with the new values in the FOREIGN KEY columns of the
parent table row.

If the behavior rule is NO ACTION, then if an attempt is made to
update columns of the FOREIGN KEY in the parent table and
there are columns of rows in the referencing table that are
dependent on the pre-updated values, then the update of the
FOREIGN KEY columns in the parent table do not occur.

If the behavior rule is RESTRICT, then if an attempt is made to
update columns of the FOREIGN KEY in the parent table and
there are columns of rows in the referencing table that are
dependent on the pre-updated values, then the update of the
FOREIGN KEY columns in the parent table does not occur. The
database checks before attempting to update the row in the parent
table.

If the behavior rule is SET DEFAULT, then all dependent or
matching columns of rows in the referencing table are updated
with the default values of the referencing table. Each column of

the referencing table that corresponds to the FOREIGN KEY in
the parent table must have a default value or an exception will be
raised.

If the behavior rule is SET NULL, then the columns of the rows
in the referencing table are set to the SQL NULL value for their
respective columns when the row in the parent table is updated.
Each column of the referencing table that corresponds to the
Foreign Key in the parent table must allow SQL NULL values or
an exception will be raised.

check_constraint The check_constraint defines an explicitly named check
constraint of one or more columns.

The syntax for the check_constraint is:

CHECK (column_name search_condition)
Version 4.4 PointBase Developer 118

PointBase
Example 1

CREATE TABLE ORDER_TBL
(ORDER_NUM INT,
CUSTOMER_NUM INT,
REP_NUM INT,
PRODUCT_NUM INT,
SALES_TAX_ST_CD CHAR (2),
QUANTITY SMALLINT,
SHIPPING_COST DECIMAL(12,2),
SALES_DATE DATE,
DELIVERY_DATETIME TIMESTAMP,
FREIGHT_COMPANY VARCHAR (30))
COUNTRY FR
LANGUAGE FR;

Example 2

This creates a table with a 5k page size:

CREATE TABLE TM5 (C1 INT PRIMARY KEY) TABLE PAGESIZE 5K;

This creates a table with a default page size, but the primary key constraint specifies a page
size of 2K for the index:

CREATE TABLE TM (C1 INT NOT NULL, C2 CHAR (10),
CONSTRAINT PKCONSTRAINT PRIMARY KEY (C1)
INDEX PAGESIZE 2K);

In this example, each index has a different pagesize:

CREATE TABLE TMF (C1 INT, C2 CHAR (10), C3 INT NOT NULL,
CONSTRAINT PK_TMF PRIMARY KEY (C3)INDEX PAGESIZE 5K
CONSTRAINT FK_TMF FOREIGN KEY (C1) REFERENCES TM (C1) INDEX PAGESIZE 3K);

In this example, all LOBs in the table have pagesize and the LOBs automatically create 5K
pagesize file for the LOB index:

CREATE TABLE TMBLOB (C1 INT NOT NULL, C2 BLOB (10K), C3 BLOB (5K))
LOB PAGESIZE 5K;
CREATE INDEX TMIX ON TMBLOB (C1) INDEX PAGESIZE 6K;

Example 3

This creates a table with a column having the IDENTITY property. This column will have the
ability to autoincrement the values for each row.

CREATE TABLE TAB1(ID INT IDENTITY, NAME VARCHAR(30));
Version 4.4 PointBase Developer 119

PointBase
CREATE VIEW

CREATE VIEW <view name> [(view_column_list)]
AS query_expression

[WITH [levels_clause] CHECK OPTION]

The CREATE VIEW statement creates a view or derived table in the PointBase database.

Notes

• To create a view, you must own the schema, in which you are creating the view.
• You must have SELECT permission on all referenced columns of all referenced tables in

the query expression.
• You can have “nested views,” which are views that reference other views.
• To grant privileges on a view, you must have SELECT grant privileges on any referenced

table or column in that view.

Syntax

CREATE VIEW The CREATE VIEW keywords are required as the
first words in a CREATE VIEW statement

view_name The name of the view. The name is not case sensitive
and can be up to 128 characters long.

view_column_list Specify a view column list if the query expression
includes two columns with the same name. The view
column list and the query expression must specify the
same amount of column names. If no view column
list is specified, then the view column names are
derived from the query expression (select column
list).

query_expression This is a SELECT statement. If the query expression
does not include a column, it must have an AS clause
correlation name defined. If it includes a column, the
view column name is the column name without any
table correlation name. The query expression is not
allowed to contain any parameters and is limited to
3958 characters.
Version 4.4 PointBase Developer 120

PointBase
Examples

CREATE VIEW customer_order
AS select order_num,order_tbl.customer_num,customer_tbl.name
FROM order_tbl,customer_tbl
WHERE product_num = 10;

CREATE VIEW customer_order1
AS select order_num,order_tbl.customer_num
FROM order_tbl,customer_tbl
WHERE order_tbl.customer_num = customer_tbl.customer_num;

CREATE VIEW customer_order2
AS select order_num,order_tbl.customer_num
FROM order_tbl,customer_tbl
WHERE order_tbl.customer_num = customer_tbl.customer_num and product_num=10;

CREATE VIEW namereps
AS select first_name,last_name
FROM sales_rep_tbl
WHERE last_yr_sales in (4000,6000,10000);

CREATE VIEW order_by_rep (who,how_many,total,low,high,average)
AS select rep_num,count(*), sum(quantity),min(quantity),max(quantity),avg(quantity)
FROM order_tbl group by rep_num;

CREATE VIEW customer_order3
AS select order_num,first_name
FROM customer_order,namereps;

CREATE VIEW exceed_quotas
AS select office_num, sum(quota) as sum_quota, sum(ytd_sales) as sum_ytd
FROM sales_rep_tbl
GROUP BY office_num
HAVING sum(ytd_sales) > sum(quota);

WITH CHECK OPTION This option uses the WHERE clause in the view’s
query_expression like a table constraint: all resultant
rows from an INSERT or UPDATE on the view must
satisfy the WHERE clause. If no levels_clause is
specified, CASCADED is implicit.

However, PointBase currently does not support
Updateable Views. That is, PointBase supports the
syntax for WITH CHECK OPTION, but currently
not the semantics.

levels_clause CASCADED indicates that all resultant rows from an
INSERT or UPDATE on the view must satisfy the its
own WHERE clause and the WHERE clause of any
views that are referenced.

LOCAL indicates that all resultant rows from an
INSERT or UPDATE on the view must only satisfy
its own WHERE clause.

If no levels_clause is specified, CASCADED is
implicit.
Version 4.4 PointBase Developer 121

PointBase
CREATE USER
The CREATE USER statement creates a user in a given PointBase database and can assign a
default role to that user. To successfully execute this command, the current user must be the
PBSYSADMIN or the database owner. [See "Predefined Users" on page 89.] Or, the current
role must be PBDBA. [See "Predefined Roles" on page 93.]

The user_name and password are SQL identifiers and behave like any other identifiers. They
will be converted to uppercase if not specified within double quotes and will be taken as it is
when specified within the double quotes.

The user names and passwords are used by JDBC methods, which create a connection. The
user names and passwords are specified as java strings in these methods and do not follow
same rules as SQL identifiers. This could lead to problems where connection will fail due to
invalid password. To avoid this problem the INI parameter
connection.convertUserInfoToUppercase will indicate the behavior of username and password
strings in the JDBC connection methods. This INI parameter will determine whether the
usernames and passwords in the JDBC connection methods will be converted to upper case or
taken as specified. The default value is to convert to uppercase i.e value of the INI parameter is
true. For enhanced security the value for this INI parameter can be set to false which means the
usernames and passwords have to be specified as created in th CREATE USER and ALTER
USER statements. Also note that the username and password for the default user PBPUBLIC
will always be treated as uppercase.

Syntax

CREATE USER user_name PASSWORD password [DEFAULT ROLE Role-Specification]

<user_name>: IDENTIFIER
<password>: IDENTIFIER

<Role-Specification> IDENTIFIER

Example

1. CREATE USER PoInT PASSWORD BaSE;
Creates a user POINT with password BASE.

2. CREATE USER "PoInT" PASSWORD "BaSE";
Creates a user PoInT with password BaSE.

CREATE USER The CREATE USER keyword are required as the first words in a
CREATE USER statement.

user_name The name of the new user. You cannot use keyword PUBLIC
or an existing role name for the user name.

password The password associated with the user.

role_specification The default role_specification is NONE.
Version 4.4 PointBase Developer 122

PointBase
CREATE ROLE

PointBase supports this statement. Please refer to the section, "CREATE ROLE Syntax" on
page 97
Version 4.4 PointBase Developer 123

PointBase
CREATE INDEX

CREATE [UNIQUE] INDEX index_name
ON table_name
(column_name [sort_order] {, column_name [sort_order]...})
[INDEX PAGESIZE size]

The CREATE INDEX statement creates the index structures.

Syntax

CREATE INDEX The CREATE INDEX keywords are required as the first words in
a CREATE INDEX statement.

[UNIQUE] If the UNIQUE keyword is specified, then the index will be
defined as a unique index where duplicate values of the keys are
not allowed.

index_name The index_name is the name of the index. Compose the index
name of alphanumeric characters or the equivalent in another
language, for example, a word in Japanese characters, which are
not the same as a PointBase keyword, unless the name is a
delimited identifier. The index name must be unique for its table.
Index names in the PointBase database are not case sensitive and
can be up to 128 characters in length.

ON Use the ON keyword between the index_name and the
table_name.

table_name The table_name refers to a table in the PointBase database. The
table_name must refer to a table that has already been created at
the time the CREATE INDEX statement executes.

Not allowed on a view. PointBase raises an error if you attempt
to use a view.

column_name The column_name identifies a column in the table named in the
table_name of the CREATE TABLE statement. There can be any
number of columns. Total maximum length of all columns in an
index must not exceed the pagesize.

[sort-order] This optional clause specifies the sorting order of the column or
columns in the index. The acceptable values for the ordering
keyword are ASC or ASCENDING for columns that sort from
the lowest value to the highest value in the column, and DESC or
DESCENDING for columns that sort from the highest value to
the lowest value in the column. Each column-name can only have
one ordering keyword. If you do not include an ordering
keyword, the sort order is ASCENDING.
Version 4.4 PointBase Developer 124

PointBase
Example1

This creates an index:

CREATE INDEX ORDER_IND
ON ORDER_TBL (ORDER_NUM DESC, CUSTOMER_NUM ASC);

Example2

This creates an index with a pagesize of 2K:

CREATE UNIQUE INDEX INDEX1
ON SALES_TBL

(CUSTOMER_NUM, SALES_DATE, PRODUCT_NUM)
INDEX PAGESIZE 2K;

CREATE FUNCTION

CREATE FUNCTION function_name([parameter_definition [{,parameter_definition}...]])
RETURNS return_clause
LANGUAGE JAVA
SPECIFIC specific_name
sql_data_access
EXTERNAL NAME external_function
PARAMETER STYLE SQL

Using a stored function, you can automatically convert data to be stored in a PointBase
database, without ever seeing the underlying conversion.

INDEX PAGESIZE Use the INDEX PAGESIZE keywords between the sort_order
and the size.

size The index size identifies the number of digits, KB, or MB
reserved for the index. Size can be:

• a number, such as 1024

• KiloBytes, such as 1K

The index page size should be less than or equal to 32KB and the
minimum is 1 KB. The default pagesize is 4KB unless a specific
size has been set in the pointbase.ini file.
Version 4.4 PointBase Developer 125

PointBase
Syntax

Function_name Function_name defines a stored function in a schema. The
following are usage rules.

• Including a schema name is optional. The following syntax
is for function_name:

[schema_name.]function_name

• It must be composed of alphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

• It has a maximum limit of 128 characters long.
• It is not case sensitive.
• It cannot have the same name as a PointBase keyword.
• It must be unique in the schema specified.

Parameter_definition The parameter_definition specifies the parameter_mode,
parameter_name, and parameter_data_type. (The
parameter_name is optional.) The parameter_mode must be the
value, IN. The parameter_data_type must be one of the
PointBase data types. Separate multiple parameter_definitions
with a comma. The following syntax is for
parameter_definitions.

IN [parameter_name] PointBase_data_type

RETURNS
return_clause

This clause specifies the return data type in a stored function.
The data_type must be one of the PointBase data types.

The return_clause allows the following syntax: <PointBase data
types> or TABLE (pointbase_data_type
[{,pointbase_data_type}...]), or

<return_type> CAST FROM <original_return_type>, where you
cast the <original_return_type> from the Java function to the
new type, <return_type>.

NOTE: RETURNS return_clause is used with stored functions
only. Stored procedures do not use it.

LANGUAGE JAVA The clause specifies the language that the stored function uses to
call the external function. It can take the following value: JAVA.
Version 4.4 PointBase Developer 126

PointBase
Example

CREATE FUNCTION dateConvert(IN P1 VARCHAR(20))
RETURNS Date
LANGUAGE Java
NO SQL
EXTERNAL NAME "SampleExternalMethods::dateConvert"
PARAMETER STYLE SQL;

NOTE: See the “PointBase JDBC Advanced Tutorial” chapter in this guide for more
information about functions in PointBase.

SPECIFIC
specific_name

The SPECIFIC specific_name clause specifies a name that you
can use instead of the function_name when invoking a stored
function. The specific_name must be unique within its schema. If
a specific_name is specified, then routine determination is not
used. Routine determination is the process that determines which
function to invoke based on the function_name, SQL argument
list, and the current path of schemas. Refer to the “Search
Conditions and Predicates” chapter for more information on
routine determination.

Sql_data_access This clause indicates the usage of SQL statements within the
external function of a stored function. Table 1 describes the
values that the sql_data_access clause allows.

EXTERNAL NAME
external function

The EXTERNAL NAME specifies an external function. The
external function must be static, or the class the function is in
must define a constructor that takes a “java.sql.Connection”
object.

PARAMETER STYLE
SQL

This clause represents the parameters being passed according to
SQL rules rather than a host language.

Table 1: Sql_data_access Values

Value Description

NO SQL It signifies that the external function cannot contain any SQL
statements.

CONTAINS SQL It specifies that the external function can contain SQL statements
but none that read or modify data.

READS SQL DATA It specifies that the external function can contain any SQL statement
that does not modify SQL data.

MODIFIES SQL DATA It specifies that the external function can contain any SQL statement
that is not a DDL or Transaction Control statement
Version 4.4 PointBase Developer 127

PointBase
CREATE PROCEDURE

CREATE PROCEDURE procedure_name([parameter_definition [{,parameter_definition}...]])
LANGUAGE JAVA
SPECIFIC specific_name
sql_data_access
EXTERNAL NAME external_procedure
PARAMETER STYLE SQL
[REENTRANT|NON_REENTRANT]

Using a stored procedure you can return data from a database to a user interface. When the
database system returns the data, it is automatically converted from the original value into a
user-defined data type value.

Syntax

Procedure_name Procedure_name defines a stored procedure in a schema. The
following are usage rules.

• Including a schema name is optional. The following syntax
is for procedure_name:

[schema_name.]procedure_name

• It must be composed of alphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

• It has a maximum limit of 128 characters long.
• It is not case sensitive.
• It cannot have the same name as a PointBase keyword.
• It must be unique in the schema specified.

Parameter_definition The parameter_definition specifies the parameter_mode,
parameter_name, and parameter_data_type. (The
parameter_name is optional.) The parameter_mode can be the
values, IN, OUT, or INOUT. The parameter_data_type must be
one of the PointBase data types. Separate multiple
parameter_definitions with a comma. The following syntax is for
parameter_definitions.

IN [parameter_name] PointBase_data_type

LANGUAGE JAVA The clause specifies the language that the stored procedure uses
to call the external procedure. It can take the following value:
JAVA.
Version 4.4 PointBase Developer 128

PointBase
SPECIFIC
specific_name

The SPECIFIC specific_name clause specifies a name that you
can use instead of the procedure_name when invoking a stored
procedure. The specific_name must be unique within its schema.
If a specific_name is specified, then routine determination is not
used. Routine determination is the process that determines which
procedure to invoke based on the procedure_name, SQL
argument list, and the current path of schemas. Refer to the
“Search Conditions and Predicates” chapter for more information
on routine determination.

Sql_data_access This clause indicates the usage of SQL statements within the
external procedure of a stored procedure. Table 2 describes the
values that the sql_data_access clause allows.

EXTERNAL NAME
external procedure

The EXTERNAL NAME specifies an external procedure. The
external procedure must be static, or the class the procedure is in
must define a constructor that takes a “java.sql.Connection”
object.

PARAMETER STYLE
SQL

This clause represents the parameters being passed according to
SQL rules rather than a host language.

REENTRANT |
NON_REENTRANT

This parameter specifies this procedure to be reentrant or non-
reentrant.

Default is non-reentrant.

Reentrant procedure allows user to reuse external procedure
instances without recreating instances every time the procedure
is called, hence it has better performance than non-reentrant
procedures. PointBase creates only one external procedure
instance for each external procedure called in each connection.
This procedure instance is reused next time the same procedure
is called in the same connection. Since the procedure instance is
reused, values of object members may remain the same value as
last run. User is responsible to re-initialize them if necessary.

Non-reentrant, the default, procedure will create external
procedure instance every time it is called. Members of this
instance will be their default value because this is a new instance
every time.

User may also make the procedure to be static. Static procedures
will be called without creating an external procedure instance.
But, for static procedure, user will not be able to associate
connection object with procedures, which mean it may not be
able to perform database operation in the same connection as
caller. But, if same connection is not a requirement for this
procedure, static procedure performs better than reentrant and
non-reentrant procedures.
Version 4.4 PointBase Developer 129

PointBase
Example 1

CREATE PROCEDURE getCost(IN P1 VARCHAR(20), IN P2 VARCHAR(2), INOUT P3 FLOAT)
LANGUAGE JAVA
SPECIFIC getCost
NO SQL
EXTERNAL NAME "SampleExternalMethods::getCost"
PARAMETER STYLE SQL;

Example 2

CREATE PROCEDURE getCost(IN P1 VARCHAR(20), IN P2 VARCHAR(2), INOUT P3 FLOAT)
LANGUAGE JAVA
SPECIFIC getCost
NO SQL
EXTERNAL NAME "SampleExternalMethods::getCost"
PARAMETER STYLE SQL
REENTRANT;

Example 3

This example shows a non-reentrant procedure. In this procedure, m_Timestamp is
initialized in constructor, reentrant procedure calls construct the first time it is
called, so m_Timestamp will not be reset every time it is called.

Public class Proc1 {
private Connection m_Con;
private longm_TimeStamp;

public Proc1 (Connection p_Con) {
m_Con = p_Con;
m_TimeStamp = System.currentTimeMillis();

}

public void log(String p_Msg) {
PreparedStatement ps = m_Con.prepareStatement(

"insert into Log values (?,?)");
ps.setLong(1, m_TimeStamp);
ps.setString(2, p_Msg);
ps.execute();

}
}

Table 2: Sql_data_access Values

Value Description

NO SQL It signifies that the external procedure cannot contain any SQL
statements.

CONTAINS SQL It specifies that the external procedure can contain SQL statements
but none that read or modify data.

READS SQL DATA It specifies that the external procedure can contain any SQL
statement that does not modify SQL data.

MODIFIES SQL DATA It specifies that the external procedure can contain any SQL
statement that is not a DDL or Transaction Control statement
Version 4.4 PointBase Developer 130

PointBase
Example 4

By moving m_Timestamp from example 3 to be a local variable in methd log(), this
procedure can be made to be reentrant.

Public class Proc1 {
private Connection m_Con;

public Proc1 (Connection p_Con) {
m_Con = p_Con;

}

public void log(String p_Msg) {
long l_TimeStamp = System.currentTimeMillis();
PreparedStatement ps = m_Con.prepareStatement(

"insert into Log values (?,?)");
ps.setLong(1, l_TimeStamp);
ps.setString(2, p_Msg);
ps.execute();

}
}

NOTE: See the “PointBase JDBC Advanced Tutorial” chapter in this guide for more
information about stored procedures in PointBase.

CREATE TRIGGER

CREATE TRIGGER <trigger name>
<trigger action time> <trigger event>
ON <table name>
[REFERENCING <referencing clause>]
<trigger action>

A trigger can specify additional constraints and business rules within the database to manage
the various executions of an application. A trigger operates automatically by executing or
firing a DELETE, INSERT, or UPDATE SQL statement on a table with which the trigger is
associated. The trigger definitions are saved in the SYSTRIGGERS and
SYSTRIGGERCOLUMNS system catalogs.

Please note that SQL triggers are not automatically upgraded to version 4.3 or later. If there are
triggers defined in your PointBase Embedded or Server 4.2 database or prior to version 4.2,
you must drop all triggers manually, upgrade to version 4.3 or later, and then manually recreate
the triggers. The procedure is as follows:

1. Start the database using 4.2 JAR or earlier versions.

2. Drop all triggers by browsing through the table, POINTBASE.SYSTRIGGERS, and drop
all triggers in this table.

DROP trigger_name.

3. Stop the database.

4. Start the database using 4.3 JAR (or later).

5. Recreate triggers.
Version 4.4 PointBase Developer 131

PointBase
Syntax

CREATE TRIGGER
<trigger_name>

The CREATE TRIGGER keywords are required when creating a
trigger. <Trigger_name> defines a unique trigger in a database
schema. To drop a trigger from a table, you must use the
trigger_name.

Usage Rules for <trigger_names>:

• Including a schema name is optional. The following syntax
is for trigger_name:

[schema_name.]trigger_name

• It must be composed of alphanumeric characters or the
equivalent in a language other than English.

• It has a maximum limit of 128 characters long.
• It is not case sensitive.
• It cannot have the same name as a PointBase keyword.
• It must be unique in the schema specified.

<trigger action time> ::=
BEFORE | AFTER

<Trigger_action_time> signifies when the trigger can be fired or
executed relative to the <trigger event>. It takes one of the
following values: BEFORE or AFTER.

If you specify BEFORE as the <trigger_action_time>, the SQL
statements defined in the <triggered SQL statement> cannot
directly or indirectly modify SQL data by invoking a stored
function or procedure.

BEFORE trigger is executed prior to any change made to the
row. The BEFORE trigger will be executed once for every
change made to the row for ROW trigger and once for every
SQL statement for STATEMENT trigger.

If BEFORE is specified, <trigger SQL statement> should not
contain any data modification statements or statements that
invoke a procedure or function which is an SQL-invoked
procedure or function that possibly modifies SQL data. If this is
violated, the result is unknown.

PointBase does not support cascading BEFORE triggers.

If you specify AFTER for the <trigger action time>, PointBase
executes the trigger after changes have been made to the row.
The AFTER trigger will be executed once for every change made
to the row for ROW trigger and once for every SQL statement
for STATEMENT trigger.
Version 4.4 PointBase Developer 132

PointBase
<trigger_event> ::= INSERT |
DELETE | UPDATE [OF
<trigger column list>]

<trigger column list> ::=
<column name list>

It allows you to specify events which cause triggers to fire. These
events can be INSERT, UPDATE or DELETE. Only one event
can be defined in one trigger. If you specify INSERT, then only
an INSERT operation will cause the trigger to fire. The same is
true for UPDATE and DELETE. The trigger can be fired by an
INSERT, UPDATE or DELETE SQL statement or by a
referential integrity constraint.

If you specify UPDATE, you may also specify an optional
column list. If this column list is present, the trigger fires only
when one of those columns specified in the column list is
updated. Otherwise, if not column list is present, any column
updated will cause the trigger to be fired.

ON <table_name> <Table_name> specifies the name of the table to which the
trigger belongs. A table is allowed to have multiple triggers. If
more than one trigger is associated with a table, the triggers are
executed in ascending order of their creation timestamps.

Not allowed on a view. PointBase raises an error if you attempt
this on a view.
Version 4.4 PointBase Developer 133

PointBase
REFERENCING
<referencing_clause>

<referencing_clause> ::= <old
or new value aliases>...

<old or new value aliases> ::=
OLD [ROW] [AS] <old values
correlation name> | NEW [ROW
] [AS] <new values correlation
name> | OLD TABLE [AS] <old
values table alias> | NEW
TABLE [AS] <new values table
alias>

<old values table alias> ::=
<identifier>

<new values table alias> ::=
<identifier>

<old values correlation name>
::= <correlation name>

<new values correlation name>
::= <correlation name>

This clause allows you to specify aliases for new or old rows and
new or old tables. NEW [ROW] [AS] are keywords that specify
the current row on which the triggering SQL statement is
modifying and the columns of the current row contains the
changes made by the triggering SQL statement. Conversely,
OLD [ROW] [AS] are keywords that specify the current row
whose columns contain the original value.

PointBase creates two transition tables during the execution of
triggers: one for new rows and another for old rows. A transition
table is a temporary table where the new values and old values of
the row are stored. PointBase destroys these new tables once the
triggering SQL statement is completed.

NEW or OLD TABLE aliases are the aliases referencing the two
transition tables. The NEW TABLE alias is referencing the
transition table containing new rows, and the OLD TABLE alias
is referencing the transition table containing old rows. OLD or
NEW TABLE will be supported only for STATEMENT triggers.
These aliases cannot be passed as parameters to call statements.

The scope of <referencing_clause> is the entire CREATE
TRIGGER statement.

If <trigger event> specifies INSERT, neither OLD ROW nor
OLD TABLE will be allowed.

If <trigger event> specifies DELETE, neither NEW ROW nor
NEW TABLE will be allowed.

If BEFORE is specified for the <trigger action time>, neither
OLD TABLE nor NEW TABLE will be allowed.

If FOR EACH STATEMENT is specified for the <trigger
action>, neither OLD ROW nor NEW ROW will be allowed.

If <trigger event> specifies UPDATE, NEW ROW values will
be null for those columns which do not have new values.

If no row or table alias is specified, you may not refer to the
current row or the transition table. There is no default alias.
Version 4.4 PointBase Developer 134

PointBase
<trigger action> ::=

[FOR EACH { ROW |
STATEMENT }]

[WHEN (<search condition>)]

<triggered SQL statement>

<triggered SQL statement> ::=
<SQL procedure statement> |
BEGIN ATOMIC { <SQL
procedure
statement><semicolon> }...

END

<Trigger action> allows you to specify ROW trigger or
STATEMENT trigger. If you specify a ROW trigger, PointBase
fires the trigger once for each row on which the defined <trigger
event> occurs. A STATEMENT trigger will be fired once for
each SQL statement on which causes the defined trigger event to
occur.

ROW triggers may not work on self-referencing tables. In this
case, referential constraint may go into recursion and may lead to
a wrong row value while executing triggers.

If you do not specify a STATEMENT or ROW trigger, PointBase
uses the STATEMENT trigger for the default.

<Trigger action> allows you to specify a WHEN clause which
defines the search condition to evaluate if the trigger will fire.
You can define one or more predicates. If these predicates are
evaluated TRUE, then the trigger will be fired; otherwise, it will
not be fired.

<Triggered SQL statement> allows you to specify the action for
the trigger. You can specify one SQL statement or, a compound
SQL statement embraced by the BEGIN ATOMIC and END
keywords. The size of each SQL statement is limited to 900
bytes. See trigger-related SQL statements: SET assignment,
VALUE, and SIGNAL on page 168.

No transaction control statements are allowed for the <triggered
SQL statement>. If you violate this rule, PointBase throws an
error. If an error occurs during the execution of <triggered SQL
statement>, PointBase throws an error and the execution of the
<triggering SQL statement> is interrupted, and all the changes
are rolled back.

Since <triggered SQL statement> can contain any SQL
statement, it is possible that an INSERT, UDPATE or DELETE
SQL statement could cause the same trigger to be executed
again. This is called a recursive trigger. PointBase allows
recursive triggers. But, you should avoid writing recursive
triggers, because they can lead to infinite loops.

It is possible for recursive triggers to modify the same row
multiple times. In this case, the latest row value or new row value
may be seen in the subsequent trigger execution.

PointBase sets a limit of 16 levels for recursive trigger execution
context. For example, if one trigger is fired, it is counted as level
one, if this trigger causes another trigger to be fired before it is
finished, the second trigger is counted as level two, and so on. An
exception will be thrown if trigger level exceeds the limit.
Version 4.4 PointBase Developer 135

PointBase
Security

PointBase checks authorization at the trigger creation time. If a trigger is successfully created,
security will not be checked again at trigger execution time. For example, User A must have
creation privilege on the schema to which the trigger belongs; that is, User A must have trigger
privilege on table (T1), and UDPATE privilege on table (T2). Then User A can create a trigger
(TR1) on T1, where TR1 is a ROW trigger specifying an UPDATE event and is updating rows
on T2. User B has UDPATE privilege on T1, but does not have UPDATE privilege on T2.

While User B is doing updates on T1, TR1 will be invoked and UPDATE rows on T2. User B's
privilege will not be used to check against T2 while executing TR1.

Examples

To use all of the following trigger examples, you must complete the following:

• Include the SampleExternalMethods.class file in your CLASSPATH when you connect
to PointBase.

• Follow the prompts to create a new database called “sample.”
• Type run sample.sql; You must type the complete path to the “sample.sql” file

located in the directory “<install directory>\samples\server_embedded,” for example,
run c:/pointbase/samples/server_embedded/sample.sql;

Example 1

CREATE TRIGGER trigger2
BEFORE UPDATE ON product_tbl
REFERENCING NEW AS NEWROW
FOR EACH ROW
WHEN (NEWROW.qty_on_hand < 0)
SET NEWROW.qty_on_hand = 0;

CREATE TRIGGER trigger3
BEFORE UPDATE ON product_tbl
REFERENCING NEW AS NEWROW
FOR EACH ROW
WHEN (NEWROW.purchase_cost < 0)
SIGNAL 'Products prices cannot be negative'

CREATE TRIGGER trigger4
AFTER UPDATE ON product_tbl
REFERENCING NEW AS NEWROW
FOR EACH ROW
WHEN (NEWROW.qty_on_hand > 100)
VALUES(showQuantity('You have increased the quantity above', 100));
Version 4.4 PointBase Developer 136

PointBase
Example 2

Step 1.

CREATE PROCEDURE showTime (IN p1 VARCHAR(30), IN P2 TIMESTAMP)
LANGUAGE JAVA
NO SQL
EXTERNAL NAME "SampleExternalMethods::showTime";

Step 2.

CREATE TRIGGER trigger1
AFTER INSERT ON discount_code_tbl
FOR EACH ROW
CALL showTime('New discount code inserted' , CURRENT_TIMESTAMP);
Version 4.4 PointBase Developer 137

PointBase
ALTER TABLE

ALTER TABLE table_name alter_table_action [{,alter_table_action},...]

The ALTER TABLE statement modifies the structure of a table in the PointBase database.
With this statement, constraints or columns may be added or dropped. A table may also be
renamed with ALTER TABLE.

Syntax

Alter_Table_Action Syntax

ADD table_constraint_definition
| DROP CONSTRAINT constraint_name [CASCADE | RESTRICT]
| ADD [COLUMN] column_definition
| DROP [COLUMN] column_name [CASCADE | RESTRICT]
| RENAME TO <new_table_name>

ALTER TABLE The ALTER TABLE keywords are required as the first words in
an ALTER TABLE statement.

table_name The table_name variable must be the name of an existing table in
a PointBase database. The ALTER TABLE statement generates
an error if the value of the table_name does not exist.

alter_table_action The action allows adding or dropping a constraint or column. See
the following section for the alter_table_action syntax.

ADD
table_constraint_definition

Adds a table constraint definition to the table. Not allowed on a
view. PointBase raises an error if you attempt this on a view. If
the constraint is a referential constraint that references a view, an
error will be raised.

DROP CONSTRAINT
constraint_name

Drops an existing named constraint from the table. The system
automatically provides a name for the constraint if none was
specified when it was added. The constraint name can be found
in the table SysTableConstraint.

ADD [COLUMN]
column_definition

Adds a column to the end of the column_definition for the table.
(See column_definition on page 112.) The default value is NULL,
unless declared NOT NULL with an assigned default value. This
will only affect columns that you create after the default value is
assigned.

Not allowed on a view. PointBase raises an error if you attempt
this on a view.
Version 4.4 PointBase Developer 138

PointBase
DROP [COLUMN]
column_name

Drops one or multiple existing named column(s) from the table.
Not allowed on a view. PointBase raises an error if you attempt
this on a view. If the table_name + column_name is in the system
catalog, SysViewTables, then either an error will be raised (if
RESTRICT) or all dependent views will be dropped (if
CASCADE).

[CASCADE/RESTRICT] The optional RESTRICT qualifier to a DROP statement allows a
drop only if no objects are dependent on the column or constraint.

The optional CASCADE qualifier to a DROP statement drops all
related objects to the column or constraint.

RENAME TO
<new_table_name>

Renames the current table to the new_table_name. The following
are the restrictions for RENAME clause of ALTER TABLE.

- Only Schema owner or a user who has DBA level authority can
perform rename table operation.

- The rename table operation in ALTER TABLE can not be
combined with other operations in the ALTER TABLE statement.

- A table can only be renamed within same Schema and can not
be moved to another schema.

- If there are Views or Triggers defined on the table, then rename
table operation is not allowed.

- Pointbase automatically transfers all constraints, indexes and
grants on the old table to the new table.

- The behavior of objects such as Stored Procedures, Functions
etc. that depend on or refer to old table by name is undefined. If
the old table does not exist then they will get a syntax error. If a
new table with the old name is created then these objects will refer
to newly created table and if the new definition of the table is
compatible with the definition of these objects then they will
continue to work. If the new definition of the table is incompatible
with these objects then they will get errors..

- PointBase system generated constraint names and index names
will be changed to reflect the new table name. This allows the old
table name to be reused.

- Views can not be renamed using rename clause.

- Temp Tables can not be renamed using rename clause.

- When a table is renamed, already compiled PreparedStatements
and cached Statements that refer to the renamed table will detect
this when they are executed next time and throw an exception if
the table does not exist.
Version 4.4 PointBase Developer 139

PointBase
Examples

ALTER TABLE T2 ADD UNIQUE (C1);
ALTER TABLE T2 ADD ORDER_NUM INT;
ALTER TABLE T2 ADD CONSTRAINT constraint_0 FOREIGN KEY (C1) REFERENCES T1 (C1);
ALTER TABLE T2 ADD CONSTRAINT constraint_1 PRIMARY KEY (C1,C2);
ALTER TABLE T2 DROP ORDER_NUM CASCADE;
ALTER TABLE T2 RENAME TO T1;

ALTER USER

ALTER USER user_name {PASSWORD password | DEFAULT ROLE role_name}

To change the password or default role of a database user, you must use the non-standard SQL
command, ALTER USER. It can only be used by the following types of users:

• DBA
• Any user having the PBDBA role
• Owner of database

You may also use ALTER USER to change your own password or default role.

Note: See the description for CREATE USER for information about the behavior of usernames
and passwords.

Syntax

ALTER USER
user_name

The user_name specifies the name of the user, for whom you will
change the password or default role.

PASSWORD password The password defines the new password for the specified user.

DEFAULT ROLE
role_name

The role_name defines the new default role for the specified user.
Version 4.4 PointBase Developer 140

PointBase
Examples

ALTER USER Scott PASSWORD lion;
ALTER USER Scott DEFAULT ROLE CEO;
Version 4.4 PointBase Developer 141

PointBase
Dropping SQL Objects

The following sections describes how to drop SQL objects in PointBase:

• “DROP INDEX”
• “DROP FUNCTION or DROP PROCEDURE”
• “DROP SCHEMA”
• “DROP TABLE”
• “DROP VIEW”
• “DROP TRIGGER”
• “DROP USER”

Drop Behavior (Optional)

Side effects can occur when an SQL object is dropped. For example, if a table is dropped, what
becomes of an index that is based on that table? SQL allows you to specify the drop behavior.
To do this, specify either: CASCADE or RESTRICT. The syntax for drop_behavior is as
follows:

CASCADE | RESTRICT

You may specify one or the other. CASCADE has the effect of dropping all SQL objects that
are dependent on that object. RESTRICT is the default for the drop behavior. RESTRICT
looks to see what objects are dependent on the object being dropped. If there are dependent
objects, then the dropping of the object does not occur.

DROP INDEX

DROP INDEX table_name.index_name

The DROP INDEX statement deletes an index structure of a table from the PointBase
database.

Syntax

DROP INDEX The DROP INDEX keyword is required at the beginning of a
DROP INDEX statement.

table_name.index_name The index_name must be the name of an existing index in a
PointBase database. The index_name must be qualified with the
name of the table that the index is on, as in
table_name.index_name. The DROP INDEX statement raises an
error if the value of the index_name does not exist.
Version 4.4 PointBase Developer 142

PointBase
Examples

DROP INDEX ORDER_TBL.ORDER;

DROP FUNCTION or DROP PROCEDURE

DROP { SPECIFIC routine_type specific_routine_name}
| {routine_type routine_name [parameter_data_type_list])}
[drop_behavior]

The DROP ROUTINE statement destroys a routine in a schema of a PointBase database.

Syntax

Examples

DROP FUNCTION ORDERS_TOTAL (char(10), int) CASCADE;

DROP The DROP keyword is required as the first word in a DROP
ROUTINE statement. The SPECIFIC clause refers to a specific
function that shares the same name with other functions.
specific_routine_name must be unique in the database.

specific_routine_name The specific_routine_name that was specified when the function
or procedure was defined.

routine_type FUNCTION | PROCEDURE | ROUTINE

routine_name The name of the SQL function or procedure.

parameter_data_type_list The optional parameter_list clause specifies selection criteria for
a DROP statement. Only SQL data types are specified. No
parameter mode or name is allowed.

drop_behavior If RESTRICT is specified, then if there are any other SQL
routines, or constraints, then the routine is not dropped and
neither are the other SQL routines, triggers, nor constraints.

With CASCADE, all SQL objects (other SQL routines, and
constraints) that use the SQL routine are dropped as well as the
SQL routine. RESTRICT is the default.
Version 4.4 PointBase Developer 143

PointBase
DROP SCHEMA

DROP SCHEMA schema_name [drop_behavior]

The DROP schema statement destroys a schema in the PointBase database.

Syntax

Examples

DROP SCHEMA ORDERS CASCADE;

DROP TABLE

DROP TABLE table_name [drop_behavior]

The DROP TABLE statement destroys a table in the PointBase database.

DROP SCHEMA The DROP SCHEMA keywords are required as the first words in
a DROP SCHEMA statement.

schema_name The name of the schema. If the schema contains any views, than
either PointBase raises an error (if RESTRICT) or drops all
views (if CASCADE).

drop_behavior If RESTRICT is specified, then if there are any tables or SQL
routines in schema_name, then the schema is not dropped and
neither are the tables, nor the SQL routines.

With CASCADE, all tables, indexes, columns, constraints,
triggers, and SQL routines that are associated with schema_name
are dropped as well as the schema. RESTRICT is the default.
Version 4.4 PointBase Developer 144

PointBase
Syntax

Examples

DROP TABLE ORDER_TBL CASCADE;

DROP VIEW

DROP VIEW <view name> [RESTRICT | CASCADE]

This statement removes a specified view or viewed table from the PointBase database.

Notes

• The only objects that can be dependent on a view are other views.

DROP TABLE The DROP TABLE keywords are required as the first words in a
DROP TABLE statement.

table_name The table_name variable must be the name of an existing table in
a PointBase database. The DROP TABLE statement generates an
error if the value of the table_name does not exist.

If the table is in the system catalog, SysViewTables, then either
PointBase raises an error (if RESTRICT) or drops all dependent
views (if CASCADE).

drop_behavior If RESTRICT is specified, then if there are any table constraints,
or SQL routines that use table_name, then the table is not
dropped and neither are the table constraints nor the SQL
routines.

With CASCADE, all indexes, columns, constraints, triggers, and
SQL routines that are associated with table_name are dropped as
well as the table. RESTRICT is the default.
Version 4.4 PointBase Developer 145

PointBase
Syntax

Examples

DROP VIEW customer_order cascade;
DROP VIEW customer_order restrict;

DROP TRIGGER

DROP TRIGGER trigger_name

The DROP TRIGGER statement deletes a trigger structure from the PointBase database.

Syntax

DROP VIEW The DROP VIEW keywords are required as the first words in a
DROP VIEW statement.

view name The view name variable must be the name of an existing view in
the PointBase database.

RESTRICT |
CASCADE

RESTRICT verifies if there are any dependent views. If other
views depend on this view, an error is raised and this view is not
dropped.

CASCADE does not verify if there are any dependent views.
This view is dropped as well as all dependent views.

DROP TRIGGER The DROP TRIGGER keywords are required as the first words
in a DROP TRIGGER statement.

trigger_name The trigger_name is a two-part name which includes the name of
the schema. The trigger name must be composed of
alphanumeric characters or the equivalent in another language,
for example, a word in Japanese characters and cannot be the
same as a PointBase keyword. Trigger names in the PointBase
database are not case sensitive and can be up to 128 characters
long. They must be unique in their schema.
Version 4.4 PointBase Developer 146

PointBase
Examples

DROP TRIGGER TRG1;

DROP USER

DROP USER user_name [drop_behavior]

The DROP USER statement deletes a user object from the PointBase database. To successfully
execute this command, the current user must be the PBSYSADMIN or the database owner.
[See "Predefined Users" on page 92.] Or, the current role must be PBDBA. [See "Predefined
Roles" on page 96.] You cannot drop the predefined users: PBPUBLIC or PBSYSADMIN.
Additionally, you cannot create nor drop the user PUBLIC.

Syntax

Examples

DROP USER ENGINEERING_MANAGER CASCADE;

DROP ROLE

PointBase supports this statement. Please refer to the section, "DROP ROLE Syntax" on page
99.

DROP USER The DROP USER keyword is required at the beginning of a
DROP USER statement.

user_name The user_name must be the name of an existing user in
PointBase database. The DROP USER statement raises an error
if the value of the user_name does not exist.

drop_behavior If RESTRICT is specified and if any schemas have user_name
specified, the system does not drop the user and the schema.

With CASCADE, the system drops all schemas that have
user_name as the owner, in addition to dropping the user_name.
RESTRICT is the default.
Version 4.4 PointBase Developer 147

PointBase
Data Manipulation Language and
Data Query Language

To retrieve, INSERT, DELETE and modify data in PointBase, use the Data Manipulation
Language (DML) and Data Query Language (DQL). DML and DQL allows an application to
do the following:

• SELECT: Retrieve rows of data.
• INSERT: Place new rows of data in the database.
• UPDATE: Replace existing values in the database with new values.
• DELETE: Delete rows of data in the database.
Version 4.4 PointBase Developer 148

PointBase
SELECT

SELECT [DISTINCT] column_list [AS alias_name]
FROM table_expression

[WHERE search conditions]
[GROUP BY column_list]
[HAVING search_condition]
[ORDER BY {column_name | value} [sort_order]]
[FOR UPDATE [OF column-list] [WAIT|NOWAIT]]

The SELECT statement retrieves data from the PointBase database.

Syntax

SELECT [DISTINCT] The SELECT keyword is required as the first word in a SELECT
statement.

The DISTINCT keyword is optional. When specified, the
distinct function eliminates duplicate occurrences of the same
row (not columns) and returns only distinct values. The
DISTINCT keyword can only be associated with column names
in the column_list and can only be used once in a query.

column_list The column_list can be a string of comma-separated column
names or the wild card character (*) or expressions. If a column
name exists in more than one of the tables in the SELECT
statement, a table name or correlation name must be used to
qualify the column name. You can use a function that returns a
single value for each row in the column listing of a SELECT
statement.

AS alias_name An alias_name is a means of giving a different name to an
element in a column_list that applies individually to the item for
which it serves as an alias. Each item in the column_list may
have its own alias_name.

FROM The FROM keyword is required in a SELECT statement between
the select-expression and the table-expression.
Version 4.4 PointBase Developer 149

PointBase
table_expression The table_expression contains all the information needed to
specify the tables in a SELECT statement and the relationship
between multiple tables in the statement. The table_expression
takes the syntax of:

table_expression::=

table_name_exp

| derived_tablr

| table_name joined_table_exp
[join_table_exp...]

where:

table_name_exp::= table_name [[AS]
correlation_name]

derived_table::= subquery

subquery::= <left paren><query expression>right
paren>

joined_table_exp::= join_type table_name_exp
[ON_clause | USING_clause]

and the ON_clause or USING_clause are known as the join
specification:

ON_clause::= ON search_condition

USING_clause::= USING (column_name_list)

The table_expression can contain any number of table_names. It
does not require you to give any specific ordering of the
table_names. The optimizer will determine the appropriate
ordering of execution. For more on the optimizer, see
“Optimizing Query Expressions” in the PointBase System Guide.

table_name The names represented by table_name are the names of the
tables that contain the columns listed in columns. If you join
more than one table in the SELECT statement, separate the table
names with commas.

NOTE: If more than one table is specified in the table list, then it
is known as a join. PointBase supports CROSS, INNER,
and LEFT and RIGHT OUTER joins.

[AS]
correlation_name

A correlation name is a means of giving a different name to a
table that qualifies the names of columns in the SELECT
statement. A correlation name is sometimes used to document
the source of columns even when there are not duplicate column
names. It is not required to provide a correlation name for every
table in a SELECT statement.

derived_table The derived table is a temporary table generated dynamically
from a subquery.. If derived table is used, correlation name for
the derived table must be supplied. If column list contains
expressions or duplicate column names, correlation names for
those columns must be supplied.

ON_clause With the ON_clause, you can specify a search_condition when
joining two tables. The effect of the ON_clause is the Cartesian
product of the two tables that meet the search_condition criteria.
Version 4.4 PointBase Developer 150

PointBase
USING The USING_clause can only be used if each joining table has the
same column names as the other joining table. For example, if
we have:

USING (C1, C2)

the effect of the USING_clause is an ON_clause of the following
(if we are joining tables T1 and T2):

ON T1.C1=T2.C1 AND T1.C2=T2.C2

WHERE search
conditions

The WHERE clause is an optional clause that specifies selection
criteria for a query. The search condition(s) that follow the
WHERE keyword evaluates each row that could be included in
the result set. [You may use a subquery as part of the search
condition. See “Subqueries” in this section for more
information.]

If the search conditions returns false for a row, the row is not
included in the result set; if the search conditions returns true, the
row is included in the result set. If a WHERE clause is not
specified, then all rows of the table(s) are included in the result
set.

For more information on search conditions, see the chapter,
“Search Conditions and Predicates.”

GROUP BY
column_list

The format of the Group-By clause is:

GROUP BY grouping column [, grouping-column
]...

Grouping-column is a column-reference optionally followed by a
collate clause (but only if the column - reference identifies a
column whose data type is character string). The collate-clause
identifies the collation used for comparing the columns.

The result of a group-by-clause is a virtual table, but that result is
called a grouped table. The input table is partitioned into one or
more groups; the number of groups is the minimum such that, for
each grouping -column, no two rows of any group have different
values for that grouping – column. For any group in the resulting
grouped table, every row in the group has the same value for the
grouping - column. Otherwise, the group- by - clause produces
an output table that is identical to the input table.

HAVING
search_condition

The having-clause is a filter. The filtering operation is applied to
the grouped table resulting from the preceding clause. If there is
a group-by-clause, the grouped table resulting from it is the input
to the having-clause. If there is no group-by-clause, the entire
table resulting from the where-clause is treated as a grouped
table with exactly one group. In this case, there is no grouping-
column. The format of the having-clause is:

HAVING search-condition

The search-condition is applied to each group of the grouped
table. That's because the only columns of the input table that the
having-clause can reference are the grouping columns, unless the
columns are used in a set function.
Version 4.4 PointBase Developer 151

PointBase
NOTE: The SELECT statement returns the qualified result set to the calling application. For
more information on how PointBase optimizes SELECT statements and the joins they
contain, see the chapter, “Optimizing Query Expressions” in the PointBase System
Guide.

ORDER BY ORDER BY {column_name | value} [sort_order]

[{, column_name | value} [sort_order]...}]

The optional ORDER BY clause specifies the ordering of the
rows returned from a SELECT statement. An ORDER BY clause
can contain one or more column values, separated with commas;
functions are not allowed. If a column_name is specified in the
ORDER BY clause, then that column_name must also be
specified in the column_list.

Each column or value in the ORDER BY clause can include an
optional sort_order qualifier. Acceptable sort order qualifiers are
ASC, for ascending sort order, and DESC, for descending sort
order. If no sort order is specified, the default is ascending. If the
ORDER BY clause contains multiple columns, the order of the
columns designates the order of the grouping.

If a query contains any UNION operators, the ORDER BY clause
must be specified last after all the unions are specified.

FOR UPDATE The optional FOR UPDATE clause allows user to change
PointBase's default locking mechanism.

PointBase, by default, places share locks on rows returned from
select statement. SELECT FOR UPDATE will place exclusive
locks on rows returned from select statement. This guarantees the
subsequent modification on those rows without being blocked by
other users.

This option may cause deadlock situation, and should be used
with care and in short transaction only to avoid deadlock.

This clause can't be used in read uncommitted transactions.

FOR UPDATE can only be used in main select statement (not in
any subquery select statement.)

OF column_list This clause specifies what table to be affected. Only tables
containing columns in column_list will be affected. If this clause
is not specified, all tables are affected.

WAIT | NOWAIT This clause specifies wait or no wait locks. In the case of rows
are locked by other user, select statement will return immediately
with lock wait timeout exception if nowait is specified, otherwise
it will wait until lock timeout specified in .ini parameter.
Version 4.4 PointBase Developer 152

PointBase
Examples

All of the following examples were created using the sample database that comes with every
database product.

Example 1

When querying a column that is not unique, the keyword DISTINCT will allow you eliminate
duplicate rows. The ORDER BY clause will sort one or more columns based on ascending or
descending sequences. By default the sort order is set to ascending sequence.

SELECT DISTINCT name FROM manufacture_tbl ORDER BY name DESC;

Results:

Note the use of a column alias for a similar query. (The result is deliberately truncated for
brevity in this example, but would be the same as the above.)

SELECT DISTINCT name AS company FROM manufacture_tbl ORDER BY name DESC;

Results:

NAME

Zetsoft

World Savings

Wells Fargo

Toshiba

Sony

SoftClip

Sams Publishing

Rico Enterprises

MicroSoft

Matrox

COMPANY

Zetsoft

World Savings

(etc....)
Version 4.4 PointBase Developer 153

PointBase
Example 2

It is possible to use an SQL constant that will help produce results that are easier to interpret.
The example below illustrates two variations of SQL constants. The first example 'Shipping
Cost' demonstrates a fixed column type and the second example ‘$’ is concatenated to a select
list. Also notice the comparison test that finds the all records that were charged over $300 in
shipping costs and not shipped to Florida.

SELECT order_num, sales_tax_st_cd, 'Shipping Cost', '$' || shipping_cost FROM order_tbl
WHERE shipping_cost > 300 AND UPPER(sales_tax_st_cd) NOT LIKE '%FL' ORDER BY order_num
ASC;

Results:

Joins

Relational join operations are implemented through the basic SELECT...WHERE statement.
See SELECT for additional information. PointBase supports the following join operations:

• CROSS JOIN
• INNER JOIN
• OUTER JOIN

CROSS JOIN

The cross join operation performs a cross product on the joining tables.
SELECT *
FROM t1 CROSS JOIN t2

The cross join is the same type of join found in earlier versions of SQL. Those versions of SQL

that did not use the JOIN keyword, used a comma instead.

INNER JOIN

In inner joins, columns with the same names have compatible data types and the rows will be
selected only when every matching column has the same value as its data type.

SELECT *
FROM t1 INNER JOIN t2
ON t1.c1 = t2.c3;

ORDER_NUM SALES_TAX Shipping Cost '$' || shipping

10398002 TX Shipping Cost $359.99

10398009 CA Shipping Cost $700

20598101 MI Shipping Cost $2500

30198001 NY Shipping Cost $2000.99

30298004 NY Shipping Cost $700
Version 4.4 PointBase Developer 154

PointBase
INNER JOIN Example:

This example is joining common values from the sales_rep table and sales tax code table based
on a common type ‘decimal rate’. As you can see, it is returning all rows that have a common
rate and commission values. Also notice that the data is being filtered base on a tax code rate
that is over 7.0.

SELECT last_name, commission_rate, sales_tax_code_tbl.rate from sales_rep_tbl INNER JOIN
sales_tax_code_tbl ON (sales_rep_tbl.commission_rate = sales_tax_code_tbl.rate) AND
(sales_tax_code_tbl.rate > 7.0);

The SELECT statement returns the following:

OUTER JOIN

Outer join operations preserve unmatched rows from one or both tables, depending on the
keyword used. PointBase supports the following:

• LEFT OUTER JOIN
• RIGHT OUTER JOIN

LAST_NAME COMMISSION RATE

Longer 8 8

Hillerger 9 9

Smith 7.75 7.75

Smith 7.75 7.75

Smith 7.75 7.75

Smith 7.75 7.75

Donohue 7.75 7.75

Donohue 7.75 7.75

Donohue 7.75 7.75

Donohue 7.75 7.75
Version 4.4 PointBase Developer 155

PointBase
LEFT OUTER JOIN

The LEFT OUTER JOIN preserves unmatched rows from the left table, the one that precedes
the keyword JOIN

SELECT *
FROM t1 LEFT OUTER JOIN t2
ON t1.c1=t2.c3;

LEFT OUTER JOIN Example:

The example below is performing a Left Outer Join based on where the sales representative
commission rate and the sales tax code table’s rate are equal. Notice that all of the values in the
left table (sales_rep_tbl) are preserved.

SELECT last_name, ytd_sales, commission_rate, sales_tax_code_tbl.rate FROM sales_rep_tbl
LEFT
OUTER JOIN sales_tax_code_tbl ON (sales_rep_tbl.commission_rate =
sales_tax_code_tbl.rate) AND (sales_tax_code_tbl.rate > 6.0) AND
(sales_rep_tbl.commission_rate >= 8);

The SELECT statement returns the following:

RIGHT OUTER JOIN

The RIGHT OUTER JOIN operates similarly to a LEFT OUTER JOIN except the RIGHT or
second named table of unmatched rows are preserved.

SELECT *
FROM t1 RIGHT OUTER JOIN t2
ON t1.c1=t2.c3;

Right Outer Join Example:

This example is using a right outer join to display all distinct unmatched records from the sales
tax code table based the sales_rep table.

SELECT DISTINCT sales_tax_code_tbl.rate from sales_rep_tbl RIGHT OUTER JOIN
sales_tax_code_tbl ON (sales_rep_tbl.commission_rate = sales_tax_code_tbl.rate) AND
(sales_tax_code_tbl.rate > 8.0);

LAST_NAME YTD_SALES COMMISSION RATE

Longer 80000 8 8

Hillerger 675000 9.5 9.5

Valentine 857000 9 NULL

Smith 950000 8.75 NULL
Version 4.4 PointBase Developer 156

PointBase
The SELECT statement returns the following:

UNION operator

One of the core SQL operators in conjunction with the SELECT statement is the UNION
operator. It is a relational operator that combines the output of two SELECT statements; that is,
they combine two or more tables whose respective column data types are of the same family
data type. For example, a UNION on a CHARACTER and VARCHAR will work because they
are part of the String data type family. A SMALLINT and an INTEGER UNION will also
work, because they are part of the exact NUMERIC data type family.

The UNION operator has two forms: the first, UNION DISTINCT, returns only unique rows
from a query and discards any duplicate rows; the second, UNION ALL, does not discard
duplicate rows; it returns all rows from the first SELECT statement followed by all rows from
the second SELECT statement. You may not mix UNION ALL and UNION DISTINCT in the
same query scope. However, you may have UNION ALL in the main query and UNION
DISTINCT in a subquery, for example. If a query has more than one UNION operator, they
must be the same form of UNION operators. You will receive an error if you mix two different
forms of the UNION operator in a query.

The output column names resulting from a UNION will have the same column names that the
expressions in the very first SELECT statement had. If the UNION query uses the ORDER BY
clause, PointBase will order the final results after evaluating all UNIONs. The ORDER BY
clause must be last in the query—after specifying all of the UNIONs. Any column names in
the ORDER BY clause must refer to the column names in the very first SELECT statement in
the query, as the ORDER BY clause sorts the final results by the output column names.

Union Examples:

This example is combining two character columns from the office table and product table. The
results will include all of the rows of data from each table.

SELECT type_code FROM office_tbl UNION ALL SELECT prod_code FROM product_code_tbl;

RATE

8.25

8.5

9.5

9.75

10.25

11.5

13
Version 4.4 PointBase Developer 157

PointBase
The SELECT statement returns the following:

type_code

A

R

R

R

R

R

R

R

W

BK

CB

FW

HW

MS

SW

This example uses the columns as in the previous example; however, it uses UNION
DISTINCT and orders the results by “type_code.” The result will not return any duplicate
rows.

SELECT type_code FROM office_tbl UNION DISTINCT SELECT prod_code FROM product_code_tbl
order by type_code;

type_code

A

BK

CB

FW

HW

MS

R

SW

W

Version 4.4 PointBase Developer 158

PointBase
Subqueries

Subqueries can be either a SELECT statement or an expression that you can use in any DML
statement, for example, SELECT, INSERT, DELETE, UPDATE. The following describes
different types of subqueries that PointBase supports.

Notes on PointBase Subqueries

• PointBase allows a subquery to return multiple values using the quantified operators,
EXITS, NOT EXISTS, IN, or NOT IN only. See "Predicates" on page 71 for more
information about IN, NOT IN, EXISTS, or NOT EXISTS.

• Currently, PointBase does not support row subqueries.

Scalar Subquery (Non-correlated) Example

This example retrieves the names of all sales people in the Miami office.

SELECT a.first_name, a.last_name
FROM sales_rep_tbl a
WHERE a.office_num =
(SELECT b.office_num
FROM office_tbl b
WHERE city = 'Miami');

Subquery Type Description

Scalar Subquery A subquery that returns at most one row and one column.

Table Subquery
(with one column)

A subquery that may return any number of rows within
one column. A table subquery may only appear on the
right hand side of a quantified comparison predicate. This
type of predicate compares a single row value of a table to
potentially multiple result row values from a subquery.

PointBase supports table subqueries only in a quantified
comparison predicate that uses the quantified operators,
IN, NOT IN, EXISTS, or NOT EXISTS. Also see
"Predicates" on page 71 for more information about these
quantified operators.

Non-correlated Subquery A subquery that does not use a correlated (outer)
reference. It references a column, which an enclosing
(outer) query block does not define.

Correlated Subquery A subquery that uses a correlated reference, sometimes
referred to as an “outer reference”. It references a column,
which an enclosing (outer) query block defines.

Nested Subqueries A subquery located within another subquery. PointBase
supports any level of nested subqueries.
Version 4.4 PointBase Developer 159

PointBase
Results:

Scalar Subquery (Correlated) Example

This example retrieves the cities of all the offices whose target sales exceed all the sales
representative’s quotas working in them.

SELECT a.city
FROM office_tbl a
WHERE a.target_sales >
(SELECT sum(b.quota)
FROM sales_rep_tbl b
WHERE b.office_num = a.office_num);

Results:

Table Subquery (Non-correlated) Example

This example retrieves the names of all sales reps working in the western region.

SELECT a.first_name, a.last_name
FROM sales_rep_tbl a
WHERE a.office_num IN
(SELECT b.office_num
FROM office_tbl b
WHERE b.region = 'Western');

FIRST_NAME LAST_NAME

John Longer

CITY

Miami

Atlanta

San Mateo

San Francisco

San Diego

Oakland

Detroit

New York
Version 4.4 PointBase Developer 160

PointBase
Results:

Table Subquery (Correlated) Example

This example retrieves all cities, in which at least one sales representative works.

SELECT a.city
FROM office_tbl a
WHERE EXISTS
(SELECT *
FROM sales_rep_tbl b
WHERE a.office_num = b.office_num);

Results:

FIRST_NAME LAST_NAME

Heather Smith

George Valentine

Raymond Brown

Jack Smith

CITY

Miami

Atlanta

San Mateo

San Francisco

San Diego

Oakland

Detroit

New York
Version 4.4 PointBase Developer 161

PointBase
INSERT

INSERT INTO table_name [(insert_column_list)]
query_expression

The INSERT statement adds new rows to a table in a PointBase database.

NOTE: To insert, you must have privileges on the entire table. Partial privilege on some
columns will not work because you have to insert some data (null) into other columns.

Syntax

Query_Expression

The query_expression can take one of the following forms:

NOTE: PointBase effectively ignores any spaces that trail after a string when using the
INSERT statement. This behavior supports the ANSI standard; however, it may vary
with other database vendors.

INSERT INTO The INSERT INTO keywords are required as the first words in
an INSERT statement.

table_name table_name identifies the table that will receive the new data
specified in the INSERT statement.

(insert_column_list) The optional list of columns that receive values in an INSERT
statement are indicated between parentheses and separated by
commas. The order of the list of columns is important, since the
first value following the VALUES clause inserts into the first
column in the list of columns. Each subsequent column matches
with its counterpart in the query_expression. The
insert_column_list is optional. If it is not specified, then an
implicit column list is assumed.

Please note: when inserting a specific value into an IDENTITY
column, every row value that follows in that column will
continue to have an incremental value based on the highest value
assigned for that column—even if the highest value was deleted
or rolled back. (See "IDENTITY Property for Autoincrement" on
page 41.)]

query_expression The query_expression indicates the values that insert into the
table in the INSERT statement.
Version 4.4 PointBase Developer 162

PointBase
Form 1: Table_values_constructor

The table_values_constructor can be lists of values to be inserted into the columns in the
insert_column_list. The keyword VALUES, as in VALUES(value1, value2, value3), precede
the list of table constructor values.

Another variation of the table_values_constructor allows more than one row at a time with a
single INSERT statement. Each row of data must contain a value for each column in the list of
columns that matches the data type of the column. Enclose each row of data in its own set of
parentheses.

Examples

The following INSERT statement inserts a row of data with discrete values:

INSERT INTO OFFICE_TYPE_CODE_TBL (TYPE_CODE, DESCRIPTION, MISC)
VALUES ('C', 'Caller', NULL);

This example inserts into a table where one of the columns has the IDENTITY property. This
column will have the ability to autoincrement the values for each row. Note that you can insert
values explicitly for the IDENTITY column or allow values to be automatically generated by
not explicitly inserting them. Remember that, PointBase will continue to generate incremental
values based on the highest value assigned for the column—even if the highest value was
deleted or rolled back.

CREATE TABLE TAB1(ID INT IDENTITY, NAME VARCHAR(30));
INSERT INTO TAB1(ID,NAME) VALUES(100, 'Palo Alto');
INSERT INTO TAB1(ID,NAME) VALUES(101, 'Menlo Park');
INSERT INTO TAB1(NAME) VALUES('Cupertino');

Unicode data values use the “\u” delimiter for each character with PointBase Commander. For
example, unicode representation of the French alphabet is the following:

\u05d0 through \u05ea

such as:

INSERT INTO OFFICE_TYPE_CODE_TBL VALUES ('F', 'French', 'gar_on');

From a JAVA program, unicode characters are treated like others and may be expressed
through their escape literal representation, such as the following:

INSERT INTO OFFICE_TYPE_CODE_TBL VALUES ('X', 'French', '\u00f4');

Inserting Multiple Rows

A single INSERT statement can use discrete values to insert more than one row of data by
nesting the values for rows enclosed in parentheses, such as the following:

INSERT INTO OFFICE_TYPE_CODE_TBL VALUES (’B’, ’ ‘Buyer’, ’Decision Maker’), (’S’,
’Seller’, ’ Sales Rep’), (’T’, ’Talker’, ’ Not a Programmer’);
Version 4.4 PointBase Developer 163

PointBase
In the PointBase Commander or Console, this example uses dynamic SQL where the value is
supplied at runtime.

INSERT INTO ORDER_TBL(ORDER_NUM, CUSTOMER_NUM, REP_NUM, PRODUCT_NUM, SALES_TAX_ST_CD,
QUANTITY, SHIPPING_COST, SALES_DATE, SHIPPING_DATE, DELIVERY_DATETIME,
FREIGHT_COMPANY)VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
{
010398552, 1, 5001, 980001, 'FL', 000010, 449.00, '1998-01-02', '1998-01-02', '1998-01-15
15:00:00', 'Southern Freight'
010398967, 1, 5001, 980001, 'CA', 000010, 449.00, '1998-01-02', '1998-01-02', '1998-01-15
15:00:00', 'California Freight'
};

Form 2: DEFAULT VALUES

Default values can be the list of values that are created to be inserted into the table. It will
contain the default values as specified in the CREATE TABLE statement. If the default value
of a column is the NULL value and null values are not allowed (NOT NULL), then an error is
raised.

DEFAULT and NULL can be used to represent values to be inserted into the table. If
DEFAULT is specified, then the default value specified (explicitly or implicitly) is inserted
into the column. If NULL is specified, then the NULL value is inserted into the column. Note:
If an attempt to insert a NULL value in a column and nulls are not allowed (NOT NULL), then
an error is raised.

Examples

INSERT INTO T2 VALUES (DEFAULT);

or

INSERT INTO T2 VALUES (DEFAULT VALUES);

Form 3: Query Specification

Query specification is the list of values that you create from an SQL SELECT query. The result
set returned from the query must have the same number of column values, with the same data
types, as the list of columns in the INSERT statement.

If you duplicate column names between the source table and the target table in a query
specification, each table name must have a correlation name and you must qualify the column
names with the correlation name.

Example

INSERT INTO LOCAL_SALES_TAX_CODE_TBL SELECT * FROM SALES_TAX_CODE_TBL WHERE STATE_CODE =
'FL';
Version 4.4 PointBase Developer 164

PointBase
UPDATE

UPDATE table_name
SET set_clause_list
[WHERE search_condition]

The UPDATE statement changes the values of data in the table(s) contained in the PointBase
database.

Syntax

The set_clause_list has two possible forms:

column_name = value [{, column_name = value}...]

or

(column_name [{, column_name}...]) = VALUES(value [{,value}...])

The list of value expressions sets the value of the columns in the target table. Each value
expression includes the name of a column in the table, the equal sign (=), and the new value for
the column. The new value for the column can be a constant, a column in the table, DEFAULT
keyword, NULL keyword, or a value computed with either one of these value types using an
SQL Scalar function.

A single UPDATE statement can update one or more columns in the designated table. If you
update more than one column, separate the value expressions with commas.

If DEFAULT is specified, then the default value of the column on the CREATE TABLE is
inserted into the column. If NULL is specified, then the NULL value is inserted into the
column. If an attempt to insert null value into a column and the column does not allow this
(NOT NULL) then an error is raised.

An alternative syntax for the set_clause_list is SET (column list) = VALUES (value list).

UPDATE The UPDATE key word is required as the first word in an
UPDATE statement.

table_name Table_name identifies the table that contains the columns to
update.

SET The SET clause is required in an UPDATE statement between
the table_name identifier and the list of columns to be updated.

WHERE
search_condition

The WHERE clause specifies selection criteria for an UPDATE
statement. The search_condition that follows the WHERE
keyword evaluates for each row in the indicated table. If the
search_condition returns true for a row, the columns in the row
update with the new values indicated in the UPDATE statement;
if the search_condition returns false or unknown, the row is
ignored by the UPDATE statement.
Version 4.4 PointBase Developer 165

PointBase
NOTE: If an UPDATE statement does not contain a WHERE clause, all rows in the target
table update with the new values. The UPDATE statement writes new values to rows in
a PointBase database, but the changes become permanent only when a COMMIT
statement executes following an UPDATE statement, which finalizes changes to the
database.

If the UPDATE of a row causes the row to expand past the limits of the page or pages
that contained it originally, PointBase will automatically allow the row to span pages.
The JDBC calls that execute the UPDATE statement return the number of rows
updated.

Examples

UPDATE ORDER_TBL SET FREIGHT_COMPANY='Shipping Express',customer_num=25 WHERE
order_num=10398001;
Version 4.4 PointBase Developer 166

PointBase
DELETE

DELETE FROM table_name
[WHERE search_condition]

The DELETE statement deletes a row in a table in a PointBase database.

Syntax

The DELETE statement marks rows in the database for deletion. The rows are actually
removed when a commit occurs after the statement executes, which completes any changes to
the database. For more information on COMMIT, see “Transaction Control.”
The JDBC calls that execute the DELETE statement return the number of rows to be deleted.

Examples

DELETE FROM ORDER_TBL
WHERE SHIPPING_COST <= 275.00;

DELETE FROM ORDER_TBL
WHERE SHIPPING_COST =?

{
1.00
2.00
3.00
};

DELETE FROM The DELETE FROM keyword is required in a DELETE
statement.

table_name The table_name is the name of the table from which the selected
rows are to be deleted.

WHERE
search_condition

The optional WHERE clause specifies selection criteria for a
DELETE statement. The conditional expression that follows the
WHERE keyword is evaluated for each row in the identified
table. If the search_condition returns true for a row, the row is
deleted; if the search_condition returns false, the row is not
deleted. If no WHERE clause is specified, all rows are deleted
from the table. See “Search Conditions and Predicates,” for more
information.
Version 4.4 PointBase Developer 167

PointBase
Data Control Language

To manipulate data, use the Data Control Language (DCL). With DCL, you can perform the
following:

• CALL: Execute an SQL procedure.
• RETURN: Return a value from an SQL function.
• SET assignment: Assign a value to an SQL variable.
• SET PATH: Set or change the current path being used to locate the SQL objects in

various schemas.
• SIGNAL: Raise an SQLState exception.
• VALUES: Invoke an SQL routine.

CALL

CALL procedure_name([argument_list])

The CALL statement executes an SQL routine that is a procedure.

Syntax

Examples

CALL PROC1();
CALL PROC2(‘abc’);

CALL The CALL keyword is required in a CALL statement.

procedure_name The procedure_name is the name of the procedure which is
executed. No results are returned.

argument_list The optional argument_list clause specifies values for the CALL
statement.

NOTE: Only constants can be used. You cannot use new or old
row values.
Version 4.4 PointBase Developer 168

PointBase
RETURN

RETURN routine_invocation

The Return statement returns a scalar value from a Java stored procedure that is a function, in
the form a result set.

Syntax

Examples

RETURN PROC1();
RETURN PROC2(‘abc’);

RETURN The RETURN keyword is required as the first word in a
RETURN statement.

routine_invocation The routine_invocation must be an SQL routine invocation,
Version 4.4 PointBase Developer 169

PointBase
SET assignment

SET assignment_target = assignment_source

You may use SET assignment statements for BEFORE triggers only. The SET assignment
statement assigns a value to an SQL Trigger row correlation variable. The SET assignment
statement is much like the set_clause of an SQL UPDATE statement.

Syntax

Examples

SET newrow.inventory = getnewvalue ();
SET newrow.selldate = CURRENT_DATE;
SET my_newalias.fruitname = ‘apples’;

SET The SET keyword is required as the first word in a SET
assignment statement.

assignment_target The assignment_target consists of both, an SQL correlation
variable of an SQL Trigger and a column_name. The
column_name refers the column of the SQL correlation variable.
You may use new or old row values.

assignment_source The assignment_source is one or more SQL expressions that can
be a constant, an SQL routine invocation, one of the SQL Scalar
functions, an SQL Cast functions, or an SQL Special Register.

You may not use an SQL correlation variable; however, you can
reference new or old row values in the WHEN search_condition.

Assignment_source values are assigned to the assignment_target.
Version 4.4 PointBase Developer 170

PointBase
SET PATH

SET PATH schema_name [{,schema_name}...]

With the SET PATH statement, you can use it to set or change the current path that you are
using to locate the SQL objects in various schemas. This results in the setting of the
CURRENT_PATH of a SQL session. To find the correct system tables, the schema
POINTBASE must be included in the path.

Syntax

Examples

SET PATH Employees, Engineering, Sales, PointBase;

This sets the CURRENT_PATH to the following schemas in the order specified: Employees,
Engineering, Sales, and PointBase. If you wish to append the Marketing schema to the
CURRENT_PATH so that the order becomes Employees, Engineering, Sales, PointBase, and
Marketing, enter:

SET PATH CURRENT_PATH, Marketing;

If you never execute a SET PATH statement, then the CURRENT_PATH consists of the
schema POINTBASE, followed by your existing schema. When a SET PATH statement is
issued, it completely replaces the existing CURRENT_PATH, unless CURRENT_PATH is part
of the schemas being set in the path.

The order of the schemas in the path is generally crucial. When the database system is looking
for SQL objects, it looks for them in each schema (unless explicitly referenced otherwise),
starting with the first schema in the path, then the next, etc...., until an SQL object is found that
meets the criteria. One way to override the CURRENT_PATH is to explicitly reference the
SQL object. For example, to reference a table, you can specify schema_name.table_name. In
the above examples, the SQL object of table_name would be searched in the schema of name
schema_name.

SET PATH The SET PATH keywords are required as the first words in a SET
PATH statement.

schema_name Required keywords to begin the statement.
Version 4.4 PointBase Developer 171

PointBase
SIGNAL

SIGNAL ‘sqlstate_message’

With the SIGNAL statement, you can use it to raise an SQLSTATE exception. This statement
can only be used within a trigger_body or within the body of an SQL routine, whose language
type is SQL. This statement will cause an SQLSTATE exception to be thrown and propagated
back to your program. You provide the text of the message.

NOTE: The SIGNAL statement rolls back the specific event that activated its trigger and all
the changes caused by the trigger, as well as the original SQL statement of the user,
which includes all the triggers and cascading actions that it invoked.

Syntax

Examples

SIGNAL‘The oranges inventory is empty’;
SIGNAL ‘The salary of an employee would have been higher than the salary of his/her Man-
ager’;

SIGNAL The SIGNAL keyword is required as the first word in a SIGNAL
statement.

sqlstate_message The sqlstate_message is an SQL string literal value. You can
specify any text they would like. The actual SQLSTATE code
will be ZG014 and the SQL error code is 25014.
Version 4.4 PointBase Developer 172

PointBase
VALUES

VALUES (SQL_expression [{ , SQL_expression } ...])

The VALUES statement is an SQL stand alone SQL statement. It should not be confused with
the values_clause of an INSERT statement or with the from_clause of an SQL Select
statement.

Typically, the VALUES statement is used to invoke SQL routines. The VALUES statement
discards all SQL expression values returned by either a constant, an SQL routine invocation,
one of the SQL Scalar functions, one of the SQL Cast functions, or an SQL Special Register.

Syntax

Examples

VALUES (addnewfruit(‘apple’));
VALUES (increaseorders(200));
VALUES (CURENT_DATE);

VALUES The VALUES keyword is required as the first word in a
VALUES statement.

SQL_expression The SQL_expression can be a constant, an SQL routine
invocation, one of the SQL Scalar functions, an SQL Cast
functions, or an SQL Special Register.
Version 4.4 PointBase Developer 173

PointBase
Transaction Control

In this section you can find the following transaction control statements:

• “SAVEPOINT”
• “COMMIT”
• “RELEASE SAVEPOINT”
• “ROLLBACK”
• “SET DATALOG”
• “START TRANSACTION ISOLATION LEVEL”

SAVEPOINT

SAVEPOINT savepoint_name

The PointBase transaction model supports savepoints. Savepoints allow transactions to be
partially rolled back by establishing a point within a transaction. Savepoints are destroyed
automatically when a transaction commits.

NOTE: Make sure that auto commit is turned off when using savepoint.

Syntax

Examples

SAVEPOINT SVP1;
SAVEPOINT 2;

SAVEPOINT
savepoint_name

The savepoint_name can either be an SQL identifier or a numeric
value with a scale of zero.
Version 4.4 PointBase Developer 174

PointBase
COMMIT

COMMIT [WORK]

The COMMIT statement successfully terminates a PointBase transaction.

Syntax

Issuing a COMMIT statement ends the current PointBase transaction. The COMMIT causes
three basic actions in the PointBase database:

1. Writes any and all changes that have occurred to the data during the current
transaction to the database.

2. Releases any locks that have been placed on data in the PointBase database.

3. Destroys any result sets that have been returned from a query.

Examples

COMMIT WORK;

COMMIT [WORK] The COMMIT statement takes no qualifiers. The keyword
WORK is optional.
Version 4.4 PointBase Developer 175

PointBase
RELEASE SAVEPOINT

RELEASE SAVEPOINT savepoint_name

The RELEASE SAVEPOINT statement destroys a savepoint within a transaction and all the
savepoints created after the specified savepoint. The savepoint is automatically released when
a COMMIT or ROLLBACK occurs.

The savepoint name specified in this command should have been created earlier by a savepoint
command in the current transaction. If the savepoint name is not found, an exception is raised
for the invalid savepoint name.

NOTE: Make sure that autocommit is turned off when using savepoint.

Syntax

Example 1

RELEASE SAVEPOINT SVP1;
RELEASE SAVEPOINT 2;

Example 2

CREATE TABLE T1 (c1 int);
Savepoint sp1;
INSERT INTO T1 values (1);
Savepoint sp2;
INSERT INTO T1 values (2);
Savepoint sp3;
INSERT INTO T3 values (3);
RELEASE savepoint sp2;

NOTE: In the last statement of Example 2, the savepoint sp2 is destroyed.

RELEASE
SAVEPOINT
savepoint_name

The savepoint_name can either be an alphanumeric SQL
identifier or an integer number.
Version 4.4 PointBase Developer 176

PointBase
ROLLBACK

ROLLBACK [WORK] [TO SAVEPOINT savepoint_name]

The ROLLBACK statement rolls back any changes that have taken place in a PointBase
transaction to the beginning of the transaction or to a savepoint.

A ROLLBACK TO SAVEPOINT statement allows you to undo all changes to the database
back to the savepoint. This action does not terminate a transaction. If a ROLLBACK
statement references a savepoint, then the transaction rolls back to where the savepoint was
specified.

NOTE: Make sure that auto commit is turned off when using savepoint.

Syntax

Examples

ROLLBACK WORK;
ROLLBACK WORK TO SAVEPOINT SVP1;

Issuing a ROLLBACK statement restores the data changed in a transaction to the values that
existed before the PointBase transaction began. If you specify a savepoint_name, then all
changes made to data in the transaction, after the SAVEPOINT savepoint_name statement was
executed, rolls back. The specified savepoint and all savepoints issued subsequent to this
savepoint are destroyed. The transaction resumes after the savepoint statement.

A ROLLBACK statement without any qualifier ends the current transaction, which causes
two actions in the PointBase database:

1. Releases any locks that have been placed on data in the PointBase database.

2. Destroys any result sets that have been returned from a query.

ROLLBACK TO
SAVEPOINT
savepoint_name

The savepoint_name can either be an SQL identifier or a numeric
value with a scale of zero.
Version 4.4 PointBase Developer 177

PointBase
SET DATALOG

SET DATALOG OFF | ON FOR TABLE table_name

The SET DATALOG command allows administrators to turn OFF or ON data logging for a
specific table. By default, data logging is set to ON for all tables. When set to OFF, deletions or
updates are not allowed on the specified tables. You should turn DATALOG to OFF for
insertions only. If the specified table has one or more indexes, during insertions its indexes
will automatically be updated and the index will be logged.

No transaction should be active while executing a SET DATALOG command. PointBase
recommends that you execute this command just after a ROLLBACK or a COMMIT statement
and before a START TRANSACTION ISOLATION LEVEL statement (or any statement that
starts a transaction.) Any transaction that starts after the SET DATALOG statement will turn
OFF logging for the specified table. At the end of the transaction, logging is automatically
turned back ON. Optionally, before the end of the transaction, you can turn logging ON by
setting the ON option in the SET DATALOG statement.

The main purpose of the SET DATALOG statement is to increase performance by turning off
data logging while inserting a lot of data (via bulk loading) into a table. The table is locked
exclusively by the first insert into the specified table in this transaction. This exclusive lock is
then released at the end of the transaction.

Example 1

In the following example, after the COMMIT statement, the data logging is turned OFF for the
table T1. The INSERT statement starts a transaction, turns off the data logging for table T1 and
inserts all the data from the file ‘data.tab’ into table T1. The final COMMIT commits all the
inserted data and turns data logging ON for table T1.

commit work;
set datalog off for table T1;
SET BULK ON;
insert into T1 values (?,?,?) use c:\data.tab delimiter tab;
commit work;

Example 2

In this example, data logging is turned OFF and one row is inserted into table T2. Although
this is allowed, there is no advantage to turning OFF data logging for only a few row inserts.

commit work;
set datalog off for table T2;
SET BULK ON;
insert into T2 values (10,20,30);
commit work;
Version 4.4 PointBase Developer 178

PointBase
START TRANSACTION ISOLATION LEVEL

START TRANSACTION ISOLATION LEVEL
isolation_level [access_mode], [DIAGNOSTICS SIZE diagnostics_size]

The START TRANSACTION ISOLATION LEVEL statement is an explicit way to start a
transaction.

Syntax

READ UNCOMMITTED

This mode does not permit Read and Write access mode. It is also known as a ‘dirty read.’ In
this mode, all rows, including uncommitted rows are retrieved. For example, if transaction T1
performs one row insert, transaction T2 retrieves that row before T1 ends.

READ COMMITTED

This mode retrieves committed rows only. However, if the same SELECT statement is
executed again, the results may differ due to update from other transaction. For example, a
transaction T1 retrieves a row, another transaction T2 then updates that row and commits, and
T1 then retrieves the same row again. Transaction T1 has retrieved the same row twice, but
produced two different values.

Read and Write are permitted with more concurrency. For most users, this mode may satisfy
their needs. If a transaction isolation level is not specified in the pointbase.ini file, the
default is the transaction isolation level, READ_COMMITTED.

isolation_level PointBase supports the following transaction isolation levels:

• READ UNCOMMITTED
• READ COMMITTED
• REPEATABLE READ
• SERIALIZABLE

access_mode PointBase supports READ ONLY and READ WRITE access
modes. The default mode is READ WRITE. It can only be
specified once. If the access_mode is not specified, then it is
implicitly READ WRITE. In the READ ONLY mode, no
modification to date can be made.

DIAGNOSTICS SIZE
number_of_conditions

The diagnostics_size represents the maximum
number_of_conditions or SQL exceptions that are saved for each
statement that executes. This number lists the number of
conditions that can be held at any given time in the diagnostic
area. The value must be greater than 0. A default value is defined
at implementation time. The number_of_conditions can specified
only once.
Version 4.4 PointBase Developer 179

PointBase
REPEATABLE READ

In this mode, only committed rows are retrieved (as in the READ_COMMITTED) but without
the problem seen in the READ_COMMITTED isolation level: if the same row is retrieved
again in the same transaction, the exact same value is retrieved. However, if a new row is
added by another transaction and commits the insert (also delete or update), a second time
retrieval for the same select statement may include the newly inserted (also deleted or updated)
row. This phenomenon is know as a phantom read.

SERIALIZABLE

This mode is the highest level possible, superior in functionality to a REPEATABLE_READ as
no phantom occurs. If a SELECT statement retrieves a collection of rows to satisfy a condition,
and the same SELECT statement is executed again in the same transaction, then it is
guaranteed to retrieve the same set of rows with the same values.

In this mode, concurrency is reduced compared to other modes. If the number of rows retrieved
or affected by the transaction exceeds the number of locks specified in the pointbase.ini
file, the row level locks are converted to table level locks, further reducing the concurrency.
The default number of locks is 2000.

Example

START TRANSACTION ISOLATION LEVEL SERIALIZABLE, READ WRITE;
Version 4.4 PointBase Developer 180

PointBase
PointBase-Specific SQL

This section describes non-standard SQL statements that PointBase supports. PointBase has
provided these statements to supply additional functionality for your application. Each section
represents its own SQL statement. For each of them, the section will summarize the purpose,
describe the syntax, explain the usage, and give examples of the statement. You may browse
the PointBase-specific SQL statements to discover useful commands.

SHUTDOWN

SHUTDOWN [FORCE]

To shut down your PointBase Server or Embedded databases, you can use the SHUTDOWN
statement. It can shut down either PointBase Server or PointBase Embedded. However, you
must be the database owner or the PBSYSADMIN user, or you must have the PBDBA role for
your current role to perform the shut down.

Syntax

Examples

SHUTDOWN;
SHUTDOW FORCE;

BACKUP

BACKUP [<user class name >] [<user param>]

This SQL statement initiates online backup. Online backup functionality facilitates database
backup while the database application is running. To use this statement, the application must
first implement the PointBase interface, “com.pointbase.tools.toolsBackup.” The example in
this section describes the PointBase default implementation of this interface.

Online backup has many uses. You can use online backup, when you do not want to bring
down the database while taking a backup or when some critical event is recorded in the
database, and you want to backup the database immediately. Additionally, having the online
backup facility, an application has the flexibility to copy the database to any type of storage it
wants, for example, Flash memory.

FORCE It shuts down the database regardless of open client connections.
Version 4.4 PointBase Developer 181

PointBase
Important Notes

• You may initiate this statement using PointBase Embedded or Server
• Only the database owner, PBSYSADMIN user, or users with READALL or PBDBA

roles are allowed to backup the database
• During online backup, all transactions, including the one that requests write operations,

are active— but the write operation will wait for the return from copyDatabaseFiles()—
which the application must implement; whereas, the read operations continue without any
interruption if they can proceed.

• While online backup is in progress the SQL statements will not get lock time-out even if
they exceed the regular lock time-out time.

• If CREATE INDEX is in progress then online backup will wait for it to complete.

Syntax

Example

To accomplish the online backup functionality, you must first implement the interface
“com.pointbase.tools.toolsBackup.” Once the interface is implemented, it must be in the
classpath with the server database JAR when you launch the application. After launching the
application, you can initiate online backup my executing the BACKUP SQL statement.

TIP: Use online backup when the load the database is light, for example, during night times.

Implement toolsBackup Interface

The application needs to implement the toolsBackup interface and the code for copying the
database files. The class that implements this interface needs to have a default constructor, for
example:

interface toolsBackup
{

public void
copyDatabaseFiles(String databaseFiles[], String userParam)

throws Exception;

}
• databaseFiles[] is the absolute filenames of all the files for this database.
• userParam is a String which application can specify in the online backup SQL statement

that will be passed to this method. This can contain such information, like destination
directory.

<user class name> :=
CLASS= <identifier>

<identifier> is the name of the class which implements the
interface, “com.pointbase.tools.toolsBackup.” If this is not given
in the statement then the default implementation will be used.
(See Example.)

<user param> :=
PARAM= <identifier>

<identifier> is the user parameter(s). This can be a quoted
identifier in which case it can have comma separated values. If
this is not given in the statement then NULL will be passed to the
“copyDatabaseFiles()” method.
Version 4.4 PointBase Developer 182

PointBase
Default Implementation

The class, “toolsBackupDefault,” is the PointBase default implementation for the interface,
“com.pointbase.tools.toolsBackup.” In this default implementation, you must write the code
that copies the data files to some destination directory. This implementation does not overwrite
any files. If the destination directory contains files with the same name of the backup database
file then an Exception is raised. If the userParam is NULL, then the destination directory is
“<database directory>/backup.” <database directory> is the directory of the original database
file. If you specify the userParam, then it should be a valid existing directory. The file copy is
done in blocks of data and the block size is 4096.

The following code describes the PointBase default implementation, “toolsBackupDefault.”

package com.pointbase.tools;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;

public class toolsBackupDefault implements toolsBackup
{

static int COPY_BLOCK_SIZE = 4*1024;

public toolsBackupDefault()
{
}

public void copyDatabaseFiles(String[] p_databaseFileNames,
String p_userParams)
throws Exception

{
File l_databaseFiles[] = new File[p_databaseFileNames.length];
for (int i=0; i < p_databaseFileNames.length; i++)

l_databaseFiles[i] = new File(p_databaseFileNames[i]);

String destinationDir;
if (p_userParams == null)
{

destinationDir = l_databaseFiles[0].getParent()+ "/backup";
}
else

destinationDir = p_userParams;

File fDirectory = new File(destinationDir);

if (p_userParams == null)
{

if (!fDirectory.exists())
fDirectory.mkdir();

}

if (!fDirectory.exists())
throw new Exception("The destination directory "+ destinationDir + "

does not exist");

if (!fDirectory.isDirectory())
throw new Exception("The destination is not a directory");

// Check if any of the files with the given database file names exist
// in the destination
for(int i=0; i<l_databaseFiles.length; i++)
{

File l_destination = new File(destinationDir,
l_databaseFiles[i].getName());

if (l_destination.exists())
Version 4.4 PointBase Developer 183

PointBase
throw new Exception("The destination directory already contains
file " + l_destination);

}

// Copy the database files
for(int i=0; i<l_databaseFiles.length; i++)
{

File l_destination = new File(destinationDir,
l_databaseFiles[i].getName());

l_destination.createNewFile();
copyFile(l_databaseFiles[i], l_destination);

}
}

private void
copyFile(File fSource, File fDest)

throws IOException
{

InputStream fis = new BufferedInputStream(new FileInputStream(fSource));
OutputStream fos = new BufferedOutputStream(new

FileOutputStream(fDest));

int iLen = (int) fSource.length();

// read the input byte array...
byte[] buf = new byte[COPY_BLOCK_SIZE];
int toGo = iLen;
int dataRead;

while(toGo > 0)
{

toGo -= (dataRead = fis.read(buf));
fos.write(buf, 0, dataRead);

}

fos.close();
fis.close();

}
}

Include Implementation in Classpath

Whatever the user implementation of the toolsBackup interface is, the class must be in the
classpath with the PointBase Embedded or Server JAR files, when launching the application,
for example:

java -classpath c:\pbserver44.jar;c:\pbtools44.jar;c:\<userimplementation.class>;

The PointBase default implementation is located in the “pbtools” JAR.

Execute BACKUP Statement

The following example executes the BACKUP statement using the PointBase default
implementation of the “toolsBackup” interface and specifies the destination directory, “c:/
backup/databases.”

BACKUP PARAM=”c:/backup/databases”;

The next example does not specify a destination directory, so the PointBase default
implementation copies the backup database file to, “<database directory>/backup.” <database
directory> is the directory of the original database file.

BACKUP;

The following example does not specify an implementation class of “toolsBackup” nor does it
specify a destination directory. If this is the case, the PointBase default implementation,
“toolsBackupDefault” is used, and the destination directory is “<database directory>/backup.”

BACKUP;
Version 4.4 PointBase Developer 184

Appendix B: Unsupported JDBC
Methods in PointBase
Table 1 describes the unsupported JDBC methods from the java.sql package.

Table 1: Unsupported JDBC Methods From Java.sql Package

Java.sql Class Unsupported Methods

Blob setBytes(long pos, byte[] bytes)

setBytes(long pos, byte[] bytes, int offset, int len)

setBinaryStream(long pos)

truncate(long len)

CallableStatement getArray(int p_parameterIndex)

getObject(int p_parameterIndex,java.util.Map p_map)

getRef(int p_parameterIndex)

setArray(int p_parameterIndex,Array p_value)

setRef(int p_parameterIndex,Ref p_value)

Connection getTypeMap()

setTypeMap(java.util.Map p_map)

getHoldability()

setHoldability(int holdability)

DatabaseMetaData getUDTs(String p_catalog,String p_schemaPattern,String p_typeNamePattern,int[]
p_types)

public boolean locatorsUpdateCopy()
Version 4.4 PointBase Developer 185

PointBase
PreparedStatement setArray(int p_parameterIndex,Array p_value)

setRef(int p_parameterIndex,Ref p_value)

setURL(int parameterIndex, URL x)

ResultSet getArray(int p_ColumnIndex)

getArray(String p_ColumnName)

getObject(int p_ColumnIndex,java.util.Map p_Map)

getObject(String p_ColumnName,java.util.Map p_Map)

getRef(int p_ColumnIndex)

getRef(String p_ColumnName)

public URL getURL(int columnIndex)

public URL getURL(String columnName)

public void updateRef(int columnIndex, Ref x)

public void updateRef(String columnName, Ref x)

public void updateBlob(int columnIndex, Blob x)

public void updateBlob(String columnName, Blob x)

public void updateClob(int columnIndex, Clob x)

public void updateClob(String columnName, Clob x)

public void updateArray(int columnIndex, Array x)

public void updateArray(String columnName, Array x)

Statement public void setCursorName(String unused)

public boolean getMoreResults(int current)

public int executeUpdate(String sql, int[] columnIndexes)

public int exectueUpdate(String sql, String[] columnNames)

public boolean execute(String sql, int[] columnIndexes)

public boolean execute(String sql, String[] columnNames)

Table 1: Unsupported JDBC Methods From Java.sql Package

Java.sql Class Unsupported Methods
Version 4.4 PointBase Developer 186

Appendix C: Reserved Words
PointBase reserves certain words as keywords. Reserved words cannot be used, by themselves,
as an identifier for a table, column, or index, or as a correlation name defined in a SELECT
statement, unless you delimit them. A delimited identifier is an identifier in double quotes.
Any word, including keywords, can be a delimited identifier. A reserved word can be part of an
identifier, such as DEFAULT_TABLE, as long as it is not exactly the same as the keyword by
itself.

Although CREATE TABLE (VARCHAR VARCHAR(10)) is not a legal PointBase syntax
because of the illegal use of the reserved words, “TABLE” and “VARCHAR.” The same
identifiers, however, can be legally used if they are delimited, as in CREATE TABLE
"TABLE" ("VARCHAR" VARCHAR(10)).

NOTE: The words listed here are SQL reserved words and should not be used. Some of these
keywords may not be supported in this release, but are reserved for future releases of
PointBase.

Reserved words in the PointBase database are:

ACTION

ADD

AFTER

ALL

ALTER

AND
AS
ASC
ASCENDING
AT

ATOMIC

AUTHORIZATION

AVG

BEFORE

BEGIN

BETWEEN

BINARY
Version 4.4 PointBase Developer 187

PointBase
BIT

BLOB

BOOLEAN
BOTH

BY
CALL

CASCADE

CASE

CAST
CHAR

CHARACTER
CHAR_LENGTH
CHARACTER_LENGTH
CHECK

CLOB

COLUMN

COMMIT
COMMITTED

CONSTRAINT

CONTAINS

COUNT

COUNTRY

CREATE
CROSS

CURRENT

CURRENT_DATABASE

CURRENT_DATE
CURRENT_LSN

CURRENT_PATH

CURRENT_SCHEMA

CURRENT_SESSION

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER

DATA

DATABASE

DATALOG

DATE
DAY

DEC

DECIMAL
DEFAULT
DEFERRABLE
Version 4.4 PointBase Developer 188

PointBase
DELETE
DESC
DESCENDING
DETERMINISTIC

DIAGNOSTICS

DISCONNECT

DISTINCT

DOUBLE
DROP
EACH

END

EXCEPT

EXECUTE

EXTERNAL

EXTRACT
FALSE
FILTER_COLUMN

FILTER_ROW

FLOAT
FOR

FOREIGN
FROM
FULL

FUNCTION

G

GETLASTLSN

GRANT

GROUP

K

HAVING

HOUR

IMAGE

IMMEDIATE

IN
INDEX
INDEXONLY

INITIALLY

INNER

INOUT

INSERT
INT

INTEGER
Version 4.4 PointBase Developer 189

PointBase
INTO
IS
ISOLATION

JAVA

JOIN
KEY

LANGUAGE

LARGE

LEADING

LEFT

LENGTH

LEVEL

LIKE

LOB

LONG

LONGRAW
LOWER

LSN_CURRENT_ID

LSN_CURRENT_OFFSET

LSN_SKIP_ID

LSN_SKIP_OFFSET

LSN_START_ID

LSN_START_OFFSET

M

MATCH

MAX

METHOD

MIN

MINUTE

MODIFIES

MONTH

NAME

NATURAL

NEW

NO

NOT
NUMBER

NUMERIC
NULL

OBJECT

OCTET_LENGTH

OF
Version 4.4 PointBase Developer 190

PointBase
OFF

OLD

ON
ONLY

OPTION

OR
ORDER
OUT

OUTER

PAGESIZE

PARAMETER

PASSWORD

PATH

PLANONLY

POSITION

PRECISION
PRIMARY

PRIVILEGES

PROCEDURE

PUBLICATION

RAW

READ

READS
REAL
REFERENCES
REFERENCING

RELEASE

REPEATABLE

RESTRICT

RETURN

RETURNS

REVOKE

RIGHT

ROLLBACK
ROUTINE

ROW

SAVEPOINT

SCALAR

SCHEMA

SECOND

SELECT
SERIALIZABLE
Version 4.4 PointBase Developer 191

PointBase
SESSION_USER

SET
SIGNAL

SIZE
SMALLINT
SNAPSHOT

SPECIFIC

SQLSTATE

STARTSTATEMENT

STYLE

SUBSCRIPTION

SUBSTRING
SUM

SWITCHLOGFILE

SYSDATE

SYSTIME

SYSTIMESTAMP

TABLE
TEXT

TIME
TIMESTAMP
TINYINT

TO

TRAILING

TRANSACTION

TRIGGER

TRIM

TRUE
UNCOMMITTED

UNION

UNIQUE

UNISYNC

UNKNOWN

UPDATE
UPPER
USER

USING

VALUES
VARBINARY

VARCHAR
VARCHAR2

WHEN
Version 4.4 PointBase Developer 192

PointBase
WHERE
WITH

WRITE

WORK

YEAR
Version 4.4 PointBase Developer 193

Appendix D: SQL Data Type Code
This section contains a mapping of SQL data types and their corresponding type code. These
code values are based on the ANSI and ISO SQL standard.

SQL Data Type
Type Code

BLOB 30

BOOLEAN 16

CHARACTER 1

CHARACTER VARYING 12

CLOB 40

DATE 91

TIME 92

TIMESTAMP 93

DECIMAL 3

DOUBLE PRECISION 8

FLOAT 6

INTEGER 4

NUMERIC 2

REAL 7

SMALLINT 5
Version 4.4 PointBase Developer 194

	Proprietary and Trademark Information
	Table of Contents
	Preface
	Purpose
	Audience
	Release Notes
	Document Feedback
	Document Conventions Used in This Guide

	Developer’s Overview
	JDBC and PointBase
	The PointBase JDBC Driver

	SQL and PointBase
	Your Application and PointBase
	What’s New With PointBase Embedded and PointBase Server
	PointBase Embedded/Server RDBMS Enhancements
	Best Practices

	PointBase JDBC Basic Tutorial
	Refreshing the Sample Database
	Making a Connection to PointBase
	Loading the PointBase JDBC Driver
	Connecting to the PointBase database

	Creating and Executing Static JDBC Statement
	Retrieving Row Values From Non-Scrollable Result Sets
	Closing and Committing Objects
	Rolling Back or Committing the Transaction
	Closing the Result Set
	Closing the JDBC Statement
	Closing the Connection to the Database

	PointBase JDBC Advanced Tutorial
	Creating and Executing a Dynamic JDBC Statement
	Creating a Prepared Statement
	Binding the Dynamic Variables to the Prepared Statement

	Using Result Sets
	Result Set Types, Concurrency, and Holdability
	Creating Scrollable Result Sets
	Notes on Scrollable Result Sets
	Moving the Cursor
	Setting the Direction of the Cursor in Scrollable Result Sets
	Retrieving Information About a Result Set
	Setting the Number of Returned Rows in Scrollable Result Sets
	Updating Row Values in Scrollable Result Sets
	Inserting Rows Into Scrollable Result Sets
	Deleting Rows From Scrollable Result Sets
	Viewing Changes to Current Result Sets

	Flushing the Database Log
	Performing Batch Operations
	Retrieving Data From BLOB Columns
	Retrieving Data From CLOB Columns
	Creating Functions
	External Java Methods and Functions
	Creating an External Function
	Specifying the External Function in a Stored Function
	Using the Function

	Creating Stored Procedures
	Using INOUT and OUT Parameters
	Using JDBC Wrapper Classes
	Creating an External Procedure Using JDBC Wrapper Classes
	Executing a Stored Procedure

	Basic SQL Data Objects
	Data Objects Within PointBase Server and Embedded
	Database
	Database Size Limit
	Concurrent Databases
	Read-Only Support

	User
	Schema
	Previous Schema PUBLIC
	Schema Owners
	Schema Referencing
	Managing Schemas

	Table
	Derived Table
	View
	Security for Views

	Temporary Table
	Column
	IDENTITY Property for Autoincrement

	SQL Data Types
	CHARACTER [(length)] or CHAR [(length)]
	VARCHAR (length)
	BOOLEAN
	SMALLINT
	INTEGER or INT
	BIGINT
	DECIMAL [(p[,s])] or DEC [(p[,s])]
	NUMERIC [(p[,s])]
	REAL
	FLOAT(p)
	DOUBLE PRECISION
	DATE
	TIME
	TIMESTAMP
	CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE OBJECT [(length)]
	BLOB [(length)] or BINARY LARGE OBJECT [(length)]
	Data Conversions and Assignments

	SQL Scalar and Aggregate Functions
	SQL Scalar Numeric Functions
	SQL Scalar Character String Functions
	CONCATENATION
	SUBSTRING
	CHARACTER_LENGTH
	POSITION
	TRIM
	UPPER and LOWER

	SQL Scalar Date/Time Functions
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	EXTRACT

	SQL Scalar CAST Function
	SQL Scalar Routine Invocation
	Routine Determination

	SQL Aggregate Functions
	AVG
	COUNT
	MAX
	MIN
	SUM

	SQL Special Registers

	Indexes and Constraints
	Indexes
	Keys
	Primary Key
	Foreign Key

	Constraints
	Unique Constraint
	Referential Constraint
	Check Constraint

	Index Organized Tables
	Search Conditions and Predicates
	Search Conditions
	Simple search conditions
	Values
	Operators
	Complex search conditions

	Predicates
	COMPARISON
	BETWEEN
	LIKE
	EXISTS | NOT EXISTS
	IN | NOT IN
	NULL

	Transactions and Locks
	Transactions
	Row Level Locking
	Locks and Memory

	Transaction Isolation Levels
	READ_COMMITTED
	SERIALIZABLE and REPEATABLE_READ
	Recommended Isolation Level

	Distributed Transactions
	PointBase’s Role in a DTP Environment
	Transaction Managers, Resource Managers, and Global Transactions
	Interaction Among DTP Components

	Java Transaction API (JTA)
	JDBC 2.0 Optional Package API
	Implementing javax.sql.XADataSource
	XADataSource and JNDI
	Support for XADataSource Properties
	Additional PointBase Methods

	Using PointBase in a DTP Environment
	Getting the XAResource Object
	Using the XAResource Object
	Committing Global Transactions
	Rolling Back Global Transactions
	Recovering Global Transactions
	Example

	Mixing Global and Local Transactions
	Unsupported in PointBase

	SQL Security and Privileges
	Predefined Users
	Internal_System_Administrator (ISA)
	PBSYSADMIN
	PBPUBLIC

	Granting and Revoking Privileges to Users
	GRANT Syntax
	Examples
	REVOKE Syntax

	Predefined Roles
	PBDBA Role
	READALL Role

	Granting and Revoking Privileges to Roles
	CREATE ROLE Syntax
	Examples
	GRANT ROLE Syntax
	REVOKE Syntax
	DROP ROLE Syntax
	SET ROLE Syntax

	Application Programming Interface Tools
	Load and Unload API’s
	Unload API
	Load API

	Appendix A: SQL Reference
	Conventions
	Page Format Conventions
	Syntax Conventions

	Data Definition Language
	CREATE SCHEMA
	Syntax
	Examples

	CREATE TABLE
	Syntax
	Column_Definition Syntax
	Column_Constraints
	Table_Constraint_Definition
	Example 1
	Example 2
	Example 3

	CREATE VIEW
	Notes
	Syntax
	Examples

	CREATE USER
	Syntax
	Example

	CREATE ROLE
	CREATE INDEX
	Syntax
	Example1
	Example2

	CREATE FUNCTION
	Syntax
	Example

	CREATE PROCEDURE
	Syntax
	Example 1
	Example 2
	Example 3
	Example 4

	CREATE TRIGGER
	Syntax
	Security
	Examples

	ALTER TABLE
	Syntax
	Alter_Table_Action Syntax
	Examples

	ALTER USER
	Syntax
	Examples

	Dropping SQL Objects
	DROP INDEX
	Syntax
	Examples

	DROP FUNCTION or DROP PROCEDURE
	Syntax
	Examples

	DROP SCHEMA
	Syntax
	Examples

	DROP TABLE
	Syntax
	Examples

	DROP VIEW
	Notes
	Syntax
	Examples

	DROP TRIGGER
	Syntax
	Examples

	DROP USER
	Examples

	DROP ROLE

	Data Manipulation Language and Data Query Language
	SELECT
	Syntax
	Examples
	Joins
	CROSS JOIN
	INNER JOIN
	OUTER JOIN
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	UNION operator
	Subqueries

	INSERT
	Syntax
	Query_Expression
	Form 1: Table_values_constructor
	Examples
	Form 2: DEFAULT VALUES
	Examples
	Form 3: Query Specification
	Example

	UPDATE
	Syntax
	Examples

	DELETE
	Syntax
	Examples

	Data Control Language
	CALL
	Syntax
	Examples

	RETURN
	Syntax
	Examples

	SET assignment
	Syntax
	Examples

	SET PATH
	Syntax
	Examples

	SIGNAL
	Syntax
	Examples

	VALUES
	Syntax
	Examples

	Transaction Control
	SAVEPOINT
	Syntax
	Examples

	COMMIT
	Syntax
	Examples

	RELEASE SAVEPOINT
	Syntax
	Example 1
	Example 2

	ROLLBACK
	Syntax
	Examples

	SET DATALOG
	Example 1
	Example 2

	START TRANSACTION ISOLATION LEVEL
	Syntax
	READ UNCOMMITTED
	READ COMMITTED
	REPEATABLE READ
	SERIALIZABLE
	Example

	PointBase-Specific SQL
	SHUTDOWN
	Syntax
	Examples

	BACKUP
	Important Notes
	Syntax
	Example

	Appendix B: Unsupported JDBC Methods in PointBase
	Appendix C: Reserved Words
	Appendix D: SQL Data Type Code

